
1 August 1998 Delphi Informant

August 1998, Volume 4, Number 8

Cover Art By: Tom McKeith and Doug Smith

ON THE COVER
7 Delphi 4 Multi-Tier � Bill Todd
Delphi 4 sports many new features for multi-tier applications, while
making it easier to use MIDAS components for single- and two-tier
applications. The MIDAS components now provide a flexible new
architecture for any database application, as Mr Todd explains.

FEATURES
12 On the ’Net
IE4’s DOM Advantage � Ron Loewy
IE4 introduced DHTML and the Document Object Model, greatly
expanding the control a Windows app can have over a Web browser
control. Now Mr Loewy puts it to use from Delphi.

17 Algorithms
Vivid Equations � Rod Stephens
Mr Stephens introduces 3-D graphics programming, including transla-
tion, scaling, projection, and rotation, and — as usual — provides
hands-on examples to get you started.

24 DBNavigator
Delphi Database Development � Cary Jensen, Ph.D.
Dr Jensen closes a three-year circle and re-examines database pro-
gramming from a Delphi perspective. A lot has changed since version
1, but one thing has not: Delphi is still the best tool for the job.

29 The API Calls
Delphi and TAPI: Part II � Major Ken Kyler and
Alan C. Moore, Ph.D.
Kyler and Moore continue their Telephony API series: This month it’s
determining the existing capabilities of the particular TAPI implemen-
tation and monitoring changes to the COMM port.

35 At Your Fingertips
Better Coding through APIs � Robert Vivrette
Less is more, as our own Mr Vivrette explains. This time around he
discusses simple, useful API routines that few developers even realize
exist, yet can save considerable programming effort.

REVIEWS
37 ODBCExpress

Product Review by Steve Garland

42 Nathan Wallace’s Delphi 3 Example Book
Book Review by Warren Rachele

DEPARTMENTS
2 Symposium by Zack Urlocker
3 Delphi Tools
5 Newsline
44 From the Trenches by Dan Miser
45 File | New by Alan C. Moore, Ph.D.

Symposium
By Zack Urlocker
Life after Borland; Long Live Delphi!

It’s been a busy, but exciting time in Scotts Valley the past several months. The company has continued to
grow revenues and maintain profitability, we’re shipping new products every quarter, oh, and we

changed our name. I’m sure there was a collective “What?” heard when Delphi developers around the
world fired up their browsers to www.borland.com and saw an announcement about INPRISE Corporation.
The Borland brand name is a good one.
It’s associated with high quality, high pro-
ductivity development tools such as
Delphi, C++Builder, and JBuilder.
However, development is just one part of
what INPRISE Corp. is focused on. Our
mission is to radically simplify the devel-
opment, deployment, and management of
distributed enterprise applications. That
makes development tools, including
Delphi, critical to our strategy, but it also
reinforces the need for additional products
that support deployment and management
of enterprise applications. For example, we
have the Entera RPC-based middleware,
the VisiBroker CORBA Object Request
Broker, ITS Integrated Transaction Service,
AppCenter application management, and
a forthcoming Enterprise Application
Server. We will make sure that these prod-
ucts are accessible from our development
environments, including Delphi,
C++Builder, and JBuilder.
-

-
t

The Delphi team has been particularly
innovative in its support for COM,
CORBA, and RPC-based middleware.
Delphi 4 Client/Server Suite has all of
the facilities to make it the most produc
tive development environment for any
distributed infrastructure. Because
INPRISE doesn’t have a platform agen-
da, we’ll continue to support all the plat
forms our customers are asking for. Tha
means you can expect ongoing support
for the latest Microsoft technologies,
such as Windows 98, MTS, IIS, as well
as the latest cross-platform standards.

In fact, I think people will be surprised
at how much innovation there is in
Delphi 4. Delphi will continue growing
and attracting even more new customers
who want to develop distributed applica-
tions, as well as desktop and client/server
applications. Certainly, no tools have
made distributed development easy
before, and we think Delphi’s got an
2 August 1998 Delphi Informant
edge in this area that’s hard to beat. At
the same time, we’ve made sure to add
some of the latest productivity features to
Delphi 4, including more debugging
tools, a more modern user interface with
dockable toolbars and windows, a sophis-
ticated application browser, more com-
ponents, and much improved documen-
tation, among other things.

Ongoing change. One of the things I’ve
learned in my years at Borland is that
you must keep innovating, or you’ll fall
by the wayside. It’s as true in program-
ming as it is in business. If you look
back at programming techniques and
tools five years ago and compare them
with the state of the art today, it’s a
pretty radical change. Not only have the
tools and techniques changed, but so
have the applications being built. Five
years ago, when the Delphi project first
began, we were attempting to bring
Borland Pascal into a new era of growth
by solving much more difficult prob-
lems. We decided (though I had to drag
the R&D team kicking and screaming)
that we needed to simplify both
Windows and client/server program-
ming. It was quite a gamble, but it
helped Borland launch into some new
growing markets with our most success-
ful product in years. Along the way, well
beyond a million copies of Delphi were
sold, and hundreds of thousands of pro-
grammers made the transition to learn-
ing client/server programming skills and
became more successful in their careers.
Delphi has certainly exceeded our
expectations, and the Delphi team con-
tinues to amaze me with their dedica-
tion and insight into programming.

At the time, there was a lot of debate
about what Delphi should be called.
Many of you know the name Delphi was
originally chosen as a code name. In fact,
we used a lot of different code names,
depending on who we were talking to.
Delphi was variously known as VIP,
Visual Foo, Del Mar, Del Rio, Del Fuego,
VBK, and Wasabi (Don’t ask!). Internally,
the compiler was “Version 8” but we
wanted a name that showed just how far
the product had evolved from Borland
Pascal. We struggled with such convoluted
names as Visual App Builder, but in the
end, we decided to go with the name that
our beta testers liked best: Delphi.

So what’s it all mean? For Delphi devel-
opers, the company name change should
be pretty minor. We’ll continue to create
new versions of our development tools
and try to have innovative features for
hobbyists, individual developers, consul-
tants, and corporate developers. The most
significant aspect of the name change is
that it symbolizes how much the compa-
ny has changed over the last 18 months
with a broader focus of integrating the
enterprise. We believe the name
INPRISE better reflects our overall
strategy and direction than the Borland
name did. That being said, the Borland
brand name will continue to be used for
our development tools under the
INPRISE Corp. umbrella. This is similar
to what other large companies have done
when bringing to market multiple differ-
ent product lines. For example, Network
Associates has the McAfee brand of anti-
virus software as one of its brand names.

Delphi remains the product that I’m
most proud of in my career, and you
can expect Delphi will continue to play
a pivotal role in our overall corporate
strategy. After eight years of working at
Borland International, I’m pleased to
report that there is life after Borland.
There’s INPRISE.

Zack Urlocker is Vice President of
Marketing at INPRISE Corp., developer
of Borland and VisiBroker products.

3 August 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

ForeFront Announces ForeHelp 3 and ForeHelp Premier 98

ForeFront, Inc.

announced ForeHelp 3 and
ForeHelp Premier 98,
updated releases of the
company’s help-authoring
program and suite of help-
authoring tools. The prod-
ucts offer an indexing
application, a development
tool that keeps dialog-box
help synchronized with
software applications, and a
content management sys-
tem that allows developers
to create help for Windows
95 and Windows 98 from
one project database.

ForeHelp 3 offers new
project management and
automation features,
including Topic Navigator,
which provides a customiz-
able navigation window;
Reporter, which produces
customized management
reports; Paste Palette, which
stores frequently used
graphics, text, and buttons
Catalyst Releases Socket
on a floating palette; a
Related Topics Wizard,
which creates “See Also”
buttons; and a Contents
Editor, which visually cre-
ates and edits a table of
contents.

ForeHelp Premier 98 pack-
ages ForeFront’s line of help-
authoring tools into a suite
for WinHelp and HTML-
based help development. In
Tools 2.1

Enterprise ONE Release
addition to ForeHelp 3,
three tools are introduced:
Index Expert, QuickFix, and
QuickContext.

ForeFront, Inc.
Price: ForeHelp 3, US$395; ForeHelp
Premier 98, US$699; users of competing
help-authoring suites can purchase
ForeHelp Premier 98 for US$249.
Phone: (800) 357-8507
Web Site: http://www.ff.com
s Jaadu
Catalyst Development
Corp., provider of WinSock-
compliant TCP/IP custom
controls for VBX/ActiveX
products, announced
SocketTools 2.1.

SocketTools 2.1 provides
18 controls, including 32-bit
ActiveX versions (supported
by Delphi 2 or later).
SocketTools 2.1 supports all
Windows platforms, includ-
ing Windows NT 4.0.

SocketTools 2.1 compo-
nents include Audio Player,
Domain Name Service, File
Transfer Protocol, Finger
Protocol, Gopher Protocol,
Image Viewer, Internet
Control Message Protocol,
Mail Message (MIME),
Network News Protocol, Post
Office Protocol, Remote
Access Service, Remote
Command Execution, Simple
Mail Transfer Protocol,
Telnet Network Terminal,
Terminal Emulator, Time
Protocol, Web Browser,
Whois Protocol, and
Windows Sockets.
Catalyst Development Corp.
Price: US$247
Phone: (800) 766-3818
Web Site: http://www.catalyst.com
Enterprise ONE, Inc.
announced Jaadu, a Delphi
component that adds Web
server functionality to an
application, using Delphi
Web components to extend
the functionality.

By employing Jaadu,
developers can fully exploit
built-in Delphi Web tech-
nologies, such as the
WebDispatcher,
PageProducer,
TableProducer, and
QueryTableProducer com-
ponents.

The Jaadu package
includes the JaaduProducer,
a component that takes an
HTML template and a few
data sources, puts them
together, and serves it to
the user.

Jaadu is a solution for
Delphi 3 developers who
require rapid implementa-
tion of Web applications
without dealing with the
limitations of CGI-shell,
Win-CGI, ISAPI,
and/or NSAPI program-
ming.

In addition, the Jaadu
server component works as
a multi-threaded HTTP
server and programming
gateway.

Enterprise ONE, Inc.
Price: US$199
Phone: (916) 947-9012
Web Site: http://www.jaadu.com

http://www.ff.com
http://www.catalyst.com
http://www.jaadu.com

4 August 1998 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Raize Software Solutions Releases CodeSite

South Pacific Info Services Announces
TWebCompress Component 2.0

Lingscape Announces Mu
Raize Software Solutions,
Inc. announced CodeSite, a
Delphi debugging tool that
sends messages from an
application to a message
viewer.

CodeSite is comprised of
the CodeSite Object and
the CodeSite Viewer. The
CodeSite Object is accessed
through an interface unit,
and is used to send mes-
sages to the viewer. The
messages can contain
objects, streams, string lists,
and standard data types,
such as integers and
Boolean values. CodeSite
also supports common data
structures, such as TColor
and TRect.

Each CodeSite message is
associated with one of 15
types, including csmInfo,
csmCheckPoint, and
csmObject. In addition,
each CodeSite message is
time-stamped.

CodeSite offers the ability
to group messages by
method. Method groupings
can be nested, making them
effective for debugging
event-driven applications
ltLang Suite 2
and recursive methods,
functions, and procedures.

Also, CodeSite provides
features for CodeRush
users; 25 keyboard tem-
plates and a message expert
make it easier to enter
CodeSite statements into
source code. Also, the
CodeSite Viewer integrates
into the Delphi 3 IDE as a
CodeRush panel plug-in.
CodeSite supports 16- and

32-bit Delphi development.
CodeSite Viewers are pro-
vided for Windows 3.x and
Windows 95/NT.

Raize Software Solutions, Inc.
Price: US$79.95
Phone: (630) 717-7217
Web Site: http://www.raize.com
Lingscape announced
MultLang Suite 2, a set of
globalization tools for Delphi
and C++. MultLang is based
on the Unicode 2.1 standard
and works with a conversion
engine to provide support for
Japanese, Chinese, Arabic,
Hebrew, Hungarian, Russian,
and all European languages.

MultLang Suite 2 provides a
quality assurance wizard that
keeps projects from showing
defects in user interfaces,
such as overlapping text,
workable shortcuts, incorrect
character sets, and non-trans-
lated items. The wizard
ensures that projects conform
to standards defined by the
developer.
MultLang Suite 2 extends
the NLS API functions of
Windows with support for
distributed locales, making it
possible to produce multi-
language applications
supporting several character
sets on any Windows
localized edition.

In addition, MultLang Suite
2 offers the Universal
Language Modules (ULM), a
self-describing dictionary
with its own interface.

Lingscape
Price: US$998; upgrade from MultLang
1.x, US$849.
E-Mail: info@lingscape.com
Web Site: http://www.
lingscape.com
South Pacific Information
Services, Ltd. announced
TWebCompress Component
2.0, a site management com-
ponent for Delphi and
WebHub. TWebCompress has
been rewritten to be a generic
Delphi component, so it can
be used for remote site/com-
pression management in any
Web site application. Source
code for a WebDeploy appli-
cation, which turns
TWebCompress 2.0 into a
stand-alone application on a
Web server, is provided for
managing compression/archive
deploying tasks for multiple
sites. A UserSignal property
and event hook have been
added to allow developer-
defined remote signaling. In
the WebDeploy application,
this is implemented as a way
to have the server run a
defined application on the
.EXE under remote control. A
“refresh” signal is also defined,
forcing TWebCompress to re-
read its .INI file.
TWebCompress 2.0 is con-

figurable (by site) for location
of uploads, signal/report files,
“gather” archive, encryption
passwords, etc. This configura-
tion can be changed from
HTML, FTP control files,
or via the panel user interface.
The Gather function can be
completely data-driven and
can be used to build ad hoc
LHA/WinZip-compatible
archives of particular files or
sets of files.

South Pacific Information
Services, Ltd.
Price: Free for download; licensing con-
ditions apply.
Web Site: http://www.spis.co.nz

http://www.raize.com
http://www.lingscape.com
http://www.lingscape.com
http://www.spis.co.nz

News
L I N E

Augus t 1998

5 August 1998 Delphi Informant

INPRISE Releases Borland JBuilder 2

Delphi Prefix Registry Online
Scotts Valley, CA —
INPRISE Corp. announced
the release of Borland
JBuilder 2, a new version of
its family of visual develop-
ment tools for creating pure
Java business and database
applications for the enter-
prise.

JBuilder 2 allows corpo-
rations to use 100% Pure
Java technologies, including
JDK 1.1.6 and JFC/Swing,
to create platform-indepen-
dent business applications.

The Borland JBuilder
product family features
JavaBean component cre-
ation, a scalable database
architecture, visual “Two-
Way” development tools,
and the ability to produce
100% Pure Java applica-
Apogee Extends Services

InterBase Ports InterBase
tions, applets, servlets, and
JavaBeans.

Corporations and govern-
ment agencies worldwide
using JBuilder include
Volvo, Daiwa Securities,
MicroAge, NationsBank,
the Ohio Department of
Transportation, Eli Lilly,
Nationwide Insurance,
Mercedes-Benz, and many
others.
to Include AS/400

 4.0 to Linux
JBuilder 2 is available in
three versions: JBuilder 2
Client/Server Suite,
JBuilder 2 Professional,
and JBuilder 2 Standard.

For more information
about JBuilder 2 call
INPRISE at (800) 233-
2444, or visit the JBuilder
Web site at http://www.
inprise.com/jbuilder/.
Manchester, England —
Steven J. Healey, an appli-
cations developer specializ-
ing in manufacturing sys-
tems, announced the
Delphi Prefix Registry
(DPxR), hosted by HREF.
DPxR, located at
http://developers.href.com/
registry/dpr.htm, promotes
component builders global-
ly by registering not only
prefixes, but also the com-
ponents themselves.
Developers can register
their components, as well as
find other developers’ com-
ponents. The registry aims
to reduce the chances of
naming conflicts with the
use of prefixes. Conflicts
can occur when developers
build components in isola-
tion.

For developers trying to
locate components, the reg-
istry provides an alternative
to checking Delphi news-
groups, using Web search
engines, and visiting the
Delphi Super Page. The site
also contains links to major
component builders.

Supporters of the registry
and/or the use of prefixes
include Ray Konopka, Bob
Swart, and Marco Cantù.

InterBase 5 for Linux is
planned to offer new SQL
and server 1999 features
that will give InterBase scal-
ability, concurrency, and
improved productivity,
including InterClient, an
all-Java JDBC driver.

Users will be able to pur-
chase InterBase 5 for Linux
via download at the
InterBase Web site after its
release.
Marlboro, MA — Apogee
Information Systems, Inc.
announced support for
Borland Delphi/400
Client/Server Suite.

The move extends the
company’s ability to deliver
multi-tier, enterprise appli-
cations for corporations and
governments by allowing
the company to include
native access to AS/400
databases in custom applica-
tions developed for its
clients.

INPRISE’s Borland
Delphi/400 Client/Server
Suite is a visual, high-perfor-
mance Windows develop-
ment tool that features visual
component-based design, a
32-bit, native code compiler,
and an open, scalable data-
base architecture in an
object-oriented environment.

Apogee Information
Systems, Inc. is a custom
application consulting and
development firm specializ-
ing in INPRISE technolo-
gy-based solutions. For
more information on
Apogee, visit http://www.
apogeeis.com.
Scotts Valley, CA —
InterBase Software Corp.
announced the availability
of InterBase 4.0 for the
Linux operating system
(Red Hat 4.2) as a free
download on the InterBase
Web site, located at
http://www.interbase.com.

InterBase 4.0, a relational
database, is designed to be
embedded into VAR appli-
cations.
Current InterBase cus-
tomers include the United
States Army, Motorola,
Inc., the Philadelphia Stock
Exchange, Colorado
Mountain Express, and
others.

InterBase 5, which is
available for Windows
95/NT, Solaris, and HP-
UX, will be available for
Linux (Red Hat 5.0) in the
third quarter, 1998.

http://www.inprise.com/jbuilder/
http://www.inprise.com/jbuilder/
http://developers.href.com/
http://www.apogeeis.com
http://www.apogeeis.com

News
L I N E

Augus t 1998

Triple Point Technology Uses Delphi
to Develop OutPost

INPRISE Appoints
John A. Racioppi
as VP/GM
Westport, CT — Triple Point

Technology, Inc. introduced
OutPost, a Web-enabled stor-
age and retrieval system for
users of Triple Point’s TEM-
PEST 2000 and FRANKLIN
commodity trading systems.
OutPost enables traders, trad-
ing managers, and executive
management to access risk
management data and trading
results remotely, via an
intranet or the Internet.

OutPost has a three-tier
client/server architecture. The
client software’s graphical user
interface components are
ActiveX controls developed
using Delphi 3. The middle-
ware software was also devel-
oped with Delphi 3 and uti-
lizes MIDAS middleware
technology.
6 August 1998 Delphi Informant

INPRISE Teams with Refe
for Java System

INPRISE Announces Ente
TEMPEST 2000 is an office
trading system for the physi-
cal and derivative energy
commodity markets.
FRANKLIN is a comprehen-
sive commodity trading sys-
tem for the electricity and
natural gas markets. Using
OutPost, individuals can gen-
erate a report with TEM-
PEST 2000 or FRANKLIN,
and post it in the OutPost
database. Once in the data-
base, authorized users can
access reports for previewing
or printing using Microsoft
Internet Explorer or Netscape
Navigator browsers.

For more information, con-
tact Triple Point Technology
at (203) 291-7979, or visit
their Web site at
http://www.tpt.com.
rentia Systems
Scotts Valley, CA —
INPRISE Corp. named
John A. Racioppi Vice
President and General
Manager, US, a newly
created position.
Racioppi has over 17
years of sales and man-
agement experience, and
will report to John
Floisand, Senior Vice
President of Worldwide
Sales. Racioppi is respon-
sible for INPRISE’s US
direct sales, channel sales,
educational sales, and
OEM sales activities, as
well as customer service
organization.

Racioppi joins the
INPRISE team from
DASCOM Corp., a
developer of security,
authorization, and scala-
bility tools for intranet
and extranet applications,
where he was Vice
President of Worldwide
Sales. Prior to DAS-
COM, Racioppi spent
five years with Transarc
Corp., an IBM subsidiary
and developer of distrib-
uted transaction process-
ing and file systems mid-
dleware, where he was
responsible for the com-
pany’s international sales
and OEM source licens-
ing business units.

Racioppi’s experience
also includes sales and
management positions
with Network Systems
Integrators, Liberty
Management Systems,
Ernst & Winney, and
AT&T Information
Systems.

He holds a Masters
degree in business admin-
istration and a Bachelor
of Arts degree from the
University of Pittsburgh.
San Francisco, CA —
INPRISE Corp. announced
it has teamed with Referentia
Systems Inc. to create
Referentia for JBuilder:
Volume 1, an integrated,
extensible, multimedia learn-
ing system for any software
development tool. Referentia
for JBuilder is a separate
product from JBuilder.

The system provides tips,
tricks, and training using
narrated lesson animations to
teach JBuilder techniques. It
launches from JBuilder’s
Help menu and includes a
Try It feature, which allows
users to work in JBuilder
while following textual
and/or narrated instructions.
The system’s extensibility
allows users to add future
volumes of content to their
library of built-in JBuilder
tutorials.

Referentia for JBuilder:
Volume I includes tutorials
authored by recognized
industry experts.

For more information,
contact Referentia Systems
at (888) 983-6877 or
(808) 396-3319.
Scotts Valley, CA —
INPRISE Corp. announced
the shipment of Entera 4, a
new version of the company’s
RPC-based middleware for
corporations building large-
scale, mission-critical, distrib-
uted applications. Entera 4
adds support for Java and
ra 4
Delphi, and integrates and
automates application man-
agement and security services.

Entera 4 supports the IBM
AIX, Sun Solaris, HP-UX,
and Windows NT platforms.
More information on Entera 4
is available at http://www.
inprise.com/entera/.

http://www.tpt.com
http://www.inprise.com/entera/
http://www.inprise.com/entera/

7 August 1998 Delphi Informant

On the Cover
Delphi 4 / MIDAS

By Bill Todd

Figure 1: The Multitier page of th
Delphi 4 Multi-Tier
MIDAS Reaches New Levels

Using MIDAS components, Delphi 4 provides a host of new features for both
multi-tier and single-tier applications. It all begins with TClientDataSet; you

can now define aggregates for a ClientDataSet component. Figure 1 shows the
Multitier page of the Delphi 4 New Items dialog box.
As you already know if you’re familiar with
SQL, an aggregate is the sum, minimum,
maximum, average, or count of a column in
an answer set. In MIDAS, aggregates are
stored in the Aggregates property of
TClientDataSet. Aggregate expressions can
include calculations such as:
e Delphi 4 New Items dialog box.
Sum(Qty * Price)

or

Sum(TotalPrice) - Sum(TotalCost)

Because the aggregate object’s expression is a
property, you can change it at run time. You
can also enable or disable any individual
aggregate, or all aggregates, to enhance per-
formance. A property editor for the new
Aggregates property of TClientDataSet, shown
in Figure 2, lets you quickly create aggregates
and set their properties at design time.

Figure 3 shows the Object Inspector with an
aggregate selected. Aggregates can also be
grouped on the first N fields of the active
index. To group an aggregate, set the
GroupingLevel property to the number of
index fields to group on, and set IndexName
to the index to use. Aggregates that group on
an index that isn’t active are not calculated.

Like all other datasets, TClientDataSet has a
Refresh method. Calling Refresh, however,
clears the change log so all unapplied
changes are lost. The new RefreshRecords

On the Cover
method fetches a new set of records from the application
server and merges them with the changes in the change log
as though the changes were originally made to the new
records. If any conflicts occur, the ClientDataSet triggers an
OnReconcileError event.
Controlling Data Packet Contents
You now have three ways to control the contents of data
packets retrieved from the application server — including
the ability to include custom information. Using the Fields
Editor to create persistent field objects for the dataset on the
application server lets you control which fields are supplied
to the client. Lookup and calculated fields will be returned
to the client as read-only fields. The only restriction is that
you must include the primary key field(s) so each record can
be uniquely identified if the client will edit the data.

TProvider has a new Options property, shown in Figure 4, that
lets you control whether BLObs and detail records will be
8 August 1998 Delphi Informant

Figure 2: Aggregates in the Property Editor.

Figure 3: The properties of an aggregate.
fetched automatically, or must be specifically requested in
code. You can also specify whether field properties, such as
Alignment, DisplayLabel, DisplayWidth, Visible, DisplayFormat,
EditFormat, MaxValue, MinValue, Currency, and EditMask are
included in the data packet.

If you’re working with tables that have a referential integrity
relationship, you can specify that the server automatically han-
dle cascading updates and/or deletes. The Provider compo-
nent’s Options property also lets you declare the dataset to be
read-only. This prevents the ClientDataSet from applying
updates to the Provider. If you are working with a server that
may modify records with triggers when they are updated, you
can include the poIncServerUpdates option. This tells the
Provider that it must automatically retransmit all updated
records to the client, so the client will immediately see the final
state of the records — including the effects of any triggers.

One of the more potentially powerful new multi-tier fea-
tures is the ability to include custom information in the
data and delta packets passed between the application serv-
er and the client. This capability is implemented through a
new event, OnGetDataSetProperties, on the Provider side.
OnGetDataSetProperties passes three parameters. The first is
Sender, a pointer to the object that triggered the event. The
second, DataSet, is a pointer to the dataset that supplies
the Provider’s data.

The last, named Properties, is an OleVariant output parameter.
Properties is actually a variant array of three-element variant
Figure 4: The TProvider Options property in the
Object Inspector.

Figure 5: An example local table application using TClientDataSet.

On the Cover
arrays. Each element in the array contains one custom proper-
ty that will be included in the data packet the Provider sends
to the client. Each element in the first array is itself a variant
array of three elements. The first element is the name of the
property stored as a string. The second element is the value of
the property. The third element is a Boolean value that tells
the ClientDataSet whether this property must be returned to
the Provider in the delta packet. This makes it possible for the
Provider to not only send custom information to the
ClientDataSet, but to also send a message to itself that will
come back with any changes.

On the ClientDataSet side, the new GetOptionalParam
method lets you retrieve the value of any optional parame-
ter from the dataset. If you’re working with a briefcase
model, or a single-tier application that saves the contents
of the ClientDataSet’s Data property locally using the
SaveToFile method, you can still take advantage of optional
data packet parameters. Using the ClientDataSet’s
SetOptionalParam method, you can add custom parameters
to Data in the client application and these parameters will
be saved to disk when you call SaveToFile. This gives you a
very flexible way to store any information that must persist
between sessions. Adding parameters in the client applica-
tion is useful in another way. By setting the IncludeInDelta
member of the variant array to True, the client can send
information to the application server with any updates.

The Events Are Back
One complaint of many developers using the Delphi 3 MIDAS
components is that the events for the dataset components con-
nected to TProvider do not fire when updates are applied. Now,
setting TProvider’s new ResolveToDataSet property to True causes
the Provider component to apply updates using the dataset com-
ponent so that all of the dataset’s events work normally. Leaving
ResolveToDataSet set to False causes the provider to apply updates
directly to the database using SQL, just as in Delphi 3.

Another new component, TDataSetProvider, lets you
accomplish the same thing. Like TProvider with
9 August 1998 Delphi Informant
ResolveToDataSet set to True, TDataSetProvider
applies updates using the dataset component it’s
connected to. However, TDataSetProvider is inde-
pendent of the BDE, so it can apply updates to a
TClientDataSet or a custom dataset component
that does not use the BDE to connect to its
underlying database.

Applying updates to BDE datasets is slower
than using TProvider with ResolveToDataSet set
to False, because the updates must first be
processed by the dataset component and then
written to the database. With ResolveToDataSet
set to False, the updates are applied directly to
the database using SQL. However, the ability to
use the events of the dataset may be worth the
price in many situations.
Building One- and Two-tier Applications
Building single-tier applications with TClientDataSet was a
side effect of support for briefcase model applications in
Delphi 3. It was interesting because there are still plenty of
applications that don’t require multi-user support, and do
not deal with huge amounts of data. So the ability to create
small, fast database applications that do not require the BDE
was attractive. Creating these databases was laborious, how-
ever, because you could not define the database structure at
design time. Creating the database had to be done with code.
In Delphi 4, you can define your database at design time
using the Fields Editor, and you can store multiple related
tables in a single file, thanks to the support for Oracle 8’s
object relational database model.

Drop a TClientDataSet on a form or data module, double-
click to open the Fields Editor, press CN to add a new
field, and you can add as many fields of any type as you
need. Now when you run your application, the field objects
are already defined — without code. Even more powerful is
the ability to add fields of type DataSet. These fields repre-
sent a linked detail dataset. You can define as many linked
datasets as you need; they will be stored in a single file as
part of the Data property of the ClientDataSet component
when you call SaveToFile.

Using TClientDataSet in two-tier applications is now easier too.
You can drop any dataset component, a Provider component,
and a ClientDataSet component on a form or data module; set
the Provider’s DataSet property and the ClientDataSet’s
Provider property, and your application is ready to run. While
some of this functionality was added in the 3.02 update, you
now have complete freedom to place the dataset, Provider, and
ClientDataSet components on forms or data modules — or a
mixture of the two — and connect them at design time.

Figure 5 shows the main form from the sample applica-
tion, TwoTier, containing Table, Provider, and
ClientDataSet components linked to the sample Items
table. The ResolveToDataSet property of TProvider
is set to True so updates will be applied through the

On the Cover
Table component. The Table’s BeforePost event handler gen-
erates a beep and calls Abort to prevent the update from tak-
ing place, demonstrating that TTable’s events now fire.

Working with Parameters
Setting the parameters for a query or a stored procedure
on the application server is easier in Delphi 4, thanks to
TClientDataSet’s new Params property. Using this property,
you can define parameters at design time and set their val-
ues, or other properties, in the Object Inspector. You can
create parameters at run time with the CreateParams
method. Each parameter is an object, so you can change
its Value, ParamType, Name, and DataType properties pro-
grammatically at any time.

Calling Methods on the Application Server
In Delphi 3 you can add custom methods to the server
application’s interface and call those methods from the
client using the AppServer property of the client applica-
tion’s connection component. The AppServer property is a
handle to the IDataBroker descendant interface added to
the server’s remote data module. Calls to custom methods
used late binding which is slower and does not provide
compile-time error checking.

In Delphi 4, you can get early binding of calls to the applica-
tion server using DCOM or CORBA. To get early binding,
you must cast the AppServer property to the interface type of
the application server, and you must register the application
server’s type library on the client. The following call illustrates
the early binding syntax:

TheConnection.(

AppServer as IMyInterface).CustomMethod(aValue);

Although you cannot use true early binding with sockets, or
OLE Enterprise, you can improve performance over late
binding by using the remote data module’s dispatch inter-
face (dispinterface) to call server methods. The server’s
dispinterface always has the same name as the IDataBroker
Figure 6: The New page of the Delphi 4 New Items dialog box.
descendant interface with the string “Disp”
appended. To use this method, you must add the
application server’s type library interface unit to
the uses clause in the client application. You can
then assign the AppServer property to a variable
whose type is the dispinterface, and use that vari-
able to call the server’s methods, as shown here:

var
dispinterface: IMyAppServerDisp;

begin
dispinterface := TheConnection.AppServer;
dispinterface.CustomMethod(aValue);

end;

New Connection Components and Features
Delphi 4 brings a more sensible architecture to
the MIDAS connection components by provid-
ing a specific component for each connection
type that includes only the properties applicable
10 August 1998 Delphi Informant
to the connection type. The classes for the new compo-
nents are:

TDCOMConnection,
TCORBAConnection,
TSocketConnection, and
TOLEEnterpriseConnection

Both the DCOMConnection and SocketConnection com-
ponents also have a new ObjectBroker property, which is a
pointer to a descendant of the new TCustomObjectBroker
class. This allows you to implement a custom object broker
that will determine the machine the client will connect to.
The new TSimpleObjectBroker component lets you implement
automatic selection of the server the client will connect to
from a list of servers using a random assignment system to
provide load balancing among the servers.

A socket server service for Windows NT has also been
added. With Delphi 4, it’s unnecessary to have a user
logged on to the NT machine to run SCKTSRVR.EXE; it
runs as a service, so it starts automatically and does not
require a user to be logged in. With the new Service wiz-
ard (see Figure 6) you can now also write your server
application as a Windows NT service. This means you can
run an application server using sockets on an NT
machine, with no user logged in, to provide a much higher
level of security.

Another significant addition to the sockets components is
support for callbacks. While any client has been able to call
custom methods on the application server in Delphi 3, you
could only implement callbacks from the server to the
client if you used DCOM or OLE Enterprise for the con-
nection protocol. Delphi 4 supports callbacks using sockets
in exactly the same way they are implemented using OLE
Enterprise or DCOM.

Conclusion
Delphi 4 not only adds many new features for multi-tier
applications, but also adds features that make using the

On the Cover
MIDAS components for single- and two-tier applications
easier. You can now easily implement business rules on a
row-by-row basis, use MIDAS components in two-tier
applications as an alternative to local table transactions
and cached updates, and implement load balancing and
callbacks for sockets connections. The MIDAS compo-
nents now provide a flexible new architecture for any
database application. ∆

This article is based on a prerelease version of Delphi 4. Features
in the shipping version may differ or be absent.

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix, AZ. A Contributing Editor of Delphi
Informant, he is also co-author of four database programming books and a
member of Team Borland, providing technical support on the Borland Internet
newsgroups. He is a frequent speaker at Borland Developer Conferences in the
US and Europe. Bill is also a nationally known trainer, and has taught Paradox
and Delphi programming classes across the country and overseas. He was an
instructor on the 1995, 1996 and 1997 Borland/Softbite Delphi World Tours.
He can be reached at Bill_Todd@compuserve.com or (602) 802-0178.
11 August 1998 Delphi Informant

On the ’Net
Delphi 3 / Internet Explorer 4 / DOM / HTML

By Ron Loewy

Figure 1: Insta

12 August 1998 Delphi Informant
IE4’s DOM Advantage
Putting the Internet Explorer WebBrowser Control to Work

One of the big enhancements to Web/Windows integration was introduced
with the release of Microsoft’s Internet Explorer 3.0 (IE3). IE3 exposed an

ActiveX control named WebBrowser that can be embedded in Windows applications.
IE4 introduced Dynamic HTML (DHTML)
and the Document Object Model (DOM),
greatly expanding the amount of control a
Windows application can have over a Web
browser control. This article introduces some
ways that a Delphi application can take
advantage of IE4’s programming interface.

In Brief: DHTML and the DOM
DHTML is an extension of HTML 3.2 that
provides greater programmability of HTML
pages with scripts. In DHTML, the HTML
document is exposed as a hierarchical collec-
tion of objects, where every element (usually a
tag) in the document is accessible as an object.
lling the WebBrowser control into Delphi.
This hierarchical object representation of an
HTML document is the DOM. Given access
to an HTML “document,” your scripts can
access elements in the page, change them,
and have the changes reflected immediately in
the browser window.

Access to DHTML elements via scripts can
be accomplished using one of several “collec-
tions” published by the document object: The
all collection provides access to all the tags in
the document; the anchors collection provides
access to all the <A> tags; and the scripts col-
lection provides access to all the <SCRIPT>
elements in the document.

Individual items in a collection can be
accessed using a numeric index
(e.g. document.anchors(2)will access the sec-
ond link in the document), or by the ele-
ment’s name defined using the ID attribute.
For example:

...

can be accessed using
document.anchors.SecondLink; both
methods provide access to the same object.

DHTML offers many other features, such as
absolute and relative positioning, database inte-
gration, and expanded stylesheet control. My
goal in this article is not to introduce you to
DHTML — there are books devoted to that
subject; some of them are even good! With the
assumption that you know what DHTML is
and how it can be used in scripts, this article
will show how the DOM can be accessed and
manipulated from a Delphi application.

procedure TForm1.Button1Click(Sender: TObject);

var
Flags, TargetFrameName, PostData, Headers: OleVariant;

begin
Flags := 0;

TargetFrameName := 0;

PostData := 0;

Headers := 0;

WebBrowser.Navigate('e:\src\homepage.html', Flags,

TargetFrameName, PostData, Headers);

end;

Figure 2: Navigating to view homepage.html stored on the E: drive.

On the ’Net

Figure 3: The result of the Navigate method on my
homepage.html file.

procedure TForm1.Button2Click(Sender: TObject);

var
All: IHtmlElementCollection;

HtmlElement: IHtmlElement;

i: Integer;

begin
Document := WebBrowser.Document as IHtmlDocument2;

if (assigned(Document)) then
begin

All := Document.All;

Memo1.Lines.Clear;

for i := 0 to All.length - 1 do begin
HtmlElement := All.Item(i, 0) as IHtmlElement;

if (Assigned(HtmlElement)) then
Memo1.Lines.Add(IntToStr(i) + ' ' +

HtmlElement.TagName);

end;
ShowMessage('Number of elements : ' +

IntToStr(All.Length));

end;
end;

Figure 4: Accessing the document and printing all tags to a
memo control.
The DOM via COM
When Microsoft introduced the DOM in IE4, they provided
a way to access it from external applications using standard
COM interfaces. Every HTML element in the DOM can be
accessed using a COM interface. The hierarchy of interfaces
mimics the object model that can be used in scripting code.

If you’re not familiar with the DOM, it’s a good idea to read
some of the articles or books about DHTML and the DOM,
and experiment with it using a scripting language, such as
JScript or VBScript, in your HTML code. When you
become comfortable with the DOM, take a look at the
COM interfaces described in the Internet Client SDK
(INetSDK) and those mentioned later in this article.

The MSIE WebBrowser Control
When you install IE4, it registers an ActiveX control. This
browser control (implemented in shdocvw.dll) is a simple
wrapper around the HTML layout engine (implemented in
mshtml.dll) that provides a great way to start using IE4 in
your applications.

The WebBrowser control does a lot of the low-level work of
hosting an Active Document for you, but still allows you to
access the DOM via COM interfaces. The INetSDK provides
documentation and samples that show how the mshtml.dll
layout engine can be hosted directly in your application. For
the purpose of clarity, this article will not discuss the issues of
hosting mshtml.dll directly. All the samples and code snippets
assume that you’ve installed the WebBrowser control in the
IDE, and that you use it to embed IE4 in your applications.
13 August 1998 Delphi Informant
In Delphi 3, you’ll need to use the Component | Import

ActiveX Control menu option and add the Microsoft Internet
Controls (Version 1.1) control to your component library, as
shown in Figure 1. You can now create a new project, switch
to the ActiveX Components tab in the component library,
and drop a TWebBrowser control on the form.

The easiest way to start playing with the control is to call the
Navigate method to view a document saved on your file sys-
tem. I use the code in Figure 2 to view an HTML file called
homepage.html stored in E:\src, as shown in Figure 3.

Accessing the DOM from Delphi
The first step to accessing the DOM from Delphi is to
import the interfaces defined in the INetSDK.
Unfortunately, Delphi 3’s TypeLib import command cannot
handle mshtml.dll where the interesting interfaces are
defined. You’ll need to download the 3.02 (Maintenance
release 2) update from INPRISE’s Delphi updates Web page
(http://www.inprise.com/devsupport/delphi/downloads/
dpro302download.html) and apply it on top of version 3.01.
One of the modules installed by this release is tlibimp.exe in
the \bin subdirectory of Delphi’s installation. You’ll need to
execute this program from the command line and import
mshtml.dll to create mshtml_tlb.pas. This file includes most
of the interesting interfaces you need to access the DOM.

The IHtmlDocument2 interface is your entry point into the
DOM. The WebBrowser control exposes this interface via
the Document property. The following code will retrieve the
interface in Delphi:

Document := WebBrowser.Document as IHtmlDocument2;

where Document has been defined as a variable of type
IHtmlDocument2.

Assuming you have some content in the browser control, you
can now start accessing the DOM and access the document’s
content. The code in Figure 4 accesses the document and

http://www.inprise.com/devsupport/delphi/downloads/dpro302download.html
http://www.inprise.com/devsupport/delphi/downloads/dpro302download.html

On the ’Net
prints all the tags found in the content to a memo control. It
uses the IHtmlElementCollection and IHtmlElement interfaces.

The IHtmlDocument2 interface exposes several collections
you can use to access the content of the browser. This
example uses the All property to access all the tags in the
document. You can find more information on the inter-
faces exposed by IHtmlDocument2 in the INetSDK docu-
mentation. Search on “IHtmlDocument2” to get the infor-
mation. (You’ll also notice that the All property of the
IHtmlDocument2 interface is the same as the all collection
of the Document object, if you are using scripting code.)
Figure 5 shows all the tags in homepage.html after “walk-
ing” the DOM.

Using the WebBrowser Control Events
The WebBrowser control provides several events that can be
used to track the user’s navigation. They’re also important to
your application’s stability. The OnBeforeNavigate2 event is fired
before the control starts to navigate to a new URL after the user
clicks on a link in the browser display. The following code pro-
vides feedback that the browser is navigating to a new URL:

procedure TForm1.WebBrowserBeforeNavigate2(Sender: TObject;

pDisp: IDispatch; var URL, Flags, TargetFrameName,

PostData, Headers: OleVariant; var Cancel: WordBool);

begin
StatusBar1.SimpleText := 'Browser is opening ' + Url;

end;

The OnDocumentComplete event is used to inform your
application that the control finished navigating to a new
URL, that it finished rendering the information, and that
it’s safe for your application to retrieve the DOM entry
point via the Document property. It’s important you don’t
try to access the IHtmlDocument2 interface before the con-
trol is in the ReadyState_Complete mode. Use code such
as the following to ensure the control is ready:

procedure TForm1.WebBrowserDocumentComplete(

Sender: TObject; pDisp: IDispatch; var URL: OleVariant);

begin
StatusBar1.SimpleText := 'Finished:' + Url;

Document := WebBrowser.Document as IHtmlDocument2;

end;
14 August 1998 Delphi Informant

Figure 5: All the tags in the homepage.html file after “walking”
the DOM.
An alternative method to ensure you do not access the DOM
before the control is ready is to define Document as a property
of type IHtmlDocument2, and to use a GetDocument read
method such as the following:

function TForm1.GetDocument: IHtmlDocument2;

begin
while (WebBrowser.ReadyState <> ReadyState_Complete) do

Application.ProcessMessages;

Result := WebBrowser.Document as IHtmlDocument2;

end;

Printing from the WebBrowser Control
Printing is a common task you’ll want to perform from the
WebBrowser control. I prefer to read information retrieved
from the Web on the screen, but I can assure you that your
users will want to be able to create a hard copy.

The browser control provides access to an IOleCommandTarget
interface that can be used to perform operations such as printing:

procedure THtmlPageEditorForm.ViewerPrint1Click(

Sender: TObject);

var
VI, VO: OleVariant;

IECommand: IOleCommandTarget;

begin
IECommand := Document as IOleCommandTarget;

IECommand.Exec(nil, OLECMDID_PRINT,
OLECMDEXEOPT_DONTPROMPTUSER, VI, VO);

end;

Clipboard Support
The IOleCommandTarget interface allows you to provide
copy functionality from your application. The following
statement will copy the currently selected content in the
browser to the Clipboard:

IECommand.Exec(nil, OLECMDID_COPY,
OLECMDEXEOPT_DONTPROMPTUSER, VI, VO);

If you want to copy everything to the Clipboard, make sure
you select all the content before you copy it:

IECommand.Exec(nil, OLECMDID_SELECTALL,
OLECMDEXEOPT_DONTPROMPTUSER, VI, VO);

Font Control
The WebBrowser control’s default fonts might surprise you;
an HTML document that doesn’t use stylesheets or a
<BASEFONT> tag might display differently in the
WebBrowser and IE. Apparently, there are two issues you
need to resolve in your code to set the default fonts:

You need to set the size of the font to a value between 0
and 4 (0 = smallest, 4 = largest). The values correspond to
the IE4 View | Fonts menu option. The code in Figure 6
sets the font size to 1.
To set the default font face, you need to implement the
IDocHostUIHandler interface. Unfortunately, I couldn’t
find a way to import this interface into Delphi; you’ll
have to translate it from C manually.

In your IDocHostUIHandler, you need to implement the
GetOptionKeyPath method and provide the registry path of

procedure TForm1.Button3Click(Sender: TObject);

var
IECommand: IOleCommandTarget;

V, O: OleVariant;

const
OLECMDEXEOPT_DONTPROMPTUSER = 2;

begin
V := 1;

IECommand := WebBrowser.Document as IOleCommandTarget;

IECommand.Exec(nil, OLECMDID_ZOOM,
OLECMDEXEOPT_DONTPROMPTUSER, V, O);

end;

Figure 6: This code sets the font size to 1.

On the ’Net

procedure TForm1.MemLoadClick(Sender: TObject);

var
v: Variant;

begin
if (assigned(Document)) then

begin
v := VarArrayCreate([0, 0], varVariant);

v[0] := '<html><head><title>Hello World</title>' +

'</head><body>Start me up</body></html>';

Document.Write(PSafeArray(TVarData(v).VArray));

Document.Close;

end;

end;

Figure 7: Using IHtmlDocument’s write and close methods to
write content directly from memory.

Figure 8: Select File | New to create an automation object.
your browser defaults. The default font values should be writ-
ten under the International\CodePage key (where CodePage is
the code page Windows uses) in the IEPropFontName and
IEFixedFontName entries.

Speeding up the WebBrowser
In my application, I need to provide fast updates to the con-
tent of the page displayed by the browser control. The
WebBrowser control’s functionality allows it to host Java
applets and ActiveX controls, handle style sheets, and execute
scripts. Unfortunately, all this functionality comes at a cost —
speed. To speed the preview portion of my application, I need
to extract every bit of performance from the control.

Instead of writing every change to the displayed page content
to a disk file and using the Navigate method, I use the
IHtmlDocument interface’s write and close methods to write
the content directly from memory. The code in Figure 7
demonstrates how this can be done.

It seems that Microsoft did not implement all the functionality
of the Navigate method in write and close. For example, your font
defaults implemented using IDocHostUIHandler will be ignored.
Another problem with close is that the OnDocumentComplete
event is not fired. Instead, I use a Timer component, set it to 100
milliseconds, and use the following code to set the font size after
the document has been loaded into the control:

procedure THtmlPageEditorForm.Timer1Timer(Sender: TObject);

begin
inherited;
if (WebBrowser.ReadyState = ReadyState_Complete) then

begin
Timer1.Enabled := False;

ZoomFont;

end;
end;

ZoomFont implements the font size code I just described. My
application can sometimes update the displayed page’s source code
several times before the control finishes the rendering of the last
update. I use a virtual semaphore to signal that the control is busy
and queue several changes into one rendering operation. The
ReadyState property should be your guide for this functionality.

Hooking into the DOM Event Model
The DOM allows you to hook into events that can be hooked in
scripting code, such as the Onclick, Onmouseover, and
Onmouseexit events you can handle in JScript or VBScript.
15 August 1998 Delphi Informant
If you look at mshtml_tlb.pas, which was created when you
imported the TypeLib of mshtml.dll, you’ll see a dispatch
interface named HtmlDocumentEvents. To hook this events
interface, you need to use the IConnectionPointContainer and
IConnectionPoint interfaces to connect the DOM entry point
to an object that implements HtmlDocumentEvents.

The method of connecting events using connection points
is beyond the scope of this article, but you can simply copy
the procedures InterfaceConnect and InterfaceDisconnect
that INPRISE includes as part of OleCtrls.pas in the
Source\VCL directory.

I used Delphi’s Automation Object Wizard to create a
TAutoObject descendant that implements the
HtmlDocumentEvents interface (see Figure 8). Because this
is a dispatch interface, I used Delphi’s TypeLib Editor to
copy the dispatch IDs to the automation object I was cre-
ating. The result is displayed in Figure 9.

My automation object implements the OnClick handler using
the following code:

function THtmlDocumentEventsHandler.OnClick: WordBool;

begin
showMessage('Hello World!');

Result := True;

end;

IHtmlDocumentEventsHandlerDisp = dispinterface
['{ 016B5321-631C-11D1-A5E6-0040053BA735 }']
function onhelp: WordBool; dispid -2147418102;

function onclick: WordBool; dispid -600;

function ondblclick: WordBool; dispid -601;

procedure onkeydown; dispid -602;

procedure onkeyup; dispid -604;

function onkeypress: WordBool; dispid -603;

procedure onmousedown; dispid -605;

procedure onmousemove; dispid -606;

procedure onmouseup; dispid -607;

procedure onmouseout; dispid -2147418103;

procedure onmouseover; dispid -2147418104;

procedure onreadystatechange; dispid -609;

function onbeforeupdate: WordBool; dispid -2147418108;

procedure onafterupdate; dispid -2147418107;

function onrowexit: WordBool; dispid -2147418106;

procedure onrowenter; dispid -2147418105;

function ondragstart: WordBool; dispid -2147418101;

function onselectstart: WordBool; dispid -2147418100;

function onerrorupdate: WordBool; dispid -2147418099;

end;

Figure 9: The result of using Delphi’s TypeLib Editor to copy dis-
patch IDs to an automation object.

On the ’Net
The code returns True, which tells the document object
model not to bubble the event; this will ensure the default
behavior of a click event will be carried. If we wanted to elim-
inate this behavior, we would have returned False; clicks on
links would be ignored.

Now comes the fun part. This statement connects the event
handler object to the document object model:

InterfaceConnect(Document, HtmlDocumentEvents,

DocHandler, DocConnectionID);

where Document is the IHtmlDocument2 instance, and
DocConnectionID is an integer variable used to keep tabs on the
connections performed. DocHandler is the TAutoObject descen-
dant instance that implements the HtmlDocumentEvents dis-
patch interface. When we’re done with the document, we must
disconnect from the event model using the following code:

InterfaceDisconnect(Document, HtmlDocumentEvents,

DocConnectionID);

Wrapping It Up
You should install the INetSDK, and acknowledge that a
large portion of your time will be spent reading the docu-
mentation, looking at the samples, and wondering why no
one documented the function you are interested in.

The following Usenet groups are some of the best places to
find information and ask questions about the DOM — and
how to handle it from Delphi:

borland.public.delphi.activex.controls.using
borland.public.delphi.internet
borland.public.delphi.oleautomation
microsoft.public.inetsdk.programming.html_objmodel
microsoft.public.inetsdk.programming.mshtml_hosting
microsoft.public.inetsdk.programming.webbrowser_ctl

As you can see, a lot can be done with IE4 from a Windows
application if you are willing to get down and dirty with
16 August 1998 Delphi Informant
COM interfaces and incomplete documentation. The IE
WebBrowser control is a very powerful tool for Internet-
aware applications, and can be used to create non-traditional
Internet applications.

An example of a non-browser application I wish I had the
time to write is an adventure game like the Ultima games.
Instead of using complex graphic code to implement the
graphics and the game logic engine, you can use your favorite
HTML editor and graphic editor to easily create “rooms” in
the adventure, and apply the logic that takes the user in the
maze using Delphi code. I’m sure you’ll be able to think of
other uses for the browser control. ∆

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer of
eAuthor Help, HyperAct’s HTML Help-authoring tool. For more information about
HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910 or visit
http://www.hyperact.com.

http://www.hyperact.com

17 August 1998 Delphi Informant

Algorithms
Delphi / 3-D Graphics

By Rod Stephens
Vivid Equations
An Introduction to 3-D Graphics Programming

Three-dimensional graphics is a complicated subject. Entire books have been
written about generating three-dimensional images. There are even books

about software that generates three-dimensional images.
While you could spend years studying the
topic, much of three-dimensional graphics is
based on fairly simple mathematics. This
article describes the equations that are the
basis for three-dimensional graphics pro-
gramming. It also shows how to use those
equations to draw simple three-dimensional
objects and surfaces.

Transformations
Transformations occur when computer
operations take an object and transform it
in some way. The most important transfor-
mations in three-dimensional graphics are
translation, scaling, projection, and rota-
tion. Each of these modifies the coordi-
nates of a point in a different way. For
example, translation moves a point in
three-dimensional space.

Translation, scaling, projection, and rotation
all preserve straight lines. After any combi-
nation of these transformations, a straight
line will still be straight. This is important
because it allows a program to quickly trans-
form and display complex objects.
To transform an object, a program trans-
forms the points that define that object. It
then connects the transformed points as
they are connected in the original object
using straight lines. For example, to trans-
form a rectangle, the program transforms
the four corners of the rectangle, and then
connects them.

Translation and scaling transformations are
straightforward. Translating the point (x, y, z)
by the offset (tx, ty, tz) gives the point (x +
tx, y + ty, z + tz). The point is moved dis-
tance tx in the X direction, ty in the Y direc-
tion, and tz in the Z direction.

Scaling or stretching by factors of (sx, sy, sz)
gives the point (x * sx, y * sy, z * sz). The
new point lies sx times as far from the origin
as the old point in the X direction. Similarly,
it lies sy times farther in the Y direction and
sz times farther in the Z direction.

A projection maps a point in a particular
dimension into a lower dimensional space.
Usually, this means mapping a three-

Figure 1: Rotating a point (x, y) through the angle ?.

Algorithms
dimensional point into a two-dimensional space so the point
can be displayed on a two-dimensional computer monitor.

The simplest kind of projection is a parallel projection that
projects a point onto the X-Y plane by ignoring the point’s Z
coordinate. The point (x, y, z) in three dimensions is trans-
formed into the point (x, y) in two dimensions. To create
different parallel projections, the program can translate,
scale, and rotate points before applying the simple projection
onto the X-Y plane.

In practice, graphics programs often do not actually set a
point’s Z coordinate to zero. Instead, they simply ignore the
Z coordinate when drawing the point.

Rotation
Rotation is a little more complex than translation, scaling, and
projection. The simplest case is rotating a point around the ori-
gin in two dimensions, as shown in Figure 1. Here the point
(x, y) lies distance R = Sqrt(x * x + y * y) from the origin.

The line from the point to the origin makes some angle
a with the X axis, by the definition of the sine and
cosine functions:

x = R * Cos(a)
y = R * Sin(a)

Now suppose the point is rotated by angle q around the ori-
gin. The distance R from the point to the origin is unchanged,
so the point’s new coordinates (x’, y’) are given by:

x’ = R * Cos(a + q)
y’ = R * Sin(a + q)

These equations can be rewritten using the equations:

Cos(a + q) = Cos(a) * Cos(q) - Sin(a) * Sin(q)
Sin(a + q) = Sin(a) * Cos(q) + Cos(a) * Sin(q)

Making these substitutions gives:

x’ = R * [Cos(a) * Cos(q) - Sin(a) * Sin(q)]
y’ = R * [Sin(a) * Cos(q) + Cos(a) * Sin(q)]

Recall that the point’s original coordinates were given by:

x = R * Cos(a)
y = R * Sin(a)

Then, substituting these values into the new equations gives:

x’ = x * Cos(q) - y * Sin(q)
y’ = y * Cos(q) + x * Sin(q)

The value q is the angle through which the point should be
rotated. If the program knows q, it can use these equations to
calculate the point’s new coordinates.
18 August 1998 Delphi Informant
These equations show how to rotate a point around the
origin. To rotate a point around another point, the pro-
gram can translate the point of rotation to the origin,
rotate around the origin, and translate the point of rota-
tion back to its original position. This allows the
program to treat one complicated rotation as a simple
translation, followed by a simple rotation, followed by
another simple translation.

In two dimensions, a program rotates a point around another
point. In three dimensions, it rotates a point around a line.
Rotating a point around a general line would be difficult to ana-
lyze directly. Rotating around one of the coordinate axes, howev-
er, is straightforward. For example, when a program rotates a
point around the Z axis, the point’s X and Y coordinates change,
but its Z coordinate value is unchanged. The program can sim-
ply treat the point as if it were rotating around the origin in the
X-Y plane, and leave the point’s Z coordinate alone.

Similarly, a program can treat rotation around the X or Y axis
as rotation around the origin in the Y-Z or X-Z plane.

Rotating around lines other than the origins requires more
steps, but is conceptually simple. Instead of calculating equa-
tions to rotate around the line directly, the program can build
the rotation out of simpler steps.

First, the program translates the points so the line of rota-
tion intersects the origin. Next, it rotates around the Z
axis until the line lies in the Y-Z plane. It then rotates
around the X axis until the line coincides with the Z axis.
Now, the program can rotate around the line by rotating
around the Z axis. The program finishes by reversing the
rotations, and translation is used to make the line of rota-
tion lie in the Z axis.

Homogeneous Coordinates
Each of these transformations is understandable individually,
but combining them is difficult. Translation adds values to a
point’s coordinates, scaling multiplies; rotation uses a combi-
nation of more than one of the point’s coordinates multiplied

Algorithms
and added in a complex way. Combining the equations for a
more general transformation would be hard.

Homogeneous coordinates allow a program to treat all of these
transformations in a uniform (homogeneous) way. They allow a
program to combine any number of transformations easily.

In a three-dimensional homogeneous coordinate system, a
point is represented by a vector of four values [a, b, c, s]. The
fourth value is a scaling factor. The first three values are the
point’s coordinates, multiplied by the scaling factor. For exam-
ple, the following vectors all represent the point (1, 2, 3):

[1, 2, 3, 1]
[10, 20, 30, 10]
[1.5, 3, 4.5, 1.5]

A vector is called normalized when its scaling factor is 1. A
program can normalize a vector by dividing each of its com-
ponents by the scaling factor.

Transformations are represented by 4 x 4 matrices. To apply a
transformation to a point, a program multiplies the point’s vector
by the transformation matrix. The identity transformation, which
leaves a point unchanged, is represented by the identity matrix:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

If you multiply this matrix by the vector [a, b, c, s], you get
[a, b, c, s], so the point is unchanged.

Translation by a distance of (tx, ty, tz) is represented by the matrix:

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

If you multiply this matrix by the point [a, b, c, s], you get:

1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

This vector correctly represents the translation of the point.
Scaling by factors of sx, sy, and sz is represented by the matrix:

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

If you multiply this matrix by the vector [a, b, c, s], you get
[a * sx, b * sy, c * sz, s], as desired. Projection along the Z
axis onto the X-Y plane is represented by:

[a, b, c, s] * = [a + 1 * tx, b + 1 * ty, c + 1 * tz, s]
19 August 1998 Delphi Informant
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

Multiply this matrix by the vector [a, b, c, s] and the resulting
vector [a, b, 0, s] has Z coordinate zero. As mentioned, most
programs don’t bother to perform this multiplication. Instead,
they simply ignore the points’ Z coordinates when drawing.

Finally, rotation though the angle q around the Z axis in the X-
Y plane is represented by:

Cos(q) Sin(q) 0 0
-Sin(q) Cos(q) 0 0

0 0 1 0
0 0 0 1

Multiplying the vector [a, b, c, s] by this matrix gives:

[a * Cos(q) - b * Sin(q), a * Sin(q) + b * Cos(q), c, s]

This result agrees with the equations for rotation around the
origin in two dimensions, as shown earlier.

Similarly, the matrix representing rotation around the X axis is:

1 0 0 0
0 Cos(q) Sin(q) 0
0 -Sin(q) Cos(q) 0
0 0 0 1

and the matrix representing rotation around the Y axis is:

Cos(q) 0 Sin(q) 0
0 1 0 0

-Sin(q) 0 Cos(q) 0
0 0 0 1

One of the nice things about these transformation matrices is
that the product of two matrices represents the transforma-
tions applied one after each other. For example, if A and B
are transformation matrices, and p is a vector, then:

(p * A) * B = p * (A * B)

This means a program can multiply the matrices together
first, and then apply the result to the point later.

If the program is transforming a single point, this is no faster
than applying the matrices to the point one at a time. However,
if the program must transform hundreds or thousands of points,
it can mean a large savings. Instead of applying both matrices to
each point, the program need only apply the combined transfor-
mation to each point. For more complex transformations involv-
ing many rotations and translations, the savings are even greater.

Drawing in Delphi
Enough math! How can you use all this to draw three-
dimensional pictures in Delphi? One straightforward

Algorithms
method is to create an array of points representing the end
points of line segments. The program transforms the
points, and then connects them on the screen.

The example program Platonic, shown in Figure 2 (and
available for download; see end of article for details), uses
Figure 2: The example program Platonic displaying a dodecahedron.

// Make M an identity matrix.
procedure TPlatonicForm.MakeIdentity(var M: TMatrix3D);

var
i, j: Integer;

begin
for i := 1 to 4 do

for j := 1 to 4 do
if (i = j) then

M[i, j] := 1.0

else
M[i, j] := 0.0;

end;

// Perform matrix-matrix multiplication. Set R = A * B.
procedure TPlatonicForm.MatrixMatrixMult(var R: TMatrix3D;

A, B: TMatrix3D);

var
i, j, k: Integer;

value: Single;

begin
for i := 1 to 4 do

for j := 1 to 4 do begin
// Calculate R[i, j].
value := 0.0;

for k := 1 to 4 do
value := value + A[i, k] * B[k, j];

R[i, j] := value;

end;
end;

// Perform vector-matrix multiplication. Set r = p * A.
procedure TPlatonicForm.VectorMatrixMult(var r: TVector3D;

p: TVector3D; A: TMatrix3D);

var
i, j: Integer;

value: Single;

begin
for i := 1 to 4 do begin

value := 0.0;

for j := 1 to 4 do
value := value + p[j] * A[j, i];

r[i] := value;

end;

// Normalize the point. Note value still holds r[4].
r[1] := r[1] / value;

r[2] := r[2] / value;

r[3] := r[3] / value;

r[4] := 1.0;

end;

Figure 3: Matrix and point manipulation procedures.

20 August 1998 Delphi Informant
this approach to draw the Platonic solids: tetrahedron,
cube, octahedron, dodecahedron, and icosahedron. It
defines the record type Point3D to hold a point’s original
and transformed coordinates:

TPoint3D = record
Coord: TVector3D; // The untransformed coordinates.
Trans: TVector3D; // The transformed coordinates.

end;

The program declares a Segments array to contain the seg-
ments it will draw. The variable NumSegments records the
number of segments used:

Segments : array [0..1000, 1..2] of
TPoint3D;

NumSegments : Integer;

The Segment array’s first dimension gives a segment number.
The second gives the start and end points for a segment. For
// Build a transformation matrix for display.
procedure TPlatonicForm.BuildTransformation(

var T: TMatrix3D);

var
r1, r2, ctheta, stheta, cphi, sphi: Single;

T1, T2, T3, T4, T12, T34: TMatrix3D;

begin
// Rotate around the Z axis until the eye lies in
// the Y-Z plane.
r1 := Sqrt(EyeX * EyeX + EyeY * EyeY);

stheta := EyeX / r1;

ctheta := EyeY / r1;

MakeIdentity(T1);

T1[1, 1] := ctheta;

T1[1, 2] := stheta;

T1[2, 1] := -stheta;

T1[2, 2] := ctheta;

// Rotate around the X axis until the eye lies within
// the Z axis.
r2 := Sqrt(EyeX * EyeX + EyeY * EyeY + EyeZ * EyeZ);

sphi := -r1 / r2;

cphi := -EyeZ / r2;

MakeIdentity(T2);

T2[2, 2] := cphi;

T2[2, 3] := sphi;

T2[3, 2] := -sphi;

T2[3, 3] := cphi;

// We could project along the Z axis here. Instead we
// just ignore the Z coordinate when drawing.

// Make the picture reasonably large on the form.
// Here we scale y by -50 to reverse its sign since
// the Canvas starts with (0, 0) in the upper left.
MakeIdentity(T3);

T3[1, 1] := 50;

T3[2, 2] := -50;

T3[3, 3] := 50;

// Center the picture on the form.
MakeIdentity(T4);

r1 := SolidOption.Width + SolidOption.Left;

T4[4, 1] := (ClientWidth - r1) / 2 + r1;

T4[4, 2] := ClientHeight / 2;

// Combine the transformations.
MatrixMatrixMult(T12, T1, T2);

MatrixMatrixMult(T34, T3, T4);

MatrixMatrixMult(T, T12, T34);

end;

Figure 4: BuildTransformation creates a transformation matrix for
viewing from point (EyeX, EyeY, EyeZ) looking toward the origin.

Algorithms

// Draw the selected solid.
procedure TPlatonicForm.FormPaint(Sender: TObject);

var
i, seg1, seg2: Integer;

T: TMatrix3D;

rect: TRect;

begin
// Build the transformation.
BuildTransformation(T);

// Erase the form.
rect.Left := 0;

rect.Top := 0;

rect.Right := ClientWidth;

rect.Bottom := ClientHeight;

Canvas.Brush.Color := Color;

Canvas.FillRect(rect);

// Draw the selected solid's segments.
Canvas.Pen.Color := clBlack;

i := SolidOption.ItemIndex + 1;

seg1 := FirstSegment[i];

seg2 := FirstSegment[i + 1] - 1;

for i := seg1 to seg2 do begin
// Apply the transformation to the points.
VectorMatrixMult(Segments[i, 1].Trans,

Segments[i, 1].Coord, T);

VectorMatrixMult(Segments[i, 2].Trans,

Segments[i, 2].Coord, T);

// Draw the segment.
Canvas.MoveTo(Round(Segments[i, 1].Trans[1]),

Round(Segments[i, 1].Trans[2]));

Canvas.LineTo(Round(Segments[i, 2].Trans[1]),

Round(Segments[i, 2].Trans[2]));

end;

// Draw the axes if desired.
if (ShowAxesCheck.Checked) then
begin
Canvas.Pen.Color := clGreen;

for i := FirstSegment[0] to FirstSegment[1] - 1 do
begin
// Apply the transformation to the points.
VectorMatrixMult(Segments[i, 1].Trans,

Segments[i, 1].Coord, T);

VectorMatrixMult(Segments[i, 2].Trans,

Segments[i, 2].Coord, T);

// Draw the segments.
Canvas.MoveTo(Round(Segments[i, 1].Trans[1]),

Round(Segments[i, 1].Trans[2]));

Canvas.LineTo(Round(Segments[i, 2].Trans[1]),

Round(Segments[i, 2].Trans[2]));

end;
end;

end;

Figure 5: When it receives a Paint event, the example program
Platonic builds a transformation matrix, transforms its data points,
and then draws the segments that make up the selected solid.

Figure 6: The example program Surface displaying a surface.
example, the first line segment connects points Segments[0,
1] and Segments[0, 2].

When it starts, Platonic loads data into the Segments array.
FirstSegment is an array of integers indicating the indexes of
the first segment that belong in each Platonic solid. For
example, FirstSegment[1] gives the index in the Segments
array of the first segment used to draw the tetrahedron.
Figure 3 shows matrix and point manipulation routines
used by the program.

The procedure BuildTransformation, shown in Figure 4, cre-
ates a transformation matrix for projecting the data. This
transformation acts as if it were viewing the data from the
point (EyeX, EyeY, EyeZ) and looking toward the origin. The
procedure applies rotations until the eye coordinates lie in the
Z axis, and then it projects onto the X-Y plane. It also adds a
scaling and a translation to make the result fit nicely in the
form’s pixel coordinate system.

When the program receives a Paint event, it calls
BuildTransformation. It applies the transformation to the seg-
ments that make up the selected solid. It then draws lines
between the transformed points. It repeats these steps for the
three segments that represent the coordinate axis if the pro-
gram’s Show Axes box is checked. Figure 5 shows the pro-
gram’s Paint event handler.

On the Surface
The example program Platonic stores both end points for
each of the segments it draws. This wastes a little space
since each of the segments in a Platonic solid connect to at
least two others. For example, each corner of a cube is
shared by three edges. For small data sets like this one, the
waste is not terribly important.

The Surface example program, shown in Figure 6, stores
the coordinates of each point for an array of X and Y val-
ues. This allows it to transform each point only once.
Figure 7 shows how the program transforms the data and
draws the surface.

Below the Surface
If you look closely at Figure 6, you will see parts of the
surface overlapping each other. This picture shows the sur-
face at a high enough angle that the overlap is not a big
problem. On the other hand, when viewed closer to edge
on, the picture becomes hopelessly cluttered. Removing
hidden surfaces would make the image easier to under-
stand, but hidden-surface removal in general is a difficult
problem. For surfaces like this one, however, a special
algorithm lets a program remove the hidden surfaces from
the picture quickly and easily.

The program simply draws in order the rectangles that make
up the surface, drawing the rectangles farthest from the eye
coordinates (EyeX, EyeY, EyeZ) first. As each rectangle is drawn,
it is filled with a surface color. This erases any previously drawn
21 August 1998 Delphi Informant

Algorithms
rectangles that should be hidden by the new one. As long as
the rectangles are drawn in order from farthest to nearest, the
newer rectangles erase the old ones that should be hidden.

The example program Hidden, shown in Figure 8, uses this
method to display the same surface drawn by the example
program Surface. The programs are very similar. The only
difference is in how the programs draw the surface. The code
used by Hidden, shown in Figure 9, does not actually sort the
rectangles. It simply draws them ordered by their X and Y
coordinates. If you rotate the image displayed by the program
until that ordering is incorrect, you will see parts of rectangles
overlapping other rectangles.
// Draw the surface.
procedure TSurfaceForm.FormPaint(Sender: TObject);

var
x, y: Integer;

T: TMatrix3D;

rect: TRect;

begin
// Build the transformation.
BuildTransformation(T);

// Apply the transformation to the points.
for x := Xmin to Xmax do

for y := Ymin to Ymax do
VectorMatrixMult(Points[x, y].Trans,

Points[x, y].Coord, T);

// Erase the form.
rect.Left := 0;

rect.Top := 0;

rect.Right := ClientWidth;

rect.Bottom := ClientHeight;

Canvas.Brush.Color := Color;

Canvas.FillRect(rect);

// Draw the lines that are parallel to the X axis.
Canvas.Pen.Color := clBlack;

for x := Xmin to Xmax do begin
Canvas.MoveTo(Round(Points[x, Ymin].Trans[1]),

Round(Points[x, Ymin].Trans[2]));

for y := Ymin + 1 to Ymax do
Canvas.LineTo(Round(Points[x, y].Trans[1]),

Round(Points[x, y].Trans[2]));

end;

// Draw the lines that are parallel to the Y axis.
for y := Ymin to Ymax do begin
Canvas.MoveTo(Round(Points[Xmin, y].Trans[1]),

Round(Points[Xmin, y].Trans[2]));

for x := Xmin + 1 to Xmax do
Canvas.LineTo(Round(Points[x, y].Trans[1]),

Round(Points[x, y].Trans[2]));

end;

// Transform the origin.
VectorMatrixMult(Axes[0].Trans, Axes[0].Coord, T);

// Transform and draw the axes.
Canvas.Pen.Color := clGreen;

for x := 1 to 3 do begin
VectorMatrixMult(Axes[x].Trans, Axes[x].Coord, T);

Canvas.MoveTo(Round(Axes[0].Trans[1]),

Round(Axes[0].Trans[2]));

Canvas.LineTo(Round(Axes[x].Trans[1]),

Round(Axes[x].Trans[2]));

end;
end;

Figure 7: The example program Surface uses this code to trans-
form and display a surface.

Figure 8: The example program Hidden displaying a surface
with hidden surfaces removed.

// Draw the surface.
procedure THiddenForm.FormPaint(Sender: TObject);

var
x, y: Integer;

T: TMatrix3D;

rect: TRect;

begin
// Build the transformation.
BuildTransformation(T);

// Apply the transformation to the points.
for x := Xmin to Xmax do
for y := Ymin to Ymax do

VectorMatrixMult(Points[x, y].Trans,

Points[x, y].Coord, T);

// Erase the form.
rect.Left := 0;

rect.Top := 0;

rect.Right := ClientWidth;

rect.Bottom := ClientHeight;

Canvas.Brush.Color := Color;

Canvas.FillRect(rect);

// Draw the tiles that make up the surface.
Canvas.Pen.Color := clBlack;

Canvas.Brush.Color := clWhite;

for x := Xmin to Xmax - 1 do begin
for y := Ymin to Ymax - 1 do begin

Canvas.Polygon([

Point(Round(Points[x , y].Trans[1]),

Round(Points[x , y].Trans[2])),

Point(Round(Points[x + 1, y].Trans[1]),

Round(Points[x + 1, y].Trans[2])),

Point(Round(Points[x + 1, y + 1].Trans[1]),

Round(Points[x + 1, y + 1].Trans[2])),

Point(Round(Points[x , y + 1].Trans[1]),

Round(Points[x , y + 1].Trans[2]))]);

end;
end;

// Transform the origin.
VectorMatrixMult(Axes[0].Trans, Axes[0].Coord, T);

// Transform and draw the axes.
Canvas.Pen.Color := clGreen;

for x := 1 to 3 do begin
VectorMatrixMult(Axes[x].Trans, Axes[x].Coord, T);

Canvas.MoveTo(Round(Axes[0].Trans[1]),

Round(Axes[0].Trans[2]));

Canvas.LineTo(Round(Axes[x].Trans[1]),

Round(Axes[x].Trans[2]));

end;
end;

Figure 9: Hidden’s Paint event handler.

22 August 1998 Delphi Informant

Algorithms
Conclusion
This is far from the end of the three-dimensional graphics story.
More advanced topics include more general hidden-surface
removal, shadows, color smoothing, transparency, reflectivity,
ambient lighting, and a host of other subjects. Using the tech-
niques described here, however, you can take your first steps into
the world of three-dimensional graphics. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\AUG\DI9808RS.

Rod is the author of such programming classics as Visual Basic Graphics Programming
[John Wiley & Sons, 1997] and Ready-to-Run Delphi 3.0 Algorithms [John Wiley &
Sons, 1998]. He also writes algorithm columns in Visual Basic Developer and
Microsoft Office & Visual Basic for Applications Developer. You can find pictures creat-
ed using 3-D graphics techniques at his Web site (http://www.vb-helper.com). You can
reach Rod via e-mail at RodStephens@vb-helper.com.
23 August 1998 Delphi Informant

http://www.vb-helper.com

24 August 1998 Delphi Informant

DBNavigator
Delphi / Database Development / Borland Database Engine

By Cary Jensen, Ph.D.
Delphi Database Development
The BDE and the Components of
RAD Database Development

I have been writing this column in Delphi Informant since the premiere issue.
In that time, I have had the opportunity to cover a wide range of topics, from

creating local database names using the Database component (the very first
article), to cached updates; from OLE Automation to RTTI; from Code Insight to
QuickReports. In fact, in recent months I have wondered if the column title,
“DBNavigator,” continues to be appropriate.
I’ve decided to keep the “DBNavigator”
name. Furthermore, with this issue, I am
beginning a series of columns focused on
database-related issues. This month’s column
begins with an overall introduction to data-
base development with Delphi. In coming
months, I will revisit and re-examine some
topics I’ve covered in the past, as well as
introduce new database-related topics I have
not yet had the opportunity to discuss.

While I still retain the right, and the desire,
to cover issues that extend beyond the
realm of database development, I think the
timing is right for an extended look at data-
base applications. Over the past year, I have
encountered numerous developers who are
new to Delphi, coming from languages
such as Visual Basic, Clipper, and
PowerBuilder. Consequently, although there
are many Delphi developers who are com-
pletely comfortable with the issues sur-
rounding database development, there is a
growing number of programmers who are
new to these issues.

Overview of Delphi Database Development
Delphi is not only a great language, it’s an
exceptional database development environ-
ment. This month, we begin with a general
overview of the heart of database develop-
ment in Delphi, the Borland Database Engine
(BDE). We then continue with a discussion
of the role played by many of the most com-
mon components used for data access.

The BDE
Delphi provides you with access to your data
using the BDE. From time to time, you’ll also
see the BDE referred to as IDAPI (Integrated
Database Application Programming Interface).

The BDE is a common data access layer for
all of INPRISE’s products, including Delphi,
C++Builder, and JBuilder (through
DataGateway). Several Corel products,
including Paradox 8 for Windows and
Quattro Pro, also use it. In addition, by
default, database applications written with
these products use the BDE. In other words,
Delphi uses the BDE, as well as those data-
base applications you write with Delphi.

The BDE consists of a collection of DLLs.
Consequently, one installation of the BDE can
be used by two or more BDE-aware applica-
tions simultaneously. As a result, each individ-
ual Delphi application is smaller in size than it
would be if all data-accessing code needed to
be linked into the executable. Furthermore,
because two or more applications can share
the same copy of the BDE loaded into memo-
ry, overall RAM usage is reduced when two or
more BDE-aware applications are running
simultaneously (when compared to linking the
code into each .EXE).

DBNavigator
The purpose of the BDE is to insulate you from the mun-
dane tasks of data access. These include table and record
locking, SQL construction, record updates, and basic I/O,
just to mention a few. The BDE permits you to concentrate
on what data you want to access, instead of how to access it.
Because of the BDE, your Delphi applications can just as eas-
ily use data in dBASE or Paradox tables, files on a remote
database server, and files supported by ODBC (Open
DataBase Connectivity) drivers.

The BDE API consists of approximately 200 procedures and
functions, all of which are available through the BDE unit.
Fortunately, you almost never need to call any of these rou-
tines directly. Instead, you use the BDE through Delphi’s
data access components, which are found on the Data Access
page of the Component palette. These components encapsu-
late calls to the BDE API, providing you with a much sim-
pler interface. However, if you have special data needs not
provided by these components, you can use the BDE API
directly.

The relationship between Delphi (and other applications),
the BDE, and underlying files is depicted in Figure 1. As you
can see, the BDE is a software layout that lies between BDE-
aware applications (Delphi and the database applications you
create with it) and the sources of your data. It also shows that
the BDE can access local tables directly, such as Paradox and
dBASE. Connecting to Microsoft Access or FoxPro tables
requires that you have the Microsoft DAO (Data Access
Objects) DLLs installed.

Connection to other data sources requires additional dri-
vers. For the best performance in connecting to a remote
database server, such as Oracle, Microsoft SQL Server,
InterBase, and so forth, use Borland SQL Links drivers.
These native language drivers are provided in the Delphi
Client/Server and Delphi Enterprise editions. In addition,
SQL Links drivers must use an additional network protocol
to connect to the remote server.
25 August 1998 Delphi Informant

Figure 1: The relationship between BDE-aware applications, the BDE,
Finally, the BDE also supports access to any file type for
which there exists an ODBC driver. ODBC is a Microsoft
standard for accessing databases, and is based on the Open
SQL CLI (call level interface). To use one of these drivers,
it must be installed and configured (using the ODBC 32-
bit Administrator, available on the Control Panel).

Following are some of the benefits provided by the BDE:
It provides seamless access to any data source, whether
it’s Paradox, dBASE, InterBase, Oracle, Sybase,
Informix, Microsoft SQL Server, or data accessed
through ODBC drivers.
It provides the basic data engine for all your applica-
tions. Your clients only need one copy of the BDE on
their systems, and this can be accessed by all the appli-
cations you write.
It creates an OS (operating system)-independent layer for
all your applications. The BDE manages all file I/O, net-
work access, and memory management for data access.
It provides enhanced performance with BLOB (Binary
Large Object) data through caching services.
It includes internal support for language drivers, provid-
ing you with an easier path to creating applications for
the international market.
It performs data translation between various data sources.
It includes a SQL generator. Data requests, other than
pass-through SQL, are translated into a common local
SQL, which is a subset of ANSI92 SQL. Using the
Borland SQL Links for Windows, these can be translated
into the appropriate dialect of SQL, based on the SQL
driver to which the BDE is sending its data requests.
It offers access to data stored in formats supported by
your installed ODBC drivers.

One of the most important benefits provided by the BDE
is that your Delphi applications don’t need to be written
to a particular database standard. Specifically, use the
same, simple interface provided by data access components
to access your data. Even if later you need to change the
and data sources.
underlying data type (e.g. from Paradox
to InterBase, or Microsoft SQL Server to
Oracle Server), your applications don’t
necessarily need to be recompiled. The
description of where to find the data,
and how to access the data, can be con-
figured outside your applications using
the BDE Administrator.

Understanding the BDE Administrator
You can define where your data is locat-
ed, and which driver to use to access it,
using the BDE Administrator. This pro-
gram can be accessed from the Delphi 3
folder, but it also appears on the
Control Panel.

The BDE Administrator consists of two
panes. The left pane has two pages. The
Databases page (see Figure 2) displays

Figure 2: The BDE Administrator.

DBNavigator

Figure 3: The Configuration page of the BDE Administrator.
aliases, and the Configuration page (see Figure 3) displays dri-
vers and settings. The right pane contains the Definition
page, which is used to display the various parameters of the
selected database name, driver, or setting.

Working with Global Aliases
Aliases, or database names, are labels that reference a direc-
tory (or server) and a driver that can be used to access data
in that directory (or server). Aliases defined on the
Databases page of the BDE Administrator are available to
all Delphi applications on that machine. Consequently,
they are referred to as global aliases. By comparison, aliases
defined within an application using a Database component
are referred to as local aliases, because they are available
only to that application.

Global aliases defined here are especially useful for data that
must be accessed by more than one application. For example,
a company may maintain a single table for storing general
information about its employees. If more than one applica-
tion needs to access this information, an alias can be created
that points to the directory in which that table is stored. If all
applications access this table using the defined alias (which is
26 August 1998 Delphi Informant
assigned to the DatabaseName property of the
DataSet component being used for the access), a
developer doesn’t need to know the physical loca-
tion of the table.

To create a new alias, right-click on Databases in
the Databases page and select New. From the New
Database Alias dialog box, select the driver that
corresponds to the type of data being accessed. For
local tables, including Paradox, dBASE, and
ASCII, select STANDARD. Otherwise, select one of
the other types available from the Database Driver

Name drop-down combo box.

The BDE Administrator will generate a default
name for the driver. Select the driver in the
Databases page and enter the name you want to
use for the driver. Then, enter the appropriate
parameters for the new alias in the Definition page.

To change a given alias, select it in the Databases
page. To change the alias name, click on the cur-
rent name until it appears as an editable field. To
change parameters, select the name, and then mod-
ify the parameters in the Definition page.

To delete a global alias, select it in the Databases
page, right-click, and select Delete. You cannot
delete an alias when it is open. (An alias is open
when a green box appears surrounding the bitmap
to the left of the alias.) To close an alias, select it,
right-click, and select Close.

Configuring Drivers
Drivers are configured from the Configuration

page of the BDE Administrator. To change a particular dri-
ver’s configuration, select that driver, then modify its attribut-
es in the Definition page.

Native drivers, which include both local and SQL Links, are
installed when you install Delphi. You cannot add new native
drivers from the BDE Administrator. These can only be
installed from the installation disk supplied by INPRISE, or
one created by InstallShield Express.

The driver settings you enter on the Configuration page of
the BDE Administrator provide default settings for global
aliases. However, when configuring a particular alias, you
can override any of these parameters.

Database Applications That Don’t Use the BDE
Under normal circumstances, the database applications that
you create using Delphi use the BDE. However, there are
alternatives that don’t require the BDE. These include:

Applications that make use of explicit file I/O. For
example, you can define your own file structures, then
take responsibility for reading and writing this data
manually. The drawback to this type of application is
that you cannot use the data access and data control

DBNavigator
components that ship with Delphi. Similarly, if you
want the data to be accessed in a multi-user environ-
ment, you are responsible for programming the neces-
sary file- and record-locking mechanisms.
Applications that make use of an alternative database
engine. Several third-party developers have created
add-on products for Delphi that provide for data
access. These either support file types not supported
directly by the BDE (such as Clipper or Btrieve) or
have a smaller footprint than the BDE. Some of these
third-party products can be used with Delphi’s data
access and data control components, while others
provide their own component set for data access
and manipulation.
Applications that use the ClientDataSet component
that ships with the Client/Server and Enterprise edi-
tions of Delphi. This component, which can be used in
place of other DataSet components, permits the reading
and writing of single-user flat files. The ClientDataSet
component relies on a 150KB DLL named
DBCLIENT.DLL, but doesn’t make use of the BDE.
Client applications that use INPRISE’s MIDAS
(Multi-Tier Distributed Application Services) technolo-
gy. With MIDAS, your Delphi client application
receives data over a TCP/IP connection, or through the
use of sockets. The data is provided by an application
server, which you also write using Delphi. While the
application server does make use of the BDE, the
client application does not. Client applications created
using MIDAS are often referred to as thin clients,
because they require less configuration and fewer files
(specifically, no BDE).

Delphi Database Components
BDE-based database applications written in Delphi rely on
both data access and data control components that ship
with Delphi. The relationship between these components is
depicted in Figure 4. The following sections describe each
of these sets of components.
Figure 4: The relationship between the various data access
components and data aware controls.

Session
(default)

Database
(default)

DataSets
(Table, Query,
StoredProc)

DataSource

DBEditDBTextDBNavigatorDBGrid

Data Controls (below)

DBMemo DBImage

27 August 1998 Delphi Informant
Session. The Session component represents a connection
to the BDE. Conceptually, it represents the user for the
purpose of file and record locking. Every database applica-
tion has its own session, and Delphi creates this session
automatically. (The automatically-created session compo-
nent can be referenced by the instance variable named
Session.) It is because of the session that two applications
running on the same machine are seen by the BDE as two
different users (different sessions equate to different users).
Even if one user runs two copies of a given application,
each copy will have a different session, and therefore will
appear to the BDE as two users.

There is a Session component on the Data Access page of
the Component palette. One of the few times you ever
need to add Session components to a single project is
when that project is multi-threaded and data needs to be
accessed by more than one thread. Because each thread
accesses data from a separate session, the BDE treats the
threads as separate users. This provides a consistent mech-
anism for the resolution of record and table locking
between threads.

Database. The Database component provides a pointer to a
directory (on a stand-alone machine or a LAN), or to a
remote database server. Every database application will have
at least one Database component, and more if data in mul-
tiple directories and/or servers is being accessed.

If you use a DataSet, but have not specifically associated it
with a Database component, Delphi will create one
Database component for each directory and/or server
being accessed. It will do this in response to an attempt to
open the DataSet.

Unlike a Session component, you may need to use a Database
component if you want to control access to a database. For
example, if you want to define custom parameters for access
to a database server, store a username and password, or
explicitly control transactions, you will probably use at least
one Database component in your application.

In a single-threaded application, all Database components
are associated with a single Session component. However,
many different DataSets can use one Database.

Database components, like Session components, are global-
ly available within your application. In other words, if your
Database component appears on an auto-created form or
the main form, it’s available to all forms and data modules
in the application, without the need for a corresponding
uses clause statement.

DataSets. DataSets, which include the Table, Query, and
StoredProc components, are associated with individual
tables or SQL files. (In the case of Query and StoredProc
components, it’s possible for these entities to be associated
with more than one, or even no, underlying data file. This
is the exception, however, rather than the rule.)

DBNavigator
Each DataSet has its own cursor. Furthermore, you use the
methods and properties of the DataSets to get information
about — and to control — a table. For example, using a
DataSet you can read data from a table, modify existing
records, insert new records, or delete records.

From a developer’s standpoint, DataSets greatly simplify
access to data. Specifically, they encapsulate calls to the
BDE from within an easy-to-use interface. For example, if
you wanted to create a pointer to a record using BDE API
calls, you would have to call at least five different BDE API
functions. By comparison, calling a Table component’s
Open method performs the identical operation.

DataSource. The DataSource component provides for interac-
tion between DataSets (which access data), and data controls
(which provide the user interface). This interaction is two-
way. For example, if a user tries to type a character into a
DBGrid component, the DBGrid will first inquire through
the DataSource whether the Table is in a state that permits
editing (such as dsEdit or dsInsert). If the Table is not, the
DataSource will attempt to place the Table in the dsEdit state.
If successful, the DataSource will accept the data entered into
the DBGrid. Likewise, when a Table pointer is changed to
point to a new record, the DataSet informs the DataSource,
which instructs the DBGrid to repaint itself.

Beginning Delphi database developers often wonder why the
database functionality represented by the DataSet and
DataSource components are not combined into a single com-
ponent. The answer is that, from a component design stand-
point, it is often better to create two simple components that
perform well-defined tasks, as opposed to a more complex
single component. The simpler components are easier to
debug and use.

Because DataSource components are used primarily for
managing the interaction between data controls and
DataSets, you rarely need to use a DataSource for data
access that is entirely programmatic. In other words, if you
have no user interface, you probably don’t need a
DataSource.

Data Control Components. Data control components (i.e.
those that appear on the Data Controls page of the
Component palette) are used to display or manipulate data
being pointed to by a DataSet. For example, using either a
DBGrid or DBEdit, a user can view and edit data. Using a
DBNavigator component, a user can navigate a DataSet, as
well as insert and delete records.

Delphi’s data access and data control components play
an important role in rapid application development.
Specifically, rather than having to explicitly program how a
user interacts with data — including fetching, detecting
changes, and saving data — you can simply place the
appropriate data controls and data access components
onto your form, and most of this interaction will be taken
care of for you.
28 August 1998 Delphi Informant
Conclusion
Delphi has established itself as one of the leading develop-
ment tools for building database applications for the
Windows platform. Essential to this role is the Borland
Database Engine, which serves as an independent layout
for all data access. In addition, the data access and data
control components provide a seamless and easy-to-use
interface to the BDE, permitting you to quickly build
complex interfaces.

In next month’s “DBNavigator,” we’ll take a look at configuring
data access components, including tables and queries. ∆

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based
database development company. He is co-author of 17 books, including
Oracle JDeveloper [Oracle Press, 1998], JBuilder Essentials
[Osborne/McGraw-Hill, 1998], and Delphi in Depth [Osborne/McGraw-Hill,
1996]. He is a Contributing Editor of Delphi Informant, and is an interna-
tionally-respected trainer of Delphi and Java. For information about Jensen
Data Systems consulting or training services, visit http://idt.net/~jdsi or e-mail
Cary at cjensen@compuserve.com.

http://idt.net/~jdsi

29 August 1998 Delphi Informant

The API Calls
Delphi 2, 3 / TAPI / Line Communications

By Major Ken Kyler and Alan C. Moore, Ph.D.
Delphi and TAPI
Part II: Building a Telephony Application

Last month, we discussed issues related to line communication in general and
telephony in particular. Introducing the four essential Windows communica-

tions classes — Win32 Communications API, WAVE API, Messaging API (MAPI),
and the Telephony API — we concentrated on the Telephony API, or TAPI. We
examined some of the basic TAPI functions in detail, and demonstrated how to
use them to initiate and manage phone calls.
This month, we’ll go further, building on that
foundation in several ways. We’ll show you
how to determine the existing capabilities of
the particular TAPI implementation and
monitor changes to the COMM port. We’ll
also show you how to access one of the dialog
boxes included in TAPI. To accomplish this,
we’ll have to take some additional steps that
were unnecessary in the first article.

Opening Lines of Communication
You’ll recall that last month, we explained
that initializing TAPI is a two-step process;
first, you call LineInitialize, then you call
LineNegotiateAPIVersion. Among other things,
LineInitialize returns a handle to the usage
instance of TAPI in its first parameter,
hLineApp. It also sets a pointer to a callback
function. The following statement from our
sample application accomplishes this:

ErrNo := LineInitialize(@FLineApp, MainInstance,

LineCallback, '',

@FnumDevs);

We also need to call LineNegotiateAPIVersion
so the application knows which version of
TAPI to use. As we discussed last month, since
it has several versions, each with considerably
different capabilities, TAPI is one of the few
Windows APIs that requires version negotia-
tion. This will become evident when we exam-
ine some of the TAPI data structures. Now
we’re ready to explore some new territory.
When we open a line for communications,
we could have a number of intentions: from
conducting a simple voice conversation to
downloading a file. The most important
function in determining what communica-
tions operations our application will be able
to perform is LineOpen. This function is
declared in TAPI.pas as:

function LineOpen(hLineApp: HLINEAPP;

dwDeviceID: DWORD;

lphLine: LPHLINE; dwAPIVersion: DWORD;

dwExtVersion: DWORD; dwCallbackInstance:

DWORD;

dwPrivileges: DWORD; dwMediaModes: DWORD;

const lpCallParams: LPLINECALLPARAMS):

LONG;

The first parameter, hLineApp, is a handle.
The second, dwDeviceID, is a line-device
identifier. The third, lphLine, is the line
device’s Windows handle. The fourth and
fifth parameters are negotiated: dwAPIVersion
gets the proper API version, and
dwExtVersion returns the extended version.
The sixth parameter, dwCallbackInstance, is
an application’s instance data, which it passes
to a callback function, lineInitialize. The next
two, dwPrivileges and dwMediaModes, are
probably the most important. The first deter-
mines how an application handles different
kinds of calls; the latter specifies the types of
calls. The final parameter, lpCallParams,
points to a structure that provides Windows
with criteria an application uses in selecting a

The API Calls
line. The LINECALLPARAMS record is defined in
TAPI.pas, as shown in Figure 1.

You’ll notice in this structure that many new options were
added in version two of TAPI. Figure 2 describes the fields
used by LineOpen. If you’re making a data call, you’re
required to set the default values; in a voice call, this is
optional. In the FormCreate method of TAPIU_2.pas, we ini-
tialize FMediaMode and FBearerMode as follows:
LPLINECALLPARAMS = ^TLINECALLPARAMS;

PLINECALLPARAMS = ^TLINECALLPARAMS;

TLINECALLPARAMS = record // Defaults:
dwTotalSize, // ---------
dwBearerMode, // voice
dwMinRate, // (3.1kHz)
dwMaxRate, // (3.1kHz)
dwMediaMode, // interactiveVoice
dwCallParamFlags, // 0
dwAddressMode, // addressID
dwAddressID: DWORD; // (any available)
DialParams: TLINEDIALPARAMS; // (0, 0, 0, 0)
dwOrigAddressSize, // 0
dwOrigAddressOffset,

dwDisplayableAddressSize,

dwDisplayableAddressOffset,

dwCalledPartySize, // 0
dwCalledPartyOffset,

dwCommentSize, // 0
dwCommentOffset,

dwUserUserInfoSize, // 0
dwUserUserInfoOffset,

dwHighLevelCompSize, // 0
dwHighLevelCompOffset,

dwLowLevelCompSize, // 0
dwLowLevelCompOffset,

dwDevSpecificSize, // 0
dwDevSpecificOffset: DWORD;

{$IFDEF Tapi_Ver20_ORGREATER}
dwPredictiveAutoTransferStates,

dwTargetAddressSize,

dwTargetAddressOffset,

dwSendingFlowspecSize,

dwSendingFlowspecOffset,

dwReceivingFlowspecSize,

dwReceivingFlowspecOffset,

dwDeviceClassSize,

dwDeviceClassOffset,

dwDeviceConfigSize,

dwDeviceConfigOffset,

dwCallDataSize,

dwCallDataOffset,

dwNoAnswerTimeout,

dwCallingPartyIDSize,

dwCallingPartyIDOffset: DWORD;

{$ENDIF}

end;

Figure 1: LINECALLPARAMS, as defined in the TAPI unit.

Meaning Use of Field

dwTotalSize Informs Windows how much memory
dwBearerMode Indicates the general class of data tra
dwMinRate Provides information bandwidth requi
dwMaxRate Provides information bandwidth requi
dwMediaMode Specifies the media mode the applica

constants (see TAPI.pas), or an extend
dwCallParamFlags Flags that control the behavior of a m

Figure 2: LineCallParams fields used by the LineOpen function.

30 August 1998 Delphi Informant
FMediaMode := LINEMEDIAMODE_DATAMODEM;

FBearerMode := LINEBEARERMODE_VOICE;

Then, we make certain these default values are reflected in
our two combo boxes with these statements:

// Default to LINEMEDIAMODE_DATAMODEM.
cboxMediaMode.ItemIndex := 3;

// Default to LINEBEARERMODE_VOICE.
cboxBearerMode.ItemIndex := 0;

Finally, we set the following values:

with FLineCallParams do begin
dwTotalSize := SizeOf(FLineCallParams);

dwBearerMode := FBearerMode;;

dwMediaMode := FMediaMode;

end;

Having initialized these and other values in the FormCreate
method, we can now call the LineOpen function and get things
rolling. In the expanded application included with this article (see
end of article for download details), we’ve added this function to
the CreateCallManager method with the following statement:

if cbLineMapper.Checked then
// Automatically select the device.
ErrNo := LineOpen(FLineApp, LINEMAPPER, @FLine, FVersion,

0, 0, LINECALLPRIVILEGE_NONE,

FMediaMode, @FLineCallParams)

else
ErrNo := LineOpen(FLineApp, FDev, @FLine, FVersion,

0, 0, LINECALLPRIVILEGE_NONE,

FMediaMode, nil);

The use of the LineOpen function and its LINEMAPPER
parameter demonstrate a very different approach from the
one we took in the last article. If cbLineMapper is checked,
we let the system select its default line; otherwise we choose
from the list of available devices. LINEMAPPER identifies
the first device capable of making the kind of call we want.
Let’s see how we determine these capabilities.

Is the Line Capable?
Once we’ve made this function call and have called the
CreateCallManager method, we can go about the business of
determining a line device’s capabilities. Information about
these capabilities is stored in another large TAPI structure,
LINEDEVCAPS. This structure is defined in TAPI.pas as
shown in Figure 3.

We can use the TAPI lineGetDevCaps function to retrieve this
information. Because there can be more than one logical line on
is available for returning TAPI information.
nsfer the line supports, including passthrough mode.
rements; not all telephony drivers use this field.
rements; not all telephony drivers use this field.
tion will support. Can be one of the LINEMEDIAMODE_
ed media mode value defined by a service provider.
odem when making a call.

The API Calls
a computer, we call lineGetDevCaps for each line to identify one
that supports the type of data with which we want to work. In
our extended application, we call this function in the
EnumerateDevices method.

Let’s examine the structure itself. As in
LPLINECALLPARAMS, dwTotalSize provides Windows
with the amount of memory needed for the structure.
Because this structure is variable in size, the next two
fields, dwNeededSize and dwUsedSize, indicate how much
LPLINEDEVCAPS = ^TLINEDEVCAPS;

PLINEDEVCAPS = ^TLINEDEVCAPS;

TLINEDEVCAPS = record
dwTotalSize,

dwNeededSize,

dwUsedSize,

dwProviderInfoSize,

dwProviderInfoOffset,

dwSwitchInfoSize,

dwSwitchInfoOffset,

dwPermanentLineID,

dwLineNameSize,

dwLineNameOffset,

dwStringFormat,

dwAddressModes,

dwNumAddresses,

dwBearerModes,

dwMaxRate,

dwMediaModes,

dwGenerateToneModes,

dwGenerateToneMaxNumFreq,

dwGenerateDigitModes,

dwMonitorToneMaxNumFreq,

dwMonitorToneMaxNumEntries,

dwMonitorDigitModes,

dwGatherDigitsMinTimeout,

dwGatherDigitsMaxTimeout,

dwMedCtlDigitMaxListSize,

dwMedCtlMediaMaxListSize,

dwMedCtlToneMaxListSize,

dwMedCtlCallStateMaxListSize,

dwDevCapFlags,

dwMaxNumActiveCalls,

dwAnswerMode,

dwRingModes,

dwLineStates,

dwUUIAcceptSize,

dwUUIAnswerSize,

dwUUIMakeCallSize,

dwUUIDropSize,

dwUUISendUserUserInfoSize,

dwUUICallInfoSize: DWORD;

MinDialParams,

MaxDialParams,

DefaultDialParams: TLINEDIALPARAMS;

dwNumTerminals,

dwTerminalCapsSize,

dwTerminalCapsOffset,

dwTerminalTextEntrySize,

dwTerminalTextSize,

dwTerminalTextOffset,

dwDevSpecificSize,

dwDevSpecificOffset,

dwLineFeatures: DWORD;

{$IFDEF Tapi_Ver20_ORGREATER}
dwSettableDevStatus,

dwDeviceClassesSize,

dwDeviceClassesOffset: DWORD;

{$ENDIF}

end;

Figure 3: The TAPI structure, LINEDEVCAPS.

31 August 1998 Delphi Informant
of the structure actually contains relevant information.
These two fields are set by Windows. You’ll notice that
several other fields are the same as, or similar to, those in
LPLINECALLPARAMS, e.g. dwBearerModes and
dwMediaModes.

Several of the other fields are quite important. The
dwNumAddresses field contains the number of addresses a
particular logical device supports; the field
dwAddressModes indicates the manner in which the appli-
cation identifies a line’s address; and the field
dwStringFormat (which we use in the sample application)
indicates whether the string format is ASCII or Unicode.
Because we aren’t supporting Unicode in this application,
we exit if we discover the format is Unicode. Otherwise,
we populate the cboxDevices combo box with the names of
the available line devices.

Monitoring a Modem: Beyond TAPI
Often, we want or need to keep track of what a modem is
doing. To accomplish this, we must use lower-level commu-
nications API functions that aren’t part of TAPI. The
GetCommModemStatus function is particularly useful. This
basic Windows communications function returns a modem’s
control-register values. It’s declared in Windows.pas as:

function GetCommModemStatus(hFile: THandle;

var lpModemStat: DWORD): BOOL; stdcall;

The parameters to GetCommModemStatus are hFile, the handle
of the communications port; and lpModemStat, which points to
the current status of the modem, stored in a control-register.
Before we can call this function, we must set things up properly.

First, we need to create a thread in which to do the monitor-
ing while the rest of our application continues to function.
(See Jon Jacobs’ article “Threads Simplified” in the
December, 1997 issue of Delphi Informant for an excellent
introduction of working with threads.) The simple thread
class is defined in the CommStatus.pas:

type
TCommStatus = class(TThread)
protected
procedure Execute; override;

end;

In the private declarations of our main form class, we declare
an instance of this thread as:

FCommStatusThread: TCommStatus;

We instantiate it (in suspended form) in the Form.Create
method with the line:

FCommStatusThread := TCommStatus.Create(True);

Once we have successfully opened a line for communications,
we activate the thread with the following line of code:

FCommStatusThread.Resume;

Event Constant Description

EV_BREAK A break was detected during input.
EV_CTS State of the CTS (clear-to-send)

signal changed.
EV_DSR State of the DSR (data-set-ready)

signal changed.
EV_ERR A line-status error occurred

(CE_FRAME, CE_OVERRUN, and
CE_RXPARITY).

EV_RING Ring indicator detected.
EV_RLSD State of the RLSD (receive-line-signal-

detect) signal changed.
EV_RXCHAR Character received and put in input

buffer.
EV_RXFLAG Event character (specified in the device)

received and put in the input buffer.
EV_TXEMPTY Last character in the output buffer sent.

Figure 4: lpEvtMask modem events and their meanings.

The API Calls

procedure TCommStatus.Execute;

var
dwEvent: DWord;

dwStatus: DWord;

begin
dwEvent := 0;

SetCommMask(FPort, EV_DSR or EV_CTS or SETDTR);

repeat
WaitCommEvent(FPort, dwEvent, nil);
GetCommModemStatus(FPort, dwStatus);

case dwEvent of
EV_DSR: Form1.SetBitmap(Form1.DSR, green);

SETDTR: Form1.SetBitmap(Form1.DTR, green);

EV_CTS: Form1.SetBitmap(Form1.CTS, green);

end;
// Form1.SetBitmap(Form1.AA, green);

until Terminated;

end;

Figure 5: The entire Execute method.
Once we have terminated our call, we close the thread with:

FCommStatusThread.Terminate;

Within the thread, all the work takes place in the Execute
method. Here we call two low-level communications API
functions, SetCommMask and WaitCommEvent. Let’s discuss
each. The first, SetCommMask, is defined in Windows.pas as:

function SetCommMask(hFile: THandle;

dwEvtMask: DWORD): BOOL; stdcall;

Its first parameter, hFile, is the handle of the communications
port. The var parameter, lpEvtMask, is a mask containing one
or more events to monitor. The various modem events con-
stants and their meanings are shown in Figure 4.

Once we’ve told Windows the kind of communications events
to monitor, we have to wait for one to occur. (Do you see
why we needed to do this in a separate thread?) The
WaitCommEvent function waits for an event to occur on a
particular communications device. The WaitCommEvent func-
tion is defined in Windows.pas as:

function WaitCommEvent(hFile: THandle; var lpEvtMask: DWORD;

lpOverlapped: POverlapped): BOOL; stdcall;

The monitored events contained in the lpEvtMask event mask
are associated with the device handle, hFile. The lpEvtMask
parameter points to a 32-bit variable that receives a mask indi-
cating the type of event that occurred. If there’s an error, zero
is returned; otherwise, it’s one of the values shown in Figure 4.

The next parameter, lpOverlapped, is either nil or points to the
address of an overlapped structure. This structure is required if
hFile was opened with FILE_FLAG_OVERLAPPED. In that
case, the lpOverlapped parameter may not be nil. It must
point to a valid OVERLAPPED structure. Under these cir-
cumstances, you can use the CreateFile function to return
the handle. The WaitCommEvent function can return vari-
ous values. If the function fails, it returns a value of zero.
32 August 1998 Delphi Informant
To get extended error information, you should call the
GetLastError function.

As we’ve seen, the WaitCommEvent function monitors events
on a particular communications resource. You can set or
query the current event mask of the communications resource
by using the SetCommMask and GetCommMask functions. If a
requested overlapped operation cannot be completed immedi-
ately, the function returns False and GetLastError returns
ERROR_IO_PENDING. This indicates that the communi-
cations operation is continuing to execute in the background.
When this happens, the system will set the hEvent member of
the OVERLAPPED structure to the not-signaled state before
the WaitCommEvent function returns. You can call
GetOverlappedResult to determine the success or failure of the
operation. The variable pointed to by the lpEvtMask parame-
ter indicates the event that occurred. In the sample applica-
tion, we used the non-overlapped approach.

Putting It All Together
In the CommStatus unit, we use these API functions in the
Execute method. As we stated earlier, GetCommModemStatus’
second parameter, lpModemStat, points to the current status of
the modem. The entire Execute method is shown in Figure 5.

You’ll notice that certain communications events are associated
with particular modem light indicators. We have tried to imitate
the indicator lights you generally see on external modems. If you
study the source code, you’ll see how we initialize the modem
lights and also notice that we are able to change some of them in
the main file (and not the thread). Figure 6 shows the expanded
application in action, with some of the lights active.

Now that we’ve explored some low-level communications
techniques to query the status of a modem, let’s return to
TAPI and take a look at one of its built-in dialog boxes.

Back to TAPI: lineTranslateDialog
In addition to the functionality we’ve already discussed, TAPI
also provides Windows with a number of dialog boxes for set-
ting or viewing the properties of various devices. One of the
most commonly used is the Dialing Properties dialog box.

Figure 7: TAPI’s lineTranslateDialog in action.

Figure 6: The new sample application with modem lights activated.

The API Calls
The lineTranslateDialog function displays a dialog box similar to
the Dialing Properties dialog box, but includes the dialable address
(see Figure 7). If you study the TAPI.pas source, you’ll find this
dialog function comes in two flavors: lineTranslateDialogA and
lineTranslateDialogW; the former for ASCII characters and the
latter for wide characters (Unicode). We use lineTranslateDialogA
in this application; it’s defined in TAPI.pas as:

function lineTranslateDialogA(hLineApp: HLINEAPP;

dwDeviceID: DWORD; dwAPIVersion: DWORD; hwndOwner: HWND;

lpszAddressIn: LPCSTR): LONG; stdcall;

The first parameter, hLineApp, is the application handle returned
by lineInitializeEx. If the application has not yet called
lineInitializeEx, it can set the hLineApp parameter to nil. The sec-
ond parameter, dwDeviceID, is an identifier for the line device
upon which the call will be dialed. The third parameter,
dwAPIVersion, indicates the highest TAPI version the application
supports (not necessarily the value negotiated by
lineNegotiateAPIVersion). The parameter hwndOwner is the han-
dle to the window to which the dialog box is to be attached. The
next parameter, lpszAddressIn, is a PChar containing the phone
number shown in the lower portion of the dialog box. The
phone number must be in canonical format; if it isn’t, the phone
number won’t be displayed in the dialog box. This pointer can be
set to nil, in which case the phone number won’t be displayed.

The dialog box can return various values. If it returns zero, the
function was successful. A negative error number in the return
values indicates an error. The possible return values are:

LINEERR_BADDEVICEID
LINEERR_INVALPARAM
LINEERR_INCOMPATIBLEAPIVERSION
LINEERR_INVALPOINTER
LINEERR_INIFILECORRUPT
LINEERR_NODRIVER
LINEERR_INUSE
LINEERR_NOMEM
LINEERR_INVALADDRESS
LINEERR_INVALAPPHANDLE
LINEERR_OPERATIONFAILED
33 August 1998 Delphi Informant
Multiple instances of this dialog box can be opened using
TAPI version 2.0 or later. In earlier TAPI versions,
LINEERR_INUSE is returned if the dialog box is already
displayed by another application, and TAPI brings the
existing dialog box to the front.

We call lineGetTranslateCaps after this function to get any
changes the user made to the telephony address translation
parameters. You can call lineTranslateAddress to obtain a
dialable string based on the user’s new selections. If you
call any function related to address translation
(lineGetTranslateCaps or lineTranslateAddress) and the func-
tion returns LINEERR_INIFILECORRUPT, you should
call lineTranslateDialog. The lineTranslateDialog function
detects the errors and corrects them. It also reports to the
user the action taken.

Where to Go from Here
We’ve gone considerably further than in the first article, but
we’ve still only scratched the surface. We’ve concentrated on
simple voice calls to keep the whole discussion straightfor-
ward. There are many other types of calls (voice and data) for
which TAPI provides excellent support. You can study the
source code for these units, especially the TAPI.pas unit, and
extend the sample application’s functionality by implementing
additional TAPI functions.

We’re not quite finished. What we’ve demonstrated in the sam-
ple application is fine as an introduction. It’s enabled us to test
and show many basic TAPI functions. However, if we want to
use this kind of functionality in more than just one application,
we will find ourselves doing a lot of cutting and pasting, to say
the least. What we need to do is wrap all of this functionality
in a TAPI class or component that will be easily accessible in
any application we write. We’ll tackle that task next month. ∆

Important note: The TAPI unit has been brought to you by the
volunteers of the JEDI project. To learn more about the JEDI
project, please visit http://www.delphi-jedi.org.

http://www.delphi-jedi.org

The API Calls
The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\AUG\DI9808AM.

Major Ken Kyler is the Air National Guard Systems Analyst for the Defense
Integrated Military Human Resources System (DIMHRS). He has been program-
ming with Delphi for two years. He is also a free-lance technical writer with arti-
cles published in several Delphi magazines. You can reach him at
KylerK@PR.OSD.MIL.

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabili-
ties in applications, particularly sound and music. You can reach Alan on the
Internet at acmdoc@aol.com.
34 August 1998 Delphi Informant

35 August 1998 Delphi Informant

At Your Fingertips

By Robert Vivrette
Better Coding through APIs
Napping, Driving, and Personable Cursors

It happens all the time: You’re adding a feature to your latest programming
work of art, when what you thought would be fairly simple quickly becomes

a code morass. “There has to be a simpler way!” you exclaim. There often is. In
fact, my Delphi philosophy is: “If it takes more than two or three lines of code to
achieve a desired effect, you’re probably doing it wrong.” I live by this state-
ment, and I have seen it hold true hundreds — if not thousands — of times. I’ll
complete some routine, then sit back and look at it. “Hmm ... looks a little over-
weight!” Then I start trimming it down: finding simpler ways to accomplish the
same thing, looking for API calls to eliminate much of my code. After a few pass-
es, pruning here and there, it happens! Two or three lines of code remain.
Windows has been around for quite a while, so
it’s unusual that a programmer will write some-
thing completely unique, something never
coded before. The programming APIs available
to Windows developers are substantial, but we
can’t always remember them all, and can wind
up re-coding what already exists in an API.

In this spirit, this month’s “At Your
Fingertips” is devoted to existing API rou-
tines that sometimes fall through the cracks:
simple and useful routines that, in my experi-
ence, few developers even realize exist, yet
can save considerable programming effort.

Take a Nap!
Back in the days of Turbo Pascal and DOS
programming, programmers had a wonderful
little routine named Delay that would pause
execution of the program for a specified peri-
od. Then Windows development came along,
and Delay was gone. <sniff>. Or was it? It
turns out the Windows API has a Sleep rou-
tine that performs the same function.

In a nutshell, the Sleep procedure pauses execu-
tion of the current thread for an indicated num-
ber of milliseconds. It takes a single DWORD
parameter that specifies the number of millisec-
onds to wait before continuing. A value of 1000
equals one second, so to delay for three seconds,
you would use Sleep(3000). Specifying a value
of INFINITE (i.e. $FFFFFFFF) causes the
process to sleep forever (now that’s useful). A
value of zero causes the thread to relinquish any
time left on its current time slice to any other
running thread with the same priority.

Be aware of some of the behavior you may
see using Sleep. Because you are stopping
CPU cycles to your application’s primary
thread, your application’s message processing
loop will take a nap as well. This means that
mouse messages won’t be processed, keyboard
input will be on hold, and Timers will stop
working, to name just a few. In most cases,
however, this is what you want anyway.

There’s more. The SleepEx function extends
this capability to allow the sleeping thread to
be alerted before the completion of its sleep
delay. This would enable you to put the thread
to sleep pending the completion of some other
supported event, such as the I/O functions
ReadFileEx and WriteFileEx. There’s more to
the SleepEx function than I can go into here,
but Delphi Help discusses it fairly well.

Show a Little Drive
Sometimes, developers need to obtain a list of
all available drive letters on the machine. I’ve
seen a lot of approaches to this, including build-
ing a loop from ‘A’ to ‘Z’ and looking at each
drive individually. The problem with most of
these approaches is that validating the existence
of a drive in this manner often involves access-
ing the drive itself. This can generate unwanted
system errors for an empty floppy drive.

procedure TForm1.Button1Click(Sender: TObject);

var
Buffer: array[0..500] of Char;

TmpPC : PChar;

Typ : Integer;

begin
GetLogicalDriveStrings(SizeOf(Buffer),Buffer);

TmpPC := Buffer;

while TmpPC[0] <> #0 do begin
Typ := GetDriveType(TmpPC);

with ListBox1.Items do
case Typ of
DRIVE_REMOVABLE : Add(TmpPC + ' (Removable)');

DRIVE_FIXED : Add(TmpPC + ' (Fixed)');

DRIVE_REMOTE : Add(TmpPC + ' (Remote)');

DRIVE_CDROM : Add(TmpPC + ' (CD-ROM)');

DRIVE_RAMDISK : Add(TmpPC + ' (RAM-Disk)');

else
Add(TmpPC+' (Unknown)');

end;
TmpPC := StrEnd(TmpPC)+1;

end;
end;

Figure 1: Use the GetDriveType function to determine the type
of drive that GetLogicalDrives and GetLogicalDriveStrings returns.

At Your Fingertips
You could use a DriveComboBox component and examine
its Items property to see what drive letters it’s populated
with. The disadvantage here is that DriveComboBox holds
a lot more code than you need. It’s also a visible control,
so if you aren’t using it for any other purpose, you will
need to stash it out of the way and set its Visible property
to False. Sloppy!

A much better solution is to use the Win32 API functions
GetLogicalDrives and GetLogicalDriveStrings. GetLogicalDrives
returns a 32-bit value that is bitmasked to indicate the valid
drives in the system. In the return value, bit position zero
represents drive A, the next bit represents drive B, and so on.
If a bit is set to 1, the drive is present in the system. This
procedure adds the letters of all available drives to ListBox1:

procedure TForm1.Button1Click(Sender: TObject);

var
Drvs: DWord;

A : Integer;

begin
Drvs := GetLogicalDrives;

for A := 0 to 31 do
if (Drvs and (1 shl A)) > 0 then

ListBox1.Items.Add(Chr(A+65));

end;

Note the use of the shl keyword to mask out only the bit
position I’m interested in. By taking a ‘1’ and shifting it left a
number of positions, I can mask out just the bit position I
am interested in using the and keyword.

The GetLogicalDriveStrings function is similar, but instead
returns a string representing all the valid drives on the sys-
tem. After each drive reference, there is a null character; at
the end of the entire string, there is a pair of null characters.
This procedure can be used to extract the values returned in
a doubly null-terminated string:

procedure TForm1.Button1Click(Sender: TObject);

var
Buffer: array[0..500] of Char;

TmpPC : PChar;

begin
GetLogicalDriveStrings(SizeOf(Buffer), Buffer);

TmpPC := Buffer;

while TmpPC[0] <> #0 do begin
ListBox1.Items.Add(TmpPC);

TmpPC := StrEnd(TmpPC) + 1;

end;
end;

Alternatively, you could use the GetDriveType function to
determine the type of drive that GetLogicalDrives and
GetLogicalDriveStrings returns (see Figure 1).

Cursors Are Nice People Too
Most good Delphi programmers know they can create custom
cursors and load them into the Screen.Cursors array. But did
you know that you can also load animated cursors? You can
achieve this by using the LoadCursorFromFile API function.
This function returns a handle to the loaded cursor, which
can be a standard cursor file (*.CUR), an Animated Cursor
(*.ANI), or one of the system cursors.
36 August 1998 Delphi Informant
The technique couldn’t be easier. Simply define a cursor con-
stant (anything greater than zero and not conflicting with
another cursor constant) in the const section of your unit:

const
crMyCursor = 5;

Then add this code to the FormCreate method:

procedure TForm1.FormCreate(Sender: TObject);

begin
Screen.Cursors[crMyCursor] :=

LoadCursorFromFile('C:\WINNT\Cursors\sendmail.ani');

Panel1.Cursor := crMyCursor;

end;

A standard Windows 95 or Windows NT installation will
have a number of animated cursor files located in the
Windows\Cursors or WinNT\Cursors directory, respectively.

Conclusion
The various Windows APIs are chock-full of useful routines
available to you as a Delphi programmer: It’s just a matter of
knowing where to look. The best way to find those interesting
new functions is to look up something you’re familiar with in
the Win32 API Help file, and then click on the “Group” link at
the top of the page. This will show you a list of routines that fall
into the same general category. Scan through them and you’ll be
amazed at what you find.

And remember: If it takes more than two or three lines of
code to do anything in Delphi, there’s probably an API rou-
tine that does it all for you! ∆

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@mail.com.

37 August 1998 Delphi Informant

New & Used

By Steve Garland
ODBCExpress
Catch the High-speed Train to Database Access

Most of the non-Delphi world of C++, Visual Basic (VB), and PowerBuilder
developers access client/server databases using ODBC. Delphi’s BDE

allows the same access, but why use the BDE when you can go to a pure
Pascal/ODBC solution using the ODBCExpress components from Datasoft?
What do you gain? Speed, control, and no DLLs to distribute with your applica-
tions. What do you lose? Over 1MB of BDE DLLs.
Why ODBC?
A couple of years ago, I was thumbing through
some VB magazines (to see how the other side
lives), and noticed an article on the “fastest” way
to access databases. DAO and RDO were dis-
cussed, but ODBC smoked them all in leanness
and performance. ODBC had earned a bad
name with me because of its early, slow imple-
mentation, but I was beginning to wonder if I
should give it another look. If the VB, C++, and
PowerBuilder crowds were satisfied with using
ODBC API calls, why couldn’t I do the same?

After I started using ODBC and the BDE with
SQL Anywhere, I was running into several
“gotchas” with INPRISE (nee Borland) and
Sybase pointing fingers at each other. One of
the problems was getting SQL Anywhere to
handle BLOBs greater than 32KB using
Delphi/ODBC/BDE. I knew that SQL
Anywhere could handle this with pure ODBC,
so what was I missing? I needed to take the
BDE out of the equation.

Writing directly to the ODBC API seemed like
a lot of work, until I came upon a South
African company that had used Delphi and
ODBC to develop a document management
application using Microsoft SQL Server as their
back end. That company was Datasoft, and the
product was ODBCExpress. I soon had SQL
Anywhere eating large text files like candy, and I
no longer heard that rising rumble of the BDE
DLLs loading. I started to like ODBC.

ODBC was a new creature to me, so I quickly
went out and found a book by the ODBC
architect, Kyle Geiger, entitled Inside ODBC
(from Microsoft Press). Although this book
was published in 1995, I still highly recom-
mend it as an excellent introduction to
client/server programming. There are interest-
ing discussions about the concept of cursors
and their history, file server versus client/serv-
er computing, and a fascinating byte-by-byte
account of what actually happens on a query
to SQL Server. Not only the “hows” of
ODBC are discussed, but also the “whys,”
including some interesting industry history.

I’m going to sketch out the basics of ODBC
for you and, at the same time, detail the way
that Datasoft implemented the ODBC API
in ODBCExpress.

What Is ODBC?
ODBC is Microsoft’s set-oriented API for
accessing databases. The set-oriented part is
important as ODBC expects data sources to
be able to handle SQL. This means the data
must reside in tables and have the concept of
rows and columns. (As a side note, Microsoft
has realized that there is other data that doesn’t
fit the row/column metaphor, and has created
OLEDB for that. ODBC becomes a subset of
OLEDB in their current scheme.)

ODBC is a specification, not an implementa-
tion, and many who remember early ODBC
drivers as slow and buggy should wake up and
smell the new drivers — especially the ones for
Microsoft SQL Server and SQL Anywhere.
The Microsoft SQL Server drivers are so fast
that Microsoft uses them for performance

Figure 1: The building blocks for ODBC programming as imple-
mented by ODBCExpress. Note that the GlobalHenv component
is now automatically instantiated at the unit level.

igure 2: Object Inspector view of
he THdbc component.

New & Used

igure 3: Object Inspector view of the
Hstmt component.
benchmarks. It’s also important to note that you don’t need the
Delphi Client/Server version to access Microsoft SQL Server
using their ODBC driver. The promise of ODBC is that if you
develop to the ODBC API, you can use the same code and
tools against any and all ODBC drivers.

ODBC has a character all its own; it’s not the BDE. If you
are expecting ODBC to act as the BDE does with Paradox
and dBASE tables, you’ll be disappointed. This isn’t to say
that one is better than the other; they’re just different.

ODBC uses the concept of Handles extensively. At the high-
est level, there is an Environment Global Handle (Henv) that
is much like the Delphi Session component. The Henv
Handle keeps track of the number of connections and their
state, handles error messages that occur at the environment
level, and helps to manage transactions. In earlier versions of
ODBCExpress, there was an Henv component, but it’s no
longer needed, as it is created internally at unit initialization
to be used by the other components (see Figure 1). Again,
this is similar to the BDE’s Session component.

The Connection Handle (Hdbc or Handle to a database con-
nection) manages the network connection, or tracks directory
and file information for file server databases. All function calls
are routed from the back-end database through the Connection
Handle. This is equivalent to the Database component of the
BDE. ODBCExpress implements it in its THdbc class. Because
they exist independently, you can use Hdbc components to
access the same table isolated in a separate thread (see Figure 2).

It’s at the THdbc level that you set the isolation level and
other properties, such as cursor implementation. ODBC
has had a feature called a Cursor Library since version 1.2.
ODBC does this by handling the buffering of data and
providing a “moving window” of buffers for the database.
This enables users to “browse” their data in visual controls,
38 August 1998 Delphi Informant
such as grids. ODBC
handles the buffering
and allocating of
memory to make this
possible, so when the
BDE allocates its own
buffering scheme, it
becomes redundant.
Why use both?

The Statement
Handle (Hstmt) is the
worker bee of ODBC.
All SQL statements
and requests for meta-
data require an
Hstmt, and each
Hstmt is associated
with one connection.
Hstmt components
handle the state infor-
mation of any query
activity. Hstmt is the
low-level equivalent of
TQuery. DBCExpress
has a THstmt class
that implements the
Hstmt.

Pulling an Hdbc and
Hstmt component
onto a form allows
you to query a data
source or execute SQL
statements (see Figure
3). At this level, you
are just a thin wrapper
away from the native
ODBC API calls, and
ODBCExpress adds
little overhead to your
application. Issuing
update and insert
statements using
Hstmt components is
lean and fast.

Many developers pre-
fer to stay at this level
to keep overhead
down, and that’s cer-
tainly a choice you
have with
ODBCExpress.

F
t

F
T

However, many of us like to use visual data aware controls;
after all, that’s one of Delphi’s great strengths.
ODBCExpress has two sets of visual components available,
but to explain them, we must first recap some Delphi VCL
database history.

New & Used

Figure 4: Object Inspector view of the
TOEDataSet.
Delphi Database History
Delphi database access starts with the db unit (db.pas). In
Delphi 1 and 2, there were specific BDE calls in the db
unit. Therefore, third-party vendors who wanted to provide
database access using engines and access to the Delphi data-
aware controls other than the BDE were forced to “hack”
their own versions of the db unit and distribute them as
binary (dcu) files. This led to all kinds of problems with
other third-party controls. This method basically intercept-
ed the low-level BDE calls, and replaced them with proxy
calls to their own engines. In addition to the BDE calls in
the db unit, many parts were declared as private, and thus,
impossible to extend using OOP.

When ODBCExpress 1.0 was released, there was no way
to provide access to the native Delphi database controls
without shipping a proprietary version of the db.dcu bina-
ry file. So, ODBCExpress came out with their own data-
base controls, which you’ll find installed on the
OEControls tab of the Component palette. These controls
were written from scratch by the ODBCExpress team, and
let’s just say that they have their own way of doing things.
The grid, for instance, descends from TStringGrid, and,
while it provides fast access, it doesn’t provide design-time
viewing of data, and generally doesn’t behave like a native
Delphi control.

So, the ODBCExpress team set out in the second version to
hack the db unit and provide a way for us to use the native
Delphi database controls. (They actually finished the prod-
uct, but never released it.) The reasons for this are very telling
in comparing ODBC and the BDE and how they differ in
their philosophy. Reason one was that the BDE architecture
was undocumented and extremely complex. The more inter-
esting reason, however, is that the BDE and ODBC have dif-
ferent “access paradigms.”

The important point is that ODBC is SQL and set-
oriented, and the BDE is procedural and file-server orient-
ed. BDE desktop database users are accustomed to using
data-aware controls, and editing within a grid with no real
concern for isolation-level or concurrency settings. The
BDE handles it for them — including locking. This is cer-
tainly a wondrous thing, but for client/server develop-
ment, one needs to make decisions as to concurrency and
isolation issues, and live result sets cannot be expected at
all times without some sort of trade-off. So, ODBC
requires decisions to be made, as there is no “one-size fits
all” philosophy. Many that come to try ODBCExpress
complain that it doesn’t work exactly like the BDE. Well,
they’re right. They are different creatures.

A lot of marketing hype promises that you can easily convert
file-server databases to client/server databases, e.g. Paradox to
Microsoft SQL Server. I just don’t believe it. If you expect
ODBC to act like the BDE, you’ll be disappointed; but if
you take the time to understand ODBC and use the tools as
they were designed, you will find a fast, direct, and lean way
to develop client/server applications.
39 August 1998 Delphi Informant
There’s a happy ending to this story. Borland/INPRISE
heard many of us screaming for them to redesign the db
unit, and they delivered with Delphi 3. Delphi 3 has a
new and vastly improved version of the db unit that uses
no BDE calls and allows developers to create their own
TDataSet descendants that use the database controls that
come with Delphi. Hallelujah! All the BDE calls were
moved to the dbtables unit, and vendors (like
ODBCExpress) could finally plug in their database
engines by simply implementing the virtual abstract
methods from the db unit. No more hacking necessary.

It All Comes Together: TOEDataSet
The Delphi 3 open dataset architecture paved the way for the
ODBCExpress team to use their core ODBC components to

provide a component
that would make a
Delphi database
developer feel right at
home. It’s very similar
to the Delphi Query
component with a
SQL property and a
Params property with
which to use stored
procedures. But this
is ODBC, so there is
also an Hstmt proper-
ty in case you need
more granular control
of the TOEDataSet
(see Figure 4).

Pull a THdbc compo-
nent, a TOEDataSet,
a Delphi DataSource
and Delphi DBGrid,
and connect them
just like you would a
Query component.
What could be easier?
Populate the SQL
property, set Active to

True, and the DBGrid is populated. Use the Fields Editor to
change display labels or other TFields of the DataSet.

All the data-aware controls can be used, including DBEdit and
DBMemo. The difference is that TOEDataSet provides a thin-
ner layer between you and ODBC than does the BDE. The
ODBCExpress documentation states that by providing ODBC
Driver cursor support, the TOEDataSet “eliminates the need
for a resource-heavy front-end cache as used by existing data-
base engines.” By implementing all the low-level ODBC con-
trols (Thdbc, THstmt), then providing a TDataSet descendant
in the TOEDataSet, ODBCExpress gives you the best of both
worlds: ease-of-use and granularity. At the ODBC level, you
can still control the way you do updates, inserts, and deletions.
You still get complete control over transactions, and can set all
the properties of the THstmt that are part of the grid.

Figure 5: Design-time view of THdbc, TOEDataSet, and a
TDataSource hooked to a SQL Anywhere query.

New & Used

Figure 6: InfoPower-enabled
ODBCExpress DataSet,
TwwOEDataSet.
However, with power comes responsibility. There are two
methods that can be used to insert, update, or delete a row
from a data source. You can create and execute a full SQL
statement, or you can do a positional insert, delete, or update
of a row in a result set. I prefer the former method, and I cre-
ate a separate THstmt to execute a SQL string that I create.
There is very little overhead to this method, and I have found
it to be very fast. Using the positional method will depend on
whether the result set is modifiable; there are extensive discus-
sions of these issues in the ODBCExpress documentation.

One problem I have found with the TOEDataSet is appends.
Because the TOEDataSet represents a result set, when you
perform an insert, you must re-fire the statement if you want
the inserted row to appear in the result set. This means the
TOEDataSet must be closed and then opened. Because any
bookmarks are destroyed when the dataset is closed, you lose
your position. ODBCExpress suggests you save the primary
key values of the inserted row, then search the new result set
to reposition the cursor. A procedure for this has been
promised in a future release.

Documentation
ODBCExpress comes with an online Help file, a text file of
FAQs, a manual, a tutorial in Word format, and several direc-
tories of sample programs. Much of the documentation
explains the lower-level ODBC controls and the older
ODBCExpress proprietary controls. Many of the demonstra-
tions use the older controls also. There is only a brief discus-
sion on using the TOEDataSet, and its use in the samples is
limited. I would hope that the future sample and documenta-
tion would focus more on the TOEDataSet. Again, ODBC
has its own way of operating, and it’s worthwhile to under-
stand how they handle things at the API level.

Other ODBC Components
TOESchema lets you create tables and views. Pull the compo-
nent on the form, connect it to the THdbc component, and
right-click on the component to go into a Schema Editor
where you can access all the tables and indexes to add fields
or change field attributes.
40 August 1998 Delphi Informant
TOECatalog encapsulates many of the ODBC calls to get
information about tables and views. For example, it allows
you to easily get a list of all views or stored procedures avail-
able in your database.

TOEAdministrator gives you access to the ODBC
Administrator’s list of data sources, so you can add, delete,
and change them. It is equivalent to the BDE Administrator.

TOESetup helps in setting up and configuring ODBC itself,
as well as its drivers and translators.

There is another tab of components installed on the Delphi
palette under the OEControls tab. These are the old-style
ODBCExpress controls that preceded TOEDataSet. I recom-
mend you avoid these controls; it’s much easier to use the
Delphi controls with the updated Delphi 3 open dataset
architecture (see Figure 5).
Third-party Support
This release of
ODBCExpress also
provides support for
InfoPower and
Orpheus controls, or
any other third-party
component library
that supports the open
dataset architecture.
Also, you can use the
supplied IPREG unit
to install a
TWwOEDataSet that
can be used with the
popular InfoPower
control (see Figure 6).
I was able to run the
InfoPower Locate
Dialog, Filter Dialog,
and Record View
Dialog with no prob-
lem. Although there is
no Filter property on
the TOEDataSet,
there is an
OnFilterRecord event
that the InfoPower

component uses. I was impressed that it worked so easily, but
curious enough to dig into the InfoPower source to find that
they call the OnFilterRecord event.

Technical Support
ODBCExpress has an Internet user forum at
http://www.odbcexpress.com. They also provide unlimited
support via e-mail, but you are encouraged to use the public
forums. I have found responses from the development team
to be prompt and complete. Datasoft is a South African com-
pany, so phone support can be expensive.

http://www.odbcexpress.com

41 August 1998 Delphi Informant

ODBCExpress is a Delphi component
library that allows access to any ODBC
data source, and compiles directly into
an executable. The Borland Database
Engine is not required, and client/serv-
er applications can be written without
the Delphi Client/Server Suite. Version
4 of ODBCExpress uses a Delphi
TDataSet descendant that allows
developers to use the normal Delphi
data-aware components, as well as
third-party tools.

Datasoft (Pty) Ltd.
P.O. Box 44633
Claremont
7735
South Africa

Phone: + 27 21 683 4680
Fax: + 27 21 683 4695
Web Site: http://www.datasoft.co.za
Price: ODBCExpress, US$299; full-
source version, US$699.

New & Used
The product is distributed
electronically. There are ver-
sions for Delphi 1, 2, and 3,
as well as a version for
C++Builder. Version 3 sup-
ports Delphi 1 and 2. Version
4.5 is the current version for
Delphi 3. ODBCExpress has
shareware (evaluation) and
purchased versions, with only
a “nag” screen as the differ-
ence between them.
Applications developed with
ODBCExpress can be com-
piled directly into an exe-
cutable and distributed royal-
ty-free.

By the time you read this,
the next version of
ODBCExpress should be
released. It will include
enhancements such as calcu-
lated and look-up fields,

multiple field look-up, and the ability to locate other
improvements to the TOEDataSet. It will also fully imple-
ment the ODBC 3.0 API and include new ODBC 3.0 fea-
tures, such as connection pooling.

Conclusion
I guess it’s not hard to see that I like ODBCExpress. I find
it stays true to the ODBC API character, and allows me to
drop down to the API level when I want to make my own
ODBC calls, or use the TOEDataSet with the native
Delphi database controls. I’ve used these components from
version 1 to version 4, and have been impressed with how
they’ve evolved, the speed with which that evolution has
occurred, and the openness and availability of the
ODBCExpress development team. ∆

Steve Garland is a long-time Delphi developer who lives in Boise, ID with his
wife, 18-month-old son, and four wild pug dogs. He is the principal of Hyper
Logic Resource Group, a Boise-based custom software company. He is also
involved in developing thin-client technology for the Asta Technology Group
(http://www.astatech.com). He can be reached at steveg@hyper-logic.com.

http://www.datasoft.co.za
http://www.astatech.com

TextFile

Nathan Wallace’s Delphi 3 Example Book

Don’t buy Nathan Wallace’s
Delphi 3 Example Book
[Wordware, 1998], with the
intention of reading it.
Sitting down with the book,
hoping to read it cover to
cover, you’ll quickly find the
text monotonous and the
format repetitive. On the
other hand, do buy this book
to write notes, carefully high-
light often-used methods,
mark pages with Post-Its for
your current project, and to
flatten out on your desk so
often that the spine becomes
unrecognizable. The true
value of this book is identi-
fied with its pragmatic
approach to the function of
Delphi and the consistency
of its layout. It is highly like-
ly that once this fine book is
discovered and understood, it
will not leave the side of any
working Delphi 3 program-
mer. Mr Wallace, in explain-
ing his intentions for writing
Example, describes his vision
of a “coffee rings book,” one
that has its cover and pages
branded by coffee cup rings
from being beside the com-
puter all the time. Example
definitely achieves this goal.

Wallace’s book is a welcome
throwback to a bygone era in
the programming profession
when each compiler shipped
with pounds and pounds of
42 August 1998 Delphi Informant
documentation. The books
would line the programmer’s
shelf, the pages of the func-
tion and procedure volume
dog-eared and worn, the
spine of the book cracked
throughout. Sadly, we rarely
get this opportunity for
enlightenment from the
compiler vendor any longer;
the library of books has been
replaced by a set of files on
CD-ROM. A different
approach is required in con-
trasting online and printed
documentation — and the
printed word retains a dis-
tinct advantage in some
areas.

Example segments the docu-
mentation and examples
into logical chapters orga-
nized around the flow of
the VCL. A perusal of the
introduction to each chap-
ter prepares the reader for
that section. Topics such as
the Application object, and
the procedures and func-
tions that are a part of the
RTL, are listed alphabeti-
cally. Chapters discussing
the component library are
listed in the order in which
they appear on the specific
tab. With the introductory
comments quickly out of
the way, the reader is lead
directly to the meat of the
chapter.
Consistency plays a large
part in making this refer-
ence so valuable. The pre-
sentation of each compo-
nent or object follows the
same format and structure.
A literate description of the
object is followed by a
schedule of the properties,
methods, and events, each
presented alphabetically. For
each item, the identifier is
listed, followed by its data
type and a short contextual
discussion of the object.
Separating the book further
from the online documenta-
tion is the inclusion of a
usage example with every
item, a feature lacking in
the software version.

The consistency advantage
extends to the component
families that originated out-
side of Borland. The best
example is found in the
NEWT Internet compo-
nent tab. The ActiveX com-
ponents have Help files that
differ in layout from the
Borland-generated files.
This book irons out the dif-
ferences.

Reality catches up to this
paper-bound nirvana when
it comes to the sheer depth
and breadth of the Delphi
environment. The physical
limitations of publishing a
paper book must be consid-
ered when attempting to
keep the work manageable
and affordable, the same
reasons given by vendors
justifying their skimpy doc-
umentation. Rather than
choose to not cover some
aspects of the tool, Mr
Wallace has supplied chap-
ters covering several of the
VCL component tabs and
objects as HTML files on
the CD-ROM. The author
carefully chose the items
that would receive HTML
treatment, selecting those
that had encountered little
change from earlier releases
of the product or less-used
objects. Unfortunately, the
advantages pointed out ear-
lier with respect to the paper
version disappear when the
text moves to HTML for
the last six chapters of the
book. Rather than retaining
the concise, quick-reference

TextFile
format of the printed page, the design-
er went on a button binge, requiring
the programmer to drill down through
multiple interface layers to retrieve
information. Simple text pages with
well thought out links would be
preferable to this difficult tool.

The example files provided for each
chapter are a minor disappointment.
The component examples reviewed are
nothing more than the component
placed on a form. There are no event
procedures showing the use of the com-
ponent, nor any properties set program-
matically. A bit button linked to the
ShellExecute API function is featured
that caused the compilation to fail on
every example attempted; the program
needed the ShellAPI unit included in
the uses directive. When that correction
is made, the examples will compile and,
upon execution, the user can click on
this button. It will execute a Web
browser and attempt to connect to Mr
Wallace’s support site. Unfortunately,
43 August 1998 Delphi Informant
the site has undergone considerable ren-
ovation, and the user will encounter
Page Not Found errors with the URL
provided. Attempting to manually
locate any updated files was also non-
productive, as the support pages for this
book appeared to remain under con-
struction.

Mr Wallace has done an outstanding
job assembling this resource. The
Delphi community is well served by
this much-needed effort, which, in tan-
dem with the recently published Tomes
of Delphi 3 series [Wordware, 1998],
brings an additional measure of
respectability to the Delphi community.
Books of this nature are commonplace
in C/C++ circles. By documenting the
depth of the Delphi environment, the
book positions the tool on the same
professional level as the more prevalent
environments — an important consid-
eration because there are still developers
who immediately dismiss any Pascal-
based tool.
Nathan Wallace’s Delphi 3 Example
Book belongs on the desk of all serious
Delphi programmers, those who work
under the pressure of being consis-
tently productive, and those with a
more leisurely approach to develop-
ment. Nathan Wallace has produced
an extraordinary book, full of accurate
and helpful information and in a for-
mat that is eminently useful. While
the HTML files are a disappointment
in comparison to the quality of the
rest of the book, the usefulness of the
collected data is excellent.

— Warren Rachele

Nathan Wallace’s Delphi 3 Example
Book by Nathan Wallace, Wordware
Publishing, Inc., 2320 Los Rios Blvd.,
#200, Plano, TX 75074,
(800) 229-4949,
http://www.wordware.com.

ISBN: 1-55622-490-7
Price: US$54.95 (851 Pages, CD-ROM)

http://www.wordware.com

From the Trenches
Directions / Commentary
The Dawn of Distributed Computing

As you read this issue of Delphi Informant, hopefully you are in Denver, the site of BorCon98. This
annual conference provides a chance to receive technical training, network with fellow developers,

and meet some of the people from INPRISE. Historically, this is also the time that INPRISE paints a pic-
ture of what it intends to do for the coming year. The entire conference is surrounded with an air of
optimism and enthusiasm for users of Borland products. To add to the ambiance, I thought I’d share
my views on why I think distributed computing will be a good thing for developers and INPRISE.
Regardless of how you feel about the
company’s name change, the focus of
Borland/INPRISE has been clear over
the last 18 months: Distributed comput-
ing is in the spotlight. Products such as
MIDAS, AppCenter, and OLEnterprise,
the focus on SAP and AS/400 integra-
tion, and the acquisition of Visigenics
are clear examples of the commitment to
this emerging arena.

These developments were not pro-
posed and developed in a vacuum.
The reason paradigm shifts occur in
the software development industry is
due to programmers who demand
more from their compiler vendor,
tool, and/or language. Think of it as
survival of the fittest for development
products. As a result of this
Darwinian evolution of development
tools, we no longer have to use things
like command-line editors and tools.
In fact, we have the ability to become
even more productive because of
things like integrated development
environments (IDE), GUI tools, and
visual editors. How many people
would really rather be using EDLIN
instead of a visual editor?

Borland captured the OOP market
nine years ago and spurred its growth
by remaining on the leading edge of
44 August 1998 Delphi Informant
technology. Essentially, an escalating
war between language and compiler
vendors was fought to regain the
ground Borland had clearly taken.
Today, it’s physically impossible to
develop software without seeing some
passing reference to OOP. Borland
didn’t invent OOP, but they certainly
brought it to the forefront.

With the advent and necessity of dis-
tributed computing, INPRISE has
identified the next technology to
show as much promise as OOP did.
Borland products can continue to
grow and flourish for both small-
company development shops and
enterprise developers alike, but the
reality is that the computer industry
has shifted more toward enterprise
development and, as a result, distrib-
uted multi-tier computing.

Rick LeFaivre, Senior Vice President
of Research and Development at
INPRISE, has a write-up of the waves
of technology available at
http://www.inprise.com/about/
executive/rickmultitier.html. The com-
mon thread through all these waves is
innovation. In each case, both end-
users and developers clamored for
more, and the development tools
industry responded by providing what
the developers needed. The shift to
distributed computing is no exception.

Distributed computing is viewed by
some as a return to mainframe men-
tality, but I see this as a golden
opportunity to share information
across previously impassable bound-
aries. Data can be made available
around the world easily using existing
infrastructures — and at a very rea-
sonable cost. The benefits of this
model are many: centralized business
logic, thin clients, fault tolerance, and
load balancing to name just a few.

The market for developing distributed
computing solutions is ready to explode.
The dawn of distributed computing is
here. You owe it to yourself, and your cus-
tomers, to find out how distributed com-
puting can make your applications better.
Isn’t that what all of us really want? ∆

— Dan Miser

Dan Miser is a Design Architect for
Stratagem, a consulting company in
Milwaukee. He has been a Borland
Certified Client/Server Developer since
1996, and is a frequent contributor to
Delphi Informant. You can contact
him at http://www.execpc.com/~dmiser.

http://www.inprise.com/about/executive/rickmultitier.html
http://www.inprise.com/about/executive/rickmultitier.html
http://www.execpc.com/~dmiser

File | New
Directions / Commentary
HTML as a Second Language
For Delphi developers, the primary language is obviously Object Pascal. For many, assembler and SQL are

important second languages. Increasingly however, HTML is becoming important for all Windows program-
mers, and its implications go beyond the Web; HTML is becoming popular as a language for writing Windows
Help files. Like Rich Text Format (RTF), HTML consists of tags. Among other things, these tags indicate the for-
matting of the text. Recently, with the aim of sharpening my own skills and understanding, I had an opportunity
to examine several new HTML books. I’ll start with a brief overview of those references and then suggest how
HTML might be useful in your Delphi programming.
HTML references. Among the books I
examined were two comprehensive refer-
ences: Lois Patterson’s Using HTML 4
[QUE, 1997], and HTML 4 Unleashed
[Rick Darnell and John Pozadzides, SAMS,
1997]. The former includes an excellent list-
ing of HTML tags in one of its appendices;
the latter introduces the tags, systematically
by function, throughout the text. Using
HTML 4 includes a short appendix describ-
ing the tags new to HTML 4. A third work
by Larry Aronson and Joseph Lowery,
HTML 3.2 Manual of Style [Ziff Davis
Press, 1997], is somewhat dated and consid-
erably shorter than the previous two.
Nevertheless, it provides a wonderful intro-
duction to basic HTML.

One of the newer developments in HTML
relates to building dynamic Web pages that
change in response to a surfer’s actions. The
new extensions to HTML that enable this
kind of flexibility are generally referred to as
Dynamic HTML. While each book men-
tioned so far deals with dynamic Web pages
to some extent, there are two additional vol-
umes that concentrate on these new devel-
opments: Dynamic Web Publishing
Unleashed, Second Edition [Shelley Powers, et
al., SAMS, 1997], and Dynamic HTML
Unleashed [Rick Darnell, et al., SAMS,
1998]. As you might expect, neither of these
provides the same comprehensive introduc-
tion to HTML the earlier books do.
45 August 1998 Delphi Informant

HTM
Book Title Tag

HTML 4 Unleashed Excel

Using HTML 4 Very G

HTML 3.2 Excel
Manual of Style

Dynamic HTML Fa
Unleashed

Dynamic Web Publishing Goo
Unleashed, Second Edition
However, Dynamic Web Publishing
Unleashed, Second Edition includes useful
appendices on HTML 4 and Cascading
Style Sheets, one of the important HTML
extensions.

While these two books cover similar ground,
their emphasis is slightly different. Dynamic
Web Publishing Unleashed, Second Edition
provides an overview of the issues involved
with creating a dynamic Web site; Dynamic
HTML Unleashed puts more emphasis on
the techniques needed to accomplish that
goal. Besides HTML, publishing on the
Web often involves additional technologies
and languages, including Java, ActiveX,
JavaScript, CGI, VRML, and more. While
some of these are specific to one of the two
major browsers, others are universal.
Appropriately, another issue raised in
many of these volumes concerns the pro-
prietary tags specific to a particular brows-
er. But how does any of this relate to
Delphi programmers?

The Delphi connection. There are several
obvious ways we can use Delphi to work
with HTML files: to generate HTML code,
to parse and interpret HTML code, and to
display HTML code in our own browser.
All these topics have come up in Delphi
books and some in articles. In the chapter
“Introduction to CGI Programming with
Delphi” in his Delphi 2 Unleashed [SAMS,
L Browser Script
s Issues Languages

lent Excellent Excellent

ood Good Excellent

lent Good Fair

ir Excellent Very Good

d Good Excellent
1996], Charles Calvert shows how to gener-
ate HTML code. In Mastering Delphi 3
[SYBEX, 1997], Marco Cantù demonstrates
how to produce HTML tables with Delphi.
He also discusses CGI and ActiveX in build-
ing a “Web Application” with Delphi.
Finally, in Delphi 2 Multimedia Adventure
Set [The Coriolis Group, 1996], Chris D.
Coppola, et al. devote several chapters to
building a multimedia Web browser. All
these examples have one important thing in
common: They use Delphi to create applica-
tions that read or write HTML files.

Hopefully, I’ve convinced you of the
need to develop an understanding of
HTML, which, after all, isn’t that diffi-
cult. By learning “another language” you
increase your ability to work effectively
in a field that is quickly becoming more
multi-dimensional. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky
State University, specializing in music composi-
tion and music theory. He has been developing
education-related applications with the
Borland languages for more than 10 years. He
has published a number of articles in various
technical journals. Using Delphi, he specializes
in writing custom components and implement-
ing multimedia capabilities in applications,
particularly sound and music. You can reach
Alan via e-mail at acmdoc@aol.com.
Related Cascading
Technologies Style Sheets

Very Good Excellent

Very Good Good

Fair Good

Good Good

Excellent Good

	Table of Contents
	Symposium: Life After Borland; Long Live Delphi
	Delphi Tools
	ForeFront Announces ForeHelp 3 and ForeHelp Premier 98
	Catalyst Releases SocketTools 2.1
	Enterprise ONE Releases Jaadu
	Raize Software Solutions Releases CodeSite
	South Pacific Info Services Announces TWebCompress Component 2.0
	Lingscape Announces MultLang Suite 2

	Newsline
	INPRISE Releases Borland JBuilder 2
	Delphi Prefix Registry Online
	Apogee Extends Services to Include
	InterBase Ports InterBase 4.0 to Linux
	Triple Point Technology Uses Delphi to Develop OutPost
	INPRISE Appoints John A. Racioppi as VP/GM
	INPRISE Teams with Referentia System for Java Systems
	INPRISE Annouces Entera 4

	On the Cover: Delphi 4 Multi-Tier
	Controlling Data Packet Contents
	The Events Are Back
	Building One- and Two-tier Applications
	Working with Parameters
	Calling Methods on the Application Server
	New Connection Components and Features
	Conclusion

	On the 'Net: IE4's DOM Advantage
	In Brief: DHTML and the DOM
	The DOM via COM
	The MSIE WebBrowser Control
	Accessing the DOM from Delphi
	Using the WebBrowserControl Events
	Printing from the WebBrowserControl
	Clipboard Support
	Font Control
	Speeding up the WebBrowser
	Hooking into the DOM Event Model
	Wrapping It Up

	Algorithms: Vivid Equations
	Transformations
	Rotation
	Homogeneous Coordinates
	Drawing in Delphi
	On the Surface
	Below the Surface
	Conclusion

	DBNavigator: Delphi Database Development
	Overview of Delphi Database Development
	The BDE
	Understanding the BDE Administrator
	Working with Global Aliases
	Configuring Drivers
	Database Applications That Don’t Use the BDE
	Delphi Database Components
	Conclusion

	The API Calls: Delphi and TAPI
	Opening Lines of Communication
	Is the Line Capable?
	Monitoring a Modem: Beyond TAPI
	Putting It All Together
	Back to TAPI: lineTranslateDialog
	Where to Go from Here

	At Your Fingertips: Better Coding through APIs
	Take a Nap!
	Show a Little Drive
	Cursors Are Nice People Too
	Conclusion

	New & Used: ODBCExpress
	Why ODBC?
	What Is ODBC?
	Delphi Database History
	It All Comes Together: TOEDataSet
	Documentation
	Other ODBC Components
	Third-party Support
	Technical Support
	Conclusion

	TextFile: Nathan Wallace's Delphi 3 Example Book
	From the Trenches: The Dawn of Distributed Computing
	File I New: HTML as a Second Language

