—FIRE AND LIGHT——

Cosmic Rays at the
Energy Frontier

These particles carry more energy
than any others in the universe. Their origin
is unknown but may be relatively nearby

by James W. Cronin, Thomas K. Gaisser and Simon P. Swordy

oughly once a second, a subatomic particle enters Earth’s atmosphere carrying as
much energy as a well-thrown rock. Somewhere in the universe, that fact implies,
there are forces that can impart to a single proton 100 million times the energy

achievable by the most powerful Earthbound accelerators. Where and how?

Those questions have occupied physicists since cosmic rays were first discovered in 1912
(although the entities in question are now known to be particles, the name “ray” persists).
The interstellar medium contains atomic nuclei of every element in the periodic table, all
moving under the influence of electrical and magnetic fields. Without the screening effect
of Earth’s atmosphere, cosmic rays would pose a significant health threat; indeed, people
living in mountainous regions or making frequent airplane trips pick up a measurable ex-
tra radiation dose.

Perhaps the most remarkable feature of this radiation is that investigators have not yet
found a natural end to the cosmic-ray spectrum. Most well-known sources of charged par-
ticles—such as the sun, with its solar wind—have a characteristic energy limit; they simply
do not produce particles with energies above this limit. In contrast, cosmic rays appear,
albeit in decreasing numbers, at energies as high as astrophysicists can measure. The data
run out at levels around 300 billion times the rest-mass energy of a proton because there is
no detector large enough to sample the very low number of incoming particles predicted.

Nevertheless, evidence of ultrahigh-energy cosmic rays has been seen at intervals of sev-
eral years as particles hitting the atmosphere create myriad secondary particles (which are
easier to detect). On October 15, 1991, for example, a cosmic-ray observatory in the Utah
desert registered a shower of secondary particles from a 50-joule (3 x 10%° electron volts)
cosmic ray. Although the cosmic-ray flux decreases with higher energy, this decline levels
off somewhat above about 10'8 eV, suggesting that the mechanisms responsible for ultra-
high-energy cosmic rays are different from those for rays of more moderate energy.

In 1960 Bernard Peters of the Tata Institute in Bombay suggested that lower-energy
cosmic rays are produced predominantly inside our own galaxy, whereas those of higher
energy come from more distant sources. One reason to think so is that a cosmic-ray proton
carrying more than 10! eV, for example, would not be deflected significantly by any of
the magnetic fields typically generated by a galaxy, so it would travel more or less straight.
If such particles came from inside our galaxy, we might expect to see different numbers
coming from various directions because the galaxy is not arranged symmetrically around
us. Instead the distribution is essentially isotropic, as is that of the lower-energy rays,
whose directions are scattered.
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Cosmic rays—atomic nuclei trav-

* eling at nearly the speed of

light—inhabit a bizarre, relativisti-
cally foreshortehed universe be-
fore smashing into nuclei of atoms
of atmospheric gas high above
Earth. A significant fraction of the
sincoming energy is converted to
matter in the form of subatomic
particles, including muons, which
in turn collide violently with other
atoms in the atmosphere to create
an “air shower.” Gamma rays are
also emitted.
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* Particles in the.nitial ;iaggs ofthe cascade of
collisions a.re'tray:eling so fast that théy exceed
" thespeed of lightin the tenuous upper atmo- , *
sphete (which is negligibly less than the speed
. of light in a vacuum) and so,emit Cerenkov ra-
diation—an optical analogue of a sonicboom.
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Such tenuous inferences reveal how little is known for cer-
tain about the origin of cosmic rays. Astrophysicists have
plausible models for how they might be produced but have no
definitive answers. This state of affairs may be the result of
the almost unimaginable difference between conditions on
Earth and in the regions where cosmic rays are born. The space
between the stars contains only about one atom per cubic
centimeter, a far lower density than the best artificial vacu-
ums we can create. Furthermore, these volumes are filled
with vast electrical and magnetic fields, intimately connected
to a diffuse population of charged particles even less numer-
ous than the neutral atoms.

Supernova Pumps

his environment is far from the peaceful place one might
expect: the low densities allow electrical and magnetic
forces to operate over large distances and timescales in a
manner that would be quickly damped out in material of ter-
restrial densities. Galactic space is therefore filled with an en-
ergetic and turbulent plasma of partially ionized gas in a state
of violent activity. The motion is often hard to observe on
human timescales because astronomical distances are so
large; nevertheless, those same distances allow even moder-
ate forces to achieve impressive results. A particle might zip
through a terrestrial accelerator in a few microseconds, but it
could spend years or even millennia in the accelerator’s cos-
mic counterpart. (The timescales are further complicated by
the strange, relativity-distorted framework that ultrahigh-en-
ergy cosmic rays inhabit. If we could observe such a particle
for 10,000 years, that period would correspond to only a sin-
gle second as far as the particle is concerned.)
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Astronomers have long specu-
lated that the bulk of galactic
cosmic rays—those with energies
below about 10'¢ eV—originate
with supernovae. A compelling
reason for this theory is that the
power required to maintain the
observed supply of cosmic-ray
nuclei in our Milky Way galaxy
is only slightly less than the aver-
age kinetic energy delivered to the galactic medium by the
three supernova explosions that occur every century. There are
few, if any, other sources of this amount of power in our galaxy.

When a massive star collapses, the outer parts of the star
explode at speeds of up to 10,000 kilometers (6,000 miles) per
second and more. A similar amount of energy is released when
a white dwarf star undergoes complete disintegration in a
thermonuclear detonation. In both types
of supernovae the ejected matter expands
at supersonic velocities, driving a strong
shock into the surrounding medium.
Such shocks are expected to accelerate
nuclei from the material they pass
through, turning them into cosmic rays.
Because cosmic rays are charged, they
follow complicated paths through inter-
stellar magnetic fields. As a result, their
directions as observed from Earth yield
no information about the location of
their original source.

By looking at the synchrotron radia-
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AIR-SHOWER DETECTOR

watches for traces of cosmic rays entering
the upper atmosphere. Photodetectors can
track flashes of light caused by particles in-
teracting with air molecules and determine
the energy and probable identity of the in-
coming rays. The Fly's Eye detector (close-up
at far right) is located in Utah.
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COSMIC-RAY ACCELERATOR

is believed to arise from a supernova explosion. Astrophysicists hypothesize
that atomic nuclei crossing the supernova shock front will pick up energy
from the turbulent magnetic fields embedded in the shock. A particle may
be deflected in such a way that it crosses the boundary of the shock hun-
dreds or even thousands of times, picking up more energy on each passage,
until it escapes as a cosmic ray. Most of the particles travel on paths that re-
sultin relatively small accelerations, accounting for the general shape of
the cosmic-ray energy spectrum (far right), which falls off at higher ener-
gies. The "knee,” or bend, in the curve suggests that most of the particles
are accelerated by a mechanism incapable of imparting more than about
10" electron volts. The relative excess of ultrahigh-energy particles indi-
cates an additional source of acceleration whose nature is as yet unknown.

tion sometimes associated with supernova remnants, re-
searchers have found more direct evidence that supernovae
can act as accelerators. Synchrotron radiation is characteris-
tic of high-energy electrons moving in an intense magnetic
field of the kind that might act as a cosmic-ray accelerator,
and the presence of synchrotron x-rays in some supernova
remnants suggests particularly high energies. (In Earthbound
devices, synchrotron emission limits a particle’s energy be-
cause the emission rate increases as a particle goes faster; at
some point, the radiation bleeds energy out of an accelerating
particle as fast as it can be pumped in.) Recently the Japanese
x-ray satellite Asca made images of the shell of Supernova
1006, which exploded 990 years ago. Unlike the radiation
from the interior of the remnant, the x-radiation from the
shell has the features characteristic of synchrotron radiation.
Astrophysicists have deduced that electrons are being acceler-
ated there at up to 10'# eV.

The EGRET detector on the Compton Gamma Ray Obser-
vatory has also been used to study point sources of gamma rays
identified with supernova remnants. The observed intensities
and spectra (up to a billion electron volts) are consistent with an
origin from the decay of particles called neutral pions, which
could be produced by cosmic rays from the exploding star’s
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remnants colliding with nearby interstellar gas. Interestingly,
however, searches made by the ground-based Whipple Ob-
servatory for gamma rays of much higher energies from some
of the same remnants have not seen signals at the levels that
would be expected if the supernovae were accelerating protons
to 10'* eV or more.

A complementary method for testing the association of high-
energy cosmic rays with supernovae involves the elemental
composition of cosmic-ray nuclei. The size of the orbit of a
charged particle in a magnetic field is proportional to its total
momentum per unit charge, so heavier nuclei have greater to-
tal energy for a given orbit size. Any process that limits the
particle acceleration on the basis of orbit size (such as an ac-
celerating region of limited extent) will thus lead to an excess
of heavier nuclei at high energies.

Eventually we would like to be able to go further and look
for elemental signatures of acceleration in specific types of su-
pernovae. For example, the supernova of a white dwarf deto-
nation would accelerate whatever nuclei populate the local in-
terstellar medium. A supernova that followed the collapse of
a massive star, in contrast, would accelerate the surrounding
stellar wind, which is characteristic of the outer layers of the
progenitor star at earlier stages of its evolution. In some cases,
the wind could include an increased fraction of helium, carbon
or even heavier nuclei.

The identity of high-energy cosmic rays is all but lost when
they interact with atoms in Earth’s atmosphere and form a
shower of secondary particles. Hence, to be absolutely sure
of the nuclear composition, measurements must be made be-
fore the cosmic rays reach dense atmosphere. Unfortunately,
to collect 100 cosmic rays of energies near 103 eV, a one-
square-meter detector would have to be in orbit for three
years. Typical exposures at present are more like the equivalent
of one square meter for three days.

Researchers are attacking this problem with some ingenious
experiments. For example, the National Aeronautics and
Space Administration has developed techniques to loft large
payloads (about three metric tons) with high-altitude bal-
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HIGH-ALTITUDE BALLOON
launched near McMurdo Base in Antarctica
carries cosmic-ray detectors above most of

the atmosphere. Winds 40 kilometers above
the ice cap blow in a circle around the Pole,
returning the balloon to the vicinity of its
starting point after about 10 days. Balloon
detectors are not as sensitive as those placed
on board satellites, but they can be made
much larger and lofted much more cheaply.

loons for many days. These experi-
ments cost a tiny fraction of what an
equivalent satellite detector would. The
most successful flights of this type have
taken place in Antarctica, where the up-
per atmosphere winds blow in an almost
constant circle around the South Pole.

A payload launched at McMurdo
Sound on the coast of Antarctica will
travel at a nearly constant radius from the Pole and return
eventually to near the launch site. Some balloons have circled
the continent for 10 days. One of us (Swordy) is collaborating
with Dietrich Miiller and Peter Meyer of the University of
Chicago on a 10-square-meter detector that could measure
heavy cosmic rays of up to 10'° eV on such a flight. There are
efforts to extend the exposure times to roughly 100 days with
similar flights nearer the equator.

GEORGE KELVIN

Across Intergalactic Space

tudying even higher-energy cosmic rays—those produced

by sources as yet unknown—requires large ground-based

detectors, which overcome the problem of low flux by
watching enormous areas for months or years. The informa-
tion, however, must be extracted from cascades of secondary
particles—electrons, muons and gamma rays—initiated high
in the atmosphere by an incoming cosmic-ray nucleus. Such
indirect methods can only suggest general features of the com-
position of a cosmic ray on a statistical basis, rather than
identifying the atomic number of each incoming nucleus.

At ground level, the millions of secondary particles unleashed
by one cosmic ray are spread over a radius of hundreds of me-
ters. Because it is impractical to blanket such a large area with
detectors, the detectors typically sample these air showers at a
few hundred or so discrete locations.

Technical improvements have enabled such devices to collect
increasingly sophisticated data sets, thus refining the conclu-
sions we can draw from each shower. For example, the CASA-
MIA-DICE experiment in Utah, in which two of us (Cronin
and Swordy) are involved, measures the distributions of elec-
trons and muons at ground level. It also detects Cerenkov light
(a type of optical shock wave produced by particles moving
faster than the speed of light in their surrounding medium)
generated by the shower particles at various levels in the at-
mosphere. These data enable us to reconstruct the shape of
the shower more reliably and thus take a better guess at the
energy and identity of the cosmic ray that initiated it.

The third one of us (Gaisser) is working with an array that
measures showers reaching the surface at the South Pole. This
experiment works in conjunction with AMANDA, which de-
tects energetic muons produced in the same showers by ob-
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serving Cerenkov radiation produced deep in the ice cap. The
primary goal of AMANDA is to catch traces of neutrinos
produced in cosmic accelerators, which may generate up-
ward-streaming showers after passing through Earth.

Cosmic rays with energies above 1020 eV strike Earth’s at-
mosphere at a rate of only about one per square kilometer a
century. As a result, studying them requires an air-shower de-
tector of truly gigantic proportions. In addition to the 1991
event in Utah, particles with energies above 102° eV have been
seen by groups elsewhere in the U.S., in Akeno, Japan, in
Haverah Park, UK., and in Yakutsk, Siberia.

Particles of such high energy pose a conundrum. On the one
hand, they are likely to come from outside our galaxy because
no known acceleration mechanism could produce them and
because they approach from all directions even though a
galactic magnetic field is insufficient to bend their path. On the
other hand, their source cannot be more than about 30 million
light-years away, because the particles would otherwise lose
energy by interaction with the universal microwave back-
ground—radiation left over from the birth of the cosmos in
the big bang. In the relativistic universe that the highest-ener-
gy cosmic rays inhabit, even a single radio-frequency photon
packs enough punch to rob a particle of much of its energy.

If the sources of such high-energy particles were distributed
uniformly throughout the cosmos, interaction with the mi-
crowave background would cause a sharp cutoff in the num-
ber of particles with energy above 5 x 10'° eV, but that is not
the case. There are as yet too few events above this nominal
threshold for us to know for certain what is going on, but even
the few we have seen provide us with a unique opportunity
for theorizing. Because these rays are essentially undeflected by
the weak intergalactic magnetic fields, measuring the direc-
tion of travel of a large enough sample should yield unambigu-
ous clues to the locations of their sources.

It is interesting to speculate what the sources might be. Three
recent hypotheses suggest the range of possibilities: galactic
black-hole accretion disks, gamma-ray bursts and topological
defects in the fabric of the universe.

Astrophysicists have predicted that black holes of a billion
solar masses or more, accreting matter in the nuclei of active
galaxies, are needed to drive relativistic jets of matter far into
intergalactic space at speeds approaching that of light; such
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jets have been mapped with radio telescopes. Peter L. Biermann
of the Max Planck Institute for Radioastronomy in Bonn and
his collaborators suggest that the hot spots seen in these radio
lobes are shock fronts that accelerate cosmic rays to ultrahigh
energy. There are some indications that the directions of the
highest-energy cosmic rays to some extent follow the distri-
bution of radio galaxies in the sky.

The speculation about gamma-ray bursts takes off from the
theory that the bursts are created by relativistic explosions,
perhaps resulting from the coalescence of neutron stars. Mario
Vietri of the Astronomical Observatory of Rome and Eli
Waxman of Princeton University independently noted a rough
match between the energy available in such cataclysms and
that needed to supply the observed flux of the highest-energy
cosmic rays. They argue that the ultrahigh-speed shocks driven
by these explosions act as cosmic accelerators.

Rare Giants

particles owe their existence to the decay of monopoles,

trings, domain walls and other topological defects that
might have formed in the early universe. These hypothetical
objects are believed to harbor remnants of an earlier, more
symmetrical phase of the fundamental fields in nature, when
gravity, electromagnetism and the weak and strong nuclear
forces were merged. They can be thought of, in a sense, as
infinitesimal pockets preserving bits of the universe as it ex-
isted in the fractional instants after the big bang.

As these pockets collapse, and the symmetry of the forces
within them breaks, the energy stored in them is released in the
form of supermassive particles that immediately decay into jets
of particles with energies up to 100,000 times greater than
those of the known ultrahigh-energy cosmic rays. In this sce-
nario the ultrahigh-energy cosmic rays we observe are the com-
paratively sluggish products of cosmological particle cascades.

Whatever the source of these cosmic rays, the challenge is to
collect enough of them to search for detailed correlations with
extragalactic objects. The AGASA array in Japan currently has
an effective area of 100 square kilometers and can capture only
a few ultrahigh-energy events a year. The new Fly’s Eye High
Resolution experiment in Utah can see out over a much larger

Perhaps most intriguing is the notion that ultrahigh-energy
s
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area, but only on clear, moonless nights.

For the past few years, Cronin and
Alan A. Watson of the University of
Leeds have spearheaded an initiative to
gather an even larger sample of ultra-
high-energy cosmic rays. This develop-
ment is named the Auger Project, after
Pierre Auger, the French scientist who
first investigated the phenomenon of
correlated showers of particles from
Cosmic rays.

The plan is to provide a detection area
of 6,000 square kilometers with a 100
percent duty cycle that is capable of mea-
suring hundreds of high-energy events a
year. A detector field would consist of
many stations on a 1.5-kilometer grid; a
single event might trigger dozens of sta-
tions. To cover the entire sky, two such
detectors are planned, one each for the
Northern and Southern hemispheres.

An Auger Project design workshop held at the Fermi Na-
tional Accelerator Laboratory in 1995 has shown how modern
off-the-shelf technology such as solar cells, cellular telephones
and Global Positioning System receivers can make such a sys-
tem far easier to construct. A detector the size of Rhode Island
could be built for about $50 million.

Plans exist to cover even larger areas. Detectors in space
could view millions of square kilometers of the atmosphere
from above, looking for flashes of light signaling the passage
of ultrahigh-energy particles. This idea, which goes by the
name of OWL (Orbiting Wide-angle Light collectors) in the
U.S. and by Airwatch in Europe, was first suggested by John
Linsley of the University of New Mexico. To succeed, the
project requires developing new technology for large, sensitive,
finely segmented optics in space to provide the resolution
needed. This development is under way by the U.S. National
Aeronautics and Space Administration and in Italy.

As researchers confront the problem of building and operat-
ing such gigantic detector networks, the fundamental question
remains: Can nature produce even more energetic particles
than those we have seen? Could there be still higher-energy
cosmic rays, or are we already beginning to detect the highest-
energy particles our universe can create? i)
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