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Preface

For 40 years we have known the essential ingredients for protein folding – an
amino acid sequence and water. But the problem of predicting the three-
dimensional structure from its sequence has eluded computational biologists
even in the age of supercomputers and high throughput structural genomics.
Will we ever solve the “protein folding problem”, or will we simply settle
for a solution to the “protein prediction problem”? This book covers elements
of both the data-driven comparative modeling approach to structure prediction
and also recent attempts to simulate folding using explicit or simplified models.
Despite the unsolved mystery of how a protein folds, advances are being made
in predicting the interactions of proteins with other molecules, such as small
ligands, nucleic acids, or other proteins. Also, rapidly advancing are the methods
for solving the inverse folding problem, the problem of finding a sequence to
fit a structure. This book focuses on the various computational methods for
prediction, their successes, and their limitations, from the perspective of their
most well-known practitioners. An overview of the chapters in this volume is
given below.

Overview of Protein Structure Prediction
In the first chapter, entitled “A Historical Perspective of Template-Based

Protein Structure Prediction,” Jun-tao Guo, Kyle Ellrott, and Ying Xu give a
comprehensive, as well as historical, account of protein structure prediction.
They touch upon methods spanning threading, fold recognition, homology
modeling, ab initio methods, and their hybrids. They also discuss recent progress
in the worldwide blind structure prediction evaluation experiments like CASP
and its cousin for automated servers, CAFASP.

In the second chapter “The Assessment of Methods for Protein Structure
Prediction,” Anna Tramontano, Domenico Cozzetto, Alejandro Giorgetti, and
Domenico Raimondo take a critical look at extant methods for protein structure
prediction and assess how well they perform. They focus on automatic
assessment methods as well as the CASP challenges and discuss their limitations
and trade-offs.

v



vi Preface

Template-Based Methods
In the third chapter “Aligning Sequences to Structures,” Liam J. McGuffin

discusses the current approaches to template-based fold prediction. The goal
here is to align new protein sequences to library of known/template folds. Liam
also shows a step-by-step guide to template alignment.

In the fourth chapter “Protein Structure Prediction Using Threading,” Jinbo
Xu, Feng Jiao, and Libo Yu discuss approaches for protein threading. After
setting up the general requirements for protein structure prediction by threading,
they specifically focus on their successful new method called RAPTOR, which
combines linear programming with machine learning approaches.

Structure Alignment and Indexing
In the fifth chapter “Algorithms for Multiple Protein Structure Alignment

and Structure-Derived Multiple Sequence Alignment,” Maxim Shatsky,
Ruth Nussinov, and Haim J. Wolfson, present methods to recognize the struc-
tural core common to a set of proteins through multiple structure alignment.
They also discuss how to align multiple sequences with knowledge derived
from structural alignment.

In the sixth chapter “Indexing Protein Structures using Suffix Trees,” Feng
Gao and Mohammed J. Zaki describe a new approach to 3D database searching
for protein sub-structures. Given a large set of proteins, they extract local
structural features, which are converted into a set of symbols, which can be
indexed using a traditional suffix tree. They show how one can rapidly retrieve
approximately similar protein substructure matching a query protein.

Protein Features Prediction
In the seventh chapter “Hidden Markov Models for Prediction of Protein

Features,” Christopher Bystroff and Anders Krogh present a comprehensive
overview of Hidden Markov Models (HMMs), which are used extensively in
protein structure/sequence algorithms. They specifically focus on the applica-
tions of HMMs to predict signal peptides, secondary and local structure, and
transmembrane helices.

In the eighth chapter “The Pros and Cons of Predicting Protein Contact
Maps,” Lisa Bartoli, Emidio Capriotti, Piero Fariselli, Pier Luigi Martelli, and
Rita Casadio discuss methods to predict protein contact maps. Contact maps
are “simplified” 2D representations of the 3D proteins structure yet, they retain
most of the important features for protein folding. They discuss the strengths and
weaknesses of the contact map representation and highlight ways to improve
contact map predictions.
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In the ninth chapter “Road Map Methods for Protein Folding,” Mark
Moll, David Schwarz, and Lydia E. Kavraki give a comprehensive survey
of “roadmap” approaches to protein folding. Roadmap methods, inspired by
motion planning techniques in robotics research, provide a model for under-
standing and predicting the folding mechanism or pathway.

Methods for De Novo Structure Prediction
In the tenth Chapter “Scoring Functions for De Novo Protein Structure

Prediction Revisited,” Shing-Chung Ngan, Ling-Hong Hung, Tianyun Liu,
and Ram Samudrala, provide a thorough review of both physics-based and
knowledge-based scoring functions for conformational samples in de novo
protein structure prediction.

In the eleventh chapter “Protein–Protein Docking: Overview and Perfor-
mance Analysis,” Kevin Wiehe, Matthew W. Peterson, Brian Pierce, Julian
Mintseris, and Zhiping Weng focus on Fast Fourier Transform-based methods
for protein docking. They specifically focus on the ZDOCK algorithm and study
its performance on benchmark datasets and study its strengths and weaknesses
through regression analysis.

In the final chapter “Molecular Dynamics Simulations of Protein Folding,”
Angel E. Garcia describes the Replica Exchange Molecular Dynamics (REMD)
method for molecular dynamics simulation. He illustrates the effectiveness of
the REMD method on the folding of a small protein.

Mohammed J. Zaki
Chris Bystroff
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A Historical Perspective of Template-Based Protein
Structure Prediction

Jun-tao Guo, Kyle Ellrott, and Ying Xu

Summary

This chapter presents a broad and a historical overview of the problem of protein structure
prediction. Different structure prediction methods, including homology modeling, fold recog-
nition (FR)/protein threading, ab initio/de novo approaches, and hybrid techniques involving
multiple types of approaches, are introduced in a historical context. The progress of the field
as a whole, especially in the threading/FR area, as reflected by the CASP/CAFASP contests,
is reviewed. At the end of the chapter, we discuss the challenging issues ahead in the field of
protein structure prediction.

Key Words: Structure prediction; fold recognition; protein threading; CASP/CAFASP; meta-
server; fragment assembly; energy function; comparative/homology modeling.

1. Introduction
The classic experiment by Anfinsen in the early 1970s demonstrated that all

the information a protein needs to fold properly is encoded in its amino acid
sequence (1), suggesting that one should be able to predict, at least theoretically,
the three-dimensional (3D) conformation of a protein from its sequence alone.
Since then, many efforts have been devoted to this fascinating and challenging
problem, attempting to tackle this problem from different angles including
the ones from biophysics, chemistry, and biological evolution. The problem
of predicting a protein’s 3D structure from its amino acid sequence has been
called the “holy grail of molecular biology” and considered as equivalent
to deciphering “the second half of the genetic code” (2). Over the past 30

From: Methods in Molecular Biology, vol. 413: Protein Structure Prediction, Second Edition
Edited by: M. Zaki and C. Bystroff © Humana Press Inc., Totowa, NJ

3



4 Guo et al.

years, particularly since the start of the Human Genome Project (HGP), the
problem of protein structure prediction has generated enormous interests among
protein structural biologists and computational scientists partly because of the
potential impacts to many areas of biology because the knowledge of the
tertiary structure is essential to the understanding of the biological function and
functional mechanism of a protein. The importance of computational solution
to protein structures is increasing owing to the rapid growth in the number
of sequenced genomes and the relatively slow growth rate in the number of
experimentally determined protein structures. Not surprisingly, protein structure
prediction has become a vital part of the world-wide Structural Genomics
projects, which are designed to develop capabilities for potentially solving most
of the protein structures in nature through effectively integrating experimental
techniques and computational prediction and modeling (3).

Earlier works on the protein structure prediction have been primarily focused
on physics-based methods with an attempt to understand the folding process
(4,5). The basic idea of computational protein folding is to find the lowest
free-energy structure for an amino acid sequence, based on the thermodynamic
hypothesis formulated by Anfinsen (1), through searching the exceedingly large
conformational space of the protein. While this still represents the ultimate
goal of protein structure modeling, we are clearly far from achieving this goal
because of the enormity and the complexity of the conformational space of
a protein compared to the computing resources that are currently available
and the inadequacy of the existing energy force fields. An alternative and
yet very attractive approach has been to only predict the final structure of
a protein-folding process. Such an approach is attractive because it makes
the protein structure solution problem more practically solvable. More impor-
tantly, focusing only on the “final” and static structure of a complex folding
process allows researchers to take full advantage of the wealthy information
of previously solved protein structures and make protein structure prediction
using a so-called template-based protein structure paradigm (6). Template-
based structure prediction methods, ranging from the de novo methods that
use relatively short structural templates to homology modeling methods that
use the entire protein structure as template, have made great strides in protein
structure prediction in the past 15 years and have been used to make many
structure predictions before their experimental structures are available, which
have later proved to be highly useful in guiding experimental designs. For
example, Bajorath et al. (7–9) predicted two structural models for human CD40
ligand gp39 by comparative modeling (CM) techniques and used the models
to guide a series of mutagenesis experiments to identify the residues of gp39
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that are important for the interaction with CD40 and to analyze the locations
of naturally occurring gp39 mutations. After the structure of gp39 was solved
later by X-ray crystallography (10), Bajorath did a detailed assessment on the
modeling accuracy and the validity of model-based mutagenesis and mapping
studies (11). With the exception of a few prediction errors in the loop regions,
the gp39 models were well predicted, including residues important for CD40
binding, and have significantly aided in the design of mutagenesis experiments.
These studies highlight the usefulness of structural models in guiding and
rationalizing the mutagenesis experiments or experiments in general.

Generally speaking, structure prediction techniques fall into three categories:
ab initio prediction, protein threading [or sometimes referred as fold recognition
(FR)], and homology modeling (12). Ab initio methods make structure predic-
tions without using any structural information of previously solved protein
structures; instead, they are entirely based on the first principles of physics.
Structure prediction by homology modeling is based on accurate sequence
alignments between a query protein and a template protein with solved struc-
tures; hence, the prediction accuracy of this class of methods heavily depends
on the sequence similarity between two proteins. Protein threading represents
a more general class of prediction techniques than homology modeling as it
uses both sequence similarity information when exists and structural fitness
information between the query protein and the template structure. Although
homology modeling has been mainly used for detailed (e.g., all heavy-atom)
structure prediction when a query protein has a close homolog in the Protein
Data Bank (PDB) (13), protein threading is often used for FR and backbone
structure prediction when a query protein might have only remote structural
homologs or analogs in PDB. We have noticed that the boundaries among these
three classes of prediction techniques have started to become blurred because
scientists have started to integrate the strengths of different methods to make
their prediction methods more effective and more generally applicable (14).

A unique event in the field of computational structural biology is the biennial
contest for protein structure prediction, called Critical Assessment of Structure
Prediction (CASP), which was initiated by John Moult and others in 1994 (15,
16). CASP has been effectively used to assess the overall prediction capability
for protein structures by the existing prediction techniques in an objective way
and to measure the progress of the field as a whole and to identify the major
technical breakthroughs between two consecutive CASP contests. In each CASP
contest, the protein sequences of soon to be released structures, solved by either
X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy
methods, are made available to all registered predictors through the Internet.
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Structural predictions by different predictors on each prediction target are
submitted through the Internet and then assessed by a team of independent
assessors through comparing the predicted structures to the solved but yet
released experimental structures. A companion contest of CASP is Critical
Assessment of Fully Automated Structure Prediction (CAFASP), which was
initiated in 1998 after CASP3 (17) and has been used to assess the performance
of fully automated prediction servers on the Internet without any human input.

In this chapter, we present an introduction to template-based prediction
methods and discuss the progress of the prediction techniques, mainly based on
the data from the CASP/CAFASP contests. We focus our discussion particularly
on the advances in the FR category while touching on key developments in
homology modeling. At the end of this chapter, we discuss the challenging
issues ahead in the field of protein structure prediction, mainly to keep up with
the identification rate of genes and their proteins by the world-wide genome
sequencing and bioinformatics efforts.

2. A Brief Overview of Template-Based Protein Structure
Prediction Methods

The basic premise for template-based protein structure prediction is three-
fold: (1) similar sequences adopt similar protein structures (18,19); (2) many
unrelated sequences fold into similar structures (20,21); and (3) there are only
a relatively small number of unique structural folds, when compared with
the number of proteins in nature (22–27). The first observation forms the
foundation of homology modeling, whereas the second and the third observa-
tions/assumptions are the foundations of FR/protein threading. Before Bowie
et al.’s seminal paper (28) on protein threading, which started a new wave of
“fold recognition” rush since 1991, template-based protein structure prediction
was mainly a playground for homology modeling. The first structural model,
derived using a template-based approach, was built in 1969 by Browne and
colleagues (19). In their work, a wire skeletal model (a real physical model)
of �-lactalbumin was constructed based on the X-ray structure of lysozyme.
Subsequent developments in computer graphics and distance geometry have
provided important tools for comparative model building of protein structures
(29). Since the report of the first protein structure model, the structure of many
important proteins have been modeled through homology modeling, including
relaxins (30), insulin-like growth factors (31), serine proteases (32), renin (33),
inflammatory protein C5a (34), angiogenin (35), and immunoglobulins (36).
The development of the threading approach [the term “threading” was first
introduced by Jones et al. in their Nature paper in 1992 (37)] is based on the
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premise that the number of unique structural folds in nature is probably a few
orders of magnitude smaller than the number of proteins in nature, possibly
ranging from a few hundred to a few thousand (22–27). These theoretical
estimates on the number of unique folds in nature have been (partly) supported
by the fact that in the past 5 years, less than 10% of the protein structures
newly deposited in PDB represent new structural folds (38). People have found
that many unrelated protein sequences fold into similar structures and certain
structural folds seem remarkably popular among proteins without any apparent
sequence similarity, such as triose-phosphate isomerase (TIM) barrels (39–42).
On the basis of such observations, the protein-threading technique has been
used to address two key issues: “Which structural fold does a given protein
adopt among the experimentally solved protein structures if any, and where
should each of the residues of the given protein be placed in the identified
structural fold if any?” Compared with homology modeling, protein threading
represents a more general class of prediction methods and substantially extends
the scope of structure modeling using homology modeling-based approaches.

Template-based structure prediction methods generally consist of the
following five key steps: (1) identification of structural templates through either
sequence-based or structure-based methods; (2) alignment of the target sequence
to the identified template structure; (3) model building, including loop and side-
chain modeling, based on predicted sequence-structure alignment(s); (4) model
evaluation; and (5) model refinement (see Fig. 1). There are several excellent
review papers with details on model building, evaluation, and refinement

Fig. 1. Five key steps for template-based protein structure prediction.
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(43–45). In this chapter, we focus mainly on the first two steps and briefly
introduce the model building methods.

There are a number of different methods for the identification of the struc-
tural templates or to assign structural folds for a given target sequence, from
a collection of experimentally solved protein structures. Existing FR methods
generally fall into two classes. Methods of the first class use solely sequence
information, whereas the second-class methods, or threading methods, use
either structural information alone or combination of structural and sequence
information. We introduce the threading approach first. Protein threading is
essentially a sequence–sequence comparison method when structural infor-
mation is not considered. Figure 2 shows the major milestones over the course
of methodology development for template-based structure prediction.

2.1. Protein Threading

Protein threading, introduced in the early 1990s (28,37), has played a key
role in protein structure prediction. By using simple measures for fitness of
different amino acid types to local structural environments defined in terms of

Fig. 2. Major milestones in development of template-based protein structure
prediction.
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solvent accessibility and protein secondary structure, Bowie et al. developed
a novel approach to assessing if a protein sequence fits well with a given
protein structural fold, essentially an inverse protein-folding problem (28). As
the environment of a particular residue, in which a 3D structure is encoded
as a 1D profile, tends to be more highly conserved than the identity of the
residue itself, the method is able to detect more distant relationships than
the purely sequence-based methods. Realizing that environment-based methods
are incapable of detecting structural similarities among proteins as a result
of convergent evolution, Jones et al. developed a novel dynamic programing
approach to protein-FR by considering specific pair interactions explicitly and
introduced the concept of “threading” (37). Therefore, unlike the sequence-
based methods, protein threading takes advantage of the structural information
of a template. These studies had laid the foundation and led to the development
of a large class of threading techniques.

The basic idea of protein threading is to “thread,” literally, the amino acids
of a query protein, following their sequential order and allowing for inser-
tions and gaps, into structural positions of a template structure in an optimal
way measured by a scoring function. This procedure is repeated for each
template structure in a database of protein structures. The quality of a sequence-
structure alignment is typically assessed using statistical-based energy terms
or physical-based energies. The “best” sequence-structure alignment provides
a prediction of the backbone atoms of the query protein. The development of
a threading-based structure prediction technique generally involves four key
issues: (1) development of energy functions for assessing the quality of a
sequence-structure alignment or placement; (2) threading algorithms for finding
a sequence-structure alignment that optimizes a given energy function; (3)
statistical assessment and FR; and (4) development of a structural template
library. We discuss the details of each of the areas in the next few subheadings.
Figure 3 shows a timeline of the major milestones in protein threading.

2.1.1. Threading Energy Functions

Unlike the classic physical energy used in protein-folding studies, energy
functions employed to score a particular sequence-structure alignment in protein
threading are mainly statistics-based, also called knowledge-based. The idea
of using knowledge-based potential energies in protein threading is that exper-
imentally determined structures contain great amount of information on the
stabilizing forces within proteins. Statistical analyses of protein structures
can possibly capture the underlying rules governing the structural stabilities
of proteins, which can be realized by relying explicitly or implicitly on
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Fig. 3. Key developments in threading algorithms.

Boltzmann’s principal: frequently observed states correspond to low energy
states of a system (46). The idea of deriving knowledge-based potentials from
known protein structures has a long history even before their first applications
in protein threading by Bowie et al. (28) and Jones et al. (37). For example,
Tanaka and Scheraga (47) first reported their study on medium and long-range
interaction potentials and applications to predicting protein 3D structures 30
years ago, which was followed by numerous related studies by several other
groups (5,48,49,50).

Earlier threading approaches generally ignore sequence similarities between
the query sequence and the template protein (51). Instead, they considered
only the preferences of each amino acid of the query protein to the physical–
chemical environments of the template structure. These environments generally
fall into two classes. One is defined in terms of static measures, such as solvent
accessibility and secondary structures as described in the original work by
Bowie et al. (28). This type of potential is also called singleton energy. For
example, the solvent accessibility can be described in three states, exposed,
buried, and medium exposed. As for the secondary structure environment, one
can use three major types of secondary structures, helix (H), strand (E), and
loop or coil (C). The combination of these two terms results in, in this case, nine
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different structural environments. The singleton energy term can be calculated
from a (non-redundant) protein structure database using Boltzmann statistics.
The basic idea can be explained as follows. If an amino acid type is frequently
observed in the interiors across many protein structures, it suggests that the
interior of a protein is a favorable place for this amino acid type to be placed.
The singleton energy can be possibly written as follows:

esingle�i�j� = − ln�Oi�j/Ei�j�

where Oi�j is the observed frequency of amino acid type i in structural
environment j. Ei�j is less obvious, which represents the expected frequency
of amino acid type i in structural environment j. If nine different structural
environments are used as discussed earlier, a 20 ×9 matrix will be generated,
with each of the 20 rows representing an amino acid type and each of the
nine columns representing a structural environment (52,53). In their original
study on the threading methodology, Bowie et al. used 18 different structural
environments, made up of six different accessibility states, each of which can
be in one of three types of secondary structures, i.e., helix, strand, or coil
conformation.

Another class of the energy function is called pair-wise energy, which
describes the interactions between two residues. It measures the preference of
having two particular types of amino acids spatially close to each other. Jones
et al. initially proposed and applied such an energy function developed by
Sippl (37,50) in their FR study. The basic idea of such an energy function,
again, comes from statistical mechanics. This knowledge-based potential can
be written as

gij = −kT ln
(

Pij

P̄

)

where k and T are the Boltzmann constant and temperature, respectively. Pij

is the observed frequency of residue pairs i and j at a certain distance, where
the distance is measured between the C� atoms of the two residues; and P̄ is
the reference state.

There are two types of pair-wise energies, distance-dependent and distance-
independent. It has been observed that distance-dependent pair-wise interaction
energy could provide more accurate threading results than that of a distance-
independent energy as outlined above. A distance-dependent energy could be
estimated as follows:

ū �i� j� r� = − ln
(

No �i� j� r�

NB �i� j� r�

)
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where r is the distance between residues i and j; No�i� j� r� is the observed number
of pairs of residues (i, j) within a distance range from r −�r/2 to r +�r/2 in a
database of protein structures for some width �r, and NB�i� j� r� is the expected
number of pairs (i, j) within the same distance range. The challenging issue in
accurately estimating the interacting energy ū�i� j� r� is how to estimateNB�i� j� r�.
Under the assumption that we are dealing with an ideal infinite liquid-state system
within a volume V and residues are distributed uniformly, called a uniform distri-
bution model (50,54–56), NB�i� j� r� can be estimated using

NB �i� j� r� = NiNj

(
4��r

V

)

where Ni and Nj are the numbers of amino acid types i and j in the protein
structure database, respectively. Realizing that this model is not accurate when
dealing with finite systems such as a protein structure, Zhou et al. (57)
developed a new energy model called DFIRE for distance-scaled finite ideal
gas reference state, which uses the following formula:

ū�i� j� r� =

⎧⎪⎪⎨
⎪⎪⎩

−	 ln
No �i� j� r�(

r

rcut

)

�r

�rcut

No �i� j� rcut�

� r ≤ rcut

0 � r > rcut

where constant 	 is related to the system temperature and can be determined
empirically. In this model, the authors made two corrections to the uniform
distribution model. First, DFIRE used r
 instead of r2, considering that the
number of interaction pairs in a finite system could not actually reach the
level of r2 as in an infinite system, where 
 is determined through minimizing
the distribution fluctuation of interaction distances on a training set. Second,
DFIRE only considers short-range pair-wise interactions, that is, interaction
energy becomes zero when the distance between the interacting pairs is beyond
a cutoff distance rcut. Another unique feature of DFIRE is that it is less sensitive
to database composition than other distance-dependent potentials (58). The
DFIRE energy and its derivatives have made great strides in protein threading
prediction as evidenced in the CASP6 experiment (59).

In addition to these simple forms of potentials, there are other sophisti-
cated potential functions developed with an attempt to improve the perfor-
mance of FR. However, these potentials are too complicated to be used in
real threading programs. Generally, these potentials are tested using a self-
recognition method (60). For example, Kocher et al. (61) introduced a torsion
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angle term in addition to a residue–residue interaction term and an acces-
sibility term. Nishikawa and Matsuo (62) developed a more sophisticated
FR potential with four terms, a side-chain–side-chain interaction potential, a
hydration potential, a hydrogen-bonding potential, and a local conformation
(���) potential. Again, the potential was tested by the standard self-recognition
test and showed improvement over conventional sequence alignment-based
methods.

Probably, the most sophisticated potential for protein threading is the
side-chain packing and orientation-dependent statistical potentials (63,64).
Miyazawa and Jernigan applied a uniform distribution and ignored high-
frequency contributions of the observed distribution of contacts in deriving their
orientational dependence of side-chain packing. Their potential has been shown
to significantly improve the ability to recognize the native structural folds
from the decoys (64). Despite the ability of these potentials in self-recognition
studies, their performance in real threading has yet to be tested.

Threading has been a coarse-grained structure-prediction method, in which
the residues of the query sequence are placed on the backbone of a structural
template. As we do not know the exact coordinates of non-backbone atoms and
the physical energies are very sensitive to small variations, it would be difficult
to apply the physics-based energy function directly to the threading framework
unless we can solve the backbone threading and the side-chain packing at the
same time, which represents the tremendous computational challenge and requires
novel algorithms to solve the problem. On the basis of performance from the
recent CASP contests (65,66), we begin to suspect that residue-based potential
energy functions outlined above are probably reaching their limits. Hence,
we expect that more physics-based energy functions will emerge in near future.

One of the major breakthroughs in residue-based energy function
development in the past ten years came as a result of integrating evolutionary
information into the energy functions. It has been observed that it improves
the threading accuracy by using all homologous sequences of a query protein
instead of using the query sequence alone during threading (53). One simple
way to incorporate the multiple sequence information is through using the
sequence profile, derived from the aligned homologous sequences, hence gener-
alizing the sequence-structure alignment problem to a sequence profile-structure
alignment problem. An even more general way for measuring the fitness score
of a threading alignment is through comparing the sequence profiles of the
query protein and the template protein, also known as profile-profile alignment,
which is very successful in detecting distantly related homologs (see more
detailed discussion on sequence profiles in Subheading 2.2.) (67,68).
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Other types of energy functions have also been used in the existing threading
programs. These include match scores between the predicted secondary
structures of the query sequence and the secondary structures in the template,
and gap penalties.

The total energy of an alignment can be calculated using a weighted sum as
follows:

Etotal = mEmutation +sEsingleton +pEpairwise +gEgap +ssEss

where Emutation, Esingleton, Epairwise, Egap, and Ess represent mutation energy,
singleton energy, pair-wise energy, gap penalty, and secondary structure match
energy, respectively. The weight () of each energy term can be practically
derived through optimizing the threading performance on a set of query–
template pairs, both of which have their structures solved.

2.1.2. Sequence-Structure Alignment Algorithms

The basic goal of protein threading is to find an alignment (or placement)
between a query protein sequence and a template structure that optimizes
the aforementioned threading energy function. The importance of finding
the best alignment between a sequence and a template structure cannot be
overstated as currently it dictates the quality of the model. Generally, threading
algorithms can be grouped into two major classes: heuristic algorithms and
rigorous algorithm. One of the most popular heuristic threading algorithms
is dynamic programing. Owing to its simplicity and efficiency, many of
the earlier threading programs used dynamic programing or its variations. If
we do not consider pair-wise interactions in our threading energy function,
the sequence-structure alignment problem is essentially a sequence-sequence
alignment problem, which can be solved rigorously using a dynamic programing
approach. For example, in their original threading paper, Bowie et al. defined
18 different structural environments and represented a template structure as a
sequence of structural environments. Hence, a threading problem is essential
to find an optimal alignment between a query sequence and a sequence of
structural environments, which can be solved using a dynamic programming
approach. Despite the obvious computational advantages by representing a
template 3D structure as a sequence of structural environments, it has been
well documented that the threading performance based on such a formulation
of a threading problem could be substantially improved by including residue–
residue pair-wise interaction energies (52,69).

When a pair-wise potential is considered in a threading energy function, the
simple dynamic programing strategies used previously will no longer guarantee
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to find the sequence-structure alignment that achieves the minimum energy
simply because pair-wise interactions substantially complicate the computation
for an optimal threading alignment. It has been proved that the general threading
problem is NP-hard under some generalized (possibly unrealistic) assumption
(70), suggesting the intrinsic difficulty in computationally solving the problem.
Researchers have tried various heuristic techniques to “fix” the inadequacy
problem of the dynamic programing approach when considering pair-wise
interactions by adding different types of “patches” to the overall framework
of dynamic programing. Jones et al. employed a double-dynamic programing
approach derived from structural superposition methods (37). Their approach
applies dynamic programing at two levels, a high-level scoring matrix and
a low-level matrix for each element of the high-level matrix. For each Fij

of the high-level matrix, the likelihood of i being aligned to j is calculated
by a low-level optimal alignment with the constraint that Fij is part of the
alignment. “Frozen approximation” is another popular method, which assumes
that the interaction between two residues of the query protein placed in two
nearby (template) structural positions can be approximated by an interaction
between one query residue placed in one structural position and the original
residue in the other position of the template structure (71–74). Specifically,
when the algorithm assigns an amino acid from the query protein to a structural
position of the template from the beginning to the end of the query protein,
it calculates the relevant interaction energy using this newly assigned residue
and query residues already assigned to its nearby positions plus the template
residues in nearby positions yet to be assigned, where a cutoff is used to
define “nearby” structural positions. Intuitively, the algorithm should work to
some degree in capturing some of the interaction “patterns” encoded in the
query protein sequence as some of the position-equivalent residues between
the native structure and the native-like template structure should have similar
physicochemical properties, suggesting the validity of the frozen approximation
scheme.

Several other heuristic threading programs have also been developed.
For example, GenTHREADER uses a classical sequence-sequence alignment
algorithm to generate query-template alignments and then evaluates the
alignments using a threading potential in a post-processing step (75). The
program 3D-position-specific scoring matrix (PSSM) also employs a dynamic
programing scheme to find the best alignment between the sequence profile of
a query protein and the sequence profile of the template protein (76). FUGUE
utilizes the environment-specific amino acid substitution tables and structure-
dependent gap penalties (77).
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Although heuristic algorithms “solve” a threading problem fast, they achieve
the computational efficiency at the expense of prediction accuracy. Since the
middle of the 1990s, a number of rigorous threading algorithms have been
developed that guarantee to find the globally optimal threading alignments,
measured in terms of energy functions outlined in the previous section. The first
rigorous threading algorithm that considers pair-wise interactions was a branch
and bound algorithm developed by Lathrop and Smith (78), although its actual
computing time and the practical usefulness have not been well documented.
Xu et al. developed a threading program, PROSPECT, which solves rigorously
the globally optimal threading problem, using a divide-and-conquer strategy
(52). Its practical usefulness and the value in rigorously solving the threading
problem were demonstrated through the prediction server of the program (79).
The threading problem was later formulated as a linear integer programing
(LIP) problem and was implemented as a computer program, RAPTOR (80).
The authors of RAPTOR took advantage of the extensive research results in the
area of LIP to make the program run much faster than PROSPECT, although the
same set of energy function is used. It was convincingly demonstrated, through
applications of programs such as PROSPECT and RAPTOR at the CASP
contests, that threading programs with guaranteed global optimality do have an
advantage over programs without this property (81,82). The only disadvantage
though is that these rigorous algorithms tend to be slower when compared with
heuristic algorithms such as dynamic programing-based threading algorithms.

Tree decomposition-based algorithm seems to represent another powerful
technique for solving the threading problem rigorously. This technique is
currently being actively investigated, which is based on the idea of tree-
decomposition of an interaction graph representing possible alignments between
a query sequence and a template structure (83,84). In a sense, this type of
technique represents a generalization of the divide-and-conquer idea, whose
framework allows taking full advantage of powerful graph-theoretic results to
make the threading algorithm much faster than any of the previous rigorous
threading algorithms. In this formulation, both the template structure and the
query sequence are represented as graphs; vertices denote core secondary struc-
tures, and edges represent interactions between the cores. A sequence-structure
alignment problem essentially corresponds to finding an isomorphic mapping
from the structure graph to a subgraph of the sequence graph. The efficiency
of the alignment hinges on the tree width of the structure graph. Intuitively,
the tree width of a graph measures how much the graph is “tree-like.” The
“tree-like” representation for graphs is called a tree decomposition. Given a tree
decomposition of a structure graph with tree width t, a dynamic programing
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algorithm can be employed to find the globally optimal sequence-structure
alignment in time O�ktN 2�, where k is a small integer and N is the number of
amino acids in the template structure (83,84). The efficiency of the algorithm
can be illustrated as follows. When using 7�5 Å C�–C� distance as a cutoff
for defining pair-wise interactions, among 3890 non-redundant protein tertiary
structure templates compiled using PISCES (85), only 0.8% of them have
tree width t > 10 and 92% have t < 6. Computational results have indicated
that the tree decomposition-based threading algorithm runs substantially faster
than both the divide-and-conquer and the integer programing-based threading
programs without compromising alignment accuracy (84).

2.1.3. FR/Statistical Significance of Threading Alignments

To solve the FR problem, it is not enough to have a powerful threading
algorithm, which can only find the best possible alignment between a query
sequence and a specific structural template. We still need to find which of
the structural templates, from a large collection of solved protein structures,
represents the correct, that is, native-like, structural fold. One simple way to
determine the correct structural fold is to rank the templates based on the
threading scores as reported in Jones et al.’s original threading study (37).
However, doing so is problematic as the alignment scores between a query
sequence and different template structures are in general not comparable directly
with each other. Some structures might tend to have higher baseline threading
scores than the others, no matter what query sequences are used. Some normal-
ization techniques have been applied in early threading program to help identify
the true protein fold. Bowie et al. normalized their threading scores using the
score distribution obtained by aligning many sequences of similar length to each
of the structure templates (28). Others do it by shuffling the query sequence
many times (keeping the same length and composition as the query sequence)
and align each of the sequence to each of the template structures (86).

In a sense, the FR problem is similar to the homology search problem through
sequence comparison against a database of sequences. In sequence-sequence
alignments, there have been a number of models developed for assessing the
statistical significance of the scores. For example, the statistical significance
of an alignment score can be estimated using methods such as calculating the
p-value (a probability of a score occurring by chance) or the e-value (expected
number of times the score will be seen given the size of the database) (87–90).
Developing rigorous and effective statistical models for protein threading has
proven to be more challenging than the sequence alignment problem. There have
been a number of attempts to use empirical methods to assess the significance
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of alignment scores. One popular practice is to use a z-score scheme. The
z-score is the threading scores in standard deviation unit relative to the average
of the threading score distribution of random sequences with the same amino
acid composition and length as a query sequence (91). In practice, the average
and the standard deviation are estimated by threading between a template and a
large number of randomly shuffled query sequences. The z-score of a particular
alignment can be defined as follows:

z = E − Ē

�

where Ē and � are the average and the standard deviation of the energy
distribution resulted from threading alignments between the template and the
sequences from the re-shuffled query sequence. This approach is effective to
some degree. But its limitation is also obvious based on practical applications.
One of the key reasons for the limited success of the z-score scheme is that
the underlying assumption for the z-score scheme to be effective is that the
threading scores should follow a normal distribution, which is in general not
true for threading scores.

It has been shown that like the optimal sequence-sequence alignment scores,
optimal structure-structure alignment scores generally follow an extreme-value
distribution (92). On the basis of this observation, Sommer et al. developed
a scheme for p-value estimation for threading scores, in which parameters of
the model are estimated by fitting the threading scores against an extreme
value distribution (93). A key characteristic of the work is that it attempts to
have a unified model for threading problems involving different lengths and
compositions of the proteins involved.

There have been various studies attempting to derive empirical and effective
models for assessing the statistical significance of a calculated threading score.
The basic idea is to derive a “normalized” threading score, based on a training
data set, which consists of query-template pairs with different lengths and
different compositions. A neural network and a support vector machine (SVM)
could be trained to best mimic the degree of correctness of each threading
alignment by a threading program on the training set, using various parameters
collected from the threading program such as singleton energy value, pair-wise
energy value, the lengths of the query and the template, their compositions. A
number of such normalization schemes have been developed and employed in
various threading programs (52,53,75,80,94). For example, by using a SVM,
the RAPTOR program, which employs an integer programming approach, has
significantly improved its FR performance (95).
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2.1.4. Template Structure Library

The performance of a threading program largely depends on the
“completeness” of the template structure library it uses. If the template structure
library does not contain a homologous protein to a query protein, no matter
how good the threading energy, algorithm and assessment capabilities are, it
is not going to predict the structure correctly. Actually, the accuracy of a
predicted structure also largely depends on how close the template structure
is to the actual structure of the query protein. Hence, generally speaking, the
more comprehensive a template structure library is, the more accurate we can
expect a threading prediction will be. Therefore, to get the best performance of
a threading program, the ideal template library should include all the structures
in PDB (13). However, it is presently impractical to include all PDB struc-
tures in a template structure library because of the amount of time required to
compute one sequence-structure alignment. In addition, many protein structures
in PDB are redundant in principle, one can use one representative from each
protein family, defined by SCOP (40), as the template library for threading.
To be on the safe side, it is advisable to include several members from each
protein family, considering the possible structural variations among the “equiv-
alent” proteins from different organisms. Inclusion of multiple members of the
same family in the template library could also help to derive more accurate
threading alignments, based on the consensus of the multiple sequence-structure
alignments between the query and the multiple homologous structures.

To construct a representative template library, one can use single chains or
protein domains as members. There are several ways to select the representa-
tives, by either sequence identity-based or structural similarity-based methods.
Three popular protein structure classification databases, SCOP (40), CATH
(42), and FSSP (96), are domain-based classifications using both the sequence
and structure information. The disadvantage of these three databases is that
they are not updated very often. PISCES (85), on the contrary, is a program
that is suitable for selecting sequence-based representative data set, which can
be updated as needed.

2.2. Sequence-Based Alignment Methods

As discussed earlier, protein threading is essentially a sequence-sequence
comparison method when structural information is not considered. Sequence-
based alignment methods have been the primary tools for earlier homology-
based modeling (also called CM) efforts (43). When there are close homologs in
PDB for a query sequence, the easiest method for structure prediction is to use
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a sequence-sequence alignment method, such as Smith–Waterman algorithm
(97), BLAST (98) or FASTA (99). Earlier versions of BLAST do not allow
gapped local sequence alignment, which have limited its applications. Most
recent versions of BLAST do allow gapped alignments, in which a gap penalty
function is applied. One of the attractive properties of BLAST is that it provides
a reliable way for assessing the statistical significance of an alignment result.

However, when the sequence identity is less than 30%, especially when the
evolution relationship is not obvious between a structural template and a query
protein, more sophisticated methods might be required. Currently, profile-based
methods are the most popular ones for detecting more distant evolutionary
relationships. The core of these profile-based methods is the position-specific
profiles derived from the alignment of multiple sequences among proteins from
the same family or even super-family. PSI-BLAST (100) and hidden Markov
Models (HMMs) (101,102) represent two popular methods for generating a
sequence profile based on the multiple sequence alignments among homologous
proteins of a query sequence. In a profile, each position is represented as a
vector describing the relative frequency of each of the 20 amino acid types
in this aligned position. Profiles have been used to represent both the query
proteins and the template proteins, leading to the development of more sensitive
homology detection tools through profile-profile comparison (103–105). In
profile-profile alignment approach, the similarity score of two positions can
simply be calculated as the dot product of the two vectors.

Although traditional homology modeling methods rely primarily on
sequence-only approach and early FR methods rely primarily on the protein-
threading approach, the introduction of PSI-BLAST and HMM has somehow
blurred the boundary between homology modeling and FR. Currently, sequence-
based profile methods are the major approach to derive the sequence-structure
alignment in both the CM and FR categories. The popularity of sequence-
based profile methods in FR is largely because the performance of this type of
methods is almost on par with threading-based approaches for detecting remote
homologous proteins, which prompted the question if structural information or
the threading approaches in general, is useful (16). Nevertheless, single-method
servers that incorporate structural information, including RAPTOR (rigorously
treats pair-wise interactions) (80), SP3 (uses depth-dependent structural align-
ments) (106), and SPARKS (contains a backbone torsion term, a buried surface
term, and a contact-energy term) (107) have performed very well in both CM
and FR categories as demonstrated in recent CASP contests (59,82). On the
contrary, there is a clear limitation for sequence-based profile methods for
detecting remote homologous relationship. For example, the profile methods
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alone are not going to do well when sequence profiles are not possible to
construct because there are not enough known sequences that are clearly related
to the query sequence or potential templates.

2.3. Comparative/Homology Model Building

Once a sequence-structure alignment has been built using either sequence-
based approach or threading method as describe above, 3D models can be
constructed using various methods. The very first homology model, a wire
and plastic model of �-lactalbumin, was constructed in 1969 by Browne et al.
using a method called rigid body assembly (19). Since then, many different
homology modeling methods and programs have been developed. Generally,
these model-building methods can be grouped into four classes: (1) rigid body
assembly, (2) segment matching, (3) spatial restraint, and (4) artificial evolution
model building. Figure 4 shows a timeline of the major milestones in the area
of comparative/homology modeling.

Fig. 4. Timeline of major developments in the area of comparative/homology
modeling.
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The rigid-body assembly method was first introduced in 1969 and is still
widely used (19,108). It starts with the identification of the conserved core and
variable regions and then assembles a model from a number of rigid bodies
obtained from the template structures (43,45). This method has been imple-
mented in several computer programs, including COMPOSER (109), PriSM
(110), 3D-JIGSAW (111), and SWISS-MODEL (112).

Segment-matching method is developed based on the observation that most
hexapeptide segments of protein structures can be clustered into about 100
structural classes (113). The model construction is done through using a subset
of atomic positions of templates as “guiding” points, which in general are the
conserved segments in a sequence-structure alignment and, assembling short,
all-atom segments derived either by scanning all the known protein structures
(114) or by a conformational search guided by an energy function (115), to
fit these guiding positions. The unique feature of segment-matching method is
that it can be used to model both side-chain atoms and loops. SegMod/ENCAD
is the first program implemented using segment-matching approach (116).

The most popular homology modeling program is MODELLER (117),
which uses spatial restraints derived from the template structure(s) (the
approach is called satisfaction of spatial restraints) to guide the model building
process. MODELLER was introduced in 1993 and has been part of the
Insight Package since 1994. MODELLER models a structure typically by
generating many restraints first, assuming that the corresponding distances
and angles between aligned residues in the sequence-structure alignment are
similar. A model is then derived by minimizing the violations of all restraints
including homology-derived restraints and other stereochemical restraints from
a molecular mechanics force field, such as bond length, bond angles, dihedral
angles, and non-bond atom–atom contacts (43). One of the advantages of
using satisfaction of spatial restraints method is that it can incorporate various
restraints from experiments, such as NMR experiments, site-directed mutage-
nesis and cross-linking experiments.

The artificial evolution method attempts to build structural models by
simulating the natural process of structural evolution from a template structure
to the target model. For example, the sequence-structure alignment can be
broken down as a series of evolutional operations, such as mutation, insertion
and deletion. The structural model can then be built from the template structure
by changing one evolutionary event at a time (45). NEST, the core program
within the JACKAL Modeling Package, uses this approach (118).

In any homology modeling program, side-chain prediction and loop modeling
are the two key components. These are usually done on fixed backbone
coordinates. The accurate prediction of loops and side-chains has great bearing
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in applications as they are often of functional importance and can play key roles
in forming enzyme active sites, antigen-antibody recognition, ligand–receptor
binding, and the binding between metal ions and metal-binding proteins (119).
There are two main approaches to loop modeling, database-based methods
(120–122) and ab initio methods (123–125). The database-based approach to
loop prediction is done by finding a segment of main chain that fits the two
ends of a loop whereas the ab initio methods involve the generation of a large
number of candidate conformations and the evaluation of the conformations
using an energy function. In addition to the two basic methods, procedures that
combine the above two basic approaches have also been described (126).

In his pioneering modeling study, Greer used a simple algorithm to insert
loops from homologous proteins into the target protein (120). This database-
based approach is accurate and efficient when modeling short loops. However,
it is limited by the exponential increase in the number of possible confor-
mations for longer loops. Studies have shown that only segments of seven
residues or less have most of their possible conformations found in known
protein structures (127). Van Vlijmen and Karplus partially solved this database
completeness problem by combining database search and restrained energy
optimization, which extends the loop modeling range up to nine residues
with candidate segments from a database (126). The ab initio loop prediction
method is based on a conformational search guided by a scoring function.
It does not have the database completeness problem for long loops, but the
accuracy for modeling long loops is still low. Various ab initio methods, which
exploit different scoring functions, protein representation, and optimization
algorithms, have been described (119). Realizing that most approaches try
to find the lowest energy conformation without considering conformational
entropy effects, Xiang et al. implemented a procedure called “colony energy”
that considers the shape of the energy well, which improved the accuracy
(125). Jacobson et al. used an Optimized Potential for Liquid Simulations
(OPLS) all-atom force field, the Surface Generalized Born implicit solvent
model, and a hierarchical optimization strategy to achieve a better perfor-
mance [e.g., 1.0 Å root mean square deviation (rmsd) for eight-residue
loops] (128).

Side-chain prediction represents another challenge in homology modeling.
Nearly all of the side-chain prediction methods are based on one of the rotamer
libraries with discrete side-chain conformations, either backbone-dependent or
backbone-independent. While the concept of rotamer was around as early as
1970 (129), the first rotamer library with a list of all likely conformations
of side-chains and their average dihedral angles, variances, and frequencies
was not introduced until 1987 by Ponder and Richards (130). In 1993,
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Dunbrack and Karplus (131) presented the first backbone-dependent rotamer
library. A backbone-independent rotamer library developed by Richardson and
colleagues (132) probably represents one of the most accurate libraries. In
deriving the library, they used much stricter criteria including removing side-
chains (1) with high B-factors, (2) with clashes with any other atom, and
(3) with uncertain amide or histidine ring orientations after an optimization
procedure (133). Xiang and Honig (134) have done a detailed study on the
prediction accuracy with different rotamer libraries. They showed that using an
extensive library in which bond lengths and bond angles were taken from the
database rather than using idealized values yields RMSD values of only 0.62
Å for core residues (134).

Given a rotamer library and a defined energy function, the side-chain
prediction problem becomes a combinatorial optimization problem. Two
different search strategies have been widely applied for side-chain predic-
tions, exact algorithms that guarantee to find the side-chain conformations with
global minimum energy and approximation algorithms, including Monte Carlo
simulation-based methods (135) and cyclical search method (131). The first
exact algorithm for side-chain prediction is called dead-end elimination (DEE)
algorithm (136), which provides a powerful deterministic approach to finding
the global minimum energy conformation (GMEC) by comparing the energy
distributions of different candidate rotamers at a given position and identifying
certain rotamers, which cannot exist in the GMEC. Different versions of DEE
have been developed later to improve the performance of the original DEE
algorithm (137–141). The side-chain prediction problem has also been formu-
lated as a graph-theoretic problem and solved by combinatorial optimization
algorithms, such as the biconnected graph in SCWRL program (142) and
tree-decomposition algorithm in SCATD (143). These new approaches run
much faster without compromising the prediction accuracy and can be used for
large-scale predictions. On the contrary, a study by Xiang and Honig (134) in
2001 demonstrated that the combinatorial problem in side-chain conformation
prediction does not appear to be very important, which is supported by other
studies. Desmet et al. developed a new method, called Fast and Accurate Side-
chain Topology and Energy Refinement (FASTER), for global optimization
of protein side-chain conformations (144). They showed that low-order local
minima may be as accurate as the global minima. The FASTER algorithm is
100–1000 times faster than the DEE method, at the same time; it produces
nearly identical results (144).

Recently, two independent comparative studies of homology modeling
programs concluded that no single modeling program outperforms the others



Template-Based Protein Structure Prediction 25

in all tests. However, some programs perform better than the others, such as
MODELLER (117), NEST (118), and SegMod/ENCAD (116) in one study
(145), and Prime (Schrodinger, LLC), DSModeler (commercial version of
MODELLER), and Sybyl (109,146) in another study (147). It should be noted
that most of the programs tested in these two studies are different.

2.4. Fragment Assembly

When a query sequence does not have apparent structural homologs or
analogs, the aforementioned FR approaches will not be able to make a good
structure prediction as these methods suffer from the fundamental limitation of
being only able to recognize known folds. Different techniques will be needed.
While theoretically speaking, ab initio approaches could be used for tackling
such problems, it is well known that existing ab initio folding techniques,
along with the existing force fields, are probably not ready for folding proteins
accurately in general. A new class of structure prediction methods, called
fragment assembly-based methods, is emerging, which have played key roles in
making structure predictions when a protein does not have a native-like struc-
tural fold in the PDB database. The basic idea is stimulated by the observation
that the backbone structure of a protein can be constructed from a number of
fragment taken from other proteins (121,148). Generally, a fragment assembly
method consists of two major steps. It first identifies structural fragments from a
fragment structure library, to which segments of a query protein might fold into
and then the method assembles the fragments into a whole structure using some
energy minimization technique. FRAGFOLD, which exploited this strategy to
greatly narrow the search of the conformational space and had some success in
the CASP2 experiment in 1996, was the first such effort that has demonstrated
the power of fragment assembly-based approach for structure prediction, which
could potentially predict structures with a novel fold (149,150). ROSETTA,
developed by David Baker’s group, probably represents the most successful
program using the fragment assembly strategy (151), based on its prediction
results at the previous two CASP contests (65,66). ROSETTA method first
divides a query sequence into overlapping sequence fragments approximately
nine residues in length. Then, the protein structure database is searched for
sequence fragments that are similar to each fragment of the query sequence
and in their secondary structures. Protein conformations are then built up using
these corresponding fragment structures. The best structures are selected and
then refined as the final prediction. For smaller structures, ROSETTA can
generate one or a few relatively accurate structures (152).
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Upon the successful showing of ROSETTA in the past a couple of
CASP contests, more programs have been developed using fragment assembly
approach exclusively or as part of the prediction package, which include
UNDERTAKER (153), ABLE (154), SIMFOLD (155,156), PROFESY (157).
Although these methods use similar strategy, they differ in several key
areas: (1) the length of the fragment, (2) fragment assemble method, and
(3) energy function. Typically, the lengths of the structural fragments may
range from a short peptide as used in ROSETTA, SIMFOLD, and ABLE to
super-secondary structural unit (158). Structural fragments are often selected
based on the compatibility between a fragment and a sub-sequence of the
query protein. In practice, many different sub-structures or fragments could
be selected for each short sequence as a short sequence may adopt different
conformations in different structural environments. Most programs use Monte
Carlo-simulated annealing search strategy to assemble the fragments. The best
structure is then selected from a large set of possible structures, which is usually
done through clustering of candidate structures using knowledge- or physics
based potentials (159).

These fragment-based methods for protein structure prediction clearly
represent a new breed of structure prediction technique, which combines
strengths of template-based structure prediction methods (in the stage of initial
fragment structure identification) and ab initio prediction techniques (in the
stage of piecing together fragment structures to form one whole structure).
Because of their general applicability, we expect that this class of structure
prediction techniques could potentially become the dominating technique for
protein structure prediction.

3. CASP/CAFASP
Starting from 1994, protein structure predictors have been having their

own “Olympic games,” called CASP, every 2 years. A companion contest,
CAFASP, was introduced in 1998 (17) to assess the performance of fully
automated prediction servers without any human input. Although each contest
is held during the summer of every other year, the contest results will not be
released until the CASP meeting in the winter of the same year. The predictors
share the similar experience but with different emotions—joy, disappointment,
excitement, or surprise when the contest results are announced by the contest
assessors at the CASP meetings. Interestingly, Roland Dunbrack, the assessor
of the FR category of CASP6, employed a scoring system similar to that used
in diving and gymnastics events in the Olympic games, where the lowest and
the highest scores from six structure comparison programs are removed before
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being summed up or being averaged (66). The goals of the experiments are
to evaluate the successes and failures of structure prediction techniques as
a whole, to identify the bottlenecks, and to provide the directions for future
improvements (15,16).

For assessment purpose, CASP protein targets (i.e., protein sequences) are
divided into three categories with an increasing level of prediction difficulty:
CM, FR, and new folds (NF). CM and FR are further divided into a few sub-
categories. For example, CM is further divided into CM-easy (targets whose
structural templates can be identified easily by BLAST) and CM-hard. FR
targets are grouped into FR/H for remote homology detection and FR/A for
analogous FR (160).

CASP has attracted many structure predictors to participate in this fun
and exciting event, in which participants range from graduate students to
world-class structural biologists and modelers. At CASP1, only 35 groups
took part in the experiment. This number continues to increase steadily over
the course of CASP. In 2004, over 200 prediction teams from 24 countries
participated in CASP6. In FR prediction category, only nine groups partici-
pated in CASP1, whereas 165 teams made predictions for the targets in this
category in CASP6 (see Fig. 5). CASP has clearly provided a big stage for
different prediction groups to showcase their best prediction tools. As the
field evolves, CASP contests have also evolved accordingly. For example,
in the first three CASP contests, prediction targets were divided into three

Fig. 5. Number of groups participating CASP and the number of groups participating
the fold recognition category from CASP1 (1994) to CASP6 (2004).
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categories: CM, FR/threading, and ab initio prediction. At CASP4, ab initio
was reclassified as “new fold methods” in recognition of the fragment assembly
methods. Now ab initio is reserved for prediction methods that employ the first
principles only.

After the first decade of CASP experiments, the obvious question we want
to ask is how much progress we have made in terms of our overall capabil-
ities in protein structure prediction in 10 years. Much has been written about
the CASP assessments (published as special issues by Proteins: Structure,
Function, and Bioinformatics). So here, we briefly highlight the progress made
and the challenging issues, especially in FR category. For homology modeling
and ab initio prediction, the general consensus has been that progress has been
quite limited in the past several years. Although there have been some steady
improvements in the homology modeling category, especially in alignment
accuracy, it is widely believed that the improvements are partly attributed to
the increase in size of both the sequence and structure databases. Previously
identified problems in this category remain unsolved. For example, model
refinement has been identified as the major bottleneck (16), which includes loop
modeling and side-chain prediction that are highly correlated with the prediction
accuracy of the backbone conformation. We have yet to see substantial improve-
ments in this area. As for ab initio predictions, while still highly important, they
seem to be gradually being replaced by the emerging fragment assembly-based
de novo approaches, at least for practical purposes. In that regard, the success
of fragment assembly-based approaches might have an undesirable side effect
in overshadowing the work on the classical ab initio folding studies (161),
having lured young scientists to the more practically useful and potentially
more fundable work on de novo structure prediction. Clearly, studies on ab
initio folding should continuously get support as empirical methods could not
provide nearly as much insight into the mechanisms of protein folding as the
ab initio folding studies will. Even on the practical side, ab initio methods still
hold the key to improved capabilities in model refinements. Scheraga group’s
successful prediction of a 48-residue protein (T0215) using an ab initio method
at CASP6 was clearly highly encouraging to the studies of ab initio techniques
for folding proteins.

Compared with other areas of protein structure prediction, rapid progress
has been made in the area of FR (160). Fewer than 10 teams and about
30 teams participated in the predictions in the FR area at the CASP1 and
CASP2, respectively. Most teams use threading methods, which differ mainly
in two areas, the choice of the potentials and the methods for finding the
best sequence-structure alignment. The potentials used ranges from simple
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structural environments to residue pair interactions (28,37). The alignment
methods range from a simple dynamic programing to modified dynamic
programming approach, such as double-dynamic programing (37) and frozen
approximation (72). In addition, several rigorous threading algorithms, such
as PROSPECT (CASP3) and RAPTOR (CASP5), were introduced at various
stages of CASP competitions. RAPTOR was ranked the number 1 individual
prediction server at CAFASP3 (80,82,162), indicating the power of using
rigorous threading algorithms for structure prediction. The development of
PSI-BLAST (100) and HMMs (101,102) and the application of these powerful
sequence-based homology detection techniques in FR since CASP3 represent a
major advancement in fold-recognition methodology development. Nowadays,
many threading programs combine the sequence-based method and structure-
based method for better prediction (53,75,80).

One interesting observation from the CASP contests is that human experts
who utilize diverse sources of information are more successful than automated
prediction servers. Human predictors can collect as much information as
possible from the literature and use their own expertise to help them select the
correct template from a prediction program. The similar idea and the obser-
vation that even though no single server is able to recognize all structural
folds correctly, collectively different prediction servers can correctly identify
the structural folds for most of the prediction targets has led to a new breed
of prediction server called meta-server (163). The first such successful attempt
is a semiautomatic meta-server, CAFASP-CONSENSUS, debuted at CASP4
(164). CAFASP-CONSENSUS filed predictions after collecting models from
the CAFASP automatic servers and selecting the high-scoring folds from
multiple servers based on a majority-rule voting scheme. The performance
of CAFASP-CONSENSUS was ranked above any of the individual servers
at CASP4. As a separately registered prediction team at CASP4, CAFASP-
CONSENSUS was ranked 7th in the FR category (164) among all participating
teams. This program was later developed into the first fully automatic meta-
server, Pcons (165). Pcons uses a simple approach for making its predictions.
First, it compares the predicted models collected from the individual partici-
pating severs, and it counts the number of occurrences of each unique structural
fold from the involved families, super-families or folds by different prediction
servers. A neural network is then trained and used to combine the assigned
score of each predicted model plus the number of occurrences of the model’s
fold. The strength of this meta-server is mainly attributed to the structural
clustering of the initial models as Fischer et al. showed in one scenario that
one particular SCOP fold was selected more frequently than all others while no
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server produced a significant hit (164). The practice of combining the prediction
results from different prediction methods has been long used. For example,
over 30 years ago, Schulz et al. (166) and Matthews (167) tried to combine
different prediction results to obtain a joint prediction of secondary structures
for adenyl kinase and bacteriophage T4 lysozyme, respectively. The approach
was later implemented as a computer program by Argos et al. (168).

The success of CAFASP-CONSENSUS at CASP4 has started a new trend
in the FR prediction. Many meta-servers have been developed after the intro-
duction of Pcons (169). At CASP6, many human prediction teams used the
predicted models by meta-servers as the starting points of their predictions.
Although the overall ideas employed are similar, these meta-servers differ in
several areas: (1) how the initial models are selected; (2) how the final model
is generated; and (3) how the scores from individual servers are used. Although
meta-servers have been a bright spot in recent CASPs as most of them perform
better than individual servers, it should be noted that meta-servers have not
given us much new insights yet into the fundamentals of protein structure and
their prediction. Currently, their values remain on the practical side.

We clearly see two new directions taken by the template-based structure
modelers: sequence-based FR and model building using fragment assembly-
based structure prediction (66), whereas the classical threading methods seem
to lose some of its steam. We expect that as the prediction methods continue
to evolve, some hybrid techniques combining protein threading and de novo
methods will prove to be desired, as we start to see that at the CASP6
contests, such as TASSER developed by Skolnick’s group, which performed
very well at the CASP6 (150,170–173). Some research groups have tried
to use more sophisticated energy functions for a better sequence-structure
alignment (59) and more sophisticated predictions algorithms, such as tree
decomposition-based threading techniques (84). We believe that the best is yet
to come.

Although the overall capabilities in protein FR have been steadily improving
since CASP1 there are several areas that could clearly use enhanced efforts.
First, a correct template may not be identified using the existing FR techniques,
for proteins that may have only remote homologs or just structural analogs
in PDB. For example, the best individual threading program at CAFASP3,
RAPTOR, can only identify about 45% of the targets in the FR category
(82,162). Quite often, the existing methods may rank the correct template
as one of the top candidates, but they may have difficulty to rank it as the
best one (65), suggesting that better statistical significance measures should
be developed to solve this problem. A rigorous model similar to the one used
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in sequence-sequence comparison is clearly needed urgently for protein fold
predictions. Second, even when a structural fold is correctly identified, the
sequence-structure alignment could still be poor. It represents a very challenging
problem to find a completely correct alignment between a query sequence and
the correctly identified structural fold because of various reasons. For example,
the imperfect threading energy functions and the lack of effective ways to
refine a sequence-structure alignment have limited the alignment performance.
Third, for multi-domain proteins, identification of domain boundaries remains
a highly challenging problem based on the CASP6 assessment (174), which
directly effect the performance of many prediction programs. At CASP3, two
prediction targets, each consisting of two small domains, were mistakenly
predicted by all prediction teams as a large single-domain protein (175). The
average size of a protein domain is about 150 amino acids (176). Hence, any
query protein consisting of more than 150 amino acids is likely to be a multi-
domain protein. Correct identification of the domain boundaries will clearly
play an important role in making the structure prediction more accurate. Finally,
for targets that have large parts without structural equivalents in a template
structure, it represents a challenging problem to predict the structures of missing
parts, using template-based methods. For such a case, fragment assembly-based
approaches or ab initio approaches could help to fill the void.

5. Conclusions
Protein structure prediction methods not only play a significant role in

structural genomics projects but also have the potential to have significant
impact on many areas of biology. We have witnessed the progress in the past
few years over the course of CASP. As the prediction methods continue to
evolve, we expect that the distinction between different prediction methods such
as homology modeling, FR, and NF prediction will continue to become more
blurred. Through a systematic evaluations of the existing prediction techniques
by CASP, several major technical hurdles have been identified to make the
existing prediction technique substantially more accurate, which include model
refinement, improving sequence-structure alignments, reliable discrimination of
the correct templates from incorrect templates, and reliable discrimination of the
correct models from a pool of structures generated by template-free methods.
With the rapid accumulation of structural data through the structural genomics
efforts and with the advent of new prediction methodologies at an accelerated
rate in the past few years, we remain highly optimistic about the prospect of
accurate structure prediction for most of the (soluble) proteins within the next
decade.
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Prediction

Anna Tramontano, Domenico Cozzetto, Alejandro Giorgetti, and
Domenico Raimondo

Summary

Methods for protein structure prediction are flourishing and becoming widely available to
both experimentalists and computational biologists. But, how good are they? What is their range
of applicability and how can we know which method is better suited for the task at hand? These
are the questions that this chapter tries to address, by describing automatic evaluation methods
as well as the world-wide Critical Assessment of Techniques for Protein Structure Prediction
(CASP) initiative and focusing on the specific problems of assessing the quality of a protein 3D
model.

Key Words: Protein structure prediction; accuracy of protein structure models; CASP; structure
prediction servers; metapredictors.

1. Introduction
Protein structure prediction is a field that has attracted enormous interest

since the very beginning of protein structural biology. The first model of a
protein was produced only about 10 years after the first protein structure was
solved and at a time when only two protein structures were available (1). The
model was a physical one (no molecular graphics available at the time), but
it was a rather good one; it was later established that the root mean square
deviation (rmsd) between the alpha carbons of the model and those of the
subsequently determined experimental structure was around 1 Å, a result that
would be considered interesting even today.
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As of today, hundreds of servers and tools are widely available for producing
a structural model of the protein of interest. The model can then be used as a
structural framework for designing further experiments, interpreting functional
data, assigning its molecular function to the protein, or as a target for drug
design or even as a tool for solving the experimental structure of the protein
and more. However, the quality of a model dictates its possible applications,
and therefore, the admittedly complex problem of assessing beforehand the
quality of models produced by different methods is of outstanding interest.

The issue is obvious: if one produces a model of a protein of known structure,
the suspicion might arise that, unwittingly, data extracted from that structure
are used in some of the steps of the procedure, and therefore, it would not be
correct to extrapolate the results obtained on a test set composed of proteins
of known structure to proteins of as yet unknown structure. On the contrary,
predicting the structure of a protein for which no structural experimental data
are available does not allow the effectiveness of the method to be assessed in
a reasonable and predictable time frame.

The solution is to predict a protein structure “just in time” that is soon before
the experimental structure of the protein is made available or before any method
had a chance of taking the structure of the protein into account for optimizing
its parameters.

The former strategy is used by the Critical Assessment of Techniques for
protein structure prediction (CASP) experiment (2) and the latter by automatic
evaluation servers such as EValuation of Automatic protein structure prediction
(EVA) (3) and Livebench (4).

We will describe these experiments, give some advice about how to make the
best use of the data they produce, and discuss their problems and limitations.

2. Materials
The models submitted to each of the CASP experiments and data related to

their evaluation are available at http://www.predictioncenter.org. A discussion
forum about most of the issues discussed in this chapter can be found at
http://www.forcasp.org.

The EVA and Livebench automatic evaluation servers make their data
available at http://cubic.bioc.columbia.edu/eva/ and http://bioinfo.pl/meta/
livebench.pl respectively.

3. Methods
Predicting the structure of a protein is both an intellectual challenge and

a practical issue, especially in light of the recent genomics and structural
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genomics efforts. The problem is far from being solved in general terms, but it
can be addressed using several heuristic strategies. During evolution, proteins
tend to preserve their structure. It is therefore possible to derive information
about a protein structure on the basis of the structure of an evolutionarily related
protein, which, in turn, can be identified by sequence analysis [comparative
modeling (CM)] (5). Even when no sequence similarity between two proteins
can be detected, they might share structural similarity. In this case, the problem
is to correctly recognize the compatibility of the sequence of the target protein
with a known fold [fold recognition (FR)] (6,7). Finally, a protein might share
neither sequence nor structural similarity with any known protein [new fold
(NF)], and the prediction of its structure has to rely on different approaches.
In many cases, when an NF is discovered, it is observed that it is composed
of common structural motifs at the fragment or super-secondary structural
level. This prompted the development of methods, known under the name of
“fragment-based” (8,9), which try and assemble fragments of proteins of known
structure to reconstruct the complete structure of a target protein.

4. The Difficulty of Evaluating a Prediction
At first sight, it might seem that the evaluation of the correctness of a model

is a straightforward task once the experimental structure is available, but matters
are not so easy.

First of all, the problem of finding the optimal superposition between two
structures, that is, the superposition that minimizes some “distance” measure,
does not have a unique solution. The difference between two superimposed
structures depends on the fraction of the structures that is superimposed (10).
It is entirely possible that one region of a model is very similar to the corre-
sponding region of the target protein but that the similarity is masked if the
whole structure is taken into account in the structural superposition. In other
words, there is a relationship between the quality of a structural superposition
and the fraction of superimposed structure. The identification of well-predicted
regions not only is an issue related to the evaluation of the model but also
might have important biological implications if they correspond to, say, the
active site of the protein.

Furthermore, the measure traditionally used to evaluate structural similarity,
the rmsd, is a quadratic measure. It is defined as the square root of the squared
differences between the coordinates of corresponding atoms, and therefore, it
will weight more regions that are not well superimposed with respect to the rest.
From a biological perspective, if a region of a protein is incorrectly predicted,
do we really care by how much or would we rather just like to say that the
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predicted and experimental regions are more far apart than it is acceptable
to derive meaningful insights from the model? This implies that the number
of atom pairs of the model and the structure that are within an acceptable
distance threshold is probably a better measure for the task of protein structure
prediction evaluation.

Proteins are not static objects, they have a dynamic behavior and some
regions are more flexible than others. We need to make sure that our quality
measure takes this into account and does not penalize a model if it does not
reproduce correctly regions of the experimental structure that have significant
experimental uncertainty.

Furthermore, proteins are often composed of domains, and an evolutionary
relationship between two proteins can be limited to one of the domains and not
to the overall protein sequence.

5. The CASP Experiment
In 1994, John Moult proposed a world-wide experiment named CASP (2)

aimed at establishing the current state of the art in protein structure prediction,
identifying what progress has been made, and highlighting where future effort
may be most productively focused.

Experimental structural biologists who are about to solve a protein structure
are asked to make the sequence of the protein available, together with a tentative
date for the release of the final coordinates. In the past 13 years, structural
genomics consortia have significantly contributed to the set of CASP targets.

Predictors produce and deposit models for these proteins (the CASP targets)
before the structures are made available. Another experiment, synchronized
with CASP and called CAFASP (4), has been testing publicly available servers
on the same set of targets, providing a unique opportunity for evaluating
how much human expert knowledge is important to obtain better models.
Recently, this task has been taken over by CASP itself (11). For testing server
predictions, sequences are automatically sent to participating servers, and the
models received within a short time frame, 48 h, are collected and stored. These
models are also made available to human predictors, who have more time at
their disposal, to avoid duplication of efforts, because many human predictors
make use of automatic server results in their model-building procedure.

Finally, a panel of three assessors compares the models with the structures as
soon as they are available and tries to evaluate the quality of the models and to
draw some conclusions about the state of the art of the different methods. The
experiment is run blindly, that is, the assessors do not know who the predictors
are until the very end of the experiment.
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Each of the routes to the prediction of a protein structure described before
has traditionally been mirrored by a CASP “category,” evaluated by one of
the three assessors. The categories have some degree of overlap: CM targets
for which evolutionary relationships are very hard to identify before knowing
their structure can also be considered in the FR category; NFs can share some
similarity with existing folds and be considered in both FR and NF categories.
Recently, some modifications have been proposed, and the target categories
will be reduced to two: template based and non-template based; but a special
analysis will be performed on the best models to evaluate the accuracy of
details of protein structure predictions, such as positioning of side chains and
correct prediction of loop structures. The reasons for this rearrangement will
become clear later.

The results of the comparison between the models and the target struc-
tures are discussed in a meeting where assessors and predictors convene; the
conclusions are made available to the whole scientific community through the
World Wide Web and through the publication of a special issue of the journal
“Proteins: Structure, Function, and Bioinformatics.”

There are several other categories that have been introduced in CASP
throughout the years, such as prediction of function, of domain boundaries and
of disordered regions, but we will not discuss them here.

The CASP experiment has been extremely successful. It has been repeated
every 2 years since its first edition, and there is no sign that it is going to be
discontinued in the near future (12). It is a very important experiment, which
has the merit of having raised the issue of objective evaluation of structure
prediction methods, of prompting the development of the automatic assessment
methods that will be described later and of fostering the development of similar
initiatives in other fields such as the prediction of protein—protein interaction,
gene finding, and scientific literature mining.

6. CASP Measures
As we mentioned, there are two problems with the measure of the similarity

between a model and a protein structure: the dependence of the solution on
the fraction of superimposed structure and the quadratic form of the rmsd. One
solution to the first problem is to use a graph such as the one shown in Fig. 1,
where the x-axis indicates the fraction of the model that has been superimposed
to the target structure and the y-axis reports the corresponding rmsd value (or
any other similarity measure) (13).

In the last edition of CASP, there were almost 30,000 submitted 3D models
(14), and it is not possible for any assessor or user to visually inspect all the
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Fig. 1. A plot describing the quality of two predictions in CASP6 for target T0196 (an
hypothetical protein from Pyrococcus furiosus, PDB code 1XE1). The x-axis indicates
the percentage of aligned residues of the target and experimental structure that are
closer than the threshold reported on the y-axis. As it can be seen from the plot, one of
the models (indicated by the thick line) is closer to the experimental structure for about
60% of the structure, whereas the other turns out to be closer when larger fractions of
the modeled and experimental structures are superimposed.

generated plots; so, it is necessary to convert the information into a numerical
value, for example, a rough estimate of the area under the curve. The Global
Distance Test (GDT-TS), used in CASP, is such a measure. It is defined as the
average percentage of C� atom pairs under a distance cutoff of 1, 2, 4, and 8 Å.

This measure is reasonably satisfactory for highlighting the overall quality
of the prediction of the backbone of the protein, but it does not capture the
details of the structure, for example, the correct prediction of the conformation
of side chains. The latter is evaluated using the number of chi angle values
within a threshold (usually set to 30�).

The next problem is related to the experimental uncertainty of the protein
structure. CASP provides data for the complete model structure but also for
subsets including, for example, all atoms that have a B-factor lower than a
threshold (usually 20 Å), residues whose chi angles can be assigned reliably by
X-ray crystallography, residues buried in the core, and so on.

Last but not least, CASP also analyzes the predictions of each domain of the
target proteins separately.

7. The Problem of Evaluating the Overall Performance of a Method
The final aim of CASP is to highlight which methods work better, and

therefore, it is essential to devise a comprehensive measure of the performance
of a method on the basis of the results that the method achieved on several
targets. And here, things get tricky.
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First of all, not all methods are applied or applicable to all CASP targets, and
therefore, a comparison between two methods needs to take into account how
many models have been submitted using that method, but most importantly,
which models. In fact, not all protein structures are equally difficult to predict,
so that the relative difficulty of a target should be taken into account. The same
problem arises when one wants to ask the obvious question of whether there has
been any improvement of the methods in different editions of the experiment:
each experiment has its own set of targets; therefore, the performance in one
edition should be compared to the performance in another one taking into
account the relative difficulties of the targets. The problem, as we will discuss
in the Subheading 8, is a very complex one, but also extremely important for
protein structure prediction evaluation.

8. Evaluating the Difficulty of a Prediction Target
The difficulty of predicting the structure of a given protein can be evaluated a

posteriori, analyzing how well it has been predicted on average. In some cases,
it is also possible to estimate the difficulty a priori. For example, in CM, one
can see how difficult it is to identify the evolutionary relationship between the
target protein and the protein of known structure that can be used as template
for building the model and how easy it is to obtain a reasonable sequence
alignment using standard methods. In FR predictions, one can measure how
strong is the sequence-structure fitness signal. In both cases, one can also
take into account, in evaluating the difficulty of modeling a protein, how well
automatic methods perform the task.

It should be mentioned upfront that none of these strategies is faultless. For
example, a posteriori evaluation cannot be used to compare two different CASP
experiments, because, hopefully, methods have improved during the two inter-
vening years, and the same is likely to be true for sequence alignment methods.
Another effect, even more difficult to take into account, is the increased size
of databases.

Traditionally, the difficulty of producing a comparative model for a protein
has been measured on the basis of the percent of sequence identity or similarity
between the target protein and the protein of known experimental structure
used as template for modeling. However, although this measure takes into
account the structural effect of the accumulation of mutations in the protein, it
is not equally effective for estimating the difficulty of detecting the relationship
and of obtaining a correct sequence alignment, that is, of detecting the right
correspondence between the amino acids of the target and template proteins. In
fact, most methods for the detection of sequence similarities rely on multiple
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sequence alignment, that is, on information provided by many sequences of the
proteins of the same evolutionary family. The increased size of the database
can therefore be directly responsible for the improvement in the detection of
evolutionary relationships and in the sequence alignment step, which are the
essence of the quality of a model.

In CASP, the difficulty of a prediction is estimated on the basis of both
its sequence and structural similarity with the potential templates. The former
is defined as the fraction of structurally aligned residues (within 5 Å) that are
identical between the target and the template, the second as the fraction of
pairs of target–template C� atoms within 5 Å after optimal superposition (15).
When an 1D scale for target difficulty is needed, the average of the two values
described above are used.

Another possibility is illustrated in Fig. 2. The multiple sequence alignment
for each target available at the time of each experiment can be used to calculate
the pair-wise sequence identity between each pair of sequences and to construct
a graph similar to that shown in the figure. Each node represents one of the
sequences in the multiple sequence alignment, and the lengths of the edges are
proportional to the distance (inversely proportional to the percent of identity)
between the connected nodes. The multiple sequence alignment is a path in
the graph that includes all the sequences. In first approximation, the difficulty
of aligning the target and template sequences depends on the availability of
intermediate sequences, and this is determined by the most difficult pair-wise
alignment that we need to perform to go from the target to the template. In other
words, we might end up aligning a target and a template sequence only sharing

Fig. 2. Graph associated with a multiple sequence alignment containing a target
(gray node) and a template (black node). Edges are weighted with the percent identity
between the sequences they connect. Although the target and the template only share 8%
of identical residues, the recruitment of homologous sequences allows to progressively
align pairs of sequences sharing at least 60% sequence identity.
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a very low sequence identity, but we might achieve this by aligning pairs of
very similar intermediate sequences, starting from the target and “jumping”
from one sequence to another until we reach the template much in the same
way as we might cross a large river jumping from one emerging stone to the
next. The difficulty of crossing the river is not proportional to its width but to
the longest jump that we need to make.

Therefore, given all possible paths including target and template, we are
interested in the one(s) where the maximum distance between each pairs of
traversed nodes is minimal. Once such a path is found, the longest edge in the
path, that is, the sequence similarity between the two most diverse sequences
in the path is an estimate of the difficulty of aligning target and template, given
the distribution of sequences in the multiple sequence alignment (16).

This approach gives, in first approximation, a measure of the difficulty of
aligning the target and template sequence for each target in different exper-
iments, given the database available at the time of the prediction, and can
be used to ask whether the alignment of targets and templates of equivalent
difficulty has become more accurate with time. Figure 3 shows a plot of the
percent of correctly aligned residues (a residue is considered correctly aligned
if, after superposition of the experimental and modeled structure, its C� atom
falls within 3.8 Å of the corresponding experimental atom, and there is no other
C� atom of the experimental structure that is nearer) achieved in the last three

Fig. 3. Scatter plot of the alignment quality obtained in the last three editions of the
CASP experiment as a function of the difficulty of the alignment, computed through
the method depicted in Fig. 2.
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CASP experiments for CM targets as a function of the difficulty parameter
defined above.

As it can be seen, there has been no major improvement in methods for
aligning sequences in the most recent CASP editions, and targets of similar
difficulties are aligned with the same level of accuracy. This is somewhat
disappointing and urges for novel ideas in the area.

Traditional methods for CM are based on the assumption that each of the
modeling steps, including template selection, and alignment, can be optimized
separately. It is easy to argue that a better approach would be to optimize all the
parameters simultaneously. Clearly, this is beyond our present computational
capabilities. However, it is worth noting that the most successful groups in
recent CASP experiments used the strategy of constructing several models for
each target protein and selecting the most likely one only at the end of the
complete model-building procedure. In other words, rather than optimizing each
of the steps of the comparative modeling procedure independently, they chose
to also funnel sub- optimal intermediate results into each subsequent step. This
represents a first degree approximation to a full multi-parameter optimization
procedure, and we argue that this type of strategy should be pursued even more
aggressively in the future.

It should also be mentioned, however, that predictors in CASP are not
necessarily in an ideal position to produce the best models because of the time
limitation imposed by the experiment. Also, the fact that the results are public
and very visible might stop predictors from trying “risky” innovations.

9. New Challenges
There is no doubt that modeling methods are extremely powerful. At present,

experimental structures are known for less than 1% of identified proteins,
whereas relatively reliable models can be produced for up to 20% of proteins.
In addition, models play an important part in a number of methods for obtaining
structural data.

On the contrary, genomic efforts are producing the sequences of an
impressive number of proteins, and there is no hope that all of them can be
studied experimentally in the foreseeable future. Scientists do need to rely more
and more on protein models to understand the function of this plethora of
proteins, and, consequently, the required level of accuracy of a model, especially
in the details of the structure, is increasing. CASP has highlighted a number
of substantial improvements in modeling techniques, such as the develop-
ment of FR and fragment-based methods, but, unfortunately, improvements in
accurately predicting the details of a protein structure (such as positioning of
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side chain and of structurally divergent regions, i.e., regions of the target protein
that deviate substantially from the template) have not been equally satisfactory
(12).

The overall conclusion that can be drawn from the analysis of the thousands
of model submitted by hundreds of groups is that, rarely, a comparative model
is closer to the experimental structure than the template used to build it or
to reliably predict structural divergent regions. Furthermore, there seem to be
no method able to consistently improve the accuracy of an initial model. An
important goal is therefore to foster the development of modeling methods
aimed at reaching an accuracy approaching the experimental error (17).

This is the rationale behind the emergence of a new category in CASP,
aimed, as we mentioned, at evaluating the quality of the details of the models
rather than their overall accuracy. It will be included in the next round of the
experiment, and, hopefully, it will be as effective in pushing the field farther
as the other CASP categories have been in the past.

10. Automatic Evaluation Servers
CASP is aimed at evaluating the state of the art in prediction methods;

however, not all experimentalists interested in obtaining a model of their protein
of interest have access to collaborations with outstanding modeling groups. The
most common route to prediction for the majority of scientists relies on publicly
available automatic servers. It is clearly important to evaluate the accuracy of
these servers on a large set of data and in a continuous fashion.

This need has prompted the development of automatic systems that contin-
uously evaluate automatic prediction methods. They collect the predictions
returned by different servers for new protein structures before any method had
a chance to use them in the training set.

EVA (3) is one of the servers that performs this useful service to the
community. Every day, EVA downloads the newest protein structures from the
Protein Data Bank (PDB) archive (18), extracts the sequences for every protein
chain, and sends them to each prediction server registered for the experiment.
The collected results are then evaluated and made public.

EVA covers several methods that predict solvent accessibility, secondary
structure, and complete 3D modeling. The proteins used in the experiment are
such that no pair of them has more than 33% identical residues over more than
100 residues aligned.

Another continuous benchmarking server is Livebench (19) that limits itself
to the evaluation of 3D models of proteins not sharing a significant sequence
similarity (and therefore deemed to be non-homologous) to any protein of



54 Tramontano et al.

known structure. Every week, new entries in the PDB database with a length
comprised between 100 and 500 residues are submitted to participating servers
and their returned predictions collected and analyzed.

The results of both servers, together with some statistical evaluation of
their significance, are publicly available through Internet, and they represent
extremely useful tools that should be consulted before using any prediction
server.

The possibility of automatically collecting the results of several prediction
servers also prompted the development of the so-called metapredictors (20).
These are gateways to various methods for protein structure prediction, which
“outsource” the prediction task to publicly available servers, collect the results,
and evaluate them. Some metapedictors just score the predictions and provide
the user with a ranked list, whereas some others combine the predictions
returning a single model. They usually perform better than single servers and
probably represent the best solution to automatic prediction of protein structure
as of today.

11. State of the Art of Structure Prediction Methods: The Usefulness
of Protein Models

We said in the introduction that the quality of a model dictates its usefulness
for several applications. As we discussed, estimating the quality of a model is
not an easy task. However, some rules of thumb can still be provided, with the
caveat that they are just indications and that each protein modeling experiment
has a story of its own.

Comparative models built on the basis of a significant sequence identity
between target and template, above 50–60% are certainly accurate in their
overall structure and can be reliably used to analyze the conserved regions
of the protein, such as its active site. As we mentioned, apart from special
cases (21), the predictions of structurally divergent regions is likely of being
much less accurate than the rest of the protein, and it is rather risky to derive
biological conclusions from their conformation (22). For very high sequence
identity, above 90%, there are usually very few structurally divergent regions,
but here, the devil is in the positioning of the side chains. It has been shown
that even models of high accuracy would fail if used as targets for drug design
because the positioning of the side chain would not be sufficiently accurate (23).

For comparative models, a user should always take into account that
the accuracy of the model is not uniform throughout the structure and that
functionally important regions are likely to be better conserved, at least for
orthologous proteins, than the rest of the structure. Comparative models based
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on distant evolutionary relationships have been often instrumental in deriving
functional properties of the protein, because these are usually brought about by
the most conserved parts of the structure, which, in turn, are those predicted
more accurately (24).

Models based on low sequence identity (below 30%), FR methods, and
fragment-based methods should only be used as structural frameworks to think
about the protein and certainly not for deriving detailed measures of distances
or energies. Remember that, if the model is built by comparative modeling, we
can at least be sure that the overall topology of the protein is correct, whereas
this might or might not be true for fold recognition and fragment-based models.
In these cases, only experimental verifications of the features predicted by the
model can increase the confidence in a model.

Models can also be used for speeding up the experimental determination of
a protein structure. For example, models with a GDT-TS value above 84 are
consistently able to solve the phase problem in crystallography, that is, to be
used as a tool to estimate the phases of the X-ray diffracted waves, a major
problem in X-ray crystallography (25). Models can also be useful in speeding
up the solution of the structure of proteins by nuclear magnetic resonance
spectroscopy.

The impressive thrust of biological and computational methods makes it very
difficult to predict what we can expect even in the near future. Nevertheless,
more and more protein sequences and structures will become available, and
there is no doubt that the sheer power of the data will help building more
accurate protein structure models. On the contrary, if we look at the history
of the past few years, we cannot but expect that new prediction methods will
appear. It follows that the possibility of exploring the complete space of protein
structure is, finally, within our reach.
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Aligning Sequences to Structures

Liam James McGuffin

Summary

Most newly sequenced proteins are likely to adopt a similar structure to one which has
already been experimentally determined. For this reason, the most successful approaches to
protein structure prediction have been template-based methods. Such prediction methods attempt
to identify and model the folds of unknown structures by aligning the target sequences to a set of
representative template structures within a fold library. In this chapter, I discuss the development
of template-based approaches to fold prediction, from the traditional techniques to the recent
state-of-the-art methods. I also discuss the recent development of structural annotation databases,
which contain models built by aligning the sequences from entire proteomes against known
structures. Finally, I run through a practical step-by-step guide for aligning target sequences to
known structures and contemplate the future direction of template-based structure prediction.

Key Words: Structural genomics; comparative modeling; sequence homology; fold recog-
nition; alignment quality; structural annotation; fold templates.

1. Introduction
Perhaps the most important aim of molecular biology is to determine how

proteins, encoded by genes within the genome of a given organism, are involved
in biochemical processes. By sequencing genes, we can determine sequences
of the proteins they encode, which can, in turn, help us determine protein
structures. The premise being that the solution of protein structures will then
help us to interpret their possible function and how they interact in cellular
processes. For instance, by understanding how a chain of amino acids is folded
in three dimensions, we can infer which residues may be involved in binding
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to other molecules. The solution of structures of normally functioning proteins
will also help us to improve our understanding of how faulty protein structures
may cause disease. The structures of disease-related proteins may then be used
to help develop and discover new and more effective drugs and diagnostic
methods. Structural data also allow us to infer distant evolutionary relationships
between proteins, which may not be obvious from the sequence data. Therefore,
we can use protein structure to assign functions to proteins, which have no
known sequence homologs. The role of protein structure determination is central
to the comprehensive functional annotation of genomes.

Continuing efforts have been made to refine computational methods for
protein structure prediction mainly because of the difficulty, expense, and time
taken to resolve structures experimentally. The ultimate goal of protein structure
prediction has been to accurately model the 3D structure or fold of a protein
given its amino acid sequence. The most successful methods have been those
that build models by aligning the target sequence to a template fold with an
experimentally determined structure. The success of template-based approaches
is based on the fact that most sequences are known to adopt a similar structure to
one that has already been determined. Techniques for aligning target sequences
to known structures have become widely used in structural genomics projects
because of their central role in target selection. A great deal of time, expense,
and effort that may have been spent solving structures experimentally have
been saved through the development of accurate modeling using sequence to
structure alignments.

2. The Traditional Techniques for Predicting Structure from Sequence
It is, of course, unnecessary to determine the structure of every protein within

the genome of an organism using purely experimental methods. Computational
methods for predicting protein structures have been developed, which allow us to
interpret 3D structure directly from the proteomic sequence data that have already
been obtained. Several different methods are used to predict protein structure
from protein sequence data. Blind community-wide experiments, namely Critical
Assessment of techniques for protein Structure Prediction (CASP), are carried
out biennially to assess the progress of different methods of protein structure
prediction (see Chapter 2 and supplements of PROTEINS: Structure, Function
and Genetics for details; S1, 1997; S3, 1999; S5, 2001; S6, 2003; S7, 2005). Tradi-
tionally, each prediction method taking part in the trials has been placed into one of
three categories reflecting the extent to which the method relies on knowledge of
known structures. These categories are homology or comparative modeling, fold
recognition, and ab initio or “new fold" prediction. Table 1 summarizes a simple
overview of each prediction category.
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2.1. Comparative Modeling

Comparative modeling (also referred to as homology modeling) involves
methods that predict the structure of a sequence by comparing it to known struc-
tures with similar sequences. These methods rely on knowledge of known struc-
tures and on the premise that similar sequences will have similar structures
(1). Target protein sequences are aligned against a library of template protein
sequences for which the structures have been determined. The target sequence is
thenassigned thestructureof the templateor templates towhich itoptimallyaligns.

Needleman and Wunsch (2) originally described an algorithm for optimal
pairwise alignment of biological sequences, using a dynamic programing
approach. This idea was later extended by Smith and Waterman (3) who
modified the approach to calculate optimal local alignments. The Smith–
Waterman local alignment algorithm was able to match isolated regions of
local similarity and was therefore able to align proteins with multiple domains,
repeats, or hypervariable regions more accurately.

Although dynamic programing approaches allow us to find the optimal
alignment between two sequences many times faster than by exhaustive searching
through every possible alignment, such methods are relatively slow in comparison
with more modern sequence comparison methods. Methods such as FASTA (4)
and later Basic Local Alignment Search Tool (BLAST) (5) were developed to
perform rapid searches for sequence homologs in large sequence databases. These
methods produce relatively accurate approximate sequence alignments by quickly
finding sub-sequences or “tuples” shared between the target and the template
proteins. Although they are comparatively fast, these methods are not as rigorous
or as sensitive as dynamic programing methods, and they rely on finding high
numbers of matching sub sequences. The effectiveness of sequence searching
can be improved by the use of an amino acid substitution matrix. Matrices such
as PAM (6), GCB (7), JTT (8), BLOSUM62 (9), STR (10) and more recently
OPTIMA (11) are used to score the alignment of different pairs of amino acids
with different weightings. These weightings account for the different physical,
chemical,andstructuralpropertiessharedbyeachpairofaminoacids, forexample,
a leucine–isoleucine match is scored higher than a leucine–tryptophan.

In the late 1990s, the ability of sequence searching methods to detect
more distant evolutionary relationships was improved through the use of
sequence profiles from comparisons of multiple aligned sequences and iterative
searching. The availability, speed, and sensitivity of the sequence profile-
based method Position-Specific Iterative (PSI)-BLAST (12) have allowed it to
become universally adopted as the standard benchmark, against which newly
developed sequence-based searching methods are compared. Indeed, using
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suitable parameters, PSI-BLAST searching can greatly outperform Smith–
Waterman searching in the detection of remote sequence homologs (13).
Arguably, the most recent major innovation in sequence searching has been
the introduction of profile–profile alignments (14). Improvements in distant
homology searching are discussed further in Subheading 3.1.

Once a sequence homolog of known structure can be found for a given
target, the next step is to use the 3D structure as a template to generate a
model of the target. Various homology modeling methods have been developed
that build models of a target using one or sometimes many related structures
(for a review of comparative modeling methods, see ref. 15). Generally, the
template structures with the highest sequence identity to the targets indicate the
most related proteins and are therefore chosen to build models from. However,
other considerations such as the resolution of the template and the protein
“environments” in which the template and the target are thought to be found
should also be taken into account. As fast sequence searching methods such
as those discussed above produce “approximate” alignments, the chosen target
and templates are often realigned using dynamic programing to find the optimal
alignments. Where template and target have low sequence identity, the structure
of the template is often used to improve alignments, for instance to avoid the
insertion of gaps into regions containing helices or strands (16,17).

Homology models are mostly built from the templates using rigid body
assembly (18), although other methods include modeling by segment matching
(19) and modeling by satisfaction of spatial constraints (20). The accuracy of
the built models is evaluated by checking stereochemistry and the compatibility
of the target sequence and the modeled structure (21,22). Automatic compar-
ative/homology modeling Web servers such as SWISS-MODEL (23) and
3D-JIGSAW (24) have become popular means to allow non-experts to produce
accurate models of newly determined sequences. Although such automation of
comparative modeling has obvious benefits for automatic genome annotation,
these methods are only effective when target and template are accurately
aligned and when the sequence identity is above the so-called “twilight zone”
at approximately 25–30% (25).

2.2. Fold Recognition

It is estimated that, for up to 70% of new protein sequences, there will be
a structure with a similar fold in the Protein Data Bank (PDB), from which a
suitable model could be constructed (17). Indeed, it has been found that just
nine different folds (termed superfolds) may account for up to 30% of the
known structures (26). However, for many of these protein targets, no templates
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will be found by sequence searching methods because of low sequence identity
to any known structure. Fold recognition—which was often referred to as
threading—attempts to assign folds to sequences that show very low sequence
identity to a known structure. Figure 1 shows a simple outline of how fold
recognition methods generally work. The target sequence is compared against
a library of fold templates using a scoring scheme, and the template with the
highest similarity score (or lowest energy potential) is assumed to be the fold
of the target protein. In reality, fold recognition methods often produce more
than one measure of similarity, which need to be interpreted by a human expert.
This reliance on human interpretation made the full automation of some fold
recognition methods more complicated. The automation of fold recognition is
discussed further in Subheading 3.

Although previous attempts to relate sequence to fold in the absence of
sequence homology had been made by Ponder and Richards in 1987 (27) and
Bowie et al. in 1990 (28), perhaps the first real method for fold recognition
was that developed by Bowie et al. in 1991 (29). The method described by
Bowie et al. attempted to measure the compatibility of sequence with fold in
terms of structural environments, which involved calculating the amino acid
preferences for solvent accessibility, contact with polar atoms, and secondary
structure type. The premise was that the structural environment of an amino
acid would be more conserved than the actual amino acid type itself. The 3D
structures were converted to 1D strings—relating to the structural environments
of the amino acids—which could then be aligned using a conventional dynamic
programing algorithm.

In 1992, Jones et al. developed a more successful method called THREADER
(30), which was built upon the fold recognition concept of Bowie et al. (29).
Jones’ pioneering THREADER method differed from the method of Bowie et
al. in that it considered the detailed network of pairwise interactions between
individual residues rather than just assigning them to a basic environmental
class. Typically, threading methods such as THREADER work by attempting
to fit (or “thread”) a target sequence directly on the backbone coordinates of
known protein structures by using a double dynamic programing algorithm
similar to that of Taylor and Orengo (31). The best-fitting model can then be
determined from energy potentials—derived from statistical analysis of proteins
of known structure, similar to that carried out by Sippl (32)—where the best
structural match to the target is the template with the lowest energy.

In general, the most successful traditional fold recognition methods were
those that were similar to Jones’ threading approach (33). A number of
related methods for fold recognition were developed throughout the 1990s
(34–36). Most of these methods employed some variation of iterative dynamic
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programing algorithm to build models combined with an analysis of pairwise
interactions between structurally adjacent residues.

Fold recognition methods such as threading can be powerful but often owe
much of their success to expert human interpretation of results (37). They are
often computationally intensive and may be limited in use to the recognition
of single-domain folds. Perhaps the single most important limitation of fold
recognition, however, is the fact that methods rely on the discovery of known
folds as templates. It is therefore impossible to build accurate models for targets,
which have novel structures using fold recognition. The “holy grail” of protein
structure prediction would be a method for predicting structure directly from
the amino acid sequence without any reliance on fold templates.

2.3. Ab Initio and “New Fold” Methods

Ab initio prediction involves methods that attempt to assemble 3D structures
“from first principles” and that do not rely directly on knowledge of known struc-
tures. Most ab initio prediction methods have traditionally relied on the gener-
ation of different chain conformations and evaluation of each conformation using
an energy function. Such approaches are extremely computationally intensive
because of the large search space that is required. The huge conformational search
space required is exemplified by the Levinthal paradox (38), which demonstrates
that the time taken for a relatively small protein of 100 residues to exhaustively
search through every chain conformation would exceed the estimated age of
the Universe. As most proteins in nature fold on a timescale on the order of
milliseconds, it is quite clear that they must be using some sort of folding pathway
(38). Owing to their reliance on searching conformational space, ab initio methods
have been limited to the prediction of very short amino acid sequences. Recent
projects have been initiated in attempt to reduce the computational time taken,
through the utilization of distributed molecular dynamics by Zagrovic et al. (39)
(http://folding.stanford.edu/) and through the construction of a petaflop super-
computer that can carry out one quadrillion (1015) operations per second, by the
Blue Gene project team at IBM (http://www.research.ibm.com/bluegene/) (40).
Other computational approaches toward a solution involve theory concerning the
possible folding pathways used by proteins in nature. The main problem with
ab initio methods is that we do not understand how to model the folding of a
protein and generally more theory than useful methods has arisen from the ab initio
prediction field (41).

Recently, methods which explore the possibilities of using fragment libraries
of “supersecondary” structural motifs have been developed. These methods
are based on the assumption that novel folds will be made up of common
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structural motifs, representing local minima in the polypeptide chain. By assem-
bling combinations of these template fragments of structure, we can greatly
narrow the search space required to fold the protein. The concept of fragment
assembly was originally introduced by Jones in the CASP2 experiment in
1996 (42). Jones’ FRAGFOLD method has since undergone a number of
improvements and has proved competitive in subsequent CASP experiments
(42–44). Perhaps the most successful fragment assembly method in recent years
has been the ROSETTA method, developed by Baker and colleagues (45–47).
Despite the apparent progress in this area, given the CPU time presently
required to fold even a short sequence, it still remains impractical to attempt
fragment assembly—or indeed any other New Fold or ab intio method—on a
genomic scale. However, some groups have begun to make use of peer-to-peer
networks to carry out new fold prediction across multiple clusters of computers
throughout the world. Both the Predictor@home (http://predictor.scripps.edu)
and now also the Rosetta@home (http://boinc.bakerlab.org/rosetta) projects
make use of the BOINC software (http://boinc.berkeley.edu) to distribute the
load of new fold predictions. As these projects become more popular and the
number of users increase, the speed at which new fold predictions can be made
should also increase.

3. Contemporary Methods for Sequence to Structure Alignment
The development of rapid and reliable, fully automatic methods for aligning

sequences to structures is necessary for comprehensive annotation of proteome
sequences to be practical. Optimal sequence alignment methods that use
dynamic programing techniques, such as the Smith–Waterman algorithm, are
computationally intensive and rely on close homology to a known structure.
Similarly, fully automating some traditional fold recognition methods such as
optimal sequence threading is also problematic. As mentioned in the previous
section, optimal sequence threading is relatively computationally intensive,
mostly limited in use to single domains, and expert human interpretation of
results is heavily relied on. There has been some effort at making the interpre-
tation of threading results from the THREADER method more intuitive through
the addition of a graphical user interface (48) and by reducing the rather “user
unfriendly” table of outputted similarity scores to a single score. Nevertheless,
reducing results into a single score automatically has proved much less effective
than using human interpretation.

In early CASP experiments, it was sufficient to predict the correct fold and
threading methods became popular because of their success with this task.
However, as model quality became increasingly important in later experiments,
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threading methods were criticized for not producing good sequence to structure
alignments. On thecontrary, although sequence-based search methods were
good at aligning sequences to structures, they were poor at finding distant
homologs to be used as templates. Therefore, over the past few years, predictors
have focused their efforts on the weaknesses of both homology modeling
and fold recognition methods, resulting in the incremental improvement of
automatic methods.

Some of the most successful fully automated methods for aligning sequences
to structures have combined aspects of both comparative modeling and fold
recognition, blurring the traditional boundaries between techniques. Lately, we
have seen the development of fully automatic servers which are able to carry
out sequence-based searches to detect very distant homologs. We have also seen
the development of so-called “hybrid” methods that have employed aspects
of traditional fold recognition combined with evolutionary information from
distant homology searches.

3.1. Improvements in Sequence Searching

Traditional pairwise sequence alignment methods can be used to assign
folds to sequences with obvious evolutionary relationships to a known
structure. Brenner et al. (49) have assessed the reliability of popular pairwise
sequence comparison methods such as FASTA (4) and BLAST (5), by
benchmarking their ability to recognize distant evolutionary relationships.
For sequences with identities approximately >30%, fast sequence searching
methods such as FASTA and WU-BLAST (50) compare in accuracy to the
slower, Smith–Waterman (3)-based method SSEARCH (4). However, when
sequence identities fall to <30%, conventional pairwise sequence comparison
methods fail to detect relationships (49); therefore, accurately annotating genes
that produce proteins with sequences of no discernible sequence identity to any
known protein structure is problematic.

Sequence searching was improved beyond pairwise comparisons with the
introduction of methods such as PSI-BLAST (12), Intermediate Sequence
Searches (ISS) (51), SAM-T98 (52), and Fold and Function Assignment System
(FFAS) (14). These methods use information from profiles of related sequences
to detect more distant relationships. Arguably, the most widely used of these
methods is PSI-BLAST, which carries out iterative searches for a target protein
on a data set of sequences using position-specific score matrices derived
from BLAST profiles. The coverage and error rate of PSI-BLAST in remote
homology detection in genome annotation was benchmarked by Müller et al.
(53). Using a “model genome” derived from structural classification of proteins
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(SCOP) (54) classified sequences, Müller et al� claimed that PSI-BLAST was
able to recognize homologs for 40% of domains with < 20% identity (53).

In 1998, Park and co-workers benchmarked ISS, PSI-BLAST, and their
hidden Markov model-based method SAM-T98 against pairwise methods. They
found that up to three times as many remote homologs could be detected using
the profile-based methods than could be from using the traditional pairwise
methods. FFAS is another profile-based method, which differs fundamentally
from PSI-BLAST in that uses profiles on both sides of the alignment, that is, a
profile is generated for the target sequence, which is aligned to template profiles
of proteins from the PDB (14). This profile–profile approach has proved to be
a major advance, and many of the current top-performing structure prediction
methods have since incorporated similar scoring schemes—see Ohlson et al.
(55) for a review of methods.

Sequence searching using profile methods can be used to detect protein
sequences with very remote common ancestry, that is, distant homologs with
similar function. However, these methods perform poorly at recognizing non-
homologous proteins with similar folds (14). For detecting analogous proteins
(proteins with similar folds but no sequence detectable common ancestry (26)),
methods which make use of additional structural information are the only clear
option (56,14).

3.2. Hybrid Methods

The development of hybrid methods, which combine sequence profile
searching with methods derived from fold recognition, has been designed to
quickly, reliably, and automatically align sequences to analogous structures on
a genomic scale. Although these methods do rely on finding some sequence
homology to target sequences, in doing so they allow inferences to be made
about possible protein function.

The GenTHREADER method, developed by Jones in 1999, was one of the
earliest hybrid approaches to fully automated fold recognition (56). The original
GenTHREADER protocol incorporated sequence alignment profiles, which
were evaluated using energy potentials derived from THREADER (30). The
resulting alignment scores, pairwise energy scores, solvation energy scores, and
length information were used as inputs to neural network, which was trained to
recognize whether proteins shared the same fold according to the Class, Archi-
tecture, Topology, Homology (CATH) (57) definition of fold. GenTHREADER
has since been updated to include additional structural information, which has
resulted in the detection of more remote homologs and a higher overall quality
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of sequence to structure alignments (58). The current GenTHREADER neural
network architecture is shown in Fig. 2.

A number of alternative hybrid approaches designed to enhance sequence
searching by incorporating structural information were also developed at the
start of the millennium. INBGU, developed by Fischer in 2000 (61), used a
combination of sequence profiles and PHD (62) predicted secondary structure
versus observed secondary structure in an extension of the fold recognition
method Sequence Derived Properties (SDP) (63). Kelley et al. (64) developed
3D position-specific scoring matrix (PSSM), which also incorporated predicted
secondary structure. 3D-PSSM used PSI-BLAST to generate 1D profiles, which
were then augmented using combination of solvation potentials, observed
secondary structure, and SAP structural alignments to generate 3D profiles
for each sequence in the library of templates. For each query sequence, an
1D-PSSM was produced using PSI-BLAST, and the secondary structure was
predicted using PSIPRED (13). Using this information, the query was then
aligned to each template PSSM. The method FUGUE by Shi et al. (65) also
made use of structural alignments, secondary structure, and solvent accessibility
information. Using this information, environment-specific score matrices and
structure-dependent score gap penalties are derived and are then used to align
target sequence profiles against the library of structural profiles. Each of these
methods have undergone a number of incremental improvements since there
initial development and have given rise to a plethora of new hybrid techniques.

3.3. Fully Automated Servers

Current methods, such as GenTHREADER, produce single output scores,
which can be reliably interpreted as a measure of confidence in the prediction
because of their consistency. The implementation of these tools as Web servers
have allowed state-of-the-art, fully automatic methods to be easily utilized by
non-expert users.

Intuitive Web interfaces are available for most automated servers, allowing
users to submit their target proteins of interest using a Web browser from
anywhere in the world. The results of each prediction are emailed back to
users shortly after the sequence is submitted. Emails will contain the prediction
results in plain text format, or often, hypertext links will be provided to Web
pages containing more intuitive graphical data. For example, the Bioinformatics
Unit at UCL offers a number of leading protein structure prediction methods
as free services to academic users (66). Figure 3 shows the Web interface for
the PSIPRED server where users can perform GenTHREADER predictions on
a given sequence, among other options (60).
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The growth in number of such servers and the acknowledged requirement
for the full automation of structure prediction initialized the critical assessment
of fully automated structure prediction (CAFASP), which was first held in
conjunction with CASP 3 (67). Even in the relatively short time between
CAFASP1 and CAFASP2 (68), an increase in performance of fully automatic
fold recognition was observed. Indeed by CAFASP3, fully automated servers
were outperforming many human experts (69). In addition to the biennial
assessments, continual assessments of automatic structure prediction methods
have been initiated, namely, LiveBench (70) and EVA (71).

During CASP5/CAFASP3, it became apparent that improved template
selection and increased accuracy of sequence to structure alignments could be
achieved from a consensus of prediction methods. Many of the top prediction
groups made extensive use of so-called “meta-servers” such as 3D-SHOTGUN
(72) (http://bioinfo.pl/meta/), Pcons, and Pmodeller (73). Meta-servers work
by simultaneously querying many individual independent prediction servers
and then automatically collating the results to form a consensus prediction.
Despite the outstanding success of meta-servers, they were criticized for stifling
the innovation of novel independent methods. Nevertheless for both expert
and non-expert users alike, consensus predictions are extremely valuable if no
obvious solution can be found using individual methods independently.

4. Databases Serving Structural Annotations for Entire Proteomes
Another important development has been the introduction of databases

serving the results of proteome-wide sequence-structure alignments. These
dedicated structural annotation resources are freely available to academics
and provide intuitive Web interfaces with various search options. Databases
such as 3D-GENOMICS (74) and Gene3D (75) primarily use PSI-BLAST and
other sequence-based search methods to assign folds to related sequences. The
Genomic Threading Database (59) (see Fig. 4 differs from 3D-GENOMICS and
Gene3D in that GenTHREADER (58) is used as the key part of the annotation

�
Fig. 2. The neural network architecture of the GenTHREADER method—one of

the earliest hybrid approaches to rapid, fully automated fold recognition (56,58). The
current version combines powerful profile–profile sequence searches with traditional
threading potentials and structural information. GenTHREADER was designed to be
a used on whole proteome sequences for use in the construction of the Genomic
Threading Database (59). Individual sequences can be submitted for GenTHREADER
predictions through the PSIPRED server (60).
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system with a view to providing more sensitive and selective detection of remote
homology. It is anticipated that each of these structural databases will employ
more rigorous profile–profile methods in the near future, with the advent of
Grid technology.

As each database uses a different prediction strategy, it is possible to combine
the results from several different annotation databases together to form a
consensus of methods. The e-Protein project (http://www.e-protein.org) was
setup to bring together structural and functional annotation databases from
University College London, Imperial College London, and the European Bioin-
formatics Institute, through a single interface using the Distributed Annotation
System (76). Another aspect of the project was to develop prototypes of Grid
technology to distribute the computational load across processing clusters at
each site. This has lead to a rapid increase in the speed at which proteome-wide
predictions can be made (100).

5. How to Align Your Sequence to a Known Structure
The following is a practical guide through the steps of aligning a given target

sequence to a template structure and producing a 3D model of your protein.
The flow chart in Fig. 5 outlines the basic steps described below.

5.1. Check Structural Annotation Databases for a Model

Perhaps the first thing to do is to check whether a model already exists
for your target protein within one of the structural annotations databases.
Databases such as the GTD and 3D-Genomics provide users with models for
most sequences in PDB format, which can be downloaded and viewed using
your favorite molecular model viewer. If, however, the annotation is very out
of date, of low confidence, or if you cannot find a match to your sequence,
then you will need to build a new model from scratch.

5.2. Preparing Your Sequence

Preparing your target sequence is an essential step to building an accurate
model of a globular protein. Your target sequence may contain low complexity
or non-globular regions, which should be identified and filtered or masked
�

Fig. 4. The Genomic Threading Database: a comprehensive resource for structural
annotations of the genomes from key organisms (http://bioinf.cs.ucl.ac.uk/GTD) (59).
Pre-computed models for each globular protein within a proteome can be downloaded
and viewed through a Web browse plugin. The PYMOL molecular viewer is used in
the figure to view the model (http://www.pymol.org).
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out before sequence searching. This will ensure that you will be searching for
appropriate globular regions within your protein only.

The program pfilt (ftp://bioinf.cs.ucl.ac.uk/pub/pfilt/) (77) can be used to
filter out (i.e., replace amino acid characters with Xs) those regions of low
complexity, coiled-coil regions, and regions with extremely biased amino
acid compositions such as transmembrane helices. Another popular sequence
filter is used by the seg method (78). Many prediction servers either include
user selectable sequence filtering options or apply them automatically before
performing a prediction.

If your sequence is particularly long, then it may be useful to identify
separate globular domains and chop your protein before identifying likely
fold templates. There are many domain prediction servers to choose from,
some of which can be accessed through the Meta-DP server (http://meta-
dp.bioinformatics.buffalo.edu/) (79).

An additional consideration is to specifically identify potential regions of
native disorder using the DISOPRED server (80). Regions of disorder often
occur in linker regions between domains and may also form complete separate
functional domains.

5.3. Finding Template Structures

Once the sequence has been prepared, the next step is to attempt to find a
template structure from which to build a model. The method used to identify a
template is dependent on the level of sequence similarity of the target sequence
to the database of known folds. It is sensible to begin with a basic sequence
search in the first instance as each progressive level of searching requires more
time to complete.

5.3.1. Simple Sequence Search

It is often best to start with a simple, rapid sequence search, using either
BLAST or FASTA, against the sequences within the PDB (81). A quick Web
search will reveal a number of Web sites providing interfaces for performing
FASTA and BLAST searches. Perhaps the most widely used Web forms are
the BLASTP interface at the National Center for Biotechnology Information
(NCBI) (http://www.ncbi.nlm.nih.gov/blast/) and FASTA33 interface at the
European Bioinformatics Institute (EBI) (http://www.ebi.ac.uk/fasta33/), both
of which have options to search your sequence against the PDB. Alterna-
tively, both programs can be downloaded, installed, and run in-house. The
FASTA package can be downloaded from ftp://ftp.virginia.edu/pub/fasta; this
package contains the latest version of FASTA plus SSEARCH, which may
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be useful for optimally realigning your sequence to the chosen template
(see Subheading 5.4). BLAST can be downloaded from the NCBI as part
of the toolkit (ftp://ftp.ncbi.nih.gov/toolbox/) or as a standalone package
(http://www.ncbi.nlm.nih.gov/blast/download.shtml).

A good match to a PDB sequence is indicated by a low E-value. Generally, if
your top hit has an E-value of > 0�001, it is worth carrying out a more sensitive
sequence search. However, if a homolog can be found with E < 0�001 using
BLAST or FASTA searches only, then you may move on to Subheading 5.4.

5.3.2. Complex Sequence Searches

If a very quick search does not reveal any obvious sequence homologs to
known structures, then a more sensitive sequence search will be necessary.
In this case, PSI-BLAST is the next step, which performs a more distant
search by iteratively building alignment profiles and using them on subsequent
sequence searches. Thus, with each iteration, more and more distant homologs
are found, the profiles get larger, and the search time gets longer. It is therefore
advisable to set a few iterations, maybe 3, in the first instance and then save
a checkpoint file. It is then possible to increase the number of iterations from
then on using the checkpoint file if required. It has to be said that using PSI-
BLAST most effectively is something of a black art, and the documentation
concerning the 30 or so configurable parameters may appear to be impenetrable
to beginners. Jones and Swindells (77) have written an informative account on
“Getting the most from PSI-BLAST” to shed some light on the key steps. Again,
there are a plethora of Web interfaces available for PSI-BLAST, although
the most up-to-date versions of the program and databases can be found at
the NCBI.

Although PSI-BLAST is the most popularly used sequence-searching
technique, there are many other methods available, which may provide
more sensitive searches. The SAM method by Karplus et al. (82) uses
an iterative Hidden Markov Model approach to sequence searching and
has become quite widely used in comparative modeling because of its
increased sensitivity over PSI-BLAST. Both standalone and Web servers
are freely available to academics through the Karplus Group homepages
(http://www.soe.ucsc.edu/research/compbio/sam.html).

For sequence only searching, most of the state-of-the-art methods carry out
some variation of profile–profile alignments. The FFAS method (14) was one of
the first to develop the idea of using profile–profile alignments and remains one
of the best approaches. Although there is currently no downloadable version
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available, the FFAS server (83) is freely available for academic use through
the Godzik group homepage (http://bioinformatics.ljcrf.edu/).

Most methods and servers provide users with a list of alternative hits to a
given sequence and scores relating to the strength of the match of each hit.
Users should refer to current documentation of individual methods to gauge
the accuracy of their match. If sequence-based searching fails to identify a
convincing template from which to model a fold, then a search for analogous
fold templates must be carried out.

5.3.3. Hybrid Fold Recognition Searches

Hybrid techniques are often able to find analogous fold templates where
using sequence information alone will fail. Approaches such as 3DPSSM (64),
mGenTHREADER (58), FUGUE (65), INBGU (61), and SPARKS (84) all
incorporate structural information in their scoring functions in some way and are
freely available through Web servers. Most of these methods carry out compar-
isons of the predicted secondary structure of the target sequence to the known
secondary structures of template folds to detect evolutionary more distant
relationships. Many of these methods now also incorporate profile–profile
alignments as the initial step; so, it is also worth considering hybrid methods
for identifying close homologous templates. The best of the sequence-based
methods and hybrid techniques are evaluated continuously by the LiveBench
server (70), and it is worthwhile checking the site for the latest ranking
of methods.

If analogous templates cannot found by independent hybrid methods, then
publicly available traditional threading methods such as THREADER (30) and
PROSPECTOR (85) may still be worth investigating. If neither hybrid methods
nor traditional threading techniques can identify a likely template, or if various
weakly detected fold templates are listed as top hits, then a Meta-server search
may be required.

5.3.4. Meta-Server Search

Meta-servers such as 3DJury (72) provide users with a list of templates
obtained from various independent methods. The top template chosen is
often the most commonly identified structure by all methods; however,
several configurable options are available to users, which allow results to be
combined in different ways. 3DJury will also provide users with a list of the
sequence to structure alignments and corresponding 3D models for each of the
independent methods.
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5.4. Templates Found—Build or Refine Models

If any of the techniques listed above fail to identify an adequate template,
then a new fold prediction method may be required to build a model (see
Subheading 5.5.). However, for the vast majority of target sequences, a
template can be found. Often for very close homologs, the sequence to structure
alignments provided by the servers are adequate enough to build a model,
and many servers will provide users with the 3D coordinates of a modeled
fold. However, users may wish to further refine their models to build loops,
model side chains more accurately, or “fill in” any gaps in the sequence to
structure alignment.

There are a few publicly accessible servers and methods available for
building refined models given a sequence to structure alignment. Perhaps the
most popular server freely available for academic use is SWISS-MODEL
(http://swissmodel.expasy.org/) (86). Alternatively, the MODELLER software
is also very popular and available to download for various platforms to both
academic and commercial users (http://salilab.org/modeller/) (15).

Both SWISS-MODEL and MODELLER provide the option of constructing
high-quality models from multiple alignments. Multiple alignments can be built
using a number of programs, although the SWISS-MODEL server recommends
the T-COFFEE method (87).

MODELLER also provides the option of building models from multiple
templates. Multiple template modeling is often beneficial because many templates
provide consensus information on the parts of the structure least likely to change
with variations in sequence. However, multiple template modeling may not be so
beneficial in cases where the templates are very distant from one another.

A number of alternative programs for building models may also be worth
investigating such as NEST (88), 3D-JIGSAW (24), and SegMod/ENCAD (89).
Side chain conformations can be more effectively predicted using the
specialized SCWRL method (90). Wallner and Elofsson (91) provide a rigorous
comparison of the performance and reliability of model building programs
mentioned above.

Once a model has been built, it is necessary to estimate its reliability. The
stereochemistry of your model can be evaluated using a program such as
PROCHECK (22) or WHAT-CHECK (92). These programs basically check
the extent to which your model deviates from real X-ray structures based on a
number of observed measures.

Various model quality assessment programs (MQAPs) are available which
attempt to discriminate between native-like models and decoy structures.
VERIFY3D (93) and PROSAII (21) have been in popular use for some
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time. More recently, methods such as PROQ (73) and MODCHECK (94)
have proved effective at enhancing model selection in sequence-based
methods.

5.5. What if no Template can be Found?

As previously mentioned, the vast majority of protein sequences in a given
genome should adopt a known fold, and the number of available fold templates
increases with the increase in the number of solved structures. However, if for a
given sequence, there are no hits to known templates using any of the methods
described above, then the only option is to attempt to construct a model using
a new fold prediction method. Fortunately, a few servers are now available,
which attempt to model folds from first principles. Perhaps the most popular
server is the Robetta server by the Baker group (95), which implements an
automatic version of the successful Rosetta method (47). Using the Robetta
server, it may be possible to receive a reasonable model of a short protein with
a novel fold, within a few hours.

6. The Future of Template-Based Structure Prediction
We are already witnessing the blurring of the traditional boundaries of

template-based structure prediction. Pure threading techniques, which exclu-
sively rely on energy potentials, are being squeezed out from both sides by both
fragment assembly methods and distant homology methods based on profile–
profile alignments. Despite this, there remains some added value to including
information from structure—as shown by the success of hybrid fold recognition
techniques at finding analogous folds—although from the plethora of methods
currently available, it is clear that energy potentials are not the only strategy.
Nevertheless, the concept of energy potentials, as originally used in threading,
is being adopted for other prediction problems such as fragment assembly (44)
and MQAPs (94).

Owing to the concerted effort of structural genomics projects, it is
conceivable that in the near future, homologous templates will exist for every
globular protein sequence, and our knowledge of “fold space” will be complete
(96). The problem of finding a fold template will thus become an increas-
ingly simple sequence search. The sequences requiring fold recognition or
fragment assembly techniques will become scarce, and as a result, developers
will be free to concentrate on model selection, reconstruction, and refinement.
Indeed, in anticipation of this next challenge, the CASP organizers have recently
announced the CASPR—Model Refinement Experiment. The hope is that this
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will encourage developers to concentrate on building models closer to the native
structures rather than just modeling them from the best available templates.

Arguably, the next major challenge for structure prediction will then be
to assemble the component models of globular proteins into complexes. The
modeling of quaternary structures will require the assembly of high-resolution
models of protein domains for entire proteomes, such as those contained within
structural annotation databases. Strategies for quaternary structure prediction
will be analogous to those used for tertiary structure prediction, in that, template
strategies will model interactions from structures of known complexes, and ab
initio docking techniques will be required where no templates exist. Template
strategies are currently being investigated which extend homology modeling
(97) and fold recognition methods (98). In addition, recent advances in docking
have borrowed from new fold prediction techniques (99).

Owing to the ever increasing number of sequenced genomes, the expanding
structural databases, and the computationally intensive task of assembling
complexes, the development of Grid technology will continue to play an
important role in future of structure prediction. Almost all current and future
template-based prediction methods should benefit from greatly increased perfor-
mance in parallel computing.

The importance of membrane proteins as drug targets undoubtedly makes
them a priority area for future research in structure prediction. However, both
solving and modeling the structures of the membrane spanning regions of
proteins remains notoriously difficult. See relevant chapters of this book for
insights and progress in this area.
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Protein Structure Prediction Using Threading

Jinbo Xu, Feng Jiao, and Libo Yu

Summary

This chapter discusses the protocol for computational protein structure prediction by protein
threading. First, we present a general procedure and summarize some typical ideas for each step
of protein threading. Then, we describe the design and implementation of RAPTOR, a protein
structure prediction program based on threading. The major focuses are three key components of
RAPTOR: a linear programming approach to protein threading, two machine learning approaches
(SVM and Gradient Boosting) to fold recognition, and evaluation of the statistical significance of
the prediction results. The first part of this chapter is a brief review of protein threading, and the
second part contains original research results. Some key ideas and results have been previously
published.

Key Words: Protein structure prediction; protein threading; linear programming; SVM;
Gradient Boosting.

1. Introduction
Protein threading predicts the 3D structure for a new protein by aligning

its primary sequence to proteins in the Protein Data Bank (PDB) to see if a
similar structure can be found. This chapter uses “target” or “target protein”
to refer to a new protein with structure to be predicted and “template” for a
protein in the PDB. If a target protein can be aligned to a template in the PDB
very well, then the target protein is assumed to have a similar structure as
the template and the structure of the target can be constructed based on this
alignment. The goodness of one target-template alignment is evaluated using
a scoring function. Protein threading makes a structure prediction according
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to the following procedures. First, the target protein is aligned to each of the
proteins in the PDB, and the optimal alignment between the target and each
template is calculated according to a given scoring function. Secondly, the best
one or several templates are chosen for the target based on their alignments
to the target. The spatial positions of the aligned residues in the target can be
copied from the chosen templates. Usually, the aligned residues lie in the core
regions (i.e., the spatially conserved region) of the target protein. Finally, a loop
modeling method is used to predict the coordinates of unaligned residues, and
a side-chain packing program is used to predict coordinates for the side-chain
atoms.

In the past 10 years, protein structure prediction based on protein threading
has made significant progress due to both the enlargement of the PDB
and the improvements in prediction protocols. In order to produce protein
structures in high-throughput mode, NIH has launched a Protein Structure
Initiative, which has produced several thousand non-redundant protein struc-
tures and continues to produce structures. The NIH initiative uses the strategy
of producing protein structures to maximize the number of proteins in nature
that are within modeling distance of proteins in the PDB. According to some
statistics (see http://www.rcsb.org/pdb/contentGrowthChart.do?content=fold-
scop and http://www.rcsb.org/pdb/contentGrowthChart.do?content=supfam-
scop for detailed statistics), each year, approximately 90% of all new proteins
deposited to the PDB have a structure that is similar to one or more proteins
in the PDB. According to refs 1 and 2), more than 90% of all single-domain
proteins with up to 200 residues can be superimposed with a protein in the PDB
with an average cRMSD less than 5 Å and an average coverage of 70%. This
means that in principle, the structures of most new proteins can be predicted if
we can develop a perfect protein threading protocol.

Generally speaking, there are three types of protein structure prediction
methods: homology modeling, protein threading, and ab initio folding. Protein
threading can be used for protein structure prediction when (1) the target protein
does not share a high sequence similarity with any protein in the PDB and (2)
the target protein shares a similar structure with some proteins in the PDB.
Homology modeling predicts the structure for a target by identifying some
homologous proteins from the PDB. Two homologous proteins usually share
similar sequences and similar structures. Therefore, homology modeling detects
whether two proteins are homologous by aligning their sequences. Compared
to homology modeling, which only considers sequence similarity between the
target and the template, protein threading makes use of the structural infor-
mation encoded in the template to improve prediction accuracy, including the
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use of secondary structure, solvent accessibility, and pairwise interactions. In
order to generate a good sequence-template alignment, homology modeling
usually requires that the target and the template share at least 25% sequence
identity (3). Protein threading can go beyond this limitation and sometimes can
align the target and the template very well even when their sequence identity
is well below 25%. Ab inito folding predicts the structure for a target without
using any complete protein structure in the PDB as a template. The number of
possible conformations increases dramatically with respect to the target protein
size. For a target protein with n residues, its backbone conformation roughly
depends on 2n - 2 torsion angles as each non-terminal residue is associated with
two angles and each terminal residue is associated with one angle. Compared
to the ab initio folding method that searches through the entire conformational
space, protein threading reduces computational complexity by restricting the
conformational space to only several thousand templates in the PDB.

Protein threading consists of the following five components: (1) a library of
template structures, (2) representation of targets and templates, (3) objective
function measuring the quality of sequence-template alignment, (4) an algorithm
finding the best sequence-template alignment, and (5) one method selecting
the best template based on all the sequence-template alignments. A library
of template structures is a set of representative structures selected from the
PDB. Usually, in order to save computing time, among all the highly similar
protein structures, only one is kept in the template library. To construct a
library of template structures, we can cluster all the proteins in the PDB
into several thousand groups and then choose one representative from each
group as a structural template. For example, we can use the weekly updated
PDB cluster results at ftp://ftp.rcsb.org/pub/pdb/derived_data/NR/ as the source
of the template library. We can also build a template library using a set of
representative proteins from the SCOP database (4).

2. Representation of Targets and Templates
Besides its primary sequence, for a target protein, usually we also use its

sequence profile and predicted secondary structure to improve the prediction
accuracy of protein threading. A sequence profile can be generated using
PSI-BLAST (5) or ClustalW (6), based on a multiple sequence alignment of
some proteins homologous to the target protein. A sequence profile encodes
the evolutionary information of the target protein and the sequence variability
among all the proteins homologous to the target. Two homologous proteins
evolved from the same ancestor are more likely to have a similar sequence
profile. The sequence profile of a target protein is a matrix with 20 rows and n
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columns where n is the target protein size. Each column of this matrix corre-
sponds to the occurring frequency of 20 different amino acids at a specific
position of the target protein. The secondary structure of a target protein
can be predicted using a secondary structure prediction program, which will
give a confidence score (or probability) indicating the likelihood of each
secondary structure type. Usually three secondary structure types are used, so
the predicted secondary structure can be represented by a matrix with 3 rows
and n columns. Each element in the matrix is the predicted probability of being a
specific secondary structure type. Two widely used protein secondary structure
prediction programs are PSIPRED (7) and PHD (8). Most of current threading
programs like FUGUE (9), 3D-PSSM (10), PROSPECT (11) and RAPTOR
(12), and others (13–16) incorporate both the sequence profile and secondary
structure into their scoring functions. Besides sequence profile and predicted
secondary structure, some protein threading programs also use predicted solvent
accessibility to enhance the prediction accuracy (17).

The representation of a template structure is more complicated. A simple
method is to use a 1D model to represent a template structure. Just like the
model of a target protein, each template position is associated with a position-
specific profile, a secondary structure type, and a solvent accessibility type.
Because a template structure contains more information, there are several
different methods to generate a profile for a template. A simple method is
to use PSI-BLAST or ClustalW to generate a sequence-based profile for a
template, just like PROSPECT-II (11,18) and RAPTOR (12). A structure-based
profile constructed from a multiple structure alignment of some proteins with
similar structures is also investigated (19). An issue with this kind of method is
that some templates do not have enough similar structures in the PDB so that
its structure-based profile might not have a good generalization performance.
3D-PSSM (10) first uses PSI-BLAST to generate a sequence profile and then
obtains a 3D-based profile by merging the sequence profiles of many proteins
with a similar fold as the template. SPARK (20) generates a structure-based
profile for each nine-residue structural fragment and then assembles all the
profiles together to obtain a profile for the whole template.

The major difference between homology modeling and protein threading is
that besides sequence information, protein threading can make use of struc-
tural information such as secondary structure and solvent accessibility to
improve both alignment accuracy and fold recognition rate. The secondary
structure type at each template position can be calculated using DSSP (21).
Many threading programs use three secondary structure types for the template:
�-helix, �-strand, and loop. Solvent accessibility also plays an important role in
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many protein threading programs (12,17,22). Typically, the solvent accessibility
at each template position is clustered into three types (buried, intermediate, and
exposed) or just simply binary types (buried or exposed). The potential of one
amino acid type being in a specific solvent accessibility type can be calculated
by statistically analyzing existing proteins in the PDB.

To model the interaction relationship among template residues, we can use
a 2D contact graph to represent a template structure. Besides the information
contained in the 1D model, the 2D model also takes into account the pairwise
contacts between two spatially close residues. An even more complicated model
is to consider interactions among multiple residues (23). The 2D model repre-
sentation of a template structure can be abstracted as a graph. In the graph,
each vertex represents a residue in the template protein and each edge denotes
a contact between two spatially close residues. The threading programs that
use pairwise interactions include PROSPECT (22), PROSPECTOR (24), and
RAPTOR (12). There are several different methods to construct the contact
graph for a template. One is distance-based and the other is based upon
Delaunay tessellation of protein structures (25). RAPTOR, PROSPECT, and
PROSEPCTOR use a distance-based method to construct a contact graph.
PROSPECT also explored distance-dependent pairwise interaction parameters.
RAPTOR is exploring a contact definition method described in ref. 26. The
preliminary result indicates that this is a promising method.

Due to different representations of a protein template structure, different
alignment algorithms are needed to find the best sequence-template alignment.
If only the 1D model is used, then a dynamic programming algorithm can be
used to align the target to the template. If the 2D model is used, then a more
involved algorithm is needed to find the optimal sequence-template alignment.
Some threading programs (16,19) use a Hidden Markov Model (HMM) to
represent a protein template or a multiple structure alignment of many proteins
homologous to the template. This method can be treated as a variant of the
1D model as the HMM model can only capture the dependence relationship
between two sequentially adjacent residues.

3. Threading Energy Function
The energy function should be able to quantitatively measure the quality of

a given sequence-template alignment. Generally speaking, the energy function
consists of sequence similarity score, environmental fitness score, structure
consistency score, and gap penalty. Sequence similarity score measures the
sequence similarity between the target and the template. If both the target and
the template have their profiles generated, then we can calculate the sequence
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similarity score by comparing these two profiles. The environmental fitness score
measures how well it is to align a target residue into the local environment at one
specific template position. The structure consistency score contains two compo-
nents: local structure consistency (i.e., secondary structure compatibility) and
global structure consistency (i.e., the pairwise contact consistency or multiple-
body contact consistency). We can use a weight factor to control the relative
importance of various energy items in the scoring function. The weight factors
can be adjusted for various purposes. For example, if only the sequence similarity
is considered, then protein threading becomes homology modeling. If only the
structural consistency is considered, then protein threading can be used to predict
structures for the targets with only distant homologs in the PDB. Usually, these
weight factors are trained to achieve the optimal alignment accuracy and fold
recognition rate. Not many protein threading programs use pairwise interaction
explicitly. The threading programs using pairwise interaction include RAPTOR
(12), PROSPECTOR (24), and PROSPECT-I (22). These programs also use other
energy items such as sequence similarity and gap penalty, while Madej et al. (27)
tried one method using only pairwise interaction.

Formally, the threading scoring function can be deduced using the Bayesian
rule (28). Let P �T �S� denote the probability of the target S being in the same
fold as the template T . Let A = �A �1� �A �2� � � � � �A �n�	 denote an alignment
between the target and the template where the target position j is aligned to
the template position A�j�. If residue j is not aligned to any template residue,
then A�j� is empty. Let P �T �S�A� denote the probability that the alignment
between S and T is A. Then, P �T �S� is equal to the maximum of P �T �S�A�
over all possible alignments. Applying Bayesian rules, we have P �T �S�A� =
P�T�S�A�

P�S�
= P�S�T�A�P�T�

P�S�
. If we assume that P �T� is a uniform distribution, given a

specific target, then P �T �S� ∝ maxAP �S�T�A�.
Assume the target sequence S to be a1� a2� � � � � an and the template sequence

to be t1� t2� � � � � tm. Then, P �S�T�A� can be expanded as follows.

P �S�T�A� = P �a1� a2� � � � � an�t1� t2� � � � � tm�A�

= ∏
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) (1)

The first term of the right-hand side of Eq. 1 is the probability of one
particular residue ai being aligned at position A�i� regardless of the alignment of
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other residues. The first term generally refers to the probability of the template
residue at position A�i� mutating to the sequence residue ai, and the proba-
bility of the sequence residue ai occurring at the local structural environment
of position A�i�. The local structural environment refers to secondary structure
and solvent accessibility. The second term is the probability of two residues
ai and aj simultaneously being aligned to two specific template positions A�i�
and A�j�. This item measures the pairwise intera ction of any two residues.
Usually, we only consider those cases where A�i� and A�j� are spatially close.
The remaining items refer to the probability of the multiple target residues simul-
taneously occurring at multiple specific template positions. Apart from first two
terms, the other term in the right-hand side of Eq. 1 is often ignored because
it is not easy to obtain an accurate estimation of the parameters due to insuffi-
cient experimental data and it is also computationally difficult to optimize the
objective function. If the template structure is represented by the 1D model,
then we should also ignore the second term of the right-hand side of Eq. 1. As
P �S�T�A� is the product of several items, we can use its negative logarithm form
f �S�T�A� = − log P �S�T�A� for the sake of convenience and computation.

Given a specific target and a template, the general form of the energy
function is as follows.

f �S�T�A� =∑
j

f1 �j�A �j�	+∑
j1�j2

f2 �j1� j2�A �j1� �A �j2�	+ � � �

+ ∑
j1�j2�����jM

fM �j1� j2� � � � � jM�A�j1� �A �j2� � � � � �A �jM�	 � (2)

where f1 �j�A �j�	 is the singleton score when the amino acid in target position
j is placed to the template position A�j� 
 f2 �j1� j2�A �j1� �A �j2�	 represents
the pairwise score when A�j1� and A�j2� are spatially nearby and the residues
at position jl, �l = 1� 2�, are placed to the template positions A�jl� at the same
time, and f3� f4� � � � � denote the multi-body interaction scores that are often
ignored in practice. If the template structure is represented by the 2D model,
then only the first two terms in the right-hand side of Eq. 2 are kept.

Equation 2 is only general forms of an energy function for protein threading.
The accuracy of the parameters used in the energy function is important for the
prediction accuracy of protein threading. There are many different methods to
estimate the parameters. The knowledge-based method measures a parameter
by statistically analyzing a subset of non-redundant proteins in the PDB. A
general form in statistically estimating a parameter � is − log fobs��=�

fref ��=�
, where

fobs �� = � is the observed frequency of � being at value  and fref �� = �
is the reference frequency or expected frequency of � = . Zhang et al. (29)
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proposed a physics-based method to estimate the reference frequency of a
parameter. Besides the statistics-based methods to evaluate the parameters for
the scoring function, some optimization methods are also used to design the
scoring function. For example, Meller and Elber (30) used a linear programming
method to optimize the parameters for protein threading.

4. Computational Complexity of Sequence-Template
Alignment Problem

If the template structure is represented as a 1D model, then a dynamic
programming algorithm can be used to find the optimal sequence-template
alignment within low-degree polynomial time, regardless of the threading
scoring function. However, if the pairwise interactions or multi-body
interactions are taken into consideration, then it is NP-hard to find the best
sequence-template alignment (31,32), which means it is unlikely to have a
polynomial-time algorithm to find the best alignment.

Various algorithms have been proposed for the optimal sequence-template
alignment problem in the case where the template structure is represented by
the 2D model. Many available threading programs (24,33,34) do not rigorously
treat the second term of the right-hand side of Eq. 2 as it is time-consuming
to search for the optimal alignment. If Eq. 2 is used as the objective function
and gaps are allowed in the alignment, then the threading problem is NP-hard.
Akutsu and Miyano (32) conducted a comprehensive study concerning the
computational complexity of the protein threading problem. They have demon-
strated that the protein threading problem is MAX SNP-hard, which means
that no approximation algorithm can guarantee to generate a solution with any
constant factor guarantee of accuracy within polynomial time unless NP = P
(it is generally believed that NP �= P). Besides this result, they also proposed
several approximation algorithms for this problem. The above computational
complexity results suggest that the protein threading problem is computationally
very difficult. But the theoretical results are somewhat misleading and the
approximation algorithms are not very useful in developing practical protein
threading programs. Empirically, it is acceptable if we can have an algorithm
to find the best alignment within a reasonable amount of time even if the time
complexity of the algorithm is exponential.

5. Threading Algorithms to Date
A dynamic programming algorithm can only find the optimal sequence-

template alignment if the template is represented by a 1D model. This section
summarizes several algorithms that can deal with the case where the template is
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represented by a 2D model. Lathrop and Smith (35–37) developed a branch-and-
bound algorithm to solve the space is split into many small subspaces by parti-
tioning the alignment domain of a single template position into several intervals.
The lower and upper bound of the objective function in each subspace is
estimated based on the sequence-template alignment generated without consid-
ering pairwise interactions. During the search process, some subspaces can be
discarded based on the estimated lower and upper bounds. The algorithm termi-
nates until the pruned search space contains only the best sequence-template
alignment. This algorithm runs fast when the similarity between the target and
the template is high.

Xu et al. designed a divide-and-conquer algorithm that is used in their
structure prediction computer program, PROSPECT (22,38), based on an obser-
vation that if the contact cutoff distance is not big, then the residue interaction
pattern of many templates can be represented as a sparse graph. This algorithm
splits a template into two subsegments such that there are few inter-segment
contacts, recursively align each subsegment to the target respectively, and,
finally, merge the alignments of two subsegments to form a complete alignment.
PROSPECT runs very fast for approximately three-quarters of the templates.
However, it runs very slowly or runs out of memory on a 32-bit platform on
the remaining one-quarter templates with many inter-residue contacts. In the
same spirit of cutting a protein template into some small components and then
aligning each component almost independently to the target, Xu et al. (39)
also proposed a tree decomposition-based approach to protein threading. This
approach guarantees to generate an exact solution to the threading problem
within a subexponential time. The difference between the divide-and-conquer-
based and the tree decomposition-based algorithms is that the latter can cut a
protein template into smaller components.

Both the branch-and-bound algorithm and the divide-and-conquer algorithm
can find the globally optimal solution to the sequence-template alignment
problem. However, both algorithms are still computationally expensive and
not suitable for genome-scale protein structure prediction. In Subheading 7.,
we will describe a linear programming approach to the optimal sequence-
template alignment problem. Empirically, the LP approach can find the optimal
alignment for 99% of threading instances within polynomial time (12).

There are also many approximate or heuristic algorithms proposed for protein
threading. Madej et al. (27) developed a Gibbs sampling technique to search
for the optimal sequence-template alignment. Godzik et al. (40) and Jones
et al. (34) proposed an interaction-frozen approximation algorithm to find a
good sequence-template alignment iteratively. In each iteration, this algorithm
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assumes that one end of a contact is fixed when calculating pairwise interaction
score. Thiele and Zimmer (41) developed a recursive dynamic programming.
Recently, Balev (42) proposed a Larangian relaxation algorithm to solve this
problem. The advantage is that this algorithm can estimate the gap between
the optimal value and the best-so-far objective function value. In addition, this
algorithm can also run very efficiently in practice when the target and the
template are similar although it cannot guarantee the optimal solution.

6. Fold Recognition
Fold recognition identifies the best template for a given target based on all

the generated sequence-template alignments. The sequence-template alignment
score cannot be directly used to rank the templates due to the bias introduced
by residue composition and the number of alternative sequence-template align-
ments for a given pair of target and template (43). Both Z-score (27,43) and
machine learning methods (12,13) are used to do fold recognition. Most of
the current structure prediction programs use Z-score (15,18,24) to recognize
the best-fit templates, whereas several programs such as GenTHREADER (13)
and PROSPECT-I (44) use a neural network model to rank the templates. The
neural network method formulates the fold recognition problem as a classifi-
cation problem. We will discuss later (see Section 7.4) that formulating the
template selection problem as a classification problem is not good enough for
the purpose of building a structural model for the target with the best accuracy.
The machine learning methods extract some features from a sequence-template
alignment to describe the quality of this alignment in many different aspects
and then try to predict if this pair of target and template is in the same fold or to
predict the overall quality of the alignment. A machine learning model directly
predicting the quality of a 3D structural model built from a sequence-template
alignment can also be used to conduct fold recognition (45). According to ref.
46, the machine learning methods are better than Z-score in terms of both sensi-
tivity and specificity. In fact, Z-score cannot cancel out all the bias introduced
by the protein sizes. A large target protein tends to have a large Z-score.

The Z-score was proposed to cancel out the bias caused by sequence residue
composition and by the number of alternative sequence-template alignments.
A typical procedure to calculate Z-score (43) is as follows: (1) shuffle the
residues of the target randomly, (2) find the optimal alignment between the
shuffled target and the template and calculate the alignment score, and (3)
repeat the above two steps as many as 100 times or until the distribution of
the generated alignment scores converges. Z-score is the alignment score in
standard deviation units relative to the mean alignment score. Suppose that the
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mean and standard deviation of the shuffled alignment score distribution is u
and � . If the alignment score between the un-shuffled target and the template
is S, then Z-score can be calculated by u−S

�
. The higher Z-score is, the better

the alignment.
The Z-score method has the following two drawbacks. First, it takes a lot

of extra time to calculate Z-score for a pair of target and template. In order to
calculate Z-score for each pair, the target has to be shuffled and threaded many
times to the template. This hinders the use of Z-score methods in genome-
scale structure prediction. In contrast, machine learning methods require only
one-time threading for a given target and template. Secondly, the Z-score is
hard to interpret, especially when the scoring function is the weighted sum
of various energy items such as mutation score, environmental fitness score,
pairwise score, secondary structure score, gap penalty, and score induced from
NMR data. For example, when the target is shuffled, shall we shuffle the
position specific profile information and the predicted secondary structure type
at each sequence residue? If we choose to shuffle the secondary structure, then
the shuffled secondary structure arrangement does not look like a protein’s
structure arrangement as the regular secondary structure types (i.e., �-helix and
�-strand) disperse randomly in the target. Otherwise, if we choose to predict
the secondary structure again, the whole process will take a very long time.

7. RAPTOR: Optimal Protein Threading by Linear Programming
This section describes several key components of protein threading program

RAPTOR: scoring function, a linear programming approach to finding the
optimal sequence-template alignment, two machine learning approaches to fold
recognition, and statistical significance of prediction results. Some of the work
described in this section have been published in several papers (12,46,47).

7.1. Scoring Function

RAPTOR uses a threading scoring function consisting of mutation score
Em, environmental fitness score Es, secondary structure compatibility score Ess,
pairwise interaction score Ep and gap penaltyEg. The scoring function takes into
consideration the evolutionary information of both the target and the template.
PSI-BLAST is used to generate a sequence profile for both the template and the
target. The sequence profile of the template is represented by a position-specific
score matrix (PSSM), where PSSM �i� a� denotes the score of the residue at
template position i mutating to residue a. It is defined as the log-odds of the
occurring probability of residue a at position i. The sequence profile of the
target is represented as a position-specific frequency matrix (PSFM), where
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PSFM �j� b� denotes the occurring frequency of residue b at target position j.
Let A�i� denote the target position that is aligned by template position i. If the
template position i is not aligned to any target position, then A�i� is invalid.

7.1.1. Mutation Score

RAPTOR calculates the mutation score at each template position i
using

∑
a

PSFM �A �i� � a	 × PSSM �i� a�. The total mutation score of a given

alignment A can be calculated by Em =∑
i

∑
a

PSFM �A �i� � a	×PSSM �i� a�.

7.1.2. Environmental Fitness Score

RAPTOR uses two local structural features to describe the structural
environment envi at template position i: secondary structure type (ss) and
solvent accessibility (sa). RAPTOR uses three types of secondary structure,
�-helix, �-sheet, and loop, and three levels of solvent accessibility, buried
(inaccessible), intermediate, and accessible. The boundaries between the
different solvent accessibility levels are determined by the equal-frequency
discretization method. The calculated boundaries are at 7 and 37%. The combi-
nation of these two local structure features yields nine different local structural
environments. Let F�env� a� denote the environment fitness potential for a
particular combination of amino acid type a and environment descriptor env.
F�env� a� can be calculated as follows.

F �env� a� = F �ss� sa� a� = −KBT log
N �ss� sa� a�

NE �ss� sa� a�

where KB is the Boltzmann’s constant, T is the temperature, N �ss� sa� a� is the
number of amino acid type a occurring in secondary structure type ss and with
solvent accessibility sa, and NE �ss� sa� a� is the expected value of N �ss� sa� a�,
calculated as

NE �ss� sa� a� = N �ss� sa�N �a�

N

where N �ss� sa� is the number of residues in secondary structure type ss and
with solvent accessibility sa, N �a� is the number of amino acids of type a and
N is the number of amino acids. The total fitness score can be calculated as
follows.

Es =∑
i

∑
a

PSFM �A�i�� a	×F�envi� a�
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7.1.3. Pairwise Contact Score

If the two ends of a contact in the template are aligned to target positions j1

and j2 respectively, then the pairwise score between j1and j2 can be calculated

by Pair �j1� j2� =∑
a

[
PSFM �j1� a�×∑

b

PSFM �j2� b�P �a�b�

]
, where P �a�b�

denotes the pairwise interaction potential between two residues a and b and is
taken from ref. (38).

7.1.4. Secondary Structure Score

Let SS �i� j� denote the difference between the template secondary structure
at position i and the predicted target secondary structure at position j. Suppose
that at the target position j the predicted confidence scores for �-helix, �-strand,
and loop are x �j�, y �j�, and z �j�, respectively. If the secondary structure at
template position i is �-helix, then SS �i� j� is defined as x �j� − z �j�. If the
secondary structure at template position i is �-strand, then SS �i� j� is defined
as y �j�− z �j�. Otherwise it is 0.

7.1.5. Gap Penalty

It is very unlikely that the target and the template have an exact match.
Therefore, some gaps should be allowed in order to guarantee the quality of the
alignment. However, if there are too many gaps, especially gap openings, in
the sequence-structure alignment, then it might indicate that the target does not
have a similar structure as the template. RAPTOR uses a gap penalty function
b+ge to penalize the number of gap openings and gap extensions. Meanwhile,
b is a gap open penalty, e is a gap extension penalty, and g is the gap length.

7.1.6. Contact Capacity Score

Contact capacity score is an optional energy item. Contact capacity potential
accounts for the hydrophobic contribution of free energy. Contact capacity
characterizes the capability of a residue making a certain number of contacts
with any other residues in a single protein. The threading program 123D
has explored this feature in its energy function (48). Let CC �a� k� denote
the potential of amino acid type a having k contacts. It can be calcu-
lated by CC �a� k� = −log N�a�k�

N�k�N�a�/N
, where N �a�k� is the number of residues

of type a and with k contacts, N �k� is the number of residues having
k contacts, N �a� is the number of residues of type a, and N the total
number of residues. The total contact capacity score can be calculated by
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Ec =∑
i

∑
a

PSFM �A �i� � a	×CC �a�CN �i�	, where CN �i� denotes the number

of contacts at template position i.

7.2. Threading Assumptions and Model

RAPTOR formulates the protein threading problem using the following
assumptions (27,38).

1. RAPTOR parses each structural template as a linear series of cores with connecting
loops between adjacent cores. Cores are the most conserved regions in a protein.
RAPTOR does not allow gaps in core regions as the chance of insertions or deletions
within cores is very small.

2. RAPTOR considers only contacts (interactions) between two core residues.
Generally, it is believed that the interactions involving the loop residues can be
ignored since their contribution to fold recognition is relatively insignificant. An
interaction exists between two residues if the spatial distance between their C�

atoms is below 7 Å, and they are at least four positions apart along the primary
sequence of the template. An interaction exists between two cores if there is at least
one inter-residue contact between them.

RAPTOR uses a contact graph to represent a template structure. A vertex in
the graph represents a template residue and an edge represents an inter-residue
contact. Based on the assumption that no gaps are allowed within a core,
RAPTOR further simplifies the template contact graph by modeling each core
as a vertex and adding one edge between two cores if there is at least one inter-
residue contact between them (see Fig. 1 for an example of a template contact
graph). For simplicity, when we say that core ci is aligned to target position sl,
we mean that this core is aligned to the segment starting from position sl. Let
D �i	 denote all the valid target positions that ci can be aligned to and R�i� j� l	
all the valid alignment positions of cj given that ci is aligned to sl. For any two
alignments �ci� sl� �

(
cj� sk

)
� k ∈ R�i� j� l	, if and only if l ∈ R�j� i� k	.

7.3. Integer Programming Formulation

7.3.1. Introduction to Linear and Integer Programming

Linear programming and integer programming is a subfield of mathe-
matical programming. A mathematical program tries to identify an extreme
(i.e., minimum or maximum) point of a function f �x1� x2� � � � � xn� in a feasible
region formed by a set of constraints, for example, g �x1� x2� � � � � xn� ≥ b. When
both the objective function f and the constraints are linear, this mathematical
program becomes a linear program (LP). When x1� � � � � xn are required to be
integers, it becomes an integer linear program. Linear programming and integer



Protein Structure Prediction Using Threading 105

Fig. 1. A template contact graph and a sequence-template alignment. A small circle
represents one residue and one solid arc indicates an interaction between two residues.
A dashed arc shows that if two target residues are aligned to two template residues
with a contact, then the interaction score of these two target residues must be counted
in the scoring function. The interaction score between two target segments is the sum
of the interaction scores of two target residues which are aligned to two interacting
template residues.

programming have been extensively used to solve many optimization problems
derived from various application areas such as finance, economics, and planning
(49,50). A general form of a LP with m constraints and n variables is

min
{
cT x � Ax ≥ b� x ≥ 0� x ∈ Rn�A ∈ Rm×n� b ∈ Rm� c ∈ Rn

}
�

where x is the vector of variables, c the cost vector, A the constraint matrix,
and b the vector of allowed resources.

LPs can be solved within polynomial time whereas IPs are NP-hard (51–53).
Two major methods for solving an LP are the Simplex method discovered by
G. Dantzig in 1947 (54) and the interior-point method invented by Karmarkar
in 1984 (55). However, it is difficult to say in practice which method is
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better (52). The current state-of-the-art LP software packages allow us to deal
with problems where the constraint matrix A has millions of non-zero elements.

7.3.2. Linear Programming Formulation

RAPTOR employs two kinds of binary variables to formulate the threading
problem as a LP. Let xi�l be a binary variable such that xi�l = 1 if and only
if core ci is aligned to position sl. Similarly, for any two interacting cores
ci1

andci2
, let y�i1�l1���i2�l2� = 1 indicate that core ci1

is aligned to position sl1
and

simultaneously core ci1
is aligned to position sl2

. Therefore, y�i1�l1���i2�l2� = 1
if and only if xi1�l1

= 1 and xi2�l2
= 1. The objective function of the protein

threading problem can be formulated as follows.

f = WmEm +WsEs +WpEp +WgEg +WssEss� where

Em =
M∑

i=1

∑
l∈D�i	

[
xi�l

leni−1∑
r=0

Mutation�headi + r� l+ r�

]



Es =
M∑

i=1

∑
l∈D�i	

[
xi�l

leni−1∑
r=0

Fitness�headi + r� j + r�

]



Ess =
M∑

i=1

∑
l∈D�i	

[
xi�l

leni−1∑
r=0

SS�headi + r� j + r�

]



Ep = ∑
�ci�cj�∈E�G�

∑
l∈D�i	

∑
k∈R�i�j�l	

y�i�l���j�k�P�i� j� l� k�


P�i� j� l� k� =
leni−1∑
u=0

lenj−1∑
v=0

�
(
theadi+u′ theadj

+v
)

Pair�l+u�k+v�


Eg =
M∑

i=1

∑
l∈D�i	

∑
k∈R�i�i+1�l	

y�i�l���i+1�k�Gap�i� l� k��

In this objective function, the singleton score items Em, Es, and Ess are
the expansion of the first term of the right-hand side of Eq. 2; the pairwise
score items Ep and Eg are the expansion of the second term of this equation;
headi is the head position of core i; ��tu� tv� = 1 if there is contact between
two positions u and v in the template; otherwise it is 0. Gap �i� l� k� is the
alignment score of aligning the template segment between core i and core i + 1
to the target segment from position l to k. This score contains gap penalty. As
inter-residue contacts involving loop residues are ignored, Gap �i� l� k� can be
computed by a dynamic programming algorithm, when i, ln, and k are given.
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Let G = �V�E� denote the simplified template contact graph. The binary
variables are subject to the following constraints:

∑
j∈D�i	

xi�j = 1� i = 1� 2� � � � �M
 (3)

∑
k∈R�i�j�l	

y�i�j��j�k� = Xi�l′
(
ci� cj

) ∈ E�G�
 (4)

∑
l∈R�j�i�k	

y�i�l��j�k� = xj�k′
(
ci� cj

) ∈ E�G�
 (5)

xi�j ∈ �0� 1� 
 (6)

y�i�l��j�k� ∈ �0� 1� � (7)

Equation 3 indicates that one core can be aligned to a unique target position.
Equations 4 and 5 imply that one y variable is equal to 1 if and only if both
of its two x variables are equal to 1. Equations 6 and 7 restrict x and y to be
either 0 or 1.

To solve the above IPs, we first relax the integral constraints to linear
constraints. Then we can solve the LP using either the Simplex method or
the interior-point method. Finally, we can obtain the solution to the IP using
branch-and-bound. Experimental results show that empirically this formulation
can solve 99% of the real-world threading instances within polynomial time.

7.4. Fold Recognition

RAPTOR uses two popular machine learning methods, Support Vector
Machines and Gradient Boosting, to conduct fold recognition. We can formulate
the fold recognition problem as a classification problem or a regression
problem. When formulating the problem as a classification problem, we treat
a target-template pair as a positive example if the target and the template
are in the same SCOP fold class (4) and as a negative example otherwise.
When formulating the problem as a regression problem, we want to predict
the alignment accuracy of a specific sequence-template alignment based on
some features extracted from the alignment. The alignment accuracy is the
number of correctly aligned positions by the sequence-template alignment
algorithm. We judge if one aligned position is correct or not by comparing this
alignment with the alignment generated using a structure alignment program
SARF (56).

The regression formulation has some advantages over the classification
formulation. The similarity of two proteins can be at fold level, superfamily
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level, or family level. A single binary classifier cannot effectively differen-
tiate one similarity level from another. According to simple statistics, the more
similar two proteins, the better alignment the two proteins can have. Two
proteins similar at a family level will have a better alignment than two at
a superfamily level, which in turn better than two at a fold level. By using
regression method with the alignment accuracy as the objective function, we
can differentiate these three similarity levels in a single regression model. The
most important problem is that even if a classifier can predict two proteins to
be similar, it is possible that the alignment accuracy between them is not good.
Instead, what we need is one template with the best alignment to the target.
Classification-based methods can only recognize those templates with a similar
fold as the target but cannot tell which template has the best alignment to the
target. A template with a similar fold as the target cannot guarantee a good
alignment to the target. The preferred result is that the better alignment the
template has to the target, the better the rank of the template.

The predicted alignment accuracy by RAPTOR has a correlation coefficient
0.71 with the real alignment accuracy (46). For a given target, the templates can
be ranked by the predicted sequence-template alignment accuracy. Experimental
results show that the predicted alignment accuracy has a much better sensitivity
and specificity than Z-score method and a much better computational efficiency.
The regression-based method is also better than the classification-based method
in terms of sensitivity.

7.4.1. Experimental Data

In order to train the machine learning models, we randomly chose 300
structures from the FSSP list as templates (57,58) and 200 proteins as targets
from the Holm and Sander’s test set (58). We generated a set of 60,000 training
data by threading each of the 200 targets to each of the 300 templates. We also
used Fischer et al.’s benchmark (59) as the test set to fix the parameters in
our training models. Finally, we used the Lindahl’s benchmark (60) as the test
set to measure the generalization performance of the machine learning models.
The Lindahl’s benchmark contains 976 proteins, any two of which share at
most 40% sequence identity. By threading each one against all the others, we
obtain a set of 976×975 threading pairs. As the training set is chosen randomly
from a set of non-redundant proteins, the overlap between the training set and
Lindahl’s benchmark is fairly small, which is no more than 0.4% of the whole
test set. To make sure the complete separation of training and test sets, these
overlap pairs are excluded from the test data.
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7.4.2. Feature Extraction

To use the machine learning methods, RAPTOR extracts the following
features from each sequence-template alignment.

1. Target size, which is the number of residues in the target.
2. Template size, which is the number of residues in the template.
3. Alignment length, which is the number of aligned residues. Usually, two proteins

from the same fold class should share a large portion of similar substructure. If
the alignment length is considerably smaller than their sizes, then it indicates that
this alignment is not good.

4. Sequence identity. Although a low sequence identity does not imply that two
proteins are not similar, a high sequence identity can indicate that two proteins
should be considered as similar (3).

5. Number of contacts with both ends being aligned to the target. There is a contact
between two residues if their spatial distance is within a given cutoff. Usually, a
larger protein should have more contacts.

6. Number of contacts with only one end being aligned to the target. If this number is
big, then it might indicate that the target is aligned to an incomplete domain of the
template, which is not good as the target is supposed to fold as an independent unit.

7. Total alignment score.
8. Mutation score, which measures the sequence similarity between the target and

the template.
9. Environment fitness score, which measures how well to put a residue into a

specific environment.
10. Gap penalty. Some gaps are allowed in the sequence-template alignment.
11. However, if there are too many gaps in the alignment, it might indicate that the

quality of the alignment is bad and the target and the template might not have the
same fold.

12. Secondary structure compatibility score, which measures the difference between
the template secondary structure type and the predicted target secondary structure.

13. Pairwise interaction score, which characterizes the capability of a residue making
a contact with another residue.

14. The Z-score of the total alignment score and the Z-score of a single score item
such as mutation score, environment fitness score, secondary structure score, and
pairwise interaction score. Z-score is only used for the comparison purpose. Our
experiments indicate that using Z-score in our machine learning methods does not
improve prediction accuracy at all.

7.4.3. Introduction to Support Vector Machines

Support Vector Machines and Kernel methods were developed in the late
1970s by Vapnik (61). However, it is only in recent years that the Kernel
methods have been gaining more attentions. The most commonly used SVM
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is the non-linear SVM. We will start with the simple linear SVM because the
non-linear SVM is just a kernelized linear SVM. We briefly introduce linear
and non-linear SVM regression (62). SVM classification can be treated as a
special case of SVM regression.

7.4.3.1. Linear SVM Regression

Given a set of training data �xi� yi� � i = 1� 2� � � � � l� yi ∈ R, and xi ∈ Rm, we
call xi the input data point, and yi the observed response given an input xi. Our
goal is to find a function f�x� that has at most � deviation from the observed
response. Suppose that the relationship between x and y is linear. That is,
there is a vector w ∈ Rm such that f�x� = wx +b. There might be multiple w
satisfying this equation, so we require that w has the smallest Euclidean norm
to guarantee a unique w. Therefore, we can write this problem as the following
optimization problem:

min
1
2
��w��2

subject to

yi −wxi −b ≤ �

wxi +b−yi ≥ �

It is almost impossible to guarantee such a f�x� exists. In order to have a
feasible solution, we allow for some errors. That is, we introduce slack variable
�i and �∗

i �i = 1� 2� � � � � l� to achieve the following optimization problem:

min
1
2
��w��2 +C

l∑
i=1

��i� �∗
i �

subject to

yi −wxi −b ≤ �+ �i

wxi +b−yi ≥ �+ �∗
i

�i� �∗
i ≥ 0

where C is the penalty factor.
By introducing Lagarangian multiplier �i and �∗

i �i = 1� 2� � � � � l� for the
constraints, we have the following dual problem:
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max LD = −1
2

l∑
i�j=1

��i −�∗
i �
(
�j −�∗

j

) (
xixj

)−�
l∑

i=1

��i +�∗
i �+

l∑
i=1

yi ��i −�∗
i �

subject to

l∑
i=1

��i −�∗
i � = 0

�i��∗
i ∈ �0�C	 �

After solving �i and �∗
i , we have:

f �x� =
l∑

i=1

��i −�∗
i � �xix�+b�

7.4.3.2. Nonlinear SVM regression

Now we generalize the linear SVM to accommodate the case where the
observed outputs are not a linear function of the input data. A very straight-
forward idea is to map the data points into a higher dimension space and
then do linear regression in the higher dimension space. The only difference
lies in that in the objective function LD, we replace

(
xixj

)
with ��xi��

(
xj

)
where � is the mapping function. Theoretically, there is no problem if we
know the mapping function �. However, there is a computational challenge
if we calculate ��xi� directly, when its dimension is very large, say millions
of dimensions or infinite. Notice that in LD only the products ��xi��

(
xj

)
but

not any ��xi� are needed. In order to circumvent this difficulty, the mapping
function � is chosen such that the inner product of any two points in the new
space can be represented as a function of the original two points. That is, there
is a function K such that ��xi��

(
xj

) = K
(
xi� xj

)
. Then, we do not need to

directly calculate ��xi� and ��xi��
(
xj

)
because we only need to compute

K
(
xi� xj

)
. Function K is also called a kernel function.

7.4.4. SVM Approach to Fold Recognition

We tried several different kernel functions in training the SVM models and
decided that the RBF kernel is the best, no matter whether SVM regression or
classification is used. For a given target, all the templates are ranked by the
outputs of the SVM models. If SVM regression is used, then the SVM outputs
can be interpreted as the predicted alignment accuracy. Otherwise, the SVM
outputs indicate the likelihood of the target and the template being structurally
similar.
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As mentioned before, the ultimate goal is to rank all the sequence-template
alignments for a given target such that the first-ranked sequence-template
alignment has the best alignment accuracy. In order to compare SVM classi-
fication and regression in terms of alignment accuracy, we calculate average
alignment accuracy of the first-ranked sequence-template alignments over three
different similarity levels: family level, superfamily level, and fold level. The
average alignment accuracy on the Lindahl’s benchmark test set is listed in
Table 1. This table clearly indicates that SVM regression can improve the
average alignment accuracy by 30% at fold level, 25% at superfamily level,
and 10% at family level. It is seen that both SVM classification and regression
methods fail to predict good alignments for some targets. Therefore, the average
alignment accuracy shown in this table is fairly low.

7.4.5. Introduction to Gradient Boosting Algorithm

Given an input vector variable x, a response variable y, and some samples
�yi� xi�

N
i=1, we want a function F ∗ �x� that can predict y from x such that

over the joint distribution of �y� x�, the expected value of a particular loss
function L�y�F �x�	 is minimized (63). The loss function is used to measure
the deviation between the real y value and its predicted value.

F ∗�x� = arg min
F�x�

Ey�xL �y�F�x�	 = arg min
F�x�

Ex

{
EyL �y�F �x�	 � x

}
(8)

Normally, F �x� is a member of a parameterized class of functions F �x
P�,
where P is a set of parameters. We use the form of the “additive”’ expansions
to design the function as follows:

F �x
P� =
M∑

m=0

�mh�s
�m� � (9)

Table 1
Performance Comparison Between SVM Classification and Regression Methods

Method Fold level Superfamily level Family level

SVM classification 13.8 20.6 49.8
SVM regression 17.3 25.5 55.9

The numbers in the table are average alignment accuracy of the first-ranked alignment
produced by the two methods. When the superfamily level is considered, then all the target-
template pairs similar in the family level are removed from the test data. Similarly, when the
fold level is considered, all the target-template pairs similar in the family level and superfamily
level are removed from the test data.
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where P = ��m��m�M
m=0. The functions h�x
�� are usually simple functions

of x with parameter � (The parameter � could be a vector.) The parameters
in Eq. 9 can be trained using greedy approach. That is, ��m��m� is trained
after ��i��i� �i = 0,1,…,m−1� are trained. Friedman (64) proposed a Gradient
Boosting algorithm to solve the optimization problem described in Eq. 9. By
employing the least square loss function �L �y�F�	 = �y −F�2/2, we have a
least-square boosting algorithm. Suppose that ỹi = yi −Fm−1 �xi�. Then, �m can
be calculated as follows:

��m��m� = arg min
���

N∑
i=1

�ỹi −�h�xi
��	2 ��m = N × ỹi

/ N∑
i=1

h�xi
�m� � (10)

The simple function h�x��� can have any form that can be conveniently
optimized over �. We chose a linear regression function h�x��� = ax+b for
the prediction of alignment accuracy where x represent the features extracted
from the alignment and � = �a� b�. Using this simple linear function, the
parameters a and b can be solved easily by the following equation:

a = lxy

lxx

� b = ỹ −ax

lxx = n×
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

�

lxy = n×
n∑

i=1

xiỹi −
(

n∑
i=1

xi

)(
n∑

i=1

ỹi

)
(11)

7.4.6. Gradient Boosting Approach to Fold Recognition

Here, we treat the alignment accuracy as the response variable and the
features extracted from a sequence-template alignment as the input variables.
In training the least-square boosting regression model to predict alignment
accuracy from the extracted features, at each round, the boosting training
algorithm chooses a single feature and obtain a linear function h�x��� = ax+b
with the minimum least-square error where x represents the chosen feature.
The training will terminate if no further improvement on accuracy is achieved.
In the end, all the generated linear functions are added to form the final
regression function. The underlying reasons of choosing a single feature at
each round are (1) we would like to see how important each feature is for
fold recognition and (2) we notice that alignment accuracy is proportional to
some features. For example, the higher the alignment accuracy, the lower the
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mutation score, fitness score, and pairwise score. Specifically, we employ the
following procedures to train the boosting regression model.

1. Calculate the difference between the real alignment accuracy and the predicted
alignment accuracy. We call this difference as alignment accuracy residual. Assume
the initial predicted alignment accuracy to be the average alignment accuracy of all
the training alignments.

2. Choose a single feature that correlates most with the alignment accuracy residual.
The parameters � and � are calculated by using Eqs 10 and 11. Then, the alignment
accuracy residual is predicted by using this chosen feature and the parameters.

3. Update the predicted alignment accuracy by adding the predicted alignment accuracy
residual to previous predicted alignment accuracy. Repeat the above two steps until
the predicted alignment accuracy converges.

7.4.7. RAPTOR Fold Recognition Performance

7.4.7.1. Sensitivity

Table 2 compares the performance of several popular machine learning
methods. In this experiment, we used RAPTOR to generate all the sequence-
template alignments. For each method, we tuned the parameters on the training
set and tested the model on the test set. Besides SVM classification, SVM

Table 2
Performance Comparison Among Seven Machine Learning Methods

Methods Family level (%) Superfamily level (%) Fold level (%)

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Boosting (regression) 86.5 89.2 60.2 74.4 38.8 61.7
SVM (regression) 85.0 89.1 55.4 71.8 38.6 60.6
SVM (classification) 82.6 83.6 45.7 58.8 30.4 52.6
Ada_Boost 82.8 84.1 50.7 61.1 32.2 53.3
Neural network 81.1 83.2 47.4 58.3 30.1 54.8
Bayes classifier 69.9 72.5 29.2 42.6 13.6 40.0
Naive Bayes classifier 68.0 70.8 31.0 41.7 15.1 37.4

These methods use the same set of sequence-template alignments generated by RAPTOR.
“Top N” (N = 1, 5) means that the best template among the top N templates output by the
machine learning method is used to judge if the prediction is correct or not. If this best template
and the target are similar in one level, then we say that this target is predicted correctly in this
similarity level. The results are obtained using the Lindahl’s benchmark.
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regression, and the boosting algorithm, we also tested the following machine
learning methods.

1. AdaBoost: The standard AdaBoost algorithm (63) for classification is similar to the
boosting algorithm described in this chapter except that AdaBoost does classification
instead of regression and uses the exponential instead of least-squares loss function.
The AdaBoost algorithm achieves a comparable result to SVM classification but is
worse than the boosting regression algorithm and SVM regression.

2. Neural network: Neural network is one of the most popular methods used in machine
learning (65). We use the Matlab neural network tools to implement this method.
The performance of neural network is similar as SVM classification and AdaBoost.

3. Bayesian classifier: A Bayesian classifier is a probability-based classifier which
assigns a sample to a class based on its probability of belonging to the class (65).

4. Naive Bayesian classifier: The Naive Bayesian classifier is similar to the Bayesian
classifier except that it assumes that the features of each class are independent,
which greatly simplifies computation (65). We can see both Bayesian classifier and
Naive Bayesian classifier obtain a poor performance.

Our experimental results show clearly that (1) the regression-based
approaches demonstrate better performance than the classification-based
approaches, (2) the boosting regression algorithm performs slightly better than
SVM regression and significantly better than the other methods, and (3) the
computational efficiency of the boosting regression algorithm is much better
than SVM regression, SVM classification, and neural network.

One of the advantages of the boosting algorithm over SVM regression is its
ability to identify important features, as at each round the boosting algorithm
only chooses a single feature to approximate the alignment accuracy residual.
The top five features chosen by the boosting algorithm are sequence identity,
total alignment score, fitness score, mutation score, and pairwise interaction
score.

It seems surprising that the widely used Z-score is not chosen as one of the
most important features. This indicates that the Z-score may not be the most
important feature and redundant. To confirm our hypothesis, we re-trained our
model using all the features except all the Z-scores. The results show that for
the boosting algorithm there is almost no difference between using Z-score
as an additional feature and without using it. This means that we can greatly
improve the computational efficiency of protein threading without sacrificing
accuracy, by completely avoiding the calculation of the expensive Z-score.

7.4.7.2. Specificity

We further examined the specificity of the boosting regression algorithm on
the Lindahl’s benchmark. All threading pairs are ranked by confidence score
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(i.e., the predicted alignment accuracy or the classification if a SVM classifier
is used). At the superfamily level, the boosting algorithm is consistently better
than SVM regression and classification within the whole spectrum of sensitivity.
At both the family level and fold level, the boosting algorithm is a little better
when the specificity is high whereas worse when the specificity is low. At the
family level, the boosting algorithm achieves a sensitivity of 55.0 and 64.0%
at 99 and 50% specificities, respectively, whereas SVM regression achieves a
sensitivity of 44.2 and 71.3%, and SVM classification achieves a sensitivity of
27.0 and 70.9% respectively. At the superfamily level, the boosting algorithm
has a sensitivity of 8.2 and 20.8% at 99 and 50% specificities, respectively.
In contrast, SVM regression has a sensitivity of 3.6 and 17.8%, and SVM
classification has a sensitivity of 2.0 and 16.1% respectively. At the fold level,
there is no big difference among the three methods.

7.5. E Value of RAPTOR

To evaluate the statistical significance of a particular prediction generated
by RAPTOR, we developed a method to calculate the E value of a specific
sequence-template alignment. Given a sequence-template alignment with n
correctly aligned positions, its P value is the probability that by chance a target
protein of the same length has an alignment with more than n correctly aligned
positions. Given a probability density function (PDF) of the number of aligned
positions, the P value of the alignment is the area under the PDF curve from
n to the positive infinity.

The alignment is considered to be significant when its P value is sufficiently
small. Its E value is the expected number of false alignments that has more than
n correctly aligned positions, which is the product of its P value and the size of
the template database. With E value, the quality of alignments is more intuitive,
without consideration of protein sizes, which is more convenient for users.
With E value, by setting some thresholds, it is much easier for users, especially
biologists, to understand the outputs of RAPTOR. To evaluate E value of any
sequence-template alignment, we should have the distribution of the numbers
of correctly aligned positions. A large amount of data is required to empirically
approximate this distribution. We used PDB25 to obtain the distributions of the
number of correctly aligned positions. PDB25 is a set of approximately 900
proteins, any two of which share no more than 25% sequence identity. Each
protein in PDB25 is aligned to each of the other structures in PDB25 using
SARF (56), a protein structure alignment program. Each protein in PDB25 has
a distribution of the number of correctly aligned positions.
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We discretize protein size into some intervals and calculate a distribution
of the number of correctly aligned positions for each interval. The distribution
can be represented as a histogram, a normal distribution, or an extreme value
distribution (EVD), whichever has a good fit to the empirical distribution. The
protein size is divided into small intervals with length 13 such that each interval
has at least one PDB25 protein falling in it. Altogether we have 47 intervals,
with 47 distributions accordingly. The normal distribution curve fits the data
better than the EVD curve. As a result, we only used the histogram and normal
distribution to calculate the E value.

The basic procedure of calculating the E value of a new alignment is as
follows. First of all, RAPTOR uses a machine learning model to predict the
alignment accuracy of the alignment, which is the predicted number of correctly
aligned positions in the alignment. Then RAPTOR calculates P value and E
value of the alignment based on the distribution associated with the target
protein size.

8. Discussions
This chapter presented a general procedure of protein threading for

structure prediction including template library construction, target and template
representation, threading algorithm, and template selection. In this chapter,
we also described some design and implementation details of our protein
threading program RAPTOR. By employing the well-studied linear programming
technique, RAPTOR can solve the optimal sequence-template alignment problem
very efficiently. By employing the advanced machine learning algorithms,
RAPTOR can avoid calculating Z-score without losing prediction accuracy.

One of the key issues with threading technique is that currently threading
scoring function is residue based. By ignoring the atomic details, we can
do threading quickly. However, an atom-level scoring function usually is
more sensitive than a residue-level energy function. Current protein structure
prediction program often does threading and side-chain packing in two separate
steps. It might improve prediction accuracy if we can make use of an atom-level
scoring function and conduct threading and side-chain packing simultaneously.
Another issue with protein threading is that when the similarity between the
target and the template is low, the minimized threading energy function does not
correspond to the best alignment between the target and the template. A better
way is to generate multiple sequence-template alignments with similar scores
instead of a single alignment. Then, we can construct a complete structural
model based on each alignment and use an atom-level energy function to choose
the best structural model.
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When the similarity between the target and the template is low, protein
threading cannot generate a very good structural model for the target regardless
of the threading protocol. Only a partial structure of the target can be predicted
well. To generate a good complete structural model for the target, we need
to conduct structural refinement after protein threading. As demonstrated in
Zhang and Skolnick paper (66), the structural models generated by threading
can be significantly improved if a proper refinement procedure is applied.
Another possible solution is to conduct protein threading and fragment assembly
simultaneously. Instead of aligning the whole target to the template, we only
align a partial target to the template and then employ the fragment assembly
technique (67) to generate a conformation for the unaligned regions. This
method enables us to evaluate the quality of the complete structural model
directly.
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Algorithms for Multiple Protein Structure Alignment
and Structure-Derived Multiple Sequence Alignment

Maxim Shatsky, Ruth Nussinov, and Haim J. Wolfson

Summary

Primary amino acid content and the geometry of the folded protein 3D structure are major
parameters of protein function. During the course of evolution the protein 3D structure is more
preserved than its primary sequence. Thus, analysis of protein structures is expected to lead to
a deep insight into protein function. Recognition of a structural core common to a set of protein
structures serves as a basic tool for the studies of protein evolution and classification, analysis of
similar structural motifs and functional binding sites, and for homology modeling and threading.

In this chapter, we discuss several biologically related computational aspects of the multiple
structure alignment and propose a method that provides solutions to these problems. Finally, we
address the problem of structure-based multiple sequence alignment and propose an optimization
method that unifies primary sequence and 3D structure information.

Key Words: Multiple structure alignment; partial alignment; structure base sequence
alignment; structure-sequence conservation.

1. Introduction
The increasing number of determined protein structures opens new

horizons for studies of protein function. There are numerous examples of
similar functioning proteins, for example, isomerases, cytokines, myoglobins,
immunoglobulins, and transferases, with similar 3D structure but less than
25% sequence identity. Therefore, in order to study relationships between such
proteins sequence analysis alone is not sufficient. While methods for sequence
analysis have significantly advanced in the past years, methods for structural
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analysis are still at an earlier, exploratory stage. Here, we address one of
the most basic structure-related problems, the problem of multiple structure
alignment and structure-derived multiple sequence alignment.

A number of methods have been proposed to solve the problem of struc-
tural alignment between a pair of proteins, for example, VAST (1), Geometric
Hashing (GH) (2), CE (3), DALI (4), FlexProt (5), and others (6). Obviously,
multiple structure alignment can provide much more information. Recognition
of a structural core common to a set of protein structures has many applica-
tions in the studies of protein evolution and classification (4,7), analysis of
similar functional binding sites and protein–protein interfaces (8–10), homology
modeling and threading (11,12), and so on. However, despite this need, the
multiple structure alignment problem has not been extensively studied, and,
consequently, there are very few available methods that solve this task.

Let us formulate a list of some principal requirements for a multiple structure
alignment method. Subjects like protein structure representation and struc-
tural similarity scoring functions are extensively discussed in several reviews
(6,13,14); therefore, our aim is to emphasize the topics that are specifically
related to the multiple alignment problem and topics that were paid less attention
in previous reviews and they are the following:

• Partial alignment.
• Subset alignment.
• Flexible alignment.
• Sequential alignment.
• Sequence order independent alignment.
• Time efficiency.

1.1. Partial Alignment

There might be only a sub-structure (motif and domain) that is similar between
a set of molecules, for example, in a set of multi-domain proteins having one or
several common domains. In case of protein domain swapping (15), a protein
chain of a monomer can be partially aligned with two protein chains of a dimer.
Another example is alignment between multi-protein complexes having some
structurally similar combination of molecules. Thus, a detection of all common
motifs, domains, or multi-protein combinations may be required for a multiple
structure alignment method. We consider a local alignment as a special case
of partial alignment. For example, a partial alignment may consist of several
locally matched structural elements that can be aligned under the same Euclidean
transformation.
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1.2. Subset Alignment

An important aspect of any multiple, sequence, or structure alignment is a
detection of a subset of molecules that are more similar than the whole input set.
For example, consider an input set of 10 proteins from one family and 5 proteins
from another family. Assume that the proteins in each family are structurally
similar, but there is little similarity between any two proteins from the first
and second family. A multiple alignment between these 15 molecules would
probably detect at most one common secondary structure element. Therefore,
it is very important for a multiple alignment method to be able to automatically
distinguish between two such subsets.

To demonstrate the significance of the partial and subset alignment ability,
consider a schematic example in Fig. 1A. Three proteins share a common small
pattern, and each pair of the proteins share additional, larger, patterns. The

Fig. 1. (A) A schematic example of three proteins that share a common pattern X.
Applying a pairwise alignment method that detects the most similar common pattern
will result in pattern A for proteins P1 and P2, pattern B for P1 and P3, and pattern D for
P2 and P3. Therefore, no common pattern can be derived from the patterns A, B, and D.
One possible solution is to store two (or more) high scoring solutions for each pairwise
comparison. However, in this case, the number of iterations to compare all pairwise
results to detect the best combination of multiple alignments becomes exponential.
(B) The MultiProt method aims to compute a large number of different local multiple
alignments. The depicted alignments are detected while selecting each structure as a
pivot, for example, patterns X, A, and B are detected when protein P1 is selected as
a pivot. Finally, pattern X will appear in the multiple alignment of three molecules.
Patterns A, B, and D will appear in the set of alignments consisting of two molecules.



128 Shatsky et al.

desired goal of a multiple structure alignment method is to detect all four
patterns. An additional example with real protein structures is given below in
Subheading 4.3. It should be clear that the number of all possible solutions
that may be also biologically meaningful could be exponential in the number of
input molecules. For example, consider proteins that contain a large number of
�-helices. Each pair of �-helices could be structurally matched (at least partially,
if they are different in their lengths). Any multiple combination of �-helices
from different proteins results in some multiple alignment. Obviously, the number
of such multiple alignments is exponential. Therefore, even if an algorithm
is capable of detecting all such combinations, it is not practical to report them.

1.3. Flexible Alignment

Proteins are flexible molecules, which may appear in different conforma-
tions. Hinge motion may divide a protein structure into several almost rigid
parts, which move one relative to the other. In such a case, a rigid structural
alignment may detect only separate partially matched regions. Therefore, only
a manual inspection of the final solution may reveal the whole picture as in the
example given below in Subheading 4.3. Obviously, a method that is able to
automatically detect a multiple flexible alignment is more beneficial.

1.4. Sequential and Sequence Order Independent Alignment

Sequence alignment methods naturally produce alignments that follow the
protein sequence order, that is, aligned amino acids indices are always in
increasing order. However, protein evolution imposes less constraints on the
sequential order than on the structural properties. Consequently, proteins may
have a similar function but topologically different 3D structure. One such
example is the calcium/phospholipid-binding domain (CaLB, C2 domain) which
consists of a �-sandwich (eight strands in two sheets). The proteins synap-
togamin I (pdb:1rsy) and cytosolic phospholipase A2 (pdb:1rlw) both have
the C2 domain but with different topology (16). The phenomenon of similar
secondary structure arrangements but with different topology has been the
case of a previous study [(17) and references therein]. Therefore, in order to
fully discover the structural similarities, sequence order independent alignments
should be considered. In Subheading 4.3., we consider one such example.

1.5. Time Efficiency

Optimal pairwise structural alignment can be solved in polynomial time;
however, it is still computationally expensive and currently not practical for
an implementation (18). Approximation techniques can significantly reduce
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time complexity with relatively small degradation in solution accuracy (19,20).
However, even for three structures the multiple alignment problem is NP-
hard (21) (i.e., practically solvable only in exponential time). While the worst
case scenario may be computationally infeasible for the detection of an exact
solution, considering specific geometrical properties of the protein molecules
can, in practice, significantly reduce the computational cost. Examples of such
properties, which are far from resembling a random point distribution, include
sequentiality of the protein backbone, secondary structure element composition,
and protein compactness. Therefore, “smart” heuristic methods that utilize such
properties, in practice, may give results that are sufficient for a biological
research. An excellent example of a heuristic method for multiple sequence
alignment is MUSCLE (22). Still further research, theoretical and practical, is
required for the multiple structural alignment problem.

Below we briefly review available methods for the multiple structure
alignment task and try to correlate them with the list of requirements defined
above.

A center-star approach is one of the efficient ways to compute a multiple
sequence alignment. Analogously, it can be applied for multiple structure
alignment. A center structure is selected which is most similar to the rest of
the molecules. Then, iteratively, all other structures are joined into a multiple
alignment based on their pairwise alignments with the center structure (11,23).
Alternatively, one can apply a tree-progressive approach, where a multiple
alignment is created according to some distance tree (24,25). Therefore, a
tree-progressive alignment first aligns similar proteins, then proceeds to more
distant relationships. An advantage of such an approach is its ability to detect
sub-set alignments of structurally different families.

In order to tackle the flexible alignment problem, the POSA method (26)
utilizes a partial order graph representation of multiple alignments. The advantage
of this method is in automatic detection of larger structurally similar regions
that cannot be detected without considering hinge motions of the protein
backbone. The multiple alignments are computed from pairwise alignments
using a tree-progressive approach.

The center-star and the tree-progressive approaches are essentially based on
some pairwise alignment method that is iteratively applied for the construction
of a multiple alignment. Therefore, such technique is less suitable for detection
of small structurally similar motifs as at each stage of the iterative alignment
only one, the best, solution is selected. Figure 1A shows a simple example
where a straightforward application of a pairwise alignment method will fail to
recognize a pattern common to more than two sequences/structures.
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The MALECON (27) and MUSTANG (28) methods aim to avoid the short-
comings of the iterative pairwise approaches using two different techniques.
MALECON (27) considers all possible combinations of the input molecules.
When the number of input proteins is large, such a combinatorial approach
becomes exponential; therefore, the method considers at least all possible
protein triplets while other proteins are progressively added to the aligned
triplets. MUSTANG (28) uses a tree-progressive approach; however, it reduces
possible artifacts of the iterative multiple alignment by applying a refinement
of the residue correspondence scores based on transitive relations between
the aligned structure pairs. Consequently, the advantage of both methods is
in detection of subset alignments. However, because only one solution is
considered for any given combination of proteins, some smaller local align-
ments can be missed. Both methods produce sequential alignments.

The MUSTA algorithm (29,30) computes a common geometric core that
appears simultaneously in all the input molecules, thus avoiding the short-
comings of the iterative pairwise approaches. The method applies the Geometric
Hashing technique (27) which allows detection of the sequence order
independent alignments. This technique was successfully applied in a number of
pairwise structure alignment methods (32,33). Because the method requires that
all input molecules participate in the multiple structural alignment, the drawback
of this method is inability to distinguish outliers. It is sufficient that one
structure is very distinct from the others to result in an empty alignment. Conse-
quently, this method cannot detect subset alignments. Second, its efficiency
limits practical application for only 10–15 molecules.

Another approach, SPratt2 (34), aims to detect small common, local structural
motifs of size 3–20 amino acids. The method describes each residue as a short
string of its spatial neighbors. Then, an efficient sequence pattern discovery
technique is applied to detect sets of residues with common environmental
descriptors. The computed alignments are sequential. The method is efficient
and allows subset alignments.

The MASS (16,35) method utilizes the secondary structure information
(SSE) to reduce the computational cost of initial common core detection.
Therefore, it requires that at least two pairs of SSE be multiply aligned. The
method is capable of detecting partial, subset, sequential, and non-sequential
alignments.

In order to produce structure-based multiple sequence alignment, the recently
developed method 3DCoffee (36) incorporates spatial weights into the multiple
sequence alignment method TCoffee. The spatial weight of an amino acid pair
is defined as a positive large constant number, when this pair is structurally
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aligned according to some pairwise structural alignment method. Therefore, the
method does not distinguish between amino acids that are structurally aligned
at different distances. Because the method applies information only from the
best pairwise structure alignment, the weighting decision may be inaccurate for
the multiple alignment problem.

Here, we discuss a method that aims to solve the multiple structural alignment
problem with the support of the most above-defined requirements. One of the
advantages of our method is its ability of subset and partial alignment. This
is illustrated in Fig. 1A and B. Consider the set of proteins from Fig. 1A.
The goal of our method is to detect local multiple alignments of all four
patterns. This is achieved by performing all possible local multiple align-
ments of ungapped fragments. The final solutions are constructed from these
locally aligned multiple fragments. This makes our approach different from
most existing methods, which generally derive a multiple alignment from the
high scoring pairwise superpositions. If a pattern appears more than once in
some protein, our method recognizes only one combination of this pattern
from all possible appearances; however, all sets of possible combinations are
reported by the program. Our method is extremely efficient and is suitable for
simultaneous comparison of up to tens of proteins.

Below, we start with the brief description of the multiple structural alignment
method, MultiProt (37). Then, we discuss the problem of structure-based
multiple sequence alignment and propose an optimization method that unifies
primary sequence and 3D structure information. Finally, we present some exper-
imental results that include comparison with the HOMSTRAD (38) benchmark
of manually curated multiple structure-based sequence alignments. We argue
that our automated approach produces slightly more accurate alignments.

2. MultiProt—an Algorithm for Multiple Protein Structure Alignment
The input is k protein structures, �Pi�

k
i=1, each represented as a sequence

of the centers of the C� atoms. In addition, the input contains a parameter �,
which is the distance threshold between the matched C� atoms. The goal of the
algorithm is to compute, for each r = 2� � � � � k, the largest multiple alignments
consisting of exactly r structures. Practically, the number of multiple alignment
solutions computed for each r is a user-defined parameter.

Here, we briefly explain the main idea of the method (37). First, we pick a
pivot structure and require that it is included in all multiple alignments. In order to
prevent dependency on a pivot structure, all input structures are iteratively selected
to be a pivot one. We call two sequential (without gaps) fragments of the same



132 Shatsky et al.

length to be �-congruent if there exists a Euclidean 3D transformation that super-
imposes both fragments with root mean square deviation (rmsd) less than �.

The MultiProt algorithm consists of three major stages. In the first stage,
all �-congruent fragment pairs are efficiently detected between the pivot and
all other structures. Secondly, we compute all possible combinations of �-
congruent multiple (sub)-fragments. This stage is analogous to the detection
of all non-gaped local multiple alignments. To prevent an exponential number
of multiple local alignments, we do not compute them explicitly but rather
store all possible alignments by means of combination sets. Such set consists
of one fragment from the pivot structure and its �-congruent fragments from
other structures; therefore, such set may include several fragments from some
molecule.Thirdly, for each local multiple alignment set, we heuristically select
[the problem of selecting the optimal combination is NP-hard (39)] a combi-
nation of fragments, one fragment from each structure. Once a unique combi-
nation is selected, we compute a global multiple correspondence between the
C� atoms. At this stage, we have a choice (user defined parameter) whether to
compute a sequential alignment or a non-sequential one.

The main idea of the MultiProt approach is its ability to efficiently compute
a large number of local non-gapped multiple structure alignments. Essentially,
a local multiple alignment is computed for each possible fragment of the input
molecules. Such local alignments serve as a basis for the extension to the
larger partial multiple alignments. In addition, in order to detect subset align-
ments, the solutions are scored separately according to protein composition,
that is, a scoring of alignment between proteins �a� b� c� does not effect a
ranking of an alignment between �a� b�d� (the application for this requirement
is demonstrated in Subheading 4.3).

To compute a significance of a multiple structural alignment, we apply a
simple estimation by means of p-value. Naturally, the p-value depends on
the number of input proteins, k, and their sizes. Therefore, we computed the
multiple alignment size distribution for different values of k (practically only
for k = 2� � � � � 10). We selected a representative set of 5674 protein structures
from the SCOP database (1.65) (40) which have less than 40% of pairwise
sequence identity [this data set is provided by ASTRAL (41)]. This resulted in
2304 protein domains (according to the SCOP classification). For each domain
we arbitrarily selected only one structure. For each k, the number of structures,
we applied MultiProt on k randomly selected structural domains. In total, we
performed 10,000 such random alignments for each k. We computed these
distributions separately for sequential and non-sequential alignments. Clearly,
larger structures will likely produce larger alignments. Therefore, given some
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multiple alignment size and the minimal structure size, smin, of the aligned
molecules, we estimate its significance only from distributions of multiple
alignments with minimal molecule size within 20% of smin.

MultiProt is time efficient. On a standard PC with Pentium(R) 4, 2.00 GHz,
on proteins with average size of 179 amino acids (from the above data set),
the average running time for 2� � � � � 10 structures is 0.5 s, 4 s, 10.5 s, 21 s, 38 s,
1 min, 1 min 30 s, 2 min 10 s and 3 min 3 s, respectively.

3. Structure-Derived Multiple Sequence Alignment
Sequence alignment methods may produce inaccurate alignments due to low

sequence identity. For proteins with solved 3D structure, a structural superpo-
sition provides a basis for a more robust assessment of evolutionary relation-
ships between amino acids. Yet, a structural 3D superposition does not uniquely
define an alignment between protein sequences. Consider the following
scenario, where we are given a multiple structure superposition between three
proteins �ai�,

{
bj

}
, and �ck�. Assume that the following groups of amino acids

have been superimposed close in 3D space: 	a1� b1
 � 	a2� b2� c1
 � 	a3� b3� c2
,
and 	a3� b3� c3
. Therefore, there can be several multiple sequence alignments
that are consistent with the structural superposition, for example, the following
three combinations (for the purpose of sequence alignment we assume that all
sequence and structural alignments are according to protein sequence order):

I. II. III.

a1 a2 a3 – a1 a2 – a3 a1 a2 – a3

b1 b2 b3 – b1 b2 b3 – b1 b2 – b3

– c1 c2 c3 – c1 c2 c3 – c1 c2 c3

Which alignment is preferable? All three satisfy the geometrical constraints.
Obviously, in this case, we would prefer an alignment with less gaps that
also places more similar amino acid types, according to some substitution
matrix, in the same column. Therefore, we face an optimization problem that is
similar to the multiple sequence alignment problem but has additional spatial
constraints. Here, we propose to perform a multiple sequence alignment that
unifies structural information, derived from a multiple structure alignment, with
amino acid substitution matrices (42). Because protein structure is generally
more conserved than sequence, we propose to perform an optimization of the
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multiple alignment, first, according to structure and then according to amino
acid types combined with 3D information. Namely, we propose the following
scheme: Given a set of protein structures, first, perform a multiple structural
alignment [e.g., apply the MultiProt (37) method]. Second, based on the multiple
structure superposition, perform a multiple sequence alignment optimizing a
sequence structure unified scoring function.

The scoring function is the likelihood of amino acid a to substitute b
assuming that a	b
 is located in a secondary structure of type SSE	a
, SSE	b
,
and the 3D distance, according to a multiple structural alignment, between C�

atoms of a and b is d 	a�b
. SSE	a
 is either a helix, a strand or unspecified.

LikelihoodRatio 	a� b
 = P 	a�b
P3D�d 	a�b
 �SSE 	a
� SSE 	b
�

P ′	a� b
P ′
3D �d 	a�b
 �SSE 	a
� SSE 	b
�

�

where P	a�b
/P ′ 	a� b
 is a commonly used likelihood ratio of amino acid
substitutions, P 	a�b
 is the probability for a to substitute b, and P ′ 	a� b
 is the
randomly expected probability [our default values are taken from the Blosum62
matrix (43)], P3D �d 	a�b
� is the observed probability of distance d 	a�b
 in a
set of structural alignments of closely related proteins (conditioned by the type
of secondary structures), and P ′

3D �d 	a�b
� is the randomly expected probability
of 3D distances (42).

Finally, the score for the 3D substitution matrix is defined as log-odds,

Score 	a� b
 = 2log2

[
P 	a�b


P ′ 	a� b


]
+2log2

{
P3D �d 	a�b
 �SSE 	a
� SSE 	b
�

P3D
′ �d 	a� b
 �SSE 	a
� SSE 	b
�

}
�

Therefore, the values of the first term are taken from a standard substitution
matrix and the newly computed values of the second term are given in Table 1.

Table 1
3D Substitution Scores

Distance [0,1] [1,2] [2,3] [3,4] [4,5] [5,6] [6,7] [7,8] [8,9] �9���

H H 5�23 4�23 3�82 2�62 −0�19 −1�93 −3�06 −3�37 −3�28 –3.13
H S −5�01 −5�45 −4�90 −5�23 −5�79 −6�26 −6�40 −6�17 −6�09 –5.94
H U 2�36 1�07 0�92 0�15 −1�17 −2�26 −3�15 −3�58 −3�98 –4.23
S S 9�09 5�80 3�99 3�11 −2�07 −3�67 −4�33 −4�61 −4�97 –4.11
S U 4�73 2�37 1�63 0�81 −2�28 −3�54 −4�26 −4�56 −4�56 –4.72
U U 8�66 5�26 3�97 3�04 1�19 −0�30 −1�58 −2�42 −3�21 –3.63

a H, helix, S, strand, U, undefined.
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These scores are applied in the multiple sequence alignment algorithm. To
solve the multiple alignment, we apply an iterative profile-profile alignment
procedure. First, each structure is initialized as a singleton profile. At each step
of iteration, the two most similar profiles are joined into one until only one
profile, which includes all the input structures, is left.

Optionally, the method allows to produce distance constrained alignments.
This is achieved by requiring that all pairwise distances between the C� atoms
of amino acids from the same column are less than some predefined parameter.
Such requirement is trivially incorporated into the scoring function of the
profile-profile alignment procedure. The constrained multiple alignments allow
identification and clustering of structurally similar regions. One such application
is shown in Subheading 4.6.

The program output format of multiple alignments is ClustalX or PIR.
Optionally, for each column of multiple alignment a structure-sequence conser-
vation score can be reported. It combines the amino acid types and the structural
superposition of these amino acids. For reasons of practical convenience, the
scores are scaled into the range [0,9] and are displayed under each multiple
alignment column. Therefore, a visual examination of these scores reveals
whether a region is conserved or not (see examples in Subheading 4.6). In
addition, for each input protein file, the amino acid temperature factor field
can be set to the corresponding conservation score. This allows convenient 3D
visualization in color of the amino acid conservation scores.

4. Experimental Examples
4.1. Pairwise Alignment Cases

First, we test the MultiProt method with non-trivial pairwise alignment cases.
We repeated the experiment presented by Shindyalov and Bourne (3). The
experiment presents a set of 10 protein pairs and pairwise alignments performed
by different (pairwise) methods. The results are presented in Table 2. Two
kinds of MultiProt results are given: alignments that preserve protein backbone
order and sequence order independent alignments. As can be observed from
the table, our pairwise results are very competitive. The maximal running time
(pair 1crl:534, 1ede:310) is less than 4 s.

4.2. Sequence Order Independent Structure Alignment

A four-helix arrangement appears in a large number of proteins. SCOP
includes at least 40 folds with a four-helix bundle. Holm and Sander (44) show
an alignment of the Rop protein (1rop) with cytochrome b56 (256b). Both
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Table 2
Pairwise Structural Alignment test

Molecule
1 (size)

Molecule
2 (size)

VAST
Sal/rms

Dali
Sal/rms

CE
Sal/rms

GH
Sal/rms

MultiProt1

Sal/rms
MultiProt2

Sal/rms

1fxi:A(96) 1ubq(76) 48/2.1 – – 51/1.6 44/1.7 50/1.8
1 ten(89) 3hhr:B(195) 78/1.6 86/1.9 87/1.9 81/1.7 81/1.3 82/1.3
3hla:B(99) 2rhe(114) – 63/2.5 85/3.5 62/1.8 60/1.8 67/1.9
2aza:A(129) 1paz(120) 4/2.2 – 85/2.9 74/1.9 75/2.0 85/2.5
1cew:I(108) 1mol:A(94) 71/1.9 81/2.3 69/1.9 66/1.6 76/1.8 75/1.9
1cid(177) 2rhe(114) 85/2.2 95/3.3 94/2.7 70/1.5 84/1.8 88/1.9
1crl(534) 1ede(310) – 211/3.4 187/3.2 80/1.9 161/2.3 232/2.4
2sim(381) 1nsb:A(390) 284/3.8 286/3.8 264/3.0 197/2.0 233/2.3 268/2.3
1bge:B(159) 2gmf:A(121) 74/2.5 98/3.5 94/4.1 72/1.8 78/2.5 88/2.2
1tie(166) 4fgf(124) 82/1.7 108/2.0 116/2.9 87/1.7 95/2.1 99/2.3

a RMS, root mean square; Sal, number of aligned atoms. The protein pairs are classified as
‘difficult’ for structural anaysis (48). The alignments are performed by VAST (1), Dali (44),
CE (3), Geometric Hashing (GH) method (2) (http://bioinfo 3d.cs.ac.il/c_alpha_match/), and
MultiProt. The information in this table, except for the GH method and MultiProt results, is
taken from Shindyalov and Bourne (3) MultiProt1 results do preserve the sequence order, while
MultiProt2 are sequence order independent.

proteins have a four-helix bundle, but the topological arrangement is different,
that is, when the two structures are aligned, at least one helix pair is aligned in
an opposite sequential order. Here, we show a multiple structural alignment of
four proteins (1f4n, 2cbl:A, 1b3q, and 1rhg:A) which share a four-helix bundle
(see Fig. 2). Figure 2C shows the direction of the protein sequences according
to a structural alignment when all four helices are aligned. As one can see
the direction is different for the last two helices. Thus, none of the commonly
used sequence alignment methods can align simultaneously the four �-helices.
Figure 2B shows a multiple structural alignment with the four helices aligned.
The running time is 14 s.

4.3. Detection of Partial and Subset Alignments

Here, we demonstrate the ability of MultiProt to detect partial and subset
multiple alignments. We consider five multi-domain molecules 1adj:A, 1hc7:A,
1qf6:A, 12as:A, and 1v95:A. Some domains are structurally similar. Our goal
in studying such a set of proteins is to identify the two common domains (see
Fig. 3): Class II aminoacyl-tRNA synthetase (aaRS)-like, catalyic domain and
Anticodon-binding domain of Class II aaRS [the classification is according to
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Fig. 2. Sequence order independent structure alignment. (A) Four proteins, 1f4n,
2cbl:A, 1b3q, and 1rhg:A, containing a four-helix bundle. (B) Multiple alignment of
four-helix bundle produced by MultiProt. (C) Schematic representation of the sequence
alignment derived from the multiple structural superposition. This common structural
motif cannot be detected by standard sequence alignment methods due to different
topological arrangement and different chain composition.

SCOP (40)]. The multiple alignment for all five structures resulted in a common
structural core of size 39 amino acids, consisting mainly of �-sheet and �-
helix. Despite the fact that these two domains are differently classified, there is
some partial non-random (p-value < 0�001) structural similarity. The solutions
containing four structures revealed two high scoring multiple alignments with
different protein composition. These multiple alignments are alignments of the
first domain (1adj:A, 1hc7:A, 1qf6:A, and 12as:A) and of the second domain
(1adj:A, 1hc7:A, 1qf6:A, and 1v95:A). Therefore, in this example, MultiProt
successfully carries out the task of subset and partial multiple alignment. The
running time is 2 min.
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Fig. 3. Partial and subset alignments. (A) Simplified schematic view of protein
domains of 1adj:A, 1hc7:A, 1qf6:A, 12as:A, and 1v95:A. (B) All five proteins are
aligned. The common core is 39 amino acids (p-value < 0�001). (C) Domain A is
aligned between the first four proteins. The common core has 125 amino acids, this is
highest ranked solution for four structures. (D) Domain B is aligned between 1adj:A,
1hc7:A, 1qf6:A, and 1v95:A. The common core has 76 amino acids, this is the second
ranked solution with molecule ID composition different from the larger alignment of
domain A.

4.4. Comparison Against the HOMSTRAD Database

HOMSTRAD is a benchmark database of manually curated multiple align-
ments of 1032 homologous protein families with available 3D structures (38).
Our aim is to compare the quality of multiple alignments produced by MultiProt
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and STACCATO against the HOMSTRAD database. However, an objective
comparison is not trivial as we do not know neither (1) the ultimate scoring
function for multiple alignment nor (2) the correct alignment (which will require
to know, for instance, the exact phylogenetic tree of the protein family). To
overcome this problem, we decided to select two kinds of measures. The first
measure is a commonly used sequence similarity score, namely, a sum-of-pairs
score according to the BLOSUM62 matrix, which we denote by Seq score.
The second measure computes the fitness of structural alignment according
to a multiple sequence alignment. We denote the Str score by the number of
columns in a multiple alignment that contains at least half non-gap positions
and their 3D rmsd is less than 3 Å. Both scores, Seq and Str, are normalized
by the length of the multiple alignment. Given two multiple alignments, we
conjecture that an alignment with higher values of both scores is closer to the
optimum. However, if only one score is higher at the expense of the other, it
is not clear which alignment is better.

Table 3 demonstrates a comparison of MultiProt and STACCATO with the
HOMSTRAD data set. We applied different gap opening penalties in order to
detect the optimal value. The values in the table represent the average (over
1032 alignments) of the improvement/degradation of the Seq and Str scores.
For example, for gap opening penalty –7, the number of multiple alignments

Table 3
Comparison Against the HOMSTRAD Database

Gap opening penalty Seq % Str % Number of gaps

–3 +9.5 (+9.4) +0.4 (+8.3) +24
–7 +7.5 (+7.4) +0.3 (+8.2) –7
–10 +6.4 (+6.1) –0.04 (+8.0) –16
–13 +5.4 (+5.1) –0.4 (+7.6) –20
–15 +4.8 (+4.6) –0.7 (+7.3) –23
–30 +1.3 (+1) –3 (+5.4) –33

a Two experiments have been conducted. In the first one STACCATO has been applied on the
multiple structure alignments as found in HOMSTRAD. In the second experiment, STACCATO
has been applied on the multiple structure alignments computer by the MultiProt method. The
numeric values represent the difference in scores of STACCATO and HOMSTRAD alignments
measured in percents relative to the HOMSTRAD score (positive values mean an improvement
over the HOMSTRAD alignments). The results of the second experiment are presented in the
parentheses. The last column represents a relative difference in the number of gap openings
(negative values mean less gaps are opened in the STACCATO alignments).
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where our approach improved at least one score while the other score was
at least as good as HOMSTRAD score is 587 (57% of the 1032 cases). The
number of alignments where our approach degraded both Seq score and Str
score is only 16. There are 1000 cases where our approach improved either Seq
score or Str score (at the expense of the other).

The default value of gap opening penalty is selected to be –10, for which
MultiProt and STACCATO arguably give more accurate alignments than
HOMSTRAD. Outside the range of [–7,–10], either the number of gap openings
is increased or the Seq and Str scores are decreased.

4.5. Low Sequence Identity with High Structural Similarity

Here, we give a simple example that demonstrates that in order to achieve
a correct sequence alignment it is essential to use structural information (if
available). We selected three proteins from the Glutathione S-Transferase
family with less than 15% of pairwise sequence identity, which is extremely
low. These are 1gnw:A:86-211 (Class phi GST from Arabidopsis thaliana),
1g7o:A:76-215 (Glutaredoxin 2 from Escherichia coli), and 1gwc:A:87-224
(Class tau GST from Triticum tauschii l.).

Due to low sequence similarity, multiple sequence alignment methods may
produce an inaccurate alignment. However, these proteins come from the same
family and share high structural similarity; therefore, an accurate alignment can
be computed from a multiple structure superposition (see Fig. 4).

The active site residues of the Glutathione S-Transferase family were
analyzed by Zhang et al. (45). They proposed a method, SAPS, to compute
a more accurate sequence alignment based on multiple structure information.

Fig. 4. (A) A fragment of alignment produced by MultiProt and STACCATO. The
structural superposition conservation score, which is displayed under each column,
shows that most of the fragment is structurally aligned within 2–3 Å. (B) Alignment
computed by ClustalW (47). Some of the discrepancies are marked with boxes.
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Fig. 5. Alignment of Glutathione S-Transferase proteins as computed by
STACCATO. Active site residues are correctly aligned and are marked with boxes.
The correct alignment of these regions was shown by the SAPS method (45). Bold box
marks structurally more variable region which contains additional active site residues
which were not aligned by SAPS.

However, SAPS has a restriction that only non-gap fragments are aligned.
Therefore, our proposed method has an advantage of computing complete
alignments including optimization of gap regions (see Fig. 5).

4.6. Loop Movement in Tyrosine Kinase

Tyrosine kinase represents a large family of evolutionarily conserved
enzymes that play a critical role in cellular signaling pathways (46). Here, our
aim is to analyze a multiple alignment of the activation loop. We selected two

Fig. 6. (A) Activation loop of tyrosine kinase in the active and the inactive state.
The DFG motif is located at the beginning of the loop. Structural disposition of some
residues may be as large as 31 Å. (B) Alignment produced by STACCATO. Visual
inspection of the structural superposition conservation score, which is displayed under
each column, suggests a significant structural variability of the region. (C) Alignment
produced with distance constraint of 5 Å. Two separate structurally similar clusters are
clearly revealed. Only aspartic acid from the DFG motif is aligned.
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kinase proteins in the active state (1ir3:A and 1cdk:A) and two in the inactive
state (1irk and 1iep). These are insulin receptors from human (1ir3:A and 1irk),
a cAMP-dependent protein kinase catalytic subunit from pig (1cdk:A), and
Abelsone tyrosine kinase from mouse (1iep).

At the beginning of the activation loop there is a well-conserved DFG
motif, which is involved in Mg-ATP binding. During the activation, the loop
undergoes a significant conformational change, when some amino acids change
their position by as much as 31 Å (see Fig. 6A). What kind of analysis should be
performed in order to detect and distinguish between two conformational states
and detect residues participating in this reorganization? Clearly, the multiple
sequence alignment does not recognize active and inactive states, as it multiply
aligns the sequence of the whole activation loop. In our approach, as discussed
above in Subheading 3., we are able to apply distance constrained alignment
which aligns only amino acids closely located in space. Applying a distance
threshold of 5 Å, we are able to distinguish between two states of the activation
loop as shown in Fig. 6C. Only the aspartic residue from the DFG motif is
spatially conserved (within 5 Å distance threshold).

5. Conclusions
Here, we have discussed a powerful method, MultiProt, for multiple protein

structure alignment. The main advantages of our method are (1) simultaneous
structure superposition (no side effects of pairwise alignment methods), (2)
solutions are detected for any number of molecules (subset alignments), (3)
proteins can consist of several domains or even several chains (partial align-
ments), (4) the final alignments can optionally preserve the sequence order or
be sequence order independent, and (v) time efficiency (tens and even hundreds
of molecules). In case that protein structures differ modulo hinge motion, a
complete alignment can be detected by a manual examination of several largest
partial solutions. In addition, we have discussed the problem of structure-based
multiple sequence alignment, which in the case of protein structure availability
overcomes the problems inherent to sequence alignment methods. The discussed
method, STACCATO, with the combination of MultiProt produces multiple
alignments as good (and arguably slightly better) as multiple alignments from
the manually curated HOMSTRAD data base.
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Indexing Protein Structures Using Suffix Trees

Feng Gao and Mohammed J. Zaki

Summary

Approaches for indexing proteins and fast and scalable searching for structures similar to a
query structure have important applications such as protein structure and function prediction,
protein classification and drug discovery. In this chapter, we describe a new method for extracting
the local feature vectors of protein structures. Each residue is represented by a triangle, and the
correlation between a set of residues is described by the distances between C� atoms and the
angles between the normals of planes in which the triangles lie. The normalized local feature
vectors are indexed using a suffix tree. For all query segments, suffix trees can be used effectively
to retrieve the maximal matches, which are then chained to obtain alignments with database
proteins. Similar proteins are selected by their alignment score against the query. Our results
show classification accuracy up to 97.8 and 99.4% at the superfamily and class level according
to the SCOP classification and show that on average 7.49 out of 10 proteins from the same
superfamily are obtained among the top 10 matches. These results outperform the best previous
methods.

Key Words: Protein structure indexing; suffix trees; structural motifs; 3D database search;
approximate matches.

1. Introduction
Traditionally, the problem of determining similar proteins was approached

by finding the amount of similarity in their amino acid sequences. However,
biologists have determined that even proteins that are remotely homologous
in their sequence similarities can perform surprisingly very similar functions
in living organisms (1). This fact has been attributed to the dependency of
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the functional role of proteins on their actual three-dimensional (3D) structure.
In view of this, it can be stated that two proteins with remote sequence
homology can be functionally classified as similar if they exhibit structural
homology.

Searching the growing database of protein structures for structural
homologues is a difficult and time-consuming task. For example, we may want
to retrieve all structures that contain sub-structures similar to the query, a
specific 3D arrangement of surface residues, and so on. Searches such as these
are the first step toward building a systems level model for protein interac-
tions. In fact, high-throughput proteomics methods are already accumulating
the protein interaction data that we would wish to model, but fast computational
methods for structural database searching lag far behind; biologists are in need
of a means to search the protein structure databases rapidly, similar to the way
BLAST (2) rapidly searches the sequence databases.

1.1. Prior Research

Protein structural similarity determination can be classified into three main
approaches: pair-wise alignment, multiple structure alignment and database
indexing.

Pair-wise structure alignment methods can be classified into three classes
(3). The first class works at the residue level (4,5). The second class focuses on
using secondary structure elements (SSEs) such as �-helices and �-strands to
align two proteins approximately (6–8). The third approach is to use geometric
hashing, which can be applied at both the residue (9) and SSE levels (10).

Previous work has also looked at multiple structure alignment. These
methods are also based on geometric hashing (11) or SSE information (12).
A recent method (13) aims to solve the multiple structural alignment problem
through detection of partial solutions; it computes the best scoring structural
alignments, which can be either sequential or sequence-order independent (14),
if one seeks geometric patterns which do not follow the sequence order.

Due to their time complexity, the pair-wise and multiple structure alignment
approaches are not suitable for searching for similarity over thousands of protein
structures. Database indexing and scalable searching approaches satisfy this
requirement. There are two classes of protein structure indexing approaches
depending on the kinds of representation used to capture the local struc-
tural features. The first class focuses on indexing the local features at the
residue level directly, and the other class uses SSEs to approximate those local
features.
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The CTSS (15) program approximates the protein C� backbone with a smooth
spline with minimum curvature. The method then stores the curvature, torsion
angle and the secondary structure that each C� atom in the backbone belongs
to, in a hash-based index. ProGreSS (16) is a recent method, which extracts the
features for both the structure and sequence, within a sliding window over the
backbone. Its structure features are the same as the CTSS features (curvature,
torsion angles and SSE information); its sequence features are derived using
scoring matrices like PAM or BLOSUM.

The Local Feature Frequency (LFF) profile algorithm (17) first extracts
representative local features from the distance matrices of all protein fold
families by medoid analysis, where the distance matrix for a protein is the
symmetric matrix giving all pair-wise distances between the C� atoms. In the
next step, each C� distance matrix of a protein structure is encoded by labeling
all its sub-matrices by the index of the nearest representative LF patterns.
Each structure is finally represented using a vector of the frequency of the
representative local features. The structural similarity between two proteins is
computed as the Euclidean distance between their LFF profile vectors.

There are also some methods that index the protein structures using SSEs.
For each protein, PSI (18) uses a R∗-tree to index a 9D feature vector, a
representation of all triplet SSEs within a range. After retrieving the matching
triplet pairs, a graph-based algorithm is used to compute the alignment of the
matching SSE pairs. Another SSE-based method, ProtDex (19) obtains the
sub-matrices of the SSE contact patterns from the distance matrix of a protein
structure. The grand sum of the sub-matrices and the contact-pattern type are
indexed by an inverted file index. By their nature, SSEs model the protein
only approximately, and therefore, these SSE-based approaches are not very
accurate and, furthermore, are not very useful for small query proteins with
few SSEs.

For a given query, the most common similarity-scoring scheme is the
number of votes accumulated from the matching residues (9,15,16). CTSS and
ProGreSS further define the p-value of a protein based on the number of votes,
and smaller p-values imply better similarity. These scoring schemes, however,
do not take into account the local similarity.

The work most related to our approach is PAST (20), which also uses a
suffix tree to index protein structures. While PAST shares with our approach the
general idea of using a discretized alphabet to represent structural sequences,
and indexing them using suffix trees, the actual details of the methods are very
different. We use a different feature representation, and searches for chains of
maximal matches, and most importantly is especially designed for approximate
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matches. Furthermore, after computing the similar structural segments, we
chain them into longer approximate alignments, whereas PAST is designed for
structural motif extraction.

1.2. Our Contributions

In this chapter, we present a fast, novel protein indexing method called
PSIST (which stands for Protein Structure Indexing using Suffix Trees). As the
name implies, our new approach transforms the local structural information of
a protein into a “sequence” on which a suffix tree is built for fast matches.
We first extract local structural feature vectors using a sliding window along
the backbone. For a pair of residues, the distance between their C� atoms
and the angle between the planes formed by the C�, N and C atoms of each
residue are calculated. The feature vectors for a given window include all
the distances and angles between the first residue and the rest of the residues
within the window. Compared with the local features from a single residue, our
feature vectors contain both the translational and rotational information. After
normalizing the feature vectors, the protein structure is converted to a sequence,
called the “structure-feature sequence or SF sequence,” over the discretized
symbols.

We use suffix trees to index the protein SF sequences. A suffix tree is
a versatile data structure for substring problems (21), and it has been used
for various problems such as protein sequence indexing (22,23) and genome
alignment (24,25). Suffix trees can be constructed in O�n� time and space
(26,27), where n is the sequence length. Thus, suffix trees are an effective
choice for indexing our protein SF-sequences.

For a given query, all the maximal matches are retrieved from the suffix
tree and chained using a greedy approach. The top proteins with the highest
alignment scores are finally selected. Our results show classification accuracy
up to 97.8% and 99.4% at the superfamily and class levels according to the
SCOP classification, and show that on average 7.49 out of 10 proteins from
the same superfamily are obtained among the top 10 matches. These results are
better than the best previous methods.

2. Indexing Proteins
2.1. Local Feature Extraction

A protein is composed of an ordered sequence of residues linked by peptide
bonds. Each residue has C�, N and C atoms, which constitute the backbone of
the protein. Although the backbone is linear topologically, it is very complex
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Fig. 1. Bond length and bond angles.

geometrically. The bond lengths and bond angles (see Fig. 1) and the torsion
angles (����	; see Fig. 2) completely define the conformation and geometry
of the protein.

The bond length is the distance between the bonded atoms, and the bond
angle is the angle between any two covalent bonds that include a common
atom (see Fig. 1). For instance, the bond length of N–C is 1.32 Å (Å denotes
distance in angstroms), the bond angle between C�–N and N–C is 123�. Torsion
angles are used to describe conformations around rotatable bonds (see Fig. 2).
Assume four consecutive atoms are connected by three bonds bi−1� bi and bi+1.

Fig. 2. Torsion angles.
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The torsion angle of bi is defined as the smallest angle between the projections
of bi−1 and bi+1 on the plane perpendicular to bond bi. In Fig. 2, ����	 are
the torsion angles on the bonds N −C�� C� −C and C–N, respectively.

To capture the local features more accurately, we need to extract the structural
features from a set of local residues. To obtain the local feature vector, we first
represent each residue individually and then consider the relationship between
a pair of residues and a set of residues. For each residue, the length of C� −N
bond is 1.47 Å and that of the C�−C bond is 1.53 Å, and the angle between
C� −N and C� −C bonds is 110�. Thus, all the triangles formed by N−C� −C
atoms in each residue are equivalent, and each residue can be represented by
a triangle of the same size. The relationship between a pair of residues in 3D
space can be fully described by the rigid transformation between two residues,
which is a vector of six dimensions, containing three translational and three
rotational degrees of freedoms. To reduce the dimension of the vector, we use
a distance and an angle to describe the transformation features between two
residues.

We define the distance d between a pair of residues as the Euclidean distance
between their C� atoms. The angle 
 between a pair of residues is defined as
the angle between the planes that contain N − C� − C triangles representing
each residue (see Fig. 3). The distance and angle between a pair of residues
are invariant to translation and rotation of the protein. The Euclidean distance
between two C� atoms is calculated using their 3D coordinates directly. The
angle between the two planes defined by the N−C� −C triangles is calculated

Fig. 3. The distance and angle between two residues.



Indexing Protein Structures 153

between their normals with C� as the origin. The normal of the plane defined
by the triangle N −C� −C is given as

−→n =
−−→
C�N ×−−→

C�C∥∥∥−−→C�N ×−−→
C�C

∥∥∥ �

The angle between the two normals −→n1 and −→n2 is then calculated as

cos 
 = −→n1 •−→n2 �

where × and • denote the cross and dot product, respectively, between two
vectors.

To describe the local features between a set of residues, we slide a window of
length w along the backbone of the protein. The distances and angles between
the first residue i and all the other residues j (with j ∈ �i+1� i+w−1� within
the window are computed and added to a feature vector. Each window is
associated with one feature vector.

Let P = �p1� p2� � � � � pn� represent a protein, where pi is the i-th residue
along the backbone. The feature vector of the protein is defined as Pv =
�pv

1� pv
2� � � � � pv

n−w−1�, where w is the sliding window size, and pv
i is a feature

vector
[
d �pi� pi+1�� cos 
 �pi� pi+1�� � � � � d �pi� pi+w−1�� cos 
 �pi� pi+w−1�

]
,where

d
(
pi�pj

)
is the distance between the residues pi and pj , and cos 


(
pi�pj

)
gives

the angle between the residues pi and pj . With window size w, the dimension
of each feature vector pv

i is 2∗ �w−1�.

2.2. Normalization

Our feature vector is a combination of distances and angles, which have
different measures. A normalization procedure is performed after the feature
vectors are extracted. The angle 
 is in the range �0��, so the range of
cos 
 ∈ �−1� 1.

For normalizing the distances, we need to know the upper bound on the
distance between the i-th and (i+w−1)-th residue in the protein. From Fig. 1,
it is seen that the average distance between C�1 −N atoms is d1 = 1�47 Å, the
average distance between N–C atoms is d2 = 1�32 Å and the angle � between
C�1 − N and N–C bonds is 123�. The distance between C�1 − C atoms is
therefore d �C�1� C� =√

d2
1 +d2

2 −2d1d2 cos � = 2�453. The distance between
C−C�2 atoms is d �C� C�2� = 1�53, so the average distance between two C�

atoms is d �C�1� C�2� ≤ d �C�1� C�+d �C� C�2� = 2�453 + 1�57 = 4�023. If the
distance between two atoms is greater than 4.023, it is trimmed to 4.023. For
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a sliding window of size w, the lower bound of the distance between any two
atoms is 0 and the upper bound is 4�023∗ �w−1�, so the distance between any
pair of residues within a w length window is in the range �0� 4�023∗ �w−1�.

All the distances and angles are normalized and binned into an integer within
the range �0� b−1. We use the equation d′ =

[
d∗b

4�023∗�w−1�

]
to normalize and bin

the distance and cos 
′ =
[

�cos 
+1�∗b

2

]
to normalize and bin the angle. Table 1

shows three examples of normalized and binned feature vectors for w = 3 and
b = 10. The size of each feature vector is 2∗�w − 1� = 4, and the normalized
value is within �0� 9.

After normalization and binning, each feature vector is defined as ps =
�ps

0� ps
1� � � � � ps

2∗�w−1�−1�, where ps
i is an integer within the range �0� b − 1.

Thus, the structure of each protein P is converted to a SF sequence Ps ={
Ps

0�Ps
1 � � � Ps

n−w+1

}
, called the SF sequence, where Ps

i is the i-th normalized
feature vector (ps) along the backbone. Note that each symbol within an SF
sequence is a vector of length 2�w − 1�, to which we assign a unique integer
identifier as its label. Thus the SF sequences are over an alphabet of size b2�w−1�.

2.3. Generalized Suffix Trees Construction

After obtaining the SF sequences for all proteins in the database, we use
a generalized suffix tree (GST) as the indexing structure. GST is a compact
representation of all the suffixes of multiple sequences and can be constructed
in linear time (27). A suffix can be located by following a unique path from
the root to a leaf.

Table 1
Examples of normalized feature vectors for w = 3 and b = 10

Feature vector

d cos 
 d cos 


Original 3.55 0.29 5.4 −0�23
Normalized (a) 4 6 6 3
Original 4.04 0.11 5.75 −0�25
Normalized (b) 5 5 7 3
Original 3.60 0.45 5.29 0.21
Normalized (x) 4 7 6 6

The normalized features are represented by a set of new symbols such as a, b, and x.
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To save the storage space for the suffix tree, we map each structure feature
vector ps to a unique key or symbol for the suffix tree construction and map
it back to the normalized vector when we compute the distance between two
feature vectors. For instance, the three feature vectors in Table 1 could be
mapped to the symbols a, b and x respectively.

Notation: Let GST be a generalized suffix tree, we use the following notation
in the rest of the chapter. We use N for a node in the suffix tree, E for an edge,
C�E� for a child node of the edge E�L�E� for the label on edge E, L�E �i�
for the i-th symbol of the edge label L�E�, P�N� for the path label of the node
N (formed by concatenating all the edge labels from the root node to N� and
P �E�i� for the path label of L�E �i�. Furthermore, each leaf node in GST
contains a sequence-position pair (x, p�, where x is a sequence identifier and
p is the start position of the suffix within sequence x. For any node N , we use
the notation sp-list(N� for the collection of the sequence-position pairs for all
the leaves under N .

Example: Figure 4 shows an example of GST for two SF sequences
S1 = xabxa and S2 = babxba, over the alphabet �a� b� x�, obtained by mapping
each normalized feature vectors in Table 1 to a unique letter symbol. For
instance, the first normalized vector given in Table 1, namely [4, 6, 6, 3] may
be mapped to a. Node 0 is the root node, nodes 1–7 are internal nodes, and
the rest are leaves. “$” is the unique termination character. The path label of

Fig. 4. Generalized suffix tree for sequences S1 = xabxa and S1 = babxba.
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node 7 is xa. The edge label L�E� of the right edge out of node 7 is bxa, so its
second character L�E �2� is x, and the path label P �E �2� is given as xabx.
The sequence-position identifier �1� 0�for the right child of node 7 stands for
xabxa, a suffix of sequence S1 that starts at position 0. Thus sp - list �7� =
��1� 0� � �1� 3�� and the sp-list for node 6 is sp - list �6� = ��2� 3� � �1� 3� � �1� 0��.

3. Querying
So far we have discussed how to build the suffix tree indexing based on the

local structure features for each protein. In this section, we will present how to
search for similar proteins.

Given a query �Q���, we first extract its feature vectors and convert it into a
SF sequence Qs as described above. Then three phases are performed: searching,
ranking and post-processing. The searching phase retrieves all the matching
segments/subsequences from the database within a distance threshold � (on a
per symbol basis), the ranking phase ranks all the proteins by chaining the
matching segments and the post-processing step further uses Smith–Waterman
(28) dynamic programming approach to find the best local alignment between
the query and the selected proteins.

3.1. Searching

For a given query SF sequence Qs = �Qs
1Q

s
2 � � �Qs

n�, maximum structure-
feature distance threshold � and a minimum match length threshold l, the search
algorithm finds all maximal matching SF subsequences Ps = �Ps

1�Ps
2 � � � Ps

m�
that occur in both the query SF sequence and any database protein SF sequence.
A maximal match has the following properties:

1. There exists a matching SF subsequence Qs
i+1 � � �Qs

i+m of Qs, such that dist(
Qs

i+j� Ps
j

)
< �, where j = 1� 2 � � �m, and Qs

i+j and Ps
j are the normalized and

discretized feature vectors of length 2∗ �w−1�. Note that the distance threshold � is
applied on a pair of corresponding sequence features from Qs and Ps. The distance
function used in our algorithm is Euclidean distance.

2. The length of the match is at least as long as the length threshold, i.e., m ≥ l.
3. If Ps is a SF subsequence of protein Rs, then neither Psv nor vPs is a matching SF

subsequence of Qs and Rs, for any feature vector v (this ensures maximality).

For instance, abx is a maximal match between the SF sequences xabxa
and babxba of Fig. 4 Note that our approach differs from MUMmer genome
alignment method presented in (24) which finds exact maximalunique matches
between two genomes. Furthermore, in PSIST the distance between two
symbols depends on the distance function dist and is not simply based on
match/mismatch as in MUMmer.
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To find all maximal matches within � (on a per symbol basis) between the
query Qs and suffix tree GSTd built from the database proteins, one solution is
to trace every SF subsequence of Qs from the root of GSTd, but the common
prefix of two subsequences will be searched twice and more comparisons will
be performed. To reduce the number of comparisons, we build another suffix
tree GSTq for Qs and then traverse the two suffix trees simultaneously to
retrieve all the maximal matches. In the discussion below, we use the subscript
q for the query and d for the database. For instance, Nq stands for a query
suffix tree node, while Nd stands for a database suffix tree node.

The matching algorithm starts with the MMS procedure as shown in Fig. 5,
and its inputs are the root node (Nq) of the query suffix tree GSTq, the root node
(Nd) of the database suffix tree GSTd, per sequence-feature distance tolerance
� and the minimum length of the maximal match l. For every edge out of
the query node and database node, MMS calls the NodeSearch procedure (see
Fig. 6) to match their labels and follow the path to find all the matching nodes.

In the NodeSearch procedure (see Fig. 6), for two edges from different suffix
trees, the distance between the corresponding pair of label symbols (L

(
E �iq

)
and L�E �jd� is computed in step 2, Fig. 6. If the distance is larger than �,
which implies a mismatch, the procedure updates the MMSet (see Fig. 7) and
proceeds to the next branch. If there is a match, the shorter edge will be the first
to reach the end. If the child node of the short edge is a leaf, we need to update
the MMSet. If the child node is an internal node, two different procedures are
called recursively. (1) If the lengths of two edge labels are the same, then MMS
procedure is called for two child nodes in step 3, Fig. 6. (2) If one of the edge
has a shorter label, the algorithm NodeSearch will be called recursively with

Fig. 5. MaximalMatches Search algorithm.
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Fig. 6. NodeSearch algorithm.

the new input consisting of all the edges out of the child node of the short edge
(see steps 4 and 5, Fig. 6).

Each matching SF subsequence s is defined by two triplets (x�p�m) and
(y� q�m), where p and q are the start positions of s in the query sequence
Qx and the protein sequence Py respectively, and m is the length of the
match. If s is a maximal match, it will be added to the MMSet in the
updateMMS procedure (see Fig. 7). To identify a maximal match, we need
to compare whether any extension of the match will result in a mismatch. In
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Fig. 7. UpdateMaximalMatchesSet algorithm.

our algorithm, each common subsequence s is obtained either from characters
mismatch or a leaf node, so we just need to compare the characters before
the common subsequence �Qx �p−1� and Py �q −1 to identify the maximal
match.

We can also process multiple query SF sequences at the same time by
inserting them to the query suffix tree GSTq, so the nodes with the same path
label are visited only once and the performance will be improved.

The complexity of matching GSTq and GSTd depends on the matching
distance threshold �. If � = 0, the symbols match if and only if they are identical.
Thus, searching the query tree against the database tree takes time O �n 	�	�,
where n is the length of the query and � is the alphabet size. If � > 0, then for
each edge of the query suffix tree we may have several matching edges in the
database tree. In the worst case, each edge of the query tree matches each edge
of the database tree, for a complexity of O�nM�, where n is query length and
M is total length of all the SF sequences in the database. To verify maximality
of a match takes additional time proportional to number of occurrences of the
maximal matches in the query and database trees.

3.2. Ranking

The maximal matches are obtained for the query sequence and reference
sequences in the database. Every maximal match is a diagonal run in the matrix
formed by a query and reference sequence. We use the best diagonal runs
described in the FASTA algorithm (29) as our ranking scheme. We calculate
the alignment as a combination of the maximal matches with the maximal
score. The score of the alignment is the sum of the scores of the maximal
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matches minus the gap penalty. We use the length of the maximal match as its
score. Likewise, the length of the gap is used as the gap penalty. Two maximal
matches can be chained together if there is no overlap between them. We use
a fast greedy algorithm to find the chains of maximal alignments. At first, the
maximal matches are sorted by their length. The longest maximal match is
chosen first, and we remove all other overlapping matches. Then, we choose
the second longest maximal match, remove its overlapping matches and repeat
the above steps until no maximal matches are left. This way we find the longest
chained maximal matches between the query and each retrieved database SF
sequence. Finally, all the candidates with small alignment scores are screened
out and only the top similar proteins are selected.

3.3. Post-processing

For each top protein SF sequence with a high score selected from the
database, it is aligned with the query by running Smith–Waterman (28) dynamic
programming method. The similarity score between two residues is set to 1 if
the distance between their normalized feature vectors is smaller than �, or else
it is set to 0. Proteins are then ranked in decreasing order according to their
new alignment scores, and the top proteins with the highest scores are reported
to the user.

4. Experiments
The SCOP database (30) classifies proteins according to a four-level hierar-

chical classification, namely, family, super-family, fold and class. Because the
SCOP database is curated by visual inspection, it is considered to be extremely
accurate. For our tests, the target database we used has proteins from four
classes of SCOP: all �, all �, �+� and �/�. Our data set D includes a total
of 1810 proteins taken from 181 superfamilies that have at least 10 proteins,
but only 10 proteins are chosen from each superfamily. One protein from each
superfamily is chosen randomly as the query, so the size of the query set Dq

is also 181. This is the same data set used in several previous indexing studies
(16,18).

To evaluate our algorithm, we perform two different tests: The retrieval test
finds the number of correct matching structures from the same superfamily as
the query among the top k scoring proteins, and the classification test tries
to classify the query at the superfamily and class levels. Our algorithm was
implemented in C++ and all experiments reported below were done on a PC
with 2.8 GHz CPU and 6 GB RAM, running Linux 2.6.6. To index the set of
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1810 proteins (with average length 164) took a total time of 20.3 s. For the
queries reported below, the query times ranged from 0.47 s to 4.41 s per query.

4.1. Retrieval Test

We compare our approach with one of the best previous indexing approach
ProGreSS (16), using the Java-based code provided by its authors. We also
directly compare with a geometric hashing-based (9) indexing method, which
we coded ourselves. For geometric hashing we take two consecutive C� atoms
along the backbone as the reference frame. Each remaining C� atom and the
reference frame form a triplet. The three pair-wise distances from a triplet
are added to an R∗-tree if all of them are within 7 Å. For querying, we form
query triplets in the same manner and find all matching triplets within �
range. Suppose there are n triplets with the same query reference frame and
the matching protein has m triplets with the same reference frame, these two
reference frames are considered to be a matching pair if the ratio between m
and n is greater than a threshold, that is, if m/n > 0�75. The score of a protein
is its number of matching reference frames with respect to the query, and the
proteins are ranked based on their scores.

We ran the experiments using PSIST, ProGreSS and geometric hashing to
obtain the number of proteins found from the same superfamily for each of the
181 queries. As each superfamily has 10 proteins, including the query, there
can be at most 10 correct matching proteins from the same superfamily.

There are five parameters used in our approach. w is the size of the window
used to index the local features, b is the range used to normalize the feature
vectors, � is the distance threshold based on the normalized feature vectors, l is
the minimum length of the maximal matches and k is the number of top scoring
proteins reported. We first show how PSIST performs for different values of
w���b� l and k.

Figure 8 shows the number of proteins found from the same superfamily for
different top k cutoffs. Note that the number of correct matches is an average
over all 181 SCOP superfamilies used in our test. The retrieval performance
tapers off as k increases. We choose the largest cutoff as k = 100, as there is
not much to be gained by using larger values.

We next study the effect of varying window size w, while keeping b =
10� � = 3 and l = 15. Figure 9 shows that a smaller window size of w = 3
yields the largest number of correct matches (on average 8 correct matches out
of 10), and the retrieval rate drops as w increases. For a smaller window size,
more matches are found in the database within the � distance, and PSIST is
able to find the best matches after finding the chain of maximal matches. For
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Fig. 8. Number of proteins found from same superfamily for different top k value
(w = 3� b = 10� � = 3 and l = 10).

larger windows, the number of matches drops and some of the correct proteins
are missed. From this experiment, we conclude that w = 3 is the best for
PSIST.

Figure 10 shows the effect of varying � with k = 100. The larger the �,
the more the structures retrieved and then PSIST is able to find the correct
ones by ranking the alignments. We find that � = 3 works well for PSIST, and
performance tapers off for larger values.

Figures 11 and 12 show that the varying normalization range b and the
length of maximal match l have the similar effect on the number of proteins

Fig. 9. Number of proteins found from the same superfamily for different window
sizes when (b = 10� � = 3 and l = 15).
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Fig. 10. Number of proteins found from the same superfamily for different � (w = 3�
b = 10� � = 3 and l = 15).

found from the same superfamily. For smaller range b and maximal match
length l, there can potentially be many incorrect proteins with similar match
segments, but for larger b and l, fewer maximal matches, but correct proteins
are found. PSIST obtains its best performance when the bin range is between
6 and 10, and the length between 9 and 12.

Table 2 shows the comparison of the number of proteins found from the same
superfamily for different top k values. The table compares the performance of our
approaches against geometric hashing and ProGreSS. Geometric hashing can find

Fig. 11. Number of proteins found from the same superfamily for different b �w = 3�
� = 2�5 and l = 15).
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Fig. 12. Number of proteins found from the same superfamily for different length
of maximal matches (w = 3� � = 2�5 and b = 10)

only 2.43 correct proteins within the top 10 proteins (with � = 0�18, which was
the best value we determined empirically). It also has relatively poor performance
for other values of k. Both ProGreSS and PSIST retrieve more than three correct
proteins within the top four candidates. However, PSIST performs better than
ProGreSS when the cutoff increases. For instance, PSIST could find 7.49 out of 10
proteins within the top 10 candidates. Note that based on the previous experiments,
for the PSIST algorithm we set w = 3� b = 10w = 3� � = 3 and l = 9. For fair
comparison, we tuned the parameter settings for ProGreSS to report its best results
(we use sequence distance threshold �t = 0�05, the structure distance threshold
�q = 0�01 and window size w = 3).

Table 2
Overall Comparison of the Number of Proteins Found from the Same
Superfamily Among the Top k Candidates

Algorithm Top 4 Top 10 Top 50 Top 100

GeoHash 2.43 3.74 4.40 4.86
ProGreSS 3.53 6.17 6.69 7.09
PSIST 3.72 7.49 8.10 8.40
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4.2. Classification Test

In the classification test, we assume we do not know the superfamily or the
class to which a query protein belongs. For each query we then classify it into
one of 181 SCOP superfamilies and one of the four SCOP classes (all �, all
���+� and �/�) as follows. For each query, the top k similar proteins are
selected from the database. The query itself is not counted in the top k matches.
Each protein among the top k matches is assigned a score, a superfamily id,
and a class id. The scores of the top k proteins from the same superfamily
or class are accumulated. The query is assigned to the superfamily or class
with the highest score. This classification approach can thus be thought of as
k nearest neighbor classification. Below, we report results separately for the
superfamily level and class level classification. For the performance, we report
the percentage of correctly classified query proteins (out of the 181 queries). For
the classification tests, we also compare with the numbers reported by PSI (18)
and LFF (17), in addition to the results of ProGreSS and geometric hashing. For
PSIST, ProGreSS and geometric hashing, we use the best parameter settings
reported in Section 4.1.

Proteins are classified correctly if the proteins from the same superfamily
have a better rank. Thus, the classification accuracy is proportional to the
number of the correct proteins found in the top candidates. For instance, Fig. 13
shows the percentage of query proteins correctly classified for different window
sizes, when � = 3 and using k = 3, at the superfamily and class levels. It has a

Fig. 13. Percentage of query proteins correctly classifed for different window sizes
when � = 3. (SF refers to the Superfamily level, and CL refers to the Class level).
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similar shape as Fig. 9, the more the proteins found from the same superfamily
the higher the accuracy obtained.

Table 3 shows the SCOP classification comparison with other algorithms
at the superfamily and class levels respectively. Geometric hashing has the
worst performance, it can only classify 60.2 and 72.9% proteins correctly at
the superfamily and class levels. PSI (18) uses SSE-based features, and its
accuracy for superfamily is 88%, but its class accuracy is unavailable. LFF
profiles (17) only classify 68.5% of the superfamily correctly, but it agrees
with SCOP classification at 93% for class level (note that LFF profiles use a
different testing protein data set than ours). ProGreSS and PSIST could obtain
more than three proteins within the top four candidates, so their accuracy is
very close and much better than the others. ProGreSS uses both the structure
and sequence features to classify the proteins, and its accuracy is 97.2 and
98.3% at the superfamily and class levels. Without considering the sequence
features, PSIST has slightly better performance than ProGreSS, its accuracy is
97.8 and 99.4% at the superfamily and class levels.

4.3. Performance Test

We compare the running time of different approaches in this section. Suppose
a protein has n residues, the window size is w, then the number of feature
vectors is n − w + 1, so the complexity of our approach is O�n − w − 1� =
O�n� per protein. Assume the average number of neighbors of each reference
frame is k, the complexity of our implementation of geometric hashing is
O�k∗n�. Although they have the same complexity, geometric hashing is slower
because of the coefficient k; it’s running time is 1080.4 s per query for
distance � = 0�18.

Table 3
SCOP Classification Accuracy Comparison at the Superfamily and
Class Level

Algorithm Superfamily (%) Class (%)

Geometric hashing 60.2 72.9
PSI 88 N/A
LFF 68.6 93.2
ProGreSS 97.2 98.3
PSIST 97.8 99.4



Indexing Protein Structures 167

Table 4
Running Time Comparison

Algorithm Superfamily (%) Class (%) Top 10 Time (s)

ProGreSS 97.2 98.3 6.17 1.67
PSIST-1 96.7 98.3 6.57 0.47
PSIST-2 97.2 99.4 7.19 4.41
PSIST-3 97.2 99.4 7.19 3.28

Both ProGreSS and PSIST provide a trade-off between the running time and
the accuracy performance by adjusting the parameters such as window size and
distance. For a fair algorithmic comparison, we compare the time performance
of ProGreSS and PSIST based on their retrieval and classification test. Table 4
shows the running time for ProGreSS and PSIST. For ProGreSS, we choose
the best sequence and structure distance thresholds and set window size w = 3.
We set w = 3� b = 2� � = 0 and l = 15 for the first case of PSIST, and it is
3.5 times faster than ProGreSS with similar retrieval and classification perform
ace. The last two cases have the same parameters: w = 3� b = 6� � = 2 and
l = 15, but the difference is that the third case builds a query suffix tree for
every 20 queries and processes them together. They have the same retrieval
and classification performance but the third case is faster. Although both cases
are slower than ProGreSS, they retrieve on average more proteins (7.49 vs.
6.47) out of the top 10 matches and obtain slightly higher accuracy.

5. Conclusion
In this chapter, we present a new local feature representation of protein

structures and convert the structure indexing to sequence indexing. We also
propose a novel use of suffix trees to find the maximal matches between SF
sequences and use the alignment between the query and database SF sequences
to measure the structure similarity. Compared to ProGreSS, our approach either
obtains higher accuracy or runs faster with similar classification accuracy.
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Hidden Markov Models for Prediction
of Protein Features

Christopher Bystroff and Anders Krogh

Summary

Hidden Markov Models (HMMs) are an extremely versatile statistical representation that
can be used to model any set of one-dimensional discrete symbol data. HMMs can model
protein sequences in many ways, depending on what features of the protein are represented by
the Markov states. For protein structure prediction, states have been chosen to represent either
homologous sequence positions, local or secondary structure types, or transmembrane locality.
The resulting models can be used to predict common ancestry, secondary or local structure, or
membrane topology by applying one of the two standard algorithms for comparing a sequence
to a model. In this chapter, we review those algorithms and discuss how HMMs have been
constructed and refined for the purpose of protein structure prediction.

Key Words: Transmembrane; local; motif; Viterbi; Baum–Welch; profile; topology; folding.

1. Introduction
A hidden Markov Model (HMM) is a type of directed graph. The vertices

of the graph are referred to as “states” or “Markov states,” and the directed
edges as “transitions.” A state path through an HMM emits a symbol from each
state, possibly depending on an input string of symbols. In this chapter, we
will restrict the discussion to amino acids as the input symbols and to various
structural features of proteins as the emitted, output symbols. The ways that
the states are connected by transitions defines the topology of the model. Both
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the transitions and the emission symbols can be represented within the model
as probability distributions, and those probabilities can be defined and refined
based on protein sequence and structure data.

HMMs have been used extensively in bioinformatics. For proteins, one of
the first applications was for sequence profile modeling, and that is probably
still the most well-known application of HMMs to proteins (1,2). In profile
HMMs, each state emits either a single amino acid or a gap character, and
the output emission string represents an alignment of the input string to the
model. The model is generally constructed from a multiple sequence alignment,
and as such, a profile HMM represents a family of homologous proteins.
Profile HMMs have been discussed extensively in the literature, and so will
be reviewed only briefly in this chapter. From a pedagogical point of view,
profile HMMs are a bad place to start because they do not show the full
modeling capabilities of HMMs. We will concentrate instead on the application
of HMMs for the prediction of protein conformational and biochemical features.
To show how simple HMMs actually are, we will start with an introduction
to HMMs for non-specialists, using the prediction of membrane helices as an
example. For people interested in implementing HMMs or going deeper into
the theory, we recommend ref. 3, but this chapter will hopefully be a good
introduction to the process of constructing, refining and using HMMs for protein
sequences.

Algorithms for using HMMs will be discussed in the context of the trans-
membrane (TM) helix model. Predictions derived from HMMs consist of
emission symbols, which may be calculated as either the most probable string,
using the Viterbi algorithm, or as the probability of each emission symbol
at each sequence position, using the forward–backward algorithm. In either
case, the prediction consists of first defining a sequence of states, or pathway,
then converting those states into emission symbols. This second step may
be independent of the first. Early attempts to construct simple HMMs for
the prediction of protein secondary structure will be reviewed next. In these
models, each state emits a single position of either alpha helix, beta sheet
or loop, where loop is defined as anything other than helix or sheet. Then
an application to local structure prediction will be described, where the loop
symbol is split into many, more specific symbols, representing different types
of turns and loops in proteins. The concept of an HMM as a grammatical
model is useful here, as short unbroken strings of states can be thought of as
words in a sentence. HMMs have been used as grammatical models in other
fields (3).
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2. Hidden Markov Models for Transmembrane Helices
In this section, HMMs will be explained from an example: the prediction of

membrane helices in membrane proteins. Membrane helices are characterized
by being more hydrophobic than average. Therefore, to locate TM helices in
amino acid sequences, the traditional methods use some sort of hydrophobicity
scale, which is typically averaged in windows and plotted along the protein.
Instead, one could make a simple HMM such as the one shown in Fig. 1. The
model consists of two states, one for TM helices, labeled by ‘M,’ and one
for everything else, labeled by ‘X’ in the figure. State M has some associated
emission probabilities that are simply the normalized frequencies of amino
acids found in TM helices of known TM proteins. Similarly, state X has a set
of probabilities estimated from all the rest of the amino acids in known TM
proteins. The arrows are associated with the so-called transition probabilities.
The M → X transition tell how likely it is to see a transition out of a TM helix,
the M → M how likely it is to stay in the helix state, and so on. Table 1 shows
how the emission probabilities are calculated from a set of known TM proteins
(which is the set of 160 TM proteins used in ref. 4. Table 2 shows how the
transition probabilities are calculated from the same set.

Why is it called a hidden Markov model? This is often a mystery to people,
and from the way we introduced HMMs here, it is not obvious. Often, it is
just the amino acid sequence that is known, so the states (in this case X or
M) are unknown—the states are hidden. This is exactly the situation we are
in when presented with a new protein and are asked to predict the membrane
helices (if any). A lot of the theory about HMMs has to do with how to predict
the hidden states, which in fact can give such predictions. In a (non-hidden)
Markov model, there is a one-to-one correspondence between a state and an
amino acid, or whatever type of symbols it models.

A labeling of a protein will denote an assignment of a class label to each
amino acid—if the amino acid is in a TM helix, it is labeled M, otherwise it is
labeled X. Using the HMM above, we can easily calculate the probability of a
certain labeling of the sequence by just multiplying probabilities in the model.

Fig. 1. A simple Hidden Markov Model for transmembrane helices. M represents
transmembrane helix, X all other structures.
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Table 1
The Counts and Frequencies for Amino Acids in Transmembrane Helices and
Other Regions

Amino acids TM helices Other regions Over-
represented

Count Frequency Count Frequency

I 1826 0�120 2187 0�046 2�61
F 1370 0�090 1854 0�039 2�31
L 2562 0�168 4156 0�087 1�93
V 1751 0�115 2935 0�061 1�89
M 616 0�040 1201 0�025 1�60
W 414 0�027 819 0�017 1�59
A 1657 0�109 3382 0�071 1�54
Y 615 0�040 1616 0�034 1�18
G 1243 0�082 3352 0�070 1�17
C 289 0�019 960 0�020 0�95
T 755 0�050 2852 0�060 0�83
S 806 0�053 3410 0�071 0�75
P 423 0�028 2640 0�055 0�51
H 121 0�008 1085 0�023 0�35
N 250 0�016 2279 0�048 0�33
Q 141 0�009 2054 0�043 0�21
D 104 0�007 2551 0�053 0�13
E 110 0�007 2983 0�062 0�11
K 78 0�005 2651 0�055 0�09
R 83 0�005 2933 0�061 0�08
Total 15214 1�000 47900 1�000

The frequencies correspond to the emission probabilities in the two Hidden Markov Model
states. The amino acids are sorted by over-representation in the TM helices (last column). Notice
the most over-represented are hydrophobic amino acids and that the charged amino acids are in
the bottom of the list.

More specifically, if s denotes the entire amino acid sequence and y denotes
the associated sequence of class labels, the probability of the sequence is,

p �s�y� = aB�y1
ey1

�s1�ay1�y2
ey2

�s2� · · · eyt
�st� ayt�E

(1)

where si is amino acid i, yi is the corresponding class (H or X), and l is the
sequence length. Here the e’s are emission probabilities and the a’s are the
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Table 2
Calculation of Transition Frequencies for the Simple Model
in Fig. 1

Sequences 160
TM helices 696
TM residues 15214
Other residues 47900
M → X 0.046 = 696

15214
M → M 0.954 = 15214−696

15214
X → X 0.982 = 47900−696−160

47900−160
X → M 0.015 = 696

47900−160

TM, transmembrane.

transition probabilities. For example, if y1 = X and y2 = M, then a�y2� y1� =
0�015, corresponding to the X → M transition in Table 2. Now we can predict
the most probable TM helices by finding the most probable labeling. For each
possible labeling, we do the above calculation and choose the one with the
highest probability. In principle it is straightforward, but there are 2l possible
labelings, so for long sequences it is tedious. Fortunately, there is a very simple
way of doing this by dynamic programming, called the Viterbi algorithm. As
with other dynamic programming algorithms, it reuses calculations as we walk
along the sequence. It is outlined below.

2.1. The Viterbi Algorithm

Here the Viterbi algorithm is outlined for the simple two-state model. The
task is to find the most probable labeling of a sequence, or the most probable
“state path” as it is normally called. A (state) path means a sequence of states
that the sequence can travel through. The path starts in the begin state. The
probability that the best labeling is an M in position 1 is simply vM�1� =
aB�M eM�s1�. The probability vX�1� of the best labeling being an X at position
1 is calculated analogously. The probability of the best labeling being an M
in position 2 is obviously the best of extending the best labeling to position
1 ending in M and that ending in X. That is, vM�2� is the maximum of
vM�1�aM�MeM�s2� and vX�1�aX�MeM�s2�, and similarly for vX�2�. This can be
continued, so at amino acid i we would have

vM �i� = max�vM �i−1�aM�MeM �si� � vX �i−1�aX�MeM �si�� (2)
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and

vX �i� = max�vM �i−1�aM�XeX �si� � vX �i−1�aX�XeX �si��� (3)

To find the most probable labeling, one must do a trace-back. As we choose
the best label at each position, we also record the previous label. Stringing
these memories together starting at the end state produces the labeling. It is
very similar to sequence alignment algorithms [e.g., the Needleman–Wunch
algorithm (5)]. Note that the time it takes to do the complete calculation is
proportional to l, as compared to 2l for the more naive approach.

2.2. Posterior Probabilities

It turns out that the most probable labeling is usually not very close to
the correct answer for a simple model like this. Alternatively, we might be
interested in the probability that a given amino acid sits in a membrane helix
or not. This probability is the total probability of getting an M at position i
divided by the probability of having M or X at position i. These probabilities
can be found by summing probabilities over all possible labelings, but again
there are simple dynamic programming algorithms that do it more efficiently.
The total probability is calculated by the so-called forward algorithm, which
is like Viterbi, but sums instead of maximizing, so the forward variables f are
calculated like

fM �i� = fM �i−1�aM�MeM �si�+fX �i−1�aX�MeM �si� (4)

and

fX �i� = fM �i−1�aM�XeX �si�+fX �i−1�aX�XeX �si� � (5)

The final value obtained in the end state is the total probability of the
sequence P�S� given the model (the conditioning on the model is implicit in the
equations). The value of fM�i� is the probability of the sequence being in the
M state at position i. A very similar algorithm called the “backward” algorithm
starts at the other end of the protein and gives the probability of the sequence
from i to the end if we are in state M at position i. The backward variable for
membrane helix at position i, bM is calculated as

bM �i� = aM�MeM �si+1� bM �i+1�+aM�XeX �si+1� bX �i+1� (6)

By multiplying the forward and backward variables and dividing by the
total probability of the sequence as calculated by the forward algorithm, we
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obtain the probability of being in state M at position i. This so-called posterior
probability tells us how likely it is that amino acid number i is in a membrane
helix.

gM �i� = fM �i� bM �i�

P �S���
(7)

In Fig. 2, the result of the Viterbi algorithm and the posterior probability
of being in the membrane are shown for a membrane protein (one of the 160
proteins in the data set used). In the example, the probability of being in a TM
helix is much better correlated with the actual structure than the most probable
structure predicted by Viterbi.

The posterior probability gives a result which is very similar to standard
hydrophobicity plots except that it does not need some ad hoc window
averaging, and the parameters of the model have been estimated from real
TM proteins. More details on these calculations can be found in ref. 6.

Fig. 2. A human adrenergic receptor (Alpha 1D-adrenoceptor, swiss-prot ID
ADA1DHUMAN) was analyzed with the simple two-state Hidden Markov Model. The
protein belongs to the G-protein-coupled receptor family and has seven transmembrane
(TM) helices. The x-axis corresponds to amino acid positions in the protein, which
has a length of 572. The thin line curve shows the posterior probability of being in a
TM helix for each amino acid. The true TM helices are shown with the grey bars in
the middle of the plot. The most probable labels as found by the Viterbi algorithm are
shown in the top of the plot. Notice that the posterior probability actually corresponds
quite well with the correct TM helices. Notice also that Viterbi makes some quite bad
errors.
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A very good introduction to the Viterbi, forward and backward algorithms,
is found in ref. 3, which uses examples from signal processing and speech
recognition.

2.3. More Complex Models

The model discussed above is the simplest possible. To model TM proteins,
one could easily extend it by adding more states. For example, one could have
states modeling the helix caps, different states for modeling cytoplasmic versus
extracellular parts of the chain, and so on. Before going into the state of the art
models, we will just discuss one simple extension of the simple model, which
illustrates several important points.

In the simple model, there is an implicit and wrong assumption about the
distribution of helix lengths. The M state has a transition to itself with proba-
bility aM�M, which means the probability of staying in that state for l amino
acids is proportional to aM�M

l. This exponentially decaying function is very far
from the real length distribution of TM helices, which would have a probability
zero for a helix of length below around 15, a maximum probability around 22,
and would decay to zero when the length gets to around 30. It is possible to
model the length distribution more accurately by introducing more states. For
instance, one could have an array of 35 states with each state having a transition
to the next, and additionally, transitions from state 1 to all states after state 13.
This makes it possible to model the observed length distribution exactly if we
assume a minimum of 15 and a maximum of 35.

The state topology shown in Fig. 3 implements an alternative length
modeling, which relies on a bell-shaped probability distribution called a
negative binomial (6). In this model, we have used four states with transi-
tions to themselves to model the variable length. These states are tied,
which means that they have the same emission and transition probabil-

Fig. 3. A more sophisticated Hidden Markov Model, modeling the known length
distribution in transmembrane helices. Only shaded M states have transitions to
themselves.
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ities. These states are flanked by four states to each side modeling the
helix caps making the minimum length eight amino acids long, but the
length modeling ensures that the distribution of lengths can fit the observed
lengths.

After estimation of parameters as described below, we have used Viterbi and
posterior decoding as for the simple model on the same protein, and the result
is shown in Fig. 4. The Viterbi algorithm fails completely on this example. This
is because the length modeling is dependent on summing over all the possible
paths through the model, whereas Viterbi only finds one path. It is clear that
the posterior probability correlated very well with the actual structure and that
the more advanced model is better at discriminating the helices. The second
and third helices, for instance, would have been predicted as one by the simple
model (see Fig. 2), whereas the more complex model clearly separates them.
The last model also has a more pronounced prediction of a wrong TM helix in
the beginning, but has a clearer signal for the last.

2.4. Parameter Estimation

When making models such as the one shown in Fig. 3, a new problem arises:
More than one state is associated with each label. Therefore, the estimation
of parameters is not quite as straightforward. In the simple model, parameters

Fig. 4. Same plot as Fig. 2, but with the more sophisticated 15-state Hidden Markov
Model in Fig. 3. Posterior probabilities are shown as thin lines. Transmembrane helices
are now more well defined than with the simple model. But the Viterbi algorithm
completely fails to predict helices.
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could be estimated by counting, but that is not generally possible with more
states per label (for the model in Fig. 3 it could actually still be done, because
of the tying of probabilities). The estimate of parameters from frequencies in
the simple model can be shown to be the maximum likelihood estimate. In
maximum likelihood, the parameters are chosen so as to maximize the total
probability of the data (i.e., the set of membrane proteins used—sometimes
called the training set). The same principle is used to estimate a more complex
model.

The maximum likelihood parameters cannot be computed exactly in general,
but an iterative estimation procedure for HMMs exists, which is called the
Baum–Welch estimation procedure (3,6), or expectation-maximization (EM).
In this procedure, a set of start parameters are assigned (e.g., random numbers
or uniform distributions). Based on this model, letter frequencies and transition
frequencies are estimated for each state. These estimates are then used to obtain
the new parameters. This procedure is then repeated until the parameters change
very little in each update. It can be shown to give a local maximum of the
likelihood, but not necessarily the global maximum.

First f , b, and g values (see Eqs 4–7) are calculated using the initial estimates
for the parameters a and e. Then, a maximum likelihood re-estimate of the
transition probability a′

pq would be calculated as

a′
pq =∑

t

fp �t� apqbq �t +1� � (8)

where t runs over the entire training set database. The maximum likelihood
re-estimate of the emission values eq�s� are calculated in a similar fashion.

e′
q �m� =

∑
t∈st=m

gq �t�

∑
t gq �t�

(9)

The sum in the numerator runs over all positions t where the amino acid is
m, while the sum in the denominator runs over all t. The method will converge
to the parameters that maximize the probability of the data given the model.

In this section, we have illustrated some features of HMMs and hope that
it has shown that HMMs are a very general and versatile sequence modeling
framework. The models of TM proteins can be further refined by modeling
the cytoplasmic and non-cytoplamic loops differently, by having two models
of helices for the two directions through the membrane, and so on. The main
limiting factor is the availability and quality of training data. This is important
for all data-driven methods—it is not possible to reliably estimate arbitrary
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numbers of model parameters from a limited data set, so the complexity of the
model is limited by the data.

2.5. Topology of Transmembrane Proteins

So far in this section HMMs were explained using the example of TM
helix prediction, so it is a natural next step to discuss how to go from this
example to actual systems for TM helix prediction. Computational prediction
of TM helices started around 1981 with analysis of amino acid hydrophobicity
profiles (7,8). The “positive inside rule” (9), which basically states that there is
an abundance of positively charged amino acids (R and K) on the cytoplasmic
side of the membrane, was used to predict the membrane protein topology (10).
By the topology of a TM protein we mean the location of TM helices along the
sequence and the location of the intervening regions as either cytoplasmic or
non-cytoplasmic. Since then, a number of different non-HMM methods have
been applied to the problem, e.g. ref. 11–13. Then, in 1998, the two first HMM-
based methods appeared (14,15). It is probably fair to say that those methods
building on HMMs are the most successful at present, and the purpose of this
section is to review them and explain the main ideas in the HMMs used, in
particular those features that distinguish them from each other. Most will deal
with TM proteins of the helix bundle type, but in the end topology prediction
with HMMs for beta barrel membrane proteins will also be reviewed, and we
will also touch on signal peptide prediction.

There are several reasons why HMMs are very well suited for this problem.
First, the HMM can nicely capture the compositional difference between the
hydrophobic membrane helices and other regions as illustrated by the simple
models above. Second, the HMM can capture the “grammar” of the problem.
For instance, the length distribution can be modeled by an HMM in a natural
way. This is not well modeled by sliding window approaches, such as neural
networks (NNs). Similarly, the membrane helix separates inside (cytoplasmic)
from outside, so one can build the model such that one can never predict, for
example, inside-helix-inside, a cytoplasmic region followed by a membrane
portion followed by another cytoplasmic region. This, again, is not handled
elegantly by sliding window approaches. On the downside, HMMs are not as
“non-linear” as NN, which means that they are not good at capturing non-linear
correlations between amino acids, which may or may not be important.

The first two HMM approaches were developed independently and published
in 1998. TMHMM (14,4) is a straightforward extension of the simple models
described in the introduction with some sophistication in the estimation and
decoding procedures. A total of 35 states were used for modeling a membrane



184 Bystroff and Krogh

helix with transitions allowing lengths from 15 to 35. Five states at each end of
the TM region model the helix caps, with one set of emission probabilities for
inside helix caps and another set for the outside caps (the states are tied). The
states modeling the remaining helix (the core) are also tied and this is where
the length can vary. There are two identical helix submodels, one for outgoing
and one for incoming.

On the inside, 10 states model the last 10 amino acids before the start of a
helix and 10 states model the first 10 amino acids after an ingoing helix. These
20 states have tied emissions and they have a transition pattern that allows for
loop lengths shorter than 20. For loops longer than 20, the remaining amino
acids are modeled by a single state denoted as the globular state. Loops on the
outside of the membrane are modeled in exactly the same manner, except that
loops longer than 100 amino acids were modeled in a separate branch. In total,
there are seven different amino acid distributions:

1. globular part,
2. inside close to the membrane,
3. inside helix cap,
4. core TM helix,
5. outside helix cap,
6. outside close to the membrane for long loops, and
7. outside close to the membrane for short loops.

TMHMM was trained and cross-validated on a set of 160 membrane proteins
with known topologies. The exact boundary between the TM helix and loop
region is not well defined because the experimental data are not very accurate
in that respect, and even for TM proteins with known 3D structures the exact
boundaries are hard to define. Therefore, a procedure was adopted where a
region of ±3 amino acids were “unlabelled”’ during the initial training to let
the model itself find the optimal boundary. After the initial training, the model
was used to re-label the data allowing the boundaries to move by ±5 amino
acids. That is, new boundaries were defined by the model, which were more
accurate or at least more optimal for the model (see Fig. 5). This new labeling
was used to train the model again with fixed boundaries. In a final stage of
training, the conditional maximum likelihood was used. For prediction of the
topology, the N-best algorithm was used (16). TMHMM was shown to have a
better performance than other methods at the time.

Interestingly, the HMMTOP model was developed at the same time and
used a completely different approach (15). One of the main differences is that
the model was developed for prediction on a family of similar proteins, so the
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Unlabeled     MMMMMMMMMMMMMM..........iiiiiiii..........MMMMMMMMM 
Relabeled     MMMMMMMMMMMMMMMMMMMiiiiiiiiiiiiiiiiiiiiMMMMMMMMMMMM 
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Unlabeled     MMMMMMMMM..........oooooooooooooooooooooooooooooooo 
Relabeled     MMMMMMMMMMMoooooooooooooooooooooooooooooooooooooooo 

              HIVEWNVSLFSILLALGGIEFILCLIQVINGVLGGICGFCCSHQQQYDC 
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Fig. 5. The protein “transmembrane 4 L6 family member 1,” T4S1 HUMAN
from Swiss-Prot is shown with the membrane labeling from Swiss-Prot (“Correct”)
below. Here the line called “Unlabeled” shows the diluted labeling, which is used
to constrain the prediction using the initial model. The last line (“Relabeled”) is the
labeling predicted according to the constraints and used for the remaining rounds of
training.

first step is to identify sequences that are similar to the query sequence using
BLAST. The model architecture resembles that of TMHMM, but instead of
estimating and decoding in the usual way (as described in Subheading 1.),
HMMTOP uses retraining when predicting a family of TM proteins. When
estimating models from a small set of data, it is customary to use pseudocounts,
which are numbers that are added to the estimated counts in the Baum–Welch
procedure. The pseudo counts ensure that the model parameters do not depart
too much from values set a priori. In HMMTOP, a data set of 83 known
structures was used to set pseudo counts for all the model parameters, and
these guided the estimation of the model from a set of homologous membrane
proteins. Because the TM topology is not known for the set, the training is
unsupervised, but because of the pseudo counts, it is ensured that the model
does not develop into something meaningless. After training the model, the
Viterbi algorithm was used to decode the original query protein. The advantage
of the approach is that the model is adapted to the particular type of protein
in question and that it can use evolutionary information without having to
align sequences, but there is a danger that features having nothing to do with
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membrane helices take over parts of the model. The performance of the method
is very similar to that of TMHMM (see below).

Since HMMTOP and TMHMM, several methods have emerged, which
improves and extends on the HMM framework, and most of these shows gains
in performance. Kahsay et al. developed (17) a TMHMM-like model, and an
improved pseudo count scheme is used to achieve a better prediction perfor-
mance. Some methods deal with inclusion of evolutionary information through
a pre-calculated multiple alignment. In the work by Viklund and Elofsson (18),
the TMHMM architecture is used with multiple alignment columns used as
observations instead of amino acids. The probability of an alignment is essen-
tially the geometric mean of the probabilities of the individual sequences. In
the work by Käll et al. (19), predictions on individual sequences are averaged
and “maximum accuracy decoding” is used to obtain a consensus prediction
from the sequences.

2.6. Prediction of Signal Peptides and Other Features

Signal peptides are another important feature of proteins that are well suited
for modeling by HMMs. Signal peptides and their cleavage sites have been
predicted by many different methods. The most used is probably SignalP,
which is based on NN, and in later versions combined with an HMM. The
latest version of SignalP is described in ref. 20, which also reviews the earlier
literature.

A signal peptide, which is cleaved off the protein during the transport over
the membrane, is the n-terminal part of the protein and contains a region
that is typically positively charged (the n-region) followed by a hydrophobic
region (the h-region) and then the c-region, where there is some conservation
of amino acids around the cleavage site. This structure is very well suited for
HMM modeling, because it is easy to make submodels corresponding to these
regions. In the work by Nielsen and Krogh (21), a fairly simple model was
made containing a few states for each of the regions. The model can be used to
predict whether a protein contains a signal peptide based on the total probability
of the sequence given the model, or it can be used to predict the cleavage site
by calculating the posterior probability of the state modeling the last amino
acid before the cleavage site. For the first task, it was better than the original
SignalP NN, whereas the NN was better at detecting the exact cleavage site. In
later versions of SignalP, the NN and HMMs are combined. A similar HMM
was later used to discriminate lipoprotein signal sequences from signal peptides
in Gram negative bacteria (22).
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Signal sequences and N-terminal membrane helices are difficult to discrim-
inate from each other. Many signal peptides are predicted as TM helices and
vice versa. This fact is unfortunately often over-looked in the literature, which
results in quite different performance evaluations. For instance, in the work
by Klee and Ellis (23), membrane proteins were excluded when evaluating the
performance of signal peptide prediction, which gives a fairly unrealistic result,
and similarly, some comparisons of TM helix prediction methods is done on
proteins without signal peptides. To try to deal with this difficulty, Phobius
was developed, which is an HMM that models both signal peptides and TM
helices (19). Phobius was shown to better discriminate the two features than
any combination of individual predictors.

Membrane proteins that form a beta barrel rather than a helix bundle have
more recently also been modeled with models similar to the TMHMM structure
(24,25). The main problem is that very few of these protein structures have been
determined, which limits the amount of data for training and testing. Finally,
it should be mentioned that also coiled-coil domains have been successfully
modeled with HMMs (26).

3. Secondary Structure
Students of protein structure are very familiar with the three types of

secondary structure: alpha helix (H), extended beta strand (E), and loop or
coil (L). The programs DSSP (27) and STRIDE (28) assign protein secondary
structure to each position in a known structure based on their character-
istic hydrogen bonding patterns, successive i → i + 4 H-bonds for H and
either parallel hydrogen bonds (i → j� i+ 1 → j + 1, etc.) or antiparallel ones
(i → j� i−1 → j +1, etc) for E. The L assignments are simply all positions
that are not H or E. The accuracy in three-state prediction is measured using
“Q3,” which is simply the fraction correct of all discrete three-state predictions.

The most successful methods for secondary structure prediction have been
NN (29,30) and, more recently, support vector machines (31), both which
detect correlations between secondary structure and patterns in the surrounding
sequence. But HMMs provide more insight into the underlying constraints of
the system. To illustrate the differences between NNs and HMMs, consider the
case of alpha helices. Helices cannot occur as single-position predictions, as
by definition, a helix must contain at least four consecutive amino acids. The
NN approach would attempt to learn this property by training the network on
known structure, where presumably no single character helix occurs. Q3 would
be higher, and the model would be rewarded, for a singleton H prediction
relative to no H’s when the true structure is H. But this prediction is locally
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wrong. An HMM model for helix such as the one in Fig. 6 guarantees that
no single-H predictions are ever made, as the first H position can transition
only to at least two more H’s. HMMs can impose constraints such as these that
enforce and reproduce known structural features such as length distributions,
similar to the case for TM helix length previously illustrated in Fig. 3.

Rationally designed HMMs succeeded in producing predictions that satisfied
protein-like length distributions and secondary structure content (32). When
measured using Q3, HMM-based secondary structure did not compare well to
NN-based methods, but rather than call this a failure, we become conscious
of the insensitivity of the Q3 metric to certain types of accuracy, especially
length distribution accuracy. The entrenchment of one metric for accuracy can
have a stifling effect on innovation. Fortunately, this has been recognized by
participants in CASP, and now, a large number of new metrics for accuracy
are being used and actively discussed (33).

Models such as the one in Fig. 6 partially hard-wire the known periodicity of
the sequence in amphipathic alpha helices. The inward facing side of the helix
is dominated by non-polar side chains while the outward facing side chains
are polar, giving a polar/non-polar periodicity of three to four residues. This
is modeled as a cycle (states 1, 2, and 3 in Fig. 6). When iteratively trained
against sequences with true secondary structure assignments, one or more of
these five states will adopt a non-polar character and one or two will adopt a
polar character. Similarly, beta strands have a polar/non-polar periodicity of 2,
which can be enforced by the design of the HMM. The main shortcoming of
HMMs for secondary structure prediction seemed to be the need for a rational

1

2 4

5

3

Fig. 6. The topology of the helix unit used by Asai et al. (32) to predict secondary
structure. The periodicity of amphipathic helices is approximately modeled by the cycle
of states. States 1 and 5 represent the start and end of the helix, respectively.
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design of the topology of the model. NNs, on the contrary, require no such
rational input as training could be initiated using a generic network.

4. Local Structure
In Subheading 3., we described protein structure using three states, H,

E, and L. Because of the L state, a secondary structure prediction cannot be
mapped to a unique local conformation, where “local” is used to mean proximal
in the sequence. The L state is a catch-all state that includes helix cap and
reverse turn backbone angles as well as angles normally found in helices
and strands. Unlike for secondary structure, there remains to date no widely
accepted metric for accuracy in local structure prediction. However, several
attempts have been made to go beyond three states in one-dimensional protein
structure prediction using HMMs.

Temple Smith and his colleagues (34,35) experimented extensively with
state-space models, close cousins of HMMs, which distinguished between
tight turns and long loops. Helices were modeled as amphipathic patterns of
exposed and buried amino acids, and the allowed lengths of secondary struc-
tural elements were enforced. Models were designed to recognize the class of
the protein and were successful in that goal. State-space models preceded the
popularity of HMMs in protein science and, despite their similarity to HMMs,
were never formalized as such and consequently were not refined by EM.

Local structure is unambiguous if the backbone angles at each position are
uniquely defined, even if the definition is not precise. In several studies, it
was found that a fairly small number of ways exist to fold a short peptide
of four to six residues (35–37) and that conservation of backbone angle types
was a sufficient condition for the conservation of the hydrogen bonds and
side chain interactions that stabilized the structure (38). In clusters of similar
peptide conformations, a surprisingly broad range of backbone angles were
often permitted, ranging upwards of 90� (38,39) for some positions.

HMMs have been constructed for local structure prediction by defining
states to represent short-peptide (four amino acids) conformations as defined
by their inter-alpha carbon distances (40). These structure-based clusters were
shown to have sequence preferences. But as the mapping of sequence patterns
to structure is many-to-one, sequence specificity was lost when the structures
were clustered together. For example, the cluster belonging to alpha helix did
not show positional specificity for buried and exposed residues because the
backbone distances are not different between the buried and exposed sides.
The buried side and the exposed side were clustered together. The same can
be said for beta strands, which also have a buried/exposed sequence signature.
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Another weakness of the model is that it does not formally define a probability
distribution over structures, because consecutive distance vectors are dependent
and may be in conflict. It means that a “structure” emitted by the model is
often non-physical. However, this work demonstrated that proteins could be
modeled as sequences of structural building blocks, akin to a grammar.

To overcome some of the above limitations, recently a model was developed,
which emits angles of C-alpha traces, which always yields a valid structure.
In this model, the angles are also sequence dependent, so it gives a very good
basis for sampling of protein conformations (41,42).

4.1. HMMSTR, a Model for Local Structure

Here, we discuss in detail the process of constructing an HMM for local
structure called HMMSTR. In this model, protein sequences are treated as
sentences composed of words. In language, the order of letters within each
word is highly invariant, but words may be arranged in different orders to form
sentences. In proteins, words are recurrent local structure types such as a type-1
beta hairpin. Every type-1 beta hairpin has a canonical sequence of backbone
angles, and although type-1 beta hairpins do not all have identical amino acid
sequences, they conserve a common pattern of amino acid types. In addition
to type-1 beta hairpins, there are dozens of recurrent short sequences of amino
acid types that may be thought of as the words that make up protein sentences.
Using this principle, it was straightforward to identify short sequence patterns
that correlated strongly with angle patterns by co-clustering. The resulting
sequence/structure mappings were called I-sites (38), and the HMM based on
these mappings was dubbed HMMSTR (an HMM for STRucture) (43).

These I-site motifs were treated as words in sentences, and an HMM was
constructed to model all of the ways these words could be strung together,
much like the grammatical rules of language. Unlike written language, however,
motifs in proteins are not delimited by spaces or any type of punctuation.
In fact, they overlap to a great extent. To create an HMM based on motifs,
the locations of all of the occurrences of all 182 I-site motifs were found
in all proteins of known structure. Each Markov state represented a motif
position, and transitions were drawn between motif positions that were adjacent
at any position in the database. Many of the I-site motifs share segments in
common. For example, an alpha helix motif and a helix capping motif share
the helix segments; therefore, the locations of occurrences of these two motifs
in the database would often overlap. If positions in any two motifs frequently
overlapped in proteins, then the corresponding states were merged to one state.
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The analogy to this process would be the process of building an HMM for
language. The database would be a library of English literature, and the states
would be all of the words in the dictionary. Words that were found adjacent
to each other anywhere in the literature would be connected by a transition.
When the words were more frequently adjacent, the probability of the transition
would be correspondingly higher. In this example, there would be a one-to-
one correspondence between states and emissions (words), making this model
a Markov Chain with nothing “hidden” about it. But if we consider that the
words are made of letters and that they may be mis-spelled or the punctuation
misplaced, then the letter sequence does not uniquely define the state sequence
and the model is an HMM, not a Markov chain.

4.1.1. Training and Topological Modification of HMMSTR

The process of training the HMM involves changing the emission and
transition probabilities to maximize the probability of the model ��� given the
data �S�, or P���S�. Using the Baum–Welch algorithm, or EM, the parameters
are iteratively re-estimated from the posteriori state probabilities as explained
earlier for the TM helix model (see Eqs 8 and 9). However, EM is incapable
of resetting any value that is zero. This means that new transitions cannot be
added to the model, they can only be modified and removed.

In refining the HMMSTR model, a technique was used to identify “missing”
transitions by finding the maximum value of z,

zpq =∑
t

fp �t� bq �t +1� (10)

over all states p and q that are unconnected in the current model. A new
transition, apq was set to a small non-zero value, after which subsequent inter-
actions of EM would converge on an optimal value for apq. This proved to be
a very useful technique for automatically modifying the topology of the HMM.

Another trick that was used was to create a flexible HMM topology was
the introduction of a non-emitting state that connected all “sink” states with all
“source” states. Sinks are states that have no outgoing forward transitions, and
sources are states with no incoming transitions. The HMMSTR model after
merging I-site motifs contained several sink and source states because some
motifs occurred at the beginning or end of sequences or adjacent to unstructured
loops. A transition to the non-emitting “naught” state is equivalent to a set of
transitions from all sink states to all source states. By including the naught state,
we guaranteed that the model had no dead ends. No protein sequence could
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be assigned a zero probability. The naught state also doubled as the beginning
and ending state.

4.1.2. Application of HMMSTR to Understanding Misfolding

Local structure predictions made by HMMSTR have been used for structure
prediction at the global level using Rosetta (44) or for prediction of contact maps
using HMMSTR-CM (45). Another application of local structure predictions is
to understand the folding pathways of proteins. When proteins fold, some parts
of the protein fold earlier and some parts later. The order of events is called
the “pathway” of folding. Errors in folding can lead to pathological misfolded
states that can aggregate in the cell. Human prion protein is an all alpha-
helical protein in its globular form, but a misfolded state of prion protein forms
beta sheet-rich amyloid fibers under certain conditions and when certain point
mutations are present. How the globular, helix-rich structure might convert to
beta strands is of great interest.

The structure of the soluble form of human prion was solved first by
NMR (46), which showed it to be a monomeric 3-helix bundle, then later by
X-ray crystallography (47), which showed it to be a domain-swapped dimer.
Posterior probabilities were calculated for each state in the HMMSTR model
according to Eq. 7. For the purposes of analysis, all states that correspond to
alpha helix and all states that correspond to beta strand were summed separately,
and the resulting propensities for secondary structure were compared to the
true secondary structure (see Fig. 7), looking for discrepancies. The HMMSTR
predictions showed that one of the three helices, helix 2, has a low statistical
propensity for helix. This is also a part of the sequence having point mutations
that are associated with familial amyloid encephalopathy (48).

Fig. 7. Posterior probabilities for HMMSTR states condensed to secondary structure
probabilities for human prion protein (PDB code 1I4M): helix (darker line) and strand
(lighter line). Figure above the graph represents the true secondary structure for the
protein. The second helix is mis-predicted, showing a strong tendency for beta strand.
The locations of known pathogenic point mutations are marked as black dots (24).
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The implication is that helix 2 (residues 173–188) is energetically unstable
as an alpha helix and is most likely the site of amyloid initiation, as amyloid is
composed of stacked beta strands. The sequence patterns in the region 173–188
do not match the canonical patterns associated with helix, and as these patterns
are canonical for reasons of energetic natural selection, we conclude that the
structure of helix 2 is unstable. As is true for the case in point, mutations that
lead to structural instability can lead to disease. In this case, the mutation data
preceded the structure, but a conclusion that the second helix would be sensitive
to mutation would have been possible without knowing the location of the
mutations. Pathogenic mutations on helix 3 are explained by close interactions
with helix 2 in the structure.

5. Profile HMMs
Profile HMMs have been reviewed extensively elsewhere (1,2), but a short

discussion will serve as a reminder. Profile HMMs greatly improved remote
homology detection over the previous state-of-the-art, mostly due to their ability
to capture position-specific gap probabilities and amino acid probabilities.

All protein structure prediction algorithms have their roots in one of two
basic principles: energy and evolution. Energy guides the folding process;
evolution produced the diversity of proteins that exist today. Energy underlies
the prediction of local structure using HMMSTR or TM helices using TMHMM.
These models contain sequence patterns for either local motifs or TM helices.
The sequence patterns within these models predict structural properties because
sequences that match these patterns have a low free energy when they fold
into the corresponding structures. These are not evolutionary models because
sequences that match the same pattern are not assumed to have a common
ancestor. Global sequence similarity was not used to build these models.

Profile HMMs, on the contrary, are rooted in the principle of common
ancestry. Sequences that have greater than about 25% sequence identity are
very likely to have diverged from the same ancestral sequence. In fact, nowhere
in evolutionary history have sequences with common ancestors been found
to adopt different folded structures. It is a rule without exceptions. Common
ancestry directly implies a common structure. But, homology is often difficult
to detect. There are many sequences with even less than 25% identity are
known to have structural homology and therefore probably have a common
ancestor sequence. But sequence identity is a poor metric in this “twilight zone”
of low sequence similarity. The vast majority of matches below this cutoff
are non-homologous. To increase the sensitivity of sequence alignment as a
structure prediction tool, a family of sequences can be modeled as an amino
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acid probability distribution, or more simply, a “profile.” Comparing a sequence
to a profile is much more sensitive than comparing two single sequences.

Comparing any two sequences, or a sequence and a profile, requires finding
the highest scoring alignment. In traditional dynamic programming algorithms,
a position-independent gap penalty is used as part of the scoring function,
but upon inspection of multiple sequence alignments for large families, it is
abundantly clear that gaps are far more likely in some positions and less likely
in others. Profile HMMs attempt to capture this information by allowing each
position in the profile to have a different probability of initiating a gap or
insertion.

The topology of a profile HMM is fixed, having three types of states, Match,
Gap, and Insertion, one of each per position in the profile. Match states emit
amino acids from a profile and have transitions forward to the next Match state,
a Gap state and an Insertion state. Gap states do not emit but only connect Match
states that are not adjacent. Insertion states emit amino acids and have transitions
to themselves, to Gap states, and to Match states. The transition probabilities
are initialized based on a set of aligned sequences, possibly using phylogenetic
sequence weighting to correct for redundancy among the sequences. Figure 8
shows a small segment of a multiple sequence alignment and a segment of a
profile HMM that models it. States that have zero probability are dimmed in
this image.

Libraries of profile HMMs, such as Pfam (49), increase sensitivity in remote
homology detection, as shown in CASP experiments (50,51). Profile HMMs
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are considered by many to be the state-of-the-art in modeling protein sequence
families for the purpose of remote homology detection. This high status is a
result of the flexible and yet constraining nature of HMMs in general. This
section only serves as a reminder. For more details, see refs 1,6, and 52.

6. Conclusions
HMMs may be used to predict protein structure by modeling their state

topology and training their parameters against a set of sequences on known
structure. We have described models where the states take on different struc-
tural meaning—structure and location relative to a membrane (TMHMM),
or backbone angles (HMMSTR), or common ancestry in a sequence family
(Pfam). Algorithms were introduced that find the best state path through an
HMM (Viterbi), find the posterior probability of any state at any position in
the sequence (forward/backward), and re-estimate the parameters of the model
from data (Baum–Welch). All HMMs use these three algorithms. The topology
of an HMM may be predefined using expert knowledge, or may be at least
partially defined by the data itself.
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The Pros and Cons of Predicting Protein Contact Maps

Lisa Bartoli, Emidio Capriotti, Piero Fariselli, Pier Luigi Martelli,
and Rita Casadio

Summary

Is there any reason why we should predict contact maps (CMs)? The question is one of the
several ‘NP-hard’ questions that arise when striving for feasible solutions of the protein folding
problem. At some point, theoreticians started thinking that a possible alternative to an unsolvable
problem was to predict a simplified version of the protein structure: a CM. In this chapter, we
will clarify that whenever problems are difficult they remain at least as difficult in the process
of finding approximate solutions or heuristic approaches. However, humans rarely give up, as it
is stimulating to find solutions in the face of difficulties. CMs of proteins are an interesting and
useful representation of protein structures. These two-dimensional representations capture all the
important features of a protein fold. We will review the general characteristics of CMs and the
methods developed to study and predict them, and we will highlight some new ideas on how to
improve CM predictions.

Key Words: Protein structure prediction; Protein contacts; Small world; Structure recon-
struction; Machine learning; Contact map; Protein folding.

1. From Protein Structures to Contact Maps
Proteins structures are described by the coordinates (CO-representation) of

the atoms that constitute the macromolecule. For a protein with n atoms we
need 3n numbers (x, y and z coordinates for each atom) to specify its three-
dimensional (3D) structure. An alternative view is to consider the distance
matrix (DM), a symmetric matrix that contains the Euclidean distance between
each pair of atoms. If the number of atoms is n we need n2 elements; because
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the matrix is symmetric (the distance between atoms i and j is the same of
that between j and i), the real number of elements is only n(n – 1)/2. Both
representations, namely the coordinates and the DM, are equivalent, that is, we
can convert each representation into the other. DM can be computed from the
CO-representation simply by evaluating the Euclidean distance between each
pair of atoms: values stored in the appropriate DM cell uniquely identify the
pair i and j. Conversely, to go from DM to CO is not so trivial. There exists a
Lagrange theorem (1) that states that once that the Gram matrix derived from
DM is diagonalized, the three eigenvectors that correspond to the three highest
eigenvalues are the atom coordinates in a 3D cartesian reference. Actually,
there are two solutions, but the chirality of the molecule routinely can help in
selecting the correct one (1 and references therein).

DM representation has far more elements than the coordinate-based represen-
tation, so why adopt it? The main advantage of DM representation arises when
only a part of the data is known (i.e., in low-resolution NMR experiments). Still
solutions can be found, thanks to DM properties (1). Another advantage of DM
is that the protein is represented in a framework that automatically incorporates
translational and rotational invariance and this in principle is more suitable for
learning approaches.

Quite often in order to simplify the protein representation not all protein
atoms are taken into account and residues are considered as unique entities.
In this case, the DM has a number of rows (and columns) equal to the
residue numbers. Each DM entry is then the distance between residue i and j.
The distance between two residues can be defined in different ways, such
as the following:

• the distance between a specific pair of atoms (i.e., CA–CA or CB–CB),
• the shortest distance among the atoms belonging to i residue and those belonging to

residue j, and
• the distance between the centres of mass of the two residues.

Even though these choices are quite different and structurally minimal, they
provide enough information to build the protein backbone, or at least the CA
trace (1,2).

Starting from the protein DM and selecting an arbitrary distance cut-off,
a further simplified representation can be obtained: the protein contact map
(CM). CMs are binary symmetric matrices, whose non-zero elements represent
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the contacts between residues (see Fig. 1). In more details, given a DM and a
defined threshold T the corresponding CM can be computed as:

CM �i� j� = 1 if DM �i� j� < T

CM �i� j� = 0 if DM �i� j� ≥ T

Fig. 1. Contact map of HSP-60 protein fragment (PDB code: 1KID). The secondary
structure elements are highlighted along the x axis and y axis. �-helices and �-strands
are represented in black and grey, respectively. On the left side of the plot the black
dots indicate the contact regions (cut-off radius 8.0 Å centered at CB atoms). On the
right side, the structural protein features are shown: (a) Anti-parallel sheet contacts;
(b) parallel sheet contacts; (c) contacts between helical regions.
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While the problem of reconstructing the protein coordinates from the DM
has a well known solution, there are no analogous theorems for CM. However,
some empirical applications have been built to address this issue. The results
indicate that (at least for the tested proteins) it is possible to reconstruct the
CO-representations from CMs (2–5).

Protein CM representation has some pros and cons.
Pros:

• Unlike other protein representations such as secondary structure, CM conveys strong
information about the protein 3D structure.

• The CM representation is translation and rotation invariant and more compact than
the DM representation.

• CM is more suited than DM for learning problems. The binary CM nature can
be regarded as a classical problem of a two-state classification and this has
been thoroughly studied. There are several machine learning methods available
to address the problem of the prediction of CM from the protein residue
sequence (6).

• It has been shown that the empirical reconstruction algorithms are quite insensitive
to high levels of random noise in CMs, so that for reconstructing the 3D structure
of the protein it is not necessary to correctly predict all contacts (2,4).

Cons:

• There is no theory on CM that can help to define the limits and the strength of this
representation. For instance, the effect of the contact threshold on the information
content is not theoretically assessable. For this reason, different researchers adopt
different protein representations and contact thresholds.

• The problem of CM comparison is very hard, as it is that of a sub-graph isomorphism,
which is NP-hard (7).

• CMs of real proteins are a tiny subset of the possible binary symmetric matrices (2);
however, no simple and fast algorithm has been found to sort out the protein-feasible
CM from the others.

• CM prediction is an intrinsically non-local problem. Also, this is a very difficult
problem to deal with, as a contact between two residues poses constraints on the
feasibilities of all other contacts.

• Although the reconstruction programs are very insensitive to random noise, they are
not as robust when the prediction errors are correlated, as is the case with current
prediction algorithms.

CMs can be regarded both as symmetric matrices and as graphs. Actually,
the CM representation is an adjacency matrix, where the contacts are the
edges and the residues are the nodes. It is useful to distinguish between
short-range and long-range contacts. The distinction between short-range
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(sometimes called ‘local’) and long-range (‘non-local’) contacts is not due
to the type of interaction, nor the spatial distance, but it is due to the
relative sequence separation. Contacts between residues that are separated less
than a given number of residues S ��i− j� ≤ S� are said to be short-range.
Conversely, if the sequence separation is greater than S, they are said to be
long-range. The choice of S is arbitrary, but it is commonly accepted that
�i− j� ≤7−10 represents short-range contacts, while �i− j� >7−10 represents
long-range ones.

2. Properties of Protein Contact Maps
When CMs are analyzed, one of the first features is that the number of

contacts increases almost linearly with the protein length, independently of the
adopted distance measures (CA–CA, CB–CB, etc.) and of the threshold cut-off
used (8). More formally, if L is the protein length and nc is the number of
contacts, the real number of contacts can be quite accurately estimated using
the linear equation

nc = AT ×L

where AT is a constant that only depends on the contact threshold (T ). In
practice, a change in the contact threshold T (in a reasonable range) has the only
effect of modifying the slope of the line. This finding, together with the fact
that the number of possible contacts NCM, which is the number of independent
CM elements �NCM = L�L−1�/2�, increases with the square of the protein
length, implies that the contact densities in the map �nc/NCM� decrease as
the inverse of the protein length. In other words, long proteins have a lower
contact density than short ones (8).

Protein CMs have also more contacts in the short-sequence separations than
those obtained using random graphs with the same number of contacts (8). This
is an indication that protein structures have a high tendency to form contacts
with sequence neighbours.

Studying the properties of the CM eigenvectors, it has been found that there
is a high correlation between the eigenvector corresponding to the highest
eigenvalue (first eigenvector) and the residue coordination numbers (5,9). The
residue coordination number (or contact vector) is the number of contacts of
each given residue with all the others in the protein space (10). This figure can
be easily computed from the contact matrix by summing up the rows (or the
columns) of CM.
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Galaktionov and Marshall (5) reported that from the knowledge of the real
residue coordination numbers, it is possible to reconstruct to some extent (about
4 Å of Root Mean Square Deviation (RMSD)) the 3D structure of the protein.

A further surprising property of the first eigenvector of CM is the fact
that a CM can be reconstructed using only the information contained in this
vector coupled along with the information derived from the protein backbone
constraints (9). However, this is not a general property of all binary symmetric
matrices, only of the subset comprising single-domain proteins (9).

3. Reconstructing Protein Structures From Contact Maps
As outlined above, a CM contains a simplified representation of the protein

conformation and it is unambiguously computed from the structure by a binary
simplification of the DM. It is well known that a protein structure can be recon-
structed from its DM by means of the Lagrange theorem (1). This procedure is
unambiguous, except for the ambiguity due to chiral symmetry. The questions
are these: is it possible to recover the structure starting from its real CM as
well? And from a predicted CM?

Bohr et al. (3) implemented a method based on the definition of a continuous
function that measures the distance of a protein structure from a given CM. By
adding some terms for assuring the connectivity and the compactness of the
protein structure, a target function was obtained and then minimized using a
simple steepest descent algorithm. The optimal computed structure satisfies as
many contacts as possible.

At an 8 Å threshold for the distance between two CA atoms, the algorithm
recovers the structure starting from the real CM with a RMSD less than 3 Å.
It is worth noticing that the threshold value for the contact definition can
be chosen within a wide range without greatly affecting the deviation of the
recovered structure with respect to the real one. The optimal threshold for the
minimization depends on the protein size.

The algorithm is efficient when a real CM is adopted; however, it fails when
predicted CMs are considered for defining the target function. When the rate
of error on the predicted map is only about 5%, it leads to structures with a
RMSD ≥ 5 Å. This is due not only to the low quality of the prediction but also
to the fact that a physical CM needs to satisfy complex constraints in order to
represent a real structure.

When predicting contacts between each pair of residues in a sequence, the
computation is independent of the other assigned contacts and then the resulting
map is likely to be non-physical. In these cases, the recovering algorithm
has to deal with the noise introduced by the inconsistency of the predicted
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contacts. This issue was thoroughly discussed by Vendruscolo and Domany
(2) who implemented a stochastic algorithm for building a structure satisfying
the protein CM. The algorithm builds a structure adding residues one at a
time, trying different random conformations and then randomly adapting the
preceding portion of the chain. In each step, the number of fulfilled contact
constraints is the objective function for selecting the best conformations. By
this, starting from the real map with a threshold distance value equal to 9 Å, the
protein structure is reconstructed with a RMSD between 1 and 2 Å. The authors
introduce noise in the physical map by flipping randomly chosen positions in
the map and their algorithm results more robust than that of Bohr et al. (3).
Indeed even when about 20% of the map is randomly inverted, the algorithm
reconstructs structures with a 4 Å RMSD to the real protein. However, this
kind of non-physical CMs are likely to contain much more information than
the predicted ones, as the randomness of the flipping conserves most of the
original protein structure representation. Unfortunately, in a predicted map,
errors are often more correlated and then recovering of the 3D structure is far
more difficult.

In short, the implemented algorithms to reconstruct protein structure starting
from CM prove that for a wide range of distance cut-offs, the CM is a good
representation of the protein backbone conformation. It is possible to reconstruct
the structure in the best cases with a deviation of less than 3 Å. Nevertheless, it
should be considered that presently it is still impossible to deal with predicted
maps, as in this case the level of noise is too high.

4. The Prediction of Protein Contact Maps
In these years, several researchers have been predicting CMs starting from

protein sequence information. This interest grew after it was shown that it
is possible to reconstruct protein structures from their CMs (see Section 3).
Among the first attempts to predict residue contacts in proteins, there are
methods based on correlated mutations (11,12). In this case, the basic idea is
that the maintenance of protein functions constrains the evolution of residue
sequences. This fact can be exploited to interpret correlated mutations, observed
in a sequence family, as an indication of a probable physical contact in 3D.
On this basis, if a given residue mutates in a position, it is likely that a residue
in contact with it will mutate too, in order to compensate the previous change.
Also, strong hydrophobic conserved residues have a high probability of being
in contact (11).

An alternative approach is to learn the correlation between sequence and
CM using machine learning tools. In this respect, several methods have been
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introduced: neural networks that exploit multiple sequence alignments (4,8,
13,14), hidden Markov models (15), support vector machines (16), genetic
programming (17) and recurrent neural networks (18). Neural network-based
methods incorporate several sequence features related to the local environment
of two residues for their prediction of being or not in contact, including in some
cases correlated mutations and residue conservation (4,8). More recently, Punta
and Rost have improved the neural network prediction accuracy by adding
information relative to the segment that connects the two residues undergoing
prediction. This is done by coding also the sequence environment of the residue
that falls exactly in the middle between the two residues considered. More
precisely, if the contact propensity for the pair i, j (j > i) is predicted, they
also code the environment for position k = �j + i�/2. This information seems
to improve the neural network prediction accuracy up to 32% when sequence
separation is six residues long (14), and this is the highest score reported so
far. Similar to other predictors, this accuracy is obtained using a number of
predicted contacts equal to half of the protein length (14).

Another method codes the protein underlying grammar for hidden Markov
models to find residue contact patterns among different pairs of segments
by adopting an approach that can be regarded as an extension of threading
methods (15).

Recently, machine learning methods have tried to incorporate information
relative to the geometric properties of CMs. It seems that the introduction
of the information relative to the prediction of the first eigenvector density
components helps the prediction of the final CM (19,20).

During the last Critical Assessment of Technique for Protein Structure
Prediction (CASP6), some methods and servers were mainly evaluated on long-
range contact predictions for a set of about 10 proteins belonging to the new fold
targets (21). The assessors found that three approaches, including PROFcon
(14), with similar levels of accuracy and coverage performed a little better than
others (14,17,21). Comparisons of the predictions of the three best methods with
those of CASP5/CAFASP3 suggested some improvement, although there were
not enough targets in the comparison set to make this statistically significant.
Irrespective of the CM prediction accuracy, they are still better than constraints
from the best de novo 3D prediction methods (20).

How a predicted CM looks like? As an example, in Fig. 2, we show the
prediction of an all-alpha protein. For this specific protein, accuracy is 44%, a
quite satisfactory value when it is considered that this protein structural type is
the most difficult to be predicted. Prediction in this case was computed with an
updated version of our CORNET method (8).
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Fig. 2. Real versus predicted contact map of the �-subunit of the human Farne-
syltransferase (PDB code: 1LD8 chain A). On the left side of the plot the black dots
indicate the predicted L/2 contact residues. On the right side, in grey, the real residue
contacts are shown (cut-off radius is 8.0 Å centered at the CB atoms and sequence
separation ≥6). In the corner on the right, the protein structure is shown, highlighted
in black, the correctly predicted contacts. On this protein, our neural network-based
predictor reaches an accuracy equal to 44%.

5. Small World and Contact Maps
Unfortunately we use CMs, we predict them, but we are still unhappy. How

do we improve our methods and our prediction? The solution is still to be found.
In the meantime, we suggest another perspective in the following sections.
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5.1. Small World

To overview some recent literature on proteins, we should introduce a few
concepts explaining what ‘small world’ is and how it has been used to highlight
protein folding properties.

In the mid-1990s, Duncan Watts, while studying for his PhD in Applied
Mathematics, was invited to study a very particular problem: how crickets
synchronize their singing (22). He was convinced that, to deeply understand
this problem, he had to observe the way the crickets pay attention to each
other. This is the starting point of the study of networks under a different
perspective than that of random networks that were previously introduced by
Erdós and Rényi ((22) and references therein). Watts started his study on social
networks trying to answer to a simple question: how many probabilities are
there that two persons, both my friends, know each other? With his Professor
Steven Strogatz, he found that social networks were clustered and not randomly
distributed and that the same paradigm could model dynamical relations in
many different systems (22).

To explain the omnipresence of clustering in real world networks, Watts
and Strogatz (23) proposed a new connection topology called a ‘small world’
network, showing that it can be interpolated between regular and random
networks with a random rewiring procedure. According to this model, small
world systems can be highly clustered, like regular graphs, and at the same time
they are endowed with a small average path length, as it is for random networks.

Watts and Strogatz (23) introduced two numbers to describe the charac-
teristics of small world networks: the characteristic path length L and the
clustering coefficient C. L is given by the number of edges in the shortest path
between two vertices, averaged over all pairs of vertices:

L = 2
N �N −1�

N−1∑
i=1

N∑
j=i+1

Lij�

where Lij is the shortest path length between vertices i and j.
Supposing that a vertex k has Nk neighbours, then at the most Nk�Nk −1�/2

edges can exist between them. If nk is the actual number of edges among the
neighbours, then C is defined as:

C = 1
N

N∑
k=1

nk

Nk �Nk −1� /2
	

L measures the typical separation between two vertices in the graph (a global
property) and C is a measure of local clustering or cliquishness of a typical
neighbourhood (a local property) (23).
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5.2. Small World and Protein Structures

The extension of the small world view to proteins was straightforward.
Vendruscolo et al. (24) showed that protein structures have small world
topology. The small world behaviour of protein structures is reflected by the
presence in their graph of a relatively small number of vertices with many
connections (24). Two residues are considered as connected if the distance
between their CA atoms is less than a threshold distance fixed at 8.5 Å. By
analysing a data set of 978 representative proteins, it was found that the
average value of L is 4	1±0	9 and that of C is 0	58±0	04. These values were
compared with those obtained for random and regular graphs. By assuming
that K is the average number of links in the graph (the average number of
contacts in a protein) and N is the number of vertices (protein residues), then
Lrandom ∼ ln N/ ln K and Crandom ∼ K/N ; Lregular ∼ N �N +K −2� /2K �N −1�
and Cregular ∼ 3 �K −2� /4 �K −1� (25). Values of 2	4±0	3 and 0	08±0	06 were
reported for Lrandom and Crandom respectively; Lregular and Cregular were 10	4±7	0
and 0	67±0	04, respectively (24).

In this chapter for sake of clarity and with the specific aim of relating the
small world representation to CMs (see below), we perform the same type of
analysis on a new and a more selected data set of non-redundant mono-domain
proteins (497 proteins) (see Fig. 3). We reached similar conclusions as before
(24), obtaining L and C equal to 3	9 ± 0	9 and 0	57 ± 0	03, respectively. For
our data set, Lrandom is 2	1 ± 0	2, Crandom is 0	08 ± 0	04, Lregular is 8	7 ± 4	2
and Cregular is 0	67±0	01, confirming again that Lrandom < L < Lregular and that
Crandom < C < Cregular, a key conclusion for resorting small world behaviour.

Small world view was adopted also for homopolymers obtained with a CM
dynamics (26) and for atomic clusters obtained with Lennard–Jones interactions
with a Monte Carlo method (27). In both cases, the values of C and L were
found similar to those of proteins, indicating a small world topology also for
these systems. It was therefore concluded that protein chain connectivity plays
a minor role in the small world behaviour and that for a globular protein the
small world character would mainly arise from the overall geometry (surface
to volume ratio) (24).

What we did in house was substantially to add to these concepts by analysing
other properties of our non-redundant protein set that have been related to small
world behaviour. Another tendency that shows this property is that L increases
linearly with log N (as a measure of the protein length) and that the slope is
higher than the random reference case (see Fig. 4). This type of plot is frequent
in the pertinent literature (28,29). In our case, we add to the conclusion by
analysing a non-redundant set of mono-domain proteins.
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Fig. 3. Plot of the average path length versus the clustering coefficient computed
on our data set of non-redundant set of mono-domain proteins (comprising 497 protein
chains with sequence identity < 25%). Average values are reported with the associated
standard deviation. Proteins are represented by CA, CB and all-atom (cut-off radius is
8.5 Å). Random: corresponding random graphs; Regular: corresponding regular graphs.
See text for details.

As observed in the work of Atilgan et al. (28), the average value of C
remains nearly constant with increasing protein size. We found the same trend
on our data set (see Fig. 5). It should be however noticed that for each
protein the tendency is that C decreases at increasing protein size. This fact is
viewed as indicative of the modular nature of the small world networks. When
globular and fibrous proteins are compared, no relevant difference arises, and
a general belief is that ‘small worldness’ persists irrespectively of structural
differences (28–30).

Atilgan et al. (28) studied 595 proteins with sequence homology <25%, a set
described before (13). The protein core local organization (residues residing at
depths greater than 4 Å) is the same even if the size of the protein is different.
Beyond a depth of approximately 4 Å from the protein surface, the clustering
coefficient approaches a fixed value of approximately 0.35, irrespective of the size
of the protein at hand. The same small world organization seems therefore to live
throughout the protein, despite the heterogeneous density distribution that it may
be found in different folds pertaining to different proteins.
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Fig. 4. Characteristic path length as a function of logarithm of the protein length
[Log (N )]. L is shown for each protein of our data set. Real protein values cluster
above those of corresponding random networks.

Fig. 5. Clustering coefficients of the different proteins as a function of the protein
length (see text for details).
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5.3. Local Versus Global Contacts

Greene and Higman (30) adopted an all-atom representation of the proteins
instead of the less informative CA simplified representation. A contact was
allowed between two residues when at least one pair of their atoms is within
5 Å from each other. By this, multiple links between residues are allowed.
The small world property was analysed on a set of 65 non-redundant proteins
divided into nine highly populated fold types representing the four SCOP
protein classes: all-�, all-�, �/�, �+� (http://scop.mrc-lmb.cam.ac.uk/scop/).
Interestingly Greene and Higman (30) found a difference of the behaviour
between what they called networks of short-range and long-range contacts.
Interactions are considered short range or long range if they occur between
residues that are ≤10 and more than 10 residues apart in the protein sequence,
respectively. A long-range interaction graph does not differ from a random
graph; however, when also short-range contacts are taken into consider-
ation the small world behaviour emerges. By following the short-range and
long-range contact distinction, we compute C and L values for our protein
set. The results are shown in Fig. 6, confirming that long-range contacts

Fig. 6. The characteristic path length versus the clustering coefficient for each
protein in the data set considering long-range contacts and complete contact maps.
Black circles: complete protein contact maps. Grey triangles: long-range contacts. Black
squares: random networks. Apparently, long-range contacts overlap with corresponding
random networks.
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can be modelled by a random graph and that small world properties emerge
only when the whole CM is considered.

5.4. All-� Versus All-� Contacts

Several authors inspected how small world behaviour is dependent on the
protein structural type, routinely following the SCOP classification (28–30).
A thorough investigation study reveals a marginal but consistent difference in
the C index value of all-� and all-� proteins. We show our results in Fig. 7.
When considering the average C values, we find that they are 0.597 for all-�
and 0.551 for all-� proteins, respectively. These values confirm the difference
previously reported (29). This difference may be due to the larger geometrical
compactness of �-helices as compared to �-sheets. Our data set contains 113
all-� proteins and 110 all-� proteins.

5.5. Scale-Free Networks and Contact Maps

Scale-free networks are small world; however, small world networks are
not necessarily scale-free (31). In the protein world, CMs are not scale-free
networks. A scale-free connectivity follows a power law p �k� ∼ k−
 (where
k is the number of links of a node and p is the probability of a node to have

Fig. 7. The characteristic path length versus the clustering coefficient for 113 all-�
(black dots) and 110 all-� proteins (grey dots). The two crosses indicate the average
C values for the two groups: 0.597 and 0.551 for all-� and all-� proteins, respectively
(see text for details).
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Fig. 8. Small world networks are not scale-free: frequency of residues (vertices) as
a function of the number of contact per residue (k) in our protein data set.

k links). In a typical scale-free network 2 ≤ 
 ≤ 3. The distribution of both
long-range and short-range contacts reveals a tendency to a bell-shaped Poisson
curve which is typical of random networks and not of scale-free ones (30).
The plot shown in Fig. 8 is the result of a study on our data set of complete
CMs, confirming the non-scale-free behaviour of contact distribution in our
protein set.

6. Exploiting Small World Properties of Contact Maps
In Section 5, we showed that protein CMs are peculiar graphs that exhibit

small world properties. The question arises whether predicted CMs behave
similarly. Thus, we predicted some 100 mono-domain proteins using PROFcon
(14) that has been demonstrated to be one of the best performing available
methods (21). However, PROFcon assigns predictions only to pair of residues
that are more than five residues apart, and therefore, in order to compare the
predicted CMs with the observed ones, we also added the trivial connectivity
to the predictions (which consists of the CM diagonals i, i + 1 and i, i + 2).
The trivial contacts are due to the backbone connectivity when a CB threshold
is set to 8 Å (as was in this case). The results are reported in Fig. 9, where it is
evident that also the predicted CMs generate graphs with small world behavior.
Nevertheless, the predicted CMs have lower values of both characteristic path
length (L) and clustering coefficient (C) with respect to real proteins. Prediction
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Fig. 9. Plot of the average characteristic path length versus the average clustering
coefficient computed on 113 contact maps of all-� proteins predicted with the PROFcon
prediction method (14) (CB predicted) compared to physical ones (CB real). Predicted
contact maps are non-random but still different from real contact maps.

therefore generates CMs that are different from random but still far from the
real proteins. Eventually, this perspective may help in filtering out spurious
assignments.

7. Conclusions
Writing a review article is always an effort, especially when piled up results

in a field are still promising results. In this chapter, we hope to have addressed
the old and present problems in CM predictions and highlighted why we are still
willing to devote our effort to this field. Also, we have suggested that possibly
by merging small world view of proteins and CMs, new optimization algorithms
may be developed to reduce signal-to-noise ratio. This will eventually help us
also in finally reconstructing the 3D protein structure from predicted CMs.
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Roadmap Methods for Protein Folding

Mark Moll, David Schwarz, and Lydia E. Kavraki

Summary

Protein folding refers to the process whereby a protein assumes its intricate three-dimensional
shape. This chapter reviews a class of methods for studying the folding process called roadmap
methods. The goal of these methods is not to predict the folded structure of a protein, but rather
to analyze the folding kinetics. It is assumed that the folded state is known. Roadmap methods
maintain a graph representation of sampled conformations. By analyzing this graph one can
predict structure formation order, the probability of folding, and get a coarse view of the energy
landscape.

Key Words: protein folding, folding kinetics, roadmap methods, conformation sampling
techniques, energy landscape

1. Introduction
Protein folding refers to the process whereby a protein assumes its intricate

three-dimensional shape. Different aspects of this problem have attracted much
attention in the last decade. Both experimental and computational methods
have been used to study protein folding, and there has been considerable
progress (1–7).

This chapter reviews a class of methods for studying protein folding called
roadmap methods (8–19). These methods are relatively new and are still under
active development. Roadmap methods are computational methods that have
been developed to understand the process or the mechanism by which a protein
folds or unfolds. It is typically assumed that the folded state is already known.
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Note that this is not a comprehensive survey of all existing computational
protein-folding methods. In particular, it does not cover molecular dynamics
(MD) methods (20), Monte Carlo (MC) methods (21), the use of coarse grain
models in simulations, and many others.

Many papers (20–22) have discussed the advantages and disadvantages
of traditional computational methods for studying protein folding. Some of
the drawbacks include the facts that classical MD/MC simulations typically
compute only one trajectory, that escaping local minima can be very difficult,
and that the process has no memory to recognize whether conformations
have been visited in the past or not. These issues led some researchers to
develop enhanced versions of MC and MD methods, which take advantage
of laboratory data, non-uniform or accelerated timescales, modified energy
functions, parallelism, biases away from previously generated conformations,
and other modifications (23–26). Other researchers, inspired by advancements
in robot modeling and by the need for alternative protein-modeling methods,
began to build so-called roadmaps to explore the conformational space of
proteins. A roadmap is a representation of many conformations and the transi-
tions between them as a graph data structure. Roadmap-based methods were
originally developed in robotics (27) where the configuration (conformation)
space of a robot is explored to find a collision-free path that will take the robot
from an initial position to a final position. By taking advantage of the analogy
between robots and molecules, in which the main molecular chain of a protein
corresponds to an articulated robot, roadmap methods were adapted to study
how a protein can attain a known final shape. Roadmap methods were signifi-
cantly modified and enhanced to address the folding problem. Their application
to the folding problem is still relatively new and not as well-understood as
MD/MC simulations. They seem to offer vast computational improvements
and potentially increased coverage of the conformational space compared with
traditional methods. This could mean that “interesting” areas of the conforma-
tional space can quickly be discovered, and, if necessary, further explored with
traditional methods. Yet, it is not clear how much (if anything) is lost by the
use of coarse approximations. This chapter surveys some of the most promising
road map methods for protein folding (9–19).

2. Background
2.1. Protein Representation

The simplest representation of a protein is a vector that contains the Cartesian
coordinates of all atoms in a conformation. This is the representation used in
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MD/MC simulations; molecular potential energy functions are almost always
parameterized by atomic coordinates in Cartesian space (28).

The drastic changes in the conformation of a protein occur, however, with
rotations about certain bonds. Often, a vector of bond rotations is used as
a more compact representation of a protein. The amount of rotation about a
single bond relative to some reference state is called the dihedral angle. This
representation ignores the stretching of bond lengths and bond angles, but these
effects are often negligible compared with the bond rotations. Efficient ways
to calculate the Cartesian coordinates of all atoms given the dihedral angles of
a protein are given in ref. 29.

Another way to represent a protein is to model flexibility at the level
of secondary structure. A molecule is divided into �-helices, �-sheets, and
connecting loops. The sequence of secondary structure elements is represented
by a sequence of vectors. Rotational degrees of freedom are assigned at the
junctions where the vectors meet. The �-helices and �-sheets can twist about
their axis, and the loop regions are allowed to extend in the direction of
their vector. In this representation, traditional energy functions cannot be used,
but it is possible to approximate molecular energy using a simple potential
function (30).

In roadmap methods for protein folding, all the above representations have
been used, but the most popular one is the representation of conformations by
dihedral angles. As will be explained in the next section, roadmaps sample
the conformation space of a protein. The dihedral angle representation of a
protein readily allows the generation of samples that have properties suitable
for road-map-based methods.

2.2. RoadMap Algorithms for Robot Motion Planning

The idea of using a roadmap to represent properties of a complex space
originated in robotic motion planning (27,31). In motion planning, a collision-
free path between a start and goal configuration of a robot is computed. Consider
a long articulated robot for the moment. The degrees of freedom of such a
robot correspond to moving its joints. The set of all configurations of a robot
is called its configuration space. Each point in this space corresponds to a
robot configuration. A simple, two-dimensional robotic configuration space is
illustrated in Fig. 1A. The subset of configurations where the robot does not
collide with any obstacles (including the robot itself) is called the free space
and is shown in white in Fig. 1A. The set of configurations in which the
robot collides with itself or a workspace obstacle is called the occupied space
and is shown in black in Fig. 1A. Motion planning can thus be phrased as
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(A) A two-dimensional robotic configuration space. 
Black shapes represent sets of configurations that place 
the robot in collision with obstacles.

(B) A two-dimensional molecular conformation 
space, which could correspond to a molecule with two 
rotatable bonds. White regions are low-energy, black 
high-energy, and gray intermediate-energy. The 
higher the energy of a conformation, the less likely a 
molecule is to assume that conformation.

Fig. 1. Robotic configuration space versus molecular conformation space. (A) A two-
dimensional robotic configuration space. Black shapes represent sets of configurations
that place the robot in collision with obstacles. (B) A two-dimensional molecular
conformation space, which could correspond to a molecule with two rotatable bonds.
White regions represent low energy, black high energy, and gray intermediate energy.
The higher the energy of a conformation, the less likely a molecule is to assume that
conformation.

the problem of finding a curve (a path) that lies completely in the free part
of the configuration space.

Computing the free space exactly is a very hard problem. The size of
the configuration space and the complexity of the motion-planning problem
grow exponentially with the number of degrees of freedom (32). Sampling-
based techniques called Probabilistic Roadmap Methods (PRMs) (27) build a
roadmap: a graph representation of the free space, where nodes correspond to
configurations and edges to paths between them. This roadmap is computed
as follows. First, a large number of collision-free configurations are sampled.
Next, for each configuration, an attempt is made to find a path to some of
its nearest neighbors. These local paths can simply be straight lines in the
configuration space. If the path between two configurations lies entirely in the
free space, it is added to the roadmap. The motion planning problem is now
easily solved. The start and goal configurations are connected to their nearest
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neighbors in the road map. The path is then found by performing a simple
graph search to connect the start to the goal. Note that the roadmap has to
be computed only once for a given robot and that many motion- planning
queries can be solved with the same roadmap. PRMs are able to solve motion-
planning problems in very high-dimensional configuration spaces, but they
do not guarantee completeness, i.e., they do not always find a path if one
exists. Instead, they have been shown to be probabilistically complete, i.e., if
a path exists, then with high probability the PRM algorithm will find it. This
probability goes to one as the number of sampled configurations increases.
Many variations of the basic PRM algorithm have been proposed to increase
the sampling of configurations in difficult areas (such as narrow passages).
A discussion of the PRM algorithm and its variations can be found in ref. 31.

For certain applications, it is known a priori that only one motion-planning
query will need to be solved, so sampling the entire configuration space may be
unnecessary. This observation leads to a different class of sampling-based path-
planning algorithms in which a tree of configurations is grown from the start
to the goal configuration and/or vice versa. The three main variations within
this class are called rapidly exploring random trees (RRTs) (33), expansive
spaces trees (ESTs) (34), and path-directed subdivision trees (PDSTs) (35).
RRTs grow a tree of configurations as follows. First, a random configuration,
which may be in collision, is sampled. Next, the nearest configuration in the
existing tree to the one just sampled is found. Initially, the tree consists of just
the start configuration. From the nearest configuration, a new configuration is
found at some distance in the direction of the randomly sampled configuration.
This process is repeated until the tree is close to the goal configuration. This
algorithm tends to “pull” the tree growth in the direction of unexplored parts of
the configuration space. ESTs, on the contrary, can be thought of as “pushing”
the tree growth in promising areas. During each iteration of the EST algorithm, a
previously sampled configuration is selected at random and a new configuration
is sampled in a neighborhood of it. The key in the algorithm is the probability
distribution function used to sample the previous configurations. The EST
assigns a probability to each configuration that is proportional to the distance
to the k nearest neighbors and inversely proportional to the number of times
the configuration has been selected before. Sampling using this distribution
expands the trees toward unexplored areas of the configuration space. PDSTs
represent the trees somewhat differently from other tree-based and roadmap
methods. Rather than maintaining a set of nodes and edges, a PDST consists
of a set of edges, representing paths, joined at branches. It also maintains a cell
decomposition of the configuration space and assigns paths to cells. At each
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step of the PDST exploration, an edge is selected based on an estimate of how
well the area around each edge has already been explored (measured using the
cell decomposition), and a new edge is created starting from a random point
along the selected edge. In this way, the tree expands outward from its origin
and the updating of the cell decomposition leads the expansion of the tree to
less well- sampled areas.

Both roadmap and tree-based path-planning and exploration algorithms have
been used to study the dynamic properties of proteins, including their folding
behavior but also their interactions with other molecules (36–40). In order to
apply these robotics-based methods to complex molecular systems, however,
some adaptations of the algorithms are necessary, as will be presented in the
following sections.

3. Roadmaps for Protein Folding
Conceptually, there is an analogy between high-energy areas in the confor-

mation space of a molecular system and obstacles, and between low-energy
areas and free space (see Fig. 1B). There may not be a single cutoff energy
threshold, however, to separate the conformation space in black and white
regions. Molecular conformation spaces therefore have a fuzzier notion of
collision and free space than robotic configuration spaces, as is shown in
Fig. 1B, and there are other important differences between exploring the free
space of a robot and the free space of a biomolecule. In a biochemical context,
low-energy paths are of specific interest, rather than paths in general. In folding,
in particular, if it is assumed that the folded state of a protein is known,
then researchers would like to find how the protein unfolds and refolds and
determine some aggregate properties of these pathways, such as the overall
folding rate and probability of any given structure to proceed to a folded
state. It is important to note that the goal is not to predict the folded state
from a sequence of amino acids. The interest is in folding kinetics: the aim
is to get a better understanding of the process or mechanism by which a
protein folds and unfolds. It is assumed that the folded state has already been
determined.

The essential ingredients of any roadmap method are the choice of degrees
of freedom, the conformation sampling technique, and the way to connect
conformations to form a roadmap. Another important ingredient for roadmaps
of molecular systems is the energy model. So far, simplified energy models
have been used. It remains to be seen how accurate these models are for
complex problems. This section will review how road-map-based methods can
provide new insights into folding kinetics.
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Before getting into the details of specific methods, it is worth mentioning
that the idea of using roadmap methods to study problems in molecular biology
originated with Singh et al. (41), who adapted the PRM algorithm to study the
docking of a ligand to a protein. Nodes in the roadmap represented conforma-
tions and poses of the ligand and were sampled at random around the protein
and kept or rejected based on their energy. Neighboring nodes were connected
with an edge if a set of conformations sampled on a straight line in configuration
space between them were all below an energy cutoff, and edges were labeled
with transition probabilities depending on the energy difference between the
nodes at either end. This work permitted the identification of active sites in
proteins.

Several research groups extended and adapted this work, refocusing it on
protein-folding mechanisms (9–19). The general trends of this ongoing research
include tweaking the energy function, edge weights, and/or node sampling
schemes. The goal of such work is ultimately to develop methods in which
the final energy distribution of the set of nodes and paths in the roadmap
corresponds to the energy distribution predicted by statistical mechanics
(Boltzmann-like). Given a high-quality roadmap, it should be possible to
determine properties of the protein’s motion and folding behavior from all-path
analyses.

In general, the folding kinetics can be analyzed by looking at many paths
in the roadmap. There are two fundamentally different ways to construct and
interpret the roadmap. In the first method (described in Subheading 3.1.), the
object is to compute the most energetically favorable paths between the folded
state and denatured states and to consider those the folding pathways. This is
the approach taken by Amato et al. (9–13). In the second method, the weights of
edges in a roadmap are interpreted as probabilities and the roadmap gives rise
to a Markov chain. The folding pathways are analyzed by performing random
walks on the roadmap or by computing the limit distribution from the matrix
of state transition probabilities. This is the approach taken by Apaydin et al.
(16–19). This work is described in Subheading 3.2. Finally, in
Subheading 3.3., we describe the third method, proposed by Singhal et al.
(14,15), which combines roadmap methods with MD/MC methods.

3.1. PRMs for Protein-Folding Pathways

In the work of Amato et al. (9–13), the backbone � and � dihedral angles
are taken to be the degrees of freedom. The side chains are assumed to be
rigidly attached to the backbone. For a protein consisting of n residues, there
are 2(n –1) degrees of freedom (the first and last rotational angles do not
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contribute). Conformations can be sampled by randomly picking angles from
the allowable range. The sampling can be based on Ramachandran plots (42),
but this approach has a very small probability of producing conformations
without steric clashes. In early work, Amato et al. (13) used Gaussian sampling
around the folded state with various standard deviations to create new confor-
mations. This works well for proteins with approximately 60 residues, but it still
does not scale up to larger proteins with over 100 residues. A more successful
strategy is the following: instead of sampling only around the native state,
conformations are sampled around all previously sampled conformations. This
is done in a way that creates a “wavefront” of conformations growing outward
from the native state. The conformations are partitioned into bins based on the
number of native contacts. A native contact is defined as a pair of C� atoms that
are within 7 Å of each other in the native state. The bins are equal-sized and the
number of bins is proportional to the number of native contacts in the native
state. A conformation q is accepted based on its energy E�q�. When a structure
is generated, it is checked for collision of side chains and rejected if any are
found. If it passes that test, the energy consists of a term favoring documented
secondary structure through known backbone hydrogen and disulfide bonds,
and a term for hydrophobic interactions.

The probability of accepting a conformation q is

P �accept q� =
⎧⎨
⎩

1 if E�q� < Emin
Emax−E�q�

Emax−Emin
if Emin ≤ E�q� ≤ Emax

0 ifE�q� > Emax

Thus, all low-energy conformations are kept, as well as some of the medium-
energy conformations, in order to connect the low-energy areas. The energy
thresholds Emin and Emax are set at 50,000 and 89,000 kJ, respectively. The
accepted conformations are put in the appropriate bin. The sampling process
iteratively tries to fill all bins, starting with the bin with 100% native contacts.
Once a neighboring bin has at least n conformations, sampling is performed
around conformations in that bin, in order to fill the succeeding bins. Although
this sampling method does not seem to correspond to a Boltzmann distribution
of states, it still may capture some of the essential folding properties such as
contact formation order (11).

The second phase in the roadmap construction is the connection of the
sampled conformations. For each conformation, the method attempts to connect
each node to its k nearest neighbors. The � and � angles are linearly
interpolated, and energy is checked along the line in conformation space
connecting a conformation q0 and one of its neighbors q1. If the energy does
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not exceed some threshold, the edge connecting q0 and q1 is added to the
roadmap. The edge is given a weight that depends on the energy along the line
connecting q0 and q1. Suppose the energy of the sequence of conformations
q0 = c0� c1� c2� 	 	 	 � cn−1� cn = q1 along the line connecting q0 and q1 has been
computed. The probability of moving from ci to ci+1 is

Pi =
{

e− 
Ei
kT if 
Ei > 0�

1 if 
Ei ≤ 0	

Here, 
Ei = E�ci+1�−E�ci�. The weight of the edge between q0 and q1 is then
defined as

w �q0� q1� =
n−1∑
i=0

− log Pi	

The edge weight is intended to encode the likelihood of going from one confor-
mation to another given the energy profile of the path.

After the roadmap is constructed, the folding pathways can be extracted.
Starting from the native structure, the shortest path to every other conformation
can be found using Dijkstra’s algorithm (43).

This roadmap construction method was tested on 14 proteins with 56–110
residues, including protein G and protein A (11). Roadmaps were constructed
in 2–15 hours. From this, many folding pathways can be extracted and their
properties analyzed. Of particular interest is the order of secondary structure
formation along each path between the stable unfolded states and the folded
state. This order provides a rough overview of the folding mechanism of
the protein and can often be determined by laboratory experiment, thereby
providing a criterion that is used to validate the roadmap method.

Using a constructed roadmap, we determined the order of secondary structure
formation for a single path from an unfolded to folded state by, for each native
contact in a secondary structure element, finding the first conformation along
the path that contains that contact. Along a single path, the appearance time for
a secondary structure element is computed as the mean of the appearance times
for all of its contacts. Overall, the predicted secondary structure formation order
is the order with the greatest frequency over all paths. For the experimental set
of 14 proteins, this analysis of the roadmap correctly predicted the formation
order of secondary structure in all cases where laboratory data were available
for comparison.

In later work (10), the same group that developed the original methods did
a more detailed study of proteins L and G. These proteins both consist of
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an �-helix and a four-stranded �-sheet. Despite this structural similarity, the
secondary structures are experimentally documented to form in different orders.
PRM analysis correctly predicted these differences in secondary structure
formation order.

In their latest work (9), Thomas et al. noticed that even the bin-based
construction method described above often requires 10,000 or more samples to
construct a complete roadmap for relatively small (60–100 residue) proteins.
For more typical protein sizes, this poor scaling rapidly becomes prohibitive. As
a result, Thomas et al. (9) developed a new sampling method based on rigidity
analysis of each sampled conformation. Using information about constraints on
motion such as disulfide bridges and hydrogen bonds, this analysis classifies
each bond as independently flexible, dependently flexible, or rigid. Indepen-
dently flexible bonds may be rotated without any effect on other degrees of
freedom. Dependently rotatable bonds may rotate but necessarily cause other
related bonds to rotate also. Rigid bonds, as the name suggests, generally cannot
rotate because they are part of a fully constrained cluster of atoms. Dependently
flexible bonds form sets with fewer than the expected number of degrees of
freedom.

Under rigidity-based sampling, new samples are generated by perturbing the
dihedral angles of existing conformations in a non-uniform way. Specifically,
independently flexible bonds are rotated with a high probability, Pflex. Rigid
bonds are rotated with a low but non-zero probability Prigid. For sets of depen-
dently flexible bonds with k internal degrees of freedom, k are selected at
random and rotated with probability Pflex, and the remaining bonds are rotated
with probability Prigid. Thomas et al. found that allowing rigid bonds to rotate
helps the method attain better coverage of the conformation space, while biasing
rotations to occur most often for flexible bonds focuses the sampling on regions
of the conformation space most likely to be accessible to a real protein.

When tested on a set of 26 proteins, it is reported (9) that rigidity-based
sampling yielded roadmaps with substantially better connectivity (measured
as edges per node) than earlier sampling methods. In many cases, this could
often be accomplished using a quarter to half as many nodes as were necessary
to produce the roadmap under Gaussian sampling. In addition to correctly
predicting the secondary structure formation order of proteins G and L, analysis
of roadmaps created using rigidity sampling also correctly predicted the order
of secondary structure formation of NuG1 and NuG2. PRM analysis by Thomas
et al. without rigidity sampling had previously failed to predict the order of
structure formation in these proteins.
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3.2. Stochastic roadmap Simulation

Stochastic RoadMap Simulation (SRS), developed by Apaydin et al. (16–19)
is a general technique to study molecular motion. The method derived its early
inspiration from the work of Singh et al. (41), who were attempting to find a
way to predict active sites in proteins using roadmap methods.

The roadmap construction in SRS is straightforward. First, a number of
conformations are sampled independently at random from the conformation
space. Each conformation is connected to its k nearest neighbors. The transition
probability Pij of an edge connecting nodes vi and vj is defined as

Pij =
{

1
dj

e− 
Eij
kBT if

�j/dj

�i/di
<1�

1
di

otherwise�

where �i and �j are the Boltzmann factors for conformations ci and cj , and di

and dj are the number of neighbors for vi and vj . The Boltzmann factor of a
conformation c is defined as � = exp�−E�c�/kbT�. A self-transition is added
with probability Pii = 1−∑

i �=j

Pij , so that all transition probabilities of a node add

up to 1. The energy E�c� is a hydrophobic–polar (H–P) energy function (30),
in which each amino acid residue is classified as hydrophobic or polar, and
favorable energy is computed for hydrophobic residues in contact with (within
a cutoff distance of) each other. Conformations are also checked for steric
clashes (overlapping atoms) and rejected if necessary.

A random walk on this roadmap is defined as follows. Starting at node vi, a
neighbor vj is chosen uniformly at random. A move from vi to vj is accepted
with probability

Aij =
{

di

dj
e− 
Eij

kBT if
�j/dj

�i/di
<1�

1 otherwise	

Each neighbor of vi has a probability of 1/di of being chosen. So the probability
of a transition from vi to vj is 1

di
Aij = Pij .

If a random walk is made on this roadmap, then each state i has a probability
i of being visited. As a random walk continues for an infinitely long time,
assuming the Markov chain is ergodic, the probabilities i converge to fixed
values that are the same for any random walk. Moreover, if the conformation
space is sampled more and more finely, it can be shown that the limit distri-
bution of the roadmap is the same as the limit distribution of an MC simulation
(18). In other words, the resulting distribution is theoretically consistent with
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the Boltzmann distribution of energies predicted by statistical mechanics, and,
equivalently, with the results of a large number of MC simulations.

Once constructed, the roadmap can be interpreted as a Markov chain and
therefore be analyzed using techniques from Markov-chain theory. This can
be used to calculate a quantity for each node called Pfold, the probability that
the structure at that node will become completely folded before it becomes
completely unfolded. This quantity can be used to estimate which structures
constitute the transition state of the folding process, as well as to estimate the
folding time for the protein.

Let F denote the set of nodes that correspond to conformations that are
considered folded. Now suppose there is another stable state called the unfolded
state. Let U denote the set of nodes corresponding to conformations close to
the unfolded state. The probability of folding, Pfold, also called the transmission
coefficient (44), for a given node vi can be written as

P
�i�
fold = ∑

vj∈F
Pij ·1+ ∑

vj∈U
Pij ·0+ ∑

vj�(F∪U)
Pij ·P�j�

fold	

The probability of folding is conditional on the first transition. If a node in F
is reached, then F has been reached before U with probability 1. Similarly, if
a node in U is reached, then F has been reached before U with probability 0.
Otherwise, P

�i�
fold depends on the probability of P

�j�
fold. Fast iterative solvers for

linear systems can be used to compute Pfold for all nodes. For their initial work,
Apaydin et al. used the Jacobi method as their linear system solver but noted
that other approaches might provide faster performance.

SRS has been applied to the ColE1 repressor of primer and the homodomain
of Engrailed, a developmental protein, which are stored in the Protein Data
Bank (45) as 1rop and 1hdd, respectively (19). The vector model described
in Subheading 2.1 was used to represent the degrees of freedom. With this
model, 1rop has six degrees of freedom and 1hdd has 12 degrees of freedom.
Energy was computed by the H–P energy model (30) mentioned previously.
Pfold was computed for about 45 randomly selected conformations using SRS
and using MC simulations. The correlation between the Pfold values of the two
methods quickly converged to 1 as the number of nodes was increased, but SRS
was roughly four orders of magnitude faster than the MC simulations. With
SRS, the roadmap captures a substantial sampling of all folding and unfolding
pathways simultaneously, and Pfold was computed for all nodes, not just the 45
that were randomly selected. Thus, SRS appears to be a promising alternative
to running many independent MC simulations for examining protein-folding
behavior.
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In recent work, it has been demonstrated that SRS can be used to estimate the
transition state ensemble (TSE), folding rate, and �-values of proteins (16). All
of these values are of interest because they are quantities that can be measured
by laboratory experiment and thus can be used to verify how well a simulation
method such as SRS models the true behavior of a protein. Additionally, the
TSE, if accurately determined, can provide insight into the overall folding
mechanism of the protein.

The TSE is the set of conformations that represent the peak of the energy
barrier that must be crossed by the protein in transitioning between the unfolded
and native states. Alternatively, they are the states whose true Pfold is 0.5; the
structures that have an equal probability of proceeding either to the folded or
unfolded state. To account for modeling error, the TSE is taken to be the set
of all conformations with Pfold between 0.45 and 0.55.

Apaydin et al. tested the method’s ability to calculate the folding rate on a
test set of 16 proteins and compared the results with the dynamic programming
algorithm of Garbuzinskiy et al. (46). Intuitively, the folding rate is the fraction
of unfolded molecules in some bulk set that transition to the folded state per unit
of time. SRS-based estimates of the folding rate were found to correlate well
with experimentally determined values and were consistently lower than those
found by the other method. This indicates a consistent and significant difference
between the TSEs found by the two methods and therefore their predicted
folding rates. The difference appeared to be because of a less restrictive
definition of the TSE by the dynamic programming method. Eighty percent of
the structures identified as members of the TSE by the dynamic programming
method were not considered part of the TSE by SRS. The more restricted set
found by SRS led to more accurate estimation of measurable folding properties.

�-values are per-residue numbers between 0 and 1 indicating the degree
to which the corresponding residue has reached its native conformation in
the transition state of the protein (47). They are measured in the laboratory
by mutating specific residues of the protein and determining the effect of
each mutation on its folding rate and therefore, indirectly, the free energies of
intermediate structures in the folding process. A �-value of 1 indicates that
the mutation affects the folded state and transition state by the same amount
and that the transition state of that residue therefore is essentially the same as
the folded state. A �-value of 0 means the residue is unfolded in the transition
state.

The developers of SRS found �-values for each residue of their 16-protein
test set (16). The results were mixed but promising. For some proteins, such as
CheY and the RNA-binding domain of U1A, their results correlated well with
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experiment, but their average error for �-values of the whole set of proteins
was 0.21, which is quite large given the 0–1 range of �-values. Some of this
error may be accounted for by the difference between the true free-energy
variation of folding, as measurable in a laboratory, versus the approximation
of free energy used in simulations.

3.3. Markovian State Models

A different way to construct a roadmap is by sampling small MD/MC
trajectories rather than individual conformations, generating a Markovian State
Model (MSM) (15). The use of MD/MC simulations for sampling suggests,
among other things, that it is reasonable to expect that the resulting samples
will have a realistic distribution of energies consistent with the predictions of
statistical mechanics.

Suppose an initial MD or MC simulation trajectory starts in the folded state
and ends in the unfolded state. Let �c0� c1� 	 	 	 � cn� be a sequence of conforma-
tions along this trajectory separated by some fixed time step. A conformation
ci is selected uniformly at random from this sequence and a new MD/MC
simulation is started from here. If the simulation does not reach the folded or
unfolded state within some time limit, the trajectory is rejected. Otherwise, the
trajectory is kept and a new current trajectory is created. Let the generated
trajectory be denoted by �c′

0� c′
1� 	 	 	 � c′

m�. If c′
m is in the folded state, the current

trajectory becomes �c′
m� c′

m−1� 	 	 	 � c′
0� ci� 	 	 	 � cn�. If c′

m is in the unfolded state,
the current trajectory becomes �c1� c2� 	 	 	 � ci� c′

0� c′
1 	 	 	 � c′

m�. Again, a confor-
mation is selected uniformly at random from the current trajectory, and this
procedure of generating new trajectories is repeated a set number of times.

Each conformation and each transition in each sampled trajectory is repre-
sented by a node and an edge, respectively, in the roadmap. Each edge has
associated with it a simulation time tij required to make the corresponding
transition. The trajectories are simulated such that this time-step between
adjacent conformations in the trajectory is constant. How this is done depends
on the type of simulation being run. Each edge also has a probability Pij that
is initialized to 1. The next step is to merge nodes that are within some cutoff
distance of each other, because they represent the same conformation. This step
amounts to clustering of the nodes into conformational substates. To merge two
nodes, one of the nodes is removed from the roadmap and all of its edges are
added to the node it is merged with. If this results in multiple edges between a
pair of nodes, the edges need to be merged as well. The probability and time
of the merged edge are defined as
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Pnew
ij = P1

ij +P2
ij� tnew

ij = P1
ij t

1
ij +P2

ij t
2
ij

P1
ij +P2

ij

	

After all nodes are merged that are within the cutoff distance of each other,
the probabilities are renormalized so that the sum of the probabilities of all
outgoing edges at a node is equal to 1. Singhal et al. (15) show that it is
possible to derive a roadmap for a different temperature simply by reweighting
the edges.

As with SRS, one can apply standard Markov-chain techniques to compute
Pfold from the roadmap. One can also compute the average time it takes to
reach the folded state. The validity of this roadmap construction method was
tested on a two-dimensional artificial model system and on a small protein,
the 12-residue tryptophan zipper �-hairpin, TZ2. TZ2 has previously been
simulated on Folding@home (48). Some of this data was used to build a
stochastic roadmap. The predicted Pfold values and the average times to reach
the folded state were in agreement with experimental data.

One problem with both the SRS and the MSM is that, because a road
map of a conformation space is a discretization of a continuous space, the
transition probabilities between nodes are only an approximation of reality.
In a finite set of simulations, some states and transitions that occur with
relatively low probability may never be sampled. Because the transition proba-
bilities out of each node are forced to sum to 1, the transitions that are
found are overrepresented because of the absence of others. This can lead
to error in the computation of ensemble properties, including the predicted
folding rate.

The developers of the MSM method proposed a method to estimate the
error in the set of transition probabilities found by their sampling and therefore
the error (or uncertainty) in their calculated folding rates (14). Furthermore,
by isolating which states contribute the most to this uncertainty, it becomes
possible to adaptively select which states to generate sample simulations from
at each step in building the roadmap so as to minimize the final uncertainty of
the folding rate.

In analysis of MSMs, the folding rate is measured by estimating the mean
first passage time (MFPT) from the unfolded state, x1, to the folded state. This
requires estimation of the MFPT, xi, for all nodes in the roadmap, as follows:

xi =
⎧⎨
⎩


t + K∑
j=1

xjpij i �= K�

0 i = K�
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where K is the index of the folded state, 
t is the size of the time interval
between successive structures in the simulations used to construct the MSM,
and pij is the probability of transitioning from state i to state j in time 
t. The
MFPT from the first state, x1, can be used to estimate the folding rate of the
protein under the simulated conditions.

The problem is that it is not possible to determine the exact values of pij

and therefore not possible to calculate exact values of MFPT. The maximum
likelihood estimate, given the roadmap built through series of simulations, is
p̂ij = zij

ni
, where zij is the observed number of transitions from state i to state j,

and ni is the total number of transitions out of state i. The observations zij follow
a multinomial distribution that depends on the true transition probabilities.
Ideally, the method would be able to estimate not just the most likely transition
probabilities for a state but also the distribution of all possible sets of transition
probabilities, and therefore our uncertainty of these estimates. Singhal et al.
(14) show that this uncertainty follows a Dirichlet distribution, and based on
that observation, provide a number of algorithms for finding the distribution of
x1, and therefore estimating the error of the calculated MFPT.

The basic idea of all of the algorithms is to sample a set of transition
probabilities from a Dirichlet or approximation of a Dirichlet distribution whose
parameters are based on the observed transition counts. Distributions for xi

and for MFPT, specifically x1, are then inferred from the distributions of these
samples. For details of the algorithms, please see the original paper (14).

The resulting uncertainty distribution for x1 is a multivariate normal distri-
bution, with calculable mean and variance. This distribution expresses how
much confidence may be placed in the estimate of MFPT, but it also has
implications for the construction of MSMs. It is possible to break the variance
down into contributions from each state in the roadmap and furthermore to
estimate the amount by which the variance due to any given state will decrease
given some number of new MD/MC simulations starting from that state. The
selection of which state to use for the next simulation need no longer be uniform
at random, as described initially, but can instead be based on which choice
of state is most likely to reduce the overall uncertainty of the MFPT by the
greatest amount. This greatly increases the confidence of folding rate estimates
and other properties calculated from an MSM generated by a set number of
MD/MC simulations, versus undirected sampling.

Singhal et al. validated their error analysis method by again testing it on a
set of simulations of TZ2, with a total of 87 distinct states. Using this example,
they verified that all error estimation methods give comparable results for the
mean and variance of the MFPT and that using the error estimates for adaptively
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focusing their sampling gave them a 20-fold improvement in certainty of their
estimate of the MFPT for a given number of samples.

4. Discussion
Roadmap methods have been developed in recent years to study how a

protein folds into its final known configuration. These roadmaps are generated
by sampling conformations of a protein and connecting the sampled configu-
rations in a number of ways. Various methods for generating and connecting
roadmap nodes can only be expected to increase as time goes on. The same kind
of growth was observed when roadmap methods became popular in robotics
for solving the robot motion-planning problem as researchers began to under-
stand how to better target their methods to the characteristics of the problems
being address (31). All existing approaches struggle to understand how to use
energy estimates in the construction of the roadmap and the interpretation of
the results. A number of questions are raised about how to compute the free
energy for proteins of interest, which is a serious issue and a topic in need of
further study.

Although the performance of roadmap methods is often compared with that
of MD/MC methods, for now roadmaps are not necessarily meant to be a
substitute for MD/MC simulations. Rather, the hope is that with a simplified
energy model and clever sampling techniques, roadmap methods could quickly
provide a coarse view of the energy landscape. Of course, much depends on
the energy function used. The areas of interest identified in this landscape can
provide a starting point for traditional MD/MC simulations.

Roadmap methods have also been applied to the study of other biological
problems, including docking. In docking, the goal is to find low-energy confor-
mations of a receptor–ligand complex. Recent examples of this work include
(36,37). Structure prediction is another area where roadmap methods have been
applied (38,39). By a combination of cleverly sampling and pruning conforma-
tions, Brunette and Brock (38,39) build up a compact model of the molecular
energy landscape for a given protein. Finally, a road-map-based method for
the generation of loop conformations was developed in ref. 40. Clearly,
there are attractive features in road-map-based approaches for exploring high-
dimensional spaces arising from geometric problems, which have prompted
researchers to use them in various biological problems. Although roadmap-
based methods are well understood in robotic problems, it is the authors’
belief that a number of issues that mainly relate to the interplay of energy
and geometry are still poorly understood for biological problems. Nevertheless,
promising results are emerging that will no doubt fuel further advancements.
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Scoring Functions for De Novo Protein Structure
Prediction Revisited

Shing-Chung Ngan, Ling-Hong Hung, Tianyun Liu, and Ram Samudrala

Summary

De novo protein structure prediction methods attempt to predict tertiary structures from
sequences based on general principles that govern protein folding energetics and/or statistical
tendencies of conformational features that native structures acquire, without the use of explicit
templates. A general paradigm for de novo prediction involves sampling the conformational
space, guided by scoring functions and other sequence-dependent biases, such that a large set of
candidate (“decoy”) structures are generated, and then selecting native-like conformations from
those decoys using scoring functions as well as conformer clustering. High-resolution refinement
is sometimes used as a final step to fine-tune native-like structures. There are two major classes of
scoring functions. Physics-based functions are based on mathematical models describing aspects
of the known physics of molecular interaction. Knowledge-based functions are formed with
statistical models capturing aspects of the properties of native protein conformations. We discuss
the implementation and use of some of the scoring functions from these two classes for de novo
structure prediction in this chapter.

Key Words: De novo; physics-based; knowledge-based; potential; protein folding.

1. Introduction
The success of large-scale genome sequencing efforts has spurred structural

genomic initiatives, with the goal of determining as many protein folds as
possible (1–4). At present, structural determination by crystallography and
nuclear magnetic resonance (NMR) techniques are still slow and expensive
in terms of manpower and resources, despite attempts to automate the
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processes. Computational structure prediction algorithms, while not providing
the accuracy of the traditional techniques, are extremely quick and inexpensive
and can provide useful low-resolution data for structure comparisons (5). Given
the immense number of structures that the structural genomic projects are
attempting to solve, there would be a considerable gain even if the computa-
tional structural prediction approach were applicable only to a subset of proteins.

Most current research in protein structure prediction is based on Anfinsen’s
thermodynamic hypothesis that the native structure of a protein can be deter-
mined entirely from its amino acid sequence (6). The two main categories of
methods for predicting protein structure from sequence are comparative and de
novo modeling. In the comparative modeling category, the methodologies rely
on the presence of one or more evolutionarily related template protein structures
that are used to construct a model. Traditionally, the evolutionary relationship
can be deduced from sequence similarity (7–9) or by “threading” a sequence
against a library of structures and selecting the best match (10,11). However,
because of the improved sensitivity of the sequence similarity based methods,
the threading approach has essentially been supplanted (12,13). In the de novo
category, structure prediction methods attempt to predict tertiary structures from
sequences based on general principles that govern protein-folding energetics
and/or statistical tendencies of conformational features that native structures
acquire, without the use of explicit templates (14–16). A general paradigm for de
novo structure prediction involves sampling the conformational space, guided
with scoring functions and other sequence-dependent biases, such that a large
set of candidate (“decoy”) structures are generated, and then selecting native-
like conformations from those decoys using scoring functions and conformer
clustering as filters (17,18). As a final step, detailed energy potentials are
sometimes employed to perform high-resolution refinement on these native-like
structures. Although the first papers on protein structure prediction appeared
some thirty years ago, de novo structure prediction remains a difficult challenge
today (12,13,19–21).

Scoring functions are employed in all stages of de novo structure prediction.
For the conformational search stage, a selected combination of scoring functions
approximates the energy landscape of the protein conformational space.
Search methodologies such as Monte Carlo simulated annealing (MCSA) and
molecular dynamics (MD) then generate trajectories leading to the minima of
the landscape. As the conformational search process needs to evaluate new
conformations encountered at every step, it is computationally intensive, and
the scoring functions used in this stage need to be computationally efficient.
Because none of the existing scoring functions can faithfully reproduce the
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true energy landscape of the conformational space, the search process often
leads to many false minima. Thus, one usually repeats the search process many
times with many different starting conditions and random seeds and obtains a
collection of candidate (“decoy”) structures. Then, a second set of (possibly
different) scoring functions are used in the decoy selection stage as filter
to eliminate non-native structures and retain the native-like ones. Conformer
clustering is often used as an additional step to further refine the collection
of the native-like conformations, followed by high-resolution refinement of
the few remaining candidate structures. Compared to the functions used in the
conformational search stage, the functions employed in the decoy selection
stage can be algorithmically more complex and more detailed, because the
number of candidate conformations to evaluate is much less than the number of
conformations encountered during the search process. Scoring functions used
in the high-resolution refinement stage are usually computational expensive
functions formulated from detailed mathematical models of short-range interac-
tions among atoms, allowing small local perturbations to fine-tune native-like
structures.

There are two broad classes of scoring functions. The first class of functions
are largely based on some aspects of the known physics of molecular inter-
action, such as the Van der Waals force, electrostatics, and the bending and
torsional forces, to determine the energy of a particular conformation (22–27).
The second class of functions is knowledge-based. Each of these knowledge-
based functions tries to capture some aspects of the properties of protein native
conformations, for example, the tendencies of certain residues to form contact
with one another or with the solvent. These knowledge-based functions are
usually compiled based on the statistics of a database of experimentally deter-
mined protein structures (28–34). In essence, the physics-based functions aim at
predicting the native structure of a given sequence by mimicking the energetics
of protein folding, whereas the knowledge-based functions bypass this inter-
mediate step by directly making statistical inferences on what are observed in
the database. Thus, the accuracy of the physics-based functions is determined
by how realistic the underlying physical models are, whereas the accuracy of
the knowledge-based functions is determined by the quality of the database as
well as the validity of the statistical assumptions.

In an earlier edition, we introduced scoring functions for de novo structure
prediction (35). In this chapter, we revisit physics-based and knowledge-based
scoring functions in the context of their roles in the current state of the art
structure prediction efforts. For the physics-based approach, the often-called
Class I force field, which is a common foundation among the widely used
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molecular modeling force fields such as AMBER, CHARMM, OPLS, and
ENCAD, is discussed. Extensions to this force field and the role of modeling
solvent effects are also described. For the knowledge-based approach, we
study the Bayesian (conditional) probability formalism, using it to derive
the all-atom distance-dependent conditional probability discriminatory function
(RAPDF) (34). As an additional illustration, we delineate how one can combine
the Bayesian probability formalism with the neural network methodology to
construct neural network-based scoring functions. Then, a few other novel
knowledge-based scoring functions from the recent literature are highlighted.
Although it is not strictly a physics- or knowledge-based methodology, we
briefly discuss the use of conformer clustering to further enhance decoy
selection, as this technique has been shown to be useful in de novo structure
prediction. Finally, a sophisticated combined physics- and knowledge-based
potential used for high-resolution refinement is described.

2. Theoretical Background and Methods
2.1. An Overview of Physics-Based Energy Functions

Using quantum mechanical techniques, highly accurate energies can be
calculated for small organic and inorganic molecules (36,37). However, because
of their sizes and flexibility as well as the presence of solvent molecules,
proteins are much more difficult systems to model. The polar aqueous
environment vastly complicates the calculation of the electrostatic energies. For
instance, although there is no dispute that the largest driving force for protein
folding is the hydrophobic effect (38,39), which is associated with the decrease
of water entropy upon the solvation of non-polar groups, the exact structural
configuration of water molecules hydrating the solute remains unknown.

Although a full quantum mechanical treatment for a complete protein is not
feasible, approximations and simplifications can be made to derive empirical
physics-based energies. For example, hydrogen bond geometries that are appli-
cable to those found in proteins can be determined from quantum mechanical
calculations of simple systems (40). Electrostatics calculations can be approx-
imated using classical point charges and modifying the dielectric constant to
approximate the polarizability of the protein and the solvent. Van der Waals
interactions are often approximated by Lennard–Jones potentials. The first use
of these approximate functions was in MD simulations, where fast and easily
calculated energies were required to determine the force fields. Some proto-
types for these types of energies are AMBER (41), CHARMM (42), OPLS (24),
and ENCAD (43). Parameters for these energies have been obtained by fitting
equations and results of computer simulations to data from experiments and
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from quantum mechanical calculations. These physics-based energies perform
adequately for perturbations around a known native conformation (44,45),
because the electrostatic and solvent-dependent information is implicit in the
initial conformation itself. In combination with experimental NMR constraints
(46,47), these force fields enable the determination of accurate structures,
so long as there are enough constraints to define the fold. Unfortunately, in
isolation, the solvent and electrostatic modeling is insufficient for full and
reliable simulation of protein folding. As a result, producing accurate protein
folding simulations from physics-based energies alone is still a very challenging
and active area of research.

2.1.1. Class I Physics-Based Scoring Function and Its Possible Extensions

As we have mentioned, AMBER (41), CHARMM (42), OPLS (24), and
ENCAD (43) are some examples of the widely used physics-based force fields
in protein-folding simulation. These force fields share a lot of commonalities
in terms of the underlying physical models used and the mathematical approx-
imations assumed. As an illustration, the AMBER force field, which was first
developed under the direction of Professor Peter Kollman, has the following
form:

Vtotal = Vbond +Vangle +Vtorsion +Vnon-bond (1)

Here, Vtotal is the total potential energy, Vbond is the bond stretching energy,
Vangle the angle bending energy, and Vtorsion the angle torsional energy. Together,
Vbond, Vangle, and Vtorsion are denoted as the bonded interactions terms. Vnon-bond is
the energy for non-bonded interactions, consisting of a Van der Waals energy
term VvdW and an electrostatics term Velec. Other widely used force fields such
as CHARMM and OPLS employ similar bonded and non-bonded terms in their
formulations, and Eq. 1 is often denoted as the Class I force field.

The bond-stretching energy (see Fig. 1A) is modeled by treating the bond
as an idealized spring and using a simple quadratic function derivable from the
Hooke’s law.

Vbond = kbond�r − ro�
2 (2)

where kbond is the bond-stretching constant, controlling the stiffness of the bond
spring, and �r–ro� is the deviation of the bond length from its equilibrium
distance. Unique numerical values for kbond and ro are assigned each pair of
atom types.
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Fig. 1. The physical models for the AMBER molecular mechanics force field. Atoms
and bonds are shown. (A) The physical model for bond stretching, (B) the model
for angle bending, (C) the model for angle torsional energy, and (D) the model for
electrostatics and Van der Waals forces.

The angle bending energy (see Fig. 1B) is similarly modeled by the Hooke’s
law.

Vangle = kangle�� −�o�
2 (3)

where kangle is the angle bending constant, controlling the stiffness of the angle
spring. � is the angle formed by the atom of interest with its two covalently
bonded neighbors, and ��−�o� is the deviation of the angle from its equilibrium
value in radians. Again, unique values for kangle and �o are determined for each
bonded triplet of atom types.

The torsional energy (see Fig. 1C) is represented by ann-fold periodic function:

Vtorsion = 1
2

ktorsion �1+ cos�n�−�0�� (4)

Here, the torsional angle � is the dihedral angle defined by a quartet of
bonded atoms, and �0 is the reference angle. ktorsion is a constant for the
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n-fold periodic interaction. n represents the periodicity of the torsional barrier,
reflecting the intrinsic symmetry in the dihedral angle for the quartet of the
bonded atoms. Unique values of ktorsion, n, and �0 are assigned to each bonded
quartet of atom types. In practice, parameterization of torsional energies also
corrects for bonding energy terms unaccounted for by the simple bending and
stretching models. Additional torsional energy terms (denoted as “improper
torsions” in the literature) can be added to ensure that subtle properties such as
chirality and planarity are preserved.

For the non-bonded interactions, AMBER and other commonly used force
fields employ a 6–12 Lennard–Jones potential to represent the Van der Waals
interactions between two non-bonded atoms, and the Coulomb’s law to model
the interactions of two charged atoms (see Fig. 1D):

Vnon-bond =
(

Aij

r12
ij

− Bij

r6
ij

)
+
(

qiqj

�rij

)
(5)

The Van der Waals interaction consists of two components, a short-range
attractive force that quickly vanishes when the distance between the interacting
atoms, rij , is greater than a few Angstrom and an even shorter-range repulsive
force that dominates when rij is less than the sum of their individual atomic
radii. Bij and Aij in Eq. 5 control the attractive and the repulsive compo-
nents of the steric potential. Aij can be calculated from quantum mechanics
considerations or measured from atomic polarizability experiments, and Bij

can be calculated from crystallographic data. For the eletrostatics, interacting
atoms are treated as point charges of qi and qj . The value of the dielectric
constant � accounts for the attenuation of electrostatic interaction by the polar
environment. In more sophisticated solvent models, which are discussed later,
the constant � is replaced by a function dependent on rij . Earlier versions of
AMBER had an explicit term to take into account hydrogen bonding. The latest
versions incorporate hydrogen-bonding effects into the parameterization of the
electrostatic and van der Waals terms, as these two terms are found to be able to
sufficiently represent the distance and angle dependencies of hydrogen bonds
in molecular mechanics modeling (48).

Currently, except in the high-resolution refinement stage, idealized backbone
and side-chain bond lengths and angles are often used in de novo structure
prediction. Hence, the energy associated with the bonded interactions terms
Vbond, Vangle, and Vtorsion can be regarded as constant. Improvement in structure
prediction can conceivably be achieved by enhancing the physical models for
the non-bonded terms. For example, one can replace the Van der Waals terms
in Eq. 5 by a buffered 14–7 potential (49,50), by the Morse function (51),
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or by the Buckingham–Fowler potential (52). The goal is to reduce the Pauli
exclusion barrier so as to allow sufficient sampling of conformations in the
neighborhood of the native structure during molecular mechanics or Monte
Carlo simulations.

For the electrostatic term, the physical model of fixed charges at atom
centers is found to be insufficient to describe charge polarization in the aqueous
environment. Examples of the more sophisticated electrostatics models involve
generalizing the point charge model with multi-center multi-pole expansion.
This can be done through the cumulative atomic multi-pole moment method,
the distributed multi-pole analysis, or an atoms-in-molecules-based multi-pole
moment method (53–55). Even though these types of model improvement
are computationally expensive, several groups have been making significant
progress in incorporating polarizable force fields for MD simulation of proteins.
For example, see refs. 56–58.

2.1.2. Protein Structures in Aqueous Environment

Protein structures are formed in the presence of aqueous environment, and
therefore, in order for the search of energy-minimized protein conformation
to be accurate, the effect of the solvent must be taken into account. Explicit
solvent models that simulate individual water molecules [for example, TIPS
(59,60), SPC (61), and F3C (62)] are too slow to be practicable for protein
structure prediction. Truncation of the non-bonded potentials such that interac-
tions beyond a fixed cutoff distance are ignored can improve speed. However,
it often leads to undesirable artifacts and reduced accuracy (63). Combining
Ewald’s approach with fast Fourier transform, Darden and his colleagues have
developed the particle mesh Ewald method to describe long-range interac-
tions more efficiently (64). However, direct simulation with explicit water is
still highly computational expensive even with this and other advances. On
the contrary, the effect of solvation can be modeled implicitly by averaging
solvent-solute interaction using mean field formulation and by decomposing
the solvation energy into an electrostatic component and a so-called non-polar
component, which accounts for everything else. For electrostatics, Poisson–
Boltzmann (65,66) models extend the simple Coulombic potential by allowing
charge distributions within the solute and having separate dielectrics for the
solvent and solute. Unfortunately, there are no general analytical solutions
for the Poisson–Boltzmann equation for irregular protein shapes and precise
numerical solutions (for example, by finite differences using GRASP/Delphi
(67)) can be very computationally expensive. Faster solutions can be obtained
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using generalized-Born (GB) approximations (68), which have been incorpo-
rated into MD simulations. For the non-polar term, which includes hydrophobic
interactions, the energy is usually modeled as a simple linear function of
solvent accessible area. The resulting generalized-Born/surface-area (GBSA)
models are more accurate than the simple non-bonded interaction terms and
can rival knowledge-based functions for scoring small loops in accuracy (69).
However, the amount of parameterization involved in GBSA models also rivals
that of knowledge-based energies. Recently, other approximate methods for
solving the Poisson–Boltzman equation may prove to be as or more accurate
with less parameterization (70). Besides the Poisson–Boltzmann and gener-
alized Born-type approaches, another category of implicit models describes the
solvent effect in terms of the dielectric screening of electrostatic interaction
within the protein molecule. For example, this can be done by defining the
dielectric coefficient as a simple function of distance (71,72) and as a more
detailed function involving solvent-excluded volume (73), the distance of a
charge from the protein surface, and the degree of exposure of a charge point
to the solvent (74).

In summary, the implicit solvent models are computationally much more
efficient than the explicit models. The tradeoff is the inability to represent
the detailed interaction structures between the solvent and the solute, which
can be essential in determining the overall energy landscape. Furthermore, the
lack of polarizability in the continuum solvent treatments precludes a flexible
description of charge distributions in the aqueous environment.

2.2. An Overview of the Knowledge-Based Scoring Functions

The physics-based functions are formulated from underlying approximate
physical models. In contrast, knowledge-based functions are derivable directly
from properties observed in known folded proteins (75). Although the basis of
the knowledge-based propensities is still physical, the statistical “black-box”
approach to the weighting of physical effects has proved to be more effective
than explicitly specifying the form and calculating the coefficients in traditional
physics-based energies. As a result, almost all of the most successful de novo
structure prediction techniques have both physics-based and knowledge-based
components.

The hydrophobic moment (76) is an example of a simple heuristic energy
function. It is analogous to the physical moment of inertia except that the
mass term is replaced by a measure of the hydrophobicity of the residue.
Minimization of this function leads to compact structures with hydrophobic
residues in the core. In general, any property that is differentially observed in
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folded proteins and unfolded proteins can be converted into an energy function.
Hidden Markov models (HMM), neural nets, support vector machines (SVM),
and trial and error have been used to find such properties. A particularly
useful class of knowledge-based functions is the pairwise distance preferences
(11,34,77), which reflect proper packing. Consequently, the pairwise distance
preference scoring functions can be found in many of the top-performing de
novo methods, for example, ROSETTA (16), FRAGFOLD (78), TASSER (79),
CABS (80), and PROTINFO (81).

2.2.1. Deriving Knowledge-Based Scoring Functions from the Bayesian
Probability Formalism

A majority of the knowledge-based scoring functions have their theoretical
foundations rooted in the Bayesian (conditional) probability formalism. In such
a formalism, we view a given set of conformations for a protein sequence as
comprising a subset of correct conformations {C} and a subset of incorrect
conformations {I}. Furthermore, we consider a set of conformational properties,
which can be any feature of protein structure that differs significantly between
the subset of incorrect conformations and the subset of correct conformations.
Examples are the preferences of some amino acid subsequences to exhibit
certain torsion angles, to form contacts with other amino acid types, and so on.
In this subheading, for the purpose of illustration, we focus on the set of inter-
atomic distances within a structure 	d

ij
ab
, where d

ij
ab is the distance between

atoms numbers i and j, of type a and b. We want to determine P�C�	dij
ab
�, the

probability that the structure is a member of the “correct” subset, given that
it contains the distances 	d

ij
ab
. A standard way to achieve this is to express

P�C�	dij
ab
� in terms of probabilities derivable from experimental structures,

through the Bayes’ theorem:

P�C�	dij
ab
� = P�C�× P�	d

ij
ab
�C�

P�	d
ij
ab
�

(6)

Here, P�	d
ij
ab
�C� is the probability of observing the set of distances 	d

ij
ab


in a correct structure. P�	d
ij
ab
� is the probability of observing such a set of

distances in any correct or incorrect structure, and P�C� is the probability that
any structure picked at random belongs to the correct subset. P�	d

ij
ab
�C� is

regarded as a posterior probability in the sense that the underlying population
for the probability distribution consists of structures that are already known
to belong to the “correct” subset. On the contrary, P�	d

ij
ab
� is regarded as a

prior probability in the sense that its underlying population is composed of
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structures whose class memberships have not yet been determined. We should
note that both P�	d

ij
ab
�C� and P�	d

ij
ab
� are highly difficult to compute, because

the input arguments to these probability functions are the multitude of distance
variables. A full model capturing the dependency among these variables would
be extremely complex and would require a huge amount of training data to
determine all the implicit parameters. Hence, to ensure computational feasibility
of Eq. 6, one often makes the simplifying, albeit not strictly correct, assumption
that the distances are statistically independent of one another, that is:

P�	d
ij
ab
�C� =∏

i�j

P�d
ij
ab�C��P�	d

ij
ab
� =∏

i�j

P�d
ij
ab� (7)

Then, combining Eqs. 6 and 7 gives us

P�C�	dij
ab
� = P�C�

∏
i�j

P�d
ij
ab�C�

P�d
ij
ab�

(8)

For a given protein sequence, P�C� is a constant independent of conformation
and therefore can be omitted because we are only interested in selecting native-
like conformations among decoys for a fixed protein sequence. Equation 8
suggests a scoring function S, which is proportional to the negative log
conditional probability that the given structure is correct, given a set of
distances.

S�	d
ij
ab
� =∑

i�j

s�d
ij
ab� � s�d

ij
ab� = − log

(
P�d

ij
ab�C�

P�d
ij
ab�

)
(9)

An advantage of using Eq. 9 instead of Eq. 8 as a scoring function is that
in the logarithm form, the pitfall of repeated multiplication of small numbers
is eliminated, and therefore, it is easier to be implemented on the computer.

One can replace the set of distances 	d
ij
ab
 with another type of conforma-

tional property, say for example 	mi
a
, where mi

a represents the value of that
conformational property attained by residue number i of amino acid type a.
This leads to another scoring function:

S�	mk
� = −∑
k

log
(

P�mk�C�

P�mk�

)
(10)

To gain an intuitive understanding of the scoring function, we note that if the
chosen conformational property does not differ significantly between the subset
of incorrect conformations and the subset of correct conformations, then the
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values of P�mk�C� and P�mk� will tend to be close to each other. The resulting
score S will always be close to 0 and is not an informative measure for decoy
discrimination. On the contrary, if the conformational property is well chosen,
that is, it differs significantly between incorrect and correct conformations, then
for a native-like structure, P�mk�C� will tend to dominate P�mk�, yielding a
negative (good) score for S. On the contrary, for a non-native structure, the
opposite occurs, yielding a positive (bad) score.

2.2.2. Compilation of the Probabilities

Before one can use Eq. 9 as a scoring function, the statistics for the posterior
probability P�d

ij
ab�C� and the prior probability P�d

ij
ab� need to be compiled.

To compile the statistics for P�d
ij
ab�C�, we can tabulate the intra-molecular

distances observed in a database of experimentally determined conformations.
Such a database is usually extracted from the Protein Data Bank (PDB) (82,83).
For example, one can proceed to select all the proteins from the PDB that also
appear in the e-value filtered ASTRAL SCOP genetic domain sequence subset
list with the threshold e-value set at 10−4 (84). Such an e-value is chosen,
so that sampling bias (i.e., including too many homologous proteins) can be
avoided. We then evaluate the quantity

P�d
ij
ab�C� ≡ N�dab�∑

d

N�dab�
(11)

where N�dab� is the number of occurrences of atom types a and b in a distance
bin d in the database.

To compile the statistics of the prior probability P�d
ij
ab�, we apply a formula

similar to Eq. 11. But the question is: What would be an appropriate database
from which to tabulate the counts? Samudrala and Moult (34) argued that
methods employed for structure prediction usually produce compact models,
whether the result is topologically correct or not. Thus, they consider a good
choice of prior distribution to be found in the set of possible compact confor-
mations and assume that averaging over different atom types in experimental
conformations is an adequate representation of random arrangements of these
atom types in any compact conformation. The probability P�dab� of finding
atom types a and b in a distance bin d in any native-like or non-native compact
conformation is thus approximated by:

P�dab� =
∑
ab

N�dab�∑
d

∑
ab

N�dab�
(12)
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where
∑
ab

N�dab� is the total number of contacts between all pairs of atom

types in a particular distance bin d, and the denominator is the total number of
contacts between all pairs of atom types summed over the distance bins d. The
pairwise distance preference function described in Subheading 2.2.1., Eq. 9,
together with Eq. 11 and the prior distribution assumption of Eq. 12, is termed
the RAPDF in (34). Figure 2A highlights the essential components of this
scoring function.

Besides the above method of estimating prior distributions, various other
approaches have also been suggested. Subramaniam et al. (85) assumed that all
distances are equally probable, and Avbelj and Moult (86) considered the set of
distances observed in some random coil model as appropriate. Lu and Skolnick
(87) employed a quasi-chemical approximation. Alternatively, Zhou and Zhou
(88) assumed that the residues follow uniform distribution everywhere in the
protein and developed a new reference state termed “distance-scaled, finite
ideal-gas reference state.”

2.2.3. A Pairwise Distance Scoring Function in Continuous Form

The RAPDF scoring function uses discrete distance bins to compile the
probability scores. Specifically, contact distances between 0 and 3 Å are
grouped into bin 1, 3 and 4 Å into bin 2, 4 and 5 Å into bin 3, and so on up to
the 20 Å cutoff. As a result, the score for observing any distance within a bin
width is the same for a given pair of atom types. However, the distance prefer-
ences between atom types should vary in a continuous manner as the distances
between the contacts vary. We can seek a function to interpolate between the
scores across the discrete bins such that the score for a given distance can be
uniquely defined. Several methods for interpolating discrete points, including
linear, polynomial, cubic spline, and band-limited interpolations, have been
tested for their efficacy to improve the discriminatory power of RAPDF. The
best among the tested methods is band-limited interpolation, derivable from
the Fourier Theorems. It assumes that the variation of the log-likelihood scores
fluctuates slowly enough such that the scores for any given distance can be
exactly reconstructed from the scores across the discrete bins.

Given a pair of atom types a and b at a particular distance, a “continuous” log-
likelihood score sc�dab� can be calculated by interpolating between the scores
across the discrete bins of s�dab� through the Shannon’s sampling theorem,
resulting in a smooth curve (89). (see Fig. 2B for illustration.) Given an amino
acid sequence in a particular conformation, sc�dab� of all contacts between pairs
of atom types at any distance within the 20 Å cutoff is summed to yield the total
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Fig. 2. The all-atom distance-dependent conditional probability discriminatory
function (RAPDF) and its extension, the interpolated RAPDF function. (A) The
essential feature of the RAPDF scoring function. A matrix giving the log-likelihood
scores for pairwise contact among different atom types at various discrete distance bins
is computed using a database of known experimental structures. Then, given a candidate
(“decoy”) structure, appropriate entries in the matrix can be extracted and summed
to give a log-likelihood score for the structure. (B) The application of band-limited
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log-likelihood score to evaluate whether the conformation is native-like or not.
The interpolated RAPDF (IRAPDF) has been evaluated by various decoy sets.
Comparison between the IRAPDF and the RAPDF shows that the band-limited
interpolation leads to an improved discriminatory power.

2.3. Neural Network Knowledge-Based Scoring Functions

Rather than predicting whether an entire structure is native-like or not, neural
network algorithms are often used to predict the likelihood of occurrence of a
certain conformational property for each residue along a given protein sequence.
Examples of the properties are the tendencies of an amino acid to be exposed
or buried relative to the solvent (90–92), to be part of the helix, strand, or
coil local structures (93–95), the expected number of contacts a residue makes
with other residues (96–99), and so on. Usually, the conformational property of
interest is discretized into a number of states, and a neural network algorithm
returns numerical values which correlate with the probabilities of occurrences
of those states.

One can combine the neural network algorithms for predicting conforma-
tional properties with the Bayesian probability formalism that has been used to
construct various knowledge-based functions. This leads to a class of scoring
functions that give log-odd scores, indicating whether a given structure is
native-like or not, and that have in their core a neural network component.
In the following subheadings, we review a standard formulation of the neural
network algorithm that is used to predict conformational properties of residues
in a protein sequence. We then describe how the neural network and the
Bayesian frameworks are combined to form several neural network-based
scoring functions.

2.3.1. Neural Network Algorithms for Predicting Local Structures

For concreteness, we consider the prediction of the degree of solvent
accessibility of individual residues along a given protein sequence, with the
degree discretized into three states: low, medium, and high. The now standard
approach, introduced in ref. 93 and improved upon in ref. 94, uses a feed-
forward neural network. The input to the network is a window of sequence

�
Fig. 2. interpolation to the discrete distance bins of the RAPDF function. The score

sc�dab� of a given pair of atom types at any distance within the 20 Å cutoff can be
uniquely defined by interpolating across the discrete bins of s�dab�. The resulting
scoring function is termed as the interpolated RAPDF (IRAPDF).
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profile corresponding to a consecutive sequence of residues. Such a windowed
sequence profile can be obtained by following a procedure described in ref.
94. The protein sequence of interest is employed as input to PSI-BLAST (100),
which generates a position-specific scoring matrix (PSSM) associated with that
sequence. The PSSM consists of 20 × M entries, where M being the length of
the sequence, and each entry in a column gives the log-likelihood for one of the
twenty possible amino acid substitutions for the residue position of interest. The
standard logistic transform is then applied to each entry of the PSSM, so that
these values are rescaled to the 0–1 range, appropriate to serve as neural network
inputs. The neural network itself can consist of one or more hidden layers, and
its output layer comprises three output units, representing the low, medium, and
high solvent accessibility states, respectively. Training of the network is done
with back-propagation (101), using the database of experimentally determined
protein structures we have already described in Subheading 2.2.2. Given a
window of sequence profile of the residue of interest (i.e., the sequence profile
of the residue as well as those of the neighboring residues), the resulting neural
network returns a numerical value in each output unit correlating with the
probability with which the residue assumes the corresponding state.

2.3.2. Combining the Neural Network Algorithms with the Bayesian
Probability Formalism

To describe how one combines the Bayesian and the neural network frame-
works to construct new scoring functions, for concreteness, suppose once again
that the conformational property of interest is the degree of solvent accessi-
bility. Using the language of the preceding subheadings, we want to calculate
the probability that a given structure belongs to the subset of correct structures,
given the associated conformational string 	qi

a
. Here, qi
a ∈ 	l�m�h
, where

l represents low solvent accessibility state, m medium, and h high, i is the
residue number, and a is the amino acid type. A scoring function described in
Eq. 10 now takes the following form:

S�	qi
a
� = −∑

i

log
[

P�qi
a�C�

P�qi
a�

]
(13)

P�qi
a�C� is simply the (posterior) probability of residue i taking on a particular

solvent accessibility state qi
a in a native structure. With an additional processing

step involving the nearest-neighbor approach of Yi and Lander (102) to be
discussed in detail in the next subheading, this probability can be estimated
by using the neural network algorithm previously described. P�qi

a�, on the
contrary, is the (prior) probability that the residue is observed to assume the
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solvent accessibility state qi
a in any native-like or non-native structure. It can

be estimated using the formula

P�qa� ≡ N�qa�∑
q∈	l�m�h


N�qa�
(14)

where N�qa� is the number of occurrences of the amino acid type a taking on the
solvent accessibility state q in some database of structures, and

∑
q∈	l�m�h


N�qa�

is the total number of occurrences of the amino acid type a in that database.
Again, the question is: What is an appropriate database from which to tabulate
the counts? We can use the same approach adopted by Samudrala and Moult in
ref. 34, arguing that the set of possible compact conformations is a good choice
of prior distribution. Then, the database to use will simply be the database
of the experimentally determined structures. Alternatively, we can employ a
database of decoy structures. Such a database can be created by applying a de
novo conformational space sampling protocol to generate n decoy structures
(for example, n = 10) for each protein sequence that appears in the database
of the experimentally determined structures and then gathering the resulting
decoys.

We note that as P�qi
a�C� is estimated by the neural network algorithm with a

window of sequence profile as its input, the influence of the neighbors of residue
i on its conformation is automatically taken into account. Thus, the posterior
probability that residue i assumes a particular conformation is calculated in the
context of its surrounding environment. In contrast, the probability distribution
P�qa� is compiled on a “single-residue” basis. Thus, P�qa� can be viewed as
the tendency of the amino acid type a to adopt a certain conformation averaged
over the various types of neighborhood environments.

For further illustration, we generate a neural network-based Bayesian scoring
function for each of the following conformational properties: the virtual torsion
angle, the virtual bending angle, and the degree of solvent accessibility. The
virtual torsion angle and the virtual bending angle are calculated by the DSSP
program (103). Specifically, given a residue i of interest, the virtual torsion
angle for i is the dihedral angle defined by the C atoms of residues i − 1,
i, i + 1, and i + 2. The virtual bending angle is the bending angle defined by
the C atoms of residues i−2, i, and i+2. Solvent accessibility is the residue
water exposed surface in Å2. To implement the scoring functions, the virtual
torsion angle are manually divided into two discrete states, whereas the virtual
bending angle and the degree of solvent exposure are each manually divided
into three discrete states.
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2.3.3. Training and Post-Processing of the Neural Network

The Stuttgart Neural Network Simulator (104) is a versatile and convenient
tool to configure and train the neural networks for predicting the various
conformational properties. The network configurations follow the description
given in Subheading 2.3.1. The input layer receives a window of sequence
profile. The window size typically ranges from 1 to 17 consecutive residues.
The network has a single hidden layer and an output layer of two or three units
representing two or three discrete states. See Fig. 3 for an illustration.

We divide the database of experimentally determined structures into two
equal subsets A and B, which are alternately used as the training and the test
sets. The neural network training is done in batch mode using standard back-
propagation, and the cycle of batch-mode training is repeated until the test
error reaches a minimum. We note that two neural networks are obtained at the
conclusion of the training—one (denoted as NNA� trained with subset A and
tested with subset B and another one (denoted as NNB� trained with subset B
and tested with subset A.

Given a residue of interest together with its windowed sequence profile, it is
desired to extract from NNA and NNB the posterior probabilities with which the
residue assumes each of the three states, say in the case of solvent accessibility
prediction (two states in the case of virtual torsion angle prediction and three
states in the case of virtual bending angle prediction). To this end, the nearest-
neighbor approach of Yi and Lander (102) is employed: The output layer of
NNA gives a 3-tuple vector (slA, smA, shA). The closeness of this vector with
respect to vectors corresponding to all instances in the test set can be calculated
through the Euclidean measure

(
�slA − s

g
lA�2 + �smA − s

g
mA�2 + �shA − s

g
hA�2

)1/2
(15)

where g stands for instance g in the test set. The k-nearest neighbors [e.g.,
the closest 5% of all instances in the test set with respect to (slA, smA, shA)]
are then determined, and the actual solvent accessibility states of those nearest
neighbors are tabulated, yielding the counts (clA, cmA, chA). The same procedure
is repeated with NNB. The probability that the residue of interest takes on each
of the three states is thus estimated by

P�sq� = cqA + cqB∑
r∈	l�m�h


crA + crB

(16)

where q stands for low, medium, or high accessibility state. Equation 16
supplies the posterior probabilities required in Eq. 13 for score calculation.
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Fig. 3. Schematic diagrams of the neural networks used to predict conformational
property given a sequence profile. (A) A fully connected neural network with input
(5 units), hidden (4 units), and output (2 units) layers. Every unit in the input layers is
connected with every unit in the hidden layers. The same holds true for the hidden and
the output layers. (B) The typical size of a neural network we use for constructing the
knowledge-based functions. In this example, the window size of the input sequence
profile is five residues. Each residue provides twenty input units, representing the
log-likelihood values for the twenty possible amino acid substitutions for that residue
position. The hidden layer consists of 25 units. The output layer has three units. In the
case of solvent accessibility prediction, these output units correspond to low, medium,
and high solvent accessibility states, respectively. The input and the hidden layers, and
the hidden and the output layers, are fully connected as in (A), but for simplicity, the
connections are not shown.

2.3.4. Decoy Sets and Evaluation of the Knowledge-Based
Scoring Functions

One evaluates the usefulness of a scoring function by examining the ability
of the scoring function to distinguish native-like conformations from non-
native ones. This is achieved through generating test decoy sets and testing
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the performance of the function on those sets. There are various approaches to
generate test decoys. For example, they can be created by sampling discrete-
state models starting from a native conformation (105), having amino acid
sequences with known folds mounted onto different folds (106,107), and using
crystal structures of various resolutions (85). Databases of test decoy sets
have been created to enable the evaluation of scoring functions on multiple
types of decoys (108–110). An approach most relevant to evaluating scoring
functions for de novo structure prediction is to create test decoys through de
novo conformational space sampling. A typical de novo conformational space
sampling protocol consists of an MCSA search procedure guided by a set of
energy functions, with move set based on lattice models (111,112), fragment
substitution (113,114), or continuous torsional distributions (81).

There are several commonly used measures for evaluating the usefulness of
scoring functions. The log PB1 measure is the log probability of selecting the
lowest C root mean square deviation (RMSD) conformation in a test decoy
set, calculated with the formula

log PB1 = log10

(
Ri

n

)
(17)

Here, Ri is the C RMSD rank of the best scoring conformation in the test
set of n decoys. The log PB10 measure is the log probability of selecting the
lowest C RMSD conformation among the top-10 best-scoring conformations,
that is, instead of using the RMSD rank of the best-scoring conformation, the
best RMSD rank achieved among the top-10 best-scoring conformations is used
as Ri in Eq. 17. The CC measure is the correlation coefficient between the C

RMSDs and the scores generated by the scoring function. The enrichment ratio
measure is the fraction enrichment of the top 10% lowest RMSD conformations
in the top 10% best scoring conformations. Specifically, after a scoring function
is applied to a test decoy set, we count the number of decoys (denoted as a),
which are in the top 10% in terms of both their scores and their C RMSDs
relative to the native structure. The expected number in a random distribution
is 10% × 10%× (number of decoys in the set) (denoted as b). The enrichment
ratio is a/b. A value above 1 indicates enrichment over the random distribution.
The four evaluation measures are illustrated in an example in Fig. 4.

To examine the utility of the knowledge-based scoring functions in decoy
discrimination, we apply both the RAPDF and the neural network-based
functions to 41 test decoy sets of varying quality generated with de novo
conformational space sampling. Each decoy set contains approximately 10,000
decoy conformations. Table 1 summarizes the PDB identifiers and the SCOP
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Fig. 4. Measures for evaluating scoring functions. Log PB1 is the log probability
of selecting the lowest C RMSD conformation in a test decoy set (point A), which
is −1�42 in this example. Log PB10 is the log probability of selecting the lowest C

RMSD conformation among the top 10 best-scoring conformations in a test decoy set
(point B), which is −1�76 in this example. The correlation coefficient between the C

RMSDs and the scores is equal to the slope of line C-C and has the value of 0.25
in the present case. Line D-D represents the top 10% score cutoff for the decoy set.
By counting the number of decoys below this line, which are also within the top 10%
RMSD cutoff (left of line E-E), and dividing this number by the expected value for
a random distribution, an enrichment ratio of 2.7 is obtained. Different measures are
needed dependent on the specific purposes and roles of the scoring functions.

classifications of the 41 protein sequences used in generating the test decoy sets.
Also included is the C RMSD of the best decoy relative to the corresponding
native structure in each test set. Among them, fifteen test decoy sets have their
best structures below 6 Å C RMSD relative to their native conformations.
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Table 1
List of the Protein Sequences Used in Generating the Test Decoy Sets

Protein SCOP classifications Length Minimum RMSD

1b0n-A2 a.35.1.3 (A:1–68) 68 2�729
1b33-N d.30.1.1 (N:) 67 7�349
1b34-A b.38.1.1 (A:) 80 7�943
1b4b-A d.74.2.1 (A:) 71 5�506
1b79-A a.81.1.1 (A:) 102 5�29
1ck9-A d.79.3.1 (A:) 104 7�661
1ctf d.45.1.1 (–) 68 4�37
1dgn-A a.77.1.1 (A:) 89 4�482
1dj8-A a.57.1.1 (A:) 79 5�092
1dtj-A d.51.1.1 (A:) 74 4�902
1e68-A a.64.2.1 (A:) 70 3�794
1eai-C g.22.1.1 (C:) 61 6�914
1edz-A2 c.58.1.2 (A:3–148) 146 9�277
1efu-B3 a.5.2.2 (B:1–54) 54 5�247
1ev0-A d.71.1.1 (A:) 58 6�641
1f53-A b.11.1.4 (A:) 84 9�123
1fc3-A a.4.6.3 (A:) 119 8�184
1fmt-A1 b.46.1.1 (A:207–314) 108 7�385
1g6e-A b.11.1.6 (A:) 87 7�891
1g7d-A a.71.1.1 (A:) 106 5�867
1goi-A1 b.72.2.1 (A:447–498) 52 6�111
1gut-A b.40.6.1 (A:) 67 6�459
1h5p-A b.99.1.1 (A:) 95 8�223
1h8a-C1 a.4.1.3 (C:87–143) 57 2�941
1ijy-A a.141.1.1 (A:) 122 7�916
1ira-Y1 b.1.1.4 (Y:1–101) 101 8�317
1iwg-A1 d.58.44.1 (A:38–134) 97 5�7
1jju-A3 b.1.18.14 (A:274–351) 78 6�614
1jos-A d.52.7.1 (A:) 100 5�302
1jyg-A a.60.11.1 (A:) 69 3�471
1k2y-X2 c.84.1.1 (X:155–258) 104 6�889
1ktz-B g.7.1.3 (B:) 106 8�586
1l9l-A a.64.1.1 (A:) 74 4�041
1msp-A b.1.11.2 (A:) 124 9�932
1n69-A a.64.1.3 (A:) 78 6�753
1qu6-A1 d.50.1.1 (A:1–90) 90 8�597
1rie b.33.1.1 (–) 127 9�548
1sra a.39.1.3 (–) 151 8�781
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1sro b.40.4.5 (–) 76 6�031
2igd d.15.7.1 (–) 61 6�508
7gat-A g.39.1.1 (A:) 66 7�248

Each row lists the Protein Data Bank (PDB) identifier of the sequence, the SCOP classification,
the length of the protein sequence, and the C RMSD of the best decoy structure relative to the
native conformation in the test decoy set. Each test decoy set contains ∼ 10� 000 decoys. Fifteen
test decoy sets have their best structures below 6 Å C RMSD relative to their corresponding
native conformations. Twenty-four test decoy sets have their best structures below 7 Å C RMSD
relative to their corresponding native conformations.

Twenty-four decoy sets have their best structures below 7 Å C RMSD relative
to their native conformations, and so on. For illustration purpose, we employ
the enrichment ratio measure to evaluate the scoring functions. The results are
displayed in Fig. 5. From the figure, we observe that the RAPDF function gives
uniform performance for decoy discrimination across decoy sets of different
quality, whereas the neural network-based scoring functions tend to perform
better for decoy sets with better quality.

2.4. Some Other Knowledge-Based Scoring Functions in the Recent
Literature

In the formulation of the RAPDF scoring function as well as of the other
pairwise distance preference functions described in refs. 11,77,87 and (88),
the solvation effect is not explicitly modeled. However, as we have previously
discussed, as protein folding occurs in the aqueous environment, a careful
accounting of the solvent effect is important in determining the native confor-
mation. In this regard, McConkey et al. (115) quantify contact surfaces of atoms
by integrating the solvent accessible surface and the inter-atomic contacts into
one quantity and construct an all-atom contact potential based on the contact
preferences of 167 residue-specific atom types with 168 possible contact types
(167 possible atom contact types and one solvent contact). They demonstrate
that this all-atom contact potential delivers satisfactory performance for distin-
guishing native conformations from decoy structures.

Another possible approach to augment the pairwise distance preference
scoring functions is by considering various multi-body geometric properties.
In ref. 116, a four-body SNAPP potential involving the tiling of protein struc-
tures with tetrahedra having the center of mass of each amino acid side-chain
at each vertex is introduced. This formulation results in 8855 possible tetra-
hedron types with the corresponding log-likelihoods computed from structural
databases. It is found that the SNAPP potential is accurate in predicting the
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Fig. 5. Performances of the various knowledge-based scoring functions. The
functions are evaluated using the average enrichment ratios on test decoy sets of
varying quality. For example, the first four bars indicates the average enrichment
ratios attained by the individual functions for the test decoy sets that contain struc-
tures of less than 6 Å C RMSD relative to the native conformations. The following
scoring functions are examined in the figure: a neural network-based virtual torsion
angle scoring function with a three-residue window; a neural network-based virtual
bending angle scoring function with a five-residue window; a neural network-based
solvent accessibility scoring function with a three-residue window; and the all-atom
distance-dependent conditional probability function.

effects of hydrophobic core mutations. A similar four-body scoring function
derived through the Delauney tessellation of side-chain centroids of amino
acids is shown to be able to distinguish native conformation from partially
unfolded and deliberately misfolded structures (117). On the basis of the
work of Professor Banavar and his colleagues, Ngan et al. (118) construct a
three-body knowledge-based potential involving the radii of curvature formed
among triplets of residues in protein conformations. The resulting residue-triplet
function is shown to be of utility in discriminating native-like conformations
from non-native structures. Finally, Li et al. (119) introduce a knowledge-based
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scoring function based on the edge simplices from the alpha shape of the
protein structure. Formally, their statistical alpha contact potential is a two-body
scoring function, and their definition of contact is when atoms from non-bonded
residues share a Voronoi edge, with the edge at least partially contained in
the body of the protein. This formulation has the benefit of avoiding spurious
contact between two residues when a third residue is between them. The authors
have shown that the alpha contact potential performs comparably with other
atom-based potentials, while requiring fewer parameters.

In summary, the construction of a knowledge-based scoring function involves
the following steps: (1) selection of a conformational property that differs
between native-like and non-native structures; (2) compilation of the posterior
probability distributions of this conformational property by direct counting or
through statistical techniques such as neural network, based on a database of
experimentally determined structures; (3) derivation of the prior probability
distributions based on a database of decoy structures or through simplifying
assumptions such as the averaging-over-atom-types argument of Samudrala and
Moult (34), the quasi-chemical approximation of Lu and Skolnick (87), or the
uniform distribution argument of Zhou and Zhou (88); and (4) formation of the
log-odd scores from the prior and posterior probabilities. Step 1 is perhaps the
most critical step and is largely dependent on one’s insights into the physical
and chemical processes involved in protein folding and by trial and error. In
step 2, the selection of appropriate statistical techniques is heavily influenced
by the size and quality of the available data set, because these factors have a
direct impact on determining whether certain statistical assumptions (e.g., the
conditional independence assumption in Eq. 7) are needed.

2.5. The Design of Decoy Filters

As we have discussed, conformational search algorithms produce a multitude
of candidate conformations. Various scoring functions can be combined into a
filter to distill this vast collection of decoys, to retain those that are native-like.
An approach to constructing such a filter is to assign weights to the different
scoring functions, such that the resulting linear combination of the scores gives
the overall quantitative assessment of a decoy structure of interest. The weights
used in the linear combination can be derived by performing logistic regression
on test decoy sets. Specifically, native-like decoys (determined by a suitably
chosen C RMSD cutoff) in each test set are labeled as belonging to class 1,
and the rest labeled as class 0. The normalized scores for an individual decoy
become the independent variables (xj; j = 1 � � � k; k = the total number of score
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types), whereas its associated class label forms the dependent variable (p),
which are then used to fit the following equation to obtain the weights wjs:

log
(

p

1−p

)
= �+w1x1�i + � � �+wkxk�i (18)

Here,  is a constant representing the intercept. i ranges from 1 to N , and
N is the total number of decoys. Normalization of a scoring function can be
achieved by subtracting its mean and dividing by its standard deviation, where
the mean and the standard deviation are computed over all decoys within a test
set, or by replacing the raw score of a decoy with its rank and then dividing
by the total number of decoys in the test set. Techniques such as leave-one-
out cross-validation and forward and backward stepwise regression can be
applied to determine which independent variables are helpful in assessing the
accuracy of a given decoy structure and which can be discarded. Essentially,
functions describing useful orthogonal characteristics of protein native conforma-
tions will receive large weights, whereas those that are less useful or containing
overlapping information will have smaller or zero weights. Finally, alternative
approach to performing logistic regression is also possible, for example, by
replacing it with machine-learning techniques such as the neural network or SVM.
The decision is again influenced by the size and quality of the available test data.

2.6. Further Enhancement of Decoy Selection Through Conformer
Clustering and High-Resolution Refinement

Conformer clustering and high-resolution refinement are often used as
additional steps in the decoy selection process to further refine the set of
native-like conformations retained by the decoy filter. The idea of conformer
clustering is based on the following observation: Conformers with correct folds
are in general similar to other conformers with correct folds. On the contrary,
it is unlikely that multiple conformers share the same mistake, and therefore,
conformers with incorrect folds are in general dissimilar to each other as well
as to conformers with correct folds. Hence, the conformers that are most similar
to the others, that is, those at the cluster centers of the conformational distri-
bution, will tend to be the correct ones. Various metrics are used to describe the
conformational distribution, including pairwise RMSD, pairwise RMSD with
cutoffs, and number of neighbors (16,120). Heuristic schemes such as k-mean
clustering, visual inspection following dimensionality reduction, and iterative
sampling (121) can be used to locate these cluster centers.

Figure 6 illustrates the performance of a conformer-clustering algorithm [the
density score function available in the RAMP package (122)] in distinguishing
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Fig. 6. The comparison of some knowledge-based scoring functions and the density
score function in discriminating decoys. In (A), the virtual bending angle scoring
function is compared to the density score function, whereas in (B), the solvent acces-
sibility scoring function is compared to the density score function. The diagrams show
that the density score function produces improved correlation between the C RMSDs
and the scores in both cases, suggesting that conformer clustering is useful as a comple-
mentary step in decoy selection.

native-like structures from non-native conformations. Compared with the neural
network-based virtual bending angle and solvent accessibility scoring functions,
the density score function produces results that show improved correlation
between the C RMSDs and the generated scores. This observation suggests
that applying conformer clustering in addition to using scoring functions as
filter can enhance the overall ability to select native-like structures from decoys.
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The goal of high-resolution refinement is to further optimize the remaining
candidate structures that have passed through the decoy filtering and conformer
clustering stages. The optimization is carried out by making small perturbations
to a candidate structure guided by a highly detailed energy potential. One of
the most notable methods is that of Misura et al., which has been shown to be
effective in the Sixth Critical Assessment of Techniques for Protein Structure
Prediction (CASP-6) (123,124). It involves applying perturbations to backbone
and side-chain torsion angles using an all-atom force field. The force field
consists of a standard 6–12 Lennard–Jones potential for Van der Waals packing,
the implicit solvation model of Lazaridis and Karplus describing dielectric
screening (73), and a new orientation-dependent hydrogen bonding term (125).
The hydrogen-bonding term is derived based on observed geometrical param-
eters of hydrogen bonds in high-resolution crystal structures of proteins. Using
this combined physics-based and knowledge-based function as part of their
prediction protocol, Bradley et al. have reported success in high-resolution
structure prediction of less than 1.5 Å for protein domain of less than 85
residues (124).

A summary of the scoring functions discussed in this chapter can be found
in Table 2. We should note that there are other means to guide conforma-
tional search and decoy filtering besides using scoring functions. For example,
filtering schemes based on contact order (126) and beta sheet topology (127)
have been found to be beneficial in enriching the ensemble quality of decoy
structures.

3. Discussion and Conclusion
A main objective of the structural genomic initiatives, spurred by large-scale

genome sequencing efforts, is to determine as many protein folds as possible.
The need to determine protein structures rapidly and inexpensively in turn leads
to an increased interest in computational protein structure prediction, the two
main approaches of which being homology modeling and de novo structure
prediction.

The key components in de novo protein structure prediction are conforma-
tional space sampling and decoy selection. Scoring functions are employed in
both the conformational sampling stage and the decoy selection stage. In the
first stage, a selected combination of scoring functions approximates the energy
landscape of the conformational space, and conformational search algorithms
generate trajectories leading to the landscape minima, whereas in the second
stage, another set of possibly different scoring functions are used as filter to
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Table 2
A list of the scoring functions discussed in Section 2

Scoring
function

Subheading Usage Description

Class I force
field

2.1.1. Conformational space
search

Physics-based force field
modeling bonded and
non-bonded interactions
among atoms

RAPDF 2.2.1. Conformational space
search/decoy filtering

Knowledge-based
potential describing
atom–atom distance
preferences

IRAPDF 2.2.3. Conformational space
search/decoy filtering

Continuous version of the
RAPDF function

Neural network
knowledge-
based
functions

2.3. Conformational space
search/decoy filtering

Incorporation of neural
network into the Bayesian
probability framework
to describe various
conformational properties

Atom–atom
contact
scoring
function

2.4. Conformational space
search/decoy filtering

Knowledge-based
atom–atom contact
preference function taking
solvent accessibility into
account

SNAPP
potential

2.4. Conformational space
search/decoy filtering

A four-body
knowledge-based function
describing tiling of protein
structures with tetrahedra

Four-body
contact
scoring
function

2.4. Conformational space
search/decoy filtering

A four-body
knowledge-based function
based on Delauney
tessellation of side chain

Residue triplet
scoring
function

2.4. Conformational space
search/decoy filtering

A three-body
knowledge-based function
based on the radii of
curvature formed among
triplets of residues

(Continued)
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Table 2
(Continued)

Scoring
function

Subheading Usage Description

Alpha contact
potential

2.4. Conformational space
search/decoy filtering

A two-body
knowledge-based function
based on edge simplices
from the alpha shape of the
protein structure

Structure
refinement
potential of
Misura et al.

2.6. High-resolution
refinement

A combined physics- and
knowledge-based function
modeling Van der Waals
interaction, solvent effects,
and hydrogen bonding

Each row gives the name of the scoring function, the subheading in which it is discussed, its
usage, and a brief description of its components.

retain a collection of the native-like structures. Conformer clustering and high-
resolution refinement can also be used as additional steps to further refine this
collection. In this chapter, we have studied some examples of the physics-
based and knowledge-based scoring functions. For the physics-based approach,
the Class I force field and its extensions as well as solvation modeling were
discussed. For the knowledge-based approach, we studied the Bayesian proba-
bility formalism and used it to derive the RAPDF (34). In addition, we detailed
the construction of the neural network-based Bayesian scoring functions. The
Bayesian probability formalism was combined with the neural network method-
ology to construct various types of log-likelihood scoring functions. Then,
we described some of the new knowledge-based scoring functions from in
the recent literature. These functions extend the pairwise distance preference
scoring functions in various ways, for example, by explicitly modeling the
solvent effects and by considering multi-body geometric arrangements and
interactions. Finally, we briefly discussed conformer clustering and described
a detailed energy potential used for high-resolution refinement. In general,
because of the weaknesses of solvent and electrostatic modeling, simulations
attempting to fold proteins de novo from physics-based scoring functions alone
do not perform satisfactorily. The statistical models that are used to construct
knowledge-based functions provide added flexibilities over direct physical
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modeling, and as a result, most of the successful de novo structure prediction
protocols have both physics-based and knowledge-based components.

Scoring function design remains a very difficult problem. None of the
existing physics-based and knowledge-based functions can faithfully reproduce
the true energy landscape of the protein conformational space, and none of
them can consistently and reliably select native-like conformations from non-
native structures for a broad spectrum of proteins. The difficulty is mainly
because the physical and statistical models considered so far in the literature
cannot well approximate the quantum mechanical character of intra-molecular
and solvent-protein interactions. Furthermore, scoring functions describing
truly orthogonal characteristics of protein native conformations are difficult
to discover, especially for the knowledge-based functions that are the sum of
many constituent effects. Thus, it is of practical interest to continue devel-
oping various types of new scoring functions, to exploit their differences, and
to capture the cumulative effect of incremental enrichments. Fortunately, the
increase in the size of the PDB together with increased computational power
means that the construction of more sophisticated knowledge-based scoring
functions are now possible. More realistic electrostatics and solvation models
are also being developed, increasing the capabilities of the physics-based force
fields. These advances will play important roles to improving the state of the
art of protein folding simulation and de novo structure prediction.
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Protein–Protein Docking: Overview and Performance
Analysis

Kevin Wiehe, Matthew W. Peterson, Brian Pierce, Julian Mintseris,
and Zhiping Weng

Summary

Protein–protein docking is the computational prediction of protein complex structure given
the individually solved component protein structures. It is an important means for under-
standing the physicochemical forces that underlie macromolecular interactions and a valuable
tool for modeling protein complex structures. Here, we report an overview of protein–protein
docking with specific emphasis on our Fast Fourier Transform-based rigid-body docking program
ZDOCK, which is consistently rated as one of the most accurate docking programs in the Critical
Assessment of Predicted Interactions (CAPRI), a series of community-wide blind tests. We also
investigate ZDOCK’s performance on a non-redundant protein complex benchmark. Finally, we
perform regression analysis to better understand the strengths and weaknesses of ZDOCK and
to suggest areas of future development for protein-docking algorithms in general.

Key Words: Protein–protein docking; ZDOCK; RDOCK; Fast Fourier Transform; benchmark;
CAPRI; shape complementarity; electrostatics; desolvation energy; regression analysis.

1. Introduction
Protein–protein interactions play a central role in biochemistry. This can

be seen in cell-signaling cascades, enzyme catalysis, the immune response
by means of antibody–antigen interactions, and the large-scale motions of
organisms. These interactions are also implicated in many diseases.
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While experimental techniques such as yeast two-hybrid system and mass
spectrometry are able to determine the existence of protein–protein interactions,
the structure of the macromolecular complex of two interacting proteins can
provide additional information about their interaction, such as the specific
residues involved in the interaction and the degree of conformational change
undergone by the proteins upon binding.

X-ray crystallography and nuclear magnetic resonance have provided us
with the structures of many complexes, but numerous structures still remain
unsolved because of time and experimental limitations. This leads to a need for
computational methods to understand the nature of protein–protein interactions,
one of which is protein–protein docking.

This chapter is divided into three sections. The first section provides an
overview of protein–protein docking and describes some of the available
algorithms for docking. The second describes the ZDOCK suite of programs
in detail, and the third describes an analysis of the performance of ZDOCK.

1.1. Protein–Protein Docking: An Overview

Protein–protein docking is defined as the prediction of the structure of two
proteins in a complex, given only the structure of the interacting proteins. The
“docking problem” can be broken down into two types of docking: bound
docking, in which a complex is separated and reassembled, and unbound
docking, where the structure of the complex is found from the individually
solved structures of the interacting proteins. Obviously, bound docking has
little applicable value, but it is often used for testing and verification purposes.

Unbound docking is much more difficult than bound docking because the
proteins involved can change conformation upon binding. A study of confor-
mational changes in protein complexes (1) showed that while the general model
for protein–protein recognition is an induced fit model where the proteins must
change conformation in order to bind, the amount of conformational change
was small enough such that binding could be modeled as a “lock-and-key”
mechanism as a first approximation. This allows for successful docking results
even when there are noticeable changes in the conformation of the inter-
acting proteins. This “rigid-body” approximation has been invaluable in the
advancement of the protein–protein docking field. However, modeling induced
fit by flexible docking remains a central challenge, and a large portion of
current docking research is focused in this area.

There are two main challenges in the development of methods for protein–
protein docking. The first is the construction of a scoring function that allows
for the discrimination between correct or near-correct predictions and incorrect
predictions. The second is the development of an algorithm that quickly searches
and scores all possible orientations of the proteins to be docked. The most
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obvious way to dock two proteins would be simulate the molecular dynamics, as
this would allow the complex to reach its native state with time. Unfortunately,
the computational power necessary for such a simulation makes this currently
intractable.

Protein–protein docking is often carried out in two stages. The initial stage
treats the proteins as rigid bodies, allowing for an efficient search of the six-
dimensional (6-D) space (three dimensions of translational freedom and three
dimensions of rotational freedom). The 6-D space is searched for regions of
high shape and biochemical complementarity, using a “soft” scoring function
that allows for some clashes between atoms. A critical component of docking
research has been the development of novel techniques for increasing the
speed of the search. One of the most popular methods is the Fast Fourier
Transform (FFT) (2), used in ZDOCK (3), FTDock (4), and GRAMM (5) to
search translational space and in HEX (6) to search angular space. Other search
methods that have been used include representing the proteins using grids of
bits (7), Monte Carlo sampling (8,9), genetic algorithms (10), and geometric
hashing (11).

Many docking algorithms have a refinement and re-ranking stage. This
involves making small changes to the highest-scoring predictions from the
initial stage using techniques such as 6-D rigid-body movements, molecular
dynamics, and the clustering of similar predictions. Often, a more advanced
scoring function, designed to increase the rank of near-native structures and
decrease the rank of false positives, is introduced. This allows for a more
descriptive approximation of biochemical properties such as desolvation free
energy, electrostatics, and hydrogen bonding. Table 1 provides a list of current
docking methods, along with their methodologies.

1.2. Measuring the Accuracy of Predicted Complexes

Once a prediction has been created, it is useful to evaluate it in a quantitative
fashion. This is most often done using root mean square deviation (RMSD)
between the atoms (using all atoms, backbone atoms, or C� atoms) of the
prediction and the complex. This is done by first aligning the predicted structure
with the crystallized complex in a manner that minimizes RMSD. RMSD
between the predicted (p) and actual (a) C� atoms is calculated as follows
(with n being the total number of atoms):

RMSD =
√

1
n

n∑
i=1

{
�px�i�−ax�i��

2 + [py�i�−ay�i�
]2 + [pz�i�−az�i�

]2
}

(1)

Two of the most often used metrics for measuring the accuracy of a predicted
structure are interface RMSD (iRMSD) and ligand RMSD (lRMSD). iRMSD
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Table 1
A Summary of Docking Tools

Name Method Server/DLa Reference

AutoDOCK Flexible docking using Monte Carlo
search and incremental construction

N/Y 12

BiGGER Global search using bit mapping,
rescored with multiple filters

N/N 7

ClusPro Docking with DOT/ZDOCK,
clustering

Y/N 13

DOCK Global search with grid-based
energy function, flexible docking
with random search and
incremental construction

N/Y 14

DOT FFT global search using shape
complementarity and electrostatics

Y/N 15

FTDock FFT rigid-body search N/Y 4
GRAMM FFT with clustering and rescoring Y/Y 5
HADDOCK Rigid-body minimization,

semi-flexible simulated annealing,
rescoring using biochemical data

N/Y 16

HEX Fourier correlation of spherical
harmonics, explicit translational
search

Y/N 6

ICM Docking by combining
pseudo-Brownian potential and
torsional steps with local gradient
minimization

N/Nb 8

PatchDock/SymmDock Geometric hashing and
pose-clustering to score shape
complementarity

Y/N 17

RosettaDock Optimization of side-chain
conformation with rigid- body
Monte Carlo minimization

N/Y 9

ZDOCK FFT search using shape
complementarity, desolvation, and
electrostatics. Refinement and
re-ranking with RDOCK

Y/Y 18

FFT, Fast Fourier Transform.
a Availability of download to academic users.
b Browser can be downloaded; docking component must be purchased.
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is defined as the C� RMSD of those residues having at least one atom within a
distance cutoff of the interacting partner; lRMSD is calculated by superposing
the receptor of the predicted structure with the known structure, performing
the same transformation on the ligand, and calculating the C� RMSD of the
ligand. An advantage of using iRMSD is that unlike lRMSD, it is not affected
by conformational change in domains that do not include the binding site.

Often, a prediction is classified as a “hit” if the iRMSD and lRMSD are below
a threshold. Unfortunately, this hard cutoff does not take into account many
nuances. Another method of evaluating the accuracy of docking predictions is
the fraction of native and non-native contacts (fnat and fnon−nat). Contacts are
defined as residue pairs with less than 5Ǻ distance between the receptor and
ligand. fnat is a measure of the number of contacts correctly predicted, and
fnon−nat measures the number of incorrectly predicted contacts. fnon−nat serves
as an indication of atomic clash between the interface residues in the predicted
complex and also as a proxy for conformational change, as residues may move
into the interface upon binding.

1.3. The Critical Assessment of Predicted Interactions Experiment

The CAPRI (Critical Assessment of Predicted Interactions) experiment
was created to compare the performance of docking algorithms of various
groups (19). CAPRI was modeled after Critical Assessment of Structural
Prediction (CASP), which started in 1994 to compare the performance of
protein-folding algorithms (20).

CAPRI is a blind competition, so the participating groups do not receive
the complex structure until after all predictions have been made. Each group
submits 10 predictions, ranked by confidence. The predictions are then evaluated
based on various factors and assigned a score [incorrect, acceptable (one star),
medium (two stars), and high (three stars)] based on their accuracy. The CAPRI
metrics for these scores are described by the Boolean expressions below:

High = �fnat ≥ 0�5�∩ ��lRMSD ≤ 1�0�∪ �iRMSD ≤ 1�0��

Medium = ���fnat ≥ 0�3�∩ �fnat < 0�5��∩ ��lRMSD ≤ 5�0�∪ �iRMSD ≤ 2�0��	∪
��fnat ≥ 0�5�∩ �lRMSD > 1�0�∩ �iRMSD > 1�0��

Acceptable = ���fnat ≥ 0�1�∩ �fnat < 0�3��∩ ��lRMSD ≤ 10�0�∪ �iRMSD ≤ 4�0��	∪
��fnat ≥ 0�3�∩ �lRMSD > 5�0�∩ �iRMSD > 2�0�� (2)

We have made predictions for all CAPRI targets, and Table 2 summarizes
our performance. As an example, Fig. 1 shows the close resemblance between
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Table 2
ZDOCK/RDOCK Performance in the CAPRI Experiment, Rounds 1–5

Target Protein complex Accuracya Contact
%b

Rankc Success
rated

(%)

1 Hpr kinase-HPr Incorrect 7�7 9 3�19
2 Rotavirus VP6-Fab Medium 96�1 3 2�29
3 Hemagglutinin-Fab

HC63
Incorrect 59�7 7 2�19

4 Alpha-amylase-
camelide
AMD10

Incorrect 0�0 1 0�0

5 Alpha-amylase-
camelide
AMB7

Incorrect 6�3 2 0�0

6 Alpha-amylase-
camelide
AMD9

Incorrect 27�6 5 8�96

7 T cell Receptor
V(BETA)2-exotoxin
A1

Medium 83�8 1 16�91

8 Nidogen-laminin Medium 47 1 7�45
9 LicT homodimer Incorrect 8 2 0�20

10 TBEV trimer Incorrect 11 3 0�97
11 Cohesin-dockerin

(model)
Acceptable 13 1 9�12

12 Cohesin-dockerin High 84 1 10�95
13 SAG1-FAB High 87 1 7�18
14 MYPT-PP1 High 53 8 16�06
18e GH11

Xylanase-TAXI
Medium 91 1 2�15

19 Ovine Prion-FAB Medium 57 8 4�52

CAPRI, Critical Assessment of Predicted Interactions.
a Accuracy, as scored by the CAPRI evaluation team based on interface root mean square

deviation (RMSD), ligand RMSD, and percentage of correct contacts predicted.
b Percentage of correct interface residue contact pairs predicted.
c Rank, as assigned by ZDOCK team, of best prediction out of the 10 submission for

that target.
d A metric used to evaluate the success of predictions across all groups in CAPRI (21).
e Targets 15–17 were canceled.
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Fig. 1. Prediction of the structure of the SAG1–antibody complex [Critical
Assessment of Predicted Interactions (CAPRI) Target 13]. The antibody of the
prediction was superposed onto the crystal structure; the predicted SAG1 is in gray
loops, whereas the crystal structure SAG1 is shown in black loops (the antibody is
shown using surface representation). The non-binding domain of the SAG1 molecule
is not shown. Pymol (22) was used to generate this figure.

our predicted structure and the crystal structure for Target 13 (SAG1–antibody
complex).

1.4. A Benchmark for Protein–Protein Docking

In order to provide the docking community with a standard set of test
cases to test docking algorithms, we developed two protein–protein docking
benchmarks. The first benchmark, Benchmark 1.0 (23), contained 59 test cases,
consisting of 22 enzyme–inhibitor complexes, 19 antibody–antigen complexes,
11 other complexes, and 7 difficult complexes. Of these complexes, 31 are
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unbound–unbound, and 28 are bound–unbound. A number of groups have used
this benchmark to test the performance of their docking algorithms (9,24–26).

A newer version of the docking benchmark, Benchmark 2.0 (27), has been
created. It includes 84 test cases and was designed to focus on unbound–
unbound test cases. Structural classification of proteins (SCOPs) (28) was used
to avoid redundancy in the benchmark. This benchmark is classified by docking
difficulty, based on the amount of conformational change undergone by the
interacting proteins. Complexes classified as rigid and medium fall into the
realm of rigid-body docking, whereas complexes classified as difficult would
require algorithms that explicitly search backbone conformations.

2. The ZDOCK/RDOCK/M-ZDOCK Approach
2.1. ZDOCK: An FFT-Based Initial Stage Docking Algorithm

ZDOCK is an initial-stage docking algorithm that uses an FFT to find the
three-dimensional (3-D) structure of a protein complex. The ZDOCK algorithm
optimizes three parameters: shape complementarity, electrostatics, and desol-
vation free energy.

ZDOCK takes Protein Data Bank (PDB) (29) files as input. The larger of the
two interacting proteins is considered the receptor (R), whereas the smaller of
the two is considered the ligand (L). These PDB files are first parsed through
the supplied program mark_sur , which measures the amount of accessible
surface area (ASA) of each atom using a water probe of radius 1.4 Å. If an
atom has an ASA of more than 1 Å2, it is marked as a surface atom. mark_sur
also marks the atom type for each atom in the structure, based on the 18 atom
types based on atomic contact energy (ACE) (30). For any given rotational
orientation, the L and R are both discretized onto a 3-D grid of size N ×N ×N
with a spacing of 1.2 Å. N must be large enough such that the grid can cover
the sum of the maximal spans of R and L, plus 1.2 Å, and it is often set at 128.

2.1.1. The Fast Fourier Transform

As previously mentioned, the FFT is a popular method for quickly searching
3-D translational space. A diagram of the general FFT docking approach is
detailed in Fig. 2. The search is performed by randomly perturbing both
the receptor and ligand to avoid starting from a near-native state, and then
discretizing them into discrete functions �R�x
 y
 z� and L�x
 y
 z� for the
receptor and ligand, respectively] onto separate 3-D grids. ZDOCK searches
rotational space explicitly by rotating the ligand in either 15� or 6� steps, which
result in 3600 and 54,000 total angles, respectively. For each angle, only the
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Fig. 2. The steps involved in a Fast Fourier Transform (FFT)-based docking search.
For each ligand rotation, it is discretized and this discretization is then correlated
with the discretized receptor to obtain the top-scoring ligand position. These steps are
repeated to cover all ligand rotations in three dimensions, if necessary. In the case of
ZDOCK, this involves 3600 iterations for 15� sampling and 54,000 iterations for 6�

sampling.

top-scoring translation is found. To find the highest-scoring translation, we
performed a cross-correlation. The correlation for a particular x
 y
 z translation
�i
 j
 k� is found by taking the complex conjugate of the one of the functions,
offsetting the grids, and multiplying the overlapping grid points together, with
the sum of these products representing the score for that translation.

S �i
 j
 k� = ∑
x
y
z

L∗ �x+ i
 y + j
 z+k�R�x
 y
 z� (3)

Cross-correlations can be performed globally in a single step by working
in the frequency domain. This is done using the Discrete Fourier Transform
(DFT) and Inverse Fourier Transform (IFT):

S �i
 j
 k� = 1
N 3

IFT
{
IFT �L �x
 y
 z��∗ DFT �R�x
 y
 z��

}
(4)

The FFT is a method for computing the DFT and IFT efficiently. Each FFT
is O�log2�N

3��, whereas the multiplication of the grids is O�N 3�. Therefore,
using the FFT to perform the translational search reduces the computational
complexity of the search from O�N 6� to O�N 3 log2�N

3��.
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ZDOCK uses a combination of three physical and biochemical properties to
describe ligand and receptor: shape complementarity, desolvation free energy,
and electrostatics.

2.1.2. Shape Complementarity

The physical basis for shape complementarity comes from the van der Waals
(vdW) potential. Atoms are subject to an attractive force at long distances, and
a repulsive force at short distances, caused by the overlap of electronic orbitals.
Most often, this is approximated by the Lennard–Jones 6–12 potential, shown
below:

VL−J = A

r12
− B

r6
(5)

The r6term represents the attractive energy, whereas the r12 term represents the
repulsive energy. The minimum of the vdW potential is found at the sum of
the vdW radii, which can be thought of as the effective sizes of the interacting
atoms.

Early versions of ZDOCK used a shape complementarity function known
as grid-based shape complementarity (GSC) (3). Here, two discrete functions,
RGSC (GSC function for the receptor) and LGSC (GSC function for the ligand),
are used to describe the geometric characteristics of the two proteins as follows:

RGSC =

⎧⎪⎪⎨
⎪⎪⎩

1 solvent-accessible surface
9i solvent-excluding surface
9i core
0 open space

LGSC =

⎧⎪⎪⎨
⎪⎪⎩

0 solvent-accessible surface
1 solvent-excluding surface
9i core
0 open space

(7)

The solvent-excluding surface layer is defined by the grid points marked as
surface atoms by mark_sur, whereas the core is defined as the atoms not on
the surface. The solvent-accessible surface layer is an additional layer of grid
points surrounding the surface of the protein.

The current version of ZDOCK uses a complementarity function known as
pairwise shape complementarity (PSC) (31). PSC is composed of a favorable
term and a penalty term. The favorable term calculates the number of atom pairs
between R and L within a distance cutoff D, whereas the penalty component
of PSC is proportional to the number of overlapping grid points between



Protein–Protein Docking 293

R and L, much like GSC. Whereas the GSC function results in grid spaces with
purely real or imaginary values, the PSC function is complex. LPSC and RPSC

are shown below.

� [Lpsc

]=
{

1 if nearest grid point to ligand atom
0 otherwise

� [Rpsc

]=
⎧⎨
⎩

Number of receptor atoms within D = +vdW radius
of nearest atom open space

0 otherwise

	 �LPSC� = 	 �RPSC� =
⎧⎨
⎩

3 solvent-excluding surface
9 core
0 open space

(8)

The use of PSC rather than GSC for scoring shape complementarity was shown
to greatly increase the number of near-native predictions for Benchmark 1.0
during initial stage docking (31).

2.1.3. Desolvation Free Energy and Electrostatics

ACE (30) is used by ZDOCK to estimate desolvation free energy. ACE is
defined as the change in free energy resulting from the breaking of two atom–
water contacts and the formation of an atom–atom contact and a water–water
contact. This is also referred to as the hydrophobic effect, which is known to
play a critical role in protein–protein binding. ZDOCK introduces two discrete
functions, LDE and RDE, to describe the desolvation energy of the ligand and
receptor:

� �LDE� = � �RDE� =
{

PSC+ACE scores of all nearby atoms open space
0 otherwise

	 �LDE� = 	 �RDE� =
{

1 if nearest grid point to atom
0 otherwise

(9)

The electrostatics energy term for ZDOCK can be expressed as a correlation
between the electric potential generated by the receptor with the charges of the
ligand atoms. ZDOCK adopts the Coulombic formula used by Gabb et al. (4)
but incorporates partial charges using the CHARMM19 parameters from the
CHARMM molecular mechanics program (32).

2.1.4. ZDOCK Scoring Function

There are two ZDOCK versions that use PSC to describe shape complemen-
tarity: ZDOCK 2.1 simply uses PSC as the scoring function, whereas ZDOCK
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2.3 uses a linear combination of the shape complementarity-electrostatics score
and the desolvation score. ZDOCK 2.3 incorporates PSC and electrostatics into
single complex functions (RPSC+ELEC and LPSC+ELEC� to improve computation
time. These functions are described below:

� [LPSC+ELEC

]= � [RPSC+ELEC

]=
⎧⎨
⎩

3�5 solvent-excluding surface
3�52 core
0 open space

	 [RPSC+ELEC

]=
{

�∗ electric potential of all R atoms open space
0 otherwise

	 [LPSC+ELEC

]=
{−1∗ atom charge grid point closes to ligand atom

0 otherwise
(10)

2.2. RDOCK: Refining ZDOCK Predictions

The refinement stage of protein docking with ZDOCK is carried out using
an algorithm known as RDOCK (33). Because of the soft scoring function
in ZDOCK, many of the top-scoring predictions are false positives (not near-
native). RDOCK refines these output structures through energy minimization.
This is carried out in three steps, using CHARMM (32).

1. Removal of clashes by minimization of vdW and internal energies.
2. Minimization of total (Coulombic electrostatics, vdW, internal) energy, constraining

non-hydrogen atoms, and keeping ionic side chains in their neutral states.
3. Minimization of total energy with no restrictions.

Once energy minimization has been performed, the minimized structures are
re-ranked. Any complexes that still exhibit clashes (those that have vdW energy
of 10 kcal/mol or greater) after minimization are discarded. Electrostatics and
desolvation energy for the complexes are calculated using CHARMM and ACE,
respectively. The RDOCK scoring function, �Gbinding, is a linear combination
of desolvation score (�GACE� and electrostatic energy (�Eelec�.

�Gbinding = �GACE +0�9∗�EELEC (11)

2.3. M-ZDOCK: Symmetric Multimer Docking with ZDOCK

The ZDOCK algorithm has been modified to predict the structure of Cn

multimer complexes, in which two or more identical proteins interact, resulting
in a ring-shaped complex. M-ZDOCK (34) reconstructs the multimer based on
the optimal position of two adjacent monomers in a single plane. This leads to
a reduction in computational time due to the reduced search space, as well as
an increase in performance when compared with docking Cn multimers with
ZDOCK.
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2.4. ZDOCK Performance on Benchmark 2.0

ZDOCK was tested against version 2.0 of the docking benchmark using
ZDOCK 2.3 and ZDOCK 2.1, with 6� and 15� angular sampling.

2.4.1. Prediction Evaluation

To evaluate the structure predictions produced by ZDOCK, we used the
RMSD of the interface C� atoms. Interface C� atoms were identified by
selecting residues that had any atom within 10 Å of the other molecule in the
bound complex. A hit was defined as a prediction with an iRMSD ≤ 2�5 Å.

Two measures are defined to evaluate the average performance of a docking
algorithm over the entire benchmark. Success rate is defined as the percentage
of test cases that have a hit in the top N predictions. Average hit count is the
number of hits for all test cases in the top N predictions, divided by the number
of test cases.

2.4.2. Running ZDOCK

Several considerations were taken before and while running ZDOCK. To
remove bias from the starting positions (the Benchmark 2.0 unbound test cases
are by default aligned to the bound proteins, to facilitate the evaluation of
predicted structures), we used a different random seed to rotate the ligand for
each case. In addition, the antibodies (apart from the camelid 1KXQ) had most
of their non-complementarity-determining region (non-CDR) loops blocked to
avoid false-positive predictions. The CDRs of the antibodies were identified
using their sequences (loops L1, L2, L3, H1, H2, and H3) and by examination
of the structures (loops L4 and H4 and the N-termini).

2.4.3. Success Rate and Hit Count

Figure 3 shows the success rate for ZDOCK when run against all rigid-body
cases from Benchmark 2.0. It can be seen that ZDOCK 2.3 performs better
overall than ZDOCK 2.1 in terms of success rate. This is because the scoring
function used in ZDOCK 2.3 is better at discriminating hits against incorrect
predictions across the benchmark. Also, for both ZDOCK 2.1 and ZDOCK
2.3, the 15� sampling has a higher success rate than the 6� sampling. This
indicates that for more predictions (i.e., finer sampling), there are more false
positives introduced that reduce the rank of the first hit in some of the test
cases. However, the 6� sampling is superior with regard to the number of hits,
indicated by the hit count plot.
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Fig. 3. ZDOCK success rate (left) and hit count (right) for the rigid-body test
cases of Benchmark 2.0, for N = 1 through 1000 predictions. The success rate is the
percentage of test cases with a hit in the top N , whereas the hit count is the number of
hits for all test cases within the top N divided by the number of cases. Hits are defined
as predictions that have an interface root mean square deviation (RMSD) ≤ 2�5 Å, as
described in the text.

Also in Fig. 3 is the average hit count for the four ZDOCK modes tested.
In this plot, it is clear that ZDOCK 2.3 with 6� sampling is the best, followed
by ZDOCK 2.1 with 6� sampling. The greater number of hits produced by
ZDOCK 2.3 with 6� sampling make this the best option for following up with
re- ranking and refinement of the top predictions (e.g., N = 2000), as suggested
by us earlier (33).

2.4.4. ZDOCK Performance by Test Case Category

Figure 4 gives the success rate curves for ZDOCK across the three types of
test cases in Benchmark 2.0: Enzyme/Inhibitor, Antibody/Antigen, and Others
(the latter is defined as those cases that fall into neither of the first two
categories).

ZDOCK has the best success rate for the Antibody/Antigen test cases,
with the success rate at 1000 predictions with 95% success for ZDOCK
2.3 15� sampling. This may be partly because approximately half of the
Antibody/Antigen cases use bound forms of the antibody; thus the interface
conformational change of these cases is on average smaller. In addition, the
search space is reduced by blocking the non-CDR portions of the antibody.

The Enzyme/Inhibitor cases did not match the Antibody/Antigen cases in
terms of success rate at 1000 predictions, although for the top predictions
(i.e., small N), ZDOCK performed better for this category. Most notable is
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Fig. 4. ZDOCK success rate for Benchmark 2.0 cases, broken down by category:
Enzyme/Inhibitor, Antibody/Antigen, and Other.
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the 20% success for ZDOCK 2.3 15� sampling for the top prediction (four of
20 cases). This may be due to the PSC scoring function, which when combined
with desolvation and electrostatics (as in ZDOCK 2.3) is well suited to identify
the pocket-shaped binding sites on the enzymes.

ZDOCK did not perform quite as well on the Others test cases; this was also
seen when ZDOCK was run against Benchmark 1.0 Others test cases. Of the
four ZDOCK options tested, both sampling levels of ZDOCK 2.3 performed
better than ZDOCK 2.1. In fact, at N = 1000, ZDOCK 2.3 still performed
better than ZDOCK 2.1, whereas for Enzyme/Inhibitor and Antibody/Antigen
cases, the ZDOCK 2.1 15� sampling performed better than ZDOCK 2.3 6�

sampling. This trend may indicate that shape complementarity (which is the
only scoring metric used for ZDOCK 2.1) is less important (versus electro-
statics and desolvation) for the Others cases than for the Enzyme/Inhibitor and
Antibody/Antigen cases.

2.5. Docking Overview: Summary

Protein–protein docking has evolved to the point where it is possible to
predict the structures of many protein complexes based on their unbound
proteins. This is demonstrated above using a protein-docking benchmark and
the rigid-body-docking algorithm ZDOCK. However, based on the success rate
plots of Fig. 3, it is evident that not all cases are successfully predicted within
the top few thousand docking predictions, and for a few cases, no hits are
found. What leads to this variation in docking success across a set of cases? The
final section of this chapter takes an in-depth look at how various properties
of proteins impact the ability of docking to successfully predict the complex
structure.

3. The Relationships Between ZDOCK Performance and Protein
Complex Characteristics

The performance of ZDOCK is dependent on both the accuracy of the
energy function and the comprehensiveness of the search algorithm. Both of
these are in turn dependent on the many physicochemical characteristics of the
protein–protein complex that ZDOCK is attempting to predict. For example,
in any particular complex, the exact shape of the protein–protein interface
will undoubtedly have an effect on how high shape complementarity is scored
in the energy function. Protein–protein complexes with planar interfaces may
prove to be the most challenging for ZDOCK. Thus, it is important to examine
how ZDOCK performs with respect to differing interface shapes in order to
gauge the effectiveness of the shape complementarity term. Knowing how
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ZDOCK performs with respect to a vast array of different protein–protein
complex characteristics provides an understanding of what types of complexes
ZDOCK can be expected to excel in predicting. It also can help lead to more
focused improvements in the development of protein docking by identifying
the strengths and weaknesses of the algorithm. In addition, it may be possible
to extend the conclusions drawn from such an examination to other FFT-based
docking algorithms.

3.1. Near-Native Prediction Definitions

In order to objectively and systematically evaluate the performance of the
ZDOCK algorithm, it is necessary to compare the near-native docking orien-
tations produced by ZDOCK to the space of orientations available given a
particular complex within the rigid-body FFT framework. While the fields
of protein structure prediction and docking commonly make use of “decoys”
to evaluate algorithm performance, here we adopt an alternative approach.
We estimate the space of potential near-native conformations using a newly
designed program called HitFinder. This space is reasonably limited under the
assumption of rigid-body docking, and therefore focus was placed on the 64
rigid-body cases from the protein-docking benchmark (27).

Using the core framework of the ZDOCK algorithm, HitFinder maps the
complex components onto a 1�2 Å grid and uses a 6� Euler angle set (18)
to perform FFT search for orientations that would represent near-native hits.
HitFinder iterates over the same set of angles and translations as ZDOCK but
uses a simple RMSD filter instead of a docking scoring function. For every
potential ligand-docking orientation where the ligand overlaps with the native
ligand orientation, the docking orientation is retained for further processing if
the ligand C RMSD is less than or equal to 10 Å. Following this initial search,
potential docking hits are further defined using a more nuanced protocol based
on the CAPRI prediction accuracy criteria. As in CAPRI, these hit definitions
rely on the combination of RMSD and native contact fraction criteria. Here two
kinds of hits are classified: high quality and medium quality. They are defined
by the following Boolean relationships:

High-quality hits = [
iRMSD ≤ (

iRMSDsuperposed unbound complex +1 Å
)]

∩ �fnat > 0�5�∩ �fnon-nat < 0�5� (12)

Medium-quality hits = [
iRMSD ≤ (

iRMSDsuperposed unbound complex +1 Å
)]

∩ �fnat > 0�3�∩ �fnon-nat < 0�7� (13)
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Because HitFinder does not include the shape complementarity functions
that are normally a part of the ZDOCK algorithm, there is no control over
potential ligand/receptor clash for those orientations where they come too close
to each other. Therefore, this study uses the more strictly defined space of
high-quality hits (or three-star hits; Eq. 2) as a guide and eliminates all hits with
clash significantly greater than the average three-star hit. Clashes are defined
as the number of interface contacts within 3 Å. All docking orientations with
a clash total greater than the mean number of clashes for the three-star hits
plus 2 standard deviations are eliminated. Finally, if an orientation meets all
the required hit criteria, it is labeled a “potential hit” and all such structures are
recorded for a complex.

3.2. Measuring ZDOCK Success

To examine the success of ZDOCK, a metric for protein–protein docking
accuracy is needed. Measuring ZDOCK accuracy per complex could be accom-
plished by merely counting the number of medium- or high-quality hits the
algorithm achieves out of a certain number of predictions. However, because the
number of potential hits is inherent to each particular protein–protein complex
(see Fig. 5A and B), this measure would not reflect precisely how well ZDOCK
performs. As an example, if complex A has 100 potential hits and complex B
has 1000 potential hits, ZDOCK’s accuracy is not equivalent if it finds one
hit for both complexes. Complex B is easier to predict because it possesses
some characteristics that allow for a greater number of hits possible. Further
discussion as to what characteristics these may be will follow in Section 3.
It may make sense to simply take the percentage of hits predicted out of
the number of potential hits as a metric for docking accuracy. In this metric,
ZDOCK makes successful predictions at a 1% rate for complex A and only a
0.1% rate for complex B and thus clearly performs better on complex A. Yet
there is a flaw to this measure as well. As explained previously, the ZDOCK
algorithm only keeps the highest-scoring translation for every rotation angle
searched. This means that if multiple hits exist in the same rotational angle,
ZDOCK will at best only select one of them. In the example of complex A
versus complex B, complex A has 100 potential hits, but hypothetically could
have 99 in one rotational angle. In that case, the highest number of hits an
optimal ZDOCK search could find would only be 2. Thus, accuracy as defined
as a percentage of potential hits would reach the upper limit at 2%. It is
necessary then to introduce another definition, that of the “hit angle.” A hit
angle is defined as any rotational angle in a ZDOCK search that has at least
one translation that results in a potential hit (see Fig. 5C and D). Using this
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Fig. 5. Medium- and high-quality potential hits and hit angles.

definition, we found complex A has two hit angles because it has 100 potential
hits but only two rotational angles in which those potential hits can be found.
Finally, the accuracy of ZDOCK performance can robustly be measured as the
percentage of hits predicted out of the possible number of hit angles. In the
above example, if ZDOCK finds one hit for complex A and there are only two
hit angles possible, the accuracy rate on that particular complex is 50%. Thus,
for complex A, ZDOCK is operating at half of its maximum performance level.
The distribution of accuracy rates for medium-quality and high-quality hits are
shown in Fig. 6.

If the accuracy rate of ZDOCK on complex B is much lower than the 50% of
complex A, it leads to questions of why ZDOCK performs better on complex
A. What are the characteristics of complex A that make it more suitable for
creating good ZDOCK predictions? What are the characteristics of complex
B that are associated with ZDOCK missing many good predictions? In the
next section, these questions are examined for many complexes with myriad
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Fig. 6. ZDOCK Performance as measured by accuracy rate of medium- and
high-quality predictions. Accuracy rate varies substantially across the 53 complexes of
the regression data set.

physicochemical characteristics by employing regression analysis. The goal of
the analysis is to get a better understanding about what types of attributes
lead to successes and failures in protein–protein docking predictions with
ZDOCK.

3.3. Regression Analysis of ZDOCK Performance

To begin to examine by regression analysis which types of attributes of
protein–protein complexes are important to the success of ZDOCK, it is
necessary to have a large data set of complexes. Fortunately, the protein–protein
benchmark represents the largest data set of protein–protein complexes in the
docking field and includes 84 such transient complexes. Some paring down of
that original data set is required in order for the study to control for factors
already known to affect docking results. Previously, 20 of the 84 complexes
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have been characterized as undergoing large conformational change upon
binding. These complexes were removed from this study in order to focus on
docking performance in rigid-body cases. In addition, 11 benchmark complexes
are antibody–antigen complexes in which the antibody structure is only solved
in the complex. These “unbound–bound” complexes were removed in order to
best represent true docking performance. The remaining 53 complexes comprise
the data set used in the regression analysis (see Table 3).

A comprehensive list of protein–protein complex attributes is needed to
establish what characteristics influence the performance of ZDOCK. One
hundred twelve such attributes were used in the regression analysis, some of
which are closely related. For brevity, only the general attributes are included
in Table 4.

3.4. Simple Linear Regression Approach

Simple linear regression was first employed to determine which single
attributes could be associated with ZDOCK performance. Accuracy rate is used
as the response variable in the regression. Accuracy rate can be broken down
according to the two categories of hits: high and medium quality. Also, accuracy

Table 3
Protein Data Bank Codes in the Regression Analysis
Data Set

1A2K 1E6E 1HE8 1RLB
1AHW 1E6J 1HIA 1SBB
1AK4 1E96 1I4D 1TMQ
1AKJ 1EAW 1JPS 1UDI
1AVX 1EWY 1KAC 1VFB
1AY7 1EZU 1KLU 1WEJ
1B6C 1F34 1KTZ 2BTF
1BUH 1F51 1KXP 2MTA
1BVK 1FC2 1MAH 2PCC
1BVN 1FQJ 1ML0 2SIC
1CGI 1GCQ 1MLC 2SNI
1D6R 1GHQ 1PPE 2VIS
1DFJ 1HE1 1QA9 7CEI
1DQJ

Antibody–antigen complexes are in italics.
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Table 4
General Attributes of Protein–Protein Complexes

Attributes

Surface
Shape
Volume
Weight
Curvature
Interface size
Side-chain conformational change
Backbone conformational change
Number of interface hydrogen bonds
Number of native complex clashes
Hydrophobic character of interface
Polar character of interface
Charged character of interface

Of the 112 attributes used in the regression analysis,
only the general attributes are listed here. Most attributes
are expanded to include separately their values for complex,
receptor, and ligand as well as the unbound and bound states
of each.

rate is dependent on the number of predictions made, and this analysis uses
all hits from the top 54,000 predictions, corresponding to one prediction per
rotational angle at 6� sampling density.

As expected for an intricate system such as protein–protein docking, most
of the simple linear regression models in this analysis fail to establish good
relationships between single independent protein complex attributes and the
outcomes investigated. Only simple linear regression on the accuracy rate
for medium-quality predictions resulted in predictors with highly significant
correlations �p < 0�001�. Curvature of the interface has the strongest correlation
�R2 = 0�36� with medium-quality accuracy rate (see Fig. 7). It is a positive linear
relationship, and thus ZDOCK performance tends to increase as curvature of the
interface also increases. Interface curvature is calculated by first fitting a plane
to the atoms of the interface. The RMSD from this plane is the curvature score
(35). The ZDOCK scoring function relies heavily on shape complementarity for
computing the energy of predicted complexes, and thus the importance of that
energy term to the performance of ZDOCK is apparent from this correlation.
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Fig. 7. ZDOCK performance versus interface curvature of the test case. Interface
curvature is the strongest correlated predictor in simple linear regression for medium-
quality accuracy rate (R2 = 0.36).

The four remaining predictors that showed statistically meaningful corre-
lations all were related to the size of the interface. The strongest correlation
among these �R2 = 0�30� was the difference in accessible solvent area between
the complex and its constituents, referred to as dASA. The linear relationship
between interface size and ZDOCK performance is positive, meaning ZDOCK
performs well on protein complexes with larger interfaces. Scores representing
larger interfaces are more statistically significant than scores representing
smaller interfaces, which lead to better discriminatory power of the algorithm
and hence better docking performance. In addition, it suggests that the sensi-
tivity to a few bad contacts is lowered in larger interfaces because they make up
a smaller percentage of the overall interface. By contrast, in smaller interfaces,
one or two mispositioned side chains could proportionately contribute enough
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high energy to the overall docking score to sufficiently lower the rank of a
near-native structure such that it is not included in the final prediction set.

3.5. Multiple Linear Regression Approach

Whereas simple linear regression is an important first look at which single
characteristics of protein complexes are relevant to the performance of ZDOCK,
a more comprehensive approach should involve the employment of multiple
linear regression analysis. Finding the relationship of combined attributes to
ZDOCK sampling and accuracy gives a better indication of what to expect in
terms of successes and failures depending on the type of complex involved
in the prediction. In multiple linear regression, it is important to avoid over-
fitting the data caused by using a small ratio of outcome variables to predictor
variables. Therefore in this study, only sets of four attributes were considered
for the regression with 53 complexes. It was computationally tractable to do
the regression on all permutations of four attributes and thus avoid the pitfalls
associated with a stepwise regression approach.

3.5.1. Medium Quality Predictions

Multiple linear regression analysis was computed for the response variables of
accuracy rate for medium- and high-quality hits with four predictors. For medium-
qualityaccuracyrate, the fourattributeswith thehighestcorrelation(R2 adjusted =
0�53) were: curvature of the interface, size of the ligand interface relative to the size
of the ligand, ligand side-chain conformational change, and the hydrophobicity of
atoms that are completely buried upon binding (see Table 5).

The inclusion of curvature of interface in the top correlated set of attributes
suggests the importance of shape complementarity just as it did in the simple
linear regression for medium-quality accuracy rate. It is possible to exactly
determine how important interface curvature or any other predictor is to the
overall correlation by looking at the coefficients of partial determination for
the regression model. A coefficient of partial determination in this analysis
measures the proportionate reduction in variation in ZDOCK performance when
a particular predictor is included in the regression model. With the above four
attributes, the coefficient of partial determination for the inclusion of interface
curvature in the regression model is 0.41. This explains quantitatively that
interface curvature accounts for a 41% reduction in the regression error when
it is added to the three-attribute model of interface hydrophobicity, ligand side-
chain conformational change, and ligand interface size relative to the size of
the ligand. Thus, interface curvature is highly important to the multiple linear
relationship between these four predictors and ZDOCK performance.
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Table 5
The Highest Correlated Regression Models

Attribute Coefficient Partial Coefficientof Determination

Medium-quality accuracy rate �R2-adjusted: 0.53�

Interface Curvature 0.58 0.41
Interface Hydrophobicity −0�34 0.21
% of Ligand in Interface 0.27 0.13
Ligand Side-chain Change −0�20 0.08

High-quality accuracy rate (R2-adjusted: 0.41�

% of Ligand in Interface 0.50 0.24
Native Complex Close Contacts 0.39 0.21
Ligand Side-chain Change −0�33 0.16
Complex Shape 0.36 0.14

Hydrophobicity, with a coefficient of partial determination of 0.21, is
the second most important predictor in this regression model. Hydropho-
bicity was characterized for atoms in the interface that are completely buried
upon binding using an atom-typing scheme (36) representing three categories:
polar, hydrophobic, and charged. Unexpectedly, in this regression model, the
relationship between ZDOCK performance and complexes with interfaces with
a large amount of hydrophobic atoms buried is negative. Although the corre-
lation is weak, simple linear regression of ACE score versus medium accuracy
rate confirms this inverse relationship (see Fig. 8). Previous analysis (3) on
an earlier test-case data set found a positive relationship between hydropho-
bicity and ZDOCK performance. However, the earlier data set included several
homodimer test cases that were not included in the current benchmark. Homod-
imers are known to have strong hydrophobic interfaces, and their absence
in the current benchmark explains the loss of a positive correlation between
hydrophobicity and ZDOCK performance.

ZDOCK uses a 6-Å cutoff for defining the interface for calculating the
desolvation energy of the prediction. In the multiple regression analysis,
the relationship of hydrophobicity and ZDOCK performance is most signif-
icant when the interface is limited to the atoms that become buried upon
complex formation. Although the results were surprising that hydrophobicity
is negatively correlated with ZDOCK performance, it underscores a potential
area for improvement in the ZDOCK algorithm. Calculating the desolvation
energy of just the buried atoms instead of using a 6 Å contact radius may
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better represent the role of the hydrophobic effect in protein–protein binding
and consequently increase the accuracy of ZDOCK.

The size of the ligand interface relative to the size of the ligand is the third
most important attribute in the highest correlated regression model for medium-
quality accuracy rate. The relationship is positive and for ligands in which the
interface represents a large proportion of the total size, ZDOCK performance
increases for this regression model. From a probability standpoint, this certainly
makes sense as the greater the ratio between ligand interface size and ligand
size, the higher the probability any docking prediction can be considered near
native.

The final attribute of the regression model is a measure of how much side-
chain conformational change occurs in the ligand interface. Specifically, it is
calculated by determining the percentage of ligand interface residues that differ
in rotamer type between the unbound and bound states. Rotamers were defined
using the Dunbrack rotamer libraries (37). Most of the conformational change
that occurs in side chains does not result in large structural differences such as in

Fig. 8. Medium-quality accuracy rate shows a very weak but positive correlation
with the atomic contact energy (ACE) score of the native complex interface. ACE
scores decrease as interface hydrophobicity increases and medium-quality accuracy
rate is therefore negatively correlated with interface hydrophobicity.



Protein–Protein Docking 309

the complexes with backbone conformational change that were removed in the
creation of the data set. However, even small differences in side-chain positions
can cause large inaccuracies in the calculation of the scoring function especially
within the vdW terms. Because ZDOCK does not attempt to move side chains
during docking, interfaces with more side chains in different positions than in
their unbound state will cause an inaccurate representation of the true bound
interface and thus ZDOCK performance will suffer. Side-chain search is an
actively pursued area in protein–protein docking research, and from the results
of this regression analysis, it is understandable why accurate placement of side
chains is a vital part of making successful docking predictions.

3.5.2. High-Quality Predictions

In comparison to the ability of ZDOCK to produce medium–quality predic-
tions, there may exist a different set of characteristics of protein complexes that
associate with ZDOCK’s ability to generate high-quality predictions.

To this end, all regression models with four predictors were run using the
high-quality accuracy rate as the response variable. The highest correlated
model (R2 adjusted = 0�40) included the following four attributes: complex
shape, size of the ligand’s interface relative to the size of the ligand, ligand
side-chain movement, and number of close contacts in the native complex
(see Table 6). Whereas two of these attributes are the same as in the
medium-quality accuracy rate regression, two are different and will be explored
further in this section.

The inclusion of native complex close contacts in the regression model was
a surprising result, and even more unexpected was that the relationship between
the number of close contacts and accuracy rate in the model was positive. Close
contacts were calculated as all intermolecular atomic contacts less than 3 Å in
the native complex structure. The positive relationship means that in the highest
correlated model, ZDOCK performance is higher in complexes with many close
contacts. It would seem that close contacts occur more often in larger interfaces
and at least partly explain the positive relationship based on the aforementioned
reasons why larger interfaces are preferred for better ZDOCK performance.
However, there is no strong correlation between the two attributes of native
complex close contacts and interface size (R2 = 0�25). Thus, it may instead be
that a complex with many close contacts represents a tightly packed interface.
This would suggest once again the importance of the shape complementarity
term in the ZDOCK energy function and in particular the necessity for a well
struck balance between the vdW repulsion and attraction parameters.
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Table 6
Intercorrelation of Attributes in the Regression Models for Medium- and High-
Quality Accuracy Rates (R2 values)

Medium–Quality Accuracy Rate

Attribute Interface
Curvature

Interface
Hydropho-
bicity

% of
Ligand in
Interface

Ligand
Side-
chain

Change

Interface Curvature 1 – – –
Interface Hydrophobicity 0�03 1 – –
% of Ligand in Interface 0�09 0.005 1 –
Ligand Side-chain Change 0�0001 0.009 0.02 1

High-Quality Accuracy Rate

Attribute % of
Ligand in
Interface

Native
Complex

Close
Contacts

Ligand
Side-
chain

Change

Complex
Shape

% of Ligand in Interface 1 – – –
Native Complex Close Contacts 0�05 1 – –
Ligand Side-chain Change 0�03 0.006 1 –
Complex Shape 0�28 0.01 0.02 1

Complex shape is the final attribute of the highest correlated regression model
for high-quality accuracy rate. Complex shape is measured using the radius of
gyration of the bound receptor and ligand. In this regression model, ZDOCK
performance tends to increase with elongated complex shapes. The most
commonly elongated complex shapes in the data set are the Antibody/Antigen
cases, and removing these from the regression model reduces the coefficient
of partial determination for this characteristic by more than half (0.14–0.06).
The diminishing importance of complex shape when antibody–antigens are
excluded suggests a relationship between ZDOCK’s high-quality accuracy rate
and whether or not the complex is an antibody–antigen. Antibody–antigen
complexes are known to be high-affinity binders and perhaps ZDOCK’s perfor-
mance correlates well with binding affinity as such complexes would require
very low energy conformations that simple scoring functions such as ZDOCK’s
could find with greater success. Unfortunately, accurate binding affinity data
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for each complex in the data set are not available to proceed further with such
an analysis.

The coefficients of partial determination for the high-quality accuracy rate
regression model for four predictors show more balance in the importance of the
attributes than in the medium-quality accuracy rate model (see Table 6) Ligand
interface size relative to ligand size and number of native complex clashes
contribute almost equally to the reduction of regression error in the variation
with coefficients of partial determination of 0.24 and 0.21, respectively. Ligand
side-chain movement and complex shape were slightly less important with
coefficients of 0.16 and 0.14, respectively.

3.6. Regression Analysis Conclusion

The relationships between complex characteristics and high-quality perfor-
mance and medium-quality performance for ZDOCK are clearly similar
especially with shape complementarity, side-chain conformational change, and
the ratio of ligand interface size to ligand size. However, the difference in the
two types of performance seems to be in how much each attribute contributes
relative to the others. Shape complementarity, in the form of interface curvature,
is ZDOCK’s dominating discriminating force in medium-quality predictions.
Yet, for high-quality predictions, it is clearly not as important and more
attributes are equally as necessary. Understanding the differences in how
ZDOCK performs with varying levels of prediction quality could allow for a
future strategy of tweaking the parameters of the scoring function to fit a user’s
goals depending on what level of precision they require. Given the results of the
regression analysis, it may be possible to target improvements to ZDOCK that
would sacrifice high-quality performance for an increased amount of medium-
quality predictions. Conversely, if only high-quality predictions are required,
the quantity of medium level predictions could be sacrificed for a small amount
of high-quality predictions.

Regression analysis is a good tool for finding the underlying relationships
between characteristics of protein–protein complexes and ZDOCK perfor-
mance. With this knowledge, it is possible to get a better idea of when and
why ZDOCK makes successful predictions. Through this analysis, the shared
importance of shape complementarity, side-chain conformational change, and
interface size in ZDOCK’s ability to predict high- and medium-quality protein
complex structures is readily apparent.

In addition, understanding the relationships between each attribute in a
comprehensive characterization of protein–protein complexes and how ZDOCK
performs gives insight into where best to make future improvements to the
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algorithm. Advancements in side-chain search and an approach for scoring
only the buried interface atoms in the desolvation energy calculations are some
possible avenues of pursuit for further ZDOCK development.
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Molecular Dynamics Simulations of Protein Folding

Angel E. Garcia

Summary

I illustrate the use of the replica exchange molecular dynamics (REMD) algorithm to study
the folding of a small (57 amino acids) protein that folds into a three-helix bundle, protein A. The
REMD is a trivially parallel method that uses multiple copies of the system of interest to study the
canonical ensemble equilibrium properties. Each replica represents a different thermodynamic
state, usually at different temperatures. This method enhances the configurational sampling of
proteins and allows us to study folding in simulations that are much shorter than the folding
timescale for the system at ambient temperature. I show that using REMD and the Amber force
field, I can obtain stable configurations of protein A whose backbone root mean square distance
(RMSD) is within 0.17 nm of the nuclear magnetic resonance (NMR)-determined structure
without biasing the system toward the folded structure. The simulations are done in explicit
solvent and starting from nearly extended configurations. This calculation shows that currently
available force fields and enhanced sampling methods perform reasonably well in describing the
folded structure of small proteins.

Key Words: Molecular dynamics; thermodynamics; folding; hydration; enhanced sampling
methods; replica exchange.

1. Introduction
The use of all-atom molecular dynamics (MD) simulations to study protein

folding has been limited by the accuracy of the force fields and the inability of
current simulation methods and computers to sample the large configurational
space of proteins. These two problems are interrelated because the inability to
sample configurational space limits the development and validation of force
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Edited by: M. Zaki and C. Bystroff © Humana Press Inc., Totowa, NJ

315



316 Garcia

fields. Much progress has been made over the last few years on both aspects
of this problem. The use of enhanced sampling methods has enabled the study
of the folding/unfolding kinetics and thermodynamics of small proteins, mini
proteins, and peptides. Two main methods have emerged as the most powerful:
replica exchange MD (REMD) (1–3) and replica dynamics (RD) and its varia-
tions (4–6). REMD is best suited for studying protein thermodynamics, whereas
RD is more suitable for studying kinetics (dynamics). Both methods rely on the
use of multiple computer processors and the simulation of multiple copies of the
system of interest. REMD, also known as parallel tempering, simulates multiple
copies of the system, where each copy samples a different temperature, and
configurations at different temperatures are exchanges in a Monte Carlo move.
Variations of this method have generated different states of the system with
different force fields, volumes, or perturbation potentials (7–9). This method is
best suited for studying the thermodynamics of the folding/unfolding transition.
Given that the force fields have not been fully calibrated and validated, it might
be possible that structural transitions will occur at higher or lower temperatures
than observed experimentally. If one is interested in the properties of the system
at one T (or over a narrow range of T ’s), then REMD may not be the method
of choice. REMD has been shown to produce the thermodynamics of protein
folding for systems as large 46 amino acids, as well as for peptides and mini
proteins. The kinetics of the folding/unfolding transition can be obtained from
REMD simulations but not in a straightforward manner. The REMD method
parallelizes trivially, because replicas need to communicate only their current
temperature and energy during exchange attempts. Typical calculations using
REMD have used eight to 82 replicas.

In the RD method, as described by Voter, multiple copies of the system are
simulated with all copies starting from an identical configuration (or energy
basin), but different velocities. In the simulation, there is a dephasing period
where the systems are thermalized without escaping the basin. During the
production period, the system is monitored for transitions from one energy basin
to another. Once a transition is detected, all copies are re-started from this
configuration until another transition is detected. This method accelerates the
dynamics of the system proportionally to the number of replicas simulated. The
use of this method for heterogeneous protein-solvent systems has proven difficult.
However, alternatives to the method, which rely on assumptions about the kinetics
of the system, have been implemented with remarkable success. RD simula-
tions have been able to reproduce the experimentally observed timescales for
folding of peptides, proteins, mini proteins, and RNA oligomers. This method
parallelizes trivially, given that little or no communication is needed between
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replicas. The RD method has been used with tens of thousands of replicas
using the Folding@home distributed computing platform at Stanford (5–6).

In this chapter, I will describe in detail how REMD is implemented in a
biomolecular system. I am particularly interested in the simulation of folding
of proteins and peptides, using models that include the solvent explicitly. The
REMD method has also been used with implicit solvent models (10), as well
as with knowledge-based energy functions (11).

2. Molecular Dynamics Simulations
MD simulations of biomolecular systems typically use a semi-empirical force

field that has been parameterized with quantum mechanical and solvation free
energies calculations of model solutes (12–14). Descriptions of force fields can
be found in the literature (12,15). The potential energy function commonly
used is approximated using the following equation:

U �X� = ∑
bonds

kb �l− l0�
2 + ∑

bondangles
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dihedrals
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qiqj

rij
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where there are bonding energy terms (bond stretching, bond bending, and
rotations around bonds), and non-bonding terms (van der Waals and Coulomb
interactions). Here, X denotes the configuration of the system, l0 the equilibrium
bond lengths, �0 the equilibrium bond angles, � the dihedral angle phases
for each Fourier component n, qi the partial charge of atom i, and 
ij the
van der Waals contact distance for atoms i and j. This parameterization
of the energy does not include bond or atomic polarization effects, as the
values of the atoms’ partial charges are fixed. This force field, although
classical in nature and the result of many approximations, is already quite
complicated to solve numerically by simulation. The inclusion of additional
terms (polarizability, bond formation and breaking, non-linear bond bending
and stretching, mixed bending and stretching terms, and angular dependent
hydrogen bonding, to name a few) will significantly limit the ability to
perform simulations. I prefer to simulate systems with this kind of force
field and add additional terms when proven necessary, rather than trying
to include all effects at once and being unable to solve a simple folding
problem.

To simulate the folding/unfolding of a small protein or peptide, I prefer to
simulate the system in explicit solvent (water) and under periodic boundary
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conditions, at constant temperature, volume, or pressure, and with a fixed
number of particles in the system. These ensembles are called constant NTP
or NTV ensembles. The use of periodic boundary conditions and treating
Coulomb interactions with Ewald sums are the simplest choices that avoid
non-physical behavior due to cutoffs, boundaries, etc. To perform simulations
at constant T and P, I must artificially couple the system to a heat bath, because
MD conserves energy and naturally simulates a constant NVE ensemble. In
our calculations, I use the Nose–Hoover temperature-coupling (16,17) and the
Parinello–Rahman pressure-coupling algorithms.

A small biomolecular system of M atoms is solvated by approximately
Nw = 3M to 10M water molecules. Typical sizes for solvated systems are from
2k to 20k atoms. By including the solvent explicitly, one can better account
for hydrophobic interactions and for the balance between the gain in system
entropy that drives the spontaneous folding and the reduction in configurational
entropy of the folded chain. The complexity of the calculation scales linearly
with M for the bonded energy terms. The non-bonded energy terms scale as
N ln N for Coulomb interactions, if approximate methods for Ewald sums are
used (18), and order N for van der Waals interactions when a cutoff is used.
The energy and force evaluations needed for performing an MD calculation are
time consuming. For example, an approximately 60 amino acid protein (900
atoms) in water (6000 water molecules) takes 22 h per nanosecond of simulation
on a single processor. Considering that the folding time of this protein is in
the microsecond timescale, it will take more than 104 CPU days to compute
folding trajectories.

2.1. The Replica Exchange Algorithm

Let us assume that I want to simulate the folding thermodynamics of a
biomolecular system with energy function U�X�, described in Eq. 1, where X
represents the configuration of the system. The replica exchange (RE) is an
extension of the Metropolis Monte Carlo (MC) simulation. The main idea is to
simulate multiple copies (replicas) of the system, with each replica sampling
a different thermodynamic state. For simplicity, I will assume that I am
sampling different temperatures and that the replicas sample the same energy
function and have identical composition and volume. All these conditions can
be relaxed when needed. In the RE, one can perform two kinds of moves
sequentially:

1. changes in configurations by MC or MD, and
2. MC exchanges between configurations at different temperatures.
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In what follows, I assume that I am simulating R replicas of the system,
with a distribution of target temperatures (T1, …, Ti, Tj , …, TR�, coordinates
represented by X = (x1, …, xm, xn, …, xR�, and energies (E1, …, Ei, Ej , …, ER�.
At fixed time intervals, systems labeled i and j, with temperatures Ti and Tj ,
respectively, can exchange temperatures, such that system i changes to temper-
ature Tj and system j changes to temperature Ti. The transition probability for
exchanges must satisfy detailed balance,

W �X�w �X�X′� = W �X′�w �X′�X� � (2)

where W�X� is the weighting factor for the state X and w�X, X′� is the transition
probability of exchanging system X by system X′. W�X� is given by the product
of the Boltzmann factors for each of the R replicas,

W �X� = exp

(
−

R∑
i=1

�iEi

)
� (3)

with �i = 1/RTi, Ei = Ekin i +Ui, where Ekin i is the kinetic energy and Ui is the
potential energy of the corresponding replica. This gives

w �X�X′�
w �X′�X�

= exp �−� �

where

 = (
�j −�i

) (
Ei −Ej

)
� (4)

These transition probabilities between configuration X and X′ are imple-
mented using the Metropolis criterion,

W �X�X′� = min �1� exp �−�� � (5)

In MD simulations, the kinetic energy is related to the temperature of the
system, and therefore, when exchanging configurations, their Ekin must be also
changed. The approach first introduced by Sugita and Okamoto (1) is to scale
the particles momenta uniformly by

√
Ti/Tj , such that the kinetic energy terms

in the Boltzmann factor cancel out and then the exchange transition probability
for REMD has the same form as in the MC RE calculations,

 = (
�j −�i

) (
Ui −Uj

)= �U� (6)
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where � = �j − �i and U = Ui − Uj . In a parallel implementation of this
method, processors communicate only when exchanges are attempted. Because
the number of time integration steps between exchange attempts is much
greater than unity, the communication requirements of this method are minimal,
resulting in near-linear scaling of speedup with processor number.

In what follows, I will discuss practical issues about the implementation
of REMD. Two parameters that must be determined to apply REMD are the
temperature distribution �T1� � � � Tj� � � � � TR� and the number of replicas, R, to
include in the simulation. These two issues are related, because the number of
replicas is going to be determined using the range of temperatures one wishes
to cover in the simulation. For large systems, the energy changes with temper-
ature are large. Therefore, only replicas at similar temperatures can exchange,
although exchanges among all pairs can be attempted. The temperatures are
usually distributed exponentially, but changes between neighboring tempera-
tures are chosen such that a reasonable exchange rate (10–25%) is obtained.
The exchange rate and temperatures must be chosen such that one can ensure
that all replicas span the whole range of temperatures. In some instances, one
may select two neighboring temperatures that are too far apart, and, as a conse-
quence, the replicas will remain within a limited range of temperature values,
thus limiting the efficiency of the method. The exchange rates can be monitored
along the equilibration stage of the simulation, and temperature differences
between neighbors can be increased or reduced if the exchange rates are too
large, or slow, respectively.

The number of replicas, R, depends on the temperature range that the
simulations will cover and the size (number of atoms) of the system (7). The
enhancement in sampling is more efficient when the temperatures are distributed
over a broad range that covers and exceeds the temperatures in which the
system exhibits conformational changes of interest (e.g., folding/unfolding;
helix/coil transitions). At the highest temperatures, the system should have very
short correlation times and fast conformational changes. In a card game, the
highest temperature runs correspond to the shuffling of the cards. The high
temperature runs will allow the system to lose memory of the current state,
jump over energy barriers, and sample new regions of space. The low temper-
ature replicas will tend to occupy the lowest energy regions of space sampled.
They will heat up with thermal fluctuations, or when other replicas find a
lower energy state. In the last case, the replica that finds the lower energy
basins will cool down. This is similar to a self-regulated simulated annealing
schedule.
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The assignment of temperatures for different replicas can be obtained from
the system energy distribution as a function of temperature. The acceptance of
an exchange attempt depends on the potential energy of the two configurations
and the temperature of the replicas. The probability of having a configuration
with energy E at temperature T is denoted by P�E�T�. The exchange acceptance
rate will be given by

Racc �T1� T2� =
�∫

−�
dx P �x�T1�

⎡
⎣

x∫
−�

dy P �y�T2�+
�∫

x

dy P �y�T2� exp ���x−y��

⎤
⎦�

(7)

where T1 < T2 are the temperature of the two replicas being exchanged. The
first integral comes from the acceptance of exchanges when y ≤ x; that is,
when the T2 replica has lower or equal potential energy than the T1 replica (the
exchange is always accepted). The second integral comes from the acceptance
of exchanges when x > y. A good approximation for the potential energy distri-
bution is a Gaussian distribution that is determined by the first two moments
of the potential energy distribution: the average < E�T� > and the variance

 = 
E�T�2 = 〈

�E�T�− < E�T� >�2〉. From these two moments, one can write
the histogram of observed energies as
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Within this approximation, the acceptance rate will be given by
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In this equation, < E >=< E�T� > and 
 = 
�T�. Using this formula, and
given < E�T� > and 
�T� as a function of T , one can iteratively solve for
Ti+1 given Ti, for a given acceptance rate. Figure 1 shows the histogram
distribution, the average energy, and variance of the energy as a function T



322 Garcia

Fig. 1. (A) Potential energy histograms sampled at various T ’s. (B) First (< E >)
and (C) second (
) moments of the potential energy as a function of T for the 57
amino acid protein A in water. (D) Optimal replica temperatures obtained with Eq. 9
for exchange acceptance rates of 0.05, 0.15, 0.25, and 0.40.

for a broad range of T obtained for protein A in water. In practice, one will
perform short (1 ns) simulations of the system at constant NTV over a few
temperatures covering a broad range of temperatures and fit the averages of
< E�T� > and 
�T� as a function T . I fit E to a quadratic function and 
�T�
to a linear function of T . Figure 1A shows the potential energy histograms at
various T ’s, with T difference between histograms of 3–4 K. The figure also
shows the average energy and standard deviation of the potential energy as a
function of T . Figure 1D shows the curves of Tj as a function of the iteration
index j for various acceptance rates (Racc = 0�15� 0�25� 0�40). The higher the
chosen acceptance rate, the larger the number of replicas needed to span the
same T range. For lower exchange acceptance rates, one need fewer replicas,
but at some limit, the system will behave as independent runs and will not
benefit from the RE algorithm. The exchange rate can be chosen to be different
for different T regions. One can chose low exchange rate for low T and high
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exchange rate for high T and obtain longer constant temperature segments for
low temperature replicas, which could be used to analyze the dynamics of the
system.

2.2. Application of REMD to Fold a Three-Helix Bundle Protein

I simulated the folding of amino acids 1–57 of protein A. Protein A folds
into a three-helix bundle—probably the simplest protein fold. Protein A is a
model protein for determining the protein-folding kinetics. The structure of
protein A has been determined by nuclear magnetic resonance (NMR), and
amino acids 11–56 are well ordered (19). Amino acids 1–11 are disordered
and their structure cannot be resolved. Previous calculations on protein A
have simulated the fragment 11–56. However, experiments on protein A have
shown that the fragment without amino acids 1–11 is not stable in solution
(20). Extensive protein engineering and �-value analysis have been performed
in protein A (21). These experiments show that folding occurs predominantly
through an ensemble where helix II forms first, followed by helix III and
helix I. Previous calculations on folding (22,23) and unfolding (24) are not in
agreement with each other. Here I report ab initio folding of protein A from an
extended conformation. Previous all-atom, explicit solvent, simulations of protein
folding have been done on smaller peptides. A detailed analysis of the folding
mechanism is outside the scope of this chapter and will be presented elsewhere.

Here, I show recent results of a simulation of protein A (amino acids 1–57)
using the AMBER94 force field (12) and 6583 TIP3P (25) water molecules as
a solvent. The simulation is starting from an artificially prepared compact coil
structure. This structure is obtained by starting from an extended conformation
and performing a high T (400 K) MD simulation in vacuum. The resulting
partially collapsed structure has a (CA C N O) Root Mean Square Distance
(RMSD) of 0.77 nm from the NMR structure (19). This collapsed structure
lacks any regular secondary structure elements and serves as the starting config-
uration for the solvated system. A cubic box, 6.72 nm on the side, of TIP3P
water molecules is equilibrated at 300 K and 1 atmosphere (atm) for 5 ps. This
water box is used to solvate the partially collapsed structure described above
by putting the protein at the center of the box and deleting all water molecules
within 0.28 nm from the protein. The resulting system has 6583 water molecules
and 896 protein atoms, for a total of 20,645 atoms. This system is partially
equilibrated for 10 ps at 330 K and 1 atm. The resulting system is further equili-
brated at 300 K and 1 atm for 2 ns. The equilibrated system is contained in a
cube with 5.97 nm on the side. The final configuration of this system is used
as the initial configuration for 52 replicas simulated at constant volume over a
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temperature range of 275–630 K. These replicas are simulated for 5 ns. From
these simulations, I calculate the first and second moments of the potential
energy of the system as a function of temperature. These moments are used
to determine the temperatures and number of replicas to be studied in the
production run. For the production part of the simulation, I use 64 replicas over
a temperature range of 287–643 K. The temperature spacing between each of
the replicas is chosen such that the energy distributions overlap sufficiently
and state exchange attempts are (on average) accepted with a 25% probability.
Figure 1A shows that the Gaussian approximation for the energy histograms is
accurate when one use a quadratic in T interpolation for the first moment and a
linear interpolation for the second moment of the potential energy. The temper-
ature assignment for the replicas obtained using this Gaussian approximation
and Eq. 9 is shown in Fig. 1D.

All simulations in explicit solvent are conducted with the following param-
eters. The electrostatic interactions are treated with the smooth particle
mesh Ewald summation (18) with a real space cutoff of 0.9 nm and a
50 × 50 × 50 mesh with fourth order interpolation for the reciprocal lattice
contribution. The Ewald convergence factor is set to 3�47 nm−1. Corrections
for the Lennard Jones due to cutoff are taken into account in the pressure
and energy calculations. The time-step used in the MD steps is 2 fs, and
a Nose–Hoover (16,17) thermostat is used with a time coupling of 0.5 ps.
For bonds within the protein, constraints are applied using SHAKE (26),
and the water constraints are solved using SETTLE (27). Simulations are
carried out using GROMACS 3.2 modified by us to perform REMD using
the Amber force fields. The simulations use the AMBER94 force field (12)
without any modifications. The REMD simulation is conducted for 30 ns.
Using our GROMACS implementation, the simulations, take about 22 h per
nanosecond when distributed over 64 processors of our Opteron 2.2 GHz
Linux-Cluster.

Figure 2A shows a time-evolution of the CA-C-N-O-backbone RMSD with
respect to the NMR structure for one of the replicas. Figure 2B shows the time
series for the temperature of this replica. Note that as the system folds, the T
decreases and then fluctuates around 325 K. After 12 ns, this replica samples
conformations that are within 0.2 nm RMSD from the NMR structure. The best
fit between a sample configuration and the NMR structure is 0.17 nm. Figure 3
shows a set of sampled conformations along the folding trajectory. Note that
the RMSD does not follow a monotonic decrease toward the folded state but
follows a path where the structure is as close as 0.5 nm and then increases to
1.2 nm before falling into the folding basin. During the first 30 ns of REMD,
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Fig. 2. (A) Backbone RMSD, in nm, as a function of time (in nanoseconds) between
one of the simulated replicas and the nuclear magnetic resonance (NMR) structure (19).
(B) Temperature (in K) of the same replica as a function of time. The plot shows that
the protein reaches the folded state basin at high T , and then T gradually decreases
after the RMSD has reached below 0.2 nm. This figure illustrates that the force field
used in the simulation adequately samples the folded state as a low free energy basin.
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0.32 nm 0.29 nm

(t = 15 ns)
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(t = 0 ns)

2.50 nm

0.62 nm

0.32 nm

Fig. 3. Illustration of the folding trajectory of one replica. Simulations start from a
nearly extended configuration of the protein (RMSD 4.0 nm). The first two nanoseconds
of simulation (conformations shaded in gray background) were performed in the absence
of water at high temperature (400 K). The other conformations were sampled during
the first 15 ns of replica exchange molecular dynamics (REMD) in the solvated system.
The backbone conformation closest to the experimental folded state is at an RMSD
of 0.17 nm. The simulation has been extended for 26 ns. See text for details about the
REMD simulation.

I observed eight folding events (i.e., RMSD <0.4 nm). Extrapolation of this
trend indicates that REMD simulation exceeding 400 ns/replica will be needed
to see 95% of the replicas fold at any one time and to have sufficient statistics
to perform thermodynamic analysis of the folding/unfolding transition.
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Fig. 4. Superposition of the best fit between the simulated structure (gray) and the
nuclear magnetic resonance (NMR) structure (black) for protein A. RMSDs are calculated
for backbone atoms (N, CA, C, and O) for amino acids 11–55, which are ordered in the
NMR structure. The main differences in the backbone are in amino acids 1–11, which are
formed in the replica exchange molecular dynamics (REMD) calculation and disordered
in the NMR structure, and in the turn I between helices I and II.
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3. Conclusions
I have shown that all-atom MD simulations of protein folding are possible,

although these calculations are extremely demanding, computationally. The
force fields that have been developed over many years give a description
of protein structure and dynamics which is reasonably accurate. REMD
simulations produce structures that fluctuate around 0.17 nm from the NMR-
determined folded structure near room temperature. The superposition of the
NMR and the simulated structures is shown in Figure 4. Modifications of the
force fields that reproduce experimental data accurately are being developed
by many groups. As faster computers and computational algorithms are being
developed, protein folding from first principles is becoming possible. Currently,
all-atom simulations are not at the stage of knowledge-based potentials in
predicting protein structures, but progress is being made toward this goal. In
addition to describing protein folding and dynamics under standard conditions,
all-atom simulations are useful to study protein systems under varying solvent,
pressure, and temperature conditions.
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Replica exchange (RE) algorithm, 318–323
Retrieval test, protein structure indexing and,

161–164
Rigid-body method, 21–22, 65, 284, 299
Rigidity-based sampling, 228
Rigorous threading algorithms, 16
RMSD, see Root mean square distance
Roadmaps

construction method, 227
for protein folding, 224–235
protein representation, 220–221
robot motion planning, algorithms for, 221–224
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Robot motion planning, roadmap algorithms for,
221–224

Root mean square distance, 24, 204–205, 262,
268–269, 285, 295, 299, 315, 323–325

Rop protein, alignment of, 135
ROSETTA method, 25–26, 69, 252
RRTs, see Rapidly exploring random trees

SAG1–antibody complex structure, 289
SAM method, 80
SAM-T98, 70–71
Scale-free networks and contact maps, 213–214
SCATD, 24
SCOP, see Structural classification of proteins
Scoring functions, knowledge-based, 251, 265–267

from Bayesian probability formalism, 252–254
compilation of probabilities, 254–255
pairwise distance, 255–257

SCWRL method, 24, 82
Secondary structure elements, 148–149
Segment-matching method, 22
seg method, 79
SegMod/ENCAD, 22, 25, 82
Sequence alignment to known structure, steps for

models building, 82–83
sequence preparation, 77–79
structural annotation databases for model, 77
template structure, 79–81

Sequence-based alignment methods, protein
structure prediction and, 19–21, 128

Sequence-based search methods, 70
Sequence Derived Properties (SDP), 72
Sequence searching improvements, 70–71
Sequence-structure alignment algorithms, 14–17
SETTLE, 324
SF sequences, 154, 156, 158
SHAKE, 324
3D-SHOTGUN, 74
Side-chain prediction methods, 23–24
Side-chain–side-chain interaction potential, 13; see

also Energy functions, protein threading and
SignalP, 186
Signal peptides prediction, HMMs and, 186–187
SIMFOLD, 26
Simple sequence search, 79–80
Singleton energy, 10–11, 18
Small world, contact maps (CMs) and, 207–208

all-� versus all-� contacts, 213
local versus global contacts, 212–213
properties, 214–215

and protein structures, 209–211
scale-free networks and, 213–214

Smith-Waterman algorithm, 20, 64, 69, 160
SNAPP potential, 265
SPARKS, 20, 81
SPratt2, 130
SRS, see Stochastic RoadMap Simulation
SSEARCH, 70, 80
SSEs, see Secondary structure elements
STACCATO, 139–140
Stochastic RoadMap Simulation, 229–232
STRIDE, 187
Structural classification of proteins, 19, 29, 70–71,

93, 150, 160, 166, 213, 262–263, 290
Structural superposition methods, 15
Structure prediction from sequence, techniques

for, 62
ab initio and new fold methods, 68–69
comparative modeling, 64–65
fold recognition, 65–68

Support vector machine, 18, 107, 109, 252
linear SVM regression, 110–111
nonlinear SVM regression, 111

Surface Generalized Born implicit solvent
model, 23

SVM, see Support vector machine
SVM regression, 115–116

FR and, 111–112
linear, 110–111
nonlinear, 111

SWISS-MODEL, 22, 65, 82

TASSER method, 30, 252
T-COFFEE method, 82, 130
Template structure library, 19
THREADER method, 67, 69, 71, 81
Threading, protein structure prediction by, 8, 91

branch-and-bound algorithm, 99
divide-and-conquer algorithm, 99
dynamic programming algorithm, 98
energy function, 9–14, 95–98
fold recognition (FR) (see fold recognition (FR))
FR/statistical significance of threading

alignments, 17–18
RAPTOR (see RAPTOR, optimal protein

threading)
sequence-structure alignment algorithms, 14–17
sequence-template alignment problem,

computational complexity of, 98
sequence to structure alignments and, 69–70
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targets and templates, representation
of, 93–95

template structure library, 19
tree decomposition-based algorithms, 99

Threading scoring function, RAPTOR and, 101
contact capacity score, 103–104
environmental fitness score, 102
gap penalty, 103
mutation score, 102
pairwise contact score, 103
secondary structure score, 103

TMHMM model, 183–186
Torsion angles, 151–152
Transition state ensemble (TSE), 231
Transmembrane helices, HMMs for,

175–177
more complex models, 180–181
parameter estimation, 181–183
posterior probabilities, 178–180
signal peptides prediction, 186–187
topology of, 183–186
Viterbi algorithm, 177–178

Tree decomposition-based algorithm, 16, 24, 99
for threading problem, 16–17

Tree-progressive approach, multiple sequence
alignment and, 129–130

Triose-phosphate isomerase (TIM) barrels, 7
Two-dimensional robotic configuration space,

221–222
Type-1 beta hairpin, 190
Tyrosine kinase, loop movement in, 141–142

UNDERTAKER, 26
Uniform distribution model, 12

�-values, 231–232
van der Waals (vdW) potential, 292
VERIFY3D, 82
Viterbi algorithm, 174, 177–178, 181

Wire skeletal model, of �-lactalbumin, 6, 21
WU-BLAST, 70

X-ray crystallography, 5, 48, 192, 284

ZDOCK, 285
FFT-based initial stage docking algorithm,

290–294
M-ZDOCK and, 294
performance and protein complex characteristics,

298–312
performance on benchmark 2.0, 295–298

RDOCK and, 294
ZDOCK performance

on benchmark 2.0, 295–298
versus interface curvature, 305
multiple linear regression approach, 306–311
and protein complex characteristics, 298–312
regression analysis of, 302–303
simple linear regression approach, 303–306

ZDOCK/RDOCK performance, CAPRI experiment
and, 288

Z-score scheme, of threading, 18, 100–101, 115
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