
28 SCIENTIFIC AMERICAN PRESENTS THE BIG, THE SMALL

Building
GARGANTUAN

Software

I
Everything about Windows 2000 is huge, starting with 

its 29 million lines of code. To tame this monster, 
Microsoft had to develop a new set of strategies, all while 

getting more than 4,000 computer geeks to work as a team

magine a stack of paper the height of a 19-
story building. That’s what a printout of
Microsoft’s Windows 2000 would look like,
if anyone cared to print it. With 29 million
lines of code written mainly in the C++
computer language, the new operating sys-
tem (OS) is by far the largest commercial
software product ever built. In fact, the de-
velopment of Windows 2000, and its im-
plementation in a wide range of computer
systems and locations, is arguably the most
extreme feat of software engineering ever
undertaken.

To understand how software could grow
to such immensity, think of it not as a
monolithic object but as an assemblage of
snap-together blocks. There’s the core OS,
large enough by itself but just one part of
the whole that is Windows 2000. Also bun-
dled in are such components as an Internet
browser, transaction processing (tools for up-
dating information almost instantaneously
as new data are received) and a multitude of
drivers, which link peripheral devices such
as printers to the OS. The drivers alone ac-
count for more than eight million lines of

code, with just one of them comprising in
excess of a million lines by itself.

So it is conceptually not difficult to com-
prehend how an operating system with a
plethora of features could grow to become a
digital behemoth. Less obvious, though, is
why Microsoft chose to take on this daunt-
ing venture of extreme software engineer-
ing and, after deciding to do so, how the
company was able to build the product.

Microsoft officials assert that
their reason for taking an all-
encompassing approach to
the design of Windows 2000

is simple: customers asked for it. Company
management was well aware that software
complexity and bugs grow roughly geo-
metrically with size, but major customers,
especially at Fortune 500 corporations, had
stated that they needed certain capabilities
included in the operating system. The un-
derlying concept is controversial—that it is
more efficient for Microsoft to integrate a
comprehensive set of subsystems all at
once, rather than for each organization on

by Eva Freeman

Copyright 1999 Scientific American, Inc.



its own to integrate the particular func-
tions it requires.

It’s a trade-off: the benefit is that the
OS will perform a breathtaking number
of functions; the cost is that the OS be-
comes very large and potentially slow,
unstable and buggy (what critics refer to
as “bloatware”). “We knew from the start
how hard it would be to build such a
functionally rich OS,” remembers Brian
Valentine, vice president of the Windows
OS division at Microsoft. “But our cus-
tomers were demanding this level of com-
plexity. What we created with Windows
2000 was not so much a new OS as a
new view of the role of the OS.”

Traditionally, operating systems have
handled only a limited set of tasks, for
instance, the allocation of resources such
as computer memory, depending on
whether the OS was designed for per-
sonal computers, network management
or another specialized application. Win-
dows 2000 takes an alternative approach;
it is a single OS that spans most uses,
thereby providing uniform security and
system services to myriad computers,
from individual laptops to clustered serv-
ers in corporate data centers. The theo-
retical advantage is that users will need to
learn just one program—albeit a mam-
moth one—for a wide variety of systems
and applications.

Along with a novel way of thinking
about operating systems, Microsoft had
to invent a different methodology for
developing software. Specifically, simula-
tion tools for modeling how the software
would work were of limited usefulness.
(Unlike other massive engineering proj-
ects, the Microsoft venture found scale
models essentially worthless.) More im-
portant, at the level of size and complexi-
ty of Windows 2000, writing code was no
longer the central activity. Indeed, testing
and debugging have accounted for be-
tween 90 and 95 percent of the work.

THE BIG, THE SMALL EXTREME ENGINEERING 29

INSOMNIACS’ BEDTIME READING:
If the code for Windows 2000, the larg-
est commercial program ever written,
were printed, the resulting stack of
paper would reach past the Statue of
Liberty’s chin. In comparison, the
software for a typical major defense
system would be 13 feet shorter.

D
U

SA
N

 P
ET

RI
C

IC
;D

AT
A

 F
R

O
M

 A
R

TE
M

IS
 M

A
N

A
G

EM
EN

T 
SY

ST
EM

S

Copyright 1999 Scientific American, Inc.



The greatest challenge in building
Windows 2000, however, was not tech-
nical. Because every team member pos-
sessed so much specialized knowledge, a
high level of staff turnover would have
devastated the effort, which started three
years ago. “My main responsibility is to
make sure that the people who joined
the project at the start stay with it to the
conclusion,” Valentine says.

As the individual responsible for man-
aging the entire Windows 2000 team,
Valentine has grown to appreciate how
crucial the human side is for developing
megasoftware: “The difference between
extreme engineering in software and oth-
er types of extreme engineering is that
[with software] the architects are also the
builders. Virtually everyone working on
this project is highly trained, and no one
is expendable or easily replaced. There
are no unskilled laborers here, and the
most important thing I do is to try to
keep everyone on board.”

One vital means of keeping the Win-
dows 2000 staff together was to create a
sense of family—not an easy job on a
project of this size. Consider these num-
bers: Valentine is ultimately responsible
for 4,200 people, including 2,000 Micro-
soft staff, 800 employees of Microsoft’s
partners (Intel, for instance) working
full-time on the company’s Redmond,
Wash., campus and 1,400 contract per-

sonnel. Another 1,500 Microsoft and
contract staff are working on Windows
2000 in other parts of the U.S. and
around the world, notably in Israel and
India, using the design and test tools on
Microsoft’s global network to coordinate
their efforts with the main campus.

So every Friday afternoon, the entire
Windows 2000 team comes together in
the company cafeteria, the only room on
the Redmond campus that can hold sev-
eral thousand people. Part weekly report,
part pep rally, these meetings are used by

Valentine as much to maintain cama-
raderie as to keep the staff well informed.

Sensing that the anonymity involved
in such a massive endeavor was becom-
ing an issue, Valentine brought thou-
sands of markers to one Friday meeting.
“I wish each of you could put your sig-
nature on the OS, but as the next best
thing, let’s put our names on the cafete-
ria,” he told them, laughing. By the end
of the meeting, the walls were covered
with thousands of signatures.

For holidays, Valentine dresses appro-
priately, as on St. Patrick’s Day, when he
gave the weekly report while wearing 
a leprechaun costume. On April Fools’
Day, the floors were covered with thou-
sands of Superballs, those toy rubber
balls with superhigh bounces. “Brian
will do whatever it takes to keep the team
together,” says Iain McDonald, the Win-
dows 2000 project manager. “I don’t think
anything embarrasses him, so long as it
works.” And, of course, each major re-
lease of the fledgling software is always
an excuse for a huge party.

The week may end on a playful
note, but the rest of the time
is pure business. Because of
the critical importance of test-

ing and debugging, a group of 50 to 60
managers meets at nine in the morning
every weekday (as well as on Saturdays

and Sundays when a release date ap-
proaches) to go over the daily reports of
errors found in the Windows 2000 code.
These bugs arrive from a variety of sourc-
es: independent software vendors from
the outside who are developing applica-
tion software that will run on Windows;
select customers at so-called beta sites,
who test the software under the actual
conditions of usage; Microsoft’s internal
tests, which involve a large portion of
the computer systems at the company;
and overseas test sites.

During this “war room” conference,
which McDonald usually chairs, each
bug’s impact is carefully assessed. How
much damage will it cause? Will the fix
introduce a new problem? Who should
take care of it?

The bug is then handed over to the
test department, headed by Sanjay Jejur-
ikar, who assigns it to one of 25 triage
teams. They log the severity of the bug
into a database, then make the necessary
fix. After that is done, the revised code is
sent to the Build Lab, the center of Win-
dows 2000 testing.

Working in the Build Lab
has got to be a hardware
geek’s idea of heaven. To
ensure that Windows 2000

will run successfully on every possible
hardware configuration, the multiple
rooms of the Build Lab contain at least
one of every type of system, storage de-
vice, modem card, Internet card and oth-
er electronic accoutrement. For video
cards alone, as just one example, the
computers in the Build Lab host almost
1,200 designs and configurations.

To enable the test group to release an
updated version of Windows 2000 every
day, Microsoft enforces a strict schedule
for submitting revisions to the software.
The day’s changes—about 250 is a typical
number—are checked in between 1 and

4 P.M. After that deadline, the Build Lab
begins to enter the changes, and the new
release, referred to as the “build,” is typi-
cally ready between 6 and 8 P.M. This
latest version of Windows 2000 is then
available for download over the compa-
ny’s internal network. Additionally, by
9 P.M. the Build Lab has pressed and dis-
tributed about 2,000 CDs of the soft-
ware. Before 7:00 the next morning, the
build verification test, which evaluates
the stability of the previous day’s build,
is under way.

30 SCIENTIFIC AMERICAN PRESENTS THE BIG, THE SMALL

IN A TYPICAL DAY, WORKERS
EXCHANGE ABOUT 90,000 E-MAIL
MESSAGES ON THE PROJECT.

Copyright 1999 Scientific American, Inc.



About 3,000 individuals at Microsoft
use the daily build, locally known as
“dog food,” as the operating system of
their personal computers. Why dog food?
Edmund H. Muth, group product man-
ager for the Windows OS division, ex-
plains, “Before dog food manufacturers
try their latest product in a test market,
what do they do? They bring in their
own dogs. Their own dogs have usually
developed pretty picky habits, and if
they don’t like the dog food, the manu-
facturer doesn’t test it on someone else’s
dog. It’s the same thing here. We don’t
send the OS to beta sites until our inter-
nal users have said they like it.”

Getting to that point has not been
easy. The daily test cycle ends around
3:30 P.M., at which time all comments
and criticisms are collected for the next
day’s war room. One benchmark of what
extreme testing entails: in a typical day,
workers exchange about 90,000 e-mail
messages on the project.

Additional tests to stress the software
in lifelike conditions are conducted in
one- and two-week cycles. Every six
weeks those chunks of code that have

been thoroughly tested are evaluated one
last time and then locked. Valentine ex-
plains the underlying theory: “We found
that we can only screw up so much in six
weeks. Longer than that, and it gets too
hard to figure out what’s going on.” The
code, however, is never cast in stone. If a
subsequent bug is discovered, Microsoft
will fix it, even if that means running ad-
ditional extensive tests to ensure that the
correction will not trigger problems in
other parts of the program that have al-
ready been frozen.

But not every bug is fixed. “In
a software system of this size,
you always have to consider
the risk that fixing a bug could

impact the system somewhere else,” Je-
jurikar, the head of testing, says. Accord-
ing to him, Microsoft always fixes four
broad types of bugs: those that cause sys-
tem crashes, introduce security holes,
create Y2K problems or lead to users be-
ing denied some type of service. Other
kinds of glitches that the company may
decide are not worth eradicating include
ones that will surface only under unusu-

al conditions, affecting just a small num-
ber of customers. Microsoft documents
these types of errors and saves possible
fixes so that they can be provided to users
as needed.

In a perfect world—and with projects
to develop simpler software—the idea of
intentionally leaving in bugs might seem
unthinkable, but Windows 2000 brings
home the reality of extreme software en-
gineering. A system of this magnitude
cannot be flawless; it can only be tested
and documented as thoroughly as time
constraints allow.

That said, Microsoft is in the final
stage of preparing Windows 2000 for
prime time. This last and most massive
part of testing is occurring not within
Microsoft but at beta sites of the compa-
ny’s key customers and partners, includ-
ing thousands of firms that manufacture
the accompanying computer hardware
and complementary software applica-
tions. All told, the final test version of
Windows 2000 is being poked and prod-
ded in 23 languages and 130 distinct di-
alects at 300,000 corporate sites located
in more than 50 countries.

At press time, Windows 2000 was
scheduled for official release in the fourth
quarter of 1999, nearly a year late (not
uncommon in large software projects).
Many financial analysts who follow Mi-
crosoft believe the company’s future will
depend on the success of the product. If
that turns out to be true, every bug fixed
will have been well worth the effort.

THE BIG, THE SMALL EXTREME ENGINEERING 31

BALANCING WORK WITH PLAY:
Keeping morale high is a goal of the
weekly staff meetings, attended by
thousands. Realizing that staff turn-
over could derail Microsoft’s efforts
to bring Windows 2000 to market,
one company vice president says,
“The most important thing I do is to
try to keep everyone on board.”

?

About the Author
EVA FREEMAN is a freelance
high-technology writer based in
Bellevue, Wash. She prefers to use
the Macintosh operating system.

RO
B

B
IE

 M
C

C
LA

R
A

N
 S

A
BA

SA

Copyright 1999 Scientific American, Inc.


