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v

Recently, mass spectrometry (MS) instrumentation and computational tools have witnessed 
significant advancements. Thus, MS-based proteomics continuously improved the way pro-
teins are identified and functionally characterized. This book covers the most recent pro-
teomics techniques, databases, bioinformatics tools, and computational approaches that are 
used for the identification and functional annotation of proteins and their structure. The 
most recent proteomic resources widely used in the biomedical scientific community for 
storage and dissemination of data are discussed. In addition, specific MS/MS spectrum 
similarity scoring functions and their application in the field of proteomics, statistical evalu-
ation of labeled comparative proteomics using permutation testing, and methods of phylo-
genetic analysis using MS data are also described in detail.

This edition includes recent cutting-edge technologies and methods for protein identi-
fication and quantification using tandem MS techniques. The reader gets the details of both 
experimental and computational methods and strategies in the identifications and func-
tional annotation of proteins. Readers are expected to have basic bioinformatics and com-
putational skills for a clear understanding of this book.

We hope the scope of this book is useful for researchers who are beginners as well as 
advanced in the field of proteomics. We are extremely grateful to our colleagues who con-
tributed high-quality chapters to this book. We thank the Springer publishers for their sup-
port and are grateful to Professor Emeritus John Walker.

Melbourne, VIC, Australia� Shivakumar Keerthikumar 
 � Suresh Mathivanan 

Preface
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Shivakumar Keerthikumar and Suresh Mathivanan (eds.), Proteome Bioinformatics, Methods in Molecular Biology,
vol. 1549, DOI 10.1007/978-1-4939-6740-7_1, © Springer Science+Business Media LLC 2017

Chapter 1

An Introduction to Proteome Bioinformatics

Shivakumar Keerthikumar

Abstract

High-throughput techniques are indispensable for aiding basic and translational research. Among them, 
recent advances in proteomics techniques have allowed biomedical researchers to characterize the proteome 
of multiple organisms. This remarkable advancement have been well complemented by proteome 
bioinformatics methods and tools. Proteome bioinformatics refers to the study and application of informatics 
in the field of proteomics. This chapter provides an overview of computational strategies, methods, and 
techniques reported in this book for bioinformatics analysis of protein data. An outline of many bioinformatics 
tools, databases, and proteomic techniques described in each of the chapters is given here.

Key words Proteomics, Proteins, Bioinformatics, Databases and computational tools

1  �Introduction

In general, “bioinformatics” refers to the application of informatics/
computer science in the field of biology. The study of entire protein 
content of cell is referred to as the “proteome.” The completion of 
the human genome project and the recent release of first draft of 
human proteome have generated massive amounts of genomic and 
proteomic data, respectively. Recent advancement in instrumen
tation have revolutionized the field of proteomics and the way in 
which thousands of proteins are identified, quantified, and 
characterized in a high-throughput fashion. To aid the scientific 
research community, various bioinformatics tools, databases, and 
computational algorithms were developed for storage, dissemi
nation, and subsequent analysis of these proteomics data. This 
chapter outlines various techniques, resources, bioinformatics 
tools, and computational strategies widely employed in the field of 
proteomics. Based on the chapters contributed, the content of this 
book can be broadly categorized into different sections.
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2  �Proteomic Databases and Repositories

Recent advancement in the high-resolution mass spectrometry 
based techniques have further increased the magnitude of prot
eomic data being generated. Proteomics community efforts have 
increased the dissemination and storage of these proteomics data 
in central repositories to aid scientific community for further 
downstream analysis. Chapter 2 describe general introduction 
about different online proteomics community resources to store 
raw and processed proteomic data and its application in the field of 
proteomics. Thousands of spectra generated using tandem mass 
spectrometry are assigned to proteins by using conventional 
sequence database search strategy. Chapter 3 covers different types 
of sequence databases and its role in specificity and sensitivity of 
protein identifications.

3  �Proteomic Techniques and Computational Strategies Used in the Proteome 
Bioinformatics

There are various quantitation strategies employed using label-
based and label-free methods for quantification of proteins. 
Chapter 4 describes the most commonly used quantitative 
proteomics techniques including stable isotope labeling methods 
using enzymatic, chemical, and metabolic strategies as well as label-
free quantitation strategies. Using tandem mass tags (TMT), a type 
of labeled quantitative method, Chapter 5 details its sample 
processing, labeling, fractionation and data processing protocols  
in a stepwise fashion. Chapter 6 by Pathan et  al. deals with 
fundamentals of protein identifications, different search methods, 
and rationale behind unassigned spectra. The main computational 
challenge remains in assigning thousands of spectra to their 
respective peptides and proteins. In general, different scoring 
functions have been developed and are used in assigning these 
experimental MS/MS spectrum to the theoretical MS/MS 
spectrum. Chapter 7 by Sule Yilmaz, Elien Vandermarliere, and 
Lennart Martens describes MS/MS spectrum similarity scoring 
functions and their applications in proteomics and assess their 
relative performance on sample data. Chapter 8 describes the 
details of targeted proteomics techniques using proteotypic 
peptides and its implications in the field of proteomics research. 
Chapter 9 describes statistical evaluation of labeled comparative 
proteomics profiling experiments using permutation test. This 
chapter covers various steps involved in permutation analysis with 
false discovery rate control using various computational strategies.

Besides conventional sequence database search method, de 
novo sequencing method is also used in spectral assignment which 
mainly benefits from identification of novel peptides which are 

Shivakumar Keerthikumar

http://dx.doi.org/10.1007/978-1-4939-6740-7_2
http://dx.doi.org/10.1007/978-1-4939-6740-7_3
http://dx.doi.org/10.1007/978-1-4939-6740-7_4
http://dx.doi.org/10.1007/978-1-4939-6740-7_5
http://dx.doi.org/10.1007/978-1-4939-6740-7_6
http://dx.doi.org/10.1007/978-1-4939-6740-7_7
http://dx.doi.org/10.1007/978-1-4939-6740-7_8
http://dx.doi.org/10.1007/978-1-4939-6740-7_9
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missed in the traditional database search strategies. Chapter 10 
describes a methodology to integrate de novo peptide sequencing 
using three commonly available software solutions in tandem, 
complemented by homology searching and manual validation of 
spectra for greater usage of de novo sequencing approach and for 
potentially increasing proteome coverage. Using de novo sequen
cing method along with proteolytic peptide mass maps and 
mapping of mass spectral data onto classical phylogenetic trees, 
Chapter 11 describes methods of phylogenetic analysis using 
protein mass spectrometry.

4  �Functional Characterization of Proteins

Identifying thousands of proteins using tandem mass spectrometry 
also poses huge challenges in biological, functional, and structural 
interpretation of proteomics data. To gain functional insights of 
high throughput proteomic data, functional enrichment analysis 
based on gene ontology terms, biological pathways, and protein–
protein interaction network is performed using various stand-alone 
tools and Web-based user friendly programs. Chapter 12 gives 
stepwise instructions of using these tools and Web-based resources 
mainly used in functional enrichment analysis. On the other hand, 
Chapter 13 describes functional annotation pipeline for those 
proteins with very little or no annotations available and known to be 
suitable for reconfirming data obtained from proteomics experiments.

An overview of basic network theory concepts and most 
commonly used protein–protein interaction network databases as 
well as computational tools used in the analysis of interaction network 
topology, biological modules and their visualization is described in 
Chapter 14. Statistical tests are usually performed to identify the 
significance of enriched or depleted proteins in these functional and 
interaction network analysis. However, Chapter 15 describes an 
alternative strategy and methodology to determine the statistical 
significance of network features using permutation testing.

Ultimate design of these computational tools, approaches, and 
resources, in this context, is to functionally and structurally 
characterize proteins. Determining three-dimensional structure  
of the proteins and identifying ligands to which they bind is  
an important step towards elucidating protein functions and 
advancement in X-ray crystallographic techniques has contributed 
to increasing number of protein structures. As a result various 
bioinformatics tools and resources have been developed to store 
and analyze these protein structures. Chapter 16 describes number 
of such freely available bioinformatics tools and databases used 
primarily for the analysis of protein structures determined using 
X-ray crystallographic techniques. One such application of these 
protein structure-determining tools and resources is described in 
Chapter 17.

An Introduction to Proteome Bioinformatics

http://dx.doi.org/10.1007/978-1-4939-6740-7_10
http://dx.doi.org/10.1007/978-1-4939-6740-7_11
http://dx.doi.org/10.1007/978-1-4939-6740-7_12
http://dx.doi.org/10.1007/978-1-4939-6740-7_13
http://dx.doi.org/10.1007/978-1-4939-6740-7_14
http://dx.doi.org/10.1007/978-1-4939-6740-7_15
http://dx.doi.org/10.1007/978-1-4939-6740-7_16
http://dx.doi.org/10.1007/978-1-4939-6740-7_17
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Chapter 2

Proteomic Data Storage and Sharing

Shivakumar Keerthikumar and Suresh Mathivanan

Abstract

With the advent of high-throughput genomic and proteomic techniques, there is a massive amount of 
multidimensional data being generated and has increased several orders of magnitude. But the amount of 
data that is cataloged in the central repositories and shared publicly with the scientific community does not 
correlate the same rate at which the data is generated. Here, in this chapter, we discuss various proteomics 
data repositories that are freely accessible to the researchers for further downstream meta-analysis.

Key words Proteins, Peptides, Databases, False discovery rate, Cancer, Mass spectrometry

1  Introduction

The applications of mass spectrometry in identification and 
quantification of proteins in complex biological samples is rapidly 
evolving [1–3]. Recent technical advances in mass spectrometer to 
measure the abundance of proteins have further increased the 
amount of multidimensional data being generated [4]. As a result, 
significant interests have been created to characterize the proteome 
of many cell types and subcellular organelles [5–9]. There are three 
different layers of proteomic data that is generated using mass 
spectrometry-based techniques: raw data, peptide/protein data 
(also known as “result” or “peak list”) and metadata. Raw data is 
basically a binary format file which most of the proteomic tools like 
MSConvert (http://proteowizard.sourceforge.net/tools.shtml) 
converts further into human readable formats such as mgf, XML, 
pkl, and txt files. Metadata contains experimental details, type of 
instruments, modifications and search engines/tools used [10]. In 
order to disseminate these different types of data to the scientific 
community, researchers have constantly thrived to develop central 
repository to store and share these humongous data [11–13].

http://proteowizard.sourceforge.net/tools.shtml
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Here, we focus on publicly available free centralized resources 
that disseminate all kinds of proteomics data and tools which fur-
ther aid in downstream analysis to gain new biological insights that 
benefit the scientific community.

2  Online Proteomics Community Resources

Currently, there are wide varieties of online resources (Table  1) 
that host different types of proteomics data at different level and 
software tools to further mine these data. The most commonly and 
widely used proteomic resources are discussed here.

The PRIDE database is most widely used centralized, publicly 
available proteomic repository which stores and manages all three 
different levels of proteomic data such as raw data, peak list file  
and metadata. The PRIDE database established at European 
Bioinformatics Institute, UK has a Web-based, user-friendly query 
and data submission system as well as documented application 
programming interface besides local installation [14]. Recently, 
the new PRIDE archival system (http://www.ebi.ac.uk/pride/
archive/) has replaced the PRIDE database. The PRIDE archive 
system supports community recommended Proteomic Standard 
Initiative (PSI) data formats and is an active founding member of 
ProteomeXchange (PX) consortium (http://www.proteomicex-
change.org/). The main concept behind such consortium is to 
standardize the mass spectrometry proteomics data and automate 
the sharing of these data between the repositories to benefit the 
end users [15].

The PRIDE archive system also stores many software tools 
such as PRIDE Inspector, PRIDE converter and PX submission 
tool to further streamline the data submission process and its visu-
alization to aid scientific community. All these software tools 
including Web modules are developed in JAVA and are open source 
(https://code.google.com/archive/p/ebi-pride/). Besides fund-
ing agencies, many scientific journals such as Nature Biotechnology, 
Proteomics, Molecular and Cellular Proteomics and Journal of 
Proteome Research mandates submission of raw data and associated 
metadata to proteomics repository to support their publication 
which further elevated the public deposition of proteomics data. 
As a result, The PRIDE archive currently contains ~140 TBs size 
of data which constitutes 690 M spectra, 298 M and 66 M peptide 
and protein identification, respectively, spanning more than 500 
different taxonomical identifiers.

The PeptideAtlas (http://www.peptideatlas.org/) database is 
another freely available mass spectrometry derived proteomic data 
repository developed at Institute of Systems Biology, Seattle, USA. 

2.1  PRoteomics 
IDEntifications  
(PRIDE) Database

2.2  PeptideAtlas

Shivakumar Keerthikumar and Suresh Mathivanan

http://www.ebi.ac.uk/pride/archive/
http://www.ebi.ac.uk/pride/archive/
http://www.proteomicexchange.org/
http://www.proteomicexchange.org/
https://code.google.com/archive/p/ebi-pride/
http://www.peptideatlas.org/
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The PeptideAtlas accepts only spectra files either in the form of 
RAW, mzML or mzXML format and limited metadata. Once sub-
mitted, the raw spectra files are processed using standardized data 
processing pipeline known as Trans Proteomics Pipeline (TPP) [16] 
and stored in the SBEAMS (Systems Biology Experiment Analysis 
Management System)-Proteomics module. Further, peptides iden-
tified with high score are mapped to their respective genome 
sequence representing species/sample specific build [17, 18]. 
Currently, the PeptideAtlas has 19 organism specific build which 
includes many model organisms such as human, yeast, worms, 

Table 1 
Overview of online proteomics resources

Database Types of data stored Link

PRIDE Accepts Raw data, processed data and 
meta data

http://www.ebi.ac.uk/pride/archive/

Peptide Atlas Accepts only Raw data and limited 
meta data

http://www.peptideatlas.org/

CPTAC Allows download and dissemination of 
raw data, processed data and meta 
data relevant to cancer biospecimens 
collated through Proteomic 
Characterization centers (PCCs)

http://proteomics.cancer.gov/

Colorectal 
Cancer Atlas

Stores processed protein and peptide 
data after automatically analyzing the 
publicly available raw data from the 
proteomic repositories

http://www.colonatlas.org/

GPMDB Stores processed protein and peptide 
data after automatically analyzing the 
publicly available raw data from the 
proteomic repositories. Supports 
data analysis

http://www.thegpm.org/

ProteomicsDB Accepts Raw data, processed data and 
meta data. Allows download of raw 
data, processed protein and peptide 
data.

http://www.proteomicsdb.org/

Human 
Proteome Map

Allows download of processed protein 
and peptide data.

http://www.humanproteomemap.org/

Human 
Proteinpedia

Accepts processed and meta data. http://www.humanproteinpedia.org/

Human Protein 
Atlas

Allows download of protein and RNA 
expression in normal and tumor 
tissues and cell types

http://www.proteinatlas.org/

Represents list of publicly available online proteomics resources and repositories discussed in this chapter
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mouse, fly, rat, horse, and zebrafish, for important sample groups 
such as plasma, brain, liver, lung, colon cancer, heart, kidney, and 
urine.

The PeptideAtlas, similar to the PRIDE archive system, is one 
of the founding members of PX consortium that implemented 
standardization of the mass spectrometry-based proteomics data 
and automate the sharing of proteomic data across different repos-
itories. Another important feature of the PeptideAtlas is investiga-
tion of proteotypic peptides which are defined as peptides that can 
uniquely and unambiguously identify specific protein. Currently, 
users can search proteotypic peptides from three different organ-
isms such as human, mouse, and yeast. Identification of such high 
scoring peptides would further serve as most possible targets  
for Selected Reaction Monitoring (SRM) approach [19]. The 
PeptideAtlas SRM Experiment Library (PASSEL) is a component 
of the PeptideAtlas project that is designed to enable submission, 
dissemination, and reuse of SRM experimental results from analy-
sis of biological samples. The raw data submitted via PASSEL are 
automatically processed and stored into the database which can be 
further downloaded or accessed via web interface [20].

Further, the distinct peptides and its associated proteins identi-
fied from the user submitted raw data files using TPP tool can be 
further depicted graphically in Cytoscape [21] plugin implemented 
in the PeptideAtlas. Overall, the PeptideAtlas depicts the normal-
ized outlook of the user submitted data which further aid in 
genome annotation of different organisms using mass spectrome-
try derived proteomic data.

The CPTAC data portal (http://proteomics.cancer.gov/) 
launched in August 2011 by National Cancer Institute (NCI) is a 
freely available, centralized public proteomic data repository col-
lected by proteomic characterization centers for the CPTAC frame-
work. The proteomic characterization center constitutes of  
five teams namely Broad Institute of MIT and Harvard/Fred 
Hutchinson Cancer Research Center, Johns Hopkins University, 
Pacific Northwest National Laboratory, Vanderbilt University, and 
Washington University/University of North Carolina. The pro-
teome characterization center implements proteomics candidate 
developmental pipeline for further protein identification and its 
verification to serve as high value targets for clinically useful diag-
nostics. In addition, proteomic data from The Cancer Genome 
Atlas (TCGA) data portal (http://cancergenome.nih.gov/), 
xenograft models and other tissue datasets of well-characterized 
genome using standardized Common Data Analysis Pipeline are 
analyzed to increase the significance of the results. The CPTAC 
data portal hosts mass spectrometry data of cancer biospecimens 
such as breast, colorectal, and ovarian cancer as well as global 
profiling of post-translational modifications of tumor tissues and 

2.3  CPTAC (Clinical 
Proteomic Tumor 
Analysis 
Consortium) Portal
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cancer cell lines which accounts to more than 6  TB data. The 
CPTAC data portal also hosts data from the Clinical Proteomic 
Technologies for Cancer Initiative from 2006 to 2011, which was 
mainly developed to address the pre-analytical and analytical vari-
ability issues that are major barriers in the field of proteomics. The 
major outcome of this program was the launch of the CPTAC data 
portal to understand the molecular basis of cancer using proteomic 
technology [22, 23].

Colorectal Cancer Atlas (http://www.colonatlas.org/) is web-
based resource developed by integrating genomic and proteomic 
annotations identified precisely in colorectal cancer tissues and cell 
lines. It integrates heterogeneous data freely available in the public 
repositories, published articles [24] and in-house experimental 
data pertaining to quantitative and qualitative protein expression 
data obtained from variety of techniques such as mass spectrome-
try, western blotting, immunohistochemistry, confocal microscopy, 
immunoelectron microscopy, and fluorescence-activated cell sort-
ing. Colorectal Cancer Atlas collates raw proteomic mass spec-
trometry and other proteomic experimental data specifically from 
colorectal cancer tissues and cell lines is processed using in-house 
pipeline. The proteins/peptides identified after <5 % FDR cutoff is 
stored in the backend database. Besides, mutation data largely 
obtained by large and small sequencing methods are also incorpo-
rated into the Colorectal Cancer Atlas database [13].

Currently, Colorectal Cancer Atlas hosts >62,000 protein 
identifications, >8.3 million MS/MS spectra, >13,000 colorectal 
cancer tissues and >209 cell lines. Further, Colorectal Cancer Atlas 
facilitate users to visualize these proteins identified in context of 
signaling pathways, protein–protein interactions, gene ontology 
terms, protein domains, and posttranslational modifications. Users 
can download the entire colorectal cancer data in tab-delimited 
format using the download page at http://colonatlas.org/
download/.

The Global Proteome Machine Database (http://www.thegpm.
org/) is another open source mass spectrometry based proteomic 
repository, publicly available for the scientific community.  
The GPMDB periodically checks all the public proteomic 
repositories, downloads and reanalyzes the proteomic data using 
X! Tandem search engine. Besides, the users can also use spectral 
search engine called X! Hunter (http://xhunter.thegpm.org/) 
and proteotypic profiler called X! P3 (http://p3.thegpm.org/) 
[25] to analyze their data. The resultant peptide and protein lists 
after passing through the stringent automated quality test are 
stored into the backend database along with relevant metadata. 
Further, the results can be either viewed in the GPM website or 
downloaded through ftp or other interfaces. Besides, the users can 

2.4  Colorectal 
Cancer Atlas

2.5  Global Proteome 
Machine Database 
(GPMDB)
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also submit their spectra files in different formats such as mgf, 
mzXML, pkl, mzData, dta, and common (for only big and com-
pressed files) to GPM via ‘Search Data’ option available in the 
website. The most frequently checked public repositories for the 
suitable new proteomic data for reanalysis includes Proteome 
Xchange/PRIDE, PeptideAtlas/PASSEL, MassIVE (http://
www.massive.ucsd.edu/), Proteomics DB, The Chorus Project 
(http://chorusproject.org/), and iProX (http://www.iprox.org/).

Recently, at the time of writing this chapter, the GPMDB 
released an updated version of the GPM Personal Edition-Fury 
to replace the old venerable Cyclone version and upgraded to the 
latest version of X! Tandem (Version 2015.12.15, Vengeance) 
which features speedy assignment of PTMs. In addition, the 
human and mouse protein identification information in GPMDB 
has been summarized into a collection of spreadsheets known as 
GPMDB Guide to Human Proteome (GHP) and GPMDB Guide 
to Mouse Proteome (GMP), respectively. This guide contains 
information organized into separate spreadsheets for each chro-
mosome as well as mitochondrial DNA and made available for 
download at ftp://ftp.thegpm.org/projects/annotation/human_
protein_guide/ and ftp://ftp.thegpm.org/projects/annotation/
proteome_protein_guide/.

ProteomicsDB (http://www.proteomicsdb.org/) is a human cen-
tric proteomic data repository developed jointly by Technical 
University Munich (TUM) and company SAP SE (Walldorf, 
Germany) and SAP Innovation Center and Cellzome GmbH (GSK 
Company). ProteomicsDB, an in-memory database, configured 
with 2 TB of random access memory (RAM) and 160 central pro-
cessor units (CPU), designed for real-time analysis of big pro-
teomic data. ProteomicsDB assembles raw proteomic data files 
from public repositories such as PRIDE, PeptideAtlas, MassIVE, 
ProteomeXchange, and many other individual laboratories as well 
as from in-house experiments and reprocess the files using 
MaxQuant [26] and MASCOT [27] software packages. The pro-
teins and peptides identified after passing through quality control 
steps including FDR filters are deposited into ProteomicsDB.

ProteomicsDB came into the limelight in 2014 with the release 
of draft human proteome map assembled using mass spectrometry 
experiments on human tissues, cell lines, body fluids as well as data 
from PTM studies and affinity purifications [3]. Currently, at the 
time of writing, ProteomicsDB contains protein evidence for 
15,721 of the 19,629 protein coding genes which constitutes 80 % 
coverage of human proteome. ProteomicsDB has a Web-based 
user-friendly interface through which users can search and down-
load details of particular protein and peptide sequence via ‘browse 
by proteins’ and ‘browse by chromosomes’ options. Besides, users 
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can submit their raw mass spectrometry data files, peak list files and 
metadata associated with it only after creating a user account in the 
ProteomicsDB. The secure URL link generated. At the time of 
writing, there were more than 569 registered users, 76 projects 
and more than 400 experiments accounting to 7  TB of data in 
ProteomicsDB.

The Human Proteome Map (HPM) (http://www.humanpro-
teomemap.org/) was developed to represent the draft study of 
human proteome map. The HPM database hosts high-resolution 
mass spectrometry proteomic data representing 17 adult tissues, 
six primary hematopoietic cells, and seven fetal tissues resulting in 
>84 % human proteome coverage. The mass spectrometry data was 
searched against Human RefSeq database (version 50 with com-
mon contaminants) using SEQUEST (http://fields.scripps.edu/
sequest/) and MASCOT [27] search engines through Proteome 
Discoverer 1.3 platform (Thermo Scientific, Bremen, Germany). 
The peptides and proteins identified were represented as normal-
ized spectral counts and for each peptide the high resolution MS/
MS spectrum for the best scoring peptides can be visualized using 
Lorikeet JQuery plugin (http://uwpr.github.io/Lorikeet/). The 
results of the proteins and peptides can be queried and downloaded 
in the standard formats, but the databases currently do not support 
the submission of any new proteomic data [2].

Human Proteinpedia (http://humanproteinpedia.org/) [28, 29] 
was developed in 2008 [2] to facilitate the sharing and integration 
of human proteomic data. Besides, it allows scientific community 
to contribute and maintain protein annotations using protein dis-
tributed annotation system also known as PDAS. Further, protein 
annotations submitted by the users are mapped to individual pro-
teins and made available using Human Protein Reference database 
(HPRD: http://www.hprd.org/) [30]. This allows the user to 
visualize experimentally validated protein–protein interaction net-
works, protein expressions in cell lines/tissues, post-translational 
modifications and subcellular localizations besides mass spectrom-
etry derived peptides/proteins and spectral details.

Human Proteinpedia enables users to query at gene/protein 
level, by types of tissue expressions, posttranslational modifica-
tions, subcellular localizations, different mass spectrometer types, 
and experimental platforms. Using PDAS, the users are allowed to 
upload only processed data (peak list files) and meta-data contain-
ing experimental details into the back-end database either using 
normal or batch (for high-throughput data) upload system. The 
entire Human Proteinpedia data can be further downloaded freely 
by the scientific community at http://www.humanproteinpedia.
org/download/ [31].

2.7  Human Proteome 
Map (HPM)

2.8  Human 
Proteinpedia
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Currently, more than 240 different laboratories around the world 
has contributed proteomic data into Human Proteinpedia database 
which resulted in >4.8 M MS/MS spectra, >1.9 M peptide identi
fications, >150,000 protein expressions, >17,000 posttranslational 
modifications, >34,000 protein–protein interactions, and >2900 
subcellular localizations from >2700 proteomic experiments.

The Human Protein Atlas (HPA: http://www.proteinatlas.org/) 
hosts expression and localization of majority of human protein 
coding genes based on both RNA and protein data. It was devel-
oped in 2005 as a large scale effort to quest where the proteins 
encoded by the human protein coding genes are expressed in the 
different tissues and cell types. Unlike other proteomic resources 
mainly depends on mass spectrometry based protein identifica-
tions, the HPA largely uses antibody based proteomics and tran-
scriptomics profiling methods to locate and identify proteins in 
tissues and cell types. The transcriptomic data quantifies gene 
expression levels on different tissues and cell types while antibody 
based protein profiling methods characterize spatial cellular distri-
bution for the corresponding proteins at different substructures 
and cell types of the tissues [32].

At the time of writing this chapter, the Human Protein Atlas 
version 14 known to contain RNA data for 99 % and protein data 
for 86 % of the predictive human genes and includes >11 million 
images with primary data from immunohistochemistry and immu-
nofluorescence. The HPA contains >37,000 validate antibodies 
corresponding to 17,000 human protein coding genes collated 
from 46 human cell lines and tissue samples from 360 people (44 
normal tissue types from 144 people and the 20 most common 
types of cancer from 216 people) [33].

Recently, tissue-based map of the human proteome data ana-
lyzed from 32 tissues and 47 cell lines using integrated OMICS 
approach is included in the Human Protein Atlas to further explore 
the expression pattern across the human body. In addition, global 
analysis of secreted and membrane proteins (secretome and mem-
brane proteome), as well as an analysis of expression profiles for all 
proteins targeted by pharmaceutical drugs (druggable proteome) 
and protein implicated in cancer (cancer proteome) is integrated 
into the Human Protein Atlas [9].

3  Discussion

The amount of proteomics data being shared among the scientific 
community is still not well organized when compared to the 
humongous data that is being generated due to advancement in 
the proteomics field. The main reason for this can be attributed to 
the limited funding available for the maintenance of the database 
server, manpower, and other infrastructure. As a result, few of the 
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efficient repositories such as NCBI Peptidome [34, 35] and 
Tranche [10] are completely discontinued largely due to funding 
constraints. In order to sustain and serve the growing scientific 
community database like the CHORUS (https://chorusproject.
org/), a cloud based platform for storage, analysis and sharing of 
mass spectrometry data is charging users with certain amount of 
fees based on type of services required. We urge the continuous 
usage of these proteomic resources and willingness to share the 
proteomics data to the scientific community will only keep these 
resources alive and stable. Further, these proteomics resources 
would aid as important discovery tools in the field of biomedical 
research.
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Chapter 3

Choosing an Optimal Database for Protein Identification 
from Tandem Mass Spectrometry Data

Dhirendra Kumar, Amit Kumar Yadav, and Debasis Dash

Abstract

Database searching is the preferred method for protein identification from digital spectra of mass to charge 
ratios (m/z) detected for protein samples through mass spectrometers. The search database is one of the 
major influencing factors in discovering proteins present in the sample and thus in deriving biological 
conclusions. In most cases the choice of search database is arbitrary. Here we describe common search data-
bases used in proteomic studies and their impact on final list of identified proteins. We also elaborate upon 
factors like composition and size of the search database that can influence the protein identification process. 
In conclusion, we suggest that choice of the database depends on the type of inferences to be derived from 
proteomics data. However, making additional efforts to build a compact and concise database for a targeted 
question should generally be rewarding in achieving confident protein identifications.

Key words Shotgun proteomics, Peptide identification, Database size, Proteogenomics, neXtProt

1  Introduction

Comprehensive characterisation of proteome, the cellular workforce 
of an organism is important to understand the underlying biological 
phenomena and processes. Modern advances in ionization of bio-
molecules, multidimensional sample separation and mass spec-
trometry (MS) instrumentation have made shotgun proteomics 
the most popular approach to profile proteomes from biological 
samples in a high-throughput manner. During sample preparation 
proteins are isolated, digested into peptides with trypsin or other 
proteases, fractionated to reduce the complexity, and then injected 
in a mass spectrometer [1]. Digested peptides are ionized before 
flying inside a mass spectrometer either by electrospray ionization 
(ESI) [2] or matrix-assisted laser desorption ionization (MALDI) 
[3]. Often the detection of m/z of charged peptide ions is fol-
lowed by fragmentation either by collision induced dissociation 
(CID) [4]or high-energy collision dissociation (HCD) or electron 
transfer dissociation (ETD) [5] to generate fragments due to bond 
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breakage along the peptide backbone. The set of m/z values and 
intensities of parent peptide along with its associated fragment ions 
represents one tandem (MS/MS) mass spectrum which is further 
utilized to identify peptide.

The interpretation of peptide sequences for thousands of spec-
tra from one MS/MS run is generally carried out using either de 
novo, tag assisted or database search method. De novo approaches 
to interpret peptide or its partial tag from an MS/MS spectrum 
rely on accurate estimation of mass differences between m/z peaks 
and their correspondence to amino acid masses [6]. Although 
promising for infinite search space to decipher encrypted sequence 
in m/z values, it suffers from low resolution, low sensitivity, and 
partial coverage in peptide detection [7, 8]. Thus these methods 
are not viable for high-throughput proteomics. Instead, database 
search approaches are more popular to infer peptide and proteins 
from MS/MS data owing to their ease of automation. In database 
search method, spectra are searched against a protein database 
which represents biological protein sequences that might be pres-
ent in the sample. Each protein in the database is theoretically 
digested into peptides following the cleavage rules of protease used 
in the experiment. Similar to the experimental process, theoretical 
mass spectra for these peptide sequences are simulated based on 
the fragmentation pattern specific to the dissociation method or 
instrument. These theoretical peptide spectra are compared with 
each experimental spectrum. The peptide which best explains the 
experimental spectrum also known as peptide spectrum match 
(PSM), is retained for further analysis [9]. To estimate the fraction 
of possible false matches due to random chance, multiple hypoth-
esis testing is applied to the entire list of PSMs. For this, decoy 
database search based false discovery rate (FDR) estimation is rou-
tinely followed method [10, 11]. In this method, spectra are 
searched against a target database representing biological protein 
sequences and a decoy database containing all decoy or false pro-
teins. The PSMs score distribution of decoy database search allows 
estimation of false positive fraction in PSMs assigned from target 
database. The FDR corrected list of PSMs leads to the list of pep-
tides and proteins expressed in the sample. A schematic workflow 
of shotgun proteomics experiment and data analysis is presented in 
Fig. 1. Protein identification is an important step when quantita-
tive changes in different biological samples or states are measured. 
The quantification of different proteins is dependent on peptide 
detection and thus the factors affecting peptide discovery would 
also impact the MS based quantitation of proteins. Another dimen-
sion of proteomic studies is to identify posttranslational modifica-
tions (PTMs) which contribute both dynamicity and diversity to 
the proteome. In the database search method anticipated PTMs 
can be discovered by defining the mass shift and amino acid speci-
ficity caused by these modifications. Defining PTMs during the 
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search significantly alters the search space and thus influences the 
protein discovery.

Significance of the search database on proteomic studies can be 
understood by the fact that list of peptides and proteins vary sig-
nificantly between different database searches. Further, different 
parameters applied change the effective search space, making the 
choice of database an important consideration. Thus it is impor-
tant to understand which database would be optimal to maximize 
the protein discovery without increasing false positives.

2  Databases for Protein Discovery

Biological sequence information in the form of genome, transcrip-
tome, and proteome can be retrieved from various global Web por-
tals. Few resources like NCBI-RefSeq and UniProtKB host entire 
set of non redundant protein sequences, annotated or predicted 
and stored in the form of FASTA flat files. On the other hand, 
SwissProt, a small subset of UniProt comprises of only the confi-
dent set of proteins, the biological existence of which has been 
manually curated. UniProt provides the information on proteomes 
for 8975 organisms of which 2583 are reference proteomes 
(27/7/2015, http://www.uniprot.org/proteomes/). There are 
dedicated Web resources for various biologically important organ-
isms as well. For example, neXtProt is a Web portal that annotates 

Fig. 1 Schematic workflow of protein detection from mass spectrometry based shotgun proteomics
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human proteins and isoforms for their levels of experimental obser-
vation [12]. GENCODE, a human gene annotation database also 
provides a list of protein coding human transcripts [13]. Genome 
resources like Ensembl and UCSC also provide proteomes for vari-
ous eukaryotic and prokaryotic model organisms. Dedicated pro-
teome resources for prokaryotes include Tuberculist for 
Mycobacterium tuberculosis (Mtb), EcoCyc and EcoGene for model 
bacterium Escherichia coli, and many others exist, from where 
organism-specific curated proteomes can be downloaded.

Given a proteomics dataset generated from an organism, the 
researcher has many options to select the search database from. 
However, in most cases the choice of database is arbitrary. For 
example, if one has proteomics data generated for a human cancer 
cell line, it can be searched against either of the databases like 
NCBI-RefSeq, UniProtKB, SwissProt, reference human pro-
teomes from Ensebml/UniProt/NCBI or manually curated neXt-
Prot. There are significant differences among these databases both 
in terms of size and content and thus identified protein list would 
vary amongst the searches. Similarly, if the data is generated for a 
bacterium, it can be searched against: (1) one of the reference pro-
teomes from different sources, (2) all proteins known for the 
genus, (3) for the entire bacterial super-kingdom, or (4) entire 
SwissProt. Which of these searches will provide the optimal or 
maximal results is a difficult question to answer. Moreover, maxi-
mal may not always be optimal. Searching large datasets may result 
in higher number of hits, many of which may be random in nature. 
However, we discuss below the major factors which should be con-
sidered before deciding about the search database to achieve the 
optimal results.

One of the most easily distinguishable attribute of these search 
databases is the number of proteins they contain also referred to as 
the database size. The size of the database determines both the 
time complexity as well as the number of identified peptides from 
the searches. Figure 2 presents a size comparison of major pro-
teomics search databases. While the global proteomes like NCBI-
RefSeq or UniProtKB present comprehensive search space they are 
enormous when compared to reference proteomes. SwissProt on 
the other hand has a manageable search space. However, due to 

2.1  Databases 
and Effect 
of Databases 
on Protein Discovery

2.1.1  Database Size 
Influences the Search Time 
and Results

Fig. 2 Common proteomics search databases. Font size for each database name reflects database size

Dhirendra Kumar et al.



21

the manual curation of the database entries, comprehensiveness of 
the search space for non-model organisms and as-yet-unobserved 
proteins is debatable. The time complexity for proteomics database 
search increases linearly with increase in database size [8]. Thus it 
can be estimated that MS/MS data searching against global 
databases might consume ≈700× more time than the reference 
human proteome database.

Various search parameters reshape the search space from the original 
database. Important ones are listed below.

Precursor tolerance defines the expected limit of difference between 
experimental and theoretical peptide mass. In the search process, it 
determines the number of candidate peptides for a given spectrum. 
More the candidate peptides, more the number of comparisons 
between theoretical and experimental spectrum and thus more time it 
will require to determine the best scoring PSM for any given spectrum. 
Thus, increase in precursor tolerance would also increase the search 
time by expanding the effective search space.

Missed cleavages are sites where protease “missed” or did not 
cut during hydrolytic cleavage. The number of possible proteolytic 
peptides to consider for each protein increases with the higher 
number of missed cleavages and thus increasing candidate peptides 
per spectrum and search time. For example a theoretical cleavage of 
479 aa long AKT3 protein produces 29, 86, 148, and 209 peptides 
(>7 aa) for 0, 1, 2, and 3 missed cleavages, respectively, indicating 
steep increase in possible candidates.

Posttranslational modifications (PTM) are commonly defined 
while searching the tandem mass spectrometry data as they signify 
the dynamic regulation of protein function and biological states. 
PTMs are generally searched as variable modifications due to their 
temporal nature. Variable modifications in search mean that they 
may or may not be present at a site. Therefore, various different 
modified peptide possibilities might exist and all these need to be 
considered while generating theoretical spectra for comparison 
with experimental spectrum. For example, if a peptide posses seven 
modifiable sites, total 99 (1 + 7 + 21 + 35 + 35) modified versions of 
this peptide are possible containing 0–4 sites as modified. Hence, 
it is estimated that search space increases exponentially with 
increase in PTMs defined in searches [8].

While searching MS/MS data, actual search space for each 
spectrum is determined by these search parameters and magnify 
database size many folds. Thus while determining an appropriate 
database not only the database size but the search parameters 
should also be considered.

Another dimension which needs to be taken into consideration 
before deciding on the search database is its content in terms of 
protein sequences. Proteome set downloaded from different 

2.1.2  Search Parameters 
Alter the Effective Search 
Space

2.1.3  Variability 
Between Databases
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sources also vary in their protein content. For instance, human 
reference proteome can be retrieved from NCBI, UniProt, 
Ensembl, or Human Proteome Organization (HUPO) promoted 
neXtProt [14]. However, there are significant differences among 
these. While NCBI-RefSeq (Release 69) human proteome con-
tains 72,123 protein sequences, reference proteomes from UniProt 
(27/7/2015), Ensembl (Release 78), and neXtProt (19/9/2014) 
contain 69,693, 99,436, and 41,038 proteins, respectively. 
Sequence similarity based comparison between these databases 
considering neXtProt as reference suggests 2830 protein sequences 
from neXtProt do not have a similar sequence in Ensembl human 
proteome. Similarly 3896 proteins from neXtProt do not have rep-
resentative in RefSeq human proteome. On the other hand as 
many as 13,931 from RefSeq and 47,356 from Ensembl do not 
have a match in neXtProt database. The scenario further compli-
cates the choice for the database search database even for the most 
characterized organism like human. It should be noted that most 
of these differences relate to either splice isoforms or poorly anno-
tated genes. While a better synchronization is required among 
these primary resources, the differences are primarily due to differ-
ent genome annotation pipeline adopted by these portals. A similar 
scenario can be observed for other organisms as well and has been 
reported even for simple organisms like bacteria. One of the major 
limitations of the database search method is that a peptide cannot 
be identified despite its presence in sample, if it is not present in the 
search database. Therefore, selecting a database with fewer protein 
entries might lead to underestimation of identified proteins.

Primary motivation for searching larger databases is inclusion of 
most of the biological proteins in search so as to maximize the 
identifications. However, large databases would also increase the 
high scoring random matches thus potentially increasing false posi-
tives. To control the number of false positives, a decoy database 
based method is generally adopted to calculate FDR and to filter 
the identifications. Large target search database would also mean 
an equally large decoy database and thus high scoring random 
matches from the decoy database as well. Since number of true 
target identifications are not expected to increase beyond a finite 
set with the inflation in database size, the ratio of decoy hits to 
target hits increases at a given FDR threshold and thus reduces the 
number of qualifying target identifications. Therefore, rather than 
maximizing the search results, large database size actually reduces 
the overall significant identifications as the threshold becomes 
stringent due to increase in high scoring decoys. A computational 
correction can be applied where rescorers like Percolator [15] for 
Mascot, X!Tandem [16] and OMSSA [17], FlexiFDR [18] for 
MAssWiz [19], and Qscore [20] for Sequest may alleviate this 
problem to some extent but may be computationally challenging 

2.1.4  Effect of Database 
Size on Sensitivity 
and Specificity 
of Identifications
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and outside the domain expertise of general proteomic researchers 
without bioinformatics support.

To demonstrate this effect, a small dataset from Mtb was 
searched against five databases of increasing size and complexity; 
NCBI-Mtb H37Rv reference proteome, six frame translated 
genome, NCBI proteome for Mtb complex, SwissProt, and 
UniProtKB. As evident from Fig. 3, increasing database size beyond 
the expected proteome size tends to decrease the overall number of 
identifications.

Another aspect of database content is the sharing of peptides 
among different protein sequences in the database. If search data-
base contains multiple protein isoforms, most of the peptides will 
be shared among isoforms and clear distinction of expressed 
isoform(s) is challenging. Protein grouping algorithms are expected 
to resolve the most probable expressed isoform explaining maxi-
mum number of detected peptides [21]. However, its effect on 
protein quantitation is yet to be characterized. Most of the labeled 
quantification methods like SILAC [22] and iTRAQ [23], as well 
as label free ones like SWATH [24], approximate protein quantities 

Fig. 3 Size and identified peptide spectrum matches (PSMs) for searches against common databases for Mtb 
MS/MS data
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from mapping peptide quantities. Hence, peptide sharing among 
isoforms would also impact the inferred protein quantities. While 
such analysis against small curated databases like neXtProt might 
be a useful exercise, sample-specific information of expressed tran-
scripts might enable better resolution in discovering translated 
proteins for which no experimental evidence exists.

Reference proteome databases hosted at different Web resources 
are limited to only routine qualitative and quantitative proteome 
profiling. The questions targeted for discoveries like novel genes, 
isoforms, and variant peptides cannot be answered using such 
annotated proteome databases. These require building customized 
database to cover more comprehensive and biologically relevant 
search space. Few such custom databases and their targeted appli-
cations are discussed below.

Large scale and high-throughput proteomic studies can also be 
used to confirm translation of protein coding regions in any 
genome. Due to limitation of in silico genome annotation pipe-
lines, annotation of protein coding genes is neither complete nor 
accurate. Such annotated proteomes thus need to be refined with 
experimental observations. However, standard proteome databases 
do not allow such analysis. These proteogenomic studies require a 
database which covers maximal potential coding DNA sequences 
(CDS) in a genome [25]. A six frame translated genome theoreti-
cally includes entire set of CDS. Although 20- to 100-folds larger 
than annotated proteome databases, genome translated databases 
have potential to discover genomic regions undergoing translation 
but not included in annotated set of protein coding genes for the 
organism [26]. Software developments like GenoSuite [27], 
EuGenoSuite and Peppy [28] allow proteomic researchers to carry 
out prokaryotic proteogenomic studies by enabling automated 
comprehensive data analysis against a genome database. For pro-
karyotes which have ≈90 % coding potential, genome translated 
databases are preferred choices for proteogenomic reannotation 
and have been successfully applied to various organisms like Mtb 
[29], Bradyrhizobium japonicum [27], and Shigella felxneri [30]. 
However, for complex eukaryotic organisms like human whose 
genome has only ≈2 % as protein coding regions, analysis against 
translated genome increases search space many folds and becomes 
challenging. An alternative is to use ab initio predictions as search 
database [31], but these depend on the accuracy of the ab initio 
predictor itself. In such cases translated transcriptome database 
may serve the purpose.

Specific to eukaryotes, alternate splicing of messenger RNA 
expands an organism’s protein repertoire excessively. Biogenesis of 
these protein isoforms is under tight regulation and detection of 

2.2  Custom 
Databases for Specific 
Questions

2.2.1  Genome 
Reannotation and Novel 
Gene Discovery

2.2.2  Detection of Splice 
Variant Protein Isoforms
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these might indicate specific biological state and thus hold promise 
to explain tissue-specific expression patterns. However, most of the 
proteome databases do not comprise of an exhaustive list of splice 
isoforms. Recent developments in RNA sequencing (RNA-seq) 
technologies enable a very deep and sensitive profiling of the tran-
scriptome including even low copy spliced transcripts [32]. A ref-
erence database built by theoretically translating the captured 
transcriptome should thus enable discovery of novel protein iso-
forms not included in annotated proteomes [33]. RNA-seq also 
allows tissue-, condition-, or individual-specific transcriptome pro-
filing and thus building sample-specific translated transcriptome 
database might aid in discovery of rarely detected condition-specific 
protein isoforms. Proteogenomic analysis pipelines like Enosi [34] 
and CustomProDB [35] facilitate creation of proteomics search 
database from raw RNA-seq reads. Several studies have benefitted 
by discovering isoforms by using RNA-seq based databases to 
search proteomics data [36–38].

For any species, databases represent only one reference genome 
and its corresponding reference proteome. However, individuals of 
the species have differences among their genomes mostly in the 
form of single nucleotide polymorphisms (SNPs) or insertion/
deletion of genomic segments. These genomic differences between 
individual’s genome and the reference genome might also alter the 
sequence of encoded proteins. Although such variant peptides 
reflecting nonsynonymous polymorphisms will be present in the 
biological sample, these cannot be identified by searching against 
the reference proteome. These polymorphisms are known to be 
rampant in cancer and their implication in the proteome might be 
of interest in deciphering the diseases mechanism. For prokaryotes, 
cumulative database from multiple related strains has been shown 
to be effective to discover polymorphic peptides [39, 40]. SNP 
information from resources like dbSNP and COSMIC can also be 
encoded in protein sequencing to create a thorough database of 
human protein mutations for peptide detection [41]. Alternatively, 
sample-specific genome, exome, or transcriptome sequencing 
might also be utilized to enable sample-specific protein polymor-
phism detection. Recently several software and packages like 
CustomProDB have been developed which facilitate creation of 
variant peptide search database from genomic or RNA-seq based 
variant calls [35].

Protein identification for organisms whose genome is not sequenced 
is challenging yet an interesting aspect. It can be especially useful 
for rare organisms and plants that have limited representation in 
genome sequencing projects. De novo peptide discovery finds its 
application in this domain of proteomics, however, with limited 
sensitivity [42]. Alternate strategy might be to de novo assemble 
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the transcriptome from RNA-Seq data from the unsequenced 
organism and use it for protein discovery. Brinkman et al. high-
lighted that this strategy significantly improves peptide discovery 
over the de novo peptide sequencing in unsequenced box jellyfish 
[43]. In cases where RNA-seq data are not available, taxonomy 
information might be helpful. Genome or protein sequences from 
related organisms might also be utilized as a template to discover 
proteins from unsequenced organism. However, applicability of 
such databases is directly proportional to its relatedness to the 
unsequenced organism. A recently developed algorithm BICEPS 
promises accurate detection of peptide sequences for an organism 
by using a database from evolutionary distant organism [44]. This 
algorithm can bring new proteomic discoveries from unsequenced 
organisms. Global proteome databases might also be utilized if 
none of the above mentioned approaches are amenable. A similar 
strategy might also be useful in community proteomic studies 
mostly targeted to profile microbiome proteomes from different 
niches [45].

3  What Makes the Best Proteomics Search Database

Database constitutes arguably the most influencing factor in the 
protein discovery from tandem mass spectrometry data. Despite its 
importance, the choice of the database is generally unreasoned. We 
summarize here salient features of protein databases which should 
be evaluated before deciding on the search database for a given 
proteomic data. While organism-specific reference proteomes 
should be preferred choice over global protein databases, differ-
ences among reference proteomes from different sources present a 
complicated context-specific use case for MS/MS data analysis. A 
small exercise with only a fraction of overall data to evaluate which 
reference proteome maximizes the expected results, should facili-
tate an informed decision on the optimal search database. For tar-
geted studies, like novel gene or isoform discovery, custom database 
should be designed. However, while designing such dedicated 
databases, a balance between comprehensiveness and compactness 
should be maintained.

4  Proteomics Database Resources

	 1.	NCBI-RefSeq: http://www.ncbi.nlm.nih.gov/refseq/.
	 2.	UniProtKB: http://www.uniprot.org/uniprot/.
	 3.	SwissProt: http://www.uniprot.org/uniprot/?query=*&fil=r

eviewed%3Ayes.
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	 4.	UniProt Reference Proteomes: http://www.uniprot.org/
proteomes/.

	 5.	neXtProt: http://www.nextprot.org/.
	 6.	Ensembl: http://www.ensembl.org/info/data/ftp/index.html.
	 7.	Tuberculist: http://tuberculist.epfl.ch/.
	 8.	EcoCyc: http://ecocyc.org/.
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Abstract

The precise quantification of changes between various physiological states in a biological system is highly 
complex in nature. Over the past few years, in combination with classical methods, mass spectrometry 
based approaches have become an indispensable tool in deciphering exact abundance of proteins in com-
posite mixtures. The technique is now well established and employs both label-based and label-free quan-
titation strategies. Label-based quantitation methods utilize stable isotope labels which are incorporated 
within the peptides, introducing an expectable mass difference within the two or more experimental condi-
tions. In contrast, label-free proteomics quantitates both relative and absolute protein quantity by utilizing 
signal intensity and spectral counting of peptides. This chapter focuses on the commonly used quantitative 
mass spectrometry methods for high-throughput proteomic analysis.

Key words Quantitative proteomics, Mass spectrometry, Stable isotope labeling, Label-free 
quantitation

1  Introduction

Unlike the finite genome, the proteome is perturbed both tem-
porally and spatially within a cell [1]. The complexity is multifac-
eted depending upon the epigenetic status, posttranscriptional 
events, posttranslational events, and physiological stimuli [2, 3]. 
Hence, functional and quantitative characterization of every 
human protein based on their isoforms, posttranslational modifi-
cations, subcellular localization, tissue expression, and protein 
interaction partners is indeed a daunting task. Recent advances in 
mass spectrometry-based proteomics techniques have allowed for 
the production of a draft map of the human proteome [4, 5], a 
decade after the completion of the human genome project [6, 7]. 
Using an array of supplemental techniques, identification and 
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quantification of a large number of proteins in a high-throughput 
manner can be carried out [8, 9]. Using existing functional 
enrichment analysis tools, the obtained proteomic data can be 
analyzed in the context of biological pathways and protein inter-
action networks to understand their contribution to pathophysi-
ology [10].

Mass spectrometry-based quantitative proteomics can be classi-
fied into two broad categories—label-based and label-free methods. 
Label-based methods in proteomics have been made available 
through the introduction of ICAT labels by the Aebersold’s group 
[11]. Since then, there have been a large variety of modifications and 
adaptations to that technique. Essentially, quantitation of proteins is 
based on light/heavy peptide intensities. In label-based methods, 
samples are first differentially labeled, pooled, and subjected to MS 
analysis and quantification. Hence, it minimizes the disparities 
expected when samples are handled individually [12, 13]. The most 
widely used labeling techniques include metabolic, proteolytic, and 
chemical labeling strategies. Recently, there is significant interest in 
label-free quantitative proteomics, resulting from the introduction 
of high resolution/accurate mass spectrometers and also its ease of 
use and reproducibility. Here, the samples are processed and ana-
lyzed independently by mass spectrometry. The ensuing quantifica-
tion is performed by the measurement of the peak area and/or 
consideration of the number of MS/MS spectra from each peptide 
[12, 14]. To aid in quantitation, various software programs are used 
to analyze the large amount of data generated using both label-
based and label-free techniques (Table 1). Throughout this chapter, 
emphasis is placed on MS-based protein quantification using label-
based and label-free strategies with perks and pitfalls.

2  Methods

Label-based quantitation involves comparison of samples by label-
ing them with alternative differential mass tags thus allowing 
detection based on specific change in mass. This is a comparative 
approach which in general employs incorporation of chemically 
similar but isotopically different labels [15]. Thus the labeling 
strategy easily divulges both relative as well as absolute quantita-
tion of proteins from individual samples within the same run.

Metabolic labeling is one of the most preferred methods of label-
ing as it allows least experimental variability due to introduction of 
labels at the earliest possible stages of sample preparation [12]. In 
this process, isotopically defined medium is used to introduce dis-
tinct labels into the proteome of two or more biologically different 
samples during the process of protein metabolism. The samples 
are then equally pooled and analyzed [16]. This creates two ver-
sions of each peptide with different isotopic compositions but with 
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identical response to sample preparation and MS analysis, thus 
allowing relative quantitation of the labeled sample without altera-
tion of their biochemical properties [17]. Initially, this began with 
the usage of 15N substituted media, in which all the 14N atoms 
were replaced by 15N, leading to differential quantification between 
the states of microorganisms [18]. Various snags including partial 
incorporation of labels, higher expenses and difficulties in data 
analysis have rendered this method less advantageous [16].

A more efficient technique known as SILAC (Stable isotope 
labeling of amino acids in cell culture) was then introduced by 
Mann et al. It is a nonselective method of labeling proteins in vivo, 
where heavy forms of essential amino acids are generally used as 
labels. It involves usage of different medium for growing two pop-
ulations of cells, one containing light (normal) amino acids and the 
other containing heavy (isotopically labeled) amino acids. This 
labeling is obtained by replacing the naturally occurring elements 
of H, 14N and 12C to 2H, 15N, and 13C, respectively. The samples 
are further mixed, fractionated, and analyzed by MS. The labeled 
amino acids thus gets incorporated into all the newly synthesized 
proteins and hence are encoded into the proteome [19]. The anal-
ysis further distinguishes two proteomes by the molecular weight 
of the light and heavy amino acids which was used during the 
growth of the two cell population [20]. The commonly chosen 
amino acids to achieve effective labeling are leucine, lysine, methi-
onine, and arginine [16]. SILAC offers higher incorporation rate, 
thus enhancing labeling efficiency, not requiring chemical manipu-
lation, and also reducing sample handling error as the labels are 

Table 1 
Common software packages available for analysis of quantitative proteomics data

Label-based 
quantitation

SILAC BioWorks, Census, Mascot Distiller, Elucidator, MaxQuant, 
MaXIC-Q, OpenMS, PeakQuant, MFPaQ, PEAKS Q, 
ProteinPilot, ProteoIQ, TPP-ASAPRatio, WARP-LC, MSQuant

15N, 18O 18O: Mascot Distiller, MSQuant, PEAKS Q, ProteoIQ, QUIL, 
STEM, VIPER, ZoomQuant, ProRata

15N: MSQuant, Census, PeakQuant, ProRata, ProteoIQ, Qupe, 
TPP-XPRESS, X-TRacker

ICAT, ITRAQ, 
TMT

ICAT: BioWorks, Elucidator, MaxQuant, MaXIC-Q, MFPaQ, 
PEAKS Q, ProteinPilot, ProteoIQ, TPP-ASAPRatio, MSQuant, 
QUIL, TPP-XPRESS, VIPER, ProRata

ITRAQ: BioWorks, Census, ITracker, OPenMS, PeakQuant, 
PEAKS Q, Pro Quant, ProteinPilot, Proteios, ProteoIQ, 
Proteome Discoverer, TPP-Libra, X-Tracker

TMT: Proteios, ProteoIQ, Proteome Discover, PEAKS Q

Label-free 
quantitation

Based on peak 
intensity

SpecArray, MSight, PEPPeR, MSInspect, MSQuant, Census, 
Corra, Serac, SuerHIrn, MzMine, BioWorks, Elucidator, Mascot 
Distiller, OpenMS, ProteoIQ, SIEVE, Skyline

Based on 
spectral count

SEQUEST, MASCOT, X!Tandem, ProteoIQ, Census, PepC, 
emPAI Calc, Elucidator, MFPaQ

Label-Based and Label-Free Strategies for Protein Quantitation
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mixed in the very initial stages. When used with well-designed 
combination of labeled amino acids, SILAC offers the ability to 
compare as many as five states within a single experiment. It has 
already been widely used to study posttranslational modifications, 
enzyme substrates studies, identification of cancer biomarkers, 
understanding protein complexes and signaling pathways [19]. 
SILAC has its own drawbacks and one of it is that the number of 
cellular states that can be compared becomes restricted due to the 
constraint in availability of various ranges of heavy forms of amino 
acids [21]. Despite a few shortcomings, SILAC quantitative label-
ing method offers several major benefits and is one of the most 
effective labeling strategies used for quantitative proteomics.

Chemical labeling is one of the most frequently used method in 
proteomics research as it offers the flexibility of selective introduc-
tion of isotopic labels into desired position in a peptide or a pro-
tein. It has a similar principle as metabolic labeling except that 
chemical reactions are used to incorporate these labels into their 
desired locations. Here, we broadly describe several of the most 
widely used chemical labeling approaches.

Isotope-coded affinity tagging (ICAT) was one of the earliest 
methods introduced by Aebersold et al. [11], which was employed 
to study the yeast proteome. ICAT reagent contains an iodoacetyl 
reactive group to target cysteinyl residues, a linker region consist-
ing heavy (2H8) or light (1H8) deuterium atoms and a biotin group 
suitable for affinity purification [11]. The thiol chemistry labels 
only the cysteine residues of the proteins whereas the biotin group 
aids in the capture of cysteine-containing peptides specifically based 
on biotin–avidin affinity. This greatly reduces sample complexity 
thus simplifying ensuing MS analysis and subsequent interpreta-
tion. One of the major pitfalls of this method was the shift in reten-
tion time in the light and heavy peptides during reverse-phase 
chromatography caused by the deuterium atoms present in the 
linker region [22]. Therefore, recently, newer variants of ICAT 
have been introduced like cleavable ICAT (cICAT) where acid-
cleavable isotopic tags are used with 13C, 13C9, or 12C9 in place of 
deuterium atoms which improves peptide recovery and ease of 
automation [23].

Dimethyl labeling was introduced as a technique in quantita-
tive proteomics in the year 2003 by Hsu et  al. [23]. The basics 
behind dimethyl labeling involves the formation of a Schiff base via 
the reaction of formaldehyde with primary amines in a near-neutral 
pH, which is further reduced by cyanoborohydride and formalde-
hyde. The usage of different isotopomers of formaldehyde in com-
bination with cyanoborohydride generates difference in mass per 
labeling event [24]. The strength of this labeling method lies in its 
inexpensive reagents, quicker reaction mechanism without genera-
tion of any significant side products as well as wider applicability to 
many types of sample. One of the drawbacks frequently associated 
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with dimethyl labeling is the overlap of retention time shifts 
between the heavy labeled peptides and their lighter counterparts 
during reverse phase chromatography. Recently, strategies have 
also been devised to overcome this issue [25].

Isobaric labeling methods like tandem mass tag (TMT) and 
isobaric tag for absolute and relative quantitation (iTRAQ) are 
other forms of chemical labeling which are amine-specific in nature. 
The proteins are thus labeled with chemical groups which are iso-
baric (identical in mass) in nature but dissociate under tandem MS 
to yield reporter ions of variable mass. Like in case of iTRAQ, all 
primary amine functional groups of the peptides are tagged with a 
peptide reactive group, a balancer, and a reporter group. As the 
technique targets the amine group, almost all peptides present in 
the sample are labeled and quantified easily. The reporter group 
contains 4–8 different tagged sites, and this creates a mass differ-
ence which is counteracted by the balancer group, thus making the 
peptides similar in terms of mass [16]. After labeling, MS/MS is 
used to fragment the iTRAQ reagents to generate reporter ions in 
a distinct mass range (113–121 Da), and the amount of reporter 
ion released is directly proportional to the amount of the tagged 
peptides in the samples under comparison [26]. TMT is designed 
to multiplex a maximum of ten samples whereas iTRAQ provides 
the scope of analyzing up to eight different samples in a single run 
[16]. The application of iTRAQ has become widespread as it can 
be used simultaneously for multiple samples and offers a deeper 
coverage with higher quantification precision. However, there are 
several drawbacks as well like higher cost, nonspecificity of reporter 
ions for various peptides, impurities associated with the reporter 
ions, requirement of quad based instrument with high resolving 
powers, and issues associated with co-isolation of peptides during 
precursor selection [27].

18O labeling is a technique which employs proteolytic catalysis by 
class-2 proteases such as trypsin to incorporate two 18O atoms in 
the place of 16O atoms, resulting in a mass shift between the differ-
ently labeled peptides [28]. This is a two-step mechanism with an 
initial hydrolysis reaction which is followed by a protease-aided 
incorporation of 18O atom into the carboxyl terminus of the pro-
teolytically generated peptide. After performing the digestion as 
well as labeling simultaneously, the two sets of samples are further 
pooled for sample preparation and MS analysis. Enzymes like tryp-
sin, chymotrypsin, and Glu-C have been of primary choice for this 
method [16]. Despite its simplicity, the technique has not been 
widely used in quantitative proteomics due to its various pitfalls. 
When both the samples are mixed together for further processing, 
back exchange can occur as the enzyme can still act on the 16O 
labeled c-terminus and this can alter the 16O/18O ratio. This, how-
ever, can be overcome by using immobilized trypsin and using 

2.1.3  Stable Isotope 
Introduction by Enzymatic 
Labeling
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quantitation algorithms [29]. Partial incorporation of the labels is 
also an issue that has to be addressed to improve the efficiency as 
well as utility of this technique [30].

Label-free quantitative proteomics (LFQP) provides straightfor-
ward option for large-scale analysis of biological samples. In con-
trast to label-based methods, samples of interest to be compared 
are injected independently into MS [14, 31]. LFQP has several 
advantages over label-based quantitative proteomics as it is cost-
effective and does not require expensive labeling reagents. Also, 
LFQP is not time consuming as compared to some of the label-
based methods which requires tedious labeling steps [32]. Due to 
all these aforementioned reasons, LFQP has gained more accep-
tance in biomedical research space. LFQP is a very powerful tech-
nique, which is less susceptible to technical error and highly 
sensitive to MS analysis thus enabling identification of several 
thousand proteins from complex samples such as bodily fluids 
(blood, plasma, saliva, and urine), cell lines, and tissues [33–35].

Outmoded quantitative proteomics involves two-dimensional 
gel electrophoresis coupled (2D-GE) with liquid mass spectrome-
try (LC-MS). This procedure includes the separation of proteins 
based on their isoelectric point in the first dimension followed by 
separation on the basis of molecular weight using sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed 
by staining of gel with protein specific dyes and fluorophores. The 
protein spots of interest are then digested and peptides are extracted 
followed by mass spectrometry analysis. Quantitation is carried out 
by comparing the protein spot intensities across multiple gel repli-
cates. Although this method is quite sensitive and precise, it 
requires large amount of sample to be processed along with various 
sample preparation steps [35, 36]. Due to these downsides and 
recent advancements in mass spectrometry based chromatographic 
methods, various quantitative mass spectrometry approaches are 
being more frequently used for high-throughput and large-scale 
protein analysis [35].

Several label-free quantitation methods are developed for the 
quantification of proteins identified using tandem mass spectrom-
etry. Here, we discuss the most commonly used label-free quanti-
tation methods based on spectral counting and peak intensity for 
comparative analysis of the relative abundance of proteins. A brief 
overview on workflow of label-free quantitation is described in 
Fig. 1.

Spectral counting (SpC) is one of the most widely used label-free 
quantitative methods in the field of proteomic analysis. The prin-
ciple of SpC relies on frequency and abundance of the protein. 
Hence, size and amount of a protein present in the sample is 

2.2  Label-Free 
Quantitation 
Strategies

2.2.1  Spectral Counting 
(SpC)
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directly proportional to number of identified spectra. Therefore 
for comparative estimation, spectral counts of proteins from two 
independent samples are equated.

Several spectral counting methodologies have been reported in 
the literature. Protein abundance index (PAI) is an SpC quantifica-
tion method to calculate the abundance of proteins in a given sam-
ple [37]. PAI is defined as the number of observed peptides divided 
by the number of theoretically observable tryptic peptides for each 
protein within the mass range of the used MS instrument.

	
PAI

Number of observed peptides
Number of observable tryptic pepti

=
ddes theoretical( ) . 	

The representation of PAI was later modified to exponentially mod-
ified protein abundance index also referred to as emPAI [38, 39].

	 emPAI PAI= −10 1. 	
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and analyzed by LC-MS/MS. The quantitation is based on the comparison of peak intensity ratio of the labeled 
peptide pairs. (b) In label-free method, the samples are separately prepared and are subjected to individual 
LC-MS/MS analysis. Further quantification is based on comparing counts of MS/MS spectra or peak intensity 
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Normalized emPAI is calculated by dividing emPAI of a protein 
with summation of all emPAI of identified proteins. Studies  
have shown closer association of emPAI with absolute protein 
amount [38].

	
Normalized emPAI

emPAI
emPAI

=
∑

.
	

Absolute protein amount is calculated using normalized emPAI. 
When the amount of total protein of a sample processed for the 
mass spectrometry analysis is known, total protein concentration 
can be equated as below:

	 Protein concentration Normalized emPAI= ×C. 	

where C is the known protein amount used in sample processing. 
Studies have shown that emPAI method can quantify protein 
abundance within 10 fmol to 10 pmol [40]. emPAI method is easy, 
user friendly and its outputs are accepted and displayed by the 
MASCOT search engine, and thus it is specifically suitable for large 
scale proteomic analysis [37]

Protein quantitation using the normalized spectral counting 
method calculates the relative protein abundance between two 
samples [41–43]. It accounts for the ratio of the total number of 
spectra identified for each protein of interest normalized by unique 
spectra identified in the protein samples.

	
RSc for protein A = +( ) − +( ) +( ) − +( ) sY c TX sX c sX c TY sY c/

	

Where RSc represent ratio of normalized spectral counts, s is the 
significant MS/MS spectra for protein A, T is the total number of 
significant MS/MS spectra in the sample, c is the correction factor 
set to 1.25, and X and Y are the two different samples. When RSc 
is less than 1, the negative inverse of RSc value is used.

A further refinement in the quantification of the proteins using 
label-free method was developed which takes into account sample 
to sample variation and also the notion that longer proteins tends 
to be identified with more peptides in comparison to shorter pro-
teins [44, 45]. NSAF calculates number of spectral counts (SpC) of 
a protein divided by its length (L) and normalized to the total  
sum of spectral counts (SpC)/length (L) of all proteins in a given 
analysis.

	
NSAF SAF SAF=

=
∑/ ,
i

N

1 	

where spectral abundance factor (SAF) represents SpC/L and N 
represent total number of proteins identified.

2.2.2  Normalized 
Spectral Counting (NSpC)

2.2.3  Normalized 
Spectral Abundance Factor 
(NSAF)
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Area under the curve measures and compares signal intensities of 
chromatograms obtained by MS for specific peptide. Precursor  
ion chromatogram for each peptide is extracted from individual 
LC-MS/MS run and their peak region (area under the curve 
(AUC)) acquired by MS are integrated over the retention time 
[12, 36]. It must be noted that for accuracy in protein estimation, 
individual aligned peak should correspond to its precursor ion, 
retention time, charge status, and fragmented ion. After accurate 
alignment process, identified peptides from each samples are mea-
sured for AUC and then equated for comparative protein amount 
[34]. Neilson et al. have described that the measurement of AUC 
is relative to the abundance of peptide in a specific sample [37]. 
One of the drawbacks of peak intensity quantification is co-elution 
of peptides due to its spread over retention time which causes dif-
ficulty in identification of two individual peptides. In addition, bio-
logical distinctions cause variations in elution time, MS signals, and 
background noise, and thus it is necessary to filter the raw MS data 
[37]. Additionally, peptide quantification by AUC depends signifi-
cantly on raw MS data analysis by software. AUC data quantifica-
tion also includes data normalization which helps in exclusion of 
the background noise obtained during multiple MS analysis, thus 
minimizing the undesirable systematic errors generated during 
sample preparation [34].

3  Conclusion

Numerous methods have emerged over the years for the analysis of 
various proteomes using quantitative proteomics. With the fast-
paced development of sensitive MS instruments, the usage of 
quantitative MS has hugely aided in distinguishing perturbations 
in protein expression and associated changes with posttranslational 
modifications and protein–protein interactions. This has led to a 
better understanding of the underlying biology and effective 
designing of follow-up experiments. Both labeling and label-free 
approaches have their own sets of strengths and limitations. The 
method of choice depends to a large extent on the biological ques-
tion, the researcher, the cost involved as well as the quality of the 
available MS instrument. At the same time, significant develop-
ment of various bioinformatics and statistical tools is absolutely 
necessary to simplify the complexity as well as manage the sheer 
volume of data generated using these techniques. This can only be 
achieved by analyzing the implications on the results when these 
various strategies are employed.

2.2.4  Area Under Curve

Label-Based and Label-Free Strategies for Protein Quantitation



40

References

	 1.	Mathivanan S (2014) Integrated bioinformat-
ics analysis of the publicly available protein data 
shows evidence for 96% of the human pro-
teome. J Proteomics Bioinform 7:41–49

	 2.	Kuster B, Schirle M, Mallick P, Aebersold R 
(2005) Scoring proteomes with proteotypic 
peptide probes. Nat Rev Mol Cell Biol 6(7): 
577–583

	 3.	Nilsen TW, Graveley BR (2010) Expansion of 
the eukaryotic proteome by alternative splic-
ing. Nature 463(7280):457–463

	 4.	Kim MS, Pinto SM, Getnet D, Nirujogi RS, 
Manda SS, Chaerkady R, Madugundu AK, 
Kelkar DS, Isserlin R, Jain S, Thomas JK, 
Muthusamy B, Leal-Rojas P, Kumar P, 
Sahasrabuddhe NA, Balakrishnan L, Advani J, 
George B, Renuse S, Selvan LD, Patil AH, 
Nanjappa V, Radhakrishnan A, Prasad S, 
Subbannayya T, Raju R, Kumar M, 
Sreenivasamurthy SK, Marimuthu A, Sathe GJ, 
Chavan S, Datta KK, Subbannayya Y, Sahu A, 
Yelamanchi SD, Jayaram S, Rajagopalan P, 
Sharma J, Murthy KR, Syed N, Goel R, Khan 
AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, 
Huang TC, Zhong J, Wu X, Shaw PG, Freed 
D, Zahari MS, Mukherjee KK, Shankar S, 
Mahadevan A, Lam H, Mitchell CJ,  
Shankar SK, Satishchandra P, Schroeder JT, 
Sirdeshmukh R, Maitra A, Leach SD, Drake 
CG, Halushka MK, Prasad TS, Hruban RH, 
Kerr CL, Bader GD, Iacobuzio-Donahue CA, 
Gowda H, Pandey A (2014) A draft map of the 
human proteome. Nature 509(7502):575–
581. doi:10.1038/nature13302

	 5.	Wilhelm M, Schlegl J, Hahne H, Moghaddas 
Gholami A, Lieberenz M, Savitski MM, Ziegler 
E, Butzmann L, Gessulat S, Marx H, Mathieson 
T, Lemeer S, Schnatbaum K, Reimer U, 
Wenschuh H, Mollenhauer M, Slotta-
Huspenina J, Boese JH, Bantscheff M, 
Gerstmair A, Faerber F, Kuster B (2014) Mass-
spectrometry-based draft of the human proteome. 
Nature 509(7502):582–587. doi:10.1038/ 
nature13319

	 6.	Venter JC, Adams MD, Myers EW, Li PW, 
Mural RJ, Sutton GG, Smith HO, Yandell M, 
Evans CA, Holt RA, Gocayne JD, Amanatides 
P, Ballew RM, Huson DH, Wortman JR, 
Zhang Q, Kodira CD, Zheng XH, Chen L, 
Skupski M, Subramanian G, Thomas PD, 
Zhang J, Gabor Miklos GL, Nelson C, Broder 
S, Clark AG, Nadeau J, McKusick VA, Zinder 
N, Levine AJ, Roberts RJ, Simon M, Slayman 
C, Hunkapiller M, Bolanos R, Delcher A, Dew 
I, Fasulo D, Flanigan M, Florea L, Halpern A, 
Hannenhalli S, Kravitz S, Levy S, Mobarry C, 
Reinert K, Remington K, Abu-Threideh J, 
Beasley E, Biddick K, Bonazzi V, Brandon R, 

Cargill M, Chandramouliswaran I, Charlab R, 
Chaturvedi K, Deng Z, Di Francesco V, Dunn 
P, Eilbeck K, Evangelista C, Gabrielian AE, 
Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman 
TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, 
Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, 
Merkulov GV, Milshina N, Moore HM, Naik 
AK, Narayan VA, Neelam B, Nusskern D, 
Rusch DB, Salzberg S, Shao W, Shue B, Sun J, 
Wang Z, Wang A, Wang X, Wang J, Wei M, 
Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, 
Zhang W, Zhang H, Zhao Q, Zheng L, Zhong 
F, Zhong W, Zhu S, Zhao S, Gilbert D, 
Baumhueter S, Spier G, Carter C, Cravchik A, 
Woodage T, Ali F, An H, Awe A, Baldwin D, 
Baden H, Barnstead M, Barrow I, Beeson K, 
Busam D, Carver A, Center A, Cheng ML, 
Curry L, Danaher S, Davenport L, Desilets R, 
Dietz S, Dodson K, Doup L, Ferriera S, Garg 
N, Gluecksmann A, Hart B, Haynes J, Haynes 
C, Heiner C, Hladun S, Hostin D, Houck J, 
Howland T, Ibegwam C, Johnson J, Kalush F, 
Kline L, Koduru S, Love A, Mann F, May D, 
McCawley S, McIntosh T, McMullen I, Moy 
M, Moy L, Murphy B, Nelson K, Pfannkoch C, 
Pratts E, Puri V, Qureshi H, Reardon M, 
Rodriguez R, Rogers YH, Romblad D, Ruhfel 
B, Scott R, Sitter C, Smallwood M, Stewart E, 
Strong R, Suh E, Thomas R, Tint NN, Tse S, 
Vech C, Wang G, Wetter J, Williams S, Williams 
M, Windsor S, Winn-Deen E, Wolfe K, Zaveri 
J, Zaveri K, Abril JF, Guigo R, Campbell MJ, 
Sjolander KV, Karlak B, Kejariwal A, Mi H, 
Lazareva B, Hatton T, Narechania A, Diemer 
K, Muruganujan A, Guo N, Sato S, Bafna V, 
Istrail S, Lippert R, Schwartz R, Walenz B, 
Yooseph S, Allen D, Basu A, Baxendale J, Blick 
L, Caminha M, Carnes-Stine J, Caulk P, 
Chiang YH, Coyne M, Dahlke C, Mays A, 
Dombroski M, Donnelly M, Ely D, Esparham 
S, Fosler C, Gire H, Glanowski S, Glasser K, 
Glodek A, Gorokhov M, Graham K, Gropman 
B, Harris M, Heil J, Henderson S, Hoover J, 
Jennings D, Jordan C, Jordan J, Kasha J, Kagan 
L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez 
J, Ma D, Majoros W, McDaniel J, Murphy S, 
Newman M, Nguyen T, Nguyen N, Nodell M, 
Pan S, Peck J, Peterson M, Rowe W, Sanders R, 
Scott J, Simpson M, Smith T, Sprague A, 
Stockwell T, Turner R, Venter E, Wang M, 
Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu 
X (2001) The sequence of the human genome. 
Science 291(5507):1304–1351

	 7.	Lander ES, Linton LM, Birren B, Nusbaum C, 
Zody MC, Baldwin J, Devon K, Dewar K, 
Doyle M, FitzHugh W, Funke R, Gage D, 
Harris K, Heaford A, Howland J, Kann L, 
Lehoczky J, LeVine R, McEwan P, McKernan 
K, Meldrim J, Mesirov JP, Miranda C, Morris 

Sushma Anand et al.

http://dx.doi.org/10.1038/nature13302
http://dx.doi.org/10.1038/nature13319
http://dx.doi.org/10.1038/nature13319


41

W, Naylor J, Raymond C, Rosetti M, Santos R, 
Sheridan A, Sougnez C, Stange-Thomann N, 
Stojanovic N, Subramanian A, Wyman D, 
Rogers J, Sulston J, Ainscough R, Beck S, 
Bentley D, Burton J, Clee C, Carter N, 
Coulson A, Deadman R, Deloukas P, Dunham 
A, Dunham I, Durbin R, French L, Grafham 
D, Gregory S, Hubbard T, Humphray S, Hunt 
A, Jones M, Lloyd C, McMurray A, Matthews 
L, Mercer S, Milne S, Mullikin JC, Mungall A, 
Plumb R, Ross M, Shownkeen R, Sims S, 
Waterston RH, Wilson RK, Hillier LW, 
McPherson JD, Marra MA, Mardis ER, Fulton 
LA, Chinwalla AT, Pepin KH, Gish WR, 
Chissoe SL, Wendl MC, Delehaunty KD, 
Miner TL, Delehaunty A, Kramer JB, Cook 
LL, Fulton RS, Johnson DL, Minx PJ, Clifton 
SW, Hawkins T, Branscomb E, Predki P, 
Richardson P, Wenning S, Slezak T, Doggett 
N, Cheng JF, Olsen A, Lucas S, Elkin C, 
Uberbacher E, Frazier M, Gibbs RA, Muzny 
DM, Scherer SE, Bouck JB, Sodergren EJ, 
Worley KC, Rives CM, Gorrell JH, Metzker 
ML, Naylor SL, Kucherlapati RS, Nelson DL, 
Weinstock GM, Sakaki Y, Fujiyama A, Hattori 
M, Yada T, Toyoda A, Itoh T, Kawagoe C, 
Watanabe H, Totoki Y, Taylor T, Weissenbach 
J, Heilig R, Saurin W, Artiguenave F, Brottier 
P, Bruls T, Pelletier E, Robert C, Wincker P, 
Smith DR, Doucette-Stamm L, Rubenfield M, 
Weinstock K, Lee HM, Dubois J, Rosenthal A, 
Platzer M, Nyakatura G, Taudien S, Rump A, 
Yang H, Yu J, Wang J, Huang G, Gu J, Hood 
L, Rowen L, Madan A, Qin S, Davis RW, 
Federspiel NA, Abola AP, Proctor MJ, Myers 
RM, Schmutz J, Dickson M, Grimwood J, Cox 
DR, Olson MV, Kaul R, Raymond C, Shimizu 
N, Kawasaki K, Minoshima S, Evans GA, 
Athanasiou M, Schultz R, Roe BA, Chen F, 
Pan H, Ramser J, Lehrach H, Reinhardt R, 
McCombie WR, de la Bastide M, Dedhia N, 
Blocker H, Hornischer K, Nordsiek G, 
Agarwala R, Aravind L, Bailey JA, Bateman A, 
Batzoglou S, Birney E, Bork P, Brown DG, 
Burge CB, Cerutti L, Chen HC, Church D, 
Clamp M, Copley RR, Doerks T, Eddy SR, 
Eichler EE, Furey TS, Galagan J, Gilbert JG, 
Harmon C, Hayashizaki Y, Haussler D, 
Hermjakob H, Hokamp K, Jang W, Johnson 
LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, 
Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, 
Lancet D, Lowe TM, McLysaght A, Mikkelsen 
T, Moran JV, Mulder N, Pollara VJ, Ponting 
CP, Schuler G, Schultz J, Slater G, Smit AF, 
Stupka E, Szustakowski J, Thierry-Mieg D, 
Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, 
Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh 
RF, Collins F, Guyer MS, Peterson J, Felsenfeld 
A, Wetterstrand KA, Patrinos A, Morgan MJ, 

de Jong P, Catanese JJ, Osoegawa K, Shizuya 
H, Choi S, Chen YJ (2001) Initial sequencing 
and analysis of the human genome. Nature 
409(6822):860–921

	 8.	Boja ES, Rodriguez H (2012) Mass spectro
metry-based targeted quantitative proteomics: 
achieving sensitive and reproducible detection 
of proteins. Proteomics 12(8):1093–1110. 
doi:10.1002/pmic.201100387

	 9.	Chisanga D, Keerthikumar S, Pathan M, 
Ariyaratne D, Kalra H, Boukouris S, Mathew 
NA, Saffar HA, Gangoda L, Ang CS, Sieber 
OM, Mariadason JM, Dasgupta R, Chilamkurti 
N, Mathivanan S (2016) Colorectal cancer 
atlas: an integrative resource for genomic and 
proteomic annotations from colorectal cancer 
cell lines and tissues. Nucleic Acids Res 44(D1): 
D969–D974. doi:10.1093/nar/gkv1097

	10.	Pathan M, Keerthikumar S, Ang CS, Gangoda 
L, Quek CY, Williamson NA, Mouradov D, 
Sieber OM, Simpson RJ, Salim A, Bacic A, Hill 
AF, Stroud DA, Ryan MT, Agbinya JI, 
Mariadason JM, Burgess AW, Mathivanan S 
(2015) FunRich: an open access standalone 
functional enrichment and interaction network 
analysis tool. Proteomics 15(15):2597–2601. 
doi:10.1002/pmic.201400515

	11.	Gygi SP, Rist B, Gerber SA, Turecek F, Gelb 
MH, Aebersold R (1999) Quantitative analysis 
of complex protein mixtures using isotope-
coded affinity tags. Nat Biotechnol 17(10): 
994–999

	12.	Bantscheff M, Schirle M, Sweetman G, Rick J, 
Kuster B (2007) Quantitative mass spectrom-
etry in proteomics: a critical review. Anal 
Bioanal Chem 389(4):1017–1031. doi:10.1007/ 
s00216-007-1486-6

	13.	Zhang G, Ueberheide BM, Waldemarson S, 
Myung S, Molloy K, Eriksson J, Chait BT, 
Neubert TA, Fenyö D (2010) Protein quanti-
tation using mass spectrometry. Meth Mol Biol 
(Clifton, NJ) 673:211–222. doi:10.1007/ 
978-1-60761-842-3_13

	14.	Keiji K, Takashi I (2008) Mass spectrometry-
based approaches toward absolute quantitative 
proteomics. Curr Genomics 9(4):263–274. 
doi:10.2174/138920208784533647

	15.	Domon B, Aebersold R (2010) Options and 
considerations when selecting a quantitative 
proteomics strategy. Nat Biotechnol 28(7): 
710–721

	16.	Iliuk A, Galan J, Tao WA (2009) Playing tag 
with quantitative proteomics. Anal Bioanal 
Chem 393(2):503–513. doi:10.1007/s00216- 
008-2386-0

	17.	Geiger T, Wisniewski JR, Cox J, Zanivan S, 
Kruger M, Ishihama Y, Mann M (2011) Use of 

Label-Based and Label-Free Strategies for Protein Quantitation

http://dx.doi.org/10.1002/pmic.201100387
http://dx.doi.org/10.1093/nar/gkv1097
http://dx.doi.org/10.1002/pmic.201400515
http://dx.doi.org/10.1007/s00216-007-1486-6
http://dx.doi.org/10.1007/s00216-007-1486-6
http://dx.doi.org/10.1007/978-1-60761-842-3_13
http://dx.doi.org/10.1007/978-1-60761-842-3_13
http://dx.doi.org/10.2174/138920208784533647
http://dx.doi.org/10.1007/s00216-008-2386-0
http://dx.doi.org/10.1007/s00216-008-2386-0


42

stable isotope labeling by amino acids in cell 
culture as a spike-in standard in quantitative 
proteomics. Nat Protoc 6(2):147–157

	18.	Oda Y, Huang K, Cross FR, Cowburn D, 
Chait BT (1999) Accurate quantitation of pro-
tein expression and site-specific phosphoryla-
tion. Proc Natl Acad Sci 96(12):6591–6596. 
doi:10.1073/pnas.96.12.6591

	19.	Ong S-E, Blagoev B, Kratchmarova I, 
Kristensen DB, Steen H, Pandey A, Mann M 
(2002) Stable Isotope labeling by amino acids 
in cell culture, SILAC, as a simple and accurate 
approach to expression proteomics. Mol Cell 
Proteomics 1(5):376–386. doi:10.1074/mcp.
M200025-MCP200

	20.	Mann M (2006) Functional and quantitative 
proteomics using SILAC.  Nat Rev Mol Cell 
Biol 7(12):952–958

	21.	Harsha HC, Molina H, Pandey A (2008) 
Quantitative proteomics using stable isotope 
labeling with amino acids in cell culture. Nat 
Protoc 3(3):505–516

	22.	Zhang R, Sioma CS, Wang S, Regnier FE 
(2001) Fractionation of isotopically labeled 
peptides in quantitative proteomics. Anal 
Chem 73(21):5142–5149. doi:10.1021/
ac010583a

	23.	Hsu J-L, Huang S-Y, Chow N-H, Chen S-H 
(2003) Stable-isotope dimethyl labeling for 
quantitative proteomics. Anal Chem 
75(24):6843–6852. doi:10.1021/ac0348625

	24.	Kovanich D, Cappadona S, Raijmakers R, 
Mohammed S, Scholten A, Heck AJR (2012) 
Applications of stable isotope dimethyl labeling 
in quantitative proteomics. Anal Bioanal  
Chem 404(4):991–1009. doi:10.1007/s00216- 
012-6070-z

	25.	Boersema PJ, Raijmakers R, Lemeer S, 
Mohammed S, Heck AJR (2009) Multiplex 
peptide stable isotope dimethyl labeling for 
quantitative proteomics. Nat Protoc 4(4): 
484–494

	26.	Chahrour O, Cobice D, Malone J  (2015) 
Stable isotope labeling methods in mass 
spectrometry-based quantitative proteomics. 
J Pharm Biomed Anal 113:2–20. doi:10.1016/ 
j.jpba.2015.04.013

	27.	Karp NA, Huber W, Sadowski PG, Charles PD, 
Hester SV, Lilley KS (2010) Addressing accu-
racy and precision issues in iTRAQ quantita-
tion. Mol Cell Proteomics 9(9):1885–1897

	28.	Reynolds KJ, Yao X, Fenselau C (2002) 
Proteolytic 18O labeling for comparative pro-
teomics: evaluation of endoprotease Glu-C as 
the catalytic agent. J  Proteome Res 1(1): 
27–33. doi:10.1021/pr0100016

	29.	Heller M, Mattou H, Menzel C, Yao X (2003) 
Trypsin catalyzed 16O-to-18O exchange for 
comparative proteomics: tandem mass spec-
trometry comparison using MALDI-TOF, 
ESI-QTOF, and ESI-ion trap mass spectrome-
ters. J Am Soc Mass Spectrom 14(7):704–718. 
doi:10.1016/S1044-0305(03)00207-1

	30.	Miyagi M, Rao KCS (2007) Proteolytic 
18O-labeling strategies for quantitative pro-
teomics. Mass Spectrom Rev 26(1):121–136. 
doi:10.1002/mas.20116

	31.	Kalra H, Adda CG, Liem M, Ang CS, Mechler 
A, Simpson RJ, Hulett MD, Mathivanan S 
(2013) Comparative proteomics evaluation of 
plasma exosome isolation techniques and 
assessment of the stability of exosomes in nor-
mal human blood plasma. Proteomics 13(22): 
3354–3364. doi:10.1002/pmic.201300282

	32.	Abdallah C, Dumas-Gaudot E, Renaut J, 
Sergeant K (2012) Gel-based and gel-free 
quantitative proteomics approaches at a glance. 
Int J  Plant Genomics 2012:17. 
doi:10.1155/2012/494572

	33.	Yan W, Chen SS (2005) Mass spectrometry-
based quantitative proteomic profiling. Brief 
Funct Genomic Proteomic 4(1):27–38. 
doi:10.1093/bfgp/4.1.27

	34.	Wang M, You J, Bemis KG, Tegeler TJ, Brown 
DPG (2008) Label-free mass spectrometry-
based protein quantification technologies in 
proteomic analysis. Brief Funct Genomic 
Proteomic 7(5):329–339. doi:10.1093/bfgp/
eln031

	35.	Megger DA, Bracht T, Meyer HE, Sitek B 
(2013) Label-free quantification in clinical pro-
teomics. Biochim Biophys Acta 1834(8):1581–
1590. doi:10.1016/j.bbapap.2013.04.001

	36.	Wasinger VC, Zeng M, Yau Y (2013) Current 
status and advances in quantitative proteomic 
mass spectrometry. Int J Proteomics 2013:12. 
doi:10.1155/2013/180605

	37.	Neilson KA, Ali NA, Muralidharan S, Mirzaei 
M, Mariani M, Assadourian G, Lee A, van 
Sluyter SC, Haynes PA (2011) Less label, more 
free: approaches in label-free quantitative mass 
spectrometry. Proteomics 11(4):535–553. 
doi:10.1002/pmic.201000553

	38.	Arike L, Peil L (2014) Spectral counting label-
free proteomics. In: Martins-de-Souza D (ed) 
Shotgun proteomics: methods and protocols. 
Springer, New  York, NY, pp  213–222. 
doi:10.1007/978-1-4939-0685-7_14

	39.	Shinoda K, Tomita M, Ishihama Y (2010) 
emPAI Calc--for the estimation of protein 
abundance from large-scale identification  
data by liquid chromatography-tandem mass 

Sushma Anand et al.

http://dx.doi.org/10.1073/pnas.96.12.6591
http://dx.doi.org/10.1074/mcp.M200025-MCP200
http://dx.doi.org/10.1074/mcp.M200025-MCP200
http://dx.doi.org/10.1021/ac010583a
http://dx.doi.org/10.1021/ac010583a
http://dx.doi.org/10.1021/ac0348625
http://dx.doi.org/10.1007/s00216-012-6070-z
http://dx.doi.org/10.1007/s00216-012-6070-z
http://dx.doi.org/10.1016/j.jpba.2015.04.013
http://dx.doi.org/10.1016/j.jpba.2015.04.013
http://dx.doi.org/10.1021/pr0100016
http://dx.doi.org/10.1016/S1044-0305(03)00207-1
http://dx.doi.org/10.1002/mas.20116
http://dx.doi.org/10.1002/pmic.201300282
http://dx.doi.org/10.1155/2012/494572
http://dx.doi.org/10.1093/bfgp/4.1.27
http://dx.doi.org/10.1093/bfgp/eln031
http://dx.doi.org/10.1093/bfgp/eln031
http://dx.doi.org/10.1016/j.bbapap.2013.04.001
http://dx.doi.org/10.1155/2013/180605
http://dx.doi.org/10.1002/pmic.201000553
http://dx.doi.org/10.1007/978-1-4939-0685-7_14


43

spectrometry. Bioinformatics 26(4):576–577. 
doi:10.1093/bioinformatics/btp700

	40.	Chiu C-W, Chang C-L, Chen S-F (2012) 
Evaluation of peptide fractionation strategies 
used in proteome analysis. J  Sep Sci 35(23): 
3293–3301. doi:10.1002/jssc.201200631

	41.	Mathivanan S, Ji H, Tauro BJ, Chen YS, 
Simpson RJ (2012) Identifying mutated pro-
teins secreted by colon cancer cell lines using 
mass spectrometry. J Proteomics 76:141–149. 
doi:10.1016/j.jprot.2012.06.031

	42.	Gangoda L, Keerthikumar S, Fonseka P, 
Edgington LE, Ang CS, Ozcitti C, Bogyo M, 
Parker BS, Mathivanan S (2015) Inhibition of 
cathepsin proteases attenuates migration and 
sensitizes aggressive N-Myc amplified human 
neuroblastoma cells to doxorubicin. Onco
target 6(13):11175–11190. doi:10.18632/
oncotarget.3579

	43.	Keerthikumar S, Gangoda L, Liem M, Fonseka 
P, Atukorala I, Ozcitti C, Mechler A, Adda 
CG, Ang CS, Mathivanan S (2015) Proteo
genomic analysis reveals exosomes are more 
oncogenic than ectosomes. Oncotarget 6: 
15375–15396

	44.	Paoletti AC, Parmely TJ, Tomomori-Sato C, 
Sato S, Zhu D, Conaway RC, Conaway JW, 
Florens L, Washburn MP (2006) Quantitative 
proteomic analysis of distinct mammalian 
mediator complexes using normalized spectral 
abundance factors. Proc Natl Acad Sci U S A 
103(50):18928–18933. doi:10.1073/pnas. 
0606379103

	45.	McIlwain S, Mathews M, Bereman MS, Rubel 
EW, MacCoss MJ, Noble WS (2012) Estimating 
relative abundances of proteins from shotgun 
proteomics data. BMC Bioinformatics 13:308. 
doi:10.1186/1471-2105-13-308

Label-Based and Label-Free Strategies for Protein Quantitation

http://dx.doi.org/10.1093/bioinformatics/btp700
http://dx.doi.org/10.1002/jssc.201200631
http://dx.doi.org/10.1016/j.jprot.2012.06.031
http://dx.doi.org/10.18632/oncotarget.3579
http://dx.doi.org/10.18632/oncotarget.3579
http://dx.doi.org/10.1073/pnas.0606379103
http://dx.doi.org/10.1073/pnas.0606379103
http://dx.doi.org/10.1186/1471-2105-13-308


45

Shivakumar Keerthikumar and Suresh Mathivanan (eds.), Proteome Bioinformatics, Methods in Molecular Biology,
vol. 1549, DOI 10.1007/978-1-4939-6740-7_5, © Springer Science+Business Media LLC 2017

Chapter 5

TMT One-Stop Shop: From Reliable Sample Preparation 
to Computational Analysis Platform

Mehdi Mirzaei, Dana Pascovici, Jemma X. Wu, Joel Chick, Yunqi Wu, 
Brett Cooke, Paul Haynes, and Mark P. Molloy

Abstract

In this chapter we describe the workflow we use for labeled quantitative proteomics analysis using tandem 
mass tags (TMT) starting with the sample preparation and ending with the multivariate analysis of the 
resulting data. We detail the step-by-step process from sample processing, labeling, fractionation, and data 
processing using Proteome Discoverer through to data analysis and interpretation in the context of a 
multi-run experiment. The final analysis and data interpretation rely on an R package we call TMTPrepPro, 
which are deployed on a local GenePattern server, and used for generating various outputs which are also 
outlined herein.

Key words Quantitative shotgun proteomics, TMT, Software workflow

1  Introduction

Enabled by developments in mass spectrometers with electrospray 
ionization [1] sources and advancements in liquid chromatogra-
phy (LC) systems, as well as completion of the genome sequences 
in a number of organisms, shotgun proteomics using tandem MS 
found its popularity and has had a substantial impact in many pro-
teomics fields. LC based quantitative proteomics are classified into 
two categories: label-free (spectral counting, area under the curve), 
and stable isotope labeling (chemical and metabolic) [2–4]. Label 
free approaches, as the name suggests do not use any label and 
typically have a wide dynamic range and high analytical depth. In 
contrast, stable isotope labeling techniques incorporate differential 
isotope mass tags into the proteomes of experimental samples. 
While metabolic labeling requires actively dividing cells to incor
porate the tag, chemical derivatization offers the advantage of 
labeling free amines in proteins regardless of metabolic state. The 
chemical tags affect only the mass of the labeled peptides while not 
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altering their relative physiochemical properties. As the stable 
isotope tags of differing mass can be mixed, a significant advantage 
compared with label-free quantitation is that the differentially 
labeled peptides can be co-fractionated and co-separated during 
LC analysis while being simultaneously detected by mass spec-
trometry [5].

In stable isotope labeled approaches, labeled peptides are dis-
tinguished from each other via their mass shift signatures; hence, 
relative and absolute quantitation are achieved by comparison of 
the ion chromatogram peak areas of heavy and light labeled pep-
tides, usually measured simultaneously in the same biological sam-
ple. Various chemical derivatization approaches using stable isotope 
labeling have been reported including ICAT [6], dimethyl labeling 
[7], iTRAQ [5] and TMT [8], while the most common metabolic 
labeling methods are 15N labeling [9] and SILAC [10].

The major advantage of the iTRAQ and TMT techniques lies 
in their multiplexing capabilities; the relative protein abundance of 
many different samples can be determined at same time, which 
makes them an attractive option for larger scale experiments that 
would otherwise be prohibitive due to cost and/or instrument 
time. For example, iTRAQ is able to analyze up to eight samples 
(iTRAQ-8-plex), while TMT allows analysis of up to ten (TMT-
10plex) samples simultaneously in a single MS run. However, 
alternative strategies for the synthesis of these multiplexing reagents 
have demonstrated the feasibility of analyzing more than ten sam-
ples in a single MS run [11]. These reagents share the same reac-
tive group, N-hydroxy-succinimide (NHS), which has a high 
specificity for primary amine groups (α- and ϵ-amino groups) of 
peptides. The reaction is rapid and highly specific, and it irrevers-
ibly labels the free amines located at the N-terminus and the amine 
groups of the lysine side chain in proteins and peptides. Hence, 
labeling is not limited to a subset of proteins and all tryptic pep-
tides will contain at least one site of modification. The tagging 
reagents are designed so that labeled peptides from the different 
starting materials are isobaric and co-elute in HPLC. Therefore, 
unlike metabolic labeling approaches, quantitation is not per-
formed at the MS1 level, but rather using fragment ion tandem 
mass spectra. For labeled peptides, the mass tags are released dur-
ing peptide fragmentation to produce “reporter” fragment ions—
one for each biological sample. The intensity of these reporter ions 
corresponds to the relative peptide abundances present in the dif-
ferent samples, which are then summarized at the protein level 
based on peptide to protein sequence assignments. Since all tryptic 
peptides are isotopically labeled, more than one peptide will repre-
sent a protein which could potentially be identified, and thus the 
technique is likely to provide more accurate identification and 
quantification than the label free approach [3].

Mehdi Mirzaei et al.
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Apart from their superior multiplexing capability, isobaric 
labeling approaches present unique challenges, such as the cost of 
reagents and also a requirement for high-resolution mass spec-
trometer to analyze the diagnostic fragment ions. Moreover the 
accuracy and precision of the quantitative data can be compro-
mised due to co-elution of multiple peptides within the isolation 
window that is selected for MS2 fragmentation. These interfer-
ences cause bias in the reporter ion intensities, often leading to 
reporter ion ratio compression and narrowing of the linear quanti-
tative range [12]. Several approaches have been suggested to miti-
gate this issue. One practical solution is to reduce sample complexity 
by pre-fractionating (e.g., by strong cation exchange chromatogra-
phy) the labeled and pooled peptides prior to LC-MS. Savitski 
et al. reported that using delayed peptide fragmentation closer to 
the apex of the chromatographic peak in LC-MS/MS results in 
twofold reduction in co-fragmentation, and hence a significant 
improvement in quantification. Finally, Ting et  al. [13] demon-
strated that the ratio compression/interference effect can be largely 
mitigated by performing an additional isolation and fragmentation 
event (MS3 scan). These methods were further improved to incor-
porate multiple notched waveforms that boost the available signal 
generated by the reporter ions, which subsequently leads to more 
reliable quantitation [14]. Wenger et al also demonstrated the use 
of gas-phase purification to improve precursor ion isolation 
selectivity [15].

Regardless of the quantitative method used, requirements for 
a successful quantitative proteomic analysis are the use of sufficient 
biological replicates, efficient sample preparation, appropriate MS 
instruments, and, finally, reliable bioinformatics tools and work-
flows for statistical data analysis. In this chapter we describe the 
steps we undertake in quantitative proteomics experiments using 
TMT, from a sample preparation we have found efficient and reli-
able over the course of numerous experiments, and through to the 
analysis pipeline that enables a quick first look at a data in a multi-
variate, experimentally relevant way. The details include critical 
steps required to achieve high labeling efficiency, export of data 
from Proteome Discoverer for analysis using our TMTPrepPro 
software package, data interpretation, and subsequent steps that 
can be undertaken to further place the data in the context of path-
ways and biological processes.

2  Materials

	 1.	pH meter.
	 2.	pH paper.
	 3.	Reducing agent (5 mM DTT in Milli-Q water).

2.1  Sample 
Preparation

TMT One-Stop Shop…
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	 4.	Alkylating agent (10 mM iodoacetamide in Milli-Q water).
	 5.	Methanol (LC-MS grade).
	 6.	Chloroform.
	 7.	Acetone.
	 8.	Acetonitrile (LC-MS grade).
	 9.	8 M urea in 50 mM Tris (pH 8.8).
	10.	BCA assay (Thermo Scientific, Rockford, IL).
	11.	Lys-C (Wako, Japan).
	12.	Trypsin (Promega, Madison, WI).
	13.	Incubator.
	14.	130  mg solid-phase extraction cartridge (Sep-Pak, Waters, 

Milford, MA).
	15.	Trifluoroacetic acid (Sigma-Aldrich).
	16.	Formic acid (Sigma-Aldrich).
	17.	4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid—HEPES  

(Sigma-Aldrich).
	18.	MicroBCA assay (Thermo Scientific, Rockford, IL).
	19.	10plex TMT reaction (Thermo, San Jose, CA).
	20.	Anhydrous acetonitrile (Thermo Scientific).
	21.	5 % hydroxylamine (Sigma-Aldrich).
	22.	Empore SDB-RPS disks (3M-Empore).
	23.	16 G needle (Hamilton).
	24.	Syringe plunger 100 μl (Hamilton).
	25.	5 % ammonium hydroxide in 80 % acetonitrile.
	26.	Q Exactive Orbitrap mass spectrometer (Thermo Scientific).
	27.	Proteome Discoverer V1.3 (Thermo Scientific).
	28.	TMTPrepPro (In-house R package which can be downloaded 

from ftp://ftp.proteome.org.au/TMTPrepPro).

3  Methods

In our laboratory we employ a number of quantitative proteomics 
approaches such as label free shotgun proteomics, iTRAQ, TMT, 
and SWATH [16, 17]. We have found isobaric labeling is applica-
ble across a wide range of biological samples, including those 
derived from animals, humans, and plants, due to fact the labels are 
incorporated after the extraction and digestion steps. Nonetheless, 
to establish a reliable isobaric tagging workflow, several aspects of 
the widely used label free workflows require modification, parti
cularly during sample preparation and data acquisition steps. 

Mehdi Mirzaei et al.
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Extraneous primary amine groups, for example in the commonly 
used ammonium bicarbonate buffer, would hinder the labeling 
efficiency. Overall, consideration must be given to primary amine 
free reagents, digestion with multiple enzymes for enhancing 
sequence coverage, and protein and peptide cleaning steps before 
and after labeling step.

The workflow described below (Fig. 1) for sample preparation 
and data analysis can be applied to any isobaric labeling experi-
ment. The only step which might be different for each study is the 
protein extraction step. Regardless of the extraction procedure 
used, samples will need to be reduced and alkylated prior to 
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precipitation and the rest of steps in the workflow remain the same. 
The protein precipitation step will remove the detergent or con-
taminates, which might cause interference with the labeling.

For the figures in this chapter we used an experiment on 
mature rice leaves exposed to drought stress over a time course 
containing five separate points: Control, Moderate stress, Extreme 
stress, Recovery, and end-point Control.

	 1.	Proteins are extracted from the cells/tissues or any biological 
samples. The selection of protein extraction method is solely 
based on the type/nature of the samples to be studied.

	 2.	Extracted proteins are reduced with 5 mM DTT for 15 min at 
room temperature.

	 3.	Protein samples are then alkylated with 10 mM for 30 min in 
the dark at room temperature. Alkylation is then quenched 
with addition of 5 mM DTT for 15 min in the dark at room 
temperature.

	 4.	Protein extracts are precipitated using methanol–chloroform 
protocol (see Note 1). Firstly, four parts methanol is added to 
one part sample and then vortexed. Then, one part chloroform 
is added and vortexed. Lastly, three parts water is added and 
vortexed. Each step is performed on ice with all reagents and 
samples are stored in ice. Let the mix stand for 5 mins then 
centrifuge at 1000 × g for 2 min. Remove the layer of organic 
solvent from proteins (see Note 2)—proteins should aggregate 
at the interface—and then wash the protein with ice-cold 
methanol. Perform a wash with ice-cold acetone. Leave the 
tubes with lids open in fume hood for 10 min, to achieve com-
plete dryness. Make sure the protein pellet is air-dried before 
resuspending in 8 M Urea (see Note 3).

	 5.	Protein pellet is resuspended in 200 μl 8 M Urea in 50 mM 
Tris (pH 8.8).

	 6.	Protein concentration is determined by BCA assay using 
bovine serum albumin (BSA) as a standard.

	 7.	Samples are then digested with Lys-C (Wako, Japan) at a 1:100 
enzyme–protein ratio overnight at room temperature.

	 8.	Samples are then diluted with 50 mM Tris pH 8.8 to a final 
concentration <2 M urea.

	 9.	Digested proteins are further digested with Trypsin (Promega, 
Madison, WI) at a 1:100 enzyme–protein ratio for at least 4 h 
at 37 °C (see Note 4). Samples are then acidified with TFA to 
a final concentration of 1 % (check with pH strip: pH 2–3).

	10.	Samples are then desalted using SDB-RPS (3M-Empore) Stage 
Tips.

3.1  Protein 
Extraction, Reduction, 
Alkylation, 
Precipitation, 
Quantification, 
and Digestion

Mehdi Mirzaei et al.
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	 1.	Each sample would require a separate Stage Tips (see Note 5). 
To make a Stage Tip, first cut and stack layer/s of SDB-RPS 
disks using a 16-G Hamilton syringe needle into bottom of 
200 μl tip. Each disk binds 20 μg of peptide, in case more 
capacity is required increase number of disks or alternatively 
use a larger diameter, 14-G needle so that each disk has the 
capacity to bind 30 μg peptide (see Note 6).

	 2.	Acidify the peptide samples using TFA to pH 2–3 (see Note 7).
	 3.	Place Stage Tips into collection tubes, load the samples on top 

of Stage Tips and centrifuge at 1000–2000 × g until all solution 
passed through the Stage Tips (see Note 8). Optional: flow
through can be collected into separate tubes and stored.

	 4.	Wash the Stage Tip twice with 100 μl of wash buffer (0.2 % 
TFA) and centrifuge at 1000 × g, empty the collecting tubes if 
needed.

	 5.	Elute the peptides with 100 μl of elution buffer (5 % ammo-
nium hydroxide/80 % ACN), dry the eluent using a vacuum 
centrifuge.

	 1.	Dried peptides are resuspended in 200 μl of 200 mM HEPES—
pH 8.8 (see Note 9).

	 2.	Peptide concentration is measured using MicroBCA (Thermo 
Scientific, Rockford, IL), 70  μg from each samples are ali-
quoted for labeling in a 10plex TMT reaction (Thermo, San 
Jose, CA).

	 3.	Add 41 μl of anhydrous acetonitrile to each 0.8 mg label vial, 
followed by occasional vortexing for 5 min and brief centrifu-
gation (see Note 10).

	 4.	Ten TMT labels (ten labels) are added to the ten individual 
protein samples. Labeling is performed at room temperature 
for 1 h with occasional vortexing.

	 5.	Add 8  μl of 5 % hydroxylamine to each sample, vortex and 
incubate at RT for 15 min (Note). (Quenching removes TMT 
label from tyrosines.)

	 6.	All ten labeled samples are combined in a clean 2 ml Eppendorf 
tube. The combined mixture of TMT labeled peptides is dried 
down using speed vacuum centrifuge.

	 7.	Dried peptide mixture is reconstituted in 1 % TFA (pH around 
2–3). The mixture is desalted using on a 130 mg solid-phase 
extraction (Sep-Pak, Waters, Milford, MA) and then again 
dried down using speed vacuum centrifuge.

	 1.	Attach a 3 ml luer-lok syringe (without the plunger) to a Sep-
Pak cartridge. Place the syringe-cartridge assembly vertically 
on top of the 15 ml falcon tube for sample collection.

3.2  SDB-RPS 
Desalting Using Stage 
Tips

3.3  TMT Labeling

3.4  C18 Desalting 
Using Sep-Pak

TMT One-Stop Shop…
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	 2.	Wash the Sep-Pak with 2 ml of 100 % methanol by pipetting 
Methanol into the syringe, attach the plunger, and apply pres-
sure slowly to pass the methanol completely through.

	 3.	Wash the Sep-Pak with 2 ml 80 % acetonitrile, 0.5 % acetic acid 
in Milli-Q water as above.

	 4.	Load the sample, add another 2 ml of 1 % FA in Milli-Q water, 
apply gentle pressure to let sample pass through at a slow rate 
(approx. 0.5 ml/min). Optional: flowthrough can be collected 
in a separate tube for further inspection of unbound peptides.

	 5.	Wash the Sep-Pak with 2  ml of 1 % FA in Milli-Q water as 
above.

	 6.	Elute peptides into 2 ml Eppendorf tube with 1.8 ml of 80 % 
acetonitrile, 0.5 % acetic acid in Milli-Q water. Dry the eluents 
using speed vacuum centrifuge.

	 1.	Offline SCX fractionation is carried out, to reduce the com-
plexity of the mixture, using an Agilent 1260 quaternary 
HPLC pump with a PolyLC polysulfoethyl aspartamide col-
umn (200 mm × 2.1 mm, 5 μm, 200 Å; PolyLC, Columbia, 
MD) and UV detection at 210 nm.

	 2.	The column is equilibrated with buffer A (5  mM KH2PO4, 
25 % v/v acetonitrile (ACN), pH 2.72), which is also used for 
sample resuspension, sample injection and peptide adsorption 
to the column. Peptide elution is achieved with a linear gradient 
of 10–45 % buffer B (5 mM KH2PO4, pH 2.72, 350 mM KCl, 
25 % ACN) for 70 min, which is then rapidly increased from 45 
to 100 % buffer B for 10 min at a flow rate of 300 μl/min.

	 3.	A total of 36 fractions of varying volumes are collected in a 
96-well collection plate and dried down by vacuum centrifuga-
tion. 100 μl 1 % TFA is added to each of 36 wells (wells con-
taining peptides) and vortexed well for 10 min at 4 °C, before 
being combined into 12 fractions based on UV absorbance.

	 4.	These 12 fractions are desalted using SDB-RPS Stage Tips, 
dried down using a vacuum centrifuge and reconstituted in 
0.1 % formic acid in preparation for LC-MS/MS.

	 1.	Samples are analyzed on a Q Exactive Orbitrap mass spectro
meter (Thermo Scientific) coupled to an EASY-nLC1000 
(Thermo Scientific).

	 2.	Reversed-phase chromatographic separation is carried out on a 
75 μm id. × 100 mm, C18 HALO column, 2.7 μm bead size, 
160 Å pore size.

	 3.	A linear gradient of 1–30 % solvent B (99.9 % ACN/0.1 % FA) 
is run over 170  min. The mass spectrometer is operated in  
the data-dependent mode to automatically switch between 
Orbitrap MS and ion trap MS/MS acquisition.

3.5  Offline SCX 
Fractionation

3.6  Nanoflow 
LC-MS/MS for TMT 
Labeling Samples

Mehdi Mirzaei et al.
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	 4.	Survey full scan MS spectra (from m/z 350–1850) are acquired 
at precursor isolation width of 0.7 m/z, resolution of 70,000 
at m/z 400 and an AGC (Automatic Gain Control) target 
value of 1 × 106 ions.

	 5.	For identification of TMT labeled peptides, the ten most abun-
dant ions are selected for higher energy collisional dissociation 
(HCD) fragmentation. HCD normalized collision energy is 
set to 35 % and fragmentation ions are detected in the Orbitrap 
at a resolution of 70,000.

	 6.	Target ions that have been selected for MS/MS are dynami-
cally excluded for 90 s. For accurate mass measurement, the 
lock mass option is enabled using the polydimethylcyclosilox-
ane ion (m/z 445.12003) as an internal calibrant.

The relative abundance of peptides is determined by calculating 
the ratios of the of the reporter ions intensities; subsequently, the 
integration of relative quantification at the peptides level would 
represent the relative expression of the proteins. Software such as 
Proteome Discoverer (Thermo Scientific), MaxQuant [18], or 
Mascot can be used to generate the protein fold changes required 
for analysis. We use Proteome Discoverer as our main data analysis 
platform. Once the quantitative protein ratios are generated, we 
use our own R software workflow to implement the subsequent 
multivariate analysis steps commonly needed for more complex 
experiments. Our simple strategy for analyzing labeled experiments 
that include multiple runs relies on using a common reference to 
combine ratios from disparate runs, which in the case of the TMT 
10-plex is not too stringent a requirement. We must emphasize 
that many other approaches are possible, such as more sophisti-
cated statistical approaches [19, 20] or the ProteoIQ software  
suite [21]. While the multivariate analysis steps we automate are 
intended to cover some commonly used scenarios, there will be 
some experiments that have to be analyzed in a customized fash-
ion, for instance those having sample pairing (such as treated/
control of the same patient or cell line). Hence, we designed a 
targeted approach where the user has the option to choose the 
specific ratios and statistical tests carried out.

	 1.	Raw data files generated by Xcalibur software (Thermo 
Scientific) are processed using Proteome Discoverer V1.3 
(Thermo Scientific) and a local MASCOT server (version 2.3; 
Matrix Science, London, UK).

	 2.	The MS/MS spectra are searched against the protein NCBI 
Rice database. The MS tolerance is set to ±10 ppm and the 
MS/MS tolerance to 0.1  Da and Trypsin with one missed 
cleavage.

3.7  Data Processing
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	 3.	Carbamidomethylation of cysteine and 10-plex TMT tags on 
lysine residues and peptide N-termini are set as a static modi
fication, while oxidation of methionine and deamidation  
of asparagine and glutamine residues are set as a variable 
modification.

	 4.	Search result filters are selected as follows: only peptides with a 
score >15 and below the Mascot significance threshold filter of 
p = 0.05 are included and single peptide identifications required 
a score equal to or above the Mascot identity threshold.

	 5.	Protein grouping is enabled such that when a set of peptides in 
one protein are equal to, or completely contained, within the 
set of peptides of another protein, the two proteins are con-
tained together in a protein group.

	 6.	Proteins with at least two unique peptides are regarded as 
confident identifications. Relative quantitation of proteins is 
achieved by pairwise comparison of TMT reporter ion intensi-
ties, for example, the ratio of the labels for each of treatment 
replicates (numerator) versus the labels of their corresponding 
control replicates (denominator).

The TMTPrepPro scripts are implemented in the R programming 
language and are available as an R package, which is accessed in  
our group through a graphical user interface provided via a local 
GenePattern [1] server. There are two distinct analyses types: over-
all multivariate analysis, and targeted pairwise comparisons. The 
overall multivariate analysis combines ratios from a number of runs 
with respect to an indicated reference, performs unsupervised anal-
yses such as clustering and PCA, determines differentially expressed 
proteins by an ANOVA approach, and carries out pairwise com-
parisons detected automatically based on the experimental design. 
The targeted pairwise comparison is defined for a single run only 
at this point, and can be used to enter specific comparisons of 
interest and the analysis suitable for them.

As with all labeled experiments, a key input is the experimental 
design showing the placing of samples on runs, which needs to be 
created first as an Excel spreadsheet; an example is given in Table 1.

The user interface requires the Proteome Discoverer data to be 
uploaded and a few parameters to be set as follows:

	 1.	Upload the protein search results extracted as tab-delimited 
files at the previous step; if multiple runs are used the files 
should be zipped up together.

	 2.	Upload the design file describing the experimental group for 
each label in the first tab, and the label to be used as reference 
in the second tab. See Table 1 for an example (see Note 11).

	 3.	Set the limits to be used for cutoffs for differential expression 
(by default 1.5), for number of counts per peptide (by default 

3.8  TMT Data 
Analysis Program 
TMTPrepPro: 
Uploading the Data
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no limit), and for the protein ratio z-score, defined as 
100 × log(ratio)/Variability (by default 2).

	 4.	Start the analysis; several calculations will be performed and 
various spreadsheets and images will be generated as described 
in detail below.

The TMT overall multi-run job yields a multivariate overview of 
the data and can be divided into several analyses categories: data 
aggregation and summaries, overall data quality and FDR based  
on replicates (if they exist), unsupervised analyses (clustering  
and PCA), ANOVA, and pairwise comparisons to the common 
reference.

	 (a)	ResultsOverall.xlsx
The spreadsheet contains the combined ratios, variabilities, and 
counts, alongside results from other statistical analyses which 
are described later.

	 (a)	BoxplotDensity.png
An image is show in Fig. 2, showing the boxplots and density 
plots of all the log ratios extracted to the indicated ratio. In  
the shown image, the indicated reference is a control sample. 

3.9  TMTPrepPro 
Outputs for the Overall 
Multivariate Analysis 
Job

3.9.1  Data Aggregation 
with Respect to Indicated 
References

3.9.2  Overall Data 
Distribution and FDR 
Based on Replicates

Table 1 
Design Excel spreadsheet example for overall TMT job

Tab1

Label Replicate Group Replicate Group

126 C1 1Control C1 1Control

127_N C2 1Control C2 1Control

127_C M1 2Moderate M1 2Moderate

128_N M2 2Moderate M2 2Moderate

128_C E1 3Extreme E1 3Extreme

129_N E2 3Extreme E2 3Extreme

129_C R1 4Recovery R1 4Recovery

130_N R2 4Recovery R2 4Recovery

130_C C1After 5ControlA C1After 5ControlA

131 C2After 5ControlA C2After 5ControlA

Tab2

File Use reference

Run1 ProtDisc Output File.txt 126

Run2 ProtDisc Output File.txt 126

TMT One-Stop Shop…
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The coloring of samples is done based on the Group of the top 
reference in the ratio, and the precise labels for the ratios are 
indicated in the boxplot. To interpret, one looks for similar 
patterns across the groups, and no sample standing out as hav-
ing an unusual distribution.

	(b)	Correlation heatmap.png
The correlation matrix of all log ratios to the indicated refer-
ence is generated, and clustered as a heatmap. Ideally one looks 
for groups appearing close together, although this may not  
be the case if the differences between samples are small. In the 
case of multiple runs one looks for no clear clustering of the 
different runs together, which would indicate run effects that 
have to be accounted for.

	(c)	 FDR based on reference replicates images
If reference replication is present in the design, then estimates 
of false discovery rates based on replicates will be generated as 
follows. Ratios with the same group as the reference will be 
identified, in this example other Control1 ratios (127 N has 
the same group as reference 126). For each such ratio, the 
number of proteins found differentially expressed based on 
three criteria will be determined: (1) ratio > ratio cutoff 
parameter (1.5 default); (2) ratio > ratio cutoff and peptide 
counts > 1; and (3) ratio > ratio cutoff and z-score > z-score cut-
off (two default). The percentages of proteins identified as 
changing are listed in the image subtitle, and the plot of log 
ratios and counts and log ratios and log(absolute value of 
z-score) are plotted side by side. For a technical replicate or a 
close biological replicate, such as pools of plants in similar con-
ditions, one would expect low FDR percentages around 1–2 %, 

Fig. 2 Boxplots and density plots
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and even lower when counts or z-scores are taken into account. 
For a biological replicate, the percentage of proteins such 
identified could be a lot higher. The figures will be generated 
containing the number of the file and of the reference, for 
instance File1Ref126Ratio1.png; an example is shown in Fig. 3.

	(d)	Ratio correlations by group images
For each of the group categories present in the design, side-by-
side plots of the ratios from the same category will be gener-
ated and maximum and minimum correlations will be included 
in the title. The figure file names will be automatically created 
to include the group category, for instance Cor3Extreme.png.

	 (a)	HeatmapAll.png
The log-transformed ratios extracted will be visualized on a 
heatmap, using the R implementation with complete linkage 
and correlation based distance; proteins with missing values are 
removed prior to clustering. The columns will be colored 
based on the group of the top reference.

	(b)	 PCA3dPlot.png, PCATopLoadings.png and PCATopLoadings 
ProteinPatterns.png
The log-transformed ratios with missing values removed are 
also visualized using a principal component analysis (PCA). 
The three-dimensional plot of the PCA scores for the first 

3.9.3  Unsupervised 
Analyses

Fig. 3 FDR based on reference replicates
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three components is included in the PCA3dPlot.png image. 
The loadings image shows the top five proteins with the high-
est loadings in each of the three components. Finally, the pro-
tein pattern figure shows the protein patterns of the proteins 
with highest loadings across the experimental groups identified 
in the design. For example, in Fig. 4, the top 3D image shows 
the principal component scores, the middle barplot shows the 
proteins with the top loadings for each component, and the 
bottom boxplot shows the pattern over the experimental con-
ditions of the five proteins with top loadings for principal com-
ponent 1.

	 (c)	ResultsOverall.xlsx
The spreadsheet described earlier also contains the protein 
loadings and principal component scores generated by the 
PCA analysis in two separate tabs, called PCAScores and 
PCALoadings. It can be used for instance to identify more 
than the top five proteins with highest loadings generated 
automatically in the images described above.

	 (a)	ResultsOverall.xlsx
This spreadsheet described earlier, which contains the com-
bined ratios and variabilities, also contains statistics generated 
while running a one way ANOVA analysis for each protein in 
the set, including the p-value, the adjusted p-value using  
the Benjamini–Hochberg correction for multiple testing,the 
Geometric means of all ratios for each condition with respect 
to the selected reference.

	(b)	 Heatmap—Anova DE.png
A heat map representation of all differentially expressed pro-
teins identified at the previous step; similar to the heatmap 
described previously generated for all ratios. An example is 
shown in Fig. 5.

	 (c)	ClusterPatterns.png
An example is shown in Fig. 6. This is another representation 
of the differentially expressed proteins, clustered first into four 
clusters using hierarchical clustering, then plotted showing the 
means across all experimental conditions for all proteins in 
each cluster. The ordering of the group categories is done 
alphabetically (see Note 12).

	 (a)	ResultsPairwise.xlsx
This spreadsheet contains the results from a number of pair-
wise comparisons that are automatically carried out given the 
design and choice of reference. For each group category all the 
ratios extracted with respect to the given reference are log-
transformed and compared to 0 via a one-sample t-test. 
Proteins with a t-test p-value <0.05 and average fold change > 
cutoff are regarded as differentially expressed. It is important 

3.9.4  ANOVA

3.9.5  Pairwise 
Comparisons 
to the Reference
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Fig. 4 PCA 3D plot, top loadings and protein patterns for the top loading proteins
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to note that this set of pairwise comparisons is only relevant if 
the ratios are experimentally meaningful. For example, in the 
context of the five condition rice experiment, the references 
are control samples, and hence the pairwise comparisons 
extract differences between Control and control references, 
Moderate and control references, Extreme and control refer-
ences, etc. If the reference is a common pool of all samples, 
then the comparisons are not easy to interpret and probably of 
no use.

Fig. 5 Heatmap of differentially expressed proteins
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	(b)	Volcano plots images
For each pairwise comparison undertaken above, the resulting 
p-values and log fold changes are visualized on volcano  
plots, one generated for each comparison, and labeled by  
the group category name, for instance “Volcano 1Control.png” 
(see Note 13).

	 (c)	Correlations of differentially expressed proteins by group images
Side-by-side plots of the differentially expressed proteins for 
each comparison are also generated, showing the correlation 
of the respective ratios.

	(d)	VennOverlap.png
A Venn diagram showing the overlap of the differentially 
expressed proteins identified in the previous step is also gener-
ated; if more than three group levels are present then the three 
most numerous categories are used.

Fig. 6 Cluster patterns for differentially expressed proteins
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The inputs into the TMTPrepPro for targeted analysis (Table 2) are 
similar to those into the overall multivariate analysis job described 
previously. All targeted analysis needs to be clearly specified in the 
design file; each requested comparison analysis is specified as a sin-
gle column. The analysis specification includes the comparison 
type which can be one of single, paired and one sample t-test, and 
the labels involved in the comparison and their position (top or 
bottom) in the ratio. The comparison type is indicated as the col-
umn header and only the labels that will be used in the comparison 
are specified in the cell corresponding to that label. All other labels 
can be left blank. The specifications for labels are slightly different 
for different comparison types. For single comparison, two TMT 
labels need to be indicated as “T” (19) and “B” (bottom) 
respectively. For one sample T test, at least two labels need to be 
indicated as “T” and another two as “B”. For paired comparison, 
exact two labels are marked as “T1” and “T2” respectively and 
another two as “B1” and “B2” respectively. An example of the 
design file can be found in the TMTPrepPro package. The details of 
each analysis are described below.

The outputs of the target analysis include a combined Results.
xlsx and one image plot for each comparison defined in the design.

	 (a)	Results.xlsx
The workbook contains multiple spreadsheets. The first sheet is 
named “Comparison” and contains the metadata of all the valid 
comparisons that have been executed. The second sheet is 
named as “ErrorNote” and contains the TMT labels specified in 
the design but do not exist in the TMT protein discoverer data. 
The other sheets contain the result data for each comparison.

3.10  TMTPrepPro 
Outputs from Targeted 
Analysis

Table 2 
Design Excel spreadsheet example for targeted TMT job

Label Replicate Group Single OneSampleTTest Paired

126 C1 1Control B B B1

127_N C2 1Control T B B2

127_C M1 2Moderate

128_N M2 2Moderate

128_C E1 3Extreme T T1

129_N E2 3Extreme T T2

129_C R1 4Recovery

130_N R2 4Recovery

130_C C1After 5ControlA

131 C2After 5ControlA
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	(b)	Vocano.png
For Single and OneSampleTTest comparison undertaken, the 
resulting z-score or p-value and log fold changes are visualized 
on volcano plots, one generated for each comparison and 
named by the comparison name such as SingleComp 1 Volcano.
png. All differentially expressed proteins are highlighted as a 
red dot and labeled with their identification accessions.

	 (c)	Paired.png
For Paired comparison, a scatter plot is generated to visually 
display the relationship between the ratios of the set of com-
mon proteins identified as differentially expressed consistently 
by the pair of single comparisons.

The single comparison is specified as “Single” type in the design 
together with one TMT label indicated as “T” (19) and one as “B” 
(bottom). The comparison excludes proteins with missing ratio or 
variability. It performs a comparison of the specified labels for each 
proteins to 1 based on the ratio and z-score. The z-score is defined 
as 100 × log(ratio)/log(variability). The default set of cutoffs for 
ratio and z-score are 1.5 and 2, respectively. The proteins that satis-
fies ratio > ratio cutoff AND z-score > z-score cutoff are classified as 
differentially expressed.

	 (a)	Results.xlsx
The spreadsheet contains the ratio, peptide count and variabil-
ity, z-score, and class for each protein. The class represents the 
classed that the protein detected as, which can be one of three 
values: −1, 0, and 1, representing downregulated, not differ-
entially expressed and upregulated. To help visualization, all 
differentially expressed protein are highlighted, with upregu-
lated as yellow and downregulated as blue.

	(b)	Volcano.png
A volcano plot of log p-value VS log ratio is generated, with all 
differentially expressed proteins labeled with their accession 
numbers and colored as red.

The paired comparison performs two single comparisons with the 
specified labels, T1/B1 and T2/B2, independently and then com-
pare the consistence of the differentially expressed proteins identi-
fied. Here, consistent differentially expressed proteins means the 
set of proteins which are identified as upregulated or downregu-
lated by both single comparisons.

	 (a)	Results.xlsx
Similar to the result spreadsheet of Single comparison, the 
spreadsheet in Results.xlsx for Paired comparison contains two 
sets of ratios, peptide counts and variability, z-score, and class 
for each protein for the two sets of compared labels. Similarly, 
all differentially expressed proteins are highlighted.

3.10.1  Single 
Comparison

3.10.2  Paired

TMT One-Stop Shop…
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	(b)	Paired.png
A scatter plot, ending in “Paired.png”, visualize the relation-
ship between the two ratios for each consistent differentially 
expressed proteins.

The one sample T test analysis takes four or more combined ratio 
labels (two top and two bottoms) from the design and extract all 
rations from the protein discoverer file. All the ratios are log-
transformed and compared to 0 via a one sample T test. Proteins 
with a t-test p-value less than 0.05 and mean fold change greater 
than cutoff (1.5 default) are regarded as differentially expressed.

	 (a)	Results.xlsx
The result spreadsheet contains all the extracted ratios, the 
mean ratios, the p-values, and the classes for all proteins.

	(b)	Volcano.png
A volcano plot of log p-value VS log mean ratio is generated, 
with all differentially expressed proteins labeled with their 
accession numbers and colored in red.

4  Notes

	 1.	For the protein samples more than 200 μl, TCA/acetone pre-
cipitation method is recommended. This is mainly because, 
2 ml Eppendorf tube will not be sufficient to fit all the reagents 
required for methanol–chloroform precipitation. Hence, the 
protein loss would be greater in a larger tubes (eg. 14 ml falcon 
tubes).

	 2.	Do not disturb the protein pellet, do not intend to collect any 
solution below the formed pellet.

	 3.	Air-dry the samples (tubes with caps off), leave the Eppendorf 
tubes on the bench for 5–10 min, make sure the pellet is not 
over-dried. If it turns brown, it would be difficult to bring back 
everything into solution.

	 4.	Make sure the samples are diluted to lower than 2 M Urea and 
pH is maintained around 8.8. The high concentration of Urea 
prevents trypsin activity.

	 5.	Despite C18 Empore disks, SDB-RPS disks do not require any 
activation or equilibration.

	 6.	Stack SDB dics based on the amount of protein/peptide which 
needs to be cleaned. For instance, four dics are required for 
120 μg (14 G needle).

	 7.	Use high concentration of TFA (50 %) to acidify the samples, 
start with 2 μl, vortex and check the pH using pH strips. Keep 
on adding until the pH reaches about 2 or 3. Do not let the 

3.10.3  One Sample 
T Test
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total volume go higher than 150 μl if 200 μl tips are used to 
stack disks on.

	 8.	Peptide binding and elution steps should be done at 1000 × g, 
while the wash step can go up to 2000 × g.

	 9.	Adjust the HEPES buffer to 8.8 using NaOH. Check pH with 
pH strips.

	10.	Remove the reagents from freezer just before the labeling step. 
Allow the TMT label vials reach room temperature before 
opening the lids.

	11.	This format can also be used to combine ratios with different 
reference labels (denominators) on the same run if appropriate.

	12.	On the cluster figure the group levels will be plotted in alpha-
betical order; add numbers 1, 2, 3, … to the group labels  
to ensure plotting in the order that is meaningful to the 
experiment.

	13.	Only meaningful if the ratios to the reference have an experi-
mental interpretation, for instance in this case “change from 
control”; usually meaningless if the common reference is a 
pool of all samples.
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Chapter 6

Unassigned MS/MS Spectra: Who Am I?

Mohashin Pathan, Monisha Samuel, Shivakumar Keerthikumar, 
and Suresh Mathivanan

Abstract

Recent advances in high resolution tandem mass spectrometry (MS) has resulted in the accumulation of 
high quality data. Paralleled with these advances in instrumentation, bioinformatics software have been 
developed to analyze such quality datasets. In spite of these advances, data analysis in mass spectrometry 
still remains critical for protein identification. In addition, the complexity of the generated MS/MS spec-
tra, unpredictable nature of peptide fragmentation, sequence annotation errors, and posttranslational 
modifications has impeded the protein identification process. In a typical MS data analysis, about 60 % of 
the MS/MS spectra remains unassigned. While some of these could attribute to the low quality of the 
MS/MS spectra, a proportion can be classified as high quality. Further analysis may reveal how much of 
the unassigned MS spectra attribute to search space, sequence annotation errors, mutations, and/or 
posttranslational modifications. In this chapter, the tools used to identify proteins and ways to assign unas-
signed tandem MS spectra are discussed.

Key words Mass spectrometry, Peptide, Proteins, Proteomics, Unassigned MS/MS spectra

1  Introduction

Mass spectrometry (MS) based proteomics has been proven to be 
an indispensable tool for studying perturbation in protein expres-
sion [1]. In addition to proteomics research, MS is also used to 
identify drugs, food contaminants, measure petroleum composi-
tion and perform carbon dating [2]. Recently, significant advances 
have been made to MS instrumentation resulting in tremendous 
improvements in both resolution and sensitivity in tandem MS 
data [3, 4]. With the resulting MS/MS spectra, proteins are identi-
fied by various search algorithms that predominantly rely on spec-
tral comparison or de novo method. Among these, the most 
commonly used method in protein identification is based on the 
spectral comparison of experimental and theoretical MS/MS spec-
tra obtained from sequence databases. Hence, over the years, data-
base search algorithms have remained the gold standard method 
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for assigning peptides to MS/MS spectra [5]. However, from 
thousands of MS/MS spectra, only a fraction of them are mapped 
to peptides and then to proteins. A majority of the tandem MS 
spectra remains unassigned. In this chapter, we discuss fundamen-
tals of protein identification methods and limitations of tools 
required to analyze tandem MS spectra as well as common reasons 
for these unassigned MS/MS spectra.

2  Methods

There are various search methods used in the identification of 
peptides and proteins using MS/MS spectra generated from the 
mass spectrometry. Here, the most commonly used methods such 
as de novo sequencing and database search are discussed. 
Depending on the types of fragmentation methods, different frag-
ment ions such as a, b, c, x, y, and z ions are generated. Collision-
Induced Dissociation (CID) fragmentation methods generally 
yields b and y ions, whereas Electron-Transfer Dissociation (ETD) 
produces mostly c and z ions [6]. Throughout the chapter, b/y ion 
pairs are discussed for ease of reading.

De novo sequencing refers to the identification of amino acid 
sequence from the tandem MS spectra without any prior knowl-
edge of possible sequences. The methodology is based on the 
hypothesis that if peptides are fragmented in a predictive manner, 
MS/MS spectrum will contain the necessary fragment ions to 
retrieve the entire peptide sequence. De novo sequencing has an 
advantage of identifying novel peptides and proteins [7]. Basically, 
de novo sequencing methods takes into account the mass differ-
ence between the two adjacent fragment ions to assign the mass of 
an amino acid residue.

PEAKS is the most commonly used de novo algorithm that 
identifies peptide sequence among all possible amino acid combina-
tions using dynamic programming algorithm [8]. Interestingly, de 
novo methods can be used in conjunction with other protein identi-
fication algorithms such as the database search method to improve 
protein identifications. For instance, PEAKS DB is mainly a database 
search software, but relies on de novo sequencing for better filtra-
tion and scoring [9]. Other most commonly used de novo sequenc-
ing tools are PepNovo [10] and NovoHMM [11].

MS/MS spectra are complex in nature as the fragmentation pat-
terns can be unpredictable events. In some cases, the charge state 
of the ions remains ambiguous. Moreover, the complexity of tan-
dem MS spectra is increased significantly when posttranslational 
modifications are taken into account. For these reasons, it is diffi-
cult to predict which of the fragment ions come from b and y ions. 
Additionally, fragment ions are not identified at certain positions of 

2.1  De Novo Method

2.1.1  Limitations of De 
Novo Method
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the peptide resulting in the loss of b/y ion pairs. As de novo 
sequencing, heavily relies on calculating the mass difference 
between two adjacent peaks, the complexity of the tandem MS 
spectra impedes the use of this method in protein identification.

The database search method is the most conventional approach of 
identification of peptides and proteins from tandem mass spectra 
using protein sequences. In this approach, protein sequences from 
the database are digested computationally and hypothetical spec-
trum is generated for individual peptides. To identify peptide from 
a MS/MS spectrum, peptides that has total mass equal to the 
precursor mass of that spectrum are matched to the hypothetically 
generated spectra from database. As the database search method is 
based on prior knowledge of the peptide sequence, the b/y ion 
pairs can be easily identified. Thus, the method overcomes many of 
the issues faced by de novo sequencing algorithms.

The most commonly used search algorithms such as MASCOT 
[12], X!Tandem [13] and SEQUEST [14] employ database search 
strategy for protein identifications. These search programs com-
pares the hypothetical spectra with the observed tandem mass spec-
trum for each peptide using different scoring methods. The principle 
behind scoring relies on shared peak count between the theoretical 
and experimentally observed MS spectrum. Various scoring meth-
ods employed by different search programs to assign confidence 
scores for spectra-peptide match are discussed below.

SEQUEST is tandem MS data analysis program for the identifica-
tion of peptides and proteins using database search strategy [14]. 
In order to score the spectrum against the theoretical spectrum of 
peptide sequence, SEQUEST uses cross-correlation (XCorr) 
which is the sum of the peaks that overlap between two spectra. As 
a measurement of how significant XCorr is, SEQUEST generates 
autocorrelation (AutoCorr) that measures the alignment of two 
spectra with a given offset. The ratio of XCorr and average 
AutoCorr over −75 to +75 Da offset gives a score which is inde-
pendent of spectral quality and peptide length.
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where XCorr1 and XCorr2 are score for best and second best match, 
respectively [15].
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∆Cn is a measure of how good the best match is compared to the 
second best match.

2.2  Database Search

2.3  Scoring 
in SEQUEST
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X!Tandem is an open source database search tool that matches 
tandem mass spectrum to hypothetical spectrum generated from 
protein sequence database. It calculates statistical significance score 
known as expectation values (E-value) for each of the individual 
spectrum to sequence assignments. X! Tandem’s preliminary score 
is based on the sum of the intensities of matched y and b ions. 
Hyperscore is then calculated by multiplying preliminary score by 
factorials of number of b and y ions that are in agreement with 
experimental spectrum (based on the hypergeometric distribu-
tion). X! Tandem assumes that peptides with the highest hyper-
score to be the best match. But in cases where the difference 
between the top hyperscore and the rest is not significantly high, 
the confidence of identification remains low.
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To measure probability based significance, X!Tandem calculates 
E-value which expresses how unlikely a better hyperscore can occur 
by random chance [16].

MASCOT is a commercial database search engine for the identifi-
cation of peptides and proteins using mass spectrometry data. For 
smaller datasets, MASCOT can be accessed freely using web-based 
interface at matrix science (http://www.matrixscience.com/) 
website and can be searched against the default protein sequence 
databases such as SwissProt and NCBInr. However, for the large 
scale MS proteomic data analysis, MASCOT license has to be pur-
chased to be used in-house. For fully automated batch search 
Mascot Daemon utility can be used to submit the request to 
Mascot server. Though Mascot scoring is mainly based on the 
MOWSE algorithm and much of the scoring methodology is not 
published and hence not discussed here.

As the database search method mainly relies on known protein 
sequences in the databases, this approach fails to identify novel 
peptides and proteins, unidentified mutations and unknown modi-
fications. Even though known modifications can be identified by 
search algorithms, they are not included in the search parameters 
most often as they increase the search space (number of candidate 
peptides) when both modified and unmodified peptides are 

2.4  Scoring 
in X! Tandem

2.5  Scoring 
in MASCOT

2.6  Limitations 
of Database Search
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considered. For instance, in the peptide sequence G I S H V I D, 
if I and V are considered for a variable modifications, the possible 
candidates are as follows:

G I S H V I D G I S H V' I D G I S H V I' D G I S H V' I' D

G I' S H V I D G I' S H V' I D G I' S H V I' D G I' S H V' I' D

Due to modification of mere 3 amino acids in this peptide 
sequence, there are eight (23) possible combinations of modifications 
that needs to be searched. Thus, thousands of peptide sequences 
increases the search space, computing power and increases false 
positive hits.

In spite of the advances in MS instrumentation and software, only 
a fraction of MS/MS spectra are assigned to peptides [17]. More 
than 50 % of the tandem MS data from not so complex human 
whole cell lysates are not identified. There are various reasons that 
can be attributed for the unassigned spectra. Protein identifications 
using tandem MS relies mainly on known masses of 20 amino 
acids. There are almost 200 types of modifications [6] and consid-
ering all the possible modifications, the search space is computa-
tionally intensive. Hence, users may not select many parameters 
while searching the MS data thereby precluding the identification 
of those MS/MS spectra that indeed are obtained from modified 
peptides. Also, the use of database search method inherently 
accounts for a proportion of these unassigned MS spectra. Novel 
proteins, exons and sequence variants cannot be identified using 
this approach as they are not present in the sequence databases. 
Hence, MS/MS spectra arising from these peptides will not be 
mapped. Similarly, known mutations and single nucleotide polymor-
phisms are also responsible for unassigned MS spectra. Lastly, 
unknown posttranslational modifications and/or unknown chemi-
cal modifications during sample processing, can also account for 
unassigned spectra (see Fig. 1).

It has to be emphasized that not all the unassigned tandem MS 
spectra are of good quality; there are proportion of MS/MS spec-
tra that are not high quality and hence can be discarded as noise 
[18]. High quality unassigned spectra is still worthy of analysis 
using different search methods or same database search method 
with increased search parameters. A good quality spectrum is that 
which has similar statistics in terms of number of peaks, intensity, 
average distance between peaks in comparison to other assigned 
spectra [18]. Different types of spectrum metrics such as number 
of peaks, mean intensity, standard deviation of intensities, number 
of maximum length of sequence tag identified in the spectrum, 
number of complementary peak pairs, can be used to assess spectral 
quality. Good quality spectra can be further analyzed and searched 
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for modifications, mutations, and sequence variants. Proteogenomic 
approach can further be used to find out possible candidate pep-
tides which are not in protein database by searching genome 
sequence [19–25] to validate known events as well as to identify 
novel events such as mutations [17]. Mass tolerant database search 
[26] can also be used to map unassigned spectra.

Fig. 1 Typical workflow of database search method extended to identify unassigned tandem MS spectra. 
Protein samples are reduced, alkylated, and digested by proteases resulting in peptides. The digested peptides 
are later subjected to LC-MS/MS. The resulting RAW tandem MS data is converted to peak list files by vendor-
based and open source software. The resulting peak list files are searched against protein databases to 
identify as many proteins as possible within the specified FDR. The unmapped MS/MS spectra can be analyzed 
for the spectral quality and further analyzed incorporating mutations and PTMs

Mohashin Pathan et al.
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Chapter 7

Methods to Calculate Spectrum Similarity

Şule Yilmaz, Elien Vandermarliere, and Lennart Martens

Abstract

Scoring functions that assess spectrum similarity play a crucial role in many computational mass spectrometry 
algorithms. These functions are used to compare an experimentally acquired fragmentation (MS/MS) 
spectrum against two different types of target MS/MS spectra: either against a theoretical MS/MS spec-
trum derived from a peptide from a sequence database, or against another, previously acquired MS/MS 
spectrum. The former is typically encountered in database searching, while the latter is used in spectrum 
clustering and spectral library searching. The comparison between acquired versus theoretical MS/MS 
spectra is most commonly performed using cross-correlations or probability derived scoring functions, 
while the comparison of two acquired MS/MS spectra typically makes use of a normalized dot product, 
especially in spectrum library search algorithms. In addition to these scoring functions, Pearson’s or 
Spearman’s correlation coefficients, mean squared error, or median absolute deviation scores can also be 
used for the same purpose. Here, we describe and evaluate these scoring functions with regards to their 
ability to assess spectrum similarity for theoretical versus acquired, and acquired versus acquired spectra.

Key words Mass spectrometry, Scoring functions, Spectrum similarity, Database searching, Spectrum 
library

1  Introduction

Mass spectrometry (MS) is an essential analytical technique in 
proteomics [1, 2]. It allows the identification of proteins within a 
sometimes complex protein mixture. A typical proteomics experi-
ment starts with the digestion of the proteins in the sample into 
peptides with the aid of proteases. These peptides are subsequently 
separated via chromatographic techniques and then introduced 
into a mass spectrometer where a selected peptide is fragmented to 
yield an MS/MS spectrum [3]. Such an MS/MS spectrum consists 
of m/z values and the associated intensities for each detected ion. 
A typical experiment results in the acquisition of (tens of) thou-
sands of MS/MS spectra (Fig. 1a), and these are then assigned to 
peptides with the aid of computational methods [4–6] (Fig. 1b).
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These computational methods can be divided into two 
categories (Fig. 1b): those where an acquired MS/MS spectrum is 
compared against a theoretical MS/MS spectrum, and those where 
an acquired MS/MS spectrum is compared to another, previously 
acquired MS/MS spectrum. These comparisons are assigned a 
score through a function that quantifies the similarities between 
the spectra [7, 8]. An ideal scoring function should enable the 
separation of similar from dissimilar MS/MS spectra [9], and do so 
reasonably quickly [10].

A variety of scoring functions have been implemented for 
spectral comparison, including cross-correlation [11, 12], normal-
ized dot product [7, 10, 13–15], Pearson’s and Spearman’s rank 
correlation coefficients [16, 17], cumulative binomial probability 
[18, 19], mean squared error, or median absolute deviation. In pro-
teomics, these similarity scores have been applied in database search-
ing [7, 10–13, 18, 19], spectrum library searching [15, 20–22], and 
spectrum clustering [13, 14].

This review describes MS/MS spectrum similarity scoring 
functions and their applications in proteomics, and assesses their 
relative performance on sample data.

Protein Peptide

a

b

Enzymatic 
digestion

LC-MS/MS

Acquired 
MS/MS spectrum

Spectrum 
Library

Acquired
MS/MS spectrum

m/z

Intensity

MS/MS spectra

Theoretical
MS/MS spectrum

Sequence 
Database

>sp|Q15149|PLEC_HUMAN
MDNLYLAVLRASEGKKDE...
>sp|P08238|HS90B_HUMAN 
MPEEVHHGEEEVETFAFQ...

XCorr
Probabilistic

Dot-product

Spearman’s rho
Pearson’s r

Previously 
identified

Fig. 1 Overview of a typical proteomics experiment (a) and computational methods to match acquired MS/MS 
spectra (b). Acquired spectra can be matched to either a theoretical spectrum generated from a sequence 
database (e.g., in the database searching approach), or a previously acquired and identified spectrum (e.g., in 
the spectrum library searching approach). Different scoring functions can be used, including cross-correlation 
(Xcorr) or probability-based functions for database searching, and dot-product, Pearson’s r and Spearman’s 
rho scoring functions for spectrum library searches
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2  Methods

Database searching is the method of choice for most researchers to 
assign peptides to acquired MS/MS spectra [23]. In this method, 
a suitable protein database is in silico digested to obtain peptides 
that are subsequently fragmented in silico to yield theoretical MS/
MS spectra [24]. These theoretical spectra are in turn matched to 
the acquired MS/MS spectra by specialized algorithms called 
search engines [25, 26]. Such a peptide-to-spectrum match (PSM) 
is scored through a scoring function, which can be either non-
probabilistic or probabilistic [27].

The similarity between a theoretical and an acquired MS/MS spec-
trum can be computed by scoring functions based on matched 
peaks, such as shared peak count (SPC) [28] that simply reflects 
the number of matched peaks between paired MS/MS spectra.  
A more elaborated version is found in the scoring function of 
Morpheus [29] that relies on the sum of the number of matched 
peaks and the fraction of matched intensity over total intensity. 
Another type of non-probabilistic scoring function is the cross-
correlation (or sliding dot product), computed as

	
R x i y i

i

n

t t= [ ] × +[ ]
=
å

1 	
(1)

where n is the number of mass-over-charge (m/z) bins and τ is the 
relative displacement or sample shifting correction factor. In pair-
wise MS/MS spectrum similarity, x and y represent the binned ver-
sions of the theoretical and the acquired MS/MS spectrum, 
respectively. x[i] and y[i] reflect the intensity in the ith bin of the 
respective spectra. τ is the relative displacement between MS/MS 
spectra; the correction factor.

SEQUEST [12], which is one of the earliest database search 
algorithms, relies on both an SPC score and a cross-correlation. 
The first step rounds every acquired peak m/z to the closest inte-
ger value. This is followed by the removal of the peaks within 10-u 
mass window around the precursor ion. Only the 200 most intense 
peaks are then retained and their intensities are normalized to 100. 
After this spectrum preprocessing step, the preliminary score (Sp) 
is calculated as

	
Sp t= +( ) +( )åi n nm i 1 1b r /

	
(2)

where Σim is the sum of the matched ion intensities, ni is the num-
ber of matched b- and y-ions. (1 + β) is a scoring part regarding to 
the ion series continuity and is incremented for every found con-
secutive theoretical ion (with β = 0.075). For example, if the num-
ber of found consecutive theoretical ions equals to 5, then this 
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value would be (1 + C × β) = (1 + 5 × 0.075) = 1.375. (1 + ρ) is 
another scoring component regarding to the existence of immo-
nium ions (with ρ = 0.15). SEQUEST assumes five amino acids 
that yield immonium ions: His, Met, Phe, Tyr, and Trp. In case 
that an immonium ion is found along with an expected amino acid 
in the peptide sequence, this value is incremented but in case of the 
absence of this amino acid in the peptide sequence, this value is 
decremented. The last scoring component (nt) is the number of 
theoretical peaks. Higher Sp scores are expected to be found for 
true peptide sequences and therefore the top 500 candidate pep-
tide sequences based on Sp scores are selected for the further 
consideration.

The top 500 candidate peptides are matched against the 
acquired spectrum by the calculation of cross-correlation-based 
final score. Every theoretical spectrum is constructed of the com-
puted m/z values for each fragment ion; also considering their 
neutral losses. The intensity values of these calculated m/z values 
are assigned to one of three different intensity values, which are 
[10, 25, 50] chosen based on the fragment ion types. Before start-
ing the comparison with the theoretical spectrum, the original 
acquired MS/MS spectrum is again preprocessed as follows: peaks 
within 10-u mass window around the precursor ion are removed. 
Next, the spectrum is divided into ten intervals and finally, all 
intensities in each interval are normalized again, but this time to 
50. After this preprocessing step, the constructed theoretical spec-
trum is matched to this preprocessed acquired spectrum with the 
cross-correlation (xcorr) score calculated as:

	 xcorr = -R R0 t 	
(3)

where xcorr is thus calculated from the difference between the cor-
relation (R) at τ = 0 and the mean of the Rτ correlations with 
shifted acquired spectra (" - < <tÎ t : 75 75 ) (Eq. 3). The cal-
culation of the xcorr is time consuming which prompted research-
ers to improve the speed of SEQUEST [31], or to develop derived 
search engines such as Comet [11], Crux [32], and Tide [33].

Theoretical and acquired MS/MS spectra can also be matched by 
scoring functions that reflect the probability of finding such a 
matching score purely by chance. This approach forms the basis of 
Mascot [34], one of the most popular database search algorithms. 
The exact details of the Mascot scoring function remain unknown, 
however, because it is a commercial search engine. The Andromeda 
search engine [18] is another database search algorithm that uses a 
probabilistic approach with a published scoring function. Before 
the comparison starts, if possible, an acquired raw MS/MS spec-
trum is preprocessed as centroiding, de-isotoping, and charge state 
deconvolution. After this preprocessing step, the q most intense 
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peaks are remained per 100-u mass window. This filtered spectrum 
is then compared against a theoretical spectrum generated from a 
peptide sequence within given precursor tolerance. This theoreti-
cal spectrum is constructed such that it always contains singly 
charged b- and y-ions. However, doubly charged b- and y-ions are 
also included, in case a precursor ion with a charge state higher 
than one is observed. Water and ammonium losses are introduced 
for specific amino acids. After the construction of a theoretical 
spectrum, an acquired spectrum is matched by the scoring func-
tion derived from a cumulative binomial probability as
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where n represents the number of theoretical peaks and k is the 
number of matched peaks within a given fragment tolerance. p is 
the probability of finding a single-matched peak by chance and is 
calculated by dividing the number of the highest-intense peaks (q) 
by a mass-window size (100-u) (Eq. 4). Because a significant match 
is such a small value, the logarithm of this computed value is taken, 
and then multiplied by (−10) to define a score (s).

The same filtered spectrum is also scored against again another 
theoretical spectrum which now also contains modification-specific 
losses. In the end, two s scores are computed for the same filtered 
spectrum and the maximum of these two s scores is selected for this 
filtered spectrum. As a next step, q is optimized and so a score is 
computed for every value up to the user defined maximum q value. 
Finally, the maximum of all computed scores is reported as the final 
score.

Another search engine that uses a cumulative binomial distri-
bution function is MS-Amanda [19], although there are some dif-
ferences compared to Andromeda. First of all, MS-Amanda uses n 
as the number of acquired peaks in a filtered MS/MS spectrum 
rather than the number of theoretical peaks like in Andromeda. 
Second, MS-Amanda introduces a direct-weight derived from the 
peak intensities, which is calculated as the fraction of matched 
intensity over total intensity on each filtered MS/MS spectrum. In 
Andromeda, on the other hand, intensities are indirectly used by 
selecting only the top q most intense peaks per 100-u window dur-
ing the filtering step. Thirdly, even though the maximum of q was 
set to 10 for both search engines; the minimum of q was set to 2 
and 1 respectively for Andromeda [18] and MS-Amanda [19]. 
Lastly, MS-Amanda takes into account overlapping peaks in its 
probability calculation, whereas Andromeda uses a simplified way 
of a probability calculation which Cox et al. [18] show to work 
well on high accuracy data.

Spectrum Similarity Calculation
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A peptide sequence can also be inferred indirectly from an acquired 
MS/MS spectrum by comparing it against a previously reliably 
identified acquired MS/MS spectrum. This approach is called 
spectrum library searching [35]. A spectrum library is a collection 
of MS/MS spectra, each of which represents a previously identified 
peptide [36]. Each such representative MS/MS spectrum is either 
selected or composed from a set of MS/MS spectra that are all 
matched to the same peptide. When only a single MS/MS spec-
trum has been acquired for a given peptide, it is referred to as a 
singleton [36]. Usually however, multiple MS/MS spectra are reli-
ably matched to a given peptide and a representative MS/MS spec-
trum is then determined by either choosing the best replicate MS/
MS spectrum [22], or by building a consensus MS/MS spectrum 
[15, 21]. A spectrum library from the best replicate MS/MS spec-
tra can be simply constructed by the input from a user with a list of 
identified spectra [22]. In the case that multiple spectra for the 
same peptide were observed, each spectrum is pairwise compared 
and the average of the computed scores is set as the score for this 
spectrum; finally the spectrum with the highest average similarity 
score is selected as the best replicate spectrum [22]. A consensus 
MS/MS spectrum, on the other hand, is built from multiple simi-
lar MS/MS spectra, and this procedure can take many forms. One 
way to form the consensus spectrum assembly is explained as fol-
lowed by Lam and coworkers [15]: MS/MS spectra are ranked by 
signal-to-noise ratio (calculated as the average intensity of the sec-
ond and sixth highest peaks divided by the median intensity across 
all peaks). The peaks in these ranked MS/MS spectra are then 
matched with an adaptive tolerance for the peak m/z, starting 
from the top ranked spectrum. The consensus spectrum is then 
created by including only those peaks that were matched in more 
than 60 % of the spectra, and these peaks are then assigned an m/z 
and intensity value that is calculated as a weighted average, with 
the weight based on the signal-to-noise ratio [7]. The usage of the 
consensus spectrum is shown to be more realistic compared to the 
best-replicate approach [7, 36, 37]. After building such a spectrum 
library, an acquired MS/MS spectrum can be matched against 
these representative MS/MS spectra [36]. This is usually per-
formed on the basis of a dot-product score, which is the most com-
monly used scoring function to match between acquired MS/MS 
spectra [8, 37].

This spectrum library approach can be considered as an alter-
native or complementary strategy to a database search, and yields 
increased speed and sensitivity [7, 15]. The search space in spec-
trum library searching is built from actual, acquired and identified 
MS/MS spectra, and each of these spectra is composed of peaks at 
different m/z with varying intensities. This contrasts sharply with 
theoretical MS/MS spectra, which are calculated from all putative 
peptides in a database, and which contain only theoretical fragment 
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ion m/z values with (pseudo-)uniform peak intensities. The 
reduced search space in spectral library searching is an important 
factor in the speed improvement, while the use of actually observed 
and realistically varied peaks makes the approach more sensitive. 
However, the method does require a high quality spectrum library 
and an effective matching algorithm [36].

A match between acquired MS/MS spectra is also used for 
other spectral comparison purposes, such as clustering [7, 10, 13] 
and for finding similarities between data sets within a study [17]. 
Even though a normalized dot-product is the most commonly 
used scoring function for these purposes [15, 38–41], Pearson’s 
and Spearman’s rank correlation coefficients have also been used to 
calculate spectrum similarities in some studies [16, 17, 42, 43].

The dot product (or scalar product) is a measure that reflects the 
relative location of two vectors (x∙y) in space, taking into account 
their length and direction, and is calculated as (Eq. 5)
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The dot product can be normalized by the product of the norm 
(length) of each vector. The resulting normalized dot product is in 
fact the cosine distance between the vectors (Eq. 6):
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where the two vectors x and y are derived from data sets with n 
dimensions: x = {x1, …xn}:and y = {y1, …yn}. To create such vectors 
from acquired MS/MS spectra, each spectrum is divided into the 
same number of n bins, with n either set to a fixed-value [15, 22], 
or determined based on fragment ion tolerance [17]. Each bin is 
assigned a certain weight, calculated by summing up all peak inten-
sities in that bin [22], or set to the highest peak intensity in that 
bin [17]. These binned spectra can now be considered as two vec-
tors of equal dimensionality n, and can be matched against each 
other by the (normalized) dot product. The normalized dot prod-
uct ranges between 0 and 1: cos θ = 0 stems from two orthogonal 
vectors (MS/MS spectra that have no single peak in common) 
while cos θ = 1 is achieved when the two vectors have identical 
directions (every peak is matched between the MS/MS spectra).

There are several spectrum library search algorithms that are 
based on a normalized dot product, including SpectraST [15], 
X!Hunter [21], and BiblioSpec [22]. Probably the most popular 
library search algorithm, SpectraST [15] primarily relies on consensus 

2.2.1  Normalized  
Dot Product
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MS/MS spectra, but also offers the option to work with the 
best-replicate MS/MS spectra.

SpectraST searching starts with filtering out any spectrum 
(either query spectrum or library spectrum) derived from impurity, 
which typically has either few peaks (less than six peaks) or negli-
gible signals. This is followed by removing peaks with intensity 
values lower than the arbitrary set threshold (set to 2.0 in the origi-
nal paper [15]). Additionally, the intensities of unannotated peaks 
on the library spectrum are multiplied by 0.2. Subsequently, the 
square root transformation is applied on the intensities of the 
remaining peaks. Peaks are then binned into a 1-u window. Later, 
the normalized dot product is computed between such prepro-
cessed query and library spectra. SpectraST uses two more compo-
nents to calculate a discriminant scoring function (F) calculated as

	 F D D b= + -0 6 0 4. . D 	 (7)

where D is the computed normalized dot-product, ∆D is the rela-
tive difference between the highest two normalized dot-products. 
b is a penalty value that is determined according to dot-bias which 
shows the effect of peaks on the normalized dot-products and 
there are five different b values for different ranges of the dot-bias 
values [15].

Correlation coefficients provide a measure of the linear relation-
ship between two random variables, X and Y. The correlation 
coefficient for an entire population (ρ) is calculated as
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However, because population parameters are not known in Eq. 8, 
these parameters are replaced with sample parameters to calculate 
the sample correlation coefficient (r) (Eq. 9):
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where two data sets with n elements are shown as x = {x1, …, xn} 
and y = {y1, …, yn} with sx and sy being the standard deviations, 
respectively. In MS/MS spectrum comparisons, these data sets can 
be obtained from bin-transformed MS/MS spectra, as explained 
above.

Correlations are calculated in two different ways based on the 
type of variables involved. When the variables are continuous and 
normally distributed, Pearson’s product–moment correlation 
(PPMC, Pearson’s correlation, PPC, or Pearson’s r in short), rxy, is 
computed according to Eq. 9. The xi and yi values are equal to the 

2.2.2  Correlation 
Coefficients
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weight of each bin, which reflects the peak intensities in these bins. 
If the variables are ordinal or not normally distributed, the 
Spearman’s rank correlation (Spearman’s rho in short) can be 
applied as a nonparametric analog of the Pearson’s correlation. 
Spearman’s correlation substitutes the weight of the bin by the 
bin’s rank to compute r (Eq. 10). The bins are ranked by ranking 
the weight of the bin on the preprocessed binned spectrum.
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where x = {x1, …, xn} and y = {y1, …, yn} are the two data sets with 
n elements each, and with di = (xi − yi) as the difference in rank of 
the same bin (i) in the two spectra.

The values of both correlation coefficients are confined to 
[−1:1]. Positive and negative values show positive and negative 
correlations, respectively. A correlation of 0 indicates indepen-
dence of x and y. For Pearson’s correlation, rxy ≅ 1 shows a strong 
direct linear relationship between x and y; rxy ≅ −1 shows a strong 
negative linear relationship between x and y, meaning that x 
increases with almost the same magnitude as y decreases. For 
Spearman’s correlation, rs ≅ 1 shows that the ranking for x is very 
similar as the ranking for y; rs ≅ −1 shows that the ranking on x is 
reversed compared to the ranking on y. When comparing MS/MS 
spectra, rxy ≅ 0 or rs ≅ 0 means that the two MS/MS spectra are 
completely different, rxy ≅ 1 means that the MS/MS spectra are 
completely identical, and rs ≅ 1 means that each MS/MS spectrum 
has at least the same rank-order of bin intensities.

Further details regarding these scoring functions can be found 
in [44, 45].

The mean squared error is an estimator based on the differences 
between two data sets and is computed as
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where x = {x1, …, xn} and y = {y1, …, yn} represent two data sets 
with n elements each. The differences between the elements in the 
data sets are squared and then divided by the number of elements. 
To calculate the more robust median squared error, the median of 
the squared differences is used instead of the mean. When applied 
to MS/MS spectra, x and y are derived from binned MS/MS spec-
tra as explained above.

However, compared to the normalized dot product and cor-
relation coefficients, this scoring function has not been commonly 
used in proteomics to compare two MS/MS spectra.

2.2.3  Mean 
Squared Error
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3  Performance Evaluation of the Different Scoring Functions

The performance of the scoring functions was evaluated on  
the benchmark data set of the Clinical Proteomic Technology 
Assessment for Cancer (CPTAC) project of the National Cancer 
Institute (NCI) [46]. The benchmark data set from Study-6 con-
tains three types of samples: the Sigma-UPS1 48 standard proteins 
alone, a yeast lysate, and a combination of yeast lysate with Sigma-
UPS1 48 standard proteins spiked in at different concentrations. 
The performance evaluation described here was performed on two 
MS/MS runs: one run derived from the Sigma-UPS1 sample at 
20 fmol/μL (UPS-sample), and the other run from the yeast lysate 
at 60 ng/μL sample with sigma48 UPS spiked in at 20 fmol/μL 
(yeast-UPS-sample). The UPS-sample contains 9328 MS/MS 
spectra, and the yeast-UPS-sample contains 12,089 MS/MS 
spectra.

An open source Java library [47] enabled to work with the data in 
computational proteomics. All the Java source codes can be found 
on https://github.com/compomics/spectrum_similarity.git. More
over, R source codes to analyze the findings can be found on 
http://sulesrdiary.blogspot.be/.

The scoring functions that match against theoretical spectra were 
evaluated with the aid of the method developed by Vaudel et al. 
[48]. In this study, database searches were performed on Pyrococcus 
furiosus (Pfu) proteins coupled with Homo sapiens, Eukaryota, 
Vertebrata and Mammalia proteins. The results showed that the 
use of Pfu had a great performance to validate proteomics results. 
In our case, this method allows us to compare the results from the 
scoring functions without relying on any database search engine 
results. We prepared a database that contains the Pfu and the UPS 
protein sequences (Pfu-UPS) to perform a simplified database 
search.

The data sets were searched against the concatenated database 
which consists of the Pfu proteins (4159 protein sequences, down-
loaded on 13 August 2015, from UniProtKB [49] with taxon-
omy = 2261); the UPS1-UPS2 proteins (50 protein sequences, 
downloaded on 13 August 2015 from Sigma-Aldrich [50]) and 
the contaminant proteins (68 protein sequences, downloaded on 
13 August 2015 from Global Proteome Machine (GPM) [30]). In 
silico digestion of this protein database was performed with the aid 
of DBToolKit (version 4.2.4) [51] with the low peptide mass at 
700 Da and the high peptide mass at 2000 Da; and trypsin speci-
ficity allowing one miscleavage. This resulted in a total of 132,942 
peptides of which 1328 peptides came from the UPS1–UPS2 
proteins; 2031 peptides from the contaminant proteins and the 
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remaining peptides originated from Pfu proteins. The database 
search settings were: 10 ppm as the precursor tolerance and 0.5 Da 
as the fragment tolerance, with no post-translational modifications 
selected because the identification of PTMs is difficult and also 
results in an increased search space and computational time [23, 
52, 53].

Any acquired spectrum that contains at least two peaks was 
compared against a tryptic peptide selected within a given precur-
sor tolerance. The best-ranked peptide (the highest calculated 
SEQUEST-like and the highest calculated Andromeda-like score) 
was enlisted for each acquired spectrum, if the peptide was not 
contaminant-derived. In the case that one spectrum was matched 
to more than one peptide with the same highest score value, all of 
these identifications were stored. After finishing the calculation, 
the identification in agreement between SEQUEST-like and 
Andromeda-like scores was selected for the further analysis; other-
wise the identification for the given spectrum was randomly 
selected between all of these highest scored identifications.

The collision-induced dissociation (CID) fragmentation mode was 
used during the acquisition of spectra in this study. Therefore, 
every theoretical spectrum was constructed based on the CID frag-
mentation mode. A theoretical spectrum contained only b- and 
y-ions with uniform intensity of 50. If the acquired spectrum in 
comparison had a precursor charge state higher than one, b- and 
y-ions were introduced with every charge state varying from charge 
state one to the precursor charge state. No neutral losses were 
added to any theoretical spectrum because Degroeve et al. [43], 
demonstrated that building a model with predicted neutral losses 
was not as accurate as the model without neutral losses.

The final scoring of the original SEQUEST [12] algorithm  
was implemented as much as possible. However, some steps were 
altered or skipped and the scoring was therefore called the 
SEQUEST-like scoring.

The first step on the original SEQUEST and our SEQUEST-
like scoring function is processing acquired spectra, followed by 
the selection of candidate peptides to score. Both scoring functions 
starts with the precursor peak removal: discarding the peaks in the 
10-u window around the m/z-value of the precursor ion. The next 
step is to keep only the most intense 200 peaks on an acquired 
spectrum. After keeping the top 200 intense peaks, SEQUEST 
normalizes intensities to 100 and these spectra are then compared 
to the list of peptides. These peptides are not only enzyme-specific; 
instead they are any peptide sequence which may start from any 
amino acid from the N-terminus onward of any amino acid to the 
C-terminus of the protein sequence, with the mass within a certain 
mass tolerance (±3u in their study [12]). These non-enzyme 
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specific peptides were compared by the preliminary score calculation 
in order to select the 500 highest scored peptide candidates. 
Instead of selecting such non-enzyme specific peptide-candidates, 
we selected only tryptic peptides within a precursor tolerance. In 
addition, we skipped such preliminary score calculation because 
our aim was to compute the final scoring function on cross-
correlation. Besides, such a preliminary score calculation was also 
not implemented in the SEQUEST-like algorithm Tide [33], 
which showed to be able to score spectra in a fast and effective way.

After this processing step, an acquired spectrum with at least 
two peaks was scored against theoretical spectra within given pre-
cursor tolerance. Prior to the comparison, each acquired spectrum 
was divided into ten intervals. For each interval, the most intense 
peak was set to an intensity of 50 and the intensity of the other 
peaks was calculated as followed: 50 multiplied with the ratio of 
the peak intensity over the maximum intensity. Both the processed 
spectrum and the theoretical spectrum were split into 1u-bins. The 
binning process started from 75-u before the minimum m/z value 
of these two spectra to the 75-u after the maximum m/z value of 
these two spectra. A bin is weighted as the sum of the intensities of 
the peaks within a corresponding bin. If the m/z of the current 
peak equals the next bin m/z value, the intensity of this peak was 
added to the neighboring bin. It is noteworthy to mention that 
some bins on both binned-spectra may have zero values.

The cross-correlation score was calculated according to the 
Eq.  3. First, the cross-correlation was calculated between the 
binned acquired spectrum and the binned theoretical spectrum 
(R0). Then, every m/z value of the acquired spectrum was shifted 
by τ to generate an m/z-shifted binned acquired spectrum, for 
each integer value of −75 < τ < 75. For every m/z-shifted acquired 
spectrum, the cross-correlation was calculated and then averaging 
these calculated valuesRt. This averaged cross-correlation score 

was subtracted from R0  to obtain our SEQUEST-like score.

We have tried to retain the original Andromeda scoring function as 
much as possible but also here, some adaptations were introduced. 
Therefore, we call this scoring function the Andromeda-like 
scoring.

The first adaptation was concerned the theoretical spectrum 
construction. Andromeda considers always singly charged b- and 
y-ions and it also introduces doubly charged b- and y-ions in the 
case that the precursor charge is equal or higher than two. However, 
in our case, we introduced b- and y-ions with all possible charges; 
from one to the actual precursor charge (for example, the theoreti-
cal spectrum with a triply charged precursor ion has both singly, 
doubly, and triply charged b- and y- ions). In addition, Andromeda 
introduces water-, ammonium-, and modification-specific-neutral 

3.3.4  Andromeda-Like 
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losses (which can be indeed configured by the user). However, we 
did not introduce any neutral losses in our theoretical spectrum.

We only considered tryptic peptides and matched acquired 
spectra against tryptic peptides within a specific precursor toler-
ance; unlike Andromeda which allows also semi-specific and unspe-
cific enzyme searches.

We did not implement every processing step introduced in 
Andromeda. In Andromeda, the raw spectrum undergoes several 
processing steps such as centroiding, de-isotoping, and charge 
state deconvolution. We however did not include any of these 
steps; instead, we introduced only the precursor removal step. This 
step removes peaks that are close to the precursor ion within a 
given fragment tolerance. We preferred this filtering because 
another search engine, MS-Amanda, which has a very similar prob-
abilistic scoring function, removes precursor peaks in this way prior 
to the calculation, and besides also SEQUEST removes precursor 
peaks.

The calculation of the Andromeda-like score started with 
dividing a processed-acquired spectrum which contained at least 
two peaks into 100-u intervals. The topN most intense peaks were 
selected, with topN varying from 2 to 10. Each processed spec-
trum with the topN was compared to the theoretical spectrum 
within the precursor tolerance. First, the number of acquired peaks 
was matched within a certain fragment tolerance. Based on the 
probability of finding a peak, computed simply as topN/100, the 
Andromeda-like score was finally calculated with the Eq. 4 for each 
peptide-to-spectrum match (PSM).

This evaluation method resulted in the scoring of in total 6265 
spectra. The SEQUEST-like scores vary between −7.7E+03 and 
3.5E+04 whereas the Andromeda-like scores vary between 0 and 
159.55. A correct PSM is a spectrum that both scoring functions 
matched peptides derived from the UPS proteins (831 PSMs) 
whereas an incorrect PSM is a spectrum that both scoring functions 
matched peptides derived from the Pfu proteins (5289 PSMs). 
Some PSMs were considered as uncertain because one scoring 
function assigned a peptide from the UPS proteins and the other 
scoring function assigned a peptide from the Pfu proteins for the 
same spectrum. These PSMs were not included in the further anal-
ysis (145 out of 6265 PSM, 2.3 % were hence excluded). The 
overall frequency distributions showed that: both distributions 
were observed to follow a similar trend: The correct PSMs (shaded) 
tend to give a higher score whereas incorrect PSMs tend (unshaded) 
to give lower scores (Fig. 2a, b). Moreover, there are more incor-
rect PSMs compared to the number of correct PSMs, which is not 
surprising because in our simplified database search, the probabil-
ity of a random match occurring to a UPS peptide sequence is 
around 1 % (1328 peptides derived from the UPS proteins in 
132,942 total putative peptides gives a probability of 9.99E−1).

3.4  Results
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The two scoring functions present a strong positive relation-
ship (Fig. 3a, PCC = 0.84). In other words, higher SEQUEST-like 
scores likely correspond to higher Andromeda-like scores. Due to 
the high number of data points in this plot, it was difficult to ana-
lyze how correct or incorrect PSMs correlate to each other. These 
PSMs were therefore split into two groups: correct and incorrect 
PSMs. Correct PSMs again showed a strong positive relationship 
(PCC = 0.79) with a wide range of scores (Fig.  3b). Incorrect 
PSMs, however, were not observed to correlate as strong as the 
correct PSMs (PCC = 0.65) and these incorrect PSMs also had a 
more narrow and lower score range (Fig. 3c). Furthermore, some 
matches were assigned to the same peptide by both soring func-
tions, however some other matches were assigned to a different 
peptide by each soring function. Almost all of the correct PSMs 
were observed to be assigned to the same peptide (827 PSMs out 
of 831 PSMs) whereas this percentage dropped to 58.5 % for the 
incorrect PSMs (3097 PSMs out of 5289 PSMS) (Table 1).

There are two parameters that can influence a scoring func-
tion: the peptide length and the precursor charge. Firstly, the pep-
tide length can have an influence on a scoring function because a 
longer peptide has more fragment ions compared to shorter pep-
tides so scoring functions are not completely independent of the 
peptide length. Figure 4 shows the effect of a peptide length on 
the results from only doubly charged identifications (493 correct 
PSMs versus 3080 incorrect PSMs). The correct PSMs (Fig. 4a, c) 
tend to have peptides with an amino acid length of 6–14 residues 

Fig. 2 The frequencies of the correct and incorrect hits for the SEQUEST-like (a) and the Andromeda-like  
(b) scores. The frequencies from both scores follow the similar trend. The correct matches (shaded) have 
higher scores than the incorrect matches (unshaded)
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Fig. 3 The score distribution of all correct and incorrect (a), only correct (b), and only incorrect PSMs (c). Any 
match assigned to the same peptides from the UPS proteins by both scoring functions is shown as an open 
circle. Any match assigned to same peptides from the Pfu protein is shown as an open triangle. Any match 
assigned to different peptides is shown as a cross. In addition to the scatter plot, the score distributions are also 
seen as box-plots on the axis. The SEQUEST-like and the Andromeda-like scoring functions positively correlate 
to each other with correct hits that tend to have higher scores and incorrect hits that have lower scores
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and there is a slight increase on the SEQUEST-like scores of 
correct PSMs to certain length (around peptide length of 12), 
whereas the range of Andromeda-like scores are more robust how-
ever while the peptide length is becoming longer, Andromeda-like 
scores decreases more drastically. Because, the increase in peptide 
length results in finding likely incorrect peaks rather than correct 
peaks; this affects probabilistic-based scores. Second, longer pep-
tides become less frequent in the database. Secondly, the precursor 
charge can affect a scoring function (Fig. 5a, b). Acquired peaks 
can be observed with ion charges from one to the actual precursor 
charge value depending on the precursor charge. Due to this, the-
oretical peaks were introduced with different charge states depend-
ing on a given precursor charge during theoretical spectrum 
generation. In our evaluation, every theoretical spectrum was con-
structed in this manner. Therefore, the peptide matched against 
the spectrum with a high precursor charge had a noisier theoretical 
spectrum compared to the theoretical spectrum of a singly charged 
precursor ion. Because the theoretical spectrum is noisy, the chance 
of finding an incorrectly matched peak is increased and therefore 
the probabilistic approach tends to gives lower scores. This can  
be clearly seen from the results from the Andromeda-like score 
(Fig. 5b): the scores decrease for correct PSMs (shaded) while the 
precursor charge is increasing. However, such a drastic change is 
not observed for the SEQUEST-like score (Fig. 5a).

Table 1 
The number of PSMs in a simplified database search

Same peptide 
sequences

Different peptide 
sequences

Total assigned 
peptide sequences

Correct PSMs (only UPS proteins)   827       4   831

Incorrect PSMs (only Pfu proteins) 3097 2192 5289

Uncertain PSMs (both UPS and Pfu 
proteins)

–   145   145

Total PSMs 3924 2341 6265

A correct PSM means that both scoring functions assigned a given spectrum to a peptide derived from a UPS-protein, 
whereas an incorrect PSM means the spectrum was assigned to a peptide from a Pfu-protein. An uncertain PSM is a 
spectrum that was assigned to a UPS-protein by one scoring function and a Pfu-protein by the other scoring function. 
The columns show whether the PSM was matched either to the same peptide sequence or to a different peptide 
sequence
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91

4  �Evaluation of Scoring Functions That Match Between Acquired MS/MS 
Spectra

The data sets were searched with Mascot (version 2.4.1) against 
the database of yeast and UPS1–UPS2 standard proteins (7375 
protein sequences including 50 UPS1-UPS2 protein sequences). 
The database search was performed with the following settings: 
precursor tolerance of 10  ppm, fragment tolerance of 0.5  Da. 
Possible precursor charges were set to +2 and +3. The variable 
modifications selected were acetylation of the N-terminus, carb-
amidomethylation of cysteine, pyro-Glu formation of N-terminal 

4.1  Spectrum 
Identification: Mascot 
Search

Fig. 4 The effect of the peptide length on the calculated scores. The SEQUEST-like (a–b) and Andromeda-like 
scores (c–d) are shown on the left and the right side. The x-axis and the y-axis represent respectively the pep-
tide length and the score. The upper part shows the correct PSMs and the lower part shows the incorrect PSMs
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glutamine, pyro-Glu formation of N-terminal glutamate, oxidation 
of methionine, pyro-carbamidomethylation of N-term cysteine, 
and no fixed-modification. The enzyme specificity was trypsin and 
allowing for one missed cleavage. The separate decoy searches were 
also performed against the shuffled version of the database of yeast 
and UPS1-UPS2 standard proteins [54].

Mascot identified 359 PSMs on the UPS-data set and 3507 
PSMs on the yeast-UPS data set at PEP ≤ 0.05. Two-hundred and 
seventy four identified peptides were shared between the UPS-data 
set and the yeast-UPS data sets, and these were identified with the 
same modification and the same precursor charge.

The aim was to perform scoring calculations with different pro-
cessing settings in order to find UPS-matched MS/MS spectra 
(identified by Mascot) in the yeast-UPS data set. Therefore, the 
UPS-matched and the non-UPS-matched MS/MS spectra (both 
identified by Mascot) from the yeast-UPS data set were compared 
against the UPS-matched MS/MS spectra (identified by Mascot) 
from the UPS-data set. This comparison was calculated by  
four different scoring functions: Pearson’s coefficient correlation 
(Pearson’s r), Spearman’s coefficient correlation (Spearman’s rho), 
dot-product and mean squared error (MSE).

The initial step was preprocessing spectra and 11 different pro-
cessing steps were selected (Table 2). Intensities were normalized 
by either log2 or the square root transformation (the square root 

4.2  Comparison 
Design

Fig. 5 The effect of the precursor charge on the SEQUEST-like score (a) and the Andromeda-like score (b). 
Correct matches are shaded whereas incorrect matches are unshaded. The increase in the precursor-charge 
results in the construction of a noisy theoretical spectrum. Therefore, Andromeda-like scores are drastically 
affected compared to the SEQUEST-like scores
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transformation was used for SpectraST [15] and BiblioSpec [22]). 
Noise peaks were filtered into three options: selecting only the 
topN intense peaks, applying an adaptive noise filtering [55], and 
discarding peaks with intensities smaller than 5 % of the maximum 
intensity. Two values of TopN filtering, TopN = 50 and TopN = 100, 
were tested because BiblioSpec [22] showed that top50 and 
top100 performed the best. However, they decided on the top100 
intense peak option to enable to work with longer peptides. Lastly, 
a precursor peak was removed as either discarding peaks around 
the 10-u mass window or any relevant peaks (as explained on the 
processing step scoring against theoretical spectrum). After analyz-
ing the results from each setting, the effect of the processing step 
order was also confirmed by running the comparison by the combi
nation of the best-intensity-transformation and the best-noise- 
filtering.

The preprocessing step was followed by converting every spec-
trum into 1-u bins, starting from the minimum and the maximum 
m/z value in both data sets (min m/z = 86.05 was rounded down 
to 86, and max m/z = 1994.764 was rounded up to 1995). For 
every bin, the intensities within the bin were summed up. Every 
spectrum could now be scored against another one: Each spectrum 
in the yeast-UPS data set was matched within a 3-u precursor ion 
m/z window against the spectra in the UPS-data set. Selected 3-u 

Table 2 
The setting numbers with their associated processing step to perform the comparison against 
acquired spectra

Setting 
number Purpose Processing

Setting 1 No-processing None

Setting 2 Intensity normalization log2 intensity transformation

Setting 3 Intensity normalization Square root intensity transformation

Setting 4 Noise filtering Top50 intense peak

Setting 5 Noise filtering Top100 intense peak

Setting 6 Noise filtering Adaptive noise filtering

Setting 7 Noise filtering Low abundant peaks removal

Setting 8 Precursor peak removal 10-u mass window around precursor ion

Setting 9 Precursor peak removal Any relevant peaks to the precursor ion

Setting 10 Order of processing steps Square root transformation—adaptive noise filtering 
(ordering)

Setting 11 Order of processing steps Adaptive noise filtering—square root transformation 
(ordering)
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m/z window was in analogy with SpectraST [15] and BiblioSpec 
[22]. Only spectra with the same charge were scored against 
another because the different charge state may result in a different 
spectrum for the same peptide [56]. The best scored-spectrum pair 
was kept in the list.

This comparison design resulted in 466 UPS-matched and 
3026 non-UPS matched MS/MS spectra in the yeast-UPS data 
set, compared to against 359 UPS-matched MS/MS spectra in the 
UPS data set. The 466 UPS-matched MS/MS spectra resulted in 
406 comparisons and the 3026 non-UPS matched MS/MS spec-
tra resulted in 2359 comparisons, against 351 UPS-matched MS/
MS spectra (without any preprocessing step). The 91 UPS-matched 
MS/MS spectra against the yeast-UPS data set had an exact match 
to the UPS-data set, which therefore represent true hits. Randomly 
91 non-UPS-matched MS/MS spectra were selected from the 
yeast-UPS data set, which represent false hits. The scores of these 
two groups were compared for each scoring function at 11 differ-
ent processing steps (Table 2). For every score with each setting, 
the logistic regression model was built with the R package stats  
and was followed by a ROC curve analysis with the R package 
pROC [57].

The best performing score was firstly selected based on the distri-
butions of true and false hits (Fig. 6). Pearson’s r, Spearman’s rho, 
log10 (Dot-product) and log10 (Mean squared error) scores were 
therefore computed for the Setting = 1, in which no processing was 
applied. There is a clear separation between true and false hits only 
for the Pearson’s r (Fig. 6). In this setting, Pearson’s r correlates 
the best with Spearman’s rho but with a correlation value of only 
0.55; because these spectra were not processed, therefore the vari-
ety of the peak intensity values affects the ranking of Spearman’s 
rho calculation. The highest correlation between any of these 
paired scores was 0.8 for the log10 (Dot-product) against Spearman. 
As a side note, we did not include the normalized dot-product in 
our comparison, because the normalized dot-product behaves  
very similar to the Pearson’s r score. A normalized dot-product can 
therefore separate true hits from false hits, similar to Pearson’s r 
score; but as seen in Fig. 6, dot-product only, however, cannot be 
used for this purpose.

The ROC-curve analysis was further applied to select the best 
performing scores, the same results without processing (Fig. 7). 
Pearson’s r resulted in the highest AUC value (AUC = 0.9902), 
which shows that Pearson’s r is definitely able to distinguish true 
hits from false hits. The second-best performing score function is 
Spearman’s rho with AUC = 0.7727. This AUC value shows that 
Spearman performs only fair on spectra comparison. MSE was 
observed to perform the worst (AUC = 0.628) which indicates that 
this MSE scoring is a poor scoring function to compare spectra 
without any processing step.

4.3  Results
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The ROC-curve analysis was applied to select the best processing 
settings (Table 3). Pearson’s r performs rather robust across the 
different settings (always AUC ≥ 0.9). It is almost always the best 
performing scoring function except for one setting: top50 filtering 
in which case Spearman’s rho performs the best (AUC = 0.99). 
Applying a noise filtering improves Spearman’s rho scoring; with 
reaching at least 0.9708. On the other hand, none of the process-
ing steps resulted in a drastic performance improvement for dot-
product. AUC for dot-product is always smaller than 0.9, with 
AUC = 0.75 in average. In addition, MSE performs worse than any 

Fig. 6 The score distributions of the true (open circle in red) and false hits (open triangle in black) for Pearson’s 
r, Spearman’s rho, log10 (Dot-product) and log10 (MSE) from the top to the bottom. The upper panel shows the 
correlation values of each pairwise score; the diagonal shows the density distributions and the lower panel 
shows the scatter plots of each score (with R-package of car [58])
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Fig. 7 The ROC curves obtained from the calculation of each score function with-
out any processing (setting = 1). Pearson’s r (solid), Spearman’s rho (two dash), 
log10 (Dot-product) (dotted), and log10(MSE) (long dash) are shown, respectively. 
Pearson’s r performs much better than any other scoring function (Pearson’s r 
with AUC = 0.9902, the next best performed score of Spearman’s rho with 
AUC = 0.7727)

Table 3 
AUC value for every score according to the different process setting

Setting AUC (Pearson’s r ) AUC (Spearman’s rho) AUC (log10 (Dot)) AUC (log10(MSE))

Setting 1 0.99017 0.77272 0.7024 0.62801

Setting 2 0.93467 0.79503 0.63851 0.92133

Setting 3 0.9848 0.80848 0.74199 0.76128

Setting 4 0.98898 0.97873 0.7582 0.58639

Setting 5 0.98782 0.99002 0.72844 0.61166

Setting 6 0.99265 0.97084 0.79715 0.62017

Setting 7 0.98815 0.986 0.79857 0.51535

Setting 8 0.98408 0.76814 0.69942 0.63737

Setting 9 0.98539 0.79407 0.73289 0.59258

Setting 10 0.99508 0.99362 0.82926 0.80441

Setting 11 0.99082 0.97801 0.86607 0.75534
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other score: AUC = 0.675  in average. However, normalizing 
intensities into log2 scale significantly improved this scoring func-
tion (AUC = 0.9213). log2 intensity transformation decreases the 
magnitude of the intensities more than square root transformation, 
especially for high values: higher values are affected more com-
pared to small values at log2 transformation; and the resulting vari-
ety between the peak intensities is much less compared to either 
none or square-root intensity transformation. Lastly, the order of 
the processing steps was also investigated. Our limited exploration 
showed that the order matter on three scoring function except 
Pearson’s r, which still performed robust with no changes.

5  Conclusion

In this present review, we explain the scoring functions that match 
acquired spectra against either theoretical or another acquired 
spectra. In the first half, we compare against theoretical spectra. 
The most frequently used database search engine functions were 
implemented as much as possible with some adaptations and these 
were therefore named as SEQUEST-like and Andromeda-like scor-
ing functions. In the second half, we compare against previously 
acquired spectra by calculating Pearson’s r, Spearman’s rho, dot-
product and MSE with different settings.

SEQUEST-like and Andromeda-like scoring functions were 
able to separate true hits from false hits; even though these scoring 
functions use different computational approaches. Both scoring 
functions are able to find correct matches with assigning the same 
peptide sequences. Correct matches usually give much higher 
scores whereas incorrect matches give much lower scores. This 
illustrates that the combination of the results from different search 
engines allows the removal of incorrect hits. To achieve this, tools 
like PeptideShaker [59] and IProphet [60] are available. The fun-
damental differences between these scoring functions can, how-
ever, be seen in the light of comparison against a theoretical 
spectrum containing more peaks. The increased number of theo-
retical peaks has a more severe effect on the probabilistic scoring 
function (Andromeda-like), rather than on the non-probabilistic 
scoring function (SEQUEST-like). Especially the introduction of 
theoretical peaks with all possible charges (from one to the precur-
sor charge) increases the chance of matching to a wrong peak. To 
eliminate this issue, Andromeda [18] introduces singly, for always, 
and doubly charged theoretical peaks, in case of observing a pre-
cursor charge that is higher than one. Moreover, the peptide length 
also affects scoring functions. Therefore, MaxQuant [61] includes 
peptide-length for the false discovery rate calculation in peptide 
identification.
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In the comparison against previously acquired spectra, 
Pearson’s r was the most robust approach across the different pro-
cessing steps. Pearson’s r is therefore a good alternative to the 
commonly used normalized dot product. On the other hand, MSE 
is observed to be a poor scoring function; except one processing 
setting resulted in a significant improvement. Therefore it is not 
surprising that this scoring function is not commonly used to com-
pare spectra.

References

	 1.	Domon B, Aebersold R (2006) Mass spec-
trometry and protein analysis. Science 
312:212–217. doi:10.1126/science.1124619

	 2.	Aebersold R, Mann M (2003) Mass spectrom-
etry-based proteomics. Nature 422:198–207. 
doi:10.1038/nature01511

	 3.	Gevaert K, Van Damme P, Ghesquière B et al 
(2007) A la carte proteomics with an emphasis 
on gel-free techniques. Proteomics 7:2698–
2718. doi:10.1002/pmic.200700114

	 4.	Eidhammer I, Flikka K, Martens L, Mikalsen 
S-O (2007) Computational methods for mass 
spectrometry proteomics. John Wiley & Sons, 
Ltd, West Sussex

	 5.	Käll L, Vitek O (2011) Computational mass 
spectrometry-based proteomics. PLoS Comput 
Biol 7:e1002277. doi:10.1371/journal.pcbi. 
1002277

	 6.	Xu C, Ma B (2006) Software for computa-
tional peptide identification from MS-MS data. 
Drug Discov Today 11:595–600

	 7.	Lam H, Deutsch EW, Eddes JS et  al (2008) 
Building consensus spectral libraries for pep-
tide identification in proteomics. Nat Methods 
5:873–875. doi:10.1038/nmeth.1254

	 8.	Shao W, Zhu K, Lam H (2013) Refining simi-
larity scoring to enable decoy-free validation in 
spectral library searching. Proteomics 13: 
3273–3283. doi:10.1002/pmic.201300232

	 9.	Yen C-Y, Houel S, Ahn NG, Old WM (2011) 
Spectrum-to-spectrum searching using a 
proteome-wide spectral library. Mol Cell 
Proteomics 10:M111.007666. doi:10.1074/
mcp.M111.007666

	10.	Kim S, Pevzner P (2014) MS-GF+ makes 
progress towards a universal database search 
tool for proteomics. Nat Commun 5:5277. 
doi:10.1038/ncomms6277

	11.	Eng JK, Jahan T, Hoopmann MR (2013) 
Comet: an open-source MS/MS sequence 
database search tool. Proteomics 13:22–24. 
doi:10.1002/pmic.201200439

	12.	Eng JK, McCormack AL, Yates JR (1994) An 
approach to correlate tandem mass spectral 
data of peptides with amino acid sequences in a 
protein database. J  Am Soc Mass Spectrom 
5:976–989

	13.	Tabb DL, MacCoss MJ, Wu CC et al (2003) 
Similarity among tandem mass spectra from 
proteomic experiments: detection, significance, 
and utility. Anal Chem 75:2470–2477. 
doi:10.1021/ac026424o

	14.	Griss J, Foster JM, Hermjakob H, Vizcaíno JA 
(2013) PRIDE cluster: building a consensus  
of proteomics data. Nat Methods 10:95–96. 
doi:10.1038/nmeth.2343

	15.	Lam H, Deutsch EW, Eddes JS et  al (2007) 
Development and validation of a spectral 
library searching method for peptide identifica-
tion from MS/MS. Proteomics 7:655–667

	16.	Frank AM (2009) Predicting intensity ranks of 
peptide fragment ions. J  Proteome Res 
8:2226–2240. doi:10.1021/pr800677f

	17.	Li S, Arnold RJ, Tang H, Radivojac P (2011) 
On the accuracy and limits of peptide fragmen-
tation spectrum prediction. Anal Chem 
83:790–796. doi:10.1021/ac102272r

	18.	Cox J, Neuhauser N, Michalski A et al (2011) 
Andromeda: a peptide search engine integrated 
into the MaxQuant environment. J Proteome 
Res 10:1794–1805. doi:10.1021/pr101065j

	19.	Dorfer V, Pichler P, Stranzl T et al (2014) MS 
Amanda, a universal identification algorithm 
optimized for high accuracy tandem mass spec-
tra. J Proteome Res 13:3679–3684

	20.	Yates JR, Morgan SF, Gatlin CL et al (1998) 
Method to compare collision-induced dissocia-
tion spectra of peptides: potential for library 
searching and subtractive analysis. Anal Chem 
70:3557–3565. doi:10.1021/ac980122y

	21.	Craig R, Cortens JC, Fenyo D, Beavis RC 
(2006) Using annotated peptide mass spectrum 
libraries for protein identification. J Proteome 
Res 5:1843–1849. doi:10.1021/pr0602085

Şule Yilmaz et al.

http://dx.doi.org/10.1126/science.1124619
http://dx.doi.org/10.1038/nature01511
http://dx.doi.org/10.1002/pmic.200700114
http://dx.doi.org/10.1371/journal.pcbi.1002277
http://dx.doi.org/10.1371/journal.pcbi.1002277
http://dx.doi.org/10.1038/nmeth.1254
http://dx.doi.org/10.1002/pmic.201300232
http://dx.doi.org/10.1074/mcp.M111.007666
http://dx.doi.org/10.1074/mcp.M111.007666
http://dx.doi.org/10.1038/ncomms6277
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1021/ac026424o
http://dx.doi.org/10.1038/nmeth.2343
http://dx.doi.org/10.1021/pr800677f
http://dx.doi.org/10.1021/ac102272r
http://dx.doi.org/10.1021/pr101065j
http://dx.doi.org/10.1021/ac980122y
http://dx.doi.org/10.1021/pr0602085


99

	22.	Frewen BE, Merrihew GE, Wu CC et al (2006) 
Analysis of peptide MS/MS spectra from 
large-scale proteomics experiments using spec
trum libraries. Anal Chem 78:5678–5684. 
doi:10.1021/ac060279n

	23.	Vaudel M, Sickmann A, Martens L (2012) 
Current methods for global proteome identifi-
cation. Expert Rev Proteomics 9:519–532. 
doi:10.1586/epr.12.51

	24.	Steen H, Mann M (2004) The ABC’s (and 
XYZ’s) of peptide sequencing. Nat Rev 5:699–
711. doi:10.1038/nrm1468

	25.	Nesvizhskii A (2007) Protein identification by 
tandem mass spectrometry and sequence data-
base searching. Mass Spectr Data Anal Pro
teomics 367:87–119

	26.	Matthiesen R (2007) Methods, algorithms and 
tools in computational proteomics: a practical 
point of view. Proteomics 7:2815–2832. 
doi:10.1002/pmic.200700116

	27.	Eidhammer I, Flikka K, Martens L, Mikalsen 
S-O (2007) Spectral comparisons. Compu
tational methods for mass spectrometry pro-
teomics. John Wiley & Sons, Ltd., West Sussex, 
pp 159–178

	28.	Kapp E, Schütz F (2007) Overview of tandem 
mass spectrometry (MS/MS) database search 
algorithms. Curr Protoc Protein Sci 
25(2):1–19

	29.	Wenger CD, Coon JJ (2013) A proteomics 
search algorithm specifically designed for high-
resolution tandem mass spectra. J  Proteome 
Res 12:1377–1386

	30.	GPM The cRAP FASTA file. ftp://ftp.thegpm.
org/fasta/cRAP/. Accessed 13 Aug 2015

	31.	Eng JK, Fischer B, Grossmann J, Maccoss MJ 
(2008) A fast SEQUEST cross correlation 
algorithm. J  Proteome Res 7:4598–4602. 
doi:10.1021/pr800420s

	32.	Park CY, Klammer AA, Käll L et  al (2008) 
Rapid and accurate peptide identification from 
tandem mass spectra. J  Proteome Res 
7:3022–3027

	33.	Diament BJ, Noble WS (2011) Faster 
SEQUEST searching for peptide identification 
from tandem mass spectra. J  Proteome Res 
10:3871–3879. doi:10.1021/pr101196n

	34.	Perkins DN, Pappin DJC, Creasy DM, Cottrell 
JS (1999) Probability-based protein identifica-
tion by searching sequence databases using 
mass spectrometry data. Electrophoresis 20: 
3551–3567

	35.	Hu Y, Li Y, Lam H (2011) A semi-empirical 
approach for predicting unobserved peptide 
MS/MS spectra from spectral libraries. 
Proteomics 11:4702–4711. doi:10.1002/
pmic.201100316

	36.	Lam H (2011) Building and searching tandem 
mass spectral libraries for peptide identifica-
tion. Mol Cell Proteomics 10:R111.008565

	37.	Flikka K, Meukens J, Helsens K et  al (2007) 
Implementation and application of a versatile 
clustering tool for tandem mass spectrometry 
data. Proteomics 7:3245–3258. doi:10.1002/
pmic.200700160

	38.	Beer I, Barnea E, Ziv T, Admon A (2004) 
Improving large-scale proteomics by clustering 
of mass spectrometry data. Proteomics 4:950–
960. doi:10.1002/pmic.200300652

	39.	Tabb DL, Thompson MR, Khalsa-Moyers G 
et  al (2005) MS2Grouper: group assessment 
and synthetic replacement of duplicate pro-
teomic tandem mass spectra. J  Am Soc Mass 
Spectrom 16:1250–1261. doi:10.1016/j.
jasms.2005.04.010

	40.	Wan KX, Vidavsky I, Gross ML (2002) 
Comparing similar spectra: from similarity 
index to spectral contrast angle. J Am Soc Mass 
Spectrom 13:85–88. doi:10.1016/S1044- 
0305(01)00327-0

	41.	Stein SE, Scott DR (1994) Optimization and 
testing of mass spectral library search algo-
rithms for compound identification. J Am Soc 
Mass Spectrom 5:859–866. doi:10.1016/ 
1044-0305(94)87009-8

	42.	Degroeve S, Maddelein D, Martens L (2015) 
MS2PIP prediction server: compute and visu-
alize MS2 peak intensity predictions for CID 
and HCD fragmentation. Nucleic Acids Res 
43:W326–W330. doi:10.1093/nar/gkv542

	43.	Degroeve S, Martens L (2013) MS2PIP: a tool 
for MS/MS peak intensity prediction. 
Bioinformatics. doi:10.1093/bioinformatics/
btt544

	44.	Rosner B (2010) Regression and correlation 
methods., Fundamentals of Biostatistics

	45.	Eidhammer I, Barsnes H, Eide GE, Martens L 
(2013) Appendix A: statistics. Computational 
and statistical methods for protein quantifica-
tion by mass spectrometry. John Wiley & Sons, 
Ltd, West Sussex

	46.	Paulovich AG, Billheimer D, Ham A-JL et al 
(2010) Interlaboratory study characterizing a 
yeast performance standard for benchmarking 
LC-MS platform performance. Mol Cell 
Proteomics 9:242–254. doi:10.1074/mcp.
M900222-MCP200

	47.	Barsnes H, Vaudel M, Colaert N et al (2011) 
compomics-utilities: an open-source Java 
library for computational proteomics. BMC 
Bioinform 12:70. doi:10.1186/1471- 
2105-12-70

	48.	Vaudel M, Burkhart JM, Breiter D et al (2012) 
A complex standard for protein identification, 

Spectrum Similarity Calculation

http://dx.doi.org/10.1021/ac060279n
http://dx.doi.org/10.1586/epr.12.51
http://dx.doi.org/10.1038/nrm1468
http://dx.doi.org/10.1002/pmic.200700116
ftp://ftp.thegpm.org/fasta/cRAP/
ftp://ftp.thegpm.org/fasta/cRAP/
http://dx.doi.org/10.1021/pr800420s
http://dx.doi.org/10.1021/pr101196n
http://dx.doi.org/10.1002/pmic.201100316
http://dx.doi.org/10.1002/pmic.201100316
http://dx.doi.org/10.1002/pmic.200700160
http://dx.doi.org/10.1002/pmic.200700160
http://dx.doi.org/10.1002/pmic.200300652
http://dx.doi.org/10.1016/j.jasms.2005.04.010
http://dx.doi.org/10.1016/j.jasms.2005.04.010
http://dx.doi.org/10.1016/S1044-0305(01)00327-0
http://dx.doi.org/10.1016/S1044-0305(01)00327-0
http://dx.doi.org/10.1016/1044-0305(94)87009-8
http://dx.doi.org/10.1016/1044-0305(94)87009-8
http://dx.doi.org/10.1093/nar/gkv542
http://dx.doi.org/10.1093/bioinformatics/btt544
http://dx.doi.org/10.1093/bioinformatics/btt544
http://dx.doi.org/10.1074/mcp.M900222-MCP200
http://dx.doi.org/10.1074/mcp.M900222-MCP200
http://dx.doi.org/10.1186/1471-2105-12-70
http://dx.doi.org/10.1186/1471-2105-12-70


100

designed by evolution. J  Proteome Res 11: 
5065–5071. doi:10.1021/pr300055q

	49.	The Uniprot Consortium (2015) UniProt: a 
hub for protein information. Nucleic Acids Res 
43:D204–D212. doi:10.1093/nar/gku989

	50.	Sigma-Aldrich The UPS FASTA File. http://
www.sigmaaldrich.com/content/dam/sigma-
aldrich/life-science/proteomics-and-protein/
ups1-ups2-sequences.fasta. Accessed 13 Aug 
2015

	51.	Martens L, Vandekerckhove J, Gevaert K 
(2005) DBToolkit: processing protein 
databases for peptide-centric proteomics. 
Bioinformatics 21:3584–3585. doi:10.1093/
bioinformatics/bti588

	52.	Parker CE, Mocanu V, Mocanu M et al (2010) 
Mass spectrometry for post-translational modi-
fications. Neuroproteomics 2010:PMID: 
21882444

	53.	Allmer J  (2010) Existing bioinformatics  
tools for the quantitation of post-translational 
modifications. Amino Acids. doi:10.1007/
s00726-010-0614-3

	54.	Gonnelli G, Stock M, Verwaeren J et al (2015) 
A decoy-free approach to the identification of 
peptides. J  Proteome Res 14:1792–1798. 
doi:10.1021/pr501164r

	55.	Hulstaert N, Reisinger F, Rameseder J  et  al 
(2013) Pride-asap: automatic fragment ion 

annotation of identified PRIDE spectra. 
J  Proteomics 95:89–92. doi:10.1016/j.jprot. 
2013.04.011

	56.	Liu J, Bell AW, Bergeron JJM et  al (2007) 
Methods for peptide identification by spectral 
comparison. Proteome Sci 5:3. doi:10.1186/ 
1477-5956-5-3

	57.	Robin X, Turck N, Hainard A et  al (2011) 
pROC: an open-source package for R and  
S+ to analyze and compare ROC curves.  
BMC Bioinform 12:77. doi:10.1186/1471- 
2105-12-77

	58.	Fox J, Weisberg S (2011) An R companion to 
applied regression, 2nd edn. Sage, Thousand 
Oaks, CA

	59.	Vaudel M, Burkhart JM, Zahedi RP et  al 
(2015) PeptideShaker enables reanalysis of 
MS-derived proteomics data sets. Nat Bio
technol 33:22–24. doi:10.1038/nbt.3109

	60.	Shteynberg D, Nesvizhskii I, Moritz RL, 
Deutsch EW (2013) Combining results of 
multiple search engines in proteomics. Mol 
Cell Proteomics 12:2383–2393. doi:10.1074/
mcp.R113.027797

	61.	Cox J, Mann M (2008) MaxQuant enables 
high peptide identification rates, individualized 
p.p.b.-range mass accuracies and proteome-
wide protein quantification. Nat Biotechnol 
26:1367–1372. doi:10.1038/nbt.1511

Şule Yilmaz et al.

http://dx.doi.org/10.1021/pr300055q
http://dx.doi.org/10.1093/nar/gku989
http://www.sigmaaldrich.com/content/dam/sigma-aldrich/life-science/proteomics-and-protein/ups1-ups2-sequences.fasta
http://www.sigmaaldrich.com/content/dam/sigma-aldrich/life-science/proteomics-and-protein/ups1-ups2-sequences.fasta
http://www.sigmaaldrich.com/content/dam/sigma-aldrich/life-science/proteomics-and-protein/ups1-ups2-sequences.fasta
http://www.sigmaaldrich.com/content/dam/sigma-aldrich/life-science/proteomics-and-protein/ups1-ups2-sequences.fasta
http://dx.doi.org/10.1093/bioinformatics/bti588
http://dx.doi.org/10.1093/bioinformatics/bti588
http://dx.doi.org/10.1007/s00726-010-0614-3
http://dx.doi.org/10.1007/s00726-010-0614-3
http://dx.doi.org/10.1021/pr501164r
http://dx.doi.org/10.1016/j.jprot.2013.04.011
http://dx.doi.org/10.1016/j.jprot.2013.04.011
http://dx.doi.org/10.1186/1477-5956-5-3
http://dx.doi.org/10.1186/1477-5956-5-3
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1038/nbt.3109
http://dx.doi.org/10.1074/mcp.R113.027797
http://dx.doi.org/10.1074/mcp.R113.027797
http://dx.doi.org/10.1038/nbt.1511


101

Shivakumar Keerthikumar and Suresh Mathivanan (eds.), Proteome Bioinformatics, Methods in Molecular Biology,
vol. 1549, DOI 10.1007/978-1-4939-6740-7_8, © Springer Science+Business Media LLC 2017

Chapter 8

Proteotypic Peptides and Their Applications

Shivakumar Keerthikumar and Suresh Mathivanan

Abstract

Recent advances in mass spectrometry based proteomic techniques and publicly available large proteomic 
repositories are being exploited to characterize the proteome of multiple organisms. While humongous 
amount of proteomic data is being acquired and analyzed, many biological questions still remain unan-
swered. Proteotypic peptides which uniquely represent target proteins or a protein isoform are used as an 
alternative strategy for protein identification in the field of immunological methods and targeted proteomic 
techniques. Using different computational approaches, resources and techniques used in the identification 
of proteotypic peptides of target proteins is discussed here.

Key words Targeted proteomics, Selected reaction monitoring, Biomarkers, Databases, Bioinformatics

1  Introduction

Using different strategies, peptide sequences are matched to 
tandem mass spectrometry-derived spectra but most of these meth-
ods are time consuming due to the large size of the background 
databases. Besides, detection and quantification of some biomole-
cules are often below the detection limits of shotgun mass spec-
trometry based proteomics. As a result, targeted proteomic 
techniques are largely gaining importance mainly in the field of 
biomarker validation in blood plasma [1–5]. One such approach is 
selected reaction monitoring (SRM) also known as multiple reac-
tion monitoring (MRM) in which proteomic experiment is per-
formed by selectively monitoring the peptides of protein sequences 
with known m/z values (precursor ions) fragmenting through col-
lision induced dissociation and monitoring specific preselected 
daughter/fragment ions (product ions). Such peptides that uni
quely represent targeted proteins or protein isoform are known as 
proteotypic peptides [1, 6, 7]. Identifications of proteotypic pep-
tides clearly represent the presence of that protein in the sample 
under investigation and this would further improve the speed  
and accuracy of protein identifications. Over the last decade, 
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proteotypic peptides in mass spectrometry based protein 
quantification are used as an alternative strategy to antibody-based 
detection methods. Unavailability of specific antibodies, single 
analyte testing, and the lack of epitope specificity are known to be 
the main disadvantages of immunological methods which can be 
avoided by using proteotypic peptides of target proteins in high 
throughput analysis [1, 8, 9]. Due to high importance of these 
proteotypic peptides in the field of clinical proteomics many 
resources and bioinformatics tools have been developed to predict 
and store proteotypic peptides to further aid the proteomics 
research community.

Here, we review the targeted proteomics techniques employed 
using these proteotypic peptides, proteomics repositories, compu-
tational tools and algorithms developed for dissemination and 
identification of proteotypic peptides in the field of proteomics 
research.

2  Targeted Proteomics

Identification of low abundant proteins of interest still remains a 
major drawback in proteomics analysis. As a result targeted bio-
logical questions remains unanswered in spite of acquiring several 
magnitudes of data and its analyses. Emerging targeted proteomics 
approach seems to be the major solution to obtain quantitative 
information about the targeted proteins of interest [10]. The tech-
niques and computational approaches used in the targeted pro-
teomics are discussed below.

Selected reaction monitoring (SRM) also known as multiple reac-
tion monitoring (MRM) is a targeted technique emerging in the 
field of proteomics as complement to untargeted shotgun approach. 
SRM utilizes unique capabilities of triple quadruple (QQQ) mass 
spectrometers to act as mass filters to selectively monitor a specific 
analyte molecular ion and one or several fragment ions generated 
from the analyte by fragmentation methods. Combination of such 
precursor–fragment ion pairs, termed SRM transitions, can be 
sequentially and repeatedly measured at a periodicity that is fast 
compared to the analyte’s elution, yielding chromatographic peaks 
for each transition that allow for the concurrent quantification of 
multiple analytes [7, 11–14].

The selection of target proteins and peptides list is one of the major 
prerequisite of targeted proteomics workflow. The target protein 
selection entirely depends on the specific biological question that 
needs to be answered. Besides, identifying proteotypic peptides 
that uniquely represent target proteins is one of the main chal-
lenges of targeted proteomics. Proteotypic peptides with lengths of 

2.1  Selected 
Reaction Monitoring

2.2  Identification 
of Proteotypic 
Peptides
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~7–23 amino acids, analyzed by triple quadruple in multiple reaction 
monitoring are usually selected in the targeted proteomics [8]. In 
general, many physicochemical properties of the peptides are con-
sidered for predicting the proteotypic peptides of high signal 
response. Besides, short hydrophilic and long hydrophobic pep-
tides are avoided, whereas fully tryptic peptides with an average 
length of ~10 amino acids, devoid of residues prone to artifactual 
or posttranslational modifications are targeted [7].

Currently, there are few computational online resources such 
as Global Proteome Machine Database (GPMDB), PeptideAtlas 
and PRIDE available for the identification of proteotypic peptides 
for targeted proteins. These proteomic resources are continuously 
being used further to develop algorithms and bioinformatics tools 
for the prediction of proteotypic peptides.

With the massive increase in the application of mass spectrometry 
based proteomics research new mass spectrometers are being int
roduced into the proteomics field rapidly which generates hum
ongous amount of tandem mass spectrometry (MS/MS) based 
proteomics data. Initiative from the proteomics community to col-
late these proteomics data generated from different experimental 
strategies using different mass spectrometer instruments resulted 
in many proteomics repositories for storage and dissemination of 
proteomics data to aid proteomics research community. To nor-
malize the data generated from different experimental research 
groups majority of these repositories have developed in-house pro-
teomics pipelines for the identification of significant peptides and 
proteins. The most commonly used proteomics repositories which 
can be exploited further to generate proteotypic peptides of target 
proteins are discussed below.

The Global Proteome Machine Database (http://www.thegpm.
org/) is an open source mass spectrometry based proteomic repos-
itory, publicly available for the scientific community developed by 
Beavis informatics. The GPMDB periodically checks all the public 
proteomic repositories, downloads and reanalyzes the proteomic 
data using X! Tandem search engine. The resultant peptide and 
protein list after passing through the stringent automated quality 
test are stored into the backend database along with relevant meta-
data. Further, the results can be either viewed in the GPM website 
or downloaded through ftp or other interfaces. Besides, the users 
can also submit their spectra files in different formats such as .mgf, 
mzXML, pkl, mzData, dta, and common (for only big and com-
pressed files) to GPM via ‘Search Data’ option available in the 
website. The most frequently checked public repositories for the 
suitable new proteomic data for reanalysis includes Proteome 
Xchange/PRIDE, PeptideAtlas/PASSEL, MassIVE (http://
www.massive.ucsd.edu/), Proteomics DB, The Chorus Project 
(http://chorusproject.org/), and iProX (http://www.iprox.org/).

2.2.1  Computational 
Proteomic Resources 
for the Identification 
of Proteotypic Peptides

Global Proteome Machine 
Database (GPMDB)
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Recently, at the time of writing this chapter, the GPMDB 
released an updated version of the GPM Personal Edition-Fury to 
replace the old venerable Cyclone version and upgraded to the lat-
est version of X! Tandem (Version 2015.12.15, Vengeance) which 
features speedy PTMs assignments. In addition, the human and 
mouse protein identification information in GPMDB has been 
summarized into a collection of spreadsheets known as GPMDB 
Guide to Human Proteome (GHP) and GPMDB Guide to Mouse 
Proteome (GMP) respectively. This guide contains information 
organized into separate spreadsheets for each chromosome as well 
as mitochondrial DNA and made available for download at ftp://
ftp.thegpm.org/projects/annotation/human_protein_guide/ 
and ftp://ftp.thegpm.org/projects/annotation/proteome_pro-
tein_guide/. The GPMDB also hosts spectral search engine called 
X! Hunter (http://xhunter.thegpm.org/) and proteotypic profiler 
called X! P3 (http://p3.thegpm.org/) for the analysis of pro-
teomics data. The X! P3 (Proteotypic Peptide Profiler) is known to 
be the first publicly available search engine for proteotypic peptide 
profiling built using the X! Tandem refinement idea and the open 
source X! Tandem code. In order to find the best peptides that 
uniquely represents target proteins, the X! P3 utilizes proteomics 
data stored in the GPMDB [15].

The PeptideAtlas (http://www.peptideatlas.org/) database is 
another freely available mass spectrometry derived proteomic data 
repository developed at Institute of Systems Biology, Seattle, 
USA. The PeptideAtlas accepts only spectra files either in the form 
of RAW, mzML or mzXML format and limited metadata. Once 
submitted, the raw spectra files are processed using standardized 
data processing pipeline known as Trans Proteomics Pipeline 
(TPP) [16] and stored in the SBEAMS (Systems Biology Exp
eriment Analysis Management System)-Proteomics module. Fur
ther, the identified highly significant scoring peptide sequences are 
mapped to their respective genome sequence representing species/
sample specific build [17, 18]. Currently, the PeptideAtlas has 19 
organism specific build which includes many model organisms 
such as human, yeast, C. elegans, mouse, Drosophila, rat, horse, 
and zebrafish, for important sample groups such as plasma, brain 
liver, lung, colon cancer, heart, kidney, and urine.

The PeptideAtlas, similar to the PRIDE archive system, one of 
the founding members of PX consortium implements standardiza-
tion of the mass spectrometry proteomics data and automate the 
sharing of proteomic data across different repositories. Another 
important feature of the PeptideAtlas is investigation of proteo-
typic peptides. Currently, users can search proteotypic peptides 
from three different organisms such as human, mouse, and yeast. 
Identification of such high scoring peptides would further serve as 
most possible targets for Selected Reaction Monitoring (SRM) 

PeptideAtlas
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approach [19]. The PeptideAtlas SRM Experiment Library (PASSEL) 
is a component of the PeptideAtlas project that is designed to 
enable submission, dissemination, and reuse of SRM experimental 
results from analysis of biological samples. The raw data submitted 
via PASSEL are automatically processed and stored into the 
database which can be further downloaded or accessed via web 
interface [20].

Further, the distinct peptides and its associated proteins identi-
fied from the users submitted raw data files using TPP tool can be 
further depicted graphically in Cytoscape [21] plugin implemented 
in the PeptideAtlas. Overall, the PeptideAtlas depicts the normal-
ized outlook of the user submitted data which further aid in 
genome annotation of different organisms using mass spectrome-
try derived proteomic data.

While many proteomics repositories were developed for the stor-
age and dissemination of mass spectrometry based proteomics 
data, many proteomics tools and algorithms were developed to 
exploit these repositories for the prediction and identification of 
proteotypic peptides. Characteristic physicochemical properties [22] 
of these peptides were largely taken into account to distinguish 
proteotypic peptides from other peptides. Around 500 physico-
chemical properties including charge, hydrophobicity, and second-
ary structure propensity used to discriminate proteotypic peptides 
from other peptides. Using this approach, >16,000 proteotypic 
peptides were identified for >4000 distinct yeast proteins. Pep
tideSieve is one such tool for the prediction of proteotypic peptides 
based mainly on the physicochemical propensity of the target pep-
tides. PeptideSieve is available both as command line tool and as 
GUI windows version. The input can be either in the form of pro-
tein sequences in the FASTA file or TXT file of peptide sequences. 
The program first known to perform in silico digestion of proteins 
into peptides and based on its physicochemical properties com-
putes likelihood function distinguishing proteins peptides to be 
proteotypic or not from rest of the peptides. The PeptideSieve 
tools can be downloaded and installed from the sashimi project  
at sourceforge (https://sourceforge.net/projects/sashimi/files/
peptideSieve/). Further, these physicochemical properties were 
used in the development of algorithm for the prediction of proteo-
typic peptides using machine learning approaches [23, 24].

3  Discussion

The characterization of entire proteome, unlike genome, is very chal-
lenging due to dynamic nature of the proteome which rapidly changes 
due to change in the physiological state of the cells and its surround-
ing microenvironment. As a result, no complete characterization of 

2.2.2  Computational 
Predictions 
and Identification 
of Proteotypic Peptides
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proteome is available to date in spite of many recent advances in the 
mass spectrometry instruments which generates and identifies thou-
sands of proteins from the complex mixture of protein samples. The 
cost and time involved in synthesizing thousands of candidates  
of clinical importance can be drastically reduced by specific set of 
peptides which uniquely represent target proteins. The proteomic 
repositories and computational proteomic tools have major role in 
identification of proteotypic peptides of target proteins. Further, 
these public proteomic repositories serve as important resource for 
creating proteotypic peptide libraries which can be used for the iden-
tification of proteins from tandem mass spectra to aid proteomics 
research community.
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Chapter 9

Statistical Evaluation of Labeled Comparative Profiling 
Proteomics Experiments Using Permutation Test

Hien D. Nguyen, Geoffrey J. McLachlan, and Michelle M. Hill

Abstract

Comparative profiling proteomics experiments are important tools in biological research. In such experiments, 
tens to hundreds of thousands of peptides are measured simultaneously, with the goal of inferring protein 
abundance levels. Statistical evaluation of these datasets are required to determine proteins that are dif-
ferentially abundant between the test samples. Previously we have reported the non-normal distribution of 
SILAC datasets, and demonstrated the permutation test to be a superior method for the statistical evalua-
tion of non-normal peptide ratios. This chapter outlines the steps and the R scripts that can be used for 
performing permutation analysis with false discovery rate control via the Benjamini–Yekutieli method.

Key words Comparative profiling, Simultaneous testing, SILAC, Hypothesis test, Permutation test, 
False discovery rate

1  Introduction

The comparative profiling (shotgun) proteomics (CPP) experiment 
is now a staple research tool regularly employed to reveal differen-
tially abundant proteins in biological samples. In such experiments, 
data-dependent acquisition on the mass spectrometer is performed 
for simultaneous protein identification and quantitation. Relative 
peptide quantitation is derived based on label free [1], or labeling 
approaches including SILAC (stable isotope labeling by amino 
acids in cell culture) [2], iTRAQ (isobaric tags for relative and 
absolute quantitation) [3], ICAT (isotope-code affinity tags) [4], 
and TMT (tandem mass tags) [5]. Although the method described 
herein is applicable to all the labeled techniques, we illustrate our 
methodology via the SILAC experimental setting.

In a typical two-plex SILAC experiment, cellular samples were 
labeled with “light” and “heavy” isotopes via feeding the cells or 
organisms with amino acids that contain the required isotopes. 
Lysates or subcellular fractions are then prepared and combined, 
usually based on equal protein content. The target cellular proteome 
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is isolated, digested with trypsin, and the peptides are then analyzed 
via tandem mass spectrometry (MS/MS). Due to the predictability 
of the mass shift between the peptides that are labeled as “light” or 
“heavy,” it is possible to distinguish such labels from survey mass 
spectra. This allows for the calculation of relative intensity ratios. 
Here, a peptide ratio equal to one would indicate no difference 
between the labeled populations, while a ratio that is different from 
one would indicate an upregulation or downregulation of the quan-
tified peptide.

Using fragments of parent ions (from the MS/MS spectra), it 
is also possible match the quantified peptides to protein sequences, 
and conduct inference regarding protein abundances via averaging 
over the matched peptides. Peptide-to-protein matching is gener-
ally performed by specialist software; see Lau et al. [6] and Rigbolt 
and Blagoev [7] for details. We refer to Mann [8] for a comprehen-
sive treatment of the applications of SILAC experiments. In this 
chapter, we are concerned with the statistical assessment of the 
relative abundance quantitation data.

CPP experiments often infer the abundance ratios of thou-
sands of proteins from tens of thousands of peptide ratios. It is 
important to process these ratios in a coherent and statistically 
valid manner. Quantitative experiments including SILAC often 
rely on fold-change cutoffs for selection of significantly altered 
proteins. The selection of fold-change cut-offs is often arbitrary, 
experiment-dependent, and do not account for the variability or 
distribution of the ratios. For example, depending on the experi-
ment, thresholds between 1.3 [8] and 6 [2] have been suggested 
in the literature. A more nuanced and statistically valid approach is 
to assess the significance of peptide and protein ratios via hypoth-
esis tests, such as t-tests, z-tests, and Wilcoxon signed-rank tests. 
There are several potential pitfalls in applying such methodologies 
to the assessment of peptide ratios, including incorrect assump-
tions and deficiencies in power [9]. In comparison, a permutation 
test-based approach, which does not make assumptions on the 
normality or independence of the observed data was benchmarked 
against the existing methodology, and found to be more powerful 
and robust [9]. To facilitate application of the permutation test in 
quantitative proteomics experiments, we implemented a free web-
based tool which allows user-selected parameters [10]. In this 
chapter, we provide instructions and the R script to enable research-
ers the flexibility to customize the analysis.

Aside from the assessment of significance of individual protein 
ratios, the large-scale and simultaneous nature of CPP necessitates 
the mitigation against false-positive results. Here, we provide an 
implementation FDR control algorithm of Benjamini and Yekutieli 
[11], via an R script. The FDR control methodology is the same as 
that which is used in the online QPPC tool of Chen et al. [10].

Hien D. Nguyen et al.
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2  Materials

	 1.	Software tools: A spreadsheet software such as Excel (Microsoft) 
is required to manipulate the raw data. The R statistical com-
puting environment is used to perform all statistical compu
tations. It is available free at https://cran.r-project.org or 
https://www.rstudio.com (see Note 1).

	 2.	Data: The starting data for a permutation-test based quantifi-
cation of data resulting from a CPP experiment is a peptide 
summary report that records a peptide ratio in each row of  
the data, as well as the protein accession to which that peptide 
assigned. Such reports may be generated from various software 
packages for mass spectrometry data analysis, for example, 
‘peptide summary export’ from Spectrum Mill. All biological 
replicates should be combined into a single file, either during 
the export, or within Excel (see Note 2).

3  Methods

In this Chapter, a publically available data set, from Chen et  al. 
[10] will be used to illustrate the permutation test using R script 
(Fig.  1). This sample dataset can be downloaded from http://
qppc.di.uq.edu.au/docs/Sample_dataset.csv.

Prior to permutation testing, the data file must be converted to 
the required format with specific headings as exemplified in Fig. 2. 
The file should be in the .csv (comma-separated values) format. 
The raw data is required to have at least two columns; the first 

Fig. 1 Screenshot of an Excel spreadsheet containing the column headers of the sample raw data file that is 
obtained from http://qppc.di.uq.edu.au/docs/Sample_dataset.csv

Permutation Test for Labelled Proteomics
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column should contain an ‘accession number’. This column 
indicates the protein to which the peptide on each row is matched. 
The second column required column is a numerical value that indi-
cates the peptide ratio. The script will retain additional columns, 
for example, the same dataset contains an ‘entry name’ column 
(Figs. 1 and 2).

The main component of this chapter is an R script that con-
ducts the permutation test and performs FDR control. The R 
script performs the following steps:

	 1.	Get the unique proteins identified in the dataset.
	 2.	Exclude the single observation proteins.
	 3.	Compute the average log-ratio for each unique protein.
	 4.	Perform N permutations for each unique protein.
	 5.	Compute permutation p-values for each unique protein.
	 6.	Control FDR at an appropriate, user-specified level.
	 7.	Write a .csv file that contains the p-values.

	 1.	Open the raw data file in Excel.
	 2.	Rename the ‘accession number’ column of the raw data to pro-

tein, the ratio column of interest to ratio (see Note 3).
	 3.	Manual validation of the data quality should be performed, 

including the removal of rows if there are any negative, zero, 
or character strings (see Note 4). Known contaminant proteins 
based on biological knowledge of the experiment can also be 
removed, for example, albumin (see Note 5).

	 4.	Save the document in .csv format, in a directory, which will be 
the working directory for R.

3.1  Data 
Preprocessing

Fig. 2 Processed sample data showing the required column headers. The data is sorted by entry_name to 
enable quality inspection

Hien D. Nguyen et al.
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	 1.	If required, install R Studio (see Note 1).
	 2.	Set the working directory to the desired folder that contains 

the files and data that are required for the analysis. This can be 
done by selecting Session -> Set Working Directory -> Choose 
Directory …, and select the desired directory.

	 3.	Open a new script by selecting File -> New File -> R Script, or 
using the +document icon, or Ctrl+Shift+N on a Windows 
system.

	 4.	Copy the script below to the file. Due to the difference in cod-
ing for quotation marks between Word and R, it is necessary to 
retype the ‘ ’ and “ “ symbols within R after copy-pasting. Also 
refer to Notes 6–10.

# ----------------------------------------------------------
# R script for permutation test
# ----------------------------------------------------------
# Inputs:
# Number of permutation samples.
N = 1000
# False Discovery Control Rate.
control = 0.10
# Location of CSV file that contains the raw data.
# CSV file must contain at least protein and ratio cols.
loc = “https://www.dropbox.com/s/7i2b1nu618dzu7s/MIMB_SM_NMH_2015.
csv?dl=1”
# Read the CSV file and store as a data frame.
data = read.csv(loc)
# Get the unique proteins that are identified in the data.
unique.proteins = unique(data$protein)
# Remove proteins with only one observation
no.one.proteins = as.factor(c())
for (j in 1:length(unique.proteins)) {
if (length(which(data$protein==unique.proteins[j]))>1) {

no.one.proteins = c(no.one.proteins,j)
}

}
unique.proteins = unique.proteins[no.one.proteins]
# Compute the average log-ratio for each unique protein.
log.ratios = c()
data$ratio = as.numeric(as.character(data$ratio))
for (j in 1:length(unique.proteins)) {

log.ratios[j] = mean(log(data$ratio[
which(data$protein==unique.proteins[j])]))

}
# Compute permutation p-value for each unique protein.
p.values = c()
for (j in 1:length(unique.proteins)) {
## Get number of peptides that are matched to protein j.
number = length(which(data$protein==unique.proteins[j]))

3.2  Permutation  
Test and FDR Control 
Using R

Permutation Test for Labelled Proteomics
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## Make a variable to store r_tilde_k values.
r.tilde = c()
## Perform permutations.
for (k in 1:N) {
## Obtain a random permutation sample.
perm.sample = sample(data$ratio,number,replace=T)
## Compute the permutation sample average log-ratio.
r.tilde[k] = mean(log(perm.sample))

}
## Compute p-value from the permutation samples.
p.values[j] = (sum(abs(r.tilde)>abs(log.ratios[j]))+1)/
(N+1)

}
# Compute averate ratios.
av.ratios = exp(log.ratios)
# Perform FDR control at the specified 'control' level.
fdr = as.numeric(p.adjust(p.values,method='BY') < control)
# Write a CSV file that contains the p-values.
csv.file = as.data.frame(cbind(as.character(
unique.proteins),log.ratios,av.ratios,p.values,fdr))

colnames(csv.file) = c('protein','av.log.ratio','av.ratio',
'p.value','fdr.significant')

write.csv(csv.file,file='output.csv',row.names=F)

	 1.	Save the script as “permutation_test.R”.
	 2.	The script contains three user inputs: the number of permuta-

tions N, the location of the .csv preprocessed raw data file loc, 
and the FDR control level. Note 7 provides advice regarding 
the setting of N, for the setting of loc and control (see Notes 6 
and 8, respectively).

	 3.	In the Console window, type the command source (‘permuta-
tion_test.R’) to execute the permutation test script. Note that 
internet connection is necessary to retrieve the online docu-
ment as specified in the script.

	 4.	The output results of the R script are in the .csv file output.csv. 
See Note 9 regarding the interpretation of columns.

	 5.	For reference, the first ten entries of the output file from the 
sample data is shown in Table 1.

4  Notes

	 1.	The R statistical environment is available for all three major 
operating systems (i.e., Mac, Linux, and Windows). Although 
comprehensive and powerful, the standard R environment is bare 
and may be an unappealing work environment for new users.  
We recommend the RStudio environment for a more user-friendly 
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experience. The RStudio software is available for all three major 
operating systems and can be downloaded from https://www.
rstudio.com.

	 2.	In general, CPP experiments employ biological replication 
rather than technical replication. It is not recommended to 
combine biological and technical replicates.

	 3.	In the outputs of a typical two-plex SILAC experiment, there 
is only one ratio column, either labeled L/H or H/L.  In a 
multiplex (e.g., three-plex) experiment, one is required to 
identify which of the ratios is of current interest. For example, 
it is common to have the ratios labeled as L/H, L/M, and 
M/H (here M stands for medium). For each permutation 
analysis, select the ratio of interest, out of the three, and change 
it to ratio.

	 4.	In Excel, a simple method for exclusion of non-positive-
numeric values is to use the sort tool on the ratio column of 
the raw data. If the data is sorted ‘A to Z’, then the rows that 
contain negative or zero ratios should appear at the top of the 
table. Rows that contain character-string values should appear 
at the bottom of the table. Both of these sets of rows can be 
deleted from the raw data table, before further processing.

	 5.	A small number of contaminants is unlikely to impact the esti-
mation of permutation ratios. However, if a large number of 
keratins are evident, it would be prudent to evaluate p-values 
with and without removal of the potential contaminants.

Table 1 
Permutation test results for the first ten proteins (in alphabetical order by UniProt accession),  
from the preprocessed sample data that is available from  
http://tinyurl.com/hiendnguyen-MIMB-SM-NMH-2015

Protein av.log.ratio av.ratio p-Value fdr.significant

O75477 −0.198433735 0.820014107 0.450549451 0

O75695 0.493099779 1.637383889 0.12987013 0

O75955 0.613125124 1.846191971 0.000999001 1

O94905 0.252036067 1.286642441 0.290709291 0

P00387 −0.11016517 0.895686183 0.7002997 0

P04156 −0.091557763 0.912508606 0.769230769 0

P04216 −0.187514028 0.829017489 0.427572428 0

P04406 0.528803331 1.696900465 0.071928072 0

P04899 0.058877585 1.060645394 0.89010989 0

Permutation Test for Labelled Proteomics
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	 6.	When reading the script, it is important to note that the symbol 
# denotes comments, in the R language. These lines are not 
parse as executable script but rather informs the programmer/
reader of the intent of the script.

The script is written to take as an input the sample prepro-
cessed data file that is available from http://tinyurl.com/
hiendnguyen-MIMB-SM-NMH-2015. To input a file (e.g.,  
XXX.csv) that is stored in the desired working directory (see 
Subheading 3.2), edit the script to read loc = “XXX.csv” where 
loc appears for the first time, in the script. As an alternative, to 
the use of the loc = “XXX.csv” and unique.proteins = unique 
(data$protein), within the script, one can use the ‘Import 
Dataset’ command in R Studio. To import a dataset to the 
working environment using the ‘Import Dataset’ command, 
click the ‘Import Dataset Icon’ under the ‘Environment’ tab 
and navigating to the correct file (Fig. 3a). Import the dataset 
as “data” using default parameters. The dataset can be visual-
ized within R (Fig. 3b).

	 7.	A recommended starting value of N = 1000 was empirically 
determined, which allows for sufficient accuracy of the p- 
value estimates and does not utilize excessive computation 
resources [10].

Fig. 3 Importing processed data in R Studio. (a) Use the Import Dataset tool (arrow) and selecting the pro-
cessed data file using the explorer window shown on the lower right. (b) View the imported data (left window) 
using the spreadsheet icon (arrow)

Hien D. Nguyen et al.
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	 8.	It is conventional to control the FDR at a level that is 
comparable to the significance level of a single hypothesis test. 
We set the default level at 10 %, but it is also common to 
observe FDR controlled at the 5 % level in many experiments. 
To change the level at which FDR is controlled (e.g., 5 %), edit 
the script to read control = 0.05 where control appears for the 
first time, in the script.

	 9.	The output is a .csv file that contains three columns: protein, 
av.log.ratio, av.ratio, p.value, and fdr.significant. These columns 
contain the name of the unique proteins from the experiment, 
and the average log-ratio, average ratio, p-value for that pro-
tein, and whether the protein is significant at the FDR control 
level, respectively. The average ratio for each protein is com-
puted as the exponential (i.e., exp in Excel and R) of the av.
log-ratio column. The column fdr.significant takes values of 0 
or 1; 1 indicates that the protein is significant at the control 
level, and 0 indicates otherwise.

	10.	The R script provided makes the implicit assumption that pro-
teins observed via a single peptide are unreliable observations. 
The script will only conduct the permutation test analysis on 
proteins observed via two or more peptides. In order to quan-
titate proteins that are singly observed, delete lines 16–23.
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Chapter 10
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of High-Resolution Mass Spectrometry Data
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Abstract

High resolution mass spectrometry has revolutionized proteomics over the past decade, resulting in 
tremendous amounts of data in the form of mass spectra, being generated in a relatively short span of time. 
The mining of this spectral data for analysis and interpretation though has lagged behind such that poten-
tially valuable data is being overlooked because it does not fit into the mold of traditional database searching 
methodologies. Although the analysis of spectra by de novo sequences removes such biases and has been 
available for a long period of time, its uptake has been slow or almost nonexistent within the scientific com-
munity. In this chapter, we propose a methodology to integrate de novo peptide sequencing using three 
commonly available software solutions in tandem, complemented by homology searching, and manual vali-
dation of spectra. This simplified method would allow greater use of de novo sequencing approaches and 
potentially greatly increase proteome coverage leading to the unearthing of valuable insights into protein 
biology, especially of organisms whose genomes have been recently sequenced or are poorly annotated.

Key words De novo peptide sequencing, Hybrid peptide sequencing, MS validation, MS evidence, 
Functional annotation

1  Introduction

Proteomics, as a science, has progressed in leaps and bounds in the 
past decade on the back of powerful and sophisticated mass spec-
trometry technologies and computing power. The fundamental 
principal in protein identification from mass spectrometry data is 
the peptide mass fingerprint (PMF) where spectra are matched to 
an existing database of theoretical spectra based on sequence data 
from genomic studies. This data is then scored, based on confi-
dence to reveal the most reliable matches [1].

The fundamental requirement of this approach is that a reliable 
sequence database in a reasonably mature form (with open reading 
frames or ORFs, splice variants, mutations, etc.) must exist for 
matching to occur. If this does not occur, not only does this 
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hamper the investigation of the proteomes of non-model organisms 
whose genomes have yet to be sequenced, it may also mean that 
ambiguities in genomic sequences, such as alternative splice sites, 
mutations [2], and ambiguous and alternative ORFs may curtail 
the investigation of known genomes. Indeed, one of the very rea-
sons that over 2900 proteins are currently considered “missing” in 
the human proteome could be that their spectra simply could not 
match the sequences found in any of the known databases. One of 
the ways in which this fundamental problem can be addressed is 
the use of de novo sequencing, where the peptide sequence (with 
or without PTMs) can be elucidated independently from the dis-
tance between peaks in a mass spectrum [3].

Although the earliest reports of de novo peptide sequencing 
predates database searching [4], with the earliest computer-aided 
programs described in the 1970s, it is only more recently, with sig-
nificant advances in computation and in high resolution mass spec-
trometry, de novo sequencing algorithms are being used more 
widely. The most common criticisms of de novo sequencing are 
that the data produced is not as reliable as that from database 
searching and that no reliable FDR exists to discern sequenced data. 
Several approaches have been used to address this issue, such as the 
use of isotopic labeling of peptides [3], combining different frag-
mentation techniques [5], more innovative sequencing algorithms 
[6], combining de novo sequencing workflows with homology 
searches [7], and many more. Some of these methodologies increase 
confidence with most requiring some form of modification of 
experimental criteria, making working on archival results difficult.

To date, numerous computer programs using different algo-
rithms for sequencing have been published some of which are 
freely available such as Lutefisk [8], PepNovo [9], PEAKS [10], 
NovoHMM [11] and UniNovo [12]. We describe here a method-
ology to investigate mass spectrometry data using three common 
de novo sequencing software, many of which are freely accessi-
ble to the academic community. We demonstrate that in tandem 
with database searching, and homology matching coupled with the 
utilization of at least three algorithms, de novo peptide sequencing 
can greatly increase the overall coverage of the proteome in a reli-
able and accurate manner (Fig. 1). We propose further that de 
novo sequencing cannot be a standalone solution, as accurate man-
ual spectral validation (as presented elsewhere in this book [13] ) is 
a prerequisite for increased confidence in proteomics data.

2  Materials

	 1.	Raw nanoLC-ESI-MS/MS data files in .mgf format (see Note 1).
	 2.	List of proteins identified by Mascot search [1] using the same 

raw data (i.e., from Subheading 2.1.1).

2.1  Data Sources

2.1.1  De Novo Peptide 
Sequencing

Mohammad Tawhidul Islam et al.
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	 3.	Nonredundant Black Perigord truffle (Tuber melanosporum 
Vittad.) protein sequences from the MycorWeb database 
[14, 15].

	 1.	Download the following protein datasets in FASTA format 
from UniProtKB/Swiss-Prot database [16].

	 (a)	 Yeast proteins with experimental evidence.
	 (b)	Fungal proteins with experimental evidence.
	 (c)	 Reviewed fungal proteins .

	 2.	Protein Data Bank (PDB) [17] proteins  from the PDB.

	 1.	De novo peptide sequencing tools:
	 (a)	 PEAKS[10].
	 (b)	PepNovo [9].
	 (c)	 UniNovo [12].
	2.	 BLAST [18] package of tools for database similarity search to 

identify proteins homologous to predicted protein sequences, 
known proteins or structures as well as for creating specialized 
search databases from sequence datasets [19].

	3.	 InterProScan [20] for protein domains mapping [21].
	4.	 KAAS[22] or KOBAS 2.0 [23] for pathway mapping.

2.1.2  Sequence 
Similarity and Functional 
Annotation

2.2  Software

Fig. 1 Outline of the overall workflow

De Novo Peptide Sequencing and Functional Annotation
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3  Methods

Peptide de novo sequencing derives an amino acid sequence from 
its tandem mass spectrum (MS/MS) based on the distances 
between peaks using algorithms to account for charge states, mod-
ifications, cleavage sites, probabilistic assessments and other factors 
[24, 25]. This method is outlined in Fig. 2.

PEAKS uses a dynamic programming algorithm to compute 
sequences with best score. It computes the best possible sequence 
among all possible amino acid combinations. It connects each out-
put sequence with a score and also provides positional confidence 
scores to determine the correct sequences or amino acids [10].

	 1.	First step of the de novo sequencing is to create a project. To 
create a project, open PEAKS Studio.

	 2.	Then click File →New Project which will start the project wiz-
ard shown in Fig. 3.

3.1  De Novo 
Sequencing 
of Peptides

3.1.1  De Novo Peptide 
Sequencing with PEAKS

Fig. 2 Workflow illustrating the methodology for protein identification using de novo peptide sequencing and 
functional annotation

Mohammad Tawhidul Islam et al.
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	 3.	Enter the project name (1), select a location (2) for the proj-
ect, browse data files (7) to add data files to the project (4), 
and then click Data Refinement (5), as shown in Fig. 4.

	 4.	Select the default options and then click Finish, as illustrated 
in Fig. 5. The data processing can take some time to run (see 
Note 2).

	 5.	Once the data processing is completed, go to the projects listed 
and Right click on your project, followed by clicking on De 
novo, as shown in Fig. 6.

	 6.	Select trypsin as the enzyme, carbamidomethylation as fixed 
modification and oxidation of methionine and deamination 
of asparagine and glutamine as variable modifications (alter-
native modifications may be selected dependent on how the 
sample was processed/unique biochemistry being investi-
gated). Set the precursor mass tolerance to 0.05 Da, frag-
ment ion tolerance to 0.03 Da (the sample data was run on an 
AbSciex 5600 Triple TOF unit, these parameters can be 
adjusted to suit other instruments/thresholds) and select 3 
candidates/spectrum with 1% false discovery rate (FDR), as 
shown in Fig. 7. Then click Finish to run (see Note 2).

	 7.	Once completed, you should see the De novo results at the end 
of your sample on the left hand site. Double click the result 
note to view the sequencing results.

	 8.	Click the De novo Tab (as indicated in Fig. 8) to view the 
identified peptides along with their score, retention time, spec-
tra, spectral annotation, and ion match table (see Note 3). 

Fig. 3 Opening a new project in PEAKS 7.5

De Novo Peptide Sequencing and Functional Annotation



Fig. 5 Selecting Data Refinement options

Fig. 4 Adding data obtained from a mass spectrometer for analysis
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Instructions on how to manually validate the spectra are pro-
vided elsewhere [13].

	 9.	Go to the Summary tab, then set the Average Local Confidence 
value and export all peptides to a file as illustrated in Fig. 9 (see 
Note 3).

PepNovo is an ion-trap mass spectrometry data-specific de novo 
sequencing tool that works on spectral graph construction method, 
to determine the best possible score in a graph. It uses a probabi-
listic network to model peptide fragmentation events of mass spec-
trometers [9].

	 1.	Download and install the latest PepNovo [9] tool on your 
machine.

	 2.	Perform de novo peptide sequencing using the following 
parameters (see Note 4).

3.1.2  De Novo Peptide 
Sequencing with PepNovo

Fig. 6 Running the De novo function

De Novo Peptide Sequencing and Functional Annotation
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Model (-model)= CID_IT_TRYP
PTMs (-PTMs)= C + 57:M + 16:N + 1
Fragment tolerance (-fragment_tolerance) = 0.03
Precursor mass tolerance (-pm_tolerance) = 0.05
Enzyme (-digest) = TRYPSIN
Sample command:

Fig. 7 Selecting fixed and variable modification options

Fig. 8 De novo results for viewing spectra and associated information for manual spectral validation
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./PepNovo_bin -file </full/path/to/file/filename.
mgf> -model CID_IT_TRYP -PTMs C+57:M+16:N+1 
-fragment_tolerance 0.03 -pm_tolerance 0.05 
-digest TRYPSIN > <path/to/output/file>
Once completed, the output file should look like the image shown 
below:

Fig. 9 Exporting data for further analysis

De Novo Peptide Sequencing and Functional Annotation
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UniNovo [12] is suitable for all types of mass spectral data, such 
as  collision-induced dissociation (CID), higher-energy C-trap 
dissociation (HCD) and electron-transfer dissociation (ETD) spec-
tra of trypsin, LysC or AspN digested peptides.

	 1.	Download and install the latest UniNovo [12] tool on your 
machine.

	 2.	Perform a de novo peptide sequencing using the following 
parameters (see Notes 5 and 6).
Minimum length of reconstructions (−l) = 10
Accuracy threshold (−acc) = 0.6
Ion tolerances (6) = 0.03 Da
Precursor ion tolerance (−pt) = 0.05Da
Fragmentation methods (−f) = CID
Enzyme applied (−e) = trypsin [1]
Sample command:

3.1.3  De Novo Peptide 
Sequencing with UniNovo

java -jar UniNovo.jar -i <input file > -o <output file prefix> -l 
10 -acc 0.6 -t 0.03Da -pt 0.05Da -f CID -e 1

Once the process is completed, you should see a screen like the one below:

The output file should look like the following:
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	 1.	Discard any peptide less than seven amino acids residues. Filter 
out any low scoring peptides from the de novo peptide lists 
generated from the previous step (refer to [13] for MS data 
validation techniques).

	 2.	Compare the list generated from step 1 with the proteins iden-
tified by Mascot search (described in Subheading 2.1.1 [3]) 
and create a nonredundant de novo peptide list.

	 3.	Convert the peptides to FASTA format (see Note 7).
	 4.	Download and install the latest BLAST [18] package on your 

machine.
	 5.	Make the BLAST [18] databases with the protein sequences 

mentioned in Subheading 2.1.1 [7]. The command to create a 
BLAST database is:

3.2  Protein 
Identification

makeblastdb -in <inputfile> -out <output-
file> -dbtype prot

	 6.	Perform a BLASTP-short search task against the protein data-
base created in the previous step, using default parameters with 
a minimum E-value of 20000, filter (seg) = off, word size = 2, 
composition based statistics = off, score matrix = PAM30, no 
gaps to identify homologous proteins to target sequences. 
Sample command:

blastp -task blastp-short -num_threads <n> 
-query <input FASTA> -db <path to blast 
database> -out <output file> -evalue 20000 
-outfmt 6 -comp_based_stats 0 -ungapped 
-matrix PAM30 -seg no -word_size 2

	7.	 Only consider sequences with 100 % identity and coverage for 
protein identification (see Note 8).

	 1.	Sequential Database similarity search.
Sequential BLAST refers to running BLAST repeatedly [26] 

against specific databases, filtering off the most reliable hits 
from each run. Refer to the protocol set out in [13] and per-
form a database similarity search using the databases listed in 
Subheading 2.1.2 in the order in which they appear. Use the 
protein sequences listed in Subheading 2.1.1 [7] as the input 
for this step.

	 2.	Protein functional domains and motifs, and Gene Ontology [15].
Refer to the steps in [13] and perform functional annota-

tions using the protein sequences from Subheading 2.1.1 [7].

3.3  Sequential-
BLAST Similarity 
Search and Functional 
Annotation

De Novo Peptide Sequencing and Functional Annotation
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4  Notes

	 1.	We have used the raw files of nanoLC-ESI-MS/MS data from 
our previous study [15], 11 fractions were converted to .mgf 
format. This data was then submitted to Mascot and searched 
against T. melanosporum database. The protein database com-
prises 12771 nonredundant sequences from truffle proteome 
[14]. The parameters used include MS tolerance of ±100 ppm 
and MS/MS tolerance of ±0.2 Da. The fixed modification was 
set to carbamidomethylation and modification of methionine, 
threonine and deamination of asparagine and glutamine were 
included as variable modifications. These Mascot results were 
compared with the de novo sequencing results obtained in the 
current study. This method can be used for any MS/MS data. 
A wide range of open source tools [27] are available to convert 
MS data to other compatible formats.

	 2.	You can click the Running Info Tab on the bottom left hand 
corner, to view the progress.

	 3.	You can examine the peptides and their spectra individually. 
Amino acids are color-coded based on their confidence level. 
Red (>90%) is very good score, purple (80%-90%) is good while 
blue (60 %–80 %) is considered to be acceptable score. You can 
also adjust the local confidence threshold to filter the de novo 
sequence with desired/highly confident sequence tags. You can 
hover your mouse over a peptide and examine the confidence 
value of each amino acid. However for the entire peptide 
sequence, it is recommended to use the expected percentage of 
correct amino acids/average local confidence (ALC) value.

	 4.	To process large amounts of files use –list option to give a list 
of input files otherwise the program will reread models for 
each input file. You can easily create a file with list of MS files 
within a folder from a Linux shell. To do this, change directory 
to the folder that contains the raw files, then run the following 
command

ls -d -1 $PWD/*.* >file-list.txt

This will write the full path of all available files to file-list.txt 
file. You can now pass the file-list.txt file with –list option.
Sample command run PepNovo using a file list:

./PepNovo_bin -list </full/path/to/
file list> -model CID_IT_TRYP -PTMs 
C+57:M+16:N+1 -fragment_tolerance 0.03 
-pm_tolerance 0.05 -digest TRYPSIN > 
<path/to/output/file>
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	 5.	You need to have java runtime environment (JRE) 1.6 or 
greater installed on your machine to run UniNovo. To opti-
mize the performance, you can set the maximum Java heap 
size (i.e., run it with -Xmx<size> option) to allow UniNovo to 
use a maximum amount of memory. For example you could 
run the same command stated in step 2 of 3.1.3 with the fol-
lowing command to allocate 2000MB memory.

java -jar -Xmx2000m UniNovo.jar -i <input 
file > -o <output file prefix> -l 10 -acc 0.6 
-t 0.03Da -pt 0.05Da -f CID -e 1

	 6.	If you are processing a large number of files, it is best to write a 
simple script (bash, Python, Perl) to process them in a batch. Here 
is a basic script written in python that takes the source and destina-
tion directory as an input and process all files sequentially.

#!/usr/bin/env python
#Filename: run_uninovo.py
#sample command: python run_uninovo.py 
<full path/of/the/directory containing MS 
files>
#run this program from the UniNovo directory
import os, sys, shutil, psutil
import subprocess as sp
def run_process(cmd, logfile):
    """ execute a process"""
    p = �sp.Popen(cmd, shell=True,
        stdout=sp.PIPE, stderr=sp.STDOUT
    stdout = []
    while True:
        line = p.stdout.readline()
        stdout.append(line)

        if line == '' and p.poll() != None:
            break

    loglist=''.join(stdout)
    outfile=open(logfile, "w")
    outfile.write(loglist)
    outfile.close()
    return p.returncode

 def run_uninovo(infile,outfile):
    print "processing..",infile
    �cmd="java -jar UniNovo.jar -i 

"+infile+" -o "+outfile +" -l 10 -acc 
0.6 -t 0.03Da -pt 0.05Da -f CID -e 1"

    logfile=outfile+".log"
    code=run_process(cmd, logfile)

De Novo Peptide Sequencing and Functional Annotation
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    success=""
    if code<>0:
     success=-1
     �print "Failed to run UniNovo 

for",infile, "please check the log 
file"

    else:
     success=1
    �return success

 if __name__ == "__main__":
    directory=sys.argv[1]
    retrn_code=0
    �for root, dirs, files in 

os.walk(directory):
        for file in files:
            �if file.endswith('.mgf') or file.

endswith('.mzXML') or
  file.endswith('.ms2'):
                out_string=os.path.
splitext(file)[0]+"_uninovo_out"
                retrn_code=run_
uninovo(directory+"/"+file, out_string)

	 7.	Peptides must be converted to FASTA format for BLAST [18] 
alignment. A simple script can be written to achieve this. Below 
is an example of a basic python script that can create FASTA 
files from an excel sheet that contains one peptide per cell. It 
will also exclude all peptides less than the minimum length.

#!/usr/bin/env python
#Filename: generate_pep_fasta.1.0.py
#sample command: python generate_pep_
fasta.1.0.py <path to excel file with 
peptide> <output file name> <sequence id 
string> <minimum peptide length>
import sys, string, os
from xlrd import open_workbook
def 
generate__fasta_seq(infilename,outfilename,s
ample_name,min_pep_length):
        f = open(outfilename,'w')
        book = open_workbook(infilename)
        sheet0 = book.sheet_by_index(0)
        count=0
        skipped=0
        sample=sample_name
        seq_no=1
        data=[]
        data=sheet0.col(0)
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       for i in data:
                �if len(i.value)>= int(min_

pep_length):
                        text= 
">PEP|"+sample+"|MMB"+str(seq_no).
zfill(6)+'\n'
                        f.write(text)
                        pep=i.value+'\n'
                        f.write(pep)
                        count+=1
                        seq_no+=1
                else:
                        skipped+=1
                        �print len(i.value)
       �print count, "peptides are added to 

", outfilename
        �print skipped, "peptides are less 

than the minimum length",min_pep_
length

        �f.close()
if __name__ == '__main__':

  infilename=sys.argv[1]
  outfilename=sys.argv[2]
  sample_name=sys.argv[3]
  min_pep_length=sys.argv[4]
  �generate__fasta_seq(infilename,outfilename

,sample_name,min_pep_length)

	 8.	A protein is identified if two proteotypic peptides with mini-
mum 7 residues, as accepted by the proteomics community at 
large. Alternatively a single peptide of 9 amino acids can also 
be considered sufficient for identification [28]
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Chapter 11

Phylogenetic Analysis Using Protein Mass Spectrometry

Shiyong Ma, Kevin M. Downard, and Jason W.H. Wong

Abstract

Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone 
in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers 
some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or 
costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be 
classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic recon-
struction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of 
mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the 
three methods and the protocol for each method along with relevant tools and algorithms.

Key words Phylogenetics, De novo sequencing, Mass mapping, Molecular evolution, Phylogenetic 
tree, Mass tree

1  Introduction

In biology, phylogenetic analyses are used to assess the evolutionary 
relationships among a set of organisms. To do so, the degree of 
homology among the features of the taxa needs to be measured and 
compared. Traditionally, homology measurements have typically 
been based on morphological data, which is usually acquired by 
measuring certain phenotypes of the investigated organisms. With 
the emergence of molecular biology and technological advances in 
DNA sequencing, molecular phylogenetic has now become the 
standard method for phylogenetic analysis [1].

Molecular phylogenetics typically uses DNA or translated 
DNA sequences of specific genes to measure the evolutionary 
distance across species, populations, or homologous genes within 
an individual organism. DNA sequences are generally acquired 
after its amplification using the polymerase chain reaction followed 
by Sanger [2] or massive-parallel sequencing [3]. While this process 
is robust and well established, there can be circumstances that limit 
the ability to sequence DNA for phylogenetic analysis. For instance, 
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phylogenetic analysis of fossilized animals can be challenging due to 
DNA degradation [4, 5]. Furthermore, although massive-parallel 
sequencing is becoming increasingly affordable, when the sequenc-
ing of a large number of samples is required, cost and throughput 
can still be limiting factors [6].

Mass spectrometry has been demonstrated to provide an 
alternative method for phylogenetic analysis through the acqui-
sition of protein rather than genetic sequence information [4, 5, 
7–9]. Tandem mass spectrometry-based de novo sequencing has 
been used to elucidate protein sequences from fossilized tissue 
for phylogenetic reconstruction [4, 5]. The use of proteolytic 
peptide masses from mass map or fingerprint data, without pep-
tide sequencing, using the so-called “Mass Trees” has also been 
shown to be applicable for the phylogenetic reconstruction and 
analysis of strains of the influenza virus [7, 9]. Furthermore, it 
has recently been demonstrated that using the FluClass algo-
rithm, phylogenetic classification of the influenza virus can be 
performed by directly mapping peptide mass fingerprints onto 
existing phylogenetic trees using mass, as opposed to sequence, 
information [8].

The use of de novo sequencing to generate protein sequence is 
akin to traditional protein-based molecular phylogenetic techniques 
including sequence generation using Edman degradation [10] as 
well as biochemical and biophysical methods such as using immu-
nological information [11] or measuring protein electrophoretic 
properties [12]. Nevertheless, the sensitivity of modern mass spec-
trometers provides significant advantages over those traditional 
methods particularly when the analysis needs to be performed on 
highly degraded samples.

The MassTree algorithm [6] reads sets (Mt) of monoisotopic 
m/z values m1, m2, …, mn for peptide ions calculated theoretically, 
or detected in a mass spectrum, following the proteolytic digestion 
of the viral protein. Proteins are grouped to a clade or subclade 
based on the number of m/z values of the total contained within 
sets that are indistinguishable i by mass; that is, the difference 
between them is less than a specified mass error (default is 5 ppm). 
A distance score between two sets of masses (M1 and M2) is then 
computed based on the number of matching mass values within 
each set. The relative length of the branches reflects the proportion 
of matching peptide masses of the total. Among the peptide ions 
detected, pairs of mass values from different mass sets (Mt) that 
differ in mass which correspond to a single amino acid substitution, 
s, are also determined and weighted.

The FluClass algorithm [8], reads in a phylogenetic tree which 
can be generated using sequence-based methods. It then generates 
a list of mass corresponding to theoretical peptide ion for all nodes 
of the tree including internal nodes. The algorithm then reads in a 
list of monoisotopic peptide ion masses before using a novel 
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scoring method to identify the node most phylogenetically related 
to the input mass spectrum.

In the case of MassTree and FluClass algorithms, the methods 
leverage the high throughput capabilities and speed of analysis of 
mass spectrometry. These are of particular benefit where the pro-
cessing and sequencing of DNA for a large numbers of samples 
proves challenging. Although these methods have been applied in 
published reports to the analysis of influenza viral proteins [13–
16], they can be applied to study the phylogenetic relationship 
between orthologous proteins across different organisms or paral-
ogous proteins within a single organism. This chapter outlines the 
steps required to facilitate phylogenetic analysis using protein mass 
spectrometry data using each of the three methods described.

2  Materials

This chapter assumes that all methods for the acquisition of experi-
mental mass spectral data are already available to the reader. It there-
fore is focused on the methods for computational phylogenetic-like 
analysis only. Below is a list of free-for-academic-use software 
required to conduct the data analyses described in this chapter:

•	 PepNovo+ [17] (http://proteomics.ucsd.edu/Software/
PepNovo/)—for de novo sequencing of tandem mass spectral 
data.

•	 FluClass [8] (https://powcs.med.unsw.edu.au/fluclass)—for 
scoring of peptide mass mapping mass spectral data against 
existing phylogenetic tree.

•	 Archaeopteryx [18] (https://sites.google.com/site/cmz-
masek/home/software/archaeopteryx)—for the visualization 
of phylogenetic trees.

•	 Proteowizard [19] (http://proteowizard.sourceforge.net/)—
for converting mass spectral data file formats for vendor spe-
cific formats to standard mass spectrometry data formats 
compatible with downstream data analysis pipelines such as 
mgf, dta, mzXML, and mzML.

Before proceeding, the reader should ensure that the software 
are installed and functional per the instructions provided for each 
software package.

3  Methods

This chapter is focused on the phylogenetic analysis using mass 
spectral data for a set of homologous proteins. A schematic diagram 
outlining the three methods is shown in Fig. 1.

Phylogenetics with Protein Mass Spectrometry
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	 1.	Acquire tandem mass spectral data from the tryptic digest of a 
protein sample. LC-MS/MS data for a tryptic digest of a purified 
protein is recommended for optimal sequence coverage.

	 2.	Use Proteowizard’s MSConvert tool [19] to convert the raw 
mass spectral data format to mgf format. The mgf format is a 
text-based format introduced by the Mascot software [20] and 
is used to store all tandem mass spectra across LC-MS/MS 
experiment. As mass spectra of precursor ions (i.e., MS1 level 
data) are not necessary for this analysis, we recommend mgf 
format because of the smaller file size (see Note 1).

	 3.	Use PepNovo+ [17] to determine candidate peptide sequences 
from each MS/MS spectrum. An example command for 
PepNovo+ is the following: ./PepNovo_bin -file test.mgf 
-model CID_IT_TRYP -PTMs C+57 -digest TRYPSIN -min_
filter_prob 0.9>output.txt. For a comprehensive description 

3.1  De Novo Protein 
Sequencing Followed 
by Classical 
Phylogenetic 
Reconstruction

Fig. 1 Schematic illustration of the three methods for phylogenetic analysis using protein mass spectrometry 
data. Method A—De novo protein sequencing followed by classical phylogenetic reconstruction. Method B—
Direct phylogenetic reconstruction using proteolytic peptide mass maps. Method C—Mapping of mass spectral 
data onto classical phylogenetic trees
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of each of the parameters, refer to the PepNovo readme file 
(see Note 2).

	 4.	Map each de novo sequenced fragment to the homologous 
sequence using the Smith-Waterman pairwise alignment algo-
rithm [21]. An online implementation of the algorithm can be 
found at the EBI web site (http://www.ebi.ac.uk/Tools/psa/
emboss_water/index.html) (see Note 3). The distance similar-
ity matrix should be chosen according to the expected sequence 
similarity with the homologous protein sequence (see Note 4). 
De novo sequences that do not align to the homologous protein 
sequence should be disregarded from further analysis.

	 5.	Using the combined output from the Smith-Waterman align-
ment of all de novo sequenced peptides, the sequence of the de 
novo sequenced protein can be reconstructed. Steps 1–4 
should be repeated for each protein being analyzed.

	 6.	To begin phylogenetic analysis, the aligned sequences (in fasta 
format) containing any homologous protein sequences from 
the protein databases, such as UniProt [22], and each de novo 
sequenced protein are then constructed. For this analysis, any 
region that is not covered by de novo sequencing is left as gaps, 
i.e., denoted by ‘-’ (see Note 5).

	 7.	Once the sequences are aligned in fasta format, phylogenetic 
reconstruction methods can be applied. There is a diverse 
range of methods for phylogenetic reconstruction (see Note 6). 
For simplicity, and as an illustrative example, the distance-
based neighbor-joining method from the EBI ClustalW2 [23] 
package can be used with this protocol (http://www.ebi.ac.
uk/Tools/phylogeny/clustalw2_phylogeny/). The excluded 
gaps parameter can be selected in the ClustalW2 algorithm to 
ensure that only regions de novo sequenced across all samples 
are used for phylogenetic analysis. Select Newick/PHYLIP as 
the output tree format.

	 8.	The phylogenetic tree can now be visualized using a tree 
visualization tool such as Archaeopteryx [18].

	 1.	Acquire mass map data (i.e., precursor ion spectra) on the 
tryptic digest of a protein sample. High resolution MALDI-
FTICR data is recommended as high mass accuracy is prefera-
ble, while the use of MALDI ensures the proteolytic fragment 
masses are detected as singly charged ions, thus removing the 
need for spectral deconvolution to obtain peptide molecular 
weights.

	 2.	Generate a mass list containing deisotoped or monoisotopic 
masses of all peptide ions detected (see Note 7).

	 3.	Repeat steps 1 and 2 across all samples.

3.2  Direct 
Phylogenetic 
Reconstruction Using 
Proteolytic Peptide 
Mass Maps
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	 4.	Prepare an input file for MassTree [7]. This file needs to be in 
tab delimited format with each row containing the sample 
name in the first column followed by the mass in subsequent 
columns sorted in ascending order according to the mass values. 
See Table 1 for example.

	 5.	Run the MassTree algorithm [7] from the following web site. 
http://flu.med.unsw.edu.au/kdownard/MassTree_v2.html. 
This is achieved by simply uploading the input file and clicking 
the “Submit” button.

	 6.	Once the algorithm is complete, the output file in 
Newick/PHYLIP format can be downloaded and visualized 
using Archaeopteryx [18]. For an example of a MassTree in 
comparison to a sequence-based tree, see Fig. 2 and Note 8).

	 1.	Acquire gene/protein sequences in fasta format for phyloge-
netic tree reconstruction (see Note 9).

	 2.	Align the protein sequences using the ClustalΩ algorithm [24] 
(at http://www.ebi.ac.uk/Tools/msa/clustalo/). For the 
alignment of gene sequences, use MUSCLE algortihm [25] 
(at http://www.ebi.ac.uk/Tools/msa/muscle/). In either 
case, output the alignment file in Pearson/FASTA format 
(see Note 10).

	 3.	Proceed to phylogenetic tree reconstruction using the 
neighbor-joining method provided within the EBI 

3.3  Mapping of Mass 
Spectral Data 
onto Classical 
Phylogenetic Trees

Table 1  
Example input file format for MassTree

HA_Cambodia 842.5463 871.5404 921.4428 1152.547 1168.542 1175.571 1299.477 …

Duck_Hunan 529.3471 625.3788 643.3212 842.541 871.541 886.5129 893.4743 …

HA_HK_2003 886.5119 903.4327 921.4439 1152.548 1168.543 1175.57 1185.436 …

HA_Indonesia 842.5458 1152.547 1168.542 1175.57 1313.493 1329.49 1500.66 …

Magpie_2003 842.5466 871.5409 886.5112 903.4334 921.4435 1152.547 1168.543 …

Duck_NZL 780.429 887.5351 900.4899 1096.545 1112.539 1172.627 1203.575 …

Swine_Guangx 885.5559 900.4892 917.4477 935.4498 935.4586 1112.54 1186.695 …

HA_HK_97 842.5439 871.5376 1123.68 1314.559 1510.873 2156.09 2196.957 …

HA_Turkey 842.5461 871.5392 921.4424 1152.547 1168.542 1175.571 1299.477 …

HA_Vietnam 842.5462 871.5409 921.4429 1152.548 1168.542 1175.571 1299.478 …

SolomonIs_2006 780.429 827.4349 827.4407 944.5562 945.4533 1250.601 1268.612 …

California_2009 780.4302 885.5565 887.4087 903.4038 916.4533 1054.554 1109.559 …

The first column contains the protein name and in each row, the associated mass list of each protein is on the subsequent 
columns
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ClustalW2 [23] package (http://www.ebi.ac.uk/Tools/
phylogeny/clustalw2_phylogeny/) (see Note 6). Save the 
output file in Newick/PHYLIP format.

	 4.	Acquire mass map data from the tryptic digest of a protein 
sample. High resolution MALDI-FTICR data is recommended 
for the accurate identification of proteolytic fragment masses 
from singly charged ions.

	 5.	Generate a mass list containing the deisotoped or monoiso-
topic masses of all peptide ions detected (see Note 7).

	 6.	Use FluClass [8] to score the input mass spectrum against 
nodes of the phylogenetic tree. An example input command is 
as follows: FluClass.exe –infasta example.fa –intree example.phy 
–inmass example_spectrum.txt.

	 7.	FluClass will output a tab delimited file containing scores of the 
input spectrum against each of the nodes of the input phyloge-
netic tree. FluClass also outputs colorized phylogenetic trees 
based on the scores in Newick/PHYLIP format. These trees can 
be visualized using Archaeopteryx [18]. See Fig. 3 for example 
colorized tree generated by FluClass.

Fig. 2 Example of a MassTree in comparison to a sequence-based. Mass (left) and sequence (right) trees 
constructed for a subset of 595 N1 neuraminidase sequences of human HxN1 virus strains. Reprinted with 
permission from ref. 8. Copyright 2016 American Chemical Society
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4  Notes

	 1.	Take note of the type of MS/MS data acquired in the experi-
ment. For low resolution collision-induced dissociation (CID) 
MS/MS data, default parameters from MSConvert can be 
used. However, for high resolution higher energy collisional 
dissociation (HCD) data, ensure that peak picking is selected 
such that only monoisotopic ions are retained in order to avoid 
an excessive number of peaks in the resulting mgf file.

	 2.	De novo sequencing of peptides using MS/MS data can be 
challenging and is not foolproof. To avoid false sequences, it is 
recommended that PepNovo+ [17] be first used on known 
protein/peptides analyzed using the same mass spectrometer 
such that parameters and scoring filters can appropriately 

Fig. 3 Colorized tree generated by FluClass visualized in Archaeopteryx. The tree was generated using all 
human hosted influenza type A hemagglutinin (HA). The branches colored red are those where the mass spec-
trum matches most closely with the associated node while the blue colored branches are those that are the 
lowest scoring

Shiyong Ma et al.
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adjusted for a particular dataset. It is also recommended that, 
where possible, MS/MS spectra be manually validated to 
ensure that the correct sequences are being used for down-
stream data analysis.

	 3.	Where no homologous sequences are available, it is necessary 
to perform multiple LC-MS/MS analyses proteins digested 
using two or more different endoproteinases with complemen-
tary cleavage site specificity. This enables peptides with over-
lapping sequences to be obtained such that their assembly in 
the correct order within the de novo protein sequence can be 
performed [26].

	 4.	When examining proteins from species that are closely related 
phylogenetically, higher similarity substitution matrices such as 
BLOSUM80 or BLOSUM90 can be used [27]. The default 
BLOSUM62 matrix is most commonly used as it provides a 
balanced substitution frequency that is suitable for most 
analyses.

	 5.	To ensure that each de novo sequence is compared with equal 
phylogenetic weighting, only the sequences of regions that 
have been de novo sequenced across all samples should be 
retained. Certain phylogenetic analysis tools such as ClustalW2 
[23] automatically exclude gapped regions in any sequence for 
use in phylogenetic analyses. However, depending on the 
downstream tool, masking of these regions, including those 
found in the sequences of homologous proteins within data-
bases needs to be performed. This can be achieved by either 
replacing those amino acids with lower case letters or replacing 
them with the symbol ‘X’.

	 6.	Molecular phylogenetics methods can broadly be classified as 
either distance-based, maximum parsimony, maximum likeli-
hood and Bayesian methods. For a comprehensive review and 
comparison of these methods, refer to references [28, 29].

	 7.	It is important that only monoisotopic masses obtained from a 
mass spectrum are selected for phylogenetic analysis. Vendor 
software, or an open access tool such as Hardklor [30], should 
be used in order to achieve this.

	 8.	Figure  2 shows the mass and phylogenetic (gene sequence) 
trees for full-length H1 human influenza using one strain from 
each country for each available year through 2012. Note that 
the mass tree on the left is built solely from sets of masses for 
proteolytic peptide segments of influenza H1 hemagglutinin. 
It is clear that both trees show very similar topologies, with 
common-colored branches containing strains that are identical 
on both trees. A comparison of sets of trees, using two differ-
ent tree comparison algorithms, showed that they were 60.1 % 
congruent, a value not dissimilar to those obtained when two 
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sequence trees constructed with two different tree building 
algorithms are compared [7].

	 9.	It is generally advantageous to use DNA sequences for closely 
related species as DNA sequence contains more evolutionary 
information than protein sequences. However, for more dis-
tantly related sequences, protein sequences generally allows for 
more accurate phylogenetic inference [31]. There are also 
advantages of using protein sequences over gene sequences 
especially for the study of microorganisms [32]. The main rea-
son is due to the degeneracy of the genetic code. All but two 
amino acids (Met and Trp) are encoded by at least two codons. 
Most changes in the third codon position do not affect the 
encoded protein sequence. Proteins have 20 possible amino 
acids at each position (vs. 4 for DNA/RNA) that provides a 
stronger phylogenetic signal [32].

	10.	A range of multiple sequence alignment algorithms are avail-
able for the alignment of both DNA and protein sequences. 
For a comprehensive review, see [33].
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Chapter 12

Bioinformatics Methods to Deduce Biological 
Interpretation from Proteomics Data

Krishna Patel, Manika Singh, and Harsha Gowda

Abstract

High-throughput proteomics studies generate large amounts of data. Biological interpretation of these 
large scale datasets is often challenging. Over the years, several computational tools have been developed 
to facilitate meaningful interpretation of large-scale proteomics data. In this chapter, we describe various 
analyses that can be performed and bioinformatics tools and resources that enable users to do the analyses. 
Many Web-based and stand-alone tools are relatively user-friendly and can be used by most biologists 
without significant assistance.

Key words Gene ontology, FunRich, Reactome, NetPath, Phosphoproteome, Pathways, Enrichment, 
Post-translational modifications

1  Introduction

High-throughput proteomics studies result in identification and 
quantitation of thousands of proteins in a biological specimen. 
These studies are often carried out to determine dynamic changes 
in proteins including differential expression pattern between bio-
logical conditions, activation of specific signaling pathways and in 
protein complexes. To achieve these, mass spectrometry based 
methods are often employed to measure relative abundance of pro-
teins or post-translational modifications including phosphoryla-
tion, acetylation, glycosylation, and ubiquitination. Although such 
large-scale studies generate enormous amount of data, they pose 
significant challenge for biologists for biological interpretation.

Several commercial and open source tools have been devel-
oped over the years to facilitate biological interpretation of pro-
teomics data. These tools allow biologists to disentangle complexity 
in large datasets and identify meaningful patterns. Most biological 
processes are not driven by a single protein but many proteins act-
ing in concert. If any two biological conditions or cell phenotypes 
were compared using quantitative proteomics, one could expect a 
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set of proteins that regulate these two distinct cell phenotypes or 
biological conditions to be differentially expressed. Tools that are 
developed to carry out gene set enrichment or overrepresentation 
analysis enable identification of such patterns from large scale data-
sets. Such enrichment analysis can also facilitate functional annota-
tion of orphan molecules based on their association with other 
well-characterized molecules. Here, we describe several tools that 
can be used for such analysis in mammalian system, particularly 
those that have well-annotated data including human.

2  Materials

Several commercial as well as open source tools are available for 
carrying out bioinformatics analysis of high throughput datasets. 
For each type of analysis, we are providing list of tools that can be 
used in relevant sections of the chapter. A step-by-step instruction 
is also provided for one tool in each section. General outline of the 
workflow and different kinds of analysis that can be carried out is 
provided in Fig. 1.

3  Methods

Gene ontology (GO) consortium has developed controlled vocab-
ulary to represent biological functions, processes, and cellular 
localization information [1]. The terms are linked to correspond-
ing genes based on our understanding of gene function and local-
ization. This data is extensively used to carry out GO enrichment 
analysis that provides insights into biological functions/processes 
enriched in a large scale proteomics dataset. There are several tools 
that have been developed to carry out enrichment analysis provid-
ing gene/protein list as an input. FunRich [2] is a user friendly 
stand-alone tool for GO enrichment analysis. The tool allows users 
to upload or paste gene symbols, gene ID, Uniprot ID, and RefSeq 
protein ID as input for the analysis. Results of the enrichment anal-
ysis are produced in various graphical formats such as bar graph, 
pie chart, Venn diagram, heat map, and doughnut chart. Multiple 
gene sets can be uploaded for comparative analysis of GO enrich-
ment and pathway enrichment analysis. The tool provides various 
graphical representation options for visualizing comparative results.

One of the widely used Web-based tools is DAVID (Database 
for Annotation, Visualization, and Integrated Discovery (https://
david.ncifcrf.gov/) [3]. It provides a comprehensive set of func-
tional annotation tools which can not only identify enriched bio-
logical themes, particularly GO terms, but also discover functionally 
related enriched gene groups based on popular pathway databases 
including KEGG [4] and BioCarta [5]. Here we describe a step-
by-step guide for GO enrichment using DAVID.

3.1  Gene Ontology 
Enrichment Analysis

Krishna Patel et al.

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/


149

Fi
g.

 1
 A

 g
en

er
al

 fr
am

ew
or

k 
an

d 
ou

tli
ne

 o
f v

ar
io

us
 b

io
in

fo
rm

at
ic

s 
an

al
ys

es
 a

pp
ro

ac
he

s 
th

at
 c

an
 b

e 
us

ed
 fo

r h
ig

h-
th

ro
ug

hp
ut

 p
ro

te
om

ic
 d

at
a

High Throughput Proteomic Analysis



150

There are two major DAVID tools that could be used for 
functional annotation/classification of gene lists—Functional Anno
tation and Gene Functional Classification. The tools can be accessed 
by clicking the links on top left corner of the home page.

	 1.	To begin the analysis, click on “Functional annotation”.
	 2.	The resulting Web page shows three tabs—Upload, List, and 

Background.
	 3.	In the “Upload” tab, either paste gene list into the box or 

browse and upload the list where there is a single column with 
each row representing a single gene (see Note 1).

	 4.	The ‘list’ tab in DAVID allows users to limit gene annotations 
to one or more species. The default parameter chooses Homo 
sapiens.

	 5.	For enrichment analysis, user has to choose a background 
using ‘Background’ tab. Default background in DAVID is 
Homo sapiens whole genome background. The user can choose 
to use a custom background.

	 6.	DAVID recognizes gene lists with various identifiers including 
official gene symbols and accession numbers. For proteomics 
datasets, it is best to use official gene symbols in gene lists and 
choose that as an identifier in step 2 in ‘Upload’ tab.

	 7.	In step 3, choose if the list you uploaded should be used as 
‘Gene List’ or ‘Background’. For data from human samples, 
choose your input as ‘Gene List’ as Homo sapiens whole 
genome background is used as a default.

	 8.	Click ‘Submit List’ button. The results provided by DAVID 
include ‘Functional Annotation Clustering’, ‘Functional 
Annotation Chart’ and ‘Functional Annotation Table’. These 
results provide a quick glance of major biological functions 
enriched in the gene list.

	 9.	For GO enrichment analysis, click on Gene_Ontology and 
select GOTERM_BP_ALL for biological process, GOTERM_
CC_ALL for subcellular localization, and GOTERM_MF_
ALL for molecular function as background for the GO 
enrichment analysis. Click on “Functional annotation cluster-
ing” and DAVID will generate clusters of terms with similar 
biological meaning based on shared/similar gene members. 
The significance of this enrichment is also calculated based on 
modified Fisher Exact P-value.

	10.	Top panel of the result window is parameter panel which user can 
modify according to need and rerun the process without submit-
ting input again. It is recommended to select higher stringency 
for small, concise and meaningful clusters rather than broader 
and vague cluster of proteins. Default setting is medium strin-
gency however user can modify this option based on the analysis. 
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Higher enrichment score indicates that annotation term members 
are overrepresented in uploaded input.

	11.	Result table displays annotation categories, enriched functional 
annotation, enrichment scores of each cluster, number of genes 
contributing to clustering of similar GO terms, and modified 
Fisher Exact P-value.

	12.	To analyze the most enriched clusters, user can sieve out clus-
ters with maximum enrichment score and lesser P-value for 
biological process, molecular function and subcellular localiza-
tion (see Note 2).

	13.	A link to ‘G’ on top of each cluster could be used to extract 
defined set of proteins contributing to enrichment of the given 
cluster and matrix icon draws heat map for the small cluster 
and provides the GO term count matrix for each protein which 
can be further used for plotting graphs.

	14.	User can also employ pathway and functional domain enrich-
ment analysis using DAVID by selecting “Pathway”, “Functional 
categories” and “Protein domains” as backend reference data-
base for functional annotation. However, a user-friendly graphi-
cal user interface for pathways analysis study is deployed by 
Web-resource Reactome which is explained in detail below. 
Table 1 enlists other widely used open source gene set enrich-
ment analysis tools.

Proteins regulate most cellular processes. Several proteins work in 
concert to regulate these processes and are often grouped into spe-
cific pathways in which they carry out their functions. Over the 
years, pathways and processes that are regulated by specific pro-
teins have been systematically annotated. Based on protein expres-
sion data, it is possible to arrive at pathways and processes that are 
active in a biological sample. In addition to expression, some of the 
most widely studied signaling pathway mechanisms include 
dynamic interplay of kinases and phosphatases that results in addi-
tion or removal of phosphorylation on proteins. Differential pro-
tein expression data or phosphoproteomics data can be utilized to 
carry out pathway enrichment analysis. If expression or phosphor-
ylation levels of certain proteins are changing in a biological sample 
as compared to their pattern in an appropriate control, it is possible 
to predict potential pathways that are differentially regulated. 
Reactome [14] is manually curated open access Web-based resource 
of biological pathways which allows users to browse, search and 
map proteins onto pathways. It also provides list of interactors 
acquired from IntAct [15] molecular interaction database with 
nodes of pathways.

Here we describe Reactome, a Web-based tool that can be 
used for pathway analysis.

3.2  Pathway 
Analysis

High Throughput Proteomic Analysis



152

Table 1 
List of tools that can be used for gene ontology and gene set enrichment analysis

Name Description Link Reference

GSEA Gene set enrichment analysis 
(GSEA) is an expression analytics 
tool. It compares gene set 
enrichment between conditions 
and provides enriched set of 
genes with their statistical 
significance scores to interpret 
biological data

Stand-alone http://www.
broadinstitute.org/gsea/

[6]

FunRich FunRich is a downloadable tool for 
pathways and GO enrichment 
analysis of genes and proteins. It 
can process genes/proteins 
irrespective of source of the 
sample as user can load 
customized database along with 
default available background 
database

Stand-alone http://funrich.org/ [2]

GoMiner GoMiner leverages Gene Ontology 
by providing a framework to 
visualize and integrate “omics” 
data. It makes cluster of genes 
and their expression profiles 
which can be analyzed for their 
biological significance. Each 
gene is linked to BioCarta, Entez 
Genome, NCBI structures, 
Pubmed and MedMiner for 
greater clarity

Stand-alone, Web http://
discover.nci.nih.gov/gominer

[7]

GOstat GOstat tool uses GO terms 
database to find statistically over 
represented genes from the data 
set. The results list out 
significant set of genes for 
biological interpretation

Web http://gostat.wehi.edu.au [8]

GOToolBox GOToolBox is used for functional 
annotation of genes. GOtoolBox 
is a perl based program which 
can be automated in any gene 
expression analysis pipeline. 
GOToolBox also has GO-Diet 
and PRODISTIN framework 
which can be used to study 
protein–protein interactions

Web http://genome.crg.es/
GOToolBox/

[9]

(continued)
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	 1.	Reactome (http://www.reactome.org/) allows mapping the 
list of proteins on pathways and carry out enrichment analysis 
to determine if the input data contains overrepresentation of 
proteins involved in certain pathways (see Note 3).

	 2.	Click on “Analyze Data”. It is a three-step process that begins 
with pasting the protein list with appropriate header on the 
Web page. The tool also takes accession numbers and other 
identifiers as an input. In the next step, it allows projection of 
data on to human annotation if it comes from a different spe-
cies and also to include interactors from IntAct Molecular 
Interaction database. After making appropriate selection, click 
on analyze.

	 3.	The resulting page is divided into four panels. ‘Hierarchy 
panel’ on the left part of the Web page lists enriched pathways 
with corresponding FDR, ‘Viewport’ panel shows graphical 
representation of an overview of these pathways with various 
options to navigate, top panel provides configuration options 
and a bottom panel provides details of objects selected in the 
pathway diagram. A detailed manual to understand and navi-
gate this pathway analysis tool can be found at http://wiki.
reactome.org/index.php/Usersguide.

Table 1
(continued)

Name Description Link Reference

GeneMerge GeneMerge enables over-
representation analysis of gene 
attributes in a given set of genes 
as compared to genome 
background

Stand-alone, Web http://www.
genemerge.net/

[10]

GO:TermFinder GO:TermFinder is a tool that helps 
to find significant GO terms 
shared among a list of genes. It 
has GO:TermFinder libraries 
that enables visualization of 
results

Stand-alone http://search.cpan.
org/dist/GO-TermFinder/

[11]

agriGO agriGO is a specialized data 
analytics tool for the agricultural 
community. The database has 38 
agricultural species comprising of 
274 data types

Web http://bioinfo.cau.edu.cn/
agriGO/

[12]

FatiGO FatiGO helps to find significant 
over-representation of functional 
annotations in one gene set 
compared to the other

Web http://babelomics.bioinfo.
cipf.es

[13]
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There are various commercial tools such as QIAGEN Ingenuity 
Pathway Analysis (IPA) and Agilent Genomics Genespring for 
functional and pathway enrichment analysis. Table 2 lists some of 
the widely used pathway resources and network analysis tools.

Post-translational modifications (PTM) play an important role in 
regulating various cellular processes. One of the most widely stud-
ied PTM is phosphorylation. It acts as a switch for activation and 
deactivation of specific proteins and associated signaling pathways. 
This modification serves as a rapid and reversible means to modu-
late protein activity and transduce signals. Advent of mass spec-
trometry has revolutionized our ability to map PTMs. These 
studies have provided a comprehensive view of proteins that 
undergo modifications along with specific sites. Based on our 
understanding of enzyme–substrate relationships and specific 
motifs that are targeted for post-translational modifications, a 
number of computational tools have been developed to predict 
PTMs. These tools can be utilized to evaluate the validity of identi-
fied sites in large scale studies (based on known sites in the data-
base) or predict potential modifications.

Human Protein Reference Database (HPRD) [21] is a reposi-
tory of manually curated PTM sites. Phospho.ELM [22] is a 
resource of experimentally validated phosphorylation sites that are 
manually curated from the literature. The RESID [23] database 
provides PTM information with literature citation, protein feature 
table, molecular models, structure diagrams and Gene Ontology 
cross reference. PhosphoSitePlus [24] is a comprehensive reposi-
tory of curated phosphosites containing reference and orthologous 
residues in other species. O-GLYCBASE [25] is a resource con-
taining experimentally verified O-linked glycosylation sites. 
Unimod [26] is a comprehensive public domain database of pro-
tein modifications for mass spectrometry application.

Most extensively studied PTM is phosphorylation. Protein 
kinases add phosphate moieties to Tyr, Ser, or Thr residues. Mass 
spectrometry is being extensively used to investigate protein phos-
phorylation in a high-throughput manner. Phosphorylation either 
increases or decreases the activity of target protein. Overlaying phos-
phoproteomic data on curated pathways can provide insights into 
activation or deactivation of a particular signaling pathway. 
PhosphositePlus [24] and PHOSIDA [27] are comprehensive repos-
itories of curated phosphosites containing reference and orthologous 
residues in other species. Protein sequences can be analyzed using 
various prediction tools for identifying phosphosites such as 
KinasePhos 2.0 [28], NetPhos 2.0 [29], and DISPHOS 1.3 [30].

Several computational approaches have been developed to pre-
dict acetylation sites. NetAcet [31] is a neural network based 
N-terminal acetylation site prediction tool, N-Ace [32] predicts 
acetylation sites based on physicochemical properties of protein with 
accessible surface area, PSKAcePred [33] is an approach that uses 

3.3  Post-
translational 
Modification Analysis

Krishna Patel et al.



155

Table 2 
List of pathway resources and network analysis tools

Name Description Link Reference

NetPath NetPath is a manually curated resource 
of signal transduction pathways. 
Pathway data can be browsed, 
visualized or downloaded in PSI-MI, 
BioPAX and SBML formats. These 
standard formats enable visualization 
using external tools like Cytoscape

Web www.netpath.org [16]

PANTHER Protein ANalysis THrough 
Evolutionary Relationships 
(PANTHER) is an analysis 
framework with multiple tools for 
evolutionary and functional 
classification of proteins. Panther 
pathway resource allows visualization 
of protein expression data in the 
context of pathway diagrams

Web http://www.pantherdb.org/
pathway

[17]

KEGG Kyoto encyclopedia of genes and 
genomes (KEGG) is an integrated 
database resource. Pathway maps 
and annotation in KEGG is widely 
used for pathway enrichment analysis

Web http://www.genome.jp/
kegg/

[4]

STRING Search Tool for the Retrieval of 
Interacting Genes/Proteins 
(STRING) is a database of protein–
protein interactions

Web http://string-db.org/ [18]

FunRich FunRich is a downloadable tool for 
pathways and GO enrichment 
analysis of genes and proteins. It can 
process genes/proteins irrespective 
of source of the sample as user can 
load customized database along with 
default available background 
database

Stand-alone http://funrich.org/ [2]

MINT MINT: Molecular INTeraction is a 
curated molecular interaction 
database

Web, stand-alone http://mint.
bio.uniroma2.it/mint/
Welcome.do

[19]

NetworKIN NetworKIN database provides 
interface to analyze cellular 
phosphorylation networks. It allows 
users to query precomputed 
kinase–substrate relations or obtain 
predictions on novel 
phosphoproteins

Web, stand-alone http://
networkin.info

[20]
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evolutionary similarity along with physicochemical properties to 
predict lysine acetylation sites and Species Specific Prediction of 
Lysine Acetylation (SSPKA) [34] is a computational framework that 
incorporates predicted secondary structure information, and com-
bines functional features and sequence feature to predict species-
specific acetylation sites across six different species—H. sapiens, R. 
norvegicus, M. musculus, E. coli, S. typhimurium and S. cerevisiae.

Ubiquitination is one of the most difficult PTMs to be identi-
fied due to its low abundance, size, and dynamic regulation. Due 
to larger size of ubiquitin compared to other PTMs, it is difficult to 
capture by mass spectrometry. However, several ubiquitination 
sites have been mapped in the last few years based on diglycine-
modified lysine tag can be identified by mass spectrometry. Several 
tools including UbPred [35], UbiPred [36], E3Miner [37], hCK-
SAAP_UbSite [38], and iUbiq-Lys [39] have been developed over 
the years for prediction of ubiquitination sites. hUbiquitome [40] 
is a comprehensive repository of experimentally verified human 
ubiquitination enzymes and substrates.

Small ubiquitin-like modifier (SUMO) attaches to various tar-
get proteins and modulates cellular processes such as DNA replica-
tion, transcription, cell division, nuclear trafficking, and DNA 
damage response. SUMOylation affects half-life, localization of 
targets or binding partners and is a crucial mechanism that allows 
cells to adapt to stress stimuli. Identification of SUMO sites has 
enabled us to identify strong dependency of SUMOylation events 
on other PTMs [41]. SUMOsp [42] and GPS-SUMO [43] pre-
dicts SUMO sites on proteins.

Glycosylation is a common PTM that plays a crucial role in 
protein folding, cell–cell interaction, antigenicity, transport, and 
half-life. There are four types of glycosylation: N-linked, O-linked, 
C-mannosylation, and GPI anchor attachment. EnsembleGly [44] 
predicts both O- and N-linked glycosylation sites, NetCGlyc [45] 
predicts C-mannosylation, NetOGlyc [46] predicts O-glycosylation 
sites, and NetNGlyc [47] predicts N-Glycosylation sites; PredGPI 
[48] and GPI-SOM [49] predict GPI anchor sites in a protein.

Scansite [50] is a tool to analyze protein sequence for phos-
phorylation motifs recognized by many kinases and Motif-X [51] 
allows prediction of various PTM site motifs by identifying over-
represented residues in the flanking regions. ProMEX [52] is a 
database of mass spectra of tryptic peptides from plant proteins and 
phosphoproteins.

Here we describe PTM analysis using commonly used PTM 
database Phospho.ELM [22] and phosphorylation PTM site pre-
dictor NetPhos 2.0 [29].

	 1.	To identify experimentally validated PTMs of a given protein, 
browse Phospho.ELM database (http://phospho.elm.eu.
org/index.html). Database can be queried using protein name, 
UniPROT accession, and Ensembl identifier.
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	 2.	Result page of Phospho.ELM database consists of table detailing 
residue, position of residue in proteins, flanking sequence with 
PTM site, kinase, PubMed reference for each site reported, 
conservation score, cross-reference to eukaryotic linear motif 
resource (ELM: http://elm.eu.org/), phospho-peptide bind-
ing domain, SMART domains, and cross-reference to PDB 
link along with other information such as substrate, cross-ref-
erence to PHOSIDA [27], PhosphositePlus [24], MINT [19], 
and GO-Terms [1].

	 3.	Computational prediction of phosphorylation can be done 
using NetPhos 2.0 server (http://www.cbs.dtu.dk/services/
NetPhos/). Users can submit protein sequence in FASTA for-
mat and select target residue for phosphorylation (tyrosine, 
serine, or threonine). By default, all three residues are checked 
in the analysis. Select checkbox if users wish to generate graph-
ical output.

	 4.	Click on “Submit” to initiate analysis. In a single query, up to 
2000 protein sequences can be analyzed by this Web-based 
tool.

	 5.	Result page will display table detailing submitted protein ID, 
residue position, PTM site with flanking sequences and score. 
Three tables are separately generated for serine, threonine, and 
tyrosine.

	 6.	A graphical result depicts propensity of a residue on a given 
position as PTM site. Three different color peaks are used for 
each residue (S,T,Y) on an X-Y plane where X-axis is sequence 
position and Y-axis is phosphorylation potential.

A multitude of tools are available for data integration and visualiza-
tion of “omics” data-sets (Table 3). Most visualization tools focus 
on biomolecular interactions and pathways. These tools commonly 
employ 2D graphs for data representation. The basic efficiency of 
these tools lies in its compatibility with other tools and databases.

4  Notes

	 1.	It is preferable to use ‘Gene Symbol’ as unique identifier for 
genes. DAVID has ID conversion tool that can be used to pre-
pare the lists with uniform identifiers.

	 2.	Enrichment analysis methods often involve statistical tests to 
determine if input data contains overrepresentation of proteins 
involved in certain functions, processes, or pathways more than 
what is expected by chance. This is calculated with respect to 
the background database used by respective tools. Many tools 
also provide flexibility for users by providing the option of  
using custom database as background. Knowledge of statistical 

3.4  Visualization 
Tools
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approach employed in such tools would allow user to make 
relevant selections for different kind of datasets to identify most 
enriched genes/proteins cluster.

	 3.	Pathway enrichment analysis is done using the pathway data-
base used in the background. Back end pathway database used 
for analysis will directly influence the outcomes of the pathway 
analysis. This aspect should be taken into consideration and 
users should select appropriate pathway annotation resource 
most suitable for intended pathway analysis.

Table 3 
List of pathway analysis and visualization tools

Name Description Link Reference

GenMAPP GenMAPP is a Web-based visualization 
tool for gene/protein expression 
profiles. It has MAPPBuilder tool for 
creating MAPP file (.mapp) which 
creates graphical pathway representation 
of genes and MAPPFinder tool to 
annotate the pathway. Each gene is 
identified by unique geneID from 
Genbank. MAPP files can be shared and 
manipulated by the user

Stand-alone http://www.
genmapp.org

[53]

CytoScape Cytoscape is Java-based stand-alone tool 
which supports large scale network 
analysis. Both protein–protein and 
protein–gene networks can be visualized 
and edited. The standard file format of 
Cytoscape is Cytoscape Session File (.
cys). Input file in Cytoscape can be 
delimited text table or excel workbook 
though it supports all major input 
formats. The result can be exported in 
any of the formats like SIF, GML, 
XGMML, and PSI-MI formats

Stand-alone http://www.
cytoscape.org/

[54]

Medusa Medusa is Java application for visualization 
of complex pathways. Result from 
STRING pathway database can be 
analyzed in Medusa. Medusa is less 
suited for big datasets

Stand-alone https://sites.
google.com/site/
medusa3visualization/

[55]

Perseus Perseus is a statistical analysis visualization 
tool for proteomics data. It has 
incorporated multiple statistical methods 
like t-test, clustering, enrichment analysis 
including normalization of data. It 
provides various graphs for visualization 
of data like scatter plot and volcano plot

Stand-alone http://www.
biochem.mpg.
de/5111810/perseus

[56]
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Chapter 13

A Systematic Bioinformatics Approach to Identify High 
Quality Mass Spectrometry Data and Functionally Annotate 
Proteins and Proteomes

Mohammad Tawhidul Islam, Abidali Mohamedali, Seong Beom Ahn, 
Ishmam Nawar, Mark S. Baker, and Shoba Ranganathan

Abstract

In the past decade, proteomics and mass spectrometry have taken tremendous strides forward, particularly 
in the life sciences, spurred on by rapid advances in technology resulting in generation and conglomeration 
of vast amounts of data. Though this has led to tremendous advancements in biology, the interpretation 
of the data poses serious challenges for many practitioners due to the immense size and complexity of the 
data. Furthermore, the lack of annotation means that a potential gold mine of relevant biological informa-
tion may be hiding within this data. We present here a simple and intuitive workflow for the research com-
munity to investigate and mine this data, not only to extract relevant data but also to segregate usable, 
quality data to develop hypotheses for investigation and validation. We apply an MS evidence workflow for 
verifying peptides of proteins from one’s own data as well as publicly available databases. We then integrate 
a suite of freely available bioinformatics analysis and annotation software tools to identify homologues and 
map putative functional signatures, gene ontology and biochemical pathways. We also provide an example 
of the functional annotation of missing proteins in human chromosome 7 data from the NeXtProt data-
base, where no evidence is available at the proteomic, antibody, or structural levels. We give examples of 
protocols, tools and detailed flowcharts that can be extended or tailored to interpret and annotate the 
proteome of any novel organism.

Key words MS validation, MS evidence, Functional annotation, Missing proteins

1  Introduction

The advent of high-throughput proteomic and genomic analyses 
methods ranging from RNASeq to high-end mass spectrometry 
(MS) has resulted in scientists now being able to generate vast 
amounts of data from single experiments. The challenge over the 
past decade has been not only in generating relevant data, but 
more importantly in manipulating, storing, and interpreting this 
data to answer pertinent biological questions [1]. Biostatistics and 
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bioinformatics tools have become indispensable in extracting and 
analyzing these data sets [2] but a bewildering array of such tools 
are available, often each with its own intricacies, interpretation 
challenges, and shortfalls [3]. However, before statistical analyses 
and interpreting the results from proteomics data, it is imperative 
that a protein or gene is correctly identified and, more importantly, 
annotated. Proteomics data and search engine software in most 
cases rely on carefully curated and computationally annotated pro-
tein databases for protein identification, the results of which are 
then be further or concurrently analyzed for biological relevance 
(location, biological/molecular/biochemical processes) with a sta-
tistical perspective [4–6]. These annotated proteins are then used 
as a basis for identifying proteins from proteomics experiments 
where computationally determined theoretical peptide masses are 
compared to mass data obtained from often high-accuracy instru-
ments. These mass-based search software programs then report 
confidence values against an identified protein. Numerous software 
solutions exist to identify and interpret MS data and are in use as 
standard operating protocols in laboratories across the globe [7, 8]. 
Users are then encouraged/required to deposit data into public 
MS data repositories, which then report protein identifications 
with details of results from these tools. The primary limitations to 
correct protein identification include but are not limited to user 
selected error thresholds, search databases and spectral quality 
thresholds [9]. Moreover, practitioners are not versed in exactly 
how the enormous MS data resources can be assessed and used to 
validate their own MS data.

Another serious obstacle to proteomic studies is often in the 
analysis of MS data from unannotated (novel) proteomes or unan-
notated database entries. At the core of most automated annota-
tion technologies is a sequence homology search against protein 
databases of known function. Most annotation approaches use a 
single pass searching methodology against one or several databases, 
which may lead to the generation of unannotated results, putative 
proteins and translated coding regions without much metadata 
[10–12]. To overcome these limitations, we have previously 
reported a novel methodology for sequentially searching multiple 
databases to allow a more robust drill down [10]. We proposed a 
sequential search approach, where unannotated proteins are 
matched against reviewed proteins with experimental evidence, to 
identify homologues from which putative function assignment can 
be made [12]. Those proteins for which no database matches were 
found, are then matched against reviewed proteins. Following this 
step, the sequences without matches are checked to determine 
whether they are specific to that organism, due to speciation, fol-
lowed by searching against proteins with three-dimensional struc-
ture, for remote homologue identification. Independently, we have 
adopted an annotation strategy that assigns putative functional 
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Fig. 1 The overall workflow for a systematic bioinformatics approach to identify high quality MS data and 
functionally annotate proteins and proteomes

annotations by mapping to protein domains, motifs and families 
complemented by gene ontology (GO) terms  and biochemical 
pathways [10–12].

In this chapter, we provide a roadmap for a systematic bioin-
formatics approach to identify high quality MS data and function-
ally annotate proteins and proteomes, illustrated in Fig. 1. This 
analysis workflow addresses both MS data validation (Fig. 2) as 
well as functional annotation (Fig. 3). Firstly, we outline an intui-
tive approach to interpreting and validating MS data from various 
search engine software solutions using a simple workflow. We then 
describe a comprehensive functional annotation pipeline that is 
ideally suited to proteins and proteomes, with very little or no 
annotations available (e.g., novel organisms or “missing” proteins 
[10–12]). This pipeline is also suitable for reconfirming data 
obtained from proteomics experiments, before hypotheses are for-
mulated. The methods we propose here would be a significant 
addition to any existing workflows in proteomics laboratories as it 
requires minimal computing power and results in biologically 
meaningful data interpretation.

Computational MS Data Mining and Functional Annotation
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2  Materials

MS data can be sourced from proteomics databases, listed in Table 1, 
for comparing with user-derived MS data. Users may derive data 
from any other relevant search engines or data repositories.

Retrieve all required information to your computer. For the human 
chromosome 7 example, the following are required:

	 1.	The neXtProt [13] database report for human chromosome 7 
(hChr7) [14];

	 2.	Protein accession reports of protein evidence level 2–4 (tran-
script, homology and predicted) [15] from neXtProt [13] 
database;

	 3.	FASTA sequences of hChr7 proteins with evidence level 2–4 
from UniProt [16] (see Note 1);

	 4.	Protein datasets in FASTA format from UniProt database [16]:
	 (a)	� Non-human reviewed mammalian proteins with protein 

evidence,
	 (b)	Non-human reviewed mammalian proteins,
	 (c)	 Human reviewed proteins;

	 5.	Protein Data Bank (PDB) [17] proteins from the PDB [18].

	 1.	Online batch peptide match tool [19] for identifying proteo-
typic peptides;

	 2.	BLAST [20] package of tools for database similarity search to 
identify proteins homologous to known proteins or structures 
[21];

	 3.	InterProScan [22] for protein domain mapping [23];
	 4.	KAAS [24] or KOBAS 2.0 [25] for pathway mapping.

2.1  Data Sources

2.1.1  MS Data Validation

2.1.2  Functional 
Annotation

2.2  Software

Table 1 
Publicly available proteomics databases

Name URL

PRIDE http://www.ebi.ac.uk/pride/
archive/simpleSearch

gpmDB http://gpmdb.thegpm.org

MaxQB http://maxqb.biochem.mpg.
de/mxdb/

Proteomics DB https://www.proteomicsdb.org

Computational MS Data Mining and Functional Annotation

http://www.ebi.ac.uk/pride/archive/simpleSearch?q=&submit=Search
http://www.ebi.ac.uk/pride/archive/simpleSearch?q=&submit=Search
http://gpmdb.thegpm.org/
http://maxqb.biochem.mpg.de/mxdb/
http://maxqb.biochem.mpg.de/mxdb/
https://www.proteomicsdb.org/
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3  Methods

Proteomic databases hold peptide information analyzed using dif-
ferent MS data analysis software by researchers worldwide. To 
demonstrate the efficacy of our method, we extracted peptide data 
from numerous repositories to demonstrate interpretation and 
analysis of data from different search engines (the process is out-
lined in Fig. 2). The results presented in this chapter are based on 
database entries as of May 2016. As the databases used for both 
data download as well as by the search tools in Section 2 are con-
stantly updated, the exact peptide numbers may differ from those 
reported here.

	 1.	Go the relevant webpages listed in Table 1, for PRIDE (either 
directly or through the link provided by UniProt for the 
protein) [26], GPMDB [27], MAXQB [28], and ProteomicsDB 
[29] databases and collect the MS/MS data for the human 
disintegrin and metalloproteinase domain-containing protein 
8 (ADAM8) (Uniprot ID: P78325).

	 2.	Collate all relevant information pertaining to the protein: anal-
ysis software (listed in Subheading 2.2) along with peptide 
sequence information (in this case, 148 peptides); availability 
of spectrum and number of observations (if provided by the 
database) for each peptide. Table 2 lists the information to be 
collected for each MS software program.

	 3.	Preprocess the collected data by removing very short peptides 
(less than seven amino acids: six entries were removed) and 

3.1  MS Data 
Validation

Table 2 
Relevant parameters collected from MS data analysis software, as collated by proteomics databases

Database MS data analysis software Information collected

1. PRIDE Sequest
Mascot
Spectrum Mill
Peptide Shaker

Sp,
Xcorr
Mascot Score
Mascot Threshold
Mascot Expectation Score
Spectrum Mill Peptide Score
Peptide Confidence
Peptide Threshold
PSM Confidence
PSM Threshold

2. GPMDB X! Tandem E-value

3. Human Proteinpedia – Peptide Score

4. ProteomicsDB Andromeda
Mascot

Andromeda Score
Mascot Score

Mohammad Tawhidul Islam et al.



169

peptides that have incomplete scores or no spectra (ten entries). 
This filtered dataset (132 peptides) is used for further analysis. 
Peptides of six amino acids or less are not considered signifi-
cant for identification [9].

	 4.	To avoid the protein inference problem [30], process the pep-
tides through the online batch peptide match tool [19] using 
the UniProtKB protein database; select UniProt organism: 
Homo sapiens [9606] and ensuring that Leucine (L) and 
Isoleucine (I) are considered equivalent. Peptides with a single 
match to the exact protein ID (i.e., ADAM8) are proteotypic 
(seven peptides) and selected for further analysis. Peptides 
without a match in UniProtKB database can be manually 
searched against NCBI Reference Sequence (RefSeq) Database 
of humans (taxid: 9606) (see Note 2).

	 5.	Review the MS software parameter scores for each peptide and 
rank them as “good” (50 peptides), “moderate” and “poor” 
(127 peptides combined) according to Table 3 (see Note 3).

	 6.	Manually verify the correct peptide assignment for peptides 
with good scores by validating the spectra. Table 4 lists the 

Table 3 
Recommended values for MS data from the most commonly used search engine software

Search engine Good Moderate Poor

Sequest
Raw Sp Score

300 200 120

Raw XCorr Score 2 1.5 0.5

GPM
X! Tandem E value

−10 −5.7 −3

Mascot
Mascot Score Raw

7.5 4 2

Mascot
Mascot Expectation 

Value

0.005 0.05 0.5

Spectrum Mill
Spectrum Mill value

15 9 5

MAX-Quant
Raw Andromeda Score

200 100 60

Peptide Shaker PC > PT and PSMC > 
PSMT

PC > PT and PSMC < 
PSMT

or
PC < PT and PSMC > 

PSMT

PC < PT and PSMC < 
PSMT

PC peptide confidence, PT peptide threshold, PSMC PSM confidence, PSMT PSM threshold
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peptides considered “good” from the example dataset (16 
peptides) (see Note 4).

Use sequential database similarity search technique [12] to check if 
a target sequence is homologous to sequences that are already 
available in existing databases (see Note 5).

	 1.	Download and install the latest BLAST [20] package of tools 
on your machine from [21].

	 2.	Make BLAST-searchable databases  for each of the reference 
databases mentioned in Subheading 2.1 [4, 5]. The command 
to create a BLAST database is:
makeblastdb -in<inputfile>-out<outputfile>-
dbtype prot

	 3.	Perform a BLASTP search against the Non-human reviewed 
mammalian proteins with protein evidence database, using 
default parameters with a minimum E-value of 1e–05 to iden-
tify homologous proteins to target sequences. The command 
for carrying this out is:

3.2  Sequential-
BLAST 
Similarity Search

Table 4 
Top scoring manually validated proteotypic peptides for ADAM8 from the 
different data repositories

Database Unique peptides of ADAM8 identified

1 GPMDB GQDHCFYQGHVEGYPDSAASLSTCAG

2 GPMDB AICIVDVCHALTTEDGTAYEPVPEGTR

3 GPMDB GEQCDCGPPEDCR

4 GPMDB GFFQVGSDLHLIEPLDEGGEGGR

5 GPMDB CQDLHVYR

6 GPMDB GDGAASRAGPL

7 GPMDB SNPLFHQAASR

8 GPMDB CIMAGSIGSSFPR

9 MaxQB GPQEIVPTTHPGQPAR

10 MaxQB PGAGAANPGPAEGAVGPK

11 MaxQB VSAMCSHSSGAVNQDHSK

12 PRIDE VRRALPSHLGLHPER

13 PRIDE VKPAGELCR

14 PROTEOMICSDB ADMCGVLQCK

15 PROTEOMICSDB RPPPAPPVTVSSPPFPVPVYTR

16 PROTEOMICSDB VKPAGELCRPK
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blastp -num_threads<n>-query<input FASTA>-
db<path to blast database>-out<output file>-
evalue 1e-05 -outfmt 6

	 4.	Sort your outputs according to target protein id, and sequence 
identity. Retain results with % identity value greater than or 
equal to 50. If you have multiple hits for the same protein 
sequence, retain the top hit only (see Note 6).

	 5.	Compare your results with your input sequence list to identify 
sequences that yielded no matches in step 3. The sequences 
having no database match will be analyzed further.

	 6.	Perform a BLASTP search against the non-human reviewed 
mammalian proteins dataset, use default parameters with a 
minimum E-value of 1e−0 5. Use the sequences from step 5 as 
your input sequence.

	 7.	Sort your outputs according to target protein id, and sequence 
identity. Retain results with % identity value greater than or 
equal to 50. If you have multiple hits for the same protein 
sequence, retain the top hit only (see Note 6 ).

	 8.	Compare your results with your input sequence to identify 
sequences that yielded no matches in step 6. The sequences 
having no database match will be analyzed further.

	 9.	Perform BLASTP search against the non-human reviewed 
mammalian proteins dataset, use default parameters with a 
minimum E-value of 1e−05. Use the sequences from step 8 as 
your input sequence.

	10.	Sort your outputs according to target protein id, and sequence 
identity. Retain results with % identity value greater than or 
equal to 50. If you have multiple hits for the same protein 
sequence, retain the top hit only (see Note 6 ).

	11.	Compare your results with your input sequence to identify 
sequences that yielded no matches in step 9. The sequences 
having no database match will be analyzed further.

	12.	Perform BLASTP search against the Human reviewed proteins 
dataset, use default parameters with a minimum E-value of 
1e−05. Use the sequences from step 11 as your input sequence.

	13.	Sort your outputs according to target protein id, and sequence 
identity. Retain results with % identity value greater than or 
equal to 50. If you have multiple hits for the same protein 
sequence, retain the top hit only.

	14.	Compare your results with your input sequence to identify 
sequences that yielded no matches in step 11.  Again,    the 
sequences having no database match will be analyzed further.

	15.	Perform BLASTP search against the PDB dataset, use default 
parameters with a minimum E-value of 1e−05. Use the 
sequences from step 14 as your input sequence.
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	16.	Sort your outputs according to target protein id, and sequence 
identity. Retain results with % identity value greater than or 
equal to 50. If you have multiple hits for the same protein 
sequence, retain the top hit only (see Note 6 ).

Use InterProScan [22] to assign putative functional annotation by 
mapping to protein domain, motif and families. This program can 
assign GO terms to the query proteins.

	 1.	Open your browser and go to the InterproScan search page [31].
	 2.	Copy and paste your protein sequence to the input box.
	 3.	Select advanced search, then select the member databases for 

Families, domains, sites and repeats, and structural domains.
	 4.	Click search, and wait for the process to complete (see Note 7).
	 5.	Select export format (TSV) and download the data (see Note 8).

Use KEGG Orthology-Based Annotation System (KOBAS -2.0) 
[25] for pathway mapping. This is a two-step process, first map-
ping the proteins to genes in KEGG GENES, based on BLAST 
searches to obtain pathway and disease annotations and then find 
enriched pathways and diseases against the human proteome as the 
background (see Note 9).

	 1.	Open your browser and go to KOBAS-2.0 [25] webserver [32].
	 2.	Click Annotate from the left hand menu.
	 3.	Select input type as FASTA protein sequence.
	 4.	Paste your sequence or upload a copy from your computer.
	 5.	Choose the species or KO as Homo Sapiens (Human) (see 

Note 10).
	 6.	Expand the Options for sequences or BLAST output and use 

E-value = 1e−5 and BLAST subject coverage = 0.50 (see Note 6).
	 7.	Click run and wait for the process to complete.
	 8.	Once completed, click on use this file as the input to the Identify’s 

input, which will take you to the Identify processing page to 
identify enriched pathways, diseases and GO terms.

	 9.	Run it with default parameters to select all databases.
	10.	Once completed, download the results to your local machine.

4  Notes

	 1.	A simple script can be written to download FASTA sequences 
programmatically using freely available non-interactive com-
mand line tools such as Wget [33] and cURL [34].

	 2.	Proteotypic peptides alone are used for protein identification. 
Peptides that uniquely match to an isoform or splice variant 

3.3  Functional 
Annotation

3.3.1  Protein functional 
domains and motifs, 
and Gene Ontology (GO)

3.3.2  Pathway Analysis
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could be used for further independent analysis and are filtered 
out in this high-stringency pipeline. Decoy peptides are also 
removed from data for downstream analysis. Some software 
solutions may integrate this step into the analysis but checking 
algorithms using this method are advised.

	 3.	Current literature and manufacturer technical guidelines from 
the relevant vendors of the different data analysis software was 
collated and carefully studied to determine which parameter 
values could be considered “good,” “moderate,” and “poor” 
from the specific search engine software. From these parameter 
values, “good” scores were considered acceptable, while mod-
erate scores could be used as supporting evidence for protein 
presence, while poor scores are of unacceptable confidence. 
These scores have to be associated usually with an FDR of <1 
% at the protein level which can be set in the search engine 
parameters [35]. Database limitations may affect these results 
and hence using a comprehensive, well-annotated database 
such as UNIPROT is advisable.

	 4.	Spectra and associated annotation, spectral match error values 
and fragmentation ions from most databases and software are 
readily available through the associated web graphical user 
interface. Spectra from the PRIDE database is not annotated 
and therefore individual PRIDE xml files need to be analyzed 
using the PRIDE Automatic Spectrum Annotation Pipeline 
[36]. The spectra have be visually assessed on a confidence-
weighted scale of three primary criteria [37, 38] that are most 
important:

	 (a)	� Spectral noise: values <0.3 Signal to noise ratio considered 
as little or no noise while values >0.3 signal to noise ratio 
would represent unacceptably large amounts of noise.

	 (b)	�Error: where the assignment error was within 10 
ppm/0.4 Da is considered acceptable, while values outside 
this threshold are unacceptable.

	 (c)	� The run of singly charged ions: a good run of both b or y 
ions in the case of a CID experiment would be considered 
the best followed by a good run of either b or y ions, or 
run of other ions (x, z, Y++ or B++, etc.), whereas a hap-
hazard run of ions would not be acceptable.

Two secondary criteria that can be taken into consid-
eration include the number of assigned peaks (for instance, 
having all major peaks assigned would be good whereas if 
only a small number of peaks are assigned, this spectrum 
may demonstrate a poor match) and relative intensity of 
the spectrum (major assigned peaks of moderate intensity 
(>20 %) or low intensity (<20 %). Recently, even a single 
unique proteotypic peptide at least 9aa long is considered 
sufficient to confidently identify a protein [9].

Computational MS Data Mining and Functional Annotation



174

	 5.	You can access the sample results for human “missing” pro-
teins from ProtAnnotator [10] webserver [39].

	 6.	We used e-value = 1e−5 and % identity = 50 for our studies. 
You can adjust these according to your experiment.

	 7.	It is possible to download and install InterProScan [22] locally 
and run it with default parameters for batch processing how-
ever it requires computers with good memory and processing 
power and some Linux knowledge [40].

	 8.	If you are using InterProscan webserver, disable the popup 
blocker on your browser to download data.

	 9.	It is best to run this process as a registered user. Registered 
users can select the option to save their results in the working 
directory within the webserver. This will ensure your data not 
lost due to network outage or browser crash.

	10.	If you are analyzing nonhuman data, please select the species 
accordingly. Depending on your selections, databases will be 
displayed automatically.
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Chapter 14

Network Tools for the Analysis of Proteomic Data

David Chisanga, Shivakumar Keerthikumar, Suresh Mathivanan, 
and Naveen Chilamkurti

Abstract

Recent advancements in high-throughput technologies such as mass spectrometry have led to an increase 
in the rate at which data is generated and accumulated. As a result, standard statistical methods no longer 
suffice as a way of analyzing such gigantic amounts of data. Network analysis, the evaluation of how nodes 
relate to one another, has over the years become an integral tool for analyzing high throughput proteomic 
data as they provide a structure that helps reduce the complexity of the underlying data.

Computational tools, including pathway databases and network building tools, have therefore been 
developed to store, analyze, interpret, and learn from proteomics data. These tools enable the visualization 
of proteins as networks of signaling, regulatory, and biochemical interactions. In this chapter, we provide 
an overview of networks and network theory fundamentals for the analysis of proteomics data. We further 
provide an overview of interaction databases and network tools which are frequently used for analyzing 
proteomics data.

Key words Proteomics, Network theory, Protein–protein interactions, Network tools, Network anal-
ysis, Bioinformatics

1  Introduction

In recent years, the development of high-throughput technologies 
such as next-generation sequencing techniques in the field of 
genomics and tandem mass spectrometry in the field of proteomics 
and metabolomics has led to the birth of the “omics” study [1]. 
These techniques and tools involved in the study of functional 
genomics and other omics data have constantly helped in our 
understanding of cellular biology and have drastically reduced the 
cost of conducting “omics” related studies. The speed with which 
data are generated and disseminated today means that researchers 
can gain insight for the fraction of the cost compared to that in 
past years. For instance, by using tandem mass spectrometry, two 
groups [2, 3] have developed the first draft of the human pro-
teome. Also, using bioinformatics, another group integrated 
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publicly available proteomics datasets to map 96 % of the human 
proteome [1].

However, with terabytes of proteomic data pouring into 
research centers every day, standard statistical methods for analyz-
ing data are becoming ineffective. Researchers are faced with the 
formidable task of how to take advantage of this heterogeneous 
data to gain insight in areas such as disease and drug development 
as well as answering questions such as the following: How can they 
characterize and manipulate complex interactome of basic elements 
such as genes and proteins? How can they visualize these interac-
tomes and infer meaningful information from them?

Network theory has long played a fundamental role in disci-
plines ranging from computer science, sociology, engineering, and 
physics, to molecular and population biology [4]. In biology and 
medicine, network analysis methods are applied in areas such as drug 
target identification, prediction of a gene or protein function, pro-
tein complex or module detection, prediction of novel interactions 
and functional associations, identification of disease subnetworks, 
disease biomarker identification, and mapping of disease pathways 
[5]. Networks have long been used in a variety of fields to reduce the 
complexity of data [6, 7]. Computational tools, including pathway 
databases and network building tools, have been developed to store, 
analyze, and interpret biological networks [8].

This chapter provides an overview of the application of network 
theory in analyzing and visualization of proteomic data by discussing 
various tools used for storage, analysis, and interpretation of pro-
teomic data through the use of biological networks with an emphasis 
on protein–protein interaction networks. To get started, we provide 
a brief background to both proteomics and network theory.

Coined by Marc Wilkins and colleagues [9] in the mid-1990s to 
mimic the terms “genomics” and “genome,” respectively, pro-
teomics is in essence a systems science whose aim is to identify and 
record the functions as well as structures of proteins in organisms. 
Proteomics is a systems science which involves not only the mea-
surement of proteins but also the measurement of their expressions 
in a cell and the interplay of proteins, protein complexes, signaling 
pathways, and network modules.

Proteins are termed as the workhorses of cellular systems, as 
they perform an array of cellular functions ranging from catalyzing 
reactions, cellular transportation, transcription of DNA informa-
tion to RNA, and acting as molecular motors to signaling [10]. 
They perform these functions not on their own, but within large 
complexes where they interact with other molecules like proteins, 
DNA, RNA as well as with other small molecules. Because of their 
importance, a malfunction in key proteins can lead to serious path-
ological outcomes like cancer, metabolic imbalances, and neurode-
generative diseases. With significant ongoing research into protein 

1.1  Background 
to Proteomics

David Chisanga et al.



179

functionality and their interactions with other molecules in under-
standing disease, research has turned to network theory concepts 
to model and study these interactions.

A network or a graph (in mathematics) is a collection of objects 
connected by lines. The objects are called nodes or vertices while 
the connections between the objects are called edges or links and 
are drawn as lines between points as shown in Fig. 1

Formally, a network is a graph G defined as an ordered pair 
G = (V, E) where V is a set of nodes and E is a set of edges [4]. 
Nodes are said to be adjacent if they are joined by an edge while 
node ‘A’ is said to be a neighbor to node ‘B’ if adjacent to node ‘B’ 
and vice versa. Edges between nodes can be undirected (Fig. 1) or 
directed (Fig. 2), as such a graph G = (V, E) is called undirected if 

1.2  Background 
to Network Theory 
Concepts

Fig. 1 Shows an example of an undirected network graph in which each node is 
connected by an edge that does not show the origin and destination by way of 
an arrow

Fig. 2 Shows an example of a directed graph in which each node is connected 
by an edge with an arrow indicative of the direction of the relationship

Network Tools for the Analysis of Proteomic Data
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an edge vv’ (where v and v’ are nodes in set V) in set E of edges 
implies that it is the same as edge v’v also in E; otherwise G is called 
directed. A directed acyclic graph, on the other hand, is a directed 
graph that contains no cycles. Finally, a graph is said to be con-
nected if there is a path from any node to any other node.

Using the above network/graph concepts, researchers have 
used networks to reduce the complexity of systems thereby making 
it easier to draw conclusions from them. Networks are applied in 
various fields such as computer networks, social networks, and 
interactome networks in molecular biology research.

Interactome networks provide a global picture that is useful in 
understanding how interactions between molecules influence 
cellular behavior [11]. It has been established that biological 
behavior arises from the complex interactions between the cell’s 
numerous molecules such as proteins, DNA, RNA, and other small 
molecules. Common examples of interactomes in molecular biol-
ogy are; protein–protein interactions, virus–host networks, tran-
scriptional regulatory networks, metabolic networks, and disease 
networks. Protein–protein interactions (PPIs) form the backbone 
of signaling pathways, metabolic pathways, and cellular processes 
required for normal functioning of cells [12].

The steps to perform proteomic analysis can be summed up by 
use of a flowchart as shown in Fig. 3, it involves identifying a set of 
target proteins of biological interest needs to be studied and then 
followed by retrieval or identification of interacting partners from 

Build PPIN

Interaction 
databases

Identify 
DE genes

High 
throughput 

database

Integrate PPIN 
and existing 
knowledge 

Network analysis

Downstream 
Analysis

Variation 
of network

Tissue
specificity 

Functional 
enrichment

List of proteins

Get interacting 
partners 

Pathways 
database

GO 
database

Get 
pathways

Get GO 
details

OR

Literature

List of custom 
interacting 

partners

Network Analysis tools
- Cytoscape
- FunRich
- MetaCore
- Ingenuity Pathways
- Gephi 
- PINA

Examples of analysis
- Topological analysis
- Clustering
- Functional enrichment
- Hotspot detection

OR

Fig. 3 Shows a summary representation of the steps involved in analyzing proteomic data using network 
theory concepts. It also shows the data types required and from where they can be sourced. It also gives an 
example of expected outputs from the network analysis
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various interaction resources discussed below. An interaction network 
is then generated and integrated with any existing knowledge such 
as gene ontology (GO) enrichment, biological pathways or differ-
ential gene or protein expression. A topological analysis of the net-
work is then performed using metrics such as degree, degree 
centrality or betweenness centrality which is further followed on by 
downstream analysis to identify network variations, functional 
enrichment of identified modules, or tissue specificity.

2  Protein–Protein Interaction Databases

The mappings of proteins and their interacting partners have been 
curated by various groups and deposited into online databases. 
These databases are typically Web-based resources that serve as 
archives of information pertaining to the mapping of protein inter-
actions, functional enrichment (GO enrichment) and pathway 
details. These databases act as sources of protein mapping informa-
tion in network analysis. The most widely used PPI databases 
include Human Protein Reference Database (HPRD) [13], 
Molecular Interaction Database (MINT) [14], Biological General 
Repository for Interaction Database (BioGRID) [15], Search Tool 
for Recurring Instances of Neighboring Genes/Proteins (STRING) 
[16], Database of Interacting Proteins (DIP) [17], Biomolecular 
Interaction Network Database (BIND) [18], and the IntAct 
molecular interaction database (IntAct). Depending on the data-
base, the annotations may be based on experimental observations 
while other databases such as STRING can have a high proportion 
of predicted and literature mined interactions. Below, we briefly 
discuss the most commonly used databases while Table 1 provides 
a summary of these database resources with protein–protein inter-
action mappings.

The Biological General Repository for Interaction Datasets 
(BioGRID) is an open, accessible Web-based repository of genetic 
and protein interaction mappings which have been curated from 
the primary biomedical literature of humans and other major 
model organism species [15]. As of May 2016, the database housed 
over 1,000,000 protein and genetic interactions curated from over 
56,000 high-throughput datasets and individually focused publica-
tions for major model organisms.

BioGRID features an easy to use Web interface with a search 
tool which users can use to search against the database, the search 
results then show the interacting partners, interactor details, and a 
graphical network visualization of the interacting partners. Users 
can then manipulate the network by either changing the network 
layout or filtering through the network by node degrees. In addi-
tion, users can also download custom defined or entire interaction 

2.1  BioGRID
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datasets for offline network analysis and downstream analysis. 
BioGRID also features online tools and resources that allow for the 
use of BioGRID data. A number of visualization tools such as 
Osprey, Cytoscape, and GeneMania, data management tools like 
ProHits, plugins like BioGRID Tab File Loader Plugin for 
Cytoscape and BiogridPlugin2 for Cytoscape as well as Web services 
BioGRID REST Service and PSICQUIC provide users with access 
to or can be used to analyze BioGRID data.

Human Protein Reference Database is a Web-based resource that 
houses experimentally derived human proteome information [13]. 
It is one of the most comprehensive collections of human pro-
teome information resource available online. It houses information 
pertaining to; protein–protein interactions, posttranslational 
modifications and tissue expression. As of May, 2016, the database 
housed over 30,000 protein entries, over 41,000 protein–protein 
interactions, 93,000 posttranslational modifications (PTMs), 
112,000 protein expressions, 22,000 subcellular localization 
details, 400 domains and with over 453,000 PubMed links to 
publications.

The landing page of HPRD provides a range of features rang-
ing from a querying functionality, BLAST feature to a browse 
feature. Users can query the database using the query page 
through a number of search options, the results are then dis-
played using graphical visual displays and are categorized into 
protein information, PTMs, protein length, and protein–protein 
interactions. Users can similarly get protein information through 
the browse page where the information is grouped into molecu-
lar classes, domains, motifs, PTMs and based on localization. 
HPRD further includes a Basic Alignment Search Tool (BLAST) 
which allows users to search against the database based on the 
provided protein or nucleotide sequence. Other features included 
are a phosphor motif finder tool which searches across user sub-
mitted protein sequence for the presence of over 300 phosphor-
ylation-based motifs listed in HPRD.  HPRD also provides tab 
delimited files for binary protein–protein interactions which users 
can download for offline processing and further download stream 
analysis.

The Molecular INTeraction database [19] is a Web-based 
resource that stores physical interactions between proteins of 
model organisms that have been curated from the scientific litera-
ture. As of May 2016, MINT had over 241,000 protein–protein 
interactions, 35,000 proteins, and over 5000 PubMed links to 
publications.

MINT data can be downloaded in several formats such as PSI-
ML, tab-delimited and MINT flat file formats. Otherwise, users 

2.2  Human Protein 
Reference Database
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can use the search feature that allows users to search the MINT 
database. Users can search the database using several options such as 
by gene name, protein accession number, or any 6-character keyword. 
A user defined list of proteins can furthermore be uploaded and 
used to generate a network visualization based on the information 
in the database.

The Biomolecular Interaction Network Database [18] is a Web-
based resource for PPI data and was one of the earliest resources 
for biomolecular interactions (proteins, genes, etc.), molecular 
complexes and pathways. BIND initiated by the University of 
Toronto as part of the Biomolecular Object Network Databank 
(BOND) has since been acquired by Thomson Reuters. BIND 
provides tools for data specification plus a database which is accom-
panied by data mining and visualization tools.

IntAct [20] is an open-source Web-based molecular interaction 
database that catalogs data curated from the scientific literature or 
from direct data depositions. As of May 2016, IntAct had over 
591,000 molecular interactions, and 91,000 interactors sourced 
from over 14,000 publications.

Using IntAct users can explore the fine details of the mechanism 
by which a specific protein binds to protein partners or use the 
entire interactome of an organism to perform a network analysis of 
large-scale ‘omics’ experiment. The front-end of IntAct features a 
search tool that can be used to search against the IntAct database. 
Users can then view the interacting partners, interaction details 
and a graphical presentation of the network.

STRING is a freely available Web-based biological database that 
houses information on experimentally derived and predicted pro-
tein–protein interactions for a number of organisms. This informa-
tion has been curated from various sources, including experimental 
data, computational prediction methods, and published literature. 
STRING holds over 184 million interactions, 9,000,000 proteins 
from over 2000 organisms.

STRING provides an easy-to-use Web interface that allows 
users to quickly search for a protein of interest and visualize and 
download interaction data. It further has a Cytoscape plugin which 
allows users to directly access the STRING database from 
Cytoscape. The interaction data returned from STRING is 
weighted and allows for the calculation of confidence scores for 
each interaction. In addition, STRING has capabilities that allow it 
to connect to other databases and consequently perform literature 
mining. It also includes a capability that allows for the drawing of 
simple protein networks based on the provided list of genes and 
the available interactions in the database.

2.4  Biomolecular 
Interaction Network 
Database

2.5  IntAct Molecular 
Interaction Database

2.6  Search Tool 
for Recurring 
Instances 
of Neighboring Genes/
Proteins (STRING)

David Chisanga et al.



185

3  PPI Data Exchange Formats

Interaction networks are represented in a number of different file 
formats, the most widely used formats are; tab delimited text (.tab 
or .txt format), excel workbooks (.xls format), simple interaction 
file (SIF or .sif format), nested network format (NNF or .nff for-
mat), graph markup language (GML or .gml format), XGMML 
(extensible graph markup and modeling language), SBML, 
BioPAX, PSI-MI level 1 and 2.5 formats. All the interaction repos-
itories provide at least one of these formats as a way to download 
interaction data.

The delimited text and excel workbook file formats are the most 
basic and widely used for working with interactive data and are 
supported by most if not all network analysis tools. Tables in these 
files can contain network and edge (interaction) attributes or val-
ues such as the confidence of an interaction. With these types of 
files, users can specify the columns for source and target nodes as 
well as interaction types, and edge attributes when importing net-
work data into an analysis tool.

This format allows for the construction of a network from a list of 
interactions by easily merging different interaction sets into a larger 
network.

Each line of an SIF file annotates a source node, a relationship 
(or edge type), and one or more target nodes as shown in the fol-
lowing example:
nodeA <relationship type> nodeB
nodeC <relationship type> nodeB
nodeD <relationship type> nodeA

This format is simple and similar to the SIF format except it allows 
the option of nesting a network into a single a node. An interaction 
is specified by either of two possible formats [21, 22]:

•	 A node “node” contained in a “network”:
–– Network node.

•	 Two nodes linked together contained in a network:
–– Network node1 interaction with node2.

GML unlike the SIF format comes with a language that supports rich 
graph formatting and is widely supported by most visualization soft-
ware tools. A GML formatted file can contain information pertaining 
to graphs, nodes, and edges, and hence capable of emulating almost 
every other format. A network can be built using the SIF format and 
by applying network layouts can then be stored as a GML file as this 
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preserves the layout of a network. Further details on the GML speci-
fication can be found on the GML documentation website: http://
www.fim.uni-passau.de/index.php?id=17297&L=1.

Other formats such as XGMML is the XML extension of the 
GML format and is the preferred format to GML, Systems 
Biology Markup Language (SMBL) format is an XML format 
used to describe biochemical networks, the specification for 
SMBL can be found on the website: http://sbml.org/
Documents/Specifications, PSI-ML format specification is an 
XML-based format that is used for data exchange of protein–pro-
tein interactions. GraphML is another XML-based format for 
generating graphs. Apart from the XML-based formats, JSON-
based file formats are increasingly being used for data exchange 
of protein–protein interactions (Subheading 2.3).

4  Network Analysis and Visualization Tools

This section discusses some of the commonly used tools in the 
proteomics network analysis, but before delving into what tools to 
use, we begin this discussion by looking at the ways by which net-
works can be quantified in order to provide more informative 
results.

The most commonly applied metric are; degree, degree distribu-
tion, scale-free networks, the degree exponent, shortest path, mean 
path length, and clustering coefficient [23]. By using these net-
work metrics, we can quantify and characterize important network 
features which are not commonly visible.

Protein–protein interactions are the most commonly used 
form of networks in proteomic data analysis. In these networks, 
proteins are represented as nodes while interactions between the 
nodes are depicted by edges or links. This mapping of proteins is 
based on experimental information which has been obtained from 
methods such as mass spectrometer [24], protein chip technolo-
gies [25, 26], yeast two-hybrid screens [27], and predictions from 
computational methods [28]. These mappings have been collected 
and deposited into online databases as discussed below.

Network tools are mainly used to analyze proteomic data 
through functional annotation, knowledge integration, modu-
larity analysis, topological analysis, and basic network property 
analysis [29].

The basic properties of a network such as node degree, degree 
distribution, betweenness centrality, and eigenvector centrality can 
be used to deduce the significance of a protein [30]. Another 
important metric is the identification of modules which represent a 
vital level of organization in biology [31]. A module in proteomics 
can be defined as a set of interacting proteins that can be associated 

4.1  Quantifying 
Networks
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with a common biological process. By using networks, clusters of 
interacting proteins can be identified as modules and associated 
with a functionality. Modules provide a comprehensive and global 
description of interaction patterns to comprehend the complexity 
of biological systems [32]. Module detection enables functional 
annotation of constituent proteins and the discovery of targets for 
therapy in diseases such as cancer. In addition to detection of mod-
ules, the integration of existing knowledge into networks plays a 
vital role in the analysis of proteomic data. Such knowledge may 
include integrating Gene Ontology (GO) annotations, differential 
gene expression, and pathway details. By highlighting such infor-
mation, candidate disease proteins may be identified and module 
functions can be annotated.

To perform network analysis on proteomic data, there are a number 
of steps that are involved; these steps are summarized in Fig. 3. 
The steps involved include but are not limited to:

	 1.	The first step involves identifying a list of proteins or genes that 
need to be analyzed using a network tool. The researcher can 
select which protein or gene appears on the lists, as per indi-
vidual needs.

	 2.	Interacting partners of these proteins are then obtained from 
any of the databases discussed above.

	 3.	A protein–protein interaction network is then built by using a 
visualizing tool from the tools listed in Table 2.

	 4.	To get more meaningful information from the network, the 
protein–protein interaction network is then integrated with 
already existing knowledge such as pathways, differential 
expressions for genes or proteins obtained from either high-
throughput custom data or online databases such as The 
Cancer Genome Atlas (TCGA). Other existing knowledge that 
can be integrated includes Gene Ontology enrichment, which 
can help to identify the functional annotations of the modules 
or individual proteins in the network.

	 5.	During topological analysis, network theory concepts such as 
degree, degree centrality distribution, Eigenvectors, and 
degree distribution are applied to identify proteins or nodes 
playing significant roles in the network, variations between a 
normal and an altered network and modules that can be 
mapped to a functionality.

	 6.	Topology analysis is further followed by downstream analysis 
whose objective is mostly dependent on the researcher.

	 7.	Some of the results that may be obtained from a network 
analysis of proteomic data include a visual representation of 
the network, module identification, network variations as well 
as functional enrichment of proteins and modules.

4.2  Steps 
to Performing Network 
Analysis
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Table 2 
Summary of Network tools for analyzing proteomic data

Tool Reference URL link Features

Cytoscape [22] http://cytoscape.
org/

Open source,
Data integration,
Network visualization,
Network Analysis,
Functional enrichment,
extensible by plugins,
Stand-alone,
Platform independent

FunRich 
(Functional 
Enrichment 
Analysis)

[8] http://funrich.org/ Open source,
Functional enrichment,
Dataset comparison,
Network visualization and analysis,
Stand-alone,
Runs only on Windows,
Results can be exported in various formats

MetaCore By Thomson 
Reuters

https://portal.
genego.com/

Proprietary,
Network visualization,
Network analysis,
Function enrichment analysis,
Data mining toolkit,
Network alignment

Ingenuity 
Pathways 
Analysis

IPA®, 
QIAGEN 
Redwood 
City

www.qiagen.com/
ingenuity

Proprietary,
Network visualization and modeling,
Causal network analysis,
Network analysis,
Functional enrichment analysis,
Pathway enrichment analysis,
Literature mining,
Allows for collaboration

Gephi Gephi https://gephi.org Network visualization,
Network analysis,
Network clustering,
Module identification,
Dynamic network analysis,
Real-time visualization

PINA: Protein 
Interaction 
Analysis

[37] http://cbg.garvan.
unsw.edu.au/pina/

Network construction,
Module detection,
Functional enrichment,
Network metric analysis,
Network visualization,
Community driven annotation

Osprey [39] http://biodata.mshri.
on.ca/osprey/
servlet/Index

Network visualization,
Integrates BioGRID,
Ability to compare functions between datasets,
Build interaction network from custom datasets,
Search for specific genes within a network,
filtering feature

David Chisanga et al.
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Cytoscape developed by Trey Ideker (a leading pioneer of systems 
biology) is a platform independent and open source software tool 
for the integration, visualization, and statistical modeling of molec-
ular networks together with other systems-level data [21, 33]. The 
core of Cytoscape provides users with the fundamental features to 
perform functions such as data integration, analysis, and network 
visualization. The core also has limited information stored but 
interconnects with other databases to obtain relevant information. 
Cytoscape functionality is extensible through the integration of 
plugins (http://apps.cytoscape.org/) which are now called apps 
from version 3.0 of Cytoscape.

The apps can be categorized into one or more of the following 
functional categories such as clustering, data integration, data 
visualization, enrichment analysis, graph analysis, and integrated 
analysis. Other functional categories include interaction database, 
layout, local data import, network analysis, network comparison, 
network generation, online data import, ontology analysis, path-
way database, scripting, systems biology, utility, and visualization. 
Figure 4 shows the distribution of these apps across the different 
functional categories.

The first step to a typical Cytoscape workflow is the importa-
tion of interactions. These interactions are imported from either a 
user’s own experiment data or from public databases. Data from 
experiments is loaded directly into Cytoscape using a standard file 
format such as generic tabular formats including CSV, Excel, and 
TSV or network-specific formats such as SIF, XGMML, GML, 
PSI-MI, BioPAX (Biological Pathway Exchange), OpenBEL 
(Open Biological Expression Language), and SBML.

4.3  Cytoscape

Fig. 4 Shows the distribution of apps or plugins across a number of categories in Cytoscape
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Importation of data from databases, on the other hand, requires 
the installation of plugins (apps). A list of genes of interest is passed 
as a query for interactions from the database. Examples of apps for 
importing data from databases include the BioGRID database 
plugin that can be used to import an entire interactome from the 
BioGRID database. Other ways in which networks can be imported 
into a network by mining interactions directly from literature or 
using computational inference from non-interaction data such as 
expression profiles. This is also achieved through the use of third-
party apps. An example of such apps that is Agilent Literature 
Search software which is a meta-search tool that can automatically 
search through multiple texts based search engines to extract asso-
ciations among a set of genes or proteins of interest.

Once the networks are imported into Cytoscape and network 
visualization is done, network analysis is achieved using the huge 
collection of apps. For example, using network topology apps like 
Knowledge-fused Differential Dependency Network (KDDN), 
users are able to calculate such statistics as network distribution of 
node degrees. Network clustering apps such as MCODE enable 
users to extract network regions which are densely connected, 
thereby forming modules which can then be related to complexes 
or pathways. Network enrichment apps are used to infer the func-
tions of the identified modules by detecting functional terms that 
are statistically overrepresented among the set of genes making up 
the module. Examples of apps that can perform functional enrich-
ment include BiNGO which is a tool that can determine which 
Gene Ontology categories are statistically overrepresented in a set 
of genes or a module, the ReactomeFIPlugin is another app that 
can be used to associate a set of genes in a module to pathways that 
are related to diseases such as cancer. Furthermore, functional 
modules can also be identified by integrating networks with expres-
sion data to infer network regions that are consistently up- or 
downregulated. Another example of network analysis that can be 
done using apps in Cytoscape is network comparison, this involves 
comparing networks across species or in different conditions to 
identify regions of the network with conserved interactions. 
GASOLINE (Greedy and Stochastic algorithm for Optimal Local 
Alignment of Interaction NEtworks) is an example of an app that 
can be used to compare multiple networks.

Cytoscape also supports the use of scripting languages such as 
Python and R. It enables users to develop their own scripts and 
integrate or call Cytoscape functionality in the order they want it 
to be done.

Functional Enrichment Analysis (FunRich) tool [8] is an open 
source stand-alone desktop software tool for functional enrich-
ment and protein–protein interaction network analysis of biologi-
cal molecules. Features of FunRich include functional enrichment 
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and network analysis of genes and proteins. In addition, FunRich 
allows the representation of results in editable graphical form as 
Venn, Bar, Column, Pie and Doughnut charts. FunRich users can 
perform a biological process, cellular component, molecular func-
tion, protein domain, site of expression, biological pathway, tran-
scription, and clinical synopsis phenotypic term enrichment. Users 
can analyze their datasets against two built-in background data-
bases; FunRich and UniProt or against a customized background 
database. FunRich does not require users to install any additional 
applications or plugins to conduct any of the above analysis. 
FunRich is currently only available for Microsoft’s Windows 
Operating system with plans underway to support other major 
operating system platforms.

The first step to performing an enrichment analysis in FunRich 
is the specification of an annotation database. By default, FunRich 
comes with a human annotation database. Each database consists of 
biological function annotations and an interaction database. FunRich 
also comes with the latest UniProt annotation database, otherwise, 
users can also include a custom database. Once an annotation data-
base has been specified, a list of genes or proteins is then imported. 
The user can perform a range of analyses on the datasets including 
comparison across the datasets using a Venn diagram that shows 
which proteins or genes are common across the datasets. Users can 
also perform gene set enrichment analysis to determine what 
biological functions are statically enriched in the gene or protein 
lists. In addition to these, FunRich also allows users to generate and 
build an interaction network from where users can then manipulate 
the network through enriched pathways and functions.

MetaCore from Thomson Reuters is an integrated proprietary soft-
ware suite capable of analyzing multiple types of biological data, for 
example, Next Generation Sequencing [34], variant, Copy Number 
Variation (CNV), microarray, metabolic, proteomics, microRNA 
etc. Functional analysis in MetaCore is performed against a high 
quality, a manually curated database containing molecular interac-
tions vis-à-vis protein–protein interactions, protein–DNA interac-
tions, and protein–RNA interactions. The database is also made up 
of molecular classes such as transcription factors, signaling and met-
abolic pathways, and disease ontologies. MetaCore was developed 
for the purpose of representing biological functionality along 
with the integration of functional, molecular, or clinical informa-
tion. Using the data mining toolkit available in MetaCore, users 
can perform functions like data visualization, analysis, and 
exchange of data, network alignment using multiple network 
alignment algorithms, and enrichment analysis. While MetaCore 
provides a set of rich features, it is a paid for a suite of software for 
integrated analysis.

4.5  MetaCore
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IPA (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) 
is a proprietary software application with features that allow scien-
tists to model, analyze, and understand the complexity of biologi-
cal and chemical systems [35]. IPA offers a host of network analysis 
functions some of these include causal network analysis which 
allows researchers to identify upstream molecules that control the 
expression of genes in their datasets and network analysis which 
allows the building and exploration of transcription of molecular 
networks such as microRNA, transcriptional networks, and pro-
tein–protein interaction networks. Network analysis in IPA can 
identify regulatory events that lead from signaling events to tran-
scriptional effects, help in understanding toxicity responses by 
exploring connections between drugs or targets and related genes 
or chemicals. Users can also edit and expand networks based on 
the molecular relationships most relevant to the project.

IPA is capable of identifying pathways, molecular mechanisms 
and biological processes that are relevant to a given dataset. It is 
also capable of finding biological and chemical knowledge from 
the scientific literature. Other features allow for collaboration, 
sharing of results and insights with project teams.

IPA is a subscription-based software application. It is made 
available as a Web-based, hosted or deployed solution.

Gephi is an open-source data exploratory, network visualization and 
analysis software tool for large network graphs. Gephi allows users to 
explore, analyze, spatialize, filter, cluster, manipulate, and export all 
types of network graphs. With Gephi, users can derive hypotheses 
and identify patterns by analyzing data using networks.

Gephi can be used to analyze a variety of networks ranging 
from biological networks to social networks. It supports the major-
ity of the network file formats discussed in Subheading 2.2 above. 
The core of Gephi can perform basic network metric analysis such 
as calculating betweenness centrality, closeness, clustering, com-
munity detection or module identification. Gephi further includes 
a feature that allows for the analysis of dynamic networks where a 
set of networks representing or derived from different conditions 
or events are compared to infer differences. In addition, Gephi is 
also extensible by a range of plugins which users can install to per-
form functionality that is not included in the core of Gephi. While 
Gephi provides a range of network analysis features, other biologi-
cal specific network analysis features such as functional enrichment 
cannot be easily done due to the unavailability of such functionality 
within Gephi or its associated plugins.

NDEx-The Network Data Exchange is not so much a network 
analysis tool, but rather an open source framework for sharing of 
networks of many types and formats, publication of networks as 
data, and the use of networks in modular software [36]. Unlike 
other similar tools such as KEGG and IntAct, NDEx is a data 
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commons framework that allows users to manage the sharing and 
the publication of networks. Users can upload any type of net-
works such as pathway models, interaction maps, and novel data-
driven knowledge networks. NDEx supports networks of varying 
formats including simple interaction format (SIF), extensible graph 
markup and modeling language (XGMML), BioPAX3, and 
OpenBEL. Each network uploaded to NDEx is given an accession 
number which acts as a universally unique identifier allowing users 
to share or include such networks in publications. NDEx also pro-
motes the development of network analysis algorithms and applica-
tions by providing access to networks which can be used as inputs 
through a Web-based relational state transfer application pro-
gramming interface (REST API). In addition, users can anony-
mously access networks by searching through the Web interface 
(www.ndexbio.org). The framework can also be downloaded and 
run on a local server or personal computer, depending on the 
needs of a user.

Protein Interaction Analysis is a Web-based integrated network 
analysis platform for protein interaction network construction, 
filtering, analysis, visualization, and management [37]. PINA has a 
quarterly updated backend database consisting of an integration of 
data from six other publicly available databases; IntAct, MINT, 
BioGRID, DIP, HPRD, and MIPS MPact. To construct a net-
work, PINA provides a query feature where users can either query 
a single protein, a list of proteins, a list of protein pairs or two lists 
of proteins.

The constructed PPI networks can be further analyzed by 
PINA’s inbuilt GO term and protein domain annotation tools. 
Other analyses that can be performed include the use of graph 
theoretical tools to either discover basic topology properties of a 
PPI network or identify topologically important proteins, such as 
hubs or bottlenecks, based on several centrality measures from pro-
tein domains and GO terms. In addition, the constructed networks 
can be downloaded in customized tab-delimited, GraphML or 
MITAB formats for further analysis using tools such as Cytoscape 
where they can be integrated with gene expression profiles.

Colorectal Cancer Atlas [38] is an integrated Web-based resource 
mainly meant for those involved in colorectal cancer research. The 
tool provides a platform that catalogs both non-quantitative and 
quantitative proteomic and genomic sequence variation data in 
both colorectal cancer cell lines and tissues. This information has 
been curated from existing literature.

Colorectal Cancer Atlas features an easy to use search func-
tionality that also offers auto-complete. Users can search for a 
given protein, gene, pathway, or cell line that may be of interest to 
them. Depending the type of search term, the tool then performs 
functional, pathway, and GO enrichment, maps sequence variances 
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known in colorectal cancer and associated with the searched term, 
and generates a protein–protein interaction network.

The network integrates proteomic data with genomic sequence 
variations. Users can use this network analysis module to quickly 
get an overall picture of the interacting partners of a given gene in 
colorectal cancer. It uses color intensities to indicate the number of 
sequence variances for a given gene in the database. Users can also 
filter through the network by either a gene symbol or by cell lines.

While this tool is specific to colorectal cancer, it provides fea-
tures that users can quickly use to get functional enrichment infor-
mation for a given protein or gene as well as perform a gene or 
protein centered network analysis. Overall, researchers can quickly 
look up a list of genes or proteins and get an overview of a given 
gene in colorectal cancer.

Osprey [39] is a software tool that allows for the visualization and 
analysis of complex interaction networks. Just like most visualiza-
tion tools, in osprey genes are represented as nodes and interac-
tions as edges. Developed using Java, Osprey is platform 
independent running on both Linux and Windows based systems.

Osprey provides a range of features that allows users to easily 
build data-rich graphical representations of their datasets. In addi-
tion, users can use the default BioGRID’s Gene Ontology interac-
tion datasets to quickly build an interaction network. Some of the 
features in Osprey include ability to compare functions between 
datasets, use of custom datasets to build interaction networks, abil-
ity to search for specific genes within a network as well filter func-
tions to filter for specific nodes within a large a network. Osprey 
also has a number of network layouts including concentric circles, 
spoke, circular, and dual ring, these layouts allow for the compari-
son of large-scale datasets in an additive manner.

5  Conclusions

In order to study and understand complex systems such as cellular 
systems, we show that network theory provides metrics that can be 
used to study such systems using a bottom-up approach. In this 
chapter, we give an overview of how network theory can be applied 
to the analysis and study of proteomics data based on a number of 
network theory metrics. Such metrics include node degree, node 
centrality, Eigen vector values, and modularity.

We also discuss the most frequently used network analysis tools 
in analyzing proteomic data. In doing so, a generic workflow that 
one can use during the analysis is described. Tools discussed include 
databases which are used to house protein–protein interaction net-
work annotations and the analytical tools that can be applied in 
analyzing proteomic data.

4.11  Osprey
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Chapter 15

Determining the Significance of Protein Network Features 
and Attributes Using Permutation Testing

Joseph Cursons and Melissa J. Davis

Abstract

Network analysis methods are increasing in popularity. An approach commonly applied to analyze 
proteomics data involves the use of protein–protein interaction (PPI) networks to explore the systems-level 
cooperation between proteins identified in a study. In this context, protein interaction networks can be 
used alongside the statistical analysis of proteomics data and traditional functional enrichment or pathway 
enrichment analyses. In network analysis it is possible to adjust for some of the complexities that arise due 
to the known, explicit interdependence between the measured quantities, in particular, differences in the 
number of interactions between proteins. Here we describe a method for calculating robust empirical 
p-values for protein interaction networks. We also provide a worked example with python code demon-
strating the implementation of this methodology.

Key words PPI, Protein interaction, Network structure, Permutation testing, Computational systems 
biology, PROSPERITI, Proteomics

1  Introduction

Network analysis using protein–protein interactions to interpret 
biological data has become popular in recent years as researchers 
become increasingly interested in the identification of emergent, 
systems-level effects in their experimental models [1–4]. Protein 
interaction network analysis is particularly appropriate for pro-
teomics data, as the networks relate directly to the molecules being 
measured [5]. A common approach for the network analysis of 
proteomic data is to map proteins detected in an experiment, or 
varying in abundance between two conditions, onto a network of 
known protein–protein interactions. The resulting network is then 
explored for features thought to be associated with the biological 
question motivating the study. Network features of interest often 
include topological features (metrics describing connectivity and 
size), the existence of modules/motifs (functionally significant 
sub-networks) or hubs (highly connected nodes), or enrichment 
with Gene Ontology terms of interest.
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What these approaches often lack however is a principled way 
to assess the statistical significance for features of interest. Often 
researchers will compare their derived network to randomly gener-
ated networks [6] to demonstrate that their network is significantly 
different to random networks. It has been shown that virtually all 
biological networks share properties such as scale free degree dis-
tributions and short diameters, and we assert that it is not mean-
ingful to search for differences between a network of interest and 
random networks with fundamentally different characteristics.

In other cases, common statistical tests are applied to determine 
if a network is enriched for a property of interest when compared to 
a background set. Development of these methods has been 
grounded in approaches that determine functional enrichment 
from high-throughput expression study gene lists, and they effec-
tively discard connectivity in the underlying biological network 
before performing statistical tests on node sets extracted from this 
network [7]. The use of statistical tests in this fashion has serious 
limitations; in particular, the structure of the ‘true biological’ net-
work that proteins operate within can influence quantitative mea-
sures leading to spurious conclusions. Underlying assumptions 
around the independence of variable measurements are fundamen-
tally flawed in scenarios where proteins (or genes) are selected based 
on their relationships within a network. Permutation testing repre-
sents an attractive alternative to the application of statistical tests. A 
number of excellent resources [8–10] describe the statistical theo-
ries that underlie permutation testing. Here, we focus on a practical 
implementation of this strategy for network analysis, and describe a 
methodology to determine the statistical significance of network 
features (given a well-articulated hypothesis) through the use of 
permutation testing to generate an empirical null distribution [8].

This work follows a standard methodology for network con-
struction and analysis, where we start with a list of proteins that 
arise from an experiment, then build a network from these proteins 
using a public knowledge base of known, experimentally defined 
protein interactions. Then, we apply permutation testing to see if 
any network features (topological metrics, or statistical associations 
within the data) are significant in the context of that network. A 
worked example of this approach is provided as a python script, 
using a published set of tyrosine phosphorylation data generated 
from breast cancer cell lines [11], and a publicly available protein 
interaction network [12]. Readers are encouraged to download 
this code and work through the graphical README in conjunc-
tion with this chapter.

In the study from which we derive our phospho-protein abun-
dance data the researchers highlight a densely connected phospho-
protein signaling network for basal breast cancer cell lines which is 
centered around the Src family kinase member Lyn [11]. Here, we 
integrate protein–protein interactions from PINA to quantify the 

Joseph Cursons and Melissa J. Davis
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size (measured by diameter and the number of connected notes) 
and density (average clustering coefficient) of the phospho-protein 
network identified across all cell lines (the ‘background network’) 
and for the MDA-MB-231 cell line (the ‘condition specific net-
work’). We then use permutation testing to estimate the statistical 
significance of these quantitative parameters. As shown below, the 
diameter of the background network is within the expected range; 
however, the diameter of the MDA-MB-231 network is equivalent 
to the background network and this is greater than what would be 
expected given the number of unique proteins measured. We also 
show that the average clustering coefficient and number of con-
nected nodes is much greater than expected for both the 
background and MDA-MB-231 network. These results likely 
reflect the high-degree of “inter-connectivity” within the phospho-
tyrosine signaling network. Furthermore, analysis of the 
MDA-MB-231 network provides quantitative support for the 
observation [11] that this basal breast cancers appear to contain a 
“prominent SFK [Src family kinase] signalling network.”

2  Materials

A python script containing example code for performing this anal-
ysis can be downloaded from the GitHub Project—Protein net-
work significance permutation testing: http://github.com/
DavisLaboratory/PROSPERITI.

A graphical README on the GitHub page contains cross-
references between this chapter and the corresponding computa-
tional script.

This analysis uses phospho-tyrosine enriched protein measure-
ments across breast cancer cell lines [11], in particular Supplemental 
Table 3, which can be downloaded at: http://cancerres.aacrjour-
nals.org/content/70/22/9391/suppl/DC1.

Protein–protein interaction data from the Protein Interaction 
Network Analysis (PINA) Platform v2.0 [12] were downloaded in 
the MI-TAB format. MI-TAB is a standard format for representing 
protein interaction data that uses the Protein Standards Initiative 
ontology for molecular interactions [13]. These data can be down-
loaded directly at: http://cbg.garvan.unsw.edu.au/pina/down-
load/Homo%20sapiens-20140521.tsv.

3  Methods

As noted above, there is a graphical README on the GitHub 
project page for PROSPERITI, which cross-references these meth-
ods to the corresponding computational script.

2.1  Computational 
Scripts

2.2  Data
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	 1.	Collect proteomics data and identify the results of interest; for 
some, this result may only involve proteins with large changes 
in abundance; here we consider the detection of a phospho-
tyrosine peptide to be indicative of active signaling for that 
protein, and thus we examine all proteins identified in a par-
ticular experiment. The phospho-tyrosine enriched MS/MS 
data examined here contain measurements for 303 nonunique 
proteins (265 unique proteins; due to peptide identity) over 
15 different breast cancer cell lines (Fig. 3a).

	 2.	If necessary, convert proteins of interest to UniProt accession 
numbers, a standard identifier for protein data used across pro-
tein interaction databases. Resources such as the Ensembl 
BioMart (http://www.ensembl.org/info/data/biomart/
index.html) provide identifier conversion services if required. 
In our example, UniProt identifiers are provided (Fig. 1a) and 
we use the full list, detected across all cell lines, to construct 
the background network. Condition specific lists can also be 
constructed from the individual cell lines.

	 3.	Build a protein interaction network by identifying known inter-
actions between selected proteins — here we use a comprehen-
sive list of protein–protein interactions from PINA v2.0 (Fig. 
1b). Protein interaction networks can be constructed so they 
capture interactions only between proteins in the results (a 
zeroth order network), or to capture interactions between pro-
teins in the results and other proteins (a first order network) (see 
Fig. 2). Wider networks can be constructed, but at greater than 
two steps from a given protein, networks can become very large.

Calculation of empirical p-values through permutation testing 
requires an explicitly stated hypothesis in order to determine the 
most appropriate way to model the distribution of metrics under 
the null hypothesis. Care should be taken to identify the hypothe-
sis to be tested, or p-values, no matter how calculated, can be mis-
leading or meaningless.

Here, we are going to test two common hypotheses  (see 
Note 2, Section 4 for other examples):

	 1.	That a protein connectivity metric (e.g., describing connectiv-
ity) is significant. To consider protein connectivity metrics with 
confidence, the observed value must be compared to the distri-
butions of connectivity metrics that are generated under the 
null hypothesis. In this case, the null hypothesis states that any 
randomly selected set of proteins (of the same size as the result-
generating network; Fig. 1d) will be able to generate a net-
work with similar topological features (and thus with similar 
connectivity metrics; Fig. 1f).

	 2.	That interacting proteins have correlated (phospho-)protein 
abundance. Here we hypothesize that all protein pairs selected 

3.1  Standard 
Network Construction

3.2  Defining a Null 
Hypothesis 
and Designing 
the Permutation 
Testing

Joseph Cursons and Melissa J. Davis
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Fig. 1 Graphical workflow for network construction and analysis. (a) Identify proteins from the experiment of 
interest—here, we extract UniProt identifiers and relative phospho-protein abundance data from a published 
report [11]. All UniProt identifiers (i.e. across all cell lines) form the background network list, while individual 
cell lines produce condition specific lists—in our example we examine the MDA-MB-231 (MM231) cell line. 
(b) Load in the full set of protein–protein interactions from PINA (v2.0) [12]. (c) Construct zeroth order interac-
tion networks for the background and condition specific data, using nodes (proteins) from (a) and edges 
(interactions) from (b). (d) Apply permutation testing to create the specified number of random networks (nPerm, 
here we use 10,000) with the same number of starting nodes. (e) Using the full set of phospho-protein abun-
dance data from (a) and the protein–protein interaction list from (b), calculate the network-wide average 
absolute correlation. A background distribution was generated by measuring the average, absolute correlation 
across the same number of randomly selected edges, while excluding known protein–protein interactions. 
Results are shown in Fig. 3. (f) Calculate properties of interest for the networks from (c), and estimate the 
background distribution using the networks from (d). In this example we measure: the number of nodes within 
the largest connected sub-network; the diameter of the largest connected sub-network; and the average 
clustering coefficient across all nodes. Results are shown in Fig. 3

Permutation Testing of Protein Interaction Networks
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by their interactions will a show higher average absolute 
correlation (as a general and unidirectional measure of statisti-
cal association; Fig. 1f). The null hypothesis here is that ran-
domly selected pairs of measured proteins would show a similar 
correlation (i.e. correlations observed between the data are not 
associated with the underlying protein–protein interactions).

To test hypothesis 1 above:

	 1.	Generate a random set of proteins equivalent in size to the 
network being tested (here 265 proteins for the background 
network and 79 proteins for the condition specific network).

	 2.	Build a zeroth-order network from this random set of proteins 
using the method described in Section 3.1.

	 3.	For topological descriptors of interest  calculate appropriate 
metrics. Here, the average clustering coefficient is calculated, 
then, the largest connected sub-network is identified, allowing 
us to measure the diameter of, and the corresponding number 
of nodes within this sub-network.

	 4.	Repeat (steps 1–3) 10,000 times to build up a distribution for 
each topological metric (Fig. 3a–c, e–f).

	 5.	Compare the observed value of topological metrics from the 
experimental network (Fig. 3, red vertical line) to the null dis-
tribution generated above.

	 6.	Determine if the topological descriptors are significant:

–– If the background distribution is approximately Normal, it 
may be easiest to calculate the Z-score (difference from the 

3.2.1  Testing Network 
Topology

Fig. 2 Different levels of network expansion. Zeroth order, first order and second order networks illustrating the 
expansion seen at each step in network construction. A set of five proteins (ellipses) are used to seed a net-
work; zeroth order interactions between these proteins have solid lines, first order interactions have dashed 
lines, and draw a further five proteins (rectangles) into an extended network; second order interactions have 
dotted lines. Zeroth order networks are constructed by querying the interactome to identify interactions where 
both interacting partners are seed nodes; this is the type of network we construct in our worked example 
(Fig. 1c). First order networks are constructed by querying the full PPI to identify interactions involving at least 
one of the seed nodes

Joseph Cursons and Melissa J. Davis



205

sample mean, normalized by the sample standard devia-
tion) and then convert to an empirical p-value.

–– Alternatively, an empirical p-value can be estimated by 
examining the position of the observed value relative to the 
cumulative density function of the permutation test distri-
bution.  It should be noted that a sufficiently high value 
of nPerm needs to be selected (see Note 1 in Section 4).

In this case, the network that is being sampled is the network of all 
pairwise correlations between proteins in the experiment. The 
experimental sample is based on known protein interactions 
between those proteins.

	 1.	For all known protein–protein interactions within the back-
ground network where there are at least five matched observa-
tions, calculate the average absolute Pearson’s correlation.

3.2.2  Testing Association 
Between the Data 
and the Network

Fig. 3 Quantitative network features shown relative to null distributions generated using permutation testing. 
Quantitative network features calculated for (a–d) the background network and (e–f) the MDA-MB-231 
(MM231) condition-specific network. For all plots, blue histograms show the background distribution gener-
ated using permutation testing, while the observed value is shown with a red vertical line. (a, e) The number 
of nodes within the largest connected sub-network. (b, f) The diameter of the largest connected sub-network. 
(c, g) The average clustering coefficient—note that the frequency axes have been scaled to exclude the first 
bin (average clustering coefficient = 0) which contains many observations. (d) The average absolute correla-
tion (between phospho-protein abundance, where at least five matched observations are present; this cannot 
be calculated for the single MM231 sample)

Permutation Testing of Protein Interaction Networks
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	 2.	Randomly generate a set of edges from the pairwise correlation 
network equivalent in size to the number of edges in the 
known PPI network, while excluding known PPIs.

	 3.	Calculate the average correlation of this network.
	 4.	Repeat (steps 2 and 3) 10,000 times to build up a distribution 

of the average correlations (see Fig. 3d, blue histograms).
	 5.	Compare the observed value of the average correlation in the 

experimental network to the distribution generated above 
(Fig. 3d, red vertical line).

	 6.	Determine if the statistical association is significant as described 
in Step 6 of Section 3.2.1.

4  Notes

	 1.	An advantage of this strategy is that when comparing the 
experimentally determined value against an empirical null dis-
tribution, it is relatively easy to estimate the false discovery 
rate. This explicit modelling of false discovery likelihood assists 
clear interpretation, and largely determines the minimum 
number of permutations that should be performed [14], 
although a greater number of permutations generally gives 
better estimates of the null distribution and more robust esti-
mates of significance.

	 2.	Other common hypotheses not worked in our example are:
1.	 That a network is enriched for a particular function.

In this case, it is common to see standard Gene Ontology 
or Pathway enrichment tests applied. These tests often 
assume independence between GO terms or pathways, and 
this is often invalid in the context of a protein-protein inter-
action network. Permutation testing gives a robust estimate 
for the significance of GO terms or pathway annota-
tion enrichment in the network. Here the method would be:
(a)	 Generate 10,000 random protein lists.
(b)	 Build 10,000 networks from these random lists.
(c)	 Identify the number of proteins in each network that 

are part of your pathway or GO category of interest—
this is the distribution of associations between networks 
and the term or pathway under the null hypothesis.

(d)	 Compare the observed number of proteins in the experi-
mentally derived network to this distribution and calcu-
late an estimated p-value as discussed above (Step 6 in 
Section 3.2.1).

Joseph Cursons and Melissa J. Davis
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2.	 The presence of a particular hub-node in a network is 
meaningful.

In this case, it is important to build networks from ran-
dom protein sets and identify how frequently a particular 
hub-node may emerge. Some proteins have so many inter-
actions that they will frequently emerge as hubs.
(a)	 Generate 10,000 random protein lists.
(b)	 Build 10,000 networks from these random lists.
(c)	 Calculate the number of times your protein of interest 

is detected as a hub in random networks; the best strat-
egy for this is to plot the distribution of that protein’s 
degree across the random networks (the degree will be 
0 in networks where the protein is not present).

(d)	 Compare the observed degree of your hub protein to 
this distribution and use the Z-score to calculate an esti-
mated p-value as discussed above.

Protein–protein interaction networks can also be used to ana-
lyze coordinated behavior in proteins identified through mRNA 
transcript data where differential abundance is expected to disrupt 
the underlying signaling or protein–protein interaction networks 
[15]. Although care should be taken when interpreting the results 
of such analyses, as changes in transcript abundance are not always 
concordant with changes in protein abundance or activity, this can 
provide context to aid with interpreting results, and the proce-
dures described here are also valid for determining significance in 
these applications.

Finally, these methods are appropriate for application to stud-
ies where networks are constructed from a known background net-
work. Statistical analysis of putative regulatory networks inferred 
from data face different challenges which are not explored here. 
The code provided as a supplement to this chapter can be adapted 
to address these and other hypotheses of interest to researchers 
working in network analysis.
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Chapter 16

Bioinformatics Tools and Resources for Analyzing  
Protein Structures

Jason J. Paxman and Begoña Heras

Abstract

The dramatic increase in the number of protein sequences and structures deposited in biological databases 
has led to the development of many bioinformatics tools and programs to manage, validate, compare, and 
interpret this large volume of data. In addition, powerful tools are being developed to use this sequence 
and structural data to facilitate protein classification and infer biological function of newly identified 
proteins. This chapter covers freely available bioinformatics resources on the World Wide Web that are 
commonly used for protein structure analysis.

Key words Protein Structure, Protein Data Bank (PDB), PDBe, PDBj, MolProbity, PDB-REDO, 
PDBsum, PDBePISA, DALI, PDBeMotif, ProFunc

1  Introduction

Understanding the function of proteins in cellular processes, 
infection and disease is fundamental to many disciplines of science 
and medicine. The amino acid sequence, protein structure, or the 
types of ligands that a protein binds is valuable information that 
can be used to better understand protein function. The advent of 
next generation sequencing has led to an exponential growth in 
the number of fully sequenced genomes, whereby there are cur-
rently over 8000 genomes in public databases [1]. This has resulted 
in the deposition of more than 60 million unique protein sequences 
in the UniProt Knowledgebase (UniProtKB [2]). Similarly, 
advances in crystallography such as increased automation of sample 
handling and diffraction data processing have resulted in an ever 
increasing number of protein structures submitted to online 
databases such as the Protein Data Bank (PDB) [3]. Currently 
over 120,000 protein structures (including protein–DNA and pro-
tein–ligand complexes) have been deposited in the PDB. Protein 
structures can offer more insight into biological function than 
sequences alone as they show the three-dimensional arrangement 
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of interacting residues and the overall structures show higher con-
servation than the amino acid sequences [4]. Despite the increase 
in the availability of protein structures, this rate still lags behind the 
deposition of protein sequences.

The wealth of information together with the World Wide Web 
(WWW) has seen the continuous development and expansion of 
bioinformatics tools and resources to manage the growing 
sequence/structural data, ensure the quality of the structural data, 
facilitate its interpretation, and allow comparative analyses of pro-
tein structures and sequences to inform protein classification and 
biological function. Many of these online bioinformatics tools are 
designed for different levels of expertise, whereby even the most 
experienced scientist will find many of these resources a welcome 
addition to their tool kit.

This chapter summarizes a number of freely available bioinfor-
matics tools and databases currently available on the WWW, pri-
marily for the analysis of protein structures determined by X-ray 
crystallography.

2  Methods

Structural biologists aim at obtaining the most accurate model to 
describe their data, which is essential to draw conclusions about 
the function of the protein under study. Structure validation is 
therefore a critical starting point in the analysis of the three-
dimensional structures of macromolecules.

Diffraction data based validation parameters include the diffraction 
data resolution and the crystallographic Rwork and Rfree values, 
which measure the degree to which the macromolecular structures 
fit the experimental data and indicate a potential bias in the model 
building process [5]. Other validation parameters are the B factor 
which shows the confidence in the positioning of the different 
atoms and reflects the degree of order in the crystal. The real-space 
R-value (RSR) or the RSR-Z score (RSR normalized for specific 
residue type and resolution shell) [6] defines how the atomic 
model fits the experimental data in real space.

The quality of the atomic model is assessed by defining the 
clash-score, which measures steric clashes between pairs of atoms. 
Other quality indicators include the Ramachandran and side-chain 
analysis, which measure deviations of the backbone and side chain 
torsion angles from standard values, respectively. Structural valida-
tion tools such as PROCHECK [7] (https://www.ebi.ac.uk/
thornton-srv/software/PROCHECK/), WHAT IF [8], and more 
recently MolProbity (http://molprobity.biochem.duke.edu) [9] 
(Table 1) are commonly used to calculate most of the validation 
parameters and evaluate the overall quality of three-dimensional 

2.1  Structure 
Validation is the First 
Step

2.1.1  Analyzing 
the Experimental 
Diffraction Data 
and Atomic Model
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structures of proteins, nucleic acids, glycoproteins, and protein–
carbohydrate/nucleic acid complexes. MolProbity also includes a 
number of other programs for structure validation such as 
REDUCE which adds hydrogens to a molecular structure file, 
along with PROBE (evaluates close contacts between atoms), 
RAMALYZE (validates protein backbone Ramachandran dihedral 
angles) and ROTALYZE (validates protein side chain rotamers). 
Additionally, it includes programs such as DANGLE and 
SUITENAME, which assess the ideality of nucleic acid and protein 
backbone geometry [10].

MolProbity provides a “MolProbity score,” which is an overall 
measure of the quality of the three dimensional protein structure 
(Fig. 1). This score is calculated combining the validation param-
eters clashscore, Ramachandran and rotamer outliers and compares 
these quality measures to other structures in the PDB of compa-
rable resolution (e.g. a MolProbity score lower than the crystallo-
graphic resolution indicates that the structure quality is better than 
the average structure at a comparable resolution). Other recently 
developed validation tools include wwPDB Validation Reports 

2.1.2  Structure 
Validation: Scoring

Table 1  
Selection of protein structure validation tools

Server URL Description Ref.

PROCHECK https://www.ebi.ac.uk/thornton-srv/software/
PROCHECK/

Structural validation tool [7]

WHAT IF http://swift.cmbi.ru.nl/servers/html/index.html Structural validation tool [8]

MolProbity http://molprobity.biochem.duke.edu Structure validation and 
scoring

[9]

wwPDB 
Validation 
Reports

http://wwpdb-validation.wwpdb.org/validservice Quality assessment 
considering atomic model 
and diffraction data

[11]

PURY http://pury.ijs.si/ Resource to asses the 
geometry of ligands in 
PDB files

[12]

Twilight http://www.ruppweb.org/twilight/default.htm Tool to analyze and correct 
ligand geometry in PDB 
files

[13]

pdb-care http://www.glycosciences.de/tools/pdb-care/ Tool to analyze carbohydrate 
structures in PDB files

[14]

PDB_REDO https://xtal.nki.nl/PDB_REDO/ Tool to diagnose and 
automatically re-refine 
protein crystal structures

[15]

Bioinformatics Tools and Resources for Analyzing Protein Structures
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(http://wwpdb-validation.wwpdb.org/validservice/) (Table  1), 
which assess the quality of the structure taking into consideration 
the atomic model and the experimental diffraction data to provide 
an at-a-glance summary of the results [11].

Resources for analyzing protein–ligand complexes have also been 
developed. PURY [12] (http://pury.ijs.si/) assesses the geometry 
of ligands and creates topology and parameter files compatible 
with common refinement programs. Twilight [13] (http://www.
ruppweb.org/twilight/default.htm) analyzes and corrects ligands 
that have low correlation with the corresponding electron density 
maps (Table 1). Another useful resource is pdb-care [14] (http://
www.glycosciences.de/tools/pdb-care/) a tool developed to ana-
lyze carbohydrate structures in PDB files (Table 1).

Tools to diagnose and automatically re-refine protein crystal struc-
tures are also currently available. For example, the PDB_REDO 
[15] project was developed to re-refine old crystal structures in the 
Protein Data Bank (PDB) using the latest structure refinement and 
validation techniques. Through the PDB_REDO server (https://
xtal.nki.nl/PDB_REDO/) (Table 1) the scientific community has 
access to all the re-refined structures. Furthermore, this web server 
also offers a tool for macromolecular X-ray crystallographers to 
automatically optimize the refinement of their protein structure. 
This resource does not rebuild the original model but involves 
automatic optimization of parameters such as TLS groups (predicts 
local displacement of atoms), X-ray and B-factor weights and 
rebuilding and flipping side-chains into favorable rotamer confor-
mations with optimized hydrogen bonding networks.

2.1.3  Structure 
Validation: Protein–Ligand 
Complexes

2.1.4  Structure 
Validation: Parameter 
Optimization

Fig. 1 A MolProbity results summary for the disulfide oxidoreductase TcpG at 1.2 Å resolution (PDB code: 4DVC 
[40]) which provides the overall quality of a macromolecular three-dimensional structure including values, 
goals and relative percentiles for all-atoms, clashscore and protein geometry criteria. It uses traffic light color-
coding (red/yellow/green) to indicate poor to more favorable values
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Several bioinformatics resources are available through the Protein 
Data Bank Europe (PDBe, http://www.ebi.ac.uk/pdbe), the 
Protein Data Bank Japan (PDBj, http://pdbj.org) and other data-
bases for the analysis of protein structures.

The web database PDBsum [16] (https://www.ebi.ac.uk/thornton-
srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html) 
(Table 2) provides a pictorial summary of multiple structural analy-
ses for PDB entries or any PDB file uploaded by the user. The 
PDBsum summary (Fig. 2a) shows all the contents of any PDB 
(protein chains, nucleotide chains, ligands, and water molecules), 
the results from the PROCHECK quality assessment program and 
provides links for viewing the coordinates in three-dimensions 
using web-based visualization tools such as JMol (http://jmol.
sourceforge.net/) or RasMol [17]. Additionally, PDBsum gives 
schematic diagrams illustrating a number of structural analyses. 
For example, the Pfam domain diagram displays all constituent 
Pfam domains [18], http://pfam.xfam.org/), the protein’s 
secondary structure computed using PROMOTIF [19], and the 
CATH structural classification organization [20]. PDBsum also 
provides numerous links to related data in other databases. For 
example, all Pfam domains shown in the Pfam domain diagram 
are hyperlinked to other PDB entries containing those domains. 

2.2  Standard Tools 
for Analyzing Protein 
Structures

2.2.1  Sequence 
and Structure Analysis

Table 2  
Selection of protein structure analysis resources

Server URL Description Ref.

PDBsum https://www.ebi.ac.uk/thornton-srv/
databases/cgi-bin/pdbsum/GetPage.
pl?pdbcode=index.htm

Compilation of tools to perform 
multiple structural analyses

[16]

MAFFTash http://sysimm.ifrec.osaka-u.ac.jp/MAFFTash/ Multiple sequence alignment 
tool using sequence and 
structural data

[22]

PDBePISA http://www.ebi.ac.uk/msd-srv/prot_int/
pistart.html

Tool to analyze protein 
interfaces and quaternary 
structure prediction

[24]

DrugPort http://www.ebi.ac.uk/thornton-srv/
databases/drugport/

Surveys the PDB for structural 
information related to a query 
drug molecule

[16]

PDBeXpress http://www.ebi.ac.uk/pdbe-srv/pdbexpress/ Collection of tools to extract 
from the PDB protein–ligand 
interaction statistics

eF-seek http://pdbj.org/help/ef-seek Tool to examine the PDB for 
proteins with similar ligand 
binding sites

[27]
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Fig. 2 Example from the PDBsum page for PDB entry 4DVC. (a) PDBsum summary showing the header infor-
mation relating to the structure, molecular content, Pfam domain diagrams, links for viewing the coordinates 
in three-dimensions (Jmol) and to generate a comprehensive PROCHECK analysis. Additional links are also 
provided for databases like UniProtKB/Swiss-Prot, Pfam, SAS, and ArchSchema. The protein, ligands, and cleft 
tabs at the top of each PDBsum entry give access to topology diagrams, schematics depicting protein–protein/
ligand/DNA interactions, and a description of the existing cleft, pores, and tunnels. (b) Topology diagram illus-
trating the secondary structure elements in 4DVC. Numbers correspond to the residues in the PDB and arrows 
indicate the direction of the protein chain. (c) LIGPLOT showing the interactions between the bound molecule 
(dimethyl sulfoxide) with the residues in the protein
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Links are also provided to the protein sequence database 
UniProtKB/Swiss-Prot (http://www.uniprot.org/) and the 
Sequence annotated by Structure (SAS) tool (https://www.ebi.
ac.uk/thornton-srv/databases/sas/), which scans the database 
and retrieves all related PDB structures and provides a multiple 
sequence alignment. Recently, a link to the ArchSchema program 
[21] (http://www.ebi.ac.uk/Tools/archschema) has been added 
to the PDBsum bioinformatics tool-set [16]. This program dis-
plays the Pfam domain architecture network that is most closely 
related to that of the query protein. The PDBsum output also pro-
vides topology diagrams showing the connectivity and relative 
positions of the secondary structure elements (Fig. 2b).

MAFFTash [22] (http://sysimm.ifrec.osaka-u.ac.jp/
MAFFTash/) from the PDBj sever (http://pdbj.org) also per-
forms multiple sequence alignments using sequence and structural 
information (Table 2).

Bioinformatics tools are also available to analyze protein surface 
characteristics. For example PDBsum provides an analysis of all the 
grooves, pores, and tunnels in a given protein structure, which are 
computed using Mole 2.0 [23] and can be displayed through their 
respective tabs at the top of each PDBsum entry. In the same con-
text, eF-surf (http://ef-site.hgc.jp/eF-surf/top.do) from PDBj is 
a web server that calculates the electrostatic potential and molecu-
lar surface of an uploaded file in pdb format. The server PDBePISA 
[24] is one of the most commonly used methods to analyze pro-
tein interfaces and predict quaternary structure (http://www.ebi.
ac.uk/msd-srv/prot_int/pistart.html).

When the PDB entry consists of DNA–protein or protein–ligand/
metal complexes, PDBsum provides NUCPLOT [25] and 
LIGPLOT [26] diagrams, which are schematic representations of 
the DNA–protein and the ligand/metal–protein interactions, 
respectively (Fig. 2c). The PDBe also provides a number of com-
plementary analysis resources and databases. DrugPort [16] 
(http://www.ebi.ac.uk/thornton-srv/databases/drugport/) 
(Table 2) is a tool that allows analyzing all the structural informa-
tion in the PDB related to a query drug molecule. PDBeXpress 
(http://www.ebi.ac.uk/pdbe-srv/pdbexpress/) (Table  2) com-
piles a collection of tools that allows the identification of protein–
ligand interactions from the PDB, along with searching for ligands 
that interact with a given set of residues or finding in the PDB all 
proteins that interact with a query ligand. Similarly, the PDBj 
eF-seek [27] (http://pdbj.org/help/ef-seek) can be used to sur-
vey the PDB to search for proteins with similar ligand binding sites 
as the probe PDB entry (Table 2).

2.2.2  Analysis of Protein 
Surface Properties

2.2.3  Analysis of Ligand-
Bound Structures
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A large number of proteins deposited in biological databases do 
not share sequence similarity to any other known protein and 
consequently have uncharacterized functions. Typically, protein 
structures are more conserved than amino acid sequences and 
structural similarity can therefore be more informative with 
regard to defining protein function. A number of programs have 
been developed to identify structures in the PDB database that 
are globally similar to a given protein structure. Some of the most 
popular servers are DALI [28] (http://ekhidna.biocenter.hel-
sinki.fi/dali_server), PDBeFold [29] (http://www.ebi.ac.uk/
msd-srv/ssm/) and Structure Navigator [30] (http://pdbj.org/
struc-navi) (Table 3).

2.3  Structural 
Bioinformatics Tools 
to Predict Protein 
Function

2.3.1  Predicting Function 
Based on Overall Structure

Table 3  
Selection of tools for structure comparison and function prediction

Server URL Description Reference

DALI http://ekhidna.biocenter.
helsinki.fi/dali_server

Compares the 3D structure of a query 
protein against the whole PDB 
archive

[28]

PDBeFold http://www.ebi.ac.uk/msd-srv/
ssm/

Compares the 3D structure of a query 
protein against the whole PDB 
archive

[29]

Structure 
Navigator

http://pdbj.org/struc-navi Compares the 3D structure of a query 
protein against the whole PDB 
archive

[30]

Cathedral http://v3-4.cathdb.info/
cgi-bin/CathedralServer.pl

For a given PDB probe identifies similar 
domains in the CATH database

[31]

PDBSiteScan http://wwwmgs.bionet.nsc.ru/
mgs/gnw/pdbsitescan/

Compares a query protein against 
known functional sites in the PDB

[33]

ProBiS http://probis.cmm.ki.si/ Identifies proteins in the PDB with 
similar binding sites

[34]

PDBeMotif http://www.ebi.ac.uk/pdbe-
site/pdbemotif/

Finds conserved structural motifs and 
defines binding site characteristics

[35]

SiteEngine http:/bioinfo3d.cs.tau.ac.il/
SiteEngine

Identifies and compares binding sites 
and protein–protein interfaces

[36]

eF-Site http://ef-site.hgc.jp/eF-site/ Calculates the electrostatic surface 
properties and identifies potential 
functional sites

[37]

ProFunc https://www.ebi.ac.uk/
thornton-srv/databases/
profunc/

Identifies the likely biochemical function 
of a protein from its sequence, 
structure and/or binding site

[39]
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If overall similarity to structurally characterized proteins cannot be 
obtained, the next approach to predict protein function is to iden-
tify similar domains, active sites and motifs which are evolutionary 
more conserved. The Cathedral server [31] (http://v3-4.cathdb.
info/cgi-bin/CathedralServer.pl) allows the identification of simi-
lar domains from the CATH database [32]. PDBSiteScan [33] 
(http://wwwmgs.bionet.nsc.ru/mgs/gnw/pdbsitescan/) is used 
to identify active sites from PDBSite within the uploaded coordi-
nate file of interest. Similarly, the more recent ProBiS database 
[34] (http://probis.cmm.ki.si/) allows the identification of pro-
teins in the PDB repository that share similar binding sites. 
PDBeMotif [35] (http://www.ebi.ac.uk/pdbe-site/pdbemotif/) 
is an efficient tool that integrates protein sequence and protein 
structure in order to explore the PDB to find conserved structural 
motifs and protein–ligand interactions (Table 3).

Other methods for predicting protein function also take into account 
the physicochemical properties of active sites and ligand binding sites. 
The server SiteEngine [36] (http:/bioinfo3d.cs.tau.ac.il/SiteEngine) 
uses the physicochemical properties of a ligand binding site to find 
similar sites in a query protein structure. The eF-Site database [37] 
(http://ef-site.hgc.jp/eF-site/) calculates the electrostatic and 
hydrophobic surface properties of query protein structures, and 
identifies potential active or ligand binding sites via a comparison to 
a database of known protein functional sites.

An extension of ProBiS is the web server ProBiS-ligands [38] 
(http://probis.cmm.ki.si/ligands), which predicts the binding of 
ligands by superimposing similar ligand-bound PDB entries with 
the protein under investigation. Upon finding suitable fits the 
ligands are transposed onto the query protein. This tool could also 
be of interest in drug repurposing where new target proteins are 
identified for well-established drug molecules.

Finally, the ProFunc server [39] (https://www.ebi.ac.uk/
thornton-srv/databases/profunc/) combines a number of programs 
into the following streams that includes (1) primary amino acid 
sequence analysis, (2) fold and structural motif analysis along with 
(3) analysis against known ligand binding and active sites in order 
to identify possible sets of functionally related proteins to the query 
pdb. The output summary provides an at-a-glance view of the 
results from the different analyses performed.

3  Notes

Amino acid sequences and three-dimensional structures alone pro-
vide limited information about a protein. However, computational 
databases and tools allow researchers to validate and compare this 

2.3.2  Predicting Function 
Based on Structural 
Domains

2.3.3  Predicting Function 
Based on Physicochemical 
Properties

2.3.4  Predicting Function 
Based on Ligand Binding

2.3.5  Predicting Function 
Based on Multiple Methods
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information with hundreds of proteins of known structure and 
function, to obtain further information about the data quality, clas-
sification, function and evolution of their uncharacterised proteins. 
This process is cyclic whereby the sequence and structural data 
along with the information obtained from bioinformatics tools are 
fed back into the biological databases expanding their content. 
Despite the assistance provided by bioinformatics tools on the 
WWW, the success of this system is largely dependent on the users 
who are ultimately responsible for the accuracy of the information 
deposited in these public resources. Lastly it is critical to cite the 
bioinformatics tools that have played an integral part of this 
research so that their contribution is acknowledged and the devel-
opment of these databases and programs can continue.
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Chapter 17

In Silico Approach to Identify Potential Inhibitors  
for Axl-Gas6 Signaling

Swathik Clarancia Peter, Jayakanthan Mannu, and Premendu P. Mathur

Abstract

Axl-Gas6 signaling plays an important role in numerous cancers. Axl kinase, a member of receptor tyrosine 
kinase family is activated by different mechanisms with Gas6 as its major activator. Targeting the Axl with 
inhibitors may block the binding of Gas6 and further hinders the activation of Axl. This in turn inhibits 
the Axl-Gas6 signaling. Thus, inhibitors of the Axl kinase may serve as ideal drug candidates for treating 
many human cancers. In this study we carried out virtual screening of drug-like molecules from ZINC 
database to identify potential inhibitors for Axl kinase. Our virtual screening study showed that 
ZINC83758120, ZINC34079369, and ZINC83758121 are potential drug-like lead molecules to inhibit 
Axl kinase.

Key words Axl kinase docking, Gas6 protein, Zinc database,, Virtual screening, QikProp Glide 
docking

1  Introduction

Axl kinase is found to be overexpressed in many cancers like lung 
[1–3], breast [4, 5], prostrate [6], gastric [7], ovarian [8], and 
thyroid [9]. It is also found to be overexpressed in hepatocellular 
leukemia and acute myeloid leukemia [10, 11]. The level of Axl 
expression is comparatively high in cancer tissues to normal tissues 
[12]. The activated Axl kinase induces many signaling pathways 
involved in cell proliferation [12], metastasis [13], and inhibition 
of apoptosis [14, 15] by downstream signaling. Similarly, Gas6, a 
major ligand of Axl protein, has been reported for overexpression 
in many human cancers [16]. Both overexpression of Axl and over-
activation of Axl-Gas6 signaling lead to poor prognosis [3, 17], 
and also correlated with therapeutic resistance [18, 19]. Hence, in 
this study, we have carried out virtual screening of lead-like molecules 
to identify potential compounds to inhibit Axl-Gas6 signaling 
pathway.



222

Axl kinases are proteins belonging to the family of receptor 
tyrosine kinases (RTKs) which play important roles in many can-
cers and pathological conditions [20]. Axl signaling also has impor-
tant roles in platelet function, spermatogenesis, and immunity. 
This protein consists of two immunoglobulin-like (IG) domains 
and two fibronectin type III domains (FNIII) in the extracellular 
region, a transmembrane domain, and a kinase domain in the cyto-
plasmic region [21, 22]. The activation of Axl kinase takes place by 
different mechanisms such as ligand-dependent dimerization, 
ligand-independent dimerization, hetero-dimerization with non-
TAM receptor, and dimerization with the monomers on the neigh-
boring molecules, of which, Gas6 (Growth Arrest Specific 6) is 
considered as the major and unique activator of Axl kinase by 
ligand-dependent dimerization mechanism. The protein structure 
of Gas6 contains a γ-carboxyglutamic acid [13] domain, loop 
region, four EGF-like repeats, and two C-terminal globular lam-
inin G-like [19] domains. The binding activity of Axl-IG with 
Gas6-LG occurs at two sites, one being the major contact and the 
other being minor. It is retained by the Axl fragment consisting of 
two N-terminal immunoglobulin-like domains (Axl-IG) and LG1 
domain of Gas6 [22]. Binding of Gas6 activates Axl and homodi-
merization of the molecule takes place which leads to tyrosine auto-
phosphorylation and phosphorylation of downstream targets [21].

Identifying potential inhibitors which block Axl-Gas6 signal-
ing axis may rectify the aberrant Axl signaling and can be ideal 
drug candidates to treat many types of cancers, thereby reducing 
the poor prognosis, decreasing the progression and invasiveness of 
the disease, and also increasing the drug sensitivity and efficacy.

2  Methods

	 1.	Schrodinger Maestro 9.2.
	 2.	Ligand library containing 7750 chemical compounds down-

loaded from ZINC database.

	 1.	The experimental protein complex structure of Axl-Gas6 was 
retrieved from the Protein Data bank (http://www.rcsb.org/
pdb/home/home.do) (PDB ID: 2C5D).

	 2.	The retrieved protein complex structure was subjected to pro-
tein preparation using Maestro 9.3 protein preparation wizard 
in Schrodinger (see Note 1).

	 3.	The protein complex was preprocessed by assigning bond 
orders and by adding hydrogen atoms.

	 4.	Zero-order bonds were created for metal atoms. Disulphide 
bonds were created between Sulfur atoms that are within the 
range of 3.2 Å.

2.1  Tools Used

2.2  Protein 
Preparation

Swathik Clarancia Peter et al.
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	 5.	The water molecules beyond 5 Å from the hetero groups were 
deleted.

	 6.	After preprocessing, the missing side chains were added using 
Prime module.

Residue Type

A:389 ARG

A:413 GLU

B:389 ARG

B:413 GLU

	 7.	During protein preparation, the hetero atoms of A:CA(1677), 
A:NAG-NAG, B:CA(1677), B:NAG-NAG, C:NI(1218), 
C:SO4(1219), and D:NI(1218) were deleted.

	 8.	The chains A and B of Gas6 were removed. The homologous 
chain D of Axl was removed.

	 9.	Further, the protein structure was optimized for geometry to 
fix the orientations of thiols, hydroxyl, amides, histones.

	10.	The structure was optimized using PROPKA at the biological 
pH of 7.00.

	11.	The structure was minimized under the OPLS 2005 force field.

After protein preparation, the grid at the site of active site was gen-
erated using Glide module in Schrodinger. It has been reported 
that mutation of Glu59 and Thr77 residues has dramatically 
reduces the binding of Axl with Gas6 [22]. Thus inhibitors bind-
ing to these residues can be ideal for inhibiting Axl-Gas6 binding, 
thereby preventing the activation of Axl receptor tyrosine kinase 
and its downstream signaling involved in oncogenic and pathologi-
cal conditions. Here, we define abovementioned active site resi-
dues as centroid for grid generation.

	 1.	The receptor-grid was generated with the centroid of the resi-
dues Glu59 and Thr77.

	 2.	The van der Waal’s radius scaling factor was set to 1.0 and the 
partial charge cutoff was set to 0.25. The charge scale factor 
was set to 1.0.

	 1.	The ligands in the input library were filtered based on ADMET 
properties using QikProp. The ligands were also pre-filtered by 
Lipinski’s rule.

	 2.	Ligands with reactive functional groups were removed. The 
input geometries of the ligands were regularized by epik.

	 3.	The number of low energy conformations generated per ligand 
was one.

2.3  Grid Generation

2.4  Ligand 
Preparation 
and Virtual Screening

In Silico Approach to Identify Potential Inhibitors for Axl-Gas6 Signaling
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	 4.	The virtual screening was carried out in Glide HTVS, Glide SP, 
and Glide XP under OPLS force field for ideal screening and 
docking of ligands at the binding site of the protein. Three 
poses were generated for each docked compound.

3  Results and Discussion

Axl kinase has been reported as a valid therapeutic target for many 
cancers [21]. The availability of three-dimensional structures of 
any target proteins plays a major role in designing inhibitors 
through computational approaches. In spite of experimental struc-
ture of Axl kinase has been reported in the year 2005 [22], so far 
no attempt to find for potential inhibitors through computational 
approaches. Here, we have attempted virtual screening of lead like 
chemical molecules from ZINC database using virtual screening 
workflow of Schrodinger suite 2012. The virtual screening of 
chemical library comprising 7750 compounds against the protein 
Axl kinase identified three ligands with optimal binding free energy 
(see Notes 2–4). These ligands are ZINC83758120 (2-[[(1R)-2-
a m i n o - 1 - ( 5 - b r o m o - 2 - f u r y l ) e t h y l ] a m i n o ] e t h a n o l ) , 
ZINC34079369 ((1R)-2-(2-aminoethylamino)-1-(2,6-
dichlorophenyl)ethanol), and ZINC83758121 (2-[[(1S)-2-
amino-1-(5-bromo-2-furyl)ethyl]amino]ethanol).

The virtual screening of ZINC database produced ZINC83758120 
as a top scoring ligand molecule with binding free energy of 
−44.074  kcal/mol. Analysis of interaction pattern of this com-
pound shows that four hydrogen bonds were formed by amino 
residues of Axl kinase. In which, two bonds were formed with 
Gln78 residue (hydrogen bond distance of 3.01 and 2.84 Å), one 
with Glu56 (hydrogen bond distance of 2.82 Å) and another with 
Glu85 (hydrogen bond distance of 2.61 Å) (Table 1). In addition, 
the binding of ZINC83758120 with Axl kinase was also further 
stabilized by van der Waal’s interactions by amino residues such as 
Trp89, Glu85, Gln78, and Glu56 at the scaling factor of 1.00 Å 
(Fig. 1A (a, b)).

The second top scored ligand molecule was ZINC34079369 with 
binding free energy of −35.167 kcal/mol. This compound formed 
two hydrogen bonds with Axl kinase amino acid residues such as 
Gln76 and Ser74. The side chain nitrogen atom of Gln76 acts as a 
hydrogen bond donor to form hydrogen bond with oxygen atom 
of this drug-like molecule at a distance of 3.11 Å. Another hydro-
gen bond was formed between oxygen atom of this drug-like mol-
ecule and side chain oxygen atom of Ser74 at a distance of 2.75 Å 
(Table 1). The residues which formed van der Waal’s interactions 
are Ser74, Ala72, Glu70, Leu69, and Glu59 at the scaling factor of 
1.00 Å (Fig. 1B (a, b)).

3.1  ZINC83758120

3.2  ZINC34079369

Swathik Clarancia Peter et al.
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The third top scored screened ligand molecule wasZINC83758121. 
This compound showed a binding energy of −34.833 kcal/mol 
with Axl kinase. ZINC83758121 formed three hydrogen bonds 
with the residues Glu56, Pro57, and Gln78 of Axl at the distance 
of 2.55, 2.97, and 2.67 Å respectively (Table 1). The residues with 
van der Waal’s interactions at the scaling factor of 1.00  Å are 
Glu56, Pro57, Gln78, and Trp89 (Fig. 1C (a, b)).

Our virtual screening results showed that ZINC83758120 
forms a stable interaction with the Axl kinase protein. This com-
pound also showed comparatively strong interactions within the 
cavity of Axl kinase from other two lead molecules such as 
ZINC34079369 and ZINC83758121  in terms of number of 
hydrogen bonds and binding free energy.

4  Conclusion

Our study showed that ZINC83758120 would be a potential lead 
like molecule to design inhibitors for Axl kinase. This compound 
can be further improved by modifying the existing groups or intro-
ducing new chemical moiety to enhance its binding affinity and 
thereby increasing the efficacy of the compound.

5  Notes

	 1.	The initial requirement of any docking study is the availability 
of protein structure for the target protein. The experimental 
protein complex structure of Axl-Gas6 was retrieved from the 

3.3  ZINC83758121

Table 1  
Molecular interactions of lead-like molecules with Axl kinase

Lead-like 
molecules

Hydrogen bond 
donor

Hydrogen bond 
acceptor

Hydrogen 
bond length 
(Å)

VdW interaction 
residues 
(scaling 
factor = 1.00 Å)

Glide energy 
(glide emodel) 
(kcal/mol)

ZINC83758120 Lead2:N1
GLN78:NE2
Lead2:O2
Lead2:N1

GLU85:OE1
LEAD2:O2
GLN78:OE1
GLU56:OE1

2.61
3.01
2.84
2.82

TRP89, 
GLU85, 
GLN78, 
GLU56

−44.074

ZINC34079369 GLN76:NE2
Lead1:O1

Lead1:O1
SER74:OG

3.11
2.75

SER74, ALA72, 
GLU70, 
LEU69, 
GLU59

−35.167

ZINC83758121 GLN78:NE2
Lead3:O2
Lead3:N1

Lead3:O2
PRO57:O
GLU56:OE1

2.67
2.97
2.55

TRP89, GLN78, 
PRO57, 
GLU56

−34.833

In Silico Approach to Identify Potential Inhibitors for Axl-Gas6 Signaling



Fig. 1 The docked complexes of ZINC83758120 (A, B), ZINC34079369 (C, D), and ZINC83758121 (E, F). A, C 
and E represents two-dimensional view of the docked complexes. The interacting residues are represented in 
spheres (Red: negatively charged residues; Violet: positively charged residues; Cyan: polar residues; Green: 
hydrophobic residues; Pink color dashed arrow: hydrogen bonds. B, D and F represents three-dimensional 
view of the docked complex. The interacting amino residues are represented in line model and colored by atom 
types (Grey: carbon; white: hydrogen, red: oxygen; blue: nitrogen). The interacting ligand represented in ball 
and stick model
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Protein Data bank (http://www.rcsb.org/pdb/home/home.
do) (PDB ID: 2C5D). This co-crystallized structure consists 
of four chains namely A, B, C, and D, in which chains A and B 
belong to Gas6 and C and D chains belong to Axl kinase. The 
chains A, B of Gas6 were removed. Since the chain C and D 
were homologous, it is sufficient to perform screening for any 
one of the two chains, so the chain D of Axl was removed. The 
docking and virtual screening was carried out only for chain C 
of Axl kinase.

	 2.	Chemical library consisting of lead-like compounds was 
obtained from ZINC database (http://zinc.docking.org/). 
ZINC database is a free database of commercially available 
compounds. We have retrieved a total of 7750 compounds 
from this database and it was used for further virtual screening. 
There are many other databases from which the library of 
chemical compounds can be downloaded.

	 3.	The restrain minimization is performed to remove atom clashes 
and to relax side chains.

	 4.	The grid can be generated either by selecting the residues in 
amino acid sequence of the protein or by specifying the X, Y, 
and Z coordinates of the residues around which the grid has to 
be generated.
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Key Terms and Definitions

Axl kinase	� Axl kinase is an enzyme of receptor tyrosine 
kinase subfamily.

Docking	� A method used to predict molecular interac-
tions between two molecules. These molecules 
are protein, DNA, and small molecules.

GAS6 protein	� Gas6, a major ligand of Axl protein, has been 
reported for overexpression in many human 
cancers.

Zinc database	� A free database of chemical compounds for 
virtual screening. This database contains over 
35 million compounds to be used for virtual 
screening.

In Silico Approach to Identify Potential Inhibitors for Axl-Gas6 Signaling
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Virtual screening	� A method of predicting interactions of small 
molecules from a library of compounds against 
a cavity of target protein structures.

QIKPROP	� A modules of Schrodinger Maestro 9.3 pro-
gram, which could be used to identify drug 
toxicity of compounds.

Glide docking	� A modules of Schrodinger Maestro 9.3 pro-
gram, which could be used for molecular 
docking.

References

	 1.	Shieh YS, Lai CY, Kao YR, Shiah SG, Chu YW, 
Lee HS, Wu CW (2005) Expression of axl in 
lung adenocarcinoma and correlation with 
tumor progression. Neoplasia 7(12): 
1058–1064

	 2.	Verma A, Warner SL, Vankayalapati H, Bearss 
DJ, Sharma S (2011) Targeting Axl and Mer 
kinases in cancer. Mol Cancer Ther 
10(10):1763–1773, doi:1535–7163.MCT-
11-0116 [pii]10.1158/1535-7163.
MCT-11-0116

	 3.	Ishikawa M, Sonobe M, Nakayama E, 
Kobayashi M, Kikuchi R, Kitamura J, Imamura 
N, Date H (2013) Higher expression of recep-
tor tyrosine kinase Axl, and differential expres-
sion of its ligand, Gas6, predict poor survival in 
lung adenocarcinoma patients. Ann Surg 
Oncol 20(Suppl 3):S467–S476. doi:10.1245/
s10434-012-2795-3

	 4.	Berclaz G, Altermatt HJ, Rohrbach V, Kieffer 
I, Dreher E, Andres AC (2001) Estrogen 
dependent expression of the receptor tyrosine 
kinase axl in normal and malignant human 
breast. Ann Oncol 12(6):819–824

	 5.	Meric F, Lee WP, Sahin A, Zhang H, Kung HJ, 
Hung MC (2002) Expression profile of tyro-
sine kinases in breast cancer. Clin Cancer Res 
8(2):361–367

	 6.	Jacob AN, Kalapurakal J, Davidson WR, 
Kandpal G, Dunson N, Prashar Y, Kandpal RP 
(1999) A receptor tyrosine kinase, UFO/Axl, 
and other genes isolated by a modified differ-
ential display PCR are overexpressed in meta-
static prostatic carcinoma cell line DU145. 
Cancer Detect Prev 23(4):325–332, 
doi:cdp99034 [pii]

	 7.	Wu CW, Li AF, Chi CW, Lai CH, Huang CL, 
Lo SS, Lui WY, Lin WC (2002) Clinical signifi-
cance of AXL kinase family in gastric cancer. 
Anticancer Res 22(2B):1071–1078

	 8.	Rankin EB, Fuh KC, Taylor TE, Krieg AJ, 
Musser M, Yuan J, Wei K, Kuo CJ, Longacre 
TA, Giaccia AJ (2010) AXL is an essential 

factor and therapeutic target for metastatic 
ovarian cancer. Cancer Res 70(19):7570–7579, 
d o i : 0 0 0 8 – 5 4 7 2 . C A N - 1 0 - 1 2 6 7 
[pii]10.1158/0008-5472.CAN-10-1267

	 9.	Ito T, Ito M, Naito S, Ohtsuru A, Nagayama Y, 
Kanematsu T, Yamashita S, Sekine I (1999) 
Expression of the Axl receptor tyrosine kinase 
in human thyroid carcinoma. Thyroid 
9(6):563–567

	10.	He L, Zhang J, Jiang L, Jin C, Zhao Y, Yang 
G, Jia L (2010) Differential expression of Axl 
in hepatocellular carcinoma and correlation 
with tumor lymphatic metastasis. Mol 
Carcinog 49(10):882–891. doi:10.1002/
mc.20664

	11.	Hong CC, Lay JD, Huang JS, Cheng AL, 
Tang JL, Lin MT, Lai GM, Chuang SE (2008) 
Receptor tyrosine kinase AXL is induced by 
chemotherapy drugs and overexpression of 
AXL confers drug resistance in acute myeloid 
leukemia. Cancer Lett 268(2):314–324, 
doi:S0304-3835(08)00284-X [pii]10.1016/j.
canlet.2008.04.017

	12.	Paccez JD, Vasques GJ, Correa RG, 
Vasconcellos JF, Duncan K, Gu X, Bhasin M, 
Libermann TA, Zerbini LF (2013) The recep-
tor tyrosine kinase Axl is an essential regulator 
of prostate cancer proliferation and tumor 
growth and represents a new therapeutic tar-
get. Oncogene 32(6):689–698, doi:onc201289 
[pii]10.1038/onc.2012.89

	13.	Gjerdrum C, Tiron C, Hoiby T, Stefansson I, 
Haugen H, Sandal T, Collett K, Li S, 
McCormack E, Gjertsen BT, Micklem DR, 
Akslen LA, Glackin C, Lorens JB (2009) Axl is 
an essential epithelial-to-mesenchymal 
transition-induced regulator of breast cancer 
metastasis and patient survival. Proc Natl Acad 
Sci U S A 107(3):1124–1129, doi:0909333107 
[pii]10.1073/pnas.0909333107

	14.	van Ginkel PR, Gee RL, Shearer RL, 
Subramanian L, Walker TM, Albert DM, 
Meisner LF, Varnum BC, Polans AS (2004) 

Swathik Clarancia Peter et al.

http://dx.doi.org/10.1245/s10434-012-2795-3
http://dx.doi.org/10.1245/s10434-012-2795-3
http://dx.doi.org/10.1002/mc.20664
http://dx.doi.org/10.1002/mc.20664
http://dx.doi.org/10.1038/onc.2012.89
http://dx.doi.org/10.1073/pnas.0909333107


229

Expression of the receptor tyrosine kinase Axl 
promotes ocular melanoma cell survival. 
Cancer Res 64(1):128–134

	15.	Wilhelm I, Nagyoszi P, Farkas AE, Couraud 
PO, Romero IA, Weksler B, Fazakas C, Dung 
NT, Bottka S, Bauer H, Bauer HC, Krizbai IA 
(2008) Hyperosmotic stress induces Axl acti-
vation and cleavage in cerebral endothelial 
cells. J  Neurochem 107(1):116–126, 
d o i : J N C 5 5 9 0 
[pii]10.1111/j.1471-4159.2008.05590.x

	16.	Mc Cormack O, Chung WY, Fitzpatrick P, 
Cooke F, Flynn B, Harrison M, Fox E, Gallagher 
E, Goldrick AM, Dervan PA, Mc Cann A, Kerin 
MJ (2008) Growth arrest-specific gene 6 expres-
sion in human breast cancer. Br J  Cancer 
98(6):1141–1146, doi:6604260 [pii]10.1038/
sj.bjc.6604260

	17.	Hutterer M, Knyazev P, Abate A, Reschke M, 
Maier H, Stefanova N, Knyazeva T, Barbieri V, 
Reindl M, Muigg A, Kostron H, Stockhammer 
G, Ullrich A (2008) Axl and growth arrest-
specific gene 6 are frequently overexpressed in 
human gliomas and predict poor prognosis in 
patients with glioblastoma multiforme. Clin 
Cancer Res 14(1):130–138, doi:14/1/130 
[pii]10.1158/1078-0432.CCR-07-0862

	18.	Bansal N, Mishra PJ, Stein M, DiPaola RS, 
Bertino JR (2015) Axl receptor tyrosine kinase 
is up-regulated in metformin resistant prostate 
cancer cells. Oncotarget 6(17):15321–15331, 
doi:4148 [pii]

	19.	Brand TM, Iida M, Stein AP, Corrigan KL, 
Braverman CM, Luthar N, Toulany M, Gill PS, 
Salgia R, Kimple RJ, Wheeler DL (2014) AXL 
mediates resistance to cetuximab therapy. 
Cancer Res 74(18):5152–5164, doi:0008–
5472.CAN-14-0294 [pii]10.1158/0008-
5472.CAN-14-0294

	20.	O'Donnell K, Harkes IC, Dougherty L, Wicks 
IP (1999) Expression of receptor tyrosine kinase 
Axl and its ligand Gas6 in rheumatoid arthritis: 
evidence for a novel endothelial cell survival 
pathway. Am J  Pathol 154(4):1171–1180, 
doi:S0002-9440(10)65369-2 [pii]10.1016/
S0002-9440(10)65369-2

	21.	Axelrod H, Pienta KJ (2014) Axl as a mediator 
of cellular growth and survival. Oncotarget 
5(19):8818–8852, doi:2422 [pii]

	22.	Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, 
Gohring W, Ullrich A, Timpl R, Hohenester E 
(2006) Structural basis for Gas6-Axl signalling. 
EMBO J  25(1):80–87, doi:7600912 
[pii]10.1038/sj.emboj.7600912

In Silico Approach to Identify Potential Inhibitors for Axl-Gas6 Signaling

http://dx.doi.org/10.1111/j.1471-4159.2008.05590.x
http://dx.doi.org/10.1038/sj.bjc.6604260
http://dx.doi.org/10.1038/sj.bjc.6604260
http://dx.doi.org/10.1158/1078-0432.CCR-07-0862
http://dx.doi.org/10.1158/0008-5472.CAN-14-0294
http://dx.doi.org/10.1158/0008-5472.CAN-14-0294
http://dx.doi.org/10.1016/S0002-9440(10)65369-2
http://dx.doi.org/10.1016/S0002-9440(10)65369-2
http://dx.doi.org/10.1038/sj.emboj.7600912


231

Shivakumar Keerthikumar and Suresh Mathivanan (eds.), Proteome Bioinformatics, Methods in Molecular Biology,
vol. 1549, DOI 10.1007/978-1-4939-6740-7, © Springer Science+Business Media LLC 2017

A

Affinity tagging�����������������������������������������������������������34, 109
Alignment������������������������������������� 39, 69, 132, 139, 140, 144,  

183, 188, 190, 191, 213, 215
Amino acids������������������������������������� 18, 33, 68, 71, 78, 79, 85,  

88, 103, 109, 122, 129, 130, 133, 143, 144, 168, 209, 
210, 216, 217, 224, 227

Antibody���������������������������������������������������������������������12, 102
Area under curve (AUC)����������������������������������������� 39, 94, 96

B

Betweenness centrality�������������������������������������� 181, 186, 192
Binomial probability������������������������������������������������������76, 79
Bioinformatics�������������������������������������1–3, 6, 23, 39, 47, 102,  

103, 147–158, 163–173, 177, 209–218
Biological pathways�����������������������������������3, 32, 47, 147, 151,  

181, 189, 191, 192

C

Cell culture������������������������������������������������������������������33, 109
Cell lines������������������������� 9–12, 20, 36, 53, 193, 194, 200–203
Chemical labeling�������������������������������������2, 32, 34–35, 45, 46
Clinical proteomic����������������������������������������������� 8–9, 84, 102
Collision-induced dissociation (CID)�������������������� 17, 68, 85,  

101, 128, 142, 173
ColonAtlas
Colorectal Cancer Atlas������������������������������������ 7, 9, 193–194
Community��������������������������������������� 1, 2, 5–12, 26, 102, 103,  

106, 133, 153, 188, 192, 212
Comparative proteomics�������������������������������� 2, 109–115, 117
Computational methods���������������������������������������� 75, 76, 186
Confocal microscopy�������������������������������������������������������������9
Copy number���������������������������������������������������������������������191
Correlation coefficients������������������������������������������� 76, 81–83
Custom databases������������������������������������������ 24–26, 157, 191
Cytoscape����������������8, 105, 155, 158, 183, 184, 188–190, 193

D

Databases������������������������������������������� 1, 6, 18, 53, 67, 76, 101,  
119, 139, 148, 163, 178, 202, 209, 222

Degree centrality�������������������������������������������������������181, 187
De novo method��������������������������������������������2, 18, 25, 67–69,  

119–123, 125, 128–133, 136–139, 143

E

Edges������������������������������������������179, 185, 186, 194, 203, 206
Edman degradation�����������������������������������������������������������136
Eigen vector����������������������������������������������������������������������194
Electron transfer dissociation (ETD)�������������������� 17, 68, 128
Electrophoresis��������������������������������������������������������������������36
Electrospray ionization (ESI)������������������������ 17, 45, 120, 130
Enrichment analysis��������������������������������3, 32, 148–155, 157,  

158, 188, 189, 191
Enzymatic labeling��������������������������������������������������������35–36
Escherichia coli��������������������������������������������������������������20, 156

F

False discovery rate (FDR)������������������2, 9, 10, 18, 22, 55–57,  
72, 97, 110, 112–114, 117, 120, 123, 153, 172, 206

Fluorescence��������������������������������������������������������������������������9
Fractionation������������������������������������������������������������� 2, 47, 52
Functional annotation�����������������������������������3, 121, 122, 129,  

148, 150–153, 164, 166, 171–172, 186, 187
Functional enrichment analysis (FunRich)��������������� 148, 152,  

155, 188, 190–191

G

Gene ontology (GO)���������������������������������3, 9, 129, 148–155,  
157, 164, 171, 172, 181, 187, 190, 193, 194, 199, 206

Genetic code����������������������������������������������������������������������144
Genome annotation����������������������������������������8, 9, 22, 24, 105
Graph markup language (GML)��������������� 158, 185–186, 189

H

High-energy collision dissociation (HCD)������������������ 17, 53,  
128, 142

Homology����������������������������� 3, 120, 121, 129, 135, 137, 139,  
143, 164, 166, 169, 223, 227

Homo sapiens������������������������������������������������ 84, 150, 168, 172
Human genome������������������������������������������������� 1, 24, 31, 120
Human proteome��������������������������������1, 7, 10–12, 20–22, 31,  

104, 172, 177, 183

I

Immunoelectron microscopy�������������������������������������������������9
Immunohistochemistry���������������������������������������������������9, 12
Instrumentation��������������������������������������������������� 1, 17, 67, 71

Index



232 
  
Proteome Bioinformatics

	 Index

Interaction networks�������������������������� 3, 11, 32, 178, 181, 182,  
184, 185, 187, 188, 190–194, 199–203, 207

Interactome����������������������������������������178, 180, 184, 190, 204
Isobaric tag for absolute and relative quantitation  

(iTRAQ)�����������������������������������������23, 35, 46, 48, 109
Isotope-coded affinity tagging (ICAT)����������� 32, 34, 46, 109
Isotope labeling��������������������������������������2, 33–37, 45, 46, 109

L

Label-based��������������������������������������������������� 2, 31–36, 38, 39
Label-free�������������������������������������������������2, 31–36, 38, 39, 45
Ligands�����������������������������������3, 209, 211–215, 217, 221–226
Liquid chromatography (LC)����������������������������36, 37, 39, 45,  

47, 48, 52–53, 138, 143

M

Mascot generic format (MGF)
Mass mapping������������������������������������������������������� 3, 136–141
Mass spectrometry������������������������������� 2, 5, 17, 31, 45, 67, 75,  

101, 109, 119, 136, 147, 163, 177
Mass tree�������������������������������������������������������������������136, 143
Matrix-assisted laser desorption ionization  

(MALDI)������������������������������������������������ 17, 139, 141
Mean������������� 21, 22, 64, 71, 76, 78, 83, 92, 94, 120, 186, 205
Median�������������������������������������������������������������������� 76, 80, 83
Meta-analysis
Metabolic labeling��������������������������������������������� 32–34, 45, 46
Metabolic pathways���������������������������������������������������180, 191
Meta data������������������������������������������������������������������������7, 11
Microarray�������������������������������������������������������������������������191
MicroRNA����������������������������������������������������������������191, 192
Missed cleavage������������������������������������������������������� 21, 53, 92
Molecular evolution
Monoisotopic masses����������������������������������������� 139, 141, 143
MS/MS spectra����������������������������� 2, 9, 11, 12, 18, 21, 23, 26,  

32, 35, 37–39, 47, 52–53, 67–72, 75–87, 91–97, 103, 
110, 120, 122, 130, 138, 142, 167, 202

Mycobacterium tuberculosis (Mtb)����������������������������� 20, 23, 24

N

Neighbor-joining method�����������������������������������������139, 140
Network theory��������������������������������������3, 178–181, 187, 194
Nodes���������������������������������������� 136, 141, 142, 151, 179–181,  

185–187, 190, 194, 199–201, 203–205, 207
Normalized spectral abundance factor (NSAF)�������������������38
Normalized spectral counts�������������������������������������������11, 38

O

Open reading frame (ORF)���������������������������������������119, 120

P

Peak count���������������������������������������������������������������������69, 77
PeptideAtlas������������������������������������������������ 6–8, 10, 103–105

Peptide mass fingerprint (PMF)��������������������������������119, 136
Peptides��������������������������������������� 2, 5, 17, 32, 45, 68, 75, 101,  

109, 119, 136, 156, 163, 202
Peptide sequencing��������������������������������3, 10, 18, 26, 46, 68, 69,  

71, 78–80, 85, 87, 90, 97, 101, 104, 105, 119–123, 125, 
128–133, 136, 138, 167

Peptide-to-spectrum match (PSM)������������������������ 18, 21, 23,  
77, 87–92, 168, 169

Peptidome���������������������������������������������������������������������������13
Permutation test�����������������������������3, 109–115, 117, 199–207
Phosphoproteome�����������������������������������������������������151, 154
Phylogenetic analysis������������������������������3, 135–141, 143, 144
Phylogenetic tree��������������������������������������������������� 3, 136–142
Physicochemical properties�����������������������������������������������217
Polymorphic peptides����������������������������������������������������������25
Post-translational modifications (PTMs)��������������� 10, 18, 21,  

72, 85, 104, 120, 154, 156, 183
Precursor tolerance��������������� 21, 79, 85–87, 91, 123, 126, 128
Probability����������������������������������������������������70, 76, 78, 79, 87
Protein chip�����������������������������������������������������������������������186
Protein Data Bank (PDB)�������������������������������� 121, 157, 166,  

171, 209, 211–213, 215–217, 222, 227
Protein isoforms���������������������������������������� 20, 23–25, 31, 101
Protein metabolism�������������������������������������������������������������32
Proteinpedia���������������������������������������������������������� 11–12, 168
Protein-protein interaction�������������� 3, 9, 11, 12, 39, 155, 178, 

180–184, 186, 187, 190–192, 194, 199–205, 207
Proteins��������������������������������1, 5, 17, 31, 45, 67, 75, 101, 109,  

119, 136, 147, 163, 178, 199, 209, 221
Protein structures����������������������������3, 209–218, 222, 223, 225
Proteogenomic��������������������������������������������������������� 24, 25, 72
Proteome������������� 1, 5, 17, 31, 45, 84, 103, 109, 119, 164, 177
ProteomeXchange (PX)��������������������������������6, 8, 10, 103, 104
Proteomics����������������������������������� 1, 5, 17, 31, 45, 67, 75, 101,  

109, 119, 147, 163, 177, 199
PRoteomics IDEntifications (PRIDE)���������������������� 6–8, 10,  

103, 104, 167, 168, 170, 173
Proteomic Standard Initiative (PSI)��������������������� 6, 155, 158,  

183, 185, 186, 189
Proteotypic�������������2, 8, 9, 101–105, 133, 167, 168, 170, 172, 173
Python������������������������������������������������131, 132, 190, 200, 201

Q

Qualitative�����������������������������������������������������������������������9, 24
Quantification�������������������������������������������2, 5, 18, 23, 31–33,  

35–39, 46, 50, 53, 101, 102, 111

R

Rank correlation������������������������������������������������������������76, 83

S

Selected reaction monitoring (SRM)������������ 8, 101, 102, 104
Sequence database�����������������������������������2, 18, 23, 67, 70, 71,  

76, 119, 129, 168, 215



Proteome Bioinformatics

    
233

	 Index	

Shotgun proteomics����������������������������17–19, 45, 48, 101, 109
Signaling pathways��������������������������������������34, 147, 151, 154,  

178, 180, 191, 221
Simple interaction format (SIF)���������������� 158, 185, 189, 193
Spectral counting (SpC)������������������������������������������ 36–38, 45
Spectrum������������������������������������� 2, 6, 18, 32, 46, 67, 75, 101,  

110, 119, 136, 156, 167
Spectrum clustering������������������������������������������������� 76, 80–83
Spectrum library������������������������������������������������������ 76, 80–83
Spectrum similarity����������������������2, 75–87, 90, 92–94, 96–98
Splice variant������������������������������������������������� 24–25, 119, 172
Stable isotope labelling of amino acids in cell culture 

(SILAC)�������������������������������23, 33, 46, 109, 110, 115
Statistical significance����������������������3, 70, 110, 152, 200, 201
Statistics�������������������������������������������������58, 71, 129, 190, 213
Storage���������������������������������������������1, 2, 5–13, 103, 105, 178
Subcellular���������������������������� 5, 11, 12, 31, 109, 150, 151, 183
Substitution matrix������������������������������������������������������������143
Systems biology��������������������������������������������� 6, 104, 186, 189

T

Tandem mass spectrometry���������������������2, 3, 17–26, 36, 101,  
103, 110, 136, 177

Tandem mass tags (TMT)���������������2, 35, 45–58, 61–64, 109

Theoretical spectra������������������������������������������������� 21, 77, 84,  
86, 97, 119

Three-dimensional structure������������������3, 164, 212, 217, 224
Tissues��������������������������������������������� 7–12, 25, 31, 36, 50, 136,  

181, 183, 193, 221
Transcriptomics�������������������������������������������������������������������12
Trans Proteomics Pipeline (TPP)���������������������� 7, 8, 104, 105
Tryptic peptides����������������������������������37, 46, 85–87, 103, 156
Tumor analysis�������������������������������������������������������������������8–9

U

Unassigned spectra����������������������������������������������������2, 67–72

V

Variant���������������������������������������������������������24–25, 34, 71, 72,  
119, 172, 191

W

World Wide Web (WWW)���������������������������������������������210

X

Xenograft models������������������������������������������������������������������8
X-ray crystallography��������������������������������������������������������210


	Preface
	Contents
	Contributors
	Chapter 1: An Introduction to Proteome Bioinformatics
	1 Introduction
	2 Proteomic Databases and Repositories
	3 Proteomic Techniques and Computational Strategies Used in the Proteome Bioinformatics
	4 Functional Characterization of Proteins

	Chapter 2: Proteomic Data Storage and Sharing
	1 Introduction
	2 Online Proteomics Community Resources
	2.1 PRoteomics IDEntifications (PRIDE) Database
	2.2 PeptideAtlas
	2.3 CPTAC (Clinical Proteomic Tumor Analysis Consortium) Portal
	2.4 Colorectal Cancer Atlas
	2.5 Global Proteome Machine Database (GPMDB)
	2.6 ProteomicsDB
	2.7 Human Proteome Map (HPM)
	2.8 Human Proteinpedia
	2.9 Human Protein Atlas

	3 Discussion
	References

	Chapter 3: Choosing an Optimal Database for Protein Identification from Tandem Mass Spectrometry Data
	1 Introduction
	2 Databases for Protein Discovery
	2.1 Databases and Effect of Databases on Protein Discovery
	2.1.1 Database Size Influences the Search Time and Results
	2.1.2 Search Parameters Alter the Effective Search Space
	2.1.3 Variability Between Databases
	2.1.4 Effect of Database Size on Sensitivity and Specificity of Identifications

	2.2 Custom Databases for Specific Questions
	2.2.1 Genome Reannotation and Novel Gene Discovery
	2.2.2 Detection of Splice Variant Protein Isoforms
	2.2.3 Detection of Polymorphic Peptides
	2.2.4 Databases for Unsequenced Organisms


	3 What Makes the Best Proteomics Search Database
	4 Proteomics Database Resources
	References

	Chapter 4: Label-Based and Label-Free Strategies for Protein Quantitation
	1 Introduction
	2 Methods
	2.1 Label-Based Quantitation Strategies
	2.1.1 Stable Isotope Introduction by Metabolic Labeling
	2.1.2 Stable Isotope Introduction by Chemical Labeling
	2.1.3 Stable Isotope Introduction by Enzymatic Labeling

	2.2 Label-Free Quantitation Strategies
	2.2.1 Spectral Counting (SpC)
	2.2.2 Normalized Spectral Counting (NSpC)
	2.2.3 Normalized Spectral Abundance Factor (NSAF)
	2.2.4 Area Under Curve


	3 Conclusion
	References

	Chapter 5: TMT One-Stop Shop: From Reliable Sample Preparation to Computational Analysis Platform
	1 Introduction
	2 Materials
	2.1 Sample Preparation

	3 Methods
	3.1 Protein Extraction, Reduction, Alkylation, Precipitation, Quantification, and Digestion
	3.2 SDB-RPS Desalting Using Stage Tips
	3.3 TMT Labeling
	3.4 C18 Desalting Using Sep-Pak
	3.5 Offline SCX Fractionation
	3.6 Nanoflow LC-MS/MS for TMT Labeling Samples
	3.7 Data Processing
	3.8 TMT Data Analysis Program TMTPrepPro: Uploading the Data
	3.9 TMTPrepPro Outputs for the Overall Multivariate Analysis Job
	3.9.1 Data Aggregation with Respect to Indicated References
	3.9.2 Overall Data Distribution and FDR Based on Replicates
	3.9.3 Unsupervised Analyses
	3.9.4 ANOVA
	3.9.5 Pairwise Comparisons to the Reference

	3.10 TMTPrepPro Outputs from Targeted Analysis
	3.10.1 Single Comparison
	3.10.2 Paired
	3.10.3 One Sample T Test


	4 Notes
	References

	Chapter 6: Unassigned MS/MS Spectra: Who Am I?
	1 Introduction
	2 Methods
	2.1 De Novo Method
	2.1.1 Limitations of De Novo Method

	2.2 Database Search
	2.3 Scoring in SEQUEST
	2.4 Scoring in X! Tandem
	2.5 Scoring in MASCOT
	2.6 Limitations of Database Search
	2.7 Unassigned MS/MS Spectra
	2.8 Assigning Unassigned

	3 Conclusions
	References

	Chapter 7: Methods to Calculate Spectrum Similarity
	1 Introduction
	2 Methods
	2.1 Matching Acquired and Theoretical MS/MS Spectra: Database Searching
	2.1.1 Non-probabilistic Scoring Function
	2.1.2 Probabilistic Scoring Function

	2.2 Matching Between Acquired MS/MS Spectra: Spectrum Library Searching and Spectrum Clustering
	2.2.1 Normalized Dot Product
	2.2.2 Correlation Coefficients
	2.2.3 Mean Squared Error


	3 Performance Evaluation of the Different Scoring Functions
	3.1 Benchmark Data Sets
	3.2 Availability of Codes
	3.3 Evaluation of Scoring Functions That Match Acquired Against Theoretical MS/MS Spectra
	3.3.1 Spectrum Identification: A Simplified Database Search
	3.3.2 Theoretical Spectrum Generation
	3.3.3 SEQUEST-Like Scoring
	3.3.4 Andromeda-Like Scoring

	3.4 Results

	4 Evaluation of Scoring Functions That Match Between Acquired MS/MS Spectra
	4.1 Spectrum Identification: Mascot Search
	4.2 Comparison Design
	4.3 Results

	5 Conclusion
	References

	Chapter 8: Proteotypic Peptides and Their Applications
	1 Introduction
	2 Targeted Proteomics
	2.1 Selected Reaction Monitoring
	2.2 Identification of Proteotypic Peptides
	2.2.1 Computational Proteomic Resources for the Identification of Proteotypic Peptides
	Global Proteome Machine Database (GPMDB)
	PeptideAtlas

	2.2.2 Computational Predictions and Identification of Proteotypic Peptides


	3 Discussion
	References

	Chapter 9: Statistical Evaluation of Labeled Comparative Profiling Proteomics Experiments Using Permutation Test
	1 Introduction
	2 Materials
	3 Methods
	3.1 Data Preprocessing
	3.2 Permutation Test and FDR Control Using R

	4 Notes
	References

	Chapter 10: De Novo Peptide Sequencing: Deep Mining of High-­Resolution Mass Spectrometry Data
	1 Introduction
	2 Materials
	2.1 Data Sources
	2.1.1 De Novo Peptide Sequencing
	2.1.2 Sequence Similarity and Functional Annotation

	2.2 Software

	3 Methods
	3.1 De Novo Sequencing of Peptides
	3.1.1 De Novo Peptide Sequencing with PEAKS
	3.1.2 De Novo Peptide Sequencing with PepNovo
	3.1.3 De Novo Peptide Sequencing with UniNovo

	3.2 Protein Identification
	3.3 Sequential-­BLAST Similarity Search and Functional Annotation

	4 Notes
	References

	Chapter 11: Phylogenetic Analysis Using Protein Mass Spectrometry
	1 Introduction
	2 Materials
	3 Methods
	3.1 De Novo Protein Sequencing Followed by Classical Phylogenetic Reconstruction
	3.2 Direct Phylogenetic Reconstruction Using Proteolytic Peptide Mass Maps
	3.3 Mapping of Mass Spectral Data onto Classical Phylogenetic Trees

	4 Notes
	References

	Chapter 12: Bioinformatics Methods to Deduce Biological Interpretation from Proteomics Data
	1 Introduction
	2 Materials
	3 Methods
	3.1 Gene Ontology Enrichment Analysis
	3.2 Pathway Analysis
	3.3 Post-translational Modification Analysis
	3.4 Visualization Tools

	4 Notes
	References

	Chapter 13: A Systematic Bioinformatics Approach to Identify High Quality Mass Spectrometry Data and Functionally Annotate Proteins and Proteomes
	1 Introduction
	2 Materials
	2.1 Data Sources
	2.1.1 MS Data Validation
	2.1.2 Functional Annotation

	2.2 Software

	3 Methods
	3.1 MS Data Validation
	3.2 Sequential-­BLAST Similarity Search
	3.3 Functional Annotation
	3.3.1 Protein functional domains and motifs, and Gene Ontology (GO)
	3.3.2 Pathway Analysis


	4 Notes
	References

	Chapter 14: Network Tools for the Analysis of Proteomic Data
	1 Introduction
	1.1 Background to Proteomics
	1.2 Background to Network Theory Concepts

	2 Protein–Protein Interaction Databases
	2.1 BioGRID
	2.2 Human Protein Reference Database
	2.3 Molecular INTeraction Database (MINT)
	2.4 Biomolecular Interaction Network Database
	2.5 IntAct Molecular Interaction Database
	2.6 Search Tool for Recurring Instances of Neighboring Genes/Proteins (STRING)

	3 PPI Data Exchange Formats
	3.1 Delimited Text and Excel Workbooks
	3.2 Simple Interaction Format (SIF)
	3.3 Nested Network Format
	3.4 Graph Markup Language (GML)

	4 Network Analysis and Visualization Tools
	4.1 Quantifying Networks
	4.2 Steps to Performing Network Analysis
	4.3 Cytoscape
	4.4 FunRich
	4.5 MetaCore
	4.6 Ingenuity Pathways Analysis
	4.7 Gephi
	4.8 NDEx-The Network Data Exchange
	4.9 PINA: Protein Interaction Analysis
	4.10 Colorectal Cancer Atlas
	4.11 Osprey

	5 Conclusions
	References

	Chapter 15: Determining the Significance of Protein Network Features and Attributes Using Permutation Testing
	1 Introduction
	2 Materials
	2.1 Computational Scripts
	2.2 Data

	3 Methods
	3.1 Standard Network Construction
	3.2 Defining a Null Hypothesis and Designing the Permutation Testing
	3.2.1 Testing Network Topology
	3.2.2 Testing Association Between the Data and the Network


	4 Notes
	References

	Chapter 16: Bioinformatics Tools and Resources for Analyzing Protein Structures
	1 Introduction
	2 Methods
	2.1 Structure Validation is the First Step
	2.1.1 Analyzing the Experimental Diffraction Data and Atomic Model
	2.1.2 Structure Validation: Scoring
	2.1.3 Structure Validation: Protein–Ligand Complexes
	2.1.4 Structure Validation: Parameter Optimization

	2.2 Standard Tools for Analyzing Protein Structures
	2.2.1 Sequence and Structure Analysis
	2.2.2 Analysis of Protein Surface Properties
	2.2.3 Analysis of Ligand-­Bound Structures

	2.3 Structural Bioinformatics Tools to Predict Protein Function
	2.3.1 Predicting Function Based on Overall Structure
	2.3.2 Predicting Function Based on Structural Domains
	2.3.3 Predicting Function Based on Physicochemical Properties
	2.3.4 Predicting Function Based on Ligand Binding
	2.3.5 Predicting Function Based on Multiple Methods


	3 Notes
	References

	Chapter 17: In Silico Approach to Identify Potential Inhibitors for Axl-­Gas6 Signaling
	1 Introduction
	2 Methods
	2.1 Tools Used
	2.2 Protein Preparation
	2.3 Grid Generation
	2.4 Ligand Preparation and Virtual Screening

	3 Results and Discussion
	3.1 ZINC83758120
	3.2 ZINC34079369
	3.3 ZINC83758121

	4 Conclusion
	5 Notes
	References

	Index

