
1 September 1998 Delphi Informant

September 1998, Volume 4, Number 9

Cover Art By: Tom McKeith

ON THE COVER
6 The Best Just Got Better � Robert Vivrette
Mr Vivrette describes a good portion of the important changes made to the
VCL for Delphi 4, including a host of new UI capabilities such as action lists,
docking, owner-drawn menus, anchors, constraints, enhanced scroll bars,
and extended mouse control, i.e. support for that little wheel.

FEATURES
12 The API Calls
Delphi and TAPI: Part III � Major Ken Kyler and Alan C. Moore, Ph.D.
Kyler and Moore polish off their TAPI series by adding some features, and
then wrapping all the functionality into a non-visual VCL component you can
simply drop onto a form.

18 OP Tech
Procedure Variables � Bill Todd
Using procedure variables, you can call routines by assigning the address of
the routine to a variable, then using the variable to call the routine. Mr Todd
makes sense of this powerful, flexible technique.

22 On the ’Net
Multicasting � John Penman
Need to develop an Internet “push” application in Delphi? Mr Penman pro-
vides everything you need to get started — the background, the savvy, and
working client and server multicast programs.

31 Algorithms
The Shape of Data � Rod Stephens
This article demonstrates how to apply the method of linear least
squares to find a line or curve that best fits a set of points. It’s a bit
heavy on the calculus, but Mr Stephens makes it easy to follow.

36 In Development
Monitor Your NT Apps � Craig Dunn
Do you or your users need to know how your app is doing in the
field? Mr Dunn shows us how to put the Windows NT Performance
Monitor to work by creating a performance extension DLL.

REVIEWS
42 Async Professional 2.5

Product Review by Alan C. Moore, Ph.D.

47 ImageLib Corporate Suite 3.05
Product Review by Bill Todd

DEPARTMENTS
2 Delphi Tools
5 Newsline
50 From the Trenches by Dan Miser
51 File | New by Alan C. Moore, Ph.D.

2 September 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

devSoft Announces ICK 1.0

devSoft Inc. announced

the release of ICK (Internet
Commerce Kit) 1.0, a
developer’s toolkit for
secure access and manipula-
tion of Internet data. The
toolkit includes native
Internet and intranet devel-
opment components for
development environments,
including Delphi,
C++Builder, Visual Basic,
Visual C++, and others.

ICK includes an HTTPS
component for securely
transferring data and an
Radiant Releases RAD Ob

HREF Announces WebHub
XML component for parsing
and transformation of
retrieved data. Standard FTP
and HTTP controls are also
included, as well as a
NetDial control for manag-
ing dialup connections.

The ICK package comes in
three editions: ActiveX con-
trols, C++ classes, and native
Borland C++Builder VCLs.
The controls use internal
multithreading for all block-
ing calls to avoid “freezing”
during waiting calls. The
communication components
jects 1.3

 1.5
use Microsoft’s Win32
Internet library internally.
The controls include proper-
ties to enable their use in
environments that don’t sup-
port events, such as Active
Server Pages. All components
have intuitive interfaces,
complete Help files, and
sample applications.

devSoft Inc.
Price: US$245 per developer
(no royalties).
Phone: (919) 493-5805
Web Site: http://www.dev-soft.com
Radiant Data Systems
announced the release of
RAD Objects 1.3, a suite of
components created for
client/server developers using
Delphi and C++Builder.

Compatible with all
INPRISE and many third-
party controls, RAD
Objects 1.3 provides trans-
action management without
additional coding.
RAD Objects 1.3’s cache
table implementation allows
data to be cached locally
in a persistent cache by set-
ting a few properties. SQL
parsing enables SQL prop-
erty separation into individ-
ual SELECT, FROM,
WHERE, and GROUP BY
clauses.

Additional features
include Global Focus
Tracking and client/server-
friendly dbNavigator,
dbLookupCombo, and
dbLookupList controls
optimized to use very little
bandwidth.

Radiant Data Systems
Price: US$250
Phone: (888) 840-7550
Web Site: http://www.radiantdata.
com
HREF Tools Corp.
announced the availability of
WebHub 1.5, a VCL for
Delphi. New features benefit
Webmasters and VCL pro-
grammers during develop-
ment and “live” production,
enhancing security, perfor-
mance, and usability.

For Webmasters, WebHub
1.5 features an advertisement
rotation component; a securi-
ty component for managing
user names, passwords, and
account status for sites
requiring login/logout; a
debug mode for tracing
through WebHub-HTML
macro calls; and an HTML
editor with color syntax high-
lighting and code templates.

For VCL programmers,
WebHub 1.5 offers reusable,
“snap-together” panel tech-
nology for the creation of
custom Web application
servers with instant, full-
featured user interfaces; a
WebHub Wizard that creates
complete projects from
shared panels, forms, and
data modules; a SendFileIIS
method to make download-
able files available with
dynamic names and/or con-
tent for secure software deliv-
ery; enhanced security; trans-
parent support for cookie-
based session numbers; a
TWebdataform component
for automatic creation of
data-entry forms based on
database records; support for
HTTP head/get requests; and
dataset cloning for enabling
single-user coding techniques
in multi-user Web applica-
tions.

HREF Tools Corp.
Price: WebHub VCL Developer Package,
US$365 for a single developer; Hub
licenses, US$95 to US$1,955 per addi-
tional server, depending on number of
application instances.
Phone: (707) 542-0844
Web Site: http://www.href.com

http://www.dev-soft.com
http://www.radiantdata.com
http://www.radiantdata.com
http://www.href.com

3 September 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

R&E Releases Client Side Security 1.1

R&E Systems, Inc. has

released version 1.1 of Client
Side Security for Delphi 2
and 3 and C++Builder.
Client Side Security 1.1 is a
client-based, database-inde-
pendent security system for
developers and end-users.

Developers can create
demonstration systems that
terminate based on expiration
date, number of days, or num-
ber of iterations. Developers
can also make designated
application modules or func-
tionality invisible. At a later
time, the module or function-
ality can be sold to an existing
customer and made visible by
providing an unlock key.

In addition, developers can
set up end-user security and
FileNET Introduces Pana
sell it with the application.
End-user security then
becomes the responsibility of
the customer’s security admin-
istrator.

Client Side Security 1.1 is a
point-and-click development
environment that runs inde-
gon Capture
pendently of Delphi or
C++Builder and requires very
little coding.

R&E Systems, Inc.
Price: US$249; US$399 with source.
Phone: (515) 279-6223
Web Site: http://www.rnesystems.com
FileNET Corp. announced
Panagon Capture, its compo-
nent software for capturing
an organization’s documents
anywhere across the enter-
prise. Panagon Capture lever-
ages Microsoft component
and Component Object
Model (COM) technologies
to customize applications.

Panagon Capture software
provides components that
improve document capture
speed and efficiency, includ-
ing scanning, automated
batch and document separa-
tion, document assembly,
automatic indexing, bar-code
recognition, image enhance-
ment, and quality assurance.
It captures and stores all doc-
ument types, including
images, fax, text, HTML
forms, and video.

The software’s modular
design delivers a customiz-
able solution, allowing docu-
ment capture components to
be included or removed
depending on application
processing requirements. Its
architecture enables multiple
components of the same type
(such as scan, assembly, bar-
code processing, and index
processing) to be included
and operate in parallel to
improve document through-
put. Additionally, each
Panagon Capture component
can operate independently of
the document scanning sta-
tion to provide multi-phased
pipeline processing for high-
volume applications.

Panagon Capture’s architec-
ture is based on Microsoft’s
Object Linking Embedded
(OLE) automation technolo-
gy that coordinates the link-
ing of all Panagon Capture

components. The prod-
uct includes ActiveX
controls that allow
rapid development
using a range of devel-
opment tools, including
Delphi, Visual Basic,
and C++.

FileNET Corp.
Price: From US$1,000 to
US$25,000; tier-based on docu-
ment capture volumes.
Phone: (714) 966-3400
Web Site: http://www.
filenet.com

http://www.rnesystems.com
http://www.filenet.com
http://www.filenet.com

4 September 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Femte Gear Offers PixelPack

Femte Gear Internet

Software announced
PixelPack, a set of compo-
nents for Delphi 3 for creat-
ing on-the-fly HTML in
CGI applications. You can
draw a Web page using the
PixelPack components inside
the Delphi environment just
as you would normally create
forms and dialogs, and your
Web application is ready to
output the same pages as
HTML.

PixelPack offers complete
handling of input forms,
Delphi-compatible Help files
with examples, independence
from CGI-engines or other
packages, and the ability to
create custom components.

PixelPack components
include TPPDropdownList,
TPPForm, TPPImage,
Paul Mace Announces G

Ingeneering Introduces
TPPJavaApplet, TPPPanel,
TPPRadioButton,
TPPStandardComponent,
TPPString,
TPPSubmitButton,
TPPTemplate, TPPTextArea,
TPPTextInputField,
TPPCheckBox,
IF Control

Wanda the Wizard Wizard
TPPImageMap, TPPPage,
TPPTable, and TPPListBox.

Femte Gear Internet Software
Price: US$159.95
Phone: +45 43 66 18 09
Web Site: http://www.femte-gear.dk /
pixelpack
Paul Mace Software, Inc.
announced the MAS GIF
Control, an ActiveX control
that plays animated GIF con-
tent in executable applications,
PowerPoint 97 documents,
and any application that sup-
ports ActiveX. Offering fast
playback, minimal overhead,
accurate display, and a large
feature set, the control has the
ability to embed the animated
GIF file inside a document. It
supports the GIF87a and
GIF89a specifications, includ-
ing delay, inter-frame trans-
parency, and interlacing.

Designed to allow develop-
ers using PowerPoint — or
most OCX94 compatible
software — the ability to add
animated GIFs to their docu-
ments without any program-
ming or macros, the MAS
GIF Control can be pro-
grammed through Delphi 3,
VBA, Visual Basic 5.0, or
any container meeting the
OCX94-96 specification.

Paul Mace Software, Inc.
Price: US$59
Phone: (800) 944-0191 or
(541) 488-2322
Web Site: http://www.pmace.com
Ingeneering Inc. announced
Wanda the Wizard Wizard,
which allows developers to
build, run, and maintain wiz-
ards that walk Windows users
through complex procedures.
With Wanda, developers can

debug wizards using the run-
time emulator; link the run-
time engine (RTE) to their
applications; instruct the RTE
to run a wizard; and query the
RTE about user selections and
data entry items.

The royalty-free, run-time
engine works with Delphi,
Visual Basic, C/C++, and any
other language that can call a
DLL in a 32-bit environment.

Ingeneering Inc.
Price: US$199.95
Phone: (734) 662-4646
Web Site: http://www.ingeninc.com

http://www.femte-gear.dk/pixelpack
http://www.femte-gear.dk/pixelpack
http://www.pmace.com
http://www.ingeninc.com

5 September 1998 Delphi Informant

News
L I N E

Sep tember 1998

INPRISE Announces Borland Delphi 4

Borland International Stockholders Approve
Name Change to INPRISE Corp.
New York, NY — INPRISE
Corp. announced Borland
Delphi 4, a new version of its
rapid application development
tool for Windows. Designed
to help corporations deliver
large-scale “enterprise-class”
business applications, Delphi 4
integrates client, middleware,
and database development.
Delphi 4 includes one-step
support for CORBA and
COM, as well as the Microsoft
Transaction Server and the
Oracle8 database server.
Delphi is available in three ver-
sions: ClientServer Suite,
Professional, and Standard.

Delphi 4 enhancements
include MIDAS (Multi-Tier
Distributed Application
Services), which enables
organizations to communi-
cate and share enterprise
data through multi-tier
applications; the AppBrowser
IDE, which simplifies the
process of reading, writing,
and browsing code; an
advanced project manager,
which compiles projects to
multiple targets; new debug-
ging technologies, including
a module view, event logs,
INPRISE Expands Busines
data watch breakpoints,
debug inspector, local vari-
able inspection, integrated
DLL debugging, and remote
debugging; and language
enhancements, including
method overloading, dynam-
ic arrays, and 64-bit integers.

In addition, Delphi 4
includes enhancements for
Windows development,
including docking, toolbars,
and Windows 98 common
controls. Delphi 4 also
includes two Windows NT
services that allow developers
s Solutions Partner Progra

Baltic Solutions Acquires P
Guild’s Products
to build applications that run
in the background and auto-
matically open at the start up
of the operating system.

At press time, the estimated
street prices for Delphi 4 were
as follows: Delphi 4
Client/Server Suite,
US$2,499; Delphi 4
Professional, US$799; and
Delphi 4 Standard, US$99.95.

For more information, call
INPRISE Corp. at
(800) 233-2444 or visit the
INPRISE Web site at
http://www.inprise.com.
Scotts Valley, CA —
Stockholders of Borland
International, Inc. approved
a proposal to officially
change the name of the com-
pany to INPRISE Corp. The
vote was taken on June 5,
1998 at the company’s annu-
al stockholders’ meeting.

The new name reflects the
company’s transition from a
developer of desktop soft-
ware applications to a vendor
in the corporate market for
products and services used to
build and manage large-scale,
or “enterprise,” software sys-
tems. The stock symbol for
the company has changed
from BORL to INPR on the
National Market tier of the
NASDAQ Stock Market.
The name change does not
require current holders of
Borland stock to surrender
stock certificates. Instead,
when certificates are present-
ed for transfer, new certifi-
cates bearing the INPRISE
name will be issued.
m

rogrammers’
New York, NY —
INPRISE Corp. announced
new benefits and services
for members of its Business
Solutions Program (BSP),
which is designed to sup-
port commercial applica-
tion providers, tools ven-
dors, systems integrators,
and training companies in
offering enterprise comput-
ing solutions based on
INPRISE products.

INPRISE consolidated
and integrated the former
Visigenic VIP and Borland
partner programs. The new
BSP provides greater access
to technology, training,
information, and sales sup-
port. It also opens new
markets to partner organi-
zations, delivering
INPRISE’s CORBA tech-
nology to former Borland
partners and extending
development and manage-
ment tools to former
Visigenic partners.
The BSP is segmented by
partner type and level of
participation.

For more information and
directions on how to apply
to the INPRISE BSP, visit
http://www.inprise.com/
programs/BSP.
Klaipeda, Lithuania — Baltic
Solutions announced that it
acquired the DesignerForms
and Animated SystemTray
Icon products, which were
previously developed and mar-
keted by Programmers’ Guild.
Baltic Solutions will continue
to develop/support them in
the future.
Effective May 25, 1998,
sales, upgrades, and support
for Animated SystemTray Icon
and DesignerForms will be
supplied by Gintaras Pikelis of
Baltic Solutions.

For more information, visit
the Baltic Solutions Web site
at http://www.balticsolutions.
com.
JEDI Project Finds New Home
Keith Anderson, President of

AirSwitch Corp., announced that
the purescience.com server will be
going offline, so it’s time to move
all JEDI list accounts to the delphi-

jedi.org server. As you read this
message, you will no longer be
able to send mail to any JEDI

related lists on the
purescience.com server. The cor-
rect list addresses now take the

form JEDI@delphi-jedi.org,
JEDI-API@delphi-jedi.org, etc.
In addition, all LISTSERV com-

mands should be sent to the AIR-
SWITCH server, LISTSERV@

airswitch.com.
To subscribe to a list, send a

message to
LISTSERV@airswitch.com with a

message of SUBSCRIBE JEDI
and/or SUBSCRIBE JEDI-API. The

URL for the AirSwitch site is
http://www.airswitch.com, and
Keith Anderson can reached at

keith@airswitch.com.

http://www.airswitch.com
http://www.inprise.com/programs/BSP
http://www.inprise.com/programs/BSP
http://www.balticsolutions.com
http://www.balticsolutions.com

The Best Just Got Better
The Delphi 4 VCL

On the Cover
Delphi 4 / VCL

By Robert Vivrette

Figure 1: Buildin

6 September 1998 Delphi Informant
By the time you read this, Delphi 4 will be on store shelves. In the July, 1998
Delphi Informant, Cary Jensen gave us a great sneak peek at many of its

new features, but there are plenty more to discuss. This article will focus on
changes to Delphi’s Visual Component Library (VCL).
INPRISE has prepared a fairly basic list of
the things that have been changed in the
VCL. These include action lists, docking sup-
port, constraint resizing, and a few others.
However, there’s plenty they don’t mention,
and they’re just as handy to us hard-core
Delphi developers as the changes cited.

In this article, I’m going to run through
the changes to the VCL, including those
documented by INPRISE, as well as the
hidden gems. Please note that this article is
based on pre-release versions of Delphi 4.
Consequently, there’s always a possibility that
a feature described here may not make it into
g our action list example.
the shipping version of Delphi 4, or may not
work as described.

Action Lists
We’ve all run into this situation at one time or
another: You’re developing an application, and
have various ways to call a particular routine.
For example, you might have a Save Document

command under your File menu, as well as a
toolbar button that performs the same action.
Suppose you don’t have a document loaded,
rendering the Save Document command mean-
ingless. If you wanted to disable/gray-out the
menu item, you would also want to do the
same to the toolbar button. The problem might
be worse in circumstances where you have four
or five ways of accessing the same action. Before
Delphi 4, you would typically have to write a
procedure that would enable or disable all the
related buttons, menu items, check boxes, and
so on. A maintenance headache!

INPRISE’s solution was to create action lists.
In a nutshell, action lists are a way of tying
together controls that perform similar tasks.
Once they’re all tied together in this way,
making changes to the appropriate action list
item automatically passes the changes to the
components that are linked to that action.
For example, start a new application and add
a MainMenu component to the form.
Double-click the MainMenu component, and
add menu items. (I simply imported the File

menu template.) Then, add an ActionList
component to the form. The results will
resemble what is shown in Figure 1.

7 September 1998 Delphi Informant

Figure 2: The ActionList editor allo
action items and group them by ca

Figure 3: The properties of a
new TAction object displayed in
the Object Inspector.

Figure 4: Setting a MenuItem’s
Action property to the name of
the previously defined ActionItem,
actNewFile.

On the Cover
The objective of this example is to make the File | New

command use an action list item. By double-clicking the
ActionList component, you’ll see an ActionList editor that
allows you to enter various action items and group them by
category (see Figure 2). When you select New Action, the
Object Inspector will display the TAction object properties
(see Figure 3). For the purpose of our example, this action
will be responsible for the “New File” process in the com-
puter, so we’ll give the action item a name of actNewFile.
We’ll also define its Caption property as &New, and its
ShortCut property as CTRL+N.

Now we need to tell the File | New menu item to use this
particular action. Returning to the MainMenu Item editor
(double-click the MainMenu component), set this menu
item’s Action property to actNewFile (as shown in Figure 4).

If we run the application at this point, the New menu item is disabled and grayed-out
because we haven’t defined an action for this menu item.

Returning to actNewFile, we click on its Events tab and see that it has three properties:
OnExecute, OnHint, and OnUpdate. The OnExecute method is where we want the working
part of this action. It’s the code associated with the user creating a new file, regardless of
where in the application the user initiated the request. To keep things simple, I double-
clicked OnExecute, and entered a ShowMessage statement in the method template it created
(see Figure 5). This way, I will know when the action took place.

If you run the application now, you’ll see that selecting File | New triggers the associated
action, namely, showing the message we specified.

No big deal, right? Don’t worry, it gets better. Suppose you were to add Button and
CheckBox components to the form, and set their Action properties to actNewFile. As
soon as this is done, they immediately connect some of their primary properties to that
action. First, you’ll see that their captions are all the same (see Figure 6).

The real time savings occurs when you want to enable or disable some function in the
application. For example, assume that we don’t want to allow the user to create a new
file, and want to disable all the associated menu items, buttons, etc. Simple! All you
need to do is disable the action item (actNewFile) to which these controls are connect-
ed. By disabling this action, all controls using it as their action item will also be dis-
abled (see Figure 7).

Action lists can do a lot more. By setting an action item’s Caption, Checked, Enabled,
HelpContext, Hint, ImageIndex, ShortCut, and Visible properties, components that are linked
to that action item, and who share the same properties, will also reflect those changes.

Docking
Docking is a wonderful new mechanism that permits users to drag components on
a form, and dock them on some other region of the form. A good example of dock-
ing can be seen in the Delphi 4 IDE itself. Each of the toolbars at the top of the

ws you to enter various
tegory.
Figure 5: Entering a ShowMessage statement for the OnExecute method.

Figure 6: This form’s Button and CheckBox Action properties
are set to actNewFile, connecting some of their primary proper-
ties to that action.

On the Cover

Figure 7: By disabling actNewFile, controls that use it as their
action item will also be disabled.

Figure 8: Two Toolbar components in a Panel component on
a form.

Figure 9: Users can drag either Toolbar to another dock site
(another Panel in this case), ...
application can be dragged and docked to other positions
within the IDE’s main window. Microsoft Office 97 intro-
duced this kind of dockable toolbars. If the user drags the
toolbar outside of the allowable docking site, the toolbar
can become its own free-floating toolbar window. This
free-floating toolbar can then be docked back into the old
site — or any other location.

Support for this kind of docking has been added to Delphi
4. Although much of it will be handled automatically by
simply setting a few properties, there are a wealth of meth-
ods and events you can use to customize the behavior of
docking in your application. All descendants of
TWinControl can now act as docking sites, meaning they are
8 September 1998 Delphi Informant
locations where dockable controls can be attached.
Descendants of TControl can now act as dockable objects.

Let’s take a brief look at how docking works. Figure 8 shows
a small window with two toolbars. The beveled areas of the
form are ControlBar components that are used as a special
kind of docking site for Toolbar components. In this exam-
ple, the two ControlBar panels each have their DockSite
property set to True. The two Toolbars have their DragKind
property set to dkDock. When the application is compiled
and run, the user is able to drag either Toolbar to another
position dock site, or outside of both dock sites to become a
free-floating window (see Figure 9).

In this example, I used Toolbar and ControlBar components,
which behave a little differently as far as docking is concerned.
However, the principles apply across all descendants of
TWinControl (for dock sites), and TControl (for dockable con-
trols). For example, you could place a Panel on a form, set it as
a dock site, and then add a memo control telling it that it’s
dockable. The result will be a memo control that can dock and
align to the inside of the Panel, or can be removed and docked
elsewhere — or not docked at all (see Figure 10).

Figure 10: ... or outside of both dock sites to become a free-
floating window.

Figure 11: Delphi menus now feature owner-drawn sup-
port. This simple example paints each Fonts menu item
using the actual font.

On the Cover
As I mentioned, Delphi 4 support for docking provides
a great deal of control over docking behavior. Dragged con-
trols can query a potential dock site to see if it’s allowed to
be a child of that site (through the OnGetSiteInfo and
OnDockOver events). There are also events such as
OnDockStart, OnDockDrop, OnUnDock, and OnDockEnd
that allow custom behavior to occur at various stages of a
drag-and-dock process. You can even tell a control the par-
ticular class of TWinControl that can host it, if it’s not
docked anywhere, and is instead a free-floating window.

Owner-drawn Menus
Over the past few years, I’ve seen a lot of third-party code for
implementing owner-drawn menus. With Delphi 4,
INPRISE provides built-in owner-drawn support for both
TMainMenu and TPopupMenu, as well as the menu items
that reside within these menus.

To create an owner-drawn menu, simply start a new applica-
tion and drop a TMainMenu on the form. Next, set its
9 September 1998 Delphi Informant
OwnerDraw property to True. This property serves as a kind
of “master switch” that tells the menu’s associated menu
items that they need to measure and draw themselves.

Next, add a few menu items to the menu. For the purpose
of this example, I decided to allow these menu items to
show different fonts. To accomplish this, I made the cap-
tion of each menu item the name of a different font in my
system. Then, I tied all the menu items to the same
OnDrawItem event (located on the TMenuItem Events
tab), and added the following code:

procedure TForm1.DrawItem(Sender: TObject;

ACanvas: TCanvas; ARect: TRect; Selected: Boolean);

begin
with ACanvas do begin
FillRect(ARect);

Font.Name := (Sender as TMenuItem).Caption;

Font.Size := 8;

TextOut(ARect.Left + 2, ARect.Top + 2,

(Sender as TMenuItem).Caption);

end;
end;

When any of the menu items attempt to draw themselves,
they call this method. Doing so simply clears the space on the
menu item’s canvas using FillRect, then sets the font name
equal to the menu item’s caption. Lastly, we use TextOut to
write out the menu item’s caption. When you run this code,
the results will resemble Figure 11.

There is, of course, much more to owner-drawn menus. Each
menu item also has an OnMeasureItem event, allowing it to
specify its custom size. Also, each menu item has a new
Bitmap property that allows you to provide a small graphic
associated with that menu item. An ImageIndex property
allows a menu item to use a specific .BMP image maintained
by its parent TMainMenu or TPopupMenu.

Owner-drawn menus will make it much easier to add attrac-
tive, useful interfaces to Delphi applications. For example, if
you need to permit a user to choose a color, rather than
showing a menu with color names, you can make those menu
items owner-drawn, and draw them as color bars instead.

Anchors
The Anchor property is also new to Delphi 4, and is available
for all descendants of TControl. It’s used to specify how a con-
trol will position itself within its parent control when the par-
ent is resized. An Anchor property is a set of four Boolean val-
ues, one each for a control’s left, top, right, and bottom
edges. For each of a control’s four edges, if Anchor is set to
True, the control will keep that edge relative to the parent.

Without Anchor, if you drop a Panel on a form, and then resize
the bottom-left corner of the form, the Panel stays in place. This
is because its position is determined by the origin of the win-
dow, which isn’t moving. However, developers often need con-
trols to resize in specific ways to take advantage of a main form
that’s getting bigger or smaller. Using the Align property can

On the Cover

Figure 12: A Panel component with its new Anchor properties
set relative to the lower-right corner of the form (see Figure 13).

Figure 13: The result of resizing the form shown in Figure 12
up and to the left; the Panel keeps its position relative to the
lower-right corner of the form.

Figure 14: These TScrollBox components demonstrate some of
the new scroll bar properties.
sometimes solve this problem, but often, custom code must be
written for the form’s OnResize event to properly place controls.

In Figure 12, I placed a Panel on a form and set its akRight and
akBottom anchors to True, and the akTop and akLeft anchors to
False. The result of taking the lower-left corner of the form and
resizing it up and to the left is shown in Figure 13. As you can
see, the Panel maintained its position relative to the lower-right
edge of the form, i.e. according to its Anchor values.

Using Anchor, you can add some pretty interesting capabili-
ties that just aren’t available with the Align property.

Constraints
All descendants of TControl now contain a Constraints prop-
erty. This property holds four sub-properties — MaxHeight,
MaxWidth, MinHeight, and MinWidth — that define the
largest and smallest height and width to which the control
can be sized. In most cases, you’ll use this to control the
dimensions of a form. Although the capability applies to
many other controls, it’s more difficult to see it in action.

As a demonstration, place a Panel component on a form and
set its Height and Width to 200. Then set its MinWidth con-
straint to 100 and its MaxWidth constraint to 200. Next, add a
scroll bar to the form, and set its minimum value to 0 and its
maximum value to 300. On the scroll bar’s OnChange event,
set the Panel’s Width property to the current position of the
scroll bar. When the application is run, the Panel’s width
remains within these limits (as set by its constraints), even if
the scroll bar generates values below 100 and above 200.
10 September 1998 Delphi Informant
Scroll Bars
Speaking of scroll bars, a number of new properties have
been added to the scroll bars found in the TScrollBox com-
ponent, as well as on forms (the HorzScrollBar and
VertScrollBar properties). These scroll bars now have a Style
property that allows you to alter its basic appearance. The
ssRegular style uses the normal 3D appearance. The ssFlat
style shows the scroll bar only in a flat, 2D representation.
The ssHotTrack style is initially flat, but, as the mouse pass-
es over elements of the scroll bar (i.e. thumb track and
scroll buttons), these elements pop up into a 3D look.

In addition, you can now specify different-sized buttons or
thumb bars, and modify the color of the scroll bar track.
Figure 14 shows four TScrollBox components with some of
these properties set in different ways. Notice in the lower-left
example that the mouse cursor is over the thumb bar, and is
raised. This bar achieves this effect using its ssHotTrack style.

Extended Mouse Support
Some of the newer mice available for PCs include a wheel
between the right and left mouse buttons. Until now, this
added control to the mouse has gone unsupported. With
Delphi 4, however, there is now mouse-wheel support added
to forms and scroll boxes (technically, descendants of
TScrollingWinControl). There are now OnMouseWheel,
OnMouseWheelUp, and OnMouseWheelDown events that
allow interaction with these new mouse devices.

In addition, there is a global Mouse object (much like the
Screen object) that holds information relating to the mouse,
i.e. which window currently has the mouse capture, the posi-
tion of the mouse cursor, whether there is a wheel present, etc.

Multiple Monitor Support
Microsoft Windows 98 and Windows NT 5.0 will add support
for multiple monitors. Thankfully, Delphi 4 adds support for
the MultiMonitor APIs present in these new versions of
Windows. INPRISE has implemented these capabilities by
adding a Monitors property to the Screen global object. This

On the Cover
allows the user to query all the available monitors in the system,
and to see each one’s capabilities (dimensions, color depth, etc.).

When a form is created in Delphi, you can use its new
DefaultMonitor property to specify on which monitor the
form appears. Possible values for this property are:

dmDesktop: No attempt is made to position the form on a
specific monitor.
dmPrimary: The form is positioned on the first monitor
listed in the global Screen object’s Monitors property.
dmMainForm: The form appears on the same monitor as
the application’s main form.
dmActiveForm: The form appears on the same monitor as
the currently active form.

Additionally, the Position property of a form differentiates
between poScreenCenter and the new poDesktopCenter
value. With poScreenCenter, the form is positioned in the
center of the screen, but, in multi-monitor applications,
the form may be moved so that it falls entirely on a single
monitor. With poDesktopCenter, the form is positioned in
the center of the screen without making adjustments due
to multiple monitors.

BeforeDestruction / AfterConstruction
When working with Delphi versions 1, 2, and 3, some
developers were confused as to when they could safely set
properties in a newly-constructed object, or clean up
things before an object was destroyed. For example, when
developing a component, some properties — such as the
control’s initial width, or child controls in the component’s
Controls array — are not yet defined in a Create construc-
tor. Essentially, component developers needed a spot that
says, “Call me when you’re completely constructed and I
can access all your properties;” or the opposite: “Call me
just before you start destroying yourself.” Although there
were work-arounds, they were under-documented and
sometimes confusing.

INPRISE solved this problem in Delphi 4 by adding two
protected methods to the TObject class: BeforeDestruction and
AfterConstruction. BeforeDestruction is automatically called
immediately before an object’s destructor; AfterConstruction
is called immediately after an object’s constructor. Any classes
that descend from TObject can override these methods to
perform actions that shouldn’t occur in the constructor or
destructor. For example, custom forms generate OnCreate or
OnDestroy events by overriding these methods. INPRISE
indicates this is especially important for developers writing
components for both Delphi and C++Builder, to avoid prob-
lems with the differences in constructor and destructor
behavior between Object Pascal and C++.

Conclusion
While this article by no means presents all the new VCL
features of Delphi 4, it does hit many of the highlights.
The extensions to basic object classes, such as action lists,
constraints, anchors, and of course, docking, will help
11 September 1998 Delphi Informant
Delphi developers cut down on the amount of code they
need to maintain, while keeping up with new — and rapid-
ly changing — user-interface features. ∆

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@mail.com.

12 September 1998 Delphi Informant

Delphi and TAPI
Part III: Wrapping Up Telephony

The API Calls
Delphi 2, 3 / TAPI / Line Communications

By Major Ken Kyler and Alan C. Moore, Ph.D.

procedure Lin

dwParam1, d

begin

TapiMessage

with TapiMe

case dwMe

LINE_CA

begin
cas
.

L

L

.

Figure 1: We
dle the dwMe
In the first two articles of this series (July and August, 1998), we discussed
issues related to implementing telephony functionality using TAPI. In Part I,

we examined some of the basic TAPI functions in detail, demonstrating how to
use them to initiate and manage phone calls. In Part II, we showed techniques
for finding the capabilities of a TAPI implementation and monitoring changes to
the COMM port.
In this final installment, we’re going to do
quite a bit more. First, we’re going to add
some enhancements to our call manager: the
ability to take incoming calls, and the ability
eCallBack(hDevice, dwMessage, dwInstance,

wParam2, dwParam3 : DWORD); stdcall;

s.Clear;

ssages do begin
ssage of
LLSTATE:

// Reports asynchronous responses.
e dwParam1 of
..

INECALLSTATE_OFFERING:

begin
Add('LCB (LINE_CALLSTATE): The call is ' +

'being offered to the station.');

if dwParam3<>LINECALLPRIVILEGE_OWNER then
Add('Cannot accept call because we ' +

'don't have owner privileges .')

else
begin

Add('Trying to accept incoming call');

lineAccept(ACall, nil, 0);
end;

end;
INECALLSTATE_ACCEPTED:

begin
Add('LCB (LINE_CALLSTATE): The call was ' +

'offering and has been accepted.');

if MessageDlg('Accept the call?',

mtConfirmation, [mbYes, mbNo],

0) = mrYes then
lineAnswer(ACall, nil, 0);

end;
.. { other cases }

 need to modify the first two case blocks that han-
ssage parameter of the TAPI message.
to make calls from a pulse phone. Then, we’re
going to wrap the TAPI functionality we’ve
developed into a class, so it can be called easi-
ly from any application. Finally, we’re going to
transform our call manager into a non-visual
component, so it can be simply dropped onto
a form from the Component palette. Let’s
begin with the enhancements.

Answering Incoming Calls
There are several changes we must make to our
call-manager application to enable it to answer
incoming calls. First, we need to change the
dwPrivileges parameter of the LineOpen func-
tion from LINECALLPRIVILEGE_NONE to
LINECALLPRIVILEGE_OWNER. To pro-
vide flexibility, we must also add a new
Boolean parameter, AcceptCalls, to the
OpenLine method:

function OpenLine(var APort: THandle;

var OpenResult: Longint; AcceptCalls:

Boolean): string;

Now when we open the line and Windows
receives notification of an incoming call, it
will notify our application. We can respond
by answering the call or passing it to another
telephony-enabled application. Before we look
into how we answer the call (which is fairly
simple), we need to examine the notification
mechanism. Do you remember our callback
function? It’s the one we’ve been using since
the first article of this series:

The augmented call-manager interface, with pulse dialing and
all handling.

The API Calls
procedure LineCallBack(hDevice, dwMessage, dwInstance,

dwParam1, dwParam2, dwParam3: DWORD); stdcall;

When Windows senses an incoming call, it sets the first
parameter of this function, hDevice, to a handle it provides
for our use. Before we do anything, however, we must
ensure that we have owner privileges. To do this, we check
the value of the last parameter, dwParam3; it should be
LINECALLPRIVILEGE_OWNER. If it isn’t, we should
exit and let another installed telephony application manage
the call.

We’re going to do all this under the
LINECALLSTATE_OFFERING and
LINECALLSTATE_ACCEPTED cases of dwMessage (near
the top of the long case statement); this is the message
Windows sends via our callback function for an incoming call
(see Figure 1). Once we have the handle, and are sure we have
owner privileges, we can relate to the incoming call.

There are two TAPI functions we can use when an incoming
call is detected: lineAccept and lineAnswer. Both are declared in
the TAPI.pas unit as follows:

function lineAccept(hCall: HCALL; lpsUserUserInfo: LPCSTR;

dwSize: DWORD): LONG; stdcall;
function lineAnswer(hCall: HCALL; lpsUserUserInfo: LPCSTR;

dwSize: DWORD): LONG; stdcall;

There is a subtle difference between them. The first func-
tion, lineAccept, merely informs other applications that our
application is accepting responsibility for the incoming
call; the second, lineAnswer, physically answers the call by
asking the modem to take the phone off the hook and
begin tone negotiation for a data connection. Another
function of interest is lineHandoff, which provides other
applications the opportunity to deal with the incoming
call. The first two functions, lineAccept and lineAnswer, are
asynchronous (i.e. they don’t necessarily return
control immediately), while lineHandoff is syn-
chronous (i.e. it returns control immediately).

As shown in the previous case statement, we
can answer a call in the offering state
(LINECALLSTATE_OFFERING), or in the
accepted state (LINECALLSTATE_ACCEPTED).
To keep things simple, we’re going to work with
just the lineAnswer function, and not the
lineHandoff function. Within the offering case
block, however, you could give users an opportuni-
ty to accept a call (moving to the accepted block),
or simply pass it on to another application.

Because we’re dealing with simple voice calls, we
can set the last two parameters of lineAnswer to nil
and 0 (zero), respectively. The other functionality
we’ve added is the ability to make calls from a
phone that uses pulse dialing. Let’s see what makes
that possible.

Figure 2:
incoming c
13 September 1998 Delphi Informant
Pulse Dialing
By default, when modems dial a phone number, they gen-
erally send tones, not pulses. Most phones in the United
States use tones; in other parts of the world, however, pulse
phone systems (associated with rotary dial phones) are still
common. (Alan, who lives in rural Kentucky, happens to
have one of the older pulse lines, which was one of the
motivations for wanting to include this feature.)

If you examine our extended call manager, you’ll notice that
we added a couple of new check boxes; one to choose whether
to accept incoming calls, the other to choose between pulse
and tone dialing (see Figure 2). How does a modem know it’s
supposed to dial using pulses instead of tones? Simple! If the
dialable number starts with the letter “p,” it should be dialed
with pulses. Here’s the line of code that makes a pulse call:

ErrNo := LineMakeCall(FLine, @FHCall,

PChar('p'+PhoneNumber), FCountryCode, @TheLineCallParams)

We’ll examine this code in more detail when we discuss the
structure of our TAPI interface class — specifically, different
ways of triggering pulse or tone dialing. First, we need to dis-
cuss the general approach we took in building the class.

Doing It with Class
Even before we added the new features we’ve been discussing,
we transformed the code that accompanied the last article in
significant ways. We wanted to clearly separate the user inter-
face code from the TAPI-specific code in preparation for creat-
ing a TAPI component. In the previous two articles, we
demonstrated more than just the basic TAPI techniques; we
showed how to use Delphi to create a prototype of an applica-
tion that uses these techniques. Delphi is particularly suited for
creating such prototypes; the Delphi literature contains count-
less examples. While our call-manager prototype provides an
excellent vehicle for demonstrating basic TAPI functionality,

Figure 3: A simple program based on the TAPI class
and component.

The API Calls
it’s flawed in one important respect: it was bound to a particu-
lar Delphi form, and thus, to a particular user interface.

Because we want to use this TAPI functionality in multiple
applications, we jumped to the next level, wrapping those TAPI
elements we wanted to use in a reusable class and a non-visual
component. Each can be easily used in any application we
write. To demonstrate this, we’ve included four sample applica-
tions with this article: two that use the new TAPI class, and two
that use the new TAPI component. The first in each group is
the full-blown call manager we’ve been developing throughout
these articles (again, see Figure 2). The second is a simple dialer
without any of the frills (see Figure 3). You can download the
sample files, the class, and the component files they use; see end
of article for details.

If you compare the new files to those from Part II, you’ll
notice many changes. In particular, we’ve moved all the TAPI-
specific code to a TAPI-interface class, keeping only the form-
specific code in the test unit. Here are some of the highlights.

First, we changed ShutdownCallManager and LineCallBack
from methods to local routines. We changed the private
variables in the earlier version to properties in the inter-
face class. More importantly, we added TStringList para-
meters to most of the previous methods so we could send
information back to the form to display in the memo con-
trol. (By separating the interface class from the form, a
developer could also show this information in a RichEdit
control, a ListBox, or any control that uses a TStrings
derivative.) So, while we had many lines of code like this
in last month’s prototype:

Memo.Lines.Add('LineInitialize was successful');

they are now written as:

S := 'LineInitialize was successful';

...

InitResults.Add(S);

Where S is a local string variable and InitResults is the
TStringList parameter to the TapiInitialize method. It’s passed
back to the Form.Create method of the main calling unit in
the following statements:

if not TapiInterface.TapiInitialize(TempStringList) then
begin
{ Error handling code. }
Memo.Lines.Assign(TStrings(TempStringList));

Memo.Invalidate;

end;

Similar techniques are used in other routines. For example,
we use another local string list, InitResults, to store the results
when we call TapiInitialize.

There was one area where we wanted to add flexibility; we
didn’t want our new class to necessarily be bound to the
14 September 1998 Delphi Informant
form we’ve been developing. In our prototype, we do a lot
of communicating between the main form unit and the
TAPI interface unit. For example, whenever a new phone
number is entered, or a different line device is selected,
those changes are sent to the interface unit, and one of its
properties is changed. However, if we want to use a simpler
user interface, we’re stuck with the prospect of stripping out
a lot of unnecessary code. Fortunately, there’s an easier way.

By creating a new compiler directive, WithForm, and test-
ing for its presence, we can conditionally skip or include
the code in the TAPI interface unit that’s tied to the form
unit. Another advantage in dividing the class code from
the form code is that it makes creating the component eas-
ier. (As you’ll notice when we create the TAPI component,
we abandoned such checking, and simplified other end-
user details as well.)

Now, let’s take a look at what was involved in that task of
creating the new class. One of the issues we didn’t need to
worry about in the code we wrote previously was naming
conventions, but classes or components we wish to make
available to others must have unique names. We needed to
come up with something more original than “MyTapi!”
We decided to prepend “kkam” (our initials) to each class
and component.

In laying the groundwork to create a TAPI component, we also
added a number of properties to our class. Particularly with the
TAPI component, these properties make it easy to set a number
of values at design time. Let’s take a look at that component.

A TAPI Component
Separating the kkamTapiInterface class from the user inter-
face code improves the structure greatly, and makes it much
easier to read the code. There’s still a drawback, however:
We have to write too much code in our form unit. Instead,
we should take advantage of Delphi’s component architec-
ture. Having several public and published properties avail-
able makes our work considerably easier (see Figure 4).

Looking back at our earlier prototype, there’s also a certain
lack of elegance in how we sent strings of information back
to our form. Again, Delphi provides a better way to handle
this task: event properties. Most of the new Delphi events
we’ve written (see Figure 5 for a complete list) enable our
component users to easily access the string lists generated in

Property Scope Purpose

TAPI_Initialized public A Boolean value indicating if TAPI has been successfully initialized.
Dev public Integer identifying the line device the calling application and TAPI will use to make a call.
LineIsOpen public A Boolean property indicating if the line is open.
PhoneNumber public Stores the phone number string we get from the calling application.
MediaMode public A DWORD indicating the media mode.
AutoSelectLine published A Boolean property indicating if the application should automatically select a line.
AnswerCalls published A Boolean property indicating if the application wants owner privileges.
PulseDialing published A Boolean property indicating if the application will use pulse dialing.

Figure 4: Key properties of the kkamTAPI component.

Event Property Purpose

OnCreateCallManager Triggered when a call is initiated through creation of the call manager.
OnShutdownManager Triggered when the call manager is shut down.
OnDestroyCallManager Triggered when the call manager object is freed.
OnEnumerateDevices Triggered when TAPI determines available devices and their capabilities; can be used to

populate a combo box.
OnTriggerCommEvent Triggered when the CommThread or callback function detects a change in status that the

calling application might want to display.
OnTAPIInit Triggered when TAPI is initialized.
OnOpenLine Triggered when a communications line is opened.
OnDial Triggered when the phone is dialed (after the call manager is opened).
OnPhoneNumberChange Triggered when the stored phone number is changed by the application user.
OnChangeMediaMode Triggered when the media mode changes.
OnChangeBearerMode Triggered when the bearer mode changes.
OnCommThreadEvent Used to change the status of the CommThread externally (taSuspend, taResume, taTerminate).

Figure 5: Event properties of the kkamTAPI component.

The API Calls
our TAPI component. Let’s look at the anatomy of one of
these event properties and follow the process.

We’re going to work with one of the essential methods we
introduced in earlier articles, the EnumerateDevices method,
which collects and sends a list of available line devices back
to a combo box on our main form. By using an event prop-
erty, we give the component user the option of listing, or
not listing, these devices.

Here’s the process. First, we need to create a new type for all the
events that will send back string list information to the form:

type
TTapiUpdateEvent = procedure(
Sender: TObject; UpdateInfo: TStringList) of object;

Next, we need to declare instances of this type for each TAPI
event for which we want to collect information. Let’s follow
one example through the entire process. In the interface sec-
tion of our TkkamTAPI component declaration, we declare
the TTapiUpdateEvent as follows:

FOnEnumerateDevices: TTapiUpdateEvent;

In the protected section, we declare a method to trigger
this event as follows:

procedure TriggerEnumerateDevicesEvent; virtual;
15 September 1998 Delphi Informant
Now, the event will appear in the Object Inspector and will
be easily accessible to developers. Next, we declare the new
event property itself in the published section:

property OnEnumerateDevices: TTapiUpdateEvent

read FOnEnumerateDevices write FOnEnumerateDevices;

Now we need to tie things together. Here’s the method we
use to trigger this event:

procedure TkkamTAPI.TriggerEnumerateDevicesEvent;

begin
if assigned(FOnEnumerateDevices) then

FOnEnumerateDevices(Self, DeviceList);

end;

The final step is actually triggering the event code. Ironically,
we need to go back and change the structure of the
EnumerateDevices function again, returning it to its original
form with no parameters. Because there is no longer a need
to send a TStringList back to the form as a parameter (we’re
going to use our new event to do that), we simply make this
a local variable. Throughout the function, we build the
string list as we did in previous versions. However, when we
get to the last line, we insert the following code:

TriggerEnumerateDevicesEvent;

Now if a developer using our component wants to list these
results in a combo box, as we did in previous versions, he or

The API Calls
she can select the event in the Object Inspector and write
some code like this:

procedure TTapiCallManager.kkamTAPI1EnumerateDevices(

Sender: TObject; UpdateList: TStringList);

begin
cboxDevices.Items.Assign(UpdateList);

cboxDevices.Update;

end;

Let’s take a look at a somewhat different, but equally elegant,
event property — one that will manage the communications
thread we introduced in Part II.

Elegant Threads
You’ll recall that we used our thread class, TCommThread,
to monitor modem events and to reflect these in modem
status lights (bitmaps). Again, because we won’t neces-
sarily want to incorporate this in every TAPI application,
we have an excellent candidate for an event property.
While the process is similar to the one described for
the OnEnumerateDevices event property, the purpose
and the details are quite different. First, we need to
declare a new type, so that we can send a message
back indicating the type of COMM port activity found
in the thread:

TCommEvent = (tceDSR, tceDTR, tceCTS, tcePORT);

Next, we declare the event type, as before, using our new type
as its main parameter:

TCommEventProc = procedure(Sender: TObject;
ACommEvent: TCommEvent; AStatus: Integer) of object;

Again, we declare a private instance of our event class:

FOnTriggerCommEvent: TCommEventProc;

Finally, we declare the trigger procedure (in the protected sec-
tion) and the property itself (in the published section) in the
following two statements:

procedure TriggerCommEvent(Sender: TObject;

ACommEvent: TCommEvent; AStatus: Integer);

property OnTriggerCommEvent: TCommEventProc

read FOnTriggerCommEvent write FOnTriggerCommEvent;

Here’s the method of the TCommStatus class where we trigger
this event:

procedure TCommStatus.TriggerTapiCommEvent(Sender: TObject;

CommEvent: TCommEvent; Status: Integer);

begin
TkkamTAPI(TheOwner).TriggerCommEvent(Sender, CommEvent,

Status);

end;

When a CommEvent is detected in our thread, we need to
communicate that to the main TAPI class, which owns an
instance of the CommThread object. To pull this off, we
16 September 1998 Delphi Informant
need to get a pointer to the TkkamTAPI instance that the
TCommStatus instance can recognize. We do this by declar-
ing a private variable of type TComponent. Then, in
TCommStatus’ constructor (which has an Owner parameter,
of course), we include the following statement to keep a
copy of the owner:

TheOwner := Owner;

We’re still not quite finished. The
TCommStatus.TriggerTapiCommEvent method calls the
TkkamTAPI(TheOwner).TriggerCommEvent(Sender,
CommEvent, Status) method. The process involves a whole
chain of triggering methods. To understand what is actual-
ly happening, let’s look at the origin of the chain of events
in TCommStatus’ Execute method, and the final destina-
tion in the form unit that sets an event handler to use this
information. First, here is the Execute method (compare it
with the method we used last month):

procedure TCommStatus.Execute;

var
dwEvent: DWord;

dwStatus: DWord;

begin
dwEvent := 0;

SetCommMask(ThePort, EV_DSR or EV_CTS or SETDTR);

repeat
WaitCommEvent(THandle(ThePort), dwEvent, nil);
GetCommModemStatus(THandle(ThePort), dwStatus);

case dwEvent of
EV_DSR: TriggerTapiCommEvent(Self, tceDSR, green);

SETDTR: TriggerTapiCommEvent(Self, tceDTR, green);

EV_CTS: TriggerTapiCommEvent(Self, tceCTS, green);

end;
until Terminated;

end;

Here’s the event handler:

procedure TTapiCallManager.kkamTAPI1TriggerCommEvent(

Sender: TObject; ACommEvent: TCommEvent;

AStatus: Integer);

begin
case ACommEvent of

tceDSR: SetBitmap(DSR, AStatus);

tceDTR: SetBitmap(DTR, AStatus);

tceCTS: SetBitmap(CTS, Astatus);

tcePORT: SetBitmap(PORT, AStatus);

end;
end;

Note that while the CommThread class doesn’t manage the
PORT indicator, the callback function does; that’s why it’s
included. We’ve already described the elements that connect
these two methods.

To review the complex journey we’ve just finished, the
CommThread instance within our kkamTAPI component
monitors and reports on modem events, sending the informa-
tion back through the kkamTAPI component to the calling
application, which can then reflect those events in the
modem lights we introduced last month.

The API Calls
Before we leave this topic, we’d like to pass along one
caveat concerning the creation of custom events. In
Developing Custom Delphi 3 Components [Coriolis Group
Books, 1997], Ray Konopka states, “The single most
important issue regarding custom events is that events are
optional.” The event’s triggering code should not be
“dependent on the existence of an associated event han-
dler,” or on a user responding to the event in a certain
way. We take that approach here. While any form that uses
this component to initiate a phone call will call the Dial
method (which in turn will call the CreateCallManager
method), only those applications that assign an
OnCreateCallManager event will receive a string list of
results from this component.

As we pointed out earlier with our non-visual TAPI com-
ponent (and our TAPI class), we have many options. We
could recreate our fully functional call-manager application
by dropping the required visual component onto a form,
copying the Modem Lights enabling code, dropping our
new TAPI component onto the form, setting various prop-
erties, and calling various methods. If you study the sam-
ple projects we’ve included with this article, you’ll note
that this code is much simpler than any of the previous
form units we’ve presented. Our TAPI component is doing
its job, and doing it well!

We can get even simpler. Figure 3 shows another program
based on this component. This time, we used only four
visual components, our TAPI component, and set a few
properties. We’ve really reduced the amount of code we
have to write; we simply need to initialize TAPI, provide
handlers for our Dial and Hangup buttons, and shut down
TAPI. That’s it.

Conclusion
This series of articles is quickly coming to an end. Of
course, there is a great deal more we could do. In terms of
implementing the functionality in the TAPI.pas unit, we’ve
only scratched the surface. Fortunately, much of the addi-
tional functionality is similar in structure to what we’ve
been working with in this series. Note how easy it was to
add the new features we introduced in this article. We
could also wrap one of the two forms we’ve been working
with as a dialog box component.

We would like to acknowledge some of the source materials
and individuals that provided invaluable help in writing
this series of articles. First, the TAPI.pas conversion itself,
first written by Alex Staubo and modified by Brad Choate
as part of Project JEDI (see Alan’s “Symposium” column in
the December, 1997 Delphi Informant). In writing the
CommStatus thread, Keith Anderson (keith@airswitch.com)
donated the GetPortHandle function, which provided the
port handle we needed to pass to SetCommMask,
GetCommModemStatus, and any other low-level Comm
functions. In crafting the component, Alan found the
Component Development Kit (CDK-3 beta) indispensable
17 September 1998 Delphi Informant
in constructing the basic outline. Finally, of all the books
we studied, we found Communications Programming for
Windows 95 [Microsoft Press, 1996] by Charles A. Mirho
and Andre Terrisse especially helpful.

If you want to build a communications program from
scratch, we’ve provided the basic foundation. If you
would rather work with an existing library, we recommend
TurboPower’s Async Professional, which we both use
(see Alan’s review of the new version on page 42 in this
issue of Delphi Informant). In closing, we wish you the
best of communications. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\SEP\DI9809AM.

Major Ken Kyler is the Air National Guard Systems Analyst for the Defense
Integrated Military Human Resources System (DIMHRS). He has been program-
ming with Delphi for two years. He is also a free-lance technical writer with arti-
cles published in several Delphi magazines. You can reach him at
KylerK@PR.OSD.MIL.

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabili-
ties in applications, particularly sound and music. You can reach Alan on the
Internet at acmdoc@aol.com.

18 September 1998 Delphi Informant

Procedure Variables
Call Different Routines Dynamically at Run Time

OP Tech
Delphi / Variables

By Bill Todd

type
TSqu

var
Squa

I: I

functi
begin

Resu

end;

proced
begin

Squa

I :=

end;

Figure
P rocedure variables let you call procedures, functions, and methods by
assigning the address of the routine you wish to call to a variable, then

using the variable to call the routine. What makes this useful is that it allows
you to vary which procedure gets called at run time. To make things easy,
assume for the balance of this article that — unless otherwise stated — the
term “procedure” applies to procedures, functions, and methods.
Declaring Procedural Variables
The first step in working with procedural vari-
ables is to declare them, and the best way to
do that is by declaring a procedural type. The
following examples apply to procedures and
functions, but not to methods. For example:

type
TSomeProc = (SomeInt: Integer);

TSomeFunc = (SomeString: string): Boolean;

var
AProc: TSomeProc;

AFunc: TSomeFunc;

The first type, TSomeProc, defines a type that
points to a procedure which takes a single
integer parameter. The second, TSomeFunc,
defines a pointer to a function that takes a
single string parameter and returns a Boolean
value. While you can declare a procedural
areFunc = function(AValue: Integer): Integer;

rFunc: TSquareFunc;

nteger;

on SquareIt(AValue: Integer): Integer;

lt := AValue * AValue;

ure UseSquareIt;

reFunc := SquareIt;

 SquareFunc(2);

 1: Using a procedural variable.
variable directly (i.e. without first declaring a
type), you won’t be able to pass the procedur-
al variable as a parameter. For example:

var
SomeProc: procedure(ADate: TDateTime);

is a valid declaration for a variable that
points to a procedure that takes a single
TDateTime parameter. However, you can’t
pass this variable as a parameter to another
procedure because there’s no way to specify
the parameter type.

Moreover, while the declaration:

procedure MyProc(AProc: TSomeProc);

is valid, the declaration:

procedure MyProc(AProc: procedure(ADate:
TDateTime));

is not. Because one of the most useful ways
to use a procedural variable is to pass it as a
parameter, you’ll usually want to declare a
type for the variable.

Declaring Method Pointers
The procedural variables in the previous
examples contain a single 32-bit value that
is the memory address of the entry point of
the function or procedure to which the vari-
able points. A pointer to a method needs
more information.

procedure Form1.MyOnClickHandler(Self: TObject);

begin
MessageBeep(0);

end;

procedure Form1.AssignEvent;

begin
Button1.OnClick := MyOnClickHandler;

end;

Figure 2: Assigning a method pointer.

procedure Form1.SetHandler(Flag: Integer);

begin
case Flag of
1: Button1.OnClick := ClickHandler1;

2: Button1.OnClick := ClickHandler2;

3: Button1.OnClick := ClickHandler3;

else
Button1.OnClick := nil;

end;
end;

Figure 3: Changing event handlers at run time.

OP Tech
Because a method is part of an object, the compiler not only
needs to know the address of the method, but also the address
of the specific instance of the object whose method is being
called. Therefore, two 32-bit addresses are required for a
method pointer. The first contains the address of the method,
and the second contains the address of the instance of the
object. You tell the compiler that you’re declaring a method
pointer by adding the keywords of object to the end of the
declaration. To convert the declaration shown earlier from a
procedure pointer to a method pointer, change it as follows:

type
TSomeProc = (SomeInt: Integer) of object;
TSomeFunc = (SomeString: string): Boolean of object;

Using Procedural Variables and Method Pointers
To use a procedural variable, assign the procedure to which you
want it to point to the variable (see Figure 1). The procedure
UseSquareIt first assigns the address of the function SquareIt to
the procedural variable SquareFunc, and then uses the variable to
call the function. Once you have assigned the value of a proce-
dure to a variable, you call the procedure by using the variable
name exactly as though it was the name of the procedure.

Using a method pointer is almost identical. The best examples
of method pointers in Delphi are the events that are part of
most Delphi components. The events that appear on the
Events page of the Object Inspector in Delphi are nothing
more than properties whose type is a method pointer.
Consider the OnClick event handler of a button. If you look
at the events for the TButton class in the online Help, you’ll
see that the OnClick event is defined as:

property OnClick: TNotifyEvent;

so this “event” is simply a property named OnClick whose
type is TNotifyEvent. If you look in the Classes unit in the
VCL source code, or at TNotifyEvent in the online Help,
you’ll find it’s declared as:

type
TNotifyEvent = procedure(Self: TObject)

of object;

so TNotifyEvent is the name of a method pointer type that
points to a method, which is a procedure, and takes a single
parameter, which is a pointer to an object of type TObject, or
one of its descendants.

If events are really just properties, why do they appear on the
Events page of the Object Inspector instead of the Properties
page? The Object Inspector displays any property whose type is a
method pointer on the Events page, and all other properties on
the Properties page.

Because an event is really a method pointer, the code in Figure 2
shows how to assign a value to a method pointer, assuming a
form, Form1, contains a button, Button1. This code works
19 September 1998 Delphi Informant
because AssignEvent is a method of Form1, and both the button
and the method MyOnClickHandler are part of the TForm1 type
declaration. If AssignEvent was not a method of Form1, the
assignment would have to be changed to:

Form1.Button1.OnClick := Form1.MyOnClickHandler;

The fact that events are method pointers is very powerful; it
means you can change the event handler that’s assigned to any
event any time you want to while your application runs. You
can also temporarily disconnect an event handler so that no
code is executed when an event occurs, as shown in Figure 3.
If the value of Flag is anything other than 1, 2, or 3, the
OnClick event (which is really a method pointer) is set to nil
so that no event handler will be called when the button’s
OnClick event fires.

Normally, when a procedural variable appears in a statement,
the compiler assumes you want to call the procedure to which
the variable points. As you’ve seen in the preceding examples,
this is not true when the procedural variable appears on the
left side of the assignment operator. When a procedural vari-
able appears on the left side of an assignment, the compiler
knows that the right side of the assignment must supply a
procedural value (a pointer to a procedure).

However, there are some cases where the compiler cannot tell
what you want to do. Consider the following code:

type
TMathFunc = function: Integer;

var
SquareFunc: TMathFunc;

procedure CompareIt;

begin
if SquareFunc = SquareIt then

MessageBeep(0);

end;

type
TRptProc = procedure(Params: Variant);

procedure RunReport(

PreProcessing, PostProcessing: TRptProc;

PreParams, PostParams: Variant);

begin
RptDlg := TRptDlg.Create(Application);

try
with RptDlg do begin
ShowModal;

Rpt.Copies := StrToInt(CopiesEdit.Text);

Rpt.StartPage := StrToInt(StartPageEdit.Text);

Rpt.EndPage := StrToInt(EndPageEdit.Text);

if Assigned(PreProcessing) then
PreProcessing(PreParams);

Rpt.Print;

if Assigned(PostProcessing) then
PostProcessing(PostParams);

end;
finally
RptDlg.Free;

end;
end;

Figure 4: Passing procedures as parameters.

OP Tech
This code raises a question. Does the author want to call the
function pointed to by the procedural variable SquareFunc,
and call the function SquareIt and compare the values
returned by the two functions to see if they’re equal? Or does
the author want to compare the address of SquareIt to the
address contained in SquareFunc to see if the procedural vari-
able SquareFunc points to the function SquareIt?

The compiler will, in fact, call both functions and compare
the returned values. If you want to compare addresses,
change the code to:

if @SquareFunc = @SquareIt then
MessageBeep(0);

The “address of” operator, @, tells the compiler to convert
the argument to a pointer instead of calling the function. If
you need to get the memory address where the procedural
variable resides, use @@, e.g. @@SquareFunc.

Procedural variables are assignment compatible if all the fol-
lowing conditions are met:

Both must have the same number of parameters.
Both must have the same calling convention (pascal,
cdecl, stdcall, and safecall).
The parameters in corresponding positions must have the
same type.
For functions, the return values must have the same type.

Procedure variables and method pointers are never compati-
ble. Additionally, the constant nil is compatible with any pro-
cedural variable or method pointer.

Other Uses
How else can you use procedural variables? Suppose you
need to create a generic way for users to run reports in your
program. You would like to display a dialog box that
prompts the user for the starting and ending page number,
the number of copies, and whether to send the report to
the screen or the printer.

That part is easy. But what if some of your reports require
some code to be run before the report is printed, and some
require code to be run after the report is printed? Suddenly,
the routine isn’t generic anymore.

A solution to the problem is to pass the pre- and postprocess-
ing routines as procedural variables (see Figure 4). This proce-
dure takes four parameters:
1) the procedure to call before the report is run,
2) the procedure to call after the report is run,
3) the parameters for the preprocessing procedure, and
4) the parameters for the postprocessing procedure.

For flexibility, a single variant is used as the parameter for
both the preprocessing and postprocessing routines. Because
a variant can also be an array of any type (including variant),
it can be used to pass any number of values of any type, so
20 September 1998 Delphi Informant
that all of the pre- and postprocessing routines don’t have to
have the same number and type of parameters.

The procedure creates the dialog form and shows it modally.
When the user closes the dialog box, the values from the dia-
log box’s edit controls are assigned to the report object’s prop-
erties. Next, the statement:

if Assigned(PreProcessing) then
PreProcessing(PreParams)

calls the preprocessing procedure, if there is one. The
Assigned function returns True if the procedural variable
PreProcessing isn’t equal to nil, and False if it’s equal to nil.
Finally, the report is printed and the postprocessing rou-
tine, if any, is called.

This technique can be used to make many routines generic that
otherwise could not be. Another example is a custom file import
routine that could be made generic, except that the structure of
the table the data is imported into is not the same. The solution
is to load the values from the input record into a variant array. A
procedure variable that points to a routine that will insert the
imported values into a table is passed as a parameter to the
import routine and the import routine calls it, passing the vari-
ant array that contains the imported values as a parameter.

Yet another example would be to make the sorting routines
from Rod Stephens’ article “Sorts of All Types,” in the
January, 1998 Delphi Informant, more flexible. Suppose
you want to sort arrays of Pascal records. You can modify
any of the sort routines to do this, but now they are not
generic (because you’ll have to change the code that com-
pares members of the array to use the appropriate field in
the particular record to determine which array element is
greater). The solution is to pass the sort routine a proce-
dural variable that points to a function that returns -1 if

OP Tech
the first record is less than the second, 0 if they are equal,
and 1 if the first record is greater. Now all the code specific
to the array being sorted is isolated in the function that is
passed to the sort routine.

Conclusion
Procedure variables and method pointers will let you change
the routine that is called by your code dynamically at execution
time. This lets you control which event handler responds to
any event, at any given time, and allows you to write generic
routines in many situations where you otherwise could not. To
learn more about procedural variables, see chapters 4, 5, and 6
in the Delphi 3 Object Pascal Language Guide. ∆

Bill Todd is President of The Database Group, Inc., a database consulting and develop-
ment firm based near Phoenix. He is co-author of four database programming books,
including Delphi: A Developer’s Guide [M&T Books, 1995] and Creating Paradox for
Windows Applications [New Riders Publishing, 1994]. He is a member of Team Borland,
providing technical support on the Borland newsgroups, and has been a speaker at every
Borland Developers Conference. He is also a Contributing Editor to Delphi Informant. He
can be reached at BillTodd@compuserve.com or (602) 802-0178.
21 September 1998 Delphi Informant

Multicasting
When You’d Rather Push Than Pull

On the ’Net
Delphi / Internet

By John Penman

Figure 1: Ske

22 September 1998 Delphi Informant
Push media is one of the hottest topics on the Internet. Much of it is market-
ing hype; however, the technology that lies behind the hype — multicast —

is solid, practical, and ready now.
As I write this, most content providers use
point-to-point (i.e. unicast) to push media.
For example, when you use FTP, you are
using unicast to download a file sequentially
from the server. There may be other users
waiting in the queue to download the same
file. Some content providers are using unicast
to push data to each client (there may be
thousands) one by one. Obviously, this can
take up considerable bandwidth to propagate
the same data.

Conversely, multicast is bandwidth-friendly
because it provides content to a group of
clients at the same time. The only require-
ment for clients is to “tune in” to receive
tch of how multicast works (using a radio analogy).
the content. The standard analogy is that
of a radio station that transmits its pro-
grams to thousands of listeners at the same
time. In a similar way, multicast enables
the data to be broadcast to many users at
once (see Figure 1).

So multicast is the enabling technology
that allows the sender to “push” data to
receivers. This is opposite behavior of using
our Web browsers to retrieve, or “pull,”
information from the Internet. Moreover,
receiving information this way is better
than receiving it by radio or TV, because
you can customize how you want to receive
the information.

There are two data propagation models for
multicast: one-to-many and many-to-many.
Examples of the one-to-many model are:

software updates
stock exchange news updates
weather forecasts
real-time measurement from a single
source to multiple recipients
database synchronization

Examples of the many-to-many model are:
real-time video conferencing
document sharing and editing
virtual reality
gaming

As you can see, the possibilities for multicast
are limitless.

On the ’Net

Figure 2: BlastCast Client’s Messages page at design time.
Multicast Mechanics
Multicast uses the User Datagram Protocol (UDP) for send-
ing discrete packets. Unlike TCP, which manages data
integrity, UDP does not keep track of data sent between the
sender and the receiver. This means that packets of data
could arrive out of order, be duplicated, or simply disappear
into the void. Because of this apparent handicap, well-
known services that use TCP (such as FTP, NNTP, and
SMTP) are not amenable to multicast. Institutions like the
Internet Engineering Task Force (IETF), universities, and
software houses are researching ways of making multicast
available to these services. There’s already a product on the
market that offers reliable multicast file transfer.

A multicast sender sends data to a multicast address (typically
that of a multicast host), which, in turn, broadcasts the data to
any multicast client that may be listening to that multicast
address. In essence, the multicast host or router is a transmitter
of data. The multicast address ranges from 224.0.0.0 through
239.255.255.255. Any host can send data to a multicast
address. However, only receivers that request data from a mul-
ticast address can receive.

The sender and receiver applications we’ll develop follow
these essential steps. Before the host (the sender) can broad-
cast, it must perform the following steps:
1) create a UDP socket
2) set the Time To Live value (TTL) to reach the intended

audience
3) send
4) close the UDP socket on completion

Before the client (the receiver) can receive the data, it must
do the following:
1) create a UDP socket
2) bind to a port number that corresponds to a “channel”
3) join the multicast group
4) receive
5) close the UDP socket on completion

Although UDP provides the transport of data between the
sender and the receiver(s), it’s the Internet Group Management
Protocol (IGMP) that provides the framework for multicast.
Steve Deering’s RFC1112 document, “Host Extensions for IP
Multicasting,” establishes the design of IGMP.

Multicast and WinSock 2
In the world of Windows networking, multicast has been avail-
able on some implementations of WinSock 1.1 stacks (although
it wasn’t part of the WinSock 1.1 specification). We use the BSD
sockets API, like setsockopt in WinSock 1.1 and 2. Multicast is
part of the WinSock 2 specification, which has APIs specific to
multicast. We’ll learn briefly how to use one of these multicast-
specific APIs in WinSock 2 later in the article.

Multicast and Delphi
Generally, it’s simple to build multicast client applications
with Delphi; it’s simpler still with multicast servers. Using
23 September 1998 Delphi Informant
the Delphi interface units Winsock.pas and Winsock2.pas,
you can develop simple multicast applications easily.

I’ll demonstrate this by developing two simple multicast
applications: BlastCast Server and BlastCast Client. The
BlastCast Server application broadcasts a message to all
PCs on the local network that have the BlastCast Client up
and running. Although these are simple applications, you
can use them — for example — to communicate between
an irate project manager and his minions. Both applica-
tions use multithreading. (For more details on using
WinSock 2 with threads, see part two of John Penman’s
“WinSock 2” series in the July, 1998 Delphi Informant.)

Tuning the BlastCast Client Application
Figure 2 shows the BlastCast Client application in the
IDE. The tsMsg TabSheet control has two Memo controls:
memMsg displays messages pushed by the server;
memStatusMsg reports status and error messages from the
application. Before you can receive a broadcast, you need
to initialize important variables in the tsSetUp TabSheet
control (see Figure 3). You assign the data to the port
number and the multicast address.

It’s crucial to use the same port number and multicast
address that the BlastCast Server uses. I set the port to 9,500,
but it’s purely arbitrary; you can use any number. The multi-
cast address, 234.5.6.7, is also arbitrary, but the restriction is
that the address must lie in the range of 244.0.0.0 through
239.255.255.255. There’s one CheckBox control that you
can tick if you wish BlastCast Client to use WSAJoinLeaf, a
WinSock 2-specific API function for multicast.

We’ll leave this for now. Before spinning the thread, the
application stores the configuration in the Options record.

Listening to Your Favorite Station
To start listening for broadcast messages from BlastCast
Server, click the Start button. It performs two tasks: first,

Figure 3: BlastCast Client’s Setup page.

On the ’Net
it spins a thread to listen for “push” data; second, it
minimizes the application’s window, preserving your
screen’s valuable footprint. The following two statements
show how:

thrdListen := TListenThrd.Create(Options);

frmMain.WindowState := wsMinimized;

This piece of code is shown in Listing One (beginning
on page 27). The constructor, TListenThrd.Create (see
Listing Two beginning on page 28), performs several
preliminary steps:
1) Calling WinSock 2. If WinSock 2 fails to load, the pro-

gram aborts.
2) Assigning the OnTerminate property to the CleanUp event

handler.
3) Creating a UDP socket using the socket function, or a

WSASocket if you checked the CheckBox control on the
Setup page.

4) Creating an event object, EventMsg.
5) Calling WSAEventSelect to associate EventMsg with the

FD_READ network event.
6) Setting up socket attributes for multicast.

Because we covered steps 1 through 5 in detail in a previ-
ous article (again, see part two of Penman’s “WinSock 2”
series in the July, 1998 Delphi Informant), we’ll concen-
trate on step 6. In step 6, the constructor makes several
calls to setsockopt (a WinSock API function) to prepare the
socket for multicast. In Delphi, the formal definition of
setsockopt is:

function setsockopt(s: TSocket; level, optname: Integer;

optval: PChar; optlen: Integer): Integer; stdcall;

The first call sets the sktBlast socket to be reusable for all mes-
sages it receives. Otherwise, WinSock will generate a
WSAEADDRINUSE fault. To enable this attribute, you set
the ReUseFlag to True:
24 September 1998 Delphi Informant
// Always reuse socket.
ReUseFlag := True;

sktRes := setsockopt(sktBlast, SOL_SOCKET, SO_REUSEADDR,

@ReUseFlag, SizeOf(ReUseFlag));

if sktRes = SOCKET_ERROR then
begin
StatusMsg := Concat('Call to setsockopt failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

closesocket(sktBlast);

Synchronize(ChangeWS);

Exit;

end;

If the call to setsockopt fails, the constructor calls
WSAGetLastError to display the cause of the error, close
the socket, and leave.

On success, the construct calls the bind function to associ-
ate the socket with the port number the application requires
for multicast. Then the application “joins” the multicast
group by calling JoinSession. The method fills the fields of
the Multicast record, which setsockopt uses as a fourth para-
meter. The third parameter (IP_ADD_MEMBERSHIP)
notifies WinSock that the socket (sktBlast) is a member of
the multicast group. This fragment from JoinSession follows:

with Multicast do begin
// Multicast address.
imr_multiaddr.s_addr := inet_addr(MultiCastAddr);

// Any interface address.
imr_interface.s_addr := INADDR_ANY;

end;

sktRes := setsockopt(sktBlast, IPPROTO_IP,

IP_ADD_MEMBERSHIP, PChar(@Multicast), SizeOf(Multicast));

if sktRes = SOCKET_ERROR then
begin
StatusMsg := Concat(

'Call to setsockopt failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

Result := False;

end;

The call to setsockopt must succeed before the application can
receive any multicast datagrams. Finally, the constructor calls
Resume to execute the listening thread.

Using the WinSock 2 Multicast API
What follows will only apply if you checked the CheckBox
control in the Setup TabSheet (again, see Figure 3). The con-
structor uses the WSASocket API instead of a socket. The pro-
cedure, JoinSession, calls WSAJoinLeaf like this:

sktTemp := WSAJoinLeaf(sktBlast, @RemoteAddr,

SizeOf(RemoteAddr), nil, nil, nil,
nil, JL_RECEIVER_ONLY);

The parameters set to nil are structures that pertain to callee,
caller data, and quality of service (QOS), which are beyond
the scope of this article. The parameter that concerns us is
the last one, which specifies whether the socket can only

On the ’Net

Figure 4: BlastCast Client in action.

Figure 5: BlastCast Server’s Send page at design time.
receive, only send, or do both. The JL_RECEIVER_ONLY
value only allows receives.

Listening for Messages
The BlastCast Client application is ready to accept mes-
sages. It uses the same approach as the SFTPClient appli-
cation to listen for messages on a thread (again, see part
two of Penman’s series in the July, 1998 Delphi Informant).
Although we covered this topic in detail, I’ll sketch an out-
line of what happens.

When a message arrives, inside the Execute method
WSAWaitForMultipleEvents wakes up from its blocked state,
and calls HandleSocketEvent to handle the network event,
FD_READ. In turn, HandleSocketEvent calls GetMsg to
process the data pushed by the BlastCast Server application.

After WSARecvFrom gets the data, GetMsg calls ChangeWS
to send a beep and to change the BlastCast Client’s win-
dow state to alert the user of a fresh message. To update
the window state safely from the thrdListen thread, the
25 September 1998 Delphi Informant
application calls Synchronize with ChangeWS as its parame-
ter. You can see the result of receiving the message in
Figure 4.

Channel Hopping?
When you want to leave the multicast group to join
another group, or switch off, click the Stop button to call
thrdListen.CloseSession, as the following code shows:

procedure TfrmMain.bbtnStopClick(Sender: TObject);

begin
// Leave the multicast group.
if thrdListen <> nil then

begin
thrdListen.CloseSession;

bbtnStart.Enabled := True;

bbtnStop.Enabled := False;

end;
end;

The thrdListen.CloseSession calls LeaveSession to leave
the multicast group and kill the thread. After initializing
the Multicast record, LeaveSession calls the setsockopt API
like this:

sktRes := setsockopt(sktBlast, IPPROTO_IP,

IP_DROP_MEMBERSHIP, PChar(@Multicast),

SizeOf(Multicast));

The second parameter, IP_DROP_MEMBERSHIP, tells
BlastCast Client to leave the group.

At this time, version 1 of the IGMP protocol regards this
operation as a NOOP (NO OPeration), which makes this
step unnecessary. Version 2 of IGMP may recognize this
operation. In any case, it’s always good policy to clean up
before leaving.

After this call, thrdListen.CloseSession sets Done to True,
and calls WSASetEvent to set the EventMsg object. This
action signals the end of the thread. Note that when we
use the WSAJoinLeaf API, there is no corresponding API
to leave the group. Calling the closesocket API function (in
CleanUp) performs this task.

The BlastCast Server Application
The BlastCast Server application is very similar to BlastCast
Client, but I’ll sketch out some features. Figure 5 shows the
BlastCast Server in the IDE. The tsSend page contains two
Memo controls — memMsg and memStatusMsg — for
entering messages and reporting errors, respectively.

Before you can broadcast data beyond the subnet, you must
adjust the BlastCast Server’s Time To Live (TTL), i.e. the
number of hops (multicast routers) between the sender and
the receiver. The default is 1, which allows only BlastCast
Client applications on the local subnet to receive the
broadcast. To broadcast beyond the local network, you
would need to increase the TTL, which you can do on the
Setup page (see Figure 6).

Figure 6: BlastCast Server’s Setup page.

On the ’Net

Figure 7: BlastCast Server in action.

procedure TSendMsgThrd.BlastMsg;

var
Size : Byte;

sktRes : Integer;

WorkMsg : array [0..MAXGETHOSTSTRUCT-1] of Char;

Buffer : PChar;

begin

with RemoteAddr do begin
sin_family := AF_INET;

sin_addr.s_addr := inet_addr(pchar(MCOptions.Address));

sin_port := htons(MCOptions.Port);

end;

Size := Memo.GetTextLen;

Inc(Size);

Buffer := nil;

try
GetMem(Buffer, Size);

Memo.GetTextBuf(WorkMsg,SizeOf(WorkMsg));

sktRes := sendto(sktBlast, WorkMsg, SizeOf(WorkMsg), 0,

TSockAddrIn(RemoteAddr),

SizeOf(RemoteAddr));

if sktRes = SOCKET_ERROR then
begin
Msg := Concat('Call to sendto failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayMsg);

closesocket(sktBlast);

Exit;

end;
finally
FreeMem(Buffer, Size); // Frees buffer memory.

end;

end;

Figure 8: BlastCast Server’s TSendMsgThrd.BlastMsg procedure.
After entering your message, click the Mail button to send it. Like
BlastCast Client, the action creates a thread to send the message:

SendMsgThrd := TSendMsgThrd.Create(memMsg, Options);

Unlike BlastCast Client’s thread, however, this thread is
destroyed once the message has been sent. (In BlastCast Client,
the thread is persistent until you click the Stop button.)
BlastCast Server creates a new thread for every message and
destroys the thread after sending. It’s unnecessary to use multi-
threading for BlastCast Server, but the code illustrates another
approach to multithreading.

The first parameter in TSendMsgThrd.Create (see Listing
Three beginning on page 29) passes the Memo control
(memMsg) to the thread. The second parameter passes the
Options record containing configuration details like the port
number, TTL, and multicast address.

In the constructor, BlastCast Server follows the same steps
that BlastCast Client takes to create and bind a UDP sock-
26 September 1998 Delphi Informant
et. In addition, BlastCast Server joins the multicast group
by a call to setsockopt with the IP_ADD_MEMBERSHIP
parameter. According to RFC1112, it’s unnecessary for a
sender that doesn’t receive data to join a multicast group.
However, the Microsoft implementation of multicast
requires this step.

The next step is to call setsockopt again to set the TTL:

sktRes := setsockopt(sktBlast, IPPROTO_IP,

IP_MULTICAST_TTL, PChar(@MCOptions.TTL),

SizeOf(MCOptions.TTL));

The final step before executing the thread via Resume is to
disable the loopback feature. In Microsoft’s implementation,
the call to setsockopt with the IP_MULTICAST_LOOP
parameter always fails (hence the display of the error mes-
sage in Figure 7).

BlastCast Server calls BlastMsg (see Figure 8) to send the
contents of the Memo control. This code has a glaring
weakness. It’s possible that the contents of the Memo con-
trol are larger than the WorkMsg array can handle. (It can
only handle 1,024 characters, which is not sufficient to
send the contents at one blast.) The work-around to this
problem is to use a repeat loop.

On the ’Net
After sending the message, the thread dies, and BlastCast Server
is ready to blast another message.

Using BlastCast Client and BlastCast Server Applications
BlastCast Client and BlastCast Server are available for download
(see end of article for details). Install BlastCast Client on several
machines on the local network, and BlastCast Server on one
machine. Your network must be running TCP/IP. If you wish to
put BlastCast Server on a network on the other side of the gate-
way, you’ll need to increase its TTL value.

Make sure you have the Winsock2 unit (which is included
with BlastCast Client) on the path. I suggest you put the unit
in the Delphi’s \Lib directory. Providing you have WinSock 2
on those machines, you should be able to start sending and
receiving messages.

If there’s no WinSock 2 on your machines, point your
browser at http://www.sockets.com/winsock2.htm to get
information on where to obtain the WinSock 2 SDK.

Conclusion
You’ve seen how easy it is to build simple multicast applica-
tions. We built a sender application that sends data, and a
receiver application to receive data. Both applications conform
to the one-to-many data distribution model. It’s a short step to
expand these applications to peer-to-peer chat programs that
use the many-to-many data propagation model.

Earlier, I mentioned that because multicast uses UDP for the
transmission of data, it would seem to rule out the use of mul-
ticast for services like FTP. However, in the near future, I will
demonstrate how to deploy our own multicast client and server
for a well-known service. To find out more about multicast,
check out these two sites:

http://ipmulticast.com provides links to additional
research and commercial initiatives in multicast
http://www.mbone.com

Let the big push begin! ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\SEP\DI9809JP.

John Penman is the owner of Craiglockhart Software, which specializes in pro-
viding Internet and intranet software solutions. John can be reached on the
Internet at jcp@craiglockhart.com.
Begin Listing One — Main.pas (from BlastCast Client)
unit main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, Buttons, ComCtrls, Winsock2,
27 September 1998 Delphi Informant
Mask;

const
MultiCastAddr = '234.5.6.7';

BlastCastPort = 9500;

BlastCastTTL = 2;

LoopBack = True;

ReUse = True;

UseWS2 = False;

type
TfrmMain = class(TForm)

pcBlastClient: TPageControl;

tsMsg: TTabSheet;

tsSetUp: TTabSheet;

bbtnStart: TBitBtn;

bbtnStop: TBitBtn;

bbtnAbout: TBitBtn;

gbPort: TGroupBox;

edPort: TEdit;

udPort: TUpDown;

gbMultiCastAddr: TGroupBox;

bbtnExit: TBitBtn;

gbUseWS2MC: TGroupBox;

ckbWS2: TCheckBox;

gbStatusMsg: TGroupBox;

memStatusMsg: TMemo;

gbMessages: TGroupBox;

memMsg: TMemo;

edMCAddr: TEdit;

procedure bbtnStopClick(Sender: TObject);

procedure bbtnStartClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure bbtnExitClick(Sender: TObject);

procedure bbtnAboutClick(Sender: TObject);

private
end;

var
frmMain: TfrmMain;

implementation

{$R *.DFM}

uses
ListenThrd, About;

procedure TfrmMain.bbtnStopClick(Sender: TObject);

begin
// Leave the multicast group.
if thrdListen <> nil then

begin
thrdListen.CloseSession;

bbtnStart.Enabled := True;

bbtnStop.Enabled := False;

end;
end;

procedure TfrmMain.bbtnStartClick(Sender: TObject);

var
Position: Integer;

WorkStr: string;
begin
with Options do begin

WorkStr := edPort.Text;

Position := Pos(',',WorkStr);

if Position > 0 then
delete(WorkStr,Position,1);

Port := StrToInt(WorkStr);

Address := edMCAddr.Text;

UseWS2 := ckbWS2.Checked;

http://www.sockets.com/winsock2.htm
http://ipmulticast.com
http://www.mbone.com

On the ’Net
end;

bbtnStart.Enabled := False;

bbtnStop.Enabled := True;

thrdListen := TListenThrd.Create(Options);

frmMain.WindowState := wsMinimized;

end;

procedure TfrmMain.FormCreate(Sender: TObject);

begin
memMsg.Clear;

memStatusMsg.Clear;

edPort.Text := IntToStr(BlastCastPort);

udPort.Position := BlastCastPort;

edMCAddr.Text := MultiCastAddr;

ckbWS2.Checked := UseWS2;

with Options do begin
Port := StrToInt(edPort.Text);

Address := edMCAddr.Text;

UseWS2 := ckbWS2.Checked;

end;
end;

procedure TfrmMain.bbtnExitClick(Sender: TObject);

begin
Close;

end;

procedure TfrmMain.bbtnAboutClick(Sender: TObject);

begin
try
frmAbout := TFrmAbout.Create(nil);
frmAbout.ShowModal;

finally
frmAbout.Free;

end;
end;

end.

End Listing One
Begin Listing Two — TListenThrd.Create
constructor TListenThrd.Create(Options: TMCOptions);

var
sktRes: Integer;

begin
inherited Create(True);

MCOptions := Options;

FreeOnTerminate := True;

Started := Start;

if not Started then
begin
StatusMsg := 'Cannot load Winsock 2.0!';

Synchronize(DisplayStatusMsg);

Exit;

end;

OnTerminate := CleanUp;

MsgNo := 0;

with MCOptions do begin
// Get a UDP socket.
if UseWS2 then
begin
// Convert address string to a value.
RemoteAddr.sin_family := AF_INET;

AddrStrSize := 16;

sktRes := WSAStringToAddress(Pchar(MultiCastAddr),

AF_INET, nil, @RemoteAddr,
@AddrStrSize);

if sktRes = SOCKET_ERROR then
28 September 1998 Delphi Informant
begin
StatusMsg := Concat(

'Call to WSAStringToAddress failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

Exit;

end;
sktBlast := WSASocket(AF_INET, SOCK_DGRAM,

IPPROTO_UDP, nil, 0,
WSA_FLAG_OVERLAPPED or
WSA_FLAG_MULTIPOINT_C_LEAF or
WSA_FLAG_MULTIPOINT_D_LEAF);

end
else
sktBlast := socket(AF_INET, SOCK_DGRAM, 0);

if sktBlast = SOCKET_ERROR then
begin
StatusMsg := Concat(

'Failed to create UDP socket! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

Exit;

end;

// Create an event.
EventMsg := CreateEvent(nil, False, False, nil);
if EventMsg = WSA_INVALID_EVENT then
begin
StatusMsg := Concat(

'Failed to create Message Event. Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

Done := True;

Exit;

end;

// Now set up notification.
sktRes := WSAEventSelect(sktBlast, EventMsg, FD_READ);

if sktRes = SOCKET_ERROR then
begin
StatusMsg := Concat(

'Call to WSAEventSelect failed for socket ',

IntToStr(sktBlast),'. Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

closesocket(sktBlast);

Done := True;

Exit;

end;

// Set up socket options for multicast.
// Always reuse socket.
ReUseFlag := True;

sktRes := setsockopt(sktBlast, SOL_SOCKET,

SO_REUSEADDR, @ReUseFlag,

SizeOf(ReUseFlag));

if sktRes = SOCKET_ERROR then
begin
StatusMsg := Concat(

'Call to setsockopt failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

closesocket(sktBlast);

Synchronize(ChangeWS);

Exit;

end;

// Name the socket and assign the local port number
// to receive on.
with LocalAddr do begin
sin_family := AF_INET;

sin_addr.s_addr := htonl(INADDR_ANY);

On the ’Net
sin_port := htons(MCOptions.Port);

end;

// Bind it!
sktRes := bind(sktBlast, LocalAddr,

SizeOf(TSockAddrIn));

if sktRes = SOCKET_ERROR then
begin
StatusMsg := Concat('Call to bind failed ! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

closesocket(sktBlast);

Exit;

end;

if UseWS2 then
begin
// Swap host to network order.
with RemoteAddr do begin
sin_family := PF_INET;

sktRes := WSAHtons(sktBlast, MCOptions.Port,

@sin_port);

if sktRes = SOCKET_ERROR then
begin
StatusMsg := Concat(

'Call to WSAHtons failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayStatusMsg);

closesocket(sktBlast);

Exit;

end;
end;

end;

// Join the multicast group.
if not JoinSession then
begin
closesocket(sktBlast);

Exit;

end;

StatusMsg := 'Started listening thread ...';

Synchronize(DisplayStatusMsg);

end; // with MCOptions.

Resume;

end;

End Listing Two
Begin Listing Three — TSendMsgThrd.Create
constructor TSendMsgThrd.Create(MsgMemo: TMemo;

Options: TMCOptions);

var
sktRes: Integer;

begin

inherited Create(True);

FreeOnTerminate := True;

OnTerminate := CleanUp;

Started := Start;

if not Started then
begin
Msg := 'Cannot load Winsock 2.0!';

Synchronize(DisplayMsg);

Exit;

end;

Memo := TMemo.Create(nil);
29 September 1998 Delphi Informant
Memo := MsgMemo;

MCOptions := Options;

sktBlast := socket(AF_INET, SOCK_DGRAM, 0);

if sktBlast = INVALID_SOCKET then
begin
Msg := Concat(

'Error creating datagram socket! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayMsg);

Exit;

end;

// Bind the datagram socket.
with LocalAddr do begin
sin_family := AF_INET;

// Any old interface.
sin_addr.s_addr := htonl(INADDR_ANY);

sin_port := 0;

end;

sktRes := bind(sktBlast,LocalAddr, SizeOf(TSockAddrIn));

if sktRes = SOCKET_ERROR then
begin
Msg := Concat('bind failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayMsg);

closesocket(sktRes);

Exit;

end;

// Join the multicast group using setsockopt.
with Multicast do begin
// IP multicast address of group.
imr_multiaddr.s_addr :=

// Local IP address of interface.
inet_addr(Pchar(MCOptions.Address));

imr_interface.s_addr := INADDR_ANY;

end;

sktRes := setsockopt(sktBlast, IPPROTO_IP,

IP_ADD_MEMBERSHIP, pchar(@multicast),

SizeOf(multicast));

if sktRes = SOCKET_ERROR then
begin
Msg := Concat('setsockopt failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayMsg);

closesocket(sktBlast);

Exit;

end;

// Set IP TTL by using setsockopt.
sktRes := setsockopt(sktBlast, IPPROTO_IP,

IP_MULTICAST_TTL, pchar(@MCOptions.TTL),

SizeOf(MCOptions.TTL));

if sktRes = SOCKET_ERROR then
begin
Msg := Concat('setsockopt failed! Error ' +

IntToStr(WSAGetLastError));

Synchronize(DisplayMsg);

closesocket(sktBlast);

Exit;

end;

// Disable loopback.
LoopBackFlag := False;

sktRes := setsockopt(sktBlast, IPPROTO_IP,

IP_MULTICAST_LOOP, pchar(@LoopBackFlag),

SizeOf(LoopBackFlag));

if sktRes = SOCKET_ERROR then
begin

On the ’Net
Msg := Concat('Call to setsockopt failed! Error ',

IntToStr(WSAGetLastError));

Synchronize(DisplayMsg);

end;

Resume;

end;

End Listing Three
30 September 1998 Delphi Informant

31 September 1998 Delphi Informant

The Shape of Data
Object Pascal Implementations of Linear Least Squares

Algorithms
Delphi 1, 2, 3, 4 / Linear Least Squares / Gaussian Elimination

By Rod Stephens
Many applications generate data values that should lie on a straight line,
but, due to error or inaccuracy in the input data, they do not. Analyzing

the data is easier if the program can find a line that fits the data well, even if
the points don’t lie on it exactly. The line can give the user an idea of what the
data might look like under ideal circumstances.
This article shows how a program can use
the method of linear least squares to find
the line or polynomial curve that best fits a
set of points. This method uses some calcu-
lus and a little linear algebra. Some of the
equations that follow are a bit intimidating,
but don’t be dismayed; the equations are
mostly multiplication and addition, so
they’re long, but simple.
Minimizing Error
Suppose a program needs to fit a line to a
series of data points (x1, y1), (x2, y2), ... , (xn,
yn). The general equation for a line is y = m *
x + b for some constants m and b. The
method of linear least squares picks the values
of m and b that makes the line lie as close to
the points as possible. It minimizes the sum
of the vertical distances squared between the
line and the points.

For example, suppose (xi, yi) is one of the
data points. The vertical distance from that
point to the line is the difference between yi

and the y value of the line for the x value xi.
In other words, yi - (m * xi + b). The square
of this distance is (yi - (m * xi + b))2.

The method of linear least squares minimizes
the sum of all of these terms for each data
point. You can think of this sum as the error
between the line and the points. You can
write the error using the following equation,
where S means to sum the values for each i:

E = S (yi - (m * xi + b))2

To pick the values of m and b that mini-
mize this function, take the partial deriva-
tives of E with respect to m and b, set them
equal to zero, and solve the two resulting
equations for m and b. This may seem con-
fusing, but it’s actually straightforward. The
error equation is just a simple sum of poly-

Figure 1: The example project Linear displaying a linear least
squares fit.

procedure LeastSquares(PtX, PtY: array of Integer;

NumPts, max_x, max_y: Integer;

var x1, y1, x2, y2: Integer);

var
S1, Sx, Sy, Sxx, Sxy, m, b : Single;

I : Integer;

begin

// Calculate the least squares sums.
S1 := 0;

Sx := 0;

Sy := 0;

Sxx := 0;

Sxy := 0;

for i := 1 to NumPts do begin
S1 := S1 + 1;

Sx := Sx + PtX[i];

Sy := Sy + PtY[i];

Sxx := Sxx + PtX[i] * PtX[i];

Sxy := Sxy + PtX[i] * PtY[i];

end;

// Make sure the line isn't vertical.
if ((S1 * Sxx - Sx * Sx) = 0) then

begin
x1 := PtX[1];

x2 := x1;

y1 := 0;

y2 := max_y;

end
else
begin
// Calculate m and b.
m := (S1 * Sxy - Sx * Sy) / (S1 * Sxx - Sx * Sx);

b := (Sxx * Sy - Sx * Sxy) / (S1 * Sxx - Sx * Sx);

// Calculate the line's end points.
x1 := 0;

y1 := Round(m * x1 + b);

x2 := max_x;

y2 := Round(m * x2 + b);

end;
end;

Figure 2: Calculating linear least squares.

Algorithms
nomials, so it’s easy to differentiate. If your calculus is a lit-
tle rusty, you can take my word for this step. The partial
derivatives are:

dE/db = S 2 * (yi - (m * x i + b)) * (-1)
= -2 * S (yi - m * x i - b)
= -2 * (S yi - m * S xi - b * S 1)

dE/dm = S 2 * (yi - (m * xi + b)) * (-xi)
= -2 * S (yi * x i - m * xi

2 - b * xi)
= -2 * (S yi * x i - m * S xi

2 - b * S xi)

These equations are a little easier to work with after making
these substitutions:

S1 = S 1
Sx = S xi

Sy = S yi

Sxx = S xi
2

Sxy = S xi * yi

Then, the partial derivatives become:

dE/db = -2 * (Sy - m * Sx - b * S1)
dE/dm = -2 * (Sxy - m * Sxx - b * Sx)

Setting the partial derivatives equal to zero and rearranging
a little gives:

Sy = m * Sx + b * S1

Sxy = m * Sxx + b * Sx

Solving these equations for the two unknowns, m and b, gives:

m = (S1 * Sxy - Sx * Sy) / (S1 * Sxx - Sx
2)

b = (Sxx * Sy - Sx * Sxy) / (S1 * Sxx - Sx
2)
32 September 1998 Delphi Informant
These equations are still rather intimidating, until you
remember that the (xi, yi) are the data points and the program
knows them. Then, values like Sx = S xi are just sums of
known values, so they’re easy to calculate.

For example, if the points’ x values are stored in the PtX
array, a Delphi program could calculate Sx using the follow-
ing code fragment:

var
PtX : array [1..NumPts] of Single;

Sx : Single;

i : Integer;

begin
Sx := 0;

for i := 1 to NumPts do
Sx := Sx + PtX[i];

After it calculates the values S1, Sx, Sy, Sxy, and Sxx, the pro-
gram can compute the values of m and b that provide the
closest fitting line.

The example project, Linear, shown in Figure 1, uses the
code in Figure 2 to find linear least squares fits (the exam-
ples cited in this article are available for download; see end

Algorithms
of article for details). The LeastSquares procedure takes as
input parameters arrays containing the x and y coordinates
of the data points. It also takes as parameters the number of
points, and the maximum x and y values the program will
need to display. It returns, through parameters x1, y1, x2,
and y2, the coordinates of a line the program can draw to
represent the linear least squares fit.

Higher Degrees
Sometimes data values may lie along a curve other than a
line. For example, you might suspect the point should lie
along the degree 2 polynomial:

y = a0 + a1 * x + a2 * x2

for some values a0, a1, and a2. You may even have reason to
believe the points lie along a curve of a higher degree.

The method of linear least squares generalizes for higher
degree polynomials in a straightforward manner. You
still write an error equation, take partial derivatives
with respect to the variables ai, and solve for the ai
values. The equations are longer, but they’re not any
more complicated.
Figure 3: Calculating polynomial least squares fits.

33 September 1998 Delphi Informant
The general equation for a degree D polynomial is:

y = a0 + a1 * x + a2 * x 2 + ... + aD * xD

Using this curve to approximate the points, the error function
is given by:

E = S (yi - (a0 + a1 * xi + a2 * xi
2 + ... + aD * xi

D))2

The partial derivative of E with respect to the variable aj is:

dE/daj = S 2 * (yi - (a0 + a1 * xi + a2 * xi
2 + ... + aD * xi

D)) * (-xi
j)

= -2* S (yi * xi
j - a0 * xi

j + a1 * xi
j+1 + a2 * xi

j+2 +... + aD * xi
j+D))

Again, this seemingly complicated equation is simpler than it
appears. All the xi and yi terms are known data values. That
makes this a simple linear equation involving the ai values.

Calculating all the partial derivatives gives D + 1 linear equations
with D + 1 unknowns a0, a1, ... , aD. Now, the program simply
needs to solve the equations for the ai values, and it’s done.

Process of Elimination
To use the method of linear least squares, a program must
function PolynomialLeastSquares(PtX, PtY: array of Integer;

NumPts, degree: Integer;

var poly_coeff: array of Double) : Boolean;

var
x_sum : array [1..40] of Double;

coeff : array [0..20, -1..20] of Double;

value, y0, y1 : Double;

i, j, d : Integer;

begin

// Calculate the sums x^i.
for i := 0 to 2 * degree do begin
// Initialize this sum to zero.
x_sum[i] := 0;

// Add the contributions from each point.
for j := 1 to NumPts do
x_sum[i] := x_sum[i] + Power(PtX[j], i);

end;

// Calculate the coefficients for the equations.
// coeff(i, j) is the ith equation's jth coefficient.
// coeff(i, -1) is the constant term.
for i := 0 to degree do begin
// Calculate the constant term.
value := 0;

for j := 1 to NumPts do
value := value + Power(PtX[j], i) * PtY[j];

coeff[i, -1] := value;

// Calculate the other coefficients.
for j := 0 to degree do
coeff[i, j] := -x_sum[i + j];

end;

// Solve the equations using Gaussian elimination.
for i := 0 to degree do begin
// Use the ith equation to eliminate the ith
// coefficient from all but the ith equation.
value := coeff[i, i];

// If value is 0, no polynomial will work.
if (value = 0) then

begin
// Return True to indicate failure.
Result := True;

Exit;

end;

// Normalize the ith equation so the ith
// coefficient is 1.
for j := -1 to degree do
coeff[i, j] := coeff[i, j] / value;

coeff[i, i] := 1;

// Eliminate the ith coefficient from all
// other equations.
for j := 0 to degree do begin
if (j <> i) then
begin
value := coeff[j, i];

// If value = 0, it's already ok.
if (value <> 0) then

for d := -1 to degree do
coeff[j,d] := coeff[j,d]-coeff[i,d]*value;

coeff[j, i] := 0;

end;
end;

end; // End processing all coefficients.

// Now the ith equation includes only two non-zero terms:
// the constant term coeff(i, -1) and the ith term
// coeff(i, i) which equals 1. Plugging these values in
// and solving for Ai gives Ai = -coeff(i, -1).

// Copy the results into the poly_coeff array for return.
for i := 0 to degree do begin
if (coeff[i, i] > 0) then

poly_coeff[i] := -coeff[i, -1]

else
poly_coeff[i] := 0;

end;

Result := False;

end;

Figure 4: The example project, PLeastSq, displaying a degree 3
polynomial linear least squares fit.

Figure 5: A high-degree curve may fit better, but a low-degree
curve may show the shape of the data more accurately.

Algorithms
solve two equations with two unknowns. This is fairly easy.
Solving this new, larger system of equations is also easy, using
Gaussian elimination.

The program should start by placing the equations’ coeffi-
cients in a two-dimensional array. The first dimension repre-
sents the equation number, and the second represents a term
in the equation. The Delphi code is a bit simpler if the equa-
tion’s constant term is given the index -1. For example, sup-
pose the partial derivative with respect to A0 looks like this:

c-1 + c0 * a0 + c1 * a1 + ... + cD * aD = 0

Then, the first few entries in the array would be:

coeff[0, -1] = c-1

coeff[0, 0] = c0

coeff[0, 1] = c1

The program starts the Gaussian elimination by dividing
all the entries in the first row by coeff[0, 0]. Dividing every
element in the row by the same value is equivalent to
dividing every term in the corresponding equation by the
same value. Because both sides of the equation are divided
by the same value, the equation remains true. Dividing
each entry by coeff[0, 0] also makes the coeff[0, 0] entry
equal to 1.

Next, the program subtracts a multiple of the coefficients in
the first row from the other rows so they contain zero in
their first positions. For instance, the first coefficient in the
second row is coeff[1, 0]. Because coeff[0, 0] is now 1, sub-
tracting coeff[1, 0] times coeff[0, 0] from coeff[1, 0] gives:

coeff[1, 0] - coeff[1, 0] * coeff[0, 0] = 0
34 September 1998 Delphi Informant
The second row’s other coefficients are calculated by subtract-
ing the same multiple of the corresponding coefficient. For
example, coeff[1, 1] becomes:

coeff[1, 1] - coeff[1, 1] * coeff[0, 1]

The program repeats this process for each of the other rows,
so row 0 (zero) is the only row with a non-zero entry in posi-
tion 0.

Next, the program repeats the entire process for every other
coefficient. It uses row 1 to eliminate the other rows’ coeffi-
cients in position 1, row 2 to eliminate coefficients in position
2, and so forth. Eventually, the ith equation will contain a 1 in
position i. The array’s coeff[i, -1] entry will be the only other
non-zero entry in the row, so the array will look like this:

b0 1 0 ... 0
b1 0 1 ... 0
: : : : :

bD 0 0 ... 1

These values correspond to the system of equations:

b0 - a0 = 0
b1 - a1 = 0

:
bD - aD = 0

It’s easy to solve these equations for the ai values:

a0 = -b0

a1 = -b1

:
aD = -bD

Algorithms
The example project PLeastSq uses the code shown in Figure 3
to find polynomial least squares fits. The PolynomialLeastSquares
function takes as input parameters arrays containing the x and y
coordinates of the data points, the number of data points, and
the degree of the polynomial it should create. It returns,
through the poly_coeff array, the polynomial’s coefficients, ai.

Figure 4 shows the project displaying a degree 3 polynomial
fitting a set of data points.

Selecting the Best Curve
Polynomial curves have a couple of important properties
you should keep in mind when using them. First, you can
find parameters for a degree D polynomial that passes
exactly through any D + 1 points, as long as no two points
have the same x value. For example, you can find a degree
1 polynomial (line) that passes through any two points.
There is no reason to use a higher degree polynomial than
necessary (e.g. it would be silly to fit two data points with
a degree 9 polynomial).

A high-degree curve may fit a set of points closely, but it may
also hide important low-degree features in the data. Figure 5
shows two curves fitting six data points. The degree 5 curve
fits the data closely, passing exactly through each of the
points. The degree 1 curve more correctly shows the overall
linear shape of the data.

For this reason, you should use high-degree curves only when
you have good reason to believe the data values were generat-
ed by a high-degree process. If you’re unsure of the nature of
the data, start with curves of low degree. Then, increase the
degree of the curve until you get a reasonable fit.

Conclusion
The method of linear least squares is a powerful curve-
fitting technique. It lets you discover the underlying shape
of a set of data values while ignoring minor fluctuations,
giving you insight into your data that might otherwise be
difficult to find. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\SEP\DI9809RS.

Rod Stephens is the author of several books, including Custom Controls Library
[1998], Visual Basic Algorithms [1998], and Visual Basic Graphics
Programming [1997], all from John Wiley & Sons. He also writes algorithm
columns in Visual Basic Developer and Microsoft Office & Visual Basic for
Applications Developer. He can be reached at RodStephens@vb-helper.com, or
see what else he’s up to at http://www.vb-helper.com.
35 September 1998 Delphi Informant

http://www.vb-helper.com

36 September 1998 Delphi Informant

Monitor Your NT Apps
Creating and Using Per formance Monitor Extension DLLs

In Development
Delphi 2, 3, 4 / Windows NT / Performance Monitoring

By Craig Dunn

Figure 1: Performance data
It used to be sufficient to deliver software on a floppy disk in a plastic bag.
Now, users demand slick packaging, logo-compliance with various standards,

and easy configuration, installation, and management. This last element of
managing and monitoring an application is often overlooked in the develop-
ment process. By using Delphi to create simple extensions to the Windows built-
in performance monitoring infrastructure, however, we can easily incorporate
monitoring capability into any application.
For those unfamiliar with performance moni-
toring under Windows NT, Microsoft includes
a utility with NT, aptly named Performance
Monitor, which allows you to view various
real-time statistics and counters pertaining to
different pieces of the operating system. And
these counters aren’t limited to built-in operat-
ing system information; third-party drivers and
applications can easily extend their own perfor-
mance data to be intercepted and exposed by
Performance Monitor.

This article will explore the entire process of
how native performance monitoring works
under Windows NT, creating a sample per-
formance extension DLL in Delphi, and
adding code to your application to expose
performance information to the extension.
Figure 1 highlights the items we’ll be creat-
ing, and the basic flow of data. In addition,
we’ll demonstrate a unique method of simpli-
fying the registration and installation process
of the performance extension DLL.
transport from 100,000 feet.
Monitoring under Windows NT
Performance data under Windows NT is
gathered and retrieved using some special
properties of the Windows NT registry.
The Performance Monitor application
accesses performance counters through a
special hidden registry handle named
HKEY_PERFORMANCE_DATA. Upon
opening this handle using standard registry
calls, all registered performance extensions
are loaded into memory and initialized.

Performance counter requests flow as queries to
this registry handle and return as buffers con-
taining structured data, which the Performance
Monitor interprets. When a query hits the
HKEY_PERFORMANCE_DATA handler, it
subsequently calls the collection procedure
of the appropriate extension DLL. This col-
lection procedure understands the specifics
of how to retrieve the performance data
from the application, and returns a struc-
tured response containing the requested
counters. Figure 2 depicts the typical flow
of performance counter data.

In the example we’ll be working with, the
object or application we’re extending is a
simulated television. This allows us to
demonstrate several different counter types,
and provides a common object with familiar
data elements. The code accompanying this
article includes complete projects for both
the television application and the television
performance extension DLL (see end of arti-
cle for download details).

Figure 2: Performance Monitor collection data flow.

[info]

drivername=Television

symbolfile=WPTelevision.h

[languages]

009=English

[text]

Television_009_NAME=Television

Television_009_HELP=Television object

...

Figure 3: A portion of the WPTelevision.ini file.

In Development
Support Files
The WPTelevision.dpr project includes several supporting
files that require explanation. First, there is WinPerf.pas,
which is essentially a translation of the original C header file
from the SDK. SharedMemory.pas is a support unit that was
developed for creating and accessing Windows shared memo-
ry structures from within Delphi. While this article is not a
technical discussion of shared memory details, the topic is
covered well in both the November 1997 issue of Delphi
Informant and Delphi Developer’s Handbook, by Cantù,
Gooch, and Lam [SYBEX, 1998]. The TelevisionLIB.pas
unit contains declarations of the actual shared memory struc-
ture for the television counters, as well as some constant defi-
nitions indicating relative offsets of the television counters.
These offsets are used for calculating the locations of specific
counters within the performance output structure.

The WPTelevision.ini and WPTelevision.h are complex
enough to warrant more discussion. WPTelevision.h may
strike some as odd since we’re coding in Delphi and not C.
The existence of a C header file in this project serves to facili-
tate the registration process. This header file merely contains
C equivalents of the offset constants we defined in the
TelevisionLIB unit:

// WPTelevision.h

#define Television 0

#define TelevisionPower 2

#define TelevisionChannel 4

#define TelevisionClosedCaptioningEnabled 6

#define TelevisionSleepTimer 8

#define TelevisionTimeOn 10

#define TelevisionClosedCaptioningWordsPerSecond 12

Note that the constants begin with zero and increment as
consecutive even numbers. This is because there are really
two elements being registered for each counter: the
counter name and its associated help string.

The explanation of the WPTelevsion.ini file could probably
consume a short article on its own, but here’s a brief descrip-
tion. The .INI file is used only during the installation
process by the lodctr.exe facility to: 1) establish the registered
name and help strings for each counter; and 2) point to a
header file containing the relative offsets of each counter.

Figure 3 shows some of WPTelevision.ini from the included
project. The [info] section has name/value pairs indicating
the name of the performance application and the name of
the header file from which to obtain offsets. The [lan-
guages] section dictates language constants supported. The
[text] section occupies the bulk of the file, and is comprised
37 September 1998 Delphi Informant
of two sets of name/value
pairs for each object (i.e.
Television) and each counter
(i.e. Channel) to be moni-
tored. The names are com-
posed from the object name,

counter name, and language constant (allowing support of
multiple languages from within a performance extension).
The values are the names and help descriptions that actual-
ly get displayed to a user. The order of the text name/value
pairs is important, as it must synchronize with the order of
the counter offsets. Again, this is a simplified description of
this file, but Microsoft provides more detailed references on
their Web site and MSDN.

The other included project, TVDemo.dpr, uses both the
SharedMemory and the TelevisionLIB units. Its main pur-
pose is to simulate the extended application and “drive” the
counters so our extension DLL can read some useful data.

The Performance Extension DLL
The basic extension DLL consists of only three primary
pieces of functionality: “Open,” “Collect,” and “Close,”
implemented by the OpenData, CollectData, and CloseData
functions, respectively. In fact, although the task for each is
very specific, the naming of these functions in the DLL isn’t
so rigid. During the installation process, pointers to the
library and each of its functions are established in the registry.

The OpenData function simply initializes internal struc-
tures and establishes whatever communication method will
be used between the extension DLL and the extended
application. The CollectData function triggers the DLL to
harvest counter data from the extended application and
return it to the caller. The CloseData function shuts down
communications with the extended application and frees
any internal resources. Together, these three functions
make up the core of enabling your applications to expose
counter data to the outside world.

The OpenData Function
The OpenData function (see Figure 4) is used primarily to
initiate our link to the counter data exposed by the extend-
ed application. Because the performance extension DLL can
potentially be called multiple times (or instances), we must
track the number of open instances so we only initialize the
communications link once. Figure 4 also shows the
OpenCount globally-scoped variable being checked before
entering the primary initialization logic.

In Development
In our example, we’ve chosen to use shared memory mapping
as our conduit for counter data from the extended application
to the extension DLL. This is a common approach that pro-
function OpenData(lpDeviceNames: PWideChar):DWord; stdcall;
var

Registry: TRegistry;

keystr: string;
begin

if (OpenCount = 0) then begin
SharedMem := TSharedMem.Access(SharedMemName);

if (SharedMem.Buffer <> nil) then begin
ACCESS_SMEM := SharedMem.Buffer;

...code to get settings from registry...
DLLInitOK := True;

Registry.Free; end
else begin

Result := GetLastError;

Exit;

end;
end;

Inc(OpenCount);

Result := ERROR_SUCCESS;

end;

Figure 4: The OpenData function.

function CollectData(lpwszValue: LPWSTR; lppData: PPointer;

lpcbBytes: LPDWORD; lpcObjectTypes: LPDWORD):

DWORD; stdcall;
var

SpaceNeeded : Cardinal;

I : Integer;

pPerfCounterBlock : PPerf_Counter_Block;

pOutputCounters : POUTPUT_COUNTERS;

pDataDefinition : PChar;

begin
// Before doing anything else, see if Open went OK.
if (not DLLInitOK) then begin

// Unable to continue because open failed.
lpcbBytes^ := DWord(0);

lpcObjectTypes^ := DWord(0);

// Yes, this is considered a successful exit.
Result := ERROR_SUCCESS;

Exit;

end;
SpaceNeeded := SizeOf(TPERF_OBJECT_TYPE) +

SizeOf(TPERF_COUNTER_BLOCK);

for i := 0 to NumberOfCounters-1 do
SpaceNeeded := SpaceNeeded +

SizeOf(TPERF_COUNTER_DEFINITION) +

GetSizeOfSpecificCounter(i);

if (lpcbBytes^ < SpaceNeeded) then begin
lpcbBytes^ := DWord(0);

lpcObjectTypes^ := DWord(0);

Result := ERROR_MORE_DATA;

Exit;

end;
// Get the Response Buffer initialized.
InitializeOutputStructure;

// Set an internal pointer to the caller's data buffer.
pDataDefinition := PChar(lppData^);

// Copy the initialized Object Type and counter
// definitions to the caller's data buffer.
Move(pOutputStructure^, pDataDefinition^, SpaceNeeded);

// Format and collect data from shared memory.
...

// Update arguments before return.
lppData^ := Pointer(DWORD(pOutputCounters) +

SizeOf(TOutput_Counters));

lpcObjectTypes^ := 1;

lpcbBytes^ := SpaceNeeded;

Result := ERROR_SUCCESS;

end;

Figure 5: The CollectData function.

38 September 1998 Delphi Informant
vides fast interprocess communication with little overhead to
either the application or the extension DLL.

A Delphi unit accompanies the sample project to facilitate
shared memory usage. Shared memory is opened by calling the
Access method of the TSharedMem object with a string indicating
the name of the shared memory block. For this to return a non-
nil handle, the shared memory must be previously established by
the extended application. So, when the extended application isn’t
running, counter data will be available to the monitoring appli-
cation, i.e. Performance Monitor.

When the shared memory communication has been established,
we simply need to load some internal variables with data from
the registry. Each step of the way, we’re validating the existence
of the data in the registry. If any step fails, the whole initializa-
tion fails. First, we open a key specific to the extension DLL
that is being initialized. In our case, we’re opening:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

Television\Performance

to ascertain certain values set during registration of the DLL.
These values, First Counter and First Help, point to the
base indexes within the registry of the counter names and help
strings. If the key and both of these values exist, we set
DLLInitOk and close the registry. If we had a failure at any
point, the specific error code would’ve been returned.

Finally, the OpenCount variable is incremented and we return a
successful result code to the caller. Overall, the OpenData func-
tion is fairly simple to implement and is generic enough to be
reused by many extension DLLs with little or no code changes.

The CollectData Function
The CollectData function is the heart of the extension DLL,
and is therefore — as you can guess — the most complicated
(see Figure 5). To simplify the code, several support functions
have been broken out of the main CollectData function and
will be covered as we come across them.

First, we must ensure the DLL initialized without a hitch. If
DLLInitOk isn’t True, we need to clear out the return parame-
ters and drop out of the function immediately. This will com-
monly occur when the extended application isn’t running, so
the return result is still considered a success and not an error.

Second, we need to calculate some space requirements for the
structure we’re returning to the caller. This is calculated by
adding the sizes of the object type and counter block structures,
along with the counter definition structure size and actual data
element size for each exposed performance counter. We’ve
defined some support functions (GetSizeOf SpecificCounter and
GetSizeOfAllCounters) to assist in these calculations. We already
know the size of the buffer passed to the function from
lpcbBytes. If the calculated size exceeds what the passed-in
buffer (lppData) can handle, we clear the return parameters
and immediately pass back a specific error code indicating

Figure 6: Performance data structure
(no instances).

In Development

function CloseData: DWord; stdcall;
begin

Dec(OpenCount);

if (OpenCount = 0) then begin
SharedMem.Free;

if (pOutputStructure^ <> 0) then begin
FreeMem(pOutputStructure,SizeOf(Integer));

pOutputStructure := nil;
end;
SharedMem := nil;

end;
Result := ERROR_SUCCESS;

end;

Figure 7: The CloseData function.
39 September 1998 Delphi Informant

more space is required. Ultimately, the calling application
could call CollectData repeatedly until a large enough buffer
has been passed to the function.

The InitializeOutputStructure function (not shown) is called
to allocate and initialize the response structure to be returned
by CollectData. This function, although called with every call
to CollectData, really only does this allocation one time. First
it checks if the output structure is nil. If it isn’t, then the ini-
tialization is done and we can return.

Now we need to calculate the amount of space needed by
the output structure and allocate memory for it. This cal-
culation is based on the sizes of the different structures
upon which the performance data block is built, as well as
the sizes of the individual counter types (see Figure 6).
Once we allocate the right amount of memory, we popu-
late it by simply de-referencing the pointer, setting the
value, and then incrementing the pointer for each element
in the structure. The rest of the accompanying
InitializeOutputStructure code is similar and is sufficiently
documented and self-explanatory.

Our data structure is in place and initialized. It’s time to
copy it into the caller’s return buffer, lppData, so we don’t
overwrite our initialized data template. First, we typecast
the address referenced by lppData into a PChar pointer.
Then we can perform the copy using the Delphi Move
procedure. Next, we get to the heart of the CollectData
function. Here, we’ll move a pointer called
pOutputCounters to point to the location within the out-
put structure that contains the counter data. Then, for
each of the counters we’ll de-reference the pointer and
grab the value from the shared memory structure.

Last, we make sure our function arguments are properly
set for return to the caller, and respond with an
ERROR_SUCCESS result. Although the collect function
is probably the most complicated of the three because of
the sheer number of elements and structures that must be
set up, most of the code is fairly static. The primary
changes one would make are to the section where the data
is harvested from shared memory and to the support func-
tions that calculate the individual counter sizes.
The CloseData Function
The CloseData function simply reverses what was set
in motion by the OpenData function. From the listing
in Figure 7, we see that OpenCount gets decremented
immediately. If this was the last instance using the
DLL, we enter our shutdown logic. This proceeds to
free the shared memory conduit and de-allocate mem-
ory in use by the pOutputStructure variable. Again,
this function is generic enough for easy reuse.

Self-registration
Registration of the performance DLL involves a num-
ber of steps, including numerous registry key and
name/value additions, as well as shelling out to a

Microsoft-provided counter registration utility. This registration
tells the system where the extension exists, what the base offsets
are of the counters, and what the entry point functions are.
While registering our new performance extension is far from
trivial, with some clever tricks we can make it much simpler.

We’ve built the registration facility into the extension DLL by
exporting two additional functions: DLLRegisterServer and
DLLUnregisterServer. Many COM folks might recognize these
known entry points as being used for the automatic registration
of in-process COM objects using the Regsvr32.exe utility (or
the built-in facilities of InstallShield, etc.). So, what are we
accomplishing by this? We are simply leveraging existing tools
and installation features to automate the registration/unregistra-
tion of our extension. In a sense, our extension DLL becomes
“self-aware,” and self-registering.

The DLLRegisterServer function sets up our extension for use. It
first makes a call to our own DLLUnregisterServer function to
clear out any registrations that may exist for this extension.
(DLLRegisterServer and DLLUnregisterServer aren’t shown. All
source for this article is available for download; see end of article
for details.) After determining the directory path to the exten-
sion DLL using the support function GetDllInstallPath, create a
registry key under HKEY_LOCAL_MACHINE called:

SYSTEM\CurrentControlSet\Services\Television\Performance

Under this key, we want to add some values to point to the
specific function names we used in our DLL for the “Open,”
“Collect,” and “Close” processes. This is how we attain our
flexible naming scheme mentioned earlier. The registry points

Figure 8: The example TVDemo application at run time.

procedure TTelevisionDemo.TVTimerTimer(Sender: TObject);

begin
...

if TVPower then
SharedMemory^.Power := 1

else
SharedMemory^.Power := 0;

SharedMemory^.Channel := TVChannel;

if TVCC then
SharedMemory^.ClosedCaptioningEnabled := 1

else
SharedMemory^.ClosedCaptioningEnabled := 0;

SharedMemory^.SleepTimer := TVSleepTimer;

SharedMemory^.TimeOn := TVElaspedTime;

SharedMemory^.ClosedCaptioningWordsPerSecond :=

TVCCWords;

...

end;

Figure 9: A portion of the TVTimerTimer procedure.

Figure 10: Monitoring TVDemo with Windows NT
Performance Monitor.

In Development
to the function names for each of the known processes.
Another value to add is Library, which points to the path
and file name of the extension DLL. Now we invoke the
ShellExecute function to call the lodctr.exe utility included with
NT. This utility expects a parameter pointing to an INI file.
Hence, we pass the location of the WPTelevision.ini we exam-
ined earlier. This utility inserts the counter names and help
strings into the registry and creates new values for First
Counter, Last Counter, First Help, and Last Help offsets
under our Performance key mentioned earlier. Finally,
DLLRegisterServer closes the registry and returns a successful
result. (DLLUnregisterServer merely attempts to undo what we
did with the registration function.) Initially, we will make a
call to another NT utility called unlodctr.exe to remove our
counter names and help strings from the registry. This Unload
Counter tool accepts an Application Name (recall an entry in
the .INI file for such) as a parameter. Once we return from
executing the utility, we open the registry and delete the:

SYSTEM\CurrentControlSet\Services\Television\Performance

key, and its parent key:

SYSTEM\CurrentControlSet\Services\Television

Finally, we free our registry resource and return success.
We’ve simplified a once-complicated process by creating
40 September 1998 Delphi Informant
generic code and taking advantage of known DLL entry
points and common tools.

Putting It All Together
Let’s see our extension DLL in action. Unzip the files for
both projects into a single directory, and build both to
obtain TVDemo.EXE and WPTelevision.DLL. From the
command prompt and within the directory containing the
DLL, run regsvr32 WPTelevision to register the exten-
sion. Run the TVDemo application to simulate our televi-
sion “object” (see Figure 8). During the startup, we’re creat-
ing a shared memory mapping named Television_SMEM.
Our extension will be looking for this structure during its
“Open” function. A Timer component within TVDemo
handles the updating of the shared memory data once per
second. Updating shared memory data is as simple as set-
ting elements in a record pointer (see Figure 9).

Once the “television” is up and running, we can use the
NT Performance Monitor utility to view the counter infor-
mation. There should be a shortcut to it on the menu
under Start | Programs | Administrative Tools, or you can
find it in \Winnt\System32 as Perfmon.exe. Select Edit |

Add To Chart to select some counters to monitor. From the
Object dropdown list, find the Television object. If you don’t
see Television in the list, then TVDemo probably isn’t run-
ning. Once you select the object, you will see the Counter

list update just below it. Select each of the television coun-
ters and click the Add button. Now, click Done to close the
dialog box and watch the monitoring. At this point, you
can play with the television simulator and watch the results
on Performance Monitor (see Figure 10).

Conclusion
We now have the ability to include native NT performance
monitoring in our Delphi applications. The code has been
reworked to the point of being generic and usable as a
foundation for your own projects (with minimal tweak-
ing). By adding the capability to monitor your applications
using standard Windows tools, you enhance overall man-
ageability and value and add a truly professional touch to
your applications. ∆

In Development
The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\SEP\DI9809CD.

Craig Dunn is a senior software engineer with SMART Technologies, Inc., the
global leader in the Enterprise Relationship Management (ERM) marketplace.
He has over 17 years of coding experience on a vast assortment of
hardware/language platforms in various environments. He has been using
Delphi since its inception and has done extensive development with the tool,
preferring to use it over other languages within his skill-set, such as C++ and
Visual Basic. His current projects include R&D efforts into creating Delphi imple-
mentations of emerging Microsoft technologies and heavyweight COM/DCOM
object development. He can be reached via e-mail at cdunn@smartdna.com,
by voice at (512) 719-9180, or by fax at (512) 719-9176.
41 September 1998 Delphi Informant

42 September 1998 Delphi Informant

Async Professional 2.5
A Great Communications Library Gets Better

New & Used

By Alan C. Moore, Ph.D.

Figure 1: A dialog box in
trol of the COM port at run
Async Professional (APRO) from TurboPower is considered by many develop-
ers to be the pre-eminent Delphi communications library. Participants in

this year’s Delphi Informant Readers Choice Awards certainly concurred, select-
ing APRO first in the Best Connectivity Tool category for the second straight year
(see the April, 1998 issue for details).
t

I reviewed the earlier version (2.0) in the June,
1997 issue of Delphi Informant. In the sidebar,
“Async Professional 2.0: Building on a Solid
Foundation” (on page 46), I summarize the
main features I described in the earlier review.
In this review, I’ll concentrate on new and
improved features. APRO is fully compatible
with Delphi 1, 2, and 3, and C++Builder 1
and 3 (with separate Help files and examples
for Delphi and C++Builder).

In the previous review, I pointed out that
communications capabilities are becoming
increasingly important in the world of com-
puters: A fax modem (or a network connec-
tion) is now considered standard equipment
for a new computer. Bundled with that hard-
ware, you generally find appropriate commu-
nications software. I’ve noticed that, with the
he TCOM demonstration program gives you con-
 time.
computers I’ve either purchased or used in the
past two years, the communications software
is getting considerably more sophisticated. It
now includes full-featured telephony capabili-
ties. Mindful of this trend, and responsive to
its customers’ requests, TurboPower has
released a major upgrade to its flagship prod-
uct so developers using the library can remain
on the cutting edge. Let’s examine some of the
new features and see how some of the older
features have been enhanced.

As in previous versions, TApdComPort con-
tinues to be one of the most important
and basic components in the library. It
controls the serial port hardware and
input/output operations that take place
through it. Its 50-plus properties, 11
events, and nearly 100 methods give pro-
grammers a very high level of control. This
basic component also includes a plethora
of exceptions and useful monitoring, error-
checking, and debugging features.

Figure 1 shows the new version of the massive
TCOM demonstration program, and gives
some indication of the amount of control you
have over a COM port at run time.

What’s New
In version 2.5, the new TApdWinsockPort
component joins TApdComPort. Derived
from the older component, and sharing
many of its properties and features, it pro-
vides a WinSock port through which you
can open a TCP/IP connection, just as you
open a standard serial port connection with
the TApdComPort component.

Figure 2: This TCOM dialog box manages a built-in phone num
system.

New & Used

Figure 3: An example TAPI program that uses DTMF to accept
and monitor incoming voice calls.

Figure 4: An example TAPI program that uses TAPI .WAV file
support to record incoming calls.

43 September 1998 Delphi Informant
There are several important new features in
Async Professional 2.5, including support
for DTMF (Dual Tone Multiple Frequency)
touch tones, playback, and recording .WAV
files under TAPI, communications over AT-
compatible ISDN lines or through Windows
Sockets, packets to manage incoming data,
and more. While most of these new features
expand considerably the sophistication of
applications that can be written with APRO
2.5, others, such as data packets, ease the
developer’s burden. We’ll begin by examin-
ing some of the new possibilities.

Communications systems are rapidly chang-
ing and expanding. Switchboards with live
operators are quickly becoming an anachro-
nism, being replaced with automated tele-
phone systems that prompt the caller to enter
one or several digits. With the DTMF and
.WAV file support included in this major
upgrade, you can now develop applications

that respond to keypad entries and record and playback voice
prompts or messages. This gives you the ability to produce a
variety of voice mail applications or an entire call management
system. APRO’s built-in phone number database system (see
Figure 2) is helpful in building such applications. Figure 3 shows
an example TAPI program that puts the new DTMF and .WAV
file support into action. It allows you to accept and monitor
incoming voice calls. Note that the buttons on the phone pad
are not there to be clicked. They respond to incoming characters
being depressed. Another of the several TAPI programs shows a
similar user interface, but with other capabilities, including
recording of incoming calls (see Figure 4).

APRO’s already impressive fax-handling capabilities have been
expanded in version 2.5. Now, applications based on APRO can
recognize and switch between fax and voice calls. This version
also includes a new voice-to-fax handoff feature, which supports
building fax-back systems where users can select the document
they wish to have faxed back to them. Figure 5 shows another
example program that demonstrates these capabilities.

ber database
Figure 5: With APRO’s new voice-to-fax handoff feature, you
can build fax-back systems where users can select the document
they wish to have faxed back to them.

New & Used

Figure 6: The first notebook page of my example program col-
lects minimal registration information …

Figure 7: … the second notebook page of my example pro-
gram determines how to send that information.
Applications using APRO’s Fax-Printer Drivers send various
types of data directly to a fax modem. These drivers can be
manipulated programmatically, making it possible to convert
documents with extensive formatting into a faxable form. The
new capability to send multiple faxes is impressive and useful.

As mentioned, some of the new features are designed to make a
developer’s work easier. Evidently, TurboPower received requests
to provide additional support for managing data in the incom-
ing stream. Beyond triggers, data packets allow you to indicate
specific data you’re expecting, and be notified when it arrives. If
this particular feature is a requirement of your communication
system, data packets could be a great time saver. The new com-
ponent, TApdDataPacket, automatically collects and delivers data
from the incoming stream based on properties you can set using
the component’s property editor. It also includes its own buffer-
ing system, so you need not worry about losing incoming data.
You can control data packets at design time or run time.

Documentation and Support
One of the major enhancements in version 2.5 is its documenta-
tion. As with previous versions, this version includes full source
code, many example programs, and an excellent manual describ-
44 September 1998 Delphi Informant
ing each component, its uses,
properties, methods, and events.
With this version, TurboPower
has added a Developer’s Guide,
which presents the components
of the library in a systematic
way. Based on the excellent
demonstration and example pro-
grams that have been a hallmark
of TurboPower component
libraries, this guide provides
even the novice communications
developer an excellent introduc-
tion to this field of program-
ming in general, and this library
in particular. While some of the
material in the demonstration
programs was included in a sec-
tion of the earlier manual,
expanding it — to include the
more focused example programs
— and putting it in its own vol-
ume makes it much more useful.
As a big fan of printed docu-
mentation, I say, “Bravo, TurboPower!”

In the area of customer support, TurboPower is also at the
head of the pack. It now has online newsgroups for nearly all
of its products. I’ve noticed that participants generally get their
questions answered within 24 hours. While TurboPower may
not be able to fix every reported bug as quickly as users would
like (I know of one or two tough cases), they generally make a
good-faith effort, and are able to correct problems as quickly as
possible. The frequency with which TurboPower customers
recommend these libraries on Internet discussion groups is a
testament not only to their power and flexibility, but also to
the excellent documentation and support.

A New Demonstration Program
For this review, I wanted to present a new demonstration pro-
gram that might appeal to developers who may not consider
communications programming applicable to them. My model
was from the online registration routines I’ve seen with some
of the newer applications I’ve purchased. I thought that
would be the perfect approach.

This simple application consists of a two-page wizard, the first
page of which collects minimal registration information (see
Figure 6). The second page, which sends that information back
to the vendor (see Figure 7), appears only after the user has
entered his or her name and the product serial number. The user
is prompted for, but not required to enter, an e-mail address.

Four APRO components are used: TApdComPort,
TApdWinsockPort, TApdProtocol, and TApdTapiDevice.
Remarkably, little code is needed to send the file. In this
first case, I used a modem operated by TAPI to send the
file to the TurboPower BBS with the following statements:

Async Professional 2.5 is a superb library of
Delphi components for handling all major
aspects of asynchronous communications,
including configuring/using modems, termi-
nal/keyboard emulation, file transfer proto-
cols, and sending/receiving faxes. Version
2.5 adds important new features, including
DTMF (Dual Tone Multiple Frequency) touch
tones, TAPI .WAV file operations, use of AT-
compatible ISDN lines or Windows Sockets,
and more. With the addition of an impres-
sive new Developer’s Guide to its compre-
hensive manual, a plethora of example pro-
grams, full source code, and extensive online
Help, it’s a model of excellence for program-
ming documentation. More than ever, it’s
perfect for experienced and novice communi-
cations programmers.

TurboPower Software Company
P.O. Box 49009
Colorado Springs, CO 80949-9009

Phone: (800) 333-4160 or (719) 260-9136
Fax: (719) 260-7151
E-Mail: info@turbopower.com
Web Site: http://www.turbopower.com
Price: US$279; upgrades vary from US$79 to
US$159.

http://www.turbopower.com

New & Used
ApdTapiDevice1.Dial('1-719-260-9726');

...

ApdProtocol1.FileMask := FName;

ApdProtocol1.StartTransmit;

In the second case, I used the WinSock Port component to
send the file over an open Internet line:

if not ApdWinsockPort1.Open then
begin

ApdWinsockPort1.WsAddress := 'bbs.turbopower.com';

ApdWinsockPort1.WsPort := 'telnet';

...

ApdProtocol1.FileMask := FName;

ApdProtocol1.StartTransmit;

The entire project can be downloaded from the Informant
Web site (see end of article for details).

Conclusion
Needless to say, all the powerful and developer-friendly fea-
tures I wrote about in my earlier review continue in this ver-
sion. Each of the native components include full source code
and thorough documentation. Many of the example programs
include dialog boxes that can be easily modified to meet many
situations. Using APRO’s custom classes (where the properties
are unpublished), you can create your own new communica-
tions components to meet special circumstances.

To maintain our competitive edge as programmers, we must
be able to quickly produce robust, feature-rich applications. In
the field of communications, Async Professional meets those
needs superbly. Particularly with the expanded documentation,
experienced and novice programmers alike will be able to
quickly get up to speed in this increasingly important field of
Windows programming.

With version 2.0, I had very few reservations: the lack of
WinSock support and insufficient explanations on some of
the example programs. Now, with the new WinSock compo-
nent and the Developer’s Guide, those reservations have been
eliminated completely, and I couldn’t be more pleased. If
you’re going to be working with Windows communications,
and don’t want to spend months writing basic routines and
components, you should definitely take a look at Async
Professional. I think you’ll come to the same conclusion I
did: This is one superb Delphi library! ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\SEP\DI9809NU.

Alan Moore is a Professor of Music at Kentucky State University, specializing
in music composition and music theory. He has been developing education-
related applications with the Borland languages for more than 10 years and
has published a number of articles in various technical journals. Using
Delphi, he specializes in writing custom components and implementing multi-
media capabilities in applications, particularly sound and music. You can
reach Alan on the Internet at acmdoc@aol.com.
45 September 1998 Delphi Informant

Async Professional 2.0: Build

New & Used
Based on its venerable DOS predecessor, Async Professional
for Delphi 2 (APRO) provided a complete solution for most
communication tasks. This library of native Delphi compo-
nents and low-level functions included tools for managing
the COM port, configuring/using modems, enabling termi-
nal/keyboard emulation, working with a variety of file trans-
fer protocols, and sending/receiving faxes.

With APRO 2.0, there were two ways of working with
modems: the TApdModem component (and its related dialer
components) for the Windows 3.x or Windows NT 3.51
environments and the several TAPI components for the
Windows 95 or Windows NT 4.0 environments. It provided
several components for setting up and using modems:

A modem database component, TApdModemDBase
A general purpose modem component, TApdModem
A phone dialer component, TApdModemDialer

TApdModemDBase provided an interface to the library’s modem
database, AWModem.INI, enabling developers to manipulate a
modem database. The TApdModemDBase component provided
basic information about a modem, while TApdModem provided
all the properties, events, methods, and exceptions needed to
operate it. All these components were closely integrated.

The Telephony Application Programming Interface (TAPI) that
comes with Windows 95 provides a standard interface for working
with communications (see the series of articles I wrote with Ken
Kyler beginning in the July, 1998 issue of Delphi Informant).
APRO 2.0 provided several useful TAPI components:

TApdTapiDevice for basic TAPI functions of dialing, answer-
ing, and configuring a modem
TApdTapiStatus to display status information on TAPI’s
activities
TApdTapiLog to log TAPI events

APRO 2.0 also provided excellent terminal support, including
several terminal emulation components. The main one,
TApdTerminal, could be used with or without emulation for a
variety of purposes, including retrieving characters from the ser-
ial port, sending keystrokes through the serial port, translating
escape codes into the colors and formatting they represent, or
storing incoming data in a buffer.

The non-visual keyboard emulation component,
TApdKeyboardEmulator, worked with the TApdTerminal compo-
nent. Finally, the TApdBPTerminal component allowed users to
view data from CompuServe B+ file transfers. Developers could
also derive new terminal or keyboard emulation classes from the
base classes, TApdCustomTerminal and TApdKeyboardEmulator.

One of the oldest elements of serial communication with
modems are file transfer protocols. Async Professional for
Delphi supported all the major protocols, including ASCII,
B+, Kermit, Zmodem, and various forms of Xmodem and
46 September 1998 Delphi Informant
Ymodem with the main component, TApdProtocol. This com-
ponent included some properties and methods that applied to
all the protocols, such as ComPort and CancelProtocol, and
protocol-specific properties and methods, such as
KermitRepeatPrefix and ZmodemRecover.

APRO 2.0 provided strong error-checking and logging fea-
tures. General error-handling properties, events, and meth-
ods included AbortNoCarrier, BlockErrors, ProtocolError,
OnProtocolError, and WriteFailAction. Protocol-specific ones
were also included. The associated class, TApdProtocolLog,
provided support for automatically logging a file transfer.
The TApdProtocol property, ProtocolLog, provided the means
of creating an instance of TApdProtocolLog to keep track of
the main component’s file transfer activities. The same kind
of support was found in several other TApdProtocol events
and properties, including OnProtocolLog, BytesRemaining,
and BytesTransferred.

Fax support has become one of the essential elements of
modern asynchronous communications; APRO 2.0 provided
extensive support for sending, receiving, and converting
faxes. Its TApdFaxConverter component enabled users to
convert common file formats, such as ASCII, .BMP, .PCX,
.DCX, and .TIF, to a compressed (.APF) form to be faxed. A
companion component, TApdFaxUnpacker, reversed the
process, converting received .APF files back to the above-
mentioned file formats. The main fax components,
TApdSendFax and TApdReceiveFax, allowed users to send and
receive facsimile documents on Class 1, Class 2, and Class
2.0 fax modems; additionally, any of these fax modems could
communicate with any other Group 3 fax device. APRO 2.0
also provided a fax printing component, a fax viewing com-
ponent, and a fax status component. The printer compo-
nent, TApdFaxPrinter, allowed users to send a fax to a
Windows printer, or add headers and footers and scale the
fax to a specified paper size. The TApdFaxViewer component
allowed users to view a received fax or .APF file; it included
support for scaling, white space compression, drag-and-drop
support, and the ability to copy all, or part, of a fax to the
Windows Clipboard. The TApdFaxStatus component enabled
developers to show the progress of a fax transmission. The
library also included a small class, TApdFaxPrinterStatus, that
implemented a standard printer status display and a Fax
Printer Driver.

The earlier library included two general groups of non-
communications low-level utilities potentially useful in other
applications: The first group was made up of timer functions;
the second group included three functions for numeric/string
conversions. A final, low-level utility, TApdIniDBase, provided
support for maintaining a Windows .INI file, useful in many
communications and non-communications applications.

— Alan C. Moore Ph.D.

ing on a Solid Foundation

47 September 1998 Delphi Informant

ImageLib Corporate Suite 3.05
A Powerful, Mature Image-manipulation Tool

New & Used

By Bill Todd
First, ImageLib from Skyline Tools won the 1997 Delphi Informant Readers
Choice Award for Best Imaging Component. Now, version 3.05 brings a

host of new features to this already excellent product. If you need to create an
imaging application, ImageLib has everything you’re likely to need.
In addition to Delphi and C++Builder,
ImageLib is also compatible with Borland
C++, Microsoft Visual C++, and Microsoft
Visual Basic. A 450-page manual provides a
complete reference to the VCL components,
as well as the underlying DLL functions. You
can distribute applications created with
ImageLib royalty-free, which makes it an
excellent tool for creating commercial, as
well as custom, applications. Also, the manu-
al clearly outlines which of the DLLs you
need to distribute to support the features
you’re using. One significant shortcoming of
many Delphi add-ins is that you can’t inter-
nationalize them. Not so with ImageLib. All
the strings in each DLL are stored in the
DLL’s resource for easy translation.

The Components
Installing ImageLib adds 20 components to
your Delphi Component palette. ImageLib
provides components to display and manipu-
late static images, as well as multimedia
image files, in 23 different formats. There’s
also a great collection of components that
will save you time developing your applica-
tions. The core components are
TPMultiImage and TPMultiMedia.
TPMultiImage displays images in any of the
static image formats that ImageLib supports.
It also allows you to save an image in any
compatible format. TPMultiMedia supports
all common multimedia file formats, includ-
ing .AVI, .MOV, .WAV, and .MID. Each of
these components has a data-aware twin for
working with images in any format stored in
BLOb fields in a database table.

There are also TIlDocumentImage and
TIlDBDocumentImage components, with
special features for document management
applications, and TIlWebImage for working
with images for the Web. TIlWebImage adds
options for progressive display, and the abili-
ty to start and stop GIF animation displays,
or display every frame in the GIF animation.
The OnProgress event lets you provide feed-
back to users when loading a large file.

Within a few minutes, starting from the
example in the manual, I was able to:

create an application that could load an
image from disk in any format supported
by ImageLib;
pan the image;
zoom in on any area of it using a “rubber
band;”
display the effects editor and apply any of
40 image manipulation effects;
rotate or invert it;
cut or copy it to the Clipboard;
paste a new image into my viewer from
the Clipboard; and
scan an image from a scanner.

Now that’s rapid application development!

Effects Editor
The effects editor, shown in Figure 1, is
built into the image display components.

Figure 1: The ImageLib effects editor.

Figure 2: SkylineDocImage showing a multi-page document
with annotations and highlighting added.

New & Used
A single method call displays it, and lets you apply any of 40 spe-
cial effects. The Preview button lets you see the selected effect. If
you like what you see, click the Apply button to add the effect to
the image. The effects from which to choose include contrast,
borders, blur, brightness, border fade, number of colors, dither-
ing method, color palette, gamma, hue and saturation, mosaic,
oil paint, wave, invert, rotate, transitions, and many others.

The ImageToolbar Component
The toolbar components are also very helpful for image
manipulation. For example, MImageToolbar contains buttons
that let you:

scan an image
select a scanner
load an image from a file
preview an image
save the image to disk
print the image
cut or copy the image to the Clipboard
paste a new image from the Clipboard
zoom in or out
rotate the image
flip the image
reset the zoom to normal
48 September 1998 Delphi Informant
stretch the image to fill the frame with or with-
out maintaining its aspect ratio
add a scrolling or credits message
display the effects editor

All you have to do is drop the ImageToolbar com-
ponent on your form, set a single property to
attach the toolbar to the image display component,
and display or hide the floating toolbar by setting
its ShowToolbar property.

Loading and Saving
The load and save dialog components are another
great part of the ImageLib suite because they let you
preview the image in a file before you open it. To

preview the contents of a file, double-click the file name. This
gives your users the best of both worlds. They can scroll rapidly
through a long list of files and still instantly see the contents of
any file without opening it. Being able to see the contents of a
file in the File Save dialog box is a nice feature because you can
easily verify the contents of a file before you overwrite it.

The TDBIconListBox and TDBIconComboBox components
let you include icons stored in BLOb fields in a table in a
list box or combo box. The TDBIconEditor even lets users
edit the icons in the table.

Scanning
ImageLib provides support for all TWAIN
and ISIS scanners, including high-speed and duplex scanners.
You also get support for automatic document feeders, so
ImageLib gives you everything you need to build industrial
strength document scanning and management systems.
ImageLib supports the multi-page TIFF format so you can scan
a multi-page document at high speed into a single file. It also
uses anti-aliasing for the best possible image quality as you zoom
in and out.

Another great feature for document management applications is
the ability to de-skew a scanned image. If someone sets a docu-
ment on the scanner crooked, a call to the TIlDocumentImage
component’s Deskew method will straighten it out. ImageLib
also includes a video frame grabber so you can capture images
from video. The Clipboard is fully supported for cutting, copy-
ing, and pasting images to or from the ImageLib components.

OCR Capabilities
If you need more than just document management, ImageLib
includes an OCR component, which connects to Xerox’s
TextBridge OCR software. With TextBridge, you scan docu-
ments and store either the image, the converted text, or both.
To showcase its document management capabilities, ImageLib
comes with a complete document scanning and manipulation
program, called SkylineDocImage, written in Delphi.

Figure 2 shows the SkylineDocImage application’s main form
with an annotation and some highlighting added to the first
page of a multi-page document. You can distribute this pro-

New & Used
gram as it stands, royalty-free. For an extra fee, you can get the
source code. If you need to do document management, the
source code is well worth the cost because you will probably
have half of your application already written for you.

Conclusion
One problem with adding imaging capabilities to an applica-
tion is that users frequently want more features added. With
ImageLib, your users will be hard pressed to define a feature
that you can’t provide quickly and easily.

ImageLib’s document management support makes it stand
out from the crowd. With the low cost of hard disk space,
zip and Jazz drives, and CD recorders, the market for
applications that can archive and manipulate documents is
poised for growth. With ImageLib, you can easily meet the
document management needs of your clients. ImageLib is a
very powerful, complete, mature, and well-documented
product. ∆

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books and is a member of Team Borland, providing technical support on the
Borland Internet newsgroups. He is a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a nationally-known trainer, and
has taught Paradox and Delphi programming classes across the country and over-
seas. He was an instructor on the 1995, 1996, and 1997 Borland/Softbite
Delphi World Tours, and is a Contributing Editor for Delphi Informant. He can be
reached at Bill Todd@compuserve.com or (602) 802-0178.
49 September 1998 Delphi Informant
ImageLib is a powerful, complete, mature,
and well-documented image manipulation
tool that supports all common static and
multimedia file formats. With a complete
set of imaging functionality including pan-
ning, zooming, an effects editor with 40
image effects, rotating, inverting,
Clipboard support, and full scanning and
faxing support, your users will be hard
pressed to request a feature you cannot
provide quickly and easily.

Skyline Tools
A division of Creative Development, Ltd.
20537 Dumont St., Suite A
Woodland Hills, CA 91364

Phone: (818) 346-4200
Fax: (818) 888-5314
E-Mail: sales@imagelib.com
Web Site: http://www.imagelib.com
Price: ImageLib Corporate Suite, US$599;
DocImage Source Code, US$399;
ImageLib Combo (includes @theEdge),
US$199

http://www.imagelib.com

Reuse, Recycle

From the Trenches
Directions / Commentary
Code reuse is a subject near and dear to many a programmer’s heart. It seems the subject means even
more to managers, because increased reuse should mean less development time and thus, a lower

overall cost to produce the software. Why then, is it so difficult to find successful stories of code reuse? To
answer this question, let’s look at a typical software company.
How many string utility functions do
you think exist at your company? Put
another way, how many string utility
“wheels” have been reinvented at your
company alone? How many have been
reinvented throughout the world? Do
you think every one of those are identi-
cal? You might even argue that one par-
ticular implementation is the fastest,
while another is more flexible, and yet
another addresses needs specific to your
company. Why shouldn’t there be one set
of reusable code to address these issues?

In the Delphi market, VCL components
contribute extensively to code reuse.
Look at any third-party Delphi Web page
for confirmation. ActiveX controls,
COM and CORBA objects, JavaBeans,
and Design Patterns all contribute to the
potential success of code reuse as well.
However, some purists may argue that
this isn’t code reuse because you’re not
really reusing source code, but rather,
reusing compiled code. Fine, let them
debate that semantic point. Meanwhile,
I’ll be developing systems using methods,
techniques, and libraries that have been
written and debugged over time. Perhaps
I’ll coin a new buzz-word by using the
phrase “component reuse” to more accu-
rately portray what all of us Delphi devel-
opers already know. Component reuse
works, and it shows in our schedules.

The whole purpose of reusing code is to
allow you to not worry about the imple-
mentation details of how to write the
code from scratch. Therefore, by defini-
tion, there is some higher level of
abstraction shielding you from these
implementation details. This is what
affords increased productivity when
employing component reuse strategies.
50 September 1998 Delphi Informant
It lets you focus on the big picture of
getting one component (i.e. library) talk-
ing to another, as opposed to fretting
over the details associated with creating
this component. Why then, would any-
one care whether we are actually linking
an OBJ file into our EXE, or that we
create a DLL or OCX to encapsulate our
business logic? As long as the component
can be reused, it’s a success.

Finally, let’s address what it will take to
make component reuse a reality in a
programming shop. There are two
groups that are affected: programmers
and management.

Programmers need to change their
attitudes, behaviors, and years of
habits to focus on how they can help
the company through component
reuse. A programmer:

must first ask this question before
coding a new library: “Has this
already been written, and, if so, can
I integrate the existing library more
easily than writing it from scratch?”
can no longer think: “I’ll just code
it this way and clean up the code
after the release.”
must constantly think in global
terms. After every set of functions, a
programmer should think: “Can
someone else use this library, and, if
so, what can I do to make it easier
to reuse?”
should no longer look at their code
as their code. It’s “public domain” to
the company.

Managers typically want to see progress
yesterday. Instant gratification is fine, but
just as in life, seldom does that translate
into long-term happiness. Managers:
must accept design as necessary to
software development. This is true for
all projects, but it is even more impor-
tant if you want to try and leverage
your code through component reuse.
should plan for reuse. This can be as
simple as encouraging developers to
take on the mind-set of component
reuse.
should establish in-house peer
review of code to help identify can-
didates for reuse.
should have a “toolsmith” to ensure
the consistency of the code being
checked into the common library.

Software development companies
should do everything they can to pro-
mote component reuse. Companies
who take full advantage of component
reuse could find themselves with a
team of programmers whose job is to
make the toolset easy enough for any
new programmer to be productive
immediately. Another benefit is that
the group of component developers can
bridge many departments, helping each
become more effective with their soft-
ware development efforts.

Employing component reuse strategies at
your company is a major change, but the
efforts and eventual successes that follow
will pay for the increased planning. ∆

— Dan Miser

Dan Miser is a Design Architect for
Stratagem, a consulting company in
Milwaukee. He has been a Borland
Certified Client/Server Developer since
1996, and is a frequent contributor to
Delphi Informant. You can contact
him at http://www.execpc.com/~dmiser.

http://www.execpc.com/~dmiser

File | New
Directions / Commentary
Developer Ethics: Respecting Intellectual Property

As developers, we are all aware of the amount of work we put into creating Delphi applications, compo-
nents, and tools. When we develop something new and powerful, we have a sense of satisfaction and

excitement. We also expect to receive certain rewards, usually in the form of monetary compensation. But what
if someone else takes the results of our work and proclaims it as their own?
How many readers remember the legal
dispute between Borland and Lotus
some 10 years ago in which the latter
sued the former over similarities between
Lotus 1-2-3 and Borland’s Quattro Pro
(since then sold to Corel Corporation)?
At the time, I thought it was a bit silly.
However, Lotus felt that, in the name of
“compatibility,” Borland had gone too
far in copying elements of the user inter-
face. I think Borland won, pointing out
an important exception to what specific
intellectual property can, or should, be
protected: basic user interface elements
(like menus and dialog boxes) can not
and should not be protected. What then
can and should be protected?

Let’s begin with the example that
inspired this column. I write many
product reviews for Delphi Informant. As
a result, I often correspond with devel-
opers and companies. A representative of
one company wrote to me recently,
describing what appears to be a serious
infringement. Another company devel-
oped a similar library of components,
with similar functionality. The program-
mers at the first company found it
strange that: “Many of the structures,
objects, and variable names of [our
library] can be found easily in their
DCU files.” The clincher was the dis-
covery that one of the developers at the
second company was a registered sub-
scriber to the original library of compo-
nents. While the source code for the
original set of components was (and is)
available to developers who purchase the
product, the second company did not
make their source code available.

On behalf of the first company (which
was asking my advice on what to do), I
51 September 1998 Delphi Informant
contacted developers I knew and
learned they had faced similar problems.
One step the aggrieved company was
considering was changing their policy
on making source code available.
Despite the apparent intellectual theft,
my initial reaction was that it would be
a serious mistake to change this policy.
The other developers I contacted
agreed. Further, they stated that the key
to success in this industry is in continu-
ing to develop the set of components so
their robustness and functionality was
always on the cutting edge.

My developer friends also advised that
the aggrieved company should proceed
very carefully before pursuing legal
action. The cost could be more than it
was worth. There was an interesting
development during the course of these
discussions. On the Internet, users com-
plained about a lack of support and a
high level of bugs in the “new” product.
As you can imagine, they were the same
bugs that had already been removed
from the “older” product. It seems there
is some justice in the developer world.

Often, we can solve problems like this
very straightforwardly. One of the devel-
opers I contacted told me of a different
case of “borrowing” intellectual property.
His company had worked hard to come
up with an impressive Web site on which
to market their Delphi products. It
turned out to be so impressive that
another Delphi developer used much of
the visual appearance and even one of
the snappy slogans. When my contact
discovered this, he simply wrote to the
perpetrator, pointed out the surprising
“similarities,” and asked that they come
up with their own design and language.
They complied. Here, at least, is a case
where simply confronting the other party
was sufficient to solve the problem. If
you’re faced with a similar problem, I
think this is the best place to start.

One problem with dishonest people is
they believe they’ll never be caught.
Because they tend to repeat this sort of
behavior, I think it’s more likely they will
be caught, later if not immediately.
Internet discussion groups, list servers,
and newsgroups make this even more like-
ly. Fortunately, most Delphi developers
are honest and would not stoop to such
schemes. Most take a great deal of pride
in their abilities and would not think of
stealing from another developer. As we’ve
seen, however, there are exceptions, and
it’s the responsibility of all of us to do
what we can to stop them. That’s what I
hope to contribute by writing this col-
umn. If you’ve experienced, or know of,
similar instances, please let me know.
While I would refrain from naming spe-
cific individuals or companies in these
pages, I would not hesitate to write fur-
ther on this topic to promote respect for
the intellectual property of developers. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number
of articles in various technical journals.
Using Delphi, he specializes in writing cus-
tom components and implementing multi-
media capabilities in applications, particu-
larly sound and music. You can reach Alan
via e-mail at acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	devSoft Announces ICK 1.0
	Radiant Releases RAD Objects 1.3
	HREF Announces WebHub 1.5
	R&E Releases Client Side Security 1.1
	FileNET Introduces Panagon Capture
	Femte Gear Offers PixelPack
	Paul Mace Announces GIF Control
	Ingeneering Introduces Wanda the Wizard Wizard

	Newsline
	INPRISE Announces Borland Delphi 4
	Borland International Stockholders Approve Name Change to INPRISE Corp.
	INPRISE Expands Business Solutions Partner Program
	Baltic Solutions Acquires Programmers' Guild's Products
	JEDI Project Finds New Home

	On the Cover: The Best Just Got Better
	Action Lists
	Docking
	Owner-drawn Menus
	Anchors
	Constraints
	Scroll Bars
	Extended Mouse Support
	Multiple Monitor Support
	BeforeDestruction/ AfterConstruction
	Conclusion

	The API Calls: Delphi and TAPI
	Answering Incoming Calls
	Pulse Dialing
	Doing It with Class
	A TAPI Component
	Elegant Threads
	Conclusion

	OP Tech: Procedure Variables
	Declaring Method Pointers
	Using Procedural Variables and Method Pointers
	Other Uses
	Conclusion

	On the 'Net: Multicasting
	Multicast Mechanics
	Multicast and WinSock 2
	Multicast and Delphi
	Tuning the BlastCast Client Application
	Listening to Your Favorite Station
	Using the WinSock 2 Multicast API
	Listening for Messages
	Channel Hopping?
	The BlastCast Server Application
	Using BlastCast Client and BlastCast Server Applications
	Conclusion
	Begin Listing One — Main.pas (from BlastCast Client)
	Begin Listing Two — TListenThrd.Create
	Begin Listing Three — TSendMsgThrd.Create

	Algorithms: The Shape of Data
	Minimizing Error
	Higher Degrees
	Process of Elimination
	Selecting the Best Curve
	Conclusion

	In Development: Monitor Your NT Apps
	Monitoring under Windows NT
	Support Files
	The Performance Extension DLL
	TheOpenDataFunction
	TheCollectDataFunction
	TheCloseDataFunction
	Self-registration
	Putting It All Together
	Conclusion

	New & Used: Asynch Professional 2.5
	What’s New
	Documentation and Support
	A New Demonstration Program
	Conclusion
	Async Professional 2.0: Building on a Solid Foundation

	New & Used: ImageLib Corporate Suite 3.05
	The Components
	Effects Editor
	The ImageToolbar Component
	Loading and Saving
	Scanning
	OCR Capabilities
	Conclusion

	From the Trenches: Reuse, Recycle
	File I New: Developer Ethics

