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Preface

The field of proteomics moves rapidly. New methods, techniques, applications, standards, 
models and software appear almost on a daily basis. Accompanying this are plenty of texts 
on the experimental side of the field and a few appearing on the informatic and data analysis 
side. This latterly includes one in the Methods in Molecular Biology series tackling the 
specific analysis of “Mass spectrometry data in proteomics” in MMB vol. 376. This current 
collection builds on this, but takes a broader view of proteome data analysis covering data 
analysis essentials, but also the databases and data models, as well as practical consider-
ations for analysing database search results, annotating genomes, and speeding up searches. 
It also digs deeper into some topics, such as decoy database searching and aspects of signal 
processing in proteomic mass spectrometry. The aim of the volume is to provide the 
reader with a mix of reviews and methodology chapters, which build from the essentials 
of database searching in proteomics, on through specific data processing challenges to 
databases, data standards and data models.

The computational challenges facing proteomics are many and should not be under-
estimated. The direction in post-genome science is one of increasing complexity and 
larger, richer datasets. Proteomics is no exception and most active proteomics labs retain 
or work closely with bioinformaticians and computer scientists as they play an increasingly 
important role in the day-to-day running of the lab. This book covers all the essential top-
ics that need to be considered and should help the novice and expert alike address their 
data analysis and management problems.

Manchester, UK Simon J Hubbard
Liverpool, UK Andrew R Jones
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Chapter 1

An Introduction to Proteome Bioinformatics

Andrew R. Jones and Simon J. Hubbard

Abstract

This book is part of the Methods in Molecular Biology series, and provides a general overview of 
computational approaches used in proteome research. In this chapter, we give an overview of the scope 
of the book in terms of current proteomics experimental techniques and the reasons why computational 
approaches are needed. We then give a summary of each chapter, which together provide a picture of the 
state of the art in proteome bioinformatics research.

Key words: Proteomics, Bioinformatics, Mass spectrometry, Quantitation, Databases, Data standards

The term “proteome” is broadly defined as the complete set of 
proteins that could be present in a sample or organism or the set 
of proteins that can be detected by some methodology. The 
related term “proteomics” was originally coined by Marc Wilkins 
and colleagues and is now widely recognised as one of the ‘omics –  
the set of post-genomic technologies which seek to further under-
stand the genome in terms of the molecules it encodes, their 
functions, interactions and related properties. Proteomics as a 
field of study is a broad one and can have slightly different con-
notations to different aspects of biomedical science. Here, we 
refer to the aspect of the field dominated by mass spectrometric-
based characterisation of proteins rather than structural or other 
biophysical approaches. Many of the experimental techniques 
used in proteomics, such as gel electrophoresis, liquid chromato-
graphy and mass spectrometry (MS), have been around for several 
decades, yet it is only in the last 10–15 years that approaches 
have been developed allowing many proteins to be detected or 
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quantified simultaneously, coming closer to “global” methods of 
proteome analysis. The paradigm shift has been caused in part by 
technological developments in the design of mass spectrometers 
but more significantly by the availability of genome sequence data 
for many organisms that allow mass spectrometry data to be used 
to identify peptides and proteins on a large scale. Current 
methods are now capable of identifying thousands of proteins at 
relatively low cost. However, significant challenges remain in data 
handling, storage, dissemination and analysis. This book provides 
an introduction to the main computational challenges presented 
by proteome research, and the bioinformatics solutions being 
developed to allow maximum value to be derived from proteome 
data sets.

Mass spectrometry plays a fundamental role in the majority of 
protein identification pipelines used in proteomics. Individual 
proteins can typically be “identified” either by a single stage of 
mass spectrometry, called peptide mass fingerprinting (PMF), or 
by two stages, called tandem MS or MS/MS. If a single stage is 
used, a protein is digested (for example with trypsin) and the pat-
tern of peptide masses (PMF) is compared with a theoretical 
digest of database sequences to make an identification. Zhao 
Song, Luonan Chen and Dong Xu present an introduction to the 
bioinformatics challenges in PMF (Chapter 2). In tandem MS, 
individual peptides selected in the first stage of MS are subjected 
to a fragmentation process, and the products of fragmentation are 
analysed in the MS2 stage. Various databases search engines are 
available for comparing the mass spectrum produced with the 
complete set of spectra that would be expected from a theoretical 
digest of a protein sequence database. Simon Hubbard provides a 
general introduction to the computational approaches used 
(Chapter 3) and Markus Brosch and Jyoti Choudhary describe 
how statistical techniques are used to determine the reliability of 
peptide and protein identifications (Chapter 4). A statistical tech-
nique that is gaining prominence in proteomics involves the use 
of searching against a decoy database that comprises sequences 
known to be incorrect, to allow the false discovery rate to be 
estimated – described by Elias and Gygi in Chapter 5.

The information gained by collecting large numbers of 
high quality peptide spectra can potentially be exploited, and 
Wysocki and colleagues described studies demonstrating this 
principle, where specific amino acid compositions about a can-
didate bond can enhance or reduce the likelihood of fragmen-
tation (Chapter 6).

2. Protein 
Identification  
by Mass 
Spectrometry
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An alternative approach for making peptide identifications 
involves the generation of libraries containing mass spectra and 
peptide identities that have previously been assigned to them 
empirically. Newly generated mass spectra are then compared 
with the library in order to make a putative peptide identification. 
These spectral library approaches are discussed by Henry Lam 
and Ruedi Aebersold in Chapter 7.

The approaches described above all rely upon using some 
type of database search to make peptide identifications. Methods 
have also been developed that can determine peptide sequences 
directly from the fragmentation pattern on MS2 spectra, as 
described in Chapter 8 by Hughes, Ma and Lajoie. These de novo 
peptide sequencing methods are particularly applicable for organ-
isms with no sequenced genome, but they are also used for 
peptides that are difficult to identify by standard database searches. 
Outside of de novo techniques, a more general review of appro-
aches developed to identify proteins across the species barrier 
where no complete genome is available is described by Wright, 
Beynon and Hubbard in Chapter 9. Proteome data has also been 
used for detecting, improving and confirming gene models in 
newly sequenced genomes, as outlined by Nanduri and colleagues 
in Chapter 10, in an area often referred to as Proteogenomics. 
Proteomics has untapped potential in this area since it also pro-
vides direct evidence that a gene is expressed at the protein (func-
tional) level above and beyond transcriptional (EST, cDNA or 
array) evidence.

It is not a trivial process to convert the raw data collected directly 
from a mass spectrometer to the final result, such as peptide or 
protein identifications. First, the raw trace obtained must be con-
verted to discrete peaks that can be used in a database search; 
these signal processing approaches are summarised by Rene 
Hussong and Andreas Hildebrandt (Chapter 11). A novel 
approach for improving the speed of spectral processing, using 
re-configurable hardware is presented by Coca, Bogdan and 
Beynon (Chapter 12).

Multiple reaction monitoring (MRM) is an MS-based experi-
mental approach in which particular peptides are selected for 
analysis by the experimentalist, in contrast to the majority of pro-
teome approaches where peptides are identified “at random” by 
the mass spectrometer. MRM approaches rely on prior knowledge 
of the fragmentation patterns of peptides, which can be derived 
by data mining, as described by Mead, Bianco and Bessant in 
Chapter 13.

3. Data Processing
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There are several stages in processing from the raw trace to 
the final result, requiring a series of different file formats to be 
manipulated. The OpenMS architecture is designed to allow 
bioinformaticians to construct identification workflows, as 
described by Knut Reinert and Oliver Kohlbacher (Chapter 14).  
The TransProteomicPipeline (TPP) developed by the Institute 
for System Biology offers a series of packages for processing 
and analysing proteome data, described by Patrick Pedrioli in 
Chapter 15.

Researchers are interested not only in the proteins present or 
absent in samples of interest but the relative or absolute abun-
dance of each protein. In one commonly applied experimental 
approach, proteins are separated by two-dimensional gel electro-
phoresis before an MS-based identification process. The gels can 
be subjected to a detection agent allowing proteins to be visualised. 
Proteins can be quantified by analysis of gel images, and several of 
the computational issues are described by Andrew Dowsey and 
colleagues (Chapter 16).

Mass spectrometry in its native form is not generally thought 
of as a quantitative technique, since the abundance of a peptide 
ion detected correlates poorly with the quantity of the protein(s) 
from which it was derived in the source sample due to several con-
founding factors. Various approaches have been developed to alle-
viate these problems so that MS can be used for relative or absolute 
quantification. One of the most common approaches uses stable 
isotopes as labels, applied at various stages of sample preparation 
and which are subsequently mixed. Detected peptides from two 
samples appear in the mass spectra as adjacent, related peaks, sepa-
rated by a fixed difference dependent on the given stable isotopes 
used. The relative peak height can be used to determine relative 
abundance of the protein between samples. Wen-Lian Hsu and 
Ting-Yi Sung describe generic analysis tools for handling such data 
(Chapter 17). Other methods are capable of determining relative 
or absolute protein abundance in the absence of isotopes labels, as 
presented by Cagney and Wong (Chapter 18).

A single proteome study can generate large volumes of data and 
metadata: describing sample processing, protein separation, raw 
and processed mass spectrometry data and the final results as 

4. Protein 
Quantitation

5. Data Standards 
and Databases
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protein identifications, potentially with quantitative values. It is 
now commonly accepted that there is significant value in the abil-
ity to re-assess data outside the producing laboratory. It is also 
widely acknowledged that differences in how samples are pro-
cessed and which data analysis routines have been applied can 
affect the proteins that are detected and calculations of their 
abundance. Several databases exist for storing MS-based pro-
teome data, including PeptideAtlas at the Institute of Systems 
Biology (Chapter 19, Eric Deutsch) and PRIDE at the European 
Bioinformatics Institute (Chapter 20, Philip Jones and Lennart 
Martens). Both databases have rich querying capabilities and 
allow published data sets to be analysed by other groups for 
deriving new biological findings and for improving analysis 
algorithms.

A major hindrance in proteome data processing has been the 
abundance of different file formats, produced by different MS 
instrument vendors and analysis software packages. Historically, it 
has been difficult to analyse data originating in a particular labora-
tory unless other laboratories have the same software packages. In 
recent years, several groups have developed data standards to 
facilitate data dissemination and exchange. These include: the 
Molecular Interaction format, which captures protein–protein 
interaction data (Chapter 21, Orchard and Kerrien), and the 
mzML format, which captures the output of mass spectrometers 
(Chapter 22, Deutsch), both developed under the auspices of the 
Proteomics Standards Initiative (PSI). The Functional Genomics 
Experiment (FuGE) Model is a general model used to facilitate 
the development of shared data standards across different omics 
techniques, which has been used by PSI and other groups for 
managing proteome data, as described by Andrew Jones and 
Allyson Lister in Chapter 23. The ProDac project is described in 
Chapter 24 by Christian Stephan and colleagues, which is a con-
sortium of academic groups aiming to maintain a centralized pro-
teomics data repository and support the development of data 
standards that enable efficient proteomics data sharing and 
dissemination.

Finally, protein disorder is discussed by Melissa Pentony, 
Jonathan Ward and David Jones in Chapter 25. This pheno-
menon is assuming increasing importance since disordered 
proteins are widespread in genomes and are correlated with 
post-translationally modified regions, and will be of interest to 
many proteomic practitioners.
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Chapter 2

Bioinformatics Methods for Protein Identification  
Using Peptide Mass Fingerprinting

Zhao Song, Luonan Chen, and Dong Xu

Abstract 

Protein identification by mass spectrometry (MS) is an important technique in proteomics. By searching an 
MS spectrum against a given protein database, the most matched proteins are sorted using a scoring 
function and the top one is often considered the correctly identified protein. Peptide mass fingerprinting 
(PMF) is one of the major methods for protein identification using MS technology. It is faster and 
cheaper than the other popular technique – Tandem Mass Spectrometry. Key bioinformatics issues in 
PMF analysis include designing a scoring function to quantitatively measure the degree of consistency 
between a PMF spectrum and a protein sequence and assessing the confidence of identified proteins. In 
this chapter, we will introduce several scoring functions that were developed by others and us. We will 
also provide a new statistic model to evaluate the confidence of the score and make an improvement for 
ranking proteins in protein identification. Our developments have been implemented in a software pack-
age “ProteinDecision,” which is available at http://digbio.missouri.edu/ProteinDecision/.

Key words: Peptide mass fingerprinting, Protein identification, Confidence assessment, Scoring 
function, ProteinDecision

The basic unit of a protein is the amino acid, which has 20 types 
with specific molecular weights for each (see Note 1). The chain 
of amino acids forms the protein sequence and determines its 
structure and function. The main purpose of protein identifica-
tion is to determine the composition of proteins in a sample of 
animal cells, bacterial or plant tissues, etc., often through map-
ping these proteins to known, better characterized ones. Major 
methods of protein identification apply mass spectrometry (MS) 
and a subsequent database search, in which heuristic algorithms 
(1) are designed to assign scores for all the candidate proteins in 

1. Introduction

1.1. Protein 
Identification Using 
Mass Spectrometry 
Technology

http://digbio.missouri.edu/ProteinDecision/
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a database. The general approach for MS protein identification is 
to match the features derived from the MS spectrum of a protein 
sample with the database that contains the sequence fragments of 
a protein digested by a specific enzyme (see Note 2). Several prev-
alent techniques are widely used currently. Peptide mass finger-
printing (PMF) protein identification compares the masses of 
peptides derived from the experimental spectral peaks with each 
of the possible peptides generated by computationally digesting 
proteins in the sequence database. The MS/MS method further 
breaks each digested peptide into smaller fragments, whose 
spectra provide effective signatures of individual amino acids in 
the peptide for protein identification. While the MS/MS meth-
ods provide more features in defining peptides, it is much more 
expensive and time-consuming than PMF. PMF is an economic 
alternative for protein identification, and it can serve as an effec-
tive filter to select appropriate proteins to conduct MS/MS analysis. 
In this chapter, we focus on the PMF protein identification, which 
is still of great value in proteomics.

Protein identification is performed in two stages as shown in 
Fig. 1. At the experiment stage, protein samples are collected first. 
Then, with an extraction instrument, the proteins are separated 
from the samples and precipitated at different spots in a 2D gel 
page (2) according to their molecular weights and pI values.  
By selecting a specified spot in the gel, the corresponding 
protein(s) will be mixed with specific enzyme and digested into 
small pieces (see Note 3). Finally, the mass spectrometer, com-
monly a MALDI-TOF instrument, will generate the PMF spec-
trum (3, 4) for protein identification. At the computational stage, 
all the candidate proteins in the search database are theoretically 
digested using the same enzyme. The simulated spectrum for 
each candidate is created for comparison (see Note 4). The com-
mon PMF protein identification is carried out through two steps: 
(a) the experimental PMF spectral peaks are compared with simu-
lated ones and (b) the proteins in the sequence database with best 
matches are considered the top candidates for proteins in the 
experimental sample.

Unlike 2D gels, PMF provides at least some sequence-level 
information for protein identification. The PMF of a protein is like 
a fingerprint, which is unique to the molecule or represents a small 
population of the proteins in the database. Following an enzyme 
digestion, a collection of peptides with the masses (or mass-to-
charge ratios) identified from the PMF spectra will be mapped to 
known protein sequences (see Note 5). The use of the fingerprint 
to identify proteins relies on the ability to search sequences that 
are already present in databases. Hence, it is important that the 
organism has a complete, whole genome sequence available so 

1.2. Peptide Mass 
Fingerprinting
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that all the proteins can in principle be determined or predicted. 
When the whole genome sequence is unavailable, researchers 
often search an MS spectrum against a composite protein database 
containing all known proteins (such as UniProt or Swiss-Prot), 
trying to identify a protein in another species that is highly similar 
to the homolog in the native organism.

In order to provide benchmark data for the computational  studies, 
we used seven protein standards, which yielded 12 gel spots.

 1. In-gel trypsin (5), digests were performed for the Coomassie-
stained 2D gel plugs. The digests were dried on a centrifugal 
evaporator, reconstituted, and desalted on C18 ZipTips.

 2. The desalted digests were analyzed by MALDI-TOF MS with 
CHCA in the positive ion delayed extraction reflector mode.

2. Materials

2.1. 12 Gel Spots 
Analyzed  
by MALDI-TOF MS

Fig. 1. Peptide mass fingerprinting protein identification is performed at two stages. At the experiment stage, proteins are 
digested into peptides, where the mass-charge ratios are shown in the spectra; at the computational stage, protein 
candidates are theoretically digested and simulated spectra are generated for comparison
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 3. After the sample spots were washed on target with diammonium 
citrate to reduce the interference from matrix ion clusters, they 
were reanalyzed by MALDI-TOF MS in positive ion delayed 
extraction reflector mode.

The 12 spots are from Aspergillus niger, Bovine, Lens culinaris, 
Horse and Soybean, respectively.

The soybean MS data were provided by the lab of our collabora-
tor Dr. Gary Stacey.

 1. The proteins (600 mg) were extracted from soybean (cvWil-
liams 82) and root hair, which were separated by 2-DE (24 cm 
IPG strip, linear pH 4–7). Four replicates were performed 
and gel pictures were analyzed using Phoretix (nonlinear 
dynamics, v2005).

 2. Spots identified in at least three out of the four replicates 
were excised using a spot picker and their molecular weights 
and pIs were determined. The gel plugs were then digested 
using sequencing-grade modified trypsin (Promega, Madison, 
WI, USA).

 3. Tryptic peptides were lyophilized, reconstituted in 10 mL of 
700:290:10 by volume ACN/water/formic acid and 0.5 mL 
of the solution was mixed with the same volume of a-cyano-
4-hydroxycinnamic acid (Fluka MS-grade, Sigma–Aldrich, St. 
Louis, USA) solution (5 mg/mL in 500:380:20:100 ACN/
water/10% TFA/100 mM ammonium dihydrogen phos-
phate). The sample/matrix (0.3 mL) mix was deposited on a 
stainless-steel plate (ABI01-192-6-AB).

 4. The tryptic peptides were analyzed on an Applied Biosystems 
Inc. 4700 MALDI TOF/TOF MS in positive ion delayed 
extraction reflector mode with a 355 nm (200 Hz) laser. The 
instrument was calibrated with ABI peptide standards (4700 
Mass standards kit, 4333604).

 5. Spectra were analyzed using the GPS Explorer software  
(v. 3.0) (Applied Biosystems) and the Matrix Science’s 
MASCOT search engine (www.matrixscience.com) against 
the NCBI Viridiplantae protein database. Search parameters 
include a maximum of 150 ions per MS spectrum with an 
S/N 0.20, a mass error of 0.1 Da for the mono-isotopic 
precursor ions, a maximum of one allowed miscleavage by 
trypsin, and an exclusion of peptide masses corresponding 
to the autolysis of the trypsin, carbamidomethylation of 
cysteines and methionine oxidation, respectively, as fixed 
and variable modifications.

Forty proteins were identified confidently with the MS/MS 
mode, and we used their corresponding MS fingerprinting data as 

2.2. 40 Soybean Root 
Hair Samples 
Separated by 2-DE

http://www.matrixscience.com
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the inputs for our tests of scoring schemes. We assume that a test 
protein identification is correct if our search using the fingerprinting 
data matches the protein identified from the MS/MS data.

The database used for protein identification is sprot45 from 
UniProtKB/Swiss-Prot (last updated in January 2005), together 
with the 40 proteins from soybean (generated after January 2005) 
that we have identified but are not already included in the data-
base. The database has 163,275 proteins in total, and it is format-
ted in a specific form, including eight fields for each entry (see 
Note 6): accession number, peptide number, peptide sequences, 
peptide masses, peptide lengths, protein sequence, protein name, 
and protein molecular weight. The molecular weight (see Note 7) 
of a peptide of N residues is calculated as

 =

+∑ i water
1

residue_mass mass
n

i  
(1)

Equation 1 takes into account an amino-terminal hydrogen and a 
carboxy-terminal hydroxyl group, which sums up to 18.015.

In this study, we only consider complete trypsin digestion of 
a protein and peptide without including any missed cleavage. In 
addition, we assume that the charge state of all the peptides is 1 
and no posttranslational modification exists in any peptide. We 
use only mono-isotopic peaks.

The scoring functions are quantitative measurements of protein 
identification. They evaluate the degree of matching between a 
collection of proteolytically derived peptides and an MS spectrum 
and map it to a comparable value using a mathematical formula. 
A good scoring function will consider different factors and bal-
ance them well which leads to the result that the correct protein(s) 
are always the top ranked candidates in the list of matches. The 
challenges in the process of developing a scoring function include: 
(a) make use of all relevant information that will affect the predic-
tion, (b) design a good model to balance the effects and produce 
reasonable result.

In this section, we first describe briefly the widely used 
MOWSE scoring function and a successful commercial software 
“Mascot”. Then we will illustrate the three novel scoring func-
tions (Subheadings 3.3–3.5 in the following) that we developed.

MOWSE (6) is one of the earliest scoring schemes in protein 
identification using PMF data, which is still widely applied.  

2.3. Search Database 
Preparation

3. Scoring 
Function Methods

3.1. MOWSE



12 Song, Chen, and Xu

The scheme is based on the number of possible matches within a 
target protein and the occurrence of the molecular weight of each 
peptide. A frequency table is constructed for all peptide entries in 
the database. Each column in the frequency table represents the 
molecular weight of the protein and is divided into 10 kDa inter-
vals. Rows represent the molecular weight of peptides and are 
divided into 100 Da intervals. Proteins found in the database are 
entered into the table based on their molecular weights and the 
weights of peptides found in each protein. Each cell thus comprises 
the occurrence of peptides within a specific molecular weight 
range in a protein of a given intact molecular weight. The frequency 
table is constructed by normalizing the value in each cell with the 
largest number found in each column. Specifically, the frequency 

ijf  in cellij  is = max/ij ij jf N N , where =max 1 2max{ , ,...}j j jN N N  
is the largest number in column-j. For protein identification, each 
protein in the target database is scored by multiplying together 
the frequency value ijf of the matched peptides, the molecular 
weight of which differs from the experimental spectral peak 
within a cutoff value (typically 1 or 2 Da). This product is 
scaled with the protein molecular weight and then inverted. 
The final = ×score 50,000 / ( )n pp w , where np  is the product 
of matched distribution scores and pw  is the molecular 
weight of the candidate protein “hit” in the database.

= ∈

∝ ∏
( ),

n ij
i R l l H

p f , where R(l) represents the row number of the

table for the l-th fragment of the mass spectra, and H is the set of 
the matched fragments of the mass spectra with the protein.

Mascot (7) is an extension of the MOWSE algorithm that uses a 
probability score to rank the candidates. It is one of the most suc-
cessful software for protein identification. However, as a commer-
cial software tool, the algorithm details are not open to the 
public.

There are several other bioinformatics tools developed for protein 
prediction, such as ProteinProspector (8), ProFound (9), 
OLAVPMF (10), and Probity (11). To make use of the peak 
intensity and the quantitative difference between the experimental 
mass values of selected peaks and matched mass values in the pro-
tein database, we developed a number of other scoring functions 
(12, 13). One of them is a normal distribution scoring function 
(NDSF) (12) based on Eq. 2:

 
sp s

  −
= × −    

∑
2

2

(mt me )1
Score Int exp

22
i i

i
i ii  

(2)

3.2. Mascot

3.3. Normal 
Distribution Scoring 
Function
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In Eq. 2, mti  is the mass of the theoretical peptide in the database, 
mei  is the mass of the matched experimental peak, Inti  is the 
corresponding intensity value for the experimental peptide,

and s = ×1
tolerance me

3i i (typically tolerance = 100, ppm = 0.01%).

NDSF assumes that all mass matches between theoretical peptides 
and experimental peptides follow a normal distribution with the 
mass of the experimental value as the mean.

To make better use of the statistical properties and to handle 
these properties in PMF protein identification more systemati-
cally, we developed another new scoring scheme, probability-
based scoring function (PBSF), based on the MOWSE occurrence 
table. In this case, when comparing a mass distribution of pep-
tides (n fragment molecular weights in the spectrum) with the 
molecular weights in database entries (protein k in the column j), 
R(l) represents the row number of the table for the l-th fragment 
of the mass spectra. When the difference between two peptide 
weights is within a tolerance value, it is a “hit” or match. 
Otherwise, it is non-matching. The probability for a match 
between a mass distribution of peptides and a protein k in the 
database is computed via

 
= ∈

   = − −    
∏
( ),

Pr( ) 1 1

k
ij

k

n

ij
k

i R l l H j

m
P

M
 

(3)

where Pr(Pk) represents a likelihood for protein k matching with 
the fragment peptides of the experimental mass spectrum. kH  
is the set of the matched fragments of the mass spectrum with 
protein k, and k

ijn  is the number of peptides in cellij  for protein k. 
Let ijm  represent the average number of occurrences of peptides 
in cellij  for one protein in the database, and jM is the total num-
ber of occurrence of peptides in the j-th column of the database, 

i.e., 
=

= ∑
1

rn

j ij
i

M m , where rn  is the total number of rows in the

table. Clearly, /ij jm M  is the frequency in the cellij  for the column 
j. Note that such a frequency is different from ijf  of MOWSE.

In mass spectra, high-intensity peaks are more likely to be 
peaks representing true peptides, whereas low-intensity peaks are 
more likely to be noise. To account for the peak intensity effect, 
we modify the Eq. 3 as

 
= ∈

     = − − −       
∏
( ),

Pr( ) 1 1 (1 )

k
ij

k

n

ij
k l

i R l l H ij

m
P I

M
 

(4)

3.4. Probability-Based 
Scoring Function
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where lI is the normalized intensity ([0,1]) of the l-th spectrum, i.e.,

 
s− −

=
+ ˆ( )

1

1 l
l I I

I
e  

(5)

In Eq. 5, l̂I  is the original intensity in the spectrum, I is the 
average intensity for all selected peaks, and a  is a constant (see 
Note 8). To achieve good precision in computing, we adopt –log 
Pr(Pk) as the score of PBSF (13) for protein identification.

We further developed another scoring scheme by integrating the 
information for the neighboring matching peptides into a modified 
probability-based scoring function (MPBSF). The score, which uti-
lizes the average distance of matched peptides, is defined as:

 

−

+
==
∑

1

, 1
1

Dis
ADMP

/

mn

i i
i

s pn n
 

(6)

where the numerator represents the sum of the distances between 
two adjacent matching peptides, while the denominator represents 
the total number of possible digested segments in the protein 
divided by the number of matching peptides. Specifically, mn , sn , 
and pn  are the number of the matching peptides in the spectra, 
the number of the digested segments, and the number of the 
matching peptides in the protein, respectively. In this score, when 
a number of matching peptides are clustered together on the pro-
tein sequence, the match is more significant. The final MPBSF 
score is calculated as –log Pr(Pk) – log(ADMP).

We compared the performance of PBSF and MPBSF with the 
other scoring functions using the same experimental dataset as 
described in Subheadings 2.1 and 2.2 (12 standards together with 
40 soybean proteins). For each protein identification, we manu-
ally selected a set of peaks from a spectrum provided by the 
Proteomics Center, University of Missouri-Columbia. We deter-
mined that matched peptides should cover at least 25% of a protein 
sequence in order to be listed as a candidate of correct result. 
Figure 2 shows the comparative results of the five scoring func-
tions (NDSF, MOWSE, NMOWSE, PBSF, and MPBSF) in terms 
of ranking correct proteins among the top hits. It indicates that 
PBSF and MPBSF performed significantly better than the other 
three methods (especially in the “#top 1” category). The perfor-
mance results of PBSF and MPBSF are similar, while MPBSF 
slightly outperforms PBSF.

3.5. Modified 
Probability-Based 
Scoring Function

3.6. Scoring Functions 
Comparison
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In Subheading 3.4, our scoring model PBSF gives a ranking list 
of candidate proteins. However, the raw score (Eq. 3)-based 
ranking still has two problems:

 1. The raw score is dependent on both query PMF and the data-
base, and different PMFs searches will give different raw 
scores for top proteins. Hence, the raw score itself cannot tell 
the significance of the match.

 2. Since PBSF may have bias, one can improve the confidence 
assessment based on the PBSF score distribution.

For these two reasons, we designed and implemented a statistical 
model for confidence assessment by testing the null hypothesis 
that the match between the MS spectrum and a specific protein 
given the PBSF score is by chance (14).

The confidence assessment process is similar to the scoring func-
tion, except that the model is more rigorous statistically for 
hypothesis testing. The following steps are needed to conduct 
computational protein identification using PMF data:

 Step-1.  Take one fragment from a PMF spectrum, and compare 
it with all theoretically digested peptides in the search 
database. A score is assigned for each matching pair.

 Step-2.  Repeat Step-1 for all remaining fragments from a PMF 
spectrum one by one until all fragments of the spectra are 

4. Confidence 
Assessment  
for PBSF

4.1. Why  
Confidence-Based 
Assessment?

4.2. Confidence 
Assessment Model

Fig. 2. Scoring function comparison, where numbers in the cells show the occurrences 
in the categories
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compared with the protein. For each protein in the 
searched database, sum the scores of all the fragments 
from a PMF spectrum as the score for the protein.

 Step-3.  Rank all the proteins in the database according to their 
scores. The protein with the highest score in the database is 
taken as the best matched protein in the biological sample.

We follow the above three steps to analyze the statistical signifi-
cance of the scores. In Step-1, assume we have the l-th fragment, 
which falls in the row-i of the frequency table (i.e., i = R(l)). When 
we compare this fragment with protein-k with the molecular weight 
in the column-j, the score of fragment-l is

 


= 



if matches at least one peptide
otherwise

ij
l

ij

q l
s

q
 

(7)

As we have discussed in Subheading 3.4, Eq. 3 represents a 
statistical model scoring function while Eq. 4 additionally 
considers peak intensity, which makes an adjustment from 
Eq. 3. We adopt –logP(k|w) with the consideration of peak 
intensity as the score function in this study, and hence, qij = –log 
{[1–(1–(mij /Mij )

mij ] (1–Il )} and –qij = –log [(1– (mij / Mij))
mij Il ] 

(penalty for mishit) or = 0ijq  (no penalty for mishit), where the 
variables have the same meaning as in Subheading 3.4. In either 
case of ijq , the assumption of ≥ij ijq q  holds. Here, protein-k is 
assumed to be chosen randomly in the column-j, and has the 
average statistical property of all proteins in the column-j. In this 
case, k

ijn  in Eq. 3 is replaced by ijm . Now, we examine the 
probability distribution of the score based on the occurrence in 
cellij .
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and with the cumulative probability as
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where − −(1 /( )1 ijm
ij jm M  is the probability of no match between 

fragment-l and any of the ijm  peptides in the cellij for protein-k. 
The average and standard deviation of score s are



17Bioinformatics Methods for Protein Identification Using Peptide Mass Fingerprinting

 
m

+∞

−∞

= =∫ ( )dk
l lsP s s s

 
(10)

 
s m

+∞

−∞

= − =∫2 2( ) ( ) ( )dk k
l l ls P s s s

 
(11)

In Step-2, all fragments of the spectra are compared with the

peptides for the protein-k. Let 
=

= ∑
1

n
K

l
l

S s . Then, the probability

distribution ≥( )KP S s  is the convolution of n distributions of 
individual fragments. That is, = = = ⊗ ⊗ =1

...( ) ( ) ( )K
nP S s P s s P s s , 

where ⊗  is the convolution operator. With the assumption of 
independent distribution of sl, according to the central limit theo-
rem and law of large numbers, the probability converges to the 
Gaussian distribution when the number n is sufficiently large. In 
this case, the approximation of the Gaussian distribution can be 
analytically expressed as
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where m m
=

= ∑
1

n
k k

l
l

and s s
=

= ∑2 2

1

( ) ( )
n

k k
l

l

We apply Eq. 12 to derive the numerical solution for ≥( )KP S s
(see Note 9). ≥( )KP S s  can be interpreted as the p-value for the 
significance of the raw score s, i.e., the probability of achieving s 
or higher score by chance. The smaller the p-value, the less likely 
that the hypothesized distribution is correct and the more signifi-
cant the score is in terms of protein identification.

We used the protein identification of mitogen-activated protein 
kinase 2 [in Glycine max] (GI:33340593) as an example to show 
how our method works (see Table 1). Based on the raw scores, 
Q9CHU6 ranked number 1 and 33340593 (the correct protein) 
ranked number 2. By using the p-value, their orders were switched. 
From the table, the protein 33340593 has eight peptides matching 
9 times in total with spectral peaks, while Q9CHU6 has seven pep-
tides matching 11 times. Notice that a single peak may match mul-
tiple peptides. For example, peptide “TLEEFVGSLEKPR” of 
protein Q9CHU6 has three repeated matches for a single peak with 
a low intensity 0.05. This can explain why Q9CHU6 obtained a 
higher score, as the intensity for each of the three repeated matches 
is overestimated. This overestimation is corrected by our statistical 
model, which considers the overall distribution of possible scores.

By using Eq. 12, we obtained the ranks for the 52-protein 
dataset. We derived the ranks based on raw scores (SR) and p-values 

4.3. Confidence 
Assessment Results
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(PR) as well as the relative rank improvement, which is defined as 
(SR − PR)/(SR + PR). This “improvement” could be positive, 
zero, or negative. If it is positive, it shows that the statistic model 
improves the ranking of the correct protein. In total, 19 cases 
(38.5%) improved ranking for the correct proteins by the p-value, 
32 cases (61.5%) have no change, and only 1 (1.9%) produced 
worse ranking. The average relative improvement for the 19 pro-
tein is 41.64%, which is significant. In particular, four out of five 
second ranked correct proteins were enhanced to the top by 
p-values. The unchanged cases often have the correct proteins on 
the top, indicating good ranking can be preserved by the statistic 
model. Overall, 98% of the samples obtain better or preserved 
high ranks using p-values. This shows that p-values significantly 
outperform raw scores in protein identifications.

We implemented our methods in the software package 
“ProteinDecision” (see Note 10). The software supports the 
following functionalities:

5. Software

Table 1 
Protein identification for mitogen-activated protein kinase 2

Protein ID.

33340593 Q9CHU6

Peptide Int. Peptide Int.

Peaks QSFQEK 0.516 ALYFSK(2) 0.015

QLPLYR(2) 0.064 YQEAVR 0.516

KPLFPGR 0.166 TEEVYK(2) 0.052

ICDFGLAR 0.026 YISTYK 0.011

DHVHQLR 0.148 VLSGPAVNFSGDK 0.057

DIVPPPQR 0.139 SENLPANLIQAQR 0.99

YKPPIMPIGK 0.785 TLEEFVGSLEKPR(3) 0.05

YIHSANVLHR 0.266

MW(Da) 44,765 52,424

Score 36.957681 37.233432

p-value 5.07E−10 5.06E−09

Rank change 2–1 1–2

“Peptide” lists the matching peptides with the numbers in the bracket showing the occurrence if the peptide appears 
more than once in the protein. “Int.” is the corresponding normalized intensity for the matching peptides
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 1. Multiple ways for peak list selection. A spectrum peak list is 
required for the input file. A user-friendly interface is pro-
vided for the user to select peak list in different ways as shown 
in Fig. 3(a). Users can submit the entire spectrum, or select 
top n% as the input, or use a horizontal line to enclose the 
peaks above it, or manually select.

 2. Support for the user’s own sequence database in FASTA for-
mat. Users can choose and upload a search database of their 
own. If it is in FASTA format, the software can convert it and 
make it compatible for the program.

 3. Flexibility in parameter selection. Users can set running 
parameters according to their own data’s characteristics. 
These options include molecular weight boundaries, thresh-
old for peptide matching, and the number of acceptable mis-
cleavages, etc.

Results can be visualized in three subpanels as shown in Fig. 3(b). 
The top subpanel is a protein list ranked by their scores. A cor-
responding record includes rank, protein ID, score, p-value, the 
number of matched peptides, the matched peptide percentage, 
protein molecular weight, and the protein length. By single click-
ing of an entry, the sequence of that protein will be displayed in 
the middle subpanel and a double click will activate the internet 
browser, which leads to the detailed information at the ExPASy 
Proteomics Server. In the middle subpanel, the digestion bound-
aries of peptides are indicated by a space with the start and end 
positions labeled, and the matched peptides are marked in red. 
The bottom subpanel shows the spectrum. Peaks labeled in red 
are the selected peaks, peaks in blue represent the matched pep-
tides, and the peak in green is the highlighted peptide.

 1. Almost all the molecular weights of amino acids are unique. 
The exceptions are leucine and isoleucine, both of which have 
the same molecular weight but different topologies.

 2. Trypsin is the most popular enzyme for protein digestion, as 
it cleaves very specifically at R–X and K–X bonds, except for 
X = P (the rule on X = P is that on some rare occasions there 
may be cleavage and therefore, it is not always used as a hard 
constraint).

 3. The protein mixture can be complicated for three reasons: 
first, there might be more than one target protein in the spot 
sample; second, the enzyme itself has peptide segments, and 
these autolytic peptides can contaminate the target protein 

6. Notes
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Fig. 3. Graphical user interface for ProteinDecision. (a) The multiways for peak selection; (b) the output panel for 
prediction result
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spectrum; and third, miscleavages might happen during the 
digestion leading to unexpected peptides being present. In 
general, missed cleavages are quite common.

 4. The simulated spectrum is generated on the peptide mass 
only (rather than m/z of higher charge states). The charge 
state is considered “+1” as the default. This assumption is 
valid for most cases in MALDI-TOF.

 5. The collection of peptide masses from PMF is not absolutely 
unique due to the lack of explicit sequence information; how-
ever, PMF data may provide confident protein identification 
in many cases.

 6. This is a self-defined database format for preprocessing. We 
provide a package to transform a FASTA sequence file into 
this format.

 7. There are two ways to calculate the mass of amino acids and 
therefore peptides and proteins: average mass or mono-iso-
tope. We use the latter one in this study.

 8. Equation 5 is a sigmoid function, which is used to smooth 
the effect of peak intensities. The parameter a is set based on 
empirical estimate or by training.

 9. Another solution for ≥( )KP S s  is to use Gram-Charlier series 
with the higher-order moment information of the individual 
distributions. The Gram-Charlier series give an analytical 
expression of the eighth-order Gram-Charlier expansion for 
P (SK ≥ s), which could be more accurate but time consuming.

 10. “ProteinDecision” is a stand-alone software tool developed 
in Java. It incorporates PBSF scoring function and corre-
sponding confidence assessment for protein prediction using 
PMF data. Currently, we have a beta version; in the long 
term, we will keep developing it and make it open source for 
free use.
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Chapter 3

Computational Approaches to Peptide Identification  
via Tandem MS

Simon J. Hubbard

Abstract 

The peptide identification problem lies at the heart of modern proteomic methodology, from which the 
presence of a particular protein or proteins in a sample may be inferred. The challenge is to find the most 
likely amino acid sequence, which corresponds to each tandem mass spectrum that has been collected, and 
produce some kind of score and associated statistical measure that the putative identification is correct. This 
approach assumes that the peptide (and parent protein) sequence in question is known and is present in the 
database which is to be searched, as opposed to de novo methods, which seek to identify the peptide ab 
initio. This chapter will provide an overview of the methods that common, popular software tools employ 
to search protein sequence databases to provide the non-expert reader with sufficient background to appre-
ciate the choices they can make. This will cover the approaches used to compare experimental and theoretical 
spectra and some of the methods used to validate and provide higher confidence in the assignments.

Key words: Bioinformatics, Peptide identification, Theoretical spectra, Data analysis, Proteomics

Proteomics as a discipline has taken off in the last few years thanks 
to the numerous advances in mass spectrometry instrumentation, 
the growing numbers of genome sequences and the increasingly 
powerful bioinformatics tools available to analyse the data. Mass 
spectrometry allows peptides derived from their parent proteins 
to be characterised in detail in the gas phase, generating data that 
can be related to their amino acid sequence. This chapter aims to 
introduce the computational processes used by the various data-
base search tools that attempt to achieve this, matching candidate 
peptide sequences to their experimental tandem mass spectra. 
This process underpins much of modern proteomics, whose real 

1. Introduction
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goal is usually to identify the proteins themselves rather than their 
component peptides. However, protein identification is inferred 
from confident matches of mass spectra to their peptide sequences 
and much of the confidence and accuracy of proteomics is there-
fore dependent on this step.

The entire proteomics pipeline involves several stages, from 
preparation and separation of a complex protein sample, and 
digestion of the protein with a hydrolytic enzyme to produce 
peptides to further separation and the subsequent tandem mass 
spectrometry of these peptides. If high quality spectra can be 
obtained, then computational tools can be used to identify the 
amino acid sequence of the peptide from characteristic patterns in 
the mass spectrum. The computational challenges have been well 
reviewed by other authors (1–5). This chapter aims to focus 
specifically on the matching of experimental and theoretical spectra 
by the different software tools and to give a practical flavour of 
the parameters that the user needs to be aware of to ensure that 
they obtain good peptide identifications. Briefly, the background 
to the problem is first introduced, although the reader is referred 
to any of the above for more details.

As stated, the goal of most proteomics experiments is to 
characterise (identify and/or quantify) the component proteins 
in a sample. The proteins may have been extracted from a spot 
on a gel or a complex mixture extracted from a cell or tissue.  
The principal analytical technique used at present to characterise 
them is the mass spectrometer. Ideally, one would wish to simply 
analyse the protein directly and identify it from its mass spectrum. 
However, for a variety of reasons, protein molecules are too large 
and complex to analyse directly and there is no guarantee that 
they will ionise or correspond precisely in mass to the predicted 
mass calculated from their amino acid sequence. This latter point 
is important since modern protein sequences are usually inferred 
from DNA sequences and the starts/ends of the mature protein 
form are not necessarily known. Similarly, the post-translational 
state of the protein is not specified explicitly in the DNA sequence 
of the gene; mature proteins can be truncated, covalently linked 
to another chain, or more frequently modified by some other 
chemical group (e.g. acetylation, phosphorylation). Therefore, 
proteome scientists have found it much easier to break the prob-
lem down into manageable chunks, by digesting the protein into 
component peptides with a proteolytic enzyme (usually trypsin). 
Although some of the peptides will suffer from the same prob-
lems (will not ionise, have problematic modifications and do not 
correspond to the sequence in the database), the majority are per-
fectly amenable to mass spectrometric analysis and correspond 
exactly to the database sequence. Moreover, post-translational 
modifications and error-tolerant searches can be performed by 
most database search engines, which can take many modifications 
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and uncertainties into account (usually at the expense of speed); 
such an undertaking would not be practicable for whole proteins.

Many proteomics experiments can be classed as “shotgun” 
proteomics, in which a proteome is digested in to component 
peptides and analysed, typically following one or two stages of 
chromatography (6). This shotgun approach is often referred to 
as “MudPIT” where multi-dimensional chromatography is first 
applied to the digested peptide mixture prior to the MS stage. 
Such a high-throughput proteomic technique can be compared 
to “shotgun” DNA sequencing. In both cases, larger molecules 
are fragmented into smaller components in order to piece together 
the solution. In the proteomic case, peptides are analysed in the 
mass spectrometer, often after separation in a liquid phase column 
by virtue of their hydrophobicity (using High Performance Liquid 
Chromatography – HPLC) or net charge (ion exchange chroma-
tography). The separations can be directly coupled to the mass 
spectrometer, or samples may be prepared independently “offline”. 
Once introduced in to the instrument via one of two common 
ionisation techniques, electrospray or Matrix Assisted Laser 
Desorption Ionisation (MALDI), peptide ions are analysed in the 
instrument. The first analysis detects the mass-to-charge (m/z) 
ratio of the peptide ions and can select particular ion species for 
subsequent further analysis in a second mass spectrometer, where 
the ion is first fragmented into smaller ions. Hence, this is where 
“tandem MS” is employed, where the second spectrometer analy-
ses product ions. This step is necessary as peptides with different 
sequences can have very similar m/z values and the m/z value is 
usually not diagnostic for a single peptide (i.e. in the context of a 
whole genome or protein database). Fortunately, analytical chem-
ists have been able to exploit the fact that peptides fragment in a 
reasonably predictable manner under certain circumstance. This 
dissociation is achieved using several fundamental processes such 
as Collisional Activation Dissociation in an inert gas (CAD) or by 
Electron Capture Dissociation (ECD) and Electron Transfer 
Dissociation (ETD). CAD is the “classical” technique and pro-
duces two predominant ion series from fragmentation at the pep-
tide bond yielding b and y ions, whilst ECD and ETD also lead to 
c and z ions in the main. These ion series are shown in Fig. 1, with 
ions subtended at the N- and C-terminus of the peptide.

Since the masses of the atomic components are known to 
high precision, and the atomic composition of the amino acids 
are also known, it is therefore theoretically possible to work out 
the sequence of a peptide if a complete, noise-free, high quality 
product ion spectrum is obtained. Indeed, expert mass spec-
trometrists can often interpret spectra manually to sequence a pep-
tide. However, as most spectra are not ideal, and high-throughput 
experiments typically produce many thousands of spectra, 
computational tools are required to automate this process. 
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There are three principal approaches: (a) de novo sequencing, 
where the peptide sequence or a part thereof, is inferred directly 
from the spectra without using a database, (b), database-directed 
searching where the spectra is compared to candidate peptides in 
a protein sequence database, or (c), hybrids of (a) and (b) where 
tags and short inferred sequences are combined with database 
searching approaches. This chapter is not concerned with (a), and 
will concentrate instead on the approaches used in (b) as these are 
the most commonly employed in the majority of proteomics 
experiments.

The overall spectrum matching problem is illustrated in Fig. 2. 
At first glance, this might appear to be a long and complicated 
process, however the aim of this figure is to illustrate the common 
features used in most identification pipelines and has been broken 
down into five stages which are described here, first in overview 
and then in more detail.

In the first stage, the spectra are collected from the mass 
spectrometer using the instrument settings and experimental 
protocol set up by the operator. Although this is not the pri-
mary focus of this chapter, the settings used will have a bearing 
on the quality of the spectra and the attendant success of the 
peptide identification protocol. Many experiments used a “data 
dependent acquisition” strategy, whereby the most abundant 
ions in the first round of MS are selected for fragmentation in 
a second round of MS. The complexity of the analyte will 

2. Algorithm 
Overview

R1 O R2 O R3 O R4
| | || | | |

H-N --- C --- C --- N --- C --- C --- N --- C --- C --- N --- C --- COOH

| | | | | | | |

H H H H H H H H

b2 b3

y1y2y3

a1 b1 a2 a3c1 c2 c3

x1x2x3 z2z3 z1

Fig. 1. Generalised product ion series generated from a peptide sequence upon 
fragmentation in the mass spectrometer. Collisionally activated dissociation (CAD) 
fragmentation generates mostly b and y ion series, which electron capture and electron 
transfer dissociation (ECD/ETD) instruments generated predominantly c and z ions
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therefore affect the volume and quality of the spectra acquired. 
Various peak detection and spectral processing pipelines may 
then be applied, often using software provided by instrument 
manufacturers. This includes noise reduction, background 
subtraction, centroiding and smoothing.

Once a spectrum has been acquired, the second stage involves 
further processing of the experimental spectrum prior to any 
comparison with any theoretical ones. This can involve normalisa-
tion, peak binning and removal of peaks to provide consistency in 
the spectra and peak intensities, which are subsequently used in 
matching algorithms. Once experimental spectra are processed, 
they can be compared to theoretical spectra generated from the 
database(s) selected for the search.

The third stage scans through the protein sequence databanks 
to be searched, usually selecting candidate peptides based on their 
precursor ion mass for comparison to the experimental spectrum. 
Typically, this process is also restricted to peptides generated from 
a theoretical digest of the peptide sequence databank by a named 
enzyme (e.g. trypsin), as well as to peptide masses that would 
generate a m/z within a fixed tolerance of the experimental pre-
cursor ion for a limited set of possible charge states. Some algo-
rithms, such as Sequest, also employ a simple filtering step based 
on the number of peak matches to the theoretical spectra, although 
this usually improves only speed not performance. Indeed, this 
too may be unnecessary as Sequest search speed has been recently 
improved (7).

In the same way that the experimental spectra are processed, 
the theoretical spectra can be normalised and processed to 
include/exclude particular fragment ion peaks at the fourth 
stage.

In the fifth stage, a variety of mathematical functions can then 
be used to compare each experimental spectrum to the theoreti-
cal spectra generated for all candidate peptide sequence matches 
(PSM). This latter abbreviation is used quite frequently in the 
literature to describe candidate matches between spectra and pep-
tide sequences and represents an important point. These algo-
rithms generate a list of candidate matches, typically ranked on 
some scoring function, which may represent the actual amino 
sequence from which the experimental spectrum was generated. 
The term peptide “identification” is used frequently in the field, 
usually referring to the top-hit in this ranked list (which may or  may 
not exceed some statistical measure of significance). However, it 
is possible for a variety of reasons that this could be a false positive 
and hence strictly we should refer to hits as “putative identifica-
tions”. Since this is rather an important point, the informatics 
field allied to proteomics fields has invested considerable time and 
effort developing statistical models and significance tests to assign 
p-values and expectation values to candidate PSMs.
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A variety of techniques are applied in the sixth stage, some of 
which are in-built with search tools, which attempt to assign some 
such statistical or probabilistic measure of the likelihood of a can-
didate match being correct or being assigned by chance.

All the above are discussed in more detail in the following 
sections, with particular reference to the common search tools 
and how they handle the problem. Although there are many dif-
ferent search tools, with new programs appearing all the time, this 
review will concentrate on a subset of the most widely used, 
namely: Sequest (8), Mascot (9), OMSSA (10), X!Tandem (11), 
MyriMatch (12) and Phenyx (13). Other notable tools not cov-
ered here in detail include VEMS, InsPecT, ProbID, Crux and 
Paragon (14–18).

Different software tools take different approaches here, depend-
ing on the nature of the comparison technique they use with 
theoretical spectra. For example, Sequest (8) pre-processes both 
the experimental and theoretical spectrum. The signal intensities 
are normalised to local maxima, after first assigning the peak 
intensities to bins across the m/z scale. This step effectively ensures 
that the experimental spectrum is comparable with the theoretical 
one. In most MS/MS spectra, the b and y ions dominate over a 
ions and other species. Although there is no prior assignment of 
ion types to the spectral peaks in the experimental spectra, this is 
done for the theoretical spectra and the normalisation step ensures 
that the most abundant ion intensities in the experimental spec-
trum are comparable to the theoretical ones. The standard Sequest 
algorithm does not explicitly consider neutral losses (of water or 
ammonia) and identifications are therefore essentially based on a, 
b and y ions only. OMSSA (10) does not explicitly normalise spec-
tra but does remove peaks it considers to be noise, attempting to 
maximise the signal:noise before any comparison with theoretical 
peaks, deleting peaks below 2.5% of the maximal signal intensity 
(although the 2.5% value can be changed by the user as well as 
dynamically by the algorithm). Additionally, OMSSA attempts to 
“de-isotope” the spectrum by removing peaks which appear not 
to be monoisotopic. The authors claim that this improves the 
performance of their algorithm substantially since peaks which 
are non-monoisotopic will complicate spectral comparisons as 
most algorithms do not model them in the theoretical spectra.

MyriMatch follows an alternative route, by filtering the exper-
imental spectrum by a percentage of the total ion current, ensur-
ing that a fixed percentage of ion signal is retained rather than 

3. Experimental 
Spectral 
Processing
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removing peaks below a fixed cutoff (12). The spectral peaks are 
then binned in to a small number of user-definable intensity 
classes (in a default ratio of 2:1 for adjacent classes). These classes 
are subsequently used in the scoring function to upweight candi-
date peptides which match more high-intensity binned peaks.

Other peptide identification tools take a more sophisticated 
approach to model the experimental spectrum. Phenyx uses a 
probabilistic model for experimental spectra which includes con-
sideration of relative intensities of given ion types, presence of ion 
series, missed cleavage propensities, and post-translational modi-
fication likelihoods (13, 19). This model can be trained further in 
a user’s laboratory to improve performance for a local instru-
ment/protocol set up.

Most algorithms also filter or remove ions from around the 
region of the spectrum containing the precursor ion m/z. This is 
done to prevent any theoretical product ions matching to the 
precursor ion and leading to false positive identifications. The 
necessity to perform extensive data processing on the experimental 
spectra clearly depends on the instruments software and the 
identification tool provided. Tools such as Mascot and X!Tandem 
do not use extensive data processing steps to the experimental 
spectra but work well regardless. The quality of the identifications 
obtained may still be improved, however, if sensible steps are 
taken to reduce noise prior to database searching as has been 
reported (20). Other approaches also address this by removing 
redundant or poor quality spectra using clustering or machine 
learning techniques (21–26).

Very poor results can be obtained from high quality data if users 
do not take care to select search parameters appropriately. Even 
the smallest mis-setting of a parameter can reduce the number of 
confident identifications to a small fraction of those that are pos-
sible. Some of the key parameters are outlined subsequently.

 1. Mass type. Although most modern mass spectrometers have 
sufficient resolution to be able to routinely determine mono-
isotopic peptide and fragment m/z values from spectra, large 
molecules and older instruments may not always lead to such 
good resolution. Monoisotopic ions contain only the 12C  
(as well as the ground isotopic states of all other constituent 
elements), while average mass determinations are called 
from 13C and other higher state isotopes and will always be 
larger than the monoisotopic values. Most search engines 
ask the user to specify the mass type they wish to search for.  

4. Selection  
of Database Search 
Parameters
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This might seem trivial, but setting a search engine to look 
for monisotopic masses when average masses have been 
determined (and vice versa) will seriously degrade search 
performance and can catch out novice users.

 2. Fragment ions types. As discussed earlier, the types of theo-
retical ion generated by the search engines can be limited by 
the user with some tools. Most tools also offer sensible pro-
tocols/default settings. For example, Mascot restricts ion 
types it expects to see based on the instrument type selected 
on the front page of the web-front end to the search engine. 
Some users pay little attention to this box, but it is prudent to 
select the closest instrument type to the one in use, to improve 
search results. It is also possible to customise the ions types to 
be searched if so desired with many search engines if the user 
has access to them.

 3. Precursor ion charge state. Another important feature to con-
sider is whether to trust the charge state inferred by the 
instrument software on the precursor ion. This charge will 
determine the possible fragment ions that can be produced 
and will have a marked bearing on the ions series produced 
(27). Chapter 6 also examines fragmentation propensities at 
length and relates this to peptide identification and search 
engine strategies. Most search engines support multiple 
charge state searches for multiply charged ions, considering 
both +2 and +3. OMMSA, for example, determines charge 
state based on the fraction of peaks which are greater than the 
precursor m/z. If 95% of the peaks are above this value, it 
assumes it is a +1 charged ion, otherwise it assumes it is mul-
tiply charged and searches first +2 and then +3. Mascot’s 
default behaviour is to consider +2 and +3 for unknown 
charge states from electrospray experiments. MyriMatch also 
treats 3+ charged ions as special cases and models the theo-
retical product ion spectra differently depending on the amino 
acid content.

 4. Database selection. This is an important choice that can radi-
cally change the numbers of matches returned, and is dis-
cussed in detail in Subheading 5.

 5. Enzyme and properties. Although trypsin is the enzyme of 
choice in many instances, other proteolytic enzymes (such as 
endoproteinase Lys-C) have been used in some high profile 
experiments, e.g. (28). Similarly, chemical modification of the 
proteome can block some groups and cause the protease to 
behave effectively like another. For example, in a recent pro-
tocol aimed at N-terminal peptide study, McDonald and 
colleagues acetylate all free alpha-amino groups (including 
those on lysines) and a tryptic digestion effectively becomes a 
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“Arg-C” digest (29, 30). Although most enzymes are 
highly specific, proteome peptides can frequently arise which 
appear to be the results of non-specific cleavage. Trypsin 
cleaves after lysine and arginine (K and R in the amino acid 
one letter code) but apparently not when they are followed 
by a proline (P). This has raised some controversy in the field 
as some groups consider such cleavages to occur more fre-
quently than might be expected (31), and others that they are 
predominantly the results of instrumental artefacts (ie. not 
enzyme digestion) (32). Regardless, most search engines sup-
port the option to consider KP and RP cleavages. Similarly, 
some will also allow the user to search for “semi-specific” 
cleavage, where only one end of the peptide conforms to the 
enzyme specificity rules. Although these searches will be 
much slower, they have the advantage of being able to detect 
processed peptides such as those produced from some inter-
nal cleavage or processing event e.g. after removal of signal 
peptides or pre-/pro-peptides.

Finally, the user needs to consider whether “missed cleav-
ages” might have occurred where the enzyme has not digested 
the protein to all its limit peptides. These missed cleavages are 
common and search engines allow users to consider up to some 
fixed number. Since they are common, it is prudent to consider 
up to 1 or 2 missed cleavages if it is important to maximise 
the number of peptide identifications, but again it increases 
the search space at cost of reduced speed (33).

 6. Chemical and post-translational modifications. All search engines 
can deal with both fixed and variable modifications which can be 
introduced either during the processing of the protein sample 
(chemical modifications) or by the organism after translation 
(post-translational modifications). The search engines usually 
consider these as either “fixed” or “variable.” Fixed modifica-
tions are applied to all peptides containing the appropriate group, 
while variable modifications are applied to all possible combina-
tions. For example, if there are three modifiable groups with the 
addition of +17 Da then the m/z, m/z+17, m/z+34, m/z+51 
values will all be considered matches for that ion.

The protein sequence database that is searched should be selected 
appropriately and with the aim of the experiment in mind. 
Although a full description of the various protein sequence data-
banks is beyond the scope of this chapter, it is worth making a 
few basic points. Protein sequence databanks are derived from 

5. Selection  
of Search Database



33Computational Approaches to Peptide Identification via Tandem MS

 nucleotide sequencing of the organism’s genes and genome and 
hence it should be recognised that the protein sequences being 
searched do not necessarily correspond 100% to the actual pro-
tein sequence expressed in the cell or tissue under study. The rea-
sons for a mismatch include post-translational modifications, 
proteolytic processing (signal and pre-/pro-peptide removal), 
polymorphisms, sequencing errors, and indeed absence from the 
available genome sequenced to date – few genomes are completely 
sequenced and annotated down to the last base pair and some-
times large blocks of sequence are missing. The reasons for failing 
to find your protein in a proteomics experiment are many, and it 
is incorrect to assume that because a given peptide is absent from 
an experiment that the parent protein is not present in a sample. 
Equally, most vertebrate proteins are expressed in multiple iso-
forms (34) and hence it can often be difficult to differentiate pre-
cisely which (if any) of the particular isoforms is being expressed. 
These types of considerations need to be taken into account when 
selecting a protein databank for searching. By default, most search 
tools use large databases concatenated from several member data-
bases, such as NCBI’s nr and Mascot’s MSDB. Although com-
prehensive, these databases may not necessarily contain all the 
most up-to-date candidate sequences from a particular recent 
genome sequencing experiment (if it has not been publically 
released) and they are slower to search because of their size. 
Equally, they contain considerable redundancy and can lead to 
type I errors (false positives) because of their size. The converse 
problem can be produced with small, organism focussed data-
bases which typically contain 10,000-30,000 genes (compared to 
the one million or so in MSDB). The size of these databases can 
lead to an increase in false negatives since some isoforms/variants 
may be missing from the databank. Equally, smaller databases can 
also lead to increased false positives (depending on the statistical 
model used to calculate scores/significance). For example, when 
using decoy database (see Subheading 8) searches, a small data-
base may produce a poor decoy model and over-estimate the sig-
nificance of peptide matches. Mascot’s threshold uses the number 
of candidate peptides whose m/z is within the error tolerance of 
the experimental precursor ion to calculate its scores and redun-
dancy can influence this.

The IPI databases (35) curated by the EBI (http://www.ebi.
ac.uk/IPI) represent a good compromise, storing most known 
isoforms, providing cross-references to member databases, and a 
high level of annotation. A database for each individual proteome 
relating to a specific organism is provided by the IPI curators and 
is therefore a good choice if the species of the sample is known 
and sequenced. However, if not, then one of the more general 
databases might be more appropriate. Several search tools sup-
port the restriction of the search to known taxonomies or species, 

http://www.ebi.ac.uk/IPI
http://www.ebi.ac.uk/IPI
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or this can be achieved by combining individual sequence 
databases to generate more complex datasets. Of course, since it is 
possible to download and run the open source search tools in your 
own laboratory, one can therefore search any custom database.

By way of a simple example to illustrate how database size can 
influence search results, Table 1 shows some search results for a 
large number of candidate spectra of variable quality searched 
against different databases for a bacterial and human example. 
The Mascot search engine is shown as an exemplar as it calculates 
its scoring thresholds (see Subheading 7) based on the number of 
matching precursor ions in the database. In a large unfiltered 
database, a higher threshold is obtained and fewer true positive 
spectra exceed the nominal significance threshold that Mascot 
calculates. Restricting searches to species specific subsets or using 
a species-specific database improves the number of true positive 
identifications. It should be noted that it is not always straightfor-
ward to determine whether a PSM is a true/false positive when 
annotations are missing and hence the false positive columns may 
be overestimates. Nevertheless, the choice of database clearly has 
a marked effect on the search outcome.

Most search tools also perform some processing on the  theoretical 
spectra. This can take the form of inclusion/exclusion of ion 
types. Usually, b and y type ions from CID experiments are 

6. Processing  
of Theoretical 
Spectra

Table 1 
Mascot database search statistics for collections of spectra from example 
proteins

Protein Species Database
Taxonomic 
filter

Mascot 
threshold

True 
positivesa

False 
positivesb Spectra

Molecular 
chaperone 
dnaK

E. coli MSDB None 48 11 15  87

MSDB E. coli 28 22 0

E. coli K12 None 19 24 1

Ubiquitin  
protein ligase

Human MSDB None 49  8 7 129

MSDB Homo sapiens 35 28 1

IPI Human None 33 32 1
aPeptide-spectrum matches where the Mascot ion score exceeds the threshold and the peptide belongs to the protein 
listed in column 1
bPeptide-spectrum matches where the Mascot ion score exceeds the threshold but the peptide does not apparently 
belong to the protein listed in column 1. It is possible that a fraction of these are true positives and the protein 
sequence and annotation was not sufficiently clear to resolve its identity
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included, but most tools also allow the user to consider other ion 
types (such as a ions and immonium ions). Others such as Mascot 
also consider neutral losses, depending on the amino acid content 
of the fragment ion concerned. If all the possible fragment ion 
peaks are generated, the theoretical spectra would be too com-
plex and would match too many experimental spectra; search 
engines therefore take a more simplified view, summarised in 
Table 2. Sequest normalises the theoretical spectra like it does the 
experimental one, constraining b, y ions to have higher intensity 
than other ion types. OMSSA only considers b and y ions and 
counts the matches in sorted mass ladders between theoretical 
and experiment spectra. MyriMatch adopts a similar principle 
since its scoring is based on whether peaks are matched or not, 
and does not consider ion intensity explicitly. At the other extreme, 
Phenyx uses a sophisticated probabilistic model which includes 
the consideration of fragment ion intensities as well as a full range 
of ion types, as already mentioned.

Other authors have analysed the properties of high quality 
peptide identifications, examining properties such as enzymatic 
cleavage preferences (33), amino acid preferences at fragmenta-
tion sites (36–38), and indeed the intensities of product ions 
(39–41). However, as yet, these results have not really made an 
impact on the popular search engines and predicted fragmenta-
tion patterns and ion intensities have not been fully exploited.

The actual comparison of the processed spectra forms the core of 
the peptide identification pipeline and different search engines 
approach this in different ways. Sequest was the first algorithm to 
be published which could make assignments to uninterpreted 
spectra and uses a cross-correlation model which essentially mea-
sures the similarity between the theoretical and experimental 
spectrum factoring small shifts between the two (7, 8, 42). This 
cross-correlation score, popularly known as the Xcorr score, is 
accompanied by a related score, DCn, which measures the differ-
ence between the top scoring match and the next highest scoring 
PSM after normalising the top Xcorr score to 1. This method 
does not explicitly take into account ion intensities but does do 
this implicitly since spectra are normalised and major ion series  
(b and y) weighted more highly. With the exception of Phenyx, 
most other tools do not make an attempt to model signal intensity 
explicitly in their comparisons. OMMSA and X!Tandem focus on 
the number of matching peaks between the two series. OMMSA 
does not consider peak intensities at all once the spectra have 
been noise filtered and pre-processed and bases the score on the 

7. Spectral 
Comparison 
Methods  
and Scoring
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number of matching peaks cast against an expected Poisson 
distribution of scores (10). OMMSA is also able to deal with c and z 
ions in spectra generated from ETD/ECD MS. X!Tandem defines 
a hyperscore based on the dot product of the matched intensities 
which is modified by the number of matched b and y ions. Hence, 
other ion types are not formally considered but there is implicit 
modelling of ion intensities; indeed, in part, the score is simply a 
sum of matched ion intensities of the b and y ions.

Mascot’s scoring algorithm is not published, but it is reported 
to be probabilistic and clearly takes into account more than just b 
and y ions. It is also able to cope with ETD/ECD spectra. For 
each candidate PSM, an ion score is reported reflecting the likeli-
hood that a match is true. It also calculates two thresholds which 
users may compare their ion scores to, reflect a nominal “iden-
tity” and slightly lower “homology” threshold. These are derived 
from the number of precursor ions passing the MS tolerance filter. 
The “identity” threshold is estimated to give a 1 in 20 chance of 
a false positive PSM. Phenyx’s scoring algorithm is centred on the 
likelihood of observing a given PSM based on the observed peak 
matches, ion series, relative peak intensities, post-translational 
modifications, peptide/production mass errors, number of missed 
cleavages and amino acid composition. This score therefore rep-
resents the likelihood of observing any given match by chance. It 
is subsequently transformed into a Z-value. This is the number of 
standard deviations from the mean score of random peptides and 
therefore assumes that the log likelihood scores are normally 
distributed.

Finally, MyriMatch uses a multi-modal model of spectral peak 
intensities from which to estimate the probability p of a random 
match. This p-value is transformed into a score by taking the neg-
ative natural logarithm. As mentioned earlier, peak intensities are 
implicitly considered by the binning of peaks into intensity class 
bins which are considered in the calculation of the probability. 
This differentiates MyriMatch from algorithms such as OMSSA 
which only consider ladders of matched product ions and ignore 
signal intensity.

Although all the algorithms generate some fundamental score, 
none of the core metrics give a statistical description of whether 
a match is significant or not. Most search engines offer some 
way to do this now, or their output can be used in third-party 
software which does this for you; e.g. PeptideProphet delivered 

8. Evaluating 
Significance
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as part of the TPP suite (43, 44). Mascot, OMMSA, X!Tandem 
and Phenyx all report expectation values (or similar statistical 
scores) which effectively report the number of matches that 
would be found by chance with a given score in the selected 
database. This popular formulism is well known to most biolo-
gists from the sequence searching in programs such as BLAST 
(45). However, it is clear that the different tools produce very 
different E-value estimates that are not, as would be the inten-
tion with such a statistic, directly comparable (46). However, it 
is possible to re-scale and combine such statistics and obtain a 
greater overall number of high confidence peptide identifica-
tions (47). Additionally, the output from multiple search engines 
can be combined in a Bayesian framework to generate a greater 
volume of high confidence peptide identifications in the 
SCAFFOLD package (48). A more detailed discussion of the 
statistics of search engines is available in a companion volume to 
this one (49).

Another recent advance in determining the significance of 
peptide hits exploits a decoy database search strategy to estimate 
false discovery rates (FDRs). FDRs have become popular in pro-
teomic search strategies and have generated much controversy 
and coverage in the literature (50–57). The process uses a reversed 
or randomised database (the “decoy” database) in parallel with 
the standard database and all hits to the decoy are assumed to be 
false. From the results, FDRs can be estimated for a given score 
cut-off. An entire chapter is devoted to the subject in this volume 
(see chapter 5). Despite the controversy, search engines including 
Mascot and X!Tandem have integrated decoy search strategies 
into their tools.

Finally, it is worth commenting that all peptide identifica-
tions are usually also considered at the protein level. This is 
problematic due to peptide redundancy in proteins; multiple 
protein isoforms can contain the same peptide sequence and 
short sequences can recur in several unrelated proteins in a 
given proteome. This problem is usually referred to as the pro-
tein inference problem. A detailed review is beyond the scope 
of this article and interested readers are referred to a recent 
excellent publication (58). Most search engines provide a fairly 
rudimentary approach to resolving the problem although some 
of the commercial tools available with instruments address the 
problem well. Mascot has its own “MudPIT” scoring which 
attempts to down-weight proteins with large numbers of poor 
quality PSMs. There are also generic approaches; the Average 
Peptide Scoring (APS) method, used in several recent studies 
(59–61) can evaluate FDRs at the protein level after a decoy 
database search.
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Inevitably as a researcher in this field, one must address the question: 
which search engine should I use? It is clear that they all have 
their advantages and disadvantages and it is not possible to rec-
ommend a single search engine above all others. Moreover, as 
discussed, many labs have discovered that improved performance 
can be obtained by combining the outputs from several together 
(46–48). There is an increasing pressure on authors to publish 
their data to minimum reporting standards (62, 63), to carry out 
stringent statistical quality control on their peptide identifications 
(50) and also to lodge their data in public repositories (64). These 
topics are also covered in detail in other chapters in this volume 
(Chapters 19–24). By following the best practice and doing more 
than just pressing “search” on the website, these goals can be met 
and high quality proteomics data can become widely available in 
repositories in the same way that we take high quality sequence 
data for granted.
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Chapter 4

Scoring and Validation of Tandem MS Peptide  
Identification Methods

Markus Brosch and Jyoti Choudhary

Abstract 

A variety of methods are described in the literature to assign peptide sequences to observed tandem MS 
data. Typically, the identified peptides are associated only with an arbitrary score that reflects the quality 
of the peptide-spectrum match but not with a statistically meaningful significance measure. In this chapter, 
we discuss why statistical significance measures can simplify and unify the interpretation of MS-based 
proteomic experiments. In addition, we also present available software solutions that convert scores into 
sound statistical measures.

Key words: Peptide identification, Statistical significance, False discovery rate, q-Value, Posterior 
error probability, Percolator, PeptideProphet, Qvality

Mass spectrometry (MS) has become the method of choice for 
protein identification and quantification offering high-throughput 
analysis at high sensitivity (1). Most proteomics studies are based 
on shotgun sequencing, wherein proteins are proteolytically 
digested into peptides and subsequently analyzed by tandem MS. 
In this way, peptide mass to charge ratios are determined, and 
selected ions are isolated and fragmented to generate product ion 
mass spectra (2).

A large number of computational tools have been developed 
to support high-throughput peptide and protein identification by 
automatically assigning sequences to tandem MS spectra ((3), 
table 1). Three types of approaches are used: (a) database searching, 
wherein all peptide candidate sequences selected from an in-silico 
digested protein sequence database are investigated at the MS/MS 

1. Introduction
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level by correlating the experimental and the theoretical peptide 
fragmentation patterns; (b) de novo sequencing, wherein pep-
tides are inferred from spectra without prior knowledge of pro-
tein sequences; (c) hybrid approaches, wherein short sequence 
tags are inferred by de novo methods and subsequently searched 
against protein databases.

With the constant advances in instrument technology and 
improved algorithms, de novo and hybrid methods may have a 
more important role in the future; however, database searching 
remains the most widely used method for peptide identification. 
Most of these algorithms provide one or more peptide spectrum 
match (PSM) scores that correlate with the quality of the match, 
but are typically hard to interpret and are not associated with any 
valid statistical meaning. Researchers face the problem of com-
puting identification error rates or PSM significance measures and 
need to deal with post-processing software that converts search 
scores into meaningful statistical measures. This chapter focusses 
on scoring and assessment of database search results and gives a 
brief overview of common methods, their advantages and disad-
vantages, and presents alternative statistical concepts that deal 
with some of the shortcomings of standard methods in a non-
mathematical language. We also present some examples using 
freely accessible software in order to demonstrate the ease with 
which sound statistics can be calculated today.

Sequest (4) was the first tandem MS search algorithm available 
and is today, together with Mascot (5), one of the most widely 
used database search tools. These are representative of the numer-
ous database search algorithms that report for every PSM, a score 
that reflects the quality of the cross correlation between the 
experimental and the computed theoretical peptide spectrum. 
Although Sequest and Mascot scores are fundamentally different 
in their calculation, they facilitate good relative PSM ranking: all 
peptide candidates that were matched against an experimental 
spectrum are ranked according to the PSM score, and only the 
best matches are reported.

Often, only the top hit is considered for further investigation, 
and some search engines such as X!Tandem (6) exclusively report 
that very best match. However, not all these identifications are 
correct. Sorting all top hit PSMs (absolute ranking) according to 
their score enables the selective investigation of the very best 
matched PSMs. This approach was initially used to aid manual 
interpretation and validation. As the field of MS-based proteom-
ics moved towards high-throughput methods, researchers started 
to define empirical score thresholds: PSMs scoring above these 

2. Scores  
and Thresholds
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thresholds were accepted and assumed to be correct, while 
anything else was classified as incorrect. Depending on how well 
the underlying PSM score discriminates, the correct and incorrect 
scores overlap significantly (Fig. 1), and therefore thresholding is 
always a trade-off between sensitivity (fraction of true positive 
identifications) and the acceptable error rate (fraction of incorrect 
identifications). Low score thresholds will accept more PSMs at 
the cost of a higher error rate, and on the other hand, a high score 
threshold reduces the error rate at the cost of sensitivity. Many 
groups also apply heuristic rules that combine the score threshold 
with some other validation properties such as charge state, the diffe-
rence in score to the second best hit, amongst others. The problem 
with these methods is that the actual error rate remains unknown, 
and the decision of accepting assignments is only based on judge-
ment of an expert. Moreover, results between laboratories or even 
between experiments cannot be reliably compared since different 
search algorithms, protein databases, search parameters, instru-
mentation and sample complexity etc., require adaptation of 
acceptance criteria. A recent HUPO study (7) investigated the 
reproducibility between laboratories. Amongst the 18 laboratories, 
each had their own criteria of what was considered a high and low 

Fig. 1. A score distribution (solid line) typically consists of a mixture of two underlying 
distributions, one representing the correct PSMs (dash-dot line) and one the incorrect 
PSMs (dotted line). Above a chosen score threshold (dashed grey line), the shaded area 
(a) represents all PSMs that were accepted, while the solid grey filled area (b) repre-
sents the fraction of incorrectly identified PSMs with the chosen acceptance criteria. 
B together with B¢ sum up all incorrect PSMs for the whole dataset. The false positive rate 
(FPR) and the false discovery rate (FDR) can be calculated when the numbers of PSMs 
in B, B¢ and A are counted using the presented formulas. The posterior error probability 
(PEP) can be calculated from the height of the distributions at a given score threshold
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confidence protein identification, which were mostly based on simple  
heuristic rules and score thresholds ((7), supplementary table 1). It 
was found that the number of high confidence assignments 
between two different laboratories could vary by as much as 50%, 
despite being based on the same data. As a result, many proteomic 
journals require the validation and assessment of score thresholds, 
ideally with significance measures such as presented below.

The expected error rates associated with individual or sets of PSMs 
can be reported as standard statistical significance measures. This 
allows transformation of specific scoring schemes into generic and 
unified measures, enabling comparability across any experiment in a 
consistent and easy to interpret format. In this section, we discuss 
and explain commonly used statistical measures that ideally are 
reported by every database search algorithm or post-processing 
software; focusing on (a) the false discovery rate (FDR), its derived 
q-value and (b) the Posterior Error Probability (PEP), also some-
times called local FDR. In the subsequent section, we focus on how 
these measures can be calculated with available software tools.

The p-value is a widely used statistical measure for testing the 
significance of results in the scientific literature. The definition of 
the p-value in the context of MS database search scores is the prob-
ability of observing an incorrect PSM with a given score or higher 
by chance, hence a low p-value indicates that the probability is small 
of observing an incorrect PSM. The p-value can be derived from 
the false positive rate (FPR), which is calculated as the proportion 
of incorrect PSMs above a certain score threshold over all incorrect 
PSMs (Fig. 1). The simple calculation of the p-value however is 
misguiding when this calculation is performed for a large set of 
PSMs. In this case, we would expect to observe a certain propor-
tion of small p-values simply by chance alone. An example: given 
10,000 PSMs at a score threshold that is associated with a p-value 
of 0.05, we expect 0.05 × 10,000 = 500 incorrect PSMs simply by 
chance. This leads to the well known concept of multiple testing 
correction, which can be found in its simplest, but conservative 
form in the Bonferroni correction. Bonferroni suggested to correct 
the p-value by the number of tests performed, leading to a p-value 
of 5E-5 in our example above. However, we have only corrected 
for the number of spectra, but not for the number of candidate 
peptides the spectrum was compared against. A correction of 
taking into account both factors leads to extremely conservative 
score thresholds. However, an alternative well established method 
for multiple testing correction for large-scale data (e.g. genomics 
and proteomics) is to calculate the false discovery rate (FDR) (8).

3. From PSM 
Scores  
to Meaningful 
Significance 
Measures

3.1. About p-Values 
and q-Values
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The FDR is defined as the expected proportion of incorrect 
predictions amongst a selected set of predictions. Applied to MS, 
this corresponds to the fraction of incorrect PSMs within a 
selected set of PSMs above a given score threshold (Fig. 1). As an 
example, say 1,000 PSMs score above a prearranged score thresh-
old, and 100 PSMs were found to be incorrect, the resulting FDR 
would be 10%. On the other hand, the FDR can be used to direct 
the trade-off between sensitivity and error rate, depending on the 
experimental prerequisites. If, for example, a 1% FDR were 
required, the score threshold could be adapted accordingly.

To uniquely map each score and PSM with its associated 
FDR, the notion of q-values should be used. This is because two 
or more different scores may lead to the same FDR indicating 
that the FDR is not a function of the underlying score. Storey and 
Tibshirani (9) have therefore proposed a new metric, the q-value, 
which was introduced into the field of MS proteomics by Käll 
et al. (10, 11). In simple terms, the q-value can be understood as 
the minimal FDR threshold at which a PSM is accepted, thereby 
transforming the FDR into a monotone function: increasing 
the score threshold will always lower the FDR and vice versa. This 
property enables the mapping of scores to specific q-values.  
In Fig. 2, the q-value is shown for a Mascot search on a high 

Fig. 2. PSM scores were transformed into q-values and Posterior Error Probabilities (PEP) 
using Qvality (see Subheading 4). A score cut-off of 30 demonstrates the fundamental 
difference of the two significance measures: the q-value would have reported about 
0.5% of all the PSMs as incorrect above that score threshold, whereas the PEP would 
have reported 4% chance of a PSM being incorrect at this specific score threshold. Note. 
The maximum q-value for this dataset is 0.5 since only half of the PSMs are incorrectly 
assigned even without any score threshold applied because of the use of high quality 
and high mass accuracy data stemming from an LTQ-FT Ultra instrument
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accuracy dataset. At a Mascot Ionscore of 10, 20 and 30, the 
corresponding q-values were 0.26, 0.04, 0.005 with 19,967, 
14,608, 10,879 PSM identifications, respectively. It is important 
to note that for other datasets, instruments and parameter setting 
etc., the q-value could be significantly different for the same score 
and hence the q-value analysis should be performed for any indi-
vidual search.

The q-value is associated with individual PSM scores although 
this measure is always a result of all PSMs in a dataset. For illustra-
tion, imagine we remove from a large dataset half of the spectra 
that were incorrectly matched above a given score threshold; after 
spectral removal, the q-value for this same score threshold would 
be only about 50% of its original value even though the underly-
ing spectrum and PSM remain the same. Moreover, in an extreme 
case, a q-value of 1% could be taken to mean that 99 PSMs are 
perfectly correct and 1 PSM is incorrect. More likely, the majority 
of these PSMs are good, but not perfect matches, and a few are 
weaker matches. Clearly, when the focus of an experiment is based 
on individual peptide identifications (e.g. for biomarker discov-
ery, genome annotation, a key peptide for interesting and exten-
sive follow-up research etc.), then it would be useful to compute 
spectrum specific significance measures that can be represented as 
the posterior error probability (PEP).

The global FDR or q-value reflects the error rate which is 
associated with a set of PSMs, whereas the PEP (or sometimes 
referred to as local FDR) measures the significance of a single 
spectrum assignment with a specific PSM score (11, 12). The 
PEP is simply the probability of the PSM being incorrect, thus a 
PEP of 0.01 means that there is 1% chance of that PSM being 
incorrect. For the example from above where 100 PSMs resulted 
in a q-value of 1%, the PEPs would have reflected the stronger 
and weaker matches.

Unlike the FDR and q-value calculations that require minimal 
distributional assumptions, the PEP can only be calculated with 
knowledge of the underlying score distributions representing the 
correct and incorrect PSM identifications (see Subheading 4) since 
the PEP is inferred from the height of the distributions at a given 
PSM score. Figure 1 illustrates again that the PEP is specific to 
one PSM score, whereas the FDR accounts for the whole set of 
PSMs that scored at least as good as the PSM at hand. This leads 
to the fact that the sum of the PEPs above a chosen score threshold 
divided by the number of selected PSMs results in an alternative 
way of computing the FDR (13).

Figure 2 shows the results of the PEPs as well as the q-values 
calculations for a high mass accuracy dataset that was searched 
with Mascot. For a PSM score threshold of 10, 20 and 30, the 
associated q-values were 0.26, 0.04 and 0.005, whereas the PEPs 

3.2. The Posterior Error 
Probability
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were 1.0, 0.39 and 0.04, respectively. This clearly demonstrates 
the difference between the significance measures: a Mascot score 
threshold of 30 (this is all PSMs with Mascot scores of 30 and 
above) led to only 0.5% incorrect PSMs in this dataset, whereas 
the individual Mascot score of 30 was associated with a 4% PEP.

Some database search algorithms report statistical measures, but 
these should be carefully validated and fully understood before 
being used and interpreted since their significance calculations are 
often based on pseudo statistical principles. It is however very 
easy to obtain well founded significance measures with free post-
processing software packages and methods as presented below. 
We want to stress that their absolute accuracy still depends on the 
underlying models and assumptions. Finally, the well known 
effect of “garbage-in/garbage-out” is also true for MS data anal-
ysis, but when tools and methods are applied sensibly, they can be 
extremely valuable and represent some of the latest developments 
in shotgun proteomics.

Moore et al. (14) pioneered the concept of target/decoy data-
base searching (see Dedicated chapter in this book for a more 
complete review of this subject), where data is not only searched 
against the standard sequence database (target), but also against a 
randomised, shuffled or reversed database (decoy). There are two 
accepted concepts of target/decoy database searching and differ-
ent groups favour one or the other method (15): either data is 
searched against a concatenated compound target/decoy data-
base or alternatively data is separately searched against the target 
and decoy database.

The idea is that PSMs obtained from the decoy database can 
be used to estimate the number of incorrect target PSMs for any 
given criteria such as score thresholds or heuristic methods (16). 
This enables the calculation of the FDR by simply counting the 
number of decoy and target PSMs that meet the chosen accep-
tance criteria (Fig. 1, FDR formula for separate target/decoy 
searches). It should be noted that more accurate FDRs can be 
obtained when the fraction of incorrect PSMs (pi0) matching the 
target database can be estimated and incorporated. This is dis-
cussed in depth by Käll et al. in Refs. (10) and (12).

Qvality (12), is a generic post-processing software tool that 
allows transformation of raw PSM scores into q-values and PEPs. 
It utilises separate target/decoy database searching together with 
nonparametric logistic regression, where decoy PSM scores 

4. Software  
and Methods  
to Compute 
Statistical 
Measures

4.1. Target/Decoy 
Database Searching 
for Validation

4.2. Qvality: Target/
Decoy
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are used as an estimate of the underlying null score distribution. 
Since no explicit assumptions of the type of the score distribu-
tions are made, the method was shown to be robust for many 
scoring systems and hence is not limited to one specific database 
search algorithm. Qvality is expected to calculate more accurate 
q-values than the standard approach discussed in Subheading 4.1, 
since it incorporates pi0 estimates into the FDR calculation.

Application of Qvality is straightforward; it only expects two 
disjoint sets of raw PSM scores as input, one stemming from the 
target and one from the decoy database. Data for Fig. 2 was for 
example computed with Qvality using the target and decoy 
Mascot Ion scores. Qvality is a small stand-alone command-line 
application without any external dependencies and is readily 
applicable. It can be downloaded under http://noble.gs.washing-
ton.edu/proj/qvality/.

PeptideProphet and Percolator both report not only the FDR/ 
q-value and PEP, but also attempt to improve the discrimination 
performance between correct and incorrect PSMs (Fig. 3) by 
employing an ensemble of features, several of which are used by 
experts for manually validating PSMs.

“PeptideProphet” (13), developed by Keller and Nesvizhskii 
et al., was the first software in the field of MS-based proteomics 
that reported probabilities (P) of the peptide assignment being 
correct, akin to the PEP, and FDRs. In order to improve the dis-
crimination performance between correct and incorrect PSMs, 

4.3. PeptideProphet 
and Percolator

Fig. 3. Distributions of Mascot and Percolator scores were generated from a high accuracy LTQ-FT Ultra dataset (left ). This 
illustrates the bi-modal nature of PSM matching scores as simulated in Fig. 1 and further demonstrates the discrimina-
tion performance improvement between correct and incorrect PSMs for post-processing tools such as Percolator over 
Mascot. Note. These scores are not on the same scale, but have been normalised and scaled for this illustration

http://noble.gs.washington.edu/proj/qvality/
http://noble.gs.washington.edu/proj/qvality/
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PeptideProphet learns from a training dataset a discriminant score 
which is a function of Sequest specific scores such as XCorr, del-
taCn, Sp amongst others. PeptideProphet makes extensive use of 
the fact that PSM scores as well as discriminant scores represent a 
mixture distribution from the underlying superimposed correct 
and incorrect score distributions (Figs. 1 and 3). The original 
PeptideProphet algorithm is based on the assumption that the 
type of these distributions remain the same across experiments 
and hence were determined from training datasets. However, 
using an Expectation Maximation algorithm, the parameters of 
these distributions are adapted for each dataset individually, 
enabling calculation of the corresponding FDR and P significance 
measures. Recent versions of PeptideProphet supplemented this 
parametric model with a variable component mixture model and 
a semi-parametric model (17, 18) that incorporate decoy database 
search results. The rational of this was to provide more robust 
models for a greater variety of analytical platforms where the type 
of distribution may vary. PeptideProphet is a widely used and 
accepted method to compute confidence measures and is avail-
able at http:// tools.proteomecenter.org. However, PeptideProphet 
is not a small stand-alone application, but is part of a large soft-
ware package (Trans-Proteomic Pipeline) that comprises a collection 
of tools for tandem MS data analysis.

Percolator (19) is an alternative post-processing software that 
relies on target/decoy database search results rather than on dis-
tributional assumptions to infer the FDR/q-value and PEP. This 
system also improves the discrimination performance between 
correct and incorrect PSMs (Fig. 3) by employing a large ensem-
ble of features including mass accuracy, enzyme specificity, score 
difference between top hit and second best hit, peptide and pro-
tein properties amongst many other features. Percolator calcu-
lates these features from the target and a separate decoy database 
search result to iteratively learn a classifier. The basic procedure is 
as follows: initially, the target and decoy PSMs are discriminated 
by the most relevant feature and filtered to a fixed FDR (e.g. 1%). 
This PSM subset (positive training set) together with the decoy 
PSMs (negative training set) is used to train a machine learning 
algorithm (Support Vector Machine). The learnt classifier is then 
applied to all target/decoy PSMs, followed by FDR filtering to 
continue the procedure as before. It was shown that after a few 
iterations, the system converges and results in a robust classifier 
that results in significantly better discrimination between correct 
and incorrect PSMs when compared with raw PSM scores (Fig. 3). 
Moreover, this system specifically and dynamically adapts for each 
dataset, which means that the used features and learnt classifiers 
are tuned to data quality, protocols and instrumentation.

Percolator is available under http://per-colator.com/ and 
similar to Qvality does not depend on any external dependencies 

http://tools.proteomecenter.org
http://noble.gs.washington.edu/proj/percolator/
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and hence can be readily used. It offers a simple command line 
interface that requires Sequest results as input and outputs the 
q-value, PEP, as well as the peptide and associated protein(s) 
information for each spectrum. We have developed a Mascot 
module for Percolator that uses similar features but supplements 
these with Mascot specific features as well as intensity and  
ion-series information (20). It is available for download under  
http://www.sanger.ac.uk/Software/analysis/MascotPercolator/.
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Chapter 5

Target-Decoy Search Strategy for Mass  
Spectrometry-Based Proteomics

Joshua E. Elias and Steven P. Gygi

Abstract 

Accurate and precise methods for estimating incorrect peptide and protein identifications are crucial for 
effective large-scale proteome analyses by tandem mass spectrometry. The target-decoy search strategy 
has emerged as a simple, effective tool for generating such estimations. This strategy is based on the 
premise that obvious, necessarily incorrect “decoy” sequences added to the search space will correspond 
with incorrect search results that might otherwise be deemed to be correct. With this knowledge, it is 
possible not only to estimate how many incorrect results are in a final data set but also to use decoy hits 
to guide the design of filtering criteria that sensitively partition a data set into correct and incorrect 
identifications.

Key words: Proteomics, Target-decoy, False positive, False discovery, Mass spectrometry, Estimation

Peptide and protein identifications made in most mass spectrome-
try-based proteomic work flows first involve acquiring a set of tan-
dem mass (MS/MS) spectra and then interrogating each spectrum 
against spectra predicted from a list of protein sequences by search 
engines, such as SEQUEST (1), Mascot (2), OMSSA (3), and 
X!Tandem (4). The output of these programs indicates the best 
theoretical peptide matches to the input spectra, which are then 
used to infer the source protein that was present in the biological 
sample. Unfiltered sets of peptide identifications produced in this 
manner are necessarily imperfect for three reasons: (1) not all pep-
tide species in a sample are represented in the search space; (2) 
spectra derived from background nonpeptide species will often 
be given a peptide assignment; and (3) incorrect candidate 
peptide sequences occasionally may outscore correct sequences. 

1.  Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_5, © Humana Press, a part of Springer Science+Business Media, LLC 2010
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For many search engines, nearly all input MS/MS spectra will be 
assigned a peptide match if there are any that lie within the sup-
plied mass tolerance. Thus, the primary task of proteomics 
researchers is to distinguish incorrect from correct peptide 
assignments.

When working with very small data sets, such as those produced 
from a single spot on a 2D gel or a gel band representing a com-
ponent of an isolated protein complex, identifying correct pep-
tide identifications is almost trivial: they are the ones with the 
highest scores and tend to map to the same protein. It is also 
reasonable and appropriate to manually examine individual pep-
tide-spectrum matches (PSMs) to verify that they are correct. 
However, the increasingly large data sets created by modern tan-
dem mass spectrometers in global proteomic efforts are not ame-
nable to these strategies. Simple filtering criteria based on score 
magnitude or numbers of peptides per protein tend to be neither 
sensitive nor accurate (5), and the staggering amount of informa-
tion that can be produced in a single experiment renders the man-
ual validation of peptide assignments impractical. Consequently, 
high-throughput protein sequencing efforts must rely on methods 
for estimating the frequencies of incorrect peptide and protein 
identifications among correct ones. The “target-decoy” search 
strategy is a simple yet powerful way to deliver false positive esti-
mations and can be applied to nearly any MS/MS workflow. 
Here, we present several methods for preparing decoy sequences 
and strategies for selecting correct peptide identifications.

MS/MS spectra can be acquired on any number of tandem mass 
spectrometers, including the LTQ family of ESI-ion trap instru-
ments from ThermoFisher, the QSTAR from Applied Biosystems, 
and the FLEX family from Bruker Daltonics. Alternatively, several 
public sources of MS/MS spectra are freely available on the 
internet, including PeptideAtlas (6) and the Open Proteomics 
Database (7). It is recommended that the target-decoy approach 
be applied to data sets consisting of several thousand MS/MS 
spectra (see Note 1).

MS/MS spectra are generally searched against peptides pre-
dicted from FASTA-formatted protein sequence lists. Sequence 
lists should be chosen such that any peptide that may have given 
rise to an observed spectrum is represented. For example, if a 
mouse-derived sample was sequenced by MS/MS, the spectra 
should be searched against a list of all known mouse proteins. 
Protein lists can be downloaded from numerous sources, including 

2.  Materials

2.1.  MS/MS Spectra

2.2.  Protein Sequences
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the International Protein Index (8) and UniProt/SwissProt (9). 
It is useful to also include sequences of known contaminants, 
such as trypsin and human keratins.

Numerous MS/MS search engines are in common usage. Some 
are commercially available, for example:

 1. SEQUEST (http://www.thermo.com/com/cda/product/
detail/0,1055,22209,00.html)

 2. Mascot (http://www.matrixscience.com)
 3. SpectrumMil (http://www.chem.agilent.com/scripts/pds.

asp?lpage=7771)
Other search engines are freely-distributed via the internet:

 4. OMSSA (http://pubchem.ncbi.nlm.nih.gov/omssa/)
 5. X!Tandem (http://www.thegpm.org/tandem/)

All of these produce some form of a score indicating the degree 
to which observed and predicted MS/MS spectra agree. Several 
of these search engines’ scores may be probability-based. See refs. 
(10–13) for more detailed descriptions and comparisons of these 
search engines. One principle benefit to target-decoy searching is 
its applicability to data generated by any search engine.

One deceptively simple way to estimate false positives is to manu-
facture “decoy” sequences that do not exist in nature, and then 
allow the search engine to consider these alongside “target” 
sequences derived from the organism being studied. Necessarily, 
incorrect decoy hits should be similar to incorrect but unknown 
hits derived from target sequences in terms of length, amino acid 
composition, mass accuracy, and search engine-assigned scores. 
Therefore, knowing the proportion of decoy versus target 
sequences in the search space allows one to estimate the number 
of incorrect target sequences in a reasonably large collection of 
PSMs. More than providing a means to estimate the number of 
incorrect target hits in a collection of PSMs, decoy hits can be 
used to guide researchers in the design of sensitive filtering crite-
ria to precisely distinguish correct from incorrect PSMs.

Target-decoy searching is usually performed in the following 
steps:

 1. Construct a concatenated target-decoy sequence list, marking 
decoy sequences with a text flag in their annotation.

 2. Use a MS/MS search engine to interpret input MS/MS spectra 
using target-decoy sequence list.

2.3.  Search Engine

3.  Methods

http://www.thermo.com/com/cda/product/detail/0,1055,22209,00.html
http://www.thermo.com/com/cda/product/detail/0,1055,22209,00.html
http://www.matrixscience.com
http://www.chem.agilent.com/scripts/pds.asp?lpage=7771
http://www.chem.agilent.com/scripts/pds.asp?lpage=7771
http://pubchem.ncbi.nlm.nih.gov/omssa/
http://www.thegpm.org/tandem/
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 3. Evaluate the relative proportion of target and decoy sequences 
in the search space to derive the multiplicative factor required 
to estimate false positives, if necessary.

 4. Estimate false positive-related statistics.
 5. Use decoy hits to guide the establishment of filtering criteria.
 6. Report statistics for filtered data set.

Each of these steps will be discussed in further details below.

Several methods for creating decoy sequences have been described 
(14–16). Each has varying advantages and disadvantages, and it 
must be stressed that no single decoy type is perfect. Ideal decoy 
sequences should have the following characteristics:

 1. Similar amino acid distributions as target protein sequences.
 2. Similar protein length distribution as target protein sequence 

list.
 3. Similar numbers of proteins as target protein list.
 4. Similar numbers of predicted peptides as target protein list.
 5. No predicted peptides in common between target and decoy 

sequence lists.

If each of these conditions are reasonably met, one can safely 
assume that decoy sequence selected by the search engine are 
incorrect, and that there is a one-to-one correspondence between 
incorrect target hits and decoy hits. By design or as a consequence 
of the decoy sequence construction method, conditions 3 or 4 may 
not be met. In this case, one should take into account the discrep-
ancy between target and decoy sequences (see Subheading 3.3). 
This is particularly true when using stochastic means to generate 
decoy sequences based on target sequences demonstrating sub-
stantial amounts or repetition or homology.

Protein reversal is by far the simplest and most widely used method 
for creating decoy sequences (see Note 2 for a simple Perl script to 
create a concatenated target-decoy sequence list based on an input 
target sequence list) (17, 18). By switching the amino-carboxyl 
orientation of a protein’s amino acids, a negligible number of pep-
tide sequences are preserved, particularly when imposing in silico 
digestion constraints with proteases like trypsin. Protein reversal 
has two main advantages: First, because it preserves the general 
features of the target sequence list, reversed protein sequences will 
share the same degree of interprotein redundancy as the input 
target sequences; Second, since it is a defined transformation, mul-
tiple research groups can generate the same decoy sequences. The 
main disadvantage to protein reversal is that it is not a random 
transformation as some may prefer. Consequently, it can be argued 

3.1. Decoy Sequence 
Construction

3.1.1.  Reversed Proteins
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that it does not strictly represent a null random distribution, and 
for certain types of peptides (e.g., palendromic or low sequence 
complexity), it may not be possible to create a suitable decoy 
counterpart. In practice, however, protein reversal stands up to 
the five conditions listed above (14), and can therefore be used 
to faithfully estimate the occurrences of incorrect identifications.

Protein shuffling is another method used for creating decoy 
sequences (16) in which the amino acids of each input target pro-
tein are randomly rearranged to yield a new decoy protein. Like 
protein reversal, shuffling is fairly simple to implement program-
matically, and it preserves both the amino acid composition and 
length of each input target protein sequence. Unlike sequence 
reversal, this transformation has desired stochastic properties. As 
is true of most random transformations though, redundancies 
and homologies between protein entries will not be preserved, 
resulting in a greater number of decoy peptides than originally 
present in the target sequence list. This imbalance must be mea-
sured and then taken into account when generating estimations 
of false positives.

Proteins can also be generated in a completely random fashion. 
This is the method internally implemented by some search 
engines, such as Mascot, for performing target-decoy analyses. 
Ideally, randomized sequences should have the same amino acid 
biases and protein length distribution as an input target sequence 
list. One way to do this is to first evaluate the target sequence list 
to generate a frequency matrix of amino acids and a histogram of 
protein lengths. Decoy proteins are then constructed by randomly 
selecting amino acids according to the frequency matrix, and add-
ing these to the growing decoy protein until it reaches a specified 
length, randomly determined from the length histogram.

Rather than relying on a simple amino acid frequency matrix, 
one can construct a Markov chain model of amino acid frequen-
cies to better replicate small scale patterns found in the target 
sequence list, such as single or double amino acid repeats or highly 
basic or acidic regions. Essentially, this is done by generating a 
frequency matrix reflecting the likelihood of observing a particu-
lar amino acid given the preceding n amino acids (14). Another 
frequency matrix should be constructed consisting of only the n 
amino acids that initiate the protein sequence. After randomly 
selecting from the initiating sequence frequency matrix, the pro-
tein can be extended by randomly selecting from the conditional 
frequency matrix until the protein achieves a specified length.

With either randomization method, it is possible to modulate 
the number of decoy sequences with respect to the number of 
target sequences considered. This has been done to examine the 

3.1.2. Shuffled Proteins

3.1.3. Random Proteins
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effects of interrogating a set of MS/MS spectra against search 
spaces of varying sizes (19). As with shuffled decoy proteins, ran-
dom proteins do not preserve redundancies and homologies, so 
care must be taken to measure the relative proportion of target 
and decoy sequences, and then account for any observed bias 
when generating false positive estimations (see Subheading 3.3).

Rather than generating entire decoy proteins from which decoy 
peptides will be derived according to in silico enzymatic digestion 
rules, one can instead generate decoy peptides directly by altering 
each peptide sequence derived from the target sequence list. 
Alterations can take the form of reversals or shuffling. This procedure 
has the advantage of creating decoy peptides exactly matching the 
masses of all target peptides considered by the search engine. If 
reversal or nonrandom shuffling was the transformation applied, 
the number of target and decoy sequences will match exactly both 
in number and in mass distributions. Otherwise, decoy peptides 
may outnumber target peptides, as with stochastically created 
proteins. Since in silico digestion is usually performed by the 
search algorithm prior to querying observed spectra, the genera-
tion of decoy peptides directly is typically performed within the 
search algorithm. An example of a search engine with this feature 
is the Sorcerer-SEQUEST platform from SAGE-N.

Once a target-decoy sequence list has been generated, the analysis 
of a set of MS/MS spectra can begin. The generally accepted means 
to do this is to supply the search engine with a single protein 
sequence list consisting of both target and decoy sequences. For 
each spectrum, the search engine must then choose between target 
and decoy sequences. Correctly-identified peptides will exclusively 
be selected from target protein sequences, while incorrect peptide 
matches will be randomly drawn from target and decoy sequences. 
If the number of target and decoy sequences considered by the 
search engine are equal, there should be a one-to-one correlation 
between target and decoy sequences among incorrect identifica-
tions. If the number of target and decoy sequences are unequal, the 
correlation between target and decoy sequences should reflect this 
bias. It should be noted that some groups advocate searching target 
sequences separately from decoy sequences. For a variety of reasons, 
this procedure can lead to an overly conservative interpretation of 
search results (14) (see Note 3).

In order to properly estimate the number of false positive identi-
fications in a set of peptide identifications, it is essential that one 
first knows the relative proportion of decoy to target hits in the 
search space. For reversed-decoy databases, it can generally be 
assumed that there is a 1:1 correlation between target and decoy 
sequences (14). For decoy sequence lists generated with a stochastic 

3.1.4. Decoy Peptides

3.2. Spectrum Search

3.3. Measuring  
Decoy Bias
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component, there are usually more decoy sequences than target 
sequences, particularly when there is a substantial degree of 
homology or redundancy among target sequences. One compu-
tational approach for measuring this proportion is to create in silico 
digests of each target and decoy component, and then ask how 
many peptides from each component are within a specified toler-
ance near a given mass. For example, one would determine how 
many target and decoy peptides are within 1.0 Da surrounding a 
mass of 1,000 Da. The proportion of target and decoy peptides 
should be consistent across all masses in the range of peptides one 
might consider (e.g., 600–5,000 Da).

More simply, one can examine the frequency with which a 
search engine returns target and decoy hits for incorrect identifica-
tions. Since correct peptide identifications usually achieve the top-
ranked hit for a given MS/MS spectrum, it can be usually assumed 
that lower ranked peptide hits are incorrect (14, 20, 21). 
Alternatively, if one shifts the precursor masses of input MS/MS 
spectra outside of the specified mass tolerance, they cannot be cor-
rectly matched (14, 20). Comparing the frequencies of target and 
decoy hits for incorrect spectra reveals the effective proportion of 
target and decoy sequences in the search space and therefore the 
factor one should use to estimate the number of hidden incorrect 
target hits, given the observed decoy hits (Fig. 1) (14).

Fig. 1.  Decoy PSMs indicate incorrect target PSMs, depending on the underlying propor-
tion of target and decoy sequences. Under the reversed-decoy model, the proportion of 
target and decoy peptides considered are approximately equal (5th-ranked, reversed-
decoy). Thus, the proportion of decoy PSMs observed in the presence of correct identi-
fications equals the proportion of target PSMs that are incorrect (Top-ranked, 
reversed-decoy). When the underlying proportion of target and decoy sequences are not 
equal, as is usually the case with randomly created protein sequence lists, one must first 
measure this proportion (5th-ranked, random-decoy), and then apply it to the condition 
containing correct identifications (top-ranked, random-decoy). See ref. 14 for further 
details
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Once the background frequencies of target and decoy hits are 
determined (t, d), one can determine the multiplicative factor (f) 
used to estimate the total (target + decoy) number of incorrect 
identifications:

 1
f

d
=  (1)

where d = 1 − t. For reversed decoy sequences in which target and 
decoy search spaces are nearly equal, it can be assumed that t and 
d are both equal to 0.5, and f is therefore equal to 2. One can 
then estimate the total number of incorrect peptides by doubling 
the number of observed decoy hits. If t and d are determined to 
be 0.37 and 0.63, respectively, as can be the case for randomly-
created decoy sequences (14), then f should be 1.6.

In order to fairly compare data sets collected in different laborato-
ries, acquired on different instruments, searched with different 
search engines, and representing different biological samples, it is 
crucial that they meet similar false positive-related constraints. The 
first step in this process is to estimate the total number of correct 
PSMs in the entire data set. One way to do this is as follows:

 1. Sort all peptide hits by score, descending.
 2. Count how many target hits are greater than or equal to a 

given score
 3. Count how many decoy hits are greater than or equal to a 

given score
 4. Estimate the number of correct hits (true positive, TP) from total 

(T) and decoy hits (d) greater than or equal to a given score:

 TP = T – df (2)

 5. Estimate the total number of correct hits in the data set from 
the maximum value of TP observed across all score thresholds.

Given the total number of correct identifications in the data set, 
the number of identifications being considered, and how many of 
these are incorrect, one can populate the Venn diagram shown in 
Fig. 2. Given estimations of false positives (FP), true positives 
(TP), false negatives (FN), and true negatives (TN), one can gen-
erate the measurements shown in Table 1. Of these, precision and 
sensitivity are often the most useful for evaluating and comparing 
MS/MS data sets.

For several years, large MS/MS data sets were subject to pre-
defined, general filtering constraints to attempt to separate cor-
rect from incorrect peptide identifications. Often, these constraints 
were learned from a training data set consisting of known proteins, 

3.4. False Positive 
Statistics

3.5. Designing 
Filtering Criteria
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and then applied to experimental data sets that were often orders 
of magnitude larger than the training data set. Through target-
decoy searching, it was determined that the proportion of false 
positive identifications that surpass standard criteria varies with 
individual data sets, as does the proportion of correct identifica-
tions that fail to meet them (i.e., false negatives). Thus, applica-
tion of identical filtering criteria across multiple data sets does not 
necessarily yield data sets with comparable sensitivity or precision 
rates. It is often desirable, therefore, to design filtering criteria 

Fig. 2. Venn diagram of basic measurements related to estimated false positive identifications. The total number 
of identifications are contained within the rectangle. All correct identifications are contained within the white circle. All 
identifications passing a given set of selection criteria (positive identifications) are contained within the black circle. The 
overlap between these circles are true positives (TP). False positive identifications (FP) are the remaining positive identi-
fications, and false negative identifications (FN) are the remaining correct identifications that do not meet the selection 
criteria. True negatives (TN) are the incorrect identifications that are correctly classified as such by the selection criteria. 
This Venn diagram scheme is elaborated in Fig. 3

Table 1 
Measurements derived from target-decoy estimations of FP, TP, FN, TN

Measurement Formula Description

Precision TP
TP + FP

Proportion of assignments passing 
selection criteria that are correct

False discovery rate (FDR) FP
TP + FP ,  1 − precision

Proportion of assignments passing 
selection criteria that are incorrect

Sensitivity TP
TP + FN

Proportion of correct assignments 
passing selection criteria

Specificity TP
TP + FP

Proportion of all incorrect assign-
ments excluded by selection criteria

Accuracy TP+TN
TP + FP+TN+FP

Proportion of all assignments correctly 
classified by selection criteria
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that can accommodate the diversity of LC-MS/MS analyses while 
yielding optimized, comparable error profiles.

Since decoy peptide matches and incorrect target matches 
have similar properties, one can examine decoy hits to learn how 
all incorrect hits can be segregated from correct hits in a sensitive 
and precise manner. This is fairly easy to accomplish when one con-
siders a single monotonic score provided by the search engines, 
such as SEQUEST’s XCorr, Mascot’s Ion Score, and the E-value 
from OMSSA and X!Tandem, or composite scores, such as the 
Discriminant Score, returned by Peptide Prophet’s linear discrim-
inant function (5):

 1. Sort all peptide hits by score, descending.
 2. Count how many target hits are greater than or equal to a 

given score
 3. Count how many decoy hits are greater than or equal to a 

given score
 4. Estimate the total number of incorrect hits (false positive, FP) 

from observed decoy hits (d) greater than or equal to a given 
score:

 FP = df (3)

 5. Calculate statistics related to FP for each given score threshold 
(see Subheading 3.5).

 6. Select score threshold based on a desired statistic threshold.

Single scores are generally less able to sensitively separate correct 
from incorrect hits than consideration of multiple peptide mea-
surements, such as mass accuracy, enzyme specificity, and alter-
nate scoring methods. Composite scores are therefore superior to 
single scores, since they can incorporate these multiple lines of 
evidence that influence the likelihood that a peptide is correct. 
Another approach is to use the target-decoy strategy to examine 
multiple peptide measurements in a holistic fashion without con-
densing them into a single composite score. This is done by seek-
ing an optimal (or several optimal) threshold combination(s) that 
maximizes the number of peptide identifications while minimiz-
ing the number of false positive identifications, or at least restrict-
ing them to a specified proportion of all positive identifications 
(Fig. 3). Evaluating and optimizing multiple candidate score 
threshold combinations can be tedious to perform manually; 
computational approaches for doing this have been described, 
however (22, 23).

Increasingly, journals are requiring an assessment of data quality 
when publishing MS/MS results (24–26). As previously stated, 

3.6. Report Statistics 
for Filtered Data Set
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Fig. 3. Considering multiple selection criteria enhances accuracy. Selection criteria applied to score distributions (left ) 
determine the form of the Venn diagrams (right). Venn diagram shapes and colors correspond with those in Fig. 2. 
(a) Distribution of FP and TP hits sorted by an arbitrary score. When no score criteria are applied, all selected correct 
identifications are denoted in grey circle, and all selected incorrect identifications are denoted in black rectangle. (b) 
Application of a single score threshold, which excludes most incorrect identifications (lighter region), can yield an 
acceptable precision rate, but yields sub-optimal sensitivity. (c) Considering two scores allows for greater separation 
between correct and incorrect identifications. The distribution of incorrect identifications is indicated by the distribution 
of decoy hits. Application of global criteria that excludes most decoy hits in two score dimensions (lighter region) provides 
greater sensitivity than one score alone. (d) Designing selection criteria that take into account numerous peptide 
measurements, such as mass accuracy, charge, enzymatic specificity, and peptides per protein, can yield far greater 
sensitivity while maintaining acceptable precision
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the most useful measurements are usually precision (or FDR) and 
sensitivity. Although it is convenient to include decoy hits in a data 
set during analysis (see Note 4), decoy hits should not contribute to 
the final tally of incorrect hits since they can be easily recognized 
and removed. Thus, the reported number of FP and correspond-
ing precision rate should be:

 FPfinal = d ( f – 1) (4)

 precisionfinal  = TP
TP + FP

 (5)

It must be stressed that the above calculations apply to the 
aggregate of all identifications that meet or exceed a given set of 
filtering criteria. The final precision rate represents the propor-
tion of the final data set that is likely to be correct; it does not 
indicate the likelihood of any particular identification of being 
correct (see Note 5).

These statistics may also be applied at the protein level. However, 
protein inference from multiple peptides poses additional challenges 
beyond the scope of this chapter (see Note 6). Protein precision is 
often worse than the precision measured from PSMs. This usually 
can be attributed to proteins that are incorrectly identified by just 
one peptide. In contrast, proteins identified by multiple peptides are 
usually correct. Thus, correct peptide identifications map to fewer 
proteins than incorrect peptides, reducing the final protein preci-
sion. This situation can be addressed by paying specific attention to 
single peptide identifications (see Note 7).

 1. It is important to emphasize that the target-decoy search 
strategy is a tool for estimating the number of incorrect target 
PSMs. It is therefore useful to place confidence intervals on 
these estimations. If one assumes that target and decoy hits 
follow a binomial distribution (27), the theoretical standard 
deviation s of target-decoy estimations can be calculated 
explicitly, given estimated precision and the observed number 
of PSMs being considered (N):

 precisions =
N

-1  (6)

Given s, precision and N, one can estimate the confidence interval 
C containing a given proportion of repeated measurements of the 
precision, assuming a two-tailed normal distribution:

4.  Notes
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 precision
s

= - ±(1 )
Z

C
N

 (7)

Combining Eqs. 5.6 and 5.7 gives

 
precision

precision
-

= - ±
1

(1 )
Z

C
N  (8)

For example, a confidence level of 0.99 indicates a Z value of 
2.58; given an observed precision level of 0.9500, from 2000 
PSMs, one would calculate the confidence interval to be 
±0.000288. However, for 200 PSMs, this interval would be wider 
at ±0.00288. If the precision rate were decreased to 0.8000 from 
2000 PSMs, this interval would also be larger at ±0.000576. 
Thus, these equations indicate that estimation confidence increases 
with larger sample sizes and fewer incorrect spectra in the under-
lying data. Considering more extreme values, the target-decoy 
approach is usually not very effective on small (tens) sets of PSMs 
or sets of PSMs that are largely incorrect (14).

 2. A simple Perl script for generating a target-reversed decoy 
sequence list:
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 3. Several groups recommend first searching MS/MS spectra 
against decoy sequences to derive a null distribution of scores, 
and then basing filtering criteria on the null distribution. 
Furthermore, by restricting the target database search to just 
target sequences, scores that are dependent on the search space 
will often be greater for correct identifications in comparison 
to the combined target-decoy search. While the practice of 
separate searches is reasonable in principle, it creates a variety 
of situations that must be accounted for in the final analysis. 
These include, but are not limited to:

(a) Correct/incorrect PSM noncompetition: A high-quality 
MS/MS spectrum will often receive an elevated score 
compared to a low-quality spectrum, even if both corre-
sponding PSMs are incorrect. When searching against a 
concatenated target-decoy sequence list, a correct target 
PSM necessarily competes with an incorrect decoy PSM, 
and is then returned by the algorithm. Under the separate 
searches paradigm, high-scoring decoy PSMs will indicate 
setting an exceptionally stringent filtering threshold that 
undermines sensitivity, unless these PSMs are secondarily 
compared to their target PSM counterparts following 
the search.

(b) Imbalanced incorrect target and decoy numbers: Typical 
search results consist of a mixture of correct and incorrect 
PSMs. Under the concatenated target-decoy paradigm, 
incorrect PSMs are distributed between target and decoy 
sequences according to their background frequency (i.e., 
1:1 for reversed sequences). When searching target and 
decoy sequences separately, decoy PSMs will necessarily 
outnumber incorrect PSMs, since spectra that can be cor-
rectly assigned to target sequences will be matched to 
decoy sequences. For example, if 20% of all spectra are 
correctly assigned, the proportion of incorrect target to 
incorrect decoy will be 0.8:1, even if the underlying target 
and decoy sequences were equal in number. Further com-
plicating matters, the larger decoy distribution presents 
the opportunity for them to achieve a wider range of 
scores, inappropriately suggesting more stringent filtering 
thresholds.

 4. Even after a set of filtering criteria have been arrived at, it is 
often useful to leave decoy PSMs mixed among the target ones. 
Should one choose to revisit the data analysis, one can derive 
further filtering/selection criteria involving additional param-
eters not considered in the original analysis.

 5. False positive statistics applied to entire data sets can obscure 
scoring data, which indicate that some PSMs are assigned with 
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greater confidence than others. Particularly with very large 
data sets with a set precision threshold, it is possible that a 
small number of PSMs with a very low likelihood of being cor-
rect will be included. Recently, it has been proposed to restrict 
PSM selection based on the likelihood that a particular identi-
fication is correct (16, 23, 28, 29). This can be a highly useful 
practice, particularly when there is little tolerance for error, 
such as the submission of PSMs to a reference data set. 
However, many research applications are tolerant of some 
error, since it can allow for much greater sensitivity. A data set 
composed of PSMs with a minimum likelihood of being cor-
rect of 0.99, for example, may have an overall precision rate of 
0.999, but nearly half the sensitivity of a data set restricted to 
have a precision of 0.99.

 6. Although peptide identifications can be correct, it is possible 
to incorrectly infer the proteins that gave rise to them, due to 
sequence homologies. These proteins should be considered 
to be false positives, since the identified proteins were not 
actually present in the experimental sample. The target-decoy 
system cannot be used to estimate this source of error. 
Programs, such as Protein Prophet (30), can be used to for-
mally identify the protein(s) that are most likely given the 
observed peptides. However, it is worth noting that despite 
some protein ambiguity, often, peptides restrict the protein 
identifications to a narrow group, often consisting of highly 
related isoforms.

 7. Proteins identified by single peptides (“one-hit-wonders”) rep-
resent a special class of peptide and protein identifications. It is 
generally true that the vast majority of incorrect peptide identi-
fications are in this category. As a result, the precision rate mea-
sured at the protein level is usually less than that observed at the 
protein level. It is often tempting, therefore to remove single 
peptide identifications from a final data set. While this practice 
certainly improves the precision rate at the protein level, it is 
usually accompanied by a substantial loss in sensitivity. Often, 
more than half of all correct peptide identifications fall into the 
one-hit-wonder category. Rather than removing these PSMs 
from the final data set, a more measured approach would be to 
apply filtering criteria tailored to just this subset.
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Chapter 6

Understanding and Exploiting Peptide Fragment Ion 
Intensities Using Experimental and Informatic Approaches*

Ashley C. Gucinski, Eric D. Dodds, Wenzhou Li, and Vicki H. Wysocki

Abstract

Tandem mass spectrometry is a widely used tool in proteomics. This section will address the properties 
that describe how protonated peptides fragment when activated by collisions in a mass spectrometer and 
how that information can be used to identify proteins. A review of the mobile proton model is presented, 
along with a summary of commonly observed peptide cleavage enhancements, including the proline 
effect. The methods used to elucidate peptide dissociation chemistry by using both small groups of 
model peptides and large datasets are also discussed. Finally, the role of peak intensity in commercially 
available and developmental peptide identification algorithms is examined.

Key words: Peptide fragmentation, Data mining, Tandem mass spectrometry, Mobile proton model, 
Intensity-based algorithms, Dissociation pattern, Intensity, Statistical analysis

Mass spectrometry (MS), which allows for measurement of peptide, 
protein, and fragment ion mass-to-charge ratios (m/z), is widely 
used in studies that aim to identify peptides and proteins. Often, 
these studies involve high-throughput, large-scale identification of 
proteins from complex mixtures (1, 2). MS is expected to continue 
serving an important function in this arena for many years to 
come due to the sensitivity, selectivity, and speed of MS-based 
analyses (3). The further optimization and enhancement of MS 

1. Introduction
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technology and data analysis capabilities for proteomics remain a 
highly active area of research (4–6).

While single stage mass spectrometry does play a role in 
protein identification, many protein identifications are performed 
by tandem mass spectrometry (MS/MS) of peptides derived 
from protein digests (7–9). In a common “bottom-up” MS/MS 
approach to proteomics for large-scale protein identification, 
peptides are produced by enzymatic digestion of a mixture of 
proteins. The specificity of the protease determines the sites at which 
peptide bonds are hydrolyzed and thus dictates the numbers, 
lengths, and terminal residue identities of peptides produced from 
a given protein. The peptides produced by digestion of a mixture 
of proteins are commonly separated by one or two stages of high-
performance liquid chromatography (HPLC), ionized (typically by 
electrospray ionization, ESI) (10), and mass-selected for MS/MS 
fragmentation analysis. After peptide ion activation and subsequent 
dissociation, product ions are analyzed by m/z and relative inten-
sity. This MS/MS spectral information must then be converted into 
peptide sequence information and in turn, protein identification. 
A schematic for this process is shown in Fig. 1.

Several algorithms are available that perform peptide sequencing 
and protein identification from MS/MS data (11–14), and 
additional software tools have been developed to help users 
consolidate and interpret database search results (15). These 
various protein identification algorithms have differing success 
rates, and current algorithms assign sequence matches to only a 
minority of acquired spectra. Therefore, it would be appealing to 
obtain sequence matches for a larger percentage of peptide spectra 
submitted to a given algorithm. This would allow additional 
proteins to be identified from a given dataset and would also 

Fig. 1. Schematic of tandem mass spectrometry based protein analysis
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provide a larger number of matching peptides per identified protein. 
Together, these improvements would lend greater confidence to 
protein identifications while minimizing the potential for false 
positive associations. It should also be noted that simplistic 
proteomic approaches are impractical in certain situations for a 
variety of reasons. For instance, genome data may not be available 
for a particular species (16), posttranslational modifications may 
require characterization (17), or the peptides being analyzed 
may not be protein derived (e.g., neuropeptides or peptide 
hormones) (18).

Some types of MS/MS scoring routines involve production 
of a list of expected fragment ions or generation of a predicted 
MS/MS spectrum. These theoretical predictions are then used 
to rank potentially matching sequences that lie within a given 
m/z tolerance of known sequences derived from genomic data. 
To date, knowledge of residue- or peptide-specific dissociation 
chemistry has been only sparingly incorporated into the process 
of spectrum prediction and match scoring. Moreover, those 
algorithms that do include chemically relevant criteria involve only 
the most simplistic implementations. For example, experimentally 
observed fragment ions corresponding to the neutral loss of 
ammonia would require the presence of arginine, lysine, glutamine, 
or asparagine in the fragment ion. The inclusion of these very 
simple and qualitative chemical dissociation rules is typically the 
only extent to which knowledge of peptide ion chemistry informs 
the informatic aspect of a proteomic experiment.

At present, fragment ion intensity information is disregarded 
or only minimally accounted for by proteomic database search 
algorithms. The overwhelming majority of these algorithms are 
based on m/z values only, with none of the popular approaches 
to database searching presently employing a sophisticated model 
of relative peak intensities among peptide dissociation products. 
Generally, this means that ion abundance information, including 
strong enhancement or suppression of particular ions, is not used 
by the algorithms. Thus, the current paradigm for MS/MS 
database searching in proteomics is based on only one dimension 
of inherently two dimensional datasets. The incomplete use of the 
available spectral information is largely attributed to the fact that 
it is not yet fully known how to most appropriately determine and 
exploit peptide product ion intensity information. Considering 
that sequence information is also encoded within the intensity 
dimension of an MS/MS spectrum, a chemically meaningful 
incorporation of fragment ion abundance into tools for proteome 
informatics has significant potential to improve the success rate 
and confidence level of sequence and protein identifications. 
The development of this type of platform is expected to provide 
a rich and thus far relatively untapped source of sequence relevant 
information.
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A large body of research has established that the relative 
intensity of peptide fragment ions is remarkably sensitive to peptide 
composition, sequence, charge state, and the location of charges, as 
well as the type of instrument and activation method used (19, 20). 
This complex and nuanced behavior presents major challenges for 
the design of rigorous predictive models for peptide product ion 
abundances. Because our research and the research of others has 
shown that certain structural motifs lead to enhanced or dimin-
ished MS/MS cleavage, it is logical to consider whether inclusion 
of selective cleavage information for particular structural motifs 
into protein identification algorithms might improve identification 
rates. Recently, we and several other authors have made the 
suggestion that greater knowledge of gas-phase peptide dissociation 
patterns and the underlying chemical reasons for the dissocia-
tion patterns might lead to the development of improved algo-
rithms. In order to realize the potential benefits of relative intensity 
information in a proteomic context, multifaceted and interdisci-
plinary research will be essential. First, understanding of the 
chemical basis for cleavage selectivity and fragment ion abundance 
must be advanced and refined through systematic study of model 
peptide systems. Second, large databases of peptide MS/MS 
data must be explored for distinctive spectral features that can be 
related to peptide sequence. Finally, these insights must be used to 
inform the design and implementation of improved sequencing 
algorithms. This chapter will address each of these areas in turn.

Peptides are usually analyzed by MS as singly protonated 
(i.e., [M+H]+) and multiply protonated (i.e., [M+nH]n+) mole-
cules. The most common method of dissociating peptides in MS/
MS is collision-induced dissociation (CID), which involves the 
conversion of peptide ion kinetic energy into vibrational energy 
upon impact with neutral, inert target gas atoms or molecules. 
Peptides may also be subjected to tandem mass spectrometry using 
surface-induced dissociation (SID), which deposits vibrational 
energy into precursor ions by means of colliding them with a 
surface. Although this chapter is primarily focused on peptide ion 
dissociation as a result of vibrational activation, it is important 
to note some important alternative activation methods. In recent 
years, electron capture dissociation (ECD) and electron transfer 
dissociation (ETD) have proven to be effective dissociation methods 
for proteomics (21, 22). These activation techniques involve the 
capture of a low-energy electron by a multiply protonated peptide 
(in the case of ECD) or transfer of a low-energy electron from 
an anionic reagent to a multiply protonated peptide (in the 
case of ETD). While CID and SID MS/MS spectra contain 

2. The Mobile 
Proton Model  
of Peptide 
Dissociation
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predominantly b and y sequence ions, ECD and ETD MS/MS 
spectra contain mainly c and z ions. These collisional and electronic 
activation methods produce very different MS/MS spectra with a 
high level of complementarity. The combination of complementary 
activation methods, such as CID and ETD, can often provide more 
protein identifications than either method alone (21, 23).

Because peptides are polyfunctional molecules, the charge-
carrying proton or protons may potentially occupy a number of 
basic sites on the side chains of amino acid residues (e.g., the side 
chain guanidino group of arginine residues) or along the peptide 
backbone (e.g., carbonyl oxygen atoms). Given a sufficient internal 
energy, an activated peptide ion will undergo unimolecular 
decay to yield fragment ions. In CID and SID, these are most 
commonly sequence ions of the b and y types, which are formed 
through dissociation mechanisms that involve the participation of 
a charge-carrying proton. Thus, the location of protons exerts a 
strong influence on the sites of cleavage (24–27). While some 
potential protonation sites are more favored than others, it should 
not be overlooked that at a given point in time and for a given 
distribution of internal energies, a population of ostensibly identical 
protonated peptides is actually a collection of variously protonated 
isoforms. That is, a population of protonated peptides can, in 
reality, be a collection of distinct ions, with the proton or protons 
occupying different sites. Moreover, a given protonated peptide is 
not static; rather, protons can be intramolecularly transferred to a 
number of potential sites.

The foregoing considerations serve to illuminate a general 
qualitative framework for describing peptide fragmentation 
behavior on the basis of proton mobility. While the mobile proton 
model alone does not provide for quantitative prediction of 
fragment ion intensities, the model does furnish sound chemical 
rationale for several well known types of enhanced and diminished 
cleavage. One influence of proton mobility on peptide fragmenta-
tion can be dramatically demonstrated by comparing the collision 
energies required to dissociate peptide ions having differing 
numbers of charge-carrying protons in relation to the number of 
basic amino acid side chains (28, 29). Those peptide ions with a 
number of protons greater than the number of basic amino acid 
residues tend to dissociate at relatively low collision energies. 
In these cases, each basic residue is considered to harbor a proton, 
leaving at least one additional, mobile proton. Dissociation of 
these precursor ions generally yields product ions with good 
sequence coverage, as under such circumstances, there are many 
roughly equivalent sites of protonation that may be occupied by 
the mobile proton. By contrast, peptide ions with a number of 
charge-carrying protons less than or equal to the number of basic 
amino acid residues (particularly, arginine residues) require signifi-
cantly greater collision energies in order to efficiently dissociate. 
In these cases, all available protons are most favorably localized at 
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the basic side chains, thus not allowing for a readily mobile proton. 
In this case, additional energy is required to mobilize these 
sequestered protons or to reduce basicity by an intermediate 
neutral loss and thus allow the participation of these protons in 
backbone cleavage mechanisms.

Proton mobility not only plays a role in the overall activation 
energy required to bring about peptide ion dissociation but also 
serves to explain some well-known types of selective cleavage. For 
example, cleavage C-terminal to aspartic acid residues (and, to a 
lesser extent, glutamic acid residues) is highly favored in the absence 
of mobile protons (30, 31). This type of enhanced cleavage has 
been attributed to the participation of an acidic side chain proton 
in the dissociation mechanism. Because the proton participating in 
the dissociation chemistry is not the charge-carrying proton, this 
type of cleavage is often described as a charge-remote pathway. 
When mobile protons are available, cleavage C-terminal to acidic 
residues becomes an essentially nonselective process. Selective 
cleavage is also commonly observed at the C-terminus of histidine 
residues, although the behavior of this cleavage is different from 
that seen at the C-terminus of acidic residues (32). For these 
peptide ions, the fragmentation occurs preferentially only in the 
presence of mobile protons. This observation has been inter-
preted as evidence that a charge-carrying proton must occupy the 
histidine side chain imidazole group in order to bring about 
the selective cleavage. By contrast, histidine-containing peptide 
ions with no mobile protons cleave in a nonselective manner. 
While these examples do not constitute an exhaustive discussion 
of mobile proton related selective cleavage types, they do serve to 
illustrate the exquisite sensitivity of peptide dissociation patterns 
to the chemistry of each specific ion.

As mentioned previously, proteomics experiments use algorithms, 
such as Sequest or Mascot, to assign peptide sequences to peptide 
fragmentation spectra in order to identify the corresponding 
proteins present in a sample (12, 14). While these programs have 
greatly enabled progress in proteomics, they are still limited from 
both a practical and chemical perspective. Of the thousands of 
tandem mass spectra acquired in a given experiment, only a 
small percentage of the spectra are identified by the algorithms 
(33–36). This may be due in part to the simplicity of the chemical 
fragmentation models these algorithms use, as mentioned in the 
previous section (12, 14). One limitation of the fragmentation 
models used is that cleavages are predicted to occur almost 
exclusively at the amide bond between neighboring residues, 

3. Elucidation  
of Chemical Trends 
from Collections  
of Fragmentation 
Spectra
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regardless of amino acid residues present. As many groups have 
identified several reproducible residue-dependent cleavage enhance-
ments (19, 31, 37, 38), it is clear that the algorithms do not take 
into account all of the chemical information available to describe a 
peptide fragmentation spectrum. Incorporating more chemically 
detailed information may help to improve the ability of an algorithm 
to correctly identify a peptide based on a fragmentation spectrum if 
a robust, fast, and sophisticated model can be developed.

A wide variety of chemical properties have been shown to affect 
the fragmentation pattern of a peptide. Some of those explored 
include size, charge state, and residues present (28, 30, 37–42). 
The way in which all of these factors act together to give a certain 
fragmentation spectrum is complex and not yet fully understood. 
Two main approaches have been taken in order to understand the 
effect of different characteristics on peptide fragmentation: 
systematic studies using model peptides and data mining applied 
to large datasets.

Several groups have used small subsets of model peptides to dem-
onstrate trends in peptide fragmentation spectra. Tsaprailis et al. 
used a small set of angiotensin peptide analogs to systematically 
explore the effect of the neighboring residue on enhanced cleavage 
at histidine residues (32). Dongre et al. demonstrated the role of 
residue basicity, peptide length, and peptide sequence on fragmen-
tation patterns using systematically modified leucine enkephalin 
analogs, polyalanine analogs, and des-Arg bradykinin derivatives 
(28). Figure 2 shows the fragmentation efficiency curves for a series 
of singly protonated polyalanine analogs with different N-termini. 
As the gas phase basicity of the first residue increases, additional 
collision energy is required to achieve the same fragmentation effi-
ciency. The increase in energy required to achieve fragmentation 
within the given timescale demonstrates the ability of more basic 
residues to more tightly sequester the ionization proton, a result 
that played a role in development of the mobile proton model.

Vaisar and Urban used a similar method to examine the 
proline effect on peptide fragmention by looking at a series of 
five different peptides of the sequence Ala-Val-X-Leu-Gly (43). 
These studies and others clearly indicate that multiple factors are 
responsible for the overall fragmentation behavior of a peptide. 
While each of these examples can describe differences in fragmen-
tation behavior in relation to other peptides in the study that have 
been varied with a systematic intent, it is not possible to either fully 
elucidate all of the contributions to the fragmentation spectrum, 
nor is it possible to draw more general conclusions of how these 

4. Model Peptide 
Studies
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factors can be applied to larger sets of spectra. Because proteomics 
readily generates a large number of spectra to be interpreted, and 
because large numbers of spectra are needed to achieve statisti-
cally valid numbers of combinations of various residues, methods 
that seek to discern fragmentation patterns from large sets of data 
may be more appropriate tools.

Tandem mass spectrometry data are aptly suited for data mining 
as a typical proteomics experiment will quickly generate several 
thousands of widely varied MS/MS spectra. The goal of data 
mining is to identify underlying patterns from the spectra that 
can ideally be correlated to chemical phenomena that will 
help describe the ways in which peptides fragment. Generally, 
data mining can be broken down into two approaches after data 
acquisition: classification and pattern analysis, and/or clustering 
and pattern analysis.

It is important to note here that a major requirement of data 
mining is the availability of large, high quality datasets in which 
there is great certainty that the peptide sequences are correctly 
identified based on the corresponding fragmentation spectra. 
Datasets consisting of a few thousands to a few million spectra 
have been studied via data mining in order to elucidate trends 

5. Introduction  
to Data Mining

Fig. 2. Influence of gas-phase basicity on fragmentation efficiency. As gas-phase basicity 
increases (from A to P to K to R), the ionizing proton is more easily sequestered so that 
more energy is required to achieve the same fragmentation efficiency. Reproduced with 
permission from J. Am. Chem. Soc. 1996, 118, 8365–8374. Copyright 1996 Am. Chem. Soc
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(33, 35, 36, 38, 40, 42, 44). Small sets of model peptides have an 
advantage in terms of the ease of assembling the data set because 
peptides and their desired analogs can readily be synthesized and 
easily characterized using basic MS and MS/MS measurements. 
Assembling a dataset with thousands of spectra in the same manner 
would be extremely time intensive and lacking in practicality. 
Rather than synthesizing thousands of peptide analogs, proteolytic 
digests of complex protein mixtures are analyzed via LC-MS 
and the corresponding MS/MS spectra are collected. As stated 
previously, in a given experiment of this type, as few as 10–35% of 
the spectra can be correctly identified. In order to trim these data sets 
to include only spectra that have had their sequences identified 
with high certainty, the data are first run through an algorithm, 
and the spectra that are matched to a peptide/protein with an 
acceptable cutoff score are saved (33, 35, 38, 42). In order to 
further validate a dataset, Smith and coworkers ran a complex 
digest through two types of mass spectrometers, an FT-ICR and 
an ion trap, which were coupled with identical chromatographic 
conditions (45). The combination of the accurate mass measure-
ments from the FT-ICR and the fragmentation spectra from the 
ion-trap was paired with the use of Sequest; when Sequest identified 
the peptide that was within 1 ppm of the accurate mass and 
correlated to the fragmentation spectrum at the same retention 
time within a margin of error, then the spectrum was considered 
to be identified with very high confidence. However, this approach 
necessarily introduces bias because those spectra and sequences 
that are not identified are not represented in the database. While 
this method would not eliminate all incorrectly assigned peptide 
fragmentation spectra, it would identify a large number of high 
quality spectra in a relatively small amount of time.

The motivation for using a larger dataset as opposed to a set 
of systematically altered model peptides is that a larger distribution 
and variability of peptides and their corresponding fragmentation 
spectra will be present. With a greater distribution, the goal is to 
identify underlying trends in the fragmentation spectra that can 
be universally applied to future systems. However, many subsets 
are limited to one charge state or one type of peptide. Many have 
focused their studies on doubly charged tryptic peptides, as they 
are a common type of peptide ion seen (35, 38, 40, 42). Only a 
few researchers, including Wysocki and Zhang, have investigated 
the role of a variety of charge states (41, 46). While some 
other charge states and nontryptic peptides are less common in 
proteomics experiments, it is nonetheless important to acknowledge 
the specific bias a given dataset may contribute to the outcome of 
a data mining effort.

Once the dataset is assembled, data mining may proceed 
through two main approaches: classification and pattern analysis 
or clustering and pattern analysis. One common approach is to 
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first include a preclassification step. Based on previously understood 
chemical principles, Huang et al. preliminarily separated data 
from 28,311 spectra into nine subsets based on structural features, 
such as proline content and basic residue content, and the charge 
state (41). In each subset of this study, pairwise fragmentation 
maps were generated to describe cleavages between all possible 
residue pairs. An example of this fragmentation map is shown in 
Fig. 3, which illustrates the y (top) and b (bottom) ion intensity 
patterns among doubly charged arginine (left) and lysine (right) 
terminated peptides. These fragmentation maps yield a plethora 
of information that may be integrated into future peptide identifi-
cation algorithms.

Fig. 3. Pairwise fragmentation map for singly charged peptides ending in arginine (Iy and Ib) or lysine (IIy and IIb). 
Reproduced with permission from Anal. Chem. 2005, 77, 5800–5813. Copyright 2005 Am. Chem. Soc
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In a similar approach, Tabb et al. examined trends in a database 
of 1,465 doubly charged tryptic peptides (35). Initially, they 
refined their dataset to include only doubly charged ions whose 
spectra contained at least 50% of the theoretically predicted ions 
that were fully tryptic; that is, ending in Arg or Lys without any 
internal Arg or Lys residues. They then examined the relationship 
between fragment intensity and ion series origin, fragment mass, 
residue type and effect on the neighboring amide bond cleavage, 
and the link between peptide amino acid composition and neutral 
fragment loss. In another study by Tabb et al., proteinase K was 
used to generate 2,568 nontryptic doubly charged peptides so 
that the role of basic residue location in a peptide could be 
correlated to fragmentation efficiency (42). A similar method was 
used by Kapp et al. to investigate trends using a dataset of 5,500 
peptides. The authors demonstrated that the incorporation of a 
proton mobility factor could greatly improve algorithm identifi-
cation success (36).

Others have used data mining to focus on specific fragmenta-
tion patterns, such as Huang’s investigation of the influence of 
internal basic residues on the fragmentation C-terminal of the 
acidic residues Asp and Glu and Breci’s look at fragment ion 
intensities due to cleavage N-terminal to Pro (37, 38). Through 
an examination of the b and y fragment ion intensity C-terminal 
to Asp when an internal His was present, Huang and coworkers 
were able to demonstrate that cleavage C-terminal to Asp was 
enhanced because of the ability of a basic His internal residue to 
sequester protons for doubly charged tryptic peptides. Breci et al. 
used a measure of the relative bond cleavage, which compares the 
intensity of the ions from cleavage at Pro to the intensity of all 
ions present in the spectrum, to determine that while cleavage 
N-terminal to Pro is reproducible for a certain residue, there is 
not enough chemical understanding as of yet to fully elucidate 
the entire fragmentation mechanism.

An alternative approach taken by Huang et al. was to use a 
penalized K-means algorithm to allow for unsupervised clustering 
of 28,330 spectra (47). This allowed for the peptide fragmenta-
tion spectra to cluster into four groups without the introduction 
of any prior chemical knowledge into the algorithm, as shown in 
Fig. 4. After the clustering, a decision tree was used in order to 
correlate the clusters to specific chemical properties. A fifth 
cluster for noise and outlier peaks was also generated using a 
method developed by Tseng, to allow for cleaner clustering. This 
method is important because it bypasses the need to introduce 
any prior assumptions and instead provides a relatively unbiased 
overview of the fragmentation behavior observed in the dataset as 
a whole.

Whittaker and coworkers have employed an alternative data 
mining technique that they refer to as statistical modeling, which 



Fig. 4. Quantile maps of b (above) and y (below) ions for the four clusters identified from Huang’s study using a 
penalized K-means algorithm for unsupervised clustering. The four clusters of spectra are characterized by the dominant 
cleavages patterns seen: (a) X–P, (b) I/L/V–X, (c) both D–X and X–P, and (d) D/E–X. Reproduced with permission from 
Proteome Res. 2008, 7, 70–79. Copyright 2008 Am. Chem. Soc
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uses probabilistic models relating trends in fragmentation spectra 
to multiple predictor variables (39, 48). The key advantage of 
statistical modeling is in the ability to consider each factor simul-
taneously as opposed to independently. This is ideally suited for 
the interpretation of tandem mass spectra, as the factors dictating 
a particular fragmentation pattern are complex and multivariate 
in nature. For example, Barton et al. used models to describe 
b and y ion formation (separately, as they regarded different 
factors to influence the formation of each ion type) involving 
fragment ion mass, cleavage location and neighboring residues, 
and peptide residue composition (48).

Elias et al. used a machine learning approach to examine the 
ion intensities of 27,000 high quality fragmentation spectra to 
develop a model that can describe how likely it is that certain 
fragments would appear with a predicted relative intensity (33). 
They compared these predictions to a set of peptides that were 
either matched or mismatched to determine how the incorporation 
of ion intensity information could improve the success of the 
peptide identification algorithm. They saw improvements in pep tide 
identification from 50 to 96%, suggesting that the incorporation of 
intensity is crucial to the improvement of these algorithms. This 
will be further discussed in the following section.

As mentioned previously, various factors, including size, charge 
state, amino acid content, and charge location, can contribute to the 
process of gas phase peptide dissociation, making the resulting 
fragmentation spectra difficult to fully predict or interpret (19). 
This problem is compounded by the fact that most current 
algorithms rely on models that oversimplify the fragmentation 
process, thus causing valuable spectral information to be  
discarded. Introducing more of the available chemical informa-
tion and fragmentation patterns into a sequencing algorithm 
could therefore allow the algorithm to more efficiently and more 
accurately match a peptide fragmentation spectrum to its correct 
matching peptide. This section will examine how several popular 
algorithms use the available peptide fragmentation information to 
predict spectral matches.

Some of the popular algorithms that are used to perform 
peptide sequencing or protein identification from MS/MS data 
include MS-Tag, SEQUEST, MASCOT, X!Tandem, OMSSA, 
and Phenyx (14). MS-Tag is an algorithm that was originally 
developed for the interpretation of MS/MS spectra that do not 
contain a contiguous ion series; that is, not all characteristic b and y 
ions are present (11). Figure 5 shows an experimental spectrum 

6. Incorporation  
of Fragment Ion 
Intensity  
in Peptide 
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Algorithms
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and the theoretical contiguous ion series that would correspond 
to the sequence of the peptide AEAYITGK.

Assignment of a peptide sequence to a spectrum involves 
calculating the theoretical fragment ion m/z values for all candidate 
peptide sequences. MS-Tag ranks the candidate sequences in 
the order of increasing number of unmatched experimental 
fragment ions.

SEQUEST is an algorithm that correlates a given uninter-
preted MS/MS spectrum with candidate sequences through the 
use of scoring and ranking methods based on spectral similarity by 
cross-correlation of the theoretically predicted spectra and the 
experimental spectrum (11). However, SEQUEST does not 
compare the raw spectra with predictions. Instead, it divides the 
spectrum into 10 bins and normalizes each to the most intense 
peak in the bin, effectively removing relative ion intensity across 
the entire fragmentation spectrum as a strong determinant of a 
match. This approach has been very successful in matching spectra 
to candidate sequences despite the lack of detailed rules for  
predicting fragment ion intensities.

MASCOT is an algorithm that contains multiple approaches 
to database searching, of which two use MS/MS data (MS/MS 
Ion Search and Sequence Query) (14). MS/MS Ion Search 
calculates theoretical fragment ion masses in a similar manner to 
that of MS-Tag before matching them to experimental spectra. 
Sequence Query requires some manual interpretation of the MS/
MS data during which molecular weight, residue composition, and 
sequence qualifiers are determined for the candidate sequences. 
Both MASCOT strategies use the same probability-based 
scoring routine based on the MOWSE algorithm in which pep-
tide size distributions (or peptide fragment size distributions) are 

Fig. 5. Comparison of actual peptide fragmentation spectrum (top) to contiguous ion series (bottom)
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considered with respect to protein masses (or peptide masses) in 
the searched database. A cutoff score for the probability that a 
match is a purely random event is given for each search.

X!Tandem, the most popular open source algorithm, uses 
intensity in its preliminary score, or hyperscore (49). This score is 
similar to ion intensity current, which is the sum of the intensities 
of all b and y ions found in the experimental spectra. This is not the 
same as using peak intensity information that reflects chemical 
fragmentation suppression or enhancement; it only acknowledges 
the presence of a peak. Through a statistical analysis of the hyper-
score of each candidate sequence, an expectation value (E-value) 
describing the significance of the difference between the top match 
and other matches is generated and used as the main score of 
X!Tandem. Because this idea is common to several algorithms, 
the use of a hyperscore alone is not enough to significantly 
improve the success of X!Tandem when compared to other 
algorithms that use additional information and scoring stages to 
assign peptide spectra.

OMSSA (Open Mass Spectrometry Search Algorithm) is 
another example of an open source algorithm that uses expecta-
tion values as criteria, similar to X!Tandem. The older version of 
OMSSA only uses intensity as a threshold to filter noisy peaks 
(13), while the newer version has improved how intensity is used 
(50). In the newer edition, each peak in the experimental spec-
trum is ranked. The sum of the ranks of the matched peaks is 
compared with a normal distribution of ranks of random peak 
sums to calculate an expectation value. Like X!Tandem, OMSSA 
is complementary to Sequest because it gives an identification a 
probability component, whereas Sequest matches do not include 
probability.

Lastly, Phenyx is a platform that generates its score based on 
an extended match, which matches a peptide using a combination 
of and comparison between theoretical and experimental spectra. 
(51). In other words, this method incorporates structural 
information such as intensity, ion series contiguity, and spectral 
signal-to-noise ratios in addition to m/z information, and the 
extended match score reflects the quality of a match. By analyzing 
a testing set of spectra with known sequences, Phenyx calculates 
the probability of observing the above extended match information 
when the match is correct or if the match is purely random; the ratio 
of these two probabilities is the Phenyx score. When attempting 
to identify a peptide sequence from an unknown spectrum, 
similar extended match information can be generated against 
candidate sequences in a given database to determine the ratio 
score. Evaluation of the score will enable true matches to be 
distinguished from false.

While these algorithms are popular and successful in proteomics 
studies worldwide, they are not without limitations. Because every 
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spectrum is assigned to a sequence candidate, a variety of studies 
have shown that in a typical MS/MS run, over 80% of the peptide 
identifications by SEQUEST are false and filters are necessary to 
eliminate those low confidence matches; programs have been 
developed, such as DTASelect, Peptide Prophet, and Protein 
Prophet, that remove these low confidence matches (52–54). 
However, scoring cut-off filters may also require that some 
correctly identified spectra are discarded in order to remove a 
majority of the false positive identifications. Though many 
proteins can still be identified using current algorithms, and the 
use of multiple algorithms can be combined to increase protein 
identification confidence as demonstrated by Searle et al. (15), 
these algorithms are still far from optimally meeting the rapid 
identification demands of the proteomics experiments that generate 
large volumes of peptide fragmentation spectra.

One common characteristic for all of these widely used 
algorithms is that they mainly utilize the mass-to-charge ratio 
information from a mass spectrum while ignoring the intensity 
component beyond the intensity threshold (12, 14). This is 
generally a result of insufficient knowledge of the peptide disso-
ciation process, as we mentioned previously, though some 
efforts have been made recently to include intensity into peptide 
identifications algorithms (46, 47, 55–58). As discussed previously, 
reproducible intensity patterns have been identified for several 
residues, such as the study by Breci and coworkers on the enhanced 
cleavages N-terminal to proline (37). The integration of intensity 
is emphasized in certain algorithms not because it is more critical 
than m/z, but because it can provide additional correlating 
information that can assist with the peptide identification. Studies 
have shown that the incorporation of intensity can reduce peptide 
fragmentation identification error by 50–96% (33). Clearly, the use 
of intensity to improve peptide identification rates is an attractive 
prospect. Indeed, while this chapter has placed strong emphasis 
on the relevance of fragment ion intensity to proteomic strategies, 
the importance of m/z values cannot be minimized. Because a 
wide variety of MS platforms are being applied to proteomics, it 
is of utmost importance that proteome researchers be aware of 
the mass resolution and mass accuracy performance characteristics 
of the mass analyzer being used. Such information is essential 
for the appropriate setting of precursor and fragment ion mass 
tolerances, and the specification of average versus monoisotopic 
masses at the database search stage.

Different from the popular algorithms mentioned above, 
algorithms incorporating intensity do not work under the assump-
tion that the all amino acid pairs and peptide patterns dissociate 
non-selectively to generate peaks without discrimination in 
intensity. Though the appearance of a given spectrum is difficult 
to predict, results have shown that given the same experi-
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mental conditions mass spectra are reproducible (33, 37, 46, 57). 
Schutz and colleagues assessed this reproducibility by using an 
ion trap dataset produced by the same instrument and parameters 
via three different methods: correlation between the intensities of 
two spectra as a measure of their similarity, normalized dot 
product of both the peak intensities from pairs of spectra, and 
the square root of the intensities (59). They found that MS/MS 
spectra, especially of peptides with low charge states, exhibit 
reproducible fragmentation intensities and patterns, which enables 
the prediction of peak intensity. Newer algorithms that incorporate 
complex intensity models that are based on either probability or 
chemical properties will be discussed below.

Elias and coworkers used a probabilistic decision tree – specifically, 
a treelike feather extracting graph, which requires the members of 
each branch to have similar properties – to model the probability of 
observing certain peak intensities in a mass spectrum from 27,266 
high quality spectra (33). The most confident true matches from 
SEQUEST were selected and decision trees were generated using 
63 different attributes, including b ion length, y ion length, fraction 
of basic residues, and peptide length. Each node of the tree represents 
a chemical property that can separate the intensity into different 
bins, and the likelihood that a certain fragment ion peak will have 
a certain intensity that can be calculated from the distribution of 
the sizes of the resulting branches. With the input of a predicted ion 
from a candidate sequence, the likelihood of yielding the measured 
intensity in the experimental spectrum can be obtained from the 
decision tree. For both correctly matched and mismatched peptides, 
the decision trees are made and compared to serve as a guideline as 
to whether an identification is correct or incorrect. More than a 
50% decrease in peptide identification error rate was achieved 
when using this method in conjunction with SEQUEST.

Another intensity based algorithm is Narasimhan’s Multi-
nomial Algorithm for Spectral Profile-based Intensity Comparison 
(MASPIC) scorer (60). Though based on a popular random 
match assumption that the correct match should have the least 
likelihood to be achieved randomly by chance only, MASPIC 
considered the possibility of random intensity matches as an 
alternative to using m/z only. This method divides the whole 
experimental spectrum into +1, +2, and +3 zones according to the 
charge of the fragment. In each zone, peaks are binned into classes 
with descending intensity, where lower intensity classes have more 
peak members. This process converts the experimental spectrum 
into a probability profile along the m/z axis. It is more likely to 

7. Probability 
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randomly match a predicted peak from a candidate sequence into 
the lower intensity class because this class has more members, thus 
decreasing the importance of a match with decreasing intensity. 
When all predicted peaks from a candidate sequence are compared 
with this probability profile, the number of matched and unmatched 
peaks for each class is counted, and further calculations are 
performed to give a probability of matching.

Zhang reported a kinetic model for prediction of low-energy CID 
spectra from sequence in 2004, with a general idea to abandon 
the traditional statistics model used by intensity prediction efforts 
and mimic the peptide dissociation process based on kinetics 
and the mobile proton model (57). The key assumption is that 
the intensity of a fragment ion is determined by the rate of the 
dissociation pathway generating this fragment; if the rate constants 
for all fragment ion pathways are known, then the relative intensity 
of each fragment can be predicted. Collision energy, proton 
density, fragmentation rate, ion cooling rate, activation energy, 
and gas-phase basicity are considered and incorporated into the 
rate calculation of eleven different backbone cleavage pathways as 
well as side-chain cleavages and neutral losses. Based on this 
iterative calculation model, Zhang developed an algorithm called 
MassAnalyzer, which uses a Sim score to evaluate the similarity of 
a simulated and experimental spectrum (57).

The kinetic model is mainly used to confirm the results from 
popular algorithms rather than to provide independent protein 
identification. This is due to various limitations, including vari-
ability between spectra acquired on different instruments under 
different experimental conditions and the large number of param-
eters that must be considered, as mentioned above. The Resing 
group later used this model as one part of the Manual Analysis 
Emulator (MAE), a program intended to improve the validation 
of tandem mass spectra (61). Another part of this MAE program 
takes into account the proportion of the ion current (PIC), which 
represents the percentage of intensities in an experimental spectrum 
that can be derived from the peptide sequence. A higher PIC 
score means that the program was using the most intense peaks 
for peptide identification as opposed to noise and low abundance 
peaks. With the incorporation of these two intensity-related 
scores, MAE yielded a better discrimination between true and 
false matches of SEQUEST and Mascot results.

Clearly, peptide searching algorithms utilize a variety of spectral 
and chemical information to assign peptide sequences to spectra. 
Selecting a single algorithm over another will likely lead to different 
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sets of peptide and protein assignments based on the criteria that 
an algorithm uses. As briefly mentioned earlier, the use of multiple 
search algorithms has been shown to improve confidence of a 
peptide identification. Programs such as Scaffold, available from 
Proteome Software, provide an interface for direct comparison 
of MS/MS data analyzed using a variety of algorithms (15). 
As new algorithms are developed, it is important to under-
stand what spectral characteristics allow the algorithm to 
more accurately match certain spectra to peptide sequences 
while the matches for other spectra with different characteristics 
are poor. Programs such as Scaffold will allow algorithms to be 
more readily compared.

We can imagine a time in the future when our fundamental 
knowledge and computational capabilities are sufficiently advanced 
to rapidly and accurately predict theoretical MS/MS spectra for any 
given peptide sequence. This will ultimately require that different 
protonation motifs, their relative probabilities of existence, 
their relative propensities for interconversion, and their overall 
contribution to dissociation kinetics all be taken into account. 
This would be a significant advance, as theoretical sequences 
could be generated to match a measured accurate mass and the 
corresponding synthetic tandem mass spectra could be generated 
and compared to the experimental spectrum. This should, in 
principle, allow peptide sequence identification to be obtained 
even in the absence of protein level information and even in the 
absence of genomic information. In approaching this goal, it will 
be necessary to continue systematic investigation of peptide 
structure and gas-phase unimolecular ion chemistry of protonated 
peptides and to incorporate the forthcoming insights into the 
next generation of proteomic search algorithms.

9. Prospectus
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Chapter 7

Spectral Library Searching for Peptide Identification  
via Tandem MS

Henry Lam and Ruedi Aebersold

Abstract

Spectral library searching is a new approach in proteomic data analysis that promises to address some of 
the shortcomings of sequence database searching, currently the dominant method for inferring peptide 
identifications from tandem mass spectra. In spectral searching, a spectral library is first meticulously 
compiled from a large collection of previously observed and identified peptide MS/MS spectra.  
The unknown spectrum can then be identified by comparing it to all the candidates in the spectral library 
for the best match. It offers the benefits of tremendous speed gain and increase in sensitivity and selectivity, 
compared to sequence searching. This article provides a concise roadmap for the proteomics researchers 
to start using spectral library searching in their data analysis workflow.

Key words: Peptide identification, Mass spectrometry, Spectral library, Spectral searching

Traditionally, the inference of the peptide sequence from its 
characteristic tandem mass spectra is most often achieved by 
sequence (database) searching (Chapter 3). Several popular com-
putational tools developed for this purpose have emerged over 
the years, each employing different algorithms and heuristics to 
achieve an acceptable balance of sensitivity and accuracy (1). 
Unfortunately, traditional sequence searching is a challenging, 
error-prone, and computationally expensive exercise. Despite the 
tremendous improvement in computer hardware and software 
over the past decade, this step often remains the bottleneck of 
any given proteomics experiment. The requirement of computa-
tional resources is also substantial, limiting the use of this powerful 

1. Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_7, © Humana Press, a part of Springer Science+Business Media, LLC 2010



96 Lam and Aebersold

technique to only those research groups that can afford the costly 
computational infrastructure (2, 3).

Spectral searching is an alternative approach that promises to 
address some of the shortcomings of sequence searching. In spec-
tral searching, a spectral library is meticulously compiled from a 
large collection of previously observed and identified peptide 
MS/MS spectra, either by a centralized library builder, or by 
individual researchers. The unknown spectrum can then be iden-
tified by comparing it to all the candidates in the spectral library 
for the best match (4, 5). This approach has been commonly 
employed for mass spectrometric analysis of small molecules with 
great success but has only become possible for proteomics very 
recently. The chief difficulty, that of generating enough high-
quality experimental spectra for compilation into spectral libraries, 
has been overcome by the recent explosion of proteomics data 
and the availability of public data repositories. Several attempts at 
creating and searching spectral libraries in the context of proteomics 
have been published within the past few years, all demonstrating 
the tremendous improvement in search speed and the great 
potential of this method in complementing sequence searching in 
many proteomics applications (6–8).

The defining features of spectral searching are (1) the use of 
experimental, as opposed to theoretical, spectra to match query 
spectra, and (2) a much reduced search space compared to tradi-
tional sequence searching. Both factors contribute to the improved 
performance of spectral searching.

Spectral searching compares experimental spectra to experi-
mental spectra, whereas sequence searching compares experimental 
spectra to theoretical spectra. In general, the theoretical spectra 
considered in sequence searching are very simplistic (e.g., only 
including b- and y-type ions, at a fixed intensity), and do not 
resemble the experimental spectra that they are supposed to 
match. On the other hand, armed with previously observed 
experimental spectra compiled into spectral libraries, spectral 
searching can take full advantage of all spectral features, including 
actual peak intensities, neutral losses from fragments, and various 
uncommon or even uncharacterized fragments, to determine the 
best match. The similarity scoring of spectral searching is there-
fore more precise, and will generally provide better discrimination 
between good and bad matches. This usually results in much 
superior statistics (e.g., sensitivity, false discovery rates) for the 
search results, compared to sequence searching.

Spectral searching also benefits from a much reduced search 
space. Because spectral libraries are compiled from previously 
observed and identified peptide ions of a proteome, a spectral 
search engine only considers as candidates a small fraction of all 
putative peptide sequences derivable from a sequence database. It 
is well known that most of these putative peptide ions considered 
in sequence searching are never observed in practice for a variety of 
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reasons, ranging from the absence or the scarcity of the protein in 
the sample, to the inability to the peptide to ionize efficiently to be 
observed in the mass spectrometer. With typical search parameters, 
the search space of spectral searching can be several orders of mag-
nitude smaller than sequence searching, yielding a corresponding 
speed gain. In addition, the reduced search space also means that 
the search engine will have fewer candidates to consider, which 
often translates to an improvement in discrimination power.

Needless to say, the narrowing of the search space to previ-
ously identified peptides also limits the application of spectral 
searching to situations where discovery of novel peptides or pro-
teins is not the goal. This perhaps is the biggest drawback of the 
spectral searching approach, albeit one that is sometimes over-
stated. Today, spectral libraries are being compiled from multi-
tudes of large-scale experiments that cover a wide range of sample 
sources, sampling techniques, instrumentation, and data analysis 
methods. It is becoming increasingly unlikely that an ordinary 
proteomic experiment studying commonly studied systems and 
employing well-known techniques will yield many newly discov-
ered peptides not covered in these libraries. On the other hand, 
more and more opportunities of scientific discovery lie in under-
standing how these known segments of the proteome change 
with time and circumstances and how they interact in concert to 
produce biological function. Consequently, there is a shifting 
emphasis from discovery-oriented endeavors to targeted and 
quantitative proteomics in which one is merely interested in 
studying known and previously observed peptides (2, 9). Spectral 
searching is well suited to this type of workflows.

There are also ample opportunities to use spectral searching as 
a part of an integrated data analysis pipeline. For instance, it can be 
used as a first-pass search to identify all previously known peptides, 
before one resorts to more expensive and brute-force approaches 
for yet unidentified spectra, which can perhaps be aided in some 
manner by the identifications already made by spectral searching. 
Spectral searching can also be part of an iterative approach in 
which sequence searching is employed first on a reference sample 
to construct a reference spectral library, followed by quick 
spectral searching to confirm identifications of interest in many 
parallel experiments. This would be ideal for quantitative proteomic 
experiments with many samples and replicates, such as a time 
series experiment, or a clinical study involving many subjects.

There have been several published reports on various aspects 
of spectral library building and searching in the context of pro-
teomic data analysis, with associated software tools made available 
freely to the research community (Table 1). A detailed review and 
comparison of these options is not the intent of this article, which 
is aimed at providing a concise roadmap to the reader to start 
using spectral library searching in their data analysis workflow. 
Nor it is intended to provide evidence for the effectiveness of 
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spectral searching, for which the reader is referred to the publications 
listed in Table 1. Finally, it should also be emphasized that 
spectral searching in proteomics is a new and rapidly developing 
field. Many aspects of its implementation and usage are likely to 
evolve over time.

The websites from which to download spectral searching soft-
ware, as well as any helpful sites with instructions and documen-
tation, are listed in Table 2. Easy one-click installation is available 
for NISTMS and SpectraST (see Note 1) on the Windows platform. 

2. Methods

2.1. Obtaining 
Software

Table 1 
Free or open-source software for spectral library searching

NISTMS X!Hunter Bibliospec SpectraST

Supported 
libraries 
(format)

NIST libraries (.msp) X!Hunter libraries  
(.hlf)

Bibliospec  
libraries (.ms2)

.msp

.hlf

.ms2

SpectraST libraries  
(.splib)

Supported 
data 
formats

.dta .mzXML .dta .mzML

.pkl .mzData .mzXML

.mgf .dta .mzData

.msp .pkl .msp

.mgf .mgf

.bioml .dta

Platform Windows Windows Windows Windows

LINUX LINUX LINUX

Remote webserver Remote webserver

Remarks Extension of  
well-known MS 
search program for 
small molecules; 
One-click installer

X!Tandem-like 
scoring  
Need web server  
and Perl 
installation

Integrated with 
Trans-Proteomic 
Pipeline (TPP); 
One-click 
Windows installer

Reference – (6) (7) (8)
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For the other tools, please refer to the associated README files 
for installation instructions.

There are two main sources of spectral libraries, public and cus-
tom-built. Public libraries are compiled by dedicated library 
builders, such as the National Institute of Standards and 
Technology (NIST) (see Note 2) and the Global Proteome 
Machine (GPM) (see Note 3). These public libraries are built from 
a large number of contributed datasets from many  researchers. 

2.2. Obtaining Spectral 
Libraries

Table 2 
Useful websites

NISTMS Software download
  http://peptide.nist.gov/
Library download
  http://peptide.nist.gov/
  http://www.peptideatlas/speclib/
Instructions
  http://peptide.nist.gov/

X!Hunter Software download
  ftp://ftp.thegpm.org/projects/xhunter/binaries
  ftp://ftp.thegpm.org/projects/xhunter/source
Library download
  ftp://ftp.thegpm.org/projects/xhunter/libs
Instructions
  http://h201.thegpm.org/docs/xhunter_system.html
Web client to X!Hunter on remote server
  http://xhunter.thegpm.org/

Bibliospec Software download
  http://depts.washington.edu/ventures/UW_Technology/Express_Licenses/

bibliospec.php
Library download
  http://proteome.gs.washington.edu/software/bibliospec/documentation/libs.html
Instructions
  http://proteome.gs.washington.edu/software/bibliospec/documentation/index.

html

SpectraST Software download
  http://sourceforge.net/project/showfiles.php?group_id=69281
Library download
  http://www.peptideatlas/speclib/
  http://peptide.nist.gov/
Instructions
  http://tools.proteomecenter.org/wiki/index.php?title=SpectraST
Information on Trans-Proteomic Pipeline and open XML data formats
  http://tools.proteomecenter.org/software.php
  http://tools.proteomecenter.org/wiki/
Web client to SpectraST on remote server
  http://www.peptideatlas.org/spectrast/

http://peptide.nist.gov/
http://peptide.nist.gov/
http://www.peptideatlas/speclib/
http://peptide.nist.gov/
ftp://ftp.thegpm.org/projects/xhunter/binaries
ftp://ftp.thegpm.org/projects/xhunter/source
ftp://ftp.thegpm.org/projects/xhunter/libs
http://h201.thegpm.org/docs/xhunter_system.html
http://xhunter.thegpm.org/
http://depts.washington.edu/ventures/UW_Technology/Express_Licenses/bibliospec.php
http://depts.washington.edu/ventures/UW_Technology/Express_Licenses/bibliospec.php
http://proteome.gs.washington.edu/software/bibliospec/documentation/libs.html
http://proteome.gs.washington.edu/software/bibliospec/documentation/index.html
http://proteome.gs.washington.edu/software/bibliospec/documentation/index.html
http://sourceforge.net/project/showfiles.php?group_id=69281
http://www.peptideatlas/speclib/
http://peptide.nist.gov/
http://tools.proteomecenter.org/wiki/index.php?title=SpectraST
http://tools.proteomecenter.org/software.php
http://tools.proteomecenter.org/wiki/
http://www.peptideatlas.org/spectrast/
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They are comprehensive and high-coverage libraries of popular 
model organisms that are suitable for general use. Table 2 contains 
several websites from which public libraries can be downloaded 
for each spectral search engine. However, please be reminded that 
currently not all library formats and spectral search tools are com-
patible (see Table 1) or designed to work well together.

Custom-built libraries are built by individual researchers and 
are specialized to their biological systems of interest and their 
instrumentation setup. A custom-built spectral library is essentially 
a concise summary of the individual research group’s observed 
proteomes or subproteomes of interest, and can be a very useful 
living resource for the research effort. X!Hunter, Bibliospec, and 
SpectraST all provide means for the user to construct spectral 
libraries from sequence search results. The actual procedures are 
however quite involved and will not be covered here.

Prior to searching, data files containing the query spectra have to 
be converted to supported formats by the search engine. 
Unfortunately, raw data straight from the mass spectrometer is 
often encoded in vendor-specific proprietary formats and cannot 
be directly processed by spectral search engines. An additional 
step is required to convert or export them into one of the many 
open formats in use in the community. These can be simple text-
based peak lists (SEQUEST’s .dta format, Mascot’s .mgf format) 
or XML-based standardized formats (.mzXML (10), .mzData, .
recently mzML). All engines accept simple text-based peak lists 
with minor differences, which can be readily manipulated and 
interconverted with simple scripts. For larger-scale experiments, 
popular open XML that encapsulate entire MS runs are more 
compact and convenient. Please see Table 1 for supported formats 
for each spectral search engine. For information on data formats, 
please see Chapter 11.

Once the data is in supported formats, spectral library searching 
is usually launched within a graphical user interface (NISTMS, 
web interfaces for X!Hunter and SpectraST), or with commands 
issued on the LINUX or Windows command-line. For detailed 
instructions on how to use each tool, please refer to the respective 
user manuals or websites listed in Table 2.

Typical search parameters that the user needs to specify are: 
library to be searched, precursor mass or m/z tolerance, output 
format, and sometimes charge states allowed. Note that unlike 
sequence searching, for which the user needs to limit the search 
space by various means (e.g., enzymatic cleavage rules, modifica-
tions considered), the search space for spectral searching is fixed 
by the library coverage. Because spectral libraries are already 
limited to previously observed peptides and are therefore quite 
 manageable, it is possible and often advisable to cast a wide net by 

2.3. Data Conversion

2.4. Library Searching



101Spectral Library Searching for Peptide Identification via Tandem MS

setting a wide precursor mass or m/z tolerance (at least 3 Da  
or Th). This is true even for high-mass accuracy instruments.  
(A search space that is too small can be false positive-prone. It is 
preferable to use the mass accuracy constraints in the subsequent 
statistical validation.).

Due to the difference in peptide fragmentation patterns, there 
is some penalty in performance if the query and library spectra are 
from different types of mass spectrometers. Fortunately however, 
preliminary studies have shown that spectral searching is still 
highly effective even in those circumstances (6, 8).

It is important to note that spectral searching, very much like 
sequence searching, is but one step in the data analysis of pro-
teomic data. At the end of spectral searching, each query spec-
trum is matched to a highest-scoring library spectrum, and various 
similarity and significance metrics are provided along with the 
putative identification. Statistical validation refers to the subse-
quent step in which these putative identifications are assigned 
confidence and the error rates estimated. There are three major 
approaches to statistical validation in proteomics, each with different 
assumptions. Expectation value-based assessment is available 
for NISTMS and X!Hunter (see Chapter 5), mixture model-based 
probability assignment is available for SpectraST (with Peptide-
Prophet (11), see Chapter 19), and decoy searching (see Chapter 6) 
is available for all, provided one can identify a suitable decoy 
library. The most straightforward, and probably easiest, approach 
for decoy-based validation is to use library spectra of a different 
organism as decoys. The obvious caveat of this approach is the 
probable presence of some identical or homologous peptides in 
both target and decoy libraries, which can lead to errors in false 
discovery rate estimation. It is therefore wise to minimize this by 
using phylogenetically distant species for this purpose, or to 
detect and remove identical and homologous peptides from the 
decoy library beforehand (see Note 4).

 1. The open-source software SpectraST is developed at the 
Institute for Systems Biology as part of the Trans-Proteomic 
Pipeline (TPP, see Chapter 19) software suite (12), available 
freely with ongoing technical support and periodic updates. 
The TPP provides other useful components of a typical pro-
teomic data analysis pipeline, including raw data conversion, 
statistical validation, quantification and data visualization, etc. 
It is also available for Windows and LINUX platforms.  

2.5. Statistical 
Validation and Result 
Interpretation

3. Notes
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TPP can be obtained at the website http://sourceforge.net/
project/showfiles.php?group_id=69281. Select the latest 
release for Trans-Proteomic Pipeline. A native Windows 
installer for TPP is available, along with a zip archive of the 
source code. For LINUX installation, unzip the archive, and 
follow the compilation and installation instructions in the file 
README in the top directory. All components of TPP, along 
with SpectraST, will be compiled and installed.

 2. Currently, NIST’s spectral libraries are available for six major 
model organisms: human (Homo sapiens), yeast (Saccharomyces 
cerevisiae), mouse (Mus musculus), rat (Rattus norvegicus), fruit 
fly (Drosophila melanogaster), and Escherichia coli. NIST librar-
ies can be searched with NISTMS or SpectraST. For human and 
yeast, separate libraries are provided for ion trap (IT) instru-
ments and time-of-flight (TOF) instruments, although the lat-
ter are much smaller at the moment. The library building effort 
is ongoing, and updates of substantial improvement are expected 
every year. Visit http://peptide.nist.gov/ to download the 
libraries in .msp format directly from NIST, or http://www.
peptideatlas.org/speclib/ to download libraries in either the 
.msp or SpectraST’s .splib formats from the PeptideAtlas portal. 
(For .msp files, a SpectraST command needs to be run to con-
vert them into SpectraST’s format – mainly to index the library 
entries for fast search.) NIST libraries can be viewed simply by 
opening the .msp files (or the similar SpectraST’s .sptxt files) in 
a text editor. Refer to NIST’s documentation for a description 
of the fields contained therein.

 3. Currently, GPM’s spectral libraries are available for human, 
yeast, mouse, rat, several other vertebrates, two plants  
(A. thaliana and A. fumigatus), and several bacteria. They 
can be downloaded at ftp://ftp.thegpm.org/projects/
xhunter/libs in .hlf formats, which are machine-readable files 
handled by X!Hunter only. (SpectraST can convert .hlf files 
into SpectraST’s format and search GPM libraries; however, 
the search engine will not perform as well as with NIST libraries 
in terms of discriminating power.) Notably, GPM libraries 
only keep the top 20 peaks of a spectrum, whereas NIST 
libraries keep the full spectrum.

 4. SpectraST provides a feature (“Subtract homolog”) to remove 
any decoy spectrum with an identical or homologous identi-
fication to a spectrum in the target library.
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Chapter 8

De Novo Sequencing Methods in Proteomics

Christopher Hughes, Bin Ma, and Gilles A. Lajoie

Abstract

The review describes methods of de novo sequencing of peptides by mass spectrometry. De novo methods 
utilize computational approaches to deduce the sequence or partial sequence of peptides directly from 
the experimental MS/MS spectra. The concepts behind a number of de novo sequencing methods are 
discussed. The other approach to identify peptides by tandem mass spectrometry is to match the frag
ment ions with virtual peptide ions generated from a genomic or protein database. De novo methods are 
essential to identify proteins when the genomes are not known but they are also extremely useful even 
when the genomes are known since they are not affected by errors in a search database. Another advan
tage of de novo methods is that the partial sequence can be used to search for posttranslation modifica
tions or for the identification of mutations by homology based software.

Key words: Proteomics, Tandem mass spectrometry, De novo sequencing, Sequence tags, Peptide 
fragmentation, Homology

Mass spectrometry (MS) plays an increasingly important role in 
the biological sciences. MS has long been used for the analysis of 
small molecules but more recently has become a tool of choice for 
the characterization of proteins (1–4). Modern mass spectro
meters are capable of analyzing, in a relatively short time, mixtures 
of thousands of peptides to derive sequence information. Because 
of its sensitivity, accuracy, and robustness, MS has replaced 
earlier chemical and enzymatic methods for sequencing proteins.  
The recent developments in MS, separation sciences, and bioin
formatics have all contributed to the rapid emergence of proteomics. 
In fact, proteomics, or the global study of the entire protein com
plement of cells or tissues, has become a field of its own. Due to 
these technical advances, it is now possible to perform, in a very 
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Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_8, © Humana Press, a part of Springer Science+Business Media, LLC 2010



106 Hughes, Ma, and Lajoie

high throughput manner, the analysis of very complex protein 
mixtures. Proteomics can provide answers to questions that can
not be probed by genomics analysis especially in regard to protein 
modifications, localization, and quantification.

Early forms of mass spectrometry were not amenable to the anal
ysis of protein samples. Ionization techniques such as electron 
ionization (EI) and chemical ionization (CI) would cause high 
levels of insource fragmentation in biomolecules. The discovery 
of soft ionization techniques such as matrixassisted laser desorp
tion ionization (MALDI) and electrospray ionization (ESI) revo
lutionized the analysis of biomolecules by MS (5–7). Both of 
these ionization types are classified as “soft” ionization techniques 
because there is little fragmentation of the ionized species, such 
that the mass of the intact molecular ion can be measured. While 
MALDI produces mainly singly charged ions, ESI will typically 
generate multiply charged ions for peptides and proteins. One 
distinct advantage of ESI is its compatibility with a number of 
online separation techniques. Several online methods for separat
ing complex peptide mixtures prior to their entrance into the 
mass spectrometer have been developed. These include high pres
sure liquid chromatography (HPLC), nanoHPLC (LC), and 
strong ion exchange chromatography (SCX). Some can be used 
in an orthogonal fashion, i.e., SCX/LC, or by LC in basic condi
tions followed by LC in acidic conditions (2D LC/LC). These 
separation methods allow for better peptide coverage of a sample 
by decreasing the complexity of the sample entering the MS.

A variety of mass analyzers and instrument designs are cur
rently available for proteomics experiments. Most instrument 
designs found in research laboratories today are hybrid instru
ments (Fig. 1), combining two or more mass analyzers, such as: 
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quadrupoleTOF (QTOF) (8, 9), triple quadrupole (Q3) 
instruments, some with linear ion traps (LIT, LTQ) (10), qua
drupoleFourier transform ion cyclotron resonance (qFTICR) 
(11) instruments, and LTQOrbitrap (12). All of these instru
ment platforms have advantages and disadvantages. LIT provide 
high sensitivity peptide spectra at a rapid rate but lack the mass 
accuracy and resolution for many applications. QTOF instru
ments provide good mass accuracy and resolution. Despite their 
relatively low duty cycles, QTOFs have been, until recently, the 
workhorse of most proteomics laboratories. The ultrahigh mass 
accuracy, mass range, and resolution of more recent qFT ICR 
and LITOrbitrap instruments make them the most amenable to 
a wide range of sample types, as well as to de novo sequencing 
techniques. For a comprehensive review of instruments types 
and their characteristics (see ref. 1, 10).

In a typical proteomics experiment, proteins are first digested 
with a protease, most commonly trypsin, and the resulting pep
tides analyzed by LC MS analysis. The mass spectrometry analy
sis takes place in three steps. First, the mass of the intact peptide 
ions eluting in a given time window is measured. In the second 
step, specific precursor ions are selected in the first mass analyzer 
(e.g., Q1), primarily based on their relative abundance, and frag
mented in a collision cell (Q2). The mass, or more accurately the 
m/z, of each fragment ion, or product ion, is recorded in a second 
mass analyzer (e.g., TOF, LIT, Orbitrap, ICR cell), for each of 
the precursor ions. This type of experiment is referred to as a 
tandem mass spectrometry or MS/MS. The detailed analysis of 
the product ions will provide information on the peptide 
sequences and, by inference, the identification of the proteins. 
This strategy for protein identification is known as “bottomup” 
proteomics (13, 14).

The most common form of fragmentation is collisionalinduced 
dissociation (CID), also known as collisionally activated dissocia
tion (CAD) (15–17). CID/CAD will result primarily in the for
mation of b and y series ions from the precursor ion. These ions 
are formed through random cleavage of the peptide bonds, where 
bions are Nterminal ions, and yions are the Cterminal series of 
ions. A typical MS/MS spectrum contains b and y series ions, and 
an ideal spectrum contains a full set of both (Fig. 2). Most often, 
in CID generated spectra for tryptic peptides, the yseries ions 
give stronger signals than the bseries, especially at high m/z. As 
a result, yseries of ions will often be the main series of ions that 
are matched in a tandem mass spectrum. However, there are 
other characteristic fragments for both b and yseries ions that are 
frequently observed and that are useful for the identification of 
peptides. Ions in both the y and bseries will often lose ammonia 
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on residues R, K, Q, and N, and will lose water at S, T, E and D 
residues (18). Immonium ions can also provide valuable informa
tion as to which amino acids are present in a peptide. Immonium 
ions are formed through the combination of atype and ytype 
cleavage. Observation of these ions in the low mass region of the 
mass spectrum can give clues as to the presence or absence of 
specific amino acids. Other characteristic peaks such as aseries 
ions adjacent to bseries ions generated through the loss a carbon 
monoxide (−28) from the acylonium group of bseries ions can 
help in the assignment of ion identity. Peptide fragmentation 
mechanisms have been well characterized by numerous groups 
(19–29).

While CID is the most common fragmentation method, 
electron capture (ECD) and electron transfer dissociation (ETD) 
have been implemented in more recent mass spectrometers  
(30–32). ECD and ETD peptide ions are fragmented after reaction 
with electrons generated from filaments or anionic species, 
respectively. ECD and ETD form c and z type ions through 
cleavage of the peptide bond between the amino group and alpha 
carbon (Fig. 2). ECD and ETD are more efficient than CID 
for larger, multiply charged ions. The combination of both 
CID and ETD or ECD is now available on instruments such as 
Orbitrap and qFTICR types of mass spectrometer. This allows 
for the acquisition of spectra from the same sample using two 
fragmentation techniques generating complementary series of 
fragment ions.
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With the ability to generate MS/MS spectra for thousands of 
peptides in a single experiment, modern mass spectrometers 
provide unparalleled efficiency for potential peptide identification 
(33). Along with spectral generation comes the requirement to 
accurately determine the sequence and identify the peptides 
present in a given sample (34). In early proteomics experiments, 
peptide identification was carried out manually because of the 
lack of software for automated interpretation. Identification was 
initially performed using an early incarnation of the de novo 
sequencing method whereby researchers would use mass differ
ences between peptide ion peaks to determine sequence. Due to 
the ability of newer MS instrumentation to obtain thousands of 
MS/MS in a single experiment, it is no longer feasible to interpret 
spectra manually.

There are now many software platforms capable of per
forming data analysis using sophisticated algorithms and scor
ing schemes (35, 36). Many instrument vendors also offer 
software packages tailored to analyze data from their specific 
instrument. There are also several third party software packages 
available for identification of peptide MS/MS spectra. However, 
most require the use of the vendorspecific software for extrac
tion of the spectral information from the instruments raw data 
format. Due to the proprietary nature of instruments’ data for
mats, few third party software platforms are capable of accept
ing raw data. This is problematic because conversion of raw 
data files to text based peak lists does not conserve all features 
of the raw data format, and therefore reduces the depth and 
quality of the downstream analysis. A workaround solution for 
this problem exists through conversion of raw data formats to 
more open source data formats such as mzXML (37), mzData, 
or the newer mzML (37). Converters are available for most 
major mass spectra raw data formats to translate raw data files 
to mzXML. Among the mostly used thirdparty software, 
PEAKS (38) and MASCOT (39) can accept the raw data for
mats of most MS manufacturers.

The main approaches for identification of peptides from MS/MS 
spectra can be divided into two broad categories, database 
dependent and database independent (Fig. 3). Databasedependent 
methods were the first to be widely adopted for large scale 
 identification of peptide from MS/MS spectra (40–45).  
The databasedependent identification strategy attempts to 
match experimental spectra obtained from the MS, with theo
retical spectra representing hypothetical peptides generated from 
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a protein or from genomic database that has been translated. 
Evidently, these databases are only available for organisms that 
have genomes that have been sequenced. Theoretical spectra 
are generated using fragmentation patterns known for specific 
series of amino acids. The first two widely used search engines 
using database searching were SEQUEST (40, 41, 46, 47) and 
MASCOT (39).

SEQUEST and MASCOT both perform the same function 
but use different scoring schemes to rank peptide matches. 
SEQUEST makes use of a crosscorrelation score to match the 
hypothetical spectra to the experimental one, whereas 
MASCOT uses a probability score representing the probability 
that a spectral match was, or was not, generated by a random 
event. Each method of matching and scoring has shown advan
tages and disadvantages for identifying spectra exhibiting dif
ferent characteristics. Comparisons of database search engines 
for analyzing different characteristic datasets have been 
reported (48–50).

There are many other search engines that also use database 
searching algorithms, such as X!TANDEM (51–53), OMSSA 
(54), ProbID (55), Phenyx (56), and SONAR (57). All of 
these search engines are based on database searching, but use 
different scoring schemes in order to determine the top hit for 
a peptide match. While database searching has proven to be 
efficient in its ability to identify peptides, the method does 
have several drawbacks. False positive identifications, from 
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overly noisy spectra allowing background peaks to be mistaken 
as peptide peaks, are frequent. Scoring imbalances, where lon
ger, lower quality peptides score higher than higher quality 
short peptides, are also problematic. Peptide identifications 
can also be missed if there are unsuspected posttranslational 
modifications (PTMs) or sequence polymorphisms in the tar
get peptides. The one major limitation of the databasedepen
dent method is that it requires a database for the organism of 
interest. If an organism has not been sequenced, it is not 
searchable using these methods.

Another approach relying on a database is spectral matching.  
In this case, the experimental spectrum is matched against a care
fully assembled library of real MS/MS spectra previously obtained. 
This method has good performance in terms of speed and accu
racy. However, no identification will result if the MS/MS spectra 
have not been previously and reliably identified (43, 58, 59).

A hybrid method for identifying peptide spectra combining data
base searching and partial de novo sequencing is called peptide 
sequence tag matching (PST). The original approach for peptide 
sequence tagging was first reported by Mann and Wilm (60). PST 
involves the identification of a short peptide sequence tags, typi
cally 2 or 3 amino acid residues from a region of the MS/MS 
spectra where this identification can be made with high confi
dence. Mass regions bordering the sequence tag are extracted as 
well. Whether or not the sequence tag belongs to the b or yseries 
of ions is usually not known, and this will not be used in scoring. 
The sequence tag will be used to narrow the list of possible pep
tides in the database search to only those containing the tag.  
The sequence tag will then be extended to attempt matching of 
the mass regions that were extracted along with the tag. Spectral 
scores are calculated based on the number and summed intensity 
of matched b and yions, in combination with whether the 
Ctermini match the specified enzymatic digest. Peptide hits are 
scored based on a random probability score calculated from match
ing the mass regions and sequence tag in a similarity search.

PST methods provide a good method for matching MS/MS 
spectra by combining both spectral matching and de novo meth
odologies, but are still reliant on database matching. Therefore, if 
the peptide sequence of interest is not represented in the data
base, the spectra will not be matched. PST methods also require 
identification of a sequence tag from every spectrum it wishes to 
search, which can be difficult for noisy spectra. Also, the genera
tion of sequence tags does not improve the ability to detect peaks 
of PTMs that can be present in a spectrum. In summary, there are 
several factors that limit the capabilities of database dependent 
methods.

2.2. Spectral Matching

2.3. Peptide Sequence 
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To overcome the limitations of databasedependent methods, 
software packages which make use of computerized methods for 
determining the sequences of peptides directly from the MS/MS 
spectra have been developed (61). De novo sequencing approaches 
hold a lot of potential due to their ability to identify previously 
unknown peptide sequences and posttranslational modifications. 
De novo methods use the knowledge of the fragmentation meth
ods employed in the MS, such as CID, ECD, or ETD, and basic 
search parameters input by the user, such as enzyme type and 
peptide modifications, to rebuild the peptide ion series (62–69). 
Algorithms use scoring schemes that give scores based on identi
fication of the diagnostic ions mentioned before, i.e., the b and 
yseries, aions, immonium ions, as well as ions from ammonia 
and water losses. The ability of software to derive a sequence from 
a MS/MS spectrum is dependent on many factors such as the 
instrument mass accuracy and resolution as well as spectral qual
ity. Other difficulties like poor peptide fragmentation, peptide ion 
series directionality, and cleavage abnormalities in spectra are all 
issues that have to be addressed by de novo algorithms. There are 
fewer software packages that make use of de novo methods, but 
this is slowly changing. The more common de novo programs 
currently available are PEAKS (38), Lutefisk (63), PepNovo (70), 
and SHERENGA (62). Their efficiency has been evaluated by 
various groups (71, 72).

While MS/MS spectra can be de novo sequenced and interpreted 
manually, different types of computer algorithms are used to inter
pret spectra obtained in high throughput MS/MS. One method is 
referred to as the spectrum graph approach (73). This approach 
converts an MS/MS spectrum into a graph first before the actual 
computation. A graph is an abstract data representation that 
consists of vertices and edges that connect pairs of vertices. For 
each peak in a given mass spectrum, two vertices are created (one for 
the bion interpretation of the peak and the other for yion) in the 
spectrum graph. Each vertex is attributed a mass value according 
to the peak’s m/z value. Two vertices from two different peaks 
are connected with an edge if their mass difference is equal to one 
of the 20 amino acid residues. Therefore, the ion ladders of the 
real peptide correspond to a path of connected edges in the spec
trum graph. Thus, the de novo sequencing problem is reduced to 
the finding of a path that connects the N and C terminal vertices 
in the spectrum graph. Once such a path is found, it can be trans
lated back to the peptide sequence.

In addition, the peak intensity and the existence of specific 
types of surrounding peaks are used to compute a score value for 
each vertex in the spectrum graph. Typically, this score function 
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will reward high intensity peaks and the coexistence of peaks with 
neutral losses (such as the loss of water or ammonium). The score 
of a path is defined to be the total score of the vertices on the 
path. When multiple paths exist in the spectrum graph, the soft
ware tries to find the one with the highest score and uses that as 
the de novo sequencing result. Software packages such as 
SHERENGA and Lutefisk use the spectrum graph approach to 
score peptide candidates.

SHERENGA is based on the algorithm learning ion types 
and patterns from training data generated using known peptide 
sequences. Using the information obtained from the training 
data, the algorithm attempts to interpret spectra with the cre
ation of a spectrum graph. The algorithm will use the highest 
scoring sequence path from the spectrum graph as the peptide 
sequence. Scoring is based on assigning a probabilitybased score, 
taking into account rewards/penalties for fragment ions that are 
present or missing. Lutefisk is based on the algorithm obtaining 
the longest partial sequence from the graph, where gaps in the 
sequence are permitted. The algorithm creates a list of significant 
fragment ions as well as lists of possible N and Cterminal ions. 
Lutefisk then generates a spectrum graph with m/z vs. cleavage 
site probabilities and uses it to rebuild the highest scoring pep
tide sequence from the Nterminus. Another program called 
PepNovo uses an algorithm that is based on peptide fragmenta
tion rules in order to score whether observed peptide peaks are 
generated randomly or under the predicted fragmentation rules. 
This allows it to assign scoring rewards to vertices on the spec
trum graph, which are representative of the predicted fragmenta
tion pattern. Another algorithm called SeqMS (74) creates a 
spectrum graph generated from an experimental spectrum using 
probability scored ion types. Much like the other algorithms pre
sented, the sequence is rebuilt by linking vertices differing by the 
mass of an amino acid, building from the Nterminus. While all 
these algorithms make use of different scoring and interpretation 
schemes, they are based on obtaining the highest scoring peptide 
sequence from a spectrum graph.

The advantage of the spectrum graph is that by converting 
an MS/MS spectrum to a graph, some wellknown algorithms 
in graph theory can be utilized to perform the computation. 
However, the spectrum graph approach encounters difficulties 
when dealing with data of lesser quality. For example, when more 
than one adjacent b and yions are missing from the ion ladders, 
there will be no path in the spectrum graph that represents the 
real peptide. Consequently, either no result will be provided, or 
an incorrect path and a wrong sequence will be deduced. This 
problem can be partially addressed by adding edges between two 
vertices with mass difference equal to the sum of more than one 
residue. But the complexity of the graph will increase and the 
quality of the result will decline.
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In reality, adjacent b and yions are frequently absent in MS/
MS spectra, significantly reducing the usefulness of the spectrum 
graph methods. In fact, in many of these cases, partially correct 
sequences can still be identified manually if these spectra were 
analyzed by a trained researcher. A very different approach was 
developed in the PEAKS software.

The PEAKS software from Bioinformatics Solutions Inc. is cur
rently the most popular software for de novo sequencing. PEAKS 
software was shown to have the best accuracy among all currently 
available de novo sequencing software packages (72).

PEAKS employs a novel algorithm that works on the spec
trum directly instead of converting the spectrum to a graph. For 
each mass value m, whether there is a peak or not, PEAKS algo
rithm assigns two scores fy(m) and fb(m), reflecting the likelihood 
that the real peptide has a yion or a bion with mass value m, 
respectively. If there is a strong intensity peak at mass value m (or 
close to m and within the mass error tolerance), then the score is 
positive. Otherwise, the score is zero or negative. Moreover, the 
ions with neutral losses that are possibly generated from the y ion 
or bion at mass value m are also taken into account to compute 
the two score functions. For a given peptide sequence, the score 
of the peptide is defined to be the sum of fy(mi) and fb(mj) for all 
yion mass values mi and bion mass values mj. Then PEAKS uses 
a carefully designed dynamic programming algorithm to compute 
a peptide sequence whose score is maximized.

In addition to this core algorithm, a few other techniques are 
employed to improve the accuracy of the de novo sequencing. 
The overall computational procedure is divided into four steps. 
First, the raw mass spectrometry data are preprocessed. The pre
processing step includes centroiding, charge recognition and 
deconvolution, deisotoping and noise filtering. In the second 
step, the dynamic programming algorithm mentioned above is 
used to compute the top 10,000 peptide candidates for the spec
trum. Thirdly, a more stringent score function is used to evaluate 
each of the 10,000 candidates. Both immonium ions and the 
internal cleavage ions are used in this step. The algorithm also 
attempts to “recalibrate” the data by applying a systematic error 
to the m/z values of all peaks in the spectrum. A stricter mass 
error tolerance is also used in this step. The candidate sequence 
that achieves the highest score will be reported as the final output 
of the algorithm. Finally, a confidence score is computed for the 
output of the algorithm. In addition, a local confidence score is 
computed for each amino acid in the output peptide sequence.

This local confidence can be used to determine which portion of 
the peptide is more reliable than the others. Thus, when a completely 
correct peptide sequence cannot be obtained, one can still derive a 
highly confident partial sequence tag from the output of PEAKS. 
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These sequence tags can then be used by specialized homology 
search software, such as SPIDER, to identify homologous pro
teins (75, 76).

The general approach of PEAKS was also adopted by another 
software package, RAId, for de novo sequencing (77). RAId uses 
an initial process of identifying candidate peptides that closely 
resembles the first two steps in PEAKS. The second half of the 
algorithm uses a database search in an attempt to match the most 
significant peptides found through de novo to sequences found in 
the database. If a match is found, the sequence will be reported. 
However, if a match is not found, the sequence obtained through 
de novo will be reported.

In order for a de novo algorithm to determine the full peptide 
sequence from a spectrum, it requires as much information from 
backbone fragmentation as possible. Complete peptide ion cover
age in a CID experiment is rarely obtained. In a characteristic 
CID spectrum, the fragment abundance of the fifth most abun
dant fragment is often ten times less than that of the most abundant. 
Based on the average length of a peptide generated through a 
tryptic digest of ~10 residues, the relative abundance of the tenth 
fragment may be 100 times less intense (78). The end result is 
poor signal to noise ratio (S/N) for almost half of the ions in a 
typical CID spectra of a peptide. In addition to low S/N, fragment 
ions in peptide spectrum frequently overlap, resulting in incorrect 
peak assignment. Additional problems for CID are the inability 
to differentiate between isomeric amino acid residues, such as 
Leu/Ile, and poor suitability for identifying posttranslational 
modifications.

As mentioned previously, other methods for peptide back
bone fragmentation are available on recently available MS instru
ments. ETD and ECD provide information in peptide spectra 
that cannot be obtained in CID experiments. The ability to dif
ferentiate between Leu/Ile residues as a result of secondary frag
mentation, efficient fragmentation of large peptides, and 
conservation of posttranslational modifications are all possible 
with ETD/ECD (79–85). One drawback of ETD/ECD is its 
reduced efficiency with tryptic digests, which creates shorter and 
mostly doubly charged peptides. However, ETD/ECD works 
well with larger peptides generated from other proteases, such as 
LysC or ArgC. Another concern, specifically in the use of 
de novo sequencing tools, is the propensity for c and zion masses 
to vary through hydrogen rearrangement (86).

Recent work from Zubarev et al. illustrates the utility of using 
spectra obtained using CID with those from ECD/ETD (78).  
In a de novo sequencing approach, it is advantageous to have a 
large amount of information in each spectrum being processed. 
By combining the data obtained through both fragmentation 
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techniques, information contained in one will complement the 
information present in the other. To this end, Zubarev developed 
a de novo sequencing algorithm that takes advantage of data 
obtained from both fragmentation types in order to significantly 
increase the number and confidence of peptide identifications  
(87, 88). The algorithm uses a method for creating reliable 
sequence tags (RSTs). RSTs are built using fragment masses which 
can be confirmed in both CID/CAD and ECD/ETD spectra. 
The RST is expanded using masses of increasing uncertainty from 
both sets of spectra until the full sequence is obtained. The use of 
a second fragmentation increases confidence in the tag since it can 
be confirmed by both sets of fragments. PEAKS de novo software 
analyze the ECD/ETD data files separately.

With the ability of modern MS instrumentation to achieve mass 
accuracies in the subppm range, algorithms that utilize this level 
of specificity are very beneficial for protein identification  
(89–92). As mentioned earlier, the identification of water and 
ammonia losses are frequently used to increase peptide match 
scores. However, with low mass accuracy instrumentation, due 
to the low resolution and mass accuracy, the distinction between 
the loss of water and ammonia cannot be reliably made. Adding 
to this problem is the probability for overlapping fragments of 
other ion peaks within a peptide spectrum. All these issues can 
compromise the validity of results when using database searching, 
spectra matching, PST as well as de novo methods. Since de novo 
experiments are based on the detection of mass differences 
between fragment peaks, high mass accuracy and resolution are 
even more critical.

Estimation of the false positive rates showed significant differ
ences when using tighter mass tolerances in the processing of data 
(87). False positive rates range from 4 to 14% by increasing the 
allowable mass tolerance from 0.02 to 0.1 Da for fragment ions. 
If high mass accuracy, along with complementary fragmentation 
techniques is used to generate RSTs, the results from de novo 
sequencing was estimated to be >98% correct (87, 88). These 
results highlight the beneficial effects of quality data for improv
ing output of the de novo algorithms.

A problem that affects database searching as well as de novo 
sequencing approaches is confidence levels in single peptide iden
tifications (93–101). It is common practice to discard all single 
peptide hits from a set of search results due to the random chance 
that a single peptide can be assigned to the incorrect protein. 
However, due to the low abundance of many interesting proteins 
in complicated matrices, there may be very few detectable pep
tides for these species in solution. This has created a need to 
develop methods allowing for preservation of single peptide hits. 
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The use of complementary fragmentation methods, LC retention 
time (102), isoelectric point as well as accurate mass increase the 
confidence in single peptide hits. Another common technique is 
to use multiple search engines. The “inChorus” function offered 
in PEAKS allows users to search data files using multiple search 
engines, combining the results of all methods to create a final 
results list. By independently identifying peptides in multiple 
engines, confidence in all hits, including single peptides, is 
increased, allowing for their inclusion in a dataset. Other  statistical 
methods for peptide and spectrum validation are commonly used 
to increase confidence in the entire dataset (103–105).

With the ever increasing efficiencies of mass spectrometers for pro
teomics analyses came the need for software to analyze and validate 
data obtained from these instruments. Initial solutions involved the 
use of database searching software that was reliant on a collection of 
genomic sequences within a database. Despite the increasing 
number of organisms sequenced, there still remain a large number 
of species for which the genetic code is not known. In addition, 
database searching methods leave large portions of the MS/MS data 
uninterpreted due to the absence of corresponding sequences in the 
database or due to unsuspected posttranslational modifications.

Because of their unbiased assumptions, the approaches using 
de novo sequencing for the interpretation of MS/MS spectra are 
rapidly gaining in importance. Efficient de novo software is best 
achieved with high quality spectra obtained using high resolution 
MS instrumentation. The combination of ETD or ECD with 
CID fragmentation, also improve the de novo sequencing 
approaches. Although more computationally demanding than 
database search approaches, de novo sequencing will play an 
increasing role in large scale proteomics experiments. In the near 
future, a practical strategy may be to use database searching in a 
first step followed by a de novo method on low scoring peptides 
as well as on uninterpreted MS/MS spectra. An alternative would 
be a de novo sequencing step followed by a homology type search 
to identify mutated or modified peptides.
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Chapter 9

Cross Species Proteomics

J.C. Wright, R.J. Beynon, and S.J. Hubbard

Abstract

Proteomics has advanced in leaps and bounds over the past couple of decades. However, the continuing 
dependency of mass spectrometry-based protein identification on the searching of spectra against protein 
sequence databases limits many proteomics experiments. If there is no sequenced genome for a given 
species, then cross species proteomics is required, attempting to identify proteins across the species boundary, 
typically using the sequenced genome of a closely related species. Unlike sequence searching for homologues, 
the proteomics equivalent is confounded by small differences in amino acid sequences, leading to large 
differences in peptide masses; this renders mass matching of peptides and their product ions difficult. 
Therefore, the phylogenetic distance between the two species and the attendant level of conservation 
between the homologous proteins play a huge part in determining the extent of protein identification that 
is possible across the species boundary. In this chapter, we review the cross species challenge itself, as well 
as various approaches taken to deal with it and the success met with in past studies. This is followed by 
recommendations of best practice and suggestions to researchers facing this challenge as well as a final 
section predicting developments, which may help improve cross species proteomics in the future.

Key words: Proteomics, Mass spectrometry, Cross species, PMF, Tandem MS, De novo sequencing

Abbreviations

PMF Peptide mass fingerprint
ESI Electrospray ionisation
MALDI Matrix assisted laser desorption/ionisation
MS Mass spectrometry
m/z Mass to charge
PTM Post translational modification

Cross species proteomics has been a problem since mass spec-
trometry was first applied to identify proteins and continues to be 
troublesome even today. De novo based methods notwithstanding, 

1. Introduction
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nearly all protein identification methods from mass spectra 
require a sequence database to generate theoretical peptide 
spectra and compare it to the experimental ones. This is all very 
well for model species studied regularly in the biological sciences 
as they have well-annotated and fully-sequenced genomes (and 
hence proteomes). The problem arises when working with less 
well-studied species that have not had their genomes sequenced 
and perhaps are unlikely to in the near future. Our capability to 
sequence genomes is advancing rapidly with the recent develop-
ments in so-called “next generation” sequencing methods such as 
“Pyrosequencing”, “Polymerase-based sequencing-by-synthesis” 
and “Ligation-based sequencing” (1). Although this technology 
makes it easier and faster to sequence new species and will no 
doubt lead to a huge increase in the number of sequenced 
genomes over the next few years, there is still a limit to these 
methods and the number of different species around the world is 
estimated to be in the millions (2). Moreover, much of the new 
sequencing effort is dedicated to re-sequencing further examples 
of extant species (i.e. 1,000 human genomes) to characterise 
polymorphisms, strains and populations. Besides there being a 
limit to the number of species sequenced, there is also the problem 
of annotation. A raw genome is not necessarily of any use for 
making protein identifications, and the full annotation of a 
genome can be a slow process of gene prediction and functional 
identification although proteomics can also help in the annotation 
process (3). Therefore, the demand for conducting cross species 
proteomics experiments using unsequenced species is one that is 
unlikely to go away anytime soon as proteomics scientists will 
continue to want to investigate proteins involved in unique and 
exciting phenotypes in species with no currently sequenced 
genome. The cross species problem is not just limited to making 
protein identifications across the species boundaries; sometimes, 
even trying to match proteins using a database populated with 
proteins from a different strain of the same species can be difficult 
since single polymorphic variations (i.e. a single base change) can 
radically alter properties at the peptide level.

The cross species problem is a simple one to understand but 
much more complex to solve. It comes down to the fact that a 
single amino acid change in a peptide can change the mass of that 
peptide beyond the search tolerance of any proteomics experiment. 
For example, a single substitution of a glycine residue for a 
tryptophan residue leads to a mass difference of 129.06 Daltons. 
Given that the standard search tolerance in a proteomics experi-
ment is kept below 1 Dalton, this is a massive relative shift in 
mass. This principle is further demonstrated in Fig. 1 showing 
two homologous sequences which are easily matched using 
sequence comparison and alignment tools as they have a sequence 
identity of 90%. However, in a peptide matching context, the few 
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amino acid differences between the two sequences shift the mass 
of each peptide beyond the tolerance of a standard proteomics 
database search. These slight changes in peptide sequence may 
even change the chemistry of the peptide enough to alter its 
“detectability” in the mass spectrometer so that it may not be seen 
in the mass spectra at all. Several studies have looked at the level of 
homology required for cross species identification to be possible; 
these studies found that at a minimum, 70% sequence identity is 
required (4, 5), and as Fig. 1 demonstrates, a match is still not 
guaranteed even at 90% identity. On top of the difference in amino 
acid composition, different species-specific post translational 
modifications can also hinder cross species identification.

Since the problem is not new, approaches have appeared in 
the literature since the early 1990s. One of the first published 
cross species peptide mass fingerprint experiments was the analysis 
of Spiroplasma melliferum proteins from 2D gels (6, 7). This 
study managed to identify several proteins from the unsequenced 
S. melliferum species by combining the PMF data with other data 
collected on the sample proteins. This included amino acid 
composition data, overall estimated intact protein mass and pI 
estimates. They demonstrated that PMF alone is not capable of 
making cross species identifications, but when combined with 

Fig. 1. The cross species proteomics problem – these two homologous sequences represent a protein of the same func-
tion in two different species. These two species are closely related on an evolutionary scale and these proteins have 90% 
sequence similarity. However, because of the positioning of the amino acid difference, when we theoretically digest the 
two protein sequences using tryptic specificity rules, we find that the peptides are much less conserved. Each peptide 
represented in the upper part of the figure has had its molecular mass calculated and then compared to its equivalent 
peptide in the lower protein. The numbers next to the vertical arrows in the figure show the mass difference between 
each peptide of the two proteins. Considering that most mass spectrometry database searches use a mass tolerance of 
less than 1 Dalton, these differences in peptide mass would mean that not a single peptide would match from one  
species to the other



126 Wright, Beynon, and Hubbard

sequence composition data, the number of identifications made 
significantly improves. This method has been applied to other 
species such as Mycoplasma genitalium (8) with some success. 
In 1997, Wilkins and Williams (4) conducted a study exploring 
the degree of conservation required for cross species identification 
using the combined PMF and amino acid composition method. 
This study revealed that although amino acid composition was 
quite well conserved across species, often at an even higher level 
than actual sequence identity, the conservation of tryptic peptides 
was very poor finding that below 70% sequence identity the number 
of conserved peptides in the 700–3,000 Dalton range dropped to 
virtually zero. The conclusions of this study suggest that PMF can 
be used to identify proteins across species boundaries but only if 
the phylogenetic distances between the database and the sample 
are very small with proteins generally having a sequence identity 
to their database counterpart of 80% or above and that more than 
just the spectra is used to search the database. This and other 
studies at the time (9, 10) conclude that the best way to make cross 
species identifications is the incorporation of other data such as 
intact protein mass, isoelectric point and amino acid composition. 
This lead to the development of MultiIdent (http://expasy.org/
tools/multiident/) a web based tool for protein identification 
using a combination of protein data, peptide composition and 
PMF (11). Cordwell et al. developed this further (12) using 
the knowledge that highly conserved regions of the protein 
will have conserved peptide masses and will likely contain a 
characteristic motif for a particular protein function or domain; 
potentially highly useful information. However, this technique was 
found to be limited in scope, as to make the functional motif 
identifications one has to match very rare highly conserved 
peptides above a certain size.

In 2000, a study looking at the cross species PMF identification 
of marsupial proteins, without using amino acid composition 
information, used tandem MS and de novo sequencing as a method 
of confirming the PMF matches (13). This study successfully 
identified almost 50% of the analysed proteins via PMF confirming 
their matches using MS/MS. However, these proteins all had a 
similarity of over 89% to other mammalian species, and a further 
theoretical analysis in the study showed that on average, an identity 
of over 74.6% would have been needed to match marsupial 
proteins to other mammalian species. They also found that 
these highly conserved proteins were generally cytoskeletal and 
“Housekeeping” proteins, suggesting the approach would not be 
generally applicable genome wide. Another study in 2001 looking 
at bacterial outer membrane proteins also used PMF without any 
amino acid data to make cross species protein identifications (14). 
This study also highlighted the effect of evolutionary divergence 
on cross species matching, showing a very sharp drop off in the 

http://expasy.org/tools/multiident/
http://expasy.org/tools/multiident/
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number of bacterial proteins that could be identified against an 
E. coli database as the two species became more divergent.

Although not yet reliable enough for large scale high-
throughput experiments, de novo sequencing has become a  
standard method for confirming cross species PMF identifications. 
This in turn motivated the development of MSBLAST (15), a version 
of BLAST (16) optimised for peptide sequence tag homology 
searching. The approach infers candidate peptide sequences based 
on limited MS data and attempts to reconcile a large set of BLAST 
hits to find the most likely homologous protein with some success 
using canine example proteins. Again, the approach is not fully 
generalisable since one must obtain candidate sequence tags 
for a large number of peptides to be effective and this is not 
always possible.

In 2002, Lester and Hubbard conducted a detailed informatics 
analysis of the cross species proteomics problem, comparing over 
30 complete genomes and finding that 70% sequence identity is 
the minimum required to make an identification, and added 
further support that PMF remains a useful technique for cross 
species proteomics, especially when data other than just the peak 
masses are used in the database search (5). Liska and Shevchenko 
reviewed the field further in 2003 (17) and described standard 
experimental workflows for making cross species identifications in 
proteomics (18, 19). The methods described in this review build 
on those workflows, using PMF initially to quickly identify 
well conserved proteins and then moving on to tandem MS/MS 
methods and automated de novo sequencing (20–23), database 
searching with MSBLAST (15) or one of the other de novo  
identification tools available (24–27). This three staged workflow 
has been used as the standard set up for conducting cross species 
proteomics in several recent studies (28–32). Although not 
discussed in detail in this review, some studies have used high 
accuracy FT-ICR MS instruments to conduct cross species analysis 
and perform de novo sequencing (33), but this is a rather specia-
lised approach not available in the majority of labs.

Although a species may not have a sequenced genome, there 
are quite often alternatives available from samples of the tran-
scriptome (e.g. cDNA and EST data) or a partial or unassembled 
genome sequence. Recent approaches have exploited this data 
too to make protein identifications (34–43). Consequently, several 
tools have been developed to take advantage of and optimise 
searches against these kinds of databases (44, 45).

Proteomics in general is moving from discovery experiments 
and plain protein identification towards more targeted and quan-
titative experiments. Hence, there have also been studies attempting 
to conduct quantitative proteomics across the species boundary. 
One recent study has examined the effectiveness of using shared 
peptides to quantitatively measure relative protein abundances in 
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unsequenced species (46, 47). This showed that it is possible 
but tricky and requires a good level of homology between the 
proteins of interest and their database counterparts.

The availability of a closely related sequenced genome should be 
the first consideration of any cross species study. It is worth 
investigating if any published sequence data on the species to be 
studied is available (e.g. via a search through UniProt http://
www.uniprot.org/ or Genbank http://www.ncbi.nlm.nih.gov/
Genbank/). EST and cDNA databases may also be available and 
can be very useful and are frequently found for public download 
from the internet (http://www.ncbi.nlm.nih.gov/dbEST/). It is 
also worth checking that your species is not about to be sequenced 
at one of the major centres (e.g. Sanger http://www.sanger.
ac.uk/Projects/, JGI http://www.jgi.doe.gov/, WashU http://
genome.wustl.edu/, TIGR http://www.tigr.org/, etc.).

These kinds of studies across the species boundary can also 
benefit from being done in parallel with a closely related species if 
a sample is available. Although it doubles the work, this second 
experiment provides a control for comparisons and makes it easy 
to trouble shoot problems in the experiment. Additionally, one 
might expect any detected post translation modifications to be in 
common between the proteins being studied.

A generalised approach to cross species proteomics is shown 
in Fig. 2 showing an increase in the sophistication of the mass 
spectrometry used from PMF (48) to tandem MS/MS (49, 50) 
to de novo sequencing (51) until each protein is identified.  
This increase in mass spectrometric complexity usually also implies 
a reduction in throughput at each stage. Although recent advance-
ments have significantly improved tandem MS/MS throughput, 
many labs still use PMF on a MALDI-ToF platform as a quick 
screening method for matching highly conserved proteins and 
establishing the general quality of the sample. It should also be 
noted that PMF methods do not separate the tryptic peptides in an 
LC step. This step effectively removes the peptide-protein  
connectivity which is retained when analysing protein spots from 
gels. The tandem MS/MS practitioners have to solve the attendant 
protein inference problem which PMF does not need to do – this 
could be a significant advantage in a cross species context.

As mentioned earlier, the key to getting good identifications 
is to gather as much data on each protein as possible to combine in 
the database search. Therefore, it is best to initially separate proteins 
in the sample by two dimensional electrophoresis (52, 53) 
and then cut out spots for which an estimated isoelectric point 

2. Methods  
for Cross Species 
Proteomics
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and intact protein mass can be obtained. If this is done in tandem 
with a related species sequence, many of the protein identities can 
be estimated through comparison of the gels – although this 
would not be sufficiently reliable on its own. There is a whole range 
of software available for this kind of gel analysis (54). Another 
important concept to keep in mind for this kind of experiment is 
repetition; having an abundance of sample and running multiple 
experiments will help you go deeper into the unknown proteome 
by gathering more high quality spectra.

The PMF analysis itself should be performed by following the 
normal best practice and standard protocols for the instrument in 
question. Once good quality spectra have been obtained, the 
difficult task of making identifications is faced. Here is where 
gathering as much information on the protein being analysed and 
repeated spectra pays off.

2.1. Peptide Mass 
Fingerprinting

Fig. 2. A cross species proteomics workflow and experimental setup – this figure displays a simple workflow for con-
ducting cross species proteomics, initially conducting a gel electrophoresis separation of proteins and then analysing the 
gel spots using mass spectrometry. Peptide mass fingerprinting works well as a fast initial screening method for identify-
ing well conserved housekeeping and structural proteins. The more difficult proteins which are likely to be those of more 
interest can then be analysed using tandem MS/MS and from the resulting spectra either be subjected to further non 
error tolerant database searching or even de novo sequencing and sequence similarity searches using short peptide 
sequence tags
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 1. It is best to begin with a simple database search using a 
common search tool such as Mascot (55) considering only one 
or two miss cleavages at a very low mass tolerance and with few 
modifications considered.

 2. If no candidate identifications are made, then add in other data 
and slowly widen the search parameters repeating the search. 
A lot of this repeated database searching can be time consuming 
depending on the database size and computational power 
available, but it can all be easily automated using simple Perl 
scripts or distribution tools such as Mascot daemon (www.
matrixscience.com/daemon.html).

 3. Using a range of different search tools can help boost the 
number of identifications and increase confidence in the 
identifications.

 4. After identifying as many spectra as possible using PMF, it is 
worth examining the unidentified spectra and finding those 
that are of good quality with unmatched peptides and putting 
those samples forward for tandem MS/MS analysis. Quality 
can be assessed qualitatively with experience by visualisation. 
Hopefully, by this point, at least the highly conserved house-
keeping and structural proteins in the proteome have been 
identified, leaving the more “interesting” and less well conserved 
proteins for further analysis.

Many of the same principles as applied to cross species PMF 
can be applied when conducting a tandem MS/MS experiment. 
Standard protocols and best practice for the instruments 
being used should be followed in order to achieve good quality 
spectra.

 1. If the experiment is being done in tandem with a known 
sequenced species, it should be clear how good the quality 
is of the spectra being obtained, by direct comparison of 
spectra and identifications from the known sequence. This 
presumes that related proteins from the two species will 
co-migrate on gels.

 2. A faster and more high throughput method would be to skip 
the gel separation and conduct a MudPIT or shotgun gel-free 
(56) experiment, digesting the entire proteome and then 
separating peptides using liquid chromatography. As mentioned, 
this creates an additional problem where peptides from many 
different proteins are all mixed up. There are many methods 
available to resolve the protein inference problem when working 
with a sequenced species, but for cross species, it is much 
harder and therefore easier and more accurate to use gel 
separations. The gel electrophoresis separation of proteins, as 
mentioned earlier, also contributes extra information that can 
assist the identification of proteins.

2.2. Tandem MS/MS 
and De Novo 
Sequencing

http://www.matrixscience.com/daemon.html
http://www.matrixscience.com/daemon.html
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 3. It is recommended that to maximise the number of true peptide 
identifications, multiple search algorithms should be used (57), 
combined with some variety of decoy database searching 
(58) to help establish a false discovery rate. This should be 
followed by further analysis using protein validation software 
(59) such as that available in the Trans Proteomic Pipeline 
suite (http://tools.proteomecenter.org/wiki/index.php?title= 
Software:TPP).

 4. Even after this kind of intense MS/MS analysis, it is quite likely 
that there will be proteins still left unidentified. At this stage, 
the application of an automated de novo sequencing algorithm 
to generate peptide sequence tags (60), or failing that the more 
accurate manual sequencing of the spectra, is currently the 
only way forward. This generates peptide sequence tags which 
can then be searched in much more error tolerant way against 
a sequence database. A selection of bioinformatics tools 
for conducting sequence similarity searches from de novo 
sequenced peptides are available (15, 22–27). Equally, a simple 
approach of searching candidate peptide tags against a sequence 
database using BLAST could also be informative if the sufficient 
sequence has been obtained.

The de novo sequencing of peptides from tandem MS/MS spectra 
and subsequent searching of peptide sequence tags (PSTs) against 
a sequence database is a powerful way to make cross species 
identifications, certainly compared to the more limited capabilities 
of PMF. However, de novo sequencing of peptides can be very 
time consuming and, despite the advances made with automated 
sequencing tools, the process is most successfully done manually. 
Although many species do not have a fully sequenced genome, 
publically available sequence data in the form of cDNA and 
expressed sequence tag EST databases are often available. Indeed, 
since these libraries are usually targeted at a particular tissue or 
developmental stage, they can be enriched in the genes of interest to 
a particularly research community. Various studies have compared 
database searches via EST databases with using a closely related 
species database (34–43) and most have achieved a higher level of 
identification, despite inherent sequence inaccuracies in the EST 
data sets. ESTs are usually single pass sequence tags which are prone 
to errors such as base changes, frameshifting indels, chimeric 
splicing with other cDNAs and simple sequencing errors. However, 
they still represent an enriched set of transcripts corresponding to 
expressed genes and are clearly worth exploiting if available.

As with other sequence databases used in proteomics, 
peptide sequence tags from de novo sequenced peptides can 
also be searched against EST databases. Liska et al. have developed 
an error tolerant search tool, multiTag, specifically for this 
task (44, 45).

2.3. Using ESTs  
and Partial Sequence 
Databases

http://tools.proteomecenter.org/wiki/index.php?title=Software:TPP
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It is unlikely that PMF will ever be capable of cross species protein 
identification over large phylogenetic distances, and such chal-
lenges are also beyond standard tandem MS/MS methods. 
Presently, de novo sequencing based approaches also remain quite 
challenging to implement for high throughput work over such 
evolutionary distances. However, the future holds many develop-
ments which will make cross species proteomics somewhat easier. 
With the development of next generation genome sequencing 
tools and the ever improving annotation pipelines, it is likely that 
the next decade will see a further explosion in the number of 
available genomes covering the world’s biodiversity. Also, new 
technological advancements in proteomics and mass spectrometry 
are likely to improve the capabilities of tandem MS/MS and make 
the de novo sequencing of peptide a possibility for high throughput 
experiments (c.f. (61, 62)). Other technologies such as positional 
proteomics (63) and chemical modification of peptides should 
also help improve the depth to which the proteome can be 
explored. Targeted quantification of proteins in cross species 
proteomics is likely to also become more of an area of interest as 
identification across the species boundary becomes easier. Spectral 
libraries (64) and identification methods other than sequence 
database searches offer an interesting new direction for cross 
species proteomics. The capability of how well a cross species 
project can work always comes down to the availability of closely 
related species and their genomes, but methods of protein 
function identification without sequence database searching 
could be the way forward. In this chapter, we have tried to lay 
down the background to cross species proteomics and some best 
practices from which others can design their experiments.
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Chapter 10

Gene Model Detection Using Mass Spectrometry

Bindu Nanduri, Nan Wang, Mark L. Lawrence, Susan M. Bridges,  
and Shane C. Burgess

Abstract

The utility of a genome sequence in biological research depends entirely on the comprehensive description 
of all of its functional elements. Analysis of genome sequences is still predominantly gene-centric (i.e., iden-
tifying gene models/open reading frames). In this article, we describe a proteomics-based method for 
identifying open reading frames that are missed by computational algorithms. Mass spectrometry-based 
identification of peptides and proteins from biological samples provide evidence for the expression of the 
genome sequence at the protein level. This proteogenomic annotation method combines computationally 
predicted ORFs and the genome sequence with proteomics to identify novel gene models. We also describe 
our proteogenomic mapping pipeline – a set of computational tools that automate the proteogenomic 
annotation work flow. This pipeline is available for download at www.agbase.msstate.edu/tools/.

Key words: Proteogenomic annotation, Peptide validation, PGM, Proteogenomic mapping pipeline, 
ePST, Expressed protein sequence tag, Gene models

Rapid advances in genome sequencing technologies and the 
resulting explosion in the availability of bacterial genome 
sequences highlight the need for identifying and “annotating” 
the biological function of all nucleotides in the sequence. The 
functional elements in bacterial genomes could be protein coding 
regions, i.e., open reading frames (ORFs), and noncoding RNAs, 
as well as regulatory elements that are involved the expression of 
proteins and RNAs (1). Here, we focus on annotating protein 
coding genes, and for the purposes of this article, “genome anno-
tation” refers to identification, demarcation and delineation of 
protein coding genes. Genome annotation for predicting open 
reading frames goes hand in hand with sequencing efforts, but 
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most commonly relies solely on computational algorithms and 
does not include experimental data, which are often collected for 
model organisms as EST/cDNA sequencing data (2). Despite 
improvement in the accuracy of gene prediction programs over 
the last few years, prediction of short genes still remains chal-
lenging (3).

A practical solution for generating accurate gene models for a 
particular genome is a combinatorial approach that includes com-
putational predictions and experimental methods. When proteome 
data are used, this approach is called proteogenomic mapping; it 
combines mass spectrometry-based proteomic workflows with 
computationally predicted ORFs to confirm expression of pre-
dicted proteins, correct gene prediction start and stop codons, 
identify protein post translational modifications, and identify 
novel genes missed by initial annotation (4–7). Here, we describe 
our proteogenomic annotation workflow, which includes a novel 
method for assigning confidence to peptide identifications and a 
neural network framework for assigning confidence to newly 
identified gene models.

The proteogenomic mapping workflow requires a sequenced bac-
terial genome, the existing protein models for the genome, and a 
proteomics dataset.

 1. FASTA format genome sequence of the organism of interest 
should be downloaded from NCBI (ftp://ftp.ncbi.nih.gov/
genomes) or another source. When translated in all six read-
ing frames, the sequences generated will constitute the 
genome database (gdb).

 2. The sequences of all predicted proteins from the organism of 
interest should be downloaded in FASTA format from NCBI 
(ftp://ftp.ncbi.nih.gov/genomes) or another source and are 
used to generate the protein database (prodb).

 1. Total proteins from the organism of interest should be iso-
lated, quantified, trypsin digested and analyzed by tandem 
mass spectrometry to generate the tandem mass spectra files. 
Please see our published work in Gram negative and Gram 
positive bacteria for details about the methods (8–11). We are 
not providing specific details for this section as the workflows 
can be diverse, varied, and are beyond the scope of this review, 
but any mass spectrometry-based proteomics method should 
be suitable.

2. Materials

2.1. Peptide Validation 
and Identification

2.2. Protein Isolations 
and Mass 
Spectrometry

ftp://ftp.ncbi.nih.gov/genomes
ftp://ftp.ncbi.nih.gov/genomes
ftp://ftp.ncbi.nih.gov/genomes
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 2. DBRandomizer tool at AgBase (www.agbase.msstate.edu/
epst) is used to generate rprodb and rgdb (randomized decoy 
databases of prodb and gdb, respectively).

 3. Use the Sequest algorithm in Bioworks (ThermoElectron 
Corp., San Jose, CA) for searching mass spectra after in silico 
digestion of gdb, prodb, rprodb and rgdb to generate XML 
output files (see Note 2).

 4. Use the PepOut tool (www.agbase.msstate.edu/ePST) with 
Bioworks XML files to generate a list of identified peptides at 
a user defined p-value threshold.

Once the proteomics data has been generated and sets of high 
quality peptides have been identified using both the genome and 
proteome databases, this data is used to generate expressed 
Protein Sequence Tags (ePST), which are DNA sequences that 
potentially correspond to previously unidentified genes.

 1. Download and install the proteogenomic mapping pipeline 
(PGM) from AgBase (www.agbase.msstate.edu/tools.html).

 2. PGM operates under the Windows operating system. The 
system requirements to run PGM with the download links 
are listed below:
(a) Perl and BioPerl (www.cpan.org.; http://www.activestate.

com/Products/activeperl/index.mhtml).
(b) NCBI Local BLAST Package (ftp://ftp.ncbi.nih.gov/

blast/).
(c) Weka machine learning tool kit (http://www.cs.waikato.

ac.nz/ml/weka/).
 3. For homology searches, a user defined FASTA database of 

proteins from all closely related organisms.
 4. Conserved Domain Database (CDD) (ftp://ftp.ncbi.nih.

gov/pub/mmdb/cdd; File: cdd.tar.gz).

Proteogenomic annotation for identifying new, previously unpre-
dicted genes builds upon a typical tandem mass spectrometry-
based proteomics analysis subsequent to the isolation of proteins 
from an organism of interest. Protein identification involves 
searching tandem mass spectra of peptides against a protein data-
base (digested in silico with a protease like trypsin) to identify 
peptides and their corresponding proteins. We broadly categorize 
our proteogenomic mapping work flow for identifying new gene 
models into four steps: peptide identification and validation, ePST 

2.3. Expressed Protein 
Sequence Tag (ePST) 
Generation, Feature 
Collection  
and Validation

3. Methods

http://www.agbase.msstate.edu/epst
http://www.agbase.msstate.edu/epst
http://www.agbase.msstate.edu/ePST
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http://www.cs.waikato.ac.nz/ml/weka/
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generation, ePST feature collection, and ePST evaluation as 
shown in Fig. 1. A brief overview of each of these segments with 
specific steps is described in the following paragraphs.

For annotating the genome using mass spectra, we perform 
searches with the mass spectra against a protein database as well 
as the corresponding genome sequence translated in all six read-
ing frames. Both databases are in silico digested, and the searches 
are conducted separately. Proteomics-based identification of 
potential new protein coding ORFs entirely depends on the qual-
ity of initial peptide identifications. Therefore, peptides identified 
with high confidence are critical for proteomics based identifica-
tion of gene models. We couple a randomized decoy database 
strategy with distance-based outlier detection for assigning prob-
abilities for peptide identification and validation. The PepOut 
tool implements an unsupervised machine learning model for 
distance-based outlier detection to estimate the accuracy of pep-
tide assignments to tandem mass (MS/MS) spectra (12).

 1. Generate decoy prodb and gdb databases using the 
DBRandomizer tool at agbase.msstate.edu/tools/epst.

 2. In silico trypsin digests prodb, rprodb, and gdb in Bioworks 
using the index function with differential modifications for 
methionine (single and double oxidations +16 and +32, 
respectively) and Cysteine carbamidomethylation (+57.2) 
and perform Sequest search (see Note 2).

3.1. Peptide 
Identification  
and Validation

Peptide validation

(PepOut)

Sequest output 
(prodb and rprodb 

search) 

Sequest output (gdb
and rgdbsearch)

Unique peptides with
p-values

ePST generation

(ePST Generator)

Chromosome
sequence

ePST feature collection

(RBSFinder

CDD Search

Protein Homology Search

DNA Homology Search)
ePST validation

(NN classifier)

ePSTs with basic
features

ePSTs with 
additional features

CD database

Related organism 
protein db

Microbial Protein db

Related DNA db
Microbial DNA db

ePSTs with 
Confidence score

Fig. 1. Flowchart of proteogenomic mapping pipeline (PGM)
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 3. Export the search results without applying filters for peptide 
or protein identifications in XML format.

 4. Run PepOut with XML files from real prodb,gdb, rprodb 
and gdb search results to generate a list of peptides (p 
value £ 0.05) in txt format.

Peptide lists generated from searches against prodb (proteome 
database) and gdb (genome database) for a user defined confi-
dence threshold are compared to identify peptides that match 
only the gdb but not the prodb. The genome-specific peptides 
represent expressed evidence for potential novel gene models. 
The sequence coordinates are determined for the genome specific 
peptides, and the corresponding nucleotide sequence is extended 
to the first in-frame stop codon in both the 5¢ and 3¢ directions to 
generate an expressed Protein Sequence Tag (ePST) that repre-
sents a potential novel gene. To find a potential start codon for 
the ePST, we scan the nucleotide sequence from the first in-frame 
stop upstream of the peptide nucleotide sequence for the first in-
frame start in the 3¢ direction. If there is a start codon, it is used 
to designate the start of the ePST (Fig. 2). In the absence of an 
in-frame start codon prior to the beginning of the nucleotide 
sequence corresponding to the genome-specific peptide, the 
beginning of the peptide itself is used as the start of the ePST.

The process for generating ePSTs, i.e., proteogenomic 
mapping pipeline (PGM), is completely automated and is 
implemented in the following steps (see Note 6).

3.2. ePST Generation

Chromosome

Peptide nucleotide sequence

Stop codon

Translate 

Potential new gene

Potential new protein

Start codon

Fig. 2. Generation of ePST
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 1. Removes the differential modifications from PepOut output 
(see Note 1), compares the sequences of peptides identified in 
gdb and prodb searches to identify gdb-specific unique 
peptides.

 2. Translates the chromosome in all six reading frames and maps 
each unique peptide in the appropriate reading frame (see 
Note 3).

 3. Extends the nucleotide sequence that corresponds to the 
unique peptide in the 5¢ and 3¢ directions until the first in 
frame TAG/TGA/TAA stop codon.

 4. At the 5¢ end, identifies, if any, the first in-frame ATG/GTG/
TTG start codon.

 5. Designates the sequence between start and stop codon as ePST
 6. Translates the nucleotide sequence of ePST to protein.

To provide an orthogonal evaluation of the validity of the identi-
fied ePSTs as novel genes, PGM compiles peptide level and pro-
tein level data for each ePST described in the following steps.

 1. Determines if the ePST contains a canonical start codon: 
ATG/TTG/GTG.

 2. Determines the length of the ePST and retains the probabil-
ity from PepOut of the genome-specific peptide.

 3. Determines the number of genome specific peptide matches 
for each ePST nucleotide sequence.

 4. Computes the coverage of ePST by unique peptides.
 5. Determines whether the potential novel gene models have a 

Shine–Dalgarno sequences for protein translation in bacteria 
using RBSfinder for prediction of ribosomal binding sites.

 6. Records the start codon reported by RBSfinder.
 7. Conducts BLAST searches with novel ePSTs against closely 

related species at the nucleotide and protein levels separately.
 8. Identifies conserved functional domains, if any, for novel 

ORF encoded proteins using RPS-BLAST searches against 
CDD from NCBI.ePST features.

The proteogenomic annotation workflow typically ends with the 
identification of the ePST, or novel protein-encoding gene, with 
various features. However, the end-user still has to identify true 
protein-encoding genes from potential gene models. Potential 
novel protein coding ORFs can be validated by RT-PCR. 
Nevertheless, global genome wide studies often result in large 
lists of potential ePSTs, and it is not practical to validate each and 
every potential novel ORF. What is desirable is to generate confi-
dence scores for all potential novel ORFs that can be used by the 

3.3. ePST Feature 
Collection

3.4. ePST Evaluation
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end user for selecting ORFs for validation by experimental 
approaches. We address this challenging task of evaluating novel 
protein-encoding genes and generating confidence scores for 
potential novel genes (13) in the following steps

 1. We generate a training dataset that contains all possible com-
binations of feature values (see Note 4). Scientists with exten-
sive experience in bacterial genomics provide an evaluation of 
each item in the training set based on the feature values (see 
Note 5).

 2. We use our labeled training dataset to build neural network 
models to predict evaluations based on the feature values.

 3. This model is used to generate a confidence score for each of 
the identified ePSTs. The resulting scores are then used to 
rank the potential genes for validations using RT-PCR.

 1. We routinely use peptides with a p value of £ 0.05 from prodb 
and gdb Bioworks searches (PepOut output) for ePST gen-
eration described in Subheadings 2.2 and 3.1.

 2. We search mass spectra against real and random databases 
separately using Sequest search algorithm described in 
Subheading 3.1.

 3. We identify the chromosomal location of the genome-spe-
cific peptide that is the seed for ePST generation in Bioworks 
by doing string searches against the chromosome described 
in Subheading 3.2.

 4. End users can use the training dataset that we generated 
using Mannheimia haemolytica when they use PGM for eval-
uation of novel ePSTs described in Subheading 3.4. However, 
they can also generate their own training datasets that can be 
used with our PGM. The training dataset should contain as 
many possible combinations of features as possible.

 5. The range of confidence scores for an ePST generated by 
neural network model in Subheadings 3.4 is the same as the 
range of confidence score in the training dataset provided by 
experts.

 6. Published proteogenomic annotation approaches in the 
literature (14, 15) differ from our method in peptide iden-
tification described in Subheadings 3.1.These alternate 
approaches utilize only the genome sequence database for 
identifying peptides. However, once a list of peptides that 
are unique to the noncoding regions of the genome is gen-
erated, these methods can utilize PGM.

4. Notes
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Chapter 11

Signal Processing in Proteomics

Rene Hussong and Andreas Hildebrandt

Abstract

Computational proteomics applications are often imagined as a pipeline, where information is processed 
in each stage before it flows to the next one. Independent of the type of application, the first stage invari-
ably consists of obtaining the raw mass spectrometric data from the spectrometer and preparing it for use 
in the later stages by enhancing the signal of interest while suppressing spurious components. Numerous 
approaches for preprocessing MS data have been described in the literature. In this chapter, we will 
describe both, standard techniques originating from classical signal and image processing, and novel 
computational approaches specifically tailored to the analysis of MS data sets. We will focus on low level 
signal processing tasks such as baseline reduction, denoising, and feature detection.

Key words: Mass spectrometry, Proteomics, Signal processing, Base line reduction, Denoising, 
Peak picking, Feature detection

Mass spectrometry (MS) coupled with high performance liquid 
chromatography (HPLC) has become the de-facto experimental 
standard for analysis in proteomics. Owing to the huge amount of 
data produced by a single MS experiment and the sheer complexity 
of the data to be analyzed, computational techniques to interpret 
the recorded signals are indispensable. Despite recent advantages 
toward a fully automated analysis of MS data, the early steps in the 
computational pipeline are still challenging and not satisfactorily 
solved: although the signal-to-noise ratio (S/N) and the mass 
accuracy have improved drastically with modern spectrometer 
generations, low-abundant peptides, chemical noise, and overlap-
ping patterns still hamper the efficient analysis of proteomic data. 
Consequently, one of the first steps in computational proteomics 
is the enhancement of the recorded raw spectra by amplifying the 

1. Introduction
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signal of interest and suppressing spurious artefacts. This is often 
accompanied by recasting the signal into a different kind of 
representation, e.g. by converting the raw spectrum into a set of 
sticks at the locations of assumed mass peaks. This stage is known 
as the signal processing stage and since it lies at the very root of 
each computational proteomics pipeline, its quality is crucial for the 
success of most proteomics techniques. Indeed, the importance of 
signal processing is continuously increasing: the manual inspection 
of the spectra, which is arguably the most flexible and often the 
most accurate analysis technique by far, is only feasible for 
applications generating modest amounts of data and thus presents 
an impenetrable bottleneck for high-throughput approaches.

In practice, the simple picture of an analysis pipeline where 
the signal processing constitutes the first step (or the second, 
considering the actual experiment as the first stage) is often only 
a crude approximation to reality. For example, mass spectrometers 
themselves usually implement some signal processing techniques 
of their own, and hence, the data that is obtained from the 
spectrometer is not the real raw data, but an already preprocessed 
variant. This signal processing is typically interleaved with the 
experiment (e.g. in the case of MS/MS runs) so that, in a strict 
view, it cannot be extracted into an individual stage of the pipeline. 
Similarly, several stages further down the pipeline are often realized 
in a fashion that mixes signal processing with further analysis, e.g. 
in the case of differential quantitation, where the quantitation 
stage often recruits “raw” or merely noise-filtered, but not fully 
processed data. Nevertheless, a number of processing steps can be 
identified that are performed in most analysis pipelines, even 
though they might come in a different ordering or may only be 
performed implicitly. For the remainder of this work, we will 
consider baseline reduction, noise filtering, peak detection and 
fitting, and to some degree higher-level feature detection as parts 
of the signal processing step. The literature on these topics is far 
too voluminous to allow for an exhaustive review here. Instead, 
we will discuss the general problems encountered and some of 
the more popular approaches to their solution and give a brief 
outlook on further ongoing challenges.

From a computer scientist’s perspective, a mass spectrometric 
scan S: = {s0..sN−1} consists of N data points sj where each mea-
sured point is described by two values: the m/z position pj and 
the corresponding intensity Ij where m denotes the mass of the 
detected molecular fragment and z \in {1, ..., Z}, where \in is the 
“element of symbol its corresponding charge state. Often, the 

2. Mass 
Spectrometry Data
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spacing between sj and sj+1 is irregular and therefore prohibits a 
straight-forward analysis with standard preprocessing tools 
unless S is resampled by means of inter polation. Unfortunately, 
the position of a mass peak usually has to be determined within 
a maximum deviation of a few ppm, and hence, a “simple” resa-
mpling can have drastic effects if the sampling rate and/or the 
concentration of present peptides are low.

A further complication arises as a single molecule M that is 
subjected to MS does not only trigger a single peak in S, but 
rather a series of peaks P: = {p0..pL}, with characteristic heights and 
spacings in between, where p0 is often referred to as monoisotopic 
peak. Fig. 1 illustrates this effect: since every naturally occurring 
element can have a different number of neutrons, the masses of 
these isotopes differ by a multiple of the mass of a single neutron 
mn, which is roughly 1 Da. When the molecular fragments are 
peptides – as it is the case in proteomics – the characteristic isotopic 
pattern, i.e. the sequence of triggered mass peaks, depends on the 
mass m of the peptide, but is – interestingly – largely independent 
from the exact amino acid composition1 (cf., e.g., (1)). Please 
note that the spacing between neighbouring peaks also depends 
on the charge state z and is given by mn/z.

Often, the mass spectrometer is coupled to a liquid chromato-
graphic column (LC) in advance. Due to their physicochemical 
properties, peptides will leave the column at different time points2 
and therefore enter the mass spectrometer in “small” groups. This 
separation simplifies the processing and subsequent interpretation 
of the data drastically: peptides with similar masses will often leave 

1 Of course, this picture is changing as soon as we take posttranslational modifications or labelling 
techniques into account.
2 Please note that peptides will usually elute over several subsequent time points and will therefore appear 
in several neighbouring scans.

Fig. 1. Two isotope patterns of charge state 1 with a distance between neighbouring peaks of roughly 1 Da. Please note 
that in the right image the monoisotopic peak is no longer the largest
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the column at different time points, and hence occur in different 
mass spectra, while without the pre-separation their respective 
signals would overlap. Consequently, in an LC–MS data set, every 
data point sj has an additional value, the so-called retention time 
RTj. Since LC-MS data is thus two dimensional, we will refer to 
such data as LC–MS maps.

The situation described so far corresponds to an ideal 
measurement – the signals are optimally resolved and detectable, 
and only the signal of interest is recorded in the mass spectrum. 
In reality, though, matters are considerably more involved, since 
the signal of interest is overlaid with a number of so-called 
parasitics, severely spoiling the quality of the signal.

The first and most obvious of these artefacts seems so natural 
that it is hardly ever mentioned – the finite width of mass spec-
trometric peaks. It is easy to see that the finite precision of any 
experimental measurement process will ultimately “smear out” 
the mass information instead of providing a clear, sharp stick at the 
“correct” location. One of the main goals of the signal processing 
stage hence consists in detecting relevant peaks in the signal to 
revert the smearing-out-process by converting the signal into a 
series of sticks at the most probable locations and with height 
proportionate to the area under the curve in the original signal. 
Stick conversion usually needs to provide highly accurate mass 
values, even if in the original signal, two or more peaks were 
overlapping and have to be separated. The intensity information, 
on the other hand, is regarded as secondary and has a larger 
tolerance of error.

In addition to this line-broadening, three main types of 
parasitics can be distinguished: (a) a slowly varying, smooth 
baseline term, (b) highly variable electric and shot noise, and 
(c) chemical noise effects. An additional important distortion that 
is often relevant is miscalibration of the spectra. This effect and 
its remedies will not be discussed in this chapter due to space 
constraints (for an exemplary approach, cf., e.g., (2)).

For simpler intuition, the different parasitics are often imag-
ined as a series of transforms “happening” to the signal: at first, 
the stick-shaped peaks broaden into peak curves of finite size. 
Several noise terms are then added to the resulting spectrum, 
which is finally overlaid with a baseline. With this picture in mind, it 
makes sense to apply a number of filters, each one approximately 
reversing one of the parasitic effects, “peeling off” layer after layer 
of unwanted terms. And indeed, most signal processing methods 
for computational proteomics that have been described in the 
literature proceed in this fashion, subsequently improving the 
quality of the signal before peaks are detected and converted to 
sticks. In the following sections, we will describe some of the filters 
proposed for cleansing mass spectrometric data from parasitics 
and some peak detection techniques relying on these filters before 
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we will turn our attention to some recent techniques for feature 
detection that completely avoid the signal enhancement steps. 
The very first filter in most applications, a resampling of the data set 
to generate equally spaced spectra, is not further described, since it 
is trivial to achieve, even though problematic in its consequences, 
as will be discussed later.

The base line (e.g. Fig. 2) is a systematic error that has been asso-
ciated with molecular fragments originating e.g. from sample 
preparation (3). Since these molecules are usually of low mass, 
the baseline effect diminishes with increasing m/z value.

A classical method for baseline removal is known as the top 
hat filter (4), a morphological operator that analyses the shape of 
“objects” in an image or signal. Morphological filters work on 
so-called structuring elements, i.e. they work locally within a 
predefined region, which is shifted over the signal. The dilation 
operator replaces the intensity by its supremum within the 
structuring element, while the erosion uses the infimum instead. 
Subtracting the opening, which is defined as erosion followed by 
dilation, from the original image, leads to the so-called white top 
hat, which extracts small bright structures and therefore removes 
slow trends like the baseline.

Another standard technique is the sliding window approach (5). 
In a sense, this method is similar to the previous one in that a 
certain function (similarly to the structuring element for morpho-
logical filters) is shifted over the signal in order to determine the 
mean or the median within that box. Fitting, e.g., an exponential 
function to these medians can yield a good approximation of the 
underlying baseline, which can be easily subtracted from the signal.

3. Signal 
Processing

3.1. Base Line 
Reduction

Fig. 2. Part of a scan with significant baseline (on the left ) and its corrected counterpart (on the right ) (50) (permission to 
reproduce this Figure was kindly granted by BMC Bioinformatics)
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While the above techniques have been originally developed 
for the removal of slowly varying baseline terms in non-MS data, 
the approach presented in (3), based on stochastic Bernstein 
approximation, provides an example of a method specifically 
designed with MALDI mass spectra in mind.

In proteomics, the term “noise” refers to two very different kinds 
of artefacts: a highly variable noise component that is present in 
all real-world experimental data sets and those parts of the signal 
that were indeed generated by molecular fragments, but not by 
peptides from the sample, the so-called chemical noise. Of course, 
removing both kinds of noise is necessary at some stage or other 
during the proteomics pipeline, but both require entirely different 
denoising techniques. Here, we will focus on the first kind of 
noise, while chemical denoising will be deferred until the final 
peak picking and feature detection stage.

Obviously, successful noise removal requires a suitable noise 
model, so that one can determine which components should be 
retained and which should be eliminated. The subject of noise 
models in mass spectra, however, has long been nearly overlooked. 
Consequently, most denoising techniques have traditionally 
assumed that all the noise in mass spectra (apart from the chemical 
noise) is electric in origin and thus follows a Johnson–Nyquist 
behavior, which can be very well approximated by the well-known 
white noise model with uniform frequency distribution. The most 
important effect of this kind of noise to proteomics data is the 
high-frequent “wiggling” of the signal that leads to fast oscilla-
tions of the measurements about their correct values. But apart 
from these electric reasons, at least one further important noise 
component needs to be taken into account: Poisson-distributed 
shot noise that is a result of the fundamental discreteness of 
the events measured in the mass spectrometer (6). The relative 
importance of the different noise contributions for different kinds 
of mass spectra was recently investigated by Du et al. (7) with 
remarkable outcome: in their studies, the noise observed in the 
data could only be reproduced by a mixture of multinomial and 
Poisson-distributed effects.

Many of the techniques for noise removal are not specific to 
mass spectrometry, having their background in fields like image 
processing or audio analysis, and are hence not specifically adapted 
to the noise models relevant for proteomics data sets. Of those 
techniques, the most elementary ones are simple sliding averages. 
Here, each point in the spectrum is replaced by an (possibly 
weighted) average over its neighbouring points. A particularly 
important choice for the weights in the average are normal 
distributions, leading to the so-called Gaussian smoothing, where a 
Gaussian function is convolved with the data of interest to yield 
the denoised signal. A naïve application would result in an O(n2) 

3.2. Denoising
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technique (each point is replaced by the integral over all points in 
the spectrum), but it is easy to see that a much more efficient 
algorithm can be constructed: the convolution of two functions 
can be computed by Fourier-transforming both, multiplying them, 
and computing the Fourier backtransform. Since the Fourier 
transform of a Gaussian is again Gaussian, only with a different 
width, Gaussian smoothing can thus be computed by one Fourier-
transform, one function multiplication, and one backtransform, 
leading to an O(n log(n)) algorithm.

The procedure of computing Gaussian filtering in Fourier 
space also leads to a different intuitive picture of the process that 
has proven very useful. In Fourier space, the smoothing opera-
tion corresponds to multiplying a Gaussian function with the 
Fourier transformed signal, effectively suppressing the Fourier 
components of high frequency. High frequency in Fourier space 
corresponds to fast variations in the untransformed signal and 
hence, Gaussian smoothing very directly implements what we want 
it to do, namely removing the rapidly oscillating noise terms from 
the data. On the other hand, the Gaussian multiplication changes 
all frequencies, not only the large ones, and it is by no means clear 
a-priori which frequencies are only related to noise and which con-
tribute to the real signal of interest. Thus, a smoothing of the data 
will usually (a) not completely remove the noise components and 
(b) distort the signal of interest to a certain degree.

An alternative approach to smoothing that is not directly 
related to a sliding average computation but rather resembles 
what an experimentalist would do manually to arrive at a denoised 
spectrum can be found in a seminal publication by Savitzky and 
Golay (8). Here, the spectrum is replaced by an interpolating, 
locally polynomial curve that minimizes the least squares error of 
interpolant to real data points. Similarly, scatterplot smoothers 
like the popular locally weighted polynomial regression technique 
LOWESS (9) can be employed.

Finally, a third group of denoising methods that has received 
considerable attention lately are the so-called “Wavelet shrinkage 
techniques” (cf., e.g., the famous SURE shrinkage approach 
by Donoho and Johnstone (10)). Intuitively, the advantage of 
Wavelet based techniques (cf., Subheading 3.4) for denoising is 
that the signal is locally split into contributions of different length 
scales, principally allowing to remove noise components where 
they spoil the data but retaining large frequencies where they are 
needed to represent the real mass signal.

In recent years, a large number of methods for feature detection 
or peak picking of proteomics data sets have been described in the 
literature. The methods proposed are too numerous by far to give 
a complete overview; for a few select examples, the reader is 
referred to, e.g., (11–18).

3.3. Peak Picking, 
Stick Conversion,  
and Feature Detection
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Obviously, before peaks can be converted into sticks or 
clustered into features (usually isotopic patterns), they need to be 
detected in the data. In the vast majority of cases, this detection is 
performed in the mass dimension only, i.e., even in the case of 
LC–MS, the subsequent mass scans are usually treated as single 
spectra that are combed for peaks individually instead of two 
dimensional searches in the whole LC–MS map. Assuming a 
sufficient prefiltering of the data (i.e. application of the baseline 
removal and denoising techniques discussed before), peak detec-
tion in the mass scans then in principle reduces to a search for 
local maxima in the scan. Of course, denoising cannot be expected 
to work perfectly, and hence, not each spike in the signal will 
correspond to a real mass peak. Thus, peak detection algorithms 
employ a number of techniques for improving their robustness, 
e.g. by using a sliding average of first and second derivative of the 
data to estimate the maxima in noisy data, or by only returning 
“significant” positions.

But while the simplification of picking peaks in one dimension 
only has a number of practical advantages, it neglects a wealth of 
information contained in the map that can be used to greatly 
improve significance and quality of detection: the finite retention 
profile of peptides leads to their appearance in several consecutive 
mass scans, providing some kind of implicit replicate measurement 
of the same molecule that can be used for noise suppression and 
signal amplification. Fortunately, this information can be leveraged 
even for one-dimensional techniques, since every single-scan (1D) 
method can be extended to whole MS maps (2D), either through 
the so-called sweep-line paradigm (cf., e.g., (19, 20)), through peak 
alignment strategies (cf., e.g., (21)) or through a correlation-based 
similarity measure between neighbouring scans (22, 23).

The peaks that have now been detected in the signal can then 
be subjected to a stick conversion routine. In the simplest case, 
stick conversion returns merely the position and intensity of the 
maximum of each detected peak. This approach is obviously rather 
unstable with respect to noise and, in addition, neglects the area 
under the peak in favour of its mere intensity. An alternative and 
more accurate, albeit more computationally demanding, approach 
consists in fitting functions describing the expected peak shape to 
those regions of the signal were peaks were detected. Common 
functions used to describe mass spectrometric peaks include the 
Gaussian, Lorentzian, and the sech2 form (24), but all of these 
share the same shortcoming for accurately modelling real-world 
data: they are exactly symmetric, while mass peaks usually feature 
some more or less pronounced tailing effects – the right shoulder 
of the peak is broader than the left one. One simple remedy that 
works well as long as no derivatives are required is to split the 
symmetric functions at their median and fit a left and a right half 
separately to the peak of interest. In some applications, though, 
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more intricate methods like the double Gaussian models given in 
(25, 26), or the inherently asymmetric exponentially modified 
Gaussian (EMG) that explicitly models the tailing effect (27, 28), 
can yield much higher accuracy.

The result of peak picking and stick conversion is a list of 
mass-over-charge and intensity (or area) values, supplemented 
with the retention times at which the corresponding peak was 
measured. In most cases, though, this list will be spoiled with a 
large number of false positives: peak picking techniques can be 
easily made highly sensitive, but achieving sensible specificity is 
highly challenging, since quite often, noise and real data are very 
hard to distinguish. Peak detection techniques are thus prone to 
return large numbers of spurious mass values for each spike due 
to electric or chemical noise. Consequently, the resulting peaks 
are invariably filtered with respect to some likelihood measure, 
hopefully removing as many false positives while retaining as many 
true positives as possible. In the simplest case, the likelihood 
measure employed is merely the height of the peak, which is then 
compared to a global or local threshold. More intricate schemes 
combine several descriptors for the peak’s quality, like the 
goodness of fit to the expected peak shape. The trade-off between 
sensitivity and specificity is by far the most troublesome aspect of 
signal processing in proteomics, and often leads to a neglect of 
lowly abundant peptides to achieve manageable false-positive 
rates. It is also the aspect that is most visible to the end user, 
since most program packages require him to set up a number 
of different parameters in order to tune the receiver operating 
characteristics to his demands, often with hardly foreseeable 
consequences.

Finally, after this filtering stage has been completed, individ-
ual peaks that have survived so far can be assigned into isotopic 
patterns, using, e.g., standard clustering techniques or dynamic 
programming algorithms based on the mass differences found in 
the list of sticks. Similarly, potential monoisotopic peaks with a mass 
position that violates the so-called peptide-mass-rule (cf., e.g., 
(1, 29, 30)), can be excluded since the decimal places of their 
mass indicate an atomic composition untypical for peptides. 
Finally, a number of goodness-of-fit measures to theoretically 
expected distributions can be used to estimate the likelihood that 
a given isotopic pattern was generated by a real peptide or whether 
it should rather be seen as the result of chemical noise.3

3 This whole “de-isotoping” step is often seen as part of a later stage of the 
proteomics pipeline – the identification stage – since it usually operates not 
on the raw data, but on the list of sticks. However, as we will show in a later 
section, integrating de-isotoping (feature detection) into the signal processing 
can improve prediction performance by extracting further valuable information 
from the data that would otherwise be neglected.
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The popular scheme of subsequent application of filtering steps 
before peak picking, stick conversion, and feature detection as 
described in the previous section has a number of clear practical 
advantages, the most important of which probably is its inherent 
modularity. In principle, each filter step can be implemented as 
an independent module with a standardized interface, so that 
pipelines of signal processing techniques can be freely combined 
and exchanged to yield programs specifically adapted to particular 
applications. If the algorithm designer knows up front, e.g., that the 
data will be highly resolved with only low degree of noise, he might 
opt for simpler denoising and peak detection schemes with lower 
computational load while for worse data sets, he might combine 
several intricate filters into a slow albeit more accurate setup.

But the very notion of repeatedly transforming the signal 
to prepare it for the genuine peak detection that leads to this 
modularity necessarily introduces a severe problem: each filtering 
step will, by definition, alter the “real” underlying signal, sometimes 
very significantly so. For example, most denoising techniques will 
distort the peak shapes and shift the maximum positions away 
from their real values. Hence, the more preprocessing steps are 
combined, the larger the risk that low abundant peptides are lost 
due to artificially introduced artefacts.

Recent years have seen the advent of a number of adapted 
methods especially designed for the analysis for mass spectrometric 
data that do not require explicit application of a series of filters 
before feature detection, but are rather capable of handling the 
parasitics implicitly.

The most important tools for this goal are the so-called 
Wavelets, which are – as suggested by their name – small wave-like 
functions. The Wavelet transform naturally generalizes the Fourier 
transform in that a signal is locally split into components of different 
frequencies. Since high-frequent noise and low-frequent baseline 
artefacts live on different frequency ranges than the signal of interest, 
a correctly designed Wavelet will automatically ignore spurious 
parasitics and rather focus on the “correct” frequency bands.

In (24) e.g., Lange et al. used the well-known Marr/Mexican-
Hat Wavelet to pick peaks in MS data sets. While this approach has 
been shown to handle single peaks very accurately, the technique 
still requires an additional clustering step that combines picked 
peaks into isotopic patterns (cf. in contrast the Isotope Wavelet, 
Subheading 3.5). The Marr Wavelet has also been applied in (31), 
where – in contrast to Lange et al. – several scales of the wavelet 
transform are computed, leading to “ridges” at points of interest. 
Combining several Wavelet scales, this approach has the potential 
to be inherently more robust, but at larger computational 
cost. A different function was used by Carlson et al. (32), who 
employed an area-under-the-curve (AUC) filter function which 
is a hybrid between the simple Haar and the Marr Wavelet. 

3.4. Feature Detection 
with Implicit Parasitic 
Removal
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While the before-mentioned Wavelet-based methods use a 
Continuous Wavelet Transform (CWT), the technique presented 
in (33) features a multiresolution analysis (MRA) using discrete 
Wavelet functions. Here, a series of Wavelet transforms based on 
orthogonal basis functions is created.

A different approach for feature detection in LC–MS data 
sets is given by Andreev et al. (34). Using matched filter theory, 
the authors are able to design a so-called transfer function which 
maximizes the signal-to-noise ratio (S/N) in the chromatographic 
domain. A particularly nice feature of this method is the automatic 
adaption to the noise characteristics present in a particular data set. 
Mantini et al. (35) also make direct use of the second dimension 
by an independent component analysis. The method produces 
nearly no false positives, but often suffers from a low recall rate.

As a general rule, signal processing techniques employ some kind 
of knowledge about the structure of the signal component of 
interest in order to separate information from background. In the 
case of MS, this knowledge has classically been the decomposition 
of the spectra into three components living at separate length 
scales or frequencies: peaks, baseline, and noise. But in the case of 
proteomics data, it turns out that we possess additional information 
about the structure of the wanted signal components: the charac-
teristic pattern of the isotopic distributions for each peptide. While 
this information is usually employed in later stages of the 
proteomics pipeline in order to reduce the list of sticks to classes 
belonging to the same molecular fragments, it is only seldom 
used in signal processing frameworks. Some interesting examples 
demonstrating the use of isotopic information can be found in 
(36–38), where the Poisson4 distributed envelope of isotope patterns 
is explicitly modelled using a template to simplify identification of 
the monoisotopic position.

Recently, the authors of this chapter have contributed a novel 
Wavelet-based technique that is specifically designed to exploit the 
full isotopic information while being “as simple as possible” for the 
end user: the combination of different filters and techniques into 
signal processing pipelines as outlined before often leads to a large 
number of parameters a user has to set to adapt the technique to his 
data. Careful usage of the isotope information, though, combined 
with a suitable Wavelet technique provides us with a method that 
is nearly self-adapting to the spectra, with only one easily inter-
pretable free parameter in the one dimensional case. In addition, 
we find that using the isotope information allows to strongly 
increase sensitivity without sacrificing specificity: each peak greatly 
facilitates the detection of each other peak in the same pattern.

3.5. The Isotope 
Wavelet

4 In reality, the peak intensities rather follow a binomial distribution, but can 
be approximated by a Poisson distribution.
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This Isotope Wavelet (39) method hinges on a newly developed 
(adaptive5) Wavelet function that approximately transfers a signal 
into the space of isotopic patterns. The function is – by construction 
– robust against baseline as well as electrical and chemical noise 
artefacts. Thus, while standard Wavelets like the Marr Wavelet 
(see Subheading 3.4) have great value in being general tools in 
today’s signal processing and can be used nearly independent of 
the type of the data, the Isotope Wavelet has been tailored to 
mass spectrometry and models explicitly the height distribution 
of peptidic patterns (cf. Figs. 1 and 3).

In this sense, the Isotope Wavelet works as a matched filter, 
shifting an adapted wavelet for each charge variant over the 
spectrum to compute its correlation with the underlying data. 
If the Wavelet thus traverses an isotopic pattern, the resulting 
correlation has a sinc-like6 structure. Exploiting this structure, we 
have a robust criterion to separate noise (in particular chemical noise) 
from “real” data, which is supported by its superior feature detection 
capabilities in experiments on real-world-data (19, 20, 39).

Since mass spectrometric signal processing is located at the 
borderline of techniques aiming to improve the quality of the raw 
data and of methods performing feature detection and character-
ization, there are many more challenges to be solved in the future.

Particularly important, in our opinion, is the question of 
statistically sound, stringent validation of signal processing 
techniques. This is a highly nontrivial question, since usually, we do 
not know the “correct” answers – how does a “correctly” denoised 

3.6. Advanced 
Challenges

5 The adaptive Wavelet transform is a slight generalization of the classical 
Wavelet transform in that the Wavelet kernel can vary with position; hence, 
the transform does not correspond to a simple convolution, but rather to a 
more complicated integral transform.
6 The sinc-function is defined by sinc(x): = sin(x)/x.

Fig. 3. The Isotope Wavelets corresponding to the isotopic patterns depicted in Fig. 1
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spectrum look like? What is the “real” area beneath a peak? Was a 
given spike in the signal due to a molecular fragment, or rather a 
noise effect? Hence, evaluation can currently only hinge on 
secondary properties, derived from the signal-processed spectra. 
A popular measure for the quality of peak picking techniques, 
e.g., is the coverage or score achieved when submitting the results 
to a database search engine like Mascot (40) or SEQUEST (41). 
But this can only provide crude estimates of the real error distri-
bution. Significant progress in this field might be expected with 
the advent of highly accurate spectral simulators where the “true” 
answers are known.

A further problem not discussed in this chapter so far is the 
determination of the charge state, which is often done by a simple 
“look-around” in order to find the characteristic distances between 
peaks of the same isotopic cluster. More advanced methods use 
Fourier transforms, machine learning and additional information 
from MS/MS spectra to solve this problem (42–47).

Also, signal processing for MS/MS spectra warrants further 
studies, since it is essentially even harder than for single MS: the 
fragmentation patterns here show a less regular and less predictable 
isotopic distribution. In addition, many peaks that correspond  
to “real” fragments cannot be annotated, since the underlying 
fragmentation process is unknown.

Possibly, the most formidable challenge today, though, is the 
automatic detection and quantification of posttranslational modi-
fications (PTMs) and of different labelling techniques (e.g. isotope 
labelling and stable isotope labelling with amino acids (SILAC) 
(48)). Traditionally, these modifications have been entirely associ-
ated with later stages of the proteomics pipeline, i.e., detection of 
modifications has been attempted on the stick-converted data sets. 
But a simple real-world example easily shows the relevance of PTMs 
(and analogously, labelling techniques) for the signal processing 
step: one well-known PTM often found in the data is the so-called 
deamidation that shifts the monoisotopic mass of the triggered 
signals by approximately 1 Dalton, and hence creates perfectly 
over lapping signals in the case that both versions of the peptide 
(deamidated and amidated) are present in the sample. Separating 
overlapping signals in both dimensions (m/z and RT) can be 
solved by pattern recognition or machine learning techniques 
(cf., e.g., (49)), but still poses a hard computational problem 
especially for low-abundant peptides, whose signals are often 
affected by noise artefacts.

In this chapter, we have presented the main goals and challenges of 
signal processing in computational proteomics and sketched some 

4. Conclusions
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of the currently available solutions, standard image processing 
techniques applied to proteomics data as well as hand-tailored 
methods. So far, the problems described have not been solved in 
their entirety, and each method features its own advantages and 
shortcomings. In particular, the arguably most flexible strategy of 
using specific techniques for each individual task of the whole signal 
processing pipeline comes at a cost: signals of low-abundant 
peptides can be shifted or damaged by smoothing or denoising 
operations, especially if resampling techniques are involved with 
low-resolution spectra. Here, methods such as Wavelets, for 
example, which are inherently capable of implicit removal of 
parasitics, can help overcome these problems.

From a purely practical point of view, a problem that is often 
underestimated in the more theoretical research but that severely 
restricts the applicability of many advanced techniques in real-world 
situations, is the number and interpretation of the free parameters 
introduced by the algorithms. Faced with a large number of 
possibly undocumented switches and knobs, the end user will 
often decide to leave everything at its default value which might 
be entirely unsuited to the kind of data at hand.

In our opinion, it will thus be one of the main challenges of 
the future development of signal processing in computational 
proteomics to provide algorithms for feature detection that are 
not only highly accurate, able to cope with the diverse kinds of 
labelling and modifications, and efficient enough to support 
large-scale high-throughput experiments, but that are also easily 
applicable, preferably self-adapting to the data at hand. While 
significant progress along this direction has been made in recent 
years, the gap between what is possible in principle and what is 
used in practice (in the wet-lab, e.g.) is still opening further, and 
we are convinced that harvesting the theoretical advances in signal 
processing for real-world applications will push the boundaries of 
proteomics far beyond the current state of the art.
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Chapter 12

A High-Performance Reconfigurable Computing  
Solution for Peptide Mass Fingerprinting

Daniel Coca, Istvan Bogdan, and Robert J. Beynon

Abstract

High-throughput, MS-based proteomics studies are generating very large volumes of biologically relevant 
data. Given the central role of proteomics in emerging fields such as system/synthetic biology and bio-
marker discovery, the amount of proteomic data is expected to grow at unprecedented rates over the next 
decades. At the moment, there is pressing need for high-performance computational solutions to acceler-
ate the analysis and interpretation of this data.

Performance gains achieved by grid computing in this area are not spectacular, especially given the 
significant power consumption, maintenance costs and floor space required by large server farms.

This paper introduces an alternative, cost-effective high-performance bioinformatics solution for 
peptide mass fingerprinting based on Field Programmable Gate Array (FPGA) devices. At the heart of 
this approach stands the concept of mapping algorithms on custom digital hardware that can be pro-
grammed to run on FPGA. Specifically in this case, the entire computational flow associated with peptide 
mass fingerprinting, namely raw mass spectra processing and database searching, has been mapped on 
custom hardware processors that are programmed to run on a multi-FPGA system coupled with a con-
ventional PC server. The system achieves an almost 2,000-fold speed-up when compared with a conven-
tional implementation of the algorithms in software running on a 3.06 GHz Xeon PC server.

Key words: Field programmable gate array (FPGA), Peptide mass fingerprinting (PMF), Mass 
spectrometry, Reconfigurable computing, Proteomics

Following significant advances in mass spectrometry instrumenta-
tion, modern mass spectrometers can carry out routine analysis of 
minute amounts (femtomoles) of complex peptide mixtures and 
generate mass spectrometric data at speeds far greater than the time 
required for processing it. As current mass spectrometers boast 
acquisition rates of up to 200 spectra per second, post-instrument 
data processing is the major bottleneck in proteomics workflow.  

1. Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_12, © Humana Press, a part of Springer Science+Business Media, LLC 2010



164 Coca, Bogdan, and Beynon

As experimental design, instrument performance and user skills 
increase, it is now feasible to contemplate the analysis of a substantial 
proteome in a single experiment that can generate many gigabytes 
of raw mass spectrometric data.

In this context, high-performance computing resources are 
essential to address the current analysis bottlenecks, thus allowing 
scientists to deal efficiently with the large amounts of proteomics 
data that are being generated.

Although computational grid resources could be useful for solv-
ing computational tasks in proteomics, the performance gains 
recently reported in the literature (1) for the grid implementation of 
a BLAST search algorithm (60-fold speed increase using 600 CPU’s) 
are far from spectacular, given the resources allocated for the task.

At the same time, processing of mass spectrometric data is 
ideally performed “near-instrument”, wherein the end user has the 
option of adjusting the search strategy according to results obtained 
in real-time. However, computation platforms based on low number 
of processors are unlikely to deliver the speed that will be required.

In this situation, relying on grid computing or dedicated com-
puter clusters does not make sense unless there are batches of hun-
dred or thousand of mass spectra to process. Moreover, dedicated 
high-performance computer clusters require a significant amount 
of infrastructure to deal with interconnectivity and power dissipa-
tion. It has been argued (2) that more efficient high-performance 
computing solutions are necessary to mitigate the costs of housing 
and powering the next generation petascale and larger high per-
formance computer systems, which are expected to be prohibitive 
for many institutions and programs.

Although in recent years manufacturers have attempted to 
address limitations of the conventional microprocessor architec-
ture by placing several multiprocessor cores on the same die, it is 
difficult to envisage a fixed “general-purpose” multi-core archi-
tecture that would deliver the required performance gains required 
across the entire range of computationally challenging problems 
in proteomics and other fields.

This article advocates reconfigurable computing as an alter-
native approach to conventional high-performance computing, 
focusing on a specific bioinformatics problem in proteomics 
namely protein mass fingerprinting.

Reconfigurable computers consist of a standard microproces-
sor system coupled with hardware processors whose circuitry can 
be programmed (and re-programmed) according to the algo-
rithm that is being run.

Historically, the idea of reconfigurable computing originated 
in the 1960’s when Estrin in, a landmark paper (3, 4), proposed 
the concept of a computer made of a standard processor and an 
array of “reconfigurable” hardware.

Reconfigurable computing became a reality in the 1990s with 
the advent of high-density Field Programmable Gate Arrays 
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(FPGAs), which are de-facto the reconfigurable processors in 
almost all current reconfigurable computing platforms. Modern 
FPGA’s can be programmed to implement and run a custom digi-
tal hardware design with the same flexibility and ease as a conven-
tional computer program (see Note 1).

To fully understand the significant advances made in this area, 
the reader is referred to the excellent books (5, 6) which are 
amongst the first comprehensive surveys and tutorials in the field 
of FPGA-based reconfigurable computing.

In biocomputation, early applications of FPGA devices 
addressed the gene sequence analysis problem (7) and have been 
successfully employed to speed-up DNA sequencing algorithms 
(8–13). FPGAs were also used in the attempt to accelerate search 
of substrings similar to a template in a proteome (14). A multiple 
sequence alignment solution implemented in FPGA hardware is 
also available (15).

FPGAs have been used to accelerate sequence database 
searches with MS/MS-derived query peptides (16). FPGA-
accelerated BLAST search algorithms are available and have been 
used, for example, to perform EST sequencing (17). More recently, 
the Aho-Corasick string set matching algorithm was implemented 
in FPGA hardware and used for matching peptide sequences 
against a genome translated in six reading frames (18).

This paper describes the development of a reconfigurable 
computing solution for peptide mass fingerprinting. It provides 
an introduction to the field of reconfigurable computing highlight-
ing the major concepts and issues that the designer has to master 
in order to fully exploit the power of this technology. The results 
further demonstrate the applicability of reconfigurable computing 
to computational bottlenecks faced by MS-based proteomics.

Reconfigurable computers are based almost exclusively on re-
programmable SRAM-based FPGA devices. These devices are 
credited for re-igniting and enabling the reconfigurable comput-
ing revolution.

Since their introduction in 1985, field-programmable gate 
arrays have continuously expanded their use from being the ulti-
mate prototyping platform and providing basic “glue logic” func-
tionality to being at the heart of complex digital systems in a wide 
range of application areas ranging from telecommunication, 
automotive, aerospace and defence to biomedical and high-
performance computing.

The remarkable success of these devices is attributed to the 
inherent advantages offered by the parallel programmable architec-
ture, which allows designers exploit algorithm and instruction-level 

2. Materials

2.1. FPGA Devices
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parallelism to accelerate computations and to add or modify 
features and functionality provided by an existing FPGA-based 
system by reconfiguring the device. The tremendous increase in 
gate densities and lowering of unit costs and the development of more 
sophisticated and user-friendly design tools have also been determin-
ing factors to skyrocketing demand for FPGAs in recent years.

An FPGA device is an integrated circuit that contains an array of 
programmable resources, the most important of which are program-
mable logic blocks, input/output (I/O) blocks and interconnects. 
For the majority of current FPGA devices, the logic, interconnect 
and I/O configuration (which determines the algorithm that is being 
implemented by a device) is stored in an on-chip SRAM and there-
fore these FPGA devices are re-programmable.

The elementary programmable logic block (or slice) contains 
programmable combinatorial logic structures (function generators), 
typically implemented using look-up tables (LUT), sequential logic 
elements i.e. flip-flops or latches and dedicated carry logic for fast 
implementation of arithmetic addition and subtraction. Modern 
FPGA devices provide significant flexibility in the configuration of 
the logic block. For example, each 4-input function generator in the 
Xilinx Virtex II devices can be configured to implement either a 
4-input LUT, 16 bits of distributed synchronous RAM or a 16-bit 
shift register. To reduce the need for programmable routing most 
FPGA architectures, combine two or more logic slices into a cluster 
using fast interconnections. As shown in Fig. 1, each slice is con-
nected to a switch matrix that provides access to the general routing 
matrix. While Xilinx calls such a cluster a Configurable Logic Blocks 
(CLBs), Altera uses the term Logic Array Block (LAB).

Fig. 1. Virtex-II configurable CLB (source: adapted from (27), Figure 14, Module 2, p.12)
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Another class of programmable resources are the Input/
Ouput Blocks (IOBs) that provide the interface between the 
package pins and the internal configurable logic. The IOBs of 
modern FPGA devices offer a wide range of features including 
support for most common signalling standards, digitally con-
trolled impedance to prevent reflections and maintain signal 
integrity, double-data-rate (DDR) transfer (data is transferred on 
the rising as well as on the falling edge of the clock signal) and 
optional delay elements.

Finally, programmable routing resources allow interconnect-
ing all the other programmable elements on an FPGA such as 
logic clusters and I/O blocks. In a Xilinx FPGA device, each 
programmable element is connected to a switch matrix allowing 
multiple connections with the general routing matrix. Essentially, as 
illustrated in Fig. 2, the FPGA device can be viewed as an array of 
switch matrices each attached to a logic block. Similar to all the 

Fig. 2. Virtex-II routing resources (source: adapted from (27), Figure 48, Module 2, p.32)
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other programmable elements, the routing configuration is 
defined by values stored in static memory cells during 
initialization.

The programmable logic elements described so far are the 
basic building blocks used to implement an algorithm in hard-
ware. Modern FPGA’s, however, have evolved to include spe-
cialized programmable blocks such as embedded RAM, dedicated 
DSP structures, embedded microprocessors, system monitoring 
functions, digital clock managers and fast serial transceivers. 
Because of the widening spectrum of applications for FPGA 
devices and the difficulty in creating a single FPGA architecture 
which satisfies all users, in recent years, device manufacturers 
such as Xilinx have followed a new strategic route of creating a 
family of FPGA platforms that have been optimized for particu-
lar application domains. For example, Xilinx Virtex-5 family 
includes four product types that are optimized for high-perfor-
mance general logic applications, high-performance logic with 
advanced serial connectivity, high-performance signal process-
ing applications with advanced serial connectivity and high- 
performance embedded systems with advanced serial connectivity. 
This enables users to select the FPGA device that incorporates 
the most appropriate collection of programmable resources for 
a particular design.

As the SRAM-based FPGA manufacturers are amongst the ear-
lier adopters of new digital-CMOS manufacturing processes, in 
recent years, FPGAs have advanced at a faster pace than micropro-
cessors, the latest devices offering unprecedented performance and 
density gains with speeds on average 30% faster and a logic capacity 
65% greater than previous generations. The latest devices have as 
many as 1.2 billion transistors and allow the implementation of few 
thousand conventional microcontrollers on a single FPGA chip.

The hardware processors described in this paper were imple-
mented on a commercial off-the-shelf (COTS) multi-FPGA 
reconfigurable hardware platform, consisting of a BenNuey 
FPGA motherboard from Nallatech Ltd. (www.nallatech.com) 
communicating with the host PC server (Xeon 3.06 MHz pro-
cessor and 4 GB RAM) via a PCI interface (32 bits, 33 MHz) (see 
Note 2). The motherboard is equipped with one FPGA for user 
designs (Xilinx Virtex-II XC2V8000) and 4 Mbytes on-board 
RAM. In our application, this FPGA has been used to implement 
the mass spectra processor.

A second, smaller FPGA (Xilinx Spartan-II) on the mother-
board is programmed to handle the communication between the 
PC server and the FPGA system.

The motherboard can be configured to hold three additional 
FPGA modules that can be plugged into dedicated motherboard 

2.2. Reconfigurable 
Computing Platform

http://www.nallatech.com


169A High-Performance Reconfigurable Computing Solution for Peptide Mass Fingerprinting

slots. At present, only one additional module (BenData DD) has 
been used to implement the database search. The FPGA module 
has one user FPGA device (Virtex-II XC2V8000) and 1 GB of 
DDR SDRAM memory that can hold the entire encoded MSDB 
protein database. The current version of the encoded database 
occupies approximately 680 MB. Each module is connected with 
the motherboard FPGA and with the other two modules via a 
64 bit, 66 MHz local bus. This architecture enables the implemen-
tation of parallel searches at FPGA level as well as across modules. 
The block diagram of the FPGA system is shown in Fig. 3.

The FPGA board was installed and tested on Single and Dual 
3.06 GHz Xeon processor servers with 4 GB RAM under 
Windows XP Professional.

As the demand for System-on-Chip solutions has rocketed, in 
recent years the high-level design tools have evolved and diversi-
fied dramatically, effectively dismantling most of the barriers 
between algorithm development and hardware implementation 
(see Note 3). For those familiar with Matlab and Simulink, Xilinx 
System Generator Toolbox provides an ideal graphical design 
environment. This was the main design tool adopted for this 
application. This design tool generates synthesizable hardware 
(see Note 4) and allows clock-accurate simulation of the designs 
as well as real-time verification on the actual FPGA hardware 
using hardware-in-the-loop simulation. Because the software 
comes with a large library of highly-optimized Intellectual 
Property (IP) blocks, System Generator generate highly efficient 
designs capable of running at high speeds. The software generates 
highly optimized HDL code including testbench and test vectors 
(see Note 5) as well as required project files for the most popular 

2.3. Development Tools

Fig. 3.  Block diagram of the Nallatech FPGA system
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logic synthesis tools. For this application, we used Xilinx Synthesis 
Technology (XST) tool which is part of Xilinx’s ISE Foundation 
software.

To create the raw data used to evaluate the FPGA implementation, 
single proteins were diluted with 50 mM ammonium bicarbonate 
and digested with trypsin at a ratio of protein: enzyme of 50:1. 
Digestion was carried out at 37°C for 24 h after which time, 1 ml 
digested material was spotted onto a MALDI target. This was 
mixed with 1 ml a-cyano hydroxycinnamic acid matrix and ana-
lyzed using a Micromass M@LDI mass spectrometer (Waters, 
Manchester, UK) typically over the m/z range 800–4000.

Peptide Mass Fingerprinting (PMF) is an established technique 
to identify proteins on the basis of the analysis of a subset of con-
stituent peptide fragments, generated by proteolytic digestion. 
The approach is predicated on the assumption that a pattern of 
proteolytic peptide masses provide a quasi-unique signature for 
every protein in the database.

The peptide mixtures resulting from proteolysis are typically 
analysed by MALDI-TOF (matrix-assisted laser desorption/ion-
ization time-of-flight) mass spectrometers. Specific algorithms 
are required to convert the raw mass spectrometric data into a 
“peak list” consisting of monoisotopic peptide masses and inten-
sities. A subset of the experimentally generated “peak list”, so 
called “peptide mass fingerprint”, is then compared with theo-
retical proteolytic peptide maps derived from protein sequence 
database by in silico digestion.

The computations associated with the PMF approach can there-
fore be divided into two distinct processing stages: (a) processing 
the raw MALDI-TOF mass spectrometric data to extract a peptide 
mass fingerprint and (b) using the protein signature to search for a 
match in a comprehensive database of known proteins.

Both stages of computation have been implemented (see Note 6) 
as dedicated hardware processors (19, 20). The complete FPGA-
hardware solution for peptide mass fingerprinting, which incor-
porates a raw mass spectra processor and a parallel search engine, 
is presented in the following sections.

Following specific protein digestion, a MALDI-TOF mass spec-
trometer generates pairs of mass-to-charge (m/z) and abundance 
values dk = (xk, yk), (k = 1, 2, ..., N). Typically, the number of points 
(N) in the spectrum ranges from a few thousand to a few hundred 
thousand. The determination of experimental monoistotopic 

2.4. MS Data Generation

3. Methods

3.1. Mass Spectra 
Processing Algorithms
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peptide masses requires processing of the raw mass spectrum in 
order to discriminate between spectral peaks that correspond to 
digested peptides and associated isotopes and the spurious peaks 
caused by noise and sample contamination.

The spectra processing algorithm adopted for FPGA imple-
mentation is based largely on the algorithm proposed in (21). 
The major difference is the method used to implement in hard-
ware the aggregation of natural isotopomers (due primarily to the 
natural abundance of 13C and 15N), which is based on a Poisson 
distribution approximation of the isotopic patterns for every pep-
tide (22). The FPGA algorithm also implements an additional 
smoothing function (Savitzky-Golay) which is optional.

It should be emphasized that the algorithm adopted is not 
the only one available to perform peak extraction. The algorithm 
was chosen because it is computationally efficient and well suited 
for implementation as a deep computational pipeline.

In practice, the tractability of the algorithm to parallelization 
or pipelining is crucial to maximizing performance gains through 
implementation in FPGA hardware.

 Specifically, the processing steps can be summarized as 
follows:

 1. Smoothing (Optional). Performing Savitzky–Golay smooth-
ing (23) over the raw input spectrum can reduce the effect of 
instrumentation noise. The algorithm is based on performing 
a least squares linear regression fit of a polynomial of degree 
M over at least M + 1 data points around each point in the 
spectrum. The main advantage of this procedure is that it 
tends to preserve the shape of the signal peaks. The smooth-
ing operation is implemented as a standard FIR filter

 1 1
1

F
M

i j j
j

ys b y − +
=

= ∑  

Where F is the size of the smoothing window (F = 2q + 1), y is 
the input data stream, ys is the FIR output and bj

M are the 
time-varying filter coefficients. For a given filter of order M 
and (odd) frame size F (F > M + 1), all the coefficients needed 
to implement the smoothing operation form a F × F matrix 
[bi,j.

M]i,j
F  =1.

The Savitzky–Golay smoothing operation can be represented 
in matrix form as follows:
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The smoothing window F can be chosen according to instru-
ment resolution setting (number of data points recoded per 
1 m/z unit). For processing the raw spectra used in this paper, 
filters of order M = 11 and a frame length F = 23 were found 
to produce best results.

 2. Baseline and Noise Detection. Baseline estimation is performed 
in order to correctly evaluate the magnitude of the peaks. Peak 
magnitude data is essential for performing de-isotoping. An 
estimate of the noise (which can be chemical or instrument 
noise) is also computed and used to perform segmentation.

The raw spectrum mass list {xk|k = 1, 2, ..., N} is divided 
into small intervals (mi) of width w. For each interval, the 
local minimum (Zi) and maximum (Yi) abundances, and their 
differences (Wi) are computed as follows

Zi=min (Yx ∈ mi) Yi = max (Yx ∈ mi) Wi =Yi –Zi, i =1,..., [N/w]

where (x, y) are m/z, abundance pairs.
For each integer mass in the spectrum (xj, j = 1,2,...,k), a 

symmetric window (Mj) of width W (W >> w) is placed around 
and baseline and noise levels are estimated as follows:
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where j(−) is the index of the leftmost sub-interval (mi) cov-
ered by Mj, j(+) is the index of the rightmost sub-interval (mi) 
covered by Mj (21). Subsequently, the signal to noise ratio (sk) 
is computed for each spectral point dk, k = 1, 2, ..., N
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 3. Spectrum Segmentation. Using the signal-to-noise informa-
tion, the spectrum is classified into three sets: noise (dk ∈ 
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Dnoise, sk < 1), support (dk ∈ Dsupport, 1 £ sk < SN) and signal (dk ∈ 
Dsignal, SN £ sk), where SN is a user adjustable threshold.

 4. Peak Detection. Peaks are constructed from data points that 
are signal or support points and are bounded by noise.
A peak is defined as a set of data points

P  = {dj | xj < xj+1, j = 1,…,p, d0 ∈ Dnoise, dp+1 ∈ Dnoise, dj ∈  
Dsignal or dj ∈ Dsupport}.

For every peak, center of the mass (mp) and abundance (ap) 
are computed as follows:
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 5. Clustering. Involves grouping valid peaks that are about 
1 m/z apart, into clusters. Two peaks p and q are in the same 
cluster if 1 – t<|mp–mq|<1 + t, where t is a user-defined param-
eter (typically t = 0.2). A valid cluster has at least one peak 
with a data point dk in Dsignal.

 6. Deisotoping involves determining the monoisotopic peptide 
masses from overlapping isotopic distributions (due primarily 
to the natural abundance of 13C and 15N). The algorithm uses 
Poisson distributions to approximate the isotopic patterns for 
every peptide (22).

The expected proportional abundance of the heavier iso-
topes mp(i), i = 1,2,… with respect to the monoisotopic peaks 
mp = mp(0) are computed as follows

 
( )

( , ) , 1,2,...; ( , ) 0,
!

( ) 0.000594 0.03091,

i
P P

P P

P P

a F m
E i m i E i m

i
F m m

= = >

= −
 

where E(1, mP) is the theoretical abundance of the first isotope 
of mP, E(2, mP) is the effect of the second isotopic contribution 
etc. The best-fit Poisson models of isotopic distributions are 
shown to match those of theoretical distributions (22).

Deisotoping a cluster of R consecutive peaks is summa-
rized below:

The first peak of the cluster is always considered a monoisotope.●●

Compute the expected abundance of the heavier isotopes ●●

E(1,m1), E(2,m1), ...,E(R − 1,m1).
Subtract these higher contributions from the actual abun-●●

dances of the next R − 1 peaks: a2 − E(1, m1), a3 − E(2, m1),..., 
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aR − E(R − 1, m1). Only the results higher than a threshold 
(ISOTR) are retained for further processing.

These sub-steps are recursively repeated for the residual cluster 
until all the residual peaks are less than the threshold (19). For 
example, if a2 − E(1, m1) > ISOTR, (m2, a2 − E(1, m1)) becomes 
the next monoisotope and the steps are repeated.

The algorithm outlined above has several properties that make it 
suitable for hardware implementation (see Note 5). The calcula-
tions involved in steps 1–4 are performed on a long mass/abun-
dance data stream so can be implemented as deep computational 
pipeline involving mainly complex combinatorial logic. State 
machines are used for data sorting in step 2 and peak construc-
tion in step 4. Pipelining allows multiple sequential calculations 
to be performed in parallel on the data stream so that, once the 
pipeline is full, results are produced every clock cycle. Pipelining 
also allows a relatively high clock frequency (see Note 7).

Clustering and deisotoping are sequential operations per-
formed on the significant centroided peaks in the spectrum (mp, 
ap pairs) which represent only a small subset of the original mass 
spectrum data set. As a consequence, in practice, these operations 
take only a fraction of the time required to process the entire 
spectrum in steps 1–4. Because clustering and deisotoping opera-
tions cannot be performed in a pipelined manner, the set of iden-
tified peaks have to be stored in a memory and dedicated state 
machines are required to implement clustering and deisotoping 
operations. Since the amount of memory required is relatively 
small, the best solution is to use the fast and wide data-width on-
chip memory (embedded RAM) integrated on the FPGA chip. 
The arithmetic operations involved are well suited for fixed-point 
arithmetic resulting in significant savings of resources on the 
FPGA. For this implementation, it was found that a wordlength 
of 32 bits with 12 bits allocated for the fractional part introduced 
negligible errors when compared with a floating point PC imple-
mentation of the same algorithm.

The hardware solution described here has two major func-
tional blocks: a peak detection unit, which identifies all significant 
spectral peaks (Implements steps 1–4 and the cluster flag genera-
tion) and a peptide identification unit that generates the final list of 
peptide masses and associated abundances (steps 5 and 6). The 
block diagram of the hardware processor is depicted on Fig. 4.

The first block is a Savitzky–Golay smoothing filter that 
implements the equations from the first algorithmic step. The     
smoothing operation is optional; the user can specify if the data is 
to be pre-processed or not.

The Savitzky–Golay smoothing filter is implemented as a 43 
tap FIR filter with coefficients that can be loaded as user param-
eters in an LUT. The size of the smoothing window F can be set 

3.2. FPGA 
Implementation  
of the Mass Spectra 
Processor
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by the user according to the instrument resolution setting (num-
ber of data points recorded per 1 m/z unit).

The raw mass spectrum is processed in three stages: (a) the first 
F spectral abundance values (y1,…,yF) are loaded as filter coefficients 
and the and the last (F-1)/2 rows of the filter coefficient matrix are 
loaded on the FIR data input, (b) the middle row of the filter 
coefficients is loaded as coefficients and the following abundance 
values (yF+1,…,yN−F) is provided as the input to the FIR filter and 
finally (c) the last F data points (yN−F+1,…,yN) are loaded as FIR coef-
ficients and the last (F-1)/2 rows of the coefficient matrix are loaded 
as data input. The filter is implemented as a single channel, highly 
parallel filter using a Xilinx Logicore block (24).

The peak construction pipeline depicted on Fig. 4 imple-
ments steps 2–4 of the algorithm. The sorting block computes 
the minimum (Z) and maximum (Y) abundances and their differ-
ence (W) over a sliding window of length w. It is implemented 
using a structure that sorts in ascending order input data stream 
over the data window before the maximum and minimum values 
are found.

Fig. 4. Block diagram of the mass spectrum processor
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Baseline and noise are computed over a bigger spectral inter-
val of W small windows of length w using 32 bit pipelined dividers 
and accumulators.

Spectrum segmentation is performed by computing a signal 
to noise ratio for each delayed spectrum data point (x, y) accord-
ing to step 3. The result is then compared with a user selectable 
threshold (SNTHR) and, for each data point, a 2 bit classification 
flag c is set to 1, 2 or 3 depending on whether the respective data 
point is classified as noise, support or signal respectively. The 
original spectral points (x, y), their associated classification flag c 
and the base-line (Ybase) are aligned and fed into the peak con-
struction state machine. Here, the centered mass mk and base-line 
subtracted abundance ak of spectral peaks are computed accord-
ing to step 4 of the algorithm and passed to the cluster flag gen-
erator block for further processing.

This block is used to detect possible peak candidates that are 
isotopes of one or more singly charged chemical compounds, sep-
arated by the mass of a neutron. The circuit is a delay line for the 
input data peaks with a maximum length of p. It is assumed that 
the spectrum is sorted by increasing mass. Distances between the 
masses of all consecutive signal peaks starting with the lowest mass 
value m1 are computed. If the distance between two successive 
peaks is between 1 − t and 1 + t (t is a user selectable value typically 
set to 0.2) the peaks belong to the same cluster.

To speed up computations, there are p circuits that compute 
mass differences m1 − m2,…, mp+1 − m1 between m1 and the follow-
ing p consecutive mass values m2 < m3<…<mp < mp+1 in parallel. In 
our design, p is an adjustable parameter, which is selected accord-
ing to mass spectrometer resolution, to be larger than the maxi-
mum number of signal peaks that are registered within a window 
of 1 + t m/z. Typically about 50–100 samples/(m/z) are taken, 
so p = (60–120)/3 = 20–40 or less.

The output of the circuit is a cluster flag fk of p-bits, which 
generated for each peak (mk, ak). For example, the k-th bit of the 
flag f1 associated with m1 is set to 1 if m1 − mk ∈ [1−t,1+t ]. If all the 
bits in the flag f1 are zero, this indicates that m1 has no isotopes.

The mass, abundance and cluster flag associated with each 
peak (mk, ak, fk) are stored in RAM (A) at consecutive addresses, 
starting from zero as a 32 + 32 + 32 +12-bit word (32 bits for 
mass, abundance and flag each and 12 bits for the cluster index-
not set initially). After all peaks are stored in the memory, the 
results are processed further by the clustering state machine.

Clustering is implemented as a state machine that sequen-
tially reads the first dual port RAM (A) using the cluster flag to 
calculate the memory location of the peaks belonging to the same 
cluster. The identified peaks in a cluster are stored at consecutive 
memory locations in another RAM block (B). In the process, all 
peaks identified to belong to the same cluster are assigned the 
same cluster index, an integer that uniquely identifies a cluster.
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The final processing step required to generate the peptide 
fingerprint is deisotoping. The deisotoping unit processes previ-
ously computed clusters from the dual port RAM (B), writes back 
partial results in RAM (B) and the final peak list in RAM (A) as 
illustrated in Fig. 4.

A cluster may contain more than one peptide and to each pep-
tide may correspond a set of peaks separated by approximately 
1 m/z. Effectively, the peaks in a cluster can be viewed as a super-
position of isotopic distributions of two or more peptides. The 
deisotoping unit identifies all peptides (the mass of the monoiso-
tope) within a cluster and calculates the total abundance of the 
peptide corresponding to each monoisotope using an approxima-
tion of isotopic patterns by Poisson distribution as described in step 
6. Starting with the first peak in a cluster (assumed to be a monoiso-
tope), the algorithm generates the theoretical isotopic distribution 
based on peak height (abundance) and mass value. The computed 
abundance values are then subtracted from the original peaks at the 
corresponding m/z values. Following subtraction, any abundance 
less than a specified threshold is set to zero. The next (non-zero) 
peak in the residual cluster is then considered a monoisotope, and 
the process is repeated until there are no residual peaks left. At each 
step, the monoisotopic mass value and original and total abun-
dance (the sum of the monoisotopic peak and its theoretical isoto-
pic abundances) are recorded in the final peak list. A subset of the 
final peaks will be used to perform database searching.

The database search engine (20) traces the peptide fingerprint 
back to the originating peptide by matching it against the expected 
(theoretical) peptide masses obtained by digesting in silico – on 
the fly – all protein sequences in the database. The protein sequence 
databases (MSDB for example) are in fact flat text files. A block 
diagram of the FPGA search engine is illustrated in Fig. 5.

In order to fully exploit the benefits of FPGA acceleration, 
the entire MSDB database was encoded, using a 5-bits code for 
each of the 20 constituent aminoacids, and stored in the local on-
board memory of the FPGA module in a format that facilitates 
fast parallel searches. Additional codes were used to represent the 
end of a protein sequence and the end of the database.

By encoding the database more efficiently using only 5-bit 
“characters”, the database size was reduced by about 40%. The 
resulting “shrunk” database currently occupies only 60% of the total 
1 GB DDR SDRAM memory installed on the FPGA module.

One effect of storing the database in the local module memory 
is that it eliminates a significant memory access bottleneck, because 
of the PCI interface, that would otherwise be present if the protein 
database were stored in the computer memory. However, the most 
significant reason for encoding and storing the protein database in 
the local memory is that it enables parallel processing of protein 
sequences (see Note 8). In the current implementation, there are 48 

3.3. Database Search 
Engine
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protein sequences that are streamed out, in parallel, from the mem-
ory, as shown in Fig. 5. Each protein sequence is processed sequen-
tially by a search processor implemented in the module’s FPGA.

Each search processor performs two basic operations:

 (a) the computation of theoretical peptide masses for every pro-
tein in the database by in-silico digestion and

 (b) the subsequent computation, for each protein, of a matching 
score that indicates the likelihood that the peptide mass fin-
gerprint generated by the mass spectrum processor, on the 
basis of experimental data, belongs to that particular protein.

Consequently, the search processor has two major functional 
blocks: an in-silico protein digestion unit and a scoring module.

Each search engine is connected to a 5-bit data stream. It reads 
one code every clock cycle from the corresponding memory column 
and passes it to the digestion unit. The digestion unit is responsible 
for calculating the peptide masses according to the specified diges-
tion rule/parameter. The digestion unit calculates the cumulative 
mass of the aminoacids received until it encounters a cleavage site, 
protein record delimiter or the end of database marker. The masses 
of individual aminoacids, used to compute the peptide masses, are 
stored into a look-up table as 32 bits fixed-point numbers.

When calculating the peptide mass, the user can specify addi-
tional, post-translational modifications (PTM) rules. The system 

Fig. 5. Block diagram of the database search engine
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described here implements only fixed modifications. However, a 
modified version of the search processor, which can deal with vari-
able modifications has been designed recently and is currently  being 
tested. The new design also incorporates new functionality to allow 
searches to take into account peptides with missed cleavage sites.

The scoring unit calculates the number of peptide masses in 
the peptide mass fingerprint that are matched for every digested 
protein in the database. A user defined mass matching tolerance 
can be programmed by the user to account for MS instrument 
precision and other sources of errors that may affect the accuracy 
of the peptide mass fingerprint.

The precision of the comparison between the m/z values to 
be searched (m1, m2, ..., mn) and the in-silico computed throreti-
cal peptide fragments m/z values (mti) can be specified as an user-
defined parameter that holds the desired error tolerance (as ppm) 
which may be dictated by the MS instrument accuracy.

When a theoretical peptide fragment mass mti is computed, it is 
compared in parallel to the peptide mass fingerprint (m1, m2, ..., mn) 
generated by the mass spectra processor. The result of the compari-
son is used to generate the basic cumulative score for every pro-
cessed protein. In the current implementation, n = 13 but the 
number of m/z values that are used in the search can be increased 
at the expense of increasing the complexity of the design of indi-
vidual search processors that will use more space on the FPGA 
device. This normally means that the number of processors that can 
be allocated on current FPGA device (Xilinx XC2V8000) may need 
to be reduced. As mentioned earlier, however, the logic capacity of 
the latest FPGA devices (Xilinx Virtex 5 family for example) has 
increased dramatically when compared with the device used in this 
implementation, so it is feasible to expect that a larger number of 
complex search processors could be fitted on the latest devices. 
Moreover, because of the parallel nature of the computations, the 
entire database can be divided into distinct subsets and loaded on 
separate FPGA modules each with its own parallel database search 
engine so that maintaining or even increasing the computational 
performance of the solution should not be an issue.

If a match is found, the score counter is incremented by one. 
The position of a match is also recorded in an n-bit match index 
word. When the end of a record is found, the record index coun-
ter, the score counter and the match index register outputs are 
stored in intermediate registers.

Each search processor has three outputs: a processing end 
flag that remains set after processing ends until the search proces-
sor is reset; an output index that remains set to the last available 
FIFO address where the total the number of matches is stored 
and a 39 bits output that contains the results (database index).

Results of the 48 search engines are collected in dual port 
RAM devices organized as FIFO structures of 64 words of 39 bits 
each. The user can specify a score threshold ts, so that only the 
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matches that are above a threshold are saved i.e. if the score of a 
given match is higher than a programmable threshold ts, the cor-
responding record index and match index are stored in the output 
FIFO. The basic matching score can be used to implement more 
sensitive scoring schemes which account for peptide frequency dis-
tributions such as MOWSE (25), PIUMS (21) or more compre-
hensive Bayesian scoring approaches which also account for the 
individual properties of the proteins analyzed such as ProFound 
(26). Because of the low speed-up gain expected from a hardware 
implementation, these scoring methods are run on the PC server. 
The externalization of the scoring statistics means that the output 
of the search can be rapidly evaluated using different scores, and 
even developed into a consensus score validation scheme.

The database search engine occupies 99% of the FPGA’s logic 
resources, 99% of the FPGA’s internal RAM resources and 53% of 
the FPGA’s I/O resources (see Note 9). The design has a clock 
frequency of 100 MHz which is dictated by clock frequency of 
the 1 GB on-board DDR SDRAM.

The design includes all necessary control and FIFO struc-
tures that implement a 64-bit wide data transfer between the 
FPGA devices at a rate of 320 Mbytes/s (see Note 10).

All arithmetic operations on the m/z values were performed 
using 32-bit unsigned fixed-point binary number representation 
of mass and abundance values, with 12 bits after the radix point.

In order to validate the accuracy of the hardware implementation, 
reference C programs were developed for all the algorithms 
implemented in hardware to process the raw mass spectra and 
perform database searching and matching. The first validation 
step involved checking that both the hardware and software 
implementation generate identical results. The second validation 
step involved, in the case of the mass spectra processor, compar-
ing the results with commercial software solutions such as 
MassLynx and assessing the ability to correctly resolve isotopomer 
distributions derived from asparagine containing peptides and the 
deamidated cognate peptide (19). The database search engine 
was also tested using theoretical peptide mass fingerprints derived 
from randomly selected proteins in the database.

The performance gains of the hardware implementation relative 
to the conventional software solution were evaluated by measuring 
the execution time of the main computational loops of the reference 
C implementations and comparing this with the FPGA processing 
time. It should be noted that the time elapsed for initializations of 
memory locations before the effective processing of data and disk 
access time are not included in the software processing time. Only 
the processing of effective algorithmic steps was measured. The ref-
erence design was compiled in C and was simulated on a dual 
3.06 GHz Xeon processor server. Each C simulation was repeated 
30 times and the average processing time was used for comparison.

3.4. Results
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The speed gains corresponding to the mass spectra processor, 
for different lengths of the analysed mass spectrum are summa-
rized in Table 1.

In the case of the database search engine the performance 
gains compared with the C implementation of the algorithms are 
illustrated in Fig. 6 over 50 runs.

Table 1 
Speed gains of FPGA vs. C implementation of mass spectra processing

Spectrum length
Processing time [ms]  
(Dual Xeon 3.06 GHz)

Processing time [ms] 
(XC2V8000,180 MHz) Speed gain

 25,488  20.27 0.1632 124.20

 50,448  31.23 0.3105 100.56

 75,168  47.33 0.4557 103.86

101,040  62.50 0.5607 111.46

125,184  79.17 0.7557 104.76

150,144 114.33 0.8547 133.76

175,104 130.20 1.0024 129.88

200,976 188.63 1.1219 168.13

Fig. 6. Speed gains of FPGA vs. C implementation of database search engine
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The C implementation was run on a Dual Xeon 3.06 GHz 
server – only the main computational loop was timed. In each 
run, a peptide mass fingerprint was generated for a randomly 
selected protein in the database. The “synthetic” peptide finger-
print was then used to perform a complete database search.

If only fixed modifications are considered and assuming no 
missed clevages, the FPGA system performs a complete database 
search in 240 ms (±0.02) irrespective of the peptide mass finger-
print. As seen from Fig. 6, the speed gain of the FPGA implemen-
tation when compared with the C software implementation ranges 
from 1,520 to 1,680-fold average speedup.

 1. It is said that Reconfigurable Computers merge the benefits of 
application-specific digital hardware devices with the flexibility 
of software programmability. However, not every computational 
task is well suited for FPGA implementation. Algorithms that 
involve processing large streams or data and/or are inherently 
parallel are the best candidates for hardware acceleration. Whilst 
the flexibility of software programmability is evident, it is easy to 
overlook the difficulties of mapping an algorithm in hardware, 
which are still considerable despite the availability of high-level 
design tools, such as System Generator Toolbox for Matlab or 
Impulse C, the C-to-FPGA compiler. Conventional FPGA 
development tools were designed for electronics hardware engi-
neers and require in-depth knowledge of hardware design lan-
guages (VHDL, Verilog) and digital electronics. The emerging 
high-level design tools, whilst offering a great level of abstraction 
still require a fair amount of manual optimization hence low-
level design knowledge is still essential. Moreover, because there 
is no standard RC architecture, most common design tools do 
not target specific FPGA boards and as a result designs have to 
be mapped manually on the chosen RC platform. This cannot 
be achieved without a detailed understanding of the architecture 
of the hardware system.

 2. An important factor that has to be considered is the commu-
nication overhead associated with data transfer between PC 
and device, which should represent only a fraction of the 
actual execution time. For a known reconfigurable comput-
ing platform, it is possible to evaluate at this stage the actual 
communication costs incurred by transferring data between 
hardware and software. This aspect is a major decision factor 
in the selection of the FPGA system best suited for an 
application.

4. Notes
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 3. There are tools available that allow automatic conversion of 
an algorithm implemented in C into a hardware application 
engine, such as Impulse C (www.impulsec.com). This is per-
haps the easiest route to develop a hardware design. These 
tools typically provide integrated support for profiling and 
partitioning the algorithm and have design space exploration 
capabilities for evaluating different implementations to deter-
mine the best trade-off between resource utilization and per-
formance gain for a particular algorithm.

 4. Different high-level tools will typically generate hardware 
designs that differ in terms of both area utilization and speed. 
Moreover, the quality of compiler-generated designs is said to 
be significantly inferior to that of manually generated ones. In 
some cases, developing a hardware implementation badly may be 
enough to cancel the potential speed-up that can be achieved.

 5. “Debugging” a computer program is an unpleasant but famil-
iar task to any software developer. For hardware implementa-
tion, this process is intrinsically more difficult as the correctness 
of the result can be affected by subtle timing issues that can-
not be detected easily, especially when dealing with a complex 
parallel design. To help debug a design, some tools provide 
clock-accurate hardware simulation models others require 
that the simulation code is written by hand. Consequently, 
debugging a hardware implementation is still largely the 
realm of digital electronics engineers rather than software 
developers, at least for now.

 6. The first step in developing a RC bioinformatics solution is to 
identify computational kernels most likely to benefit from 
hardware acceleration and try to estimate the potential speed-
up achievable. Profiling tools such as the gprof utility pro-
vided by most Unix systems (also available under the Cygwin 
Linux-like environment for Windows) provide detailed tim-
ing information which can be used to identify the computa-
tional intensive kernels of an application. Sections of the code 
or subroutines that are executed most of the time are poten-
tial candidates for hardware implementation.

 7. In our application, processing a mass spectrum involved a 
fixed sequence of operations performed on every data point, 
which consumed over 90% of processing time, hence a com-
putational pipeline provided an ideal implementation archi-
tecture. Such pipeline, once full, provides a result every clock 
cycle so that execution time and hence speed-up could be 
estimated if the clock frequency of the hardware design is 
known. The clock frequency however depends on the final 
implementation as well on the characteristics the targeted FPGA 
device. Although some automatic profiling methodologies 
that attempt to quantify the potential benefit of hardware 

http://www.impulsec.com


184 Coca, Bogdan, and Beynon

acceleration have started to emerge, it is still difficult to obtain 
a good estimate of achievable speed-up without designing 
and implementing the digital hardware realization of a com-
putationally intensive kernel. A rough estimate of the pro-
cessing time can be derived though, using a conservative 
value for the clock frequency.

 8. The code selected to run in hardware should ideally have low 
data dependency, to facilitate parallel implementation. 
Fingerprint matching for example can be performed in paral-
lel on groups of proteins or in the extreme case on individual 
proteins. Since the number of proteins in the database is very 
large, the potential for speed up is huge given the right FPGA 
platform. Specifically, FPGA module used to implement the 
database search engine (BenData DD) provided sufficient on-
board memory to hold the entire database. Crucially, the 
architecture of the module allowed data transfers between 
memory and FPGA on a 256 bit-wide channel at 100 MHz 
so that multiple proteins could be streamed out from the 
memory and processed in parallel by individual search proces-
sors programmed on the FPGA fabric.

 9. The initial designs had to be optimized manually, at HDL 
level, to reduce the area used and to increase the clock fre-
quency of the synthesized design.

 10. Developing the complete hardware solution involves signifi-
cant low-level programming for designing control and syn-
chronisation modules to manage data transfers between the 
hardware processors running on different FPGAs, between 
the FPGA system and the host PC and between FPGAs 
and the on-board memory modules.
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Chapter 13

Mining Proteomic MS/MS Data for MRM Transitions

Jennifer A. Chem (Mead), Luca Bianco, and Conrad Bessant

Abstract

Multiple reaction monitoring (MRM) of peptides is a popular proteomics technique that employs 
tandem mass spectrometry to quantify selected proteins of interest, such as those previously identified in 
differential protein identification studies. Using this technique, the specificity of precursor to product 
transitions is exploited to determine the absolute quantity of multiple proteins in a single sample. Selection 
of suitable transitions is critical for the success of MRM experiments, but accurate theoretical prediction 
of fragmentation patterns and peptide signal intensity is currently not possible. A recently proposed solu-
tion to this problem is to combine knowledge of the preferred properties of transitions for MRM, taken 
from expert practitioners, with MS/MS evidence extracted from a proteomics data repository. In addi-
tion, by predicting retention time for each peptide candidate, it allows selection of several compatible 
transition candidates that can be monitored simultaneously, permitting MRM. In this chapter, we explain 
how to go about designing transitions using the web-based transition design tool, MRMaid, which lever-
ages high quality MS/MS evidence from the Genome Annotating Proteomic Pipeline (GAPP).

Key words: GAPP, Mass spectrometry, MRMaid, Multiple reaction monitoring, Quantitative 
proteomics

Multiple reaction monitoring (MRM) is a technique that uses 
mass spectrometry (MS) to determine the quantities of specific 
proteins of interest. MS and MS/MS are performed as reverse 
phase HPLC separation is underway. Each tryptic peptide is ana-
lyzed by the selection of a specific mass over charge ratio (m/z) 
using a quadrupole MS (Q1). Once separated, it undergoes frag-
mentation in the collision cell, generating product ions exclusive 
to the precursor, which are selected for monitoring by a third 
quadrupole (Q3). By filtering by mass at two stages, background 
may be overcome through improved signal to noise ratio, and 

1. Introduction

1.1. Introduction  
to MRM and Principles 
of Transition Design

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
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several transitions monitored quickly. MRM becomes a quantita-
tive approach when a known quantity of labeled synthetic pep-
tide is spiked into the sample. This surrogate peptide is identical 
in sequence to the expected target peptide, so elutes at the same 
moment, but demonstrates a known mass shift value in MS/MS 
(1). The pair of observed m/z ratio of a peptide, and its corre-
sponding product ion m/z ratio, is referred to as a “transition.” 
Accordingly, to monitor a protein of interest, it must be known in 
advance which transitions are most suitable for the protein tar-
gets. In simple protein mixtures, a single transition may be ade-
quate to monitor a particular protein of interest, but in complex 
samples, such as serum, several transitions are generally required 
due to noise and proteins of very high abundance affecting the 
signal (2, 3).

The major challenge for MRM is selecting which peptides are 
most appropriate for monitoring because usually each protein has 
several tryptic cleavage sites. Traditionally, a lab-based discovery 
phase is carried out prior to MRM, allowing the observed MS 
information to direct the selection of transitions (4–6). This empir-
ical method is usually successful, however it consumes time and 
costly laboratory resources. Furthermore, the experimental 
approach represents repetition of effort since, in many cases, other 
groups have already acquired MS/MS data for the protein of inter-
est and have deposited that data in a publicly accessible database.

To increase the efficiency of transition design, we have 
developed MRMaid (7), a transition design tool that utilizes a 
combination of expert knowledge about what makes a good 
MRM transition, and MS/MS data from the genome annotating 
proteomic pipeline (GAPP) database.

GAPP is an automated pipeline that assigns peptide and protein 
identifications to proteomic MS/MS data (8). It is publicly avail-
able web-based service at http://www.gapp.info, and includes 
both public and private datasets, the latter accessible exclusively 
via user authentication. MS/MS peak lists (in .pkl, .mgf or 
mzXML format) and corresponding metadata (such as cleavage 
agent, mass tolerances, species, and number of missed cleavages) 
are submitted via the website. GAPP performs peptide identifica-
tion using an X!Tandem-based database search engine (9), with 
peptide identifications being validated and protein identifications 
inferred using the advanced average peptide score (APS) algo-
rithm (10). Peptides and proteins identified in data submissions 
are automatically stored in a database, along with related confi-
dence scores. The pipeline is capable of finding any peptides 
expected, including those that cross intron–exon boundaries, and 
those due to SNPs, alternate splicing and those that contain post-
translational modifications (PTMs).

Although GAPP’s initial focus was the re-annotation of 
genomes with protein data, the database of peptides identified by 

1.2. Overview of GAPP

http://www.gapp.info
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GAPP has proved useful as a repository of high quality identifica-
tions. All identifications in the GAPP database are derived from 
MS/MS data by the GAPP pipeline, which is particularly rigor-
ous in ensuring whether identifications are valid using a reverse 
decoy database search. 

Since anyone can upload data to GAPP for processing via the 
web interface, the GAPP database continues to grow, providing 
increasingly more evidence for transition design. The web inter-
face also allows the content of the database to be browsed and 
searched, which can give an indication as to whether MRMaid is 
going to be useful in your research (e.g. Is there any data for the spe-
cies you are working with? Is there a large representation of the bio-
logical sample type you are using?). Such questions can be answered 
using the “Mine the GAPP” section of the website.

While evidence for transition design is already present in GAPP, 
MRMaid performs the crucial role of selectively mining the data 
and contextualizing it using expert knowledge, to help ensure that 
transitions are fit for purpose. For example, a peptide must be 
unique to the protein of interest (proteotypic (11)) if it is to be 
useful in MRM. Furthermore, MRMaid calculates the hydropho-
bicity and retention time of each peptide candidate so suitable tran-
sitions may be selected, such that multiple peptides can be monitored 
simultaneously without overlapping elution times in reverse-phase 
HPLC. Information on how MRMaid works, and how you can use 
it for transition design, are in the following sections.

MRMaid is accessible at http://www.mrmaid.info (note that 
MRM is not capitalized in this URL). MRMaid does not require 
any software to be installed locally, and it is designed to work in 
all major web browsers.

To use MRMaid, you must have the following:

 1. A protein, or several proteins, that you would like to monitor 
using MRM. For example, a protein identified as a biomarker 
of disease by differential studies.

 2. The accession number for the protein(s) that you would like 
to monitor. Since MRMaid uses the EBI’s Protein Identifier 
Cross-Reference (PICR) service (12), an identifier from vir-
tually any major database can be used to start the search (e.g. 
Swissprot, PDB, Ensembl, IPI).

  Optional: The MS instrument type, the reverse phase chro-
matographic conditions and the type of tissue or sample in 
which your protein is present. This information can be used 

1.3. MRMaid Overview

2. Materials

http://www.mrmaid.info
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to ensure the transitions predicted by MRMaid are suitable 
for your individual requirements, by only considering data 
that fits your monitoring conditions.

The front page of the MRMaid tool is where all the information 
necessary to design a transition is entered (Fig. 1). On this page, 
and throughout the rest of MRMaid, access to interactive help 
is provided in the form of circles containing question marks. 
Clicking on a question mark will open up a new small (but 
resizable) window containing an explanation of the relevant topic. 

3. Methods

3.1. Data Input

Fig. 1. The MRMaid homepage, where all the information for a transition design is entered. This example shows the 
Swissprot identifier for transthyretin protein (TTHY_HUMAN)
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In addition, a glossary of terms plus other related material, includ-
ing tutorial videos and demonstrations, can be found in the 
MRMaid “help area” accessible via the toolbar or homepage.

As mentioned, the only mandatory field is the first one, the 
protein identifier. The other options on this page allow additional 
constraints to be placed on the transition design. These options 
represent the most commonly used design constraints and are 
explained below.
  Internal cleavage sites: As a default setting, peptides with 

internal cleavage sites (namely peptides with K or R, unless 
followed by P) are omitted to prevent selection of peptides 
that may be irregularly cleaved.

  MS Instrument: Each type of instrument is known to have a 
different set of preferred proteotypic peptides (11). This option 
accounts for this phenomenon by allowing you to select the 
type of instrument that you will be using for MRM.

  Chromatographic conditions: Similarly, it makes sense to spec-
ify the chromatographic conditions that you are planning to 
use for your MRM experiments because MRMaid applies this 
information to predict peptide retention times using a pub-
lished model (13). There are eight different options, includ-
ing nano-, micro-, and normal-flow setups. For a full 
description of each, refer to the help documentation.

  Tissue type: Since protein expression can vary significantly 
between tissue types, the type of biological sample can be 
specified as a filter in the search for transitions. In complex sam-
ples, such as serum, this is particularly useful since the wide 
dynamic range of protein abundance, and inherent sample com-
plexity, can present unique challenges for transition design. The 
ability to choose transitions based upon experiments performed 
on your particular sample type increases the likelihood of suc-
cessful candidate selection.

  Peptide sequence features: In addition to constraining experi-
ment-specific factors, some practitioners use sequence infor-
mation when selecting peptides for MRM. For example, 
peptides containing N and Q may be avoided because these 
residues can be deamidated, which can result in irregularities 
and problems with reproducibility of fragment ion m/z val-
ues. Opting to omit peptides containing Q or E at the 
N-terminus may be desirable because these residues can spon-
taneously cyclize to form pyroglutamate, and residues that 
are frequently modified, such as M and C, may also be omit-
ted to avoid unreliable mass shifts.

  Proline presence and location: Proline is a particularly impor-
tant residue to consider when designing transitions; peptides 
containing P may be considered favorable because they gen-
erally produce high intensity MS/MS peaks. However, this 
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can result in a single highly abundant fragment ion that 
swamps the remainder of the tandem MS spectrum, so users 
may opt to omit peptides containing P. If peptides including 
P are to be considered, the location of P in the peptide pri-
mary sequence can also be important. Having P adjacent to 
the C-terminus (P1) or in the second position from the C 
terminus (P2) is generally not desirable in MRM because a 
very short, non-specific product y-ion will result. The option 
to omit P1 and P2-containing peptides is therefore provided.

  Peptide length: It makes sense to restrict peptides length to 
within a certain range because short peptides (<8 residues) 
are unlikely to be unique, and peptides longer than approxi-
mately 20–25 residues are likely to exceed the acceptable 
mass range: usually within m/z of 500–1600.

  Proportion of experiments in which the peptide should be seen: 
Using this option, frequency of peptide identifications in the 
database may be used as a measure of transition reliability for 
the protein. For example, if you enter “50,” then this means 
that the peptide candidate(s) presented in green in the results 
table were assigned in at least 50% of occasions when your 
protein target was successfully identified. The higher the value 
you enter, the more stringent the prediction will be.

Once all the desired options have been selected, click the “sub-
mit” button; this initiates the transition design process. The pep-
tide level results are then printed to screen, providing a portal to 
the product ion information.

Using the example of protein transthyretin (TTHY_HUMAN), 
with the chromatographic conditions set to Microflow method 1 
(default), peptide length set to between 8 and 24 amino acids and 
with the remaining constraints set to default, five peptide candi-
dates are found. These are shown on the peptide candidate results 
page, a portion of which is shown in Fig. 2. Note that the results 
presented in this chapter are those acquired at the time of writing 

3.2. Interpreting  
the Results

Fig. 2. The peptide candidates results page for transthyretin (TTHY_HUMAN), processed on November 24, 2008. Darker 
shading represents rows colored red, and lighter shading for green rows
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– as data continues to be submitted to GAPP, these results will 
most likely change.

On the screen, this table is displayed in color, with green rows 
showing peptide sequences that met the (default) threshold of 
50% of observations. The rows of peptides that do not meet this 
particular criterion are shown in red. Key features of this table 
include the number of observations, which is the number of dis-
crete datasets in GAPP to which this peptide was assigned for 
transthyretin, and the transition score (TS), which is a weighted 
sum of several key characteristics associated with each peptide. TS 
gives a quantitative measure of expected performance of that pep-
tide in MRM; it is an average because it accounts for all TS values, 
across all observations of the peptide in GAPP database.

The components included in the TS calculation include coef-
ficients to reflect both the peptide sequence, as well as the nature 
of the MS/MS spectral evidence for the peptide. For example, 
peptides with residues that are often post-transitionally modified, 
such as C and M are negatively weighted, and peptides with a 2+ 
or 3+ charge state are positively weighted over those with 1+. The 
finer details on how TS is derived, and the rationale for each coef-
ficient can be found in the documentation on the MRMaid web 
site and in the accompanying paper (7). For the purposes of using 
MRMaid, a TS value above approximately 28 is good, and above 
35 is excellent. As shown in Fig. 2, the peptide candidates are 
ranked according to average TS in the results table.

From the results for transthyretin, we see that 
GSPAINVAVHVFR looks like a good candidate, with the highest 
number of observations and highest transition score. Its retention 
time is predicted to be 23.8 min, given the chromatographic con-
ditions that were entered at time of search. For the purpose of 
this example, we therefore select GSPAINVAVHVFR for further 
analysis. By clicking on this sequence, you can retrieve the prod-
uct ion information, shown in Fig. 3.

In this particular example, MRMaid has predicted that y8, y6, 
and y4 should be suitable for monitoring. Of these, y8 in the m/z 
range 941.195 – 942.24 looks the best because it has a high num-
ber of observations and has a high mean signal intensity, with a 
relatively low signal standard deviation. A range of m/z values is 
given for y8, and the other ions in Fig. 2 because the fragment 
mass tolerance window is applied when assigning ion types. When 
the data was originally submitted to the GAPP pipeline, the reso-
lution of the MS/MS instrument was taken into account by 
applying mass tolerances to the peptide identification process. In 
this way, if a peak falls anywhere within the specified window 
(above and below the expected absolute value given the masses of 
the amino acids), then it is successfully assigned. Tolerances are 
an issue because the peak separation achieved is dependent on the 
type of mass spectrometer.
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In general, y-ions with a single positive charge are selected in 
preference to all other ion types for quantitative monitoring, par-
ticularly y8–y10. This trend is reflected in the many studies where 
experimentally validated transitions have been published; 
Anderson and Hunter’s paper is a good example (14). y-ions are 
chosen because they generally have higher signal intensity, so they 
can be distinguished easily from background noise, and being 1+ 
charge state, they are most suitable for the mass filtering in the 
triple quadrupole instrument – the MS instrument routinely used 
for MRM studies.

Fig. 3. Product ion information for peptide GSPAINVAVHVFR assigned to TTHY_HUMAN. By default, only b- and y- ions are 
shown in the fragment table, however the table can display all ion information by selecting from the options in the drop down 
menu in the top right corner of the table (indicated by an arrow). y-ions are colored red and b-ions in blue for both the frag-
ment summary table (top) and the spectrum schematic (bottom). All other ions are shown in black. The circle highlights the 
place where you can read off the observed precursor (peptide) ion m/z for individual experiments processed by GAPP
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Based on the output of MRMaid, the recommended transition 
for TTHY_HUMAN comprises the peptide ion (GSPAINVAVH-
VFR) with m/z of approximately 683.4, which is shown in 
MRMaid’s schematic spectra, and the fragment ion m/z between 
941.195 and 942.24 for the y8 ion, shown in the table (Fig. 3). 
Formally, the transition is written as “precursor m/z”/“product 
ion m/z” followed by the retention time, so if we take a mid-
range product ion value for y8, the transition for TTHY_HUMAN 
is: 683.4/941.5 at 23.8 min.

However, it is important to remember that this is a transition 
predicted computationally, so it should be validated before com-
mencing quantitation. Indeed, it is good practice to validate two 
or three of the transitions predicted by MRMaid per protein of 
interest. Nevertheless, using MRMaid or a similar tool is still a 
much more efficient way to choose transitions when compared 
with testing tens or hundreds of transitions manually as would be 
the case in the absence of computational assistance.

It is worth noting that MRMaid can be used for multiple transi-
tion design. Multiple transitions are transitions that require more 
than one fragment ion to be monitored to confirm the presence of 
the protein target in a sample. For example, in a complex biologi-
cal sample, such as whole serum, it may be necessary to monitor 
three or four product ions to be sure the target protein is present; 
this may be due to excessive noise in the spectrum. By looking 
down the list of fragments in the product ion view of MRMaid – as 
in Fig. 3 – you may select several suitable ions for the peptide, 
without requiring additional searches to be performed.

All the peptide and product ion information for each protein target 
may be downloaded for viewing as a spreadsheet. This is useful for 
keeping a record of the predicted candidates for performing valida-
tive MS, and for use when designing peptide surrogates. To down-
load the results, click on “Export in TSV” below the peptide table 
(Fig. 2). Your browser will then prompt you to save the file. The 
files are in TSV (tab separated values) format, which is a text-based 
format accepted by all major spreadsheets and data analysis pro-
grams. A video demonstrating the process for downloading results 
is available in the help area of the MRMaid website.

As the name suggests, MRMaid can be used to produce a shortlist 
of candidates for several protein targets to be monitored in an 
MRM experiment. However, MRMaid is essentially a single reac-
tion monitoring (SRM) design tool which can be used for MRM 
design by combining the results of several rounds of transition 
design. The key to this is the retention time associated with each 
peptide, which is calculated using an established algorithm (13) 
and is valid for peptides up to approximately 20 amino acids in 

3.3. Transition 
Validation

3.4. Using Fragment 
Ion Information  
for Selection  
of Multiple Transitions

3.5. Exporting Results 
as a Spreadsheet

3.6. MRMaid for MRM 
Transition Design
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length. Because these retention times are predicted, these may 
not be totally accurate, but by selecting peptides whose retention 
times are notably different makes designing an MRM experiment 
possible using MRMaid. We suggest downloading the results for 
each protein target, and combining the best candidates by cutting 
and pasting into a single spreadsheet. Retention time of each pep-
tide can then be used to order this shortlist and identify overlaps, 
before finally validating them in MS.

A frustrating experience when using MRMaid is when no transi-
tion candidates can be found for the protein of interest. A transition 
can only be predicted if at least one suitable peptide candidate can 
be found for the given protein. In some cases, there is no such 
peptide due to the nature of the protein sequence. Lack of suit-
able candidates can also occur if the MRMaid search criteria are 
set to a very high level of stringency – with many of the options 
selected. In this case, it is less likely that a suitable candidate will 
be found because the peptide must pass many criteria – one or 
more of which may rule it out. To avoid this happening, searches 
must be performed with different search settings to find the opti-
mum for the protein target.

MRMaid’s transition score (TS) is reliant on the availability 
of MS/MS spectral evidence in the GAPP database. Some pro-
teins may not have been identified by the GAPP pipeline at the 
time of search and as a result, no spectral evidence is available at 
that time. In this situation, MRMaid can still generate a shortlist 
of peptide candidates, but cannot predict product ion candidates. 
When this scenario occurs, the peptide results are shown as a 
table with blue rows, with a warning message, as shown in Fig 4.  
As one would expect, the TS values are considerably lower than 
those with a spectral evidence component available (compare to 
Fig. 2, for example), but may still be informative when used as a 

4. Notes

4.1. No Transitions 
Found

Fig. 4. List of theoretical peptide candidates returned when insufficient experimental evidence is available in GAPP data-
base. The shaded rows are colored blue on the website. These predictions are based on the default chromatography 
condition (Microflow method 1)
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relative comparison between the available candidates. The ulti-
mate solution to this problem is to upload data to GAPP from 
your own experiments to increase the available evidence for the 
prediction. A link on the left toolbar leads you through the pro-
cess of registering as a GAPP data submitter should you wish to 
do this.

Proteome bioinformatics is a growing field, so the range and 
quality of tools, such as those for MRM and quantitative pro-
teomics in general, are increasing rapidly. As such, MRMaid is not 
the only tool for designing transitions for MRM. Other include 
vendor-specific software packages, such as Applied Biosystem’s 
MIDAS™ (MRM-initiated detection and sequencing) Workflow 
Designer software (ABI, Foster City, CA), which calculates theo-
retical peptides and corresponding MRM transitions, then builds 
the MIDAS acquisition method (15) using a Q-TRAP (ABI) that 
iteratively cycles through scans to select suitable peptides.

TIQAM (Targeted Identification for Quantitative Analysis by 
MRM) (16) is one early example of a freely available tool for 
designing transitions, which applies a similar approach to MRMaid 
although TIQAM uses evidence from the PeptideAtlas repository 
(17), a system which is described elsewhere in this book. When 
no data is available, all theoretically possible proteotypic peptides 
are computed using physiochemical properties alone. Based on 
user preferences, transitions are generated for the peptide list. In 
a final step, MS/MS is performed and the results mapped on to 
the list of transition candidates.

TIQAM fundamentally differs from MRMaid because it usu-
ally includes a step where the user experimentally acquires their 
own MS/MS data to select suitable candidates from all possible 
transitions. In most cases, MRMaid is able to provide a shortlist of 
transitions without this step as transitions mined from existing MS/
MS evidence are ranked using the transition scoring algorithm. 
MRMaid is also distinct from TIQAM because it is a web-based 
service that does not need to be downloaded and installed locally.

Since developing MRMaid, there have been further addi-
tions to the field of automated transition design; newly available 
tools include: MRMer (18), skyline (19), MRM worksheet (20), 
and MaRiMba (21), each having a slightly different approach for 
predicting transition candidates. These tools are reviewed else-
where (22)

One of the drawbacks of using the Ensembl database (23) as the 
framework for the GAPP pipeline and database is that it contains 
multiple gene entries for some protein sequences. This can occa-
sionally cause a problem when using MRMaid, because in some 
rare cases both identifiers are picked up by the search; take 
Apolipoprotein-C-III (APOC3_HUMAN), for example, which can 
be mapped to both ENSG00000215755 and ENSG00000110245. 

4.2. Other Transition 
Design Tools

4.3. Ensembl 
Mappings
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MRMaid detects both Ensembl gene entries for this protein 
because PICR maps the single Swissprot id to two entries in 
Ensembl. In these cases, it is recommended that you view MRMaid’s 
predictions for both accession numbers to make sure all available 
results are accounted for.
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Chapter 14

OpenMS and TOPP: Open Source Software  
for LC-MS Data Analysis

Knut Reinert and Oliver Kohlbacher

Abstract

The automatic analysis of mass spectrometry data is becoming more and more important since 
increasingly larger datasets are readily available that cannot be evaluated manually. This has triggered the 
development of several open-source software libraries for the automatic analysis of such data. Among 
those is OpenMS together with TOPP (The OpenMS Proteomics Pipeline). OpenMS is a C++ library for 
rapid prototyping of complex algorithms for the analysis of mass spectrometry data. Based on the 
OpenMS library, TOPP provides a collection of tools for the most important tasks in proteomics analysis. 
The tight coupling of OpenMS and TOPP makes it easy to extend TOPP by adding new tools to 
the OpenMS library. We describe the overall concepts behind the software and illustrate its use with 
several examples.

Key words: Bioinformatics, Data analysis, Proteomics, Open-source software, Workflows

Mass spectrometry is an essential analytical technique for 
high-throughput analysis in proteomics and metabolomics, both 
of which produce large amounts of data usually not amenable for 
manual inspection. The development of new separation techniques, 
precise mass analyzers, and novel experimental protocols is a very 
active field of research which leads to new, complex experimental 
setups. Consequently, analysis of the data is currently often the 
bottleneck for experimental studies. Although software tools for 
many data analysis tasks are available today, they are often difficult 
to combine with each other or not flexible enough to allow for 
rapid prototyping of a new analysis workflow. Hence, there is a 
need for software systems that (a) allow developers to quickly 

1. Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
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implement novel algorithms and (b) to allow bioinformaticians 
and experimentalists to construct complex workflows using 
algorithmic components with welldescribed interfaces and 
functionality.

In this chapter, we describe software that addresses both 
points. First, OpenMS, which is a software framework for rapid 
application development in mass spectrometry. OpenMS has been 
designed to be portable, easy-to-use, and robust while offering a rich 
functionality ranging from basic data structures to sophisticated 
algorithms for data analysis. This has already been demonstrated 
in several studies. Second, we describe a set of tools for proteomics 
data analysis – TOPP, The OpenMS Proteomics Pipeline. TOPP 
provides a set of computational tools which can be easily combined 
into analysis pipelines even by nonexperts and can be used in 
proteomics workflows. These applications range from small utilities 
(file format conversion, peak picking) to wrapper applications for 
known applications (e.g. Mascot) to completely new algorithmic 
techniques for data reduction and analysis.

OpenMS is a C++ framework that includes basic data types (peak 
lists, two-dimensional HPLC-MS maps) as well as methods to 
manipulate and search in the data structures (e.g. iterate over the 
spectra in a map). In addition, it contains algorithmic components 
to process the data, including – among other things – algorithms 
for signal processing quantitation, and protein identification. It is 
easy for a C++ programmer to add functionality to OpenMS 
because it is well documented, adheres to coding conventions, 
and provides guidelines and tutorials for the programmer not 
acquainted with the framework.

However, for users not fluent in C++ or without a more 
formal software engineering background, this might pose a 
considerable hurdle possibly too high to clear. Here, TOPP comes 
into play. TOPP provides standalone tools for the most important 
algorithmic components. Hence, it is a tool for end users and 
developers of analysis pipelines in the lab. TOPP has standardized 
input and output formats using XML, and hence they can be 
easily linked. On top of this, OpenMS is designed to easily allow 
addition of new TOPP tools.

As a simple example, consider the problem of subtracting 
a baseline from an MS/MS spectrum. Using the algorithmic 
components in OpenMS, you can write the C++ program 
depicted in Fig. 1. The program loads the data in mzData 
format (1), then it defines a morphological filter (TopHatFilter), 

2. Concepts
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sets a parameter and applies it to the data in exp_raw. The result 
is stored in exp_filtered.

The functionality of this code is wrapped into a standalone 
TOPP tool BaselineFilter. This tool – as well as all other TOPP 
tools – can be configured via an XML file. This illustrates the 
basic idea of the TOPP/OpenMS combination. The result of the 
baseline filter is shown in Fig. 2. On the left, one can see a spec-
trum with a baseline, in the middle the same spectrum is depicted 
with the baseline subtracted.

Apart from the baseline filter, there are numerous other daily 
tasks that have been programmed in OpenMS and subsequently 
offered as a TOPP tools. Fig. 3 shows the current state of the 
TOPP package. Please refer to the OpenMS website (www.
OpenMS.de) for the most current release and the full list of tools 
in OpenMS.

TOPP also offers a convenient editor for parameters, which 
is called INIFileEditor. This allows convenient editing and 
storing of the XML based parameter sets. Taking all this 
into account, TOPP is ideal to quickly string together an 
analysis pipeline based on standard data formats and XML based 
configuration files.

RawMap exp_raw;
RawMap exp_filtered;

MzDataFile mzdata_file;

mzdata_file.load("../TEST/data.PeakPicker_test.mzData");

TopHatFilter th;
Param param;
param.setValue("struc_elem_length",1.0);
th.setParameters(param);

Fig. 1. C++ code piece to subtract a baseline from an MS/MS spectrum

Fig. 2. The figure shows a raw spectrum on the left, the result of baseline filtering in the middle, and peaks resulting from 
peak picking on the right (from (13)).

http://www.OpenMS.de
http://www.OpenMS.de
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In the following, we will go into more detail concerning some of 
the main aspects of TOPP.

While analyzing mass spectrometry data, a lot of problems arise 
early on, especially when handling the input. Different vendors 
still have proprietary data formats and also store different kinds of 
information. OpenMS and TOPP, therefore, put a lot of emphasis 
on standard data formats developed by the Human Proteome 
Organization’s Proteomics Standard Initiative (HUPO PSI, see 
http://www.psidev.info). Vendor-specific formats are not sup-
ported due to license restrictions; however, for all instrument 
vendors, software is readily available to convert the data into PSI 
formats. Fig. 4 shows the OpenMS code for converting between 
two standard formats. The TOPP tool FileConverter allows the 
user to do various conversions between formats.

While OpenMS and TOPP aim at automatic, high-throughput 
data analysis, it is still indispensable for researchers to visualize 
data and computational results. For this, TOPP offers the viewer/
editor TOPPView, which has two main goals. The first goal is to 
allow the user to browse through one- and two-dimensional 
MS data. For example, Fig. 5 shows a zoomed-in part of a one-
dimensional spectrum. The window on the right shows the two 
layers of data that can be individually selected for display, one 
layer depicting the raw data, the other picked peaks.

3. Methods

3.1. Data Management

3.2. Visualization  
and Data Analysis

Fig. 3. Some of the available TOPP modules. The list is being constantly expanded

http://www.psidev.info
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In Fig. 6, you can see a screenshot of a two-dimensional map; 
TOPPView allows zooming in and out, to navigate in the map, and 
– if needed – to project the two-dimensional information onto 

Int main(){

MzXMLFile mzxml;
MzDataFile mzdata;

// temporary data storage
MSExperiment<RawDataPoint1D> map;

// convert MzXML to MzData
mzxml.load("Tutorial_FileIO.mzXML",map);
mzdata.store("Tutorial_FileIO.mzData",map);

return 0;
} //end of main

Fig. 4. Code example for converting an mzXML file into an mzData file

Fig. 5. Screenshot of one-dimensional MS data. 
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the corresponding one-dimensional axes (retention time and mass 
over charge).

A second use of TOPPView is to actually apply TOPP 
components to the data visualized in the program. For example, 
the user can read a scan from a file, visualize it, and apply the 
TopHatFilter tool to it. He can then examine the result and after-
ward call the PeakPicker TOPP tool. In this way, the user can, for 
example, interactively explore optimal parameter settings which 
he can in turn store in a file for subsequent automatic analysis.

Peptide identification (either de novo or database driven) algorithms 
are probably among the best-known and most widely researched 
algorithms in the field of proteomics. The current commercial 
standard tools for this task are MASCOT (2) and SEQUEST (3). 
Over recent years, they have been supplemented by various 
tools of comparable performance that are free for academic use. 
Among these tools are X!Tandem (4), OMSSA (5), InsPecT (6), 
and Phenyx (7). A key problem with using these tools is the 
very different interface. Each tool accepts different input formats, 

3.3. Peptide 
Identification

Fig. 6. Visualization of a two-dimensional map. In the lower left part is the plot in m/z and retention time dimension. To 
the right and on the top, the cumulative projections are depicted
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requires different parameters, and has different output formats. 
This requires a considerable effort when replacing one identifica-
tion tool with another or adding an identification tool when more 
than one is necessary.

To simplify this task, TOPP implements unified adapters for 
various database search tools. Currently, TOPP offers adapters for 
MASCOT, SEQUEST, InsPecT, X!Tandem, OMSSA, and PepNovo. 
The adapter translates the query spectra into the tool-specific input 
formats, runs the search engine (which is not part of TOPP and 
needs to be installed and licensed separately), retrieves the output, 
and translates it into a common file format. Search engines are 
thus encapsulated in these adapters and can be easily exchanged.

In addition, TOPP offers a consensus identification engine 
that can take the results of different search engines and combine 
them, thus increasing the identification rate. The following figure 
(Fig. 7) shows how this could be set up using standard XML data 
formats.

Another central part of OpenMS and TOPP is the differential 
analysis of protein expression. Most differential analysis methods 
today share the following steps: first, a separation of the proteins 
or peptides, then the quantification of single charge variants and 
a normalization of the samples with respect to intensity. This is 
usually followed by relative quantification using mass spectrometry, 
which requires a preceding matching of corresponding peptides 
as well as their identification. Fig. 8 shows a three-dimensional 
view of parts of two MS measurements. The peptides are separated 
through different retention time and mass over charge. The task 
is to detect the individual peptides – which we call features (four 
are circled in each map) – then assign the corresponding ones in 
each map (depicted by the arrows between the circles), and finally 
to compare their normalized intensities.

Feature detection is a central concept in OpenMS. As noted 
earlier, a feature is a signal in an HPLC-MS map which is caused 
by a peptide ion. OpenMS includes several algorithms for 
the detection of peptide features in HPLC-MS data, tailored for 
datasets of different mass resolutions and measured on various 
instrument types.

3.4. Quantification

Fig. 7. Dataflow of an mzData file through two ID engines with subsequent combination of the results to increase confi-
dence in the identification
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After feature detection, the next important step in a typical 
analysis workflow is the combination of results from multiple 
experiments, for example, to improve confidence in the obtained 
measurements or to compare results from different samples. To this 
end, a suitable mapping or alignment between the datasets needs 
to be established. The alignment has to correct for random and 
systematic variations in the observed elution time and mass-to-charge 
ratio that are inevitable in experimental datasets. OpenMS offers 
algorithms to align multiple experiments and to match the 
corresponding ion species across many samples. A novel and 
generic algorithm has been developed to correct for the variation 
of retention time and mass-to-charge dimensions between two maps. 
It uses an adapted pose-clustering approach (8) to efficiently 
superimpose raw maps as well as feature maps.

This sort of analysis readily translates into a simple pipeline 
built with TOPP tools (Fig. 9). Two raw data maps are given to 
the FeatureFinder tool, which identifies, and quantifies the pep-
tidic charge variants and stores the results in two feature maps 
using the XML-based format featureXML. Then distortions in 

Fig. 8. Label-free quantification requires an accurate identification and mapping of features

Fig. 9. A simple workflow for label-free quantification based on TOPP tools
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retention time are accounted for and corresponding features in 
the two measurements are mapped onto each other using the 
FeatureLinker tool in TOPP and the resulting pairs are stored in 
another XML-based format (consensusXML). Similar pipelines can 
be constructed if, for example, repeated measurements need to be 
combined to increase the statistical significance of the result.

Just how easy it is to string together different TOPP modules 
can also be seen in the script depicted in Fig. 10, which is a work-
flow used in a study to quantify the absolute content of myo-
globin in human serum (for more details see (9,15)). The script 
first cuts out relevant portions of the maps, and then it identifies 
features in each map. Finally, a regression analysis (AdditiveSeries) 
determines the concentration of the myoglobin.

 1. Installation. Since many potential users will be relying on the 
Microsoft Windows platform, we provide automated install-
ers for precompiled binaries for Microsoft Windows. A pack-
age installer is available for MacOS X. The installation of these 
is self-explanatory; nevertheless, there is additional assistance 
available on the OpenMS webpage. Installation of the full 
package including the source code is a bit more involved and 
is sketched below for Linux, where no binary distribution is 
available.

  OpenMS and TOPP depend on a number of other Open 
Source libraries, like ANDI/MS with NetCDF (for platform-
independent data storage). The GNU scientific library (GSL, 
see http://www.gnu.org/software/gsl/), the CGAL library 

4.  Notes

for i in `seq 1 32`; do
# Truncate raw data maps to save time
FileFilter -ini AddSeries.ini -instance $i 
# Collect peptde feature
FeatureFinder -ini AddSeries.ini -instance $i

done

# Compute optimal matching of the maps
MapAligner –ini AddSeries.ini 

# Find corresponding features in all maps
FeatureLinker –ini AddSeries.ini

# Compute final concentration
AdditiveSeries -ini AddSeries.ini 

Fig. 10. Code for additive series analysis pipeline

http://www.gnu.org/software/gsl/
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for geometric algorithms (http://www.cgal.org/), XERCES-C 
for parsing XML (http://xerces.apache.org/xerces-c/), the 
libSVM (http://xerces.apache.org/xerces-c/), the SeqAn 
library for sequence analysis (http://www.seqan.de/) as 
well as Qt (http://trolltech.com/products/qt/) for 
visualization and mySQL database access. These support 
libraries are bundled together with the OpenMS source 
code. Building and installing OpenMS thus requires the 
following steps:
(a) Download the source code archive from the OpenMS 

website and unpack to an arbitrary directory. Files will 
reside in a subdirectory named OpenMS.

(b) Change directory to OpenMS/contrib.
(c) Execute the commands “./configure” and “make” to 

build the contributed libraries.
(d) Change directory to OpenMS/source.
(e) Issue the commands “./configure”, “make”, and “make 

install” to build the OpenMS libraries.
(f) Add the path to the dynamic library files (…OpenMS/

lib) to the LD_LIBRARY_PATH environment variable.
  Once OpenMS is installed and compiled, it is easy to build 

the TOPP tools:
(a) Change the directory to <path_to_OpenMS>/source/
(b) Write “make TOPP”
(c) To test the tools, write “make TOPPtest”

 2. Support and Assistance. If you have problems with OpenMS 
or TOPP, you should first read the manual and check whether it 
can solve your problem. If not, there is a mailing list to which 
every user may subscribe. If you find a bug in OpenMS or TOPP, 
you can use a bug tracker to submit it to the OpenMS develop-
ment team, who will address the issue as soon as possible.

 3. Integration with other tools. With the establishment of 
additional standardized (XML-based) file formats, the 
interoperability of software packages from diverse sources 
will increase. mzML and analysisXML from the Proteomics 
Standards Initiative of the HUPO are important milestones 
in that respect. This will also allow the integration of TOPP 
with other software packages. The Trans Proteomics Pipeline 
(TPP) (10), ProteoWizard (11), and SuperHirn (12) are just 
some examples of recent alternative projects for promising 
tools in the area of proteomics data analysis. Joint file formats 
will render the integration of these tools from different sources 
virtually seamless allowing the user to profit from up-to-date 
developments from a wide range of groups worldwide.

http://www.cgal.org/
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/
http://www.seqan.de/
http://trolltech.com/products/qt/
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Chapter 15

Trans-Proteomic Pipeline: A Pipeline for Proteomic Analysis

Patrick G.A. Pedrioli

Abstract

Mass spectrometry has quickly become an essential tool in molecular biology laboratories. Here, we 
describe the Trans-Proteomic Pipeline, a collection of software tools, to facilitate the analysis, exchange, 
and comparison of MS data. The pipeline is instrument-independent and supports most commonly used 
proteomics workflows, including quantitative applications such as ICAT, iTRAQ, and SILAC. Importantly, 
the pipeline uses open, standard data formats and calculates accurate estimates of sensitivity and error rates, 
thus allowing for meaningful data exchange. In this chapter, we will introduce the various components of 
the pipeline in the context of three typical proteomic use-case scenarios.

Key words: TPP, Trans-Proteomic Pipeline, mzXML, PeptideProphet, ProteinProphet, XPRESS, 
ASAPRatio, Libra, Pep3D, QualScore, Proteomics data analysis, ICAT, iTRAQ

The Trans-Proteomic Pipeline (TPP) is an open source project of 
the Seattle Proteome Center (SPC), which includes valuable con-
tributions from external collaborators such as the Fred Hutchinson 
Cancer Research Center, Insilicos Life Science Software, and 
LabKey Software (see Note 1). The TPP aims at providing an 
easy way to analyze, compare, publish, and exchange proteomics 
data in an MS-independent, standardized and reproducible fash-
ion. To achieve these goals, it leverages open data formats and 
accurate sensitivity/error rates calculation for peptide and protein 
assignments. The TPP includes multiple programs which perform 
distinct tasks. These components can be arranged according to 
the analytical workflow requirements, to build a pipeline in 
which the output from one is taken as the input for the next one. 
The TPP relies on, and integrates in its workflow, external search 
engines (e.g., SEQUEST (1), MASCOT (2), Phenyx (3), Comet 

1. Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_15, © Humana Press, a part of Springer Science+Business Media, LLC 2010
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(4), ProbID (5), and X!Tandem (6)) while focusing on tasks 
other than the spectral matching step itself.

The major TPP components are represented in Fig. 1. First, 
the raw MS-generated data are converted into a standardized, 
open, XML-based representation. This helps maintaining com-
patibility between different MS instruments and facilitating raw 
data exchange by removing the requirement of corresponding 
acquisition software to read them. Although the TPP native 
format for raw MS data is mzXML (7), mzData and mzML 
formats (8) are also supported. After the database search, 
Peptide- and Protein-Prophet (9, 10) assign probabilities to the 
peptide and protein assignments, respectively. Corresponding 
sensitivity and error rates are also calculated, enabling mean-
ingful comparison of results between multiple experiments and 
laboratories. The “Prophets” store their analyses in two open 
formats called pepXML and protXML. XPRESS (11), ASAPRatio 
(12), and Libra can be inserted in the pipeline flow to analyze 
different types of quantitative proteomic experiments. Pep3D 
(13) visualizes microcapillary reverse-phase HPLC electrospray 
tandem mass spectrometry (mLC-ESI-MS-MS/MS) data as a 
two-dimensional density plot, providing a simple method to eval-
uate and troubleshoot MS data acquisition and analysis. QualScore 
identifies high-quality, unassigned fragmentation spectra and 

Standard input

mzXML

Peptide assignment

SEQUEST,
MASCOT,

COMET, ProbID,
X!Tandem

Validation

PeptideProphet

Protein assign-
ment and valida-

tion
ProteinProphet

Quantification

XPRESS,
ASAPRatio,

Libra

Spectral quality 
assesment

QualScore

RAW MS data Interpretation

Fig. 1. Simplified TPP software components overview. MS instrument output is first converted to the uniform mzXML 
format. Fragmentation spectra are then matched to putative peptides by a database search engine. Next, PeptideProphet 
calculates sensitivity and error rates of these putative assignments. ProteinProphet uses the output from PeptideProphet 
to derive the list of proteins most likely to have been present in the original sample. In the case of quantitative experi-
ments, XPRESS, ASAPRatio, and Libra calculate the relative abundance of peptides and proteins. Finally, high-quality 
unassigned fragmentation spectra are identified and extracted by QualScore so that they can be re-searched in a second, 
more comprehensive, database search
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isolates them so that they can be searched during a second, more 
comprehensive, protein database search. Finally, Pep- and Prot-XML 
Viewers provide a way to visualize, filter, explore, and export the 
results of the TPP analysis.

The Methods section will discuss how to set up and start a 
TPP analysis for three typical proteomic data analysis workflows: 
(1) Identification of proteins from a low complexity sample; (2) 
Identification and quantification of proteins from multi-fraction 
isotopically labeled samples (e.g., ICAT); and (3) Identification 
and quantification of proteins based on isobaric reporter ions 
(e.g., iTRAQ). The end of the Methods section will also describe 
how to validate and read the output of the tools that compose 
the TPP.

Commands to be entered at the DOS prompt (see Notes 2 and 3) 
are indicated with the following style:

> command.exe parameter1 parameter2 file1 file2

A command to be entered in a Unix, or Cygwin shell will use the 
following style:

$ command parameter1 parameter2 file1 file2

> and $ indicate the beginning of the line in MS-DOS and the 
Unix shell respectively (i.e., commands printed over multiple lines 
that do not start with either the > or $ sign, should be entered as 
one single line). > and $ should be omitted when executing the 
command.

XML elements are indicated with the following style:

<Element attribute=”This is an XML element with 
one attribute”>Important parts are in bold </
Element>

TPP_ROOT refers to the TPP root installation directory 
(i.e., the one under which the TPP tools are installed) and varies 
from installation to installation. Its exact location can be found by 
typing:

$ which xinteract

which returns the location of the TPP component xinteract (e.g., 
/usr/local/tpp/bin/xinteract ). The TPP_ROOT will 
be equal to the path up to, and not including, the bin directory. 
Whenever you see TPP_ROOT in this chapter, remember to sub-
stitute it for its actual value (e.g., /usr/local/tpp/).

2. Materials

2.1. Stylistic 
Conventions
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We will assume the existence of the following directory tree:

/mnt/Data/

|___ Databases/ Fasta protein databases

|___ MMB/ Data from user MMB

|___ Yeast_IP/ Analysis directory for the first workflow

|___ Yeast_ICAT/ Analysis directory for the second workflow

|___ Yeast_iTRAQ/ Analysis directory for the third workflow

This directory organization was only chosen for our examples and 
is not a TPP requirement.

While the Windows version of the pipeline also has a graphical 
user interface called Petunia, all versions can be run from the 
command line. Although this latter method might at first sound 
intimidating, it is the most general and flexible one and will there-
fore be discussed in this chapter. In addition to the TPP specific 
ones, some Unix commands will be used in this chapter. Here is 
a short reference list for your convenience:

man <command> Displays the manual page for command.

mkdir <dir> Makes a new directory called dir.

cp <src> <dest> Copies source file to destination file.

cd <dir> Changes directory to dir.

ls Lists the content of the current directory.

sudo <command> Executes command with super-user  
(administrator) privileges.

Pattern matching

* The asterisk wildcard is used to match any 
string (e.g., ls *.mzXML would list all files 
with extension .mzXML present in the 
current directory)

  Internet sites:
  http://tools.proteomecenter.org/wiki/index.php?title= 

Main_Page
  Seattle Proteome Center Software Tools Wiki. This is the 

official wiki page of the SPC and discusses in great detail the 
TPP as well as its related tools.

  http://www.proteomecenter.org
  Main site of the SPC. Here, you will find information ranging 

from the general description of the SPC organization to the 
announcement of training courses for the TPP.

  http://sourceforge.net/projects/sashimi

2.2. Command Line 
Essentials

2.3. Useful Links 
TPP-Related Links

http://tools.proteomecenter.org/wiki/index.php?title=Main_Page
http://tools.proteomecenter.org/wiki/index.php?title=Main_Page
http://www.proteomecenter.org
http://sourceforge.net/projects/sashimi
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  This site hosts all the code from the TPP.
  https://www.labkey.org
  Home of LabKey Software, the makers of CPAS, is a web-based 

system for managing, analyzing, and sharing high volumes of 
tandem mass spectrometry data that incorporates parts of the 
TPP.

  Mailing lists:
  http://groups.google.com/group/spctools-discuss
  A moderate-volume mailing list used for TPP related discus-

sions ranging from installation to data processing. If you have 
any question regarding the TPP, post it here.

  http://groups.google.com/group/spctools-announce
  A low-volume mailing list used to announce new develop-

ments in SPC proteomics tools.

Any Pentium, or higher, computer with at least 512 MB of RAM 
can run the TPP software. Clearly, the hardware requirements 
will scale with the analytical ones. Therefore, in a production 
environment, a more realistic setup will comprise a computer 
cluster to perform the database searches and TPP analyses, a dedi-
cated web-server to serve the results and a RAID server to store 
the data and results of the analyses.

The TPP is compatible with *nix, Windows and Mac (although 
only the first two are officially supported). This tutorial was tested 
under Ubuntu Server Edition, however, the same commands will 
also work under other operating systems.

The TPP stable source code is available at “http://sourceforge.
net/projects/sashimi/”. This tutorial was tested on version 
4-0-1. The most recent development version of the TPP can 
be obtained via anonymous Subversion (SVN) checkout:  
$ svn co https://sashimi.svn.sourceforge.net/svnroot/sashimi /
trunk/trans_proteomic_pipeline sashimi

The TPP requires a web-server with read and write access (see 
Note 4) to the analysis directories and Server Side Includes (SSI) 
enabled (see Note 5). By default, the TPP is set to use Apache 
(“http://httpd.apache.org”). GNUPlot version 4.2 or higher is 
also required (“http://www.gnuplot.info/”), as well as an XSLT 
Processor such as xsltproc (“http://xmlsoft.org/XSLT/xslt-
proc2.html”) or xalan (“http://xalan.apache.org”). To build the 
TPP from the source code, the gnu compilers, or Microsoft Visual 
Studio, as well as development versions of the following libraries 
will also be required: boost (“http://www.boost.org”); xerces-c 
(“http://xerces.apache.org/xerces-c”); libgd (“http://www.
libgd.org”); libpng (“http://www.libpng.org/”); and zlib 
(“http://www.zlib.net/”).

2.4. Hardware  
and Operating System 
Requirements

2.5. Getting the TPP

2.6. Software 
Dependencies

https://www.labkey.org
http://groups.google.com/group/spctools-discuss
http://groups.google.com/group/spctools-announce
http://sourceforge.net/projects/sashimi/
http://sourceforge.net/projects/sashimi/
https://sashimi.svn.sourceforge.net/svnroot/sashimi
http://httpd.apache.org
http://www.gnuplot.info/
http://xmlsoft.org/XSLT/xsltproc2.html
http://xmlsoft.org/XSLT/xsltproc2.html
http://xalan.apache.org
http://www.boost.org
http://xerces.apache.org/xerces-c
http://www.libgd.org
http://www.libgd.org
http://www.libpng.org/
http://www.zlib.net/
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Detailed compilation and installation instructions are included in 
the TPP distribution. Additional information can also be found 
on the SPC wiki page (http://tools.proteomecenter.org/wiki/
index.php?title=Main_Page).

Briefly: 

Under linux, create a file called Makefile.config.incl in the src 
directory of the TPP. Use this file to redefine TPP_ROOT (the 
default setting is: TPP_ROOT=/usr/local/tpp/); TPP_WEB 
(the default setting is: TPP_WEB=/tpp/); and XSLT_PROC 
(the default setting is: XSLT_PROC=/usr/bin/xsltproc) values. 
In the src directory, enter the following commands:

$ make configure
$ make all
$ sudo make install

Under Windows, move into the src directory of the TPP and type:

$ make windows
$ make install-windows

In this first workflow, it is assumed that the following proteomic 
experiment was performed:

Grow, harvest, and lyse a yeast culture expressing an ●●

endogenously tagged protein.
Immuno-precipitate the tagged protein and its interactors.●●

Reduce and carboxamidomethylate cysteine residues with ●●

iodoacetamide.
Digest the immuno-precipitated proteins with trypsin.●●

Analyze the peptides using ●● mLC-ESI-MS-MS/MS.

This strategy will be used to answer the question: “Which 
proteins interact with the tagged protein?” (see Note 6). The list 
of proteins most likely to have been present in the immuno-
precipitated sample with their associated probabilities and esti-
mated sensitivity and error rates will be derived.

The goal of this step is to convert the native output of the MS 
instrument into a vendor neutral format that can be read by the 
TPP software tools (i.e., mzXML (7), mzData, or mzML (8)).

 1. Instrument-specific converters to the mzXML (see Note 7) 
format can be found as part of the standard TPP distribution 
under src/mzXML/converters/. Since these converters 
often rely on proprietary software libraries provided by the 

2.7. Building  
and Installing the TPP  
from Source

3. Methods

3.1. Processing MS 
Data Using the TPP

3.1.1. Workflow 1: Protein 
Identification from a Low 
Complexity Sample

3.1.1.1. Converting the 
RAW Output of MS 
Instruments  
to an Open Representation

http://tools.proteomecenter.org/wiki/index.php?title=Main_Page
http://tools.proteomecenter.org/wiki/index.php?title=Main_Page
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MS instrument vendors, their use is generally restricted to 
computers that have such software installed. The choice of the 
appropriate converter depends on the format of the MS data:

File format Converter synopsis

Thermofinnigan  
Xcalibur  
(see Notes 8 and 9)

ReAdW.exe [OPTIONS] SOURCE [OUTPUT] 
example: > ReAdW.exe -c D:\Data\Xcalibur-data.RAW

Waters MassLynx  
(see Notes 10 and 9)

massWolf.exe [OPTIONS] SOURCE [OUTPUT] 
example: > massWolf.exe -c D:\Data\MassLynx-data-dir.raw\

ABI/MDS Sciex analyst  
(see Notes 11 and 9)

mzWiff.exe [OPTIONS] SOURCE [OUTPUT] 
example: > mzWiff.exe -c D:\Data\Analyst-data.wiff

Bruker (see Note 12) CompassXport.exe -a SOURCE –o DESTINATION 
example: > CompassXport.exe –a D:\Data\Bruker-data.yep 
–o D:\Data\Bruker-data.mzXML

SEQUEST .dta  
(see Notes 13 and 9)

dta2mzxml [OPTIONS] FILE 
example: $ dta2mzxml -recount *.dta

 2. Once the conversion is completed, transfer the mzXML file 
to the computer that will perform the TPP analysis.
Create a directory, hereafter referred to as the analysis directory:
$ mkdir /mnt/Data/MMB/Yeast_IP

  Now copy the mzXML file (for the purpose of this tutorial we will 
assume it is called yeast_ip.mzXML) into the analysis directory.

At the end of this step, the MS data will have been converted into 
the mzXML representation and will have been stored in a new 
directory that will contain all results of the analysis.

The goal of this step is to assign peptide sequences to the frag-
mentation spectra represented in the mzXML file.

 1. The TPP supports multiple database search engines (e.g., 
SEQUEST (1), MASCOT (2), COMET (4), ProbID (5), 
and X!Tandem (6)). Here, we will focus on X!Tandem (see 
Note 14) with the k-score scoring plug-in developed by the 
Fred Hutch Cancer Research Center (14), because it is 
included in recent releases of the pipeline. X!Tandem behav-
ior is controled using three files (see Notes 15 and 16):

default_input.
xml

Contains default settings for X!Tandem search para-
meters. These values can be overridden in input.xml.

taxonomy.xml Instructs the search engine on where to find the protein 
sequence databases.

input.xml Provides a way to override defaults specified in default_
input.xml. This is especially practical for sample 
specific parameters such as the protein sequence 
database to search and static/variable amino-acid 
modifications (see Note 17).

3.1.1.2. Protein Database 
Search
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 2. In the TPP, these files are located in the TPP_ROOT/bin/ 
directory. The default_input.xml file is called isb_default_input_
kscore.xml and has been fine tuned to give the best performances 
when using the k-score version of X!Tandem in conjunction 
with the TPP (see Note 18). For the scope of this tutorial, we 
will not need to edit this file. However, please note that it is 
human readable and can be modified using any text editor.

 3. In the same directory, there is also a file called taxonomy.xml. 
Using a text editor, look for the following lines:
<taxon label=”database_identifier_A”>
 <file format=”peptide” URL=”full_path_to_ 
database_A”/>

 They specify the location of the protein sequence database 
(second line) and a unique identifier associated with it (first 
line). Edit them to point to the protein sequence database to 
be searched. In our example we will use a yeast database:
<taxon label=”yeast_nci_20070223”>
 <file format=”peptide” URL=”/mnt/Data/Databases/
yeast.nci.20070223.fasta”/>

Save the changes and close the file (see Notes 19 and 20).
 4. Finally, always in the same directory, there is a file, corresponding to 

input.xml, called “tandem_params.xml”. The first time X!Tandem 
is run after installing the TPP, all instances of “_DEFAULT_INPUT_
LOCATION_” should be replaced with “TPP_ROOT/bin/”. This 
will allow X!Tandem to locate the default_input.xml and taxonomy.
xml files you want to use (see Note 21).

 5. Copy tandem_params.xml into the analysis directory:
 $ cp TPP_ROOT/bin/tandem_params.xml /mnt/Data/
MMB/Yeast_IP/

 6. Now edit the copy to match the desired search criteria. Start 
by specifying that the database associated with the identifier 
yeast_nci_20070223, as defined in the taxonomy.xml file, 
should be searched. Replace:
 <note type=”input” label=”protein, taxon”> 
protein_database</note>

with:
 <note type=”input” label=”protein, taxon”>yeast_
nci_20070223</note>

 7. Next, let the search engine know that cysteine residues are carbox-
amidomethylated. This is equivalent to adding a static modification 
of 57.021464 Da, such that the monoisotopic mass of cysteine used 
by the search engine will be 160.03065 instead of 103.00919 Da. 
X!Tandem specifies static modifications with this element:
 <note type=”input” label=”residue, modifica-
tion mass”></note>
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 The general syntax for a modification is <delta_mass>@<residue> 
(see Note 22). Therefore, change this line to:
 <note type=”input” label=”residue, modification 
mass”>57.021464@C</note>

 8. Methionine oxidation is a common artifact introduced dur-
ing sample preparation. To account for it, specify variable 
methionine oxidation so that the search engine will test two 
masses for every methionine residue. Variable modifications 
are specified with this element:
 <note type=”input” label=”residue, potential 
modification mass”></note>

using the same syntax as for a static modification:
 <note type=”input” label=”residue, potential 
modification mass”>15.994915@M</note>

 9. Finally, specify the name of the input (i.e., the mzXML file to 
be searched) and output (i.e., the file where X!Tandem will 
save the results) files by changing these two elements:
 <note type=”input” label=”spectrum, path”>full_
mzXML_filepath</note>
 <note type=”input” label=”output, path”>full_
tandem_output_path</note>

to:
 <note type=”input” label=”spectrum, path”> 
yeast_ip.mzXML  </note>
 <note type=”input” label=”output, path”> 
yeast_ip.xtan.xml</note>

 10. Save the changes and close the file (see Note 23).
 11. Move into the analysis directory:

$ cd /mnt/Data/MMB/Yeast_IP/

and start the search (see Note 24):
$ tandem.exe tandem_params.xml

At the end of this step, a database search against a yeast protein 
sequence database, using a static modification of 57.021464 Da at 
cysteine and a variable modification of 15.994915 Da at methion-
ine residues will have been started. The MS/MS scans to be 
searched will have been extracted from the file called yeast_ip.
mzXML and the results will have been stored in a file called yeast_
ip.xtan.xml

The goal of this step is to assign probability values to the peptide 
and protein assignments made during the previous step.

 1. The X!Tandem search will have created “yeast_ip.xtan.xml” 
in the analysis directory (see Note 25), which needs to be 
converted into the TPP pepXML format (see Note 26):

3.1.1.3. Calculating 
Probabilities for Peptide 
and Protein Assignments
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 $ Tandem2XML yeast_ip.xtan.xml yeast_ip_raw.
pep.xml

  This instructs Tandem2XML to extract the information 
required by the TPP components and to store it in a file called 
yeast_ip_raw.pep.xml. Using a standardized representation 
allows the TPP to deal with different search engines in a con-
sistent manner.

 2. At this point, the following programs need to be run:

InteractParser Combines results from multiple searches  
(e.g. from multi-fraction samples, or 
repeat runs), into a single pepXML.

PeptideProphetParser Runs PeptideProphet (9).

RefreshParser Extracts a list of all proteins corresponding 
to the identified peptides.

ProteinProphet Runs ProteinProphet (10).

The TPP wrapper application xinteract (see Note 27) takes care of 
sequentially launching these tools. Start it with the following 
command: 

$ xinteract –Op –Nyeast_ip.pep.xml yeast_ip_raw.
pep.xml “

–Op” and “–Nyeast_ip.pep.xml” instruct xinteract to run 
ProteinProphet (PeptideProphet is run by default) and to save the 
results in a file called “yeast_ip.pep.xml” respectively.

At the end of this first workflow the probabilities, as well as the 
estimated sensitivity and error rates, for each identified peptide will 
have been calculated. These will, in turn, have been used to derive 
the list of proteins, with their corresponding probabilities, most 
likely to have been present in the original sample. We will further 
discuss the interpretation of these results in Subheading 3.2.

In this second workflow, it is assumed that the following pro-
teomic experiment was performed:

Harvest and lyse two yeast cultures grown under different ●●

conditions. Hereafter referred to as yeast_A and yeast_B.
Reduce and label the protein samples with acid cleavable ●●

ICAT reagent.
Combine yeast_A and yeast_B and digest the resulting mix-●●

ture (yeast_A_B) with trypsin.
Enrich for ICAT labeled peptides.●●

Fractionate the digested sample using SCX cation exchange ●●

chromatography into 5 fractions (i.e., yeast_A_B_1, 
yeast_A_B_2, … , yeast_A_B_5).
Analyze the 5 fractions using ●● mLC-ESI-MS-MS/MS.

3.1.2.  Workflow 2:  
Protein Identification  
and Quantification Based 
on Elution Profiles  
in Multi-Fraction Samples
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This strategy will be used to answer the question: “Which pro-
teins are up-/down-regulated in condition A versus condition 
B?”. The list of proteins most likely to have been present in both 
samples with their associated probabilities; estimated sensitivity 
and error rates; and relative abundances will be derived.

 1. As with the first workflow, start by converting the native out-
put from the MS instrument into mzXML as described in 
Subheading “Converting the RAW output of MS instruments 
to an open representation”.

 2. Create an analysis directory and copy all mzXML files (i.e., 
yeast_A_B_1.mzXML, … , yeast_A_B_5.mzXML) in it:

  $ mkdir /mnt/Data/MMB/Yeast_ICAT/

 1. Copy tandem_params.xml from the TPP_ROOT/bin direc-
tory into the analysis directory (make sure all instances of “_
DEFAULT_INPUT_LOCATION_” have been substituted as 
described in Subheading “Protein database search.”):

  $ cp TPP_ROOT/bin/tandem_params.xml /mnt/Data 
/MMB/Yeast_ICAT/tandem_params_A_B_1.xml

  Notice that the name was changed while copying the file. 
This is connected to the fact that multiple mzXML files are 
being searched and X!Tandem requires one tandem_params.
xml file for each one of them.

 2. Edit tandem_params_A_B_1.xml to match the desired search 
criteria.

 3. Let the search engine know that cysteine residues have been 
labeled with acid cleavable ICAT reagent (see Note 28). 
Specify a static modification at cysteine residues correspond-
ing to the light reagent (i.e., 227.13 Da) and a variable modi-
fication corresponding to the mass difference between the 
heavy (i.e., 236.14 Da) and light reagents:

  <note type=”input” label=”residue, modifica-
tion mass”>227.13@C</note>

  <note type=”input” label=”residue, potential 
modification mass”>9.01@C, 15.994915@M</note>

 4. Finally, indicate which mzXML file to search and where to 
store the results:

  <note type=”input” label=”spectrum, path”> 
yeast_A_B_1.mzXML</note>

  <note type=”input” label=”output, path”> 
yeast_A_B_1.xtan.xml</note>

 5. Save this file, but do not close it.
 6. Repeat step 4 by specifying the next SCX fraction (i.e., 

yeast_A_B_2 as input and output files).

3.1.2.1. Converting  
the Files and Preparing  
the Analysis Directory

3.1.2.2. Adjusting 
X!Tandem Input 
Parameters Files
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 7. Save this file as “tandem_params_A_B_2.xml”.
 8. Repeat steps 4–7 until one tandem_params file has been cre-

ated for each fraction to be analyzed (see Note 29).
 9. All files are now ready to start the searches (see Notes 30 

and 31):
  $ tandem.exe tandem_params_A_B_1.xml; tandem.

exe tandem_params_A_B_2.xml; tandem.exe tan-
dem_params_A_B_3.xml; tandem.exe tandem_params_ 
A_B_4.xml; tandem.exe tandem_params_A_B_5.xml

 1. Convert X!Tandem output into the TPP input format (see 
Note 32):

  $ Tandem2XML yeast_A_B_1.xtan.xml yeast_A_B_1_
raw.pep.xml

  $ Tandem2XML 

  yeast_A_B_2.xtan.xml yeast_A_B_2_raw.pep.xml

  $ Tandem2XML yeast_A_B_3.xtan.xml 

  yeast_A_B_3_raw.pep.xml

  $ Tandem2XML yeast_A_B_4.xtan.xml 

  yeast_A_B_4_raw.pep.xml

  $ Tandem2XML yeast_A_B_5.xtan.xml yeast_A_B_5_
raw.pep.xml

 2. As in the simple case of the first workflow, Peptide- and 
Protein-Prophet will be run. Additionally, xinteract will be 
instructed to execute components responsible for ICAT 
quantification. The TPP ships with two such programs: 
XPRESS (started with the command line option –X) and 
ASAPRatio (started with the command line option –A). The 
programs are independent from each other and it is up to the 
user to decide which one to use. In fact, xinteract can also be 
instructed to run them both in parallel (see Note 33):

  $ xinteract –Op –X –A -Nyeast_A_B.pep.xml 
*raw.pep.xml

At the end of this second workflow the probabilities, as well as the 
estimated sensitivity and error rates, for each identified peptide 
will have been calculated. These will, in turn, have been used to 
derive the list of proteins, with their corresponding probabilities, 
most likely to have been present in the original sample. Finally, 
relative protein abundances in samples yeast_A and yeast_B will 
have been calculated using two independent approaches.

In this third and last workflow, it is assumed that the following 
proteomic experiment was performed:

3.1.2.3. Running XPRESS  
or ASAPratio from Xinteract

3.1.3. Workflow 3: Protein 
Identification  
and Quantification Based 
on MS2 Reporter Ions
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Grow, harvest and lyse four yeast cultures under four differ-●●

ent growth conditions. Hereafter referred to as yeast_A, 
yeast_B , yeast_C and yeast_D.
Digest the labeled samples with trypsin.●●

Label the peptides with iTRAQ reagents.●●

Combine the four samples.●●

Analyze the resulting sample (we will call it yeast_iTRAQ) ●●

using mLC-ESI-MS-MS/MS.

This strategy will be used to answer the question: “How are pro-
tein expression levels affected by the four different growth condi-
tions?”. The list of proteins most likely to have been present in 
the samples with their associated probabilities; estimated sensitivity 
and error rates; and relative abundances will be derived.

 1. As for the first workflow, start by converting the native out-
put from the MS instrument into mzXML as described in 
Subheading “Converting the RAW output of MS instruments 
to an open representation”.

 2. Create an analysis directory and copy all mzXML files in it:

  $ mkdir /mnt/Data/MMB/Yeast_iTRAQ/

 1. Copy tandem_params.xml from the TPP_ROOT/bin direc-
tory into the analysis directory (make sure all instances of “_
DEFAULT_INPUT_LOCATION_” have been substituted as 
described in Subheading “Protein database search.”):

  $ cp TPP_ROOT/bin/tandem_params.xml /mnt/Data 
/MMB/Yeast_iTRAQ/

 2. Edit tandem_params.xml to match the desired search 
criteria.

  Specify the identifier for the protein sequence database to be 
searched:

  <note type=”input” label=”protein, taxon”> 
yeast_nci_20070223</note>

 3. Let the search engine know that lysine residues, as well as the 
N-terminus of each peptide, are modified (see Note 34):

  <note type=”input” label=”residue, modifica-
tion mass”>144.1@[,144.1@K</note>

 4. Finally, specify which mzXML file to search and where to 
store the results.

  <note type=”input” label=”spectrum, path”> 
yeast_iTRAQ.mzXML</note>

  <note type=”input” label=”output, path”> 
yeast_iTRAQ.xtan.xml</note>

3.1.3.1. Converting  
the Files and Preparing  
the Analysis Directory

3.1.3.2. Adjusting 
X!Tandem Input 
Parameters Files
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 5. Save and close this file.
 6. Start the search:
  $ tandem.exe tandem_params.xml

 1. Convert the X!Tandem output into the TPP pepXML 
format:

  $ Tandem2XML yeast_iTRAQ.xtan.xml yeast_
iTRAQ_raw.pep.xml

 2. The TPP component responsible for iTRAQ sample quantifi-
cation is called libra. This program accepts user input in the 
form of a properly formatted xml file, which can be created 
using the web-interface at: “http://db.systemsbiology.net/
webapps/conditionFileApp/” and saved in the analysis direc-
tory as condition.xml.

As in the simple case of the first workflow, Peptide- and Protein-
Prophet will be run. Additionally, xinteract will be instructed to 
execute Libra by adding the –L<condition_file> command-line 
argument:

$ xinteract –Op –Lcondition.xml -Nyeast_iTRAQ.
pep.xml yeast_iTRAQ_raw.pep.xml

At the end of this third workflow, the probabilities, as well as the 
estimated sensitivity and error rates, for each identified peptide 
will have been calculated. These will, in turn, have been used to 
derive the list of proteins, with their corresponding probabilities, 
most likely to have been present in the original sample. Finally, 
the relative abundances of proteins in samples yeast_A, yeast_B, 
yeast_C, and yeast_D will have been calculated using isobaric 
report ions.

 1. For reasons that go beyond the scope of this chapter, assign-
ments from database search engines need to be validated to 
filter out incorrect ones. PeptideProphet (9) automates this 
task by using an Expectation-Maximization algorithm to 
learn the distribution of a discriminant function F that best 
separates negative and positive assignments for each precur-
sor ion charge state. The probability of an assignment being 
correct given an observed score Fval is the ratio between the 
number of correct search results with score Fval and the total 
number of search results with score Fval. Our second workflow 
can be used as a practical example.

 2. Point your web-browser to the analysis directory and click on 
the file with the extension .pep.shtml to open the PepXML 
Viewer. Each row in the table that appeared represents an 
MS/MS assignment and has the following columns (see 
Fig. 2a):

3.1.3.3. Running Libra 
from Xinteract

3.2. Examining  
and Validating the TPP 
Output

3.2.1. Peptide Level: 
PepXML Viewer

http://db.systemsbiology.net/webapps/conditionFileApp/
http://db.systemsbiology.net/webapps/conditionFileApp/
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Index Unique row-number.

PepP probability PeptideProphet probability for this assignment. Click for a detailed report 
of PeptideProphet performances.

Spectrum Has the following format file_name.start_scan.end_scan.charge_state. For 
instance, “yeast_A_B_2.00058.00058.2” would indicate an assignment 
from scan 58 in the mzXML file yeast_A_B_2.mzXML based on a 
precursor ion charge state of +2 (see Note 35).

Hyperscore; NextScore; 
BScore; YScore; and 
Expect

X!Tandem specific scores.

Ions Fraction of theoretical fragment ions present in the MS/MS scan. Click 
to show the fragmentation spectra, the sequence of the assigned 
peptide and the difference between the theoretical and measured 
precursor masses.

Peptide Sequence of the peptide assignment. For instance, K.C339.15EVFR.E 
would indicate that: (1) the spectra was assigned to the peptide 
CEVFR; (2) the cysteine residue was modified by heavy cleavable ICAT 
reagent; (3) the amino-acid preceding the first one from this peptide is 
a K; and (4) the amino-acid right after the end of this peptide is an E 
(see Note 36). Click to BLAST this peptide using the NCBI BLAST 
interface.

Protein The protein(s) in the sequence database containing the assigned peptide. 
Click for a short description of the protein, and the location of the 
peptide in the protein sequence.

XPRESS Only present if XPRESS was run. It shows the light to heavy ratio 
calculated for isotopically labeled peptides. Click to adjust the integra-
tion ranges used to calculate the area of the elution peaks.

ASAPRatio Only present if ASAPRatio was run. It shows the light to heavy ratio 
calculated for isotopically labeled peptides with associated errors. Click 
to adjust the integration ranges used to calculate the area of the elution 
peaks.

Libra Only present if Libra was run. There will be one such column for each of 
the iTRAQ reagents used, showing the intensity of the reporter ion for 
that particular iTRAQ reagent.

 3. At the top of the PepXML Viewer page there are 5 tabs called 
“Summary” “Display Options” “Pick Columns” “Filtering 
Options” and “Other Actions”, by clicking on any one of 
them different options to interact with the data displayed in 
the table will become available.

 4. Quality of the chromatographic run and data acquisition 
should be checked first. Start Pep3D from the “Other 
Actions” tab by clicking on “Generate Pep3D”. Accept the 
default settings and click on the “Generate Pep3D image” 
button. Shortly, the MS run will appear as a two-dimensional 
density plot (see Fig. 2b) with the retention time plotted on 
the x-axis, the m/z ratios on the y-axis, and the 
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peak intensities represented in shades of grey. Overlaid on this 
representation, the CID attempts will be plotted as squares 
and the probabilities assigned by PeptideProphet will be 
shown using a green to red color gradient (see Note 37). This 
type of representation can prove very powerful in trouble-
shooting a suboptimal run. A good quality LC-MS-MS/MS 
run will show evenly distributed, sharp, signals and CID 
attempts (13).

 5. Next, check how well PeptideProphet learned the score dis-
tributions. From the main PepXML Viewer window, click on 
any link from the “Probability” column. A new page will open 
with a “Sensitivity & Error Rates” plot (see Fig. 2c), which 
can be used to select a PeptideProphet Minimum Probability 
Threshold to accept (MPT) value. Sensitivity represents the 
fraction of all correct assignments that will pass a given MPT 
filter. Error represents the fraction of incorrect peptide assign-
ments that will pass a given MPT filter. For instance, in 
Fig. 2c, an MPT of 0.50 would give an estimated sensitivity 
of 95% and an error of 4%. The shape of these curves depends 
on how much discriminating power the model learned by 

Fig. 2. (a) PepXML Viewer showing the peptide identifications from an ICAT experiment. (b) Pep3D representation of an 
MS analysis as a two-dimensional density plot. (c) PeptideProphet sensitivity and error rates plot. (d) Actual and learned 
distributions of the PeptideProphet discriminant score F for doubly charged precursor ions
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PeptideProphet has to separate correct and incorrect peptide 
assignments. The closer the 2 curves get to the y = 1 - x 
diagonal, the less discriminating power the model has. In the 
section called “Model results”, the actual and learned distri-
butions of the discriminant function F are displayed for each 
precursor ion charge state (see Fig. 2d). A good model will 
have a gamma distribution for the incorrect assignments and 
a normal distribution for the correct assignments, with the 
positive one being smaller and to the right of the negative 
one (see Note 38).

 6. In the main PepXML Viewer view, enter the MPT in the 
“PeptideProphet min” input field of the “Summary” tab. 
Select “Sorting by descending probability” from the pull-
down menu and click on “Update Page”. Unique peptides 
and proteins numbers shown in the “Summary” tab will 
change to reflect the new filtering criteria.

 7. Interesting peptide assignments (see Note 39) can be further 
validated by examining the MS/MS spectra that opens when 
clicking on the “Ions” hyperlink. Good assignments will 
match most of the high intensity ions and show a continuous 
series of y and b ions. If the sample was digested with trypsin, 
the y-ion series will typically be the most intense.

 8. Finally, ICAT labeling and enrichment efficiency can be 
assessed. Open the “Display Options” tab, enter “C” in the 
“highlight peptide text (regex)” field and click on “Update 
Page”. Cysteine residues will be highlighted, thus providing 
an overview on how well the enrichment for cysteine contain-
ing peptides worked (see Note 40).

After completing these initial steps, one should have a good idea 
on how well the sample preparation, sample separation, MS data 
acquisition, and bioinformatic data analysis performed. If every-
thing went well, this is a good time to close PepXML Viewer and 
move on to the protein level.

 1. In bottom-up proteomics, the connectivity information 
between peptides is lost, making the transition from the pep-
tide to the protein level non-trivial. ProteinProphet groups 
peptides while trying to generate the list of proteins most 
likely to have composed the original sample. The probability 
of each protein is calculated based on the probabilities of the 
individual peptides adjusted to account for the fact that 
groups of peptides generated from the same protein are more 
likely to be correct. In ProteinProphet, this concept is 
described with the notion of the Number of Sibling Peptides 
(NSP). The NSP of a given peptide is calculated as the sum of 
PeptideProphet probabilities for all other peptides assigned 

3.2.2. Protein Level: 
ProtXML Viewer
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to the same protein. Probabilities are then increased for pep-
tides with high NSP and lowered for peptides with low NSP. 
These adjusted peptide probabilities are finally used to com-
pute the probability of their corresponding proteins. When a 
peptide can be associated with more than one protein, the 
model tries to generate the shortest possible list of proteins 
that could explain all the peptides seen in the analysis (Occam’s 
razor). Thus, the contribution each peptide gives to the final 
protein probability is weighted proportionally to the number 
of proteins that contain that specific peptide.

 2. Point your web-browser to the analysis directory and open 
the file with extension .prot.shtml to open the ProtXML 
Viewer. By clicking on the link called “Sensitivity/Error Info” 
in the top part of the page, a plot of the sensitivity and error 
rates versus MPT will appear. This is the protein equivalent of 
the PeptideProphet “Sensitivity & Error Rates” plot. Select 
an MPT that gives acceptable sensitivity and error rates.

 3. Enter the protein MPT in the field called “min probability” 
of the main ProtXML Viewer page and click on “Filter/Sort/
Discard checked entries”. The red summary line indicating 
the number of proteins being displayed at the bottom of the 
filtering panel will change to reflect the new filter.

 4. ProtXML Viewer displays identified proteins (see Fig. 3) in 
the following format:

Fig. 3. Screen-capture of ProtXML Viewer showing the protein identifications from an ICAT experiment
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 (a) Each entry starts with an index number, a protein name, and 
its associated protein probability (see Note 41).

 (b) The next line indicates the protein coverage (i.e., what % of this 
protein sequence was seen in the MS), the protein ratios calcu-
lated by XPRESS; ASAPRatio; and Libra, the number of unique 
as well as the total number of peptides assigned to this protein, 
and the share of spectrum id’s (i.e., what % of spectrum identi-
fications from this analysis is accounted for by this protein).

 (c) The next line shows a brief description of the protein.
 (d) The next table displays information specific to the peptides 

assigned to this protein:

Weight How much weight has been given to a peptide 
when calculating the probability of a protein 
(i.e., to account for how many different 
proteins contain the same peptide). Some 
weights are preceded by a * to indicate that 
no other sequence database entry shares this 
particular peptide.

Peptide sequence Charge state and sequence of the peptide. 
Click to open a PepXML Viewer like 
representation.

nsp adj prob NSP adjusted PeptideProphet probability.

init prob PeptideProphet probability before NSP 
adjustment.

ntt Number of tryptic termini.

nsp NSP value.

Total Times this peptide, with this charge state, has 
been sequenced.

pep grp ind Connections between peptides with the same 
sequence (represented by the letter before 
the “-” sign) and different charge states 
(represented by the number after the “-” 
sign).

 5. Proteins isotopic ratios (see Note 42), can be fine-tuned by 
clicking on the XPRESS ratio to adjust the integration ranges 
used to calculate the area of the elution peaks for the corre-
sponding peptide pairs. Alternatively, the ASAPRatio link can 
be used to adjust elution peaks integration intervals, and to 
accept or reject individual peptide quantifications.

 6. The protein list can be saved by clicking on “Write displayed 
data subset to file” after selecting a file name, or exported in 
a tab separated format suitable for Excel and SBEAMS (http://
www.sbeams.org) by selecting “export to excel” and clicking on 
the “Filter/Sort/Discard checked entries” button.

http://www.sbeams.org
http://www.sbeams.org
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After completing this section, one should have generated a 
validated list of protein assignments that can be further analyzed 
to address the original experimental question.

 1. While some third party software packages, such as the CPAS 
LIMS from LabKey Software, include components of the 
TPP, in this chapter, we discuss only the original SPC version 
of the TPP.

 2. An MS-DOS window can be opened from the Windows Start 
menu by clicking on Run and typing cmd.

 3. Except when starting a program from the same directory 
where the executable is found, one must specify the full path 
to it (e.g., C:\mzXML\Converters\ReAdW.exe). Alternatively, 
the directory with the converters can be added to the DOS 
PATH variable.

 4. The user running the web-server (e.g. www-data) needs 
write permissions in the analysis directory. To achieve this, 
create a group that contains the physical user (e.g., mmb) 
and the web-server user, give ownership of the analysis 
directory to this group, and grant it read and write 
permissions:

  $ sudo groupadd analysis
  $ sudo usermod -a -G analysis mmb
  $ sudo usermod -a -G analysis www-data
  $ sudo chown :analysis /mnt/Data/MMB/

Yeast_IP/
  $ sudo chmod g+w /mnt/Data/MMB/Yeast_IP/

 5. In Apache2, to enable SSI, add to your site configuration 
(e.g., /etc/apache2/sites-available/default):

  Options +IncludesAddType text/html .shtm-
lAddHandler server-parsed .shtml

  in the <Directory /var/www/> section.
  Save and restart the web-server.
 6. More complex approaches can better discriminate specific 

and unspecific interactors (15).
 7. Some useful tools for the mzXML format are:

readmzXML: prints the peaks in any given scan (included 
in the TPP).
MzXML2Search: extracts MS/MS scans from an mzXML 
file and saves them in formats compatible with database 
search engines (included in the TPP).

4. Notes
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validateXML: validates the integrity of an mzXML file 
(http://tools.proteomecenter.org/validateXML.php).
mzXMLViewer and Insilicos Viewer: visualize the scans 
in an mzXML file (http://tools.proteomecenter.org/
mzXMLViewer.php and http://www.insilicos.com/
free_downloads.html).

 8. This program depends on the XRawfile library from 
ThermoFinnigan and will only work on a computer with 
Xcalibur installed.

 9. For a list of options execute the command without any 
argument.

 10. This program depends on the DAC library from Waters and 
will only work on a computer with MassLynx installed.

 11. This program depends on a library from Analyst and will only 
work on a computer with Analyst installed.

 12. This program is developed and maintained by Bruker. Further 
information can be found at:

  http://www.ionsource.com/functional_reviews/CompassXport/ 
CompassXport.htm

  and at
  http://www.bioinformaticssolutions.com/products/peaks/

support/bruker.php.
 13. More options can be seen by typing:
  $ dta2mzxml -help

  mzXML files created using this converter contain only MS2 
scans and are not be suitable for applications requiring MS1 
information.

 14. X!Tandem is developed and maintained by the Global 
Proteome Machine Organization (“www.thegpm.org”).

 15. The names of these files can change as long as the changes 
are reflected in the content of input.xml (i.e., the elements 
<note type=”input” label=”list path, taxonomy 
information”> and <note type=”input” label=”list 
path, default parameters”> need to be appropriately 
updated) and in the way X!Tandem is called (i.e., the first 
parameter passed to tandem.exe must be the name of the file 
corresponding to input.xml).

 16. Syntax of these files is documented at: http://www.thegpm.
org/TANDEM/api/index.html

 17. A static modification is applied to any instance of a particular 
amino acid (e.g., carboxamidomethylation of all cysteines).

  A variable (also called potential) modification is considered, 
but not necessarily applied, for any instance of a particular 
amino acid (e.g., phosphorylation).

http://tools.proteomecenter.org/validateXML.php
http://tools.proteomecenter.org/mzXMLViewer.php
http://tools.proteomecenter.org/mzXMLViewer.php
http://www.insilicos.com/free_downloads.html
http://www.insilicos.com/free_downloads.html
http://www.ionsource.com/functional_reviews/CompassXport/CompassXport.htm
http://www.ionsource.com/functional_reviews/CompassXport/CompassXport.htm
http://www.bioinformaticssolutions.com/products/peaks/support/bruker.php
http://www.bioinformaticssolutions.com/products/peaks/support/bruker.php
http://www.thegpm.org
http://www.thegpm.org/TANDEM/api/index.html
http://www.thegpm.org/TANDEM/api/index.html
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 18. Existing users of X!Tandem trying to integrate the TPP 
into their workflow, should use this file as the default_
input.xml rather than the one originally distributed with 
X!Tandem.

 19. Any document edited throughout the course of this chapter 
should be saved as plain text.

 20. More protein sequence databases can be added by appending 
these lines to the taxonomy.xml file:

  <taxon   label=”database_identifier_A”><file 
format=”peptide” URL=”full_path_to_database 
_A”/>

 21. Users that have compiled X!Tandem with the native score 
should edit this file to use isb_default_input_native.xml 
instead of isb_default_input_kscore.xml:

  <note type=”input” label=”list path, default 
parameters”>TPP_ROOT/ /bin/isb_default_input_
native.xml</note>

 22. Multiple modifications can be separated with a comma.
 23. Enzymatic cleavage parameters can be changed in tandem_

params.xml:
  <note type=”input” label=”protein, cleavage 

semi”>yes</note>
  <note type=”input” label=”scoring, maximum 

missed cleavage sites”>2</note>

  Since the default enzyme defined in “isb_default_input_
kscore.xml” is trypsin, these lines instruct the search engine 
to consider semi-tryptic peptides (i.e., peptides with a non-
tryptic cleavage at either one of their termini), and to allow 
for up to 2 missed cleavages per peptide (i.e., K or R residues 
in the middle of the peptide sequence other than those fol-
lowed by a P) respectively.

 24. X!Tandem searches on remote machines should be started 
with nohup to prevent them from being terminated when the 
user logs out:

  $ nohup tandem.exe tandem_params.exe

 25. After copying tandem-style.xsl from trans_proteomic_pipe-
line/extern/tandem-linux-07-07-01-2/bin/ into the analy-
sis directory one can visualize the content of yeast_ip.xtan.
xml in a web-browser.

 26. The TPP contains equivalent programs to convert the out-
put from other search engines to pepXML (i.e. Out2XML 
for SEQUEST; Comet2XML for COMET; Mascot2XML 
for MASCOT).
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 27. A list of all xinteract command line arguments can be seen by 
typing:

  $ xinteract

 28. To search samples with Lysine and Arginine residues labeled 
using the SILAC protocol, the following line can be used 
instead:

  <note type=”input” label=”residue, potential 
modification mass”>8.0@K,10.0@R</note>

 29. These steps can be automated by creating a file called  
“prepare_tandem_params.sh” in the TPP_ROOT/bin/ 
directory with the following content:

  #!/bin/bash
  for ARG in “$@”
  do
  base_name=${ARG%.mzXML}
  out_name=${ARG/.mzXML/.xtan.xml}
  echo Preparing parameters for $base_name
  sed s/full_mzXML_filepath/$ARG/ \ 

tandem_params.xml | \
  sed s/full_tandem_output_path/$out_name/ > \
  tandem_params_$base_name.xml
  done
  rm tandem_params.xml

  Making it executable with:
  $ chmod 755 prepare_tandem_params.sh

  And executing it in the analysis directory that contains all the 
mzXML files and a version of tandem_params.xml with all the 
search parameters set correctly, except for the input and out-
put files, as follows:

  $ prepare_tandem_params.sh *.mzXML

  Petunia, the GUI interface for the TPP, will automatically 
take care of this tedious task for you.

 30. To shorten this command, create a file called “start_tandem.
sh” in the TPP_ROOT/bin/ directory with the following 
content:

  #!/bin/bash
  find ./ -name “tandem_params*” | \ 

xargs –I {} tandem.exe {}

  Make it executable with:
  $ chmod 755 start_tandem.sh

  In the analysis directory type:
  $ start_tandem.sh
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 31. Commands separated by semicolons will be executed 
sequentially.

 32. To simplify this step, create a file called “convert_tandem2xml.sh” 
in the TPP_ROOT/bin/ directory with the following content:

  #!/bin/bash
  find ./ -name “*.xtan.xml” | \ 

sed s/.xtan.xml// | \ 
xargs -t -I {} Tandem2XML \ 
{}.xtan.xml {}_raw.pep.xml

  Make it executable with:
  $ chmod 755 convert_tandem2xml.sh

  In the analysis directory, type:
  $ convert_tandem2xml.sh

 33. In XPRESS, quantification reagents other than ICAT can be 
specified with the -n<residue>,<delta_mass> command line 
argument. For instance, for a SILAC experiment using Lysine 
and Arginines, xinteract should be run like this:

  $ xinteract -Op -X-nK,8.0-nR,10.0 silac_
analysis_raw.pep.xml

 34. X!Tandem uses “[“and”]” to indicate the N- and C- termi-
nus, respectively.

 35. If start_scan and end_scan differ, then the current peptide 
assignment was done by integrating the signal in all scans 
from start_scan to end_scan.

 36. The C- and N-terminus of the protein are indicated with a 
“-” symbol.

 37. Often only a small percentage of MS/MS spectra leads to 
successful peptide assignments (i.e., typically 10-20%). This is 
partially due to factors that would be too time prohibitive to 
account for in the initial search. The TPP program QualScore 
extracts high quality unassigned spectra from an MS run. 
To use it, run a normal database search, convert the results to 
pepXML and run xinteract with parameter -p0 to keep pep-
tides with probability lower than 0.05. Finally, start QualScore 
as follows:

  $ java -jar qualscore.jar <pep.XML_file_ 
to_be_analyzed>

  Substitute “<pep.XML_file_to_be_analyzed>” for the name 
of the xinteract generated pep.xml file. This will create a new 
directory containing all the MS/MS scans, in SEQUEST .dta 
format, deemed to be of high quality by QualScore. This sub-
set of fragmentation spectra can now be converted to an 
mzXML file as explained in Subheading “Converting the 
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RAW output of MS instruments to an open representation” 
and a more exhaustive database search can be run.

 38. If PeptideProphet is unable to learn the score distributions 
for a particular charge state, it assigns a negative probability. 
These assignments might be good ones, but they require 
manual validation.

 39. PepXML Viewer only displays the highest scoring identifica-
tion for each queried spectrum. However, sometimes the cor-
rect assignment is a lower scoring peptide. When using 
SEQUEST, click on the “Spectrum” link in the PepXML 
Viewer to see lower scoring peptides.

 40. The actual number of unique peptides containing a cysteine 
residue can be seen in the “Summary” tab, after filtering the 
results for cysteine containing peptides using the “required 
peptide text” field from the “Filtering Options” tab.

 41. Multiple proteins that could account for the same peptide list 
are grouped in one entry.

 42. Rather than looking at all proteins, the results can also be 
filtered for minimal and maximal XPRESS and/or 
ASAPRatio ratios using the “min/max XPRESS Ratio” and 
“min/max ASAPRatio” fields.
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Chapter 16

Informatics and Statistics for Analyzing 2-D Gel 
Electrophoresis Images

Andrew W. Dowsey, Jeffrey S. Morris, Howard B. Gutstein,  
and Guang-Zhong Yang

Abstract 

Despite recent progress in “shotgun” peptide separation by integrated liquid chromatography and mass 
spectrometry (LC/MS), proteome coverage and reproducibility are still limited with this approach and 
obtaining enough replicate runs for biomarker discovery is a challenge. For these reasons, recent research 
demonstrates that there is a continuing need for protein separation by two-dimensional gel electrophoresis 
(2-DE). However, with traditional 2-DE informatics, the digitized images are reduced to symbolic data 
through spot detection and quantification before proteins are compared for differential expression by 
spot matching. Recently, a more robust and automated paradigm has emerged where gels are directly 
aligned in the image domain before spots are detected across the whole image set as a whole. In this 
chapter, we describe the methodology for both approaches and discuss the pitfalls present when reason-
ing statistically about the differential protein expression discovered.

Key words: 2-D gel electrophoresis, Image alignment, Spot detection, Spot matching, Differential 
expression analysis, Clustering, DIGE

Since its beginnings in 1975 (1, 2), two-dimensional gel electro-
phoresis (2-DE) has established itself as the principal approach for 
separating proteins from cell and tissue samples (3). While recent 
progress in “shotgun” peptide separation with liquid chromato-
graphy and mass spectrometry (LC/MS) (4, 5) has brought some 
significant analytical benefits, recent bench comparisons have shown 
that proteome coverage is complementary to 2-DE rather than 
encompassing (6). Furthermore, currently there are issues with the 
reproducibility of LC/MS that are difficult to correct retrospectively 
by alignment, plus there are practical issues limiting the number of 

1. Introduction
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replicate runs that can be made and therefore experimental power 
for biomarker discovery. For these reasons, protein modelling, quan-
tification, and differential expression analysis with 2-DE continues to 
be an important workhorse method for proteomics research.

The first step in proteomic informatics analysis is image 
acquisition, either of gels or mass spectra (in LC/MS). The tradi-
tional 2-DE informatics pipeline then attempts to identify spot 
boundaries and quantify individual spots on each gel before 
proteins are compared for differential expression by matching 
cognate spots between gels. With existing commercial software, 
errors in each step contribute to a highly subjective and labour-
intensive correction. For example, it has been noted that increasing 
the number of gels in an experiment dramatically reduces the 
percentage of correct automated spot matches (7). Recently, a 
more robust and automated concept has emerged (8), where gels 
are directly aligned in the image domain (9, 10) so that subsequent 
spot detection can be based on the integration of the spot appear-
ances in every gel. It has been shown that through preservation of 
the raw image information contained in each spot and its statistical 
“fusion” over the gel set, increased power and reliability in quan-
tification is possible which further improves as the sample size is 
increased (11). Statistical rather than deterministic treatment is key 
to this new paradigm (12).

In this chapter, we describe the methodology for both 
approaches and discuss the pitfalls present when reasoning statis-
tically about differential protein expression, with particular emphasis 
given to the need to perform power analyses and control the false 
discovery rate. In the remainder of this section, an overview of 
the established proteome informatics methods will be provided so 
that the choice of software detailed in Subheading 2 can be better 
understood. Subheading 3 then details step-by-step instructions 
for performing the analyses.

There are a number of challenges in 2-DE proteome informatics 
(13). Despite the high resolution, diversity of cellular proteins 
often leads to spot co-migration. Some spots also tend to have 
severe tails in either dimension, confounding spot modelling. 
Contrast variations due to stain exposure, sample loading errors, 
and protein losses during processing inhibit the reliability of 
volume quantification. Furthermore, geometric distortions due 
to casting, polymerization, and the running procedure make the 
deduction of corresponding spots between gels demanding and 
therefore differential analysis challenging. The DIGE protocol 
(14) allows up to three samples to be run on the same gel with 
consequently little geometric discrepancy between them. 
However, typical experiments require a considerably greater sam-
ple size than a single DIGE gel to attain adequate power, and so 
inter-gel alignment is still a problematic issue. The typical steps in 
proteome informatics for 2-DE are (13):

1.1. Proteome 
Informatics
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 1. Image acquisition: This prepares each raw acquisition for 
subsequent comparative analysis. After scanning, the images 
are pre-processed by cropping (manual delineation), noise 
suppression, and background subtraction (e.g., with math-
ematical morphology or smooth polynomial surface fitting).

 2. Conventional analysis (Spot Detection » Spot Matching): Each 
protein spot is delineated and its volume quantified. Typically, 
the spots are segmented first by the watershed transform (15), 
where spots are treated as depressions in a landscape which is 
slowly immersed in water. Spot boundaries (watersheds) are 
constructed where the pools start to meet. Co-migrating 
spots with separate peaks are then separated by parametric 
spot mixture modelling e.g., optimizing the parameters of one 
or more 2-D Gaussians to minimize the squared residuals. 
Point pattern matching is then employed to match the spots 
between gels, which finds the closest spot correspondence 
between a point pattern (source spot list) and a target point 
set (reference spot list).

 3. Image-based analysis (Gel alignment » Consensus Spot Modelling): 
With current techniques, a “reference” gel is chosen and the 
other “source” gels are aligned to it in pair-wise fashion. For 
the new image-based paradigm, “direct image registration” is 
applied which defines a transformation that warps (deforms) 
the source gel and a similarity measure which quantifies the 
quality of alignment between the warped source gel and the 
reference gel. The aim is to automatically find the optimal 
transformation that maximizes the similarity measure. Spot 
detection is then performed on an image or “spot mask” cre-
ated from the set, which is then propagated to each individual 
gel for spot quantification.

 4. Differential analysis : At this stage, we have a list of spots, and for 
each spot, a quantified abundance in each gel. The abundances 
are first normalized to remove systemic biases between gels and 
between channels in DIGE gels. Variance stabilization can then 
be employed to remove the dependence between the mean 
abundance of a protein and its variance e.g., a simple logarithmic 
transformation to fold-change values. Significance tests are then 
performed to obtain p-values for rejecting the null hypothesis 
that the mean spot abundance between groups is unregulated.

 5. Advanced techniques : Since multiple hypothesis testing leads 
to a large number of false positives, it is essential to control the 
False Discovery Rate (FDR). The FDR is the estimated per-
centage of false positives within the detected differential 
expression rather than within the set of tests as a whole. Power 
analysis is also essential, which estimates the false negative 
rate that determines the optimal sample size needed to detect 
a specific fold change to a particular confidence level. Typical 
software packages do not contain these important methods.
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 6. Diagnostics: It is useful to look at various diagnostics to assess 
quality control of the gels in a given experiment, and to search 
for evidence of any artifacts that may indicate some problems 
in the gels. Hierarchical clustering can be used to assess which 
gels are most similar to each other, which can reveal experi-
mental design or other quality control issues in the data. 
Further, one should visually assess any spots detected as dif-
ferentially expressed to ensure that outliers unrelated to the 
biological groupings do not drive the result.

An image capture device is required, for which there are three 
main categories:

 1. Flatbed scanner: This mechanically sweeps a standard charge-
coupled device (CCD) under the gel and can be used to obtain 
12–16 bits of greyscale or colour densitometry from visible 
light stains. Noise can be an issue due to size and cooling 
restrictions on the moving sensor and the need for reconstruc-
tion through image “stitching.” Calibration is often required 
to provide linearity. Based on high-end document scanners 
but fully sealed, flatbed scanners are typically the least expen-
sive offerings. Examples: ImageScanner (GE Healthcare, 
Chalfont St. Giles, UK), ProteomeScan (Syngene, Cambridge, 
UK) and GS-800 (Biorad, Hercules, CA).

 2. CCD camera: Since the sensor is fixed, its greater size and 
cooling provides a dramatic improvement in noise and there-
fore dynamic range (up to 104). Different filters and transillu-
mination options allow a wide range of stains to be imaged, 
including visible light, fluorescent, reverse, chemilumines-
cent, and radioactive signals. However, the fixed sensor limits 
image resolution, while vignetting (reduction of brightness at 
the periphery) and barrel distortion requires dark frame and 
flat frame correction respectively, affecting quantification. 
Examples: LAS (Fuji Photo Film, Tokyo, Japan), ImageQuant 
(GE Healthcare), Dyversity (Syngene), BioSpectrum2D 
(UVP, Upland, CA, USA) and VersaDoc (Biorad).

 3. Laser scanner: Photomultiplier detectors are combined with 
laser light and optical or mechanical scanning to pass an exci-
tation beam over each target pixel. While slower than CCD 
cameras, spatial resolution is excellent and logarithmic 
response leads to a dynamic range of up to 105. However, 
acquisition is limited to dyes whose excitation spectra match 
that of the installed laser sources, which are costly. With some 
products, visible light stains can be negatively imaged by 

2. Materials

2.1. Image Acquisition
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using a fluorescent back board. Examples: FLA (Fuji Photo 
Film), Typhoon (GE Healthcare) and PharosFX (Biorad).

Please see (16) for further details. Most specialized acquisition 
devices come with software to crop the resulting scans, but if this is 
unsuitable, the packages described in the next two sections have this 
facility, as does ProteomeGRID (http://www.proteomegrid.org/). 
See Note 1.

A commercial software package is required, such as:

 1. ImageMaster 2D or DeCyder (GE Healthcare, Chalfont St. 
Giles, UK)

 2. Dymension (Syngene, Cambridge, UK)
 3. Melanie (GeneBio, Geneva, Switzerland)
 4. PDQuest (BioRad, Hercules, CA)
 5. ProteinMine (BioImagene, Cupertino, CA)

These products are all quite expensive, so comparative personal 
evaluation is essential. As a guide, comparative assessments appear 
in the literature (7).

When choosing an acquisition device, it is important to ensure 
that the output format is compatible with the input format of 
the analysis software. While typically this involves standardized 
interchange with the TIFF format, few vendors adhere fully to 
the standard and therefore incompatibilities do occur. TIFF is 
also limited to 16 bits of linear dynamic range so some packages 
implement formats such as Fuji “IMG”, which supports logarith-
mic image capture, and GE Healthcare “GEL”, which supports 
square-root image capture. See Note 2.

Two commercial packages exist that adopt elements of the image-
based analysis paradigm:

 1. Delta2D (Decodon, Greifswald, Germany)
 2. Progenesis SameSpots (Nonlinear Dynamics, Newcastle, UK)

Both packages perform image alignment before consensus spot detec-
tion. However, the alignment performed is only semi-automated 
with considerable user interaction, and the quantification is based on 
heuristic delineation of spot boundaries rather than more reliable 
peak detection (11). To utilize automated image-based alignment 
and fully harness strength borrowed from the whole gel set in the 
spot modelling phase, the following techniques can be combined:

 1. RAIN (9, 10) (http://www.proteomegrid.org/) for auto-
matic gel alignment.

 2. Pinnacle (11) for automated spot detection and quantifica-
tion that borrows strength between gels in determining what 
is a real spot.

2.2. Conventional 
Analysis Software

2.3. SEA Image-Based 
Analysis Pipeline

http://www.proteomegrid.org/
http://www.proteomegrid.org/
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The commercial packages described in Subheading 2.2 and 2.3 
contain the standard tools for determining the statistical signifi-
cance for regulation of an isolated protein between treatment 
groups. However, at the time of writing only Delta2D (Decodon) 
and the add-on Progensis Stats module (Nonlinear Dynamics) 
have facilities to correct for multiple hypothesis testing with FDR. 
If your software does not include FDR estimation or you wish to 
use freely available tools, one of the following microarray analysis 
suites can be used:

 1. The R language and BioConductor repository (http://www.
bioconductor.org/)

 2. TM4 (http://www.tm4.org/)

The above suites also contain the more advanced normalization and 
power analyses described herein.

For data quality assessment and to investigate hidden factors 
in the data, the majority of commercial packages described in 
Subheading 2.2 and 2.3 contain basic data mining techniques. If a 
required technique is not available in your software, a range of 
advanced classification and data summarization methods can 
be found by using the microarray analysis suites above or with 
commercial solutions including:

 1. Progenesis Stats (Nonlinear Dynamics)
 2. Decyder EDA (GE Healthcare)
 3. Genedata Expressionist (Genedata, Basel, Switzerland)

Today, typical experimental design should include enough 
biological replicate gels in each treatment group to confidently 
detect differential expression, though the optimal number is 
highly dependent on the tissue, sample preparation, and running 
protocols. It is therefore necessary to perform a few test experi-
ments to optimize power as detailed in subheading 3.4 step 4. 
A good example of such a study is by Hunt et al. (17), where they 
determined that a sample size of 7–8 biological replicates would 
permit detection of a 50% change in protein expression in plasma 
samples. Since proteomics studies are challenging and time 
consuming, thorough planning of the experimental design is needed 
to protect against systematic bias. Therefore, standard design 
principles such as blocking and randomization of sample runs 
should be applied (18). Also, technical replicates should never be 
run at the expense of biological replicates. The study by Hunt 
et al. makes this point in dramatic fashion, showing much greater 
improvements in statistical power by increasing sample size rather 

2.4. Differential 
Analysis

3. Methods

http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.tm4.org/


245Informatics and Statistics for Analyzing 2-D Gel Electrophoresis Images

than numbers of technical replicates. Nevertheless, if both must 
be mixed in the same experiment, both sources of error should be 
handled, see subheading 3.4 step 5.

A number of suggestions to bear in mind during 2-D gel 
running if informatics is to be facilitated are:

 1. In general, the second dimension running should be consis-
tent between samples. The spot matching and gel alignment 
algorithms will be confounded if some spots are visible in 
some gels and not in others. In any case, these spots will lack 
full statistical support for ascertaining differential expression.

 2. Similarly, if one gel looks markedly different than other gels 
in the same treatment group, it should be discarded rather 
than incorporated into the analysis, since this will likely add 
significant outliers and therefore violate the assumption that 
the biological variation is normally distributed.

 3. Saturation of abundant spots must be avoided as this will 
introduce increased error into the quantification (19). 
Moreover, the splitting of saturated complex spots is inaccu-
rate regardless of the approach used.

 4. Background and noise should be minimized otherwise dynamic 
range will be compromised, resulting in impaired sensitivity and 
specificity in spot detection. Danger areas include inadequate 
sample preparation and destaining, contaminated gels and too 
high laser scanner photo multiplier tube (PMT) voltages.

 5. Between treatment groups, normalization can be greatly 
facilitated by employing DIGE and running a pooled sample 
on each gel as a paired control for gel normalization.

 6. Within a given laboratory, studies should be performed to 
identify the key sources of experimental variability, and those 
factors should be accounted for using randomized block 
designs. These should be used to ensure that potentially 
important experimental factors are not confounded with fac-
tors of interest. See Note 3.

 7. Another important design consideration is whether or not to 
pool samples. Pooling samples increases the protein load on 
each gel, which may reduce technical variability, but also 
results in loss of information about each sample. While some-
times necessary in order to obtain enough protein to reliably 
run the assay, pooling should be avoided since it results in a 
reduction of statistical power. When pooling samples, the key 
sample size factor is the number of pools, not the number of 
subjects. See Note 4.

 1. The full dynamic range of the scanner should be utilized in 
order to maximize the number of weakly expressed spots 
visible above the noise floor. If your acquisition device does 

3.1. Image Acquisition



246 Dowsey et al.

not provide automatic calibration, this can be done with a 
step tablet (e.g., UVP, Upland, CA) or a step wedge (e.g., 
Stouffer Industries, Mishawaka, IN). If unavailable, a generic 
IT8 scanner target can be substituted as the bare minimum.

 2. Once scanned, accurate cropping of the gels is essential. All gel 
edges must be outside the cropped region otherwise the 
alignment algorithm will attempt to align the edges at the 
detriment of aligning the spot patterns and erroneous spots 
will often be detected along the edges. Special care should be 
taken to ensure that every spot is inside the cropping region in 
all gels. If your informatics package supports irregular inclusion 
and exclusion regions, any artifact that appears on only a subset 
of the gels should be cropped away, such as cracks, fingerprints, 
and smudges. Suitable cropping is illustrated in Fig. 1.

 1. Since spot detection is the first stage in conventional analysis, 
the gels must be first background subtracted to remove non-
protein elements as well as all streaks and smears that do not 
adhere to the software’s protein spot model. However, the 
removal is subjective and can interfere with surrounding real 
spots. See Note 5.

 2. The spot detection process is then initiated on each gel sepa-
rately. Typically, spot detection is controlled by setting a hand-
ful of algorithm-specific parameters, which should be optimized 

3.2. Conventional 
Analysis Pipeline

Fig. 1. Gel image cropping with the RAIN submission tool. The shaded area shows an optimum polygonal crop that 
removes the gel edges and some artifacts while retaining the protein spots
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for each experiment but fixed inside the same experiment. 
Unfortunately, optimization is a subjective process which 
requires a trade-off between false-positives (noise detected as 
spots, over-segmented spots) and false-negatives (spots failed 
to be detected, under-segmentation of merged spots).

 3. Even with optimization, a significant amount of manual edit-
ing will be required post-hoc, which could introduce an ele-
ment of subjective bias. In particular, calculation of spot 
boundaries is fraught with errors yet affects protein quantifi-
cation significantly. See Note 6.

 4. Once spots are quantified, a characteristic vector is extracted 
from each detected spot, which includes position, volume and 
perhaps shape and boundary information. These are combined 
to form a spot list for each gel. A reference gel is then manu-
ally chosen (or the software may suggest one), and in turn, 
each spot list is matched to the reference spot list. Since spots 
are matched between all the gels using the reference gel as an 
intermediary, any spots undetected on the reference will not 
be matched. See Note 7. Typically, the neighbourhood of each 
spot is used to facilitate the matching process, which is why 
outliers markedly affect the analysis.

 5. It is expected that a significant number of weakly expressed 
spots will be detected only on a subset of the gels and there-
fore there will be a number of missing values in the resultant 
spot match list. These missing values reduce statistical power 
significantly and can introduce inadvertent bias. Thus, first of 
all, one should manually edit the spot detection and match-
ing to maximize the number of successfully matched spots 
across gels. Invariably, there will still be some missing values 
in the spot match list, which must be dealt with in some way. 
Simply ignoring these spots for analysis introduces bias, since 
many of the gels with no matching spot likely had negligible 
or no expression of the corresponding protein. Substituting 
zeros or some other small value is a better option, but can still 
introduce bias, since it is expected that for some gels, there is 
evidence of some non-zero expression of the protein, but it 
simply fell below some arbitrarily specified detection thresh-
old. Missing data is one of the major unsolved problems when 
using the conventional analysis pipeline.

 6. Because of the nature of this traditional analysis pipeline, errors 
in automated spot matching increase as the experiment grows 
larger (7), meaning that the number of accurately matched 
spots decreases as increasing numbers of gels are run. This 
propagation of processing errors encourages researchers to run 
smaller studies that in turn are underpowered to statistically 
detect group differences when multiple testing is taken into 
account. The only current solution to this problem is to employ 
the image-based analysis paradigm instead.
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 1. The first stage of the image-based pipeline is to manually 
select the gel with the most representative protein pattern 
and positions to be the reference image. The other gel images 
are then automatically warped so that their spot patterns are 
brought into alignment with that of the reference.

 2. With Delta2D and Progenesis SameSpots, you must first 
manually identify a few spots that can be matched unambigu-
ously in every gel in the set. The spots should be spread out 
evenly over the gel’s surface otherwise some regions will be 
aligned too poorly now to be corrected later. The software 
will then (or after every landmark) automatically generate a 
smoothly interpolated warp that aligns these landmarks and 
estimates the intermediary alignment between them. If avail-
able, a further automatic phase can be initiated that adjusts 
the intermediary alignment to better match the remaining 
spots. These matches can be iteratively accepted or modified 
by the user and the algorithm rerun. Finally, alignments must 
be completed by hand and a “spot mask” applied to the refer-
ence gel of each set.

With RAIN, fully automated image registration is per-
formed by considering basic image gradients at several levels of 
detail and is therefore able to use extra image features such as 
global protein distribution, background, streaks, and smears in 
the alignment, as illustrated in Fig. 2. The set of gels is simply 
submitted to the ProteomeGRID web service (http://www.
proteomegrid.org/), and after remote processing, the set of 
aligned images is available to download, together with visuali-
sations to confirm the accuracy of the alignment.

 3. The aligned images will then be automatically composed to 
create an image for subsequent spot detection. Pinnacle 
recommends computing an “average gel” that involves taking 
pixel-wise means of intensities across all gels. The key advan-
tage of using the mean gel is that noise is reduced by √n for a 
set of n gels, while the signal for true spots is reinforced across 
gels, thus substantially improving the sensitivity of detection 
for weak expression whilst suppressing highly variable features 
expected to be artifacts. Spot detection on the average gel will 
tend to have increased sensitivity over individual spot detection 
on each gel for any proteins present in more than 1/√n of 
the gels (11). Furthermore, variability will decrease as the gel 
sample size increases. Delta2D’s fusion image is constructed by 
placing more emphasis on dark pixels likely to be protein mat-
ter (20). While the resulting image exhibits more spots than 
the average gel, statistically weak spots are artificially amplified 
so an increased number of false positives is possible.

 4. Background subtraction and normalization may be applied 
to the average gel at this time. Background estimates can 

3.3. Image-Based 
Analysis Pipeline

http://www.proteomegrid.org/
http://www.proteomegrid.org/
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be global or local (11). Normalization adjusts for gel-specific 
effects such as protein load. One common global method for 
normalization is to divide by the total volume, or average 
intensity, on the background corrected gel. If performed after 

Fig. 2. Automatic image-based gel alignment by http://www.proteomegrid.org/. (a) Gels are cropped with the RAIN sub-
mission tool (see Fig. 1) and split into treatment groups. (b) The images are uploaded together with relevant metadata 
such as reference gel, stain/label used and DIGE channel. (c) Each gel is automatically aligned to the reference. The grid 
lines show the various levels of image warping needed. (d) Pixel-wise difference between reference and sample images 
before alignment. (e) After alignment, the differences should only be due to differential expression and artifacts, which 
will be differentiated by downstream spot modelling

http://www.proteomegrid.org/
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spot detection and quantification, the sum total of quantified 
spot protein abundance can be employed instead. In DIGE 
experiments with a common reference channel, dividing each 
spot volume by its corresponding reference channel spot 
volume provides for a more precise normalization.

 5. The next step is to detect spots on the average gel while obtain-
ing spot quantifications for each spot on each gel. Progenesis 
SameSpots and Delta2D compute spot volumes on individual 
gels after detection of spot boundaries on the fusion image. 
Spots that are too weak to be detected on some gels by con-
ventional means are able to be quantified by the consensus 
approach. However, while the resultant spot match list has “no 
missing values”, the correctness of these values is exclusively 
dependent on their correct alignment. The spot detection 
results must be manually verified as described in Subheading 3.2 
steps 2–3. See (7) for a comparison of Delta2D against conven-
tional approaches. The spot boundaries are then copied onto 
each individual gel for quantification. See Note 8.

   After wavelet denoising the average gel image, Pinnacle 
focuses on peaks or “pinnacles” rather than spot boundaries and 
volumes in its detection and quantification algorithm. The 
idea is that non-saturated spots have well-defined pinnacles, 
and the intensity at this pinnacle is highly correlated with the 
spot volume but less affected by neighbouring spots. If satu-
ration is avoided, peak detection on the average gel is suffi-
cient to separate co-migrated spots, and furthermore, 
quantification using peak height only is more reliable and has 
greater validity than that derived through the spot boundary 
(11). Therefore, given a set of aligned images annotated by 
their treatment group, Pinnacle automatically outputs a list of 
peak intensities for each spot and each gel for downstream sta-
tistical significance testing as shown in Fig. 3.

After the previously described image processing, we are left with 
a matrix of spot quantifications for each spot across all gels. 
This matrix can be analyzed to discern which protein spots are 
differentially expressed across treatment groups.

 1. Transformation: Frequently, the raw spot volumes or pinnacle 
intensities are highly skewed right, with many outliers, and 
the variance of a spot is related to its mean. These properties 
violate the assumptions underlying many statistical tests, such 
as t-tests or linear regression. To deal with this problem, it is 
possible to use some transformation of the spot quantifica-
tions before performing statistical analyses. Candidate trans-
formations include the log, square root, and cube root 
transformations. Frequently, it helps to add a small constant 
(e.g., ½ or 1) before transforming the volumes in order to 

3.4. Differential 
Analysis
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avoid artifacts near zero intensities. See Note 9. Choice of 
transformation can be assessed by QQ-plots and histograms 
of the residuals from the statistical test of interest.

 2. Statistical tests for differential expression: In the past, one way 
to assess differential expression of spots is to simply flag spots 
with the largest fold-changes across groups. This approach is 
statistically flawed, since fold change does not take the variabil-
ity in the data into account, and thus makes it impossible to 
gauge the level of false positives. Appropriate statistical tests 
which take into account experimental variability are Student’s 
t-test for two treatment groups, ANOVA for three or more 
treatment groups, and linear regression for quantitative cor-
relative studies. If adequate normality cannot be obtained, the 
non-parametric Mann-Whitney and Kruskal-Wallis ANOVA 
tests can be substituted. After testing, each protein will be 
associated with a probability (the “p-value”) that the observed 
difference could occur by chance. A histogram of the range of 
p-values can be checked for a peak near 0, which is a promis-
ing sign for significant differential expression. A peak else-
where suggests technical problems with the gels.

 3. False-Discovery Rate-Based Thresholds : Since p-values are 
obtained for each of many spots (100’s or 1,000’s) in the 
experiment, a p-value threshold of 0.05 would typically lead 
to a great deal of false positives, since we expect 5% of all 
spots to have p-values less than 0.05 even if there are truly 
no proteomic differences between groups. In recent years, 
various methods to estimate and control the false discovery 
rate (FDR) have arisen, and can be used to find appropriate 
p-value thresholds for declaring statistical significance. 

Fig. 3. Average gel computed after alignment using RAIN, with spots detected by Pinnacle marked with an “x”
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Controlling the FDR at some level, say 0.05, means that of 
all spots we call differentially expressed, we expect only 5% of 
them to be false positives, and the other 95% true positives. 
See Note 10. Various other methods exist that are available 
for performing this analysis in Bioconductor/R, e.g. fdrtool. 
After using this method, a q-value or overall FDR thresh-
old (typically 0.05, 0.10, or 0.20) is specified, and we 
obtain a list of differentially expressed spots.

 4. Power Calculations : Must be performed since it will be  
necessary to redo the experiment with decreased variance or, 
usually more attainably, an increased sample size (number 
of replicates) if the statistical power is found to be too low. 
Software able to estimate the optimal sample size when the 
FDR is controlled is available as dictated in subheading 2.4. 
It is highly recommended that preliminary studies are 
performed so that the power calculations are based on the 
ranges of biological and technical variability for a particular 
experiment before a definitive protocol is laid down.

 5. Mixed Effects: When multiple gels are obtained, one must 
take care in performing the statistical analysis since protein 
levels for replicate gels from the same individual are corre-
lated with each other, violating the independence assumption 
underlying the test. One approach would be to average the 
spot quantifications across replicate gels to obtain one mea-
surement per individual, and then analyze using a t-test or 
some other method assuming independence. Another alter-
native would be to use a method that takes this nested design 
into account. For example, a generalization of the t-test or 
ANOVA (21) or linear regression for correlated data would 
be a linear mixed model, including a fixed effect for treatment 
group, and random effect for the individual. Inference on the 
fixed effect from this model, then, yields a p-value that appro-
priately takes the correlation between gels from the same 
individual into account. Mixed models, e.g., PROC MIXED, 
Cary, NC, can be implemented in standard statistical soft-
ware, including SAS and R. See Note 11.

 6. Hierarchical Clustering: This can be applied to the matrix of 
spot intensity values to see which samples cluster strongly 
together. In running this clustering, one can see how individu-
als within the same treatment group are similar. Also, these 
can be useful diagnostics to see whether there is some experi-
mental factor that may have been strongly influential in the 
study. For example, if all samples run in the same IEF 
block cluster strongly together, that could indicate that 
something happened with that IEF block to make its gels dif-
ferent than the others. These can be valuable indicators to aid 
in the design of future studies.
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 1. Never manipulate the images in a generic image-editing 
package such as Photoshop (Adobe, San Jose, CA) before 
analysis. Even if the process appears risk-free such as crop-
ping, a number of side-effects can occur silently. For exam-
ple, calibration curves and metadata are likely to be lost, or 
the images may be quietly converted to 8 bit.

 2. Never attempt quantification on images saved in a lossy 
compression format such as JPEG. Not only are these limited 
to 8 bits of dynamic range, but they also remove details that 
are essential for accurate protein quantification.

 3. For example, if we have a case control study and the isoelec-
tric focusing is performed in blocks of 8, ensure that for each 
run, 4 cases and 4 controls are run in the same block, with 
the positions determined based on a random number generator. 
This way, any variability in IEF runs will not mistakenly appear 
as a case/control effect, which can happen when IEF run and 
case/control are confounded.

 4. It can be shown that maximizing the number of pools 
minimizes the total variance, yielding maximum power.  
A disastrous design would be to combine all cases into one 
pool and all controls into another pool, and then run repli-
cate gels from each pool. If this design is used, it is impossible 
to assess biological variability, since the variation across gels 
would only capture technical variability. As a result, it would 
not be possible to do a valid statistical assessment of differen-
tial expression. Thus, if pooling is deemed necessary, one 
should maximize the number of pools, and make sure to have 
multiple pools per treatment group.

 5. The background subtraction task is never perfectly discrimi-
nating, and therefore it is usually performed conservatively to 
ensure that the accuracy of protein quantification is not 
adversely affected.

 6. In order to maximize the effectiveness of the spot-matching 
phase and minimize further manual verification, when using 
conventional analysis methods, it is important to make 
editing decisions consistently over the gel set. This is 
obviously a difficult task because of the migration variability 
between gels, and is a significant limitation of the conven-
tional pipeline.

 7. Some software may have an option to match every spot list to 
every other spot list to avoid this limitation. In this case, the 
reference gel is used only to define the fixed positional refer-
ence frame to which the other gel’s spots are migrated to.

4.  Notes
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 8. Typical image-warping techniques do not preserve the 
amount of protein in each spot, leading to over-expression in 
areas of dilation and under-expression in areas of contraction. 
In order to avoid this issue, Progensis SameSpots and Delta2D 
unwarp each consensus spot boundary so that it can be applied 
to the original unaligned gels where quantification takes 
place. RAIN applies a volume-invariant warping procedure, 
wherein each pixel is weighted by its change in size, thereby 
allowing accurate quantification on warped gels.

 9. One benefit of the log transformation is that a difference in 
the log scale corresponds to a multiplicative fold-change in 
the raw scale. For example, if a log2 transformation is used, a 
difference of 1 between groups corresponds to a two-fold 
multiplicative difference.

 10. One simple method models the p-value histogram as a mixture 
of two distributions: the null distribution (true negatives and 
false positives) as the underlying uniform distribution; and 
the alternative distribution (true positives and false negatives) 
as a right skewed distribution with mode near zero. From 
this, it is possible to estimate the probability of a false positive 
for each p-value (this probability is called a q-value), and to 
estimate a cutpoint on p-values that controls the overall FDR 
at a prescribed level.

 11. The mixed models can also be used in the design phase, using 
preliminary studies on the tissue of interest to estimate levels of 
technical and biological variability for spots in the study. These 
estimates can then be used to perform power calculations and 
make design determinations, e.g., if the technical variability is 
very large relative to biological variability, then it may be help-
ful to run several replicate arrays for each biological sample.
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Chapter 17

Automated Generic Analysis Tools for Protein Quantitation 
Using Stable Isotope Labeling

Wen-Lian Hsu and Ting-Yi Sung

Abstract

Isotope labeling combined with LC-MS/MS provides a robust platform for quantitative proteomics. 
Protein quantitation based on mass spectral data falls into two categories: one determined by MS/MS 
scans, e.g., iTRAQ-labeling quantitation, and the other by MS scans, e.g., quantitation using SILAC, 
ICAT, or 18O labeling. In large-scale LC-MS proteomic experiments, tens of thousands of MS and 
MS/MS spectra are generated and need to be analyzed. Data noise further complicates the data analysis. 
In this chapter, we present two automated tools, called Multi-Q and MaXIC-Q, for MS/MS- and 
MS-based quantitation analysis. They are designed as generic platforms that can accommodate search 
results from SEQUEST and Mascot, as well as mzXML files converted from raw files produced by various 
mass spectrometers. Toward accurate quantitation analysis, Multi-Q determines detection limits of the 
user’s instrument to filter out outliers and MaXIC-Q adopts stringent validation on our constructed 
projected ion mass spectra to ensure correct data for quantitation.

Key words: Computer software, Stable isotope labeling, Mass spectrometry, Quantitative proteomics, 
Quantitation analysis, Dynamic range, Extracted ion chromatogram, Projected ion mass spectrum

In the post-genomic era, liquid chromatography (LC) combined 
with tandem mass spectrometry (MS/MS) (1, 2) has opened up a 
new dimension in proteomics research, which presents a large-scale, 
robust, and sensitive technology for protein profiling (3, 4). 
Recent advances in incorporating stable isotope labeling strategies 
into MS-based proteomics have further facilitated quantitation 
studies of differentially expressed levels of proteins in complex 
biological samples (5). In these studies, experimental samples 
are separately labeled with isotopically distinct reagents (6). 
The labeled proteins are then digested, mixed, fractionated, 

1. Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
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and subjected to LC-MS/MS. In contrast to protein identification 
by MS/MS data, protein quantitation based on MS signals falls 
into two categories: one determined by MS/MS data, and the 
other by MS scans.

MS/MS-based quantitation is determined by the relative 
intensities of fragment peaks at fixed m/z values within an MS/
MS spectrum. For example, Tandem Mass Tags (TMT) duplex or 
sixplex (7) are chemical labels for MS/MS-based quantitation. 
In addition, a typical example is quantitation using 4-plex/8-plex 
iTRAQ-labeling (8–10), which is based on a set of four/eight 
isobaric reagents. Each isobaric reagent comprises three groups: 
reporter, balance, and reactive groups. After cell lysis and protein 
digestion, the peptides in four/eight states are separately labeled 
on N-terminals and lysine residues by the reactive group of 
iTRAQ. The 8-plex iTRAQ-labeled peptides generate reporter 
groups with signature ions at m/z 113–119 and 121 in an MS/
MS spectrum, while the 4-plex iTRAQ-labeled peptides at m/z 
114–117. In addition to identifying proteins, the intensities of the 
four/eight MS/MS signature ions represent the quantities of the 
corresponding peptides, respectively, and are used for quantitation 
of peptide and protein expression levels.

Stable isotope labeling techniques for quantitation based on 
MS scans can be divided into three major categories: chemical 
labeling, e.g., ICAT (11); enzymatic labeling, e.g., 18O-labeling 
(12); and metabolic labeling, e.g., SILAC (13–16). For quantita-
tion analysis, the extracted ion chromatograms (XICs) of paired 
heavy- and light-labeled peptide ions are constructed and the 
areas of the XICs are used to calculate the peptide ratio.

As LC-MS/MS is routinely used following the quantitative 
labeling strategy, a proteomic experiment usually generates tens 
of thousands of MS and MS/MS spectra (the size of raw data 
usually amounts to several gigabytes). Many thousands of 
peptides can be collectively analyzed by multiple LC-MS/MS 
runs and hundreds, or even thousands, of proteins can be identi-
fied. A protein can be identified and quantified by more peptides, 
thereby enhancing the confidence of protein quantitation (17). 
However, in this approach, sample complexity increases sub-
stantially, which presents a great challenge for data processing. 
Furthermore, noise and limitations from the experiments or 
instruments, e.g., limited dynamic range of the instrument, and 
coeluting peptides in peptide profiling, further complicate the 
analysis. Notably, in MS-based quantitation, XICs sometimes 
have difficulty in achieving systematic quantitation of complex 
peptide mixtures because problems, such as insufficient chromato-
graphic separation and slow MS acquisition, usually complicate 
XICs’ construction and computation. Bioinformatics tools that 
can effectively tackle the data analysis challenges are essential for 
proteomics research.
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Several quantitation analysis tools have been made available, e.g., 
i-TRACKER (18), ProQUANT (Applied Biosystems) and Libra 
(http://tools.proteomecenter.org/Libra.php) for MS/MS-based 
quantitation (see Note 1), and XPRESS(19), ASAPRatio (20), 
RelEx (21), MSQuant (http://msquant.sourceforge.net/) for 
MS-based quantitation (see Note 2). In this chapter, we present 
two automated generic tools for quantitation analysis, Multi-Q 
(22, 23) for MS/MS based quantitation and MaXIC-Q (24) for 
MS-based quantitation, that aim at convenient and accurate 
quantitation analysis with much reduced manual validation effort 
(see Note 3). To achieve these aims, we consider the following 
issues in the development of our tools:

 1. Supporting input data formats from various mass spectrome-
ters and protein identification search engines,

 2. Coping with limitations arising from instruments or experiments,
 3. Data validation,
 4. Visualization of spectral data and quantitation results,
 5. Ease of installation and use.

The workflows of Multi-Q and MaXIC-Q are depicted in Fig. 1. 
Step 1 of both tools is input data preparation and filtering. Only 
confidently identified peptides and proteins proceed to subsequent 
analysis steps. The tools are available for download at http://ms.iis.
sinica.edu.tw/Multi-Q and http://ms.iis.sinica.edu.tw/MaXIC-Q.

2. Materials

Fig. 1. Workflows of Multi-Q and MaXIC-Q

http://tools.proteomecenter.org/Libra.php
http://msquant.sourceforge.net/
http://ms.iis.sinica.edu.tw/Multi-Q
http://ms.iis.sinica.edu.tw/Multi-Q
http://ms.iis.sinica.edu.tw/MaXIC-Q
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To accommodate spectral data files generated by different mass 
spectrometers, Multi-Q and MaXIC-Q adopt the standard mzXML 
format, developed by Institute for Systems Biology, for spectral 
data input. As shown in Fig. 2, spectral data files from the major 
MS manufacturers can be converted into the mzXML format by 
existing tools, such as mzStar for .wiff files from Applied 
Biosystems, ReAdW (http://tools.proteomecenter.org/ReAdW.
php) for .raw files from Thermal Finnigan, and MassWolf 
(http://tools.proteomecenter.org/MassWolf.php) for .raw 
directories from Waters. The converted mzXML format incorpo-
rates all the necessary attributes, including MS and MS/MS peak 
lists and the scan number index for subsequent quantitation.

Multi-Q and MaXIC-Q accept search result files from com-
monly used database search engines, including Mascot and 
SEQUEST. SEQUEST users need to input pepXML and protXML 
files generated by PeptideProphet (25) and ProteinProphet (26) 
(in the Trans-Proteomic Pipeline, Institute for Systems Biology), 
respectively. For Mascot users, both tools accept the CSV and XML 
formats exported directly from the Mascot web interface.

To ensure quantitation from confidently identified peptides 
and proteins, both tools select only confident search results as 
input for quantitation. To filter out low-confidence identification 
hits from SEQUEST, statistical validation by PeptideProphet and 

3. Methods

3.1. Input Data 
Preparation  
and Filtering

Fig. 2. Input data preparation for Multi-Q and MaXIC-Q. Raw data files generated by various mass spectrometers need to 
be converted into mzXML files using existing converters. The raw data files or mzXML files are then searched by either 
the Mascot or SEQUEST pipeline. The files can be searched directly by the Mascot server through varous tools. Users can 
also use SEQUEST servers to search mzXML files. The searched results need to be processed by PeptideProphet and 
ProteinProphet to generate pepXML files (referred to as interact_prot.xml) and protXML files (referred to as interact_pep.
xml). The mzXML files and search results then serve as input for both programs

http://tools.proteomecenter.org/ReAdW.php
http://tools.proteomecenter.org/ReAdW.php
http://tools.proteomecenter.org/MassWolf.php
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ProteinProphet is usually used to evaluate the confidence of 
identified peptides and proteins. For Mascot users, both tools 
use Mascot output identification scores, based on “Standard 
scoring” or “MudPIT scoring”, as a filtering criterion. We discuss 
Multi-Q in Subheading 3.2 and MaXIC-Q in Subheading 3.3.

After data preparation, Multi-Q selects iTRAQ-labeled peptides 
with confident MS/MS identification, detects signature ions, and 
performs automated quantitation of peptide abundance.

To determine the peptide ratios from an MS/MS spectrum, 
Multi-Q first smoothes the spectrum, selects signature peaks with 
specific m/z values (i.e., 114–117 for 4-plex analyses and 113–
119, 121 for 8-plex analyses) from the smoothed spectrum, and 
performs background subtraction. Spectrum smoothing is imple-
mented by the 3-point moving average (27) method. The mass 
tolerance of signature peak detection is defined by users based on 
the mass accuracy of their instruments. For example, the peak 
apexes within ±0.2 m/z of 114, 115, 116, and 117 in 4-plex analy-
ses are selected as signature peaks based on the mass accuracy of 
the quadrupole time-of-flight (Q-TOF) mass spectrometer in our 
quantitation analysis. For background subtraction, the spectrum 
baseline is defined as the mean of all the valleys in the smoothed 
curve, and the valleys are determined by calculating the first and 
second order derivatives of the curve. The peak intensity is then 
calculated by subtracting the baseline from the original data.

The isotopically distinct iTRAQ tags cause variations in the true 
peak intensity such that each batch of iTRAQ reagents contains 
trace levels of isotopic impurities that must be corrected. We use 
4-plex iTRAQ reagents to illustrate isotope impurity correction. 
As the isotopic distributions of the 114–117 signature peaks inter-
fere with each other, over- or under-representation of signature 
ions will occur. For instance, the m/z 116 peak is a composite 
peak with contributions from isotope envelopes of m/z 114, 115, 
and 117. Using the impurity information in the “Certificate of 
Analysis” provided by the iTRAQ reagent manufacturer, the inter-
ference of an isotopic reagent with its two predecessors and two 
successors can be corrected by the following linear equations:
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where yi denotes an observed ion count, xj denotes a real ion 
count, ki,j denotes the correction factor of iTRAQ reagent i’s 

3.2. Data Analysis  
in Multi-Q

3.2.1. Peptide Level 
Processing

3.2.1.1. Signature Ion 
Detection and Background 
Subtraction

3.2.1.2. Isotope Impurity 
Correction
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effect on its j-th predecessor/successor signature peak. For example, 
k114,+2 denotes the correction factor of iTRAQ reagent 114’s 
interference with the signature peak at m/z 116. All xi can be 
obtained easily by performing Gaussian Elimination (28).

After peak detection and isotope impurity correction, Multi-Q 
calculates the peptide ratios according to the peak intensities of 
the signature peaks. The relative peptide ratio rA/B(u) of a peptide 
u in two different cell states, A and B, is expressed as

 A
A/B

B

| |
( )

| |

u
r u

u
=  (2)

where |uA| and |uB| denote the abundance of peptide u in cell 
states A and B, respectively.

In the design of Multi-Q, we consider corrections of peptide ratio 
errors caused by limited dynamic range of the instrument used 
and systematic errors in the experiment procedure or instrument. 
Prior to protein quantitation, peptide ratios outside the dynamic 
range must be removed and peptide ratio normalization is per-
formed. Normalized ratios of nondegenerate peptides are used to 
calculate protein ratios.

We have conducted an experiment with 10-standard-protein mixture to 
investigate the issue of dynamic range. In this experiment, we 
observed that peak intensities of high-abundance peptide ions may 
be underestimated by mass spectrometers due to the saturation 
effect of detector’s responses, which is a common phenomenon, 
particularly in nanospray or nano-LC experiments. For example, 
Fig. 3a shows the MS/MS spectrum for the triple-charged iTRAQ 
labeled peptide (NTDGSTDYGILQINSR from Lysozyme C, 
P22910) in the m/z window 113–120. The peaks’ clusters have an 
abundance ratio of 1:2:1:0.5 in the four samples that conforms 
with the expected value in a standard protein mixture experiment. 
In contrast, Fig. 3b shows the double-labeled peptide (labeled on 
the N-terminal and the lysine residue) from the same protein, 
CELAAAMK, exhibits nearly identical peak intensities because of 
the saturated signals in m/z 114, 115, 116, and 117. The observed 
ratio does not reflect the expected ratio 1:2:1:0.5.

To determine the signal saturation threshold of the instru-
ment we used (Q-STAR Applied Biosystems, USA), we illustrate 
the distribution of paired peak intensities in Fig. 4, which shows 
the global linear correlation of the paired peak intensities for the 
total number of peptides in 114 versus 115, 114 versus 116, and 
114 versus 117. In the 1:1 experiment (m/z 114: m/z 116, indi-
cated by solid triangles), the least square regression of the scatter 
plot reveals a linear fit with a slope of 1.19, which conforms 
with the expected 1:1 ratio. However, the plot of m/z 114 versus 

3.2.1.3. Peptide Ratio 
Determination

3.2.2. Protein Level 
Processing

3.2.2.1. Determination  
and Application of a 
Dynamic Range Filter
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Fig. 3. MS/MS spectra of iTRAQ labeled peptides with different signature peak abundance 
in the m/z 114-118 region. (a) The average signature peak intensity reveals clearly 
1:2:1:0.5, in agreement with the expected value of NTDGSTDYGILQINSR from Lysozyme C. 
(b) Due to signal saturation effect, the average signature peak intensity of CELAAAML, 
also from Lysozyme C shows nearly identical peak intensities. (Reprinted with permission 
from [22]. Copyright © 2006 American Chemical Society)
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Fig. 4. Peak intensities of peptides with two different labels. Each point represents a 
peptide with two different labels, as shown by a circle for 115/114 (with expected ratio 
2), a triangle for 116/114 (with expected ratio 1), and a rectangle for 117/114 (with 
expected ratio 0.5). The dashed lines represent the linear regression of unsaturated ion 
counts, while the solid curves represent fitting curves for ion counts of all peptides. 
Deflecting trends toward 1:1 ratio (x = y) are observed when the peak intensity is over 
approximately 1,000 counts. (Reprinted with permission from [22]. Copyright © 2006 
American Chemical Society)
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m/z 115, indicated by circles, reflects a non-linear curve with a 
deflecting trend when the peak intensity is slightly above 1,000 
counts. A deviating quadratic trend is also observed in the m/z 
114 versus m/z 117 experiment indicated by squares. The curve 
substantially deviates from the linear fit with a slope of 0.5 for 
intensities over 1,000 counts. Thus, we can decide the saturation 
threshold of the instrument.

In addition to signal saturation, signal fluctuations of low 
intensity threshold is another factor for determining the dynamic 
range (see Note 4). To demonstrate the intensity dependence of 
measured peptide ratios, the m/z 116/114 signal ratios (i.e., 1:1) 
of our experiment are plotted as a function of the average ion 
counts of the signal m/z 116/114 as shown in Fig. 5. There is a 
significant fluctuation in the 116/114 ratio of low intensity pep-
tides compared to that of high intensity peptides. In particular, 
low intensity peptides, such as those with ion counts below 100, 
displayed wide fluctuations.

To avoid the above-mentioned fluctuations and improve 
quantitation accuracy, Multi-Q determines an intensity threshold 
to remove peptide ratios derived from low intensity spectra by 
analyzing the distribution of peptide ratios with a Gaussian fitting 
(28) function (the inset in Fig. 5) as follows:

 
2 2( ) / (2 )( , , , ) ss − −= × r R

r rf r n R n e   (3)

Fig. 5. Effect of ion count on measured peptide ratio. The 116/114 ratios from the 
10-standard-protein mixture are plotted as a function of ion count. Fluctuation of peptide 
ratios is greater in low ion counts than that in high ion counts. Inset shows the distribution 
of peptide ratios, where the solid line is the original data distribution, and the dashed line 
is the Gaussian fitting curve over the original data. The ratios belonging to the outlier 
group (99.7% confidence interval) of the fitting curves are considered as deviated ratios. 
(Reprinted with permission from [22]. Copyright © 2006 American Chemical Society)
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Fig. 6. Construction of the PIMS and XIC. The MS survey scans are represented by a 3D model, in which the different 
shades of gray show the intensity of the peaks. (a) Construction of PIMS: n MS survey scans are projected, and the maxi-
mal intensities of overlapping peaks are used to construct the PIMS. (b) Construction of XIC: each point in the XIC repre-
sents the total intensity of signals within the selected m/z range of the corresponding MS survey scan

where r is a peptide ratio; nr and s denote the number and the 
standard deviation of r, respectively; and R is the mode (also the 
mean) of the fitted Gaussian distribution that represents the ratio 
of the most abundant peptides. In the inset of Fig. 5, the standard 
deviation and mean of the fitted curve are 0.11 and 1.07, respec-
tively. Many low abundance peptides lie in outlier groups of the 
fitted curve with a 99.7 % confidence interval (m ± 3s) (see Note 
5). Since they are considered as deviate ratios, they are discarded 
before protein ratio determination. Multi-Q calculates the inten-
sity threshold for the low S/N ratio cut-off based on the average 
intensities of these outlier groups. Multi-Q filters out peptides 
having intensities outside the dynamic range for subsequent anal-
ysis (see Note 6).

In principle, most protein expression levels in cells remain 
unchanged between two different cell states, i.e., most peptide 
ratios should be equal to 1, and therefore, most of them follow a 
normal distribution pattern with a mode (i.e., the highest value in 
the distribution) close to 1. In practice, however, mass spectro-
metry-based quantitation results have bias due to between-assay 
variations, e.g., inconsistencies in protein digestion efficiency, 
iTRAQ labeling yield, and isotope impurities, and between-sample 
variations, e.g., variable purity or concentrations of independently 
prepared proteins. As a result, there may be a uniform bias in 

3.2.2.2. Normalization  
of Peptide Ratios
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favor of all peptide ratios such that most ratios deviate from 1 and 
a normalization procedure is essential.

Multi-Q performs a normalization procedure fitting the 
peptide ratios into the Gaussian distribution as shown in Eq. 3 
(see Note 7). All peptide ratios are multiplied by a normalization 
factor, the reciprocal of R, to correct the systematic bias.

Based on nondegenerate peptides, Multi-Q calculates the expres-
sion ratio rA/B(p) of a protein p in two cell states A and B as the 
weighted sum of all corresponding non degenerate peptide ratios 
as follows:

 A/B A/B( ) ( )u
u U

r p w r u
∈

= ∑  (4)

where rA/B(u) is defined same as in Eq. 2, U is the set containing all 
non degenerate peptides of p, and wu is the weight of the ratio 
rA/B(u) given by

 
A B

A B

( )

( )u

v U

u u
w

v v
∈

+
=

+∑  (5)

where |uA|, |uB|, |vA|, and |uB| denote the abundance of peptides u 
and v in cell states A and B, respectively. Also, Multi-Q provides 
an additional option for calculating protein ratios by unweighted 
peptide ratios.

After input data preparation and filtering, MaXIC-Q constructs 
the projected ion mass spectrum (PIMS) and constructs the cor-
responding extracted ion chromatogram (XIC) from the elution 
profile for each isotope-labeled, confidently identified peptide. 
The area of XIC is used to determine the peptide ion abundance, 
which is subsequently used for determining peptide ion ratio. 
Conventionally, an ion mass spectrum is constructed from a single 
MS scan at the elution time when the peptide ion is identified. 
However, the presence of other peptides and noises may co-elute 
during the elution period of the peptide ion that cannot be 
detected by such ion mass spectrum. Therefore, instead, we con-
struct the PIMS that covers MS scans in a range of the elution 
time of the identified peptide. PIMS is used for detecting noises 
and co-eluting peptides in the elution profile and will be validated 
whether the corresponding XIC is constructed from good spectral 
data and can be used for quantitation (see Subheading 3.3.2).

MaXIC-Q retrieves every MS scan within 120 s of the elution time 
of the identified peptide ion to ensure obtaining a complete elu-
tion profile of the ion. For each retrieved MS scan, all peaks located 
in the m/z range of the predicted ion isotope distribution, which 
can be automatically inferred from the identified sequence and its 
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3.3. Data Analysis  
in MaXIC-Q

3.3.1. Ion Level processing

3.3.1.1. Constructing  
the PIMS
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charge state, are extracted and projected to form a raw PIMS. The 
construction concepts of PIMS and XIC are shown in Fig. 6. The 
seven-point Savitzky-Golay smoothing algorithm (29) is then 
applied to the PIMS to remove noise. Next, MaXIC-Q performs 
peak detection and then background subtraction (as described in 
Subheading 3.2.1.1) on the smoothed spectrum.

To construct the XIC from the PIMS, we first determine the m/z 
range of the precursor ion from the PIMS. If the peak in the PIMS 
containing the precursor ion has a good signal-to-noise ratio 
(default: S/N ³ 2.5), we use the m/z width of the peak to con-
struct the XIC; otherwise, the m/z range of the precursor within 
a predefined window (user-defined, default setting: ±0.5 m/z) is 
selected (see Note 8). A raw XIC is constructed by summing all 
ion intensities after subtracting background in each MS scan within 
the selected m/z range and over the retention time of the peptide 
ion. Then the smoothed XIC is obtained by the B-spline smooth-
ing algorithm (30), which has been widely used to fit a free-form 
curve in digital signal processing and microarray analysis.

The scan range 120 s used to construct the XIC is so broad that 
interfering intensities (e.g., co-eluting peptides) may be included 
in the elution profile. To resolve this problem, MaXIC-Q auto-
matically reconstructs the XIC based on a refined scan range 
determined from the primitive XIC. That is, MaXIC-Q aligns the 
corresponding elution peaks of the XICs of light-labeled and 
heavy-labeled ions by their highest points and extracts the scan 
range of the overlapping areas of the aligned peaks for recon-
structing XICs.

Though quantitation is based on the area of XICs, the quality of 
PIMS critically affects the quantitation accuracy. In practice, noise 
or co-eluting ions usually cause either under- or over-estimated 
XICs; however, it is difficult to identify such XICs by existing 
XIC-based methods. MaXIC-Q adopts three criteria, the signal-
to-noise ratio (S/N), the charge state (CS), and the isotope pat-
tern (IP), to check the validity of PIMSs and determine whether 
the corresponding paired ions are quantifiable.

MaXIC-Q first evaluates whether a PIMS is acceptable in 
terms of the S/N criterion. The procedure checks whether the 
three peaks nearby the precursor m/z and monoisotopic peaks 
with good S/N, say ³ 2.5 (see Note 9). If the spectrum fails this 
criterion, it is noisy or the peptide ion expression is too low and 
the validation procedure stops. If all three isotopic peaks are 
valid, the validation procedure proceeds to the next two criteria, 
which are applied to all the three peaks.

The CS criterion is used to check whether the m/z space 
between two adjacent peaks in the isotopic cluster is consistent 

3.3.1.2. Constructing  
the XIC

3.3.1.3. Evaluating the XICs  
of Light- and Heavy-
Labeled Ions to Reconstruct 
a Refined XIC

3.3.2. PIMS Validation
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with the charge state, e.g., 0.5 for a charge state of +2. Thus, the 
CS criterion validation step evaluates (1) whether the isotopic 
pattern matches the mass of the identified peptide; and (2) 
whether there is co-elution of other peptides that would interfere 
with quantitation.

The IP criterion is also used to detect co-elution interference. 
We compare the normalized intensities of the experimental and 
theoretical isotopic clusters and calculate the correlation score of the 
two clusters. If the score is greater than a specified threshold, the 
spectrum fails in terms of this criterion (see Note 10). The effect of 
the validation procedure is briefly discussed in Note 11.

A PIMS that passes the three criteria is considered acceptable. 
Based on the validation results, MaXIC-Q classifies the quantita-
tion results as unquantifiable (denoted by N/A), or over-expressed 
(denoted by 0 or 999), or quantifiable (represented as an expres-
sion ratio). If both PIMSs of the light- and heavy-labeled paired 
ions are unacceptable, MaXIC-Q reports that they are unquantifi-
able. If one PIMS fails the S/N criterion and the other is accept-
able, the ion pair is quantified as over-expressed. If one PIMS 
passes the S/N criterion but fails the CS or IP criteria and the 
other PIMS is acceptable, the ion pair is deemed unquantifiable. If 
both PIMSs are acceptable, the ion pair is quantifiable and 
MaXIC-Q calculates the ion ratio using the overlapping areas of 
light- and heavy-labeled paired ions. For the calculation of peptide 
ratios, the ratio of a peptide is the weighted average of all corre-
sponding quantifiable ion ratios, where the weight of an ion ratio 
is determined by its area. If a peptide contains no quantifiable ions, 
the peptide is deemed unquantifiable. If a peptide contains at least 
one ion with over-expressed ratio, the peptide will probably be of 
interest to the user. Thus, MaXIC-Q reports both the number of 
over-expressed ions and the number of quantifiable ions.

MaXIC-Q performs the normalization procedure as described in 
Subheading 3.2.2.2 on ratios of non degenerate peptides. After 
normalizing the peptide ratios, protein ratios are calculated based 
on the weighted average of all corresponding non degenerate 
peptide ratios.

 1. The i-TRACKER program is limited to peptide level quanti-
tation and no protein level analysis is provided. ProQUANT 
has a peptide ratio normalization function to remove system-
atic errors resulting from isotope impurity and the experi-
ment process. But ProQUANT is limited to instruments 
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3.3.4. Calculating  
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developed by Applied Biosystems. LIBRA does not have GUI 
interface and is run on the Linux platform.

 2. The pioneering XPRESS tool utilizes signals of the precursor 
ions to reconstruct XICs. ASAPRatio adopts several numeri-
cal and statistical methods, such as Savitzky-Golay smoothing 
filters for smoothing XICs, Dixon’s test for detecting ratio 
outliers, and error analysis for assessing the quantitation 
results. In addition, ASAPRatio uses signal-to-noise ratios to 
filter out unquantifiable XICs before ratio determination. 
RelEx uses the least-squares regression technique to align 
paired XICs and determine quantifiable areas of the aligned 
XICs. The ion abundance ratio is determined by the regres-
sion slope, and the maximum correlation coefficient serves as 
a confidence measure of the quantitation results. MSQuant is 
based on the Mascot search output and utilizes LC profiles to 
compute quantitation ratios. Readers may refer to (31, 32) 
for survey of tools.

 3. Multi-Q and MaXIC-Q are designed as stand-alone programs 
that are executable on the Windows platform.

 4. The degree of fluctuation depends on the inherent intensity-
based stochastic processes in ion signal measurements by mass 
spectrometers (21, 33).

 5. The three-sigma confidence interval for outlier group has 
been discussed in details in Kunal Aggarwal et al (34).

 6. To filter out errors in peptide ratios caused by limited dynamic 
range, Multi-Q allows users to input the signal fluctuation 
threshold and the detector’s saturation threshold when run-
ning the system. Only peptides with intensity values between the 
two thresholds are extracted for protein quantitation. Before 
inputting data into the Multi-Q system, we strongly recom-
mend that first-time users apply a standard protein test with 
predetermined ratios to examine the saturation effect and sig-
nal fluctuation phenomena of their mass spectrometers. 
Multi-Q can automatically calculate the two thresholds and 
users can use them for subsequent quantitation analyses.

 7. Most popular normalization methods multiply all peptide 
ratios by a global normalization factor, which can be based on 
the measured median ratios (35), external reference standard 
(36), or known invariant reference proteins. For high-
throughput quantitative proteomics, a normal distribution is 
usually chosen to minimize the effect of peptides with low 
S/N ratios on the normalization process.

 8. The selection of m/z window and elution time ranges depends 
on the LC and MS performance of different instruments.

 9. For peak validation by S/N, the default threshold of 2.5 only 
applies to the first monoisotopic peak in the isotope cluster of 
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the identified ion, and the S/N criterion for the subsequent two 
peaks is adjusted in proportion to their theoretical intensities.

 10. The default threshold is 0.218, which is pre-determined by 
applying a data mining tool, called C5.0, to our cICAT-labeling 
datasets.

 11. In some labeling experiments, e.g., ICAT labeling experiments, 
some proteins may be quantified by only a few peptides. It is 
hard to detect outliers of peptide ratios for such proteins, 
whereas our validation criteria can filter out these outliers. For 
example, in our ICAT-labeling experiment, without validation 
procedure, the protein IPI00218845 was quantified by three 
peptides CLGSLVFPR, FCVFGLGSR, and CSQLDHLYR 
with identification confidence 0.99, 0.96, and 0.83, respec-
tively. These peptides have ratios 0.54, 0.82, and 0.98, respec-
tively, calculated from directly computing the areas of XICs. It 
is not easy to determine outliers. But, the peptide CLGSLVFPR 
fails the IP criterion and cannot be quantified. Thus, its ratio 
0.54 is filtered out.
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Chapter 18

An Overview of Label-Free Quantitation Methods  
in Proteomics by Mass Spectrometry

Jason W.H. Wong and Gerard Cagney

Abstract

Protein quantification represents an important extension to identification proteomics, enabling the 
comparison of protein expression across different samples or treatments. Comparative protein quantifica-
tion by mass spectrometry typically employs stable isotope incorporation, but recently, comparative 
quantification of label-free LCn-MS proteomics data has emerged as an alternative approach. In this 
chapter, we provide an overview of the different approaches for extracting quantitative data from label-
free LCn-MS experiments. The computational procedure for recovering the quantitative information is 
outlined. Examples of statistical tests used to evaluate the relevance of results are also provided.

Key words: Protein quantification, Mass spectrometry based-proteomics, Label-free quantification, 
Spectral counting, Ion chromatogram extraction

Identifying the protein components of samples submitted for analysis 
to proteomics laboratories is now routine. These procedures typi-
cally rely on interfacing liquid chromatographic (LC) separation 
of peptides (proteolytically digested protein mixtures) with the 
introduction of the ionized material into a mass spectrometer (1). 
Meanwhile, orthogonal peptide separation techniques, such as 
multidimensional protein identification technology (MudPIT) 
(2–4), have further increased the potential throughput of MS/MS 
experiments, with studies now regularly reporting the identifica-
tion of hundreds or thousands of individual proteins.

Merely identifying a protein, however, is often only the first step 
in MS-based proteomics studies. The ability to quantify the levels 
of proteins present provides an extra dimension of information, 

1.  Introduction
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and this information can be critical for time-course or comparative 
condition-dependent experiments. Unfortunately, the data gen-
erated in a typical MS experiment is not directly quantitative. 
The efficiency of the ionization process depends on several factors, 
including the molecular composition of each molecule, the ioniza-
tion method, the type of instrument, and the nature of the instru-
ment duty cycle. For instance, the apparent ion intensity for 
similar peptides at the same concentration often varies with amino 
acid composition. Other issues such as LC-MS/MS experimental 
variation over repeated runs and ion suppression effects (5) may 
also be confounding. Nevertheless, with careful experimental 
design and data analysis, comparative and even absolute protein 
quantification by MS is now possible for researchers.

There are currently two main approaches to protein quantifica-
tion by LCn-MS/MS, one involving chemical labeling and the 
other “label-free” (Fig. 1). The first approach uses incorporation of 
stable isotopes into one or more of the samples being studied (6). 
This can be carried out in vivo by stable isotope-containing amino 
acids introduced in the cell culture media (SILAC) (7, 8), for 
example, carbon-13 substituted arginine (9). Alternatively, the sta-
ble isotopes can be incorporated in vitro by chemical (6, 10, 11) or 
enzymatic means, for instance using oxygen-18 water when per-
forming proteolysis with trypsin (12). Peptides arising from the 
sample containing the stable isotope will then be “heavier” when 

Fig. 1. Strategies for comparative proteomics by LCn-MS. The label-free methods in bold are the subject of this review
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simultaneously analyzed with the control sample, thereby allowing 
them to be distinguished in the mass spectrometer. Because the 
molecular composition of the “heavier” ion is the same as that of 
the lighter ion, the ionization efficiency will remain the same and 
therefore the quantities of identical peptides (as represented on an 
ion chromatograph) can be directly compared. Disadvantages of 
using stable isotope labeling include the potential for incomplete 
labeling, and the requirement that cells be culturable (in the case of 
SILAC). Furthermore, while it is possible to differentially label up 
to eight biologically different samples using the iTRAQ® Reagent-
8Plex kit, the high cost renders routine application prohibitive. In 
terms of MS data acquisition, isotope labeling may provide an 
increased challenge because the number of peptides co-eluting will 
increase, hence possibly reducing the overall peptide coverage. 
Subsequent computational analysis will also require specific soft-
ware tools for the recovery of differentially labeled peptides.

The second approach to protein quantification by LC-MS/
MS is “label-free”. The basis of these methods is to make the 
assumption that under well controlled conditions with sufficient 
data redundancy, identical peptides across different LCn-MS/MS 
experiments can be compared directly. This has been made pos-
sible through technical advances in high-performance (HP) LC 
systems, mass spectrometers with higher resolution and scanning 
rates, as well as the use of robots for sample preparation. Semi-
quantitative information may be inferred from total peptide ion 
counts or spectral counts (the number of MS/MS spectra acquired 
for a protein or peptide). Studies have shown that peptide ion 
counts across control experiments can be very reproducible (13–
16), with results comparable to stable-isotope labeling approaches 
(17), and label-free comparative quantification studies have 
gained popularity in recent years (18–25). The major advantages 
of the label-free approaches are that they typically do not require 
extra experimental steps and that comparative quantification can 
be performed across many samples simultaneously. Most recently, 
it has also been shown that by incorporating information regard-
ing the detectability of a peptide, absolute quantitation is also 
possible by label-free methods (26, 27).

In this chapter, an overview of procedures for comparative 
and absolute label-free quantification is provided (see Fig. 2 for 
schematic overview).

As mentioned earlier, a major advantage of label-free quantitation 
by MS is that no extra steps are typically required compared 
to a standard MS-based protein identification experiment. 

2.  Methods

2.1. Experimental 
Design



276 Wong and Cagney

Nevertheless, in order to ensure the validity of the quantitative 
information, care must be taken during sample preparation and 
data acquisition to minimize external influences on the apparent 
protein quantity.

It is generally advisable to prepare samples to be quantified 
simultaneously using identical reagents by a single researcher. 
While LC systems and mass spectrometers are able to produce 
highly reproducible results, sensitivity can still vary over-time. This 
could be due to a number of reasons including degradation of the 
chromatographic column, a change in environmental conditions 
(e.g., room temperature), as well as regular maintenance, such as 
tuning of calibration of the mass spectrometer. Therefore, to mini-
mise intra-analysis variations, it is advisable to perform all analysis 
in a single batch. Furthermore, the analysis of triplicates in tandem 
repeats (i.e., (A1, B1, C1), (A2, B2, C2), (A3, B3, C3)) will enable 
any change in LC-MS performance over the course of the experiment 
to be monitored and to show that any difference in abundance 
between samples are truly due to intrinsic protein levels as oppose 
to intra-run variations. Internal controls added to each sample in 
known concentrations are in principal useful to evaluate experiment-
to-experiment variation. In practise however, these controls must 
be carefully chosen to ensure that they do not interfere with 

Fig. 2. Schematic diagram for label-free quantitative proteomics by LCn-MS/MS
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quantitation of the true sample (e.g., via ion suppression). In 
some cases, signal from experimental reagents present in equal 
quantities (e.g., trypsin autolysis fragments) can be used to assess 
reproducibility across samples.

The height or area of a peak at a particular mass-to-charge ratio 
(m/z) from a mass spectrum reflects the number of ions for that 
m/z detected by the mass spectrometer at any given time. This is 
typically known as the ion abundance. Although the ion abun-
dance cannot be used to directly infer absolute protein or peptide 
concentration (due to different ionization efficiency for each pep-
tide), comparing the ratio of ion abundances between identical 
peptides obtained in different experiment runs can be used to 
estimate differential expression.

 1. Search all acquired spectra using database searching algorithm 
(see Note 1).

 2. For each peptide identified, extract the ion chromatogram for 
all charge states (e.g., +1 to +3) (see Note 2).

 3. Where necessary, combine the extracted ion chromatogram 
for each unique peptide from each sample and calculate an 
abundance ratio across samples (see Note 3).

 4. Peptide ratios are then combined to form respective protein 
abundance ratios (see Note 3).

 5. Protein abundance ratios are normalized by the mean of all 
protein ratios. For complex biological samples, it is expected 
that the majority of protein ratios to be close to 1:1, assuming 
that an equal amount of total protein was analyzed. Therefore, 
to normalize the observed protein ratio, all ratios can be divided 
by the mean protein ratio.

 6. Due to the central limit theorem, it is expected that the dis-
tribution of normalized protein ratios be normal and distrib-
uted about a mean of 1. The z-score for each protein ratio 
(i.e., the number of standard deviations a protein ratio is from 
the mean) can be calculated based on the estimated normal 
distribution. Comparison of z-scores against a z-table will 
indicate whether any observed differences in relative protein 
level is likely to have occurred by chance (see Note 4).

The spectral count for a protein refers to the number of MS/
MS spectra acquired from proteolytic peptide ions for that pro-
tein during a LC-MS/MS run. The premise of the method is 
that the more abundant the peptide, the more likely it will be 
selected for MS/MS analysis. In controlled experiments, it was 
found that the correlation of protein abundance with spectral 
count is superior to that of protein sequence coverage or peptide 
count (28, 29).

2.2. Data Analysis

2.2.1. Comparative 
Quantification

2.2.1.1. Ion Intensity

2.2.1.2. Spectral Counting
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 1. Search all acquired spectra using database searching algorithm 
(see Note 1).

 2. For each protein, tally all MS/MS spectra for each peptide 
belonging to the protein (see Note 5).

 3. The total spectral count should be the same across samples under 
identical data acquisition conditions, so spectral counts for one of 
the samples should be normalized against the other as follows:
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where s is the spectral count for protein n, 1 & 2 are the sample 
numbers and i is the ith protein. Where there are more than two 
samples to normalize, the total spectral count of any one sample 
can be used as the reference.

 4. Determine the statistical significance of protein spectral counts 
across samples. A number of different statistical tests can be used 
(see Note 6). For illustrative purposes, the two-sample G-test is 
shown here, due to its ease in computation and the ability for 
the test to be generalised for comparisons of more than 2 sam-
ples. The spectral counts for each protein can be visualised by a 
two-way table (Table 1). The G-statistic measure the difference 
in deviance between the protein spectral counts (generally, the 
greater the deviance the more likely the difference is significant). 
The statistic is calculated as follows:
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The William’s correction factor (w) is applied to adjust the 
G-statistic for proteins with particularly low spectral counts:
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Table 1 
Display of spectral count data in a two-way table for 
statistical testing

Sample 1 Sample 2 Total counts

Protein x x1 x2 x

Other proteins n1 n2 n

Total t1 t2 t
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The p-value can be calculated from the adjusted G-statistic 
(G/w) which follows a c2 distribution with one degree of freedom 
(m − 1 for m samples).

While comparative quantification is adequate when the aim of the 
experiment is to find differences in protein expression between 
samples, absolute quantification would be useful for comparing 
protein levels between data generated at different times by differ-
ent laboratories using different MS-based proteomics setups. 
Recently, reaction monitoring techniques that incorporate labeled 
peptide standards of known concentration have been adapted for 
proteomics work (30, 31). While these assays are currently expen-
sive and need to be optimized for each protein to be monitored, 
alternative label-free approaches that aim to provide “absolute” 
quantitation face a number of hurdles in terms of ensuring that the 
experiment is accurate, sensitive and reproducible. As mentioned 
earlier, MS is typically not directly quantitative due to different 
ionization efficiencies for different peptides. Furthermore, certain 
peptides may not be retained under particular chromatographic 
conditions, while the mass of a peptide may simply be out of the 
range of the mass spectrometer. The end result is that only a lim-
ited number of peptides from each protein may be detected within 
an LCn-MS/MS experiment. To enable absolute quantification, 
a measure of the “detectability” of a protein must be defined 
in order to normalize for the actual observed sampling depth 
(i.e., spectral counts).

 1. Estimate the concentration of protein being analyzed (see 
Note 7).

 2. A normalization coefficient, O, is required for each protein. 
At the simplest, O can simply be the number of proteolytic 
peptides that are within mass detection limits of a mass spec-
trometer (e.g., 1+ ion > 400 m/z and 3+ ion < 2,000 m/z). 
However, for a more accurate prediction of the coefficient O, 
Lu and co-workers (26) used machine learning to train a clas-
sifier that uses various protein and peptide sequence charac-
teristics to define the probability that a given peptide will be 
detected. Mallick and co-workers (27) have similarly devel-
oped a classifier that also accounts for a number of different 
shotgun MS proteomics setups. Their classifier (PeptideSieve) 
is available at tools.proteomecenter.org (see Note 8). To gen-
erate the coefficient O for all proteins for interest using 
PeptideSieve, the user inputs a list of protein sequences and 
selects the relevant experimental design (e.g., MUDPIT_
ESI). The output is a list of each tryptic peptide with its 
respective probability for detection. The coefficient O for a 
particular protein is the sum of all probabilities from tryptic 
peptides of the protein.

2.2.2. Absolute 
Quantification
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 3. Obtain spectral count information as in steps 1 and 2 of 
subheading “Spectral Counting”.

 4. Using the predicted detectability of proteins identified as a 
normalization factor, estimate the concentration of each 
protein detected based on spectral counts. Lu and co-work-
ers (26) defined the absolute protein abundance expression 
(APEX) index, which is essentially molecules of protein per 
cell. The following formula is use to calculate APEX for 
protein i:
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where n is spectral count for protein i, p is the probability of cor-
rectly identifying protein i (from ProteinProphet (32)), O is the 
normalization coefficient for the “detectability” of the protein 
and C is the estimated total protein concentration.

 1. A wide variety of database searching algorithms are available. 
Sequest (33) and Mascot (34) which are commercial prod-
ucts are generally most popular, however, open source tools 
such as X!Tandem (35), OMSSA (36) and InsPecT (37) are 
all broadly comparable in performance.

 2. To measure the total ion abundance for any peptide ion within 
a LC-MS experiment, the ion intensity is integrated over time. 
This process is computationally referred to as ion extraction 
resulting in an extracted ion chromatogram (Fig. 3). For 
technical detail regarding computing an extracted ion chro-
matogram, see ASAPratio (38).

 3. When combining extraction ion intensity ratios to form a 
unique peptide ratio or combining unique peptide ratios to 
form protein ratios, each ratio should be weighted accord-
ingly using the actual ion intensity.

 4. For a description of a more sophisticated statistical test which 
takes into account ion intensity errors between peptide ions, 
refer to ASAPratio (38). The incorporation of errors in the 
statistical test is particularly useful when the number of over-
all protein ratio available is low.

 5. Tools such as PeptideProphet (32) and ProteinProphet (39) 
will automatically generate tables wherein spectral counts can 
be easily extracted. Note that software that directs the MS 

3.  Notes
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instrument to acquire spectra in a data dependent manner 
will influence the spectral counts.

 6. An evaluation of the performance of five different statistical 
tests has been performed by Zhang and co-workers (29).

 7. Depending on the experimental condition, a number of different 
methods may be used to estimate protein concentration. For 
example, the Lowry (40) or Bradford (41) assay can give an 
estimate for protein concentration in mg/mL.

 8. A graphic user interface for PeptideSieve is available at 
(http://web.bii.a-star.edu.sg/~wongch/peptideSieve/).

Fig. 3. Example chromatogram of a typical LCn-MS/MS analysis of a tryptically digested proteome. Peptides were sepa-
rated on a C18 reverse phase column followed by MS and data dependent MS/MS analysis using a ThermoFinnigan LTQ 
mass spectrometer. The top shows the total ion chromatogram for the run while the bottom is an extracted ion chromato-
gram for a particular peptide showing a significant peak. The area of this peak represents the total ion intensity of the 
peptide

http://web.bii.a-star.edu.sg/~wongch/peptideSieve/
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Chapter 19

The PeptideAtlas Project

Eric W. Deutsch

Abstract

PeptideAtlas is a multi-species compendium of peptides observed with tandem mass spectrometry methods. 
Raw mass spectrometer output files are collected from the community and reprocessed through a uni-
form analysis and validation pipeline that continues to advance. The results are loaded into a database and 
the information derived from the raw data is returned to the community via several web-based data 
exploration tools. The PeptideAtlas resource is useful for experiment planning, improving genome anno-
tation, and other data mining projects. PeptideAtlas has become especially useful for planning targeted 
proteomics experiments.

Key words: Proteomics, Data repository, Proteome, Database, SRM

The advent of tandem mass spectrometry (MS/MS) has enabled the 
identification of a large number of proteins in a high throughput 
manner. A wide variety of instruments, sample preparation tech-
niques, and data analysis methods have fostered an innovative 
research community, and a huge amount of data has been and 
continues to be generated at significant expense. It has long been 
recognized that public repositories of data would accelerate the 
advancement of proteomics (1) as it has done for other fields such as 
transcriptomics. Making the data easily accessible to the public 
fosters the validation of results, and more importantly the reuse of the 
data for purposes beyond the intents of the original researchers.

Making the raw mass spectrometer output files accessible to 
the community is important because the analysis techniques of pro-
teomics continue to advance markedly over time. Modern analysis 
of older datasets yields many more identifications and information 
from the data due to better protein reference information and better 

1.  Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_19, © Humana Press, a part of Springer Science+Business Media, LLC 2010
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informatics software. Indeed, the newest spectral library-searching 
techniques routinely identify 50% more spectra than sequence-
searching techniques, and different search engines are able to 
identify different peptides in the same datasets. One can expect that 
future workflows will apply several tools in parallel to achieve an 
analysis much closer to optimal.

The PeptideAtlas Project is a resource that accepts mass spec-
trometer output files in a variety of formats along with the meta-
data associated with the experiment. The raw data are reanalyzed 
using ever-improving techniques and coalesced into a compen-
dium of identifications for each species. An important part of the 
resource is the tools that allow the research community to access 
the data in the PeptideAtlas database for experiment planning, 
validation of new datasets, and other data mining projects.

In addition to PeptideAtlas, several repositories for proteomics 
data have emerged over the last few years, including PRIDE 
(Proteomics Identifications Database) (2), OPD (Open Proteomics 
Database) (1), Tranche (3), and GPMDB (Global Proteome 
Machine Database) (4). These repositories have different strengths 
and fill different niches. The strengths of PeptideAtlas are that only 
raw data are accepted and are processed through a uniform analysis 
and validation pipeline to insure high quality results with well-under-
stood false discovery rates (FDR), and an advanced toolset for present-
ing the results in a manner conducive to experiment planning.

In the following sections, the PeptideAtlas Resource is described 
in detail. First a brief history of the early motivations and work is 
presented, followed by a description of the building of PeptideAtlas. 
Finally, the many ways to use the PeptideAtlas is presented, ending 
with an outlook on the future of the resource.

With the increasing number of installed tandem mass spectrometers 
capable of generating large amount of MS/MS-based proteomics 
data, it became apparent that there was significant value in collect-
ing and combining many of these datasets. Expected benefits from 
such work include high coverage of a proteome, sufficient data den-
sity for statistical arguments, and the possibility to contribute exten-
sive observational data back to genome annotation projects.

The PeptideAtlas project thus began at the Seattle Proteomics 
Center as a compendium of peptides observed in a collection of 
human and Drosophila shotgun tandem mass spectrometry data-
sets acquired at the Institute for Systems Biology. Also available 
were the annotations describing in which samples the peptides 
and proteins were observed, which modified forms and how 
frequently the peptides were observed, and how these peptides 
mapped onto the genome (5).

2.  History
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Subsequently, additional builds have been added for yeast 
(6), Streptococcus pyogenes (7), and Halobacterium salinarum (8). 
In addition, several specialized builds for subproteomes were 
released for human plasma (9) and mouse plasma (10) samples. 
PeptideAtlas builds for several other species (mouse, E. coli, rat) 
and subproteomes (liver, pancreas, et al.) are expected to be 
released in 2009.

The tools have also evolved considerably in the past four 
years. In 2004, only basic query and browsing tools were avail-
able. As of this writing, there are a large number of tools that 
support new targeted proteomics strategies as well improvements 
to traditional approaches.

The build process of the PeptideAtlas has evolved since it was 
initially described (11). As illustrated in Fig. 1, raw mass spec-
trometer output files for MS/MS experiments are collected from 

3. Building  
of the PeptideAtlas

Fig. 1. An overview of the build process of PeptideAtlas. Shotgun tandem mass spectrometry (MS/MS) experimental data 
are contributed by the community to the PeptideAtlas raw data repository, which is linked to other repositories via the 
ProteomExchange consortium. The raw data are processed through an evolving but consistent analysis and validation 
pipeline (Trans Proteomic Pipeline (TPP)) and loaded into the PeptideAtlas database, and made available to the community. 
Tranche, GPMDB (Global Proteome Machine Database), NIST (National Institute of Standards and Technology), and PRIDE 
(Protein Identifications Database) are the current major participants in the ProteomExchange consortium
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the community, processed through a consistent analysis pipeline, 
and then loaded into the PeptideAtlas database, thereby return-
ing high-value information back to the community that provided 
the data. These different phases are described in great detail in the 
following subsections.

A key component of PeptideAtlas is a data repository in which 
raw data and search results are made available to the community. 
The PeptideAtlas data repository has had an important role in 
the advancement of research using high throughput technolo-
gies, acting as the data provider to several projects, including the 
spectrum library building at the National Institute of Standards 
and Technology (NIST), the PepSeeker database (12), as well as 
large-scale genome annotation efforts (13). In addition to 
PeptideAtlas, several repositories for proteomics data have 
emerged over the last few years, including PRIDE, OPD, 
Tranche, and GPMDB. These repositories have different 
strengths and fill different niches, but it is obvious that the high-
est benefit can be gained if all the repositories share data and 
metadata to allow users to access data from all the same experi-
ments using the repository that best meets their requirements. 
PeptideAtlas is actively participating in the formation of the 
ProteomExchange consortium that attempts to facilitate this 
interoperability between the repositories.

However, most of the aforementioned repositories are largely 
passive – that is, results are stored and can be queried or down-
loaded, but the remaining untapped potential within the primary 
data is not extracted with continually advancing analysis tools. 
Typically, only a small fraction of acquired MS/MS spectra are 
confidently identified in the first attempt. Although many of the 
unidentified spectra are of inadequate quality to be ever identi-
fied, a considerable fraction of them can indeed be identified with 
more effort and newer techniques (14). PeptideAtlas aims to be 
an active repository, in which only raw data are accepted and these 
raw data are periodically reprocessed with more advanced tech-
niques for identification and statistical validation as these are 
becoming available. The results of this advancing analysis of the 
raw data are then made available back to the community in forms 
that enable additional research, specifically with tools that support 
the new targeted proteomics workflows.

Once raw mass spectrometer output files are available in the raw 
data repository, sequence database searching and automated vali-
dation of the results using the Trans Proteomic Pipeline (TPP) 
(15) is performed. This begins with conversion to a common 
mzXML file format, then sequence searching with either 
SEQUEST (16) or X!Tandem (17), followed by validation of the 

3.1. Acquiring Data 
and the Raw Data 
Repository

3.2. Uniform 
Processing with 
Advanced Tools
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top hits with PeptideProphet (18), a program that models the correct 
and incorrect spectrum-peptide match populations and assigns a 
probability of being correct to each match.

All PeptideProphet results are then combined using 
ProteinProphet (19), a program that uses the spectrum-peptide 
match models from PeptideProphet to derive protein-level prob-
abilities as well as to adjust the peptide-level probabilities based 
on the information available from the ensemble of experiments. 
Given a set of confidently identified spectra, the spectral library 
building tool SpectraST is used to create a consensus spectrum 
library comprising all observed peptide ions. As part of the library 
building process, many high scoring but incorrect identifications 
are rejected. Then, all raw data are subjected to a second round of 
searching, this time by spectral library searching with SpectraST. 
This has the effect of identifying many more spectra from the 
available data, with a higher sensitivity and lower error (20). 
Output of SpectraST is validated in the same manner as described 
above with PeptideProphet and ProteinProphet.

All peptides are then mapped to a single reference Ensembl (21) 
build (if available for the species) and mapped to the genome. All 
this information is loaded into the PeptideAtlas database for 
browsing or downloading.

The information is loaded in as a discrete build within the 
PeptideAtlas database. A build represents a particular set of experi-
ments that have been processed as described above at a certain 
point in time, and mapped to a specific build of the proteome/
genome. This build version remains static thereafter. As additional 
data are acquired, old data reprocessed, or mappings to newer 
proteome/genome builds are performed, a new build becomes 
the default, but older builds remain available for comparison or 
historical reference.

The result of each build process is also made publicly available 
at the PeptideAtlas web site in several formats. The front-end 
web-site software is distributed as part of the Systems Biology 
Experiment Analysis System (SBEAMS) framework (22). A sum-
mary of the current state of the various PeptideAtlas builds is 
provided in Table 1.

A crucial aspect to the success of the PeptideAtlas Project is the 
tools available for accessing the information therein. The follow-
ing subsections highlight some of the most visible and useful 
features of the PeptideAtlas.

3.3. Populating  
the Database

4. Using 
PeptideAtlas
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Table 1 
Summary of public PeptideAtlas builds

Build # Exps # MS runs
Searched 
spectra IDs P > 0.9

Distinct 
peptides

Distinct 
proteins

Human all 219 54 k 49 M 5.6 M 97 k 12,141

Human plasma  76 48 k 16 M 1.8 M 18 k  2,486

Drosophila  43 1,769 7.5 M 498 k 72 k  9,124

Drosophila PhosphoPep  4 448 0.9 M 170 k 10 k  4,583

Yeast  53 2,957 6.5 M 1.1 M 36 k  4,336

Mouse  59 3,097 10 M 1.4 M 51 k  7,686

Halobacterium  88 497 0.5 M 76 k 12 k  1,518

S. pyogenes  5 64 215 k 52 k  7 k  1,068

As described above, a build represents a particular set of experiments 
that have been processed as described above at a certain point in 
time, and mapped to a specific build of the proteome/genome. 
For each build, there is a summary page that provides such infor-
mation as the build date, the number of experiments included, 
the number of spectra searched to create the build, and the result-
ing number of identifications.

This is followed by some tables and charts that demonstrate 
the individual contributions of the experiments to the build. 
Experiments are usually listed in approximate chronological 
addition to the PeptideAtlas, and therefore the charts track the 
growth of the atlas build over time.

For each protein in the reference proteome for a given build, a 
dynamic protein view page summarizes the information available 
for that protein. The page is segmented into several collapsible sec-
tions that can be easily minimized when they are not of relevance 
to the user. Minimized sections persist over multiple page views.

The top section provides basic information about the protein 
including all the aliases and related names and accessions available 
in the database, as well as the total number of spectra and distinct 
peptides that map to the protein.

The following two sections summarize the peptide coverage 
of the protein. A graphical diagram, similar to the genome browser 
views, summarizes all the peptides that map either uniquely or 
redundantly to the proteins plus the information on segments 
unlikely to be observed with mass spectrometers, as well as the 
signal peptides and transmembrane information where available. 

4.1. Build Overviews

4.2. Protein Views
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The actual protein sequence is displayed with amino acids occurring 
in observed peptides highlighted.

This is followed by a section listing all the peptides observed 
and mapping to this protein. The table listing includes many attri-
butes of the peptides, including the number of times they were 
observed with what best probabilities, theoretically calculated 
hydrophobicities, and the samples in which the peptides were 
observed. Empirical Observability Score (EOS) and Suitability 
score metrics are listed as well. The EOS reflects a likelihood that 
if the protein is detectable in the sample, it is detected via that 
peptide. The Suitability Score represents a ranking of how suitable 
the peptide is as a reference or proteotypic peptide. The score 
includes information about the total number of observations, the 
EOS, the best probability of identification, and includes penalties 
if the peptides are not fully tryptic, contain missed cleavages, or 
undesirable residues that impact a peptides suitability for targeting 
(such as methionine which is variably oxidized).

Below this is a section about theoretical peptides for the pro-
tein. Each protein is digested in silico and both the PeptideSieve 
(23) and DetectabilityPredictor (24) software tools are used to 
predict which peptides might be most suitable for targeting. This 
can be compared with the empirical evidence for many proteins. 
For low abundance or otherwise hard-to-detect proteins, these 
theoretical predictions are useful.

Finally, the last section provides a summary of the samples in 
which the protein was observed. This is also potentially quite use-
ful for planning future experiments.

For each peptide observed in the data for a given build, a dynamic 
peptide view page summarizes the information available for that 
peptide. The page is segmented into several collapsible sections as 
described above. The first section provides a number of attributes 
for the peptide including predicted hydrophobicity and pI, as well 
as the number of spectra supporting the identifications.

The following section diplays the peptide-to-protein and chro-
mosomal mapping information. Since the peptide-to-protein map-
ping can be multiplex and confusing, this section tries to simplify 
the mapping information. If the peptide can map to multiple iso-
forms of the same gene, this is noted, and when a peptide spans an 
intron in the genome, the chromosomal coordinates reflect this. In 
order to better visualize a complex mapping relationship, a hyper-
link to a secondary page displays all the proteins to which a peptide 
maps; the proteins are aligned together with an overlap of which 
peptides are observed for each isoform or different protein.

The next section lists all of the different observed peptide 
ions, i.e. the different charge states or mass modifications that 
were observed. For each peptide ion, the predicted monoisotopic 
precursor m/z is listed along with the number of observations, 

4.3. Peptide Views
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number of experiments, and hyperlinks to visualize the consensus 
spectra for each peptide ion.

Below this is a listing of every spectrum that supports the 
identification of this peptide, along with individual attributes of 
the identifications such as probability of being correctly identi-
fied. Each individual spectrum is available for viewing.

Finally, at the bottom is a listing of all the experiments 
that included the peptide along with some simple charts that 
depict the relative number of spectral counts in each of the 
experiments.

The previously described peptide and protein views are useful for 
exploring proteomes, one protein at a time. However, they are 
impractical for extracting lists of interesting results for many pro-
teins and peptides. For this reason, there are several query pages that 
can return many peptides or proteins at once. These pages 
allow users to specify a list of constraints for the desired output 
and receive a list of either proteins, peptides, or transitions (see 
Subheading 4.6) based on the specified constraints. The lists may 
be browsed interactively via the embedded hyperlinks, or down-
loaded in XML or tab-separated-value formats, or even right into 
tools like Excel.

For targeted proteomics strategies, it is important to determine 
which peptides are the optimal ones to target; these are termed 
proteotypic peptides (25). A proteotypic peptide is one that is eas-
ily observable with current mass spectrometry technology and one 
that maps uniquely to a single protein or isoform. Such peptides 
make optimum targets and PeptideAtlas provides tools that make 
the extraction of such proteotypic peptides easy via the query form 
described above.

The relationships between proteins and constituent peptides 
can be quite complex in higher eukaryotes and difficult to grasp 
using ordinary tabular views. We therefore provide a mechanism 
to visualize peptide and proteins within a PeptideAtlas build using 
the Cytoscape network visualization software (26). On the pro-
tein view web page, below the list of constituent peptides, there 
is a button to launch Cytoscape. The information on the current 
page, including the protein and peptides is combined into a 
Cytoscape-compatible format. Proteins and peptides are nodes in 
the network; peptides that map to the protein are connected with 
an edge. Additionally, the network is then grown to include all 
proteins and peptides that have any relationship with the peptides 
or proteins already in the network. This final dataset is then pack-
aged up in a jar file and sent to the client with the application via 
Java Web Start. The user sees a new Java window appear as shown 
and further described in Fig. 2.

4.4. Queries

4.5. Proteotypic 
Peptides
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The emerging targeted proteomics workflows such as selected 
reaction monitoring (SRM; also called MRM) are gaining popu-
larity. In this workflow, the mass spectrometer is configured to 

4.6. Selecting 
Transitions

Fig. 2. Cytoscape visualization of a simple set of proteins and peptides. The two proteins are drawn as purple oval nodes. 
Peptides are drawn as rectangular nodes. Edges indicate the mapping of peptides to proteins. Peptides that have only 
one edge are uniquely mapping; peptides with two or more edges are ambiguously mapped. Peptide rectangle borders 
become thicker and redder with greater numbers of observations. Proteotypic peptides (uniquely mapping, multiply 
observed, and having EOS > 0.3) are shaded in green.
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monitor unique ion signatures, called transitions, of predetermined 
peptides in order to achieve a detection or confident upper limit 
for desired peptides to the exclusion of all other peptides. A transi-
tion is merely the set of precursor m/z and one or more product 
ion m/z values. However, the selection of appropriate transitions 
can be a difficult task. PeptideAtlas has several tools to aid in the 
selection of transitions, which are the signatures of peptides needed 
for SRM (27). As described above, the individual and consensus 
spectra are all available within the PeptideAtlas interface and can 
be used to select transitions either by hand or in batch queries. 
The ViewMRMList query allows users to specify a list of input 
proteins and the desired attributes of the transitions, and the result 
is a tab-separated-value list of candidate transitions for follow up.

One problem with predicting candidate transitions from 
PeptideAtlas is that most of the spectra in the atlas are from ion 
trap instruments, simply because that is what is predominantly 
submitted. However, the relative intensities of the fragment ions 
in triple quadrupole mass spectrometers, the one typically used 
for SRM, can be quite different from that of ion traps, and thus 
the predicted transitions do need to be validated. However, a spe-
cial build of the PeptideAtlas, called MRMAtlas, is built using 
MS/MS spectra only from triple-quad instruments. Only a rela-
tively small number of such spectra are available in the MRMAtlas, 
and only for certain species. However, the data that are contained 
therein provide the best available transitions for the proteins rep-
resented in these special builds.

Besides the interfaces at http://www.peptideatlas.org described 
so far, the builds from the PeptideAtlas can be accessed via sev-
eral other sites on the World Wide Web. At the Ensembl genome 
browser site, one can overlay PeptideAtlas peptides onto the 
genome exploration interface by selecting PeptideAtlas in the 
DAS (distributed annotation server) sources section. Indeed, 
PeptideAtlas builds are available as DAS sources on our DAS 
server, and therefore any application that can access genome 
annotation information via DAS can access PeptideAtlas builds.

Also, we have adapted our interfaces so that they may be easily 
indexed by the very popular Google search engine. If one performs 
a Google search for any of the peptides contained in the public 
PeptideAtlas builds, the top hit will usually be to a PeptideAtlas 
page that summarizes attributes of the desired peptides, including 
in which builds the peptide occurs.

As a final example, the iSPIDER resource (28) allows its 
users to search for proteomics identifications across multiple 
proteomics databases including PeptideAtlas. When a protein 
name or accession is entered into iSPIDER, it dynamically 

4.7. PeptideAtlas 
Results in Other 
Resources

http://www.peptideatlas.org
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queries several repositories, including PeptideAtlas, and sum-
marizes the results for the user.

This chapter has provided an overview of the PeptideAtlas 
proteomics data resource and repository, including a description 
of its history, the build process, and the many tools that can be 
used to access the information in PeptideAtlas. Although it has 
many uses from improving genome annotation to complex data 
mining projects, PeptideAtlas is also a very valuable resource for 
the design of experiments for emerging targeted proteomics 
workflows. Work is underway to make PeptideAtlas an even more 
valuable resource for SRM experiments. Users will soon be able 
to shop for the best available transitions for their favorite list of 
proteins based on the various data types in PeptideAtlas, includ-
ing community-submitted validated transitions, transitions 
based on MRMAtlas observations, transitions based on the main 
PeptideAtlas builds, and finally if insufficient information is avail-
able from the previous sources, transitions will be predicted based 
on the best available theoretical prediction software.

PeptideAtlas is designed as an engine to turn the community’s 
data into information that everyone can use to enable future 
work. It relies critically on the availability of raw data, which is 
now starting to become common. As better and more extensive 
datasets are processed through PeptideAtlas with ever-improving 
analysis tools, the resource will serve everyone designing future 
proteomics experiments.
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Chapter 20

Using the PRIDE Proteomics Identifications Database  
for Knowledge Discovery and Data Analysis

Philip Jones and Lennart Martens

Abstract 

The PRIDE Proteomics Identifications Database provides users with the ability to explore and compare 
mass spectrometry-based proteomics experiments that reveal details of the protein expression found in a 
broad range of taxonomic groups, tissues and disease states. A PRIDE experiment typically includes iden-
tifications of proteins, peptides and protein modifications. Many of the submitted experiments also include 
processed peak lists representing the mass spectra that provide the evidence for these identifications.

Since the inception of the PRIDE project, a number of tools supporting submission of data to 
PRIDE have been developed. Of particular note is the “PRIDE Converter” that has become the tool 
most frequently used for the production of PRIDE submissions at the time of writing.

The PRIDE XML format has been expanded to provide submitters with the capacity to annotate 
fragment ion information on to peptide identifications and the fragmentation spectra that provide the 
experimental evidence for these peptides. A novel algorithm for annotating fragment ion information on 
to peptides and their evidential mass spectra has also been developed that will ultimately provide a route 
for evaluating the quality of peptide identifications arising from tandem mass spectrometry. This algo-
rithm allows the visualisation of potential fragment ions on to the identified mass spectra, even where no 
such information has been submitted.

In this chapter, we describe how PRIDE can be applied as a research tool and how the experiments 
in PRIDE can be compared and analysed. We also explore how complex queries can be constructed using 
the PRIDE BioMart. Finally, we will describe how the user can integrate PRIDE data with annotation 
from other resources, using federated BioMart queries.

Key words: Proteomics identifications database, Fragment ion annotation, Mass spectrometry, 
Data repository, Data analysis, Data set comparison, BioMart, Distributed annotation system

The PRIDE Proteomics Identifications Database (1, 2) is a 
repository for the data and results derived from mass spectrometry-
based proteomics experiments, which makes use of public data 

1.  Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_20, © Humana Press, a part of Springer Science+Business Media, LLC 2010
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standards, allowing data from a vast range of instruments and 
analysis software platforms to be submitted. PRIDE presents this 
data through a variety of different interfaces, including a bespoke 
web interface, a BioMart (3) interface for advanced query and a 
BioMart web service, to provide programmatic access to the 
data. Detailed data from individual experiments can be obtained 
from the EBI FTP service (ftp://ftp.ebi.ac.uk/pub/databases/
pride/) as compressed XML files.

During 2008, the PRIDE database has developed from its 
original role as a repository of proteomics identifications arising 
from mass spectrometry to a database providing tools for com-
plex query and data retrieval, dataset comparison and access to 
additional automated annotation of submitted datasets. Here are 
described the methods used to access and exploit some of these 
new tools together with the web-service capability currently 
provided by PRIDE.

PRIDE comprises a repository of identifications of proteins, 
peptides and protein modifications. To support these identifica-
tions the mass spectra arising from a wide range of experimental 
techniques are included. Almost all of the data in PRIDE is sub-
mitted by the experimentalist rather than being manually curated 
into PRIDE. No assumptions are made about the sample, instru-
mentation or protocol used to generate mass spectra, or the data 
analysis applied to this data. This presents two challenges. First 
of all, to allow useful query of the data, a consistent mechanism 
for annotation of the experiments is required. To allow annota-
tion of the sample under investigation, the instrumentation used 
for separation and mass spectrometry and the software infra-
structure used for identifying proteins and peptides, PRIDE 
mandates the use of specific controlled vocabularies or ontolo-
gies. For example, sample species information is annotated using 
NCBI taxonomy identifiers (4, 5) and where appropriate, the 
tissue is annotated using the BRENDA tissue ontology. To anno-
tate the sample, various other ontologies are recommended to 
indicate sub-cellular location, disease state and cell type. The 
PRIDE software then makes use of the Ontology Lookup Service 
(6) (http://www.ebi.ac.uk/ols) to allow powerful, hierarchical 
query of the data.

A previous publication describing PRIDE in the Humana 
Press focused upon the mechanisms provided in PRIDE for basic 
query and data submission (7).

Here, we will describe the use of more recent additions to 
the PRIDE database and user interface including fragment ion 
annotation, together with a description of how to make the best 
use of the BioMart “MartView” user interface.

ftp://ftp.ebi.ac.uk/pub/databases/pride/
ftp://ftp.ebi.ac.uk/pub/databases/pride/
http://www.ebi.ac.uk/ols
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For the first 2 years of PRIDE as a production service, it was 
relatively difficult to produce valid PRIDE XML files and submit 
them to the database. The submission process usually involved 
writing software, often based upon the PRIDE Java API. For 
laboratories without sufficient bioinformatics or software engi-
neering support, this often proved impossible without seeking 
direct programming support from the PRIDE team at the EBI. 
More recently, the hurdles to submission have been alleviated by 
the development of several powerful tools.

The PRIDE Proteome Harvest Data Submission Spreadsheet was 
the first such tool, which uses a special Microsoft Excel spread-
sheet to allow proteomics data producers to build PRIDE XML 
files without resorting to programming. Even this tool has limita-
tions however, as it does not directly support the inclusion of 
mass spectra or peak lists in the generated XML, other than by 
allowing an mzData XML file to be embedded in the resulting 
PRIDE XML file.

The second tool to be developed in support of PRIDE XML 
submission was the “Pride Wizard” (http://www.mcisb.org/
resources/PrideWizard/index.html), developed at the University 
of Manchester (8). The development of this tool was part of a 
larger effort to support the reporting of iTRAQ™data, allowing 
PRIDE XML to encode quantitative results from multiple sam-
ples. The tool itself allows the conversion of several spectral data 
formats including .mgf, mzXML, .pkl and the HUPO PSI mzData 
format, together with the output from the Mascot search engine 
(dat files) into PRIDE XML. This may include the intensities of 
iTRAQ™ reporter ions. In addition, the tool can be used to auto-
matically capture the output of non-quantitative, large-scale 
experiments in PRIDE XML format. This tool is freely available 
under the GNU GPL License.

A fruitful collaboration with the University of Bergen, Norway, led 
to the development of the “PRIDE Converter” (http://code.
google.com/p/pride-converter), the most complete solution so 
far, developed by Harald Barsnes. This tool allows the researcher to 
convert the output from several makes of mass spectrometer and 
also the output from multiple proteomics search engines into valid 
PRIDE XML. The PRIDE Converter tool also incorporates a client 
to the Ontology Lookup Service (OLS, http://www.ebi.ac.uk/ols) 
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http://www.mcisb.org/resources/PrideWizard/index.html
http://www.mcisb.org/resources/PrideWizard/index.html
http://code.google.com/p/pride-converter
http://code.google.com/p/pride-converter
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allowing the user to look up suitable terms to annotate all aspects of 
a PRIDE Experiment that cannot be imported directly from these 
proprietary data formats, such as details of the sample and the mass 
spectrometer components. This tool has already proven very popu-
lar. At the time of writing, approximately 40% of submissions to 
PRIDE are generated using this tool. The PRIDE Converter has 
been developed under the permissive Apache 2 open source license. 
It should be noted that laboratories that wish to develop reusable 
pipelines for generating PRIDE XML will find the source code 
of the PRIDE Converter a valuable resource for solving common 
conversion problems, together with the core PRIDE Java API, 
which is available from http://code.google.com/p/ebi-pride.

The timings of these developments supporting data submis-
sion are particularly fortuitous as the proteomics journals apply 
increasing pressure on proteomics researchers to publish their 
experimental data in public repositories (9–12). Indeed the jour-
nal “Proteomics” now mandates this requirement in their instruc-
tions to authors: “In particular, novel protein sequences should be 
deposited in UniProt (www.uniprot.org); molecular interactions 
in an IMEx partner database (imex.sf.net); and protein identifica-
tion data in PRIDE (www.ebi.ac.uk/pride), World-2DPAGE 
(www.expasy.org/world-2dpage/), or a comparable database.”

Peptide identification usually results from the analysis of fragmen-
tation spectra, which are obtained by fragmenting a selected pre-
cursor ion. These spectra, also called MS/MS or MS2 spectra, are 
valuable as they contain peptide sequence information. The indi-
vidual ions in the fragmentation spectrum that correspond to parts 
of the peptide sequence are called fragment ions.

In collaboration with Waters Corporation (http://www.
waters.com), the PRIDE team has developed a simple mechanism 
to allow fragment ion information to be annotated on to peptide 
identifications in PRIDE XML. These fragment ion annotations 
are associated with the mass spectrum that has provided evidence 
for the peptide identification (note that in the PRIDE XML model, 
one peptide identification is associated with at most one mass 
spectrum). PRIDE fragment ion annotation can be derived from 
two sources: the annotation can be submitted by the experimen-
talist or it can be derived from the automatic annotation of frag-
ment ions as generated by a specialised algorithm developed as 
part of the PRIDE project.

This algorithm performs two consecutive processing steps. 
In the first step, it matches the theoretical peptide mass calculated 
from the peptide sequence in PRIDE, and compares it to the 

3. Fragment Ion 
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experimental precursor mass annotated in the mass spectrum. 
If there is a mismatch between the experimental and theoretical 
precursor mass, this is typically caused by unreported modifica-
tions on the peptide that were introduced during the sample 
processing protocol. In these cases, the algorithm works out what 
the missing modifications are, based on the mass difference 
between theoretical and experimental mass and knowledge about 
the experimental protocol. Once the theoretical and experimental 
precursor masses have been reconciled, the algorithm can simply 
predict the theoretical fragment ions and locate them in the frag-
mentation spectrum.

These fragment ion annotations can be viewed on the PRIDE 
web interface, using the PRIDE spectrum viewer. The following 
sequence exemplifies this, using data from the PRIDE experiment 
with accession number 3, “COFRADIC N-terminal proteome of 
unstimulated human blood platelets”:

 1. Navigate to the PRIDE Home Page at http://www.ebi.ac.uk/
pride.

 2. Enter a search term into the “Search PRIDE:” text box at the 
top left hand side of the window and click on the red “Search” 
button (see Note 1 for an explanation of suitable search terms). 
As an example, you may choose to enter “3” to search for the 
PRIDE experiment with accession number 3, “COFRADIC 
N-terminal proteome of unstimulated human blood plate-
lets”, which includes automatic fragment ion annotation.

 3. You will be presented with the “Search Summary View”. If no 
results match your search, you will be informed, otherwise you 
will be presented with a table of all of the PRIDE experiments 
that match your search, with one row per experiment. These 
rows contain some summary statistics for each experiment.

 4. To progress on to view individual mass spectra for one of the 
experiments in the list, click on the red “View” button for the 
experiment of interest. You will then be taken to a more detailed 
top-level summary of the experiment, on the “Experiment 
View” page. This page includes details including references in 
the published literature, contact information, details of the 
sample that was examined, the protocol followed to prepare 
the sample and towards the bottom, links to view protein iden-
tifications (and the corresponding peptide identifications) and 
mass spectra.

 5. The most direct way to access the mass spectrum view for a 
single mass spectrum is to click on the red “View Spectrum 
Details” on the “Experiment View” page. You will then be 
taken to a list of the mass spectra available for the experiment. 
The complete list is separated into pages with 30 mass spectra 
per page. You can move through the entire list using the links 

http://www.ebi.ac.uk/pride
http://www.ebi.ac.uk/pride
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found at the top and bottom of the list on each page. Click 
on one of the numbers in the “Spectrum ID” column (the first 
column) to view the details of a single mass spectrum.

 6. You will now be taken to the “Spectrum Detail View”. At the 
top of this view is information associated with the mass spec-
trum, including a list of peptides identified from the spectrum, 
if the spectrum led to identifications. Scrolling further down, 
you will find a view of the mass spectrum itself, not including 
fragment ion annotations.

 7. Back at the top of the page, you may see a red “View Automatically 
Annotated Fragment Ions” button, if the automatic annotation 
algorithm has been successfully run against the experiment. 
Alternatively, you may see a red “View Submitted Fragment 
Ions” button, if the experimentalist has submitted fragment 
ion information. Clicking either of these buttons will present 
these annotations on the mass spectrum, as illustrated in Fig. 1. 
Obviously, if the spectrum was not identified, or no fragment 

Fig. 1. This figure illustrates the mass spectrum that has been used to identify the peptide AGMKTASGDYIDSSWELR. 
Automatically annotated fragment ions are included on this mass spectrum view. It can be seen that very good coverage of the 
Y series fragment ions and some B series fragment ions are annotated, corresponding to the identified peptide sequence
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ions are as yet annotated for an identification, you will not be 
able to see these buttons.

 8. You can hide the annotations again by clicking on the red 
“Hide Spectrum Annotation” button at the top of the 
“Spectrum Detail View” page.

The original web interface to PRIDE allows queries based upon a 
small number of specific parameters, including experiment acces-
sion number, protein identifier, peptide sequence, literature refer-
ence and sample parameters. All of these types of search result in a 
standard display of experimental information that can be used to 
browse the details of the experiment. Very often however, the form 
of these results will not be well tailored to the requirements of the 
user. For example, the user may require nothing more than a list 
of protein accession numbers for proteins identified in a particular 
tissue. This type of result set was difficult to acquire from the 
PRIDE web interface.

Fortunately, a robust solution to this problem has been 
provided in the form of the PRIDE BioMart.

BioMart (http://www.biomart.org) is a query-oriented data 
management system developed jointly by the Ontario Institute 
for Cancer Research (http://www.oicr.on.ca/) and the European 
Bioinformatics Institute (http://www.ebi.ac.uk). The BioMart 
data management system provides many benefits: fast query across 
large data sets (due to the standardised query-orientated database 
structure that it specifies); the ability to define complex queries, 
both in terms of the filters applied to the data and to the selection 
of data items (attributes) to be reported; the ability to select from a 
number of different data output formats, including HTML, a 
Microsoft Excel spreadsheet and plain text formats; programmatic 
access to data via both a REST and a SOAP web service and based 
upon this service and the ability to integrate data from separate 
BioMarts in seamless queries.

The PRIDE BioMart (http://www.ebi.ac.uk/pride/pride-
Mart.do) provides access to the details of identifications of pro-
teins, peptides and post-translational modifications in all of the 
public datasets accessible from PRIDE. Mass spectra providing 
evidence for protein and peptide identifications are referenced 
and linked from the BioMart, allowing the details of the mass 
spectra to be viewed and accessed in the “standard” PRIDE web 
interface. The BioMart database is updated on a regular basis to 
keep it synchronised with the core PRIDE database.

4. The PRIDE 
BioMart

http://www.biomart.org
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The MartView BioMart interface allows the user to build complex 
queries interactively, by defining “filters” (to restrict the rows of 
data returned) and “attributes” (the data items that should be 
returned, equivalent to the columns in a spreadsheet). The user 
is then able to preview the results of her search, allowing her to 
modify the search as necessary. Finally, the user can select the 
desired format of the results and request them, either for imme-
diate viewing or via an email link to receive notification when the 
results are ready. This process is described in detail below.

 1. Access http://www.ebi.ac.uk/pride/prideMart.do (see Note 
2 for alternative URL).

 2. Choose the database to access, by selecting one of the items in 
the “-CHOOSE DATABASE-” pull down list. At the time of writ-
ing, the PRIDE BioMart provides federated access to the 
Reactome (www.reactome.org) BioMart, allowing PRIDE data 
to be viewed alongside Reactome data. You can select either 
PRIDE BioMart or Reactome (CSHL) from the list of databases 
first. The rest of these instructions assume however that you 
have selected the PRIDE database at this step. See Note 3 for 
more details on federated data access.

 3. A second pull down list will appear below the database pull 
down list. In the case of the PRIDE BioMart, this will default 
to the single dataset defined in the PRIDE BioMart, “PRIDE”. 
If, however, the list contains the value “-CHOOSE 
DATASET-”, you will need to select the required dataset 
from the list. Some more complex BioMarts provide more 
than one dataset. See Note 4 for an explanation.

 4. To build a filter, click on the “Filters” heading in the left 
panel of the BioMart interface. You can then define your filter 
on the right hand panel.

 5. You will see several expandable sections from which you can 
select filter criteria (you can select any number and combina-
tion of filters from all the sections). To open a section, click 
on the + symbol.

 6. Note that for some of the filters it is possible to specify more 
than one item. The filter then returns all records that match any 
of the items specified (using OR logic). For fields that accept a 
typed, pasted or uploaded list, you can separate values using 
either white space or commas. You may also upload a text file 
from your computer containing information formatted in the 
same way by clicking on the browse button. For fields that con-
tain a list of possible values, you can select multiple values by 
holding the CTRL key (Microsoft Windows and Linux) or Apple 
and Shift key (Apple OS X) while clicking on the values that you 
wish to select.

4.1. Performing  
a Search of the PRIDE 
BioMart, Using  
the MartView Interface

http://www.ebi.ac.uk/pride/prideMart.do
http://www.reactome.org
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 7. To select attributes, click on “Attributes” in the left panel of the 
BioMart window.

 8. Expand the section that interests you by clicking on the + 
symbol and then check the check-boxes adjacent to each 
attribute that you wish to include in the results. Note that the 
order in which you check the check boxes will determine the order 
of the columns in the results table.

 9. If you click on the “Count” button at the top of the BioMart 
interface, you will be presented with a count of the number 
of PRIDE experiments that match your query see Note 5.

 10. Clicking on the “Results” button will return the first ten 
result rows in HTML format. At this point, you may wish to 
modify your filters or the selected attributes. If you are happy 
with the example results, you can proceed to the next step.

 11. To select the format for the results, you should click on the pull 
down list that defaults to “TSV” (tab separated values file). Here, 
you can select from TSV, CSV (comma separated values file – 
another plain text format), HTML (well formatted for the 
browser) or XLS (Microsoft Excel spreadsheet).

 12. If you expect a large number of rows to be returned from the 
BioMart, you are advised to select the “Compressed web file 
(Notify by email)” option, adjacent to “Export all results to”. 
Then enter you email address in the text box labelled “Email 
notification to”. You will receive an email containing a hyper-
link from which you can download a compressed results file.

 13. Click on the GO button. If you have not requested the results 
by email, they will be displayed in the requested format after 
a short delay (see Note 6).

1. The simple search box on the PRIDE home page should be 
used for the following types of search. Note that for more com-
plex searches, you are advised to use the PRIDE BioMart.

PRIDE Experiment accession number. These values are ●●

plain integers.
Protein accession number. You can use most common ●●

protein database identifier types which are mapped to the 
submitted accession number using the Protein Identifier 
Cross Reference (PICR) service at the EBI, which was 
developed by the PRIDE team.

2. In the event that the http://www.ebi.ac.uk/pride/prideMart.
do URL is not available, for example in the case of scheduled 

5.  Notes

http://www.ebi.ac.uk/pride/prideMart.do
http://www.ebi.ac.uk/pride/prideMart.do


306 Jones and Martens

downtime of the main PRIDE web interface for maintenance, 
you can access the PRIDE BioMart directly at http://www.
ebi.ac.uk/pride/biomart/martview/.

 3. The PRIDE BioMart allows federated access to the Reactome 
BioMart, at the time of writing, although plans are in place to 
expand the number of federated databases connected to 
PRIDE. The link between PRIDE and Reactome is defined 
through the presence of common UniProtKB protein acces-
sion numbers. On the PRIDE side, these accession numbers 
are attached to protein identifications and on the Reactome 
side, these protein accession numbers are attached to proteins 
annotated in biological pathways. As a consequence, it is pos-
sible to (for example) view data on specific protein identifica-
tions in PRIDE alongside information about their metabolic 
activity as defined in Reactome. Inversely it is possible to view 
all identifications stored in PRIDE for a given Reactome path-
way. As an illustration of the power of federated queries, see 
Fig. 2, which illustrates a BioMart query including data from 
PRIDE for a sample of human platelet tissue, linked to the 
pathway information for the identified proteins from Reactome 
(limited to the first ten results). This example illustrates a 
strong correlation between the sample tissue and the biologi-
cal pathways on which the identified proteins have been anno-
tated in Reactome.

 4. BioMart allows separate “datasets” to be defined for one 
BioMart database. PRIDE keeps this very simple, comprising 
only a single dataset, “PRIDE” that contains all of the public 
data available from PRIDE. Other BioMarts split their data 

Fig. 2. An illustration of BioMart federated query, including linked results from both PRIDE and the Reactome database of 
biological pathways. This example illustrates a strong correlation between the sample tissue and the biological pathways 
on which the identified proteins have been annotated in Reactome

http://www.ebi.ac.uk/pride/biomart/martview/
http://www.ebi.ac.uk/pride/biomart/martview/
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in various manners. The Reactome BioMart is split into three 
datasets: “complex”, “pathway” and “reaction”. The Ensembl 
BioMart is split into taxonomic groups.

 5. The “Count” button on the BioMart interface returns the 
number of PRIDE Experiments that match your query. This is 
not necessarily the same as the number of results (rows of data) 
that will be returned. Depending upon the attributes that you 
have selected, the number of results may be several orders of 
magnitude greater than the stated count.

 6. If there is a long delay after you have clicked GO, this would 
suggest that your query will result in many rows of data being 
returned. This may crash your browser on arrival, so it is rec-
ommended that you click on the back button and modify your 
results request to be sent by email.
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Chapter 21

Molecular Interactions and Data Standardisation

Sandra Orchard and Samuel Kerrien

Abstract

Molecular interactions are crucial components of the cellular process. In order to understand this complex 
machinery, one needs to gather published data from various sources. Many projects have initiated the 
collection of interaction data for this purpose since 2002. However, the lack of standardisation previously 
made the task of aggregating datasets difficult. This issue has been resolved by the creation of Molecular 
Interaction standard in 2004 by members of the Proteomics Standards Initiative (PSI), a work group of 
the Human Proteome Organization (HUPO). Furthermore, major database providers have come 
together with the goal to exchange data in order to optimise laborious curation tasks. Finally, tools and 
frameworks have been created based on PSI-MI standards to facilitate the visualisation and analysis of 
molecular interaction data.

Key words: Molecular Interactions, Data standardisation, PSI-MI XML, PSIMITAB, MIMIx, IMEx

Protein–protein interaction databases have existed for many years, 
with early contributors to the field, such as BIND (1) and DIP 
(2), being joined by other databases containing interactions from 
the entire spectra of the literature, such as IntAct (3), organism-
specific resources such as BioGrid (4) and HPRD (5), and reposi-
tories which fulfil specialist biological interests, for example the 
MINT (6) database that concentrates on the identification of 
interacting domains of proteins and MatrixDB (http://matrixdb.
ibcp.fr), which looks at the molecular interactions made by extra-
cellular proteins. The scope of these databases has increased over 
time, with the degree of annotation captured becoming richer 
and some repositories, such as IntAct, beginning to capture all 
possible interactions within a cell or organism, including protein-
small molecule and protein-nucleic acid.

1.  Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_21, © Humana Press, a part of Springer Science+Business Media, LLC 2010

http://matrixdb.ibcp.fr
http://matrixdb.ibcp.fr


310 Orchard and Kerrien

By 2002, the user was served by an ever-increasing number of 
data resources, all of which collected interaction information from 
the literature, and in some cases, from direct submissions from 
research workers, but an individual wishing to download the 
information from a number of sources was faced with parsing 
multiple, separately constructed databases, each with its own indi-
vidual structure and data format. Merging the data into a single 
repository then required further effort, and it could be problem-
atic merely identifying those papers, which had been redundantly 
curated by more than one database. It was at this point that sev-
eral of these resources were brought together by the Human 
Proteome Organisation to tackle these problems and provide an 
improved service for the user.

The Human Proteome Organisation (HUPO) was formed in 
2001 to consolidate national and regional proteome organisa-
tions into a single worldwide body (7). The Proteome Standards 
Initiative (PSI) was established by HUPO with the remit of 
standardising data representation within the field of proteomics 
to the end that public domain databases can be established 
where all such data can be deposited, exchanged between such 
databases or downloaded and utilised by laboratory workers (8). 
The Proteomics Standards Initiative (HUPO-PSI) has concen-
trated on bringing data standardisation and common data 
reporting standards to an increasing number of fields within the 
global umbrella of Proteomics; to date, protein/peptide separa-
tions, mass spectrometry and molecular interactions. Following 
the initial meeting of the HUPO-PSI in 2002, the work has been 
progressed by a series of workshops, interspersed by regular phone 
conferences and active mailing lists and web usage by groups of 
volunteers from all over the world.

Each workgroup within the HUPO-PSI has produced a series 
of documents and resources to aid in the process of data stan-
dardisation and exchange. Minimum Information About a 
Proteomics Experiment (MIAPE) documents have been devel-
oped (9), analogous to the MIAME (Minimum Information 
About a Microarray Experiment) guidelines for DNA microarray 
experiments (10), to define those data items that should minimally 
be reported about a proteomics experiment to allow critical assess-
ment of the experiment. This is a simple textual representation, 
independent of any formal data format. MIAPE guidelines 
consist of a general “parent document” (9) and a series of 
workgroup-specific modules (for example, Refs (11–13)). These 
guidelines summarise what could be considered “common sense” 
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and what the community has agreed should be present in each 
and every paper, but is all too often not appropriately reported in 
publications – the precise identification of a protein entity and the 
species from which it originated being a simple example of data 
often missing from articles. To facilitate data management and 
exchange, each domain area has also developed data exchange 
formats for which it can at least minimally represent the data items 
specified in the MIAPE guidelines, but usually additionally allow 
a much more detailed representation. Normally, the data exchange 
format is specified as a fully annotated XML schema. HUPO-PSI 
schemas are developed to facilitate data exchange between data-
bases as well as databases and end users. They explicitly do not 
propose any internal data representation for databases or tools. 
XML is well supported by standard mechanisms for querying, 
native XML databases, and automated mappings to both relational 
databases and object models, all of which has been taken advantage 
of in the development of user-friendly tools and services.

The semantics of data elements exchanged are described by a 
series of controlled vocabularies, either by referencing external 
resources such as the NCBI taxonomy or developed internally by 
the HUPO-PSI, for example to describe the details of mass spec-
trometry or molecular interactions. The combination of reason-
ably stable XML schemas and regularly maintained controlled 
vocabularies allows a quick adaptation to new terms and tech-
nologies, while providing the stability required for database and 
software development.

In 2004, the Molecular Interaction workgroup published Level 
1.0 of the PSI-MI XML interchange schema, with accompanying 
controlled vocabularies, jointly developed by major producers of 
protein interaction data and by data providers including BIND, 
DIP, IntAct, MINT, MIPS and Hybrigenics (14). The PSI-MI 
format was explicitly intended to develop in an incremental fash-
ion. Version 1.0 focused exclusively on protein interactions, and 
was widely implemented and supported by both software tool 
development and data providers. As a direct result of requests 
from users, database groups and data providers, the original 
PSI-MI format was considerably extended, resulting in version 
PSI-MI XML2.5 (15). The range of interactor types that could 
be described within the format was extended to encompass all 
biomolecules and the description that can be made of both exper-
imental conditions and experimental features on participating 
molecules such as the description of purification tags or deletion or 
point mutations was considerably enhanced and made more flexible. 

3. The Molecular 
Interaction Data 
Exchange Format
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The abilities to describe kinetic as well as modelled interaction 
parameters were also added.

Controlled vocabularies (CVs) are used throughout the 
PSI-MI schema to standardise the meaning of data objects. Their 
use ensures that the same term used throughout a description by 
a data producer, instead of a synonym or alternative spelling, and 
also that the interpretation of the meaning of that term remains 
consistent between multiple data producers and users. In order to 
achieve this, all terms have definitions and, where appropriate, are 
supported by one or more literature references. The controlled 
vocabularies have a hierarchical structure, in the form of a direct 
acyclic graph (DAG), higher level terms being more general than 
lower level descriptors, allowing annotation to be performed to 
an appropriate level of granularity whilst also enabling search 
tools to return all mapped objects to both parent and child terms, 
if required. As with all HUPO-PSI maintained CVs, the molecu-
lar interaction CV is made available on the OBO website (www.
obofoundry.org) and is actively maintained by an editorial panel 
responding to user requests.

The PSI-MI XML2.5 format allows a detailed representation 
of fully annotated interaction records both for inter-database and 
database end-user data communication. However, to support 
many use cases, such as fast Perl parsing or loading into Microsoft 
Excel, that only require a simple, tabular format of interaction 
records, the MITAB2.5 format was defined as part of PSI-MI 2.5. 
The MITAB2.5 format only describes binary interactions, one pair 
of interactors per row in a simple tab-delimitated format.

Almost all major interaction data producers now make data 
available in PSI-XML2.5 format and many also in MITAB2.5.

The MIMIx guidelines provide a checklist for anyone preparing 
interaction data, be it as little as a single interaction within a paper 
describing the characterisation of a protein, for either publication 
in a peer-reviewed article, deposition in an interaction database or 
displaying a large dataset on a website (11). MIMIx represents a 
compromise between the depth of information necessary to 
describe all relevant aspects of an interaction experiment and the 
reporting burden placed on scientists who generate the data. The 
MIMIx guidelines were assembled by a large number of experts 
and subjected to public review both on the HUPO-PSI website 
and through a community review process organised by Nature 
Biotechnology. At all stages, input from the molecular interaction 
community, which included data producers, data providers and 
tool and software developers, has been discussed and fed back 

4. The Minimum 
Information About 
a Molecular 
Interaction 
Experiment 
(MIMIx)

http://www.obofoundry.org
http://www.obofoundry.org
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into the document. Additionally, these guidelines will not be 
static. They will evolve based on community requirements in the 
context of a rapidly developing science but it is hoped that they 
will contribute to an increase in the standard of the reporting of 
molecular interactions, much of which has previously been incom-
plete or even misleading.

It is of increasing importance that databases are maintained 
to, at least, MIMIx compatibility, as increasingly, the tools and 
services described below are being written on the assumption that 
this minimum level of information be supplied. For example, the 
R statistics package (16) is compromised if databases have not 
included information on interaction directionality (e.g. bait–prey 
relationships), which is a MIMIx requirement. In order to comply 
to this, the fundamental information that the databases need to 
access i.e. the peer-reviewed written articles published by journals, 
need to contain this information for the databases to extract or, 
preferably, the authors should submit the information directly to 
the databases immediately prior to submission to ensure that the 
information held in these databases is as near totally correct as 
possible. The MIMIx guidelines are written to assist authors in 
achieving compliance and encouraging early database deposition 
of the information.

The development and maintenance of tools to enable the use of 
these formats by a wide number of users is a community effort to 
which many people have contributed. Many have been developed 
jointly with other resources, allowing the interaction community 
easy access to new resources to further analyse datasets. All tools 
are freely available and can be accessed and downloaded from the 
Molecular Interaction workgroup HUPO-PSI web pages (www.
psidev.info). These include applications to view and validate the 
use of the schema, to enable graphical representation of interac-
tion network, to convert between data formats and to facilitate 
the use of controlled vocabularies. All tools are specific to the 
PSI-MI XML format apart from the validator.

As standards become more commonly used, it of increasing 
importance to ensure that they are adhered to, and are not com-
promised by either mis- or re-interpretation by an ever-increasing 
user community. To aid in this, a semantic validator has been 
developed which allows:

The verification of correct CVs usage,●●

Complex integrity checking of the data.●●

5. Tool Development 
Based  
on the PSI-MI Data 
Interchange 
Standard

5.1. The Semantic 
Validator

http://www.psidev.info
http://www.psidev.info
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The framework is free, open-source and can be adapted to any 
data format.

The Semantic Validator aims at checking a user-submitted 
data model against predefined mapping rules (http://psidev.info/
validator). The framework is composed of multiple components 
allowing a developer to easily build a custom validator instance 
for a specific data model. Provided with a set of corresponding 
rules, this validator instance can process input data (of the specific 
data type) and return a set of validation messages, each of which 
reports on inconsistencies found. The message gives an error level 
denoting the severity of the problem, a description of the prob-
lem, a context that should allow the user to locate the erroneous 
data and the rule that generated the message. The mapping rules 
ensure the appropriate usage of CV and ontology terms. These 
rules are solely based on an XML mapping provided by the user 
that defines which terms are allowed in specific locations of the 
data model. The locations in the model are defined using the 
XPath language and ontology terms are specified by their identi-
fier or name.

Current implementations of the validator allow users to check 
on Molecular Interactions (PSI-MI) as well as Mass Spectra and 
Protein Identification (PSI-MS and PSI-PI). The framework is 
free, open-source and can be adapted to any data format. To that 
end, a tutorial has been made available so one can implement its 
own validator. More information can be found on the HUPO-
PSI web site: http://psidev.info/validator.

XML is a powerful means by which to model complex data whilst 
preserving human readability. However, due to the complexity of 
the PSI-MI schema an easier way to visualise the data has also 
been provided. XSLT scripts have been made available in order to 
convert XML data files to HTML, thus providing user-friendly 
representation of the data.

The PSI-MI XML2.5 schema allows two different representations 
of interactions – compact and expanded. In the compact form, the 
repetitive elements of a large set of interactions, namely copyright 
statements, experiment descriptions, and interactors (proteins, 
small molecules, etc), are only described once, in the respective list 
elements. The use of the compact form is appropriate for larger 
datasets, where, for example, one protein would be referred to by 
multiple interaction elements. The expanded form is more suitable 
for smaller datasets, as it groups all related data closely together. 
The format presents further advantages in that interactions are 
self-contained units, thus rendering streaming of data much sim-
pler and parsing more efficient. A set of XSLT scripts has been 
made available to the community, which allows users to convert 
PSI-MI XML2.5 between compact and expanded forms.

5.2. PSI-MI XML View

5.3. Conversion 
Between Expanded 
and Compact form  
of the Schema

http://psidev.info/validator
http://psidev.info/validator
http://psidev.info/validator
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Many molecular interaction databases have chosen the PSI-MI 
format for providing data to their users. In order to ease the 
development of tools exploiting this data, a Java library providing 
a user-friendly data model and the core functionalities for reading 
and writing PSI-MI XML2.5 data has been provided. Furthermore, 
the parser supports XML streaming, thus providing a versatile 
and cursor based approach for retrieving interactions, interactors 
or experiments. The parser has been made available on the PSI-MI 
website.

The XMLMaker/Flattener is a Java application that converts any 
XML schema into tab-delimited ASCII format (flat files) and vice 
versa, given a user-defined mapping that can be saved and reused 
on subsequent files. A PSI-MI mapping can be readily created to 
inter-convert PSI-MI 1.0 or 2.5 XML files to simple flat files.

Whilst some of the tools listed above have limitations with 
respect to memory requirements when dealing with large data 
files and expanded/compact forms of the schema, this problem 
can be addressed by choosing the appropriate XSLT script.

Bioconductor is an open source and open development software 
project for the analysis and comprehension of large-scale biologi-
cal datasets. The Bioconductor package Rintact provides a prov-
grammatic interface to the IntAct molecular interaction database 
(16). It translates the primary data encoded in PSI-MI XML2.5 
files into R graph objects, which can then be analysed by a variety 
of computational methods. The package is currently being 
expanded to take data from all PSI-MI XML2.5 databases.

The Biological Pathway Exchange (BioPAX) format is a collab-
oratively developed data exchange format for biological pathway 
data that currently uses the PSI-MI ontology internally for mod-
elling associated molecular interactions (17). All PSI-MI entries 
annotated to “physical association” map to the BioPAX physical-
Interaction class.

Cytoscape (www.cytoscape.org) is a powerful open-source resource 
for analysing and visualising biological networks. The Cytoscape 
user community has developed numerous plugins allowing the 
extension of its functionalities in the area of data format compat-
ibility and network analysis. Cytoscape now allows users to load 
molecular interaction data in PSI-MI XML1.0 and 2.5 formats 
without installing additional extensions, enabling data retrieval 

5.4. Java XML Parser

5.5. XMLMaker/
Flattener

6. Relationship 
with Other 
Community 
Resources

6.1.  BioConductor

6.2. BioPAX

6.3. Cytoscape

http://www.cytoscape.org
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from one or more databases and its subsequent integration with 
data from other sources such as high-throughput expression 
experiments. Release 2.6 includes a Web Service client plugin for 
downloading networks from IntAct from directly within 
Cytoscape.

The cooperation between the many molecular interaction data-
bases that produced much of the work described above, has lead 
to the formation of the IMEx collaboration, an agreement 
between major public domain databases to develop common 
curation standards, to share the curation load and to interchange 
data between the databases (http://imex.sourceforge.net/). The 
IMEx collaboration exists to provide a network of stable, syn-
chronised, freely accessible molecular interaction databases; and 
to jointly capture all published molecular interaction data in a 
standardised format.

Interaction data deposited with, or curated by, one of the 
participating databases is regularly exchanged to ensure that all 
databases hold a single, non-redundant dataset for the user to 
download or to access over the web. The user will have access 
to a consistent set of records, maintained at the IntAct, DIP, 
MINT and MatrixDB interaction database sites, with other 
partners working towards IMEx membership. Work is ongoing 
to address the archive of legacy data held separately by each 
database, to ensure this is distributed between members in the 
foreseeable future. Data deposition is increasing, with submis-
sions varying from e-mail based, PSI-MI XML, web-form, and 
Excel spreadsheet, with all these options being supported via 
the IMEx website (18).

The availability of standards and guidelines to assist in the prepa-
ration of molecular interaction data for publication, deposition 
and data exchange has started to have a significant impact on the 
field. The PSI-MI XML interchange format has resulted in easy 
data retrieval and merger – one measure of the success of this is 
the ever-increasing number of compilation databases, which take 
curated data from a number of primary sources and repackage 
this in a single resource. The availability of a single data format 
has also stimulated tool development and will increase the range 
and diversity of analytical methods available to both the labora-
tory scientist and the bioinformatician to assess data quality and 
build up interaction networks of both increasing complexity 
and validity.

6.4. The International 
Molecular Exchange 
Consortium

7. Summary

http://imex.sourceforge.net/
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All such efforts require support from the user community and 
the PSI-MI is actively seeking input and advice from all quarters. 
Anyone wishing to become involved is invited to visit http://
www.psidev.info, to participate in the discussion groups listed, 
and to contribute to the further development of community stan-
dards for proteomics data in general, and molecular interactions 
in particular.
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Chapter 22

Mass Spectrometer Output File Format mzML

Eric W. Deutsch

Abstract

Mass spectrometry is an important technique for analyzing proteins and other biomolecular compounds 
in biological samples. Each of the vendors of these mass spectrometers uses a different proprietary binary 
output file format, which has hindered data sharing and the development of open source software for 
downstream analysis. The solution has been to develop, with the full participation of academic researchers 
as well as software and hardware vendors, an open XML-based format for encoding mass spectrometer 
output files, and then to write software to use this format for archiving, sharing, and processing. This 
chapter presents the various components and information available for this format, mzML. In addition 
to the XML schema that defines the file structure, a controlled vocabulary provides clear terms and defi-
nitions for the spectral metadata, and a semantic validation rules mapping file allows the mzML semantic 
validator to insure that an mzML document complies with one of several levels of requirements. Complete 
documentation and example files insure that the format may be uniformly implemented. At the time of 
release, there already existed several implementations of the format and vendors have committed to sup-
porting the format in their products.

Key words: File format, mzML, Standards, XML, Controlled vocabulary

Mass spectrometry is an important method to analyze biomolecules 
by measuring the intact mass-to-charge ratios of their in-situ gener-
ated ionized forms or the mass-to-charge ratios of in-situ-generated 
fragments of these ions. The resulting mass spectra are used for a 
variety of purposes, among which is the identification, characteriza-
tion, and absolute or relative quantification of the analyzed mole-
cules. The processing steps to achieve these goals typically involve 
semi-automatic computational analysis of the recorded mass spectra 
and sometimes also of the associated metadata (e.g., elution charac-
teristics if the instrument is coupled to a chromatography system). 

1. Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
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The result of the processing can be assigned a score, rank, or 
confidence measure.

Differences inherent in the use of a variety of instruments, 
different experimental conditions under which analyses are per-
formed, and potential automatic data preprocessing steps by the 
instrument software can influence the actual measurements and 
therefore the results after processing. Additionally, most instru-
ments output their acquired data in a very specific and often pro-
prietary format. These proprietary formats are then typically 
transformed into so-called peak lists to be analyzed by identifica-
tion and characterization software. Data reduction, such as peak 
centroiding and deisotoping, is often performed during this trans-
formation from proprietary formats to peak lists. The peak lists are 
then used as inputs for subsequent analysis. However, these peak 
list file formats lack information about the precursor MS signals and 
about the associated metadata (i.e., instrument settings and 
description, acquisition mode, etc.) compared to the files they were 
derived from. The many different and often proprietary formats 
make integration or comparison of mass spectrometer output data 
difficult or impossible, and the use of the heavily processed and 
data-poor peak lists is often suboptimal.

The solution has been to create open file formats that can 
encode the information in these output files in XML (Extensible 
Markup Language) and then write software to read and write these 
formats. Several formats were developed and a unified format 
called mzML emerged. This chapter will first describe the history 
leading to mzML and then provide an overview of the mzML speci-
fication and components, followed by information about the imple-
mentations of the format.

During 2003–2005, two data formats to store mass spectrometer 
output in an open, vendor-neutral, XML format were developed. 
The mzData format (1) was developed by the Human Proteome 
Organization (HUPO) Proteomics Standards Initiative (PSI), 
primarily as a data exchange and archive format. The mzXML 
format (2) was developed at the Institute for Systems Biology 
(ISB), primarily in order to streamline data processing software. 
Both formats are used extensively but having two formats for 
essentially the same information causes unnecessary confusion in 
the community and adds complexity to software development as 
often both formats must be supported. Therefore the designers 
of mzData and mzXML, including representatives of instrument 
vendors, analysis software developers and end users, have joined 

2. History
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under the auspices of the PSI and jointly developed a single format 
intended to replace the previous two. This new format is named 
mzML and is the subject of this chapter.

The main difference between the two original formats, aside 
from the primary intent described above, is the design philosophy 
of flexibility. The mzData format was designed to be quite flexible 
via the extensive use of a controlled vocabulary. It was hoped that 
the actual XML schema could remain stable for many years while 
the accompanying controlled vocabulary could be frequently 
updated to support new technologies, instruments, and methods 
of acquiring data. However, a significant complication with this 
philosophy was that flexibility in the format led to a variety of styles 
of the format, with each different tool representing data in a differ-
ent dialect of the format, causing significant trouble for reader 
software.

On the other hand, mzXML was designed with a very strict 
schema with most auxiliary information described in enumer-
ated attributes. This simplified software implementations as 
there was only one way to present various attributes and the 
validity of the documents could be easily checked with indus-
try-standard XML validators. However, virtually any desired 
change to the format, even adding one attribute, would require 
a new version number. This led to several closely related version 
numbers, and different software programs supporting different 
versions.

The main challenge in uniting these two formats was there-
fore resolving the opposing philosophies rather than fundamental 
technical issues. The result is a format that contains the best aspects 
of the two original formats so that it may be widely adopted and 
resolve the previous problem of two formats.

The will to start the unification process was gathered at the 
spring 2006 PSI workshop in San Francisco, CA. At this meet-
ing, the technical differences between the two formats were 
examined and an agreement to move toward unification was 
reached. The various vendors voiced their displeasure with the 
state of having two formats, being almost uniformly unwilling 
to support both. They all voiced that they would implement a 
unified format developed by the PSI. For two years, a relatively 
small band of PSI participant volunteers met at workshops 
and tried to push forward progress between workshops (Fig. 1).  
Finally, two years after the initial agreement, mzML 1.0.0 was 
released on June 1, 2008, coinciding with the American Society 
for Mass Spectrometry (ASMS) conference. The PSI MS work-
ing group continues to support the format by maintaining the 
controlled vocabulary, semantic validators, and documentation 
as described below.
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The design of mzML benefited tremendously from the precursor 
formats mzXML and mzData. It was not necessary to start from 
scratch. Rather, the designers could take the best aspects from 
each of the precursor formats, consider known deficiencies of the 
previous formats, and apply the lessons learned from years of real-
world implementations and use of these formats. In this section, 
the primary design aspects are presented after a brief discussion of 
the design philosophy of mzML.

Since the development of mzML brought together different phi-
losophies, the primary mzML designers agreed on the following 
design principles that would guide its development:

 1. Keep the format simple. Many elaborate extensions were 
proposed but most were rejected in favor of a simple 
implementation.

 2. Eliminate alternate ways of encoding the same information. 
Such flexibility, while sometimes touted as a benefit for some 
products, is bad for data formats.

 3. Build in some flexibility for encoding new important infor-
mation but keep the format stable. There is a strong desire 

3. Design  
of the Format

3.1. Design Principles

Fig. 1. History of the development of mzML, beginning with the initial unification agreement in May 2006 in San Francisco 
(SFO), continuing work at PSI workshops in Washington, DC, USA (DC), the Institute for Systems Biology (ISB) in Seattle, 
USA, Lyon, France, the European Bioinformatics Institute (EBI) in Hinxton, UK, Toledo, Spain, and the 1.0.0 release in June 
2008 at the American Society for Mass Spectrometry (ASMS) conference in Denver, USA. Maintenance of mzML will 
continue with the PSI Mass Spectrometry Standards Working Group. It is expected that the schema will remain stable, 
but minor updates to the controlled vocabulary and semantic validation rules may be necessary
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from companies that develop software for their customers to 
keep the data format stable over long periods of time with 
updates to an auxiliary file.

 4. Support the features of mzData and mzXML but not much 
more in version 1.0. The only major new feature deemed cru-
cial was support for selected reaction monitoring (SRM) data 
(which is also supported in the latest mzXML 3.1 and thus 
not really new).

 5. Finish version 1.0 of the format soon with the resources avail-
able. It was felt that the greatest community benefit would be 
to resolve the mzData/mzXML duality rather than expend 
limited resources on new features.

 6. Validate the new format by implementing software to read 
and write the format before its release.

There was great temptation to add support for many new kinds of 
data and representation possibilities. There are many enhance-
ments that have been suggested, but the small group of volun-
teers that have actively developed this format have opted to focus 
on the primary goal set before them: develop a single format that 
the vendors and current software can easily support and thereby 
obsolete mzData and mzXML. The enhancements not consid-
ered compatible with this goal will be entertained for mzML 2.0.

One of the aspects of mzXML that enabled its very swift 
adoption as a de facto standard was an immediately available set of 
open source tools that implemented the format. With these tools, 
many users were able to begin using the format immediately 
without coding their own software. Therefore, to insure that mzML 
is a format that will be adopted quickly and implemented uniformly, 
the format was to be released along with several tools that write, 
read, and validate the format. It was deemed crucial that at submis-
sion to the PSI document process, the following minimum software 
would implement mzML:

 1. Two or more converters that convert from vendor formats to 
mzML.

 2. The popular RAMP parser library that currently supports 
mzData and mzXML.

 3. An mzML semantic validator that checks for correct imple-
mentation of files.

These implementations are discussed in Subheading 4.

An mzML document is designed to contain all the information for 
a single MS run, including metadata about the spectra plus all the 
spectra themselves, either in centroided (peak list) or profile mode. 
At the top of the file, the <cvList> element contains information 

3.2. XML Schema
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about the controlled vocabularies referenced in the rest of the file. 
The <fileDescription> element contains some basic informa-
tion about the type of spectra to be found in the file. The optional 
<referenceableParamGroupList> element contains a list of 
groups of controlled vocabulary terms that are used frequently in 
the file and may simply be defined once and referenced thereafter. 
Following this basic housekeeping information, the <sample 
List> element may optionally contain information about samples 
that are referenced throughout the file. The < instrumentCon-
figuration> element contains information about the instrument 
used for the run (possibly in more than one configuration for 
hybrid instruments). The <softwareList> and <dataPro-
cessingList> elements provide a history of data processing that 
may have occurred since raw acquisition. An optional <acquisi-
tionSettingsList> element can hold special input parameters 
to mass spectrometers such as inclusion lists. This is followed by the 
actual spectra and optionally some chromatograms. The high-level 
outline of the schema structure is shown in Fig. 2.

As with its predecessors, mzML is encoded in an XML format. 
The structure of the format is defined by an XSD (XML schema 
definition), which is used to insure that documents are properly 
formed. XML is both easily parsed by computer programs, using 

Fig. 2. Overview of the mzML schema. The root mzML element contains elements that provide metadata about a file and 
run followed by the spectral data itself with optional chromatograms
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well-established libraries, and is also relatively easily readable by 
humans since it is a text-based format. This is a benefit during the 
design process, and aids in troubleshooting file problems, although 
it does come at the cost of larger file sizes than with binary for-
mats. However, XML documents do compress well.

One of the requirements for mzML was that it provide a stan-
dardized mechanism for a random access index in the same way as 
mzXML. The use case is that when writing software to process 
mzML or view individual spectra, it is often necessary to quickly 
pull out an arbitrary spectrum. If a program needs to display spec-
trum number 18,345 to display to a user, it must be able to seek to 
that spectrum in the file rather than read it sequentially if a fast user 
experience can be expected.

Some have argued that providing a random access index into 
XML is an anathema to the intent of XML and list the many possible 
ways in which an index could become broken. However, several 
years of use of such an index in the mzXML format has shown that 
the indexing problems are few and the benefits are enormous. Reader 
software can (and has been) easily written to make use of the index, 
but automatically rebuild the index if it is noticed to be incorrect.

Since many are not interested in an index, mzML has been 
designed such that the main part of an mzML document does not 
contain an index, but that the document may be enclosed in a wrap-
per schema that includes an index. Therefore, an .mzML file may 
contain a plain mzML document or an indexed mzML document. 
Reader software is designed to handle either. A sample snippet of 
XML showing the wrapper indexing schema is shown in Fig. 3.

Fig. 3. Example top and bottom of an mzML document with the middle segment removed for display purposes. The main 
part of the mzML document is contained within the <mzML></mzML>tags. It is wrapped within an <indexed-
mzML></indexedmzML> construct, which contains the random access index at the bottom
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Much of the metadata encoded in the mzML is in the form of a 
cvParam, an XML element that provides a reference to a specific 
concept within the PSI MS controlled vocabulary. Each term has 
an explicit and detailed definition, and may have information 
about its data type and what kind of units it requires, if any. The 
controlled vocabulary is edited in OBO format with the OBO-
Edit software (3) (Fig. 4) and is used by most readers and writers 
of mzML. The controlled vocabulary can be easily adjusted and 
extended without modifying the mzML schema.

The mzData format was a far more flexible format than mzXML. 
The support of new technologies could be added to mzData files 
by adding new controlled vocabulary terms, while mzXML often 
required a full schema revision. However, mzData did suffer from 
a problem of inconsistently used vocabulary terms and there 
appeared several different dialects of mzData, encoding the same 
information in subtly different ways. This was not usually a prob-
lem for human inspection of the file, but caused difficulty writing 
and maintaining reader software.

This problem has been solved (it is hoped) for mzML by 
releasing a semantic validator with the data format. This semantic 
validator enforces many rules as to how controlled vocabulary 
terms are used, not only making sure that the terms are in the CV, 
but also that the correct terms are used in the correct location in 

3.3. Controlled 
Vocabulary

3.4. Semantic 
Validator

Fig. 4. A view of the PSI MS controlled vocabulary as seen in the OBO-Edit program, currently highlighting the term “total 
ion current chromatogram”
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the document and the required terms are present the correct 
number of times. This allows greater flexibility in the schema, 
but enforces order in how the CV terms are used. This will 
require the discipline to use the semantic validator, not just an 
XML validator, to validate new or updated mzML writer code. 
The result is that new technologies or information can be accom-
modated with adjustments to the controlled vocabulary and 
validator, not to the schema. Opinions differ on whether this is a 
benefit or not.

Another benefit of using the semantic validator is that different 
levels of compliance can be defined. For example, if configured 
with a rules file for basic mzML, the validator will point out any 
problems that prevent the mzML from being correct at a basic level 
that should be expected by all parsers. However, for submission 
to a journal that requires the MIAPE-MS guidelines (4), the vali-
dator can be configured to use the MIAPE-MS rules file to check 
if an mzML file is fully compliant at the MIAPE-MS level. This 
level of compliance insures significant additional metadata that 
should be produced for new data and publications but cannot be 
expected from older data.

Another benefit is that metadata requirements can be adjusted 
for different types of data. For example, photodiode array (PDA) 
spectra generated from a mass spectrometer instrument can be 
encoded in mzML, but the requirements will be different than for 
mass spectra. These different types of spectra can be encoded 
using the same tags, just with different metadata, and this can be 
enforced through the semantic validator.

Semantic rules are encoded in one or more (for different com-
pliance levels) rules mapping files and these can be updated along 
with the controlled vocabulary without changing the schema. The 
validator is available as a web page to which any file can be 
uploaded or as a standalone tool that can validate local files.

The full mzML specification is available as a PDF document at 
the mzML web site. It describes many of the details of the design 
of the format and then describes each of the elements of the for-
mat in detail, along with figures depicting the structure graphi-
cally. The element documentation is autogenerated by some 
custom software that reads the XSD file, a sample document, the 
controlled vocabulary, and the rules mapping file and writes out 
an HTML representation of the information contained within 
these files. This representation is also imported into the full speci-
fication document.

In order to exercise the schema and demonstrate that the 
various use cases have been adequately modeled, we have devel-
oped several example instance documents. Some of the docu-
ments are hand-crafted with an ordinary editor, while others 
are written out as a software test as part of the ProteoWizard 

3.5. Documentation
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reference implementation. In addition, several instance documents 
are conversions of real data files using ProteoWizard or other 
implementations of converters.

The best way to test a new format is by implementing it in software. 
Inevitably as a format is implemented, one finds minor inconsisten-
cies or missing features. The initial release of mzML is strengthened 
by the breadth of implementations that coexisted with the release 
and have exercised the various use cases.

The ProteoWizard software project (5, 6), initiated by the 
Spielberg Family Center for Applied Proteomics at the Cedars-
Sinai Medical Center, provides a modular and extensible set of 
open-source, cross-platform tools and libraries. The tools per-
form proteomics data analyses; the libraries enable rapid tool cre-
ation by providing a robust, pluggable development framework 
that simplifies and unifies data file access, and performs standard 
chemistry and LCMS dataset computations. During the final 
stages of mzML development, refinement, and testing, the 
ProteoWizard library has provided the necessary framework for 
testing and reference implementation of mzML.

ProteoWizard is modular C++ library with an internal data 
model that has a one-to-one translation of mzML data elements to 
C++ data structures. It builds with native compilers on all major 
platforms (MSVC on Windows, gcc on Linux, XCode on OSX) and is 
available under the Apache Version 2 license. ProteoWizard has a 
plug-in Reader interface for reading both open and vendor propri-
etary data formats: mzML, mzXML, Thermo RAW, MGF; there are 
additional Readers in development. CLI binding allows use of 
ProteoWizard libraries from .NET languages (C++/CLI, C#, 
VB.NET), and SWIG bindings for scripting (from Java, Python, 
Perl, R) are in development.

ProteoWizard also comes with several tools that make use of 
the library to perform various processing or display tasks. The 
msconvert tool provides general file format conversion, including 
native centroiding and zlib compression. The SeeMS and mspicture 
tools allow visualization of mass spectral data.

It is worth emphasizing that ProteoWizard has been released 
under a very permissive license, the Apache Version 2 license, which 
allows the library to be used in commercial software without influ-
encing the licensing terms of that software. This is in contrast to 
some other open-source licenses, which require that software that 
uses such a library also be open source.

4. Implementations 
of the Format

4.1. Reference 
Implementation
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At the time of this writing, there are many software implementations 
of the mzML format already in place or emerging. A data for-
mat is only as usable as the software that implements it. One of 
the strengths of mzML is this wide variety of software available 
that uses mzML. Table 1 lists the available software at the time 
of this writing. An up-to-date table is available at the mzML 
web site.

4.2. Other 
Implementations

Table 1 
A list of software supporting mzML at the time of this writing. An updated list  
is available at the mzML web site

Author Product mzML support

CSHS ProteoWizard Full mzML support available today

http://proteowizard.sourceforge.net/

ISB TPP Full mzML support available today

http:// tools.proteomecenter.org/

ISB RAMP, JRAP Full mzML support available today

http:// tools.proteomecenter.org/

Insilicos Insilicos Viewer Full mzML support available today

http:// www.insilicos.com/viewer_download.html

GeneBio Phenyx Full mzML support available today

http:// www.phenyx-ms.com/

Vanderbilt MyriMatch Full mzML support available today

http://fenchurch.mc.vanderbilt.edu/lab/software.php

Thermo Scientific RAW->mzML conv Beta

Applied Biosystems WIFF->mzML conv Beta

NCBI NCBI C++ toolkit Beta

http://
www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/

Univ. of Lund Proteios Full mzML support available today

http://www.proteios.org/

SIB InSilicoSpectro Full mzML support available today

http://insilicospectro.vital-it.ch/

http://proteowizard.sourceforge.net/
http://tools.proteomecenter.org/
http://tools.proteomecenter.org/
http://www.insilicos.com/viewer_download.html
http://www.phenyx-ms.com/
http://fenchurch.mc.vanderbilt.edu/lab/software.php
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/
http://www.proteios.org/
http://insilicospectro.vital-it.ch/
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The mzML format is an open, XML-based format for mass 
spectrometer output files, developed with the full participation of 
vendors and researchers in order to create a single open format 
that would be supported by all software. The format includes the 
best features from preexisting open formats and has additional 
support for chromatograms and some other features deemed 
highly desirable. It is expected that the schema will remain stable 
for at least a year, hopefully more. However, the controlled 
vocabulary and semantic validation rules will continue to be 
updated and refined as all authors and vendors finish implement-
ing their software for mzML.

Additional feature requests that cannot be accommodated 
using the existing schema will be collected and considered for an 
update release in the next few years.

During the early design phase, RDF (resource description 
framework) was considered as an alternative to XML. In many 
ways, the type of flexibility that has been worked into mzML, 
notably the adapting controlled vocabulary and the semantic 
validation, are concepts that RDF has the potential to solve nicely. 
However, it was determined that the developers and the imple-
menter community were not yet ready to try to implement a 
standard in RDF, a significant departure from custom XML 
schema. Moreover, the primary goal of the designers was to fix the 
two-format problem, rather than set out a bold new course. The 
new mzML 1.0 release fulfills the goals set before the designers. It 
may well be that the next major release, mzML 2.0, not expected 
for several years, will be designed using RDF, at a time when the 
designers and implementers are ready to use this newer platform.
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Chapter 23

Managing Experimental Data Using FuGE

Andrew R. Jones and Allyson L. Lister

Abstract 

Data management and sharing in omics science is highly challenging due to the constant evolution of 
experimental techniques, the range of instrument types and software used for analysis, and the high vol-
umes of data produced. The Functional Genomics Experiment (FuGE) Model was created to provide a 
model for capturing descriptions of sample processing, experimental protocols and multidimensional 
data for any kind of omics experiment. FuGE has two modes of action: (a) as a storage architecture for 
experimental workflows and (b) as a framework for building new technology-specific data standards.

FuGE is an object model that is converted into an XML implementation for data exchange. Software 
toolkits have been developed for data handling and for bridging between XML data files and relational 
database implementations. FuGE has been adopted by the Proteomics Standards Initiative (PSI, http://
www.psidev.info) for building several new data formats, and it is being used in a variety of other experi-
mental contexts, thus allowing data to be integrated across a range of experimental types to support 
Systems Biology approaches. This chapter provides a practical guide for laboratories or groups wishing to 
manage their data, and for developers wishing to create new data formats using FuGE.

Key words: Data standards, Functional genomics, Data exchange, Database development

In the proteomics domain, new experimental techniques are 
frequently developed, presenting significant challenges for data 
management and sharing. Over the last 10 years of proteome 
research, the paradigm has gradually shifted from gel electropho-
resis for protein separation, to “shotgun” methods that separate 
complex mixtures of peptides, based around liquid chromatography. 
As in the early days of proteomics, the main technique for peptide 
and protein identification is still mass spectrometry coupled with 
a database search engine, yet within this space, new approaches 
are frequently proposed for data processing and statistical analysis, 
several of which are outlined in other chapters. New methods 
have also been created for separation, including developments in 

1. Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_23, © Humana Press, a part of Springer Science+Business Media, LLC 2010

http://www.psidev.info
http://www.psidev.info
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multidimensional liquid chromatography, pre-fractionation of 
proteins, capillary electrophoresis, centrifugation and so on (1). 
In recent years, there have also been numerous methods pub-
lished for quantifying proteins detected by mass spectrometry, 
either by relative (2, 3) or absolute measures (4, 5), and by dif-
ferential gel analysis (6). As such, the types of data and metadata 
that must be stored are not static, and the volumes of relevant 
data are increasing rapidly as high-throughput instruments 
become commonplace. In addition, few laboratories would define 
themselves solely as proteomics-based; most laboratories use a 
range of approaches to analyse their samples of interest. In the 
past, databases have been created that focus on a single experi-
mental technique, such as repositories for mass spectrometry 
results (7–9), microarrays (10, 11) or protein–protein interac-
tions (12). Data management solutions, which store and analyse 
proteome data in conjunction with results from the numerous 
other techniques used to interrogate samples, are thus required.

One of the challenges of managing proteome data is the range 
of different file types produced by instruments and software, often 
in closed-source vendor-specific formats. In recent years, several 
UK-based research councils and funders (e.g. BBSRC, MRC and 
the Wellcome Trust, for URLs see Table 1) have released data 
sharing policies that require omics experimental data to be made 
publicly available as a condition of grant funding. There are also 
clear benefits to all researchers if experimental data can be made 
publicly accessible by allowing new findings to be derived beyond 
the original conclusions of the study, and by facilitating improve-
ments in analysis algorithms. The benefits are diminished, how-
ever, if data are published in vendor-specific formats, since few 
laboratories will have software capable of processing or analysing 
the files. As such, it is widely recognized that the development of 

Table 1 
Data sharing policies of the main funders of biological 
research

Organisation URL

Wellcome Trust http://www.wellcome.ac.uk/About-us/Policy/
Policy-and-position-statements/WTX035043.htm

BBSRC http://www.bbsrc.ac.uk/publications/policy/data_
sharing_policy.pdf

MRC http://www.mrc.ac.uk/Ourresearch/
Ethicsresearchguidance/Datasharinginitiative/
index.htm

http://www.wellcome.ac.uk/About-us/Policy/Policy-and-position-statements/WTX035043.htm
http://www.wellcome.ac.uk/About-us/Policy/Policy-and-position-statements/WTX035043.htm
http://www.bbsrc.ac.uk/publications/policy/data_sharing_policy.pdf
http://www.bbsrc.ac.uk/publications/policy/data_sharing_policy.pdf
http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Datasharinginitiative/index.htm
http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Datasharinginitiative/index.htm
http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Datasharinginitiative/index.htm
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standard exchange formats is important for data sharing (for 
example see the chapter on mzML). It is also clear that infrastruc-
tures that can facilitate the rapid development of new standards 
and provide solutions for bringing together existing formats 
(both open-source and vendor-specific) in a single architecture 
are needed.

The Functional Genomics Experiment (FuGE) model is a 
technology-independent data model for storing descriptions of 
experimental processes (13). FuGE contains high-level models to 
describe protocols, biological materials (such as samples) and 
multidimensional data. It also provides mechanisms for referenc-
ing other resources such as ontologies, databases and external 
data files. FuGE can be used to describe protocols for sample 
processing, separation, data acquisition and data processing as 
well as track the flow of samples and data through the process as 
inputs and outputs. It can also be used as a framework for creat-
ing new data standards specific to a certain technology, such as gel 
electrophoresis (14). By providing a mechanism for describing 
the overall study, including references to data files, FuGE can 
integrate proteomic data with other data types, for instance those 
relating to genes, metabolites or phenotypes.

In this chapter, we first present a brief description of the con-
tents of the abstract FuGE Object Model (FuGE-OM) and the 
different concrete representations available. These include XML 
(FuGE-ML) for data exchange, relational database implementa-
tions and software toolkits for bridging between XML objects 
and database storage. The chapter then provides a practical guide 
for developers wishing to use FuGE either for managing experi-
mental data or for the creation of technology-specific extensions.

FuGE is a large, complex model that has been documented in detail 
elsewhere (13, 15). Subheading 2.1 therefore provides a basic 
introduction to the main concepts, sufficient to understand the dif-
ferent ways in which the model can be used. FuGE has two modes 
of action. First, FuGE can be used as an experimental metadata 
integrator to represent basic laboratory workflows to capture sam-
ple tracking, experimental protocols or procedures, the data files 
that result (represented in the relevant external format) and data 
processing pipelines (Subheading 2.2). Second, FuGE can be used 
as an extensible core to build new data formats that share a common 
underlying structure. In this mode, models can be created to rep-
resent specific details about a new experimental technique for which 
there is no existing data standard (Subheading 2.3).

2. Methods
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FuGE is a model for representing the running of laboratory or 
computational protocols and the flow of samples and data files. 
There is an important distinction made between the details of the 
intended procedure (Protocol) and the running of the procedure 
(ProtocolApplication). Protocols should be defined once, with a 
set of sequential steps and parameters with default values. 
Protocols can be associated with descriptions of instruments and 
software, which can also have parameters. ProtocolApplications 
reference the Protocol that was performed, and provide the 
backbone of a workflow by mapping all inputs and outputs. 
ProtocolApplications can be annotated with the operator of the 
protocol, the date, any small deviations from the set protocol and 
any parameters that differed at runtime. This simple, flexible for-
mat is able to cover the majority of biological use cases because it 
abstracts the representations of experiments to the basic building 
blocks: procedures and their inputs and outputs. Inputs and out-
puts can be either materials or data. FuGE does not define detailed 
models for biological materials (e.g. samples) since the variety in 
what could be described is vast. Instead, FuGE has a structure for 
importing ontological annotations so they can be stored and 
exchanged alongside experimental descriptions. Linking materials 
and other similar FuGE concepts to appropriate terms in ontolo-
gies, such as those within the Open Biomedical Ontologies 
(OBO) Foundry (16), allows semantically rich descriptions to be 
created without the need for detailed FuGE models of those con-
cepts. The OBO Foundry is a collaboration of developers of sci-
ence-based ontologies created to establish a set of principles for 
ontology development. Foundry ontologies are intended to be 
interoperable reference ontologies in the biomedical domain. For 
example, the Ontology for Biomedical Investigations (OBI) 
Consortium (http://purl.obofoundry.org/obo/obi) is develop-
ing an integrated ontology for the description of biological and 
clinical investigations, designed to support the consistent annota-
tion of biomedical investigations, regardless of field of study or 
data type. The OBI ontology is well-suited for use within the 
FuGE structure, as it models a number of terms useful for describ-
ing experiments, including the protocols, instrumentation and 
material used, the data generated, the type of analysis performed 
and other artefacts generated during an investigation.

Examination of two possible uses of the ProtocolApplication 
entity demonstrates the differences between the integrator 
and extensible core modes of action of FuGE. A standard 
ProtocolApplication allows any number of input samples/
biological materials and data files, and any number of output 
materials or data files. In other words, the model itself places no 
restrictions on what can be captured. Therefore when used as an 
integrator (Subheading 2.2), any constraints must be created by a 
specific software implementation or left to the user to provide 

2.1. Overview  
of the FuGE Model

http://purl.obofoundry.org/obo/obi
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Fig. 1. The interplay between different technologies for manipulating experimental descriptions within FuGE. A local 
repository can be implemented using a relational database. A Persistence layer is used to convert between in-memory 
objects (e.g. in Java) and database storage. The FuGE project provides two toolkits employing different persistence lay-
ers, based on EJB (http://java.sun.com/products/ejb/) and Hibernate (http://www.hibernate.org/). JAXB (https://jaxb.dev.
java.net/) mappings are included in the toolkit, which can convert in-memory Java objects to an XML representation, 
FuGE-ML, which will allow data to be sent to public repositories that accept FuGE-formatted data
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sensible values representing their domain of interest. The benefit 
of this mode is that development time is focussed on the creation 
of the user interface, and not around modification of the FuGE 
model. However, the standard ProtocolApplication class can also 
be extended (Subheading 2.3). This can be done when using 
FuGE as an extensible core. For instance, a gel-scanning protocol 
in GelML could restrict the input to be a single two-dimensional 
gel, and restrict the output to be an image file. Using FuGE in 
this extensible core mode provides much higher control over 
what can be put into the model, but requires development effort 
in model extension. The integrator mode may be more useful for 
communities where the core model of FuGE is enough for their 
needs, or where all constraints on experimental metadata can be 
easily written directly into a shared user interface. The use of 
FuGE as an extensible core may be more suitable to communities 
or groups with large numbers of complicated procedures, where 
providing specific extensions of FuGE concepts is the best way to 
ensure correct deposition of experimental metadata.

For communities in which FuGE will be used in integrator 
mode, i.e. without extension, the following general steps should 
be followed. For those using FuGE as an extensible core, the 
steps dealing with data representation and interface creation 
should be considered after following the stages outlined in 
Subheading 2.3.

 1. Data representation. A suitable storage mechanism must be 
chosen, for example using a relational database or a native 
XML database. The FuGE project provides a toolkit for manip-
ulation and validation of XML and two toolkits for relational 
database storage, based on different underlying technologies 
(http://fuge.sourceforge.net/). See Fig. 1 for the roles that 
are played by the different technologies in the FuGE toolkits.

2.2. Representing 
Laboratory Workflows

http://java.sun.com/products/ejb/
http://www.hibernate.org/
https://jaxb.dev.java.net/
https://jaxb.dev.java.net/
http://fuge.sourceforge.net/
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 2. Interface. An interface must be created for capturing metadata 
about studies entered by experimentalists and to integrate the 
outputs from different instruments or software. Existing open-
source projects, such as SyMBA (http://symba.sourceforge.
net) or sysFusion (from the Friedrich Miescher Institute for 
Biomedical Research, http://www.fmi.ch/), utilise the FuGE 
toolkits, providing relational database/graphical user inter-
faces to the core FuGE model.

 3. Storage of Protocols. Typically, a database would store experi-
mental protocols that are commonly performed in the labo-
ratory to be referenced by ProtocolApplications when 
experiments are performed.

 4. Sample tracking. The interface should be capable of tracking the 
flow of samples and data files through an experimental work-
flow. FuGE can be used to model at the level of detail of a LIMS 
(Laboratory Information Management System), achieved 
through the use of ProtocolApplications, which reference the 
input and outputs of each stage: samples or data files.

 5. Integration of other data standards. In a proteomics workflow, 
mass spectrometry data may be represented in the mzML for-
mat, or in a vendor-specific format, such as MGF (Mascot 
Generic Format). Protein and peptide identifications may also 
be represented in the PSI’s mzIdentML format or the output 
produced by the search engine. The FuGE model can integrate 
such data files into an entire workflow by defining 
ProtocolApplications that reference external data files as an 
output. The inputs to the ProtocolApplications are descrip-
tions of samples, for example output from a separation tech-
nology such as liquid chromatography or gel electrophoresis 
(Fig. 2).

Sample

Protocol
Application

Protein
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Protein 
extraction

Digestion LC Mass Spec
Database
Search

Protocol
Application

Peptides
Fraction 1

Fraction 2
Fraction 3

Fraction 4

mzML mzIdentML

Protocol database

Protocol
Application

Protocol
Application

Protocol
Application

Fig. 2. An example LC-MS experiment represented in FuGE. The inputs and outputs to each ProtocolApplication are either 
descriptions of samples (annotated with ontology terms) or data files, such as mzML or mzIdentML

http://symba.sourceforge.net
http://symba.sourceforge.net
http://www.fmi.ch/
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 6. Export of data to public repositories. The types of metadata 
that should be reported about a proteomics experiment to 
support a publication are currently in a state of flux. As one 
example, the PRIDE database will support deposition of data 
in PSI-sanctioned formats, such as those containing MS data 
and protein and peptide identifications. It is expected that 
public repositories will support deposition of omics results 
tied together using FuGE-ML in the near future.

FuGE can be used to develop new formats for describing particular 
experimental details. For proteomics, extensions have been cre-
ated for representing gels (GelML) and general separations and 
sample processing, including liquid chromatography (spML). 
The PSI format for mass spectrometry database searches (peptide 
and protein identification) is mzIdentML, which also makes use 
of several FuGE structures. Formats have also been developed 
using FuGE for flow cytometry, genetical genomics, RNA inter-
ference, metabolomics, microarrays and e-neuroscience, which 
may become standards in due course. This section provides a 
practical guide for developers wishing to understand how FuGE 
can be used to create a new data format, for example to represent 
a particular type of experiment.

The Proteomics Standards Initiative has developed a series of 
minimum reporting guidelines under the MIAPE (Minimum 
Information About a Proteomics Experiment) parent document. 
Each of the MIAPE checklists defines the minimal information that 
should be reported about a particular type of proteomics tech-
nique. The MIAPE parent document (17) outlines the purpose 
and principles of the guidelines with a series of modules, generally 
one per technique, including mass spectrometry (18), mass spec-
trometry informatics (19), gel electrophoresis (20) and others. The 
MIAPE documents represent a formalisation of community opin-
ion on the types of metadata that should be captured about an 
experiment to allow it to be critically understood and for data to be 
re-analysed in the future. While some experimental techniques may 
not require a formal MIAPE module prior to the creation of a data 
exchange format, an essential first step towards developing a new 
format is to gain widespread input on the types of data that labora-
tories wish to exchange. In many cases, this involves collecting use 
cases, such as different protocols used by laboratories, sets of results, 
references to publications and so on, and deciding which use cases 
should be supported by the standard.

An important stage in creating new data formats is examining 
existing formats produced by software and instrument vendors, 
and those used by individual laboratories or consortia for manag-
ing their data. It is useful to identify the deficiencies of existing 

2.3. Building 
Technology-Specific 
Extensions

2.3.1. Stage 1 – Develop 
Reporting Requirements 
and Use Cases

2.3.2. Stage 2 –Survey 
Existing Formats  
and Examine Requirements 
for Using FuGE
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formats with respect to the use cases or reporting requirements 
that are to be supported, as identified in Stage 1.

FuGE is intended for representing metadata about experi-
ments and representing a flow of multiple processes. For experi-
mental techniques that encompass only a single stage producing 
large quantities of data, using FuGE would not be recommended, 
since the complexity of FuGE may slow development of the for-
mat. As described above, FuGE has a mechanism for referencing 
non-FuGE-based formats and capturing details about the proto-
cols used to create the data. As an example in proteomics, mzML 
is being developed as a stand-alone format for representing the 
output of a mass spectrometry. While mass spectrometers may 
perform two (or more) protein/peptide fragmentation stages, 
the data can be viewed as a discrete, atomic element, and thus 
there is no need for the flexible process model of FuGE. FuGE is 
particularly recommended for describing experimental approaches 
where there is significant flexibility in how different groups use 
the technology or where multiple different stages can be per-
formed with outputs of one stage becoming inputs to the next.

The FuGE UML model can be downloaded from the website 
(http://fuge.sourceforge.net/) and viewed with MagicDraw 
community edition (http://www.magicdraw.com/). The con-
cepts identified in stage 1 should be partitioned according to 
the top-level FuGE classes, in particular: Protocol, 
ProtocolApplication, Action, Parameter, Material, InternalData 
and ExternalData. Classes are extended in FuGE by using a UML 
inheritance relationship, which is automatically applied to the 
XML Schema (discussed in Stage 4).

Protocol – A Protocol is intended to represent a description of 
an intended process or one that is carried out multiple times with 
the same settings. One example would be a standard operating 
procedure for sample preparation in proteomics. The Protocol 
class should be extended to capture specific types of parameters or 
steps (Action) within the protocol. For instance, in sample prepa-
ration, individual steps might be protein extraction, solubilisation 
and separation.

Parameter – Parameters are replaceable values within a 
Protocol that can be assigned a default value. The Parameter class 
should be extended to capture a specific type of setting within a 
Protocol, instrument (Equipment) or Software, such as tempera-
ture or time.

Material – Materials represent all substances used in an exper-
iment. In practice, Material is typically used to capture details of 
samples of the organism being studied. The Material class has no 
attributes for describing its properties; instead, two mechanisms 
can be used to add descriptions. First, Materials can be annotated 
with ontology terms to describe the characteristics, for example 

2.3.3. Stage 3 – Building  
a FuGE Extension

http://fuge.sourceforge.net/
http://www.magicdraw.com/
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using ontologies defined within OBI. Second, the Material class 
can be extended to add additional attributes. We recommend the 
use of ontologies particularly for describing the fundamental 
characteristics of the starting sample in a study such as species, 
observations, phenotypes, medical histories and so on. It is highly 
challenging to build data models to represent such a range of 
information and it is unlikely that information stored within such 
a model could be interpreted by any other software systems. By 
using ontologies, it should be possible to annotate sample descrip-
tions with terms that are comprehensible to software systems and 
allow queries over repositories without requiring natural language 
processing or synonym searches. We recommend extending the 
Material class in FuGE to store details about substances related 
directly to the experimental technique, for example those 
requested by a reporting guideline document. As an example, in 
GelML, the Material class has been extended to describe electro-
phoretic gels. The Gel class has attributes for capturing the physi-
cal dimensions, the percentage acrylamide in the gel and the ratio 
of acrylamide to a cross-linking agent. Such specific details are 
required by the MIAPE document for gel electrophoresis (20), 
and as such they are included in the data model as attributes on 
the Gel class to simplify the capture of these values.

Data – FuGE has a structure that can be used to describe 
multidimensional data (InternalData). The model first defines the 
dimensions of data, and the values are stored separately in matrices. 
The data matrices can be accessed using coordinates defined by a 
combination of the dimensions. The FuGE data model should be 
extended to describe multidimensional data with a regular size of 
dimensions, for instance this would be appropriate for describing 
protein arrays. In other cases, individual elements can be created 
in FuGE to describe simple results (for example as input/output 
parameter values), or an external data format can be referenced as 
an input or output from a ProtocolApplication, such as spectra 
captured as ExternalData.

ProtocolApplication – ProtocolApplication represents the run-
ning of a Protocol and maps the inputs and outputs of the pro-
cesses. ProtocolApplication should be extended when a specific 
type of Protocol is being run, and when it is necessary to define 
specific types of samples (Material) or data files as inputs or 
outputs.

The object model is converted to an XML Schema using the XSD 
STK (http://fuge.sourceforge.net/stks/xsd-stk/), which defines 
and constrains what can be represented in XML. It is a light-
weight toolkit designed expressly for those wishing to either 
manipulate the FuGE XSD (XML Schema Definition) or gener-
ate a new FuGE-based XSD for a particular purpose. The rules 
used to convert the object model into an XML Schema are 

2.3.4. Stage 4 – Creating 
an XML Data Interchange 
Format

http://fuge.sourceforge.net/stks/xsd-stk/
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described in the FuGE specification document (15). Where an 
extension has been built to describe a particular technology, the 
same toolkit can be used to create a new XSD for the extended 
model.

FuGE has been created to simplify the development of data 
management solutions for life sciences and attempts to unify data 
formats created for different technologies. The chapter has pro-
vided a brief guide in using FuGE for either of its intended pur-
poses, as a metadata integrator and as an extensible core for 
creating new data formats. For proteomics data management, 
both mechanisms are in current use and a community of develop-
ers continue to contribute tools and new extensions, which can 
be accessed via the FuGE website.
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Chapter 24

Proteomics Data Collection (ProDaC): Publishing  
and Collecting Proteomics Data Sets in Public Repositories 
Using Standard Formats

Christian Stephan, Martin Eisenacher, Michael Kohl,  
and Helmut E. Meyer

Abstract 

In Proteomics, fast enhancements with regard to technology are responsible for the creation of huge data 
sets. Consequently, in 2006 the European Commission funded a Coordination Action named ProDaC 
(Proteomics Data Collection) within the 6th EU Framework Programme to foster a community-wide 
data collection and data sharing. The aims of ProDaC were the development of documentation and storage 
standards, setup of a standardized data submission pipeline and collection of data.

To reach these goals, the necessary work was structured in six thematic fields (work packages): Standards 
for Proteomics Data Representation, Standards Implementation, Data Integration Tools, Proteomics 
Repository Adaptation, Data Flow Management, and Proteomics Data Exploitation. The methods building 
the basis of the respective fields and the achieved results are described in the following sections.

Key words:  Bioinformatics, European Commission, European Union, ProCon, ProDaC, Proteomics 
data collection, Standards, Standard formats, Public repositories, Data collection
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Proteomics approaches deal with the analysis of the protein 
composition on different spatial scales and complexity levels 
(organelles, cells or even tissues). During the last decade, pro-
teomics gained focus in both fundamental and clinical research. 
Along with this interest, both methods and instruments, e.g. mass 
spectrometry devices, developed rapidly.

Hence, a huge amount of data is produced within shorter time 
periods. In order to cope with this excess of information and the 
technical improvement, a rapid development of adequate software 
applications is necessary. Unfortunately, these solutions often were 
adapted for rather special problems or devices. Furthermore, differ-
ent vendors save results in different data formats, leading to restric-
tions on both comparison and collection of such heterogeneous 
data. In today’s science, new insights are strongly related to workable 
data sharing within the scientific community, but this is hampered 
by the above-mentioned data incompatibility and proprietary for-
mats. As a consequence, valuable resources were tied up to 
develop data conversion tools for these different data formats.

Even if data conversion into standard formats would be pos-
sible, the experimentalist or laboratory scientist may not be 
familiar with the tools available. A last fact, which prevents suc-
cessful data sharing, is that data sets may have the correct format, 
but are not submitted to a public access point, because the single 
researcher does not see the usefulness or simply does not take the 
time to do this.

There was clearly an increasing need for the development of 
generic standardized data formats. Therefore, volunteers from 
science and industry joined forces in 2002 (1) and founded the 
Proteomics Standards Initiative (PSI) (2), which is an essential 
part of the Human Proteome Organisation (HUPO) (3). The 
outcome of the PSI activities include, for example, the definition 
of “Minimum Information about a Proteomics Experiment 
(MIAPE)” guidelines (4, 5) and the development of important 
standard formats (PSI-MI, PSI-MOD and others), which are 
gaining wide acceptance within the proteomics community. 
To push forward easy data conversion and to enable and perform 
community-wide data collection, the Proteomics Data Collection 
consortium (ProDaC) (6) was initiated in 2006. It supports the 
PSI efforts and goes beyond them by establishing easy data 
workflow pipelines, working together with community journals 
and collecting data submitted by its members. ProDaC is a 
Coordination Action project within the 6th EU Framework 
Programme (7).

1. Introduction



347Proteomics Data Collection (ProDaC): Publishing and Collecting Proteomics Data Sets 

One main objective of the consortium is to coordinate the 
development of international standards concerning proteomics 
data sets. Initially, the focus was on the finalization of standard for-
mats developed within the PSI. This was the first time the European 
Commission funded the development of standards in proteomics.

Both usability and acceptance of the newly developed 
standard formats strongly depend on an easy conversion of 
common proteomics data formats into the new standards. In 
order to maintain results from previous experiments, it has to 
be assured that no information will be lost during the conver-
sion. Therefore, the ProDaC initiative develops conversion 
tools and further proteomics related software tools integrating 
these standards.

Scientific progress strongly relies on a rapid and simple capabil-
ity to share data and to compare experimental results. That was, for 
example, the experience in large proteomics consortia such as 
HUPO’s Brain Proteome Project (HUPO BPP (8–20), Fig. 1). It 
required easy-to-use standard validation tools and software solu-
tions using the standards intuitively. This implies not only stan-
dardization of data formats but also the development of a 
standardized workflow and information management starting from 
sample preparation and processing of the results up to a centralized 
and public storage of proteomics data. Consequently, ProDaC also 

Fig. 1. Data exchange network of proteomics data repositories in the HUPO BPP (DCC 
data collection center, LDBC local database collection, DP data provider)



348 Stephan et al.

deals with the development of a “pipeline” integrating all proteomics 
related working stages into a robust and generic framework.

An additional objective is the support of a central repository 
for proteomics data sets which is crucial for a qualified peer-review 
process of publications. In relation to the publication process, 
ProDaC will work together with scientific journals and will help 
authors to realize minimum information requirements and to 
provide correctly prepared supplementary information.

Last, but not the least the consortium aims to deploy data sets 
into standards-compliant repositories and sketch possibilities to 
make use of these data collection going beyond the questions a 
single scientific project can answer – as done in system-wide analy-
sis such as the Systems Biology approaches, where large amounts 
of data are fundamental.

In this section, it is described which working scheme was planned to 
achieve the ProDaC goals, whereas in the “Results” section, the 
achieved goals and results are described. The following sections cor-
respond to the ProDaC working units called “work packages”.

A primary objective of ProDaC is to support the finalization of stan-
dard data formats, which are developed within the PSI consortium.

Standardized data formats are used for encoding data obtained 
at different experimental stages:

the output obtained from the mass spectrometer,●●

the input for data processing software,●●

and a result format encoding protein/peptide identification.●●

Therefore, ProDaC needs to coordinate standardization efforts 
on these three levels of data handling, where the first two are 
ideally merged.

One of the most important features of newly defined stan-
dards is, besides the good and precise definition, the community 
acceptance and real usage in practice. On the one hand, good 
documentation of implementations and their publication is nec-
essary, and on the other hand an easy-to-use software solution to 
generate or convert data directly at the producing devices. This 
will be the breakthrough rule for PSI standards. ProDaC is a sys-
tematic organizational platform, which offers the possibility for 
combining existing experiences and know-how in the field of pro-
teomics-related bioinformatics. Such an association is an appro-
priate means for supporting the rapid development and finalization 
of the PSI standard data formats.

2. Methodical 
Aspects

2.1. Standards  
for Proteomics Data 
Representation
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Tool providers sometimes claim compatibility to a certain standard, 
but actually only implement it in a very rudimentary or even an 
incorrect way. ProDaC will ensure the correct implementation by 
providing a test suite, an online validator for semantic validation, 
an instance document collection and a certification.

Today mzML (earlier levels of development are mzData and 
mzXML) is the standard for mass spectrometry data exchange. 
mzML has been released in version 1.0, so a test suite is appreciated 
and necessary. The standard exchange format of search result data 
called AnalysisXML (now called mzIdentML) is still under devel-
opment, but the minor changes and the designed test suite can be 
easily adapted to this standard as well.

Most of the defined PSI standards for data exchange are 
designed in XML (eXtensible Markup Language, (21)). One of 
the biggest advantages of XML is the existence of an XML schema 
definition (XSD) file for placing exact constraints on the contents. 
This allows easy validation of actual XML files content using exist-
ing parsers (“schema validation”). However, the complexity of 
the data content and cross-references inside PSI XML files pre-
vent the validation of the content by using only an XSD file. 
Therefore, a more advanced validation tool called “semantic vali-
dator” is needed. At the same time such a semantic validator can 
check for appropriate use of a “controlled vocabulary” (CV) term 
at a particular position in the XML file (via so-called CV rules). 
CVs are a fixed set of allowed words or phrases used to differenti-
ate between units of information. CVs can be used within the 
concept of ontology, which is a branch within computer science. 
Ontologies are frequently used for example in the fields of artifi-
cial intelligence and bioinformatics. An ontology tries to establish 
relationships between categories and concepts.

The standards development process will be strongly facili-
tated by the generation of instance documents. In order to sup-
port an easy exchange of ideas, ProDaC will host these documents 
on a website accessible for both ProDaC and PSI partners.

A survey among all ProDaC partners showed a high interest 
and need for instance documents and validation tools. It became 
clear that additional data files complementary to the PSI example 
files would be useful, and a validation tool accessible via the internet 
is of main importance for implementers and users. Such an online 
validator needs to be freely available and platform-independent to 
allow validation in ongoing implementations by mass spectrometer 
vendors and in software packages such as Proteios, ProteinScapeTM, 
Mascot, SequestTM or PhenyxTM.

Validation is a pre-requisite in the concept of a “ProDaC cer-
tification”. Such a certification could be appropriate to assure 
high quality of the data submitted to public repositories and thus 
improve the compatibility of shared data.

2.2. Standards 
Implementation
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For formats being mainly used as data exchange standards in mass 
spectrometry, it is essential to have support for the standards in 
major systems and programs. Therefore, in ProDaC software 
tools are developed to convert or export proteomics data sets 
using the new standard formats (e.g. mzML, AnalysisXML). 
There is hope that key proteomics software will implement these 
standards directly after or even during definition. But it cannot be 
expected that all relevant applications consider the new standards 
immediately, in particular those of non-consortium partners. The 
implementation might also be delayed due to maintenance cycles 
in the vendors’ software development process. Therefore, ProDaC 
develops adaptor applications in a timely manner. To achieve this, 
it is necessary to gain an overview of proteomics data producing 
platforms used in the consortium. After that, tools are imple-
mented for conversion and export, where necessary.

In order to evaluate the most important development needs, 
it is indispensible to acquire a sufficient overview of software solu-
tions and data formats used within the proteomics community. The 
ProDaC consortium can be considered as a representation of major 
methods and approaches within this field. Therefore, a question-
naire sent out to the ProDaC members seems to be adequate in 
order to acquire insight in actual data management solutions and 
ProDaC relevant objects of the proteomics community.

Databases are essential components when large amounts of data 
are acquired and stored over a long time period or in different 
laboratories. Data acquisition in the field of proteomics frequently 
requires concerted efforts of many scientific and industrial institu-
tions. Therefore, such a data repository platform is indispensable 
for the overall success of the project.

There are several platforms available that were designed for 
storing data obtained from common proteomics related working 
schemes, e.g. PRIDE (22–24), ProteinScapeTM (25, 26), Proteios 
(27–29), Mascot Integra (30), ms_lims (31), Proline (32), 
ProteusLIMS – Genologics (33–35), SBEAMS Proteomics (36), 
SibioClé LIMS (37), PeptideAtlas (38–40), and the Trans-Proteomic 
Pipeline (TPP) (41).

Some major characteristics have to be considered regarding a 
database adopted for storing proteomics data:

In order to obtain an easy and fast access for the scientist from ●●

all over the world, a web-based user interface is mandatory.
The repository should be adopted for the new standard data ●●

formats. This implies the possibility for both modification 
and evaluation of the database within local test environments. 
An open-source project is probably most promising in order 
to achieve these requirements.
Scientific progress benefits from fast and easy capabilities for ●●

communication and publishing. Nowadays, technical progress 

2.3. Data Integration 
Tools

2.4. Proteomics 
Repository Adaptation
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leads to huge amounts of data resulting in voluminous articles 
or in outsourcing of supplementary material that is usually 
hosted on the website of the publisher. There is a need for a 
new publication strategy, which allows obtaining key state-
ments of a publication with sufficient clarity while retrieving 
details (e.g. protein identifications) on demand. Public data 
repositories are promising to conform to these specifications. 
This will noticeably reduce workload associated with the publi-
cation process. Currently, data management using public 
repositories is suggested in the editorial sections of the jour-
nals Proteomics, Nature Biotechnology and Nature Methods 
(42–44) indicating the importance of this issue from the pub-
lishers’ perspective.
Furthermore, such a standardized and structured publication ●●

strategy may offer possibilities for an automatic interpretation 
of published results by the use of computer programs.
Data management in public repositories provides opportunities ●●

for sophisticated data exploitation, i.e. comparison or meta-
analysis of data obtained from different sources. Furthermore, 
the proteomics results can then be used in a feedback loop for 
improving the information stored in sequence databases like 
UniProt and Ensembl. Therefore, a database should support 
both comprehensive queries covering different data sets and 
feedback update mechanisms in cooperation with sequence 
databases.

An optimal data workflow and management are mandatory for 
the overall success of the ProDaC project. Therefore, efficient 
data flow between data producing sites and the data storage plat-
forms (PRIDE, ProteinScapeTM, Proteios, etc.) must be ensured.

The workflow of proteomics data in the consortium has to 
consider two principle types:

 1. A file-related branch: data files are stored in the file system of 
instrument computers or at central file locations of an insti-
tute. This branch includes input and result files from Mascot™ 
and Sequest™ search engines, as well as files in the standard 
formats mzData and mzXML. Another format of this 
branch is the Microsoft® Excel format (Microsoft Corporation, 
Redmond, SA, USA).

 2. A database-related branch, where data from LIMS systems or 
existing databases have to be imported into the ProDaC cen-
tral repository (PRIDE). Examples for this branch are 
ProteinScape™, IntelliMS, Proteios, and Proline.

Regarding (1) it is a crucial point, that spectra and results are 
stored in separate files, so before storing them into the repository, 
a correct assignment of related spectra/result files has to be 
performed and the contents have to be merged.

2.5. Data Flow 
Management
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Furthermore, the sample and protocol information may be 
missing, especially in the file-related branch. For both branches, 
standardized CV or ontology terms are currently not used as 
demanded by the standards. It takes additional efforts to make 
these fit to the standard formats.

For manuscript submissions, obligatory publishing of data 
sets as supplementary data is probable for the mid-term. Therefore, 
the ProDaC data flow should support that and should be exten-
sively tested.

In scientific research, the data amount generated per experiment 
was steadily increasing throughout the previous decades. There 
were neither commonly accepted public data repositories for pro-
tein and peptide identifications nor standardized publishing rules. 
Screening of previously identified proteins is hence time-consum-
ing and often impossible. Therefore, some studies are repeated 
again and again. Large public proteomics data repositories, such 
as PRIDE (45), are necessary to avoid this loss of knowledge, 
time, and resources.

Standardized deposition of proteomics data in public reposi-
tories will improve the quality of published data by enabling more 
systematic scientific scrutiny. Performing systematic proteomics 
data collection has an obvious benefit for the whole community by 
determining associated data sets and common trends. Because 
public repositories store data obtained from different experimental 
approaches/techniques, they provide more added value for subse-
quent analyses, e.g., systems biology approaches, than using data 
that come only from one source and one type of method.

The HUPO Plasma Proteome Project (PPP) may serve as a 
good example for another type of problem, which could be 
avoided by utilizing proteome data; the PPP had to deal with the 
problem that observations shared by multiple participants for a 
predicted protein sequence were deleted from Ensembl or RefSeq 
during the runtime of the PPP pilot phase, in spite of high-quality 
mass spectrometry identifications of these sequences. These dele-
tions were due to changes in the gene prediction algorithms. By 
establishing a feedback loop of proteomic results into sequence 
databases, the predicted proteins could achieve better evidence.

The objective of Coordination Actions in the European Union’s 
Framework Programme is networking or co-ordination of activi-
ties. They always involve at least three independent legal entities 
from three different countries (46).

Working schemes like those proposed for ProDaC strongly 
need broad-based community participation. Therefore, the 
ProDaC consortium is composed of 12 core partners and more 
than 30 associated partners (Fig. 2). This structure aims to inte-
grate knowledge throughout the proteomics community and 

2.6. Proteomics Data 
Exploitation

2.7. Consortium 
Structure



353Proteomics Data Collection (ProDaC): Publishing and Collecting Proteomics Data Sets 

ensures intensive development and testing of both technical 
correctness and usability.

Additionally, ProDaC establishes cooperation between different 
academic and industrial groups usually involved in proteomics 
studies: experimentalists, data providers, bioinformatics scientists, 
and scientific journals.

Because close collaboration is crucial during the development 
and testing phases ProDaC aims to concentrate the working pro-
cess by organization of regular meetings (47–50) and by estab-
lishing a structured communication network that can be used for 
conferences and discussions via the internet.

In this section, the goals and results achieved in ProDaC are 
described. The following sections correspond to the ProDaC work-
ing units, called “work packages”.

A primary objective of ProDaC is to support the finalization of 
standard data formats.

Several objectives concerning the development of standard 
formats were already achieved:

3.  Results

3.1. Standards  
for Proteomics Data 
Representation

Fig. 2. The ProDaC consortium members and the project phases
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 1. The newly developed standard XML format for mass  
spectrometry data is called mzML and was released as version 
1.0.0 on June 1st, 2008 with substantial participation of 
ProDaC partners. Concepts from two frequently used XML 
formats were integrated, which were designed for the repre-
sentation of mass spectrometer data: mzData (provided by 
the PSI) and mzXML (provided by Seattle Proteome Center 
(SPC) at the Institute for Systems Biology (51)).

 2. XML schema definition files, documentation and example 
files are available via internet (52).

 3. The PSI consortium also works on an XML format designed 
for encoding the output of search engines that were com-
monly used in the field of proteomics research. This format is 
referred to as AnalysisXML and is currently in an advanced 
stage of development (53).

 4. The European Bioinformatics Institute (EBI) developed the 
proteomics data repository PRIDE (Proteomics Identifications 
Database), which uses its own XML format called PRIDE 
XML (version 2.1). The schema definition can be found at 
(45). PRIDE will implement mzML and AnalysisXML as 
soon as they are finalized; additionally, PRIDE will cover fur-
ther proteomics information, e.g. those defined in the 
“Minimum Information about a Proteomics Experiment 
(MIAPE)” guidelines (4, 5).

 5. The PSI standard for protein modifications and for gel-based 
separation (GelML) is released, and a standard for non-gel-based 
separation (spML) is released in beta status.

ProDaC provides an instance document collection, a test suite 
containing an online validator for semantic validation, and a cer-
tification mechanism.

The implementation of the mzML and AnalysisXML standards is 
a still ongoing task, the 1.0 version of mzML is released but 
ontologies and controlled vocabularies will be updated on a regu-
lar basis. Therefore, the generated instance documentations of 
the ProDaC partners are being made available on a Trac Wiki 
website (54) (linked from the ProDaC website). This enables a 
regular and wide discussion of the format and possible issues, 
which are sent back to the PSI and the ProDaC partners. The site 
is structured into areas for mzData, mzML, AnalysisXML and 
PRIDE XML. Each area contains example files and editable doc-
uments where obstacles and ideas for developments of the stan-
dards are recorded.

3.2. Standards 
Implementation

3.2.1. Generation  
of Instance Documents
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While numerous implementations for XML validation with XSDs 
already exist, the validation of PSI standards needs to validate 
features not included in XSD validation only. A combination of 
schema validation and semantic validation is needed. The exten-
sive use of controlled vocabularies, counts, references and unique 
identifiers require specific implementations to validate the seman-
tics in the file as well as the logical structure. For these purposes, 
the Proteomics Services team at the EBI, a partner within ProDaC, 
has developed a generic, extensible framework for the implemen-
tation of such validators for the PSI standards, as well as other 
XML formats. All of this code is available as open source under 
the Apache2 license on the PSI subversion (svn) repository (55). 
A prototype mzML validator has been programmed using this 
framework, and a Molecular Interactions (PSI-MI) version is also 
completed.

The mzML version 0.93 release candidate package also con-
tained a Perl-based schema validator for testing generated files. 
The validator could be extended with semantic control, but the 
current version performs XSD validation only, and is therefore 
meant as a simple means to verify structural correctness of an 
mzML file. A disadvantage is that some of the required libraries are 
not available for the Active State version of Perl, which is the most 
common Microsoft Windows Perl engine, and that the validator will 
therefore require Cygwin or a similar Unix simulator in order to 
work under Windows. For these reasons, this tool can be consid-
ered as a part of a development kit for programmers rather than an 
end-user tool.

As mentioned above, a prototype semantic validator for mzML 
using the generic framework has been developed. Software devel-
opers can leverage the power of custom-written validation rules, 
which can be specified in an XML file containing object rules. 
The code of the validator thus does not need to be changed or 
updated at all. Ontology or domain experts on the other hand 
can specify CV rules to validate the correct usage of ontology 
terms (relations, dependencies, repetitions). Access to controlled 
vocabularies or ontologies is provided by the OntologyAccess 
framework that transparently supports both direct access to local 
or remote Open Biomedical Ontology (OBO) files, as well as 
access via the EBI’s Ontology Lookup Service (OLS; http://
www.ebi.ac.uk/ols) APIs. This OntologyAccess framework has 
built-in caching functionalities to ensure performance. All changes 
needed for further updates of object rules, controlled vocabular-
ies and ontologies can be performed by editing the XML files and 
it is not necessary to change the code of the validator itself.

To enable easy validation of files, and also possible logging of 
common errors in standard files, a website with an online validator 
has been set up (56) with the mzML validator code as back-end. 

3.2.2. Beyond XSD 
Schema Validation

3.2.3. Creation of Semantic 
Validation Tools

http://www.ebi.ac.uk/ols
http://www.ebi.ac.uk/ols
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This site provides a front end for basic XSD validation, and to 
more advanced validators that include semantic tests. A screen-
shot of the online tool is shown in Fig. 3.

To acquire ProDaC-certification, files generated by tools that pass 
the validator in its final form are accepted by certified proteomics 
data repositories and storage tools. The validator enables the 
repository maintainers to work with well-defined files and the 
validator puts pressure on tool vendors to adapt the standards as 
they mature to a level useful for validation. There are several stan-
dard compliant files (the test suite) available at (54) for testing the 
ability of software to import these schematically and semantically 
valid data files.

In short, ProDaC certification of a tool/repository comprises 
two criteria:

 1. Files generated from a tool/repository must pass the online 
validator; and if the tool/repository imports standard files, it 
should also pass the below item.

3.2.4. Testing/Certification

Fig. 3. The ProDaC on-line validator
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 2. The test suite of files must be imported by the repository/
tool. A stricter criterion is to require that a repository should 
import any file that passes the validator.

The test suite and validation tools will be soon adapted for appli-
cation on other PSI standards as these standards are being 
finalized.

In ProDaC software tools are developed to convert or export 
proteomics data sets using standard formats (e.g. PRIDE XML, 
mzML, AnalysisXML).

Relevant tools used in the consortium have been evaluated by a 
questionnaire. It asked for all types of ProDaC relevant objects 
involved in a proteomics workflow: hardware, software, file for-
mats, conversion tools, local LIMS systems and central data 
repositories.

From the feedback, the answers were counted given for a spe-
cific question and it was decided (48) to develop tools for the 
most-frequent environments with higher priority: SequestTM 
(Thermo Electron Corporation, Waltham, MA, USA) and Mascot 
(MatrixScience Inc., Boston, MA, USA) spectra and result for-
mats, mzData, HTML and the ProteinScapeTM database (Bruker 
Daltonics GmbH, Bremen, Germany).

Conversion tools convert results and spectra into the PSI XML 
based file formats and thus enable a submission to public reposi-
tories like PRIDE (Proteomics Identification Database (22–24)). 
Currently, PRIDE accepts its own XML-based import format 
called PRIDE XML. There are some implementation activities 
inside the consortium developing export to PRIDE XML. As 
soon as AnalysisXML as the result standard is finalized, the tools 
will be adapted in order to provide export functionality into this new 
format. A further task is the implementation of a semi-interactive 
“wizard” for CV mapping and ontology improvement as a sepa-
rate tool beyond the scope of ProDaC. A list of implementation 
activities is maintained on the ProDaC web page (57).

A conversion tool named ProCon (Proteomics Conversion) is 
developed at the Medizinisches Proteom-Center, Ruhr-
Universitaet Bochum, Germany. Designated key features are: (1) 
import of files from different search engines; (2) import from 
locally installed Proteomics databases; (3) export using the for-
mats of central data repositories; (4) (semi-)interactive data edit-
ing using an ergonomic user interface in order to complete 
missing information or to solve conflicts. Among others, the 
export of data sets stored in ProteinScapeTM (Bruker Daltonics 
GmbH, Bremen, Germany) into PRIDE XML is implemented. 

3.3. Data Integration 
Tools

3.3.1. Evaluating 
Development Needs

3.3.2. Implementation 
Activities

3.3.3. ProCon
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The exported files contain proteins, peptides with modifications 
and spectra. The types of exported data sets tested so far cover: 1D 
gel, 2D gel, 1D LC, both MS and MS/MS, with protein assembly 
performed by (1) single search engine, (2) multiple search engines 
and (3) ProteinExtractorTM (an algorithm for protein assembly 
integrated into ProteinScapeTM). ProteinScapeTM vocabulary terms 
(e.g. for Modifications) are mapped to PSI-MOD ontology terms 
using the “cross-reference” mechanism of the OBO file format 
(Open Biomedical Ontology (58)). Furthermore, a sub-standard 
of the PRIDE XML standard has been distilled storing only the 
characteristics of a mass spectrometer (see (6), section Results and 
Pubs for the sub-schema and two example instrument files). The 
prototype user interface of ProCon is shown in Fig. 4.

The next steps for ProCon include the import of SequestTM 
(Thermo Electron Corporation, Waltham, MA, USA) .dta and .out 
files. With MascotDatFile a Java parser for Mascot results is 
available (59). The conversion of Mascot (MatrixScience Inc., 
Boston, MA, USA) results to PRIDE XML is implemented within 
activities of consortium partners (see next Subheadings).

Pride Wizard (60, 61) was developed by the Faculty of Life Sciences, 
MCISB, Manchester; example files and sources are available. In a 
wizard-like user interface, the user specifies the minimum necessary 
information, chooses a spectra file (formats .mzData, .mzXML, 
.mgf or .pkl), a Mascot result file (format .dat) and – optionally – 
specifies iTRAQ labelling as a quantification method. Then a valid 
PRIDE XML file is exported. Some screenshots of the wizard are 
shown in Fig. 5.

3.3.4. PRIDE Wizard

Fig. 4. The “Sources” tab of the ProCon tool
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The PRIDE Converter for conversion to PRIDE XML is 
developed by Harald Barsnes (The Bergen Center for Computational 
Science, UNIFOB AS affiliated to the University of Bergen, 
Norway). A development website is available (62). The current 
version of the PRIDE converter works with ms_lims (31), Mascot 
Generic Files (.mgf), Mascot .dat Files, Sequest output, X!Tandem 
and Spectrum Mill (63), but other formats are to be included soon. 
Some pages of the converter are shown in Fig. 6.

ProDaC supports the development of the “PRoteomics 
IDEntifications database” (PRIDE (45)), which is hosted at the 
European Bioinformatics Institute (EBI), because PRIDE fea-
tures all the requirements mentioned in Methodical Aspects. 
Development of PRIDE has reached an advanced level so far 

3.3.5. PRIDE Converter

3.4. Proteomics 
Repository Adaptation

Fig. 5. Selection of different screenshots of PRIDE Wizard
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including fundamental features for data submission. This facili-
tates implementation of the intended data submission pipeline 
without delay. Furthermore, the EBI is one of the ProDaC core 
partners and work package leaders, which ensures an efficient col-
laboration between the members of the ProDaC consortium and 
the people developing PRIDE.

Because the PRIDE database was originally designed as a 
generic public repository for proteomics data, some adjustments 
have been implemented:

Acceptance of public data repositories is often hampered due ●●

to the lack of a clear benefit offered to experimentalists that 
submit data to these databases. Therefore, PRIDE contains an 
extension to allow submission of data with controlled access 
given to so-called “collaborators”. With the same mechanism, 
peer review is supported (for details, see Section 2.6).
PRIDE was also extended by a tool for set-oriented data ●●

comparison of private data, enabling a standard operation of 
proteomics publication preparation. The owner of private 
datasets will be able to compare a given data set to other data 
sets in PRIDE (see Fig. 7).

Fig. 6. Selection of different screenshots of PRIDE Converter
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Public and centralized storage of data implies processing of ●●

very large data sets. Recently, performance of PRIDE was 
improved now allowing handling of data in a range of at least 
100 GB.

Fig. 7. Set-oriented comparison of PRIDE data sets
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One adjustment to PRIDE is still necessary to meet the needs of 
ProDaC:

PRIDE currently uses its own format for data import (PRIDE ●●

XML). Hence, for the reason of data maintenance a conver-
sion into the new PSI standards mzML and AnalysisXML 
has to be performed.

A data submission pipeline has been elaborated in an iterative 
process. Several possibilities for data submission to PRIDE have 
been realized: (1) submission of a PRIDE XML file, (2) Proteome 
Harvester for data, which is stored in Microsoft Excel format, (3) 
conversion of the results of different search engines into PRIDE.

In all cases (PRIDE XML, mzML, and AnalysisXML), a semi-
interactive and semi-automatic creation or refinement of instru-
ment, sample and experiment annotation using CVs/ontologies 
will be an essential task for the future.

The data submission pipeline established by a flow of data sets 
from different sources is given in Fig. 8. The different possibilities 
of data flow are described in the next paragraphs.

3.5. Data Flow 
Management

3.5.1. The Data 
Submission Pipeline

Fig. 8. Details of data and information flow
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Protein identification results saved in Excel are uploaded into 
PRIDE utilizing a simple mechanism. The EBI has set up an 
interactive Excel spreadsheet (called Proteome Harvest PRIDE 
Submission Spreadsheet (64); excerpt see Fig. 9) to allow even 
non-expert users from laboratories to prepare PRIDE XML and 
therefore to submit data to PRIDE.

The current version of the spreadsheet allows the generation 
of a complete PRIDE XML file (without spectra unless these are 
in mzData format). The sheet also includes direct access to the 
Ontology Lookup Service (OLS (65)) at the EBI. It allows the 
look-up for appropriate controlled vocabulary and ontology terms 
without leaving the spreadsheet.

Mascot peak lists (.mgf format) and result files (.dat format) as 
well as SequestTM peak lists (.dta format) and result files (.out 
format) are the most frequently used file formats in the consor-
tium. They will be converted into standard formats like PRIDE 
XML, mzML or AnalysisXML by the use of conversion tools and 
later by implementations in the various Proteomics software 
systems.

In a first step, the spectra and result files will be collected and 
converted. If necessary, missing sample information and informa-
tion about experiment and preparation procedures will be queried 
semi-interactively from the user incorporating the appropriate 
CV/ontology terms.

A conversion tool developed in ProDaC named ProCon 
(Proteomics Conversion tool (66)) is described in section “Data 
Integration Tools” of this chapter.

3.5.2. Results Stored  
in Microsoft® Excel Files 
(.xls Format)

3.5.3. Mascot .mgf/.dat 
and SequestTM .dta/.out 
Files

Fig. 9. Excerpt of the instrument details input section of the Proteome Harvest PRIDE Submission Excel spreadsheet
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ProDaC establishes the exploitation of collected proteomics data 
for annotating high-quality data into the UniProt and Ensembl 
sequence databases. This enables feedback of proteomics data to 
sequence databases. There will be a link from UniProt and 
Ensembl to PRIDE, helping to avoid loss of predicted proteins by 
strengthening the prediction algorithm. Such deletions are 
avoided by exporting mass spectrometry confirmations of pre-
dicted protein sequences.

In addition, proteomics data can be exploited to define splice 
isoforms, tissue specific expression of proteins, and protein 
modifications.

A key requirement for this process is the development of reli-
able, high-quality standards for data selection, to avoid circular 
confirmation of wrong assumptions as well as the development of 
easy-to-use software solutions to validate and to generate the 
desired standards. The implementation of data export to UniProt 
and Ensembl is supported by ProDaC: the consortium partners 
are connected to PRIDE by using the tools and software solu-
tions establishing the publishing pipeline. This means that the 
data of a proteomics laboratory will be converted into standard-
ized formats and then submitted easily to the PRIDE database as 
shown in Fig. 10.

Directly after submission the data are not freely available for 
public access. However, the data producer has the capability to 
create accounts for, for example, reviewers of a submitted manuscript 
to allow access to the corresponding data. During the submission 

3.6. Proteomics Data 
Exploitation

Fig. 10. PRIDE data submission form
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of a data set to PRIDE, it can be assigned a “private” status. 
“Private” data sets can be only seen and browsed by the owner 
and “collaboration” partners (see Fig.11, left). New collabora-
tions can be set up by registered PRIDE users. PRIDE can thus 
serve as a platform for larger working groups. During the submis-
sion process an optional date can be specified when the data 
becomes available to the collaboration and another optional date, 
when the data set will be publicly available.

Note that this mechanism implicitly supports the peer review 
process (see Fig. 11, right): by checking the “create reviewer 
accounts” checkbox (see Fig. 10), the submitter instructs 
PRIDE to set up a collaboration containing a PRIDE reviewer 
account. When submitting the manuscript to the journal, the 
author forwards the reviewer account to the Editor, or includes 
the login information in the submitted manuscript. The reviewers 
will then either receive the account from the Editor or will find 
the details in the manuscript they are reviewing. They can log into 
PRIDE after which they will be able to review the private data set 
together with the manuscript. Once the manuscript is accepted, 
the PRIDE data set can obviously be made publicly available 
extremely easily.

As a whole, this mechanism will enable the comparison 
between different data sets from different data sources and will 
also increase the quality of scientific journals as well.

ProDaC is the first Coordination Action funded by the European 
Commission covering all aspects of standardization in proteomics 
(standards, repositories, publication of results and data collection). 
Previous experience showed that defining standards is a rather 
long process, being far from being attractive, especially for vendors. 
However, the European Commission proved to have the correct 

4.  Conclusions

Fig. 11. Privacy concept in PRIDE: collaboration view (left ) and peer review view (right ) 
(Image originally created by Lennart Martens)
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intuition to initiate ProDaC having defined a tight schedule, which 
is most important for the acceptance of standards within the com-
munity. ProDaC in turn exceeded all expectations by making 
good progress and being accepted by the community.
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Chapter 25

Computational Resources for the Prediction and Analysis  
of Native Disorder in Proteins

Melissa M. Pentony, Jonathan Ward, and David T. Jones

Abstract 

Proteomics attempts to characterise the gene products expressed in a cell or tissue via a range of biophysi-
cal techniques including crystallography and NMR and, more relevantly to this volume, chromatography 
and mass spectrometry. It is becoming increasingly clear that the native states of segments of many of the 
cellular proteins are not stable, folded structures, and much of the proteome is in an unfolded, disordered 
state. These proteins and their disordered segments have functionally interesting properties and provide 
novel challenges for the biophysical techniques that are used to study them. This chapter focuses on 
computational approaches to predicting such regions and analyzing the functions linked to them, and has 
implications for protein scientists who wish to study such properties as molecular recognition and post-
translational modifications. We also discuss resources where the results of predictions have been collated, 
making them publicly available to the wider biological community.

Key words: Protein disorder, Protein function, Protein structure, Genomes, Disorder databases

A fundemental principal of structural biology is that the function 
of a protein is determined by its unique native three-dimen-
sional structure. As a result, predicting protein structure has 
often been central to efforts to infer function (1, 2). However, it 
is becoming apparent that a large proportion of protein sequences 
do not form completely stable native structures. The natively dis-
ordered regions within these proteins may adopt an ensemble of 
structural states with transitions between the states, leading to 
dynamic flexibility of the protein structure, or have non-globular 
structures that are in the extended state in solvent (3).

It is well known that some degree of flexibility is present in 
many protein structures and that this flexibility is often essential 

1. Introduction

Simon J. Hubbard and Andrew R. Jones (eds.), Proteome Bioinformatics, Methods in Molecular Biology, vol. 604
DOI 10.1007/978-1-60761-444-9_25, © Humana Press, a part of Springer Science+Business Media, LLC 2010



370 Pentony, Ward, and Jones

for proper function. Most research into flexible structures has 
concentrated on either the small local movements caused by the 
“induced fit” between the side chains of a protein and its ligand, 
or to the global “hinge” or “shear” movements of entire second-
ary structure elements or domains (4). However, it has begun to 
be accepted fairly recently that proteins in their native, function-
ing states can contain regions where the backbone atoms lack any 
stable conformation in solution and that this dynamic flexibility is 
not some artefact of the experimental conditions such as the 
absence of an obligatory binding partner (5).

The prediction of disordered regions could therefore pro-
vide a first step in identifying functionally important disordered 
regions such as those involved in molecular recognition and 
post-translational modifications (6). These disordered active sites 
may represent novel drug targets for the treatment of diseases 
such as cancer (7). Disorder has also been implicated in prion 
diseases (8), and it is now known that some disordered regions 
are involved in the formation of the b-sheets between chains, 
which initiate aggregation and eventually amyloidosis (9). 
Disorder prediction is also proving to be a valuable tool for struc-
tural genomics projects, where the removal of unstructured 
regions is often vital for the successful crystallization of proteins 
prior to X-ray structure diffraction studies.

The premise that structure is determined by primary sequence 
might also be applied to lack of structure or disorder. There are 
also clear patterns that characterise disordered regions such as low 
sequence complexity, amino acid compositional bias (e.g. toward 
charged residues) and high flexibility, and it has been shown in a 
series of papers (10–12) that disordered regions can be predicted 
successfully from amino acid sequence.

This chapter reviews some of the better known disorder pre-
diction methods, and describes the development of several new 
resources that makes use of the method that we have developed.

Several experimental techniques can be used to identify native 
disorder in protein structures. In this chapter, the experimental 
definition of disorder comes from highly-resolved X-ray crystal 
structures, and this definition is discussed in greater depth in sub-
sequent sections. However, there are various other techniques 
from spectroscopy and molecular biology that have been used to 
probe disorder in protein structures. The more commonly-used 
techniques are circular dichroism (CD), nuclear magnetic reso-
nance (NMR) and proteolytic degradation (PD), and these are 
discussed briefly in this section. The DisProt database also includes 
examples of natively disordered structures that have been charac-
terised using mass spectroscopy, electron microscopy and infra-
red spectroscopy, and indirect molecular biological techniques 
such as immunochemistry and gel filtration (13). These are 

1.1. Experimental 
Techniques  
for Investigating 
Native Disorder
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typically limited to fewer than three proteins, and are not discussed 
here in greater detail.

Circular dichroism spectroscopy passes plane polarized light 
in the far UV spectrum through diluted protein solutions. The 
plane polarized light can be viewed as a superposition of opposite 
circularly polarized light of equal amplitude and phase. The reg-
ular structural elements have different absorbance for left- and 
right-handed circularly polarized light, resulting in ellipticity of 
the resultant wave. Helices and strands cause ellipticity in the 
incident wave at different frequencies, so the absorption spec-
trum of the purified and diluted protein can be used to measure 
the overall secondary structure content of the protein. Spectra 
indicating a low proportion of helix and sheet elements are often 
interpreted as evidence of disorder. However, there are several 
weaknesses to this approach. Firstly, CD spectroscopy is inaccu-
rate, and is slightly poorer than secondary structure prediction 
for determining the overall structural class of the protein (14). 
Secondly, CD spectroscopy measures the global properties of the 
protein, and cannot be used to identify local regions of order/
disorder. And thirdly, an absence of regular secondary structure 
elements does not necessarily indicate that the protein is disor-
dered (15).

Nuclear Magnetic Resonance is another spectroscopic tech-
nique that can be used to determine protein structure and inves-
tigate protein dynamics. NMR uses several quantum mechanical 
effects arising from the magnetic moment or spin of certain 
nuclei. The spectra, which are obtained by passing radio 
frequency waves through a sample subjected to a strong magnetic 
field, can be used to infer nuclei-nuclei distances in the protein 
structure. These distances act as constraints for constructing the 
structural model of the protein. It is often the case that the data 
obtained from NMR experiments is incomplete, which leads to 
several structural models fitting the distance and torsion con-
straints equally well. However, insufficient constraints can also 
arise from the protein being disordered in solution. It is possible 
to remove this ambiguity by the use of spin relaxation methods, 
which can be used to resolve protein motions on pico- and nano-
second time scales (16).

Proteolytic degradation is one technique from molecular 
biology that can be used to detect disorder indirectly. This tech-
nique is based on the principle that disordered regions are cleaved 
more readily by proteases than globular portions of the protein 
(13). The cleavage sites can be identified by mixing proteases 
with the purified protein and performing gel electrophoresis on 
the resulting fragments. Experimental molecular biology and 
techniques such as PD and immunochemistry are useful for pro-
viding further verification of the disorder/order regions that have 
been established by other means.
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The Dunker–Obradovic groups were the first to show that machine 
learning algorithms could be used successfully for local disorder 
prediction based on amino acid sequences. Their initial method 
used a sequential forward search algorithm to select the net charge, 
hydrophobicity and the frequencies of the amino acids R, D, E, K, 
F, W, Y as features for predicting disorder. These features were 
calculated for windows of 21 residues in length, and used to train 
feed-forward neural networks (10). The experimental definition 
for the disordered residues came from long, internal regions of 
disorder discovered using X-ray crystallography and NMR.

This method was later augmented with a similar predictor 
for the N- and C-termini (11) to form the method VLXT. VLXT 
was followed by a method using ensembles of linear least-squares 
classifiers, which were trained with a larger and more carefully 
prepared data set (VL2). The classifiers were trained using a 
competitive learning strategy to partition the training set into 
“flavors” of disorder that were characterised by distinct amino 
acid compositions and functions (17). The latest method (VL3) 
is an ensemble of three multi-layer perceptrons, trained to parti-
tion the training set. The features used by both VL2 and VL3 are 
amino acid composition, average flexibility and average sequence 
complexity of a window of 41 residues. The authors entered 
these and several other prediction methods in the fifth CASP 
experiments, but the results suggest that any improvements in 
performance over their earliest classifier (VLXT) are, at best, 
moderate.

The Dunker–Obradovic collaboration has also resulted in 
several estimates of the frequency of disorder in complete genomes 
(5, 17, 18). The most comprehensive of these studies used the 
VLXT predictor to estimate disorder frequencies in a set of 34 
complete genomes, including seven archaea, 22 eubacteria, and 
five eukaryotes (18).

The false positive rate for the VLXT predictor was estimated 
by applying the method to a non-redundant (25% sequence iden-
tity) set of ordered PDB structures. This gave a per chain false 
positive rate for long (> 30 residue) disordered segments of 17%. 
This very high false positive rate is undesirable since the “true” 
rate could be significantly higher because of the biased nature of 
the sampling (e.g. successful crystallization experiments) appar-
ent in the PDB. Although this limitation was recognized by 
Dunker et al. (18), no attempt was made to minimise this poten-
tial source of error.

When applied to complete genomes, VLXT predicted 37 ± 7% 
of archaea, 30 ± 2% of eubacteria and 54 ± 3% of eukaryote protein 
chains to contain a region of disorder with length greater than 30 
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residues. However, there was significant variation between species 
within each kingdom, with disorder estimates ranging between 9 
and 53% in the archaea, 14 and 52% in the eubacteria and 48 and 
63% in the eukaryota. There are several other anomalies in the 
results, such as the large differences in disorder frequencies that 
are observed between related organisms. The most striking exam-
ple is the difference in the frequency of long, predicted, disor-
dered segments between Campylobacter jejuni (14%) and 
Pseudomonas aeruginosa (42%) since these species are both mem-
bers of the proteobacteria. Conversely, unrelated and morpho-
logically divergent organisms such as the nematode Caenorhabditis 
elegans and the archaea Halobacterium Sp. have similar frequen-
cies (49% compared with 53%). Of particular interest was that this 
article was accompanied by a commentary in Nature Biotechnology, 
in which it was claimed that protein structures existed in a dynamic 
equilibrium between a “trinity” of states; ordered, collapsed and 
extended (5). The commentary also suggested that the disor-
dered sequences were associated with signalling cascades and the 
ribosome, and that disorder might have been a prerequisite for 
multicellularity.

The VL2 method for partitioning disorder into distinct 
“flavors” was also used to provide estimates of disorder frequen-
cies in complete genomes (17). However, the classifier also had a 
high false positive rate (16% for segments of length 40 or greater), 
and provided similar estimates to the previous study using VLXT. 
This work also provided tentative evidence for each “flavor” of 
disorder being associated with specific structures and functions.

Another research group working on native disorder (19) 
developed a simple method based on the net charge and mean 
hydrophobicity of the protein sequence to obtain a global predic-
tion of whether a protein adopts a globular structure. The non-
globular structures were operationally defined as random-coil 
conformations determined from NMR experiments or a lack of 
significant ordered structural elements as determined by CD 
spectroscopy. Similar calculations are used to predict local regions 
of disorder using a sliding window by the FoldIndex server (20).

Other work has been carried out using neural networks for 
the prediction of extended regions with no regular secondary 
structure (NORS), which are defined as segments of 70 consecu-
tive residues with less than 12% helical or strand content (21). 
NORS segments are not necessarily disordered but have similar 
compositional biases and sequence complexity to disordered 
regions. The finding that around 20% of eukaryote proteins con-
tained an NORS region, accounting for 15% of residues, but that 
there are far fewer NORS regions in prokaryotes suggests that 
many “loopy” regions are also predicted as disordered. This is 
supported by the lower number of hydrogen bonds formed by 
residues within NORS regions (0.66) when compared with 
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non-NORS regions (1.21). The observation by Liu and Rost 
(21) that NORS regions are as conserved as flanking regions, and 
that many NORS segments are involved in molecular recognition 
is also consistent with the properties of disorder described later in 
this chapter.

Another recent contribution to the field used back-propagation 
networks to predict disorder according to two separate defini-
tions (22). One definition used the missing residues from X-ray 
crystal structures, in common with many other methods, but in 
this case also investigated the use of normalised B-factors, which 
represent the degree of thermal motion of specific atoms in the 
structural model. The rationale for using missing co-ordinates is 
that, if a series of residues are disordered in solution, they will not 
adopt identical conformations in the protein structures that form 
the crystal. Consequently, this region of the protein will not scatter 
X-rays coherently and will appear as a diffuse area of electron 
density. The crystallographers will then be unable to assign a con-
formation to the back-bone or the orientations of the side-chains, 
and typically will not include these co-ordinates in the structural 
model. However, there is no single systematic procedure for 
determining structural models, and it is possible that regions of 
disorder in an electron density map could be interpreted by dif-
ferent crystallographers as regions of the model with either missing 
co-ordinates or several conformations with low occupancy.

It is speculated that residues with high B-factors or “hot 
loops” have some of the properties of disorder, such as increased 
flexibility. However, high B-factors are often associated with 
highly motile side chains that are exposed to the solvent rather 
than the backbone atoms. For example, both lysine and proline 
are enriched in positions with missing co-ordinates, but lysine is 
also common in “hot loop” segments, whereas proline is under-
represented in residues with high B-factors (22). This is a pre-
sumably a consequence of lysine’s long, charged side-chain having 
much greater conformational freedom than proline’s side-chain 
with its rigid ring structure. Despite this, predictors trained on 
the two definitions of disorder do have some correlation (C = 0.46), 
which may arise from mobile side-chains being a necessary but 
not sufficient property of disordered structures, i.e. natively dis-
ordered regions necessarily have unconstrained side-chains as a 
consequence of the flexible backbone and high solvent exposure, 
but high B-factors can also occur in static loop regions.

One of the most widely-used predictors of native disorder today 
is DISOPRED2 (23). DISOPRED2 uses a pair of linear SVMs 
(Support Vector Machines)(24), trained on a set of around 750 
non-redundant proteins with high resolution X-ray structures. 
Disorder was identified with those residues that appear in the 
sequence records but with coordinates missing from the electron 

2.1. DISOPRED2
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density map. This is an imperfect means for identifying disordered 
residues as missing co-ordinates can also arise as an artefact of the 
crystallization process. False assignment of order can also occur as 
a result of stabilising interactions by ligands or other macromol-
ecules in the complex. However, this is the simplest means for 
defining disorder in the absence of large-scale experimental inves-
tigations into disorder on a wide range of proteins.

In essence, DISOPRED2 works in a way analogous to methods 
for predicting protein secondary structure, e.g. the PSIPRED 
method (25). A sequence profile is generated for the target pro-
tein using a PSI-BLAST search against a large sequence database. 
The input vector to the SVM for each residue position is con-
structed from the profiles of a symmetric window of fifteen posi-
tions. The data were used to train the linear support vector 
machines.

One of the major advantages of DISOPRED2 over other 
methods is that it has a very low default false-positive rate and 
that this false positive rate can be adjusted to either increase or 
decrease the sensitivity of the method depending on the applica-
tion at-hand.

Fig. 1a shows the relative performance of DISOPRED2 when 
compared with the other prominent methods tested at the 5th 
CASP experiment in 2002 (26) in the form of an RoC curve. 
Table 1 also shows a summary of comparison statistics between 
the methods shown in Fig. 1a. Relatively little progress has been 
evident since 2002 as shown in Fig. 1b, but it is clear that there 
are now several methods available which perform comparably to 
DISOPRED2. Fig. 1b shows a summary of results from the 7th 
CASP experiment (27) (held in 2006) for 15 different methods, 
superposed over the 2002 plot. Although it is important to be 
cautious when comparing results across different data sets, this 
convergence is perhaps because most of the local-information in the 
sequence that governs the formation of the disordered state in 
functional proteins is already being modelled well by methods 
such as DISOPRED2 and other machine learning-based meth-
ods. Despite this pessimistic view, useful new methods have been 
developed since 2002, such as IUPRED, which was published in 
2005 (28). This predictor has proven to be very useful for accu-
rately predicting very long regions of disorder in proteins when 
compared to other methods.

At the time of writing, there are probably around 20 different 
disorder prediction methods described in the literature though 
maybe only 3 or 4 are in widespread usage. See the article by Ferron 
et al. (29) for a good overview of some of the most commonly used 
methods, and some good advice on how to combine methods to 
achieve more reliable predictions. Not surprisingly, some of the 
more recent papers in disorder prediction have described consensus 

2.2. More Recent 
Developments
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Fig. 1. (a) Receiver Operator Characteristic curves comparing the results from DISOPRED2 to six other methods evaluated 
on the targets from CASP5 (26). (b) The results from CASP7 are shown on the same plot as dark black lines indicating a 
general improvement in method accuracy. The dark lines denotes the best are worst performance for 15 different disorder 
prediction methods (27)
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Table1 
Table shows the Matthew’s correlation coefficient (MCC), two-state accuracy (Q2), 
precision (Prec.) and recall for a false alarm rate of 0.05 and the Wilcoxon statistic 
and its standard error (SE) for the targets from CASP5

MCC Q2 Precision Recall Wilcoxon SE

DISOPRED2 0.511 93.1 46.4 64.6 90.02 0.64

DISOPRED 0.431 93.6 35.1 61.0 88.63 0.82

DISOcf 0.301 91.2 33.3 36.2 80.72 0.79

VL2 (Dunker) 0.355 91.8 36.8 43.3 79.08 0.97

VLXT (Dunker) 0.313 91.4 33.9 38.2 81.31 0.78

VL3 (Obradovich) 0.382 92.0 38.6 46.8 80.59 0.88

FoldIndex 0.262 91.0 30.1 32.0 73.88 0.92

or meta-methods (30, 31). However, the range of values for AUC 
(Area Under the Curve) observed across the best 15 or so meth-
ods today, including various meta-methods, only varies from 0.87 
to 0.91, and the predictions are seen to be highly correlated, indi-
cating a great deal of convergence in the methods. New data or 
new models for how disorder arises may be the way forward from 
this point on.

Given the ease in which disorder can be predicted from amino 
acid sequence, a number of groups have carried out large scale 
analyses of disorder across whole genomes (18, 23, 32–34). 
Several of these studies have revealed the importance of long 
disordered regions and their involvement in many biological 
functions, such as DNA and protein binding, transcription and 
translational regulation, and cell cycle regulation (3, 6, 23, 35).

Although disorder is easily predicted from amino acid sequence, 
analysis of a whole genome using tools such as DISOPRED2 is 
very time consuming. Computational studies which link the occur-
rence of disorder with biological function or even disease require a 
complete mapping of protein disorder to the whole proteome of 
an organism and as yet experimental data on this scale is not 
available. Disprot is currently the only database of experimentally 
studied disordered proteins. It is a curated database and its current 
release (v 4.5) contains data on only 520 proteins and only 1,191 
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disordered regions, gleaned from literature. It is, nevertheless, a 
highly useful resource with detailed additional information resources, 
but due to the nature of its data collection, it does not provide a 
means for carrying out large scale surveys of disorder.

In light of this, we have developed DisoDB. DisoDB is a data-
base of disorder predictions for all 39 eukaryotic proteomes 
currently found within the Ensembl database. Although contain-
ing non-curated as well as curated disorder predictions, such a 
large repository of disordered information will be a highly valuable 
resource for current researchers wishing to incorporate disorder 
predictions into their proteomic studies, and we illustrate this with 
a few examples of studies we have carried out with this data.

All proteomes from version 38 of Ensembl and two additional 
species from version 39 (released during our database develop-
ment) were obtained. We predicted disordered regions using 
DISOPRED2 (23) with a 2% false positive rate. Based on the 
previous work (23), predictions were post-processed using a defi-
nition of a disordered region as at least 30 contiguous disordered 
residues. Due to their shared compositional biases (12), we looked 
for overlap of disordered to transmembrane regions and coiled-
coil both using MEMSAT3 and PFILT (36, 37) and ignored 
these regions. Currently, DisoDB comprises over 800,000 pro-
teins and encompasses over 680,000 distinct disordered regions. 
We have also included all isoforms to give the maximum number 
of searchable sequences.

DisoDB is a relational database constructed using MySQL. 
DisoDB is supported on an Apache server using a PHP web inter-
face and is accessible at URL http://bioinf.cs.ucl.ac.uk/disodb. 
We have also developed a DAS server to enable access via any 
DAS-enabled viewer. This server was developed in conjunction 
with the ISPIDER integrated proteomics project (38).

DisoDB provides a number of input and output features. 
Fig. 2. shows a step-by-step guide to an interactive search of 
DisoDB. The user can query individual, multiple or all species in 
the database. Currently, Ensembl and UniProt identifiers can be 
searched. A query results in a table showing the organism, identi-
fier, sequence and optional start/end positions of the disordered 
region(s). Querying is via protein sequence or by single or mul-
tiple identifiers. All searched protein sequences are considered 
“partial” sequences, and wildcards are used to search for any pro-
tein containing this sequence to allow the return of the optimum 
number of results. Within each sequence, any masked residues 
(represented as X) are the product of Ensembl’s annotation and 
not our analyses.

Query results provide web-links to Ensembl, DisProt v4.5 
and the Gene Ontology for each resulting protein. Links to 
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Fig. 2. Top image shows the initial page view of DisoDB (http://bioinf.cs.ucl.ac.uk/disodb). The user can search via 
sequence or identifier. Multiple identifiers are separated by “;”. Individual, all or a selection of species can be searched 
at a time. Bottom image shows the resulting display of a DisoDB search. The initial table lists the species, identifier, 
sequence and (optionally) the start and end disordered residues. Each identifier links to an Ensembl search. Each 
sequence highlights in blue those regions predicted to be disordered. If a search sequence is found within DisProt, a link 
if given to it. Any GO annotations found are listed with links to the Gene Ontology. If multiple hits result for either a 
sequence or identifier search, by default a ClustalW alignment is produced, highlighting again those regions predicted to 
be disordered

http://bioinf.cs.ucl.ac.uk/disodb
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DisProt were included as DisProt contains only known disordered 
regions and proteins and links to many relevant literature reviews 
and studies. Although a DisProt link may be produced, this does 
not mean that the sequence found within DisProt will be the 
same sequence found within DisoDB, only that the search 
sequence has been found within a DisProt entry.

Multiple sequence hits result in a ClustalW (39) alignment. 
Disordered residues are highlighted in blue both within each 
sequence and within the ClustalW alignment. If a sequence is not 
found within the database, users are directed to the DisoPred2 
disorder prediction server (40) and encouraged to send their 
disorder predictions to us for inclusion in DisoDB.

Disorder predictions for the database can be downloaded for 
individual species. Asterisk symbols (*) represent predicted disor-
dered residues within each sequence. Periods (.) represent non-
disordered residues. Each disorder prediction has a series of 
confidence numbers from 0 to 9. Each number represents the 
confidence that a residue is predicted correctly as disordered, with 
9 being a high confidence. Although we define a disordered 
region as at least 30 contiguous disordered residues, there are of 
course regions smaller than this. They have not been masked out 
in the downloadable text files to allow users to search for all region 
lengths.

Here we identified the overall frequency, length and chromo-
somal location occurrence of disorder within the human pro-
teome dataset. We wished to find out if these would indicate a 
bias within the dataset towards a particular chromosomal location 
or function. We obtained the set of chromosome locations and 
functional descriptions from the human Ensembl SQL database.

Overall, 44% of the human protein dataset has at least one 
disorder region longer than 30 residues. The average number of 
disordered residues per protein sequence is found to be 193 
against an average protein length of 681 residues. The percentage 
of disordered residues in each protein was calculated in ranges of 
10% (0–10, 10–20 etc.) and is shown in Fig. 3. Interestingly, the 
highest proportion of proteins had on average 20–40% of their 
length predicted to be disordered, with the mode being 30%. 
There were 4,656 proteins with less than ten residues predicted 
to be disordered and of these, 486 had no disordered residues 
at all.

Disordered residues were further divided into two categories, 
“terminal” and “non-terminal.” “Terminal” indicated those 
residues found within the N- and C- termini and the rest classed 
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“non-terminal”. Selection of a disordered region as terminal was 
determined by the location of the first and last disordered residue 
within a sequence. If it occurred within five residues of either the 
beginning or the end of a sequence, it was considered a terminal 
disordered region. Approximately 30% of the dataset had a disor-
dered region within either the N- or C- terminal regions.

Overall, the number of distinct (at least 30 residues) disor-
dered regions ranged from 1 to 25 within a single protein. 
The majority of proteins (95%) had less than five regions. Fifty-
one percent of proteins had only one disordered region, with the 
majority (90%) of this group having a disordered region of less 
than 100 residues. Twenty-one proteins were predicted to be 
completely disordered.

Very little variation of protein disorder is observed when 
proteins are assigned to chromosomes. Per-chromosome per-
centages are seen to range from 38% (on chromosome 21) to 
50% (on chromosomes 12 and X) (Fig. 4). As expected from the 
hypothesised evolutionary link between mitochondria and 
prokaryotes, none of the 13 proteins located within the mito-
chondrial chromosome where predicted to be disordered. The 
largest disordered region located within a mitochondrial protein 
was ten residues in length.

One powerful approach to analysing disordered proteins in a particu-
lar genome is to evaluation correlations of gene function and the 
presence of long disordered regions within the encoded proteins. 

4.2. Gene Function  
and Disorder
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To demonstrate this, an analysis of yeast proteins predicted to 
contain long regions of disorder was carried out where the anno-
tated Gene Ontology classes were counted. The S. cerevisiae 
genome is particularly tractable for functional analysis as it has 
been the target of a number of genome-wide functional assays. 
This means that a large proportion of the functional annotations 
for yeast can be directly linked to experimental evidence and not 
just inferred theoretically.

In this dataset, 2337 unique GO terms could be attached to 
5889 yeast proteins, and of these proteins, 17.1% of the residues 
are predicted as disordered and 34.1% and 20.9% of chains are 
predicted to contain disordered segments longer than 30 and 50 
residues, respectively. A random sampling experiment was carried 
out for the whole genome to calculate background GO frequen-
cies that take into account both the different observed frequencies 
of GO terms and the underlying distribution of protein lengths.

Figures 5 and 6 clearly show the strong correlations between 
certain molecular and biological function categories and the 
occurrence of long regions of disorder in proteins. Although 
some of these functional associations had already been suggested 
in the literature, a substantial number of associations were unre-
marked upon. A general theme of this analysis is that the majority 
of putative disorder-containing proteins are involved in the 
molecular recognition of nucleic acids, nucleotides and other 
proteins. Disorder is also associated with protein kinase activity, 
and since this is a regulatory process that requires simultaneous 
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Fig. 5. GO terms from the molecular function ontology that are significantly over- or under-represented in the set of yeast 
proteins predicted to contain long regions of disorder. The terms are ordered by the normalized differences between the 
terms’ mean frequency of occurrence in the random samples and in the set of disordered predictions. The normalization 
factor is the standard deviation of the random sampling experiments. The GO terms with names in grey text annotate 
more than 100 proteins in yeast and have a p-value < 0.01 after a Bonferroni correction (k = 37)

binding of a nucleotide and the protein phosphorylation site, it is 
reasonable that disordered proteins might be enriched in this 
functional class. The presence of disordered kinases may also 
explain the small number of resolved crystal structures from this 
superfamily of proteins. The low occurrence of disorder in cate-
gories such as biosynthesis and metabolism has been pointed out 
by Iakoucheva et al. (7) where it is suggested that the rigid body 
model of molecular recognition applies fairly generally to the 
interactions between enzymes and their substrates. The low 
frequency of disorder in catalytic proteins may also be one expla-
nation for the preponderance of enzymes in the PDB with almost 
one-half of the entries belonging to this class of proteins (41).

As a further example of a large-scale analysis that can be facilitated 
using DisoDB, we take the example of disease-related proteins. 
The term “disease-related proteins” was used here to encompass 
the set of proteins that either as native or mutated versions are 

4.3. Disease 
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linked to a particular disease or syndrome. Functional descriptions 
were found for 10,548 human proteins via Ensembl. Disease-
related proteins were selected from this set by keyword search. 
Keywords were chosen based on descriptions taken from a ran-
dom sampling of 10% of the dataset. Keywords were “disease”, 
“oncogene”, “cancer”, “syndrome”, and “myeloid.” A manual 
search of the remaining dataset was carried out to enable inclu-
sion of proteins that were not selected using the above search 
terms. This gave a dataset of 563 proteins which can be linked to 
disease through the Ensembl annotations.

These 563 proteins were then mapped to their respective 
chromosomes. The X chromosome had the highest fraction of 
disease-associated proteins, almost twice that of the next highest 
number (Fig. 7). The presence of cancer/tumour/melanoma 
keyword descriptions accounted for 74% of disease-associated 
proteins located on the X chromosome. Disordered regions 
located within PFAM domains were found for several cancer antigen 

Fig. 6. GO terms from the biological process ontology that are significantly over- or under-represented in the set of 
disordered predictions. Terms describing various types of metabolic and biosynthetic processes are omitted in the inter-
ests of space (native disorder is under-represented in these categories). The GO terms with names shown in grey text 
annotate more than 200 proteins in yeast and have a p-value < 0:01 after a Bonferroni correction (k = 45)
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families (MAGE, PAGE/GAGE, XAGE). The occurrence of 
disordered regions with disease-associated proteins has been 
shown before (42, 43) and Iakoucheva et al. have identified sig-
nificant levels of disorder within cancer-associated proteins (7).

Disorder was also commonly found in collagen domains 
thought to be involved in Alport syndrome, Ehlers–Danlos syn-
drome type IV and Epidermolysis bullosa syndrome. Previous 
work has indicated that mutations within the respective collagen 
genes are involved in these syndromes (44, 45). Disordered 
regions were also found in collagen proteins involved in Schmid 
metaphyseal chondrodysplasia, but previous work has shown that 
mutations within the C-terminal region (which possibly induce 
helix trimerisation) cause this condition (46). Spectrin repeat 
domains were found within proteins described to be involved in 
muscular dystrophy (Duchenne and Becker types) and also 
Epidermolysis bullosa syndrome. In the previously mentioned 
cases, the linked protein domains were predicted to be almost 
entirely disordered. Strikingly, 17% of all predicted disordered 
proteins on the X chromosome are seen to be disease-linked, 
which is a high proportion when compared to the general average 
across the remaining chromosomes of only 4%.

Including the remaining chromosome set, other PFAM 
domains that were predicted to consist of almost entirely disor-
dered residues were located within proteins described to be 
involved in Ehlers–Danlos syndrome, long QT syndrome, Wolf–
Hirschhorn syndrome, congenital contractural arachnodactyly, 
Treacher Collins–Franceschetti, Marfan syndrome and Fragile X 
mental retardation syndrome. Previous work on Marfan Syndrome 
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and Contractual Arachnodactyly, which are caused by mutations 
within Fibrillin1 and Fibrillin2 respectively, suggested that muta-
tions within TB, Calcium-binding EGF-like domains (in FBN 1), 
and EGF-like domains (in FBN2) are involved in these syndrome 
(47, 48). The analyses of PFAM annotations for these proteins 
indicate a high level of disorder within these domains. Previous 
work on Epidermolysis bullosa syndrome has indicted Glycine 
substitutions within the Gly-X-Y repeat regions (i.e. collagen 
regions) of collagen VII have been reported in almost all cases of 
this syndrome (49). Table 2 gives a full list of the disordered 
human protein domains found to be associated with disease.

Previous analysis of a set of alternatively spliced genes indicated 
a relationship between alternative splicing and disorder, with a 
propensity for spliced regions to coincide with regions of intrin-
sic disorder (50). DisoDB allows the relationship between disor-
der and alternative splicing to be studied very easily. Using 
Ensembl’s gene ID tags as unique identifiers, an alternative splic-
ing dataset can be extracted from DisoDB, consisting of 7,179 
genes and 18,830 splice variants. We looked at the location of 
disordered regions within each protein set. A protein set was 
defined as all the splice variants with the same Ensembl gene 
identifier. Any disordered region spliced out from any of these 
was counted as a spliced region. We also divided each protein set 
into terminal and non-terminal regions, as defined previously. 
For every protein set, we searched for the largest disordered 
region(s), and found if it is conserved across all splice forms or 
differentially spliced. Based on this, interestingly, we find that 
the majority of disordered – alternative spliced residues were 
within non-terminal regions.

To test whether there was a valid association between disor-
der and alternative splicing, we calculate the number of proteins 
with and without disorder, compared to the number of proteins with 
and without alternative splicing. The results show a clear 
association between disorder and alternative splicing. One criti-
cism that has been made about this observation of a correlation 
between disorder and alternate splicing is that on average, alter-
native spliced proteins are longer than non-alternative spliced 
proteins (150 residues longer on average), and so to test whether 
this difference was a factor in the splicing-disorder correlation, we 
re-ran the analysis above with proteins grouped into length bins 
of 50 residues (0–50, 50–100 etc.). This binned-analysis clearly 
shows that significant correlation p-values are obtained across dif-
ferent binned lengths, and not only at longer lengths. This 
strongly indicates that the co-occurrence of disorder and alterna-
tive splicing co-occurrence is real and not simply a statistical arte-
fact. Further experimental study of this relationship is clearly 
called for.

4.4. Disorder  
and Alternative 
Splicing
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Recent years have seen a vast increase in our ability to sequence 
organisms and have lead to over 4,000 species from all Kingdoms 
to be either fully sequenced or in the process of being fully 
sequenced. This has lead to an increasing desire to explore this 
ever-expanding amount of information on both a genomic and 
proteomic scale. Disordered proteins have been highlighted as 
important in both a functional and structural area of proteomics. 
The increased realisation of this has been shown by the wealth of 
previous analyses about and including disorder. The importance of 
databases of highly curated disordered proteins such as DisProt, 
cannot be over stated, but this kind of resourceit has its limitations 
by virtue of being curated. By including every predicted disordered 
region within 39 Eukaryotic species, DisoDB is able to encompass 
as many disordered proteins as possible into one database and 
therefore allow for ease of access for proteomics researchers.
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