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Preface

It took quite a long time to complete this book. More than 20 years had elapsed
since I wrote my last volume as an author, not just as an editor. And I felt it
important to find again the breadth of reasoning that a book allows, or rather
demands, thus going beyond the length limitations of single scientific papers. I had
been working for some years on protocell models, a definitely important and fas-
cinating topic, so in 2012 I proposed to Aldo Rampioni to write a new book, and a
contract with Springer was signed.

I had guessed that probably a year-and-a-half time would have been necessary,
but in the end it took more than four years. And in the meantime, the flavour of the
book changed; while this is of course not uncommon, I think it is interesting to
explain why. My original idea was that of providing an overview of the most
relevant models, but as time passed new things happened. My colleagues and I were
able to develop a series of protocell models that are different from most of the
existing ones, and that can take into account several aspects while still being
manageable. Therefore, I decided to shift the balance of the book; while the most
important models are mentioned, they are not discussed in such depth as our models
are. This shift in attitude also motivated the idea to associate my friend and col-
league Marco Villani, with whom a large share of the work had been done, to the
actual writing of the book. While this is a joint book, Marco’s contributions are
mainly found in Chaps. 4 and 5: he wrote the first drafts that were later discussed
together and modified. The same happened, inverting the roles, to the other
chapters, where I wrote the first drafts.

This shift of the focus of the volume also explains some choices concerning the
references. We do not try to provide a complete bibliography of protocell research,
nor of protocell models. There are some important recent books and reviews that fill
this need, quoted in Chap. 1, so we limit here to mention the papers that have been
most important in shaping our understanding of the field, and in inspiring our
modelling choices. However, we also think that the reference list provided in the
volume suffices for the reader as a starting point to deepen her understanding of any
aspect of protocell research that may be of interest.

vii



The motivations of our studies are described in detail in the book, so I will not
anticipate them: let it suffice here to say that they were largely due to the gap that
exists between what one might expect on the basis of the results of various theo-
retical models, and the behaviours that are actually observed in the laboratory.
Different models suggest that sets of molecules able to self-replicate should
spontaneously appear, provided that, from the very beginning, there are many
different molecular types, while experiments do not show this feature. In some
cases, it has been possible to develop sets of collectively self-replicating molecules,
but they are carefully designed by smart chemists. This difference between theory
and experiment cannot be ignored, since it is not a matter of quantitative impre-
cision, but it implies qualitatively different outcomes. And since self-replication is
one of the main features of life, it is of the utmost importance.

So our models aim at providing indications about the possible reasons of this
gap. But this is not the whole story: we think that these models can be further
improved, and that they, or their improved offspring, can be the basis for designing
new experiments, and new processes that will be able to generate real protocell
populations, able to grow and to evolve.

Indeed we hope that some smart experimentalists (there are many in this field)
will be able to use these indications (and others! We are not alone in this business)
to actually synthesize a sustainable protocell population, i.e. to achieve a scientific
result of enormous importance, both for practical and for theoretical reasons.
Among the former, let me mention the possibility of an entirely new “bio” tech-
nology, which might deliver very useful microscopic devices for various medical,
environmental and industrial applications. On the other hand, its theoretical
importance would not be limited to the field of soft matter physics and chemistry
(albeit this is extremely important in its own) but would also affect our under-
standing of the possible origins of life, thereby also influencing our understanding
of our place in the world.

I am indebted to several colleagues, and only some of them will be recalled here.
David Lane, an extremely bright scientist and a deep thinker, proposed me to move
from industry to academia, a shift that is entirely uncommon in Italy, and that has
been extremely important in my life: thank you, David! Stuart Kauffman is an
extraordinarily creative scientist who inspired my work and encouraged my group
and me, appreciating our results, providing illuminating suggestions and inviting us
to important meetings in Calgary and Geneva. Irene Poli, former head of the
European Centre for Living Technology in Venice, supported us and gave us the
opportunity to develop our research in a particularly stimulating scientific envi-
ronment. I also thank the participants to the EU project PACE (Programmable
Array of Cells, led by John McCaskill) for introducing me to the field of protocell
research, and in particular Norman Packard, Steen Rasmussen and Ruedi Fuechslin.
I also gratefully acknowledge the support of the Università di Modena e Reggio
Emilia and of the European Centre for Living Technology, and the contribution
of the European Union which financed the PACE project.
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I also benefited from the collaboration of some very smart PhD students and
post-docs, the most talented among them being Alessandro Filisetti, now at Explora
in Venice, Chiara Damiani and Alex Graudenzi, now at the University of
Milano-Bicocca. They decided to remain in Italy, and the bad conditions of sci-
entific research in my country have not yet allowed them to get the permanent
positions in universities that they deserve, so best wishes for your next years!

I wish also to thank Timoteo Carletti, now at the University of Namur, who
played a major role in the development of our work on synchronization in
protocells.

I am also deeply indebted to Marco Villani, with whom I shared almost all my
best research in the last 20 years. Marco is bright and fast-thinking, and I am happy
to collaborate with him. However, now Marco is a co-author, so I do not really need
to thank him here.

I have been extremely lucky in meeting Aldo Rampioni from Springer and his
assistant Kirsten Theunissen. Aldo and Kirsten have always shown interest in our
project and patience for our delays; they supported us in many ways, and their
contribution and advice have been fundamental for reaching completion of this
work. Writing takes time and effort, and I had to pursue different duties at the same
time: not only doing scientific research and teaching (both quite demanding
activities!) but also keeping up with the increasing bureaucratic burden that Italian
universities impose upon professors. So I sometimes felt inclined to leave the
project, but the continuous interest and stimuli from Aldo and Kirsten have been
fundamental in resisting this temptation.

In the end, let me thank my wife Elena for her patience when I spent hours
writing and re-writing, and above all for her support in all the important choices of
my life. When I moved from industry to academia, I gave up a well-payed job, as
director of a research centre of a major industrial group, to enter an uncertain
territory where I had no guarantees (research in Italy is always endangered, and in
those years the government had issued a crazy prohibition for universities to hire
new professors). I was lucky enough that the regulations changed, so I became full
professor at the Università di Modena e Reggio Emilia in a few months, but Elena
never complained, nor did she try to make me change my mind, on the grounds
of the uncertainties. Moreover, she is very skilled in English language, and she
helped us in revising the style of some chapters. So thank you Elena!

Modena, Italy Roberto Serra
March 2017
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Chapter 1
Introduction

1.1 About Protocells

Protocells should be similar to present-day biological cells, but somehow simpler
(see Rasmussen et al. 2008; Schrum et al. 2010 and further references quoted
therein). They are believed to have played a key role in the origin of life, and they
may also be the basis of a new technology with tremendous opportunities. So the
prefix proto may be interpreted either as indicating ancient times or in the sense of
prototype.

Let us clearly state that the origin of life is not the topic of this book. Maybe one
day we will be able to precisely reconstruct the steps that led from chemistry to life,
from mixtures of chemicals to living organisms; however this might turn out to be
impossible, since living organisms feed on previous living organisms, so it may
well be that all the predecessors of today’s creatures have been destroyed, thus
loosing the possibility of reconstructing the beginnings and most of the initial steps.
Life might even have originated somewhere else in the universe.

In any case, if we could build at least one type of protocell, able to grow,
reproduce and evolve, we would have provided a proof-of-principle that lifelike
systems can spring out of an environment where they had never been before. And
this would be one of the greatest intellectual achievements ever! Its importance
might be compared to those of the major scientific revolutions, including those
associated to the names of Copernicus, who moved the earth away from the centre
of the universe, and of Darwin, who moved man among all the other animals. If we
were able to synthesize a viable population of evolving protocells from abiotic
material, we could claim that abiogenesis, i.e. the emergence of life from abiotic
conditions, is indeed possible, and that life is a particular organization of matter,
energy and information.

This does not mean that life “is just” like inanimate matter: it certainly is not, but
the difference lies in its dynamics and organization, without any inviolable barrier
in between. This belief is widely shared in the scientific community (much less in

© Springer Science+Business Media B.V. 2017
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the general public) but getting synthetic protocells to work would be the ultimate
proof.

Although the origin of life in nature (briefly, OOL) is not our main concern, it
will often provide heuristic guidance in choosing among a plethora of possible
hypotheses. Therefore we will sometimes make reference to OOL, when useful or
appropriate. Moreover, results on protocell modelling can in turn provide useful
indications for addressing the OOL problem and we will not overlook this aspect.

It is important to stress that we will always consider in this volume fully syn-
thetic protocells, obtained from non living matter. Much attention has been paid in
recent years to another class of systems that are sometimes also called protocells,
although they are more appropriately called “minimal cells”: they are obtained
starting from a living bacterial cell and “simplifying” it by removing parts of the
genome not necessary for survival (Hutchison et al. 2016). These systems provide
extremely useful information about the working and organization of the cell
(its genome, proteome etc.) and they may also give rise to wonderful applications,
by adding the genes required to perform useful tasks like e.g. the synthesis of drugs
or chemicals, or the degradation of contaminants. But of course they tell us nothing
about the possibility of an abiotic origin of life. Indeed, minimal cells are the
outcome of a top-down approach, while the protocells that will be discussed here
should come from a bottom-up approach.

There is also a third class of systems that are sometimes called protocells, which
are intermediate between the top-down and the bottom-up types described above.
These systems make use of an abiotic container and of some abiotic chemicals, like
the ones used in protocells, but they also include some types of molecules (e.g.
enzymes) of biological origin (Kuruma et al. 2009; Stano and Luisi 2010a). We will
also briefly mention in this volume these intermediate types, although the emphasis
will be mostly on purely bottom-up systems.

How can we distinguish a protocell as we mean it (i.e. an entity that resembles
living organisms) from any supramolecular structure that can be created in a lab-
oratory or in nature? This is of course a long-standing question, with both scientific
and philosophical aspects, and we will take here an empirical approach that may be
somewhat simplistic, but that has the advantage of providing verifiable criteria. So
we will call an entity “lifelike“ if it is able (i) to continuously rebuild itself and
(ii) to reproduce with inheritance and variation so that (iii) it can undergo Darwinian
evolution (Rasmussen et al. 2004a). Indeed self-construction and reproduction with
inheritance and variation have been identified as the distinguishing properties of life
(Varela et al. 1974).

A protocell as we mean it should therefore be endowed with a simplified
metabolism and with the capability of self-reproduction with inheritance and
variation. Present-day biological systems perform these tasks using highly
sophisticated regulatory mechanisms (Alberts 2014), and it is impossible to imagine
that such a complex coordinated system can spring out all of a sudden. The “starting
point” should have been much simpler than a cell that benefits from billion years of
evolution, therefore protocell research is looking for appropriate conditions for this
to happen.

2 1 Introduction



Several hypothetical protocell “architectures” have indeed been proposed for this
purpose. For reasons discussed in the Foreword, in this volume we do not provide a
complete bibliography of protocell research, nor of protocell models, limiting the
reference list to those papers that have been most important in shaping our under-
standing of the field. In order to make this list more complete, let us mention here
some excellent recent books and reviews that provide wider overviews of the lit-
erature, including (Rasmussen et al. 2008; Solé et al. 2007, 2008; Luisi et al. 2006;
Luisi 2007; Stano and Luisi 2010b; Dzieciol and Mann 2012; Ruiz-Mirazo et al.
2014; Miller and Gulbis 2015). We believe that this updated reference list is a good
starting point to deepen any aspect of protocell research that may be of interest.

A common ingredient of the various protocell architectures that have been
imagined is the presence of a boundary that separates the protocell from the
environment. The most common proposal, although by no means the only one, is
that of a lipid vesicle in an aqueous solution and with an aqueous interior, so in this
case there are at least two compartments that make up the protocell (the lipid
membrane and the aqueous interior).1 But also simpler systems like micelles have
been proposed, where there is no clear-cut separation of an interior phase different
from the membrane.

In this volume we will consider models of single protocells and of their division
but, on the basis of the results, we will also draw conclusions about the behaviour of
populations of protocells. Indeed, a single protocell per se would be of no value,
what does matter is the development of sustainable populations.

In the rest of this introductory chapter we will examine some of the major open
questions concerning protocells. These will be addressed in the following chapters,
and the results of these analyses will be critically reviewed in the final Chap. 6.
Moreover, some information about the way in which this volume is organized will
be provided, by indicating in which chapters a thorough discussion of the various
topics may be found.

1.2 Why Modelling Protocells

As it has just been observed, full-fledged protocells should be endowed with a
metabolism, i.e. the capability to produce their own material. In an artificial system
for protocell growth one can provide from the outside many building blocks that are
required, like e.g. peptides or lipids that can be used to build proteins or am-
phiphiles. Indeed, nurturing prospective protocells is a process that takes place in
several working laboratory systems, either macroscopic or microscopic (e.g.,
microfluidic devices). What will be required is that the external supply of building
blocks does not comprise molecules of biological origin, like enzymes. In an OOL
scenario the supply of some building blocks can be supposed to be granted from the

1There may be more than two if the interior is divided into different compartments.
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outside. Indeed, it is now established that many molecules that can serve as building
blocks, like e.g. aminoacids or nucleotides, are synthesized in several abiotic
conditions, and that they can also be found in extra-terrestrial environments,
including asteroids, meteorites and interstellar dust (Wickramasinghe 2009).

The basic requirement for a metabolism is that a set of interacting molecules
should be able to produce new copies of themselves (or at least of some of them).
Interestingly, this same capability is a necessary prerequisite for the other major
property of life, i.e. reproduction: before division, a protocell should double its
“protogenetic” material in order to make it sure that every offspring gets its own
share. Therefore a major topic, concerning both metabolism and reproduction, is
under which conditions a set of interacting molecules is capable to replicate itself.2

This topic has to be, and has been, addressed in various ways. On the one hand,
it is possible to explore it experimentally. If one is interested in molecules “similar”
to those observed in living beings, i.e. fairly large organic polymers, the experi-
mental answer is discouraging, as there are just very few sets of collectively
self-replicating polymers that have been shown to behave in this way in the lab,
exception made, of course, for those sets that are known to be capable of
self-replication since they do so in existing life forms. Other sets of molecules with
the capability of collective self-replication have been identified (Dadon et al. 2012;
Sievers and von Kiedrowski 1992; Ashkenasy et al. 2004; Hayden et al. 2008)
however they have to be carefully designed by highly skilled chemists:
self-replication does not seem a widespread spontaneous property.

Another line of approach, which leads us directly into the core content of this
book, is based upon modelling. As it will be discussed in depth in Chap. 2, a
particularly important class is that of generic models, based on highly simplified
hypotheses, which can be applied to several specific candidate protocells. In this
case, one is often interested in understanding the behaviour of systems composed,
among others, of randomly chosen molecules. We do not want to start from
carefully chosen components, but perhaps from some simpler molecules, and see if
the self-replication capability can be found, and how likely it is to happen. Several
models have been proposed where the molecules that are present at the beginning
are actually assumed to be chosen at random, with some distribution of properties,
the most important one being their catalytic activity (Kauffman 1986; Farmer et al.
1986; Bagley et al. 1989; Dyson 1982; Jain and Krishna 1998, 2004).

Most biologically important chemical reactions do not take place at an appre-
ciable rate under normal conditions: for example, they may require such a high
temperature that it would destroy the structures of cells or protocells, unless they are
catalysed. Therefore attention is focused on catalysed reactions, and (some of) the
molecules themselves are supposed to be catalysts. The most important models of
self-replicating sets of random molecules will be described in Chap. 4, but let us

2We will use the term “reproduction” for the process whereby a protocell gives rise to two or more
daughter protocells, and “replication” to refer to the process of duplication of a set of molecules,
that can be (but not necessarily are) hosted in a protocell.
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recall here a major outcome: in spite of several differences concerning the physical
hypotheses and the mathematical techniques, all these models show a transition as a
function of the number of different molecular types that are initially present. If there
are just a few types, the system is highly unlikely to self-replicate but, if the initial
diversity is high enough, one is almost certain to encounter a self-replicating set.

So there is a great difference between what these models tell us, and what is
observed in the lab. This difference is particularly intriguing, since the transition to
self-replication is found in models that are based upon very different hypotheses,
and that make use of different mathematical methods (Eigen and Schuster 1977,
1978; Kauffman 1986; Farmer et al. 1986; Bagley et al. 1989; Dyson 1982; Jain and
Khrishna 1998, 2004). A possible explanation is that all these models make anyway
strongly simplifying assumptions, and that they are all unrealistic. This is certainly
possible, however also simplified models can often capture some essential features
of complex physical and biological systems. This is particularly true in the case of
generic properties; while we defer to Chap. 2 a deeper discussion of this topic, there
are several examples where simple generic models successfully describe some
striking properties observed in complicated real systems. These examples range
from the Ising model of magnetic materials and their phase transitions (Brush 1967)
to perturbations in gene regulatory networks (Serra et al. 2004b, 2007b, 2008b,
2015), from oscillating chemical reactions (Prigogine and Lefever 1967) to cell
differentiation (Serra et al. 2010; Villani et al. 2011, 2013), and many others.

We can therefore guess that the simple rejection of models on the grounds of the
presence of some unrealistic simplifications may not be the right answer. Or, in any
case, that searching for a better explanation can teach us something about protocells.

1.3 Collective Self-Replication

In order to understand the transitions that take place in protocell models, a key
notion is that there is a critical value of the initial diversity (i.e. number of different
molecular types): in random models, if the diversity is subcritical, chemical reac-
tions can take place, and new molecular types can appear, but collective
self-replication is almost never observed; if the diversity is supercritical, collective
self-replication sets in.

As it has already been observed, several models display this kind of behaviour
(Kauffman 1986; Farmer et al. 1986; Bagley et al. 1989; Dyson 1982; Jain and
Krishna 1998, 2004) but this is particularly clear in the one proposed by Stuart
Kauffman in 1986. The details will be given in Chap. 4, but we will summarize here
some of its main features. In this model, molecules are represented by “polymers”
made by sequences of two basic blocks, say A and B; so for example AAAA may
be one polymer, ABAB another one, etc. The system is supposed to start from an
initial set of such molecules, which are later modified by two operators: a cleavage
operator, that cuts a polymer in two parts, and a condensation operator, that joins
two polymers to build a longer one. It is supposed that all these reactions take place
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only if they are catalysed, and that any molecule has a certain probability pcat to
catalyse a particular reaction chosen at random (like e.g. the cleavage of AAAAA
into AA and AAA). The reaction network is often assumed sparse, so in most cases
each polymer can catalyse only a small subset of the set of all possible reactions.

The system is allowed to change in time, and the outcome is observed; if the
catalysis probability pcat is high enough, and if there are enough initial molecules
and molecular types, it is highly likely to observe, in the reaction graph, the
appearance of a large connected component, which can lead to the replication of the
molecules that belong to it, provided that the substrates are continuously supplied.
If we take this view, the fact that chemists are unable to see this strong proliferation
seems to be due just to the fact that they do not put enough different types of
molecules in their pots (or in their flow reactors).

So far, nothing has been said concerning the chemical properties of the
(collective) self-replicators. In this respect, the two major camps in OOL advocate a
protein-first (Kauffman 1993, 1995; Fox and Waehneldt 1968) or a nucleic
acid-first scenario (Gilbert 1986; Orgel 2004). In present cells, nucleic acids provide
the information for protein synthesis, and proteins provide the machinery for gene
activation and duplication (and of course also for other cellular functions). It is
widely believed that the simultaneous birth of both is highly unlikely,3 so one is led
to suppose that one of the two (proteins or nucleic acids) predated the other; this
situation was later superseeded when the other was also recruited, thus leading to a
more effective combined mechanism.

When the catalytic properties of some RNA molecules were discovered (Zaug
and Cech 1982; Altman 1989), the scenario of the “RNA world” (Gilbert 1986) took
wide acceptance but the protein-first alternative has certainly not been ruled out
(Smith and Morowitz 2016). Moreover, other nucleic acids (like e.g. PNA) have
been proposed as the first replicators (Nelson et al. 2000). There are several other
scenarios concerning the origin of life, like e.g. those based on hydrothermal vents,
clays, etc., but a thorough discussion lies outside the purpose of this book. One that it
is however necessary to mention, since it is the parent of an important hypothetical
protocell architecture, is that of the “lipid world” (Segré et al. 2001). Here the idea is
that neither proteins nor nucleic acids should be privileged, but that some lipids,
besides making up the protocell membrane, were also the first “genetic” molecules.
The lipids that make up the membrane of a protocell have been termed its “com-
posome” (Hunding et al. 2006) and it has been argued that the composome may
determine the duplication speed: indeed, both the growth rate of the membrane and
its propensity to break into daughter cells may well depend upon its composition.

There are some open problems concerning all these scenarios. However, as it has
been repeatedly stressed, our main goal is not to understand how life sprang out of
inanimate matter, but rather to understand how it might spring out tomorrow in the
lab. Therefore, speculations about the OOL are useful only to put us onto the right

3Although some recent proposals on the OOL suggest that both were already present and that life
started from a cooperative interactions between them (Patel et al. 2015).
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track, and they need to be carefully scrutinized only inasmuch as they provide
useful clues.

Since the seminal work by Eigen and Schuster (Eigen and Schuster 1977, 1978),
it has been observed by several authors that replicating molecules would interact
with other replicators, and that collective self-replication would be particularly
effective in autocatalytic cycles, where molecule A1 catalyses the synthesis of A2,
that in turn catalyses the synthesis of A3, and so on. until AM-1 catalyses the
synthesis of AM, that in turn catalyses A1. Cycles should be better collective
self-replicators than linear chains of molecules,4 so they should prevail in a
Darwinian-like competition for the use of resources e.g. in a primeval soup. As it
will be reviewed in Chap. 4, one should however observe that cycles may be fragile
with respect to the disappearance of some of their members, and that long cycles
may be supplanted by shorter and more efficient ones.

It must also be stressed that the fact that molecule A1 catalyses the formation of
A2 does not imply per se that A2 is actually synthesized, since this may happen only
if the substrates are also available. This aspect is often neglected in models where
catalysts only are considered, but it may prevent the growth and replication of the
molecules, unless substrates are given for granted. While this can be reasonable in
some models, where the substrates are small building blocks supplied from outside,
it cannot be overlooked in models where the substrates of some reactions need also
to be generated. This is the case, for example, of the Kauffman-like models sket-
ched above, where a molecule, i.e. a linear chain of monomers, can be both a
catalyst and a substrate.

In order to deal with this problem, the notion has been developed of a reflexive
auto-catalytic food-generated (RAF) set, i.e. a set of catalysed reactions that col-
lectively synthesize their catalysts and substrates, starting from a set of externally
supplied molecules (the “food”) (Hordijk and Steel 2004; Hordijk et al. 2010).
These sets are indeed able to support growth of the population of replicators, and
they will be studied in detail in Chap. 4, where it will also be shown that, although a
RAF does not need in principle to include a cycle, it necessarily has to include it if
no food molecule is a catalyst.

1.4 Self-Replication in a Vesicle

The previous remarks concern the interaction among different molecules, but
protocells are not just sets of molecules floating around. Indeed it is necessary to
distinguish between reactions that happen inside our system, and an external
environment that can provide building blocks, or “food”. Therefore, it is important
to study the dynamics of replicators (from now on this term will be often used for
brevity to indicate “sets of collectively self-replicating molecules”) in a well-

4For reasons discussed in Chap. 4.
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defined system, interacting with an external environment. The typical cases that
have been studied in the scientific literature are those of a closed vessel and of an
open-flow reactor. The former is however a closed system, bound to reach even-
tually an equilibrium state, so it is usually preferred to model the interactions among
replicators in an open-flow reactor (sometimes called a chemostat in the biological
literature). These reactors are supposed to be well-mixed, so the concentrations are
the same at every point inside the reactor and a unique value suffices to characterize
the internal concentration of a given chemical. There is an inflow of an aqueous
solution of chemicals (the intake from the environment) and there is an outflow; the
reactor is supposed to be in a steady state from the fluid dynamical viewpoint, so the
inflow and outflow rates are equal. The various chemicals in the outflow and their
concentrations are equal to those found inside the reactor.

Open-flow reactors allow us to draw a boundary around our system, and they are
very useful in order to understand the behaviour of replicators. They have also often
been considered as models of what happens in a protocell, as done in some studies
that will be reviewed in Chap. 4. However, it has to be remarked that a protocell
may differ from a flow reactor in several aspects, where the most important one is
that the intake of chemicals from the environment is not completely determined
from the outside, but it may depend also upon its internal composition. We will
come back to this point after discussing various protocell architectures and the role
they attribute to the membrane.

It is also important to stress the role of noise and fluctuations: while they are
ubiquitous in nature, they may be particularly relevant when replicators are
involved, since the new molecular types generated by the interactions may be
present at very small concentrations—and it is well-known that the relative role of
fluctuations increases as the size of the sample decreases. Therefore, while deter-
ministic models may provide fundamental insights, it is also important to consider
truly stochastic dynamical models. This is also done in Chaps. 4 and 5, where it is
shown that there are some cases where a naïve analysis of the reaction graph would
identify sets of collectively self-replicating molecules, but a stochastic dynamical
analysis demonstrates that they are ineffective, since the reaction rates are too slow.

As it has been remarked above, the most promising candidate protocell models
are based upon lipid vesicles; this is partly due to the fact that lipid vesicles, which
can spontaneously form in aqueous solutions of amphiphilic molecules, sometimes
display the very important and intriguing phenomenon of fission, i.e. they divide
into two daughter vesicles (see e.g. Luisi 2007; Terasawa et al. 2012 and further
references quoted there). In spite of a superficial resemblance to cell duplication,
this is a purely physical phenomenon, related to the fact that the single vesicle
becomes unstable when a certain size is reached. However, this purely physical
phenomenon might become the basis of a Darwinian selection process, if the
duplication rate of a vesicle depends upon its chemical make-up, and if the daughter
protocells inherit (at least partly) the chemical composition of their parent. In this
case, if the initial compositions of some protocells were different from the others,
the protocells that replicate faster would become more numerous through succes-
sive generations, and they would come to dominate the population. Moreover, if we
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assume that there may be some noise in the process, so that the daughter protocells
resemble their parents, without being necessarily identical, then there would be
most of the main ingredients for Darwinian evolution to occur: different duplication
rates, the resemblance of descendants to their parents and mutations. The only
missing ingredient would be a selection mechanism tending to sweep away the
types that are less numerous in the population. This can easily be achieved, for
example placing the system in an open-flow reactor where the outflow would
remove the less numerous types. If all this could be attained, this would really be
something similar to “life”.

In order to better understand how this can happen, let us now distinguish the
main different protocell architectures that have been proposed; there are indeed
three main families of such architectures5:

1. Internal reaction models (for short, IRMs), where the interactions of the repli-
cators take place in the aqueous phase inside of the vesicle (Szostak et al. 2001)

2. Surface reaction models (SRMs), where the interactions of the replicators take
place in the membrane or close to its interfaces (Rasmussen et al. 2004b)

3. GARD-type models, where the replicators are (part of) the membrane itself
(Segré et al. 1998)

IRMs are the most widespread choice, so let us discuss them first. It is not
difficult to conceive a set of chemicals that undergo reactions inside a lipid vesicle.
Some examples have been already achieved in the lab, although, as it was stressed
above, molecular self-replication has not been observed except when biologically
active molecules (e.g. enzymes) were added (Stano and Luisi 2013).

So we can imagine that the vesicle acts like a microscopic chemical reactor. In
general, the membrane will be selectively permeable to some, but not to all the
molecular types that are found either inside or in the external environment. More
precisely, the diffusion rate across the membrane will be different for different
molecular types; for simplicity, we will say in the following that the membrane is
permeable to some chemicals and impermeable to others, keeping in mind that this is
a linguistic yes/no simplification. In Chap. 5 we will introduce a model of a vesicle
with a semipermeable membrane and compare its behaviour to that of the more
common models, where protocells are treated like very small open-flow reactors. As
it has been already remarked, the most striking difference is that in this latter case the
inflow composition is completely determined from the environment, and it does not
depend upon what is happening inside the vesicle, while the outflow composition
depends only upon what is in the protocell, and it does not depend upon the envi-
ronment. On the contrary, the inflows and outflows to and from a real vesicle are
driven by the difference of the chemical potential of the various permeable chem-
icals between the internal and external water phases. This more realistic assumption

5There are very many papers where protocells architectures are proposed; we do not even try to
provide a complete reference list, but we quote only few papers where further references can be
found.

1.4 Self-Replication in a Vesicle 9



is at the basis of the models described in Chap. 5. In the initial model the Boolean
approximation is used, supposing that diffusion is either instantaneous or impossi-
ble, while more realistic finite diffusion rates are later considered.

While it is evident that the membrane has an active role in SRMs, where it
provides the right chemical environment for the replicators, as well as in GARD
models, where it is made (in part) out of replicators, it is important to discuss its role
in IRMs, where the action takes place inside the protocell. If the membrane were
chemically inert and instantaneously permeable (infinitely fast diffusion) to all the
chemicals, then there would be no difference between the interior of the protocell
and an identical volume in the bulk of the external environment. If molecular
self-replication were possible, it would take place everywhere, both inside and
outside; a very unrealistic situation indeed. Moreover, if their sizes were large
enough to ignore local concentration fluctuations, all the protocells would be equal,
and it is widely acknowledged that diversity in a population is a necessary pre-
requisite for evolution that, in turn, is one of the key features of life, and one that we
should be able to observe in artificial protocells as well.

We will therefore consider only semipermeable membranes, where some
chemicals cannot freely cross the membrane. So the chemical composition inside a
protocell may differ from the one that is found outside. However, let us consider
also the process that gives “birth” to vesicles formed by lipid bilayers that, under
suitable conditions (e.g. pH, ionic strength, etc.) take a closed shape. The most
reasonable assumption is that the closing of the membrane takes place in the same
external milieu where the protocells continue to exist, therefore one could suppose
that the internal and external compositions are the same.6

If all the relevant reactions take place in the water phase, and the membrane is
only a passive semipermeable barrier, then the initial chemical compositions should
be identical in different vesicles. Again, evolution would have no diversity to build
upon. A possible way out of this conclusion is that the initial chemical compositions
might differ because of random fluctuations in concentrations. Existing vesicles
span different lengths, ranging from the 100 nm to the 10 lm scale; if we suppose
that the concentrations of some key chemicals are in the millimolar to micromolar
range, one can see that the smaller vesicles may host on average very few mole-
cules. As discussed in Chap. 5, in some cases the average number of molecules per
vesicle may be even smaller than one. In these cases there might be large differ-
ences in chemical composition among different vesicles. They may in turn give rise
to different rates of growth and reproduction of the protocells, thus allowing some
form of Darwinian evolution, as outlined above.7

However, if large protocells or high concentration levels are considered,
the different individual protocells would be very similar, and the mechanism

6However some experimental observations on small vesicles suggest that this might sometimes not
be the case (De Souza et al. 2009). Moreover, some models show that, in particular cases,
superconcentration of some chemicals inside a vesicle is possible (as discussed in Sect. 5.2).
7However this kind of evolution might be somewhat limited; the conditions for sustainable growth
of a protocell population will be further discussed in Chaps. 5 and 6.
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outlined above would not be effective. In all these cases, in order to have an
evolving population of protocells, the membrane must play an active role, favouring
some reactions instead of others. In IRMs, this requires some form of catalytic or
pseudo-catalytic activity; it is well-known that the presence of a lipid membrane
induces some ordering in the water molecules close to the interface, so that the
environment there differs from the bulk. The orientation of the reactants might be
affected by the presence of the membrane, as well as the reaction rates. Therefore it
may happen that some reactions take place at a rate different from that of the bulk,
giving rise to different concentrations of some molecular types. It is true that the
same would happen also on the external side of the membrane, but if we assume
that the diffusion rate in the water phase is high, then the effects of the membrane in
the external phase would quickly be diluted away. A very different situation would
be found in the internal phase, since molecules are trapped in a small volume by the
semipermeable membrane.

If the key reactions take place on the surface of the vesicle, or close to it, then the
reaction volume is not the whole internal volume but only that of a shell close to the
surface. This situation will also be considered in Chaps. 3 and 5. Moreover, an
intriguing phenomenon that might happen in this case is that, under suitable
assumptions, there may be an accumulation of some chemicals inside the vesicle.
This may even give rise to counterintuitive behaviours, but above all to the already
mentioned “superconcentration” effects discussed in Sect. 5.2 (Serra and Villani
2008, 2013). Some forms of superconcentration have indeed been observed,
although they might be due to a process different from the one hypothesized above
(de Souza et al. 2009).

1.5 Self-Replication in a Reproducing Protocell

In the models presented so far we have considered “static” vesicles, without taking
explicitly into account their growth and replication.8 These are however the most
important phenomena concerning protocells, so we will address now the coupling
of the replicator dynamics to that of their lipid “container“. In this context, we will
refer to the replicators also as to the “genetic memory molecules” (shortly, GMMs)
when we want to emphasize that they affect the properties of the whole protocell, in
particular its growth rate, and that they are inherited by the daughter cells when
fission takes place.

For the sake of clarity, whenever there may be ambiguities in the following we
will use the term “replication” in the case of the GMMs, and “reproduction“ to refer
to the fission of a protocell.9

8We have indeed assumed that different replicators may affect the reproduction rate, without
however describing how this might take place.
9We will take the liberty of not strictly adhering to this prescription when no ambiguity is possible.
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Note that in hypothetical protocells two different phenomena need to take place
at the same pace: the duplication of the genetic memory molecules, and that of the
lipid container. If the former were faster than the latter, the molecules would
accumulate inside the cell, while if cell reproduction were faster than the dupli-
cation time of GMMs, the concentrations of the latter would progressively vanish
through successive generations. Therefore synchronization between the two phe-
nomena is required. Note also that it needs to be a stable property: if a supersmart
chemist were able to identify a set of chemicals and a lipid vesicle that replicate at
the same rhythm, this would not be sufficient per se, if noise and fluctuations could
lead to an irreversible loss of this synchronization.

It has been possible to prove that synchronization can be an emergent property in
a population of dividing protocells: in the beginning the rhythms can be different,
but they will tend to a common value through successive generations. This property
can be analytically proven in some models and it can be verified through simula-
tions in those cases where there are several replicators and their dynamics is more
complicated (Serra et al. 2007a; Carletti et al. 2008; Filisetti et al. 2010). As it will
be discussed in Chap. 3, synchronization takes place under very broad assumptions
concerning both the protocell architecture and the form of the replicator equations
provided that the two processes are coupled, i.e. that the growth rate of the con-
tainer is affected by the concentration of some GMM.

Note however that a possible outcome of the interplay between the dynamics of
the replicators and the processes of container division may also be a progressive
dilution of the chemicals, eventually leading to a population of protocells that are
no longer able to grow. This can also be considered as a case of synchronization,
where the rate of the two processes vanish, but it is a quite peculiar one. When it
will be necessary to make the distinction, we will call this phenomenon “dilution“.
This is typically observed when the growth rate of the container is quite high. The
other possible extreme case, that is observed when the dynamics of the replicators
and that of container division are uncoupled, so that the vesicle does not grow, is
the accumulation of the reaction products inside the vesicle.

It is also surprising to observe that, even when the kinetic equations would lead
to chaotic behaviour, their coupling with the replication of the container may
nonetheless lead to synchronization (Filisetti et al. 2010). Therefore, protocell
division might also be a way to “tame chaos” in the replicator dynamics.

Indeed synchronization is such an important and surprising phenomenon that it
will be discussed both in Chap. 3 in deterministic models, and later in Chap. 5 in
intrinsically stochastic models of a semipermeable growing and dividing protocell.

A very interesting phenomenon takes place when some molecular types
belonging to an autocatalytic set of the RAF type are coupled to the growth of a
protocell. If there are no RAFs, the concentrations of the GMMs will eventually
vanish; if there is a single RAF, synchronization is observed. If several different
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RAFs10 are present they can have different types of interactions. Usually, if all
RAFs are coupled with the growth of the container and if the diffusion through the
membrane of the permeating molecules is fast enough to be regarded as instanta-
neous, then the fastest RAF prevails and the others die out. So synchronization is
observed, but there are severe limitations to the complexity of the interactions
among the surviving replicators (i.e. they must all belong to the same RAF).

However, different behaviours can also be observed; for example, different
independent RAFs can survive if the transmembrane diffusion takes place at a finite
rate. Interestingly, if we consider a set of randomly generated reactions, like in the
Kauffman model, and if we assume a high value for the probability that a given
molecule catalyses a randomly chosen reaction, we find very many RAFs, but in
this case their interactions might easily lead to dilution. So it may well be that the
interactions among many RAFs lead to a loss of the protocell self-reproduction
capability, as it will be described in Chap. 5.

Note also that large RAFs are more subject than smaller ones to possible
“destructive interference”, where a catalyst or a substrate of a RAF is destroyed or
consumed by another one; indeed, it turns out that small RAFs are often found to
prevail in the long run in a protocell and to lead to synchronization with the
container reproduction.

Coming back to the fundamental question concerning the difference between
the behaviour of dynamical models, which predict that self-replication is
“unavoidable”, and that of laboratory systems, let us note that some answers are
already suggested by the models mentioned above. These include, for example, the
slow rate of some reactions due to small numbers of exemplars of a given molecular
species, or to the destructive interference of RAF sets, which might restrict the
range of parameter values favouring collective self-replication to a small window of
near-critical values. The models that uncover these properties may also suggest
ways to tailor laboratory tests to try to discover the reasons of failure, and perhaps
also to circumvent the major problems.

While these models are already useful as they are, there is of course still much
more to do, many more hypotheses still need to be tested. In the final Chap. 6 some
indications for future research on protocell populations, based on the existing
models and on their reasonable generalizations and extensions, are presented.

It is tempting, although by no means proven, to take also into account the
possibility that some key ingredient is still missing in our present picture of the
phenomenon. While of course it is impossible to precisely identify this “missing
component”, there are at least two promising lines of reasoning that might prove
valuable, namely (i) a possible role of quantum coherence and (ii) the possible

10Note that the definition of RAF implies that a single reaction system can host at most one of
them; however, as discussed in Sect. 4.6, different subsets of the RAF can have a high degree of
autonomy. In this introductory chapter we will overlook this technical aspect and we will loosely
speak of different RAFs in the same protocell, referring the reader to Chap. 4 for rigorous
definitions.
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existence of a kind of “thermodynamic force” favouring self-replication in
non-equilibrium systems.

The first hypothesis suggests that quantum coherence might play a role in the
formation of collectively autocatalytic sets in protocells. While common wisdom
would rule out this possibility, due to the fragility of quantum coherence at room
temperatures, it has recently been discovered that there are biological subsystems
that are able to maintain coherence at room temperatures for times that, while still
short on an everyday time scale, are much longer than those that are typical of
experimentally observed quantum coherence (Mcfadden and Al-Khalili 2015;
Abbott et al. 2008; Davies 2009; Kauffman 2016; Vattay et al. 2014). It is not clear
at present under which conditions it is possible to maintain coherence for a “long”
time, but if it were possible then it would prove very important in our case: in a
huge set of possible chemical reactions it is computationally very hard to identify
collectively autocatalytic sets, but the time might be dramatically shortened if the
analogue of a quantum computation (Rieffel and Pollack 2000; Shor 1997; Lloyd
1996; Ladd et al. 2010) could be performed, since in this case the system could
explore simultaneously an enormous number of different pathways. It still has to be
understood how such a system could select, among the huge set of different possible
states, those that lead to self-replication.

Some very interesting, more radical positions concerning the role of quantum
dynamics have also been proposed. In Kauffman (2016) it is suggested that the
peculiar feature of life is that of staying somehow in-between the classical and the
quantum world, and that living systems can switch between decoherence and
recoherence (in a state called “the poised realm”). The implications of this fasci-
nating suggestion for protocell research have still to be verified and tested.

The second “visionary” line of research comes from recent results in the study of
irreversible processes, where a principle for non-equilibrium systems has been
proposed that may have far-reaching implications (Crooks 1999; England 2013). It is
by now well-known that the second law does not rule out the possibility of spon-
taneous formation of organized systems, like living beings, in open systems like the
earth, the ultimate source of low entropy radiation being the sun. So self-organization
and the spontaneous emergence of life are not prohibited by the second law, a fact
that has been known for many years. But the recent results mentioned above seem to
suggest something stronger, i.e. that the emergence of life (in particular, of
self-replication) may be a favourite, highly probable outcome under conditions that
are typical of the earth and that can probably be recreated in the lab. This would be a
major achievement, whose consequences still have to be worked out.

These two research approaches are very interesting, although their relevance for
protocells still has to be demonstrated. However, they fall beyond the scope of this
volume and they will not be considered here.

As it will be discussed in depth in the final Chap. 6, we think that the models
described in this volume, and similar ones that can be developed, allow us to
address some major questions in protocell research, and that they can be an effective
basis to design future theoretical and experimental research on the key issues
involved.
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Chapter 2
Generic Properties of Dynamical Models
of Protocells

2.1 Introduction

Models are of great importance for protocell research, not only for the usual reasons
why models matter, but also because real protocells are not yet available in the lab.
There are indeed some cases where one or a few duplications have been achieved
(Hanczyc and Szostak 2004; Luisi et al. 2004; Luisi 2006; Stano et al. 2006;
Schrum et al. 2010; Stano and Luisi 2010a) but so far, to the best of our knowledge,
a sustained growth of a population of protocells has never been observed.

We will be particularly interested in models that allow us to explore the generic
properties of protocells and of protocell populations. Of course, it is perfectly
legitimate to concentrate on a particular hypothesis and to develop specific models
well-suited to study its properties. But at the present stage of our knowledge we
believe it can be even more important to be able to grasp the generic properties of
these systems.

Protocells lie somewhere in between chemistry and biology: their ingredients are
chemicals, as well as those of living beings. And their wished-for properties are
indeed typical of life. That’s why we find it appropriate to discuss here some
features of models of biological systems aimed at describing some of their generic
properties—a field of research that has been properly referred to as “complex
systems biology” (Kaneko 2006).

Although it is widely agreed that “biological systems are complex”, there are
several important features of the science of complex systems that have not yet
deeply affected the study of biological organisms and processes. Indeed, biology
has been largely dominated by a gene-centric view in the last decades, and the one
gene—one trait approach, which has sometimes proved to be effective, has been
extended to cover even complex traits. This simplifying view has been appropri-
ately criticized, and the movement called systems biology (Noble 2006) has taken
off. Systems biology emphasizes the presence of several feedback loops in bio-
logical systems, which severely limit the range of validity of explanations based
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upon linear causal chains (e.g. gene!behaviour). Mathematical modelling is one
the favourite tools of systems biologists to analyse the possible effects of interacting
negative and positive feedback loops which can be observed at several levels (from
molecules to organelles, cells, tissues, organs, organisms, ecosystems).

Systems biology is mainly concerned with the description of specific biological
items, like for example specific organisms, or specific organs in a class of animals,
or specific genetic-metabolic circuits. Therefore, despite its usefulness in stressing
the need for a systems approach, its focus is not concentrated on the search for
general principles of biological organization, which apply to all living beings or to
at least to broad classes.

We know indeed that there are some principles of this kind, biological evolution
being the most famous one. The theory of cellular organization also qualifies as a
general principle. But the main focus of biological research has been the study of
specific cases, with some reluctance to accept (and perhaps a limited interest for)
broad generalizations. This may however change, and it is indeed the challenge of
complex systems biology: looking for general principles in biological systems, in
the spirit of complex systems science that searches for similar features and beha-
viours in various kinds of systems. When speaking of protocells, one might perhaps
prefer the term complex systems chemistry, but what really matters is the quest for
general (or at least broad) principles, and simplified models may be a royal road to
uncover such principles.

The actual working of some principles of this kind in real biological systems
may be inferred from observations, and in Sect. 2.2 some data confirming this claim
will be reviewed.

In order to explore new general ideas and models concerning the way in which
biological systems work, an effective strategy is that of introducing simplified
models1 and of looking for their generic properties. This can be done by using
statistical ensembles of systems, where each member can be different from another
(although they all share some common properties), and by looking for those
properties that are widespread. This approach, inspired by physics, was introduced
many years ago in modelling gene regulatory networks (Kauffman 1969 but see
Kauffman 1993, 1995 for a comprehensive discussion). Some important concepts
and models of such generic properties will be described in Sect. 2.3.

Since the data and models of Sects. 2.2 and 2.3 provide evidence in favour of the
existence and importance of generic properties, we will focus in the following
Chap. 3 on how these concepts might be important for protocells, and we will show
that the complex systems approach to these systems can be particularly interesting,
providing useful stimuli to the experimenters. Before doing so, the last Sect. 2.4 of
this chapter will summarize the main known facts about protocells that need to be
taken into account in the development of generic models.

1Like the pioneering chemoton model, described in Gánti (1997).
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2.2 Generic Properties of Biological Systems: Data

Biologists have been largely concerned with the analysis of specific organisms, and
the search for general principles has in a sense lagged behind. This makes sense,
since generalizations are hard in biology, however there are also important exam-
ples of generic properties (in the sense defined in Sect. 2.1) of biological systems.
Here we will briefly mention only two properties of this kind, namely power-law
distributions and scaling laws, which can be observed by analysing existing data.

Power-law distributions are widespread in biology: for example, the distribution
of the activation levels of the genes in a cell belongs to this class (see Kaneko 2006
and further references quoted therein). This means that the frequency of occurrence
of genes with activation level x, let’s call it p(x), is proportional to x−g where g is a
constant positive exponent (see Fig. 2.1). Similar laws are found for other important
properties, like the abundance of various chemicals in a cell. As it is well-known,
power-law distributions differ from the more familiar Gaussian distributions in
many respects, the most relevant one being a higher frequency of occurrence of

Fig. 2.1 Rank-ordered frequency distributions of expressed genes. a Human liver, b kidney,
c human colorectal cancer, d mouse embryonic stem cells, e C. Elegans, and f yeast (S.
Cerevisiae). The exponent of the power law is in the range from −1 to −0.86 for all the samples
inspected, except for two plant data (seedlings of Arabidopsis and the trunk of Pinus taeda), whose
exponents are approximately −0.63. Reprinted with permission from (Furusawa and Kaneko 2003)
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results which are markedly different from the most frequent ones (“fat tails” of the
distributions) and which may have a very strong effect on the behaviour of the
system.

It is also well-known that power-law distributions of the number of links are
frequently observed in biological networks, like e.g. protein-protein networks or
gene regulatory networks (Kaneko 2006). In these cases, as well as in many others,
the power law concerns the distribution of the number of links per node. The
remark concerning the relatively high frequency of far-from-average cases applies
also here, and this means that there are some “hub” nodes with a very high number
of links, which most strongly influence the behaviour of the network.

Another striking generic property in biology concerns the relationship between
the rate of energy consumption (r) and the mass of an organism (m) (West et al.
1997; West 2005). We refer here not to single individuals, but to the average values
for a given kind of animal (e.g. cow, mouse, hen, etc.). It has been established by
several empirical studies that there is a power-law relationship between the average
rate of oxygen intake (i.e. the energy consumption rate) and the average mass:
r = km¾ (see Fig. 2.2).

Note that although the mathematical relationship is the same in the two cases
above, i.e. a power-law, the semantics is very different. In the first example, the
power-law refers to a single variable, and to the frequency of occurrence of a given
value in a population, while in the second case it refers to the relationship between
two different variables.

What is particularly impressive in the relationship between oxygen consumption
rate and mass is that it holds for organisms which are very different from each other
(e.g. mammals and birds) and that it spans a very wide range of different masses,

Fig. 2.2 Allometric scaling laws. Left the power consumption per cell, when cultured in vitro, is
independent of the mass M of the organism it comes from. Since the total power consumption of
the organism grows as M3/4 (right panel) the efficiency of a cell in the organism decreases as
M−1/4. Comparison with the in vitro behaviour shows that this is a truly systemic property.
Reprinted with permission from (West et al. 2002)
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from whales to unicellular organisms. Moreover, the same relationship can be
extrapolated to even smaller masses, and it can be seen that mitochondria and even
the molecular complexes involved lay on the same curve. So the “law” seems to
hold for an astonishingly high range of mass values (it has been claimed that no
other natural “law” has been ever verified on such a broad spectrum of values).

Of course this is not a law strictu sensu, but rather an empirical relationship. It is
interesting to observe that an explanation2 has been proposed for this regularity,
based on the idea that biological evolution has led different organisms to optimize
oxygen use and distribution. Indeed, the value of the exponent, estimated from data,
is 3/4, which is surprising, but an elegant proof has been proposed (West et al.
1999) that links the universality of this exponent to the fact that there are three
spatial dimensions (and to the hypothesis that evolution works to minimize energy
loss).

The two examples discussed above are indeed sufficient to show clearly that
generic properties of biological systems, which hold irrespectively of the differ-
ences between different organisms, do exist. Let us now consider concepts and
models that help us to understand some generic properties.

2.3 Generic Properties of Biological Systems: Concepts

Several candidate (qualitative and quantitative) concepts have been proposed to
describe the general properties of complex systems, the second principle of ther-
modynamics being by far the most successful one. In this section we will briefly
mention one of the proposed concepts, that is amenable to at least a partial
experimental test, i.e. the notion that evolution should be able to drive biological
systems to dynamical “critical” states (Langton 1990; Packard 1988; Kauffman
1993, 1995).

Here “critical” is defined in a specific sense, which is sometimes called “at the
edge of chaos” and which somehow differs from e.g. the notion of self-organized
criticality (Tang et al. 1988). Dissipative deterministic dynamical systems can often
show different long-term behaviours, leading sometimes to ordered states (either
constant or oscillating in time), sometimes to quite unpredictable, seemingly erratic
wanderings in state space. What is more interesting, is that often the same
dynamical system (defined e.g. by a set of differential equations) can behave in one
way or another, depending upon the values of some parameters. So there are
regions in parameter space where the system is ordered, and regions where it is
chaotic. Critical states are those that belong to (or, more loosely, that are close to)
the boundaries that separate these regions, so they are close to both ordered and
chaotic states.

2This is not the only proposed explanation, but a comprehensive discussion of the origin of
allometric scaling laws lies beyond the aim of this book.
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It has been suggested (Langton 1990; Packard 1988; Kauffman 1993, 1995;
Aldana et al. 2007; Torres Sosa et al. 2012) that critical states provide an optimal
tradeoff between the need for robustness (since a biological system must be able to
keep homeostasis, notwithstanding external as well as internal perturbations) and
the need to be able to adapt to changes. If this is the case, and if evolution is able to
change the network parameters, then it should have driven organisms towards
critical regions in parameter space.3

This is a very broad and challenging hypothesis, and it can be tested by com-
paring the results of models of biological systems with data, e.g. models of gene
regulatory networks with actual gene expression data. The use of data for this
purpose is very different from the more common use of the same data to infer
information about the interactions among specific genes. In testing the criticality
hypothesis it is instead necessary to look for global properties of gene expression
data, like their distributions or some information-theoretic measures (Roli et al.
2011, 2017).

The models to use for comparison should be generic, able to host various
dynamical behaviours depending upon the value of some parameter. An out-
standing example of this kind is that of the Random Boolean Networks
(RBN) model of the dynamics of gene expression. The expression of a given gene
depends upon a set of regulatory molecules, which are themselves the product of
other genes, or whose presence is indirectly affected by the expression of other
genes. So genes influence each other’s expression, and this can be described as a
network of interacting genes. In RBNs (Kauffman 1969, 1993, 1995) the activation
of a gene is assumed to take just one of two possible values, active (1) or inactive
(0)—a Boolean approximation whose validity can be judged a posteriori. The
model supposes that the state of each node at time t + 1 depends upon the values of
its input nodes at the preceding time step t. Given that the activations are Boolean,
the function which determines the new state of a node is a Boolean function of the
inputs.

As it has been anticipated in Sect. 2.1, searching for generic properties requires
consideration of ensembles of networks, generated at random (random connections,
random Boolean functions) while keeping some parameters fixed (e.g., the average
number of connections per node). By comparing experimental data to the properties
of ensembles of random networks it is then possible to draw inferences concerning
the values of the parameters that define the set. RBNs are indeed dissipative systems
that tend to a limited number of different attractors, which represent mutually
coherent ways of functioning of the set of genes associated to the nodes of the
network; therefore it is straightforward to associate attractors to different cell types.

3Two major variants of this hypothesis have been suggested: (i) that real systems can indeed be in
the ordered, more controllable region but close to the critical boundaries, so to be susceptible
enough to external changes (Kauffman 1993) and (ii) that in biological systems the notion of
criticality has to be taken in a wide sense (Bailly and Longo 2008): while in physical systems one
finds critical points, in biological systems one can suppose that they have a finite size. An
analogous remark applies as well to critical lines or (hyper)surfaces.
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It is then possible to consider the way in which the number of attractors scales with
the number of nodes, and to compare it with the relationship of the number of
different cell types in different organisms to the number of their genes (Kauffman
1993).

In the so-called quenched version of the model, both the topology and the
Boolean function associated to each node do not change in time.4 The network
dynamics is discrete and synchronous, so fixed points and cycles are the only
possible asymptotic states in finite networks (a single RBN can have, and usually
has, more than one attractor). The model shows two main dynamical regimes,
ordered and disordered, depending upon the degree of connectivity and upon the
Boolean functions: typically, the average cycle length grows as a power law with
the number of nodes N in the ordered region and exponentially in the disordered
region (Kauffman 1993). The dynamically disordered region (sometimes called
“chaotic”, although of course no real chaos can be observed in finite discrete
deterministic systems) also shows sensitive dependence upon the initial conditions,
not observed in the ordered case.

One of the most intriguing features of the RBN model is that it allows a dis-
tinction between ordered and disordered regimes on the basis of a single parameter,
sometimes called the Derrida parameter k, which depends upon the choice of the
Boolean functions and upon the average number of links per node. Ordered states
have k < 1 and chaotic states k > 1; the value k = 1 separates order from chaos,
and it is therefore the critical value (Kauffman 1993; Serra et al. 2007b).

The technology of molecular biology provides powerful tools to investigate the
dynamics of gene expression. In particular, it is possible to analyse the changes
induced in the expression levels of all the genes of an organism by knocking-out
(i.e., by permanently inhibiting the expression of) a single gene and it is possible to
compare the statistical properties of these changes with those of simulated RBNs.
The knock-out of a gene can be simulated by choosing it at random among the
N nodes of the network and by fixing its value to 0.

It is then possible to compare the time behaviour of the unperturbed (“wild
type”, briefly WT) network with that of the perturbed one (“knocked-out”, KO),
which is different because of the clamping to 0 of the chosen node (let us call it
node R) (Serra et al. 2004b, 2007b, 2015). A node is said to be affected if its value
in the KO network differs from that of the WT network at least once, after the
clamping. Since nodes are connected, the perturbation can in principle spread, and
it is not limited to node R, or to those nodes that are directly connected to it. The
avalanche associated to that particular knock-out is the set of affected genes, and the
size of the avalanche is the cardinality of that set (let us call it v).

4This is of course the most appropriate choice to model a gene regulatory network, where the
nodes are the genes and the links represent their mutual influences.

2.3 Generic Properties of Biological Systems: Concepts 21



Under the assumptions that the number of incoming links per node A is small
(A << N, where N is the number of genes) and that the overall avalanche is small
(v << N), it can be proven5 that the distribution of avalanches depends only upon
the distribution pout of outgoing links. In RBNs, the incoming links to a node are
drawn at random with uniform probability from the remaining nodes; in this case,
the distribution pout is approximately Poissonian and it can be proven that the
distribution of avalanches depends only upon the same Derrida parameter that
determines the dynamical regime of the network (Serra et al. 2007b). In this case
the theoretical distribution is given by Rämö et al. (2006), Di Stefano et al. (2016).

p vð Þ ¼ vv�2

v� 1ð Þ! k
v�1e�kv ð2:1Þ

where p(v) is the normalized probability of finding an avalanche of size v if the
Derrida parameter is k. A comparison with simulations performed on a model RBN
with 6300 nodes (the same number of nodes as that of the yeast S. Cerevisiae),
shown in Fig. 2.3, demonstrates that this expression accurately describes the results
of actual simulations of large networks.

It is therefore possible to compare the distribution of avalanches in real organ-
isms to that of model RBNs with different values of the Derrida parameter, and this
comparison should tell us whether real cells are critical or not. This is a very
interesting example of the way in which simplified models can be used to find
generic properties, which cannot be read directly in the data but can be inferred
from a comparison between patterns in data and in model results. On the basis of
limited data so far available on the yeast S. Cerevisiae, it seems plausible to suppose
that in that case the network is in an ordered state, not far from the critical boundary
(Serra et al. 2004b, 2007b, 2008b; Rämö et al. 2006; Di Stefano et al. 2016). Note
that, while this result would rule out truly critical states, it is however one of the
possible favourite outcomes of evolution according to Kauffman, i.e. an ordered
state close to the critical boundary (see note 3).

However, these conclusions must be taken with some caution: indeed, com-
paring a Boolean model to continuous data requires the use of some criterion to
distinguish affected from non-affected nodes, i.e. to booleanize continuous vari-
ables. A quantitative criterion can be defined by introducing a threshold h, so that a
node is affected if the ratio of its expression level in the KO network to that of the
WT is higher than h or smaller than 1/h. If the threshold is too small (in the limit
h!0), then one is bound to look just for statistical fluctuations in the expression
levels in the two cases, while if the threshold is very high (in the limit h!∞) no
gene appears to be affected. There are heuristic ways to threshold the expression

5The assumptions made here are equivalent to supposing that an avalanche never interferes with
itself (see Di Stefano et al. 2016 for a precise definition). The non-interference assumption implies
that the topology of a spreading avalanche is that of a tree, where each node has a single parent.
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values, and the conclusion reported above is based on the use of these heuristic
values, which however lack a firm theoretical grounding (Serra et al. 2007b).

Other studies about different biological systems support the hypothesis that the
network is either critical or ordered (Shmulevich et al. 2005) or are in favour of the
former hypothesis only (Torres-Sosa et al. 2012). Of course further data are needed,
but it is nevertheless important to observe that these simplified models can actually
open a way to infer very important generic properties of real systems.

The same models also provide relevant evidence in favour of the possibility of
successfully applying the RBN model to interpret real biological data. Further
model improvements have been developed in order to enlarge the set of possible
comparisons with experimental tests (Serra et al. 2004a; Graudenzi et al. 2011a, b)
and the effects of cell-cell interaction in tissues (Serra et al. 2008a; Damiani et al.
2008, 2010, 2011; Villani et al. 2006).

Finally, it is worth mentioning that, by taking into account biological noise, the
RBN model has been proven able to describe also the main features of cell dif-
ferentiation (Ribeiro and Kauffman 2007; Serra et al. 2010; Villani et al. 2011,

Fig. 2.3 Comparison of the theoretical formula Eq. 3.1 with simulations performed on a network
with 6300 nodes, for different values of the Derrida parameter (Di Stefano 2016); the relative
frequency is plotted versus avalanche size
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2013): in this way it has been shown that even such a complex phenomenon can be
accounted for by a generic model, without the need of introducing ad hoc genetic
circuits.6

Let us end this section by stressing again the methodological importance of the
approach described here: the model validation is not based upon a direct compar-
ison of the model to the data (like e.g. a direct estimate of the value of a parameter),
it rather implies deriving quantitative behaviours from the ensemble of models, and
comparing these behaviours to the distribution of values that are actually observed.
Finally, this comparison is used to draw inferences about the unknown values of
some model parameters.

2.4 What Shall We Model

We will concentrate our modelling efforts on lipid vesicles, which are widely
studied as candidate bases for protocell synthesis, although they are by no means
the only possibility.

We are aware of the fact that lipid aggregates can have very different mor-
phologies, spanning from unilamellar layers to oligo- or multilamellar membranes
(including situations where vesicles contain other vesicles), and can be composed
by very heterogeneous materials (Simons and Vaz 2004). Moreover, they can form
micelles or vesicles, depending on the chemical environment, on their structure (see
Chen and Walde 2010 and further references quoted there) and on packing con-
siderations Israelachvili et al. 1976, 1977).

However in this book we will mainly use the term “vesicle” to refer to a closed
structure where a bilayer, formed by amphiphilic molecules, separates an internal
water phase from an aqueous external environment (see Figs. 2.4 and 2.5). Indeed,
a large part of the experimental efforts thus far have focused on micelles or unil-
amellar vesicles, made of only one or two components (Chen and Walde 2010).
These structures, which are simpler than the multilamellar alternatives, are also
more amenable to modelling and will be the target of our models.

One usually speaks of a lipid membrane, although its molecules are indeed
amphiphiles, i.e. they display a polar head and a longer lipid tail. The polar heads
are found close to the two water phases (i.e. the internal and the external one) while
the lipid tails are oriented towards the interior of the membrane. The term liposome
is also often used to denote a lipid vesicle.

Different types of molecules are able to form bilayers and also vesicles,
including e.g. fatty acids, phospholipids and others. Indeed, some broad reviews
exist of the various molecular types that have been proposed (see e.g. Ruiz Mirazo

6Of course some hypotheses need to be made; in this case, the key hypothesis is that the level of
cellular noise is high in stem cells and decreases during differentiation. There are some experi-
mental indications in favor of this hypothesis, which can and should be subject to further testing.

24 2 Generic Properties of Dynamical Models of Protocells



Fig. 2.4 Schematic representation of an amphiphilic molecule (a) and of two energetically
favoured supramolecular dispositions, where the lipid tails are separated from the aqueous
environment: a micelle (b) and a lipid bilayer, 2D view (c)

Fig. 2.5 Schematic representation of supramolecular structures. a A lipid bilayer, 3D view; b a
vesicle, 2D view; c a vesicle, 3D view
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et al. 2014). However, these reviews often contain a lot of detailed information
about the actual chemical make-up of the system, which are important for the
purpose of reproducing the experimental results, but which are also less relevant for
the modelling level we are investigating here.

There are several interesting aspects in vesicles and in protocells that are
amenable to dynamical modelling, including:

• the organization of groups of amphiphilic molecules in water or other solvents
(McCaskill et a. 2007): they can form different supramolecular structures, like
sheets and vesicles, which represent beautiful examples of self-organization
phenomena

• the mechanical properties of the membranes (Wang and Du 2008; Alessandrini
and Facci 2012)

• the transport processes of different molecular types through the membrane
(Wang et al. 2010)

• the intake of amphiphiles in the membrane, their movement and the formation of
various domains (rafts) in the membrane itself (Simon and Vaz 2004; Gokel and
Negin 2012; Mc Connell and Vrljic 2003)

• the description of the process of fission, where a single vesicle splits into two
vesicles undergoing changes in shape (Luisi et al. 2004); this is a complex
phenomenon, which requires a change of shape and the subsequent breaking of
the channel connecting the two parts of the parent vesicles. Beautiful studies
include those of Svetina (2009), Morris et al. (2010)

A major issue concerns the most appropriate modelling level. Protocells are made
out of molecules, so models dealing with molecular properties can be important,
ranging from the level of quantum chemistry to that of molecular dynamics.
However, the description of the properties of vesicles and protocells typically require
a coarser graining than those of the previous approaches, which are well suited to
deal with single molecules (perhaps in a heat bath) or with few interacting molecules.
An interesting set of models based upon the DPD (Dissipative Particle Dynamics)
approximation has also been studied (Fellerman et al. 2007).

Dealing with supramolecular structures like protocells, we will mostly ignore the
details of the molecular level. In our models the behaviour of the amphiphiles and
of the proto-genetic molecular species will be described by the methods of chemical
kinetics. Both deterministic and stochastic models will be considered: the former
are more amenable to theoretical treatment and to fast simulations, while the latter
are required to deal with cases where there are only few copies of some important
molecular types. The models of Chap. 3 are essentially deterministic, while
intrinsically stochastic models will be studied in Chaps. 4 and 5.7

7Note however that in complex systems science it is sometimes convenient to consider different
models of the same phenomenon; so, in Chap. 3 the effects of random fluctuations will also be
explored, and in Chaps. 4 and 5 some deterministic approximations will also be used whenever
appropriate.
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There are also other interesting topics in protocell research, but in this volume
we will focus our attention on the coupled processes of replication of the “genetic”
molecules and of the growth and duplication of the lipid “container”, and we will
try to uncover some generic features of these processes, as discussed in the previous
sections of this chapter.

In the following chapters we will therefore take a very simplified view of a
protocell: the majority of the models that will be described and analysed are fairly
abstract, and do not make explicit reference to the specific properties of the
membrane. What is required is that (i) closed compartments form spontaneously
(ii) their membranes are selectively permeable to some but not to all the chemicals
and (iii) they are able to grow and to fission when a certain critical size has been
reached. While lipid vesicles are the best known systems of this kind, other
vesicle-forming chemicals could do the job, including micelles (Mitchell and
Ninham 1981), reverse micelles (Pileni 1993), lipid droplets (Thiam et al. 2013) and
others.

Note also that protocells might be used in several interesting applications,
including intelligent drug delivery, recognition of other protocells or of some other
“agent” in the body or in the environment, information processing and many more
else. These applications might be one of the main reasons of interest for protocells,
but their treatment also lies beyond the scope of this work.

2.4 What Shall We Model 27



Chapter 3
Dynamical Models of Protocells
and Synchronization

3.1 Simplified Surface-Reaction Models of Protocells

Let us now consider the contributions that a complex systems approach can provide
to the research on protocells. As it has been discussed at length in Chaps. 1 and 2,
such protocells should have an embodiment structure, a simplified metabolism and
a way to give rise to new protocells. Moreover, there should be a rudimentary
genetics, so that the offspring of a cell is “similar” to its parent (at least, more
similar on average to a parent than to another randomly chosen protocell that does
not belong to the same lineage).

While protocells able to support a sustained population growth and replication
have not yet been built,1 it is extremely interesting to understand under which
conditions these systems can actually evolve. Models are required to address this
issue and, due to the uncertainties about the details, high-level abstract models are
particularly relevant. So, as discussed in Chap. 2, one is naturally led to consider
the properties shared by a large number of more detailed models, which may differ
under many respects but which are all able to support the basic features of proto-
cells: growth, duplication, inheritance with variation of some features.

In order to show the importance of abstract-level modelling we will introduce a
strongly simplified protocell model and we will show that it allows us to address
one of the major theoretical problems concerning the dynamics of different gen-
erations of protocells, i.e. that of synchronization between the rate of duplication of
the lipid container and that of the genetic material. Indeed, if such synchronization
is not in place and is not stable, sustained growth of a population of protocells is
impossible (and of course one is interested in the conditions for this growth, not so
much in a single duplication hit). It is easy to see why synchronization is so

1This remark refers to the kind of protocells we are interested in, i.e. those that are built by
self-organization and self-assembly starting from various types of molecules, like nucleic acids,
polypetides, lipids, etc., avoiding however those that can be obtained only by living beings, like
e.g. specialized enzymes (see Chap. 1).

© Springer Science+Business Media B.V. 2017
R. Serra and M. Villani, Modelling Protocells, Understanding Complex Systems,
DOI 10.1007/978-94-024-1160-7_3

29



important: if the duplication of the container is faster than that of the genetic
material, the latter will be progressively diluted, while in the opposite case genetic
molecules will continue to accumulate in the container.

As it has already been pointed out in Chap. 1, several different protocell “ar-
chitectures” have been suggested, most of them based upon lipid vesicles, where an
aqueous internal environment is separated from the external water phase by a lipid
bilayer, similar to those of existing biological cells. Vesicles form spontaneously
under appropriate conditions, and it is known that they are able to split giving rise to
two (or more) daughter cells. The different architectures are based on different
hypotheses about the chemical composition of the protogenetic material (e.g.,
nucleic acids, or polypeptides, or even lipids themselves) and about the place where
the action, i.e., duplication of genetic molecules and growth of the lipid container,
takes place (in the internal environment, in the membrane, at the interface, or some
combinations of the two).

One might therefore be tempted to guess that no unified treatment is possible,
however this turns out not to be the case: indeed it has been shown that at least the
problem of synchronization lends itself to be dealt with using abstract models of
quite broad applicability. And it is worth stressing the importance of this problem,
e.g. by quoting a recent book where one reads that “to succeed, life needed to
balance, to regulate replication and growth with precision…omissis… How it
learned to do that remains a mystery that twentieth-century science has left for
another generation” (Wagner 2015, p. 58).

Interestingly, synchronization is an emergent phenomenon that sets sponta-
neously in while generations follow generations (Munteanu et al. 2007; Serra et al.
2007a; Carletti et al. 2008; Filisetti et al. 2008, 2010, 2012). Moreover, it can be
proven to happen in very different protocell architectures, and also under very
different hypotheses about the pattern of reactions among the genetic molecules.
Synchronization is not always guaranteed, but the conditions under which it takes
place can be mathematically characterized and are indeed very broad, and they will
be discussed in depth in this chapter. In Sect. 3.2 one particular protocell archi-
tecture (surface reaction model with a single type of replicator) is described in
detail, and it is shown that it can actually lead to synchronization, both in the case of
a linear and a nonlinear kinetic equation.2 Similar results are then shown to hold
also when different replicators interact either in a linear (Sect. 3.3) or a nonlinear
way (Sect. 3.4). The result is generalized in Sect. 3.5 to different protocell archi-
tectures, in particular those where the relevant reactions take place in the aqueous
interior of the protocell (internal reaction models). This is done first under the
simplifying assumption that some transport processes are very fast and take place
instantaneously; this simplification is later removed showing that synchronization
can take place also when the transmembrane diffusion rate is finite.

2Here, and in various other parts of this chapter, the term linear refers to the kinetic equations that
describe the rate of change of the concentrations (or of the quantities) of replicators. The protocell
model as a whole is always strongly nonlinear.
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It is also worth mentioning that some interesting results have been obtained3

with models which describe only the interactions among replicators, supposing that
a protocell splits when the total number of molecules reaches a certain threshold
value (see Kaneko 2006; Kamimura and Kaneko 2010 and further references
quoted therein). In these models synchronization is given for granted, and the lipid
container is not explicitly dealt with. On the other hand, in the models described in
this chapter, the coupled dynamics of replicators and of lipid container is consid-
ered: splitting takes place when the amount of lipids reaches a certain value, and the
conditions for synchronization can be analyzed.

While the two approaches are different, they might be related if the total quantity
of lipids C were a function of the quantity of replicators X, i.e.

C ¼ / Xð Þ ð3:1Þ

since in this case the quantity of replicators would determine also the amount of
lipids, and it would not matter whether a threshold is imposed on the former or on
the latter. However, the models described in the following sections are based on
systems of differential equations like

dC
dt

¼ f X;Cð Þ
dX
dt

¼ g X;Cð Þ
ð3:2Þ

If the dynamics of the container were much faster than that of the replicators, one
could introduce in a standard way (Haken 2004; Serra et al. 1986) the adiabatic
approximation dC/dt � 0, so f(X,C) � 0, that can be solved giving C as a function
of the instantaneous value of X, as in Eq. 3.1. So the protocell models studied in
Kaneko (2006) may be related to an approximation of the coupled dynamical
models of Eq. 3.2, that holds when the container approaches its asymptotic state
very fast (with respect to the dynamics of the replicators).

Another interesting class of models assumes that replicators can affect the
container growth rate in an indirect way, through their influence on osmotic pres-
sure. This hypothesis is based upon experimental observations that turgid vesicles
can grow by taking away lipids from swollen vesicles (Chen et al. 2004; Chen
2006). Quoting (Schrum et al. 2010): “When osmotically swollen vesicles are
mixed with osmotically relaxed (isotonic) vesicles, rapid fatty-acid exchange pro-
cesses result in growth of the swollen vesicles and corresponding shrinkage of the
relaxed vesicles (Chen et al. 2004). Because vesicles can be osmotically swollen as
a result of the encapsulation of high concentrations of nucleic acids such as RNA,
this process allows for the growth of vesicles containing genetic polymers at the
expense of empty vesicles (or vesicles that contain less internal nucleic acid).
Because faster replication would increase the internal nucleic acid concentration,

3Including the intriguing phenomenon of minority control.
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this pathway of competitive vesicle growth provides the potential for a direct
physical link between the rate of replication of an encapsulated genetic polymer and
the rate of growth of the protocell as a whole”.4

In these models the effects of replicators on the container is mediated by their
influence on the osmotic pressure. If available lipids or relaxed vesicles are
abundant and available, then it might still be possible to simulate the growth of the
container using an equation like Eq. 3.2, and in this case our results would be
relevant also for these models. However, a more careful analysis might require
explicit consideration of the shape of protocells (Morris et al. 2010; Svetina 2009)
and of possible osmotic phenomena. An interesting example in this sense is the
so-called Ribocell (Mavelli and Ruiz-Mirazo 2007; Mavelli 2011, 2012), where the
protocell volume depends upon the quantity of internal replicators,5 which can
catalyze the growth of the membrane. In this model the shape of the membrane is
not constant, and the protocell can either (i) burst if the quantity of lipids does not
suffice to include the protocell volume (osmotic collapse) or (ii) divide if this
quantity suffices to form two spheres able to include the whole protocell volume.
Also in this model there are regions of parameter space where synchronization takes
place, and it is possible to make analytical considerations about the synchronization
processes (Mavelli and Ruiz-Mirazo 2013).

3.2 Synchronization in Surface Reaction Models

In this chapter we will introduce an abstract model of protocell and we will use it to
address the problem of synchronization between the growth and duplication rates of
the genetic material and of the lipid container.

Let us consider first a simple model of a so-called surface reaction system, where
it is supposed that all the relevant reactions take place in the lipid membrane that
separates the internal from the external aqueous environment. This model is loosely
inspired by the so-called “Los Alamos bug” (briefly Labug in the following)
hypothesis; however it abstracts from many details and can therefore be compatible
also with other specific protocell models. We will present here the main features of
the model, referring the interested reader to Rasmussen et al. (2004b), Munteanu
et al. (2007), Rocheleau et al. (2007) for further details. We will describe this model
in some detail, in order to make it clear which hypotheses and simplifications have
been adopted.

4The interaction of swollen replicator-containing vesicles with more relaxed ones, which contain a
lower quantity of replicators, would require considering the evolution of such populations of
vesicles, a topic that lies beyond the purpose of this volume.
5This assumption corresponds to supposing a very fast water transmembrane diffusion, able to
keep the vesicle in an osmotic balanced state.
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In the Labug hypothesis one deals with one or more kinds of self-replicating
molecules and a lipid vesicle (or perhaps a micelle6). The self-replicating molecules
play the role of “protogenetic” material, so they will be also called “genetic memory
molecules”, briefly GMMs (as defined in Sect. 1.5). On the one hand, the presence of
the GMMs affects the growth rate of the container, e.g. by favouring the formation of
amphiphiles from precursors, which exist in the neighbourhood of the protocell outer
surface (amphiphiles are supposed to be then quickly incorporated in the lipid
membrane). On the other hand, the very existence of the lipid container is a necessary
condition for the working of the protocell, as it is assumed that GMMs are prefer-
entially found in the lipid phase. A schematic, cartoon-like view of the protocell is
shown in Fig. 3.1. The description of the model and the study of its synchronization
in this section closely follow the one given in more detail in Serra et al. (2007a).

So the catalytic activity of the GMMs favours the growth of the lipid container,
which provides in turn the physical conditions appropriate for the replication of the
GMMs, without being however a proper catalyst. One of the main features of these
models is that all the key reactions (i.e. those that are really important for growth
and reproduction) occur close to the surface of the protocell, that’s why they can be
called “surface reaction models”.

Let us first examine the case where there is a single kind of self-replicating
molecule X. Let C be the total quantity of “container” (e.g. lipid membrane in
vesicles or bulk of the micelle) and V its volume, which is equal to C/q (where q is
the density, which will be assumed constant). S will denote the surface area, which is

Fig. 3.1 A sketch of the SRM protocell model. A closed lipid membrane surrounds a small
aqueous interior compartment (in case of micelles, this internal water phase is absent). The genetic
memory molecules (GMMs) are found in the lipid phase, whereas the precursors of the lipids and
of the GMMs are found on the external water phase

6For our modelling purposes, micelles will be regarded as approximately spherical oily structures
in an aqueous environment. The main difference with respect to vesicles, besides their smaller
dimensions, is the fact that they do not have an aqueous internal phase.
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a function of V: typically, S is approximately proportional to V for a large spherical
vesicle with a very thin surface (a condition which will be referred to as the “thin
membrane” case), and to V2/3 for a spherical micelle or oil droplet. In general, S
might be proportional to V raised to some exponent taking intermediate values.

Assuming a fixed relationship between the volume and the surface area of the
membrane amounts at choosing a fixed geometry. This assumption is reasonable for
example in the case of a spherical vesicle, if we suppose that the flow of water is
“fast” enough to allow us to consider the protocell as turgid, on the time scale of
interest (Sacerdote and Szostak 2005). This implies that we do not describe here in
detail the breakup of a vesicle into two, which certainly requires consideration of
shape changes—that are supposed to be fast and to fall below the time scale of the
relevant phenomena that the model describes. Moreover, we do not take explicitly
into account osmotic effects that might be relevant in the case of hypertonic or
hypotonic environments.

Let X denote the total quantity (mass) of geneticmaterial in the protocell lipid phase.
Note that themodel presented below is invariant with respect to the choice of the way in
which either C or X is measured; for example, if they were measured as number of
molecules the equations would retain exactly the same form (of course, the units of the
kinetic constants would be different). In the following, we will often write kinetic
equations for quantities, rather than for concentrations, although the latter is often the
preferred choice in chemical kinetics. However, the volume of our “reaction vessel”
changes in time, so it is simpler to deal with quantities. Of course, one might use kinetic
equations for concentrations in a changing volume, leading to the same results in a
(slightly) more complicated way (Munteanu et al. 2007; Carletti et al. 2008).

We assume, according to the Labug hypothesis, that only the fraction of the total
X, which is near the external surface, is effective in catalysing amphiphiles for-
mation. That is because precursors are found outside the protocell. For the same
reason this applies also to the replication of X itself (in the Labug original model,
where the GMMs are nucleic acids, the precursors are nucleotides). Let us denote
volume concentrations with square brackets. The total fraction of active X is pro-
portional to dS[X]S, where [X]S is the volume concentration of X in a layer of width
d below the external surface.

Let [P] be the volume concentration of precursors of amphiphiles in the external
solution near the protocell surface; assuming it to be buffered, then it is just a
constant. If the growth of the lipid membrane and the replication of GMMs both
take place near the surface, according to the law of mass action we have:

dC
dt

¼ a0S X½ �S P½ � þ vS P½ � � cu Cð Þ
dX
dt

¼ g0S X½ �mS�kw Xð Þ

8>><
>>: ð3:3Þ

Greek letters here denote positive kinetic coefficients.
The first term of the first equation is the growth due to the transformation of

precursors into amphiphiles, P ! A, catalysed by the X-GMM, assuming that
amphiphile A is quickly (indeed, instantaneously) incorporated in the membrane
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once it has been produced. The second term describes spontaneous growth, due to
spontaneous (i.e. non-catalysed) formation of amphiphiles, while the third term
accounts for possible release of amphiphiles previously incorporated in the mem-
brane (note that the exact form for the decay term has not been specified).

The second equation describes autocatalytic growth of the GMM (with a pos-
sible non first order kinetics described by the exponent m > 0). Possible degradation
is taken into account by the last term kw(X).

We now introduce some further hypotheses that allow us to study the behaviour of
the dynamical variable with analytical methods; these will later be removed and it will
be shown (either by more sophisticated mathematical techniques or by simulations)
that the main outcomes maintain their validity. So let us neglect the term of sponta-
neous amphiphile formation, which is assumed to be much smaller than the catalysed
term. We assume [P] constant and we suppose that S is proportional to Vb, and
therefore also to Cb (b ranging between 2/3 for a micelle and 1 for a spherical vesicle
with a very thin membrane). For the time being we will also assume m = 1 (linear
self-replication kinetics), an assumption which will be relaxed later. By taking into
account the fact that [X]s is proportional to the concentration of X in the whole lipid
phase, which is7 X/V = qX/C, and by slightly redefining the constants we obtain:

dC
dt

¼ aCb�1X � cu Cð Þ
dX
dt

¼ gCb�1X � kw Xð Þ

8>><
>>: ð3:4Þ

We will assume that the protocell breaks into two identical daughter units when
it reaches a certain threshold h. Moreover, we will assume that the rate limiting
steps in Eq. 3.4 above do not play a significant role during the growth phase when
C < h. Therefore the growth of a protocell up to its critical size is approximately
ruled by the following equations:

dC
dt

¼ aCb�1X

dX
dt

¼ gCb�1X

8>><
>>: ð3:5Þ

Let us now consider how C and X change in time. Starting with an initial
quantity of container C at time T0 equal to

8 h/2, we assume that once C reaches the
critical value q it will divide into two equal protocells of mass h/2.9 Let DT0 be the

7We assume here that transport in the lipid phase is extremely fast, leading to homogeneous
concentrations of GMM in the whole vesicle membrane or in the micelle.
8Even if the protocell which had been produced first had a different size, the initial C of each of its
daughter cells would anyway be exactly h/2, so we would take one of these daughters as our initial
point.
9Under these assumptions, the model is deterministic; we will later comment the possible role of
fluctuations in the size of the daughter protocells and in the concentrations of the GMMs.
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time interval needed to double C from this initial condition, and let T1 = T0 + DT0

be the time when the critical mass h is reached. Since the initial value for C is fixed,
DT0 is a function of the initial quantity of GMMs, X0. The final value of X, just
before the division is then X(T1). Because we assume perfect halving at the divi-
sion, each offspring will start with an initial concentration of GMM equal to X1 = X
(T1)/2. The successive doubling time will be denoted by T2 = T1 + DT1, and the
third generation will start with an initial value X2 = X(T2)/2, and so on.

The preceding discussion leads in a straightforward way to the following
equations, which refer to the kth cell division cycle that starts at time Tk and ends at
time Tk+1:

h
2
¼
ZTkþ 1

Tk

_C tð Þdt; and Xkþ 1 ¼ 1
2
X Tkþ 1ð Þ ð3:6Þ

Note that in general X(Tk+1) 6¼ 2X(Tk) and that the time needed to double the
value of C is not constant between two successive generations.

The phase of continuous growth is ruled by the linear Eq. 3.5 and it is therefore
amenable to analytical calculations. By direct inspection one observes that the
function Q(t) = ηC(t)−aX(t) is a first integral for the above system, namely it is a
constant quantity during each growth cycle. Hence evaluating it at the beginning
and at the end of the k-th generation we get:

gC Tkþ 1ð Þ � aX Tkþ 1ð Þ ¼ gC Tkð Þ � aX Tkð Þ

Using the halving hypothesis and the doubling size threshold for division one
obtain:

2aXkþ 1 � aXk ¼ g
h
2
:

This relation can be solved with respect to Xk+1, leading to:

Xkþ 1 ¼ Xk þD
2

ð3:7Þ
where

D � hη/2a. This can be iterated leading to

Xkþ 1 ¼ 1
2

� �kþ 1

X0 þ D
2

Xk
m¼0

1
2

� �m

¼ 1
2

� �kþ 1

X0 þ 1� 1
2kþ 1

� �
D:

Note that in the long time limit, i.e. in the limit of large k, the initial quantity of
GMMs converges to a fixed value:

Xk ! D ¼ hg
2a

ð3:8Þ
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no matter how large the initial value of X0 was. This proves synchronization since
the value of X at time k + 1 tends to twice the initial value of X, just like the value
of C at division time is twice its initial value at the k-th generation.

Note also that this result holds independently of the type of protocell container:
micelle or vesicle, i.e. b = 2/3 or b = 1.

This result tells us also that, after sufficiently many generations, the division
period converges to a fixed value, therefore leading to exponential growth of the
protocell population. In the thin vesicle case the doubling time can be computed
explicitly using the second relation of Eq. 3.6 for b = 1. In fact in this case we can
solve the equation for X to get, in the limit of large k:

DTk ! 1
g
ln 2: ð3:9Þ

Therefore the population tends to a condition where the doubling time is ruled by
η only, independently of the initial value of X.

To conclude this first analysis let us indeed compare two different initial pro-
tocells, which may have different parameter values. It is intuitive that if both a and
η are greater for one protocell than the other, that one will replicate faster. But what
happens if we compare two different protocells, one better at replicating nucleic
acid, the other more efficient in generating new membrane material? For the b = 1
case the answer is clear from the above equations: the doubling time depends upon
the rate of replication of the GMM only, and the population with the higher η will
become the fastest growing one. Numerical simulations confirm that the same holds
also for the b = 2/3 case.

Finally, it is important to remark that the results given above also hold in cases
that are more general than Eq. 3.5. To derive them we have used only the constancy
of the quantity Q, which can be straightforwardly proven for all the systems of the
form

dC
dt ¼ af C;Xð Þ
dX
dt ¼ gf C;Xð Þ

�
ð3:10Þ

for arbitrary functions f(C,X).
The above way of reasoning thus proves synchronization for thin membranes

with a single type of self-replicating molecule with linear kinetics.10

The same approach can be generalized further, thus proving that synchronization
is an asymptotic emergent property also in the case where the container is a micelle,
without any aqueous interior. The proof (see Serra et al. 2007a) is based on
renormalizing the time, thus showing that the value of the b coefficient does not

10And of course in some particular nonlinear cases like the one of Eq. 3.10.
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affect the achievement of asymptotic synchronization (thus simplifying the calcu-
lations, since it suffices to prove the results for the easier b = 1 case).11

The methods used to study the linear model can also be easily adapted to the
case where the GMMs follow a non-linear growth law where d[X]/dt is proportional
to [X]m, as suggested for the Labug model. Starting from Eq. 3.3, neglecting as
before the spontaneous growth and the decay terms, and recalling that [X]s is
proportional to X/C and S is proportional to Cb, one gets:

dC
dt

¼ aCb�1X

dX
dt

¼ gCb�mXm

8>><
>>: ð3:11Þ

where 0 < m < 1,12 and once again all constant terms have been incorporated in the
rate constants. We could perform the analysis in the general case, but thanks to our
previous remark, it will be enough to consider only the case b = 1, which simplifies
the system to:

dC
dt

¼ aX

dX
dt

¼ gC1�mXm

8>><
>>: ð3:12Þ

The study in this case is less straightforward than it was in the previous linear
case but, as described in Serra et al. (2007a) one can define the auxiliary quantities:

p � 1
2

� �2�m

H � g
a
p 1� pð Þh2�m

nk � X2�m
k

ð3:13Þ

and prove that, in the limit of large k,

nk ! n1 ¼ H
1� p

ð3:14Þ

thus nk, and therefore Xk, tends to a constant asymptotic value and in this limit the
division time becomes constant as well. Note that the constancy of the duplication
time that is asymptotically obtained implies that the growth of the protocell

11The value of the b coefficient affects the rates of duplication but not the fact that the system
asymptotically tends towards synchronization.
12This is true in the Labug model, where it is assumed that the GMMs grow by template dupli-
cation Rasmussen et al. (2004b).
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population, before limiting factors become important, is exponential: this expo-
nential growth implies, as first noticed in Munteanu et al. (2007), that the com-
petition among different types of protocells is strictly Darwinian, leading to a
“survival of the fittest” outcome. It is so even if the replicator kinetic equations are
sublinear, as in the case just discussed, while sublinear competition per se is known
to lead to a “survival of anybody” asymptotic behaviour.

We have described at length the calculation for the case of surface-reaction
models in order to make it clear which hypotheses, and which simplifications have
been adopted, and to illustrate in detail the method used to prove asymptotic
convergence to a constant replication rate.

The same results obtained above can be generalized in several ways, sometimes
by analytical techniques and sometimes by using computer simulations. Let us
summarize here some of these generalizations (while others, i.e. those related to the
presence of several species of interacting GMMs, will be the subject of the forth-
coming sections of this chapter). Synchronization is achieved also when (Serra et al.
2007a; Carletti et al. 2008; Filisetti et al. 2008):

• full geometry of the spherical shell is used (instead of the thin layer
approximation)

• X is a lipid that contributes to the volume of the lipid container (so its con-
centration is X/(X + C) instead of X/C); this shows that the abstract surface
reaction model discussed here can also apply to GARD models, where the
genetic molecules are identified with (some) membrane lipids

• it is assumed that the vesicle splits when a certain threshold value of the surface
(not of the mass or volume13) is reached

• the replicator kinetics is of the type of Eq. 3.11 with an exponent m � 1 but <2

Note however that the case with strictly quadratic kinetics behaves in a different
way. This might be guessed in the case of a single replicator, by observing that
when m = 2n would no longer be related to X, since nk ¼ X2�m

k (see Eq. 3.13). But
let us consider in detail a case that is sometimes encountered in the literature (see
for example Eigen and Schuster 1978, 1979; Kaneko 2006), i.e. that of a couple of
quadratic replicators. In this case the equations are

dC
dt

¼ a0Cb�1X

dX
dt

¼ g0Cb�2XY

dY
dt

¼ g00Cb�2XY

8>>>>>><
>>>>>>:

13The two are proportional to each other through the constant density q.
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Using the same techniques applied above, one finds that during the continuous
growth phase

d
dt

g00X � g0Yð Þ ¼ 0

so Q = ηʺX−ηʹY is conserved during each interval between two halvings; it is
divided by two at every cell replication, therefore it asymptotically vanishes, so in
the long-time limit

g00X1 � g0Y1 ¼ 0

from the equation for the container growth one gets

1
C
dC
dt

¼ a0

g00
1
Y
dY
dt

that can be directly integrated yielding

ln
C tð Þ
Ck

¼ a0

g00
ln
Y tð Þ
Yk

At the end of a replication cycle, C has doubled with respect to its initial value,
therefore at each replication the following equality holds

Ykþ 1

Yk
¼ 2

g00
a �1

So, as k increases, Y tends to 0 if ηʺ < a, and diverges if ηʺ > a, and therefore
there is no emergent synchronization in this case.14

There is another very important kind of “generalizations” of the above models,
i.e. to include stochastic effects. One can easily guess that there are fluctuations in the
size at which vesicles split, and also that the two daughter cells may be somewhat
different in size and number of molecules. Extensive simulations have been per-
formed both for the case of a single replicator type (i.e. the case of this section) and
for the cases with several different species (those described in the following sections)
and the results turn out to be those that one can expect: fluctuations add some noise
to the deterministic trajectories without changing the qualitative outcomes.

There is however another possible locus of stochasticity: the kinetic equations
written so far (for both the replicators and the container) are deterministic, but they
may involve15 small numbers of molecules, so that fluctuations can play a major

14Of course Y tends to a constant value if ηʺ = a but this is a very special case of fine tuning of the
parameters, and it bears no relationship with the robust synchronization that is achieved in other
cases.
15In particular, for the replicators.
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role. In this case the behaviour may be very different from that of a deterministic
model.

Some differences can be easily understood: suppose for example that one
describes a case where the number of molecules per protocell decreases in time, up
to the point that a single molecule of a replicating species survives, in a protocell,
and its kinetic does not allow it to duplicate while the container doubles. In this
case, if one makes a fully discrete simulation, one would find that in the asymptotic
state only one of the two daughter cells inherits one replicator, while in the
deterministic model the replicator concentration would vanish. These quite extreme
cases that are however easy to handle.

However, stochasticity in the replicator equations can have subtler and more
important effects. These will be properly dealt with a fully stochastic model,
described in Chaps. 4 and 5.

3.3 Several Linearly Interacting Replicators

So far, it has been shown that synchronization can be achieved in a broad set of
cases (surface-reaction models, GARD-like models, with linear or power-law
subquadratic replication kinetics) when there is a single type of replicator. It is of
course possible that different types of replicators interact in a protocell, therefore the
results shown above should be generalized to the case where there are several
interacting replicators.

We will first consider the case of surface reaction models with N different
“genetic molecules” that interact with each other; one or more of them is supposed
to be able to interfere with the container and to catalyse its growth. Our treatment
here will closely follow that of the one-replicator case (see Carletti et al. 2008;
Filisetti et al. 2008 for further details).

Let C be the total quantity of “container” (e.g., lipid membrane in vesicles) and
V its volume, which is equal to C/q (where q is the density, which will be assumed
constant). S will denote the surface area, which is a function of V. Let

~X ¼ X1;X2. . .Xq
� �

denote the total quantity (mass, or number of moles) of q different types of repli-
cating molecules16 in the protocell lipid phase. The corresponding concentrations
will be denoted as usual by square brackets. As it was done in the case where there
is one single type of replicators, we will adopt the simplification b = 1 that does not
affect the asymptotic behaviours. Introducing approximations similar to those of
Sect. 3.2, in the case of linear interactions among the replicators one obtains the

16There may be other chemical species that do not grow in time, but due to the fission processes
their numbers would become monotonically smaller, generation after generation.
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following set of equations that are valid during continuous growth, between two
successive divisions (cfr. Eq. 3.5, with b = 1)

dC
dt

¼~a �~X
dX
dt

¼ M~X

8>><
>>: ð3:15Þ

here a = (a1 … aq) are the coefficients that couple the replicators to the container
and Mik is the coefficient that couples the quantity of replicator k to the growth rate
of replicator i. Some components of the vector a and some elements of the matrix
M may of course vanish.

We assume that division takes place when the mass of the protocell reaches a
certain critical size. Let us denote by T1 … Tk the various times when duplication of
the container takes place, by DT0, DT1 … DTk the various duplication intervals, by
X(T1)…X(Tk) the quantities of the various replicators at the end of each phase of
continuous growth and by Xk = (1/2)�X(Tk) the quantities of the various replicators
at the beginning of the (k + 1)th phase of continuous growth. Following the
same logical steps of the one-type of replicator case, one can study under which
conditions the system described displays synchronization, in the sense that
limk!1~XðTkÞ ¼ ~X1 (constant) so that, after several cell divisions, the initial
quantities of all inner chemicals between successive duplications approach constant
values. This requires that

lim
k!1

~X Tkþ 1ð Þ �~X Tkð Þ� � ¼ 0

lim
k!1

DTkþ 1 ¼ DT1
ð3:16Þ

Let us therefore consider the behaviour of the system in the continuous growth
phase between two successive generations. From the linearity of Eq. 3.15b one
immediately infers that, during the first replication (i.e. when 0 � t � T0)

~X tð Þ ¼ eM t�T0ð Þ~X0

so that

~X T1ð Þ ¼ eMDT0~X0

~X1 ¼ 1
2
eMDT0~X0

The same reasoning applies to all generations, so

~Xkþ 1 ¼ 1
2
eMDTk~Xk ð3:17Þ
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From Eq. 3.17 one derives a necessary and sufficient condition to ensure
synchronization

~X1 ¼ 1
2
eMDT1~X1 ð3:18Þ

So ~X1 must be an eigenvector of the matrix eMDT1 belonging to the eigenvalue
2. It is well known that in this case it must be an eigenvector of MDT∞ belonging to
the eigenvalue ln2 and therefore

M~X1 ¼ k~X1

k ¼ ln 2
DT1

ð3:19Þ

Remember that the Xi’s must be real and non negative, so in order for syn-
chronization to take place in a linear system the (real) matrix M must admit such an
eigenvector. Note also that k must be real and non negative, otherwise 3.19b would
be meaningless. The conditions under which these conditions are satisfied are
discussed below, where we also discuss which eigenvalue has to be chosen to
describe the asymptotic state, among those of the matrix M. For the time being, we
will assume that k is a simple positive eigenvalue of the coefficient matrix M.

Since eigenvectors are determined up to a multiplicative constant, Eq. 3.19 do
not suffice to determine a unique solution.

Assuming that the matrix M is invertible,17 from Eq. 3.15 we get:

dC
dt

¼~a �M�1 d~X
dt

hence the quantity QðtÞ ¼ CðtÞ �~a �M�1~XðtÞ is a first integral, i.e. a quantity
constant during each division cycle (the proof is straightforward, as it suffices to
differentiate Q(t) and use Eq. 3.15). Evaluating Q at the beginning and the end of
the k-th division we obtain

C Tkð Þ �~a �M�1~X Tkð Þ ¼ C Tkþ 1ð Þ �~a �M�1~X Tkþ 1ð Þ

recalling that C takes an initial value equal to h/2 and a final value equal to h and
using the definition of ~Xk we finally get:

h
2
¼~a �M�1 2~Xkþ 1 �~Xk

� �

17If this were not the case, this would mean that some variables are linear combinations of the
others, therefore one can always resort to the det(M) 6¼ 0 case by adopting a reduced description
based on the subset of independent variables only.
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which can be solved with respect to M�1~Xk and in the limit of large k we get:

h
2
¼~a �M�1~X1 ð3:20Þ

Multiplying Eq. 3.19 a times M−1 and then taking the scalar product with a,
from Eq. 3.20 we get:

DT1 ¼ h ln 2

2~a �~X1
ð3:21Þ

which is the required relationship.
The general approach is now clear: from the matrix of the coefficients M one

computes the eigenvalue k, which in turn determine the asymptotic interval
between two successive divisions DT∞. The components of the eigenvector ~X1 are
determined by Eq. 3.19 except for a constant, which can be determined from
Eq. 3.21.

Let us now consider the problem of the conditions under which k and the
components of ~X1 are real and nonnegative.

Let us first discuss the important case where all the matrix elements are non
negative, i.e. Mij � 0, 8 1, j = 1 …N. This implies that there is no negative
interference between different replicators i and j, so the only possible alternatives
are that either i favours the formation of j or that it does not influence it in any way.
Moreover, we must also require that at least one of the entries Mij does not vanish,
since otherwise there would be no replication at all.

Note that, in a linear system, the case with nonnegative matrix elements Mij

makes sense, from a physical viewpoint, since it can describe the condition where
the formation of species i is catalysed by the presence of species j, directly from its
substrates, that must be assumed to be always available—in a condition where the
limiting factor is the availability of the catalyst.

If the matrix elements are nonnegative and not all vanishing, and if the matrix M
is irreducible, then we can apply the Perron theorem (Milne 1988) which states that
the eigenvalue with the largest module is real and positive,18 and that there is a
non-negative eigenvector belonging to that eigenvalue. It is precisely that eigen-
value, which rules the long term behaviour of the protocell, which must be used in
Eq. 3.21.

Indeed, from Eq. 3.17 one obtains

~X T2ð Þ ¼ eMDT1~X1 ¼ eMDT1
~X T1ð Þ
2

¼ eMDT1eMDT0
~X0

2
¼ eM T2�T0ð Þ~X0

2

18And also unique.
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which can be iterated to yield

~X Tkð Þ ¼ eM Tk�T0ð Þ ~X0

2k�1 ð3:22Þ

Note that, although 2 k ! ∞, the r.h.s does not vanish as k ! ∞ since, at
every generation, the numerator is multiplied times a new term.

Let us first consider the important case where the operator M is normal (i.e. it
commutes with its adjoint); then it admits N orthogonal eigenvectors and its
spectral expansion is

M ¼
X
m

kmPm ð3:23Þ

where the Pm’s are projection operators onto the subspaces spanned by the
eigenvectors belonging to the eigenvalues km. Let us suppose that the eigenvalues
are ordered according to their modules: then the Perron theorem guarantees that the
eigenvalue with the largest real part k1 is real and unique.

Substituting Eq. 3.23 in Eq. 3.22 one observes that the long time behaviour of
~X1 is ruled by the eigenvalue with the largest real part, i.e. k1, that it is real and
positive, and that it admits a nonnegative eigenvector, as required.

In Fig. 3.2 a simulation of a system with a 3	3 non negative matrix M, is
shown: there one can see that the cell division time converges to the expected value
given by Eq. 3.21 and that the quantity of genetic material at the beginning of the
protocell growth cycle tends to a constant value as generations follow generations.

Fig. 3.2 Numerical simulations of the SRM system described by Eq. 3.15; parameters values are
shown in the figure; the largest eigenvalue of the positive matrix M is k1 = 3.5054. On the left
panel the division time, DTk, is shown as a function of the generation number (note the good
agreement with the asymptotic theoretical value log2/k≅0.1977). On the right panel the amount of
genetic material X = (x1, x2, x3) at the beginning of each division cycle is shown (the asymptotic
values are in good agreement with the theoretical ones X = (790.0772, 745.0027, 217.6201).
Adapted from (Carletti et al. 2008)
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If k1 is a simple eigenvector then ~X1 is uniquely determined (apart from a
constant), while if k1 admits multiple eigenvectors then ~X1 is not uniquely
determined, and any vector belonging to the subspace onto which P1 projects is
invariant.

Let us now consider a more general case, i.e. let us relax the hypothesis that M is
normal, while still requiring that it has N independent eigenvectors (a necessary and
sufficient condition for M to be diagonalizable). The spectral expansion 3.23 no
longer holds, since now it may happen for some i, j, i 6¼ j, that PiPj 6¼ 0. However,
given the independence, the set of eigenvectors f~mkjk ¼ 1 . . . Ng is a basis, so that
every solution of the kinetic equations

d~X
dt

¼ M~X

can be written as

~X tð Þ ¼
XN
j¼1

u tð Þ~mj

By substituting this equation in the previous one, and by recalling that

M~mj ¼ kj~mj

one finds that the uj’s have an exponential dependence upon time (uj � exp(kjt))
therefore the general expression for any solution is

~X tð Þ ¼
XN
j¼1

cjekj t~mj ð3:24Þ

where the c’s are constant coefficients which are determined by the initial condi-
tions. We are therefore led to the same conclusion as in the case of a normal
operator: the long term behaviour of the Xi’s is ruled by the eigenvalue with the
largest real part. If the matrix M is non negative and non null, the Perron theorem
guarantees that it is actually positive, with nonnegative eigenvectors.

Let us now turn to a more general case and admit that some entries of the real
matrix M can be negative. However, the physical meaning of linear differential
equations with arbitrary negative terms needs to be discussed. Consider for example
the case where, for a component i 6¼ 1, Mi1 < 0: if the initial condition are such that
only species 1 is present, then the initial value of dXi/dt would be negative and,
since Xi(0) = 0, this would imply that Xi would become negative—which of course
has no physical meaning.

A reasonable way to deal with these cases, which is frequent in population
dynamics, is to assume that, whenever one of Xi’s becomes negative, it has to be
interpreted as being actually equal to zero (the nonphysical negative value
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indicating some limitation of the model used). Although this approach is not
extremely rigorous, it rationale is that if Xi, starting from a positive value, “becomes
negative”, it must have passed through the value zero: in this case there is no more
replicator in the system, and it is justified to set its value equal to zero. The value of
Xi may become positive at a later time if it is produced by reactions involving other
replicators (which do not require Xi itself to be present). Setting Xi = 0 when the
equations would bring it in the negative region makes analytical treatment hard but
can be straightforwardly dealt with in simulations.

However, there is a more serious problem with negative coefficients: indeed,
supposing that dXi/dt is proportional to −Xj should describe a case where j catalyses
the destruction of I; but this term should depend also upon the concentration of the
i-th component, at least when it becomes scarce. The approximation that dXi/dt is
proportional to −Xj may be accepted, under some conditions, as long as i is not
limiting, but it cannot be valid under different circumstances. So using arbitrary
negative entries in the matrix M is dubious from a physical viewpoint.

This remark does not apply to the case where only some diagonal terms Mii are
negative, since this describes a spontaneous decay of component i.

While the above remarks cast doubts on the physical meaning of some cases
where there are negative entries in M, a general analysis has nonetheless been
performed (Carletti et al. 2008; Filisetti et al. 2008). In this case complex eigen-
values may appear. Let us summarize what we learnt about the case where M has N
independent eigenvectors. For the sake of brevity, let us call the eigenvalue(s) with
the largest real part ELRP: this is the one that rules the system long time behaviour.

If the real part of the ELRP is negative, then the system dies out, and all the
replicators eventually disappear. Let us then suppose from now on that the real part
of ELRP is non-negative.

If there is a single ELRP which is real, positive and simple, and there are no
other eigenvalues with the same real part, then the duplication time is given by
Eq. 3.21 and the eigenvector can be computed as before (see Fig. 3.3), with the
caveat that possible negative values of some Xi’s are to be interpreted as zero’s. In
the limiting case that ELRP is equal to zero the duplication time diverges, so the
process of growth and duplication does not start.

If there are two ELRP with nonvanishing imaginary parts that are both simple
(one eigenvector each), they must be complex conjugate to each other (Lütkepohl
1996): This leads however to negative values for some Xi’s, which must be
interpreted as zeros, as discussed above. It can be observed in simulations that this
leads to a simplification of the system, with some of the Xi’s being driven out of the
dynamics.

It is interesting to point out an interesting phenomenon that can take place with
complex eigenvalues: in this case oscillations in the duplication times are some-
times observed (Fig. 3.4) in the long time limit. This can be regarded as a particular
form of synchronization (“supersynchronization”), since it allows a sustainable
growth of the protocell population, although the duplication times show a periodic
behaviour.
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3.4 Several Interacting Replicators with Nonlinear
Interactions

Let us now consider what happens when the kinetic equations for the replicators are
nonlinear. In this case analytical results are scarce, and simulation is the royal road
to unravelling the behaviour of the model.

The growth of the container is assumed to be described in all cases by a linear
equation, of the type:

dC
dt

¼~a~X ð3:25Þ

where some components of the vector of coupling coefficients a can vanish.

Fig. 3.3 Left the values of different components of the vector X (that are the quantities of the
corresponding species) versus generation number; right: the values of different components of the
asymptotic vector X versus those of the eigenvector v1 corresponding to the ELRP. (Note that
proportionality holds even in a case where some entries of the matrix M are negative)

Fig. 3.4 An example of supersynchronization: the phase plot of a two-dimensional system is shown
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Some different types of kinetic equations for the replicators are described below,
and the results of simulations of various kinds of kinetic equations are summarized.
The interested reader is referred to Filisetti et al. (2010) for further details.

Quasilinear models
One drawback of linear equations like 3.15b is that the growth rates may undergo
an unrealistic unlimited increase. In order to take physical constraints on the
reaction rates into account it is possible to introduce bounds that are never
exceeded. Instead of fixing sharp thresholds, which would lead to discontinuities,
one can make use of squashing functions, i.e. never decreasing functions which are
bounded both from below and from above (examples include hyperbolic tangents
and logistic functions).

Let r(•) be such a function. The rate of change of the quantities of replicators are
then

dXi

dt
¼ Cb�1r

XN
k¼1

MikXk

 !
ð3:26Þ

In this case the behaviour is similar to that of the corresponding linear model
with the same coefficients Mij. In particular, synchronization in the linear models
implies synchronization in the quasi-linear one, and vice versa. One sometimes
observes supersynchronization in the linear case, while the corresponding nonlinear
version synchronizes.

One frequently observes that the inputs to the various terms are such that their values
saturate, so that the duplication times are largely unaffected by the precise values of the
matrix elements Mij (as long as saturation is achieved) and are not a function of Rk

MikXk (as it would happen in the linear case). Another interesting observed feature is
that cell duplication times are not affected by a, like in the linear case.

Self-replication with second order kinetics
In the previous case the deviations from linearity were due to the squashing effect,
but there were no real interactions among different molecules. The further model
that we will discuss takes into account pairwise interactions, so it reads

dXi

dt
¼ Cb�2

XN
k¼1

MikXiXk ð3:27Þ

In the case of mutual catalysis the coefficients are nonnegative. Note that some
catalytic cycles can be modelled in this way by a proper choice of the matrix
elements Mik.

This model does not show emergent synchronization, as one should expect by
generalizing to the N-replicator case the analytical treatment discussed for the case
of one or two types of replicators. This happens also if the coefficients are all
non-negative, and if they represent a catalytic cycle.

3.4 Several Interacting Replicators with Nonlinear Interactions 49



Another model, related to the previous one, still considers quadratic interactions
among self-replicating molecules, but it also admits linear diagonal term; it is
therefore described by

dXi

dt
¼ Cb�2

XN
k¼1

MikXiXk þCb�1giXi ð3:28Þ

This system behaves in a markedly different way from the previous one: it either
gets extinguished or it synchronizes. Therefore, even if the purely quadratic case
does not synchronize, this property is not structurally stable; it suffices to consider
first order terms to obtain synchronization (or, of course, extinction) also with this
type of nonlinearities.

Second order with saturation
The reasons that motivate the previous models lead us to consider also the case
where a molecule replicates itself under the influence of others, but where this
influence is bounded, e.g., the model described by

dXi

dt
¼ Cb�1Xir

XN
k¼1

MikXk

 !
ð3:29Þ

The observed behaviours in this case are either synchronization or extinction of
the replicators.

Indeed, if arbitrarily small values of the replicator quantity are allowed, one
sometimes also observes supersynchronization; however, this behaviour disappears
if one introduces a threshold, so that values of Xi smaller than this threshold are set
to zero. The reason why it is meaningful to use such a threshold is that protocells
are small reactors, and they may contain just a few molecules. A rigorous
description of these effects would need the use of discrete stochastic models like
those of Chaps. 4 and 5, instead of the continuous kinetic equations used in this
section, which can however be justified as long as the quantity of each replicator is
not too small. So we use here the kinetic equations but with the caveat that very
small values of X may represent cases with less than one molecule per cell, and
these should therefore be excluded by imposing the threshold. It is possible to make
a very rough order-of-magnitude estimate of this threshold, which leads to consider
meaningless those quantities that are smaller than �10−8: choosing such a threshold
leads to a disappearance of the supersynchronization phenomenon in the model
described above, while imposing such a small threshold in the linear and quasilinear
models does not affect the appearance of supersynchronization.

Second order kinetics without self-replication
Let us finally consider the case where there is no self replication, but the genetic
memory is based upon molecules which mutually catalyse each other’s formation
from existing precursors, in a way which requires the interaction of two molecules
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to produce a third one. The corresponding equations, neglecting possible saturation
effects, are then

dXi

dt
¼ Cb�2

XN
k¼1

MijkXjXk

Mijk ¼ lijk 1� dij
� �

1� dikð Þ
ð3:30Þ

Here sometimes synchronization is achieved, while in other cases extinction is
observed. In a qualitative way, one observes that the outcome is related to the
sparseness of the matrix M: if a large fraction of the matrix elements is nonvan-
ishing, synchronization is frequently found. We will understand better what lies
behind this quite vague sentence after introducing catalytic cycles in Chap. 4; when
the coefficient matrix allows the formation of a so-called RAF set of reactions (see
Sect. 4.5) then sustained synchronization occurs. Another qualitative observation is
that it sometimes takes many simulation steps to achieve synchronization, which is
approached after many damped oscillations.

The above cases show that, whenever extinction does not take place, synchro-
nization is very frequent. In order to test how robust this behaviour is, it is possible
to use kinetic equations that would lead, by themselves, to chaotic behaviours. It is
not easy to guess a priori the effects of their interaction with the container. We have
considered several examples, including the well-known Lorentz equations, where
three different species interact.

However, in the Lorentz attractor, some values can become negative, and this
would make no sense if the variables describe quantities or concentrations of
chemicals. One could resort to the prescription of setting negative values equal to
zero, but this would definitely change the dynamics. So we have also considered
another system that can display chaotic behaviours while all the variables are
positive, i.e. the Willamowski -Rössler equations (Willamowski and Rössler 1980;
Filisetti et al. 2010). In this case the model equations are the following

dC
dt

¼ aX

dX
dt

¼ k1X � 1
C
k�1X

2 � 1
C
k2XY þ 1

C
k�2Y

2 � 1
C
k4XZ þCk�4

dY
dt

¼ 1
C
k2XY � 1

C
k�2Y

2 � k3Y þCk�3

dZ
dt

¼ � 1
C
k4XZ þCk�4 þ k5Z � 1

C
k�5Z

2

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3:31Þ

By studying several examples the following pattern emerges: whenever the
coupling of the replicator(s) with the container is very small, their dynamics is
chaotic, but when the coupling becomes significant chaos is suppressed. Therefore
coupling the replicators to the container may be a way to tame chaos: even chaotic
equations can lead to ordered behaviour and synchronization (see Fig. 3.5)!
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3.5 Internal Reaction Models

Let us now turn to the case where all the key reactions take place within the
protocell internal volume (internal reaction models, briefly IRMs). Indeed, most
protocell architectures are based on this assumption (see e.g. Szostak et al. 2001).

We will resort to approximations similar to those used for the case of SRMs,
including that of homogeneous concentrations in the water phases (which amounts
to infinitely fast diffusion in the water phases, both inside and outside the protocell).

Fig. 3.5 Chaos can be suppressed by coupling the replication equations to the growth and
division dynamics of the container. Adapted from (Filisetti et al. 2010), with permission. If
uncoupled to any container the stand-alone Willamowski-Rössler can be a strange attractor (panel
d). The parameter values are X(0) = 2, Y(0) = 3, Z(0) = 1, k1 = 30, k2 = 1, k3 = 10, k4 = 1,
k5 = 16.5, k−1 = 0.25, k−2 = 0.0001, k−3 = 0.001, k−4 = 0.5, k−5 = 0.5. The behaviour of the
Willamowski-Rössler system (Eq. 3.31) in a protocell is strongly dependent upon the value of the
coupling coefficient. For a small value (panel a, a = 0.01) the chaotic behaviour is still observed
but increasing a the system attractor becomes periodic (panel b, a = 0.1) and, by further increasing
a it tends to a fixed point (panel c, a = 0.3)
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In the first models of this section it will also be assumed that precursors are
always available in the inner volume, which amounts to assume that precursors
freely permeate the lipid membrane, and that the transmembrane diffusion is also
infinitely fast.19 We will later relax this hypothesis. On the other hand, it is sup-
posed that the replicator molecules cannot cross the membrane.20

Let us consider the case of a vesicle with internal volume Vi: the overall volume
is Vi + VC, where VC is the volume of the membrane, and C = qVC is the container
mass (q being of course its density).

X catalyses the formation of molecules of C, therefore we assume that the rate of
growth of C is proportional to the number of X molecules in the interior of the
vesicle

dC
dt

¼ aX ð3:32Þ

note that this equation holds independently of the form of the replication kinetics of
X.21 In this section we compare the behaviour of IRMs with that of the corre-
sponding SRMs. The presentation closely follows those given in Carletti et al.
(2008), Filisetti et al. (2010).

A single type of replicator, linear kinetics
In this case the number of new X molecules is proportional to the number of
existing ones (given that precursors are not limiting), so

dX
dt

¼ gX ð3:33Þ

Note that the previous equations are exactly like those of the linear case of
surface reaction models, i.e. Eq. 3.5. However, the overall models can be slightly
different (see below), but this difference does not affect the main conclusion, so the
synchronization properties are like those of the SRM model.

The difference is related to the hypotheses that can be made concerning the
fission process: when a progenitor cell fissions, it gives birth to two identical
daughter cells. We suppose that in this process no lipid is lost in IRMs, just like it
happens in SRMs: it means that the membrane of each daughter cell is equal to one
half of the membrane of the parent, therefore the volume of each daughter cell is
smaller than one half of that of its parent (total surface area is conserved in fission,
so total volume is not). Different hypotheses might be made: if we assume that

19These approximations are certainly unphysical but they simplify the model; finite diffusion rates
can then be simulated to check the robustness of the results.
20This is of course also an approximation; we treat the membrane as a Boolean object, that is
completely impermeable to some molecular species, while some other species do not even “see” it.
21One might consider of course also different dependencies of the container growth rate upon the
replicators, that might be studied with methods similar to those shown here; however, in this
section we will limit to consider linear equations like 3.32.
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GMMs stay quite close to the membrane, we might guess that no genetic material is
lost. In this case, the IRM equations are exactly like those of the SRM, and the
conclusions are the same.

However, if the GMMs are found in the internal volume, some genetic material
will be “lost” in fission, together with some internal volume. Therefore, the initial
quantity of X will be less than one half of that of the parent cell. It is natural to
suppose, as usual, that the concentration is uniform in the internal water phase,
therefore the loss of X is proportional to the loss of internal volume, and this latter
turns out to be close to 1/3 of the total (Calvanese et al. 2017). In general, the initial
value of replicators at a new generation Xk+1 will be smaller than one half of the
final value Xk

f at the end of the previous generation: Xk+1 = xXk
f , with x < 1/2. The

time needed to reach the critical size will be affected by this minor change to the
model equations, but it can be straightforwardly proven that synchronization is
achieved as well. The same applies to the different cases discussed below
(Calvanese et al. 2017), so we will avoid further repetitions of this argument.

A more complete description of the case where some genetic material is lost
outside of the protocell will be given in Chap. 5, taking into account also the
stochastic effects that can play a significant role at small concentration levels.

A single replicator, quadratic kinetics
In this case the number of collisions per unit time per unit volume is proportional to
[X]2 (denoting concentrations with square brackets). Note that here the volume is
the internal one, not that of the lipid phase. The total number of collisions per unit
time in the interior of the protocell is therefore proportional to Vi[X]

2 = X2/Vi, and
therefore:

dX
dt

¼ g
X2

Vi
ð3:34Þ

In order to complete the treatment it is necessary to express Vi as a function of C
(or of VC = C/q), and this depends upon geometry. Let us suppose that the vesicle
is spherical, with internal radius ri and with a membrane of constant width d (a
reasonable assumption if it is a bilayer of amphiphilic molecules). Then it is
straightforward to prove that

VC ¼ 4prid
2 þ 4pr2i dþ

4
3
pd3 ð3:35Þ

this equation can provide ri as a function of VC; it is a second order equation for ri
has then two real solutions, the positive one given by

ri ¼
�d2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� d4

3 þ VC
4p

q
2d

ð3:36Þ

54 3 Dynamical Models of Protocells and Synchronization



To get a feeling of how it may work let us consider the limit of small d, so in
Eq. 3.35 we neglect terms of order higher then 1: in this case

VC ffi 4pr2i d ¼ Sd

where S is the surface area, S = 4pri
2. Now

Vi ¼ 4
3
pr3i ¼

4
3
p

S
4p

� �3
2

ffi 4
3
p

VC

4pd

� �3
2

¼ 4
3
p

C
4pdq

� �3
2

ð3:37Þ

by incorporating various constants into the kinetic constant η, Eq. 3.34 can there-
fore be rewritten as

dX
dt

¼ g
X2

C
3
2

ð3:38Þ

It is interesting to note that the system described by this equation does not
synchronize. This is not different from the case of surface reaction models, where
we have already noticed that synchronization occurs only if the exponent to which
X is raised on the r.h.s. of the kinetic equation is smaller than 2 (while in Eq. 3.38 it
is exactly 2).

This result is indeed related to a more general one, valid for IRMs described by
the following equations:

dC
dt ¼ aXcV1�c

dX
dt ¼ aXmV1�m

�
ð3:39Þ

where V is the internal volume of the protocell.
The form of the previous equations derives from the assumption that the repli-

cator growth rate is proportional to [X]m and that the container growth rate is
proportional to [X]c, where square brackets denote volume concentrations (i.e.
[X] = X/V). If V is an (unspecified) non decreasing function g(C) of the total
quantity of container C, then it is possible to simplify the form of the discrete map
between the initial value of X at successive generations, by renormalizing time in a
nonlinear way (Serra et al. 2009).

After this simplification it can be proven that synchronization takes place only if
m < c+1 (i.e. if the replication rate of the GMM is “not too fast” with respect to the
growth of the container) and that it does not take place22 if m = c+1 (Serra et al.

22One might observe synchronization for very specific parameter values, which correspond to a
zero-measure subset of parameter space; in this case synchronization is there from the beginning,
so it is not an emergent property. Moreover, it is fragile, since it would be lost if small changes of
the values of the parameters took place. Recall that in this whole volume we refer to these cases as
those that do not synchronize.
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2009). The previous case (i.e. the one described by Eqs. 3.32 and 3.34) fits exactly
this last equality.

“Fast” IRMs with various kinetic equations
Let us comment on the behaviours which are observed in IRMs in those cases
where the replicator kinetics are of the kinds considered for surface reaction models,
while the container growth is again ruled by a linear law like

dC
dt

¼~a �~X ð3:40Þ

The difference with respect to surface reaction model is that the relevant con-
centrations are those in the internal volume, thereby leading to a different depen-
dency upon C. As in the case of a single type of replicators, in the equations for
dX/dt, terms that are linear in X bear no dependency upon C, while terms, which are
quadratic, carry a term C−3/2.

Extensive analyses and simulations lead to the following conclusions. In the
linear and quasilinear cases the equations are the same as those of Sects. 3.3 and 3.4
respectively, and the behaviour is the same. In the purely quadratic case no syn-
chronization is observed, like in surface reaction models. Also in the case of second
order models with saturation the equations are just like those of surface reaction
models with b = 1, and the behaviour is the same.

In the case of second order reactions without self-replication the replicators are
ruled by the following equation:

dXi

dt
¼ C�3

2

XN
k¼1

MijkXjXk ð3:41Þ

By varying the kinetic coefficients one sometimes observes synchronization but
more often extinction. In synthesis, the behaviour of these “fast” IRMs is very
similar to that of the corresponding surface reaction models but they get more easily
extinguished (due to the C−3/2 term).

Finite diffusion rate of precursors through the membrane
Here we take into account the fact that the crossing of the membrane from pre-
cursors may require a finite time. We again suppose that the key reactions (i.e.
synthesis of new C and new X) take place in the interior of the protocell, and that
diffusion in the water phase (internal and external) is infinitely fast. It is assumed
that X molecules do not permeate the membrane, but that precursor of C and X can.
The external concentrations of these precursors are buffered to fixed values EC and
EX, while the internal concentrations can vary, their values being [PC] = PC/Vi and
[PX] = PX/Vi. Note that, for convenience, the fixed external concentrations are
indicated without square brackets, while PC and PX denote internal quantities. The
newly formed amphiphilic molecules that make up the lipid container are instan-
taneously inserted in the membrane and contribute to the growth of C.
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Precursors of X and C can cross the membrane at a finite rate; if D denotes
diffusion coefficient per unit membrane area, then the inward flow of precursors of
C (quantities/time) is DCS(EC−[PC]),

23 and a similar rule holds for X.
X catalyses the formation of molecules of C, therefore we assume that the rate of

growth of C is proportional to the number of collisions of X molecules with C
precursors in the interior of the vesicle. It is therefore a second order reaction.
Reasoning as it was done before one gets

dC
dt

¼ a0hCV�1
i XPC ð3:42Þ

similarly:

dX
dt

¼ g0hXV�1
i XPX ð3:43Þ

Note that it might happen that more molecules of precursors are used to syn-
thesize one molecule of product (the number of precursor molecules per product
molecule can be called hX and hC).

Then the equations for the precursors are:

dPX
dt ¼ SDX EX � PX

Vi

� 	
� g0hXV�1

i XPX

dPC
dt ¼ SDC EC � PC

Vi

� 	
� a0hCV�1

i XPC

8<
: ð3:44Þ

Equations 3.42–3.44 provide a full description of the dynamics. Note that by
defining η = ηʹhX and a = aʹhC one can eliminate the stoichiometric coefficients
from these equations.

In order to complete the study it is necessary to express Vi and S as a functions
of C (or of VC = C/q) and this depends upon geometry. Let us suppose, as we did
in the case of infinitely fast diffusion, that the vesicle is spherical, with internal
radius ri and with a membrane of constant width d (a reasonable assumption if it is a
bilayer of amphiphilic molecules). Then the analysis can proceed exactly like in that
case.

As it was shown, if d is small, one has

Vi ffi 4
3
p

C
4pdq

� �3
2

ð3:45Þ

23The so-called Fick’s law (see also Bird et al. 1976).
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Moreover

S ¼ 4pr2i ¼ 4p
3Vi

4p

� �2=3

ffi 1
qd

C ð3:46Þ

These last two equations, inserted in Eqs. 3.42–3.44, complete the model.
The behaviour of this model has been extensively studied with numerical

methods (Serra et al. 2009) and it has been verified that it actually shows
synchronization.

So far, models where the key reactions can take place in the whole internal phase
of the protocell have been considered. One might however also hypothesize that the
cell membranes can directly affect the reactions; this might happen via a direct
catalytic activity or, perhaps more realistically, in an indirect way. It is well known
that molecules provide a local ordering of the water molecules, and it is conceivable
that they can have a similar effect on other molecules, e.g. by favouring the
alignment of polymers. All this might be modelled, at an abstract level, as a kind of
catalytic activity, that might affect some replicators, and that should take place only
in a small portion of the internal water phase, the one that is close to the membrane.
The membrane would perform a similar catalytic action also on its outer side, but if
the volume of the external environment is much larger than that of a single protocell
then the products of this outside catalytic activity will be quickly diluted.

This is not the case for the internal molecules, which cannot cross the membrane.
It is therefore also interesting to consider a model where (i) the catalysed reactions
take place only in a small spherical shell close to the inside side of the membrane
and (ii) the products instantaneously diffuse in the internal water phase. Such a
model has been recently studied and it has been shown that its synchronization
properties are also similar to those of the IRMs (near-surface reaction model, or
NSRM, see Calvanese et al. 2017 for details).

After having examined the behaviour of different types of protocell architectures,
and of different types of reactions among the replicators, we come to the conclusion
that synchronization is a robust property, provided that the growth of the replicators
is “strong enough”.24 While some cases have been found where such synchro-
nization is not achieved, they seem related to quite peculiar kinetic hypotheses, and
they turn out to be structurally unstable. So the conclusion of this chapter is opti-
mistic about the possibility of achieving sustainable protocell populations.

However, in the models of this chapter it has been supposed that the replicators
are already there, but we cannot overlook the fact that a major problem is indeed
that of getting sets of molecules that are able to collectively self-replicate.

24This term is somehow generic, but it has been given a rigorous definition in the case of linear
replicator dynamics where it refers to the value of the eigenvalue with the largest real part of the
reaction matrix; moreover, there is a rigorous limit in the case of autocatalysis where the growth
exponent has to be lower than a precise value (Serra et al. 2009).

58 3 Dynamical Models of Protocells and Synchronization



Moreover, the models considered so far are deterministic. It has been verified
that they are robust with respect to the effects of some noise (e.g. in the splitting
process) but we must not forget that, when new molecular types are first synthe-
sized, the numbers of their molecules are likely to be very low—a situation that is
not properly treated by deterministic models, and that requires a truly stochastic
approach.

These aspects will be analysed in depth in the following Chaps. 4 and 5.
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Chapter 4
Models of Self-Replication

4.1 Introduction

A protocell could be schematically described as a self-organized, spatially confined
collection of chemical species and chemical reactions, able to support the three
main properties of living systems: metabolism, reproduction and inheritance. In
living systems, while some chemicals are exclusively dedicated to a single activity,
like DNA that is devoted to template-based replication, it often happens that the
same chemical substance can participate (as substrate, product or catalyst) to many
different reactions, which in turn can contribute to the different properties men-
tioned above; moreover the same reaction may be involved in more than one
property. The components are not freely fluctuating within the environment, but are
spatially confined by membranes in very small containers (cells). This fact has
many significant consequences, which are discussed in other parts of this book
(mainly in Chaps. 3 and 5): in this chapter we focus on the study of the charac-
teristics that a set of chemical species should have in order to support its collective
growth.

In this chapter the set of chemical species and of their interactions will be often
referred to as the “dynamical system”, or “system” of interest, whereas its container
as the “environment”.1 Sometimes in the following we could mention the wider
physical setting where everything happens: in this case we will use the term “ex-
ternal environment”. The simplest “environment” is a closed vessel that contains an
aqueous solution of different chemical species, which can react with each other. For
our purposes, it is interesting to understand which conditions allow the molecules to
self-replicate, i.e. to generate copies of themselves. However, the closed vessel is
typically an isolated system, which is bound by the second law to reach an equi-
librium state, where no further increase can take place.

1Note that the use of the word “container” was different in Chap. 3, where it referred to the lipid
membrane of a protocell.
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It is therefore also interesting to consider an open system like a continuous flow
stirred-tank reactor (CSTR for short), a vessel where a constant inflow of a water
solution of some chemical species assures a neverending source of raw materials
(Fig. 4.1). The inflow is balanced by a constant outflow (of equal rate) that removes
the internal solutes in proportion to their concentrations. This leakage introduces a
sort of selective pressure on the chemical species, leading to dilution the species
that are neither continuously refilled by the external flow nor internally synthesized.
The content of the tank is continuously agitated (well-stirred), in order to assure
uniform internal conditions. While in Chap. 5 the drawbacks of using CSTRs to
model protocells will be discussed, here below we will show that the study of
reaction systems in CSTRs leads to several interesting insights on the behaviour of
chemical reaction networks.

Let us observe that properties we are looking for in protocells do exist in
biological cells. Therefore, while problems related to biology or to the Origin of
Life (OOL) are not our main concern, it is interesting to consider some properties of

Fig. 4.1 The schema of a continuous stirred-tank reactor (CSTR). The model assumes equal and
constant inflow and outflow and perfect internal mixing2 (highlighted in the figure by the presence
of an agitator): the inflow guarantees a continuous supply of raw materials whereas the chemical
output composition is identical to that inside the reactor

2Sometimes the CSTR with perfect internal mixing is denoted as Continuous Ideally Stirred-Tank
Reactor (CISTR). In the following we will adhere to the common habit of attributing to CSTR also
this last property. In biological literature the same apparatus is often called a chemostat.
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living systems in order to design effective protocell architectures. Among these
properties, the following have a prominent role:

1. Catalysis; almost all biological reactions would happen at negligible rates at
room temperature, if they were not catalysed (Alberts et al. 2002). Therefore
catalysts will play a major role in the chemical reaction networks that will be
considered below

2. Polymers: most key molecules (including proteins, nucleic acids, lipids) are
indeed polymers, composed by several monomers

3. Cycles: many biological systems include cycles of chemical reactions (e.g. the
Krebs cycle)

4. Extensive feedback loops: they are required to assure a certain degree of sta-
bility in a changing environment (homeostasis)

Self-replication is another key feature of living systems: note that it is involved
both in the behaviours of genetic molecules (DNA duplication, synthesis of mes-
senger, etc.) and in metabolism, where the new molecules that make up the system
are recreated. The processes of self-replication are quite complex, and they involve
several reactions and several chemicals.

In biological cells the DNA is used for the synthesis of proteins, that are the key
players of metabolism—but (regulatory) proteins are also required to activate the
machinery that translates DNA into proteins. And DNA duplication also involves
proteins. Therefore, two kinds of duplication processes are taking place, and it
seems unlikely that the two might have appeared at the same time.3 The problem of
whether template-based replication or metabolism first appeared (“DNA-first” vs.
“metabolism-first”) is relevant not only for studies on the OOL, but also for the
suggestions that they provide to build protocells.

The advocates of the latter alternative claim that template-based replication
requires a careful editing system, since random copying errors would otherwise
accumulate (Eigen and Schuster 1977). Today’s cells achieve this high precision
level through error-correcting systems that make use of enzymes; therefore, they
think that metabolism predated templates.

Indeed, the first “modern” hypotheses about the OOL focused on metabolic
processes (Oparin 1924,4 1957; Haldane 1929) and speculated about the ways in
which they might have given rise to primitive self-reproducing cells in conditions
similar to those of the primitive earth. The results of the famous Miller-Urey
experiment (Miller 1953), which proved that in those conditions peptides can
spontaneously form from simple inorganic compounds, and the following work of
Fox (Fox and Kaoru 1957) and others provided impetus to this line of research.

2 Sometimes the CSTR with perfect internal mixing is denoted as Continuous Ideally Stirred-Tank
Reactor (CISTR). In the following we will adhere to the common habit of attributing to CSTR also
this last property. In biological literature the same apparatus is often called a chemostat.
3Note however that the hypothesis that the two mechanisms coevolved from the beginning has
recently received renewed interest (Patel et al. 2015).
4The English version of this famous article can be find in Deamer and Fleischaker (1994).
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Although recent hypotheses about the conditions of the primitive earth are quite
different from those of Oparin, Haldane and Miller, the formation of peptides has
been observed in a number of laboratory experiments, and they have also been
found meteorites and also in asteroids and comets. Indeed, several major theorists
tend to favour the metabolism-first view (Kauffman 1986, 1993; Dyson 1982; Jain
and Krishna 1998).

On the other hand, the discovery of the mechanism of DNA replication via
complementary base-pairing raised a high interest for template-based replication.
DNA replication however requires enzymes, so a different template-based mecha-
nism has been proposed, based upon the properties of RNA, which can act as a
catalyst in the absence of protein enzymes (Cech and Bass 1986). Therefore RNA
can act at the same time as an information carrier and as a catalyst—a very elegant
proposal, with template-based replication playing a most fundamental role. There is
a wide interest for this theory, often called the “RNA world” (Gilbert 1986), to
describe a hypothetical primeval situation were RNA was doing the entire job,
while enzymes and DNA were later discovered and recruited. Indeed, DNA is a
more stable information storage molecule than the relatively short-lived RNA, and
protein enzymes are more efficient catalysts than those made of RNA.

Further support to this hypothesis came from the experimental proofs that RNA
(i) can grow in presence of selective pressure and suitable enzymes (polymerases)
without any template (Spiegelman et al. 1965; Mills et al. 1967; Eigen et al. 1981)
and (ii) it can form in presence of a template and simple monomers without any
enzymes (Miller and Orgel 1974; Sievers and von Kiedrowski 1994).

The dispute between metabolism-first and template-first theories has a long story
and is still ongoing. Since we are more interesting in designing and building arti-
ficial protocells than in the OOL, we are not going to take a strong position in this
dispute. Indeed, the models of Chap. 3 can be applied to both scenarios. The same
does not hold, however, for the models that will be described from in Sects. 4.4 and
4.5, and in Chap. 5, that deal with random sets of molecules. In order to make
effective simulations, we will need some hypotheses about the way in which dif-
ferent molecules are built, and there we will assume that the reactions can be either
condensation (where two polymers are joined to make a new one) or cleavage,
where a polymer is split into two. This is at odds with the constraints of
template-based replication, where different reaction types would need to be taken
into account. Therefore, while models of template-based replication whose inspi-
ration and flavour is similar to those of this chapter can be proposed, the results
described here are better suited for a scenario where some proto-metabolism is the
key to achieve sets of self-replicating molecules.

In the following Sect. 4.2 we introduce self-replicating sets of molecules and
their representations, and in Sect. 4.3 we discuss some important models that
describe their behaviours. In these models self-replicating molecules are distin-
guished from their substrates, but in Sect. 4.4 we analyse an interesting model
where macromolecules are built from simpler components, so there is no a priori
distinction between catalysts and substrates. These models will also be the basis of
the complete protocell model of Chap. 5. The role of substrates deserves particular
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attention and a peculiar formalization, so the notion of reflexive autocatalytic
(RAF) sets is presented in Sect. 4.5.

4.2 Autocatalytic Sets

A self-replicating set of molecules is a collection of interacting chemical species
able to continuously produce new copies of the molecules belonging to those
species. In this way the set as a whole is said to be self-replicating.

Of course, the production of molecules of the species belonging to a
self-replicating set implies a corresponding destruction (adsorption, transformation
…) of the molecules of a subset of the species belonging to the external environ-
ment: we can consider this subset the “food” of the self-replicating set of molecules.
For the sake of simplicity, in order to model these systems it is often assumed that
the food concentration is constant (“buffered”, in chemistry jargon), which of
course also implies that the reactions taking place in the system do not affect the
“food” concentrations in an appreciable way.

Self-replicating sets of molecules typically involve substrate-product chains,
where chemical processes consume some chemical species to produce other sub-
stances. Chemical processes involve collisions, mainly between two molecules at a
time.5 Nevertheless, reactions are often represented in a compact way involving
several chemical species, thus compressing several processes in a single step. Let us
consider for example the two reactions6:

AþC ! AC ð4:1Þ

BþAC ! ABþC ð4:2Þ

A, B, C, AB and AC are five different chemical species; the names AB and AC
make direct reference to the reactions that produce them. Given the presence of AC
both on the right hand side of reaction 4.1 and on the left hand side of reaction 4.2
the two processes are strongly linked, and we can use the following compact form
to describe their joint effect:

AþBþC ! ABþC ð4:3Þ

One might also think of eliminating C from both sides and to simply write
A + B ! AB. This would be perfectly legitimate if A and B directly reacted with
each other, but not when C is necessary for the reaction to occur, even if it is neither

5Because bimolecular collisions are much more likely than those that simultaneously involve three
or more molecules.
6For simplicity we are assuming irreversibility, but very similar considerations could be made also
in case of reversible processes.
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produced nor consumed in the reaction (as in the case considered here, see reac-
tions 4.1 and 4.2). This is what typically happens when C is a catalyst that sig-
nificantly increases the rate of the transformations, while keeping its own
concentration almost invariant. In many biological cases the not catalysed con-
version of A and B to AB is so slow that such process does not happen at an
appreciable rate—and this is likely to be the case even for artificial systems. We
will therefore be particularly interested in those self-replicating systems where the
reactions are catalysed, i.e. in sets of chemical species whose production is catal-
ysed by at least another species belonging to the same set. In such a way the whole
set is able to catalyse its own production, and is said to be autocatalytic (ACS for
brevity), or sometimes “collectively autocatalytic”.

In the scientific literature an ACS is usually defined as a set of molecular species
(Eigen 1971; Farmer et al. 1986; Jain and Krishna 1998), while of course the
property of collective autocatalysis depends also upon their interactions, i.e. the
chemical reactions that are implicitly assumed to take place. Of course, when
dealing with real molecules the reactions are those that are chemically possible, so
mentioning only the species is sufficient to characterize the set. However, in the
following sections we will also consider different random “artificial chemistries”,
where different reactions may happen between the same molecules. For example,
consider the case where the only possible species are polymers made out of two
different types of monomers, represented by strings of symbols taken from the
alphabet {A, B}. AAB is an example of a possible polymer. The association of a
polymer to a reaction (as a catalyst) is done at random, so in a “chemistry” AAB
may catalyse the reaction that breaks a longer polymer in two pieces, for example
AAAAA ! AAA + AA. But in a different “chemistry”, that describes a different
artificial world, the same polymer might not be able to catalyse the previous
reaction, but another one (say AABB ! AA + BB). Therefore, the property of
being a collectively autocatalytic set depends not only upon the species, but also
upon the reactions that the chosen “chemistry” allows.

This aspect is implicit in the treatment of ACS, and is explicitly included in the
important definition of Reflexive Auto-catalytic Food generated sets (RAFs for
short), that are discussed in Sect. 4.4.5.

A catalytic process usually involves the formation of a species (AC in reac-
tions 4.1 and 4.2) that can be called a complex—as we will do in the following—
which is energetically metastable and consequently short-lived. Since the decay of
the complex AC often brings back the original species, this process may be easily
described through a slight change in reaction 4.1 by taking into account also the
reverse reaction: A + C � AC.

Interestingly, the property of self-reproduction of an autocatalytic set is con-
served even if some of its chemicals are completely absent. Indeed, the creation
(and consequently the presence) of each chemical species is guaranteed by the
presence of other species, that in turn are created by other species and so on: in the
end, the presence of a single chemical species suffices to initiate a process that leads
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to the recreation of the whole initial set—provided of course that the food is
present. So the dissolution of an entire autocatalytic set is a very unlikely event.

This robustness property suggests that autocatalytic sets are key mechanisms in
living beings, that they can be key mechanisms of abiogenesis and that they can
also be key mechanisms in artificial protocells.

It is now worth discussing in some detail how to represent chemical reaction
systems, where different processes are going on at the same time: substrates con-
sumption, product creation, catalysis. Because of the importance of the relations
among many different elements, networks (graphs) are frequently adopted.
However graphs represent only binary relationships, whereas also the simple
cleavage AB + C ! A + B + C involves three different objects. Moreover, this
reaction involves at the same time different kinds of relationship: relations among
substrates and products, and relations among catalysts and catalysed reactions.

Therefore, in the literature we can find three distinct representations describing
the same system. The first representation is focused on the catalytic activities of the
system, two nodes being linked if the chemical species associated to the first node is
catalysing the production of the chemical species associated to the second node
(catalyst-product representation). The second representation describes the produc-
tion activity, two nodes being linked if the species associated to the first node is a
substrate involved in the synthesis of the species associated to the second node
(substrate-product representation). The third representation is an extension of nor-
mal graphs, that is, a bipartite graphgraph7 with two different kinds of nodes,
representing chemical species and reactions (complete representation). This par-
ticular representation makes also use of two different kinds of links, representing
respectively production activities (links among the substrates and the reaction that
consume them, and links among the reaction and its products) and catalytic
activities (links between each catalyst and the reaction it is catalysing).

Consider, for instance, the following four reactions occurring at times t1, t2, t3
and t4:

1. AB + BA + BB ! ABBA + BB
2. BB + B + ABBA ! BBB + ABBA
3. ABBA + BBB ! A + ABB + BBB
4. A + ABB + BB ! ABBA + BB

Their graphical representations are shown in Fig. 4.2: as we can see, the
substrate-product and catalyst-product representations are simpler and more direct,
but hide some details, whereas the complete bigraph representation provides a
complete description. On the other hand, even in the case of relatively small

7A bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets U
and V, so that two nodes belonging to the same set can communicate only through one node of the
other set (Diestel 2010).
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systems the complete bigraph representations become quite confusing, whereas the
substrate-product and catalyst-product representations are easier to read and inter-
pret. As a consequence, all three forms of representation can be useful—and indeed
in the literature all representations have been used. Catalysts-product graphs and
bipartite graphs will be of great utility during the remaining parts of this book.

Fig. 4.2 The graphical representations of one reaction (left column) and of the whole reaction
system (right column) presented in the text: in three different rows the overall representation,
catalyst-product and substrate-product representations are shown. Ellipses and boxes indicate
respectively chemicals and reactions; solid arrows indicate materials production/consumption,
whereas dotted arrows represent catalysis. Note that (i) in case of multiple interactions among the
same couple of objects a correct representation could require the use of weights and that
(ii) sometimes by using a partial representation (as in this example the case of substrate-product
representation) an intermingled system could appear as two completely separate systems
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Note that chemical species can play, in different reactions of the same system,
the different roles of substrates, products or catalysts. Due to the importance of
autocatalytic sets, it is important to be able to recognize them in these graphical
representations. For this purpose, catalyst-product and catalyst-catalyst graph rep-
resentations are more informative.

Moreover, in these representations structures such as “A catalyses the production
of B, which catalyses the production of C, which catalyses the production of B…
which catalyses the production of A” are clearly detected as cycles. These cycles—
provided that the needed substrates are present— lead to the growth of the involved
chemical species. Linear or ramified structures without cyclic features have nec-
essarily one or more roots (not catalysed nodes), not produced by any other node of
the systems. The corresponding chemical species in the real systems are not pro-
duced and will be eventually washed out by the CSTR’s outgoing flow, or they will
become extinct in a closed vessel: in such a way other chemical species (whose
formation is catalysed by the just disappeared chemicals) are not anymore catalysed
and as a consequence they disappear. This process progressively iterates, until all
species belonging to linear or ramified structures disappear. So, a way to find
self-sustaining structures is that of finding cyclic structures within catalyst-product
graphs. These cycles (or more generally groups of intertwined cycles) are the
so-called strongly connected components (SCC in the following) of the graph.

In general, in a directed graph G a strongly connected component S is a subgraph
that is (i) strongly connected, i.e. every node in S can be reached from at least
another node of S8 and (ii) maximal, i.e. no other node can be added to S without
loosing the property of being strongly connected. It follows from the definition that,
starting from whichever node of a SCC, it is always possible to reach directly or
indirectly (i.e., via intermediate nodes of the SCC) any other node belonging to it
(West 2001) (see also Fig. 4.3b). Since we are dealing with the catalyst-product

Fig. 4.3 An autocatalytic chemical reaction system: a complete representation, b catalyst-product
representation. In this last representation the system forms a strongly connected component

8A node x can be reached from another node y if there is a pathway from y to x.
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graph, the fact that any node of SCC is reachable by at least another node of the
same SCC means that each chemical species present within the SCC is catalysed by
at least one chemical belonging to the same SCC: so collectively the SCC is an
autocatalytic structure, able to catalyse its own growth. As we have already pointed
out, the presence of a single element of the SCC is enough to induce the production
of (at least one) other species, that in turn induces production of (at least one) other
species and so on, till the whole SCC is present. In a catalyst-product graph
autocatalytic structures and SCC coincide.

In order to detect the presence of SCCs we can use different computational
approaches, mainly based on the analysis of the adjacency matrix of the reaction
graph, i.e. the non-negative matrix whose elements Aij are equal to 1 when species
j catalyses the formation of species i and 0 if it does not. The results shown below
are based on the algorithm proposed by Dijkstra (1976) or on the approach of Jain
and Krishna (2001), which considers the eigenvalue with the largest real part
(ELRP in the following).9

4.3 The Properties of Some Replication Models

4.3.1 Quasispecies and the Error Catastrophe

The discovery of the duplication mechanism of nucleic acids with Watson-Crick
base pairing led in the 1970’s to a new generation of models. A major problem is
that template-based replication is not free from copying errors, so the new strand
may be a not perfect copy of the “mother” one. In present-day cells sophisticated
error-correcting mechanisms keep the rate of mutations low, but these mechanisms
involve specialized enzymes, so they are unlikely to be at work in a protocell.

A set of similar but not identical polymers which co-exist, and transform into
one another under the action of replication with mutations, has been called a
“quasispecies” (Eigen 1971; Eigen and Schuster 1977, 1978; Eigen et al. 1988;
Biebricher and Eigen 2006). While each polymer type is unstable under the action
of copying errors, it is interesting to consider whether the collective composition of
such a group can be stable and a dynamical model might be useful to understand
under which conditions this happens, notwithstanding noise (Eigen 1971; Eigen
and Schuster 1977, 1978).

We will limit here to consider the simplest case, where the kinetic equations are
linear. We will assume that the system is placed in a CSTR (described in Sect. 4.1)

9Actually, the Perron-Frobenius theorem (Lu ̈tkepohl 1996) assures that the ELRP k1 is real and
non-negative: it can be shown that if k1 = 0 there are no cycles in the graph, whereas the presence
of at least a cycle is associated with k1 � 1 (Jain and Krishna 2001).
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so there is a constant outflow rate /; in this case the equations for the concentrations
yi’s of the various species10 are

dyi
dt

¼
X
k

wikyk � /yi

d~y
dt

¼ W~y� /~y

ð4:4Þ

The quasispecies is stable if all the yi’s are constant, i.e. Wy = /y. We are thus
led to conclude that the stability of the quasispecies is related to the behaviour of the
eigenvalues of the matrix of kinetic coefficients W.

By introducing in Eq. 4.3 the relative concentrations

xi � yiP
k yk

ð4:5Þ

it can be directly proven that

dxi
dt

¼
X
k

wikxk � xi
X
l;m

wlmxm ð4:6Þ

where the outflow rate no longer appears.
Let us now consider a particular case where a quasispecies can actually be stable,

which is extremely interesting, as it allows us to understand whether a replicator
that is faster than all the others can survive in a quasispecies.

The possibility of mutation and competition between different nucleic acids was
demonstrated in a beautiful experiment (Mills et al. 1967), where a RNA polymer
was forced to duplicate in solution in vitro, and was subject to evolutionary pressure
due to the fact that only a small fraction of the solution was retained for future
generation replications. It was therefore possible to observe the competition
between different RNA strands, and in the final population (after a number of
generations) the original polymer was extinct. The polymer that won the compe-
tition had some selective advantage: since the removal probability was independent
of the molecular type, it was the one with highest replication rate.

In order to understand under which conditions the polymer with the highest
“fitness” can actually come to dominate the population (Eigen 1971; Eigen and
Schuster 1977, 1978) or at least survive, let us consider a polymer m (the “master”)
with a high replication rate, and let us suppose that it is copied, sometimes intro-
ducing some errors. Let Am be its reproduction rate and let us suppose that the
probability that its copy is exactly equal to the master is Q (copying fidelity,
0 < Q < 1). Since we are interested in the conditions that allow the master to

10We use here a time-continuous formalism; similar results are obtained also with discrete dif-
ference equations.
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prevail, we will not follow all the other sequences, but we will lump them into a
single “superspecies” j. There is a nonvanishing probability (equal to 1−Q) that a
master sequence gives rise to a j-kind of sequence, while the probability that the
reverse happens will be neglected. In synthesis, m!m and m!j copies are
allowed, as well as j!j, but not j!m. If Aj is the representative reproduction rate of
the “cloud” of j-type polymers, then the rates of the various transitions are

wmm ¼ AmQ

wmj ¼ 0

wjj ¼ Aj

wjm ¼ Am 1� Qð Þ

ð4:7Þ

By inserting the transition rates 4.7 in the previous Eq. 4.6 one gets the fol-
lowing equation for the rate of change of the relative concentrations of the master
and of the j-type sequences

dxm
dt ¼ AmQxm � xm Amxm þAjxj

� �
dxj
dt ¼ Ajxj þAm 1� Qð Þxm � xj Amxm þAjxj

� �
(

ð4:8Þ

Suppose now that the relative concentration of the master sequence vanishes; in
this case the first condition 4.8 is always satisfied, while the second equation
describes the logistic growth of the pool of other sequences:

dxj
dt

¼ Aj xj � x2j
� �

It is interesting to analyse under which conditions a fixed point with xm#0 exists.
By setting dxm/dt = 0 in the first Eq. 4.8 one gets Amxm + Ajxj = AmQ which,
inserted in the second equation with dxj/dt = 0, gives

Aj � AmQ
� �

xj þAm 1� Qð Þxm ¼ 0 ð4:9Þ

Since we assumed Q < 1 and xm#0, the second term is positive; therefore, in
order for this condition to be satisfied, the first one must be negative, which implies
that the asymptotic concentration of the j-type sequences is finite. It is also nec-
essary that

Aj\AmQ ) Q[
Aj

Am
ð4:10Þ

If this condition is satisfied, a fixed point with nonvanishing relative concen-
tration of the master sequence can exist. Condition 4.10 implies that the copying
fidelity must be larger than the relative reproduction velocity of the other sequences
with respect to the master. Let s be the selective superiority of the master, i.e.
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s � Am

Aj
ð4:11Þ

then the previous requirement is Q > (1/s). Q is the copying fidelity of the whole
sequence of the master polymer; if it is composed of N monomers, and if we
assume for simplicity that (i) the copying fidelity of each monomer is the same (say
q) and (ii) the probability that a monomer is copied correctly is independent from
the fact that other monomers have been copied with or without errors, then Q = qN

and condition 4.10 becomes qN > (1/s), i.e. (taking the logarithm of both sides)

Nlnq[ � lns

Since q < 1, the left hand side is negative, and since s > 1 also the right hand
side is negative. Therefore the previous inequality implies

N\
lns
lnqj j ð4:12Þ

Let us assume that the copying fidelity of a monomer is high, so q � 1−e, and

lnq � lnð1� eÞ � �e � q� 1

Finally, condition 4.11 becomes

N\
lns

1� q
ð4:13Þ

If this inequality is satisfied, the selective advantage of the master sequence is
great enough to assure its survival in the quasispecies; but if it is not satisfied, an
“error catastrophe” will occur and the fast replicator, notwithstanding its com-
petitive advantage, will get extinguished. This poses a limit on the length of the
longest polymer that can survive. The best current living beings have low fre-
quencies of copying errors (Smith and Szathmáry 1995), but these high perfor-
mances are due to extremely sophisticated replication (and control) mechanisms
that are the result of biological evolution. Error rates in the first systems able to
replicate11 should have been significantly higher. The experiments done with RNA
replication, without the current error correction systems, suggest that the possible
longest genotypes should have no more than *102 bits, a quantity by far too small
to encode the enzymes that are necessary to assure higher reproduction fidelity.
Therefore, in order to have correct replicas of large RNA molecules we need
sophisticated error correction systems, but to encode sophisticated error correction
systems we need large RNA molecules. This impasse is sometimes known as the
“Eigen’s paradox” (Szathmáry 1989).

11And also in simple protocells.
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4.3.2 Hypercycles

Let us now consider the model of hypercycles (Eigen and Schuster 1977, 1978)
where self-replicative units are connected in a cyclic, autocatalytic manner.

A hypercycle is a level of organization where the self-replicative units are
connected in circle, forming a larger autocatalytic system. In a hypercycle each
information storing molecule (possibly RNA) produces an enzyme, which catalyses
the synthesis of another information molecule, which in turn produces an enzyme
that catalyses the synthesis of another information molecule, and so on, till the last
enzyme catalyses the synthesis of the first information molecule closing the circle.
So, the hypercycle model introduces a sort of simple metabolic system coupled to
the replicative system, so that each self-replicative unit is stabilized by another,
building a collective replication process stable enough to (hopefully) avoid the
Eigen’s paradox.

Let Ii (i = 1, 2, …, n) be the set formed by RNA and the enzymes needed for the
replication of the whole cycle, Ei being the enzyme synthesized from Ii. RNAs and
enzymes cooperate so that the i-th RNA codes for the i-th enzyme Ei (i = 1, 2, …,
n); in turn enzyme Ei increases the (i + 1)-th RNA’s replication rates. In the end,
enzyme En increases the replication rate of I1 (Fig. 4.4). This cyclic organization
should ensure the stability of the overall system.

This model was proposed in an OOL context as a hypothetical stage of
macromolecular evolution, which could follow quasispecies. According to Eigen
and Shuster “The hypercycle must have a precursor, present in high natural
abundance, from which it originates gradually by a mechanism of mutation and
selection. Such a precursor, indeed, can be the quasi-species consisting of a dis-
tribution of GC-rich sequences” (Eigen and Shuster 1978).

Fig. 4.4 An hypercycle with four self-replicating RNA-enzymes groups: in each group a
particular enzymes is highlighted, able to increase also the replication rate of the successive
RNA-enzymes group. To close the macromolecular system, enzyme E4 increases the replication
rate of I1 complex. Reprinted from (Eigen and Shuster 1978), with permission
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The hypercycles can support several interesting processes, which anticipate
some advantages and some problems common to several models of self-sustaining
structures.

It may happen that two elements, say I1 and I2, encoding for their own replicases
E1 and E2, show similar couplings for both self and mutual enhancement, due to
their similarity (Fig. 4.5). Different outcomes might then be observed: (i) if
self-enhancements are more intense than the mutual ones the two complexes
compete, and at the end only the fastest one will prevail (ii) if E1 and E2 both favour
the formation of I1, I1 will prevail and I2 will disappear (iii) if E1 and E2 both favour
I2, I2 will prevail and I1 will disappear (iv) if the mutual catalyses are stronger than
the self-ones, the two-membered structure can stabilize. Note that situations (i) and
(iv) are not equivalent: in case (i), because of exponential growth, only the fastest
complex will prevail. On the contrary, in case (iv) the fastest complex will induce a
higher reproduction rate of the other one, stabilizing in such a way its presence.

The introduction of further elements follow similar paths.
Interestingly, different hypercycles can compete and evolve. In order to allow

this process, different hypercycles should be placed in separate compartments
(Maynard Smith and Szathmáry 1995), each compartment including only one type
of hypercycle.12 For example, hypercycles can be placed in coacervates, aggregates
of colloidal droplets held together by hydrophobic forces (Oparin 1968). We may
perhaps assume that the volume of any droplet is proportional to the number of
macromolecules it contains. In such a way each compartment can be seen as a
single entity, a possible model of a hypothetical predecessor of protocells (Eigen
and Shuster 1977, 1978). Too big droplets can break in two or more pieces, or can

Fig. 4.5 a Two mutant RNA-enzymes groups, I1 and I2, encoding for their own replicases E1 and
E2, may show equivalent couplings for self- [11,22] and mutual [21,12] enhancement due to their
close kinship relation. b The four possible situations arising from the couplings between two
mutants shown in part (a). The thick lines indicate a preference in coupling (however small it may
be). A stable two-membered hypercycle requires a preference for mutual enhancements as depicted
in the last schema. Reprinted from (Eigen and Shuster 1978), with permission

12Note that exponential growth can only allow the existence of the fastest replicator in a single
reaction system.
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lose materials in form of smaller droplets: each droplet can grow (because of the
active production of its inner materials due to the presence of the hypercycles).
Entities with the fastest rate of reproduction will dominate the scenario (until new
—and even faster—kinds of droplets appear) whereas droplets slowed down by
inactive parasites will be discarded, thus limiting a significant difficulty of hyper-
cycles (Szathmary and Demeter 1987).

In spite of the interest of the hypercycle model, an extended series of numerical
simulations has also shown some sources of fragility, frequent enough to receive
dedicated names (Niesert et al. 1981):

• selfish RNA catastrophe: it happens when a sequence of mutations makes a
particular enzyme (i) very efficient in replicating its coding RNA and (ii) useless
as catalyst for other sequences. This selfish RNA rapidly leads the rest of the
population to death.

• short circuit: it happens when a sequence of mutations makes a RNA sequence
an efficient catalyst for a particular RNA sequence which in the hypercycle
structure appears after the one usually catalysed. The chain of the hypercycle is
then short-circuited and the structure reduces its elements: the iteration of
several similar events will lead the hypercycle to collapse into a single element.

• population collapse: it happens when, due to statistical fluctuations, the popu-
lation of molecules of one essential component of the hypercycle falls to zero—
a relatively frequent event in situation of not numerous populations. The entire
hypercycle then rapidly collapses. Indeed, each RNA is providing only the
catalyst of the reaction producing new RNA molecules: the absence of the
reaction substrates totally blocks the reaction itself.

The probability of selfish RNA and short-circuit catastrophes increases with the
size of the molecular population; on the other hand, the probability of population
collapse increases for small molecular populations. So, the hypercycle model lies
between “the Scylla of selfish RNA and short circuit and the Charybdis of popu-
lation collapse” (Dyson 1999). There is only a narrow population range able to
avoid concurrently all three catastrophes, and even this population size sometimes
could run into one of them, shortening the typical hypercycle lifetime. So, the
combination of selfish RNA and short-circuit catastrophes seems to indicate that the
typical hypercycles should be composed of just a few elements.

The points highlighted by these results are not limited to the Eigen theory: they
are an important criticism of any theory that assumes a cooperative organization of
a large population of chemical species without providing explicit protections
against short-circuiting of metabolic pathways.

Moreover, note that the hypercycle model is concerned only with genetic
molecules (RNA or similar) and enzymes. However, substrates are also needed, in
order to synthesize new copies of both, and they are never explicitly taken into
account. This implicitly requires that substrates are continuously supplied from the
external environment. In Sect. 4.4 we will describe a different model where the
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synthesis of both enzymes and substrates is considered, and where the same
chemical species can act both as a substrate and as a catalyst of different reactions.

Before doing so, in the following section we will review an interesting model,
where substrates are still supplied from outside, which explicitly considers the
effects of the introduction of some new species, as well as the removal of some
existing species. In this model cycles can form and can be destroyed spontaneously,
giving rise to interesting structures and to unexpected dynamical phenomena.

4.3.3 The Arrival of New Species from Outside

In this section we will discuss the first version of the model, which considers only
the synthesis of chemical species from substrates whose concentration is constant in
time (Jain and Krishna 1998, 1999) and there are no spontaneous reactions. Further
variants were introduced in later versions of the model (Jain and Krishna 2001,
2004) but they will not be considered in this section.

There are two types of dynamical variables: the concentrations of the chemical
species are the fast variables, whereas the slow variables are the links of the graph
that defines the catalytic interactions among them. The model describes a situation
where the chemical species are supposed to stay in a container periodically per-
turbed by external factors, simulating for example a puddle close to a coastline and
periodically flooded by tides. Between two different tides the chemical soup has
time enough to reach a stable state, whereas during each single flood (i) the
materials with very low concentrations may be washed away and (ii) new chemical
species may be introduced in the puddle. The removal of the rarer species and the
introduction of new chemicals (with their new catalytic activities) changes the
graph that describes the catalytic interactions among the chemical species.

It is supposed that the system is in a CSTR, and that there are N types of
catalysts, so the initial formulae are similar to those of Sect. 4.3.1. If species
j catalyses the production of species i, the concentration of the latter, yi, depends
upon the concentration of former, yj, and upon the concentrations of the necessary
substrates na and nb

13 according to

dyi
dt

¼ w
0
ikyknanb � /yi ð4:14Þ

where wij′ is the reaction kinetic constant and / is the outflow rate. Assuming that
the concentrations of the substrates are high and constant, one can define the
effective kinetic constant wik = w′iknanb; moreover, if the production of species i
can be catalysed by several other species, the system is ruled precisely by Eq. 4.4.
As it was done in Sect. 4.3.1, by introducing the relative concentrations xi (Eq. 4.5)

13We suppose for simplicity that there are only two substrates, generalizations are straightforward.
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we obtain that they change in time according to Eq. 4.6, reproduced here below for
convenience

dxi
dt

¼
X
k

wikxk � xi
X
l;m

wlmxm ð4:15Þ

In this case, in order to reduce the high dimensionality of parameter space, it is
assumed for simplicity that the entries of the interaction matrix are Boolean, i.e. that
all the nonvanishing kinetic constants are equal: wik = 1 if species k catalyses the
production of i, wik = 0 otherwise. The model excludes self-replicating species, so
diagonal entries of W are zero: wii = 0. At the beginning the graph is random: for
any pair of species i and j, wij = 1 with probability p and wij = 0 with probability 1
−p.

The graph is updated at discrete time steps: at every step a node is selected and
all its incoming and outgoing links are removed and replaced by links randomly
chosen with the same catalytic probability p. This corresponds to the “flood”,
washing away the corresponding chemical species, and introducing of a new ran-
dom species. In such a way the graph changes in time. Each time step is long
enough to allow the fast variables xi to reach a stable situation. At any discrete time
step the node selected for the removal is chosen among the weakest ones, corre-
sponding to the species having the lowest concentrations.14 This selection rule is
easily justified by observing that the species with the lowest population level are
likely to be lost in a fluctuation. It is also supposed for simplicity that the total
number of species is constant.

Several interesting behaviours can be observed, some of them are shown in
Fig. 4.6. For a long while nothing happens, and many species maintain very low
concentrations. At a certain moment the number of species with higher

Fig. 4.6 a A run with N = 100 chemical species and probability of catalysis p = 0.005. b The
same run as in (a) on a much longer timescale. Reprinted with permission from (Jain and Krishna
2001), (Copyright 2001 National Academy of Sciences, U.S.A.)

14If two or more nodes have the same minimum value, one of them is chosen at random.
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concentrations rapidly increases. Subsequently there are long periods where all
species have high concentrations interrupted by significant big crises.

The first rapid increase coincides with the first comparison of an autocatalytic set
(ACS for short) in the catalyst-product representation. Indeed the production of the
chemicals corresponding to the root nodes of linear or branched structures is not
efficient (it is not catalysed), a fact that leads to their possible extinction. So, the
nodes immediately downstream become the root nodes of the remaining structures
and in turn can get extinct, till the whole structures disappear. On the contrary, the
formation of cyclic structures (as the ACSs) allows the continuous production of all
the chemical species belonging to it. The introduction of new chemical species
(because of the influence of the tides) allows the inclusion of new nodes within the
ACS, or the formation of linear or branched chains whose root nodes belong to the
ACS itself. After some tides all species belong to this new structure.15

In summary, the model of Jain and Krishna provides an example of highly
non-random organizations arising because of the presence of a mechanism that
makes complexity increase. While the hypercycle is known to suffer from the
short-circuit instability that reduces the number of nodes in the hypercycle (Niesert
et al. 1981), in this model ACSs progress in the opposing direction (during the
growth phases). Moreover, this model is an example of how selection for fitness at
the level of individual species results, over a long time scale, in increased com-
plexity for the whole system.

Regarding the origin of the big crises evident in Fig. 4.6? Jain and Krishna
identify it in the removal of chemical species playing an important catalytic role in
the organization (the “keystone species”). Their deletion can disconnect a number
of other species from the main ACS: this could give birth to other disconnections,
which in turn could generate other disconnections, until destroying a big part of the
structure if not the whole ACS. Consequently, the whole process has to restart from
very small interacting groups (if any), until a new ACS reappears.16

Therefore, the key action able to destroy or weaken even very big ACSs seems
to be the loss of one of its parts. However, an ACS should be able to recover its own
parts even if they have been temporarily lost. The model is actually pointing to the
fact that the removed chemical cannot exist, i.e. that it cannot be produced any
longer: by referring to the Eq. 4.7, it means that the product kij

′ yjnanb has to be zero.
Since the chemical j that is catalysing the reaction is still present, this implies that
one or more substrates are not available.

We do not want to discuss here the plausibility of this hypothesis; rather, we
wish to emphasize that in this model an effective way to remove a part of an ACS is
that of definitely eliminating one or more of its substrates.

15If the new chemical belongs to the ACS or to one of its leaves, its production is guaranteed and it
is protected from extinction, that more easily affect-s the other nodes; therefore more and more
new species are recruited in the ACS.
16Jain and Krishna generated several variant of this model, by introducing different distributions
for the kinetic constants of the reactions or by introducing inhibition processes. All the variants
apply however the same basic idea, leading to qualitatively similar results.
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The analyses of both the Eigen-Schuster and the Jain-Krishna model help us to
understand that networks of catalysed reactions can show very interesting beha-
viours and that cyclic structures, corresponding to autocatalytic sets, can play very
important roles, as they continuously supply the required molecules. Moreover, it
has also been observed that these structures need that the substrates are also
available, and this is a likely hypothesis (in nature or in the lab) if they are small,
relatively simple molecules. However, in existing biological systems substrates are
often themselves macromolecules, which are at least in part produced by some
chemical reactions taking place inside the system itself. Therefore, one is led to
consider a different kind of models, where the synthesis of both enzymes and
substrates is explicitly described. This is the topic of the next section.

4.4 Products and Substrates

4.4.1 Synthesizing Catalysts and Substrates

While the previous models assume the presence of substrates, needed for building
the molecules of the autocatalytic sets, a different kind of model was proposed in
Kauffman (1986), where the same chemical species can play (in different reactions)
the role of substrate, product or catalyst. In this model, according to Kauffman
(1986), the emergence of autocatalytic sets is an inevitable collective property of
any sufficiently diverse set of chemicals.

The model describes molecules (“polymers”) as linear chains of “monomers”
taken from a finite alphabet. There are two possible reactions, namely condensation
(two polymers are joined forming a longer one) and cleavage (a polymer gives rise
to two by splitting at a certain point). It is assumed that these reactions occur at a
negligible rate unless they are catalysed, and it is assumed that any molecule
catalyses some reactions chosen at random. By enumerating all the possible reac-
tions and molecules, Kauffman came to the conclusion that, provided that there are
enough different types of molecules in the initial set, a connected component will
appear in the reaction graph, marking the presence of (at least) an autocatalytic set
(ACS).

In his original work Kauffman did not consider the concentration of the mole-
cules, but he simply focused his attention on the graph of the reactions among all
possible chemical species. A further step was taken in Farmer (Farmer et al. 1986;
Bagley and Farmer 1991), where the species concentrations were introduced and
their dynamics was explicitly simulated with differential equations. In these models
the dynamical processes happen in a CSTR, where outgoing flows provide a kind of
selective pressure. The results of this scenario are interesting, and will be sum-
marized in the next section. The use of a continuous formalism however is not well
suited to take into account stochastic or small number effects. In order to overcome
this problem, these works introduce a threshold, roughly corresponding to a
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molecule per reaction volume,17 so that when the concentration falls below a certain
level it is suddenly set to 0 (Bagley and Farmer 1991). Other approaches make
direct use of stochastic frameworks (Fuechslin et al. 2010; Filisetti et al. 2011a,
2012; Serra et al. 2014; Villani et al. 2016), and will be described in the following
sections.

The aim of the Kauffman model is not providing a detailed description of a
specific set of reactions, but rather focusing the attention on the general charac-
teristics emerging from the interaction of a large number of different types of
molecules. The model is fairly general, and does not refer to specific chemical
classes; in particular, the basic units (i.e. the “monomers”) could represent single
elements, stable compounds or classes of compounds. Linear chains of monomers
will be called “polymers”, while the terms “species” and “types”18 will be used to
denote either monomers or polymers.

The basic model considers a fixed number N of chemical species: any species
may be present in multiple copies, so the number of exemplars of the various
species can be denoted by (x1, x2, …, xN). In the following the term “molecules”
will be used to denote the number of exemplars of the various species, either
monomers or polymers. Each species is represented by a string of letters—each
letter representing a monomer—where there is a well defined initial point (i.e. ABB
is different from BBA and from BAB); the various species can have different
lengths. The model considers two possible reactions, i.e. end-condensation and
cleavage:

• Cleavage (example): AB + ABB ! A + B + ABB
• Condensation (example): AB + A + ABB ! ABA + ABB

ABB playing the role of catalyst in both examples.
The kinetic rates of the spontaneous cleavages and condensations are assumed to

be much slower than those of the catalysed reactions, so that spontaneous cleavages
and condensation can be neglected. It is assumed also that the rates of the reverse
reactions are negligible when compared with those of the forward reactions.

If one chooses a set of monomers and polymers, then chemical knowledge could
be used to define a set of reactions and to estimate the values of the various kinetic
constants. This might be a very fruitful approach worth to pursue in the future, but
for the time being we prefer not to commit to a specific scenario and, in the spirit of
the search of generic properties described in Chap. 2, we will follow an ensemble
approach, which considers general properties resulting from the analysis of sets of
systems with some common features. This same approach was also taken by
Kauffman in his pioneering studies. In particular, it is assumed that (i) each polymer
can undergo cleavage and (ii) each pair of polymers or monomers can undergo
condensation and (iii) each chemical species has the same (small) probability of
catalysing each possible condensation or cleavage. These assumptions greatly

17The reaction volume was taken to be approximately that of a small bacterium, i.e. 1 µ3.
18Often also molecular species, chemical species, molecular types will be used.

4.4 Products and Substrates 81



simplify the model structure, without implying any particular functional relation-
ship between the sequence of the catalysts and the reactions they catalyse, as for
example chemical affinities among molecules because of their internal composition.
This feature raised several criticisms (Lifson 1997), but it has been argued that it
does not strongly affect the description capabilities of the model, as discussed in
Vasas et al. (2012). In nature, the catalytic properties of enzymes are related to their
structure, so they are a (complicated) function of their composition. It might then be
interesting to consider also models where the catalytic properties depend upon
(some features of) the sequence of monomers, however a mapping between the
structure of the molecules and their catalytic properties might be no less arbitrary
than a purely random choice with probability p of a reaction to catalyse.

The fact that catalysts are associated at random to reactions leads us to study the
behaviour of classes of “chemistries”, where each “chemistry” describes a possible
“world” where the reactions between molecules are catalysed by specific catalysts
(that differ in different “worlds”). This is exactly the language we choose: a set of
tuples {species; catalyses; reactions}, where the species catalyses the reaction, will
be called a “chemistry”.19

Each cleavage involves one substrate and one catalyst, while each condensation
involves two substrates and one catalyst, creating in such a way a random topology
where reactions and chemical species are the nodes, linked by relationships of
consumption/production or catalysis, as already described in Sect. 4.2. A graphical
representation is given in Fig. 4.7.

Each polymer of length L can be cleaved at L−1 different positions, and each
pair of polymers can be joined by condensation, therefore the total number of
conceivable reactions is

R ¼
XN
i¼1

Li � 1ð ÞþN2 ð4:16Þ

where Li is the length of the i-th species and N is the total number of species in the
system (Kauffman 1986; Filisetti et al. 2011a).

4.4.2 The Rise of Autocatalytic Structures

One of the most interesting contributions of this model is the idea that the emer-
gence of autocatalytic sets is unavoidable when starting from a mixture containing
enough types of polymers. Considering polymers composed of two monomers A
and B and an initial population in which all polymers up to length M are present,
the total number of species is:

19It is worthwhile to notice the possibility for a species to catalyze more than one reaction and for a
reaction to be catalyzed by more than one species.
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SM ¼
XM
L¼1

2L ¼ 2M þ 1 � 2 ð4:17Þ

Since the model considers two possible reactions, condensation and cleavage,
the total number of reactions building a specific polymer of length L*,
1 � L* � M is:

RM
L�;i ¼

XM
i¼L þ 1

2 � 2i�L�� �þ L� � 1ð Þ ð4:18Þ

Therefore, the ratio between the total number of reactions among polymers and
the total number of species (Kauffman 1986) is equal to:

RM
tot

SM
¼
XM
i¼ 1

M � i
2i

ffi M � 2 ð4:19Þ

Equation (4.19) shows that, although the total number of polymers increases
exponentially, the number of conceivable reactions increases even faster, leading to
the linear increase of their ratio. In such a way, by adding more and more types we
obtain a system where the density of reactions continuously increases, until it
reaches a situation where (observing the catalyst-product graph representation of

Fig. 4.7 The figure shows all polymers (composed by two different kinds of monomer) having
length lower than M (in this case, M = 6). In order to build a chemistry (the particular set of
chemical species, reactions and catalysis used during the experiments), Kauffman proposes of
randomly choosing (i) the kind of reaction, (ii) the substrates and (iii) the reaction catalyst. In
(a) the reactions AABBA ! A + ABBA and AB + BA ! ABBA are respectively catalysed by
chemicals AAAB and BBABA; in (b) the addition of other reactions rapidly makes the complete
representation of the chemical system very complicated
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the system) one or more strongly connected components emerge. As consequence
an autocatalytic structure will certainly form, no matter how low the probability of
catalysis is (provided that there are sufficiently many different types of polymers
Kauffman 1986).

Note also that, according to Eq. (4.18), the number of reactions able to build a
specific polymer of length L*, 1 � L* � M, decreases as L approaches M: so,
there are more ways to form short polymers than long polymers. However one
should also consider that for any given length L there are 2L different polymers;
therefore, the number of reactions which give rise to polymers of length L is:

RM
L�;i ¼ 2L

XM
i¼L þ 1

2 � 2i�L�� �þ L� � 1ð Þ
 !

� 2L þ 1 ð4:20Þ

Although there are more ways to create a short specific polymer, the formation
of long polymers is more often observed, a fact that provides an interesting clue to
understand the appearance of longer molecules in the system (Filisetti et al. 2011c).

4.4.3 The Dynamical Model

The previous sections showed how Kauffman’s model predicts the emergence of (at
least) one autocatalytic set, provided that the system’s chemical diversity is high
enough. Indeed, autocatalytic networks are widespread in biology, but they are
difficult to create in laboratories, and it is interesting to understand why. In order to
understand some possible reasons of this dichotomy, it has been proposed to
modify the original model considering the dynamics, using either deterministic
differential equations (Farmer et al. 1989; Bagley and Farmer 1991) or a stochastic
approach (Filisetti et al. 2011a, 2012).

To simulate the dynamical behaviour of the system it is necessary to make some
hypotheses about the physical environment the system is into: as in previous sec-
tions, here below we discuss the main results achieved by using numerical simu-
lations of CSTR systems. Since we are interested in protocells, the reactor must be
quite small, its size typically similar to that of a bacterium or even smaller. It is
well-known that random fluctuations can be relevant when the number of molecules
is small, therefore in the following we will describe the system dynamics by using a
stochastic approach, as discussed in Filisetti et al. (2011a, 2012).20 A further reason
in favour of the stochastic approach is that in these systems new molecular types
may be generated, and the number of exemplars is typically small at the time of
their appearance (these effects will be analysed later in this chapter).

To dynamically simulate the cleavages and condensations we make use of two
reactions (the second one being decomposed in three simpler steps):

20Some quantitative estimates can be found in Sect. 5.3.
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1. Cleavage: ABþC�!Ccl AþBþC

2. Condensation: (whole reaction: A + B + C ! AB + C)

1. Complex formation: AþB�!Ccomp
A:C

2. Complex dissociation: A:C�!Cdiss AþC

3. Final condensation: A:CþB�!CcondABþC

where A and B stand for the substrates of the specific reaction, C is the catalyst and
A:C is a transient complex. Since reactions that simultaneously involve three or
more molecules are much rarer that bimolecular reactions, the condensation process
is considered as composed of three steps: the first two create (reversibly) a tem-
porary complex (composed by one of the two substrates and the catalyst) that can
be used by a third reaction, which combines the complex and a second substrate to
release finally the catalyst and final product. Ccl, Ccomp, Cdiss and Ccond are
respectively the stochastic reaction constants21 of cleavage, complex formation,
complex dissociation and final condensation. We neglect spontaneous reactions by
assuming that the every reaction has a sufficiently high activation energy: so, only
catalysed reactions are allowed.

Starting from these assumptions, the well-known and widely used Gillespie
algorithm (Gillespie 1977, 2007) updates the values of the concentrations of the
various chemicals in an asynchronous way. Specifically, the algorithm computes
the occurrence probability of each reaction and the time interval between two
successive reactions. At each time step only one reaction actually occurs, and it is
chosen at random (depending upon its occurrence probability). These steps iterates
until the final time is reached. The algorithm is described in more detail in Sect. 5.7

This model allows both competition and inhibition. The former is related to the
impossibility for a single molecule to be involved in more than one reaction at a
time while the latter occurs, for instance, when a component of a reaction is
consumed by other reactions thus decreasing the rate of the first reaction. These
processes allows the system to regulate its internal activity.

The Representation of a Reacting Chemical System
We have already discussed possible representation of a system of chemical reac-
tions and species in Sect. 4.2. However, network representations22 are typically
static, while we have to deal with a dynamical system where new species can

21The stochastic reaction constants are the values that, multiplied by the time interval dt, give the
average probability that in this time interval, at this temperature, a particular combination of
reactants will react. Their connection with the more familiar reaction kinetic constants is discussed
in (Gillespie 1977).
22For simplicity, in the following we will refer to these representations also by means of the term
“networks”, or “graphs”. The reader should remember that the “complete” representation is a
bigraph with two different kinds of nodes and of links.
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appear and old ones can get extinguished. The systems we are describing can be
strongly non-ergodic, as it will be discussed in Chap. 5, and different events that
happen in transients may lead to different asymptotic behaviours.

In chemical systems of “normal” size, an enormous number of reactions takes
place at each time step, so we can profitably use continuous dynamical systems,
where all the reactions are assumed to take place in parallel. However, if we
observe the same system at a shorter time scale, the number of observed reactions is
significantly lower; by further decreasing the length of the time step, the number of
observed reactions in a container of very small size, like that of a protocell, can be
really low.23 And this requires the use of a stochastic approach able to deal with
cases where fluctuations can play a key role.

Continuous deterministic frameworks allow a clear and easy way to identify how
the dynamical network is operating during the simulations: the active links are those
corresponding to material flows greater than zero and the correct scale of obser-
vation (and the smallest integration step in numerical simulations) depends on the
number of involved molecules. On the contrary, if the volumes and concentrations
of the simulated systems are low (as in the case of protocells and newly generated
species), a discrete and stochastic framework, like the one of the Gillespie algo-
rithm, provides a better description—but the rarity of reactions requires some
choices in the construction of a meaningful network representation.

As a first choice we might build a reaction graph considering all the reactions
that occurred at least once since the beginning of the simulation: this is what we call
the “complete reaction graph” (Filisetti et al. 2011a, 2014). Nevertheless, we must
keep in mind that only one reaction at a time occurs and that some reactions occur
very rarely: indeed, a better description of the present system should ignore very
rare reactions that occurred only long ago.

To analyse an asynchronous framework we therefore introduce another graph in
which each link is maintained if, and only if, the specific reaction occurs within a
certain time window; otherwise, the link corresponding to that reaction is removed
from the graph. Of course, this graph depends upon the size of the time window; it
can be particularly useful if the distribution of reaction frequencies is such that
“frequent” reactions are well separated from “rare” reactions. The graph that con-
siders only the reactions that occur within the specific time window is called the
“actual reaction graph”; of course, the actual reaction graph changes in time
according to the dynamical evolution of the system (Filisetti et al. 2011a). In the
following we will refer mainly to this last representation.

Interestingly, the characteristics of the model we are using allow us to define also
a “possible reaction graph”, that is, a graph which represents all the possible
reactions that can take place at a given time, and not only those that actually occur.
Through the analysis of this graph we can obtain indications about the “nearest

23At extremely small time scales we can imagine that only one reaction at a time happens: in this
case, no reaction network exists.
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adjacent possible futures”, a topic of general interest in complex systems studies
(which is discussed in Kauffman 2008).

The Experimental Set-up
The model behaviour is of course strongly influenced by the characteristics of the
chosen chemistry, i.e. the particular set of chemical species, reactions and catalyses,
see the definition given in Sect. 4.4.1. According to the spirit of the search for
generic properties, we will consider several stochastic simulations of a given
chemistry, and we will also consider ensemble behaviours involving several dif-
ferent chemistries. Both kinds of stochastic analyses will prove useful to address
different questions, and it will be clear in the various cases that one has been used.

In order to build a complete chemistry and to perform simulations we need to
define also the probability p that a chemical chosen at random catalyses a reaction
chosen at random and the values of the kinetic constants. Moreover, we need some
rules to define which chemical species can exhibit catalytic activities. For the sake
of simplicity, it will be assumed that every polymer species that is longer than a
fixed threshold value can catalyse any reaction. Of course, the average catalysis
level <c> (or also average “connectivity” in the catalyst-product representation),
defined as the total number of reactions divided by the number of chemical species,
is determined by the value of p and of the number of chemicals. In order to
completely specify the system properties it is also necessary to fix the relative
fraction of cleavages and condensations, over the total number of reactions.

Once the chemistry has been fixed, we have also to define the features of the
particular experiment we perform, that is, the parameters of the CSTR: the initial
distribution of concentrations of the chemical species inside the reaction vessel, the
composition of the inflow and the incoming flow rate.

The discrepancy between (i) the theoretical expectation that a strongly connected
component emerges whenever there are enough different chemical species and
(ii) the experimental observation that autocatalytic sets are hard to find, may be
caused not only by some flaws of the basic theory, but also by the inadequacy of
one or more additional hypothesis introduced to describe our simulated world (for
example, some parameter of the CSTR).

These last difficulties are similar to those encountered in in vivo experiments. On
the other hand, the simulations have the advantages of being (i) perfectly repro-
ducible; (ii) fast; (iii) perfectly observable (that is, all the events happening during
the simulation are visible to the observer). For example, by analysing the
catalyst-product graphs we can immediately detect the presence and the fate of the
self-sustaining structures inside the CSTR vessel.

Our group therefore performed a wide program of numerical simulations, in
order to identify at least some of the dynamical conditions favouring the emergence
of autocatalytic structures.
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4.4.4 The Experiments

Interestingly, within the observation bounds due to their finite duration, simulations
typically reach always a quasi-stable condition, with small stochastic fluctuations. If
certain conditions are met (see the following part of this section) this quasi-stable
condition includes the presence of chemical species that are not directly injected in
the CSTR: that is, the reactions among the injected species (possibly involving
some chemicals present since the beginning in the CSTR) enable the formation of
new chemicals, fast enough to avoid the dilution due to the CSTR outgoing flow.

Several different kinds of in silico experiments are described in scientific liter-
ature (among them, Farmer et al. 1986; Bagley et al. 1989; Bagley and Farmer
1991; Jain and Krishna 1998, 1999; Vasas et al. 2012): we summarize here the main
observations derived by a series of simulations performed by our group, referring
the interested reader to the original papers for further details (Filisetti et al. 2011a, b,
c, 2012, 2013; Fuechslin et al. 2010).24 The experiments discussed in this section
have been performed in a CSTR whose volume is 1 l3 using similar kinetic
coefficients for the various reactions.25 Since we are particularly interested in the
emergence of strongly connected components of the reaction graph, in order to
avoid trivial conclusions the average connectivity <c> is fixed, slightly smaller than
one. For higher values, the formation of SCCs (see the definition given in Sect. 4.2)
is highly probable ab initio, and one often observes their coalescence into a huge,
single SCC spanning almost all the chemical species.

The Influence of the Inflow Composition on the CSTR Dynamical Behaviour
A first group of simulations studies the dependence of the system behaviour on the
composition of the inflow. As one can see in Figs. 4.8 and 4.9, the system can
generate and maintain cycles only if the number of injected chemicals is large
enough (Filisetti et al. 2011a, 2012). The activity of the whole system seems
therefore to be enhanced in the cases where the inflow contains a large number of
long species.

To distinguish the effects due to the number of species on one side, and to their
length on the other side, we performed two series of simulations where the
incoming flows have the same number of species and molecules, but differ in
chemical species length.

Figure 4.10 shows that the difference between the results of two different sim-
ulations with the same number of incoming species, but with different length dis-
tributions, do not seem particularly relevant. So, the largest portion of the
enhancement effect described above seems due to the variation in the total number
of species, while the difference in their lengths plays a minor role.

24These results are qualitatively consistent with those obtained by other authors, when dealing with
similar models and experimental conditions.
25Sometimes changing the kinetic coefficients within reasonable bounds, observing variations of
the simulation details but without noticing qualitative changes in the general systems’ behaviors.
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Fig. 4.8 ELRP 26 average time behaviour with respect to the heterogeneity of the inflow. From
left to right: Inflow composed by all the species up to length 2, all the species up to length 3 and all
the species up to length 4 (10 different runs, the error bars represent the standard deviation).
Reprinted with permission from (Filisetti et al. 2012)

Fig. 4.9 Average amount of catalysts not belonging to the inflow with respect to the different
compositions the inflow. From left to right: inflow composed by all the species up to length 2, all
the species up to length 3 and all the species up to length 4 (10 different runs—the error bars
represent the standard deviation). Reprinted with permission from (Filisetti et al. 2012)

In particular, the inflow of first series is composed of 14 species (all chemical
species up to length 3), while the inflow of second series is composed of all the
species of length 1 and 2 and the remaining species are chosen with uniform
probability among the species of length 3 and 4.

The Influence of the Residence Time
The residence time is the average amount of time a molecule spends within the
CSTR vessel. Since it is of course inversely proportional to the flow rate, it is
possible to change the residence time by changing the incoming flow.

A long residence time seems to enhance the SCCs formation and maintenance.
Indeed, a longer residence time increases the number of collisions among the
molecules inside the CSTR vessel, increasing in such a way also the occurrence of
relatively infrequent events and therefore the appearance of new and potentially
useful chemical species. Indeed, the average residence time appears to be largely
correlated with an enhancement of the general activity (Filisetti et al. 2011c, 2012)
(see Fig. 4.11).

26The eigenvalue with the largest real part of the matrix representing the reactions’ graph—see
Sect. 3.3 for details.
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Cleavages and condensations
Both cleavages and condensations can enhance the variety of sequences and
therefore the potential for catalysis but, on the other hand, they may also inhibit the
emergence of autocatalytic cycles by destroying some of their vital components.
Therefore, one might guess that there should be an optimal balance between liga-
tion and cleavage, able to give rise to the maximum possible number of autocat-
alytic cycles.

Fig. 4.11 a The average number of species with positive concentration not belonging to the
incoming flow as a function of 10 different values of the average residence time (log scale on the
x-axis). b The overall molecules concentration produced within a SCC or by the SCC first-order
leaves as a function of 10 different values of the average residence time (20 different runs, the
error bars represent the standard error—average residence time: 0.78, 1.56, 3.13, 6.25, 12.5, 25,
50, 100, 200, 400 s). Reprinted with permission from (Filisetti et al. 2012)

Fig. 4.10 Different inflow composition maintaining a fixed number of species. The graph
represents the average number of molecules not belonging to the inflow as a function of time. The
circles represent the average behaviours of the experiments with an incoming flow composed of all
the species up to length 3; the squares represent the experiments having an incoming flow
composed of all the species up to length 2 and the remaining 8 species randomly chosen from a
uniform distribution containing all the species with length 3 and 4. The error bars represent the
standard error. Reprinted with permission from (Filisetti et al. 2011a)
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In other words, given a certain fixed probability for ligation rL, one may ask for
the corresponding optimal value of probability rC of having cleavages. In Fuechslin
et al. (2010) the authors show that indeed the probability for observing an ACM27

in a reaction system depends on the ratio between these two quantities. In particular,
Fig. 4.12 shows that condensations should be more numerous than cleavages.

The Role of Backward Reactions
In the previous simulations all the reactions were assumed to be irreversible; as
already mentioned, this amounts to assuming that the activation energy barrier for
any forward reaction is much lower than that of the backward reaction, so that a
catalyst is able to greatly increase the rate of the former, making it appreciable, while
the rate of the latter remains negligible (although increased with respect to the case
without catalysis). However backward reactions may occur in nature: so, in Filisetti
et al. (2013) this constraint has been removed, showing that significant effects are
observed when the intensity of backward reactions is sufficiently high (Fig. 4.13).

Indeed, as backward reactions rates are intensified, the emergence of SCCs
becomes more likely. Moreover, SCCs appear to be more resistant to fluctuations
than in the usual settings with no backward reaction. This outcome may rely not
only on the higher average connectivity of the actual reaction graph, but also on the
distinguishing property of backward reactions of recreating the substrates of the
corresponding forward reactions.

The Role of Energy
Some chemical reactions absorb energy, while others are able to release it. In
current living beings there are several energetically unfavourable reactions that

Fig. 4.12 Probability for observing an ACM in a reaction graph with maximal sequence length
Lmax = 6 and rL = 0.01 as a function of rC. Reprinted with permission from (Fuechslin et al. 2010)

27As discussed in Sect. 4.2 the autocatalytic structures can be detected as SCCs in catalyst-product
graphs; however, it is possible, if not even likely, that some SCC structures are not effective in
increasing their copy numbers. In Bagley et al. (1989) Bagley defines as “Autocatalytic
Metabolism” (ACM) a SCC in which the concentrations of the composing elements are signifi-
cantly different from the value they would have without catalysis (or from the typical concentration
value of the chemical species having the same length). ACMs are easy to detect by concentrating
on the presence of species having relatively high concentration.

4.4 Products and Substrates 91



contribute to the synthesis of macromolecules. While these aspects have been
neglected in the models of the previous sections, in Filisetti et al. (2011b),
Fuechslin et al. (2010) the set of possible reactions is divided in three subsets in
accordance with the specific energetic requirements, namely exergonic, neutral and
endoergonic reactions. While exergonic reactions release energy, endoergonic
reactions require the presence of energy “carrier” species (Alberts et al. 2002) that
will release energy to some of the reactants, otherwise the reaction will not take
place. The remaining reactions, not releasing energy or utilizing energy carriers, are
neutral reactions.

The energy intake takes place by direct injecting activated energy carriers in the
incoming flow. The authors observe a non-obvious effect, i.e. that the production of
new species depends on the energy intake in a non-linear way. Actually, there is a
level leading to a maximum production of new species in autocatalytic sets, a
production that decreases if the energy input is further increased (Fig. 4.14). The
detected SCCs near this optimum involve a large number of molecules, confirming
their relevance in the overall dynamics.

The observations about the conditions influencing the emergence of autocatalytic
cycles within CSTR systems can therefore be summarized as follows:

• a high number of chemical species within the incoming flow increases signifi-
cantly the presence of SCC, while the lengths of these chemical species play a
minor role

Fig. 4.13 Variation of the average percentage of molecules (left) and species (right) belonging to
ACSs in time when no backward reactions are allowed (NOREV), and when the ratio between
direct and reverse kinetic coefficient is equal to Q = 1, 10, 100 and 1000. The x-axis represents
time (arbitrary units). The bars display the standard error. The percentage is computed by looking
at the molecules and species present at any time step in the system. Reprinted with permission
from (Filisetti et al. 2013)
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• a high residence time enhances the SCCs formation and maintenance and the
number and concentrations of chemical species not belonging to the incoming
flow increases significantly

• there is an optimal balance between condensations and cleavages that ensures a
high rate of formation of catalytic cycles. In particular, condensations should be
more numerous than cleavages.

• backward reactions can play a significant and not obvious role
• the presence of exergonic, neutral and endergonic reactions introduces a

non-linear influence of energy intake on the formation of effective SCCs

4.4.5 An Unexpected Fragility

Strongly connected components are frequently found in the previous experiments;
however not all the SCCs are effective in producing their chemicals components.
Actually, the results of many simulation experiments indicate that the concentra-
tions of chemical species belonging to a SCC are often not significantly higher than
the average concentration of the other chemicals.

In Fig. 4.15 we can observe, for instance, the catalyst-product graphs of three
different moments of a typical simulation (Filisetti et al. 2012). Some reactions
forming a SCC in a graph occur so rarely within the chosen temporal window (in
one case only once), that it is possible that this reaction will not have any significant
effect. This is not a peculiar case, but a frequent phenomenon: during the simula-
tions presented in last sections, almost all the SCCs detected are indeed charac-
terized by at least one reaction that occurs rarely, a bottleneck that hints a serious
lack of robustness. The causes of this weakness will be discussed in the next
section.

Fig. 4.14 Probability for observing an ACM in a random reaction system as a function of the rate
of energy inflow kE. Reprinted with permission from (Filisetti et al. 2011b)

4.4 Products and Substrates 93



4.5 Reflexive Autocatalytic Food-Generated (RAF) Sets

The picture emerging from the previous sections indicates that, in order to
self-replicate, an autocatalytic cycle is not sufficient. Indeed, not only catalysts, but
also substrates must be produced, in order to allow a sustained growth of the
number of molecules. This is granted in models like e.g. those of Sect. 4.3, where it
is assumed that all the catalysts can be synthesized from a set of externally supplied
“food” molecules, but it is no longer granted in more sophisticated models like
those of Sect. 4.4, where no a priori distinction is assumed between species that are
catalysts and species that are substrates—so that the same species can be both a
substrate and a catalyst. In this section the role of substrates will be considered. In
particular, we will distinguish between those that are supplied from the outside (the
“food”) and those that are synthesized by the system itself.

This aspect is hidden in the catalyst-product graph, that does not allow the
detection of the species needed by the SCCs’ synthesis processes, and it can be

Fig. 4.15 Autocatalytic sets fragility. The figure shows the actual reaction graphs of a particular
experiment at three different times. The green nodes represent the species belonging to the
incoming flow, the blue nodes are those forming the SCC and the white nodes are the new species
created by the dynamics. It is possible to observe that the chemical species and the reactions
belonging to a SCC change in time (so that during the second time interval no SCC are detected),
and that each SCC has at least one link corresponding to a very rare reaction. Reprinted with
permission from (Filisetti et al. 2012)
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observed by looking at the bipartite graph, with two different kinds of nodes and
two different kinds of links, representing both chemical species and reactions (see
Sect. 4.2).

In recent years some authors proposed (Steel 2000; Hordijk and Steel 2004)28 a
concept, that of Reflexively Autocatalytic Food-generated set (shortly RAF set, or
simply RAF) that is useful to identify systems potentially able to support (i) the
reproduction of catalysts and (ii) the reproduction of the necessary substrates
(starting from the food, i.e. a set of chemicals provided by the environment). As we
shall see, RAFs support the growth of the number of molecules, as they do not
suffer from the “lack of substrates” that affected the cycles discussed in the previous
section. Moreover, if the food does not contain catalysts, the presence of a RAF set
necessarily entails that of a catalytic cycle.

Let us give a precise definition of a RAF, following (Mossel and Steel 2005;
Hordijk and Steel 2004; Jaramillo et al. 2012). A catalytic reaction system over a
food source F is defined by a triplet L = (X; R; C) where X is the universe of all
possible molecular types (that includes catalysts and substrates), R is the set of all
the reactions that can occur among these molecules and C is the set of all the pairs
(x, r) where x2X and r2R and x catalyses r. F is a subset of molecular types (F
X)
that are supplied from the outside and are available even if the system L is unable to
synthesize them.

In a catalytic reaction system L, a Reflexively Autocatalytic Food-generated set
is then defined as a subset R′�R of all possible reactions that is:

1. reflexively autocatalytic (RA): each reaction r2R′ is catalysed by at least one
molecular type belonging to L

2. food-generated (F): all the chemical species in L that do not belong to the food
set F can be synthesized from F by using only reactions in R′.

So, a set of reactions R′ is RAF if each reaction is catalysed by one or more
chemical species involved in a reaction in R′; and each reactant in R′ can be built
starting from the food set F by successive applications of reactions from R′. These
rules capture on a static structure as a reaction graph the abstract idea of ‘life’ as an
auto-catalysing system able to maintain itself by using a suitable food source
(Hordijk and Steel 2004). Dynamical effects (like e.g. an exceedingly slow reaction
rate) might of course affect the growth rate.

It has already been observed that the definition implies that, if there is a RAF and
if no species in F is a catalyst, then a cycle of autocatalytic reactions is necessarily a
subset of the RAF; otherwise it would be impossible to satisfy the condition that all
the reactions are catalysed by at least one species in R′. However, if the food set
contains catalysts, then the RAF property might be satisfied also by linear reaction
chains, having their “roots” in F (see Fig. 4.16).

28This method was applied to self-replicating chemical systems (Filisetti et al. 2014; Villani et al.
in press; Serra et al. 2014b; Hordijk and Steel 2013).
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A RAF has been defined as a set of reactions, but of course the definition makes
sense in a particular catalytic reaction system L, so the chemical species are also
necessary to guarantee the RAF property of a set of reactions. Moreover, since in
different models of random “chemistries” the same reaction can be coupled to
different catalysts, also the set C of pairs {reaction, catalyst} has to be implicitly
assumed. In the following sections of this book, we will adhere to the (original)
definition of a RAF set as a set of reactions, but when no ambiguity is possible we
will take sometimes the liberty to refer to the “species belonging to a RAF” instead
of the more correct and complete “species that are substrates or products of the
Reflexively Autocatalytic Food-generated set of reactions of the catalytic reaction
system L” .

The RAF definition is clear, but a brief description of the algorithm adopted to
find these structures (Hordijk and Steel 2004) could be useful to better appreciate
the overall idea and its implications. The algorithm takes into consideration the set
R containing all the reactions, the set X containing all chemical species, and the set
F containing the chemical species whose existence is guaranteed by the environ-
ment (the Food). For any arbitrary X′�X we define the support of X′ with respect to
R′, suppR′ (X′, as the subset of X′ containing all chemical species included in X′ that
play the role of substrates or product in one or more reaction belonging to R′. We
define also the closure of X′�X with respect to R′, closR′ (X′), as the minimal subset
W of X which contains X′ and all the molecules that can be constructed from X′ by
the repeated application of reactions in R′, until no further additions in W are
possible.

So, the algorithm creates a new set R’ = R, and then iteratively executes a group
of three steps: the first step (i) eliminates from R′ all the reactions not catalysed by
the chemical species presents in X, obtaining in such a way a reflexively

Fig. 4.16 Two examples of RAFs, symbolized by using the complete (a) (c) and the
catalyst-product (b) (d) representations: ellipses and boxes indicate respectively chemicals and
reactions, the coloured ellipses denoting the chemicals composing the food; solid arrows indicate
materials production/consumption, whereas dotted arrows represent catalysis. Note that in
catalyst-product representation RAFs could assume the form of linear (b) or SCC (d) structures: in
case of linear structures, the maintenance of the root has to be guaranteed by the environment (the
root has to be part of the so-called “food”)
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autocatalytic (RA) set. The second step (ii) computes the closure W of F relative to
the current set of reactions R′ and the third step (iii) eliminates from R′ all the
reactions whose substrates do not belong to W, controlling in such a way that all
reactions have the needed substrates (Food phase). The obtained set of reactions
might be not entirely RA, so the steps i–iii are iterated till the whole process
converges and no changes happen in the R′ set. The final reaction set is unique
(independent from the sequence of eliminations) and at the same time RA and F
(Hordijk and Steel 2004).

According to the definition given in the previous section, in each chemistry (the
set of chemical species, reactions and catalysis) there is only a single RAF set:
indeed, a RAF set is the set union of all the reactions satisfying the reflexively
autocatalytic (RA) and food-generated (F) conditions. A RAF can sometimes be
decomposed into several smaller (independent or overlapping) subsets that exhibit
the RAF property themselves (subRAFs) (Hordijk et al. 2012). In the case of
independent subsets the intersections between the sets of reactions, and those
between the sets of species (including the food), are both empty. An example of
independent subRAFs is shown in Fig. 4.17 both in the catalyst-product graph and
in the bipartite graph involving both chemical species and reactions. Independent
subRAFs can have the form of linear or branched chains, with their roots in the
food,29 or of SCC, possibly supporting linear structures.

More complicated structures can be observed in RAFs, and they will be dis-
cussed in Sect. 4.5.2.

Fig. 4.17 Formally, each chemistry can host only one RAF, which is the union of all reactions
that are reflexively autocatalytic and food-generated. RAFs however could present clearly
identifiable substructures, which show the RAF property: the part (a) of this figure shows a RAF
composed by three of such substructures, forming a SCC supporting a short linear chain and two
independent linear chains in catalyst-product representation (b)

29Note that a subRAF may not include any SCC only if some of its food species can act as
catalysts.
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4.5.1 RAF Sets in Kauffman Random Topologies

In the Kauffman model, discussed in Sect. 4.4, the emergence of autocatalytic sets
appeared to be an inevitable collective property of any sufficiently diverse set of
chemical species (Kauffman 1986). This statement however was made considering
only the strongly connected components (SCC) structures.

Interestingly, a similar statement could be done also for RAF sets,30 but the
thresholds are different: while the average connectivity31 <c> where the transition
for SCC happens is slightly higher than 1, a similar transition can be observed in
RAF sets at <c> � 2.5 (see Fig. 4.18) (Hordijk and Steel 2004; Filisetti et al.
2014). So, the wide region between 1.0 and 2.5 can be rich of SCC structures
unable to self-sustain because they do not fulfil the closure condition (Filisetti et al.
2014).

The fact that the thresholds of the two transitions significantly differ from each
other might perhaps be one of the possible reasons preventing the observation of the
emergence of autocatalytic structures in wet laboratories (if experiments were
performed close to the SCC’s critical point rather than to the much higher RAF’s
critical point) (Villani et al. 2016).

It is interesting to see how the parameters of the Kauffman’s systems influence
the structure of RAF sets. In Fig. 4.19 we show the analysis of ensembles of

Fig. 4.18 The fraction of simulations showing at least one irrRAF (left) and one SCC (right), by
varying <c> and M. F contains all the species up to length 2. On the x-axis the average level of
catalysis <c> is represented while on the y-axis the fraction of network instances (out of 1000
networks for each <c>) is depicted. Reprinted with permission from (Filisetti et al. 2014)

30It has been suggested that the use of RAF sets makes more plausible the role that in Kauffman’s
theory plays the probability p (probability that a randomly chosen species could catalyze a ran-
domly chosen reaction. See Steel (2000) and Mossel and Steel (2005).
31i.e. average number of links per node.
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Fig. 4.19 TOP: Fraction of simulations showing at least one irrRAF. MIDDLE: fraction of RAFs
having at least one SCC. BOTTOM: fraction of RAFs having at least one autocatalysis. On the
x-axis <c> is represented, F is composed of all the species up to length 2 (left panel) and 3 (right
panel); only species longer than 2 monomers can catalyse reactions. For each <c> and for each
value of M, 1000 network instances have been created. For computational reasons, once the 100%
of networks with a specific <c> contain at least a RAF set, the system automatically goes to the
next M, thus in some cases the analysis on SCC does not reach <c> = 4, the maximum level of
catalysis evaluated. Reprinted with permission from (Filisetti et al. 2014)
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chemistries differing for average level of catalysis, maximum length M of the
involved chemical species and food composition. The enlargement of the food set
has an apparently huge effect on the presence of RAFs, which appears also at low
levels of catalysis. Even more interesting differences are observed when varying the
average connectivity <c>. If the food set F includes all chemical species up to
length 2, at low catalysis levels almost all RAFs contain an autocatalytic reaction,
whereas the formation of larger SCCs inside the RAF is unlikely; on the contrary,
as the average catalysis level <c> grows, the fraction of RAFs with a SSC con-
taining more than one species tends to 1 (slightly before the 2.5 zone)—note that
these RAFs still have a high probability of containing an autocatalytic reaction as
well. If we increase the food set to include all chemical species up to length 3, the
situation differs substantially: the sum of SCCs and autocatalytic reactions does not
reach 100%, and this gap increases as the maximum allowed length decreases: the
prevailing structures for a large zone of catalysis level are linear chains on the
catalyst-product graph, while SCCs and autocatalytic reactions play a minor role.

In the following chapter we will see that this overlap between the food set and
the set of chemical species that could have catalytic activities can play an interesting
role in protocell architectures.

4.5.2 A Taxonomy of RAF Sets

As remarked above, in each chemistry there is only a single RAF set, that might
however be the set union of smaller (independent or overlapping) subsets that
themselves exhibit the RAF property (subRAFs) (Hordijk et al. 2012). The case of
independent subsets, where the intersections between the sets of reactions, and
those between the sets of species, are both empty has already been discussed in
Sect. 4.5 (see Fig. 4.17). However, the case of independent subsets is quite peculiar
and, as we shall see in the next Chap. 5, it is important to consider also the case
where subRAFs do interact.

From now on, in this section we will consider below an independent subRAF
(that might coincide with the unique overall RAF or not); to make the exposition
not too heavy, we will simply call it a RAF, and we will analyse the structures it is
composed of. In general, it is possible to identify a central part responsible of the
RAF property of the set, and possibly a peripheral part that may also be absent
(Hordijk et al. 2012; Vasas et al. 2012). The central part is composed by one or
more “cores”, strongly connected components (SCC)32 able to catalyse the for-
mation of their substrates (at least those that are not provided by the environ-

32See Sect. 4.2.
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ment),33 whereas the peripheral part is composed by linear structures, branched
structures or by SCCs unable to catalyse the formation of their substrates (contrary
to the core, the periphery alone is not able per se of guaranteeing its sustainability
(Vasas et al. 2012)).

The cores may have a quite complicated structure, involving e.g. multiple
pathways leading to the synthesis of some chemical, or possibly more species that
can catalyse the same reaction. However, it often happens that a core has a simpler
structure, that of an irrRAF, defined (Hordijk et al. 2012) as a subset of a larger
RAF that is irreducible, i.e. that cannot be reduced any further without losing the
RAF property (Hordijk et al. 2012). Figure 4.20 shows one example of these
structures, composed by one core (in this case an irrRAF) that guarantees the
replication of a brief linear chain (composed by only one chemical species) and of a
longer (and branched) chain.

The cores can interact with each other directly (see an example in Fig. 4.21), or
through their peripheries. In this case several kinds of relations are possible, where
the different cores reciprocally affect their growth (mutualism, competition and
parasitism) or simply affect the growth of other cores without receiving a feedback
(commensalism). Figure 4.22 shows two examples of these interactions.

Of course many situations are possible (see for example Fig. 4.23), and it is not
always easy to distinguish heavily entangled sets, up to the point that, if two cores
are providing each other useful substrates through their peripheries it is possible that

Fig. 4.20 a A RAF set composed by one core (an irrRAF composed by the reactions {R1, R2}),
which sustains a brief linear chain (composed by the reaction R3 and its product) and a branched
chain (composed by the reactions {R7, R8, R9, R10} and their substrates and products); b the
same structure represented by using the catalyst-product graph. The presence of the core is
represented by using a hexagon (the core details are ignored)

33Note that a single chemical species belonging to the food and able to catalyse the production of
another chemical could constitute itself a core; in general, cores are either autocatalytic cycles or
single catalysts.
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they merge into a single larger core. Actually, the system subdivisions can be
complicated; however, the RAFs composed by one core and its periphery are a
useful unit of analysis and they deserve a name, so we will call them extended core
RAFs, or ecRAFs.

Actually, each example in Fig. 4.23 constitutes a single RAF set. However, the
definition of an ecRAF as “one core and its periphery” permits the unique identi-
fication of several interacting parts in each set, allowing an interesting and mean-
ingful explanation of the dynamics of the system.

In order to avoid any abuse of a pedantic terminology, when no misunder-
standings are possible we will use in the following the term “RAF” to shortly
indicate either (i) an irrRAF, (ii) an ecRAF, (iii) a generic RAF set or (iv) the union
of all RAF sets in the unique maximum RAF really existing in each chemistry, and
we will use the more specific terms only if necessary.

Fig. 4.21 Two different cores (two irrRAFs composed respectively by the reactions {R1, R2} and
by the reactions {R3, R4, R5}) interacting through their food (the reactions and the chemical
species of the different cores are highlighted in different colours; the partially overlapping food is
composed by monomers and dimers). A major food consumption by one of the two cores affects
the growth of the other, and vice versa. Obviously in case of buffered food (i.e. constant) this
dynamics does not hold, and the different cores cannot directly interact
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Fig. 4.22 a A RAF set composed by two cores (two irrRAFs respectively comprising the
reactions {R1, R2} and the reactions {R4, R5, R6}). The periphery (reaction R3) of the first core
supports the production of one component of the second core, which therefore benefits from the
relationship without causing benefit (commensalism). b The same structure represented by using
the catalyst-product graph; the core is represented using hexagons (the cores’ details are ignored).
c The same core present in part (a), where the first core supports a branched chain (reactions {R7,
R8, R9, R10}). The second core and the branched chain share a part of their food, and therefore
they might compete for the same resources. d The situation depicted in (c) is not representable by
means of the catalyst-product graph: the added grey area evidences the fact that the second core
and the branched chain share a part of their substrates
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Fig. 4.23 Some examples of interacting ecRAFs using the intuitive (although non-systematic)
notation of the previous figures. a An ecRAF (the core being composed by the irrRAF including
the species BBA and BBBB, which supports a branched periphery composed by the species
AABB, ABBA, AAAB and BABA) that influences a second ecRAF (a single core, which includes
the species ABB, AAB and BAB) by simultaneously catalysing the formation of one of its
constituents and competing with it for resources (through its branched periphery). Actually, this
system is the union of the situations of Fig. 4.2. b Two ecRAFs (the core of the first is composed
by the irrRAF including the species BBA and BBBB, which catalyses the root of a linear periphery
composed by the species AABB and ABBA; the core of the second is composed by the irrRAF
including the species ABB, AAB and BAB, which supports a linear periphery composed by the
species BABA) that positively interact through their peripheries (mutualism). (c) An ecRAF
composed by two cores (two irrRAFs including respectively the chemical species BBA, BBBB
and ABB, AAB, BAB). The production of the root of the branched periphery composed by the
species AABB, ABBA, AAAB and BABA is catalysed by the first irrRAF, whereas the second
irrRAF produces a substrate needed for the production of the chemical species ABBA. The explicit
representation of the food and of the reactions (if not needed for a correct figure comprehension) is
neglected, in favour of an easier identification of the ecRAF organisation
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Chapter 5
A Stochastic Model of Growing
and Dividing Protocells

In the last two chapters we have shown several interesting results, which will now
be brought together in a quite complete (albeit abstract) protocell model. In Chap. 3
we have studied how the presence of genetic memory molecules (GMMs) can
affect the growth and fission rate of their lipid container, leading under quite broad
assumptions to the important phenomenon of emergent synchronization, i.e. to a
condition where protocell fission and duplication of its genetic material take place at
the same pace. In that chapter, chemical kinetics has been described with deter-
ministic differential equations (it has also been mentioned that synchronization is
somewhat robust even if small fluctuations are considered).

However, reactions happen because of molecular collisions, which are discrete
events, so deterministic kinetic equations provide an aggregate-level description
that can be accurate only when very many collisions take place in unit time—a
condition that in turn requires the presence of many copies of the same molecular
types.

We have seen in Chap. 4 that the reactions among the various chemical species
can also generate new species, that were not present before, and we have observed
that the number of molecules of a newborn species is likely to be initially quite low.
Stochastic effects therefore may play a major role, so a fully stochastic treatment is
required. This was done applying the Gillespie algorithm to a model where new
species can be created, and several results have been discussed in Chap. 4. The
simulations were made in a well-defined condition, i.e. a continuously stirred tank
reactor (CSTR).

In this chapter we will bring those reactions inside a protocell, i.e. a small
volume bounded by a semipermeable membrane, which can be crossed by various
chemicals at different speeds, and that can even be completely impermeable to some
species. We will see that the study of the behaviour of these reaction networks
coupled to the dynamics of the lipid container leads to interesting phenomena, and
also in this chapter we will address the issue of synchronization.
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First of all, in Sect. 5.1 we will discuss the limitations of flow reactors to
describe the properties of semipermeable vesicles and we will propose a different
model, closer to the actual behaviour of semipermeable membranes. The basic
model described in this section takes into account (i) the coupling of the GMMs
with the lipid container and (ii) the process of transmembrane transport that allows
the inside of a protocell to exchange material with the external environment.

In particular, when modelling a growing and dividing protocell we will assume,
as in Chap. 3, which some genetic memory molecules can affect the growth rate of
the container, and that fission takes place when a certain size has been reached. This
coupling leads to the conclusion that protocells hosting different sets of GMMs can
reproduce at different speed, and can therefore undergo selection in favour of the
fastest replicating protocells. When we model a vesicle of fixed size we will assume
that no such coupling exists.1

In order to keep the model as simple as possible, we often make the hypothesis
that transmembrane transport (of the molecules that can cross the membrane) is
infinitely fast; however, we will see in Sect. 5.6 that this extreme hypothesis leads
to some severe consequences, therefore we will also consider the behaviour of a
model with finite transmembrane diffusion rate. In the following sections of this
chapter (from 5.2 to 5.6) it will be specified which specific model is used.

We will then discuss the role of membranes, which can allow (i) the internal
composition2 of a vesicle to differ from the composition of the external environment
(Sect. 5.2) and (ii) the internal compositions of different vesicles to differ from each
other, provided that they are small enough (Sect. 5.3). Note that point (i) is often
overlooked, but it is important to understand why a given volume inside a protocell
can differ from an equal volume of the external fluid.

After doing this we will address in Sect. 5.4 the dynamics of the coupled system
comprising both reaction networks and container fission. We will see that an
adequate analysis requires consideration of the properties of particular sets of
reactions (RAFs, discussed in Chap. 4) and that the behaviour of the protocell can
be described in terms of its RAFs and their interactions. Section 5.4 is the core of
this chapter, and it presents the main results observed by simulating a novel model
where growth and fission is coupled to the stochastic dynamics of a changing
reaction network.

The model described so far is based on catalysed reactions only. New chemical
species can sometimes appear in the system (due e.g. to random fluctuations or to
some rare non-catalysed reactions), and in Sect. 5.5 the fate of such novelties is
discussed—a topic of the utmost importance for the fate of a population of pro-
tocells. Also in this case it turns out that the most effective level of analysis is that of
RAFs, and it will be shown that under some circumstances new RAFs can co-exist

1When we wish to stress this difference, we use the term vesicle for a cell of fixed size, keeping the
term protocell for a growing and dividing entity.
2“chemical composition” means the various chemical species that are present, and the values of
their concentrations.
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with the pre-existing ones in the same protocell, thus giving rise to quite sophis-
ticated structures. Finally, some comments on the issue of the evolvability of
protocell populations are summarized in Sect. 5.6.

5.1 Semipermeable Protocells

The study of self-replicating sets of molecules is often decoupled from the problem
of the growth of their “container”. Most studies concern reactions taking place in
closed systems or flow reactors, two choices that both have significant limitations in
dealing with semipermeable cells. On the one hand, closed systems are subject to
the constraints of the second law of thermodynamics, and are affected by phe-
nomena like depletion of reactants and accumulation of wastes. On the other hand,
the coupling of flow reactors (typically, continuous stirred-tank reactors, see
Fig. 4.1) with the environment is very different from that of a vesicle with a
semipermeable membrane. In particular, CSTRs receive all that is contained in the
incoming flow and flush out of the reaction vessel all the solutes, while the inflows
and outflows of systems with a semipermeable membrane depend (i) on its per-
meability to different chemicals and (ii) on the difference between the internal and
external chemical potentials of the permeable species. Moreover, if the container
grows, the internal concentrations change, thus affecting also the inflow and outflow
rates.

This is a crucial point: a CSTR cannot control its intake from the environment.
Typically, neglecting random fluctuations, a flow reactor reaches a stationary state,
that might in principle be a function both of the (constant) composition of the
inflow and of the initial chemical composition of the reaction vessel. After tran-
sients have died out, the final (stationary) chemical composition of the vessel is
attained. It has been verified in several simulations of random chemistries that this
stationary chemical composition is determined mainly by the chemical composition
of the incoming flow (Filisetti et al. 2011a, 2012). The presence of particular
chemical species in the reaction vessel at the beginning of the experiment could in
principle affect its final state, but this effect is seldom observed, therefore the final
state of a CSTR is mainly affected by the inflow (see Fig. 5.1).

The limited influence of the initial internal chemical composition can be
understood on the basis of what we have learnt in Chap. 4. Species that are not
produced by chemical reactions are necessarily bound to vanish, because of the
outflow. So, if there are no ecRAFs in the inflow, a necessary condition for an
internal species to affect the final state is that it allows the formation of a new
ecRAF, and that this formation is fast enough to escape dilution. If there is a RAF in
the inflow, the internal species must be recruited by the RAF to survive.
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If the inflow does not change, quite often nothing changes.3 On the contrary, the
flow rate of any chemical species in a semipermeable vesicle depends upon the
membrane permeability to that species and also upon the transmembrane concen-
tration gradients, so the composition inside the protocell affects also the inflow rate.
Moreover, if some chemicals affect the container growth rate, then there can be also
a second order effect, due to the volume change, that affects the internal concen-
trations, that in turn affect the transmembrane transport rates (even when the
external environment is kept fixed).4 So protocells are quite different from CSTRs.

In the following we will make use of a protocell model that resembles the
Internal Reaction Models of Sect. 3.5, where however the dynamics of replicators is
obtained by applying the stochastic Gillespie algorithm (see Sects. 4.4 and 5.7) to
the Kauffman model of linear polymers with cleavage and condensation reactions.
Let us quickly summarize here the main features of these models, referring the
reader to Chaps. 3 and 4 for further details and discussions.

Detailed models can be extremely useful to identify the most effective ingredients
that can lead to the actual protocell build-up (Solé et al. 2007, 2008) and to reject
unconvincing proposals. However, as discussed in Chaps. 1 and 2, it is also worth of
interest to consider a different approach5 based on fairly abstract models, which
make use of a less detailed description of the behaviour of the protocell components.
Protocell research benefits from both kinds of approaches. Indeed, in this volume we

Fig. 5.1 a The time behaviour of the chemical concentrations in a CSTR: the inflow is composed
by monomers and dimers, whereas AAA and ABB catalyse with equal strength each other’s
productions. b The same as before, but starting from several different internal chemical
concentrations. Note that only when the initial concentrations of AAA and ABB are both zero a
different final fate of the system is reached (situation showed by means of dashed lines)—in this
case the final internal composition includes only the injected chemicals

3In order to introduce change and novelties, the random appearance of new chemicals has been
proposed, for example introducing a new self-replicating set of reactions or totally stopping the
occurrence of entire blocks of reactions (Vasas et al. 2012).
4We always assume that the volume of the “environment” is much larger than that of the protocell,
or even of the whole population of protocells, so that the changes in the composition of the
environment due to outflows from the protocells are negligible.
5Pioneered by Gánti with his Chemoton model (Gánti 2003).
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concentrate on models of the abstract kind, trying to capture some key features of the
real physical processes and to highlight and clarify their roles in protocells.

We consider the case of a container, which can be tentatively identified with a
vesicle formed by amphiphilic molecules in water (Mansy 2009); the model is
however abstract and it can describe different physic-chemical scenarios. Other
molecules, besides those that form the container, may be present in the vesicle and
potentially influence its growth rate.

It is supposed that, when the container reaches a certain size, it becomes unstable
and it divides into two approximately equal daughter cells. Of course, this is an
essential abstraction of a very complex process, discussed in depth in Chap. 3.

It has already been observed in Chap. 3 that there are different protocell “ar-
chitectures”, a major difference being the location of the replicators, also called here
“genetic memory molecules” or GMMs. In this whole chapter we will concentrate
solely on the most common protocell architecture, where the two key processes
(formation of GMMs, formation of amphiphiles) take place in the internal aqueous
phase of the protocell.

In order to obtain a population of protocells able to proliferate through suc-
cessive generations, the two key processes (i) of membrane growth by means of the
uptake of amphiphiles in the membrane and (ii) of duplication of the chemical
species influencing the protocell’s growth (i.e. the GMMs), must both take place at
the same pace, i.e. they must synchronize. Synchronisation—as shown in Chap. 3
—turns out to be a spontaneously emergent property in many different model types,
provided that some GMMs can influence the growth rate of the container.

Coupling the container growth to the presence of specific GMMs is indeed a key
bottleneck in creating a protocell in the lab: there are systems where the vesicle
grows thanks to the continuous feeding of lipids from the outside (Hanczyc and
Szostak 2004; Rasmussen et al. 2008), and there are systems where duplication of a
set of molecules can be observed (Kiedrowski 1986; Sievers and Kiedrowski 1994;
Hayden and Lehman 2006; Wagner and Ashkenasy 2009), but it has so far been
infeasible to couple them in a single system. For modelling purposes we will
assume here that such coupling actually exists, so the growth rate of the container
depends upon the concentration of some GMMs.

Vesicles can grow and divide in different manners. In the following we will
assume that during the protocell life there is a stable relationship between the mass
of the membrane molecules and the volume of the protocell: the simplest such
relationship will be assumed, that is based on the hypothesis that the protocell is
turgid, and that it remains spherical during growth, giving birth to spherical
descendants.6

The dynamics of the GMMs will be described referring to the Kauffman model
(described in detail in Chap. 4), making extensive use of the notion of RAFs (see

6Due to the observed robustness of emergent synchronization in different models, we hypothesize
that the main qualitative results are likely to hold in the case of even division, also if different
shapes are assumed.
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Sect. 4.5).7 For reasons discussed above, we will usually resort to stochastic sim-
ulations but, when concentrations are high enough to guarantee that fluctuations are
small, we will sometimes make use of deterministic models similar to those
described in Chap. 3, that are amenable to faster simulations.

We will assume that the concentrations of the GMMs inside the protocell are
homogeneous,8 so that there are no internal gradients. We will assume that the
protocells live in an external environment (an aqueous solution of various chem-
icals) that is also homogeneous and large, in the sense that any outflow from the
protocells will not significantly affect the concentrations of the various chemical
species in the environment. We will also assume that diffusion of all solutes in
water is so fast to be regarded as instantaneous (on the time scale of the relevant
processes of the protocell) both in the internal water phase and in the external
environment.

It will be assumed that some species (“permeable” species) can cross the
membrane and that some cannot. Indeed, some small neutral molecules can cross
the membranes of present-day cells without the aid of proteins, and simpler pro-
tocells (like e.g. those whose membranes are made of fatty acids) are quite per-
meable to a wider set of chemicals, including some polar molecules (Mansy et al.
2008; Mansy 2010). The transmembrane motion of the permeable species is sup-
posed to be ruled by the difference of their chemical potentials in the aqueous
volume inside and outside the protocell. There are two versions of the model, and as
we shall see this difference can lead to important consequences: in version (i) the
transmembrane diffusion is extremely fast, so that there is always instantaneous
equilibrium between the internal and external concentrations9 of the permeable
species, while in another version (ii) it will be assumed that the rate of trans-
membrane diffusion is given by Fick’s law with finite diffusion coefficients. In the
following we will assume that version (i) is used, unless otherwise stated. Note that
in version (i) the concentrations of the species that can cross the membrane are
constant, identical to their concentrations in the external volume.

Transmembrane diffusion depends upon the features of the molecules but, in the
framework of the Kauffman model, we simply assume that short molecules (namely
those shorter than a threshold length Lperm) can pass through the membrane while
longer ones cannot. Another threshold concerns catalysts: only “long enough”
chemical species (those that are composed by at least Lcat symbols) can act as

7As already commented in Sect. 4.5, a RAF is a set of reactions, but for simplicity, when no
misunderstandings are possible, the term RAF will be used to indicate also the set of chemical
species involved in the RAF structure.
8Except for the case of so-called near-membrane reaction models, where the key reactions take
place in a thin spherical shell close to the inner side of the membrane; also in this case the
concentrations are however homogeneous inside each partition of the total inner volume.
9In the cases considered here the difference in chemical potential is due only to differences in
concentrations.
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catalysts. In order to avoid relatively “easy” situations in the following we will
suppose that Lperm � Lcat..

We assume that some chemical species (chosen randomly with uniform proba-
bility) are coupled to the growth of the container. These species act as specific
catalysts for the production of membrane lipids, assuming abundant and buffered
lipid precursors.10

Let C be the total number of lipid molecules (or moles) in the membrane. Then
the equation for the growth rate of the container takes the form:

dC
dt

ffi
XN
i¼ 1

kconti xi½ �Vr ð5:1Þ

where Vr is the internal volume of the protocell (where reactions occur) and [xi] is
the concentration of catalysts in the internal aqueous phase; the kinetic coefficients
ki
cont are zero for all the species that do not contribute to the container growth. The
kinetics of lipid formation are supposed to be first-order with respect to the con-
centration of catalyst, given the hypothesis of an infinite supply of lipid precursors
inside the protocell. The lipids produced inside the protocell are assumed to be
incorporated instantly into the membrane.

Protocells can grow and divide: during these processes their form and shape can
change (Lipowsky 1991; Adamala and Szostak 2013) but, as previously discussed,
we suppose that they are spherical and turgid with constant membrane thickness.11

In this case the ratio between the daughter and the mother protocells’ volumes is 1/
(2√2) �0.354 (Villani et al. 2014; Calvanese et al. 2017). If the concentration of
internal materials does not appreciably vary during duplication (like it might hap-
pen in the case of very fast splitting processes) then at each duplication about 30%
of the internal material is lost in the external environment. Of course, this is not the
only possible option, and division of not perfectly spherical vesicles could allow the
formation of daughter vesicles without loss of materials. We made simulations with
(Villani et al. 2014, 2016; Calvanese et al. 2017) and without (Serra et al. 2007a;
Carletti et al. 2008; Filisetti et al. 2010) hypothesising material losses and found
that the synchronization among internal replicating materials and container is a
robust phenomenon, occurring in both situations.

A more concise and precise description of the models can be found in Sec. 5.7.

10Because of their affinity with the membrane we assume that also these materials can cross it. The
consequence of releasing this assumption will be briefly discussed at the end of this chapter.
11The hypothesis that the two daughters have identical volumes is a non-essential assumption,
since the division phenomenon is supposed to happen at a given threshold, independently of the
initial size: conversely, it allows a more compact result presentation—see Chap. 6 for a more
detailed discussion.
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5.2 The Role of Active Membranes

A remarkable feature of (proto)cells12 is the very presence of a “system”, that is, a
single entity whose boundaries are determined by a closed semipermeable mem-
brane.13 The presence and characteristics of the boundary determine the transport
properties between the internal and the external environment, and therefore also the
relationship between the internal and external chemical compositions: as we shall
see, these properties can in turn affect the main properties of a protocell.

Membranes affect the properties of cells and protocells in several ways,
including:

• a limited size prevents the dispersion of the reaction substrates and products,
increasing in such a way the rates of the reactions14

• evolution can act on a new level, namely that of population of cells
• the smallness of the cell amplifies the effects of local differences (whose origin

will be discussed in the following), thus supporting evolution (Fig. 5.2)

Let us now focus on semipermeable vesicles (neglecting, for the time being, the
growth processes). A key question is whether there are major differences between
what is happening inside a protocell and what is happening in a portion of equal
size of the external aqueous environment (let us call it the “equivalent volume”). If
no significant difference exists, then there would be no major reason for having cells
at all, self-replication should happen everywhere in the bulk of the environment.
Since this is not the case, we must understand the reasons why the internal and
external milieus can be different.

Apart from being semipermeable, the membrane might either (i) affect some or
(ii) not affect any reaction rate of the GMMs. In this latter case the membrane would
be passive, and the same reactions would take place inside and outside. It would be
unconvincing to postulate a priori that the internal and external environments are
different from the very beginning.15 If the protocell size is large enough that
composition fluctuations in an equivalent volume are negligible, then there should
be no significant differences between a portion of the fluid surrounded by a
membrane, and a free but substantially similar portion of the same fluid.

12The observations of this section are valid both for cells and protocells; for this reason we will
sometimes use here the generic term “cell”.
13Apparently, this is a feature of life as we know it: we never observed living entities as the
intelligent cloud wondering among stars depicted in “The Black Cloud” by astrophysicist Fred
Hoyle (Hoyle 1957). On the contrary, the organization of all known living entities is based on
small units, whose chemical compositions significantly differ from the environmental one.
14As we will discuss below, a finite size does not guarantee per se the existence of differences
among the internal and the external chemical concentrations.
15Note however that, in order to interpret some recent experimental data (Souza et al. 2009), it has
been suggested that some processes might take place, when the membrane closes, that favor the
onset of some concentration differences between inside and outside.
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Therefore we are led to the conclusion that passive membranes (i.e. those that do
no modify the rate of any reaction) might be important only if their volumes are so
small that there are significant differences in the number of molecules of various
types that can be found in different protocells. In this case the different protocells
might grow and split at different rates, thereby providing a basis for Darwinian
evolution. We will discuss the case of such small vesicles in Sect. 5.3 where some
quantitative scenarios will also be discussed.

It is also worth mentioning that passive membranes allow the formation of
transmembrane concentration gradients; as it will be discussed in Sect. 6.4, these
gradients can be high-energy intermediates in a chain of reactions leading to the
synthesis of high-energy chemicals. For example, proton concentration gradients
are effective in promoting ATP synthesis as they “sum up” the contributions of
some exergonic reactions to reach the energy required by the synthesis.

Let us now consider alternative (ii), i.e. suppose that membranes can play an
active role, by increasing16 the rate of some chemical reactions or by introducing
order in the aqueous phase near the surface itself (Walde et al. 2014). The same
phenomena should happen both in the internal water phase and in the external
environment, but if we assume that the reaction products can quickly diffuse, then
the internal and external concentrations of non permeable species can become
different. In order to show how this happens, let us assume for the sake of simplicity

Fig. 5.2 The figure schematizes the interaction between a a CSTR and its external environment
and b a protocell and its external environment. In a there is a continuous inflow of a water solution
of chemicals, whose concentrations are determined by the environment, and an outflow where the
concentration of each chemical equals that in the reaction vessel. In b a semipermeable membrane
allows the passage of only a subset of the chemicals to and from the environment, the crossing rate
being determined by the membrane permeability to that chemical species and by the concentration
gradients. Reprinted with permission from (Filisetti et al 2014)

16We consider the case of increased reaction rate, but the same reasoning could be applied, mutatis
mutandis, to the case where the membrane slows down some reaction.
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infinitely fast diffusion in the water phases, and let us also assume that the mem-
brane is completely impermeable to a chemical species X that is produced by a
reaction R whose rate is increased by the membrane. Then X is produced on the
outer and inner surfaces at the same rate, but it is quickly diluted in the environ-
ment, while it cannot escape from the internal reaction volume—so its concentra-
tions increases.17

Thus, an active physic-chemical role of the membrane should be able to initiate
and maintain a significant symmetry breaking between the inside and the outside
(Fig. 5.3).

Interestingly this effect does not hold only for irreversible reactions: it is enough
that only a part of the involved chemicals cannot cross the membrane (Serra and
Villani 2008, 2013). The basic requirements are simply (i) the difference among
two volumes—in our case, the internal volume of the protocell and the external
volume where the protocell lives, and (ii) the presence of a semipermeable and
chemically active separating surface.

To show how this can happen, let us consider a simple yet interesting example,
which shows some perhaps unexpected behaviours. For simplicity we can consider
the simple unimolecular reaction A$X (but the phenomenon is independent from
the details of the model (Serra and Villani 2008)) taking place on both sides of the
separating surface, and suppose that A (but not X) can pass through the membrane.
We can describe the exchange properties of the membrane by using the simple
model of passive transport described by Fick’s law—so we can write:

u ¼ DS
h

qAi � qAe
� � ð5:2Þ

Fig. 5.3 a The chemical compositions of spatially different portions of a homogeneous bulk are
substantially similar, even if one of these portions is separated from the bulk by a chemically
non-active membrane. b The same does not hold for the chemical compositions inside and outside an
active membrane: in the small internal volume, the chemical species produced close to themembrane
cannot dilute inside the protocell at the same level of those within the external environment

17Unless of course it is consumed by another reaction, but the reasoning above suffices to show
that the concentrations can easily become different.
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where qi
A and qe

A are respectively the internal and external A concentrations, D is
the diffusion coefficient of chemical A across the membrane with (constant)
thickness h and surface area S (Bird et al. 1976). In this example we will assume
that also the external volume is finite, and in particular that the protocell is placed in
a CSTR,18 crossed by flow F. Then the following equations describe the system
(Serra and Villani 2013):

dQA
e

dt ¼ � kVr þFð ÞqAe þ k0VrqXe þuþFqAext
dQX

e
dt ¼ kVrqAe � k0Vr þFð ÞqXe
dQA

i
dt ¼ �kVrqAi þ k0VrqXi � u
dQX

i
dt ¼ kVrqAi � k0VrqXi

8>>>><
>>>>:

ð5:3Þ

where k and k′ are the kinetic coefficient of the direct and inverse reaction A$X,
qext
A is the concentration of the chemical A within the incoming flow of the CSTR,

Qv
y is the quantity of chemical species y (in this example either A or X) in the

internal (i) or external (e) volume v, qv
y is the corresponding concentration. The

internal concentrations of both chemicals equal their internal quantities divided by
the internal protocell volume, while the of course the external concentrations equal
the external quantities divided by the volume of the CSTR. It is assumed that the
reaction takes place only in a small spherical shell of constant width near the
membrane, Vr being its volume.

This simple model can show the unexpected onset of a transient difference19

between the concentration of X in the two volumes. In accordance with the second
law, this difference vanishes in the long time limit if the protocell is placed in a
closed system (i.e. if F = 0); simulations show that at peak value the quotient of the
concentrations of X (Fig. 5.4a) is proportional to the relative size of the external
and internal volumes. If the external system is open (F#0) then a finite difference
between the two concentrations that is maintained in the asymptotic steady state
(Fig. 5.4b). It can be proven that in this case (Serra and Villani 2013):

�qXi
�qXe

¼ k0Vr þF
k0Vr

ð5:4Þ

where a bar denotes the asymptotic value.

18Note that in this case the CSTR is a macroscopic device that is the (open) environment where the
protocell lives, while the model of the protocell is that of a semipermeable vesicle with finite
transmembrane diffusion rates.
19This is a perhaps unexpected phenomenon: starting from a seemingly equilibrium situation
where the internal and external concentrations are equal to each other, a (transient) difference
appears. The explanation lies in the fact that the initial condition of vanishing concentrations in
case (a) of Fig. 5.4 is an equilibrium when no reaction A$X is taking place, but it is out of
equilibrium when the reaction is “turned on” in the simulated system.
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So, these results prove that a chemically active semipermeable surface can create
an internal chemical composition quite different from the external one, thus
breaking the symmetry between inside and outside. Therefore they answer one of
the major questions raised by the presence of membranes.

5.3 The Effects of Passive Membranes

Another such question concerns the possible difference between the internal com-
position of different protocells. A quite obvious corollary of the above results is that
protocells with different active membranes, which catalyse different reactions, will
show different internal compositions: in this case the population of protocells would
indeed host some diversity, that is a necessary condition for Darwinian evolution.
Let us however remark that the diversity has been introduced in the model from
outside, by postulating different catalytic activities: it is in a sense hardwired in the
model, and it is not unexpected.

Let us now consider the case of passive membranes, which cannot selectively
catalyse some reactions, either directly or indirectly (i.e. by creating a peculiar
near-membrane local environment). It is clear that also in this case the presence of
different types of membranes, permeable to different species, might give rise to
protocells with different chemical compositions. But also in this case the diversity
would have been introduced in the model from outside. So let us now consider a
population of protocells, with identical semipermeable membranes, all in the same
external environment. One might wonder whether different internal chemical
compositions can appear and/or be maintained in such a population.

This issue will be investigated with the model described in Sect. 5.1 without
growth and fission. This can be done in a straightforward way by supposing that no

Fig. 5.4 a Internal and external densities of X versus time, closed system. The curves represent
the outcome of a numerical integration of Eq. 5.3, using an Euler method with step size control.
b Internal and external concentration of X versus time, when F6¼ 0 (open system). From Serra and
Villani (2013), with permission
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GMM can increase the growth rate of the lipid container; so we are considering a
reaction network of the Kauffman type in a static semipermeable vesicle (rather
than in a CSTR like it was done before). Note that in this case there is no guarantee
that a steady state will be reached, as it can be easily checked by considering a
single species X able to catalyse its own formation from the food, which is not
consumed in any other reaction. X will grow unbounded exponentially; of course
this points to limitations of the static vesicle model, since in this case the vesicle
would be overfilled by X-type molecules. Therefore the analysis of the dynamical
properties will be based mainly on finite-time simulations, rather than on the search
for truly asymptotic states that, in some cases, may not exist.

Under the above assumptions, the differences among different protocells can be
due only to their initial chemical compositions, or to path dependency, i.e.
stochastic effects that may affect different vesicles in different ways (for example, a
certain species might appear in a protocell, catalysing new reactions and perhaps
leading to the formation of a RAF—but not in a neighbouring protocell). Note
however that in some models these effects should not take place: for example, we
have mentioned in Sect. 5.1 that a CSTR with a fixed inflow often leads to a unique
asymptotic state (apart from small random fluctuations). Therefore we must see
whether identical semipermeable vesicles in the same environment can reach dif-
ferent final states.

Before doing so, let us check how different the initial conditions are likely to be.
Protocells are normally very small, so, when the concentrations of some chemicals
are low, randomness and fluctuations can play a key role (Serra et al. 2014).

We can estimate the order of magnitude of the number of molecules of different
types inside a protocell, by considering typical and small vesicles (with linear
dimension respectively around 1 µ and 0.1 µ) and different concentrations of
macromolecules (from the millimolar to the nanomolar range): the expected
numbers of molecules in a single protocell20 can be seen in Table 5.1. When the
numbers of molecules are small, fluctuations can play a significant role. For
example, in the case of a 1 µM concentration in small vesicles, there will be 1
molecule every 10 cells on average: it is evident that different protocells could host
very different initial compositions.

Table 5.1 Expected number of molecules of a given species in a given protocell; rows refer to
protocell volumes, columns to concentrations

1 M 1 mM 0.1 mM 1 lM 1 nM

Typical (1 l3) 108 105 104 102 0.1

Small (10−3 l3) 105 102 10 0.1 10−4

Reprinted with permission from (Serra et al 2014)

20That, under the above assumptions, are equal to those of an “equivalent volume”.
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So, the possible stochastic effects include:

1. the path dependency induced by the random order in which new molecules are
generated: if a catalyst is produced at different times, the evolution of different
protocells may be different; this can be studied by comparing different simu-
lations referring to the same “chemistry”21 and the same initial conditions

2. the differences induced by different initial conditions, that can be studied by
comparing different simulations referring to the same chemistry, but starting
from different initial conditions

One should also consider the path dependency possibly induced by spontaneous
reactions, whose low occurrence probabilities could introduce new chemical
compounds. This last effect will be considered later, in Sect. 5.4.4.

In order to understand generic behaviours, we analysed several different ran-
domly generated chemistries and we will comment here in detail the outcomes of
two chemistries that differ for the presence (in chemistry CH2) or absence (in
chemistry CH1) of a RAF (in this particular case, formed by an autocatalysis
consuming molecules from the food set).22

In order to quantitatively describe the behaviour of the system we can observe
the angle between the vectors describing the chemical composition of the involved
protocells (Serra et al. 2014). Let us define the N-dimensional vectors
Cj(t) = [cj,1(t), cj,2(t), …, cj,N(t)] and Ck(t) = [ck,1(t), ck,2(t), …, ck,N(t)] whose
components are the concentrations of the species respectively in vesicles j and k at
time t. The similarity between the two vectors is then computed by means of the
normalized inner product:

Ht ¼ 180
p

cos�1
~Cj tð Þ � ~Ck tð Þ
Cj tð Þ
�� �� � Ck tð Þk k

 !
ð5:5Þ

where Ht is the angle (here measured in degrees) between the two vectors measured
at time t (in the following we refer to this angle as the h-distance between the two
vectors).

We report below the behaviour of the angle between pairs of protocells after a
finite number of time steps. For a given set of parameter values, given in Serra et al.
(2014), most species reach a quasi-equilibrium state where changes are limited to
small adjustments in 3000 time steps, except the cases with very low concentrations

21Let us recall from Chap. 4 the notion of a “chemistry”, i.e. a set of tuples {species; catalyzes;
reactions}, where the species catalyzes the reaction. In order to understand generic behaviors, we
analyze different chemistries.
22The differences between these two chemistries are representative of those observed in the larger
sample.
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(1 lM) where the quasi-equilibrium state is reached in 5000 time steps. As dis-
cussed above, the exponentially growing species never reach equilibrium in a
non-dividing vesicle.23

Path Dependency
The selected chemistries are tested at four different concentration levels of the
non-buffered chemical species inside the vesicle, while the amount of each buffered
species is fixed (see the legend to Table 5.2). The same table reports some statistics
on how this distance varies in the four different cases. The runs of each chemistry
differ only for the simulation random seed, so the differences are due to path
dependency. Note also that, since the random extractions incidentally allow the
presence within each protocell of at least one chemical species belonging to the
RAF, the RAF itself is always found in all the simulations of chemistry CH2 (Serra
et al. 2014).

The main result that are apparent from Table 5.2 is that path dependency can
induce difference in the chemical compositions, and that this effect is stronger when
the initial concentrations are smaller. This effect holds in both chemistries we are
observing, hinting to a generic property of such systems, independently from the
presence of RAF sets.

Table 5.2 The table shows the average and the maximum values of H3000 regarding 10 distinct
simulations of each of four different initial conditions of the permeable species (rows in the table)

Cone Molecules
per species

CHI CH2 CH2 (no RAF)

Molarity Average H3000
(mean)

H3000
(max.)

H3000
(mean)

©3000
(max.)

H3000
(mean)

H3000
(max.)

(Cond.1)
1 mM

600 0.41 0.68 0.06 0.19 0.57 0.96

(Cond.2)
0.1 mM

60 2.34 5.86 0.18 0.52 1.69 2.78

(Cond.3)
0.01 mM

6 7.71 15.28 9.69 21.86 6.48 11.21

(Cond.4)
1 lM

1 11.15 19.35 3.67 11.91 9.44 15.35

The concentration of the buffered species is fixed to 1 mM. The measures are reported for two
different chemistries: one without RAFs and one with RAFs (in this latter case they are also
computed excluding the species belonging to the RAF, columns “CH2 no RAFs”). The four
conditions differ in the average magnitude of the concentrations of the initial set of molecular
species not belonging to the buffered flux (the food set). A sample of each of the four initial
concentration is drawn randomly from a Poisson distribution, according to the given parameters,
and is maintained invariant along the 10 different runs. Reprinted from Serra et al. (2014), with
permission

23This is why we use angles (Eq. 5.3) to measure the differences between compositions, instead of
Euclidean distances.
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Sensitivity to Initial Conditions
In order to evaluate the effects due to initial conditions, we analyse the runs starting
from 10 different initial values of the species concentrations in chemistry CH2, in
case of an average concentration equal to 0.01 mM (condition 3 in Table 5.2) and
in case of an average concentration 1 µM (condition 4 in Table 5.2).24

In Fig. 5.5 we can observe the variation in time of the h-distance for each couple
of simulations in both cases, providing a picture of the overall diversity due to the
initial conditions. It is apparent that, in the case of small concentrations (Fig. 5.5b)
the different protocells can develop different internal compositions, while in the
case of higher concentrations the simulations seem to converge to a similar com-
position, albeit at different rates.

In order to understand the reasons of this higher variability among different
vesicles, note that the very low concentrations of condition 4 (only one molecule
for each species on average) do not allow all chemical species to appear in all
simulations: indeed, each simulation starts from a different set of species, typically
composed by 40 species over the possible 62. This fact explains the high initial
values of the h-distance (H0 in Fig. 5.5b). Given this very high initial variability,
the autocatalytic species (and so the RAF) cannot always be found in the initial
condition, so that the system may reach different regions of the state space. On the
contrary, condition 3 shows the regulatory activity effect of the always-present
RAF (Fig. 5.5a).

Concluding, we can remark that different small protocells may host different
mixtures of molecular species, even if they share the same chemistry (i.e., they
“inhabit the same world”).

Fig. 5.5 The angles between each couple of different simulations in time, for a condition 3
(0.01 mM) and b condition 4 (1 lM). Reprinted with permission from (Serra et al 2014)

24We always extracted the number of molecules for each chemical species from a Gaussian
distribution respectively 0.01 mM and 1 µM on average.
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5.4 Coupled Dynamics of RAFs and Protocells

After having shown that our model of semipermeable non-growing vesicles allows,
under some circumstances, that the internal chemical composition of a vesicle
differs from that of the external environment and also from that of other vesicles, let
us now “turn the interaction on”, so let us suppose from now on that some GMMs
can increase the growth rate of the lipid membrane, as described in Sect. 5.1.

The model has no intrinsic distinction between catalysts and substrates, so the
same chemical can play either role in different reactions: if it is consumed as a
substrate in a fast reaction, that type will be depleted and the reactions that need it
as a catalyst will be slowed down and eventually stopped. A chemical that is neither
produced nor consumed by catalysed reactions will have the same fate too: each
protocell’s division halves its quantity in the offspring and at the end only a neg-
ligible fraction of protocells will host a single remaining molecule. In the absence of
any material losses in the fission process, one daughter of one of these cells will
also host the molecule, while the other one will give birth to a new lineage without
this particular chemical species. If material losses at division time are taken into
account, the single molecule will eventually be released in the external environ-
ment. Moreover, a single molecule in a protocell is likely to play no significant role
in its dynamics. Therefore, the only chemical species that survive the division
processes are those actively produced by the reaction system.25

Species can be generated by several reactions but—as it has been discussed in
Chap. 4—collective autocatalysis is fragile unless a RAF set is present. Therefore,
it is reasonable to assume that the presence of a RAF set coupled with the growth of
the container is a necessary condition for robust protocell synchronization. This
guess has been tested and verified in a large number of different simulations, where
at each division time the chemical species belonging to a RAF set reach stable
concentration values whereas the other species dilute. Figure 5.6 shows a typical
behaviour that (like many examples of this chapter) does not depend on the details
of the particular artificial chemistry used.26

Note that despite the apparently “quiet” aspect of these figures, at each fission
the number of protocells doubles, and the same holds consequently for the total
quantities of chemicals belonging to the RAFs involved in the system’s growth. On
a limited time scale this exponential growth may be an approximately correct
description of the phenomena, but rapidly this fast increase leads to a condition
where some non-linear phenomena (e.g., resource limitation) become important: in

25In this chapter we are neglecting cases where synchronization occurs in obvious ways, like, for
example the situation where a molecular type in the food set (i) directly contributes to the growth
of the container, (ii) catalyzes the condensation of a chemical species that is not substrate of any
reaction in the given chemistry, but directly contributes to the container growth. These situations
(easily tractable with the techniques used in Chap. 3) indeed assure the continuous production of
the chemicals coupled to the container and lead to synchronization.
26As anticipated, in this chapter we suppose that no food molecule is a catalyst: as a consequence
RAF sets need to include a Strongly Connected Component (SCC).
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this situation the dynamics of growth changes, leading to significant effects on the
protocells themselves, as we shall see in Sect. 5.6.

5.4.1 RAFs in Different Chemistries

In randomly created chemistries the probability of finding structures able to col-
lectively support their own growth27 increases as the average connectivity <c>28

Fig. 5.6 The figures show the structure of a RAF set (embedded on a random chemistry
composed by 32 chemical species) by using a the complete bigraph representation and b only the
catalyst-product representation (the ellipses and the boxes represent respectively chemicals and
reactions, the continuous arrows represent relationships of production, the dashed arrows
catalyses). The ellipses with white background represent the food (the chemical species whose
existence is guaranteed by the environment): in this example these species can cross the
membrane. The chemicals are placed within a protocell and randomly initialised; the species
belonging to the RAF influence the growth rate of the membrane. The plot in c shows the amount
of each molecular species (not belonging to the incoming flux) at division time: the chemical
species not belonging to the RAF do not react and they are therefore diluted during the duplication
process. The plot in d reports the same variables, by including also their values between two
divisions (first 12 divisions). The irregularities between the divisions (and among the peaks
beyond the 5th division) are due to stochastic effects

27i.e. strongly connected components, or SCCs, introduced in Sect. 4.2, and RAFs, discussed in
Sect. 4.5.
28See Sects. 4.4.3 and 4.5.1.
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increases. Both probabilities of including SCCs and RAFs suddenly change their
values in particular connectivity zones: as it has been observed, the fact that these
zones do not coincide could be one of the reasons preventing the development of
autocatalytic structures in wet laboratories (the RAF’s critical point requires a
“density of catalysis”29 significantly higher than the density of catalysis needed for
the SCC’s critical point—see Sect. 4.5).

In the case of artificial worlds, it is anyway possible to tune the average con-
nectivity (thus changing the “chemistry”) so we will now examine whether the
RAFs at different average connectivity have peculiar features, by analysing the
results of a series of simulations (Villani et al. 2016) where we take into consid-
eration 20 chemistries near the SCC’s critical point (<c> = 1.0) and 20 chemistries
near the RAFs’ critical point (<c> = 2.5) The chemical species belonging to the
food are not allowed to catalyse: as consequence, at least one SCC has to be present
in each independent RAF.

The reaction kinetic constants of the different chemistries are equal, in order to
focus the attention on the consequence of using different topologies: indeed, the two
groups of chemistries show RAFs with very different features. RAFs at <c> = 1.0
are significantly smaller than RAFs at <c> = 2.5: actually, RAFs belonging to
random chemistries with <c> = 1.0 are composed by only 2–3 reactions, whereas
RAFs belonging to random chemistries with <c> = 2.5 are (typically) composed by
several tens of reactions, and in many cases a part of the RAF is composed by
peripheral structures (see Table 5.3).

5.4.2 Synchronization

In each chemistry of the previous section, three different levels of coupling between
the GMMs and the vesicle container have been explored, using in each experiment
the same value for all the chemical species (referring to Eq. 5.1, respectively,
ki = 0.1, ki = 0.01 and ki = 0.001 for every species i). This experimental framework
allows several interesting observations.

Actually, despite the remarkable size difference in favour of the RAFs present in
chemistries with <c> = 2.5, the largest part of RAFs at <c> = 1.0 are able to
support the protocell growth, while only a few RAFs at <c> = 2.5 are able to do it
(see Table 5.4). Moreover, the only chemistries showing synchronising RAFs
at <c> = 2.5 involve very few reactions.

The impressive weaknesses of the second groups of RAFs lead us to suspect that
some process or situation is hindering the potentialities of large RAFs.

One often observes that lower coupling coefficient values lead to higher prob-
ability of achieving synchronization (Villani et al. 2016 and Table 5.4). So, it is

29“Density of catalysis” is used here as a shorthand for the probability p that a randomly chosen
chemical species catalyses a randomly chosen reaction.
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possible to find (i) RAFs that always synchronize (we can call them sRAFs,30 that is
synchronizing RAFs), (ii) RAFs that never synchronize (non-synchronizing RAFs)
and (iii) RAFs that synchronize only in a particular range of values of the

Table 5.3 Some characteristics of the RAFs present in random chemistries with <c> = 1.0
and <c> = 2.5

<c> = 1.0 <c> = 2.5

CH1.0 Number
of
reactions

Number
of
chemicals

Number of
chemicals
belonging to
a SCC

CH2.5 Number
of
reactions

Number
of
chemicals

Number of
chemicals
belonging to
a SCC

1 2 2 2 1 170 73 65

2 2 2 2 2 154 71 63

3 2 2 2 3 155 67 44

4 3 2 2 4 105 49 7

5 2 2 2 5 3 2 2

6 2 2 2 6 166 70 57

7 2 2 2 7 150 65 51

8 2 2 2 8 105 47 32

9 2 2 2 9 164 72 68

10 2 2 2 10 55 30 23

11 2 2 2 11 174 73 64

12 3 2 2 12 83 40 26

13 2 2 2 13 126 63 58

14 3 2 2 14 89 42 9

15 3 3 3 15 150 63 54

16 2 2 2 16 142 63 55

17 3 2 2 17 93 43 27

18 2 2 2 18 149 64 52

19 2 2 2 19 156 65 61

20 3 3 3 20 140 66 58

The systems have Lperm = Lcat. = 3 and a chemicals maximum length of 6 symbols (so that 126
different chemical species can exist). In order to obtain 20 chemistries for both average
connectivity levels we had to discard 96% of the tested chemistries at <c> = 1.0 (580 chemistries
discarded) and 60% of the tested chemistries at <c> = 2.5 (30 chemistries discarded). The
columns show the number of reactions and the number of chemical species belonging to the RAF
in each chemistry, and the number of chemicals (within each RAF) belonging to a strongly
connected components (SCC). The RAF chemical species not belonging to a SCC are part of linear
or ramified chains having an irrRAF as root

30In order to better define this concept, a sRAF is the part of a RAFwhose chemical species duplicates
at the same rate of the container: typically, but not always, this part coincides with the whole RAF.
This synchronization property holds as long as there is a single sRAF within the vesicle. As we will
see in the following sections, sRAFs having different growth rates sometimes do not coexist within
the same container: also in this case we continue to call them “sRAFs”, remembering that the same
structures, if they were alone, would be able to sustain the protocell synchronization.
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coefficients coupling the RAFs and the membrane (partially synchronizing RAFs).
In this last case the status of being a RAF able to support the protocell’s growth
obviously depends upon the intensity of the coupling with the membrane.

Let us remind that RAFs and subRAFs are composed by a central part and a
periphery so let us consider the behaviour of different types of ecRAF (defined in
Sect. 4.5.2 as composed by a single core and its periphery).

So, one observes that the ecRAFs that do not make use of any chemical species
belonging to their core as substrates to build other species of the RAF itself are
always synchronizing RAFs. On the other hand, all the non-synchronizing or
partially-synchronizing ecRAFs found in the simulated chemistries consume at least
a part of the chemical species of their core as substrates. A particular case of these
“internal consumptions” is that of a chemical that is catalysing its own consump-
tion: autocatalysts showing such kind of processes had already been identified in

Table 5.4 The synchronisation properties of the protocells when coupled with the chemicals
belonging to a RAF, for the chosen random chemistries with <c> = 1.0 and <c> = 2.5

<c> = 1.0 <c> = 2.5

CH1.0 a = 0.1 a = 0.01 a = 0.001 CH2.5 a = 0.1 a = 0.01 a = 0.001

1 sinc sinc sinc 1 ext ext ext

2 sinc sinc sinc 2 ext ext ext

3 sinc sinc sinc 3 ext ext ext

4 ext sinc sinc 4 ext ext ext

5 sinc sinc sinc 5 sinc sinc sinc

6 ext sinc sinc 6 ext ext ext

7 sinc sinc sinc 7 ext ext ext

8 ext sinc sinc 8 ext ext ext

9 sinc sinc sinc 9 ext ext ext

10 sinc sinc sinc 10 ext ext ext

11 sinc sinc sinc 11 ext ext ext

12 ext sinc sinc 12 ext ext ext

13 ext sinc sinc 13 ext ext ext

14 ext sinc sinc 14 ext sinc sinc

15 ext sinc sinc 15 ext ext ext

16 sinc sinc sinc 16 ext ext ext

17 sinc sinc sinc 17 ext ext ext

18 sinc sinc sinc 18 ext ext ext

19 sinc sinc sinc 19 ext ext ext

20 ext ext ext 20 ext ext ext

In particular the columns reports the final fate of the protocell (synchronisation—“sync”—or
extinction—“ext” with grey background) after 50 generations, for three level of coupling
(respectively a = 0.1, a = 0.01 and a = 0.001). A significant information is that in chemistry
CH2.514 (the system number 14 among those having <c> = 2.5) only three chemical species
participate to the synchronisation (over the 42 species belonging to the whole RAF and the 9
belonging to a SCC). And in chemistry CH2.55 there is an irrRAF composed by only 3 reactions
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the interesting paper (Vasas et al. 2012), where they were classified as “suicidal
autocatalysts”, not suitable for supporting useful functions in living structures.31 On
the contrary, in our semipermeable systems we find that, when the coupling with
the membrane is weak, these structures can sometimes sustain protocell growth
(Villani et al. 2016).

In random chemistries, large RAFs have a high probability of containing subsets
that use chemicals belonging to their cores as substrates, thus reducing the RAFs
reproducing efficiency: therefore, big RAFs belonging to random chemistries can
hardly support a sustainable protocell growth.

Finally, both cleavages and condensations consume their substrates: neverthe-
less, very few cleavages are observed within the synchronising RAFs (sRAFs). The
source of this interesting fact could be the peculiar way of modelling semiperme-
ability we used, which allows only short chemical species to cross the membrane.
Whereas condensations can easily make use of any kind of chemical species as
substrates, cleavages frequently use relatively long species, which need an inner
active production in order to maintain their presence throughout the generations.
Therefore, the cleavages of a RAF embedded within a closed membrane necessarily
destroy chemical species that the RAF has to rebuild in order to allow its repro-
duction (as we can observe in Fig. 5.9): it is a “collectively suicidal” behaviour,
which hampers the formation of a sRAF.

Interestingly, this bias in favour of condensations introduces in protocells a
symmetry breaking, which facilitates the building of long rather than short mole-
cules, an effect that might have interesting consequences.

The simulations of the above chemistries show two other remarkable features:
(a) the protocell duplication times are very similar to each other, independently of
the coupling coefficient and the system’s average connectivity and (b) the product
between the duplication time Td and the total concentration Cf of sRAF species that
influence the container growth at duplication is approximately inversely propor-
tional to the coupling coefficient of Eq. 5.1, that is:

TdCf ¼ K
a

ð5:6Þ

where all the coefficients ki of Eq. 5.1 are identical: ki = a for every species i. Both
results can be understood by using the analytical models of Sect. 3.4. For example,
if we consider a very simple RAF composed by only one species and suppose
buffered substrates, the results of Eq. 3.30 and 3.31 give:

Xk ! Cf ¼ hg
2a

DTk ! 1
g
ln2 ¼ Td

31Note that protocells in Vasas et al. (2012) are simulated as very small CSTRs.
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where η is the growth rate of the RAF and h and Cf indicate respectively the
quantity of lipids and the quantity of molecules of a RAF set at duplication time Td.
From these equations we can easily get:

TDCf ¼ ln 2ð Þh
2a

ð5:7Þ

that has the same form as Eq. 5.6 since h is a fixed parameter common to all the
simulations. Therefore, the product of the duplication time times the total con-
centration of sRAF species at duplication is inversely proportional to a: note that
this result holds independently of the reactions kinetic constants of the different
chemistries, suggesting that the quantity of lipids at duplication time can play a
particularly significant role.

The duplication time depends upon the reactions kinetic constants (Eq. 3.31):
we kept these parameters fixed in all simulations, obtaining in most cases Td �110
(arbitrary units) (Villani et al. 2016). The only two exceptions (CH1.015 and
CH2.514) synchronize with longer times (respectively Td �170 and Td �600) at an
intermediate a level (i.e. 0.01); note however that the same RAFs at a = 0.1 do not
synchronize and at a = 0.001 “regularly” synchronize at 110 Td. In the “anoma-
lous” cases at a = 0.1 stochasticity seems to play a significant role (actually, their
synchronisation times oscillate), allowing deviations from the more frequent
behaviour.

Finally, even if all the kinetic constants of the equations for the GMMs, the
chemical species belonging to the same RAF could show different relative final
concentrations in case of different coupling with the membrane (see Fig. 5.7). This
phenomenon is present only for partially synchronising RAFs that consume as
substrates a part of their non-food chemicals (a situation similar to the arrangements
of RAF_B and RAF_C in Fig. 5.9). Indeed, ceteris paribus, the reactions that use
as substrates only chemical species provided by the environment (whose concen-
trations are fixed) do not change their growth rates, whereas reactions that use as
substrates materials produced by the RAF are influenced by its interaction with the

Fig. 5.7 a A partially synchronising RAF (monomers and dimers being the system food) and
b the final quantities (in number of molecules, averaged over the last 10 generations) of its
non-food chemical species. In this example the chemical species composing the periphery (BBBB)
has always the highest number of molecules, whereas the relative ranks of the other two chemicals
can vary. Reprinted with permission from (Villani et al 2016)
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overall protocell growth. An example is shown in Figs. 5.7 and 5.8, where for
different couplings with the container the species BBA and BBAB invert their
relative concentration ranking.

5.4.3 Interactions Among RAFs in the Same Protocell

Inside the same protocell different kinds of synchronising RAFs (sRAFs) can
interact, either directly through their peripheries or more indirectly through their
effects on the protocell membrane. The interactions mediated by the sRAFs’ pe-
ripheries lead to the formation of a single larger RAF: the dynamics of this new
entity is interpretable by identifying its significant parts (the ecRAFs) and their
reciprocal relationships in terms of mutualism, competition or parasitism.

However, quite often a single protocell may host some independent (i.e.,
non-directly coupled) sRAFs: in this case the fastest ones prevail leading to dilution
of the slower ones.32

Actually, independent sRAFs having exactly the same growth rate can coexist in
the same protocell, even if they have different coupling coefficients with the
membrane, or even if some of them are not coupled at all (these last sRAFs are a
sort of guests, or “harmless parasites” of the sRAFs that contribute to the container
growth). But the simultaneous presence of sRAFs having the same growth rates is
likely to be very infrequent, and in all the other cases the sRAFs with the lower
growth rates dilute (irrespectively of the intensity of their coupling with the
membrane), and only the fastest sRAF synchronizes with the cell duplication.

Fig. 5.8 Time behaviour (protocells’ generations) of the protocell containing the RAF of Fig. 5.7,
at the coupling coefficients a a = 0.1, b a = 0.01 and c a = 0.001: only the quantities (number of
molecules) of the chemical species at duplication time are shown. It is possible to observe the
dilution of the chemicals during 50 generations: only the quantities of the species composing the
RAF are asymptotically different from zero. Reprinted with permission from (Villani et al 2016)

32The results summarized below are the outcome of several simulations performed on the model
described in Sect. 5.1, assuming instantaneous transmembrane diffusion.
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The fastest sRAF survives and synchronizes also in the case its coupling with the
membrane is very low: in this case indeed the concentrations of its chemical species
reach very high values.

Some examples, taken from Villani et al. (2016), can help in identifying some
interesting situations.

Each autocatalytic structure in Fig. 5.9 is a sRAF. If the sRAF is alone within a
protocell and is coupled with its membrane, it is able to sustain the protocell’s
growth (always in the case of sRAF_A and sRAF_D, and at least in all the tested
coupling levels in the case of RAF_B and RAF_C).33

Fig. 5.9 The structure of four sRAFs used in this section. a A sRAF whose substrates can cross
the membrane and therefore are continuously provided by the environment (sRAF_A); b a
partially synchronising RAF where one of the reactions uses as substrate its own catalyst (once
catalogued as a “suicidal process”) (RAF_B); c a RAF composed by one condensation and one
cleavage (a “collectively suicidal” process where we witness the continuous creation (reaction R2)
and destruction (reaction R1) of species AAAB. In this case both actions are catalysed by the same
catalyst AAB (RAF_C); d a sRAF composed by five reactions (all condensations) whose
substrates are continuously provided by the environment (sRAF_D). Solid lines represent materials
production/consumption, whereas dotted lines represent catalysis; if not differently indicated in the
text, all the kinetic constants of the reactions have the same values. Reprinted with permission
from (Villani et al 2016)

33If not differently indicated in the following, we consider the same value for all the kinetic
constants of the reactions. If this situation does not occur, the chemical groups connected with the
higher global growth rate can force the protocell growth and duplication to such a high rate that,
generation after generation, the other chemical species dilute and disappear (Villani et al. 2016).
This situation does not hold if the hypothesis of fast transmembrane diffusion is released (as we
discuss in the final part of this chapter).
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We can now comment the case where some of these sRAFs are co-located within
the same protocell. In order to emphasize the effects of interactions, instead of those
related to specific choices of different parameter values, all the species of the sRAFs
are supposed to have the same coupling coefficient with the protocell container.

When embedded in the same protocell, sRAF_A (composed only of conden-
sations that use the materials coming from the environment) dilutes RAF_B (where
a suicidal loop appears—the chemical species AAB catalysing its own destruction)
at all tested coupling values. A similar outcome happens when we use sRAF_A and
RAF_C, where the product of a cleavage catalyses the consumption of a substrate
produced by the RAF itself. At very low coupling values however both irrRAFs can
coexist, although the species belonging to RAF_C are present at very low con-
centrations: so, a direct suicidal loop has stronger effects than the mere presence of
a cleavage (where consumption of chemical species AAAB does not directly affect
its own depletion). The fact that RAF_C dilutes RAF_B confirms this hypothesis.

The autocatalytic structures sRAF_A and sRAF_D share the same “building
blocks”, where all reaction substrates are provided by the environment, but are
composed by a different number of species and reactions. They coexist inside the
same protocell at all tested coupling values (remember that the kinetic coefficients
are all equal). However, the system stochasticity affects these structures in a dif-
ferent way: at very low concentrations, fluctuations influence more heavily the
smaller RAF, which has therefore higher chances of disappearing; therefore in long
runs the surviving protocells include mostly the larger sRAF. This effect is less
evident as the number of reactions and chemical species increases, since stochastic
fluctuations are less likely to lead to disappearance (in the simulations performed,
sRAFs respectively composed by 5 and 10 chemical species inside the same pro-
tocell are robust enough to make their simultaneous survival quite likely).

There is at least one frequent case where stochasticity must be taken into
account, regardless of the typical concentrations of the substances within a proto-
cell: a declining RAF before disappearing reaches very low concentrations, where
few molecules of a given chemical species survive.

For the sake of definiteness, let us consider again the case of two independent
sRAFs having different growth rates: for simplicity, these two sRAFs are both
simple irrRAFs without peripheral parts. The concentration of species belonging to
the slowest sRAF slowly decreases, reaching such a low number of molecules that
stochastic effects start to play a major role.

Let us first consider the case where there is no loss of GMMs during cell fission.
Depending on the sRAF structure, the presence of few molecules of some of its
chemical species is sufficient to give it the possibility of replicating the other species
and thus restarting its growth. The only way to definitively remove an irrRAF is by
removing from the protocell all the molecules of all its species: so, the higher the
number of species belonging to the irrRAF the more difficult is its removal. The
complete removal of an irrRAF during the division process can therefore require a
very long time (see also fig. 5.10) and, in any case, one of the daughter protocells
could maintain a subset of the original irrRAF, which in this way has the possibility
of recover.

130 5 A Stochastic Model of Growing and Dividing Protocells



Due to the stochastic character of the removal of the declining irrRAF, it is
highly improbable that the disappearance will take place at the same time in all the
protocells: after some time, there will be therefore some protocells with two sRAFs
and some with only one, i.e., the fast one. So, in order to fully discuss this topic we
should consider a population of protocells, an issue discussed in Sect. 5.6.1.

A different phenomenon is likely to take place if, instead, if we assume that
chemical compounds are lost during fission. For example, it has already been
observed that, if the overall membrane is conserved, then the sum of the volumes of
two daughter spherical protocells is smaller than the volume of the mother protocell
by about 30%. If we assume that the GMMs float freely in the internal volume, then
also 30% of the GMMs are lost at each fission, and the slowest RAFs, with very
low numbers of exemplars, can easily get extinguished (Fig. 5.10).

There are a number of observations that can be made concerning the case where
only one molecule of some compounds survives. If we assume that exactly no
GMM is ever lost, then this molecule is bound to survive in a fraction of the
protocells, but this a kind of extreme hypothesis, that is fragile with respect even to
a small probability of losing some GMMs during fission. Moreover, the contribu-
tion of a single molecule to the reactions is negligible due to kinetic reasons (i.e. the
low collision rate), so this case will no longer be analysed here.

5.4.4 Spontaneous Reactions

As it has been repeatedly stressed, the presence of different protocells is a necessary
(although not sufficient) condition for the evolution of a population of protocells.
We have discussed in Sect. 5.3 two possible sources of diversity, namely
path-dependency in the creation of new species, and diversity of initial conditions
due to spatial randomness. Both are related to random fluctuations and, since
randomness is relatively more relevant in small systems than in larger ones, their
effects are high when protocells are small and concentrations are low. We will now
consider another possible source of diversity.

In the model described in Sect. 5.1, and considered so far, only catalysed re-
actions are assumed to take place at appreciable rates. However, in some chemical
systems, reactions may sometimes happen also without catalysts, at low reaction
rates.34 Sometimes the uncatalysed reactions are so slow that—for all practical
purposes—they may be irrelevant, but in other cases the chemical concentrations
and the persistence of chemicals processes might make it possible that the occur-
rence of a few not catalysed events have consequences. These events could intro-
duce “otherwise impossible” chemical compounds, whose catalytic activities could
in turn unlock new groups of reactions.

34In a simple “activation energy” model, it may happen that few “outlier” reactants have enough
energy to cross the barrier while the average energy does not suffice to do so.
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This phenomenon, able to introduce novelties, can suffer however from some
drawbacks. Actually, if the new chemicals produced by spontaneous reactions are
able to catalyse some reactions, this process could lead towards different situations:
(i) the new chemicals will be rapidly diluted by the already present sRAF, or (ii) the
new catalyst is recruited by the existing fast sRAF or (iii) the new catalyst allows
the emergence of a new faster sRAF, which rapidly dilutes the already present
sRAF.35 The iteration of these situations could result (in very long times) in the

Fig. 5.10 The figures show the structure of two sRAFs (embedded on a random chemistry
composed by 32 chemical species) by using (c) the complete bigraph representation and (a) only
the catalyst-product representation (the ellipses and the boxes represent respectively chemicals and
reactions, the continuous arrows represent relationships of production, the dashed arrows
catalyses). In b are indicated the two reaction schema. The chemical species produced by both
sRAFs equally influences the growth rate of the membrane. All the chemicals composing the food
of both sRAFs have the same initial concentrations; likewise all the stochastic constant of the two
groups of reactions are similar, with the only exception of one stochastic constant of RAF1 that is
lower than the corresponding stochastic constant of RAF2. As consequence the concentrations of
the RAF2 components rapidly lower: however, the stochastic effects discussed in the text allows
them to survive at very low concentrations for a long while (from generation 20 till beyond
generation 40) before the final definitive dilution (generation 46), as shown in plot d. The
irregularities between the divisions (and among the peaks beyond the fifth division) are due to
stochastic effects

35The case of equal growth rates (allowing the coexistence of different RAFs) is indeed very rare,
and it can be neglected.
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discovery of the fastest possible sRAFs of the given “chemistry”, which cannot be
further diluted: in such a way all the previous paths lead to the same final state, and
all the “innovations” that had been discovered by the system end in the same
outcome.

The fact that innovation processes come to a halt is indeed a phenomenon
common to many models, and finding “neverending innovation” models is a major
theoretical challenge. In order to avoid halting, some proposals introduce time
varying environments (Jain and Krishna 1998, 1999; Vasas et al. 2012). However,
these approaches allow for continuous innovation by relying on external stimuli:
they highlight the influence of the environment on protocells but, in a sense, they
move the problem of continuous innovation outside the system itself.

5.5 Maintaining Novelties

We do not claim to present in this volume a model capable of neverending inno-
vation, but we think it is important to address in some depth the issue of the
maintenance of novelties, once discovered, in a population of evolving protocells.
As we have seen, the growth and fission processes may lead to extinction of some
molecular types and reactions, so this property cannot be given for granted.

The model so far described allows the occurrence of changes in protocells
chemical compositions but at the same time it hardly allows the simultaneous
survival of new and old structures. Indeed, it is possible to add or remove reactions
and chemical species to the already existing sRAF, but independent sRAFs with
different growth rates cannot coexist inside the same protocell. Therefore, the
successful introduction of new (random) characteristics lead to their extinction or to
the replacement of the old ones, but the old and new RAFs cannot coexist. On the
other hand, such coexistence might provide useful functions to a protocell.

This phenomenon is due to the unbounded growth of the RAFs: indeed, despite
the apparently quiet aspects of the figures showing the stabilization of the con-
centrations of the protocell chemical components at duplication time, the quantity
of the chemical compounds of the sRAFs and of the membrane is continuously and
exponentially growing (they double at each splitting). So the new sRAFs can
survive only if their growth rate is equal or higher than the growth rate of the
already existing sRAF, otherwise they will dilute and disappear.36

Let us come back to the competition among different sRAFs, and in particular to
the fate of the declining sRAFs, the losers of this competition, discussed at the end
of Sect. 5.3.2. When the concentrations of the chemical species belonging to this
relatively slow sRAF reach quite low values (typically, very few molecules for each

36It is well-known that in case of exponential growth only the fastest competitors can survive, see
also Chap. 3.
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protocell) a single protocell can sometimes lose its slow RAF.37 To foresee the
outcomes of this situation at larger scale we must change our level of description,
taking into account the interactions between the environment and the population of
protocells.

Let us suppose that at a certain time t there are just two kinds of vesicles: those
having both sRAFs and those having only one, and let Yt and Xt respectively be
their numbers. Both populations contain the fast sRAF, which synchronizes with
the container, so the evolution time can be described by a discrete map with
constant Dt across the various generations. When a X-type cell fissions, both its
descendants have only the fast sRAF. When a Y-type cell fissions, it may either
happen that both its descendants have the two RAFs, or that in one the declining
sRAF is lost. In the former case 2 new X-type protocells are born, while in the latter
case a X-type and a Y-type are found. Let us assume that the probability that
Y-> Y + X is c, and that it is constant through successive generations; this is
reasonable if we assume that the cells which contain at least a part of the slow sRAF
can generate the whole set before the successive fission. In this case, the equations
that approximately describe the growth of the two populations are

Xt þ 1 ¼ 2Xt þ cYt
Yt þ 1 ¼ 2� cð ÞYt

�
ð5:8Þ

Both subpopulations increase their size, as is typical of linear systems, but the X
growth rate is higher, so the ratio Y/X vanishes in the long time limit (see
Fig. 5.11a): the prevailing trait is that of containing only the fastest sRAF.

This result is confirmed under more realistic conditions, where nonlinear growth
limiting terms as overcrowding or resource limitations are taken into account. The
simplest form for describing such limitations in population dynamics are given by
quadratic terms, as in Eq. 5.9:

Xt þ 1 ¼ 2Xt þ cYt � b Xt þ Ytð ÞXt

Yt þ 1 ¼ 2� cð ÞYt � b Xt þ Ytð ÞYt

�
ð5:9Þ

Again, extinction of the Y type is observed if the b parameter is the same for
both population (Fig. 5.11a). However, a different behaviour can be observed if the
b parameter has different values for X and Y subpopulations (Eq. 5.10). This might
happen if the presence of the slower sRAF provides some advantage to the Y-type
protocells, for example by giving a positive contribution to their resistance to
overcrowding or to their ability in resource exploitation.

37We suppose that sometimes the protocell can maintain both RAFs—this would be hard in the
case of significant material losses during cell division but, as it has been said before, we rather
consider the case where no such loss occurs.
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Fig. 5.11 a The fraction of protocells with only one (X) and two (Y) sRAFs having different
growth rates, in the case of no limitations, and in two cases of resource limitation or overcrowding
(in case1 b = 5.0 � 10−6, whereas in case2 b = 1.0 � 10−6). In all cases the fraction of protocells
with only the fastest RAF prevails. b On the contrary, if the losing irrRAF has enough positive
effects on the resource limitation or overcrowding to change the protocell survival probabilities,
the final fraction of protocells with two sRAFs can have finite values (in case3 and case4 the X
population has respectively b = 5.0 � 10−6 and b = 1.0 � 10−6, whereas the Y population has
respectively b = 5.88 � 10−6 and b = 1.5 � 10−6). Reprinted with permission from (Villani et al
2014)
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Xt þ 1 ¼ 2Xt þ cYt � bx Xt þ Ytð ÞXt

Yt þ 1 ¼ 2� cð ÞYt � by Xt þ Ytð ÞYt
�

ð5:10Þ

In this case the two subpopulations can coexist (see Fig. 5.11b), also in the case
of different growth rates of the corresponding sRAF (an interesting example of
interaction among processes occurring at different scales) (Villani et al. 2014).

Note also that the possibility of simultaneous presence of different sRAFs opens
the way to the development and maintenance of more sophisticated network
structures and also to the accumulation of different characteristics (if sRAFs can be
associated to phenotypic features).

The previous results show that different RAFs can coexist, but the slower RAFs
typically “leave a meagre life”, in that their chemical species survive with low
molecular numbers. On the contrary, in living cells we can observe many dynamic
structures whose components have relatively high concentrations and comparable
growth rates. While of course life as we know it is the product of a long evolu-
tionary process, this observation suggests that there may be other ways to achieve
coexistence of different RAFs.

And this is indeed the case. In the following we will show one possible way to
achieve this result, which requires that we modify the previous protocell model, by
relaxing the assumption of infinite transmembrane diffusion rate (see Sect. 5.1 for a
discussion). Since only finite flow rates of chemicals are physically possible, this
modification makes the model closer to physical reality. Finite diffusion leads to
significant consequences, the most remarkable being that within a protocell it sets a
limitation to the speed at which a fast sRAF could increase its growth rate. Therefore,
the growth rate of these sRAFs has to stop its increase: as we will see, this fact may
allow other sRAFs (otherwise diluting) to stably inhabit the protocell.38

We will describe the protocell exchange properties with the environment by
using the simple model of passive transport described by Fick’s law, as already
presented in Sect. 5.2.1. So we can write:

dMi

dt
¼ DiS Mout

i

� �� Min
i

� �� � ð5:11Þ

where dMi/dt is the rate of intake of the chemical i, Di is proportional to its diffusion
coefficient divided by the (constant) membrane thickness; S is the area of the
surface of the protocell and [Miout] and [Miint] are the concentrations of the
chemical i outside and inside the protocell, respectively. In this model the flow of
each chemical crossing the membrane therefore depends on the gradient of its
concentration.

We suppose as usual that the external environment is much larger than the
internal one, so we can consider constant the outside chemical concentrations. On
the contrary, the concentration of the chemicals inside the protocell can vary

38In this case, coexistence of RAFs with difference replication rates is possible even when one
takes into account possible losses of chemicals during fission.

136 5 A Stochastic Model of Growing and Dividing Protocells



because of the protocell’s internal activities: in this way the protocell absorbs or
expels materials with finite rates expressed by Eq. 5.11.

Remarkably, the limitations imposed by Fick’s law affect more heavily the
sRAFs close to their asymptotic growth rate than the sRAFs just beginning their
activity, and the sRAFs with high growth rates more than the sRAFs with low
growth rate.

Therefore:

1. the randomly introduced novelties—if activating a “sleeping” sRAF—have the
possibility of introducing effectively and permanently new characteristics in the
protocell (the newcomers are not limited as the already running sRAFs are—see
Fig. 5.12)

Fig. 5.12 The figure shows the concentration versus. time (arbitrary units) of chemical species
belonging to two independent sRAFs having the same growth rate (d), during the lifespan of a
single protocell (at the initial generation (a) and after 19 splits (b)), and during 20 generations at
the division time (c). The log-log scale of part (a) highlights the fact that the two sRAFs starts from
very different initial conditions: after 19 splits, this initial difference is completely left (part b). The
schema of part (d) shows two different symbols for each species that can cross the membrane:
actually, the external concentrations of these species are constant, whereas their internal
concentrations depends on the internal consumption and on the finite flow of materials coming
from the outside. The intensity of these flows depend on the chemical properties of each species
and on the gradient of its internal and external concentrations. Simulations made with sRAFs
competing for same substrates give similar results (see (Villani et al. 2014) for more details)
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2. new sRAFs may appear without replacing the already existing ones (even when
these new sRAFs have growth rates higher than those of the already present
sRAFs)

3. in general, the coexistence of sRAFs having (not too) different growth rates is
allowed,39 the chemical species belonging to the slower sRAFs reaching lower
—but anyway significant—concentrations (Fig. 5.13) main

Fig. 5.13 As in Fig. 5.12, this figure shows the concentration versus. time (arbitrary units) of
chemical species belonging to two independent sRAFs (d), during the lifespan of a single protocell
(at the initial generation (a) and after 19 splits (b)), and during 20 generations at the division time
(c). The two sRAFs have the same structure of Fig. 5.12, but all chemical species start from the
same initial concentration; rather, the kinetic coefficients of the two reactions of the second sRAF
are respectively diminished by a factor 3 and 2 (part (d) of the figure). Despite this gap, the finite
membrane diffusion allows this second sRAF to reach a positive and stable configuration (part
(c) of the figure—see (Villani et al. 2014) for more details)

39In such vision the finite diffusion rate through the membrane is one of the key processes that
allow the co-existence and the coordination within the same protocell of otherwise chemically
independent reactions. Simultaneously there could be other coordination phenomena, as for
example the “osmotic coupling” discussed in (Shirt-Ediss et al. 2015).
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Of course the validity of these properties depends on the values of the system
parameters, but it holds for a wide range of values.40 Remarkably the same prop-
erties are valid both for protocells where the relevant chemical reactions occur
inside the whole system’s volume and for protocells where these reactions occur
only in an internal spherical shell close to the surface (Villani et al. 2016, Calvanese
et al. 2017).41

So we have shown that the particular form of resource limitation we are dis-
cussing—that is, a limitation on the rate of resource availability—significantly
modifies the dynamics of growth of the chemical species in the protocell, which
changes from exponential to sub-exponential. This change allows the survival
within the same protocell of more sRAFs (not only to the fastest); therefore, pro-
tocells are able to host several different structures and therefore to simultaneously
express various characteristics. Of course, this does not mean that slow sRAFs
always survive: on the contrary, too slow sRAFs are normally lost.

5.6 A Comment on Evolvable Populations of Protocells

Protocells endowed with a Kauffman-type replicator dynamics are clearly a model
where metabolic considerations play a central role. At the same time, however, the
organization of the dynamic protocell components is also a form of information
treatment and storage; moreover, all these processes happen inside the same object
(so information processing is “embodied”). One might therefore guess that proto-
cells might represent entities sophisticated enough to constitute a valuable support
for evolutionary processes.

Let us recall that, in order to undergo evolution, the individuals of a population
should present the following characteristics (Lewontin 1970):

1. variation: the individuals should be somewhat different each other
2. reproduction: the individuals should be able to grow and produce descendants

a. the rates of growth and reproduction should depend on some characteristics
of the individuals

3. heritability: there is a correlation between parents and offspring

While these properties are necessary, they may however be not sufficient for
evolution to effective. In Chaps. 3 and 5 we presented a class of protocell models
endowed with all these characteristics; in particular we highlighted some important
bottlenecks that must be solved in order to allow protocells to undergo Darwinian

40While the simulations refer to the RAFs of Fig. 5.13, their general properties are common to
several other cases that have been examined and therefore provide some indications on how
advantageous novelties can indeed develop within the system.
41The range of parameters allowing these behaviors is wider in the case of reactions occurring
inside the whole system’s volume (Villani et al. 2016, Calvanese et al. 2017).
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evolution. We showed that once a coupling between the growth and fission rate of
the container and that of the internal self-replicating molecules has been established,
synchronization spontaneously emerges for a very wide range of dynamical
hypotheses. Moreover, a protocell has the possibility to enhance and amplify
(some) stochastic events that can spontaneously occur. New structures can be added
to the ones already existing, other structures could change or even disappear. The
particularly delicate aspect of successful changes (which should emerge but not
necessarily replace the already existing characteristics) requires bounds on the
growth rates, a constraint that the protocell membranes are able to effectively
provide. In this way protocells are able to “remember” incremental improvements,
an essential piece (Bedau and Packard 2003) toward evolvability (Wagner 2007).42

Besides these endogenous activities, protocells exchange energy and materials with
their environment, and may react to the environmental changes by modifying their
internal structure.

The autocatalytic properties of RAFs and their coupling with the protocell
membrane guarantee the reproduction of the protocell materials; the same properties
allow the offspring to grow and behave in a manner similar to that of their parents.
The self-replicating molecules belonging to sRAFs are typically conserved in these
processes and rule the protocell dynamics. New sRAFs could emerge, already
existing sRAFs can change or even disappear. These changes are inherited by the
protocell’s offspring. Because of this “central” and “ruling” role, the
(self-replicating molecules belonging to) sRAFs are able to play the role of prim-
itive inherited trait carriers—although acquiring or loosing entire groups of
chemicals (those belonging to the sRAFs) is not a very flexible mechanism, as
emphasised in Vasas et al. (2010). Anyway, protocells seem able to support evo-
lutionary processes: “the real question is that of the organization of chemical
networks. If … there can be in the same environment distinct, organizationally
different, alternative autocatalytic cycles/networks, … then these can also compete
with each other and undergo some Darwinian evolution” (Vasas et al. 2010).

Indeed, in last chapters we discussed an example of this organisation. A major
difference between protocells as described in this book and actual living cells is the
way information is stored and inherited: by using a useful classification (Hogeweg
2001) we can say that protocells show an attractor-based inheritance, whereas living
cells show a storage-based inheritance (clearly, with this assertion we are merely
highlighting the fact that in the case of living cells a significant part of the infor-
mation is stored in the static structure of specialised chemical compounds like
DNA).43

42Evolvability is the ability of a population to not merely generate diversity, but to generate
adaptive diversity, and thereby evolve through natural (or artificial) selection.
43Obviously, both protocells and living cells are dynamical objects, and even the simple translation
of information in dynamical behaviors is per se a complex dynamical process. Moreover, during
the splitting processes the parent cells transmit to the descendants—beside the static information—
also their dynamical state.
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The quantity of storable information in attractor-based organisations depends on
the number of their alternative stable states, which for protocells are determined by
(the zone of) the chemistry where each individual is wandering. Noise, as discussed
in this chapter, can also be very important, as it allows the population of protocells
to perform an effective exploration of a significant part of the chemistry, and to
reach areas where the protocells are able to growth and replicate and to increase the
individuals’ complexity.

So different groups of protocells may reach different areas of their environment,
or even may present different dynamical behaviours in the same zones. In this case
the different groups of individuals can interact with each other, differently affecting
the chemical composition of the local environment and in such a way giving birth to
multiple levels of selection, an issue discussed in Hogeweg (2001). Indeed, local
interactions among different individuals within a spatially extended environment
could locally change it, leading to the formation of higher-level assemblies able to
affect the behaviour of the single units composing them (Boerlijst and Hogeweg
1991a, b).

So, populations of protocells within spatially extended environments potentially
could allow a very interesting flexibility and diversity.

On the other hand, the actual DNA-based living systems can store a lot of
information at roughly equal energy/stability levels. The (not completely error-free)
template-based DNA replication allow the inheritance of variations without
requiring the acquisition or the loss of entire groups of chemicals; moreover, many
of these mutations are not lethal, and a significant subset of them is even advan-
tageous. Therefore, template-based systems are probably “more evolvable” (for a
classification of long-term evolutionary dynamics, see also Bedau et al. 1998).

In any case, self-structuring objects may be a prerequisite to exploit stored
information (Hogeweg 2001) and it would be very interesting to study the transition
from attractor-based, limited inheritance to a storage-based, less limited form of
inheritance (Vasas et al. 2010; Hogeweg 2001).

5.7 Appendix

We have introduced various models in Chaps. 4 and 5, describing their behaviours
and explaining the reasons of our choices. In order to make it easier for the reader to
clearly appreciate the value and limitations of these results, we summarize here the
main features of these models.

They require the modelling of (i) the chemical reactions taking place in the
system and (ii) the exchange properties of the system with the surrounding envi-
ronment. Since we deal mainly with protocells, we will sometimes refer to this latter
aspect as “the modelling of the container”.
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The reactions happen inside the whole internal volume in CSTRs or in IRM
protocell models, or only within a small fraction of this volume in NSRM protocell
models44; in all these cases we suppose that the internal environment is perfectly
mixed. The exchange with the external environment is described as vanishing (in
the case of a closed vessel), as that of a CSTR, where there is a continuous inflow
with constant concentration of solutes and an equal outflow or as a semipermeable
membrane, or as that of a protocell, where the exchange of the chemical species that
can pass through the semipermeable membrane is driven by their concentration
gradient between the internal ad external chemical situation.

In Sect. 5.7.1 the chemical reaction system is described, while Sect. 5.7.2 is
dedicated to the container properties. Finally, Sect. 5.7.3 briefly summarizes the
protocell splitting process.

5.7.1 The Chemical Reaction System

As already discussed we make use of two kinds of reaction, cleavages and
condensations:

1:CleavageABþ Z�!CCl AþBþ Z
2:Condensation: whole reaction:AþBþ Z ! ABþ Zð Þ

1:Complex formation:Aþ Z�!Ccomp
A : Z

2:Complex dissociation:A : Z�!Cdiss Aþ Z

3: Final condensation:A : Z þB�!CcondABþ Z

ð5:12Þ

where A and B stand for the substrates of the specific reaction, Z is the catalyst and
A:Z is a transient complex. Since reactions that simultaneously involve three or
more molecules are much rarer that bimolecular reactions, the condensation process
is considered as composed of three steps: the first two create (reversibly) a tem-
porary complex (composed by one of the two substrates and the catalyst) that can
be used by a third reaction, which combines the complex and a second substrate to
finally release the catalyst and final product.

If the concentrations of the various chemical species are high enough, the
chemical reactions can be described by differential equations (ODEs), as usual in
chemical kinetics, following the law of mass action. So, for each cleavage the
concentration changes due to the cleavage reaction r that breaks chemical AB in
chemicals A and B, under the action of catalyst Z is:

44Also surface reaction models were discussed in Chap. 3, however this appendix specifically
refers to Chaps. 4 and 5.
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d A½ �
dt

¼ d B½ �
dt

¼ � d AB½ �
dt

¼ Kcl AB½ � Z½ � ð5:13Þ

where Kcl is the kinetic constant of the reaction r and square brackets denote
volume concentrations.45

Similarly, for each condensation d the concentration change of the chemicals
A and B that condensate in chemical AB because of the presence of the catalyser Z,
through the intermediate reactions involving the temporary chemical complex AB
is:

d AZ½ �
dt ¼ K þ

az A½ � Z½ � � K�
az AZ½ � � Kbz B½ � AZ½ �

d A½ �
dt ¼ K�

az Z½ � � K þ
az A½ � Z½ �

d B½ �
dt ¼ �Kbz B½ � AZ½ �
d Z½ �
dt ¼ K�

az AZ½ � � K þ
az A½ � Z½ � þKbz B½ � AZ½ �

d AB½ �
dt ¼ Kbz B½ � AZ½ �

8>>>>>><
>>>>>>:

ð5:14Þ

Kaz
+ , Kaz

− and Kbz are the kinetic constants of the complex formation, complex
dissociation and complex condensation.46 The overall concentration change of each
chemical is of course the sum of all the changes due to the various reactions it
partakes.

The ODEs can be numerically integrated. We typically use of an Euler method
with step size control: in this case the integration with the container (modelled by
ODEs) is straightforward.

If however the concentrations of some species are very low, randomness
becomes significant and one has to resort to a truly stochastic approach, like the
well-known one proposed by Gillespie (1976, 1977). In the case where the deter-
ministic reaction rates were those of Eq. 5.14, the Gillespie reaction constants can
be derived from the kinetic constant of Eq. 5.14 by means of the relations:

Ccl ¼ Kcl
V

Ccomp ¼ K þ
az
V

Cdiss ¼ K�
az

Ccond ¼ Kbz
V

8>>><
>>>:

ð5:15Þ

and the Gillespie algorithm can be applied:

Step 0. (Initialization) Input the desired values for the M reaction constants cl,…,cM
and the N initial molecular population numbers X1,…,XN. Set the time variable

45Different reactions could have different Kcl values: in order to avoid an excessive pedantry in
Eq. 5.13 we omitted the subscript r.
46Different reactions could have different constant values: in order to avoid an excessive pedantry
in Eq. 5.14 we omitted the subscript d.
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t and the reaction counter n both to zero. Initialize the uniform random number
generator.
Step 1. Calculate and store the M quantities al = hlcl,…, aM = hMcM for the current
molecular population numbers, where hm is the product of the number of molecules
of the substrates of the reaction Rm. Also calculate and store as a0 the sum of the M
am values (so that the quotient ai/a approximates the occurrence probability of
reaction i)
Step 2. Calculate the time s needed for the next reaction occur, and choose the
index l of the occurring reaction given the computed ai values (see Gillespie 1976
for details)
Step 3. Using the s and l values obtained in step 2, increase t by s, and adjust the
molecular population levels to reflect the occurrence of one Rl reaction; e.g., if Rl

is a cleavage, then increase each product by 1 and decrease the substrate by 1. Then
increase the reaction counter n by 1 and return to step 1.

In returning to step 1 from step 3, notice that it is necessary to recalculate only
those quantities am corresponding to reactions Rl whose reactant population levels
were just altered in step 3; also, a0 may be recalculated simply by adding to a0 the
difference between each newly changed am value and its corresponding old value.
The schema is iterated until the desired time is reached.

5.7.2 The Exchange with the Environment

The chemical reaction system is contained within a vessel, which rules the inter-
action with the external environment. In the trivial case of a closed vessel the
exchange with the external environment vanishes, so there is nothing else to add. In
the cases of a CSTR and of a semipermeable membrane the exchange of chemicals
is typically modelled using differential equations.

The CSTR involves a continuous inflow with constant concentration of solutes,
while the outflow rates of the various chemicals are proportional to their concen-
trations in the reaction vessel. So, the differential equations ruling the exchange of
each simulated chemical are:

d xi½ �
dt

¼ Ji � / xi½ � i ¼ 1; . . .;N ð5:16Þ

where Ji describes the intake of each chemical species (which may of course vanish)
and / represents the solution outflow rate. Of course, this is only the contribution to
the total rate pf change that is due to transport.

In the case of vesicles and protocells with semipermeable membranes the
external concentrations of the various chemical species are assumed to be constant
(an approximation that is based on the hypotheses that the volume of the external
environment is well-mixed and much larger than the internal volume—or the sum
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of the internal volumes if there are several vesicles). The transmembrane diffusion
depends upon the features of the molecules but, as first ansatz, we simply assume
that short molecules (namely those shorter than a threshold length Lperm) can pass
through the membrane while longer ones cannot.

So, in the case of extremely fast transmembrane diffusion, transport is assumed
to be instantaneous, and the concentrations of the chemical species that can cross
the membrane are assumed to be equal (and constant) on both sides, while the other
molecules (i.e. those that are longer than Lperm) are trapped inside the vesicle.

In the final part of Chap. 5 we analyse also the effects of a finite transmembrane
diffusion rate. In this case the concentration of the short species are subject to the
direct influence of the external environment, modelled by means of Fick’s law (Bird
et al. 1976):

d xi½ �
dt

¼ �DiS
h

xi½ � � nið Þ ð5:17Þ

where [xi] and ni are respectively the internal and the (constant) external concen-
trations of species i, Di is its diffusion coefficient across the membrane with
(constant) thickness h and surface area S (see also Sect. 5.2). Like in the case of
instantaneous transport, molecules longer than Lperm never cross the membrane.

Moreover, some chemical species are coupled to the growth of the container.
The models discussed in this book assume that these species act as specific catalysts
for the production of membrane lipids, assuming abundant and buffered lipid
precursors. Let C be the total number of lipid molecules (or moles) in the mem-
brane. Then the equation for the growth rate of the container takes the form:

dC
dt

ffi
XN
i¼ 1

kconti xi½ �cVeff ð5:18Þ

where Veff is the internal volume of the protocell where reactions occur and [xi] is
the concentration of catalysts in the internal aqueous phase; the kinetic coefficients
ki are zero for all the species that do not contribute to the container growth. The
kinetics of lipid formation are of order c with respect to the concentration of
catalyst, given the hypothesis of an infinite supply of lipid precursors inside the
protocell. The lipids produced inside the protocell are assumed to be incorporated
instantly into the membrane.

Protocells can grow and divide: during these processes their form and shape can
change but, for reasons discussed in the text (see Sect. 3.5), we suppose that they
are spherical with internal radius ri with constant membrane width d. So, in the case
of IRM:

Veff Cð Þ ¼ Vint ¼ 1
6
ffiffiffi
p

p C
qd

	 
3
2

ð5:19Þ

where q represents the constant concentration of the lipids in the membrane.
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If the reactions happen only within a distance e from the inner surface of the
membrane (as in NSRM models) we have:

Veff Cð Þ ¼ C
qd

e ð5:20Þ

Since the exchange with the environment is modelled by differential equations,
its coupling with the internal reaction dynamics is straightforward when the latter is
also described by ODEs, while it is less obvious in the case of the Gillespie
approach.

Nevertheless, the Euler method that we use to integrate the equations describing
the container dynamics can allow a simple merge of the two modules also in this
second situation. Actually, the Euler schema implies that the variable changes are
linked to a finite time interval: in our framework this time interval can be directly
derived from the Gillespie algorithm, which therefore becomes the main systems’
engine. So the general schema is (see also Villani et al. 2014):

• While (simulation is non ended)

a. The Gillespie framework holds, and computes a finite time interval Dtg
b. The simulation time is updated ts = ts + Dtg
c. For each chemical xi

i. the time passed from the chemical last change is updated
LCi = LCi + Dtg

ii. its flows through the container is updated fwi = fwi + f(rules, LCi)
iii. if |int(fwi)-fwi| 	 1, the number of molecules of xi is varied of int(fwi),

fwi is decremented by int(fwi) and LCi is set to 0

Int(X) and f(rules, LCi) indicate respectively the integer part of X and the
dynamical rules (derived from of the differential equations description) that drive
the chemical i mass exchange with the external environment through the membrane.
The time interval Dtg is very tiny (it correspond to the formation/disappearance of
few molecules) and is therefore compatible with the Euler schema used for the
container’s module.47

By the way, note that if the volume is time dependent and if the process is
quasi-static (the volume variation is not too fast) it is possible to simulate by a
Gillespie-like method also systems where the container volume can vary in time (it
is enough to take into consideration the volume changes and recalculate the
Gillespie reaction constants during the simulation—see Carletti and Filisetti 2012
for further details).

47That is, we need several Dtg intervals in order to cover a single time step of the Euler framework.
This fact allows the synchronization between the Gillespie and the Euler framework proposed by
steps (i)–(iii).
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5.7.3 The Protocell Splitting Process

In the case of growing and dividing protocell we have to model the growth stop and
the successive splitting phase.

As discussed in detail in Sects. 3.2 and 5.1, it assumed that the vesicle splits into
two approximately equal parts when a certain threshold value h of the container
surface or mass is reached. So, at each splitting event the number of molecules of
the container C and the number of molecules of the chemical species xi change in
time following the simple rule:

C tþ 1ð Þ ¼ C tð Þ
2

xi tþ 1ð Þ ¼ fxi tð Þ
�

ð5:21Þ

where t and t + 1 are the times of two consecutive splitting events and f takes the
value 0.5 if there is no material loss during splitting, or �0.354 in case of loss of
materials—see Sect. 5.1.
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Chapter 6
Conclusions, Open Questions
and Perspectives

6.1 Introduction

In the previous chapters we have discussed some protocell models and we have
analysed their behaviour in depth, so now it is time to consider what we have learnt,
which questions have been at least partially answered, which questions are still
open and which new questions have arisen1. In this final chapter we will therefore
take the liberty of revisiting and repeating some arguments that have already been
dealt with in the previous chapters.

Before doing that, let us first critically review the limitations that are directly
related to the modelling levels that have been chosen. As discussed in Chap. 2, the
models described in this book are fairly abstract, they make use of strong simpli-
fications and do not refer to specific hypotheses about the kinds of molecules
involved. We have imagined a lipid vesicle in water, but we never defined which
kinds of amphiphiles would make up the membrane. Moreover, most of our models
can be applied also to different cases, like e.g. micelles, that are smaller than
vesicles and lack an aqueous interior (Serra et al. 2007a). When dealing with
synchronization in Chap. 3, we have also not chosen which kinds of genetic
memory molecules are involved; they might be nucleic acids (often RNA, if
inspired by the “RNA world” hypothesis (Gilbert 1986), or PNA as in the original
Los Alamos bug model (Rasmussen et al. 2004b)), but they may also be chemically
different substances (e.g. polypeptides or lipids). So a part of our results apply both
to a “replication first” and to a “metabolism first” scenario.2

The full generality of these results holds for the models of Chap. 3, while in the
following Chaps. 4 and 5 we have used models of replicators not based upon
template matching, so they are not well suited for the case of nucleic acids where,
besides cleavage and condensation reactions, other operators able to synthesize or

1In order to ease the reading, we will not repeat here in this chapter all the references to the
relevant papers, referring the reader to the previous chapters for further bibliography.
2A comment that may be relevant for those interested in studying the origin of life (OOL) problem.
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destroy new species should be used. Moreover, it would be necessary to consider
also the reaction that pairs complementary strands (i.e. the balance between
double-strand and single-strand forms), since only single strands can be templates
for the synthesis of a new molecule. Needless to say, the possibility of random
“errors” in the sequence of the complementary strand should also be taken into
account.

The choice of strongly simplified abstract models could of course be criticized,
as it shows significant departures from possible real protocells. One possible answer
is that we can gain in generality what we lose in realism. Moreover, as already
pointed out in Chaps. 1 and 2, discarding models on the grounds of a supposed
distance from reality is a tricky matter, and it may be misleading.

Let us think for example of the well-known Ising model, a highly abstract way to
describe the interactions between various spins in a solid that, in spite of its sim-
plicity, has proven able to address several interesting phenomena (Brush 1967).
Other examples of simple models that succeed in describing far from obvious
behaviours include the hard-sphere model of a gas, that allows us to derive the ideal
gas law without any knowledge of the actual interactions between different mole-
cules (Huang 1987), and the FHP model of lattice gases, a simple cellular automata
that describes “particles” moving and colliding on a hexagonal lattice, and that has
been able to simulate some complex fluid dynamical processes, like the formation
of von Karman vortices and other turbulent phenomena (Frisch et al. 1986). In a
field closer to the one discussed here, i.e. biology, let us mention the demonstration
that, under reasonable assumptions, the distribution of perturbations in gene acti-
vation levels, after the knock-out of a single gene, is not affected by the distribution
of incoming links to the various genes, but only by that of outgoing links pout—as
described in Sect. 2.3.

These are just a few examples that show how the rejection of the importance of
abstract models on the grounds of supposedly (or even truly) unrealistic assump-
tions can be misleading. Of course, this observation does not per se guarantee that
any model is relevant or appropriate; it just claims that rejection should be moti-
vated on firmer grounds, like e.g. a thorough comparison of the model outcomes
with observed behaviours.

Theoretical or simulation results seem particularly convincing when similar
outcomes are common to a broad set of different specific models, as is the case of
the spontaneous synchronization of the replication rates of lipid containers and their
genetic memory molecules. In this chapter we will (in Sect. 6.2) critically review
the main hypotheses at the basis our models, where in many different cases syn-
chronization takes actually place. These remarks will concern the behaviour of
protocells and they will provide suggestions for further theoretical and experimental
work.

Another case where very different models lead to the same conclusion concerns
the spontaneous formation of growing autocatalytic cycles from a random collec-
tion of different interacting chemical species, provided that the number of species is
high enough.
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On the other hand, news from the lab are that it is very difficult to observe
collectively autocatalytic sets. Some such sets have been identified, yet they
required the skill and ingenuity of talented chemists, and they did not emerge
spontaneously. So this is one important difference between the outcome of some
models and the experimental results, and we believe that the results of Chap. 4 and
5 (summarized in Sect. 6.3) provide at least partial explanations to these
mismatches.

First of all, while most theoretical analyses take into account only the catalysts
reaction network, it is necessary to consider also the availability of substrates;
therefore it is appropriate to focus on RAF sets rather than on catalytic cycles only
and, ceteris paribus, the formation of RAF sets is less probable than that of cycles.

But the most striking observation is, in our opinion, the difference between the
observed dynamical behaviours and the conclusions that might be drawn from a
static graph-theoretical analysis. As it has been shown in Chap. 4, some reactions
identified by a static analysis take place at such a slow rate that they are completely
ineffective (for example, their substrates are consumed before they can use them).

Moreover, other phenomena can take place if the autocatalytic sets are incor-
porated in a vesicle; in this case they can compete and, under some hypotheses,
even destroy each other, so it is really necessary to take into account their
dynamical interactions. A single RAF might be sufficient, if coupled to the growth
of the lipid container, to achieve protocell reproduction and synchronization. But in
the simplest models, the fastest RAF would survive while the others are diluted
away, an outcome that would rule out the possibility of achieving protocells with a
rich internal dynamics. However, we have also shown that some limited and
physically reasonable variants of those models do actually allow the coexistence of
different RAFs and, therefore, the formation of protocells hosting complex reaction
networks. These aspects will also be tackled in Sect. 6.3, where the need for truly
stochastic models will again be stressed.

In Sect. 6.4 we will briefly review the role played by membranes in different
protocell “architectures”, while in Sect. 6.5 we will summarize the main lessons
that can hopefully provide useful hints for future experiments, in the quest to
achieve a viable protocell population. We will stress the usefulness of stochastic
models that describe the interaction between the different relevant phenomena at
different space-time scales: they provide a useful “virtual laboratory” where one
could test the effects of some possible experimental choices before performing the
wet experiments, and they can also help us shaping our intuitions about the
still-to-come protocells.

The large gap between theory and experiments might suggest an alternative
approach to the one described in this volume, so one might think that there is still
something fundamental missing in our picture and in our models, i.e. that some
fundamental processes have not yet been considered. As it has been mentioned in
Chap. 1, two possible “missing ingredients” in our description are the so-called
“statistical mechanics of self-replication” and quantum coherence. The statistical
mechanics of self-replication is based on theories concerning the behaviour of
systems far from thermodynamic equilibrium: it has indeed been suggested that
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some general principles may be at work, and that these principles could favour the
development of self-replicating systems, whenever possible. The role of quantum
coherence in biological systems is also an active research area, and it has been
shown that living beings can maintain quantum coherent states for time intervals
much longer than those that are typically found at room temperature. It seems
therefore interesting to ask whether something similar might have played a key role
in the emergence of life, and may play similar roles in the creation of new proto-
cells. Intriguing as they are, these proposals are somehow heterogeneous with
respect to the models that are analysed here, and lie beyond the purpose of this
volume.

We have repeatedly stressed that our interests concern protocells, whether they
be primeval structures that appeared billions of years ago, or tomorrow’s laboratory
artefacts still to be crafted. So we have prudently stood away from discussing issues
related to the origin of life. Yet, before embarking on a detailed critical review of
our results, we will make a short comment here below on the usefulness of models
like those that have been discussed here (and others) to shed light on a
long-standing issue concerning the emergence of a lifelike organization3 from
available building blocks. Two extreme positions that can be (and have been) taken,
are that life is unavoidable, given the properties of the planet earth or of other initial
environments, or that life is so improbable that we are likely to be the only example
in the whole observable universe. These two extreme positions have both been
championed by several scientists and philosophers in the past; in the last decades,
Stuart Kauffman and Jacques Monod can be considered among the most repre-
sentative spokespersons of the two opposite views. While this issue has been
intensively debated in studies about the OOL, it is obvious that it is relevant also to
estimate the chances of success of protocell research.

The position of Kauffman, largely based upon the experience he gained with his
models, is that we (living beings) are not the outcome of an extremely improbable
event, but that rather “we were expected” (Kauffman 1993, 1995). This is not meant
to deny the role of randomness in the origin and evolution of life, but according to
Kauffman there are tendencies towards self-organization that make it almost
unavoidable that “something like life” comes into existence.4

In the 1970s the French biologist Jacques Monod, who had been awarded a
Nobel prize for his discovery of the mechanisms of regulation of gene expression in
E. Coli, published a very influential book where he provided a bright synthesis of
the results of molecular biology and strongly claimed that life is so improbable that
it might have appeared only once in the whole universe (Monod 1970). Once life
had appeared, the mechanisms of random change and deterministic selection would
then have ruled its evolution.

3As discussed in Chap. 1, we assume that the properties of a “lifelike organization” are
(i) metabolism (ii) reproduction with inheritance and variation and (iii) evolution.
4This might also be related to the approach of the so-called statistical mechanics of self-replication,
which suggests that thermodynamic “forces” may be at work to lead to the emergence of
self-replication.
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Monod’s book was published before the development of the so-called “science
of complex systems”, which studied several cases of self-organization in the natural
world and showed how widespread they are, thus raising the interest of the sci-
entific community for these often surprising phenomena. It is now well-established
that ordered structures and processes can spontaneously appear, and several con-
ditions inducing self-organization have been discovered. It is tempting to speculate
whether Monod, who died in 1976, would have revised his position on the basis of
the theories developed by Prigogine, Haken and others (see e.g. Nicolis and
Prigogine 1977, 1989; Haken 2004; Serra et al 1986 and further references quoted
there), and later elaborated by the Santa Fe school—to which Kauffman himself
contributed.

The self-organizing properties of matter are indeed impressive, and it is rea-
sonable to suppose that they might be responsible also of the origin of life. This is
the hope that motivates all the theoretical as well as the experimental work on
protocells, and it is a perfectly legitimate scientific question, open to investigation.
It is quite natural that researchers working in this field, irrespective of their religious
or philosophical orientations, hope that the conditions that make protocells possible
will be understood, so that they will eventually be synthesized. This would be one
of the major scientific results ever achieved.

6.2 The Hypothesis of Spontaneous Fission
and Synchronization

Let us now discuss again some major assumptions that lurk behind the models
described in Chaps. 3 to 5, that are (i) that protocells actually fission, when their
size becomes large (ii) that the lipid membrane is homogeneous and (iii) that
spontaneous (i.e. non-catalysed) growth of the protocell is negligible.

i) fission

As far as the fission process is concerned we have considered fixed thresholds,
which can be defined on the total mass or volume,5 leaving the main qualitative
results unaffected. Moreover, as recalled in Chap. 3, the observed synchronization
behaviours are robust with respect to fluctuations in the value of the threshold and
of the amount of lipids and genetic memory molecules of the two daughter
protocells.

But in our models it is anyway assumed that too big protocells do split into two
daughter vesicles of approximately equal size. Such fissions have been directly
observed, at least in the case of large vesicles (so-called giant vesicles, whose linear
dimensions are of the order of 10 l at least), and evidence has been provided that

5The main qualitative conclusions are valid also if the thresholds are imposed on the size of the
membrane surface.
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the same phenomenon can take place in smaller ones. However, the exact mech-
anisms are still under investigation and they may depend heavily upon the detailed
chemical nature of the lipids (Morris et al. 2010; Božič and Svetina 2004; Svetina
2012; Mavelli and Ruiz-Mirazo 2007; Sakuma et al. 2015). Moreover, a frequently
observed phenomenon is budding (Svetina 2009), where a smaller vesicle separates
from the larger one. In this case we face the problem of uneven division: the mother
protocell gives rise to a large and a small daughter. In this case synchronization
strictu sensu (as described in Chap. 3) can no longer take place.

In order to understand how this process can happen, let us consider the simplest
case, i.e. one with a single GMMM with linear kinetics. The growth phase is
described by Eqs 3.5, i.e.

dC
dt ¼ aCb�1X
dX
dt ¼ gCb�1X

�

As before, the quantity I = ηC-aX is conserved during continuous growth.
While in Chap. 3 we had assumed that, after splitting, each daughter cell starts with
an equal share of C and X, namely h/2 and Xf/2, now we will assume that one of the
two daughters will start with a certain fraction x. Therefore its initial values will be
xC and xXf. By reasoning like it was done before (see Eq. 3.7) one easily finds that

Xkþ 1 ¼ xXk þxD0

where

D0 � gh 1� xð Þ
a

The behaviour of the other daughter protocell, which inherits a fraction 1−x of
lipids and replicators, is described by the same equations with x in place of 1−x
and viceversa.

Let us suppose that x > 1/2. The larger protocell, which inherits more than one
half of the replicator molecules, will arrive at the splitting threshold (that depends
upon the physics of the vesicle, not upon the initial conditions) earlier than the
smaller one. If we considered only the succession of larger vesicles, we would
observe that they would tend to synchronize: the initial quantity of replicators
would approach, generation after generation, the value xD′/(1−x) and the dupli-
cation time would approach –(1/η)lnx. The same holds for small protocells
descendants of other small protocells, with the only difference of substituting 1−x
in place of x. Between these extremes, however, now there is at every moment a set
of vesicles with different initial quantities of replicators: some daughters of the large
vesicles will be small, some daughters of the small vesicles will be large, etc.

So there will be nothing like a global synchronization of the duplication times.
One might guess that the growth will nonetheless be sustainable, since there will be
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no excessive growth of the initial quantities of replicators (that is avoided in the
“large” daughters by the behaviour just described) and no excessive dilution: the
smaller protocells might be born with few replicators, but their descendants will
approach the “right” values. However, to come to firm conclusions this process
needs to be carefully analysed, and the evolution of the protocell population needs
to be described (the details might depend upon the selection mechanism that
decides which vesicles survive). Note that also in models like those of (Chen and
Szostak 2004), briefly mentioned in Sect. 3.1, it might be useful to consider the
dynamics of a whole population of protocells.

Another possible difficulty might come into play if the fission were a slow
process, whereby the content of the internal part of the protocell might be diluted in
the outer medium. In the splitting process of Chap. 5 room was made for this
possibility, since the simultaneous requirements (i) that the quantity of lipids
making up the membrane are conserved and (ii) that the resulting daughter pro-
tocells are spherical like their parents, jointly require that the volume of each newly
formed protocell is less than one half of that of the parent. It was shown there that
synchronization can be achieved also in that case; this implicitly requires that
fission is fast, so that internal concentrations are not affected. Anyway, if fission
were really very slow, every difference between the internal and external compo-
sitions would be washed away—and in this case no protocell growth evolution
could be observed, since each new generation would start with the same initial
composition as the others.6

ii) heterogeneous membrane

Several experimental papers describe vesicle fission or budding in the case where
the membrane is composed by (at least two) different kinds of lipids (see e.g.
Ruiz-Mirazo et al. 2014 and further references quoted there). It seems therefore that
mechanical interactions among (some kinds of) different lipids can make division
more likely. In this case the models described in the previous chapters, where there
is one or more kinds of GMMs catalysing the formation of new lipids, would no
longer be valid. The modifications necessary to deal with such a case would be
relevant. Indeed, it is unlikely that any model that does not incorporate some
reactions among the lipids themselves might lead to a constant composition of the
membrane in successive generations.

A stable situation, with synchronization, might be achieved if the lipids interact
with other lipids; the protocell growth rate would then depend upon the composi-
tion of the lipid membrane, and the lipids would in a sense play a role similar to that
of the GMMs. This is also the case of the so-called GARD models, where the
chemical make-up of the lipid membrane is referred to as the “composome”.
Interesting questions have been raised concerning the stability in time of the
composome, but at least a simplified treatment shows that in this case

6see Chap. 5 for a more detailed discussion.
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synchronization can be achieved, as it has been mentioned in Chap. 3 (provided of
course that the interactions allow a sustained production of lipids).

A further possibility that might lead to stable synchronization requires that some
lipids would affect the growth rate of the replicators, that in turn would feed back
onto the lipid composition; this is not described in the “geometric” interactions
incorporated in the equations of Chap. 3, and it might be another source of stability
(provided of course that the reactions allow sustained growth). This observation
opens the possibility of a new family of models that might perhaps be amenable to
experimental testing.

In any case, taking into account the presence of different lipids in the membrane
would require the introduction of a different kind of models.

iii) spontaneous processes

Another hypothesis at the heart of the previous models is that spontaneous growth
of the lipid container is negligible, absent catalysis by the GMMs. Indeed, if the
protocell were able to grow at a fast pace independently of the GMMs, we would
observe their dilution in successive generations. Some small spontaneous growth
might be introduced without affecting the main qualitative results, but if this term
became dominant then the observed behaviours would be entirely different (i.e.
extinction of the replicators).

As it has been mentioned in Chaps. 4 and 5, the possible presence of sponta-
neous (i.e. non catalysed) reactions that lead to the formation of catalysts at a slow
but non negligible rate would modify the behaviour of the models described in
those chapters.

The main results of Chap. 3, subject of course to the just discussed hypotheses
of (i) spontaneous even fission (ii) homogeneous lipid membrane and (iii) negligi-
ble spontaneous growth, can be summarized by stating that synchronization is a
widespread property. This holds only if the GMMs are indeed replicators, i.e. they
are able to increase the numbers of their molecules (at least for some molecular
types). This is the physical meaning of the condition that has been analytically
found in the case of linear kinetics, i.e. that the real part of the ELRP (i.e. the
eigenvalue with the largest real part) be positive. It has also been verified by
extensive simulations that the same holds true for most reasonable types of non-
linear interactions.

In very many cases synchronization takes actually place, and it is robust with
respect to changes of the parameters’ values, to the kind of kinetic equations, to the
protocell architecture, etc. A different behaviour has been observed in the case of
purely quadratic kinetic equations for the replicators, where emergent synchro-
nization does not take place. In Sect. 3.5 it has also been observed that this result is
a particular case of a more general one, i.e. that when the growth of container C and
replicators X are described by Eq. 3.39 (rewritten here below for convenience)
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dC
dt ¼ aXcV1�c

dX
dt ¼ aXmV1�m

�

(where V is the internal volume of the protocell) then synchronization requires that
m < c+1.

This condition can be interpreted as implying that, in order to synchronize, the
replication rate of the replicator has to be “not too fast” with respect to the growth
rate of the container. And this can provide useful suggestions to design effective
protocells.

In all the cases of Chap. 3, as it has been remarked, the replicator equations were
given for granted. In the following chapters we have considered the appearance of
the kind of autocatalytic cycles, or RAFs, that can lead to a synchronizing beha-
viour. In order pursue our study, it has been necessary to make hypotheses about the
structure of the replicators, and we have described in detail a model, originally due
to Kauffman, well suited for this purpose. In Chap. 5 we have shown that also in
these models synchronization can take place. This should not come as a surprise,
since we know from Chap. 3 that synchronization is a generic emergent property.
The above requirement that “the GMMs are indeed replicators” is smoothly tran-
scribed in the requirement of having RAF sets. The main difference is that in the
Kauffman model all the reactions need to be catalysed, while the formalism of
Chap. 3 allows for more general kinetic equations —but within the universe of the
Kauffman models, RAFs are just the equivalent of a positive eigenvalue in the
linear case. This can be quickly checked in the case of a single autocatalytic
molecule, dX/dt = kX (k > 0); here one must assume that the food is continuously
supplied without limitations, and one finds both a RAF set and a positive eigen-
value. In more general terms, without referring to linear systems nor to the
Kauffman model, the physical requirement is that the set of replicators be able
indeed to increase in number.

The Kauffman model, or similar ones, are necessary to evaluate the probability
that such self- reproducing cycles appear in fairly broad conditions. In the spirit of
the search for generic properties, they have been modelled by “random chemis-
tries”, as described in Chap. 4. However, if we are interested in laboratory exper-
iments on protocells, we know that we have to use existing molecules, i.e. we have
to stay with the properties of the only “chemistry” that is available on earth (and
presumably also in the other places of the observable universe). We might therefore
choose one or more kinds of molecules—most likely some kind ofpolymers —able
to collectively self-replicate, place them inside a vesicle and find a way to couple
some of these molecules with the lipid growth.

Indeed, it is possible to encapsulate several chemicals in a vesicle—a beautiful
example being that of placing inside a vesicle the whole machinery for the synthesis
of the Green Fluorescent Protein, starting from transcription of its gene (Yu et al.
2001; De Souza et al. 2009). So it seems possible to place an autocatalytic molecule
(or an ACS) in a vesicle. In order for the cycle to actually replicate its molecules,
the necessary substrates and building blocks must be provided, but this also seems
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plausible. The missing step, that has not yet been achieved, is that of coupling
self-replicating molecules to the growth of the lipid container. There are some
interesting attempts that have achieved partial success, like the one by Steen
Rasmussen and co-workers who, working on a surface-reaction type of protocell
architectures, have shown that the presence of some nucleic acids (PNAs) can affect
the rate of formation of amphiphiles from precursors, using photons as an energy
source (Rasmussen et al. 2016). Interestingly, the effect seems to depend to some
extent upon (some features of) the sequence of nucleotides, so different PNAs might
lead to different growth rates—a very interesting feature for the evolution of
populations of protocells.

As it has been repeatedly stressed in this volume, such coupling is a necessary
condition for the validity of the models described, and of the results concerning
synchronization. It is known that synchronization can be achieved also in different
ways, as it happens in present-day cells, but in this case sophisticated control
mechanisms are at work to make sure that the duplication of the genetic material
has been achieved before starting fission. The cell cycle control circuits are so
complex, and tailored to their task, that it is extremely unrealistic to assume that
similar mechanisms can assemble spontaneously in a relatively simple protocell.
Referring to biological cells, they are rather the outcome of subsequent evolution,
where those protocells able to control fission have had an edge with respect to those
bound to size-dependent fission.

6.3 The Formation of Self-Sustaining Autocatalytic Cycles

Let us consider first the problem related to the formation and the survival of
replicators. In studies on the origin of life, in the beginning there are just a few
species, and the diversity increases as new species are synthesized. Moving to
protocells, it would be extremely interesting to investigate the possibility for col-
lectively autocatalytic sets to appear in laboratory studies. So far, self-replicating
sets of molecules have been obtained only by carefully engineering them, using
either RNA or peptides.

On the other hand, as it has been observed in Chap. 4, if the replicators are
polymers that undergo cleavage and condensations, it can be shown under very
broad assumptions that the number of possible reactions increases, as a function of
the polymer length, faster than the number of possible molecular types; therefore a
giant connected component appears in the reaction graph when different types of
sufficiently long polymers are formed.7

However, the results discussed in depth in Chap. 4 show that these
graph-theoretical results might be irrelevant for all practical purposes, since some
species can be present in such small concentrations that their role is essentially

7More precisely, when a sufficiently high number of different molecular species is present.
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negligible. An advantage of the models which have been considered is that they
tackle together the formation of catalysts and of their substrates, a feature that seems
essential to properly describe their behaviour.

It is also worthwhile to stress the importance of adopting a truly stochastic
approach like that of the Gillespie algorithm, where the choice of asynchronous
updating of the various molecular concentrations allows one to directly observe that
some reactions take place so slowly as to be uninfluential. On the contrary, con-
tinuous models easily hide this effect: since concentrations never really vanish,
links describing rare reactions remain in place. It is possible to partly circumvent
this problem, e.g. by defining a threshold so that all the concentrations that fall
below it are set to zero (Bagley et al. 1989), but the stochastic model with asyn-
chronous updating is more rigorous, without resorting to ad-hoc assumptions.

It should be observed that there is a beautiful model (Jain and Krishna 1998,
2004) that actually predicts the appearance of a phase transition to a connected
component on the basis of a truly dynamical approach. In this model it is assumed
that the formation of a catalyst can be obtained directly from the freely available
building blocks, under the action of another catalyst. But catalysts are typically
quite long polymers, and they are unlikely to form directly from small building
blocks: therefore the model outcomes do not prove that the giant component
actually forms, unless one assumes that short molecules (e.g. dimers or trimers) can
display a strong catalytic action. While some examples of this kind have been
reported (Gorlero et al. 2009) organic catalysis is usually associated to quite long
polymers and to their 3D shapes.

Therefore we can propose that one of the main reasons why sets of collectively
self-replicating molecules are not observed is directly related to the distance
between purely graph-theoretical analyses on the one hand, and truly dynamical
models on the other. As detailed in Chap. 4, a major difference is related to the
limited effect of molecular species that are present at very low concentrations. This
limitation is particularly severe in the case of large molecules, like macromolecules
composed by several building blocks: in order to achieve a reasonable concentra-
tion of polymers of length L we need to have achieved reasonable concentrations of
shorter polymers, that condense to give birth to those made by L monomers.
However, these shorter polymers are also likely to be present at low densities, etc.
so condensation may be quite ineffective. Moreover, other reactions may occur and
degrade the shorter polymers before further condensation takes place.

Last but not least, spontaneous (non catalysed) degradation of polymers may
also play a role in nature and in the lab, so it will be interesting to modify the model
in the future by including this phenomenon. One should consider the case where
different polymers have different spontaneous degradation rates, so condensations
should occur mostly among the most stable polymers. Moreover, spontaneous
degradation of some long polymers might produce useful medium-sized building
blocks that might be exploited by further condensation processes. It can be expected
that the combined effects of these two processes will lead to a distribution of
molecular types significantly different from the models neglecting spontaneous
degradation.
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It should also be recalled that further differences from the purely
graph-theoretical analysis are related to the dynamical interactions among auto-
catalytic cycles; we will come back to this issue at the end of this section.

The models that have been considered actually contain a number of arbitrary
hypotheses, a striking one being that every molecule chosen at random has a fixed
probability p of catalysing any reaction chosen at random. This hypothesis has been
criticized (Lifson 1997), and it has been suggested, for example, to distinguish
between molecules that are catalysts and those that are not. However, it has also
been observed that this modification might complicate the model without intro-
ducing novel relevant features (Vasas et al. 2012). Indeed, p is a crucial parameter:
if its value is too low no autocatalytic set is observed, while if it is too high very
many sets of this kind are observed.

A major departure from the behaviour of real biological catalysts is that, in the
models of Chap. 4, a single, small change in a molecule suffices to completely
modify its catalytic activity (since catalysts are associated at random to reactions).
This is not true in the case of biological enzymes, where most changes of single
monomers do not have relevant observable effects on the catalytic properties of the
macromolecule (Meyerguz et al. 2007). A radical departure from the models
described in the previous chapters, that might address the above criticism, would
require the identification of some structural features responsible for catalysis. An
example of this kind might involve defining some sequences as active catalytic
sites, able to act on every molecule that has a corresponding target sequence. Or
rather, one could posit a mapping between the one-dimensional sequence and a
shape, and attribute catalytic activity to molecules whose shapes are endowed with
certain features. We have not yet pursued this line of research, given the very high
arbitrariness involved—but it would be extremely important to check whether this
might lead to open-ended evolution.

It has already been observed in Chap. 4 that assigning at random the pairs
{catalyst, reaction} gives rise to different possible “chemistries”. This is certainly
not true in nature, where we observe a single “chemistry” at work and where
catalytic activity is tightly bound to chemical structure. However, the oversimplified
purely random catalysis model may still provide a useful description of some
properties of real interactions. Note also that it is highly likely that the “equivalent
value” of the p parameter in our “true” chemistry be close to a critical value. Indeed,
if p were much smaller than the critical value, we probably would never be able to
observe catalytic cycles, which do exist in biological systems. On the contrary, if it
were much larger, collectively catalytic sets should be easy to observe in the lab. So
these empirical facts suggest that the probability of catalysing reactions in our
“true” chemistry should be somehow close to a critical value. We have however
observed in Chap. 4 that our models suggest that there are at least two different
“critical” values, the one for autocatalytic cycles (leading on average to 1 catalysed
reaction per molecule) and another, larger one (around 2.5 for the parameters used
there) for Reflexive Autocatalytic Food-generated sets of molecules. For reasons
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that have been discussed at length, this latter value is the most relevant one, as it
takes into account both the generation of catalysts and of substrates.8

A limitation of the models that have been analysed in the previous chapters
concerns the fact that only forward reactions have been considered, while in nature
backward reactions always accompany them. We have assumed that these back-
ward reactions do not take place at an appreciable rate, even if catalysts are present.
Remember that a catalyst speeds up both the forward and the backward reaction
rates, therefore our hypotheses correspond to assuming that the speed-up of the
backward reactions is not sufficient to make them relevant. In a simple
transition-state picture of catalysis, the height of the backward energy barrier is
supposed to be still high enough to make the passage probability negligible.
However, various simulations including also backward reactions have been per-
formed (Filisetti et al. 2013) and they suggest that the main qualitative outcomes of
the model (like synchronization, fragility of autocatalytic cycles, dependence upon
protocell size, etc.) are robust with respect to this simplification while, of course, the
quantitative results are affected by the model modifications.

On the basis of the previous remarks, we have performed most of our studies
with forward reactions only, in order to limit the number of parameters and the
simulation time.

A similar remark applies to another limitation of the models, i.e. the lack of an
explicit consideration of the energy requirements. Indeed, some reactions may need
an external energy supply, which can come in various forms. We have simulated
this aspect by using activated and non-activated chemical compounds in flow
reactors (Filisetti et al. 2011a), and again we found that the model properties are not
severely affected by these modifications.9 However, it has to be observed that
natural systems always show coupling of exoergonic and endoergonic reactions,
often achieved by the production of a high-energy molecule (e.g. ATP) or of a
physical high-energy state (e.g. a concentration gradient through a membrane). The
effects of the constraints induced by these couplings need more extensive future
investigations. The possible role of transmembrane concentration gradients may be
extremely important, as discussed in Sect. 6.4.

Last but not least, there may be reactions (including for example elongation, that
is a particular form of condensation where a single monomer is attached to an end
of a polymer) that may take place also without being catalysed, although at a much
smaller rate. These rare reactions might nonetheless have a major influence on the
behaviour of the system, if they provide a source of chemical species that would
otherwise be absent.

8The first value would be the most relevant if the catalysts could be built from small continuously
supplied building blocks; however, as it has already been stressed, present organic catalysis is
based on macromolecules that cannot be assembled in single shots from small precursors.
9Apart from some obvious remarks, concerning the dependence of the model behavior upon the
overall available energy: for example, if several reactions take place only with activated substrates,
and if only a small fraction of substrates is activated then no autocatalytic cycle is observed even
for parameter values that would allow them to appear in the model without energy requirements.
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A simpler modification, still related to the structural properties of the various
molecular types, is that of assuming that certain molecules precipitate, so they are
no longer dissolved in the water phase(s). These properties may be related to the
length of the molecule, or to its hydrophilic-hydrophobic features

So far, all the remarks of Sect. 6.3 apply to sets of molecules that interact in
various settings, like e.g. an open flow reactor, a beaker, ocean water, Darwin’s small
warm pond, and so on. Let us now consider what happens to autocatalytic cycles
when we consider what happens inside a vesicle or a protocell. One further reason
why it may be difficult to achieve working protocells is described in Chap. 5, where
it is shown that different RAF10 sets, once formed, can interact in protocells, and
their interactions can easily be of a competitive nature.

Different RAF sets can interact because they inhabit the same container, and they
may affect its growth and fission rates, but they can also interact in more direct
ways, e.g. one of them can consume and destroy the catalysts or the substrates of
other RAF sets. Therefore, even if the latter are formed, there is no guarantee that
they are actually able to increase the number of exemplars of their species and to
promote the growth of a protocell. As it has been shown, the chance that randomly
assembled RAF sets involving very many molecular types can drive a sustained
protocell growth seems quite small. Small-size RAF sets are favoured in some
models, and while this might be compatible with protocell growth, it would also
limit the likelihood of obtaining reaction networks involving several species.

On the other hand, we would like to identify mechanisms that might allow the
formation of several quite long RAFs, so that in principle a protocell could host
rather complex reaction networks.11 Some results of Chap. 5 show that there are at
least two different mechanisms that would allow the co-existence of different RAF
sets (and therefore of a complex network structure) in a growing and dividing
protocell:

i) finite transmembrane diffusion rate of the permeating chemical species: in this
case the slower RAF sets can survive, at a smaller concentration than the fast
ones12

ii) selective advantage provided to the protocell by the species of the slower RAF
sets, different from acceleration of the container growth rate (like e.g. the
formation of transmembrane channels, more useful mechanical properties,
etc.)

So we see there may be another bottleneck: not only is it difficult to get high
concentrations of long molecular types, but even if they are found in a single

10In this section, in order not to make our presentation too heavy, we will often use the generic
term RAF, or RAF set, ignoring the subtler distinctions among various types of RAFs defined in
Chaps. 4 and 5; the context will clearly allow the reader to identify these subtypes.
11Which would allow the synthesis of artificial protocells with sophisticated capabilities, and
would also resemble what happens in biological cells.
12An interesting, quite realistic possibility is to assume a spectrum of possible values of the
permeability to various molecular types.
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protocell, their interactions can make them ineffective. We believe that the study of
(direct or indirect) interactions between different RAF sets (or, more generally,
different molecular types that may be present at very low concentrations) in a
growing protocell like those described in Chap. 5 is a major theoretical challenge
for the near future.

6.4 The Role of Membranes

A question that is sometimes overlooked is whether membranes are really needed
for life. We are so accustomed to cells and membranes that we tend to give them for
granted, and their role is doubtless crucial in surface-reaction protocell architec-
tures, where they provide the milieu where the key reactions take place. Let us then
consider the non-obvious case where the key reactions take place in the aqueous
phase inside the vesicle.

Let us first suppose vesicles are large enough to make the difference in chemical
compositions among different “individuals” negligible. For the sake of definiteness,
let the vesicle volume be 10 lm3 (roughly that of a sphere whose radius is 1 lm). If
the semipermeable membranes were completely inert, then some chemicals would
be confined to remain within the vesicle. However, the reactions that take place in
the internal water phase would be exactly the same that would take place in an
arbitrary 10 lm3 portion of the bulk—if autocatalytic cycles should emerge, they
should do so everywhere, and not only inside the vesicle.

It is interesting to quote The black cloud, a book already mentioned in Sect. 5.2
written by Fred Hoyle (Hoyle 1983), a smart British astrophysicist and an
unconventional thinker. In this book a giant cloud sets in around the sun, thus
reducing the amount of sunlight that reaches earth and causing great tragedies. The
hero of the novel is (you guessed it!) a smart British astrophysicist who succeeds in
contacting the cloud, which is an intelligent living being that travels through the
universe, and stops near stars to take the energy it needs. The book is nice and
worth reading, but what interests us here is that the cloud is a living being without
membranes. On the other hand, all living beings that we know do have membranes,
so one might suspect that there is something more to discover, i.e. that they do more
than just encircling a portion of space preventing the flow of molecules that would
not flow in any case (since they have the same concentrations inside and outside).

As it has been pointed out in Chap. 3 and Sect. 5.2—but it is worthwhile to
recall that discussion here—the membranes could directly catalyse some reactions
among replicators, or they can create a local environment that favours these reac-
tions. The catalytic action of the membranes would take place both in the internal
water phase and in the external bulk13, but in the latter the products would diffuse
freely, while inside the protocell they would accumulate, thus creating an

13Whose volume is assumed to be much larger.
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environment that is different from the bulk. In all these cases the membranes play an
active role, and their importance is undeniable.

However, it is also possible that membranes are passive, i.e. unable to stimulate
the reactions of the replicators, while still being semipermeable. As mentioned
above, in the case of large (“giant”) vesicles membranes would then be
uninfluential; however, as it has been shown in Chap. 5, in the case of small
vesicles the fluctuations in internal compositions may be relevant, for the same
reasons why different portions of the bulk phase of the same size would show
similar fluctuations. In this case, different vesicles can develop different composi-
tions that would be the basis for further evolution of a whole population of
protocells.

Besides these remarks, let us note that membranes might be useful also in the
case of large vesicles (and a fortiori for small ones) for an entirely different reason
from the creation of diversity in the populations. Semipermeable membranes allow
the formation of concentration gradients, so that internal and external concentra-
tions may differ. A very interesting observation, stressed by Lane (2010) and by De
Duve (2005), concerns the importance of these concentration gradients (most
remarkably, proton concentration gradients) through cell membranes, which appear
to be widely used by living beings to store energy (Mitchell and Moyle 1967;
Alberts 2008).

It has been convincingly suggested that the universality of proton concentration
gradients is associated to that of ATP: indeed, synthesizing a single ATP molecule
from its precursors involves a high energy cost, and very few reactions seem able to
directly provide the required supply of free energy. Therefore, a number of possible
energy-supplying reactions would be useless as the energy of their products would
be unable to support ATP synthesis. On the contrary, these reactions can contribute
to increase a proton gradient through a membrane, even if by a limited amount;
therefore, the proton gradient would accumulate a number of contributions from
different reactions, until the energy stored exceeds the amount required by ATP
synthesis. Indeed, the coupling of proton-gradient to ATP synthesis (the so-called
chemiosmotic hypothesis (Mitchell and Moyle 1967)) has been demonstrated in
several living processes. The presence of proton gradients would allow the devel-
opment of the universal energy carrier ATP, and this in turn allows a much great
number of chemical reactions to take place, and therefore also a greater diversity of
molecular types.

The same mechanism (i.e. concentration gradients of some chemical(s) coupled
to important endoergonic reactions) might be at work also in protocells,14 and this
observation provides a further argument for the importance of semipermeable
membranes, which are of course necessary to make such gradients possible.

It is interesting, in this respect, to recall a model mentioned in Chap. 5 (Serra and
Villani 2013) where it was shown that vesicles can concentrate chemicals in their

14The onset of a proton concentration gradient in a giant vesicle has recently been experimentally
shown in Altamura et al. (2017).
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internal parts using purely physical mechanisms. In that paper these mechanisms
were related to the different size of an internal and an external compartment, and it
was shown that, in an open system with a very simple unimolecular reaction
scheme, the concentrations of non permeating species inside the vesicle can easily
exceed those that are observed outside.

Note that concentration gradients might be very useful also in artificial proto-
cells, although they are usually overlooked in the “architectures” that have been
proposed so far. Indeed, the onset of a photoinduced proton concentration gradient
in a giant vesicle has recently been experimentally shown (Altamura et al. 2017).
The usefulness of concentration gradients might be due to the same reason why
they are important in biological cells, i.e. their capability to integrate several con-
tributions to make up a high-energy state. Of course, a coupling of this high-energy
state to the synthesis of some key chemical would be necessary in order to make
this mechanism effective.

6.5 A Virtual Laboratory

Many hypotheses about protocells have been introduced in the previous chapters,
and their consequences have been discussed. A major difficulty comes from the
embarasse de richesse that faces the theorist who tries to imagine something that
does not yet exist. However, we think we have shown that some generic properties,
common to a number of different alternative proposals, can be found, like in the
case of synchronization.

The models described in this volume can provide useful hints for the experi-
menters. What is however even more important is that they could help us to shape
our intuitions about protocells, about their behaviours, about what may be important
and which variables are worth measuring. An interesting feature of this field, as
compared to other scientific endeavours, is that theorists and experimenters can
actually understand each other. It is of course not necessary for an experimentalist
to grasp all the features of a theoretical model, nor is it necessary for a theorist to
understand all the details of an experiment; however, the languages that the two
communities use are not so dramatically far apart, and it is possible for them to
interact. Provided of course that there is a willingness to do so strong enough to
overcome some skepticism about abstract models because they are “not realistic”;
we have argued above that this is by no means a sufficient reason, and we have
provided examples from the history of science of the stimulating role that abstract
models can play.

A major conclusion is that coupling growth with cell division is a must, in order
to achieve a sustainable protocell population (we will limit in the following to say
“to achieve protocells” instead of continuously repeating that they should give rise
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to sustainable populations).15 Once this has been achieved synchronization should
easily16 follow, according to the main results of Chap. 3.

The ultimate goal of protocell research is that of obtaining reproducing proto-
cells from random mixtures of molecules. In this case, the kinetic exponents are not
under direct experimental control. However, note that the autocatalytic sets so far
discovered have been designed by clever chemists or are of biological origin.
Therefore, a very interesting intermediate step might be that of getting the repro-
duction of protocells from designed molecular mixtures (provided of course that
some molecules of the RAF affect the container growth rate). If this is the goal, an
indication that comes from the models is that of keeping the reaction order low
enough to allow synchronization.

The remarks raised in Chap. 4 about the very slow rate of some reactions, which
take place, but are so infrequent as to be irrelevant, can also be subject to experi-
mental testing and they might provide a major reason for the difference between
theoretical expectations and laboratory results about the spontaneous formation of
autocatalytic cycles.

Another fascinating aspect is the complex interaction among RAFs that can take
place in vesicles and even more in dividing protocells. A major result in Chap. 5 is
that only the fastest RAF17 survives in a growing and dividing protocell, if trans-
membrane diffusion of the permeating species is so fast that the internal and
external concentrations can be assumed to be equal. This often leads to discom-
forting simple RAFs, made by a few molecular types only, which would be unable
to host several concurrent chemical reactions. However, a (more realistic) finite
diffusion rate allows coexistence of RAFs with different overall reaction rates. So
this may also be an indication for building protocells able to host complex reaction
patterns; this might be achieved by choosing the membrane in such a way that
diffusion of the permeating molecules is not too fast (and of course not too slow,
otherwise the internal and external phases would be essentially independent).

Moreover, another possible (and to some extent testable) case of coexistence
between different irrRAFs is that a slow one provides a different kind of support to
the cell, e.g. by protecting it from chemical hazards.

It is also worth noticing that simple coexistence of two or more irrRAFs is not
per se sufficient to ensure open-ended evolution, as it is observed in living beings
(Wagner 2015). On the contrary, in several hundreds of simulations such nev-
erending generation of long-lasting novelties has never been observed (see also a
recent paper about surface reaction models (Rasmussen 2016)). Finding what are
the further features that must be added to the model to achieve such a behaviour is
therefore a major theoretical challenge.

15The only plausible, much more complicated, alternative seems to be the introduction of
sophisticated checks before the start of replication, as it happens in present-day cells.
16i.e. under a broad range of conditions.
17Recall that we ignore here the detailed taxonomy of (sub)RAFs, see note (11) in Sect. 6.3.
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Apart from detailed prescriptions, the rich picture of interacting catalytic cycles
in a protocell provides us also with a way to understand what is going on—a view
that is still close enough to the molecular level, but that escapes the constraints of
the purely microscopic analysis of the kind “species Z catalyses the cleavage of
species W” and allows a wider, system-level view. A view that is essentially based
on a network of interactions, where the network is a truly dynamical one. And we
have repeatedly stressed the need to take dynamics into account to understand what
is happening in hypopopulated reaction systems.

While further future uses of our models can also be envisaged (e.g. the simu-
lation of actual populations of interacting protocells) it is important to realize that
these models are already able to treat, in a unified framework, both the aspects
related to protocell growth and division, and those related to the emergence of
autocatalytic cycles, and therefore to simulate the effects of various laboratory
settings and operating parameters. Moreover, by suitably modifying some parts of
the models, it is possible to simulate also very different hypotheses about the
protocell architecture and the chemical interactions. So these models can be seen as
“virtual laboratories” for protocell research.
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