
1 September 1999 Delphi Informant

September 1999, Volume 5, Number 9

Cover Art By: Darryl Dennis

ON THE COVER
6 Outlook from Delphi — Bill Todd
Mr Todd shows us how to use Outlook as an Automation server to
extract contact information, update a central database, add new con-
tacts derived from other sources, create new folders, add items of any
type, and more — all from the power and flexibility of Delphi as the
Automation client.

FEATURES
10 Dynamic Delphi
Data at a Distance — Mike Riley
Mr Riley demonstrates Microsoft Remote Data Services (RDS), which
enable developers to remotely access server-based ODBC and OLE DB
data sources without an ODBC or BDE data connection.

15 Delphi at Work
Making a Hash of It — Gregory H. Deatz
Hash tables are useful for dealing with key/value pairs that require fre-
quent and fast access. Mr Deatz presents an abstract class for designing
just about any kind of hash table a Delphi developer could desire.

19 In Development
Low-level Delphi — Andre van der Merwe
Mr van der Merwe provides a step-by-step introduction to the Delphi 4
CPU window, an invaluable tool for getting “under the hood” to see the
assembler code that the Delphi compiler generates.

23 OP Tech
MDI and ActiveX — Dan Miser
Like oil and water, MDI and ActiveX just don’t mix. Or do they? Using
smoke, mirrors, and Delphi’s ActiveForm, Mr Miser demonstrates 10
simple steps for getting them to cooperate.

25 Columns & Rows
Inside Oracle Queries — Keith Wood
Mr Wood shares a utility program for viewing the plan the Oracle query
engine will follow when executing a specified query. It also demon-
strates the use of tree views and their limitations in Delphi.

REVIEWS
29 DBISAM 1.12

Product Review by Wes Peterson

DEPARTMENTS
2 Delphi Tools
5 Delphi News
33 File | New by Alan C. Moore, Ph.D.

2 September 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Developer’s Guide to Delphi
Troubleshooting

Clay Shannon
Wordware Publishing, Inc.

IISSBBNN:: 1-55622-647-0
PPrriiccee:: US$49.99

(495 pages, CD-ROM)
http://www.wordware.com
D C AL CODA Releases EditorPro 1.0

D C AL CODA released

EditorPro 1.0, a full-featured,
multi-tabbed text editor with
syntax highlighting and
advanced features for 10 lan-
guages and multiple file types.

EditorPro 1.0 centralizes your
text editing needs, from simple
text files to several program-
ming languages: Object Pascal
(Delphi), ANSI C (C/C++),
HTML, INI files, Java,
ObjectPal (Paradox 9), Perl,
SQL, and Visual Basic.
Benefits include fully cus-
tomizable Editor Options,
Color Syntax Highlighting,
Code Templates, Key
Assignments (keyboard short-
cuts), unlimited Undo/Redo,
Grouped Undo/Redo, Undo
After Save, Bookmarks, Block
Indent/Unindent, Print
Preview, Active Spell, extensive
Find and Replace with history,
Regular Expressions, and Scope
and direction.

Spelling dictionaries (18 total)
are included for Delphi, Paradox,
American English, British
English, Danish, Dutch, French,
German, Italian, Latin, Math,
Medical, Norwegian, Polish,
Spanish, and Swedish.
Additionally, the 30,000-word
Roget’s Thesaurus and 160,000-
word Definitions Dictionary pro-
vide instant access to synonyms
and antonyms, as well as the
meaning and context of words.

EditorPro Suite adds a System
Tray-based application, Tray Suite,
which offers instant access to on-
the-fly spell checking, Definitions
Dictionary, Roget’s Thesaurus, and
EditorPro. Tray Suite can analyze
any word, paragraph, or docu-
ment from any application, text
editor, HTML editor, or database.

D C AL CODA
Price: EditorPro, US$29.95 for a single-user
license; EditorPro Suite, US$49.95 for a sin-
gle user license; network and site licenses are
available.
Phone: (800) 656-5443
Web Site: http://www.dcalcoda.com
Inner Media Ships DynaZIP 4.0 and Active Delivery 2.0

Inner Media, Inc. began ship-

ping the next generation of zip-
compatible data compression
toolkits/components. Included in
this new release are DynaZIP-
Complete 4.0, DynaZIP-AX 4.0,
and Active Delivery 2.0.

DynaZIP-AX 4.0 and DynaZIP-
Complete 4.0 provide zip-com-
patible data compression with a
feature set compatible with a
range of development tools and
languages. New features include
full multi-threaded operations,
memory-to-memory operations,
and more. They both lend them-
selves well to automated environ-
ments, such as Web servers, back-
up systems, etc., and are fully
compatible with ASP.

DynaZIP-Complete 4.0 pro-
vides DLL, VBX, OCX, ActiveX,
VCL, and DZ-Easy interfaces,
supporting 16- and 32-bit appli-
cations. DynaZIP-AX 4.0 pro-
vides a pair of ActiveX compo-
nents, one each for Zip and
Unzip, and is designed for use
with Delphi, VB, Access, Visual
FoxPro, Visual C++, and any
other 32-bit programming envi-
ronment that supports ActiveX
components. The components
may be redistributed royalty-free,
and include full documentation
and a collection of sample source
code.

Active Delivery 2.0, a self-
extracting zip toolkit, is well-
suited for use on Web sites
where unattended delivery of
custom data is required. As with
prior releases, Active Delivery
gives the programmer a path to
creating self-extracting zip files
that have many of the features of
setup/install programs. The main
difference is that these “pack-
ages” are created under program
control, and are therefore
extremely customizable, and may
be created on-demand. In addi-
tion, Active Delivery 2.0 is fully
multi-threaded.

Inner Media, Inc.
Price: DynaZIP-Complete 4.0, US$299;
DynaZIP-AX 4.0, US$149; and Active
Delivery 2.0, US$249.
Phone: (800) 962-2949
Web Site: http://www.innermedia.com

http://www.wordware.com
http://www.dcalcoda.com
http://www.innermedia.com

3 September 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
DT Software Releases dtSearch 5.2

DT Software, Inc. introduced

version 5.2 of dtSearch, dtSearch
Web, and dtSearch Text Retrieval
Engine. The new releases offer
developers and large enterprises
more flexible handling of data
sources across PCs, networks,
intranets, and the Internet.

With over two dozen text search
options, dtSearch instantly
searches through gigabytes of
text. It includes built-in file and
image viewers for popular file
types, and automatically recog-
nizes, searches, and displays doc-
uments with search hits high-
lighted. dtSearch 5.2 features
more seamless support for hetero-
geneous language environments
for international organizations
and other mixed-language users.

dtSearch Web 5.2 adds an easi-
er, frames-based user interface
for navigating search results and
retrieved documents. It also
adds support for highlighting
hits in PDF files through the
browser interface, similar to the
way dtSearch Web highlighted
hits in HTML documents.
Additionally, it includes a simple
ASP interface that makes it easy
to add customized search fea-
tures to a Web site.

The dtSearch Text Retrieval
Engine allows developers to
embed dtSearch text retrieval
technology in commercially dis-
tributed or in-house products
for the PC, LAN, Internet, or an
intranet. dtSearch Text Retrieval
Engine 5.2 has more sample
source code and enhanced
Delphi, C++, Visual C++, and
Visual Basic APIs, including
ActiveX interfaces to data
sources using SQL, ADO,
MAPI, and more.

Search features in dtSearch
products include natural lan-
guage with relevancy-ranking by
hit density and rarity; fuzzy,
adjustable from 1 to 10 at the
time of a search for OCR and
typographical errors; thesaurus,
including synonym or concept
expansion based on a compre-
hensive built-in and/or user-
added thesaurus; phonic; prox-
imity; phrase; wildcard (two
types); stemming; numeric
range; database field; variable
term weighting; filtering by file-
name, date, and size; query
expand, narrow, and exclude;
alphabet customization for non-
English character sets; and a
scrolling list of indexed words.

DT Software, Inc.
Price: dtSearch, from US$199; dtSearch
Web and dtSearch Text Retrieval Engine,
from US$999.
Phone: (800) IT-FINDS or
(703) 413-3670
Web Site: http://www.dtsearch.com
Dart Announces New PowerTCP Tools

PowerTCP, Dart

Communications’ Internet tool-
kit for building TCP/IP applica-
tions, has been unbundled and
re-engineered as the new
PowerTCP Tool product line.
Individually packaged, royalty-
free ActiveX components, the all
new PowerTCP Tools include the
FTP Tool, Winsock Tool, Telnet
Tool, Emulation Tool, and Server
Tool. At press time, Dart’s Web
Tool was scheduled for release in
late May 1999, and the Mail Tool
and SNMP Tool were scheduled
for release later in the summer.

PowerTCP Tools allow soft-
ware developers to write
Internet applications in a frac-
tion of the time it would take to
construct networking code from
scratch. 32-bit ATL controls for
TCP, FTP, POP3, SMTP, RAS,
Telnet, SNMP, VT320, UDP,
Server, and HTTP/S eliminate
the need for researching, devel-
oping, and testing at the socket
level. Included samples for
Delphi, C++Builder, Visual
Basic, Visual C++, and
PowerBuilder allow developers
to write high-performance
Internet applications right out
of the box.

Additional benefits of new
PowerTCP Tools include a mod-
ular, multi-tier architecture for
flexibility in application design,
Winsock 2 compatibility, and
the addition of blocking behav-
ior for scripting applications.

Dart Communications
Price: From US$99 (PowerTCP FTP Tool).
Phone: (315) 431-1024
Web Site: http://www.dart.com
ABACO Releases DbCAD dev 1.5

ABACO srl Mantova released

DbCAD dev 1.5, a component
library for GIS, MAPPING,
GPS, and CAD applications,
using Delphi, C++, VB, and
other development tools.

DbCAD dev allows your
application to manage an inte-
grated graphic window (multi-
instance available) with zoom,
pan, entity pick, and dynamic
overview commands with
event control, by using the
OCX component. DbCAD
dev is available for most stan-
dard 2D vector and raster for-
mats, including AutoCAD
DWG (R14 or lower), DXF
(R14 or lower), ESRI
Shapefile, WMF, TIF, BMP,
RLE, and RLC. It’s also possi-
ble to load a custom installable
driver to use the unsupported
raster and vector formats with-
in the DbCAD dev graphic
window.

With DbCAD dev, you can
overlay images by using trans-
parency effects, and partially
load drawings and images.
Import, export, create, select,
and edit all the 2D vector enti-
ties, such as lines, polylines,
polygons, arcs, blocks, text, etc.,
including their properties. Filled
polygons are available with vari-
ous hatch styles (also user-
defined) and transparency
effects. Display and overlay real-
time vector entity animation
(GPS). TTFonts are supported.

In addition to graphic
manipulation functions,
DbCAD dev provides intelli-
gent functions to link your
database records with vector
entities, and allows spatial
analysis and query.

ABACO srl Mantova
Price: From US$210 for Project
OCX/ActiveX.
Phone: +39 (0)376-222181
Web Site: http://www.dbcad.com

http://www.dtsearch.com
http://www.dart.com
http://www.dbcad.com

4 September 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
Objective Announces Version 4.2 of ABC for Delphi

Objective Software Technology

Pty Ltd. announced the release of
ABC for Delphi version 4.2, a
new version of its visual compo-
nent library.

New components include a suite
of custom menus with animation,
bitmaps, and sound support,
together with dockable toolbar
menus and a customizable system
menu. The new form control
makes creating bold splash screens
and custom applications easier.
The new version also includes a
new animation dialog box for
adding custom AVI progress pop-
ups, and an enhanced Outlook
style button list control.

ABC for Delphi 4.2 contains
200 components and adds to
ABC’s array of time-saving data
navigation, presentation, and
exception-handling components.
It ships on CD-ROM with
100MB of source code, sample
programs, and run-time images
for all versions of Delphi and
C++Builder.

Objective Software
Technology Pty Ltd.
Price: From US$149
Phone: +61 2 9955 3397
Web Site: http://www.obsof.com
Eytcheson Software Releases Multi-Remote Registry Change 3.0

Eytcheson Software released

Multi-Remote Registry Change
3.0, a tool for remotely manag-
ing the registry on multiple
Windows NT computers.
With support for adding,

changing, and deleting every
key and value type, as well as
security and auditing, Multi-
Remote Registry Change 3.0
allows you to remotely manage
all areas of the registry. Several
difficult management tasks,
such as remotely changing user
names and passwords for ser-
vices, and modifying user rights
on remote machines, are also
supported. Multi-Remote
Registry Change 3.0 lets you
avoid buying and learning
numerous command-line utili-
ties and writing complicated,
error-prone batch files.
New ease-of-use enhance-
ments, including drag-and-drop
copying of keys and values from
machine to machine, and drag-
and-drop of information
between operations, let you con-
centrate on the management
task instead of on the spelling of
the key or value. Multi-Remote
Registry Change 3.0 provides
the ability to change tens of
thousands of keys per minute.

Eytcheson Software
Price: US$35 per administrator, plus US$2
per managed computer (discounts available
for volume purchases).
Phone: (316) 332-4604
Web Site: http://www.eytcheson.com
Res-cue Offers Res-cue Mate 1.04

Res-cue (Resourceful

Components for User Ease)
announced Res-cue Mate 1.04,
a package consisting of 26 com-
ponents for Delphi.

Res-cue Mate components pro-
vide Focus technology, a program-
ming technique that gives the
developer the ability to show visu-
al cues when a control receives
focus. With Res-cue Mate, devel-
opers need not rely on Windows’
selected highlighted text to show
an edit control has focus.

Res-cue Mate 1.04 allows
developers to customize proper-
ties for the focus rectangle, cus-
tomize TLabels associated to a
control, use Focus technology
on existing controls (any descen-
dant of TWinControl can have
this ability by using the
TrscMasterFocus component),
and have custom visual cues.

Edit Button technology gives the
developer the ability to add multi-
ple buttons in an edit control.
This feature allows multiple but-
tons within the frame of the edit
control, and enables developers to
add and delete buttons at design
time. All properties and events of
the buttons added to an edit con-
trol can be edited at design time.
Also, each button contains a
HotKey property to assign key-
strokes. Finally, each button con-
tains a Position property, used to
set the order in which the button
appears in the edit control.

Res-cue
Price: Standard (Delphi 3 and 4), US$75;
Professional (Delphi 3 and 4), US$125;
Professional Site License, US$275.
E-Mail: sales@res-cue.com
Web Site: http://www.res-cue.com

http://www.obsof.com
http://www.eytcheson.com
http://www.res-cue.com

5 September 1999 Delphi Informant

News
L I N E

Sep tember 1999
Inprise and Microsoft Confirm Commitment of Inprise Tools for Windows

Scotts Valley, CA — Microsoft

Corp. and Inprise Corp.
announced the completion of a
set of strategic technology and
licensing agreements that will be
the foundation for a long-term
alliance between the two compa-
nies. The announcement
includes a US$25-million pur-
chase by Microsoft of shares of
Inprise preferred stock.

Key components of the arrange-
ment include Inprise’s commit-
ment to support the Windows
2000 operating system, including
the COM+ and the Windows
DNA architecture; to license the
latest version of the MFC; and to
license the latest version of the
Windows platform SDK.

In turn, Microsoft made a
long-term commitment to pro-
vide Inprise with technologies
related to the Windows platform
and Internet technologies.
Microsoft also paid Inprise
US$100 million for the rights to
use Inprise-patented technology
in Microsoft products, and to
settle a number of long-standing
patent and technology licensing
issues. The total value of the
investment and payment to
Inprise is US$125 million.
Inprise Stockholders Elect New Board Member

Scotts Valley, CA —

Stockholders of Inprise Corp.
elected C. Robert Coates, presi-
dent and chief executive officer
of Management Insights, Inc., a
tax consulting firm, as a new
member of the company’s board
of directors. Stockholders also
re-elected Stephen J. Lewis,
chief executive officer of All
Bases Covered, an information
technology consulting company,
to the board. The votes to elect
both men to three-year terms
occurred at the company’s annu-
al stockholders’ meeting.

During the annual meeting,
Dale Fuller, who was named
interim president and CEO in
April, updated stockholders on
the company’s progress in for-
mulating its long-term strategy.
Fuller announced that the com-
pany’s divisionalization has been
put on hold as the company
reviews its options. John
Floisand, former president of
the Borland division, has been
named senior vice president of
worldwide sales, a post he held
at Inprise from 1996 through
1998. Fuller also announced
that JoAnne M. Butler has been
appointed vice president, gener-
al counsel, and secretary. Butler
served as associate corporate
counsel from 1993 to 1997,
when she was promoted to cor-
porate counsel. She replaces
Hobart McK. Birmingham, who
is currently serving as interim
chief administrative officer.

Also at the annual meeting,
stockholders approved an amend-
ment to the 1997 Stock Option
Plan to increase the number of
common shares reserved for
issuance by 1,500,000 shares;
approved the 1999 Employee
Stock Option Purchase Plan,
including the reservation of
800,000 shares for the plan; and
ratified the appointment of
PricewaterhouseCoopers as
independent auditors for fiscal
year 1999.
Shaman Offers Complementary Solution to
Microsoft SMS 2.0 Y2K Remediation
San Francisco, CA — Shaman
Corp. announced the interoper-
ability of Enterprise Shaman with
Microsoft Systems Management
Server (SMS) 2.0 to provide cor-
porations with a comprehensive
Y2K remediation solution.

Microsoft announced last week
that they will help enterprises
achieve Y2K compliance by offer-
ing a free 120-day trial of SMS
2.0. In line with Microsoft,
Shaman announced features that
enable SMS’ electronic software
distribution system to deliver Y2K
compliance data, bug fixes, and
updates directly from Shaman’s
comprehensive Knowledge-base.

The Shaman Knowledge-base
contains Y2K information for
over 200 software publishers,
and is continually updated by
Shaman’s SRM analysts.

Enterprise Shaman supplies
the IT manager with a complete
software and hardware invento-
ry of their network, informs
them of the Y2K compliance
status for their software, and
delivers Y2K updates as they are
released by software vendors.
Enterprise Shaman also includes
a testing feature that analyzes
the BIOS on every desktop and
delivers comprehensive compli-
ance reports. For more informa-
tion on Shaman, visit
http://www.shamancorp.com.
Sun Selects VisiBroker Object Request Broker for CORBA Support

Atlanta, GA — Sun

Microsystems selected Inprise’s
VisiBroker as the object request
broker for its Solstice Enterprise
Manager software. The integra-
tion of Common Object
Request Broker Architecture and
Solstice Enterprise Manager
allows organizations to manage
additional applications and
devices on their network.

VisiBroker provides out-of-the-
box tools for building distributed
object computing applications
that are transparent and platform
independent. Linking VisiBroker
with Solstice Enterprise Manager
will enable customers to tie
together disparate systems to a
common management platform.

Solstice Enterprise Manager is
focused on delivering scalable,
reliable, and powerful network
management primarily to
telecommunication organiza-
tions and network service
providers. Solstice Enterprise
Manager is a key component of
Sun’s Service-Driven Network
strategy. It can be extended to
address specific customer
requirements for the delivery
and management of new and
timely services. Out-of-the-box
consolidated management sup-
ports protocols including
SNMP, CMIP, RPC, and Java
agents to enable a consistent
approach to management poli-
cies and procedures. For more
information, visit
http://sun.com/sem.

http://www.shamancorp.com
http://sun.com/sem

Application

NameSpace

MAPIFo

6 September 1999 Delphi Informant

On the Cover
Delphi / Office 97 / Outlook 98 / COM

By Bill Todd

Figure 1: The Outlook obj
Outlook from Delphi
Automating Microsoft Outlook

Microsoft Office 97 appears to be five well-integrated applications. It is, in fact,
much more. Office 97 was created using Microsoft’s Component Object Model

(COM). The Office applications are composed of a series of COM servers you can access
from your Delphi applications using Automation (formerly known as OLE Automation).
Beginning with Outlook 98, this article series will explore the object model of each of
the Office applications — and how you can use them from Delphi.
lders Collection

MAPIFolder

Folders Collection

Folder

The Outlook object model consists of objects
and collections of objects (see Figure 1). The
top-level object in Outlook 98 is the
Application object. The Application object is
the root of the object tree and provides access
to all the other Outlook objects. The
Application object is unique in that it’s the only
object you can gain access to by calling
CreateOleObject from a Delphi (or any other)
application. Next comes the NameSpace object,
which provides access to a data source. The only
available data source in Outlook 98 is the
MAPI message store.

The MAPIFolders collection is just that — a
collection of MAPI folders. You can think of
collections as arrays of objects, somewhat like a
Delphi TList. However, collection objects can

be referenced by name or number. The
MAPIFolder object in Figure 1 represents
one of the folders in the MAPIFolders

collection. Each
MAPIFolder contains a
Folders collection, and
each of these contains an

Items collec-
tion that
contains the
items appro-
Items Collection

Item
ect model.
priate to that folder. For example, the Contacts
folder contains contact items.

Figure 2 shows the main form of a Delphi project
that displays the MAPIFolders collection, the
Folders collection of the MAPI Personal folder, and
the Items in the Contacts folder. Listing One (on
page 8) displays the code from the Open Outlook

button’s OnClick event handler.

The code in Listing One begins by declaring four
Variant variables for use as references to various
Outlook objects. The call to CreateOleObject loads
the Outlook server and returns a reference to the
Application object. The parameter passed to
CreateOleObject, Outlook.Application, is the class
name Outlook registers itself as when it’s installed.
Using the Application object, you can get a refer-
ence to any other Outlook object.

Calling the Application object’s GetNameSpace
method returns a reference to the NameSpace
passed as a parameter. Using the MAPI
NameSpace reference variable, Mapi, the code
loops through the MAPIFolders collection and
adds the name of each folder to the MapiList
listbox. As with all objects in object-oriented
programming, Outlook objects have properties,
methods, and events. The Count property of
the Folders collection is used to limit the num-
ber of times the for loop executes. All collec-
tions have a Count property to provide the
number of objects in the collection. Each
Folder in the MAPIFolders collection also has a
Name property.

: The MAPIFolders collection displayed in a Delphi form.

On the Cover
As you can see in Figure 2, the MAPIFolders collection
contains two folders, Microsoft Mail Shared Folders and
Personal Folders. The following statement gets a refer-
ence to the Personal Folders collection from the
MAPIFolders collection. While the for loop that dis-
played the names of the MAPI Folders accessed the
MAPIFolders collection by number, the statement:

Personal := Mapi.Folders('Personal Folders');

indexes the collection by name. The next for loop uses
the reference to the Personal Folder to display the names
of all the folders in its Folders collection in the second
listbox in Figure 2. The code then gets a reference to the
Contacts folder and uses it to loop through the Contacts
folder’s Items collection. One of the properties of a
Contact item is FullName; this property is added to the
third listbox to display the names of the contacts.

Clearly, the secret to working with Outlook 98 from your Delphi
applications is understanding the Outlook object hierarchy and
the properties, methods, and events of each object. Outlook 97
includes a Help file, VBAOUTL.HLP, that contains this infor-
mation; however, I have been unable to find it on the Outlook
98 CD. Fortunately, very little has changed in Outlook 98.
(Outlook 2000 is a different story, and will be the topic of a
future article.)

Working with Contacts
Listing Two (beginning on page 8) shows the OnClick event handler
from the LoadTbl project that accompanies this article (all examples
referenced in this article are available for download; see end of arti-
cle for details). This code demonstrates how to search the Outlook
Contacts folder for the records you wish to select, and copy them to
a database table.

As in the example shown in Listing One, this one begins by getting
the Application object and the MAPI NameSpace object. Next, a
reference is obtained using the statement:

ContactItems := Mapi.Folders('Personal Folders').

Folders('Contacts').Items;

This statement demonstrates how you can chain objects together
using dot notation to get a reference to a low-level object without
having to get individual references to each of the higher-level
objects. In this case, five levels of intervening objects are specified to
get to the Items object of the Contacts folder. These objects are:

The MAPI NameSpace object
The Folders collection
The Personal Folders object
The Folders collection
The Contacts object

You can use this notation to get a reference to any Outlook object in
a single statement. The next new feature of this method is the call to
the Find method of the ContactItems collection. Almost all collec-
tion objects have a Find method you can use to locate a particular
item in the collection using one or more of its properties. In this
example, the statement:

CurrentContact := ContactItems.Find(' [CompanyName] = ' +
QuotedStr('Borland International'));

Figure 2
7 September 1999 Delphi Informant
finds the first contact item where the value of the
CompanyName property is equal to Borland International. If
no matching item is found, the Variant CurrentContact will be
empty. The while loop inserts a new record into the database
table, and assigns each of the Contact item’s properties to the
corresponding field in the table. The while loop continues until
CurrentContact is empty, indicating that no more items matching
the search criteria can be found. At the end of the while loop,
the call to FindNext finds the next matching record, if there is
one. If no record is found, CurrentContact is set to empty and
the loop terminates.

Creating new Contact folders and records is just as easy. Suppose
you want to copy all your Contact records for Borland employees
into a new folder. The code in Listing Three (on page 9) from the
NewFolder sample project will do the job.

This method begins by getting the Application, MAPI
NameSpace, and Contacts folder’s Items object. Next, it uses a
for loop to scan the Folders collection looking for the Borland
Contacts folder. If the folder is found, its number is assigned to
the ToRemove variable. The Borland Contacts folder is deleted by
calling the Folders collection’s Remove method and passing the
ToRemove variable as the parameter.

Next, a call to the Folders collection’s Add method creates the
Borland Contacts folder. Add takes two parameters. The first is
the name of the folder to be created. The second parameter is the
folder type and can be olFolderCalendar, olFolderContacts,
olFolderInbox, olFolderJournal, olFolderNotes, or olFolderTasks. To
find the values of these and any other constants you need, search
the VBAOUTL.HLP file for Microsoft Outlook Constants. The
next statement gets a reference to the new Borland Contacts fold-
er and stores it in the BorlandContacts variable.

A call to the Contacts folder’s Items collection’s Find method
locates the first record for a Borland employee. The while loop is
used to iterate through all the Borland employees in the Contacts
folder. At the top of the loop, a new record is added to the
Borland Contacts folder by calling the folder’s Items collection’s
Add method.

Add takes no parameters; it simply inserts a new empty record
and returns a reference to the new record, which is saved in the
NewContact variable. The statements that follow assign values

On the Cover
from the existing record to the new one. Finally, the new
record’s Save method is called. This is a critical step. If you don’t
call Save, no errors will be generated — but there will be no
new records in the folder. When the while loop terminates,
Outlook is closed by assigning the constant Unassigned to the
OutlookApp variable.

Other Outlook Objects
The Folders collection of the Personal Folder object contains the
following folders:

Deleted Items
Inbox
Outbox
Sent Items
Calendar
Contacts
Journal
Notes
Tasks
Drafts

You can work with the Items collection of any of these folders
using the same code shown for working with Contacts. Only the
properties of the items are different. Listing Four (on page 9)
shows a method that copies to a Paradox table all appointments
that are all-day events and whose start date is greater than
4/27/99. This example copies the Start, End, Subject, and
BusyStatus properties to the table. Note that this example uses a
more sophisticated find expression than previous examples. Find
supports the >, <, >=, <=, = and <> operators, as well as the log-
ical operators and, or, and not, which allows you to construct
complex search expressions.

Conclusion
Delphi applications can easily act as Automation clients, allow-
ing your applications to interact with the Microsoft Office Suite
applications in any way you wish. Using Outlook you can
extract contact information to update a central database, add
new contacts derived from other sources, create new folders, and
add items of any type. One of Outlook’s limitations is its lack of
a powerful reporting tool. With a Delphi application, you can
provide much more powerful reporting capabilities for Outlook
data. With a basic understanding of the Outlook object model
and a copy of the VBAOUTL.HLP help file, you are well on
your way. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\SEP\DI9909BT.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, co-author of four database-programming books and over 60 articles,
and a member of Team Borland, providing technical support on the Borland
Internet newsgroups. He is a frequent speaker at Borland Developer Conferences
in the US and Europe. Bill is also a nationally known trainer and has taught
Paradox and Delphi programming classes across the country and overseas. He
was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi World
Tours. He can be reached at bill@dbginc.com, or (602) 802-0178.
8 September 1999 Delphi Informant
Begin Listing One — Displaying Outlook objects
procedure TForm1.OpenBtnClick(Sender: TObject);
var

OutlookApp,
Mapi,
Contacts,
Personal: Variant;
I: Integer;

begin
{ Get the Outlook Application object. }
OutlookApp := CreateOleObject('Outlook.Application');
{ Get the MAPI NameSpace object. }
Mapi := OutlookApp.GetNameSpace('MAPI');
{ Loop through the MAPI Folders collection and add the

Name of each folder to the listbox. }
for I := 1 to Mapi.Folders.Count do

MapiList.Items.Add(Mapi.Folders(I).Name);
{ Get the Personal folder from the MAPI folders

collection. }
Personal := Mapi.Folders('Personal Folders');
{ Loop through the Personal Folders Collection and add

the name of each folder to the listbox. }
for I := 1 to Personal.Folders.Count do

PersonalList.Items.Add(Personal.Folders(I).Name);
{ Get the Contacts folder from the Personal Folders

collection. }
Contacts := Personal.Folders('Contacts');
{ Loop through the Contacts folder's Items collection

and add the FullName property of each Item
to the listbox. }

for I := 1 to Contacts.Items.Count do
ContactsList.Items.Add(Contacts.Items(I).FullName);

{ Close Outlook. }
OutlookApp := Unassigned;

end;

End Listing One
Begin Listing Two — Searching for contacts
procedure TLoadTableForm.LoadBtnClick(Sender: TObject);
var

OutlookApp,
Mapi,
ContactItems,
CurrentContact: Variant;

begin
{ Get the Outlook Application object. }
OutlookApp := CreateOleObject('Outlook.Application');
{ Get the MAPI NameSpace object. }
Mapi := OutlookApp.GetNameSpace('MAPI');
{ Get the Items collection from the Contacts folder. If

you don't do this, FindNext will not work. }
ContactItems := Mapi.Folders('Personal Folders').

Folders('Contacts').Items;
{ Load Contacts into table. }
with ContactTable do begin

EmptyTable;
Open;
DisableControls;
CurrentContact :=

ContactItems.Find('[CompanyName] = ' +
QuotedStr('Borland International'));

while not VarIsEmpty(CurrentContact) do begin
Insert;
FieldByName('EntryId').AsString :=

CurrentContact.EntryId;
FieldByName('LastName').AsString :=

CurrentContact.LastName;
FieldByName('FirstName').AsString :=

CurrentContact.FirstName;
FieldByName('CompanyName').AsString :=

CurrentContact.CompanyName;
FieldByName('BusAddrStreet').AsString :=

CurrentContact.BusinessAddressStreet;

On the Cover
FieldByName('BusAddrPOBox').AsString :=
CurrentContact.BusinessAddressPostOfficeBox;

FieldByName('BusAddrCity').AsString :=
CurrentContact.BusinessAddressCity;

FieldByName('BusAddrState').AsString :=
CurrentContact.BusinessAddressState;

FieldByName('BusAddrPostalCode').AsString :=
CurrentContact.BusinessAddressPostalCode;

FieldByName('BusinessPhone').AsString :=
CurrentContact.BusinessTelephoneNumber;

Post;
CurrentContact := ContactItems.FindNext;

end; // while
EnableControls;

end; // with
{ Close Outlook. }
OutlookApp := Unassigned;

end;

End Listing Two
Begin Listing Three — Creating a Contacts folder and
new contacts
procedure TCreateFolderFrom.CreateBtnClick(Sender: TObject);
const

olFolderContacts = 10;
olContactItem = 2;

var
OutlookApp,
Mapi,
NewContact,
BorlandContacts,
ContactItems,
CurrentContact: Variant;
I,
ToRemove: Integer;

begin
{ Get the Outlook Application object. }
OutlookApp := CreateOleObject('Outlook.Application');
{ Get the MAPI NameSpace object. }
Mapi := OutlookApp.GetNameSpace('MAPI');
{ Get the Items collection from the Contacts folder. If

you don't do this, FindNext will not work. }
ContactItems := Mapi.Folders('Personal Folders').

Folders('Contacts').Items;
{ Remove the test folder. }
ToRemove := 0;
for I := 1 to Mapi.Folders('Personal Folders').

Folders.Count do
if Mapi.Folders('Personal Folders').Folders(I).Name =

'Borland Contacts' then
begin

ToRemove := I;
Break;

end; // if
if ToRemove <> 0 then

Mapi.Folders('Personal Folders').
Folders.Remove(ToRemove);

{ Create a new folder. }
Mapi.Folders('Personal Folders').

Folders.Add('Borland Contacts', olFolderContacts);
BorlandContacts := Mapi.Folders('Personal Folders').

Folders('Borland Contacts');
{ Load Contacts into new folder. }
CurrentContact := ContactItems.Find('[CompanyName] = ' +

QuotedStr('Borland International'));
while not VarIsEmpty(CurrentContact) do begin

{ Add a new item to the folder. }
NewContact := BorlandContacts.Items.Add;
{ Assign values to the fields in the item record. }
NewContact.FullName := 'John Doe';
NewContact.LastName := CurrentContact.LastName;
NewContact.FirstName := CurrentContact.FirstName;
NewContact.CompanyName := CurrentContact.CompanyName;
9 September 1999 Delphi Informant
NewContact.BusinessAddressStreet :=
CurrentContact.BusinessAddressStreet;

NewContact.BusinessAddressPostOfficeBox :=
CurrentContact.BusinessAddressPostOfficeBox;

NewContact.BusinessAddressCity :=
CurrentContact.BusinessAddressCity;

NewContact.BusinessAddressState :=
CurrentContact.BusinessAddressState;

NewContact.BusinessAddressPostalCode :=
CurrentContact.BusinessAddressPostalCode;

NewContact.BusinessTelephoneNumber :=
CurrentContact.BusinessTelephoneNumber;

{ Save the new record. }
NewContact.Save;
{ Find the next record in the Contacts folder. }
CurrentContact := ContactItems.FindNext;

end; // while
{ Close Outlook. }
OutlookApp := Unassigned;

end;

End Listing Three
Begin Listing Four — Reading Calendar folder
procedure TLoadTableForm.LoadBtnClick(Sender: TObject);
var

OutlookApp,
Mapi,
ApptItems,
CurrentAppt: Variant;

begin
{ Get the Outlook Application object. }
OutlookApp := CreateOleObject('Outlook.Application');
{ Get the MAPI NameSpace object. }
Mapi := OutlookApp.GetNameSpace('MAPI');
{ Get the Items collection from the Contacts folder. If

you don't do this, FindNext will not work. }
ApptItems := Mapi.Folders('Personal Folders').

Folders('Calendar').Items;
{ Load Contacts into table. }
with ApptTable do begin

EmptyTable;
Open;
DisableControls;
CurrentAppt := ApptItems.Find('[Start] > ' +

'"4/27/99" and [AllDayEvent] = True');
while not VarIsEmpty(CurrentAppt) do begin

Insert;
FieldByName('Start').AsDateTime := CurrentAppt.Start;
FieldByName('Subject').AsString :=

CurrentAppt.Subject;
FieldByName('End').AsDateTime := CurrentAppt.End;
FieldByName('Busy').AsBoolean :=

CurrentAppt.BusyStatus;
Post;
CurrentAppt := ApptItems.FindNext;

end; // while
EnableControls;

end; // with
{ Close Outlook. }
OutlookApp := Unassigned;

end;

End Listing Four

10 September 1999 Delphi Informant

Dynamic Delphi
RDS / MDAC / Delphi 4

By Mike Riley

Figure 1: The d
Data at a Distance
Using Microsoft Remote Data Services

Microsoft Remote Data Services (RDS) enables Windows developers to remotely
access server-based ODBC and OLE DB data sources without requiring the client

to manually configure and establish an ODBC or BDE data connection. Seamless con-
nectivity with server-based data sources over the Internet, even through firewalls, pro-
vides Windows developers with the ability to build rich user interfaces to data sources
located anywhere HTTP will take them. RDS communication can even be established
over HTTPS to ensure secure data transmissions over the Internet, which might be the
case with an extranet Windows-based application.
As with many technologies, RDS has its advan-
tages and disadvantages; the “pros and cons” of
RDS in its current form include those listed here.

Pros:
“Thin” client allows for easy updates to a
light-weight core executable.
Stateless connection provides efficient use of
network bandwidth, and minimizes server
load and resources in a highly distributed net-
work environment, i.e. the Internet.
LAN-like client/server data access inside com-
piled applications via standard HTTP com-
munication, allowing for rich user interface
emonstration database.
elements, and data access over the Internet —
even through firewalls.
Easy primer for more advanced uses of
DCOM over HTTP (a feature enabled in
Windows NT Service Pack 4).

Cons:
“Fat” client computing in terms of the over-
whelming component installation. Application
updates require a full replacement or binary
patching of the client-based executables and
DLLs.
Stateless connections provide disconnected
recordsets and all-or-nothing updates.
Direct database access over HTTP may pose a
security risk for inadequately monitored inter-
nal networks.
RDS may be redundant and unnecessary now
that DCOM over HTTP is possible.

RDS Requirements
Enabling easy, inexpensive data access does have
its consequences. Following is a list of the client
and server requirements and the URLs (where
applicable) of where to obtain the components as
of this writing.

Client requirements:
DCOM 2.1 or higher for Windows 95
(Windows 98 users already have DCOM
installed). DCOM for Windows 95 can be
located at http://www.microsoft.com/
com/dcom.asp.
Internet Explorer 4.01 with Service Pack (SP) 1.
MDAC (Microsoft Data Access Components),
which includes Active Data Objects 2.0 and

http://www.microsoft.com/com/dcom.asp
http://www.microsoft.com/com/dcom.asp

Figure 2: Connecting an Access 97 data source.

Figure 3: Successful RDS connection results.

Dynamic Delphi
RDS 2.0. MDAC Redistributables and SDK can be located at
http://www.microsoft.com/data/download2.htm.

Server requirements:
Windows NT 4.0 Workstation or Server with SP3 and NT
Option Pack. If Windows NT 4.0 SP4 has been applied,
MDAC 2.0 SP1 is required, and can be located at
http://www.microsoft.com/data/mdac2.htm.
Internet Information Server 4.0.
Microsoft MDAC SDK (includes Visual C++ and Visual Basic
client demonstrations that can be easily adapted to Delphi).
MDAC-compliant data source (Microsoft SQL Server 6.5,
ODBC, or OLE DB-compliant data source).

Development requirements:
Delphi 2 or higher (Delphi 4 Professional or higher recom-
mended).

Like most Microsoft technology updates, apply the requirements in
the order in which Microsoft released them. For the client, this
means installing Internet Explorer 4.01 and applying the IE4 service
pack, followed by the MDAC install. Any deviation may result in
DLL conflicts.

RDS is definitely a Windows 32-bit-only technology, just as Delphi
4 is definitely a Windows 32-bit-only development tool. If data dis-
tribution needs to exist in a heterogeneous client/server environ-
ment, look to Java, JDBC, CORBA, and IIOP instead. Quite
frankly, the configuration and client maintenance of virtual
machines and object request brokers will be almost as troublesome
as RDS component installations, and the expensive licenses for
such CORBA components will keep this option a costly corporate
enterprise-wide-only solution, at least for the near future.

Luckily, installation of MDAC 2.0 and its dependencies is a straight-
forward and transparent process. Testing for a successful RDS installa-
tion on the client and server can be performed using Microsoft
Internet Explorer to retrieve an Active Server Page test page designed
to fetch data from an advworks.mdb Microsoft Access 97 data
source. The default path to this .ASP test page is http://server/msadc/
samples/adctest.asp, where server is the default name of the Web server
running RDS. Naturally, the RDS SDK must be installed on the serv-
er for this URL to exist.

Experience has proven that the third-party ActiveX demonstration
grid may not populate with return results even though RDS is cor-
rectly installed. There are a number of reasons for this, one of which
might be that data source permissions haven’t been set to allow the
IIS Internet User account (typically IUSER_MACHINENAME,
where MACHINENAME is the name of the server running IIS).
The most elusive and disappointing one is that RDS doesn’t support
virtual Web server addresses. RDS servers must run the service from
a primary default server name/IP address per machine. Hopefully,
Microsoft will resolve this annoying limitation with the next MDAC
service pack.

Configuring the Server Data Source
The first objective of any RDS project is to determine what the data
source will be, and what fields need to be retrieved and/or modified.
If the data schema needs to be created, use an ODBC-compliant
desktop database product like Microsoft Access that can be upsized
into a SQL database, such as Oracle or Microsoft SQL Server if nec-
essary. RDS has been optimized for use with Microsoft SQL Server
11 September 1999 Delphi Informant
6.5 or higher, and other OLE DB-compliant data sources. This is
hardly surprising, considering the 100 percent Microsoft 32-bit
environment that RDS requires.

After the data source has been defined as a system DSN (configured
using the server’s ODBC Control Panel applet), connection verifica-
tion can be performed using the adctest.asp page and changing the
DSN default value from the AdvWorks data source to the name of
the DSN being tested. Remember to grant database access to the IIS
Internet User account. The grid should populate with the table’s
field names and existing records if successful.

For this article, I created a DVD demonstration database (see
Figure 1). Connecting this Access 97 data source via the ODBC
Control Panel applet was elementary (see Figure 2). Once the
data source was defined on the server, the RDS connection was
tested using the adctest.asp page with successful connection
results (see Figure 3).

http://server/msadc/samples/adctest.asp
http://server/msadc/samples/adctest.asp
http://www.microsoft.com/data/download2.htm
http://www.microsoft.com/data/mdac2.htm

Figure 4: The demonstration DVD client at run time.

Dynamic Delphi
Coding the Client Interface
Launch Delphi, begin a new project, and import the ADO and
RDS 2.0 type libraries using the Project | Import Type Libraries menu
option. Locate and add the Microsoft ActiveX Data Objects
Recordset 2.0 Library (Version 2.0) and Microsoft Remote Data
Services 2.0 (Version 1.5) type libraries to the project. These will
import as ADODB_TLB.pas and RDS_TLB.pas units respectively
(available for download; see end of article for details). If these type
libraries don’t exist, make sure the RDS SDK or RDS redistributa-
bles have been correctly installed by pointing the client’s IE browser
at the adctest.asp page on the server.

Once the type libraries have been imported, populate the form
receiving the data with standard Windows controls. Note that RDS
doesn’t use the BDE, so Delphi data-aware controls won’t be effec-
tive in dealing with RDS data. (If BDE-connected data over the
Internet is a requirement, check out Dalco Technologies’ dbOvernet
at http://www.dbovernet.com.) Once the number of controls match-
es the number of display fields desired, connect each control to the
appropriate RDS field. Refer to Listing One (beginning on page 13)
for the example used for the DVD Access database.

Notice that the RDS objects are created, and a connection to the
server is established, during the FormCreate event. Data isn’t
retrieved until the RDS Refresh method is called. The RDS SQL
property must contain a query before calling the Refresh method.
Otherwise, an empty set will be returned. The returned recordset is
then passed to the ADO Recordset object where it can be further
manipulated using the MoveFirst, MoveLast, MoveNext,
MovePrevious, Update, AddNew, and Delete methods.

Note that none of the recordset client changes are replicated, nor
permanently affect the original source data on the server, until the
SubmitChanges method is called by the client. This is because RDS
is a stateless connection and no data is transacted unless the client
explicitly fires the events to do so.

Here’s a summary of the client development steps:
Import the ADO and RDS type libraries.
Create the UI using standard Windows controls or other
Delphi visual components (data-aware/data-bound controls
don’t work; use Dalco Technologies’ dbOvernet for accessing
BDE-enabled data sources and populating Delphi data-aware
controls over the Internet; it works so well that I wrote an NT
service demonstration for Dalco that helps capture the benefits
of server-based RDS).
Declare the ADO session, recordset, and RDS connection
objects, and assign them to variables of type Variant.
Supply the RDS connection object with an active RDS server
and data source, and connect.
Retrieve the recordset by passing a SQL query to the RDS
server-based data source.
Populate the client form’s controls with the recordset results.
If the application warrants read-write access, post any data
changes via a batch update process to the RDS server.
When finished with the session, close the connection and release
the objects.

Running the Application
Assuming the server has been properly configured and successfully
tested, running the client should produce similar results to those
displayed in the DVD client screenshot shown in Figure 4. The
client program can add, update, and delete records, as well as
12 September 1999 Delphi Informant
move between records in DBNavigator-like style. Exiting the
application without first clicking the Post Updates button will dis-
card any changes.

Conclusion
The future of RDS is unclear. While Microsoft has publicly com-
mitted to continuing support for the MDAC developer community,
the effort required to make Windows 95 clients RDS-aware is sub-
stantial. In addition, MDAC version updates will perpetuate fat-
client computing in a thin-client world. While Windows 98 and
Windows 2000 clients benefit from having IE4, RDS, and DCOM
pre-installed, RDS needs more revisions to overcome its current lim-
itations, especially if it’s intended to act like a traditional stateful
client/server data connector over the Internet.

With DCOM over HTTP now available in Windows NT 4.0 SP4
and Windows 2000, ADO and RDS components that were once
required to be installed and registered on the client can now be cre-
ated as DCOM objects on the server, eliminating the need to redis-
tribute bulky MDAC client components. Of course, allowing
DCOM object instantiation of server objects could be a more trou-
blesome security risk for Internet-exposed internal networks, because
this capability can potentially expose for remote automation any reg-
istered object (including objects that can format hard drives or dis-
tribute passwords) on the server, not just data objects.

In the meantime, RDS provides Windows COM developers an
inexpensive and exciting way to access, process, and store data
anywhere in the world using a wealth of rich, well-established,
visual components. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\SEP\DI9909MR.

Mike Riley is the Director of Internet Application Development for RR Donnelley &
Sons, North America’s largest printer. He actively participates in the company’s
Internet, intranet, and extranet strategies using a wide variety of Web-enabled
technologies, including Delphi 4. Mike can be reached via his spam-shielded
e-mail address, mikeriley@hotmail.com.

http://www.dbovernet.com

1

Dynamic Delphi
Begin Listing One — RDS 2.0 Demonstration
unit main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls,ADOR_TLB, RDS_TLB;

type
TMainForm = class(TForm)

editID: TEdit;
lblID: TLabel;
Label1: TLabel;
editTitle: TEdit;
Label2: TLabel;
editType: TEdit;
Label3: TLabel;
editStudio: TEdit;
Label4: TLabel;
editRating: TEdit;
Label5: TLabel;
editDirector: TEdit;
Label6: TLabel;
editStars: TEdit;
Label7: TLabel;
editVideo: TEdit;
Label8: TLabel;
editSound: TEdit;
Label9: TLabel;
editReview: TEdit;
Label10: TLabel;
editMinutes: TEdit;
memoFeatures: TMemo;
Label11: TLabel;
Label12: TLabel;
memoEggs: TMemo;
btnNext: TButton;
btnPrevious: TButton;
btnRefresh: TButton;
btnAdd: TButton;
btnDelete: TButton;
btnFirst: TButton;
btnLast: TButton;
procedure FormCreate(Sender: TObject);
procedure btnNextClick(Sender: TObject);
procedure btnPreviousClick(Sender: TObject);
procedure btnRefreshClick(Sender: TObject);
procedure RefreshRDSData;
procedure UpdateRDSData;
procedure AddRDSData;
procedure DeleteRDSData;
procedure btnFirstClick(Sender: TObject);
procedure btnLastClick(Sender: TObject);
procedure btnDeleteClick(Sender: TObject);
procedure btnAddClick(Sender: TObject);
procedure FormDestroy(Sender: TObject);

end;

var
MainForm: TMainForm;
rdsDC: DataControl; // Define RDS Datacontrol object.
rstRS: Recordset; // Define RDS Recordset object.

implementation

{$R *.DFM}

// Populate the MainForm's visual controls with the current
// record values. Note: <null> values are not checked and
// will cause a type cast error if one is encountered. For
// this demo, all <null> values in the demo database were
// converted to a 'None' string. To make this routine more
// robust, <null> values should be detected and values
// substituted accordingly before displaying the results in
// the text or memo boxes. Lastly, the Refresh, AddNew,
// Update and DeleteRDSData routines could be further
3 September 1999 Delphi Informant
// optimized by assigning the Item string to the respective
// control's Tag property and iterate through each
// participating control in the form's collection, saving the
// explicitly redundant code in these procedures. In an
// effort to help new RDS programmers understand how RDS
// works and keep the demo as simple to understand as
// possible, this optimization opportunity was rejected.
procedure TMainForm.RefreshRDSData;
begin

editID.Text := rstRS.Fields.Item['ID'].Value;
editTitle.Text := rstRS.Fields.Item['Title'].Value;
editType.Text := rstRS.Fields.Item['Type'].Value;
editStudio.Text := rstRS.Fields.Item['Studio'].Value;
editRating.Text := rstRS.Fields.Item['Rating'].Value;
editDirector.Text := rstRS.Fields.Item['Director'].Value;
editStars.Text := rstRS.Fields.Item['Stars'].Value;
editVideo.Text := rstRS.Fields.Item['Video'].Value;
editSound.Text := rstRS.Fields.Item['Sound'].Value;
editReview.Text := rstRS.Fields.Item['Review'].Value;
editMinutes.Text := rstRS.Fields.Item['Minutes'].Value;
memoFeatures.Text := rstRS.Fields.Item['Special'].Value;
memoEggs.Text := rstRS.Fields.Item['EastrEg'].Value;

end;

// Save any modifications made to the current record. As
// with the RefreshRDSData procedure, error checking for
// <null> values should be added to make the UpdateRDSData
// procedure more robust.
procedure TMainForm.UpdateRDSData;
begin

with rstRS do begin
Update('ID', editID.Text);
Update('Title', editTitle.Text);
Update('Type', editType.Text);
Update('Studio', editStudio.Text);
Update('Rating', editRating.Text);
Update('Director', editDirector.Text);
Update('Stars', editStars.Text);
Update('Video', editVideo.Text);
Update('Sound', editSound.Text);
Update('Review', editReview.Text);
Update('Minutes', editMinutes.Text);
Update('Special', memoFeatures.Text);
Update('EastrEg', memoEggs.Text);

end;
end;

// Clear the form and populate the fields with spacer data
// so RDS won't complain when a user attempts to post
// invalid or <null> field data to the database. Again,
// this should be optimized to replace null fields with
// valid data being inserted into the database with the
// SubmitChanges command.
procedure TMainForm.AddRDSData;
begin

editID.Text := ' ';
editTitle.Text := ' ';
editType.Text := ' ';
editStudio.Text := ' ';
editRating.Text := ' ';
editDirector.Text := ' ';
editStars.Text := ' ';
editVideo.Text := ' ';
editSound.Text := ' ';
editReview.Text := ' ';
editMinutes.Text := '0';
memoFeatures.Text := 'None';
memoEggs.Text := 'None';
with rstRS do begin

AddNew('ID', editID.Text);
with Fields do begin

Item['ID'].Value := editID.Text;
Item['Title'].Value := editTitle.Text;
Item['Type'].Value := editType.Text;
Item['Studio'].Value := editStudio.Text;
Item['Rating'].Value := editRating.Text;
Item['Director'].Value := editDirector.Text;
Item['Stars'].Value := editStars.Text;

Dynamic Delphi
Item['Video'].Value := editVideo.Text;
Item['Sound'].Value := editSound.Text;
Item['Review'].Value := editReview.Text;
Item['Minutes'].Value := editMinutes.Text;
Item['Special'].Value := memoFeatures.Text;
Item['EastrEg'].Value := memoEggs.Text;

end;
Update('ID', editID.Text);

end;
rstRS.MoveLast;
btnNext.Enabled := False;
btnPrevious.Enabled := True;

end;

// Delete the current record. The deleted record will not
// be reflected in the server's database until the
// SubmitChanges event occurs.
procedure TMainForm.DeleteRDSData;
begin

rstRS.Delete(adAffectCurrent);
rstRS.MoveFirst;
RefreshRDSData;
btnNext.Enabled := True;
btnPrevious.Enabled := False;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin

try
// Create RDS Datacontrol and Recordset objects.
rdsDC := CoDataControl.Create;
rstRS := CoRecordset.Create;
// Execute the queries synchronously to aid debugging.
// Switch to adcExecAsync to improve UI mechanics.
rdsDC.ExecuteOptions := adcExecSync;
rdsDC.FetchOptions := adcFetchBackground;
// Replace 'server' with address of RDS server with
// 'dvds' data source.
rdsDC.Server := 'http:// server';
// Connect string must contain DSN, can also contain
// uid and pwd parameters.
rdsDC.Connect := 'DSN=dvds';
// Fetch the recordset and store the results in the
// rstRS object.
rdsDC.SQL := 'SELECT * FROM DVDTitle';
rdsDC.Refresh;
rstRS := rdsDC.Recordset as RecordSet;
// Move client-side cursor to the first record in
// the recordset.
rstRS.MoveFirst;
// Call RefreshRDSData procedure and populate text/memo
// fields with the first record in the recordset.
RefreshRDSData;

except
ShowMessage('Error in creating RDS objects.');

end;
end;

procedure TMainForm.btnNextClick(Sender: TObject);
begin

if rstRS.AbsolutePosition = rstRS.RecordCount-1 then
begin

btnNext.Enabled := False;
btnLastClick(Application);
ShowMessage('Last record in recordset reached.');

end
else

begin
btnPrevious.Enabled := True;
// Save changes and move to the next record.
UpdateRDSData;
rstRS.MoveNext;
RefreshRDSData;

end;
end;

procedure TMainForm.btnPreviousClick(Sender: TObject);
begin

if rstRS.AbsolutePosition = 2 then
14 September 1999 Delphi Informant
begin
btnPrevious.Enabled := False;
btnFirstClick(Application);
ShowMessage('First record in recordset reached.');

end
else

begin
btnNext.Enabled := True;
// Save changes and move to the previous record.
UpdateRDSData;
rstRS.MovePrevious;
RefreshRDSData;

end;
end;

procedure TMainForm.btnRefreshClick(Sender: TObject);
begin

UpdateRDSData;
rdsDC.SubmitChanges;
rdsDC.Refresh;
ShowMessage(

'Recordset changes have been posted to the database.');
end;

procedure TMainForm.btnFirstClick(Sender: TObject);
begin

// Save changes and go to the first record.
UpdateRDSData;
rstRS.MoveFirst;
RefreshRDSData;
btnPrevious.Enabled := False;
btnNext.Enabled := True;

end;

procedure TMainForm.btnLastClick(Sender: TObject);
begin

// Save changes and go to the last record.
UpdateRDSData;
rstRS.MoveLast;
RefreshRDSData;
btnNext.Enabled := False;
btnPrevious.Enabled := True;

end;

procedure TMainForm.btnDeleteClick(Sender: TObject);
begin

if Application.MessageBox(
'Are you sure you want to delete this record? ' +
Chr(10) + Chr(13) + 'The record will not be ' +
'deleted from the database until the Post ' +
'Updates button is selected.',
'Delete Current Record',
MB_OKCANCEL + MB_DEFBUTTON1) = IDOK then

begin
DeleteRDSData;
ShowMessage('Record deleted from current recordset.');

end;
end;

procedure TMainForm.btnAddClick(Sender: TObject);
begin

UpdateRDSData;
AddRDSData;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin

// Release the Datacontrol and Recordset objects.
rdsDC := nil;
rstRS := nil;

end;

end.

End Listing One

15 September 1999 Delphi Informant

Delphi at Work
Hashing / Algorithms

By Gregory H. Deatz
Making a Hash of It
Setting Up an Abstract Hash Table

One of the primary things that application developers do is manage lists. We need
to create a list of things and access the items in the list in some fashion.
More often than not, it’s entirely adequate to
access items by their index in the list. However, it’s
frequently desirable to access an item not by its
integer index, but by some other key. To access
elements of generic lists by key, we’re forced to
search for the element. Sometimes the list is
unsorted, so we have to scan the entire list.
Sometimes the list is sorted, so we can perform a
binary search. In both cases, we can only expect a
linear search (in the case of unsorted lists), or a
logarithmic search (in the case of the sorted list).

There’s another way to access elements of a list by
key. It’s called hashing. The notion of hashing rec-
ognizes the fact that a sorted list isn’t necessarily
what we need; we simply need virtually instant
access to the element by its key. Theoretically
speaking, a hash table comes in handy when the
“universe” of possible keys is substantially larger
than the number of elements that will actually be
in the list. In essence, we want to extend the
notion of an array to include the concept of an
arbitrary key, instead of a “plain Jane” integer.

Hashing
There is quite a bit of theory behind hash tables, but
the implementation of them is simple. The gist is
that we create an array of buckets, and each bucket
will contain a linked list of key/value pairs. To deter-
mine if a key/value pair belongs in a particular buck-
et, we use a hashing function. A hashing function
takes a key and computes an integer index based on
the key. This index is the index of a bucket.

The next most important consideration in a hash
table is its size, or the number of buckets the hash
table will contain. If we use too few buckets (i.e.
the size of the array is too small), the hash table
will perform no better than a linked list, and we’ll
only get linear-search performance. On the other
hand, if we use too many buckets, the hash table
will take up an unnecessary amount of space. So, a
given hash function must be tailored directly to its
associated hash table size. A hash function that
returns a range of results from 0..1 would be use-
less to a table whose size is 256. Likewise, a hash
function whose range is 0..255 could cause some
major problems in a table whose size is 16.

In addition to tailoring the hash function to its
associated hash table size, you must tailor the hash
function to its expected input. That is, if one is
hashing on integers, one’s hash function will prob-
ably look decidedly different from a function
based on strings.

Abstract Hash Table
Aside from the hash function and the size of the
table itself, the rest of the hash table is generic. We
need to be able to access a value by its associated
key; delete a value from the table by its associated
key; clear the hash table itself; determine if a given
key exists in the table; determine how many ele-
ments are stored in the hash table; know how
many elements are in a given bucket; etc.

It’s time to write some code! Take a look at Hash.pas
in Listing One (beginning on page 17). The follow-
ing sections will provide instructions for the more
important supporting objects and procedures.

THashItem
The THashItem object is never seen by the user of
a hash table derived from TCustomHashTable;
rather, it’s a supporting structure that allows the
hash table to store a linked list of all items in the
table (FNext, FPrev), as well as a linked list of all
items in its specific bucket (FHNext, FHPrev).

Each hash item is responsible for knowing its
index in its hash table’s hashing array
(FHashIndex), and each hash item stores its associ-
ated Key and Value. Notice that the Key and Value
properties are of type Variant, thus allowing our
implementation of hash tables to be based on keys
of any type, and store values of any type.

TStringKeyHashTable = class(TCustomHashTable)
protected

function HashSize: Integer; override;
public

function HashFunc(Key: Variant): Integer; override;
property Count;
property Size;
property Value; default;

end;

Figure 1: Implementing a table to hash strings.

function TStringKeyHashTable.HashSize: Integer;
begin

Result := 256;
end;

function TStringKeyHashTable.HashFunc(Key: Variant):
Integer;

var
st: string;
i: Integer;

begin
st := Key;
Result := 0;
for i := 1 to Length(st) do

Inc(Result, Integer(st[i]));

Result := Result mod Size;
end;

Figure 2: The hashing routines.

Delphi at work
TCustomHashTable
The key methods in TCustomHashTable are listed below. Some are
followed by a brief description.

This protected FindItem method returns the THashItem associated
with a given key. If an item isn’t found, bQuiet instructs the method
to either be quiet and return a nil value, or complain loudly and
raise an exception. A HashVal can be passed if the hashing function
has already been computed:

function FindItem(const Key: Variant; bQuiet: Boolean;

HashVal: Integer): THashItem

Another protected method, HashError, raises an EHashError excep-
tion with the passed error message:

procedure HashError(const ErrMsg: THashErrMsg);

Given a Key, find the appropriate entry in the table and get or set its
value, respectively:

function GetValue(const Key: Variant): Variant;

procedure SetValue(const Key: Variant; Value: Variant);

How many buckets does the hash table contain?

function HashSize: Integer; virtual; abstract;

The virtual constructor/destructor for the class is as follows:

constructor: Create; virtual;

destructor: Destroy; override;

Given a Key value, compute the hash function, returning the “buck-
et” in which Key belongs:

function HashFunc(Key: Variant): Integer;

virtual; abstract;

Add and remove a key/value pair to and from the table, respectively,
as follows:

procedure AddItem(Key, Value: Variant);

procedure RemoveItem(Key: Variant);

Clear the hash table, as follows:

procedure Clear

Does an entry for Key exist in the table?

function KeyExists(Key: Variant): Boolean;

Given a specified bucket (either by index or key), return the number
of items in the bucket. This function is particularly useful when
testing a given hash function on an expected domain of inputs:

function BucketCountByIdx(const Idx: Integer): Integer;

function BucketCountByKey(const Key: Variant): Integer;
16 September 1999 Delphi Informant
TCustomHashTable Properties
There are three properties exposed for our custom hash table:

Count returns the current number of items stored in the hash table.
Size is a “property hook” to the HashSize function.
Value allows the developer to treat a hash table as an array of
values, indexed by key, whatever that key may be.

Implementing a String Hash Table
We’ve discussed the generic functionality of a customizable hash
table. Now it’s time to look at a concrete example descended from
TCustomHashTable. Not surprisingly, our example implements a
table that hashes strings (see Figure 1).

Note that we are required to implement only two functions, HashSize
and HashFunc, and we’ve made the three protected properties public.
The implementations of the hashing routines are shown in Figure 2.

This example creates a hash table with 256 buckets, more than
enough for most applications that require a hash table with strings.
The hash function operates by summing up the ordinal values of
each character in the string. Finally, to guarantee the hash function
returns a valid value for the hash table size, it performs remainder
arithmetic to get a value within the range of 0-255.

A Quick Example
That was easy! Let’s watch it at work. Load the example application
Example provided with this article (see end of article for download
details) and run it.

Enter some key/value pairs by entering text in the appropriate text
boxes. By clicking on keys in the list box, you can automatically
search for keys that have already been entered. To verify that the
hash function performs well, you can also see how many items are in
each bucket.

Delphi at work
Don’t Take This Too Far
The theory behind hash tables demonstrates that a properly
matched hash function and hash table size will produce, on average,
constant time results. This means that, on average, a hash table per-
forms much better than a sorted list. However, it’s important to
note the phrase “on average.” In the worst case, a hash table will
perform just as badly as an unsorted list of elements.

Hash tables are incredibly useful tools, but generally only useful
when the developer has some knowledge of the domain of possible
keys. Are the keys random? Are the keys based on English? What are
the most commonly entered keys? These questions must be
addressed at some level when designing a hash table.

Even more interesting is that a hash table performs very well when
its size is substantially larger than the actual number of elements it
will contain. Obviously, if we had a list of 1,024 or more key/value
pairs, our TStringKeyHashTable would not perform in constant time.
And, as the size of the list grows, a simple binary search of a sorted
list would outperform it.

Conclusion
This article has presented an abstract class for designing just about
any kind of hash table a developer could desire. Hash tables are
extremely useful tools when dealing with a set of key/value pairs to
which we require frequent and fast access.

We demonstrated a concrete example of a hash table based on string
keys, and we also indicated that hash tables are not solve-all solutions;
rather, they need to be custom-built for each particular case. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\SEP\DI9909GD.

Gregory Deatz is a senior programmer/analyst at Hoagland, Longo, Moran, Dunst &
Doukas, a law firm in New Brunswick, NJ. His current focus is legal billing and case
management applications. He is the author of FreeUDFLib, a free UDF library for
InterBase written entirely in Delphi, and FreeIBComponents, a set of native
InterBase components for use with Delphi 3.0. These tools can be found at
http://www.interbase.com/downloads. He can be reached via e-mail at
gdeatz@hlmdd.com, by voice at (732) 545-4717, or by fax at (732) 545-4579.
Begin Listing One — Hash.pas
unit Hash;

interface

uses
SysUtils, Classes;

type
THashItem = class(TObject)
private

FHashIndex: Integer;
FNext, FPrev, // Global item list.
FBucketNext, FBucketPrev: THashItem; // Bucket list.
FKey, FValue: Variant;

public
property HashIndex: Integer read FHashIndex;
17 September 1999 Delphi Informant
property Key: Variant read FKey;
property Value: Variant read FValue write FValue;

end;

TBucket = record
Count: Integer;
FirstItem: THashItem;

end;

THashArray = array[0..0] of TBucket;
PHashArray = ^THashArray;

EHashError = class(Exception);

THashErrMsg =
(hKeyNotFound, hKeyExists, hIndexOutOfBounds);

TCustomHashTable = class(TObject)
private

FItems: THashItem;
FHash: PHashArray;
FHashCount: Integer;
function FindItem(const Key: Variant; bQuiet: Boolean;

HashVal: Integer): THashItem;
procedure HashError(const ErrMsg: THashErrMsg);
function GetValue(const Key: Variant): Variant;
procedure SetValue(const Key: Variant;

Value: Variant);
protected

function HashSize: Integer; virtual; abstract;
property Count: Integer read FHashCount;
property Size: Integer read HashSize;
property Value[const Key: Variant]: Variant

read GetValue write SetValue;
public

constructor Create; virtual;
destructor Destroy; override;
function HashFunc(Key: Variant): Integer;

virtual; abstract;
procedure AddItem(Key, Value: Variant);
procedure RemoveItem(Key: Variant);
procedure Clear;
function KeyExists(Key: Variant): Boolean;
function BucketCountByIdx(const Idx: Integer): Integer;
function BucketCountByKey(const Key: Variant): Integer;

end;

TStringKeyHashTable = class(TCustomHashTable)
protected

function HashSize: Integer; override;
public

function HashFunc(Key: Variant): Integer; override;
property Count;
property Size;
property Value; default;

end;

implementation

const
HashErrMsgs: array[THashErrMsg] of string =

('Hash key not found',
'Hash key already exists',
'Bucket index out of bounds');

// TCustomHashTable
constructor TCustomHashTable.Create;
begin

FItems := nil;
FHashCount := 0;
GetMem(FHash, Size * SizeOf(TBucket));
// Ensure that the buckets are zero-initialized.
FillChar(PChar(FHash)^, Size * SizeOf(TBucket), #0);

end;

destructor TCustomHashTable.Destroy;
begin

http://www.interbase.com/downloads

Delphi at work
Clear;
end;

function TCustomHashTable.FindItem(const Key: Variant;
bQuiet: Boolean; HashVal: Integer): THashItem;

begin
Result := nil;
if HashVal < 0 then

HashVal := HashFunc(Key);
if (HashVal < 0) then

begin
if (not bQuiet) then

HashError(hKeyNotFound);
end

else
begin

Result := FHash[HashVal].FirstItem;
while (Result <> nil) and (Result.Key <> Key) do

Result := Result.FBucketNext;
if (Result = nil) and (not bQuiet) then

HashError(hKeyNotFound);
end;

end;

procedure TCustomHashTable.HashError(
const ErrMsg: THashErrMsg);

begin
raise EHashError.Create(HashErrMsgs[ErrMsg]);

end;

function TCustomHashTable.GetValue(
const Key: Variant): Variant;

begin
Result := FindItem(Key, False, -1).Value;

end;

procedure TCustomHashTable.SetValue(
const Key: Variant; Value: Variant);

var
p: THashItem;

begin
p := FindItem(Key, True, -1);
if p <> nil then

p.Value := Value
else

AddItem(Key, Value);
end;

procedure TCustomHashTable.AddItem(Key, Value: Variant);
var

i: Integer;
hi: THashItem;

begin
i := HashFunc(Key);
if FindItem(Key, True, i) <> nil then

HashError(hKeyExists);
hi := THashItem.Create;
hi.FKey := Key;
hi.FValue := Value;
hi.FHashIndex := i;
// Insert hi at the beginning of the items list.
if (FItems <> nil) then

FItems.FPrev := hi;
hi.FNext := FItems;
FItems := hi;
// Insert hi at the beginning of its hash bucket.
if (FHash[hi.FHashIndex].FirstItem <> nil) then

FHash[hi.FHashIndex].FirstItem.FBucketPrev := hi;
hi.FBucketNext := FHash[hi.FHashIndex].FirstItem;
FHash[hi.FHashIndex].FirstItem := hi;
Inc(FHashCount);
Inc(FHash[hi.FHashIndex].Count);

end;

procedure TCustomHashTable.RemoveItem(Key: Variant);
var

hi: THashItem;
begin
18 September 1999 Delphi Informant
hi := FindItem(Key, False, -1);
// Remove hi from the items list.
if (hi.FNext <> nil) then

hi.FNext.FPrev := hi.FPrev;
if (hi.FPrev <> nil) then

hi.FPrev.FNext := hi.FNext
else

FItems := hi.FNext;
// Remove hi from its hash bucket.
if (hi.FBucketNext <> nil) then

hi.FBucketNext.FBucketPrev := hi.FBucketPrev;
if (hi.FBucketPrev <> nil) then

hi.FBucketPrev.FBucketNext := hi.FBucketNext
else

FHash[hi.FHashIndex].FirstItem := hi.FBucketNext;
Dec(FHashCount);
Dec(FHash[hi.FHashIndex].Count);
// Finally, free hi from memory.
hi.Free;

end;

procedure TCustomHashTable.Clear;
var

p: THashItem;
begin

FHashCount := 0;
FillChar(PChar(FHash)^, Size * SizeOf(TBucket), 0);
// Walk FItems and destroy all items.
p := FItems;
while (p <> nil) do begin

FItems := FItems.FNext;
p.Free;
p := FItems;

end;
end;

function TCustomHashTable.KeyExists(Key: Variant): Boolean;
begin

Result := (FindItem(Key, True, -1) <> nil);
end;

function TCustomHashTable.BucketCountByIdx(
const Idx: Integer): Integer;

begin
if (Idx < 0) or (Idx >= Size) then

HashError(hIndexOutOfBounds);
Result := FHash[Idx].Count;

end;

function TCustomHashTable.BucketCountByKey(
const Key: Variant): Integer;

begin
Result := FHash[HashFunc(Key)].Count;

end;

// TStringKeyHashTable
function TStringKeyHashTable.HashSize: Integer;
begin

Result := 256;
end;

function TStringKeyHashTable.HashFunc(
Key: Variant): Integer;

var
st: string;
i: Integer;

begin
st := Key;
Result := 0;
for i := 1 to Length(st) do

Inc(Result, Integer(st[i]));
Result := Result mod Size;

end;

end.
End Listing One

19 September 1999 Delphi Informant

In Development
Delphi 4 / CPU Window / Assembler

By Andre van der Merwe

4

Low-level Delphi
An Introduction to the Delphi 4 CPU Window

Working with Delphi at or near the machine-code level is not everyone’s idea of
fun. Why would you want to see how Delphi generates machine code? For some,

understanding how it works is reason enough. There are other more practical reasons
as well, some of which might be more applicable to you.
For instance, understanding the machine code
enables you to figure out exactly how Delphi han-
dles things normally hidden from view, such as
COM reference counting. Creating or evaluating
a protection scheme also requires a low-level
understanding of your code. Lastly, and possi-
bly most practically, sometimes low-level
debugging is the only way to find a bug.

To understand the material presented in this
article, you’ll need a basic understanding of
assembler. If you’ve previously used assem-
bler in DOS, you’ll soon (with a bit of prac-
tice) realize that using assembler under
Windows is much easier than it was under
DOS. This is because Windows provides
many basic functions (such as MessageBox),
whereas in DOS, each application would
need to have its own message box routine.

Low-level Programming Requirements
This article will demonstrate how to
use Delphi (specifically Delphi 4) to do
basic low-level work, and explain some
low-level structures. You don’t need any
application other than Delphi.
However, there are a few tools that can

make your life a lot easier if you’re going
to be doing much low-level programming.

A good hex editor is invaluable. And there are
many great shareware and freeware hex editors

around; take a look at http://www. winfiles.com
and http://www.nonags.com.

http://www. winfiles.com
http://www.nonags.com

The Delphi 4 CPU window is split into five panes.

A section from the disassembly pane.

Setting the breakpoint.

Figure 4: The disassembly pane after setting the breakpoint
and debugging.

In Development
For a fantastic introduction to assembler programming,
I recommend The Art Of Assembly Language
Programming by Randall Hyde [1996]. An online ver-
sion of this manuscript can be found at http://webster.
cs.ucr.edu/. It’s truly one of the best references you’ll
find, and you can download it for free. There are a few
other books on assembler out there, but they’re not
always easy to find.

Delphi 4’s CPU Window
Although Delphi 3 has a CPU window, it’s undocu-
mented. It’s also not nearly as powerful as the Delphi
4 CPU window. For this reason, it’s assumed that
you’re using Delphi 4 for the rest of this article.

Figure 1 shows the Delphi 4 CPU window, which is
split into five panes:
1) Disassembly pane
2) Memory dump pane
3) Register pane
4) CPU flags pane
5) Stack pane

To see the CPU window, you need to be debugging an
application. While in debugging mode, press
CAc or select View | Debug Windows | CPU.

The Disassembly Pane
Figure 2 shows a section from the disassembly pane.
This pane shows a line of Delphi code (bold to line 1)
followed by its corresponding assembler code (lines 2
through 6).

The following is a brief description of what the code
does. I’ll explain this in more detail later. Lines 2 and
3 move Form1 and TForm1 pointers into registers.
These are the two parameters in the Delphi call dis-
played on line 1. Line 5 moves the Self pointer
(referred to as the “this” pointer by C/C++ program-
mers) into the EDX register. Line 6 calls the
TApplication.CreateForm procedure.

Procedures
The easiest way to see how something will look in
assembler is to write it in Delphi and view the disas-
sembly. The example project, LowLevel.dpr, has a pro-
cedure named Procedure1, and an OnClick event that calls it:

procedure Procedure1(i1: Integer);
begin

MessageBeep(i1);
end;

procedure TForm1.but_CallListing1Click(Sender: TObject);
begin

Procedure1(MB_ICONEXCLAMATION);
end;

As you can see from the previous example, Procedure1 will be
called and will execute MessageBeep(MB_ICONEXCLAMATION).
If you place a breakpoint in the Procedure1 procedure (see
Figure 3), then debug the application, you’ll be able to view the
CPU window. The disassembly pane will look like the one shown
in Figure 4.

Figure 1:

Figure 2:

Figure 3:
20 September 1999 Delphi Informant
The entire procedure consists of three lines of assembler:

push EAX
call MessageBeep
ret

Remember that this procedure is called with a single parameter.
This parameter is then passed to the MessageBeep function.
Knowing this, we can assume the parameter for the MessageBeep
function has been passed by the calling procedure/function in

http://webster.cs.ucr.edu/
http://webster.cs.ucr.edu/

In Development
the EAX register. Figure 5 confirms this. (If you don’t feel this is
an obvious assumption, see the section titled “Calling
Conventions” later in this article. It should shed some light on
the subject.) So, all this procedure is doing is pushing the para-
meter that was passed to it and calling the MessageBeep function.

Figure 6 shows a flow diagram for the MessageBeep function.

From this example, you can see there are at least two ways of passing
parameters to functions/procedures. The first is by putting parame-
ters in registers, as used by procedures/functions calling Procedure1.
The second is by pushing parameters onto the stack, e.g. used when
calling MessageBeep.

There are advantages and disadvantages to both methods. There
are a limited number of registers, and only a few of them can be
used for passing parameters. Stack space isn’t unlimited, but it
offers a great deal more space than registers. However, using regis-
ters is a lot faster than using the stack. This is why Delphi uses
registers for Procedure1.

Functions
Functions are the same as procedures, except they return a value.
The following shows a function and an event handler that calls it:
21 September 1999 Delphi Informant

Figure 7: The assembly code for the function ...

Figure 8: ... and the event handler that calls it.

start

Get value from stack (pop)

Load associated sound file

Play sound file

stop
Figure 6: A flow diagram for the MessageBeep function.

Figure 5: This confirms that the parameter for the MessageBeep
function has been passed by the calling procedure/function in
the EAX register.
function Function1: Integer;
begin

Result := MB_ICONEXCLAMATION;
end;

procedure TForm1.but_Function1Click(Sender: TObject);
begin

MessageBeep(Function1);
end;

Figure 7 shows the assembly code for the function, and Figure 8
shows the event handler that calls it.

The function itself is very simple. The return value is simply put
into EAX. The event handler is only slightly more complex:
1) It calls the function, Function1, which returns the value in EAX;
2) it then pushes EAX (the value returned),
3) calls the MessageBeep function, and
4) returns.

Calling Conventions
Figure 9 shows the calling conventions that Delphi can use.

The default for Delphi is the register calling convention. The stdcall
calling convention is used by WinAPI calls, e.g. MessageBeep.

Parameter order. If a function was called with three parameters, say
Bla(p1, p2, p3), left-to-right order would mean that p1 was pushed,
then p2 was pushed, and finally, p3 was pushed. For a right-to-left
order, the sequence of pushes would be reversed.

Routine/caller performs cleanup. This indicates if the routine being
called removes parameters from the stack, or if the function doing
the calling cleans up the stack.

As you can see, only with the cdecl calling convention (used by
C/C++) does the caller do the clean up. This is what allows C++
start

call stdcall routine

continue do whatever

cleanup stack

return
stop

Figure 10: A routine where the called routine does the clean-up.

register Left-to-right parameter order.
Routine performs clean-up.
Parameters passed in registers.

pascal Left-to-right parameter order.
Routine performs clean-up.
Parameters not passed in registers.

cdecl Right-to-left parameter order.
Caller performs clean-up.
Parameters not passed in registers.

stdcall Right-to-left parameter order.
Routine performs clean-up.
Parameters not passed in registers.

safecall Right-to-left parameter order.
Routine performs clean-up.
Parameters not passed in registers.

Figure 9: The calling conventions that Delphi can use.

start

call stdcall routine

Cleanup stack do whatever

returncontinue

stop
Figure 11: A routine where the caller does the clean-up.

Figure 12: Type in Caption := '123', or Self.Caption :=
'123', and you get the same result.

Figure 13: The disassembly for the event handler.

In Development
functions to take a variable number of parameters. Figure 10
shows a routine where the called routine does the clean-up, e.g.
pascal. Figure 11 shows a routine where the caller does the clean-
up, e.g. cdecl.

If you look at these two figures, it’s clear why the cdecl calling
convention (see Figure 11) allows a variable number of parame-
ters, and the others make it more difficult (see Figure 10). In
Figure 10, the called routine does the clean-up, which means it
must “know” how many parameters to remove from the stack. In
Figure 11, the called routine does not have to know how many
parameters were passed. The calling function knows how many
functions it passed, so it knows how many to remove from the
stack during the clean-up.

That is not to say that the cdecl calling convention is better. It
forces the clean-up code to be put after every call to a function.
The other calling conventions only require that the clean-up
code be in one place: the function itself. As with most things,
there is a trade-off.

“Parameters (not) passed in registers” indicates whether the parame-
ters are passed in the registers, or on the stack.

The Self Pointer
In the discussion of Figure 2, there was a reference to the Self point-
er. This pointer is passed to functions and procedures that are mem-
bers of a class. Basically, the Self pointer is a pointer to the current
instance of the class.
22 September 1999 Delphi Informant
For example, in an event handler in TForm, you can type Caption
:= '123', which will change the form’s caption. You can also type
Self.Caption := '123', which is the same thing. The demonstra-
tion application does exactly this. You can see from the disassembly
(see Figure 12) that there is no difference.

The Self pointer allows the same code, in a class function or proce-
dure, to act on different instances of that class at run time. You can
have multiple instances of a TForm, and the Self pointer will
uniquely identify each of them.

The following code shows a class function that does the same thing
as Function1 (see Figure 7): return a sound to be played by the
MessageBeep function. It also shows an event handler that calls
Function1 and the class function just described:

function TForm1.ClassGetSound : Integer;
begin

Result := MB_ICONSTOP;
end;

procedure TForm1.but_CallClassClick(Sender: TObject);
begin

// Normal function.
MessageBeep(Function1);
// Function is a member of a class.
MessageBeep(ClassGetSound);

end;

Figure 13 shows the disassembly for the event handler. You can see
that there is an extra step:

mov eax, ebx

when the class member is called. This extra step is the passing of the
Self pointer in the EAX register.

Conclusion
If you’ve made it this far, you’re well on your way to understand-
ing low-level programming. In this article, I covered some basics
that will enable you to fiddle around with Delphi, and see how it
works internally. Start with a simple procedure and disassemble it
(with the CPU window). Then start moving on to more complex
procedures and functions. You will be amazed how much you can
learn. Enjoy! ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\SEP\DI9909AV.

Andre van der Merwe is a professional Delphi programmer and a big fan of
assembler. You may reach Andre via e-mail at dart@pobox.com.

23 September 1999 Delphi Informant

OP Tech
MDI / ActiveX / Delphi 3 and up

By Dan Miser

Figure 1: You receive this error m
use MDI in an ActiveX control.
MDI and ActiveX
Oil and Water Can Mix

Multiple document interface (MDI) applications have been a part of Windows for a
long time. Unfortunately, ActiveX has no concept of MDI. This can be easily demon-

strated by creating a simple project that has MDI forms. Figure 1 shows the result.
This makes it more difficult to convert your
existing MDI applications to be ActiveX com-
patible through the use of Delphi’s ActiveForms.
To make the transition from an MDI applica-
tion to an ActiveForm, you have two options:
Don’t use MDI; and take control of the form’s
creation process to circumvent MDI behavior.

The first option is reminiscent of the patient who
goes to his doctor and says: “It hurts when I do
this.” To which the doctor replies, “Then don’t do
that.” It may be fine advice, but seldom is it that
easy to avoid “doing that.” The second option pro-
vides these, and other, benefits: You can have an
ActiveX and a stand-alone version of your pro-
gram; or you share the code base among an
ActiveForm and an MDI application.

Getting Started
When creating an MDI application that will be
hosted in an ActiveForm, you cannot rely on, or
use, anything related to MDI. This includes ref-
erences to the Visual Component Library (VCL)
properties ActiveMDIChild, MDIChildCount,
and MDIChildren, or any API-level MDI mes-
sages. None of these will work properly in an
ActiveX control. If you absolutely must use
MDI-processing, you’ll have to isolate these calls
by checking if the application is being run in
ActiveX mode or executable mode. The easiest
way to accomplish this is to use a Boolean flag,
which we’ll cover later.

There are two form styles in the VCL that deal
with MDI forms:
fsMDIForm and
fsMDIChild. When you
set the FormStyle proper-
ty of a form to one of
these styles, the VCL per-
forms some magic to use
the Windows API to cre-
ate the MDI forms.

essage if you try to
Figure 2 shows the pertinent excerpt from
TCustomForm.CreateWindowHandle.

To allow your MDI forms to work under
ActiveX, set the form to fsNormal. Because the
CreateWindowHandle method creates the form
based on the current value of FormStyle, we’ll over-
ride this method and modify FormStyle before call-
ing the inherited method. We can control whether
we force the style to fsNormal by using a flag vari-
able. This variable is placed in the form’s interface
declaration, and will be set by calling a new con-
structor instead of the standard Create constructor.
Add the code shown in Figure 3 to each child form
that will be displayed in the ActiveForm.

When changing the form’s style to fsNormal, how-
ever, the child form will no longer respect the client
space of the main form, but will instead use all of
the main form’s space. This is troublesome if you
have controls like toolbars and status bars on your
parent form. To prevent this behavior, we’ll set the
parentage of the child forms to a Panel component
that will be placed on the parent form.

One last technique to help transition your MDI
application to an ActiveForm is the use of a proxy
form. This method allows you to create one
Delphi form that is responsible for all the other
Delphi forms. If you create a typical ActiveForm,
you’re actually creating a Delphi form that serves
as a placeholder for your visual interaction
between the ActiveForm and Internet Explorer.
Because this is a Delphi form, you can use it as a
parent to other “child” forms you create. A perfect
example would be the MDI-less forms we just cre-
ated. The FormCreate method for the main
ActiveForm is shown in Figure 4. Conrad
Herrmann first made this technique available on
his Web site shortly after the release of Delphi 3.
He also hosts other Frequently Asked Questions
for ActiveX problems; for more information visit
http://pw2.netcom.com/~cherrman/daxfaqs.htm.

http://pw2.netcom.com/~cherrman/daxfaqs.htm

procedure TCustomForm.CreateWindowHandle(
const Params: TCreateParams);

var
CreateStruct: TMDICreateStruct;

begin
if (FormStyle = fsMDIChild) and

not (csDesigning in ComponentState) then
begin

if (Application.MainForm = nil) or
(Application.MainForm.ClientHandle = 0) then

raise EInvalidOperation.Create(SNoMDIForm);
with CreateStruct do begin

szClass := Params.WinClassName;
szTitle := Params.Caption;
hOwner := HInstance;
X := Params.X;
Y := Params.Y;
cX := Params.Width;
cY := Params.Height;
style := Params.Style;
lParam := Longint(Params.Param);

end;
WindowHandle := SendMessage(

Application.MainForm.ClientHandle,
WM_MDICREATE, 0, Longint(@CreateStruct));

Include(FFormState, fsCreatedMDIChild);
end

else
begin

inherited CreateWindowHandle(Params);
Exclude(FFormState, fsCreatedMDIChild);

end;
end;

Figure 2: Relevant code from TCustomForm.CreateWindowHandle.

constructor TfrmStep1.CreateNoMDI(AOwner: TComponent);
begin

FNoMDI := True;
inherited Create(AOwner);

end;

procedure TfrmStep1.CreateWindowHandle(
const Params: TCreateParams);

begin
if FNoMDI then begin

FormStyle := fsNormal;
Visible := False;

end;
inherited CreateWindowHandle(Params);

end;

Figure 3: Code used to remove MDI-specific attributes from a form.

procedure frmMain.FormCreate(Sender: TObject);
begin

frmMain:=TfrmMain.Create(Self);
frmMain.Parent := Self;
frmMain.Align := alClient;
frmMain.BorderStyle := bsNone;
frmMain.Visible := True;
frmMain.Panel1.Visible := True;

frmContacts := TfrmContacts.CreateNoMDI(Self);
frmContacts.Parent := frmMain.Panel1;
frmContacts.Show;

end;

Figure 4: The FormCreate method for the main ActiveForm.

Figure 5: An MDI application in an ActiveX control.

1100 SStteeppss ttoo AAccttiivveeFFoorrmm CCoonnvveerrssiioonn
1) Create a new ActiveForm using File | New | ActiveX | ActiveForm.
2) Save this form in a sub-directory under your existing MDI application.
3) Add the existing MDI forms to the ActiveForm project using the Project Manager.
4) Add an invisible Panel component to your MDI parent form to act as parent to the

MDI child forms.
5) Add the code in Figure 3 to all MDI children.
6) Add the code in Figure 4 to the ActiveForm.
7) Make sure you create all the Data Modules and forms.
8) Ensure you aren’t using MDI-related properties or messages.
9) Ensure you aren’t using OnActivate and OnDeactivate events for the ActiveForm.
10) Compile, deploy, and enjoy!

— Dan Miser

OP Tech
Not So Fast
Now that we have the basic functionality implemented, there are a cou-
ple of caveats to ActiveForm application development you should know
about. First, the OnActivate and OnDeactivate events don’t get called
when using Internet Explorer 4.0. You can either move the contents of
these procedures to another method, such as OnCreate or OnShow, or
you can manually call the events as needed. Second, the ActiveForm
24 September 1999 Delphi Informant
doesn’t auto-create any forms. You must take control of this process by
creating secondary forms manually. A good place to do this is in the
ActiveForm’s OnCreate event. Also, items such as Data Modules don’t
get created automatically, so they must be created manually. You should
double-check the order that forms were auto-created in your stand-alone
application; if you try to use a form that hasn’t been created from anoth-
er form’s OnCreate event, an access violation will occur.

Conclusion
Using the techniques presented here, you can get an MDI applica-
tion converted for use within an ActiveForm in record time, and
with minimal problems (see Figure 5). By using an ActiveForm with
the functionality of your existing application, you can capture a
whole new segment of your market. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\SEP\DI9909DM.

Dan Miser is a long-time Delphi programmer and consultant, specializing in
multi-tier application design using MIDAS. He is active in the Borland news-
groups, where he serves as a proud member of TeamB (http://www.teamb.com).
Dan also finds time to write for Delphi Informant and speak at Borland confer-
ences. You can visit his Web site at http://www.execpc.com/~dmiser, or contact
him at dmiser@execpc.com.

http://www.teamb.com
http://www.execpc.com/~dmiser

25 September 1999 Delphi Informant

Columns & Rows
Oracle 7 / SQL

By Keith Wood

Operation Pu

TABLE ACCESS FULL Seq
TABLE ACCESS BY ROWID Ret

ID
INDEX UNIQUE SCAN Ret
INDEX RANGE SCAN Ret

AND-EQUAL Co
CONCATENATION Co
SORT ORDER BY Sor
SORT UNIQUE Sor
SORT JOIN Sor
SORT AGGREGATE Sor
SORT GROUP BY Sor
UNION ALL Co
MINUS Fin

set
INTERSECTION Fin

bet
VIEW Ret
FILTER Elim
MERGE JOIN Joi
MERGE JOIN OUTER Joi

out
NESTED LOOPS Joi
NESTED LOOPS OUTER Joi

out

Figure 1: Selected Oracle SQL o
Inside Oracle Queries
A Delphi Utility Gets Oracle to Explain Itself

Access to client/server databases is easy with Delphi. We can use SQL to retrieve and
manipulate just about any database on the market. Although just throwing together

a few SQL statements may provide the functionality we require, to make the application
perform in the real world, we need to understand what the SQL database engine is doing
with each statement.
With Oracle, it’s relatively easy to gain insight
into its internal processing by asking it to
explain how it gets our records. The utility
described in this article provides an interface to
this ability and makes it easier to see what’s hap-
pening. It allows us to test alternate strategies for
data retrieval, and provides easy access to the
structure of the database itself.

Oracle Internals
When Oracle processes a SQL statement, it strings
together a series of internal operations to efficient-
rpose Situation

uential full-table scan. no WHERE clause is u
rieve rows by internal row accessing through ind
(very efficient).
rieve rows via a unique index. a unique index can be
rieve rows via an index. a non-unique index c

of uniquely indexed v
mbine multiple index scans. accessing via indexes
mbine multiple index scans. accessing via an inde
t rows on column values. an ORDER BY clause i
t rows, eliminating duplicates. the DISTINCT keyword
t rows. preparing for a join.
t rows and group together. MAX, MIN, or COUNT
t rows and group together. a GROUP BY clause is
mbine two sets of records. the UNION keyword i
d the difference between two the MINUS keyword is
s of records.
d the rows in common the INTERSECT keywo
ween two record sets.
urn records from a view. a view is accessed an
inate rows from a view. a WHERE clause is us

n two tables. joining two tables wit
n two tables using an an outer join is reque
er join. out indexed fields.
n two tables. joining two tables on
n two tables using an an outer join is reque
er join. indexed fields.

perations.
ly achieve the required effect. To determine which
steps to follow, it first decides which optimizer to
use. Oracle 7 has three settings available:

a rule-based optimizer (RBO) that works from
syntactical rules;
a cost-based optimizer (CBO) that consults
statistics generated by the ANALYZE com-
mand to find the best access; and
a Choose option that uses the cost-based opti-
mizer if the tables have been analyzed, and the
rule-based optimizer if not.

The selected optimiz-
er parses the SQL
statement and deter-
mines which tables to
access in what order,
how to access them,
and how to combine
the resulting records.
The operations are
divided into several
categories, including
table, index and view
access, combining
index scans, ordering
and grouping rows,
and joining tables.
The more common
operations, and the
situations in which
they might be used,
are shown in Figure 1.

Some operations (e.g.
index scans) can
return data to the user
immediately while
continuing to process
the rest of the query.
Others (e.g. sorting
operations) require

sed.
exes.

 used for a WHERE clause.
an be used, or a range
alues is required.
connected by AND.
x on multiple values.
s used.
 is used.

 are used.
 used.
s used.
 used.

rd is used.

d in subqueries.
ed with a view.
hout indexes available.
sted on two tables with-

indexed fields.
sted on two tables with

Figure 3: The Explain SQL utility in action.

Figure 4: The Execution page.

Figure 5: The Tables page.

Columns & Rows
the entire set of records be available before they can start. This means
the result set can take longer to produce. Knowing which operations are
being used, and how they function, allows us to tune the queries for a
particular application.

Oracle Explains
To see what steps Oracle is taking when it processes a SQL state-
ment, it helpfully provides the EXPLAIN PLAN command:

EXPLAIN PLAN SET STATEMENT_ID = :statement_id
FOR <SQL statement>

where statement_id is a string literal used to identify this explana-
tion, and SQL statement is any valid SQL statement. This command
causes records to be inserted into a special table, whose fields
describe the operations applied to process the SQL statement. The
supplied ID is attached to each record belonging to this explanation
to uniquely identify them.

The structure of the table that Oracle uses is widely published, and can
usually be generated by running the utlxplan.sql script that comes with
Oracle (see Figure 2). By default, the table is named PLAN_TABLE.

Once the explanation is placed into this table, we can retrieve it and
view the results with the following SELECT statement:

SELECT DISTINCT
ID, OBJECT_TYPE, OPTIMIZER,
SUBSTR(LPAD(' ', 2 * LEVEL - 2) ||

OPERATION || ' ' || OPTIONS || ' ' ||
OBJECT_NAME, 1, 120) AS PLAN

FROM PLAN_TABLE
WHERE STATEMENT_ID = :statement_id

START WITH ID = 0
CONNECT BY PRIOR ID = PARENT_ID

AND STATEMENT_ID = :statement_id

where statement_id is set to the value used in the original
EXPLAIN command. This statement makes use of a couple of fea-
tures of Oracle SQL to order and format the explanation so that its
structure can be easily seen.

These two SQL statements, the EXPLAIN and subsequent SELECT,
form the basis of the utility program described in this article, allow-
ing us to peer inside the Oracle database and its SQL engine.

Program Structure
The utility program’s screen is divided into two areas (see Figure
3). The top panel allows us to enter the SQL query to be
explained, and an identifier to retrieve that. The query text can
be copied in from any text source via the Clipboard. Any value
can be entered for the identifier, and this can be set to automati-
cally increment by checking the box next to it. Doing this causes
a trailing numeric to be added to the identifier, and to be incre-
mented each time the Explain button is pressed. In a multi-user
environment, you should perhaps use your initials as part of the
identifier to avoid conflicts with other users of the database.
Below this area is a tabbed notebook showing various details
about the query or the database as a whole.

The first tabbed page displays the explanation of the query processing.
It lays out the operations that Oracle performs to produce the desired
output. The grid is filled when the Explain button is pressed. The
indentation of the execution plan steps indicates the relationships
26 September 1999 Delphi Informant
between the various elements. The innermost operations are per-
formed first, combined, and further manipulated by the outer steps.

The second page allows the entered SQL to be executed, display-
ing the resulting record set (if any), the time taken to retrieve
this output, and the number of records returned (see Figure 4).
This page allows us
to check that the
query performs what
we want, and to
empirically compare
the time it takes to
finish. However, sub-
sequent executions
of the query may
return reduced times
once the records are
cached.

Database information
is shown on the
remaining two pages:
Tables, which shows a
list of tables, their
fields and indexes (see
Figure 5); and Views,

Name Type

STATEMENT_ID VARCHAR2(30)
TIMESTAMP DATE
REMARKS VARCHAR2(80)
OPERATION VARCHAR2(30)
OPTIONS VARCHAR2(30)
OBJECT_NODE VARCHAR2(128)
OBJECT_OWNER VARCHAR2(30)
OBJECT_NAME VARCHAR2(30)
OBJECT_INSTANCE NUMERIC
OBJECT_TYPE VARCHAR2(30)
OPTIMIZER VARCHAR2(255)
SEARCH_COLUMNS NUMERIC
ID NUMERIC
PARENT_ID NUMERIC
POSITION NUMERIC
OTHER LONG

Figure 2: Oracle’s plan explanation table.

Figure 6: The Views page.

// Jump to the nominated table/index in the indexes view.
procedure TfrmExplain.JumpToIndex(sIndex: string);
var

i: Integer;
begin

i := slsIndexes.IndexOf(sIndex);
if i > -1 then

with trvIndexes do begin
Selected := TTreeNode(slsIndexes.Objects[i]);
if Selected.Level = 3 then { Index. }

TopItem := Selected.Parent.Parent
else { Table. }

TopItem := Selected;
pgcOutcomes.ActivePage := tabTables;

end;
end;

Figure 7: Locating and displaying the requested table or index.

// Load column details for the current table.
procedure LoadColumns(trnFields: TTreeNode);
begin

with trnFields, qryColumns do begin
Data := TStringList.Create;
ParamByName('TABLE').AsString := Parent.Text;
Open;
while not EOF do begin

// Add column data.
TStringList(Data).AddObject(

FieldByName('COLUMN_NAME').AsString,
TTableColumnDetails.Create(
FieldByName('DATA_TYPE').AsString,
FieldByName('DATA_LENGTH').AsInteger,
FieldByName('DATA_PRECISION').AsInteger,
FieldByName('DATA_SCALE').AsInteger,
FieldByName('NULLABLE').AsString));

Next;
end;
Close;

end;
end;

Columns & Rows
which shows a list of views on these tables (see Figure 6). These two
pages allow us to peruse the database structures to see what fields
and indexes are available for our use. In general, using an index
greatly enhances the performance of a query, so it’s useful to know
how we can access the data efficiently. Note that only the objects
owned by the user are shown.

To make it easier to work through a query explanation, the grid
containing the operations is linked to the Tables and Views
pages. Double-clicking on a step that references a table, index, or
view immediately takes us to that item on the appropriate page.
So, for example, we don’t need to search through the entire table
structure to find out what index SYS_C001234 is composed of.

On start up, the program requests login details from us. These are
stored in the Windows registry for use the next time the application
is run. A connection with the database is then established and load-
ing of the database structure commences. Once completed, we can
enter SQL statements of interest and have them explained to us.

Programming Efficiencies
There are several areas of the program that run quite slowly with-
out additional tuning. In particular, the tree views seem to slow
down exponentially as their size grows when they are sorted.
Similarly, searching through the hierarchy of a tree view for a
particular item isn’t rapid either. To overcome these deficiencies
and speed up the program, follow the steps described below.

Sorting within the tree views is unnecessary. Because the data they
contain is only loaded once and doesn’t change, it’s easier and
much faster to have the database order the records being loaded in
the first place. Then, we only have to read them sequentially and
populate the tree view.

To search the tree views for particular table, index, or view names,
we’d normally step through each node, and then recursively, through
all its children, until we arrived at the correct location. But a much
faster solution uses the abilities of a StringList to perform binary
searches on its elements and associate an object with each string value.
As we load the table, index, and view names, we also enter them into
two StringLists (one for each tree view). Attached to these entries are
references to the tree nodes that display them in the hierarchy.

When the time comes to jump to a particular table, index, or view,
we only have to ask the appropriate StringList to find the value in
question. Once located, we now have a pointer back to the corre-
sponding tree node and can make it the current node by setting the
Selected property of the tree view to it. To ensure it’s visible within
the tree view, we also set the TopItem property to scroll the entire
hierarchy. Finally, the page containing the view is given focus. The
code in Figure 7 shows this processing for the tables and indexes.

Data on Demand
One final area of increasing the performance of the program
involves retrieving and processing data only when, and if, it’s
required. For example, the program can display the fields for every
table. But most of the time, only a few tables would be looked at. It
wastes time and memory to load all the field definitions for every
table on the slight chance that someone might want to see them.

Instead, the program only loads the field definitions for those
tables the user specifically requests. Initially, the tree view is set up
27 September 1999 Delphi Informant

to contain only the nodes representing each table’s fields and
indexes, without storing all the subsequent details in memory.
When the Field entry is clicked in the tree view, we respond to the
selection by checking whether we have already loaded the field def-
initions for this table. If so, their descriptions are contained in a
StringList referenced by the Data property of the tree node.

If the Data property points to nothing, we go back to the database
and request the details about the fields for this table. From the
returned records, we generate the StringList and attach it to the tree
node via its Data property (see Figure 8). Again, we use the ability
of a StringList to associate an object with each value as we store the
various details for each field.

In either case, we now have a list of the fields and their details, and
can display them in the list view to the right of the tree. We estab-
lish the appropriate column headings, widths, and alignments before
adding the sub-items from the StringList’s associated objects.
Figure 8: Load field details into a StringList structure on demand.

Columns & Rows
Similar processing is performed when viewing the fields that make up
an index. In addition, the first two entries in the nodes’ extra details
are reserved for the uniqueness and current status of the index.

Object-oriented Persistence
Between sessions in the utility, various parameters are stored in the
registry: the login details (alias, user ID, and password) and position-
ing values for the form and its panels. To avoid having to code refer-
ences to the registry in several places, all access is encapsulated into an
object, TExplainParameters, which provides the required values as
properties. This allows us to hide the internal workings of these para-
meters and to shield the rest of the program from their idiosyncrasies.
If we later want to alter how the values are stored, we can do this
while retaining the same interface for the other modules. All the reg-
istry keys and entry names can be placed in this unit and made invisi-
ble to the outside world (that doesn’t need to know anyway).

This encapsulation also provides some security over manipulating the
values to be stored. One important example of this is the password used
to access the database. Storing this as plain text could be a security
problem, so the TExplainParameters object encrypts and decrypts this
value when transferring it to and from the permanent storage. Again,
encapsulation allows us to hide how this encoding is done from other
modules. (A simple substitution coding is used in this program, but
could easily be modified to invoke a more secure algorithm.)

To ensure the rest of the program has immediate access to these parame-
ters, an object of type TExplainParameters is created automatically when
the program starts. We must also free the object upon termination. Add
code to the initialization and finalization sections at the end of the unit
(invoked before and after other processing in the program, respectively).
A global variable, expParams, is declared in the interface section of the
unit to allow access to the object from other modules:

initialization
// Create global parameters object.
expParams := TExplainParameters.Create;

finalization
// Release global parameters object.
expParams.Free;

end.

Consider an example involving customers and their orders. These
two tables are linked via a customer number field. To retrieve the
total value of the orders for each customer, we might create a view
that performs this calculation on the orders table:

CREATE VIEW TOTAL_ORDERS_V
AS

SELECT O.CUSTNO, SUM(O.ITEMSTOTAL) AS ORDERSTOTAL
FROM ORDERS O

GROUP BY O.CUSTNO

This can then be combined with data from the customers table:

SELECT C.CUSTNO, C.COMPANY, C.STATE, O.ORDERSTOTAL
FROM CUSTOMER C, TOTAL_ORDERS_V O
WHERE C.CUSTNO = O.CUSTNO

Submitting this construct to Oracle results in the following steps:
1) SELECT statement; 2) Nested loops; 3) View
TOTAL_ORDERS_V; 4) Sort GROUP BY; 5) Table access full
ORDERS; 6) Table access by row ID CUSTOMER; 7) Index
unique scan PK_CUSTNO.
28 September 1999 Delphi Informant
This shows that the ORDERS table is accessed first by reading every
record (table access full). The records are then sorted into groups to
compute the required sum (sort GROUP BY). This forms the output
of the view TOTAL_ORDERS_V (view), which is combined in a
join (nested loops) that accesses the CUSTOMER table via the
unique index on the CUSTNO field (index unique scan), and hence
to the physical record (table access by row ID).

The use of a unique index in step 6 means direct access to the cus-
tomer’s details for each record in the orders view, with the nested
loop operation returning each combined record as it’s matched. But
the entire orders table must be scanned before its records can be
grouped and summed. Table access via indexes, or the row ID, pro-
vides the best performance (for online users), with nested loops join-
ing tables rapidly on further indexes. Full table scans and merge join
operations take longer.

For the program to run against any database it’s directed at, the
particular table structure that Oracle uses for its explanations
must be present. Embedded in the application is a query with the
SQL to create this table. During the logon process, the program
checks to see whether the table exists under its default name of
PLAN_TABLE. If it’s not already there, the query is executed to
generate it before proceeding with the rest of the program. As we
submit more SQL statements to be explained, the PLAN_TABLE
grows. To avoid having the table expand to ungainly proportions,
we must delete the entries we’ve placed in it. The application does
this when it’s closing and when we change from one database to
another.

The program remembers its position and size on the screen between ses-
sions, and recalls the locations of the divider bars between the various
panels within the application. These are saved in the registry when the
program is closed, but are reloaded on startup.

A Help file has been built and integrated with the application. An intro-
duction to the various Oracle internal operations is included. Each page
or panel in the program has been assigned a topic number, allowing con-
text-sensitive help to be shown when requested by pressing 1. Each of
the internal Oracle operations that appear in the explanation grid are
directly tied to their appropriate description in the Help file. To achieve
this, the program responds to changes in the user’s position in the grid.
The Execution Plan field is tokenized (split into separate words) and
used to decide which section of Help to display. The corresponding
topic number is then set into the HelpContext property for the page.

Conclusion
Developing client/server applications is easier with Delphi. But to get
the best performance out of the database, we need to tune it and the
SQL statements we use to access it. The utility presented in this arti-
cle provides access to Oracle’s ability to explain the execution path it
uses. Combining the results from this utility with an understanding of
the database itself can increase the performance of our programs. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\SEP\DI9909KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using INPRISE’s products with Turbo Pascal on a CP/M machine. Occasionally
working with Delphi, he has enjoyed exploring it since it first appeared. You can
reach him via e-mail at kwood@ccsc.com.

29 September 1999 Delphi Informant

New & Used

By Wes Peterson
DBISAM 1.12
Elevate Software Rewrites the Rules
of the Delphi Database Game

Since its introduction, Delphi’s superb integration with databases has been one of its
leading attractions. However, the Borland Database Engine (BDE) and Borland’s

desktop (or “local”) databases (dBASE and Paradox) have left a large niche in the market
for third-party databases. Most of these non-Borland efforts have aimed to eliminate the
need for the BDE with dBASE and/or to allow important non-Borland databases, like
Btrieve and Microsoft’s Jet, to be used with Delphi. Like everything else in computing,
each of these options offers opportunities — and a set of problems.
Some third-party solutions continue to use the
aging dBASE file format, and thus perpetuate
the need to define indexes on expressions, to
deal with deleted records that aren’t really delet-
ed, and to recover deleted record space. The
developer who chooses a Btrieve or Jet alterna-
tive is still faced with the licensing requirements
imposed by their respective vendors.

With DBISAM, Elevate Software has rewritten
the rules of the Delphi database game. DBISAM
is far more than another “me too” BDE replace-
ment. This review will detail several of DBISAM’s
most interesting features (see the sidebar
“DBISAM Features” for a complete list):

DBISAM compiles into your application’s EXE.
There are no DLLs or other vendor dependen-
cies to be considered in your distribution.
DBISAM’s footprint is small. It adds only
about 300KB to your application — far
smaller than the overhead of some user inter-
face or reporting libraries.
DBISAM is configuration-free and alias-free.
Every networked database application needs
an aliasing mechanism, but such a facility
needn’t be as burdensome as that imposed by
the BDE.
DBISAM includes native, engine-level sup-
port for the SQL SELECT statement — a
real boon when it comes to report writing.
DBISAM features DBSYS, a Database
Explorer-like utility. DBSYS is the DBISAM
“database administrator” application used to:
define, restructure, copy, rename, and empty
DBISAM tables; search, examine, and edit
data; repair corrupted tables; write, test, save,
and load SQL statements; and document
database structures.

Over the years, we’ve put up with some pretty
clunky database “admin” utilities. DBSYS is
refreshingly different. The user interface is clean
and intuitive, and the absence of bugs is refresh-
ing. Empty Table is a nice touch. Often, while
developing an application, we populate the data-
base with test data. Before distribution, however,
we want a set of pristine, empty tables. This isn’t
easy with some other databases. It’s just a mouse-
click away in DBSYS.

DBISAM’s file format is proprietary. While it bor-
rows best-of-class ideas from Paradox, FoxPro, and
others, a totally new format was the best way to
eliminate the baggage that attends each of the
“traditional” formats. Thoughtfully, DBISAM
includes a utility to transfer data from/to dBASE,
FoxPro, and Paradox files.

Unlike Jet, DBISAM doesn’t use a monolithic file
structure. Each table is stored in two or three
operating system files. Data records and indexes
are stored in DAT and IDX files, respectively. If
the table includes BLOb fields, they’re stored in a
BLB file. Using discrete files for each table has its
advantages and disadvantages. With discrete files,
database repair can be limited to the affected
table(s) and thus, be much faster than with a
monolithic file. Repair, by the way, is offered both
in DBSYS and at the application level with the
RepairTable method of TDBISAMTable.

New & Used
The main disadvantage of a discrete table format is the complexi-
ty it adds to distribution. DBISAM has another thoughtful fea-
ture that radically simplifies this issue: Reverse Engineering, a
DBSYS option, examines an existing DBISAM table and gener-
ates the Object Pascal code to create and restructure that table.
You copy the resulting code into your project, and your applica-
tion can create its own database at run time. How’s that for sim-
plifying distribution?

It seems no database application is ever finished. Enhancement
requests inevitably require changes to your database definition.
Migrating existing databases to newer versions has always been prob-
lematic, but since DBISAM tables can also include developer-
defined version information, your application upgrades can examine
that version information and use Reverse Engineering-generated
code to upgrade existing tables as needed.

In-memory Tables
In-memory tables are often overlooked, but provide an incredibly
powerful solution to several knotty database application issues.
Frequent, fast lookups are always needed in a modern database user
interface. Instead of your lookups going to disk for their data, you
can load the data once into an in-memory table. From that point
forward, your user interface can access that data with never another
peek at the disk.

In-memory tables are a great way to handle the conflicting require-
ments of time-consuming user data-entry processes and the need for
short database transaction cycles. When users are performing data
entry on a master-detail form, you usually don’t want to write
changes to the database until the user has finished and accepted the
entire form. Loading detail records into an in-memory table, per-
forming the edits there, then writing to disk only when the user fin-
ishes, allows for very brief transactions — or none if the user cancels
the operation.

Less important (now that DBISAM includes SQL), but still useful,
is the ability to use in-memory tables to simulate joins and to pro-
vide sort orders not present in the indexes defined in your database.
You can load your “result set” from several on-disk tables into an in-
memory table that includes the desired index, then base reports on
the in-memory table. DBISAM’s implementation of in-memory
tables is complete and elegant, differing from the BDE’s in several
important ways.

The BDE’s in-memory tables are cursor-based, meaning they exist
only as a cursor and cannot be shared or used by more than one
TTable component. DBISAM’s in-memory tables aren’t cursor-
based, but rather exist similar to a disk-based table in a virtual file
system attached to each session. You refer to DBISAM’s in-memory
tables just as a regular disk-based table. Multiple TDBISAMTable
components can reference the same in-memory table.

BDE in-memory tables don’t let you use BLObs and other features nor-
mally available in disk-based tables. DBISAM doesn’t distinguish
between a disk-based table and an in-memory table in this regard. You
can even use transactions against in-memory tables, query them using a
SELECT statement, or generate an in-memory table as the result set of
a SELECT statement. You can also stream in-memory tables to any des-
tination stream, which means you can store in-memory tables inside
BLObs in a DBISAM disk-based table. DBISAM’s in-memory tables
can be shared across multiple threads and are completely thread-safe. In-
memory tables are easily created with DBISAM’s Reverse Engineering.
30 September 1999 Delphi Informant
DBISAM’s in-memory tables are so useful that we employ them in
some of our non-DBISAM projects. For example, our work some-
times involves legacy databases over which we have no control of
database design or available indexes. Yet we need to extract and
report data in ways not foreseen by the original vendor. For such
tasks, DBISAM’s in-memory tables, by themselves, justify the price
of the entire package.

Using DBISAM
Using DBISAM is as easy, if not easier, than using other BDE-like
databases. The TDBISAMDatabase, TDBISAMTable, and
TDBISAMQuery components are the virtual equivalents of their
Delphi namesakes. Each is used in a manner identical to its
“native” counterpart, and DBISAM works seamlessly with the stan-
DBISAM Features

Compiles into the application’s EXE
Small footprint, around 300KB
Available for Delphi 1, 2, 3, 4 and C++Builder 3 with the
same set of functionality across all versions (Delphi 1 and
2 are “replacements” for the VCL DB units and hook into
the data-aware controls while Delphi 3 and 4, and
C++Builder 3 are TDataset descendants)
Does not pre-allocate large chunks of memory, only uses
memory as needed and frees the memory when done
Transparent single-user and multi-user usage, no special
setup needed to support multi-user use
Native, engine-level SQL SELECT support
Performance is exceptional with optimization of filtering
and SQL
Built-in repair facilities
Provides utility for transferring data from Paradox, dBASE,
and FoxPro formats
Provides utility for browsing, restructuring, updating, and
searching data files
Complete BLOb support, including configurable block sizes
Buffered transactions that allow data files to survive unex-
pected client workstation power-downs with little, or in
most cases, no corruption
Primary and secondary indexes
Complete filter support
In-memory data files with support for streaming
Partial index key searches and ranges
Ranges with accurate record counts
Auto-increment fields
Logical sequence numbers
Complete NULL support
Min/max and required validity checks
Default values
Complete free-space recycling
Index key compression
Read-only open support for CD-ROMs
Complete BCD support
Case-insensitive indexes
Password-protected encryption of data files
Unique secondary indexes
Complete international support for over 100 language
variations
User-defined version numbering of data files
User-defined semaphore locking

— Wes Peterson

New & Used
dard Delphi data-aware controls, as
well as with other third-party com-
ponents that connect to a
TDataSource (Orpheus,
ReportBuilder, etc.).

Where differences exist, they almost
always reflect additional DBISAM
capabilities, rather than roadblocks
to your usual practices. DBISAM’s
RestructureTable method, for exam-
ple, has extra parameters for user-
defined version information.

Stability in DBISAM appears very
good. As with any shared file data-
base, though, improper practices can
result in corruption. Resetting a
machine during a database update is,
naturally, a recipe for disaster (that
includes using Program Reset in the
IDE). DBISAM’s buffered transac-
tions can greatly reduce your applica-
tion’s exposure to corruption. We’ve
been using DBISAM since its beta

early last year and have never experienced data loss, even though we’ve
repeatedly violated the proscription regarding Program Reset in the
IDE. Fortunately, DBISAM’s repair facilities are effective, but no data-
base vendor has ever crafted a repair facility that can replace a rigorous
backup regimen.

Performance with DBISAM is very good. We haven’t done any for-
mal benchmarks, but our informal benchmark (how does it feel in a
real-world application?) gives DBISAM high marks. Indexed search-
es, even on filtered tables, appear to be as fast as with any other
database we’ve used. Record navigation in our user interfaces is crisp
and snappy, even on tables containing large image BLOb fields, and
even on “Dog Tester,” an aging 486/100 box we keep alive just to
see how bad our applications can be.

DBISAM uses bitmapped-filtering optimizations similar to those
of FoxPro’s Rushmore technology, but with an additional perfor-
mance-enhancing twist.

Documentation, Installation, and Support
Documentation for DBISAM consists of an extensive Help file,
the usual “ReadMe” example projects, and FAQs and tips articles
on the Elevate Web site. There is no hard-copy manual. As of this
writing, we rate DBISAM’s documentation somewhere between
adequate and good, but not complete. This isn’t because a hard-
copy manual is lacking (we’ve come to prefer online docs), but the
recent addition of SQL happened, seemingly, overnight and the
online Help doesn’t yet reflect the changes. Given our previous
experiences with Elevate, however, we’ll be surprised if this isn’t
corrected by the time this review goes to print.

Installation of DBISAM is straightforward, and the required steps
for each version of Delphi and BCB are thoroughly documented in
the ReadMe file.

Support for DBISAM is via e-mail only. We actually prefer e-mail
support, as long as the vendor is responsive. Forced to write out a
support inquiry, we often draft a more concise and ordered ques-

The DBISAM Database System is a pro-
prietary database system designed from
the ground up to merge the best features
of the various local database formats
available for the Delphi and C++Builder
developer. The DBISAM Database
System is targeted at the developer writ-
ing applications for single-user and multi-
user use with heavy distribution require-
ments (such as shareware or download-
able software), or for small in-house
installations on a LAN such as Novell
Netware, Windows NT, LANtastic, or
Windows 95 network. It supports Delphi
1, 2, 3 and 4, and C++Builder 3.

Elevate Software
168 Christiana Street
North Tonawanda, NY 14120

Phone: (716) 694-1578
Fax: (716) 694-5623
E-Mail: info@elevatesoft.com
Web Site: http://www.elevatesoft.com
Price: US$199
31 September 1999 Delphi Informant
tion than might be posed over the phone. Like the old adage says,
“Want a better answer? Ask a better question.” The potential weak
link in e-mail-only support is, of course, vendor responsiveness.
This is another area where Elevate is different. Virtually all our
questions have been answered the same day, often on weekends
(although weekend support isn’t promised). We’ve frequently
received answers within the hour.

To make things even better, DBISAM includes a “Customer
Support System.” This is a DBISAM database application that
includes all bug reports (and description of fixes). You cannot
only search the database before posing your inquiry, but you can
use this program to submit your problem reports to Elevate.
Elevate keeps the Customer Support database up-to-date and
downloadable on their Web site, making it easy to stay abreast of
changes and answers.

What’s Missing, What’s Wrong
As good as DBISAM is, nothing in computing is perfect. We don’t
think DBISAM suffers from any fatal flaws, but it’s only fair to
mention the significant bumps. In its brief year of public life,
DBISAM has matured quickly, and continues to be improved.
Elevate has been very responsive to enhancement requests, and to
the inevitable bug reports. Some of the enhancements have
required file format changes and, thus, required developers to con-
vert existing databases. Code change requirements for the user,
however, have been minimal.

We expect, in fact welcome, DBISAM’s continued evolution, and
accept that this will, from time to time, force us to make adjust-
ments on our end. Not all users will be comfortable with this. As of
now, DBISAM lacks stored procedures, batch moves, cached
updates, and support for referential integrity. Also, the SQL in
DBISAM is not a complete implementation. But it is adequate for
reporting needs.

Conclusion
Is DBISAM for you? If you’re looking for a small, fast, inexpensive,
royalty-free, single-user, and shared-file multi-user database — one
that eliminates the BDE and configuration hassles — DBISAM
merits your consideration.

For the cost of an Internet download, you can evaluate DBISAM
to your heart’s content. The evaluation version is the current and
complete package. Programs based on the evaluation version will
run outside the IDE (Delphi need not even be present). They
simply display a nag screen at startup. When run within the IDE,
there’s no nag screen. ∆

Wes Peterson is President of LexCraft, a consultancy based in Carmichael, CA.
LexCraft specializes in business database solutions with an emphasis on trade and
professional associations. LexCraft has been using DBISAM since its beta release
in the Spring of 1998. You can contact Wes at wpeterson@lexcraft.com.

http://www.elevatesoft.com

File | New
Directions / Commentary
The Delphi Toolbox: Testing and Debugging

Testing and debugging applications is important, regardless of the programming language. But what about testing
and debugging components? To test a component you must first build a test project that uses it, then try different

combinations of property settings. This can involve a lot of work. Fortunately, there’s a tool that can help automate this
process: reAct from Eagle Software. This month I’ll address testing and debugging components using reAct and Raize
Software Solutions’ CodeSite.
For testing, I chose one of the VCL components, TStringGrid. This
is how simple the process was. First, I clicked on New Test Program

(a reAct item) on the Component menu. When the Select Class for
Test Program dialog box came up, I checked Component is already

on the palette and selected TStringGrid in the Name combo box.
(Note: you can also test components that have not been installed
on the palette. However, since reAct depends on RTTI, it will not
be able to provide as much information as it can for an installed
component.) Then I clicked OK to display the Properties/Events to
Watch page, and made sure everything was checked (the default).
That’s all there was to creating the test program.

Now to run the program (see Figure 1). (I’m including the test
executable so you can get an idea of what it looks like; see end
of article for download details. Keep in mind that you won’t be
able to use the reAct Breakpoint Manager in the stand-alone test
Figure 1: The test program with the reAct property editor displaye

32 September 1999 Delphi Informant
program.) There are three windows in the reAct test program:
the test form itself (at first without the component on it); the
Component Inspector to the right, which enables you to create
the component and set properties; and an event log below,
which enables you to automatically keep track of various events
as you test a component. You have several options with logging:
You can log testing results to the reAct log window, to a file, or
even to CodeSite.

Now let’s see what kind of interesting behavior we can expose. On
the Component Inspector, click the Create button and experiment
with the TStringGrid ’s Options property of the newly created grid.
To change the various sub-properties, double-click the Options
property to bring up the reAct property editor. Find anything inter-
esting yet? OK, under Options, try setting RowSelect and ColMoving
to True and move some of the columns with the mouse; be sure to

move the right-most column to the left and
the left-most column to the right. RowSelect
and ColMoving work fine independently of
each other, but when you try putting them
together it’s a nasty brew.

We’ve located a bug, so what next? If it’s
in one of our own components we’ll want
to find the source and fix it. Let’s go
down that path. First copy the unit con-
taining the TStringGrid component
(Grids.pas) to the project folder. To get
the Grids.pas file linked to your code,
you’ll probably need to do a full build and
restart Delphi. You’ll want to set some
breakpoints and trace into the component
unit. You might consider tracing into the
MouseMove or MouseUp methods. At first
I thought the problem might be in the
MoveAndScroll method called in thed.

File I New
MouseMove method. I set several CodeSite messages within this
method, but found nothing problematic.

I then checked out the MoveColumn method: I put a
CodeSite.EnterMethod at the beginning, a CodeSite.ExitMethod at the
end, and tracked the values of ToIndex and FromIndex. While I was
getting close to finding the problem, I still wasn’t there. At least I
had eliminated some code that wasn’t problematic — a good debug-
ging approach in itself. Next, I searched for instances of goRowSelect
and found the following statement in an earlier method:

if goRowSelect in Options then
FCurrent.X := FixedCols;

There was no such similar check in this method, so I added it immedi-
ately before the following lines, adding appropriate conditional state-
ments and enclosing the existing code within a begin..end block:

if goRowSelect in Options then
FCurrent.X := FixedCols

else begin
MoveAdjust(FCurrent.X, FromIndex, ToIndex);
MoveAdjust(FAnchor.X, FromIndex, ToIndex);
MoveAdjust(FInplaceCol, FromIndex, ToIndex);

end;

This simple change fixed the cosmetic bug. Without reAct I would
have been unable to find the bug so easily. Without CodeSite I would
have been unable to eliminate certain areas of concern so quickly. With
reAct, once you’ve found a problematic combination of property set-
tings, you can save those settings for use in the next testing session. To
find out more about the powerful features of CodeSite, see my review
in the January, 1999 issue of Delphi Informant. In future columns we’ll
return to the Delphi Toolbox and examine additional Delphi tools and
techniques, such as profiling and memory management. Next month
we’ll present an interview with Ray Konopka. Until then ... ∆

— Alan C. Moore, Ph.D.

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\SEP\DI9909AM.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical
journals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly
sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	D C AL CODA Releases EditorPro 1.0
	Inner Media Ships DynaZIP 4.0 and Active Delivery 2.0
	DT Software Releases dtSearch 5.2
	Dart Announces New PowerTCP Tools
	ABACO Releases DbCAD dev 1.5
	Objective Announces Version 4.2 of ABC for Delphi
	Eytcheson Software Releases Multi-Remote Registry Change 3.0
	Res-cue Offers Res-cue Mate 1.04

	Delphi News
	Inprise and Microsoft Confirm Commitment of Inprise Tools for Windows
	Inprise Stockholders Elect New Board Member
	 Shaman Offers Complementary Solution to Microsoft SMS 2.0 Y2K Remediation
	Sun Selects VisiBroker Object Request Broker for CORBA Support

	On the Cover
	Working with Contacts
	Other Outlook Objects
	Conclusion
	Begin Listing One — Displaying Outlook objects
	Begin Listing Two — Searching for contacts
	Begin Listing Two — Searching for contacts new contacts
	Begin Listing Four — Reading Calendar folder

	Dynamic Delphi
	RDS Requirements
	Configuring the Server Data Source
	Coding the Client Interface
	Running the Application
	Conclusion
	Begin Listing One — RDS 2.0 Demonstration

	Delphi at Work
	Hashing
	Abstract Hash Table
	THashItem
	TCustomHashTable
	TCustomHashTable Properties
	Implementing a String Hash Table
	A Quick Example
	Don’t Take This Too Far
	Conclusion
	Begin Listing One — Hash.pas

	In Development
	Low-level Programming Requirements
	Delphi 4’s CPU Window
	The Disassembly Pane
	Procedures
	Functions
	Calling Conventions
	The Self Pointer
	Conclusion

	OP Tech
	Getting Started
	Not So Fast
	Conclusion

	Columns & Rows
	Oracle Internals
	Oracle Explains
	Program Structure
	Programming Efficiencies
	Data on Demand
	Object-oriented Persistence

	New & Used
	In-memory Tables
	Using DBISAM
	Documentation, Installation, and Support
	What’s Missing, What’s Wrong
	Conclusion

	File I New

