
1 January 1998 Delphi Informant

January 1998, Volume 4, Number 1

The AS/400 Connection
Four Methods to “Get There” from Delphi

Cover Art By: Tom McKeith

ON THE COVER
7 The AS/400 Connection � Bradley Mac Donald
With the advent of Delphi/400 — and now Delphi Enterprise —
it’s high time for a comparison of the best ways to connect Delphi
applications to that ubiquitous IBM mini, the AS/400. The pros and
cons of ODBC, SQL Links 3.5, Light Lib/400, and Delphi/400 are all
judiciously weighed.

FEATURES
12 Columns & Rows
Single-Tier Database Apps � Bill Todd
When simple is best, the Delphi 3 Client/Server Suite can build database
applications that don’t use the BDE. However, documentation of this
aspect of MIDAS technology was spotty — until now.

17 OP Tech
The Property Explorer Expert � Keith Wood
Ever wondered which event calls a given method, or which list boxes
contain a given phrase? Learn how you can build an expert that locates
properties of objects with a specified name or value.

24 Algorithms
Sorts of All Types � Rod Stephens
When it comes to sorting, no single algorithm is best; it pays to know
which ones will shine depending on the amount of data and other
factors. Here are four to handle “all sorts.”

28 DBNavigator
Hitting the Highlights � Cary Jensen, Ph.D.
Color highlighting can improve your interface by drawing users’
attention to where it’s needed. Learn how to add chromatic distinc-
tion to both single-field and multi-record controls.

REVIEWS
34 WinGREP

Product Review by Alan Moore, Ph.D.

36 Raize Components 1.6
Product Review by Alan Moore, Ph.D.

DEPARTMENTS
2 Symposium Guest Editorial by Zack Urlocker
4 Delphi Tools
6 Newsline
40 File | New by Richard Wagner

Symposium

By Zack Urlocker

2 January 1998 Delphi Informant
The New Game

In the seven years that I’ve been at Borland, the company has gone through
more strategies than Internet Explorer has security patches. But there have

been a few constants: great technologies, great products, and great people.
What’s been missing is an overall business strategy. Sure, we’ve had technolo-
gy vision aplenty, but the technical visions weren’t always rooted in the needs
of customers. Lets face it, Borland was never known for great management,
marketing, and sales. And each one of those is an essential ingredient in run-
ning a business, whether it’s a technology-driven company or not.
One of the things I focused on in helping
define Delphi was the need to talk to cus-
tomers. As a result, we got the right set of
features in, worked some significant compiler
magic, and created a tremendously successful
product. Some folks say that Delphi saved
Borland; I prefer to think of Delphi as help-
ing to define Borland. What Delphi helped
define was a process of understanding what
customers need, and then implementing it.

Even before the introduction of Delphi 2, it
became clear we would have to deliver higher
levels of scalability to customers.

Scalability means the ability to deal with
more users, more transactions, and higher
volumes of data. Delphi had such great per-
formance and productivity that it was being
used to create many more business-critical
applications than we’d ever expected. Banks,
insurance companies, retailers, shipping com-
panies, brokerage houses, telecommunica-
tions companies, government departments,
and IT shops in every sector of business
imaginable were starting to use Delphi for all
kinds of business-critical applications. These
were not just Windows-client applications,
but full-blown client/server applications that
would impact hundreds — even thousands
— of users.

As fast as Delphi native code was (and even
faster in Delphi 2), we knew that fundamen-
tal architectural changes would be necessary
to achieve the next level of scalability.

Borland acquired some potent technology in
1996; the Entera intelligent middleware
from Open Environment Corporation.
Entera middleware enabled developers to
build systems that could scale to tens of
thousands of users.

In fact, because Entera was so open, there
were already Delphi customers using it to
build large-scale, mission-critical applica-
tions. In the development of Delphi 3, and
now Delphi Enterprise, we ensured we
could create new, more scalable, multi-tier
applications.

Why did Borland tackle multi-tier? The same
reason we built Delphi: Because customers
needed it. At the same time, we kept up a
wicked pace of innovation in Delphi 3,
adding far more features than any previous
version. I found it hard to believe that we

Symposium
could “out ActiveX” Microsoft and develop the MIDAS
multi-tier technology, but this was one heckuva team. They
came through with those major innovations and tons more
features — Decision Cube, Code Insight, and many others
that I never expected to get. I’m still dazzled by the team that
made all this happen on schedule.

Did Borland set out to be a multi-tier company, or a middle-
ware vendor? Hardly. We just continued in the tradition of
what made Delphi successful. We listened to customers and
addressed their needs in a “Delphi way” that made things
easy without applying limits.

So is Borland a tools company or a middleware company?
You might as well ask whether Borland is a Windows compa-
ny or an Internet company. There’s no single binary answer.
Borland is a company focused on making development easier,
no matter the underlying technology.

In the past, middleware has been one of those difficult-to-
grasp concepts; but now with the widespread use of the
Internet, and companies building their own corporate
intranets, developers and IT managers are beginning to
understand the need for scalability. After all, what’s the
sense of building applications for the Internet, if perfor-
mance is going to hit the wall after a few thousand users?

Borland has expanded its product line to ensure that cus-
tomers can create these new, complex, Internet and intranet
applications. Rather than take a strictly technological view-
point and call them multi-tier, distributed blah-blah-blahs, or
come up with some hokey acronym, we tried to look at it
from the customer’s point of view. That’s why we talk about
using Borland tools and intelligent middleware to build
Information Nets.

In the months preceding the Borland Developers Conference
in July, I spent a lot of time with our CEO, Del Yocam, talk-
ing to customers, partners, analysts, and gurus, to understand
the problems they faced, and to help us develop the strategy.

Since the conference, I’ve spent even more time meeting
with customers, rolling out the strategy. Case in point: last
week was a six-day, six-city tour of Munich, Frankfurt,
Moscow, Paris, London, and Amsterdam. We met with over
1,000 customers and partners, and over 100 press, and pre-
sented the Information Net strategy more than a dozen
times. Apart from the frequent-flyer miles and an 11:00 pm
site-seeing tour of Red Square, the highlight of the trip is
that people understand the strategy. Developers get it. IT
Managers get it. CEOs get it. That’s quite a change from
the days of having to explain why polymorphism, inheri-
tance, and encapsulation mattered.

Borland is continuing to make a difference in developers’ lives.
We’re focused on more than just Delphi, because you need
many different tools and technologies to build Information
Network applications. We’ve introduced a family of products,
with recent additions such as JBuilder and IntraBuilder for
3 January 1998 Delphi Informant
Web development, and C++Builder as the most advanced C++
environment, bar none. And we’ll continue to develop new
kinds of technologies to help customers build the new genera-
tion of Information Network applications.

Delphi is core to our strategy. We’re continuing to look at
ways to push the Windows-development front with support
for the latest Microsoft technologies like MTS, ATL, IE4,
COM+, and whatever other three-letter acronyms come out
in 1998.

We’re also making sure our tools work together with
increased interoperability across clients and servers, so you
can combine, say, Delphi client applications with midddle-
tier Java code. You’ll see an exciting range of products com-
ing from Borland that enable you to develop beyond the
boundaries of traditional Windows applications.

With the power of today’s tools and the connectivity of the
Internet, I can’t think of a more exciting time to be a developer.

Zack Urlocker is Vice President of Product Management at Borland International.
He has been with Borland since before anyone had even heard of the Internet.
Out of politeness, his name still appears on the “credits” screen for Delphi.

4 January 1998 Delphi Informant

StarBase Adds Delphi Integration to StarTeam and Versions 2.0Delphi
T O O L S

New Products
and Solutions
StarBase Corp. has
announced Delphi 2 and 3
integration with the release
of StarTeam 2.1 and
Versions 2.0 software con-
figuration management
(SCM) products.

Versions 2.0 provides revi-
sion control, visual differenc-
ing of files, build and mile-
stone management, audit logs,
security, and an advanced pro-
Shazam Report Wizard 3.

Insession Introduces Tran
ject repository for develop-
ment groups. Versions 2.0 also
offers a direct upgrade path to
the more advanced StarTeam
products that add team col-
laboration, workflow, virtual
team facilities with
Internet/intranet connectivity,
project status reports, and
more sophisticated SCM
facilities.

Developers can download an
03 Ships

sFuse
evaluation copy, and StarBase
users can download an
upgrade from the StarBase
Web site.

StarBase Corp.
Price: StarTeam 2.1, US$199 per seat
(volume pricing available); Versions 2.0,
US$99 per seat.
Phone: (888) STAR-700 or
(714) 442-4500
Web Site: http://www.starbase.com
ShazamWare Solutions,
Inc. has released Shazam
Report Wizard 3.03, a
native reporting component
for Delphi and C++Builder
that integrates query-by-
example (QBE) and a visual
report designer, allowing
end users to create ad hoc
reports at run time.

The new compression
technology doesn’t require
DLLs, and is said to allow
Shazam Report Wizard
(SRW) to save reports that
are over 85 percent smaller
than similar reports created
from other Delphi-based
reporting components. The
resulting files are ready for
immediate e-mail or
Internet distribution with-
out manual compression.

SRW 3.03 also introduces
the new TSrwView compo-
nent that automatically
decompresses reports before
viewing. These reports are
interchangeable among
TSrwView programs com-
piled with all versions of
Delphi and C++Builder.
SRW 3.03 also supports
password protection and
report-file encryption.
ShazamWare Solutions, Inc.
Price: US$169
Phone: ZAC Catalogs,
(800) 463-3574 or
(813) 298-1181;
Programmer’s Paradise,
(800) 445-7899.
Web Site: http://www.-
shazamware.com
Insession Inc. has unveiled
TransFuse, a solution that
integrates Web and
client/server applications
with venerable host transac-
tion processing systems.

TransFuse performs the
functionality of transaction
processing (TP) monitor
access and makes it available
to application developers
who use Delphi, C++,
Visual Basic, Java,
PowerBuilder, ActiveX,
Lotus Script, CORBA IDL,
and others.

On the back end, Trans-
Fuse supports IBM’s CICS
and IMS, Tandem’s Pathway,
and BEA’s Tuxedo, as well as
IBM’s MQSeries messaging
middleware. On the front
end, its API supports
Microsoft’s DCOM and the
Object Management Group’s
CORBA.

For large mainframe data
centers where more than one
TP monitor is operating,
TransFuse also binds appli-
cation components together
into a single transaction that
can span multiple TP moni-
tors, or multiple passes to
the same TP monitor.
In an n-tier architecture,

TransFuse works with object
request brokers (ORBs) to
provide scalability. Insession
supports ORBs from Sun
Microsystems, Iona
Technologies, Visigenic
Software, and Expersoft
Technologies.

Insession Inc.
Price: US$5,000 for 10 concurrent
users.
Phone: (800) 414-7759 or
(303) 440-3300
Web Site: http://www.insession.com
DDeellpphhii 33 ffoorr DDuummmmiieess
Neil J. Rubenking

IDG Books Worldwide

IISSBBNN:: 0-7645-0179-8
PPrriiccee:: US$24.99 (428 pages)
PPhhoonnee:: (800) 762-2974 or

(415) 655-3000

http://www.starbase.com
http://www.shazamware.com
http://www.shazamware.com
http://www.insession.com

5

Delphi
T O O L S

New Products
and Solutions

Pictorius Announces iNet Developer 3.0 for Windows 95/NT

MicroGOLD Ships WithClass 97
DDeellpphhii 22..00 ffoorr EEvveerryyoonnee,,
22nndd EEddiittiioonn

Alex Fedorov
ComputerPress Publishing,

Moscow

IISSBBNN:: 5-89959-029-7
(464 pages, Cyrillic)
January 1998 Delphi Informant
Pictorius Inc. announced
version 3.0 of Pictorius iNet
Developer, the company’s
intranet development tool.
This update includes support
for Microsoft’s Component
Object Model (COM),
Design Time Controls
(DTC), Data Binding, and
Scriptlets.

By supporting COM,
Pictorius iNet Developer 3.0
extends the power of iNet
Developer sites using Delphi,
Visual J++, Visual Basic, or
Visual C++. Users can
choose any programming
language that supports the
creation of COM objects,
rather than the integrated
programming environment.

DTC support enables users
to add a DTC to their Web
pages, and have it work with
the iNet Developer site.
Pictorius iNet Developer 3.0
includes a sample DTC called
the Spline Path Control,
which lets users define a
curved path on a page and
select an item (an image or
text) to animate along that
path each time the page is hit.
Support for data binding

gives users the ability to
download groups of database
records to their browsers, and
work with them there with-
out returning to the server.
Pictorius iNet Developer 3.0
also includes a client-side
caching feature that works
with Microsoft Internet
Explorer 4.0 and Netscape
Communicator, regardless of
whether the Web server sup-
ports data binding.

Support for Scriptlets
enables users to make use of
pre-packaged code objects.
Scriptlets, written in dynam-
ic HTML code, are wrapped
in a re-usable object, and can
be called by any COM pro-
gramming language.

Pictorius Inc.
Price: The commercial version is
US$1,495, including the site and page
editor, the application server, and the
integrated programming environment. A
pack of editors is available for
US$1,495. Pictorius iNet Developer 2.0
customers can receive a free upgrade. A
demonstration version is available for
download from the Pictorius Web site.
Phone: (800) 927-4847
Web Site: http://www.pictorius.com
MicroGOLD Software,
Inc. has released WithClass
97, a tool that allows devel-
opers to reverse-engineer
Delphi, Java, C++, relational
databases, IDL, and Visual
Basic code into graphical
designs. This new edition
provides support for design-
ing, drawing, and document-
ing for Unified Modeling
Language (UML) 1.0.

WithClass inte-
grates software
configuration
management from
PVCS, and adds a
class repository
using Microsoft
Access. The tool
also provides vari-
ous methods of
presenting final
documentation,
such as cutting
and embedding
OLE diagrams
with the unique
scripting lan-
guage, using OLE
Automation, or integrating
with Seagate Crystal Reports.

WithClass 97 includes sup-
port for UML, Booch,
Rumbaugh, Shlaer/Mellor,
and Coad-Yourdon method-
ologies. The interface
includes tabbed dialog boxes,
an integrated toolbar, and a
simultaneous-tree class
browser. Code samples in
Delphi, Visual J++, Visual
C++, and Visual Basic are
provided for generating
codes and reports. In addi-
tion, support for
PowerBuilder, SQL,
Smalltalk, Ada, and Eiffel is
included.

MicroGOLD Software, Inc.
Price: US$895
Phone: (908) 668-4779
Web Site: http://www.microgold.com

http://www.pictorius.com
http://www.microgold.com

6 January 1998 Delphi Informant

News
L I N E

January 1998

Point-of-Sale Module Added to Accounting for Delphi

Columbus, OH —

ColumbuSoft has added a
new point-of-sale module to
Accounting for Delphi, a
series of general accounting
modules sold with optimized
source code for Borland’s
Delphi development plat-
form. The new module
Radiant Systems Adopts
Client/Server Suite

Borland Announces Visu
includes support for an
unlimited number of regis-
ters per store, completely
mouseless operation, and
support for scanners, cash
drawers, and receipt printers.
In addition, the module con-
tains utility functions that
can be used in other applica-
Delphi

al dBASE 7 for Windows 9

Borland Introduces High
Solutions Program
tions, such as a reusable
report printer with an inte-
grated on-screen preview.

Accounting for Delphi
provides general accounting
that integrates with custom
or vertical market applica-
tions. It includes General
Ledger, Accounts Payable,
Accounts Receivable, Order
Entry, Inventory/-
Purchasing, Fixed Assets,
Payroll, Job Costing,
Contact Management, and
Point Of Sale modules.
Each can be used alone or
in combination with others.
Purchasers receive a license
that allows them to resell
their compiled applications
an unlimited number of
times, with no additional
royalties or fees.

For more information, visit
the ColumbuSoft Web site at
http://www.columbusoft.com.
Scotts Valley, CA —
Borland announced that
Radiant Systems, a provider
of integrated technology
solutions, has adopted
Delphi Client/Server Suite
3.0. Radiant Systems builds
and develops touch screens
for companies such as
Conoco, Shell Oil, Sony
Theaters, Regal Cinemas,
and Boston Market
Restaurants.

Radiant Systems hopes to
utilize the Suite’s one-step
ActiveX control feature, and
support for COM, DCOM,
and Decision Cube, to cre-
ate customized information-
network applications,
including consumer-activated
ordering systems, point-of-
sale systems, back-office
management systems, and
headquarters-management
systems. Radiant also plans
to use Delphi in future data-
warehousing projects.
5 & NT

-End Internet
Scotts Valley, CA — Borland
announced Visual dBASE 7
for Windows 95 and
Windows NT, a new version
of its database-development
tool. This version features new
two-way visual-design tools,
object-oriented component
support, a 32-bit compiler,
and enhanced connectivity.
Visual dBASE 7offers a new

two-way integrated report
writer for building and deliver-
ing customized database
reports, the Project Explorer
for managing application files,
the Visual SQL Builder for
graphically creating database
queries, and support for
ActiveX controls. Visual
dBASE 7 also includes new
data modules and object con-
tainers for managing and
maintaining relationships
between components, database
tables, and objects and support
for Microsoft FoxPro and
Access data. The 32-bit
Borland Database Engine has
native enhancements for
dBASE, Paradox, Oracle,
Sybase, Informix, DB2,
Microsoft SQL Server,
InterBase and ODBC data
sources.

In addition, Visual dBASE 7
includes Web wizards and
DeltaPoint Web tools for pub-
lishing dynamic data over the
Internet, and InstallShield
Express for creating profes-
sional installation programs.

For more information, call
(800) 457-9527, or visit the
Visual dBASE Web site at
http://www.borland.com/-
VdBase/.
Washington, DC — Borland
launched a new Internet
Solutions program that cre-
ates platform-independent
information networks by
bridging client/server data-
base systems and Internet
platforms. The new program
is based on Borland’s
JBuilder, a new line of visual
development tools for Java,
and IntraBuilder Client/-
Server, used for database
Web integration. The
Internet solutions program
combines the power of the
Java and JavaScript program-
ming languages with compo-
nent-based visual tools, high-
performance database
connectivity, an HTML
database-reporting engine,
and one-year maintenance
and high-end technical-
support contracts.

The Borland Internet
Solutions program is avail-
able from Borland in single-
and multiple-developer pack-
ages, at prices starting at
US$3,995. For more infor-
mation, call Borland’s Direct
Corporate Sales department
at (408) 431-1064.
Learning Tree Offers Object-
Oriented Courses

Learning Tree International
offers three courses designed to

enhance your knowledge of
object-oriented technology and

applications.
Introduction to Object

Technology is a four-day course
that builds a foundation in the

practices of object-oriented
development.

Object-Oriented Analysis and
Design offers a practical knowl-
edge of object-oriented analysis
and design methods using the

UML modeling language.
Hands-On Delphi: Object-

Oriented Applications
Development is a four-day course

that provides practical Delphi
skills to develop stand-alone and

client/server applications.
For information, call Learning

Tree International at (800) THE-
TREE, or visit http://www.-

learningtree.com.

http://www.learningtree.com
http://www.learningtree.com
http://www.columbusoft.com
http://www.borland.com/VdBase/
http://www.borland.com/VdBase/

7 January 1998 Delphi Informant

On the Cover
Delphi / AS/400

By Bradley Mac Donald
The AS/400 Connection
Four Methods to “Get There” from Delphi

One of the AS/400’s biggest drawbacks has been its proprietary image. In
the past, an IBM development tool or 16-bit ODBC driver had to be used

to develop against an AS/400 database. The resulting application was general-
ly not portable to other database servers. Thus, the AS/400 was not considered
an open platform for client/server development.
However, much has changed over the last few
years, and the AS/400 is being looked at more
seriously as a database server. More and more
vendors, including Borland, are making their
software and tools compatible with the AS/400.

This article considers various ways to con-
nect Delphi to the AS/400 — each with its
advantages and disadvantages. The trick is
choosing the correct method for your shop.
To help determine which method is best for
you, I will discuss the pros and cons of the
four main products (see Figure 1).

This review will compare the infrastructure
required to support each method, ease of
setup, how well each accesses the AS/400
files/programs, and the portability of devel-
oped applications. The performance of the
four alternatives will not be compared in
detail; from my general observation, how-
ever, the alternatives that use native-style
access provide better performance.

File Access: Native versus SQL
The AS/400 native file system “feels” more
like a Paradox database than a typical relation-
al database. Like Paradox, each table is a sepa-
rate, internally described file that’s manipulat-
ed in a record based manner. These files are
traditionally accessed using IBM’s Advanced
Program-to-Program Communication (APPC)
protocol over Systems Network Architecture
(SNA). This is the environment most AS/400
programmers are familiar with, and this article
will refer to it as native access.

The base AS/400 operating system also
ships with support for SQL Data
Manipulation Language (DML) statements
(e.g. SELECT, INSERT, DELETE, etc.).
This means that every AS/400 can support
SQL queries from a PC client machine.
This enables a programmer to treat the
AS/400 file system as a typical relational
database. This environment will be referred
to as SQL access.

The main difference to note between SQL
and native access is the portability of appli-
cations. When you start using native access
methods, whether to call a program or to
access data, you may start coding to the
AS/400, instead of a generic standard that
could be ported to another database server.
While porting between database servers is
never simple, using native access will further
complicate things.

Running AS/400 Programs from Delphi
Whether you’re changing an AS/400 green-
screen interface of an existing application
into a Windows GUI, or creating a new
application from scratch, there will be
batch processes that need to be run on the
AS/400. In general, processes such as large
reports and other CPU/IO-intensive opera-
tions are best kept on the server. The issue

On the Cover
is how to run programs on the AS/400 server from the
Windows-based client.

Both Delphi/400 and Light Lib/400 use APPC to issue a
Remote Procedure Call (RPC) to execute AS/400 pro-
grams. Delphi/400 uses a straightforward RPC, while Light
Lib/400 uses the Delphi stored-procedure object to encap-
sulate the RPC call. If you’re using SQL to access the
AS/400, you must use stored procedures to run AS/400
programs. In most databases, a stored procedure is created
Product Company Pro

ODBC-Client IBM Applications are
Access/400
(V3R1M0) Doesn’t require

Only method th
SQL Explorer, d
and other BDE

Support for an
list-like structur

Very easy to set

SQL Links 3.5 Borland SQL Links Applications are
(DB2 Driver)

Deals with AS/4
relational datab

Light Lib/400 Luxent Software Strong AS/400
(version 2.0)

Applications are
due to their AS/4

Doesn’t require

Easy to set up a

Delphi/400 Borland and TCIS Very strong AS/
(Delphi 2) including data q

Easy to set up a
(excluding SNA

Figure 1: An overview of the four connection methods; each has

8 January 1998 Delphi Informant
using a SQL scripting language. On the AS/400, however, a
stored procedure points to any high-level language program
on the AS/400 (e.g. COBOL, RPG, Pascal, C, CL, etc.).
It’s relatively easy to submit a job on the AS/400 from a
Delphi program, using either tool.

As with file access, using native methods to call an AS/400
program will make it more difficult to port your application
to a different database server than will using SQL stored pro-
cedures. However, because stored procedures are so different
s Cons

 portable. Not a native driver; slower than
the native access methods.

 Delphi C/S edition.
Requires Client Access/400 to be

at allows full use of installed on the workstation.
ata migration utility,
alias-related tools. No support for data areas and

data queues without using the rest
AS/400 library of Client Access/400.
e.

 up and configure.

 portable. No native AS/400 support.

00 as if it’s a DB2 No support for calling AS/400
ase. programs due to DDCS stored

procedure issue.

Annoying property of DDCS to use
the user’s USERID to prefix table
names in SQL queries.

No support for data areas and
data queues.

Doesn’t work with SQL Explorer.

Difficult to set up and configure.

native support. No support for data areas and
data queues.

 relatively portable
00 driver for the BDE. Doesn’t work with data migration

utility.
 Delphi C/S edition.

nd configure.

400 native support, Applications are not as easily
ueues and data areas. ported to other databases as with

the other methods.
nd configure
 gateway). Doesn’t use the BDE nor its alias

structure; this means the SQL
Explorer, data-migration utility, and
other tools that require BDE aliases
do not work with this method.

its strengths and weaknesses.

On the Cover
on the AS/400 compared to other database servers, you must
be careful how you use them, to maintain some possibility of
porting them to other database servers.

To set up stored procedures on the AS/400, you must have
the full SQL product installed on your AS/400. This pro-
vides the support for the SQL Data Definition Language
(DDL) statements (e.g. CREATE TABLE, CREATE
INDEX, CREATE PROCEDURE, etc.). This functionality
is available to anyone running OS/400 V3R1M0 with
appropriate PTF levels, or a more recent version of the
operating system.

ODBC
Since ODBC has gone 32-bit, some of the older issues with
the 16-bit drivers and with performance have been reduced to
the point where 32-bit ODBC should be considered a possi-
ble alternative. It’s still not as fast as native access, but may be
acceptable due to its portability. For this article, I used the
32-bit ODBC driver that ships with Client Access/400 for
Windows 95/NT. One of the nice things about this driver is
that it can run over TCP/IP directly to the AS/400 (it will
also work with SNA), so that you don’t need any protocol
other than TCP/IP (which comes with Windows 95/NT) on
your workstation. However, you do need the Client
Access/400 product to be installed on your workstation.

Infrastructure and setup. The ODBC driver is available as
soon as Client Access/400 is installed on the client machine.
It’s a simple matter of setting up the ODBC data source, and
configuring the driver and alias in the BDE. It takes two to
three minutes to set everything up (after Client Access/400 is
installed), making it the easiest setup of the four products.

Access to AS/400 files and programs. The ODBC driver
provides complete access to AS/400 files, and allows full
use of the standard Delphi Table and Query components.
In the ODBC driver, it even allows you to choose which
libraries to access (almost like an AS/400 library list) — a
very useful feature. Because every library on the AS/400
can be treated as a stand-alone database, each table must be
qualified with the library name, so you know which file in
which library you are referring to. By specifying the
library(s) to check in the ODBC driver itself, you don’t
need to qualify the table name. This option makes porting
an application from test to production as simple as chang-
ing the library list in the ODBC driver.

To access AS/400 programs, you must set up SQL stored
procedures on the AS/400. Once the stored procedures are
set up, calling the AS/400 programs is easy, as is passing
the parameters to them; it’s all done using Delphi’s stan-
dard StoredProc component. Because the ODBC driver
reviewed here is part of the Client Access/400 product,
there is also support for RPC calls. This is useful to
AS/400 shops that don’t have the full SQL product on
their machine; they could use the ODBC driver for data-
base access, and use the Client Access/400 RPC support to
call AS/400 programs.
9 January 1998 Delphi Informant
Portability. The portability of an application written using
the ODBC driver is very good. It’s probably the best of the
four products in this category. The only thing that might
restrict portability of an application is the use of stored
procedures that are so AS/400-specific that they would be
difficult (or impossible) to reproduce on other types of
database servers.

SQL Links 3.5 (DB2 Driver)
This option makes use of Borland’s SQL Links 3.5 DB2 driver
to access the AS/400 as if it were a DB2 database. Since it deals
with the AS/400 as a relational database, this option holds the
promise of creating applications that can be easily ported to
other types of database servers. Due to IBM’s Distributed
Database Connection Services (DDCS) for NT products, how-
ever, there are various problems with this scenario. Hopefully,
IBM will solve them in the new release.

Infrastructure and setup. To use this option, you must have
Microsoft’s SNA server (or some other SNA gateway) and
IBM’s DDCS for NT. IBM is working on a TCP/IP solution
for DDCS that will eliminate the need for an SNA server
from the configuration. This may be available by the time
this article is published. Because of the extra setup to get the
SNA and DDCS components up and running, this method is
by far the most difficult to set up.

Access to AS/400 files and programs. All access to the
AS/400 file system is done via the DB2/400 SQL engine.
SQL Links 3.5 allows full use of the standard Delphi Table
and Query components. There is one feature of this prod-
uct that’s troublesome: When you set up a Query-component
connection in Delphi, DDCS tries to prefix the table name
in the SELECT statement with the USERID of the user.
This is done because the database is connected to the
AS/400 as a whole. You then have to specify in which
library you want to look for the table. In other database
systems, each AS/400 library would actually be a separate
database, so you wouldn’t have to qualify the table name.
Forcing the qualifier to be the USERID makes using the
product a little unwieldy. It would be nice if IBM would
allow the developer to assign the default qualifier, or pro-
vide a library list feature, such as the one in the ODBC
driver. To access AS/400 programs, stored procedures have
to be used. However, the DDCS (version 2.3) product has
a problem that doesn’t allow the use of stored procedures
on the AS/400.

Portability. Like ODBC, this option offers excellent portabil-
ity. Because everything is accessed using standard SQL, port-
ing to another database should be fairly straightforward.
Again, the only thing that might restrict portability of an
application is the use of stored procedures specific to AS/400.

Light Lib/400
Light Lib/400, a product from Luxent Software
(http://www.luxent.com), offers a unique solution, provid-
ing “native” Delphi access to the AS/400 while maintain-
ing a good degree of portability.

http://www.luxent.com

On the Cover
Infrastructure and setup. Light Lib/400 can connect to the
AS/400 via an SNA gateway or TCP/IP. It provides a new
BDE driver that handles the APPC communication with the
AS/400. This provides a native connection to the AS/400,
while allowing full use of the BDE alias structure. It also
allows you to specify the library on the AS/400, where it will
look for the files in the BDE driver. This means that porting
your application from test to production can be as simple as
changing the BDE alias setup.

The installation process installs software on both the PC
and the AS/400 directly from the PC workstation. It
requires a USERID with QSECOFR privileges in order to
install the software on the AS/400; it’s a fairly easy instal-
lation process.

Access to AS/400 files and programs. Light Lib/400 pro-
vides access to AS/400 tables, and full use of the standard
Delphi Table and Query components, so porting to other
database servers is straightforward. It uses an RPC call,
encapsulated inside a Delphi StoredProc component to exe-
cute programs on the AS/400. It is reasonably easy to set
up, and only involves Delphi code. There is no setup on the
AS/400 for calling AS/400 programs, as there is for using
stored procedures with ODBC. Although the product offers
a native APPC link to the AS/400 files and programs, it
doesn’t support data areas or data queues.

Portability. Light Lib/400 offers a good degree of portabili-
ty for applications. Its combination of native access and use
of a BDE driver should encourage AS/400 shops to evaluate
this product.

Delphi/400
Delphi/400 is Borland’s offering for connecting to the
AS/400 in a native manner. It’s based on a component suite
from TCIS of France, and is the only product that provides
access to AS/400 data areas and data queues. The version I
evaluated was for Delphi 2. Hopefully, Delphi/400 for
Delphi 3 will be shipping by the time this article is printed.
The new version will support a TCP/IP-only connection, and
provide a driver for use with the BDE.

Infrastructure and setup. Delphi/400 requires an SNA gate-
way, such as Microsoft’s SNA Server, to connect to the
AS/400. This product, unlike the other three, doesn’t use the
BDE to communicate with the AS/400. It uses APPC direct,
bypassing the BDE and its aliases. The installation is relative-
ly straightforward, but requires the use of an AS/400
USERID with QSECOFR privileges to install the AS/400
portion. As with the Light Lib product, both the workstation
and AS/400 programs are installed from the workstation
setup program.

Access to AS/400 files and programs. Delphi/400 provides
the most support for native access to the AS/400 database.
It has the ability to access files in their native mode (i.e.
record-based access to Physical and Logical files), or as
Delphi tables and queries. It is the only product that pro-
10 January 1998 Delphi Informant
vides access to AS/400 data areas and data queues. To exe-
cute programs on the AS/400, it uses RPC calls over its
APPC connection.

Portability. Portability is the biggest issue with this prod-
uct. To attach to the AS/400, you must use its custom
Table400 and Query400 components. These components,
which replace Delphi’s Table and Query components, use
direct APPC communication to the AS/400, instead of the
BDE or BDE aliases, to retrieve the data. This means that
when you port this application to another database server,
you’ll have to replace the Table400 and Query400 compo-
nents with Table and Query components. While this is not
a huge problem (if you keep all your Table400 and
Query400 components in one place), it means you have to
change code in your application.

A benefit of this architecture is that you could inherit from
the connection object, and add your own functionality. This
inheritance feature is not available if a BDE driver is used to
communicate to the AS/400, as in the case of Light Lib/400.
If you use the RPC function to call AS/400 programs, it will
mean changing your application’s code to port it to another
database server.

Conclusion
The product that offers the best native connectivity to the
AS/400 is definitely Delphi/400. It offers not only direct
connection to the native file system, data queues, data areas
and programs, but also their own Table and Query compo-
nents that are customized to the AS/400. If porting your
applications to another database server is not a concern at
your shop, then you should definitely take a look at this
product. The new version of Delphi/400, with its support
for TCP/IP and a BDE driver, should eliminate some of my
concerns regarding portability of applications written using
this product.

ODBC offers the best portability of the four methods, but
the slowest access. The SQL Links product also promises
excellent portability; however, the problems with IBM’s
DDCS for NT should prevent most AS/400 shops from
considering it.

Luxent’s Light Lib product is interesting in that it has a
native APPC connection to the AS/400, yet maintains a
good degree of portability. Because it still uses all the stan-
dard Delphi database connection objects and the BDE
alias structure, porting to another platform should be
straightforward. However, support for data areas and data
queues — which would allow integration with existing
AS/400 programs that use these constructs — is missing
from the product. Overall, it is the blend of native access
and portability that should encourage AS/400 shops to
look at this product.

All these products may have new releases out by the time this
article is published. Each vendor seems to be working hard to
provide the best connection from Delphi to the AS/400. For

On the Cover
AS/400 shops using or considering Delphi, this competition
and drive for improvement is good news. ∆

Bradley Mac Donald is a Technical Analyst at the Liquor Distribution Branch of
British Columbia, where he is responsible for supporting Delphi and AS/400
developers. He can be reached at GBMACDON@BCSC02.GOV.BC.CA or
Bradley_MacDonald@BC.Sympatico.CA.
11 January 1998 Delphi Informant

12 January 1998 Delphi Informant

Columns & Rows
Delphi 3 Client/Server Edition

By Bill Todd

Figure 1: The P
Single-Tier Database Apps
Putting the ClientDataSet Component to Work

With the Delphi 3 Client/Server Suite, you can build database applications
that don’t use the Borland Database Engine (BDE). And you do it with the

same technology you use to build briefcase-model applications. Chapter 7 of
the Delphi 3 Developer’s Guide calls this a single-tier database application.
Unfortunately, like every other aspect of the MIDAS technology in Delphi 3
Client/Server, the discussion of single-tier database applications is incomplete.
Single-tier applications use the new
ClientDataSet component as their only
dataset. In a multi-tier application,
ClientDataSet gets its data from the
middle-tier (server) application. However,
ClientDataSet also has the ability to save
its data to, and load its data from, a flat
file. Unlike the other Delphi dataset com-
ponents, ClientDataSet holds all its data in
memory. While this may sound like a
severe limitation, consider that 50,000
100-byte records consume only 5MB of
memory. For a single-tier or briefcase-
model application, this means you will
probably want to limit the total number of
records in all ClientDataSet components
that are open simultaneously to something
in the 10,000 to 50,000 range, depending
on the record size.
hone program’s main form.
Because ClientDataSet uses a flat file, it
doesn’t require the Borland Database Engine
(BDE). The only supporting file that
ClientDataSet requires is DBCLIENT.DLL,
which is only 150KB. This makes distribut-
ing and installing single-tier applications
very easy.

To show you a simple, practical single-tier
application in action, this article describes a
phone-book application. The main form is
shown in Figure 1. In addition to the ability
to add, delete, and edit records, this program
includes the following features:

a tabbed notebook to provide a list and
detail (single record) view.
the ability to sort the directory by per-
son’s name, company name, or keyword.
an incremental search on the current
index.
the ability to copy the name and address
to the Clipboard, formatted for pasting
into a letter.
the ability to dial the home or office
phone number with the click of a button.
the ability to search for a phone number
to help reconcile your phone bill.

The main form contains a single ClientDataSet
component, a DataSource component, and the
necessary data-aware controls to display the
data. The DataSource is connected to the
ClientDataSet that will be setting its DataSet
property, just as you would if you were using a
Table or Query component as the dataset.

procedure TPhoneForm.FormCreate(Sender: TObject);

begin
{ Start out on the List page. }
PageControl1.ActivePage := ListSheet;

{ Get the path to the data file. }
if ParamCount > 0 then

begin
{ Get path to the data file from the command line. }
DataFilePath := ParamStr(1);

if DataFilePath[Length(DataFilePath)] <> '\' then
DataFilePath := DataFilePath + '\';

end
else

begin
{ The phone directory data file is in the same

directory as the .EXE file. }
DataFilePath := ExtractFilePath(Application.ExeName);

end;

DataFilePath := DataFilePath + DataFileName;

{ Load the data file if it exists; otherwise create it. }
if FileExists(DataFilePath) then
PhoneSet.LoadFromFile(DataFilePath)

else
CreatePhoneTable;

SetDisplayWidths;

{ Build the indices since they aren't saved
with the file. }

CreateIndices;

{ Create the dialer. }
TapiDialer := TTapiDialer.Create(Self);

end;

Figure 2: The main form’s OnCreate event handler.

procedure TPhoneForm.CreatePhoneTable;

begin

with PhoneSet do begin
FieldDefs.Add('Last_Name', ftString, 24, False);

FieldDefs.Add('First_Name', ftString, 16, False);

FieldDefs.Add('Company', ftString, 35, False);

FieldDefs.Add('Office_Phone', ftString, 20, False);

FieldDefs.Add('Extension', ftString, 8, False);

FieldDefs.Add('Home_Phone', ftString, 20, False);

FieldDefs.Add('Prefix', ftString, 4, False);

FieldDefs.Add('Title', ftString, 35, False);

FieldDefs.Add('Address_1', ftString, 35, False);

FieldDefs.Add('Address_2', ftString, 35, False);

FieldDefs.Add('City', ftString, 20, False);

FieldDefs.Add('State', ftString, 2, False);

FieldDefs.Add('Zip', ftString, 20, False);

FieldDefs.Add('Country', ftString, 20, False);

FieldDefs.Add('Fax', ftString, 20, False);

FieldDefs.Add('Spouse', ftString, 16, False);

FieldDefs.Add('Type', ftString, 1, False);

FieldDefs.Add('Keyword', ftString, 35, False);

FieldDefs.Add('Speed_Dial', ftString, 1, False);

FieldDefs.Add('EMail', ftString, 32, False);

FieldDefs.Add('URL', ftString, 64, False);

FieldDefs.Add('Note', ftMemo, 35, False);

CreateDataSet;

end;

end;

Figure 3: The CreatePhoneTable method.

Columns & Rows

procedure TPhoneForm.SetDisplayWidths;

begin

with PhoneSet do begin
FieldByName('Last_Name').DisplayWidth := 20;

FieldByName('First_Name').DisplayWidth := 12;

FieldByName('Company').DisplayWidth := 28;

FieldByName('Office_Phone').DisplayWidth := 13;

FieldByName('Extension').DisplayWidth := 6;

FieldByName('Home_Phone').DisplayWidth := 13;

{ Set the EditMasks. }
FieldByName('Type').EditMask := '>l;1;_';

FieldByName('Speed_Dial').EditMask := '>l;1;_';

end;

end;

Figure 4: The SetDisplayWidths method.
Building the Database
To create a single-tier application, you have to create your
data tables in code. ClientDataSet doesn’t provide any tools
for interactive database creation, because it was primarily
intended for the client side of a multi-tier application in
which the data is supplied by the server. Figure 2 shows the
main form’s OnCreate event handler.

This code starts by ensuring that the List page of the page
control is active at startup. Next it checks for command-line
parameters. If a command-line parameter is found, it’s
assumed to be the path to the data file. If not, then the
dataset is assumed to be in the same directory as the pro-
gram’s .EXE file. The FileExists function is used to determine
if a dataset already exists. If a dataset is found, it’s loaded by
calling the TClientDataSet.LoadFromFile method. If not, the
dataset is created by calling the custom method
CreatePhoneTable, shown in Figure 3. Next, a call to the cus-
tom SetDisplayWidths method sets the DisplayWidth and
EditMask properties of the dataset’s field objects. Because sav-
ing the data in a ClientDataSet doesn’t save the indices, they
need to be recreated each time the data is loaded, by calling
the custom method, CreateIndices. The last line of the
OnCreate event handler creates an instance of the TapiDialer
component used to dial phone numbers.

As Figure 3 shows, creating the dataset is a simple process.
The ClientDataSet component is named PhoneSet, and a call
13 January 1998 Delphi Informant
is made to its FieldDefs.Add method for each field in the
dataset. Once all the fields have been defined, a call to the
TClientDataSet.CreateDataSet method creates the dataset.

Figure 4 shows the code for the SetDisplayWidths method,
which sets the DisplayWidth property of each field, and the
EditMask property of two fields. This code was not included
in the CreatePhoneTable method, because these properties
must be reset each time the data is loaded from disk, not just
when the dataset is initially created.

Figure 5 shows the custom CreateIndices method, which creates
the required indices when the dataset is first created, or when it’s
loaded from disk. The TClientDataSet.AddIndex method is called
once for each index created. The final statement makes the
“Name” index the active index. Users can change the active
index at any time by clicking the Last Name, Company, or
Keyword toolbar buttons, or by selecting the corresponding
choice from the View menu.

procedure TPhoneForm.CreateIndices;

begin

with PhoneSet do begin
AddIndex('Name', 'Last_Name;First_Name',

[ixCaseInsensitive]);

AddIndex('Company', 'Company;Last_Name',

[ixCaseInsensitive]);

AddIndex('Keyword', 'Keyword;Company',

[ixCaseInsensitive]);

AddIndex('ByHomePhone', 'Home_Phone', []);

AddIndex('ByOfficePhone', 'Office_Phone', []);

AddIndex('ByFax', 'Fax', []);

IndexName := 'Name';

end;

end;

Figure 5: The CreateIndices method.

Columns & Rows
Saving Data
Since ClientDataSet holds its data in memory, the data
must be saved to disk when the user exits the program. In
addition, an option on the File menu lets the user save the
dataset at any time during a session, to prevent data loss in
case of a system crash. Both the main form’s OnClose event
handler and the File | Save Changes menu choice’s OnClick
event handler call the SaveChanges method shown in
Figure 6. Since there’s no reason to save the dataset if the
user hasn’t made changes, this method checks the
PhoneSet’s ChangeCount property to see if it’s greater than
zero. The main form’s OnClose event handler also calls the
TapiDialer component’s CloseDialer method, and frees the
TapiDialer.

The call to the dataset’s MergeChangeLog method requires
some explanation. As a user adds, deletes, and changes
records, the changes aren’t made to the dataset (which is held
in the TClientDataSet.Data property), but instead are written
to the TClientDataSet.Delta property. Although the changes
are stored separately, the user always sees the latest version of
the data on the screen, and so will you if you access the data
in code. However, before saving the data to disk, you must
call MergeChangeLog to merge the changes into the dataset.
Finally, the call to the TClientDataSet.SaveToFile method
writes the dataset to disk.

An undo plethora. One side benefit of storing the changes
separately is that you have enhanced “undo” capability. The
Edit menu contains three choices: Undo Last Change, Undo All

Changes To Record, and Undo All Changes. Undo Last Change

makes the following call:

PhoneSet.UndoLastChange(True)

The UndoLastChange method undoes the last change that
was made, regardless of which record was changed. Setting
the parameter to True moves the cursor to the record that
was last changed. If the parameter is False, the change will
be undone, but the current record will not change.

The Undo All Changes To Record menu choice calls
PhoneSet.RevertRecord, which undoes all changes to the current
record. Note that the changes will be undone whether or not
14 January 1998 Delphi Informant
the record has been posted. Calling PhoneSet.CancelUpdates
undoes all changes to all records to implement the Undo All

Changes menu choice.

All the code and techniques discussed so far in this article are
equally applicable to multi-tier applications that implement
the briefcase model. The only difference is that you don’t have
to create the dataset in code. Instead the data is retrieved from
the middle-tier server application. You can then save the data
to disk, using the TClientDataSet.SaveToFile method, allow the
user to disconnect from the network and at a later time start
the application, load the dataset from disk, and make changes.

Although the Phone program uses a single ClientDataSet
component, you can use as many as you need, and link them
using the MasterSource and MasterFields properties just as you
would link Table components. Note that the TClientDataSet
class also provides the same suite of events as other Delphi
dataset components.

Dialing Phone Numbers
Although this article is primarily about using the ClientDataSet
component, it’s worth spending a few minutes looking at the
phone-dialer component contained in the TapiDial unit,
shown in Figure 7.

This simple component descends from TComponent, and
adds two methods, two properties, and two fields.

The two methods are Execute, used to dial a number, and
CloseDialer, used to close the Windows phone dialer.

The two properties are PhoneNumber and PartyToCall.
PartyToCall contains the string that’s displayed in the dialer
dialog boxes when the call is placed. The two fields,
FPhoneNumber and FPartyToCall, hold the values of the
properties. The type block also declares a custom exception,
ETapiDialError, that’s used in the Execute method.

This component avoids the complexity of accessing your
modem through the serial port to dial the phone number, by
using the Microsoft TAPI telephony API to tell the Windows
phone-dialer application to dial the number. The code in the
Execute method begins by calling the Windows LoadLibrary
function to load the TAPI32.DLL. If the call to LoadLibrary
fails, the method raises the ETapiDialError exception.

Next comes a call to the Windows API function,
GetProcAddress, to get the address of the TapiRequestMakeCall
function in TAPI32.DLL, and assign it to the procedure vari-
able TapiRequestMakeCall (which is declared in the var block
at the beginning of this method).

Watch where you point. If you haven’t worked with proce-
dure variables, the syntax of the following statement may
be confusing:

@TapiRequestMakeCall :=

GetProcAddress(TapiLibrary, 'tapiRequestMakeCall');

procedure TPhoneForm.SaveChanges;

begin

with PhoneSet do begin
if ChangeCount > 0 then
begin
MergeChangeLog;

SaveToFile(DataFilePath);

end;
end;

end;

Figure 6: The SaveChanges method.

Columns & Rows
The @ operator is normally used to designate the address of a
variable (i.e. it returns a pointer to the variable). For example,
the following code assigns the address of the variable
SomeNumber to the pointer SomeNumPtr :

var
SomeNumber: Integer;

SomeNumPtr: ^Integer;

begin
SomeNumPtr := @SomeNumber;

end;
unit TapiDial;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,

Controls, Forms, Dialogs;

type
ETapiDialError = class(Exception);
TTapiDialer = class(TComponent)
private
{ Private declarations }
FPhoneNumber: string;
FPartyToCall: string;

protected
{ Protected declarations }

public
{ Public declarations }
procedure Execute;

procedure CloseDialer;

published
{ Published declarations }
property PhoneNumber: string read FPhoneNumber

write FPhoneNumber;

property PartyToCall: string read FPartyToCall

write FPartyToCall;

end;

procedure Register;

implementation

procedure TTapiDialer.Execute;

var
NumberToDial: string;
TapiResult: LongInt;

TapiLibrary: THandle;

TapiRequestMakeCall:

function (lpszDestAddress, lpszAppName,

lpszCalledParty, lpszComment: PChar):

LongInt; stdcall;
begin
if FPhoneNumber = '' then
raise ETapiDialError.Create(

Figure 7: The TapiDial unit.

15 January 1998 Delphi Informant
In the case of a procedure variable, such as TapiRequestMakeCall,
however, there is a problem. A procedure variable is a pointer to
a procedure or function. In Pascal, when a procedure variable
appears in code, the compiler interprets it as a call to the proce-
dure whose address the variable contains.

So the statement:

TapiRequestMakeCall :=

GetProcAddress(TapiLibrary, 'tapiRequestMakeCall');

would be interpreted as a call to the procedure that
TapiRequestMakeCall points to, not as an assignment of
the address returned by GetProcAddress to the variable.

To resolve this problem, you must precede the procedure
variable with the @ operator when your intent is to access
the address the variable contains, instead of calling the
procedure at that address.

Once the address of the TapiRequestMakeCall function in the
DLL is obtained, the code checks the length of the phone
'The phone number is blank.');

{ Load the TAPI dll. }
TapiLibrary := LoadLibrary('TAPI32.DLL');

if TapiLibrary = 0 then
raise ETapiDialError.Create(

'Error loading TAPI32.DLL library.');

{ Get the address of the dll function. }
@TapiRequestMakeCall :=

GetProcAddress(TapiLibrary, 'tapiRequestMakeCall');

{ If the number includes an area code prepend a one. }
if Length(FPhoneNumber) > 8 then
NumberToDial := '1' + FPhoneNumber

else
NumberToDial := FPhoneNumber;

{ Dial the number. }
TapiResult :=

TapiRequestMakeCall(PChar(NumberToDial),'',

PChar(FPartyToCall),'');

FreeLibrary(TapiLibrary);

end;

procedure TTapiDialer.CloseDialer;

{ Close the Phone Dialer if it is open. }
var

Dialer: THandle;

begin
Dialer := FindWindow(nil, 'Phone Dialer');

if Dialer <> 0 then
PostMessage(Dialer, WM_QUIT, 0, 0);

end;

procedure Register;

begin
RegisterComponents('Samples', [TTapiDialer]);

end;

end.

Columns & Rows
number. If it includes an area code, a “1” is added to the
beginning of the string, and TapiRequestMakeCall is called to
dial the number. TapiRequestMakeCall dials the number by
loading the Windows phone-dialer application, and passing
the number to it.

The CloseDialer method closes the Windows phone dialer.
It calls the Windows API function FindWindow to get the
window handle of the phone dialer’s window, then calls
PostMessage to send a WM_QUIT message to the dialer.

Conclusion
The ClientDataSet component gives you a lot more than
just multi-tier application capability. You can bring a new
dimension to your development projects by building simple
database applications that don’t require the BDE, and brief-
case-model programs that let users take their data on the
road — and edit it on the way. ∆

The project referenced in this article is available on the Delphi
Informant Works CD located in INFORM\98\JAN\DI9801BT.

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database pro-
gramming books, including Delphi: A Developer’s Guide [M&T Books, 1995]
and Creating Paradox for Windows Applications [New Riders Publication,
1994]; a contributing editor of Delphi Informant; a member of Team Borland
providing technical support on the Borland newsgroups; and has been a speak-
er at every Borland Developers Conference. He can be reached at
Bill_Todd@compuserve.com or (602) 802-0178.
16 January 1998 Delphi Informant

OP Tech
Delphi 2 / Delphi 3

By Keith Wood

Figure 1: The

17 January 1998 Delphi Informant
The Property Explorer Expert
Using the ToolServices Object to Build a Development Aid

Delphi provides numerous ways to make building applications easier. Its
components can be customized and integrated into the environment, and

templates and code-generating experts can be created and added to the Object
Repository for reuse. We can also add applications to its Tools menu for easy
access to supporting programs.

Delphi’s experts can generate individual
forms or entire projects. Delphi also allows
you to create experts that provide additional
functionality within its environment, and
makes them available through the menu
structure (the Database Form Expert is one
example). In this article, we’ll build an expert
that locates properties of objects with a speci-
fied name or value in the current project.

Property Values
Have you ever wondered what event calls a
given method in your form, or what list
boxes contain a given phrase? Although
Delphi provides easy access from an object to
its properties and values, it doesn’t make it
easy to do the reverse. The property values
property explorer expert.
are hidden in the .DFM file, which are nor-
mally stored in a binary format that isn’t very
readable. These files can be loaded into the
Code Editor and viewed as text, but this
approach may not be practical for a medium
to large project — hence the need for a utili-
ty that shows what object properties have a
given value.

We have three objectives in our example:
search one or more of the forms in the
current project,
enter the property name or value to be
located, and
set various matching options.

After performing the search, the utility dis-
plays a list of the properties of objects that
have this name or are set to this value, and
the names of the forms in which to find
them. Figure 1 shows the expert in action.

Expert Basics
Delphi experts are shared libraries (DLLs).
Each expert must register its presence when
the DLL is loaded. Thereafter, Delphi
extracts information about most experts
when displaying the Object Repository or
Help menu. Once selected, these experts are
invoked through their Execute methods,
allowing them to perform a specific task.

OP Tech
All experts are classes derived from TIExpert, which defines
the interface that must be implemented for the expert to
interact with the Delphi environment. TIExpert has a number
of methods that must be overridden to supply basic informa-
tion about the expert: its name, style, state, and a unique ID
string. The style of an expert determines how it appears in the
Delphi IDE and how it’s invoked. Four possible styles exist:

esForm for an expert that usually resides on the Forms
tab in the Object Repository and generates code for a
single form;
esProject for an expert that produces code for an entire
project and is usually called from the Projects tab in the
Object Repository;
esStandard for an expert that is invoked from the Help

menu; and
esAddIn for experts that handle their own interactions
with Delphi. Add-in experts are different from the others
in that they’re not invoked through their Execute method.
(We’ll save that topic for another article.)

Additional information depends on the type of expert being
developed. Form and project experts require a longer descrip-
tive text and an icon to represent it in the Object Repository.
A standard expert requires the text displayed on the menu to
18 January 1998 Delphi Informant

{ Create new expert dialog and find current file. }
constructor TfrmPropExplorerExpert.Create(

AOwner: TComponent);

var
i: Integer;

sProjectPath, sFilePath, sFileName: string;
slsModified: TStringList;

ediEditor: TIEditorInterface;

fmiForm: TIFormInterface;

begin

inherited Create(AOwner);

{ Display project name. }
Caption := Caption + ' - ' +

ExtractFileName(ToolServices.GetProjectName);

{ Align results grid columns. }

for i := 0 to hdrResults.Sections.Count - 1 do
stgResults.ColWidths[i] :=

hdrResults.SectionWidth[i] - 1;

{ Create list for modified files. }
slsModified := TStringList.Create;

try
sProjectPath := ExtractFilePath(

ToolServices.GetProjectName);

{ Load form names into listbox. }
for i := 0 to ToolServices.GetFormCount - 1 do begin
sFilePath := ExtractFilePath(

ToolServices.GetFormName(i));

if sFilePath = sProjectPath then
sFilePath := ''

else
sFilePath := ' in ' + sFilePath;

lbxForms.Items.AddObject(ExtractFileName(

ToolServices.GetFormName(i)) + sFilePath,

TString.Create(ToolServices.GetFormName(i)));

sFileName :=

ChangeFileExt(ToolServices.GetFormName(i),'.pas');

{ Check if modified. }

Figure 2: The new constructor for the expert form.
be supplied. Finally, all these experts must override the
Execute method to actually perform the work.

Working from the example experts available in Delphi, we see
that only one function must be exported from the DLL. This
is InitExpert, which registers the expert with Delphi. The
code for this routine can be copied directly from the example
(see the end of this article for download details), needing only
the registration statement to be changed:

{ Register the expert. }
RegisterProc(TPropExplorerExpert.Create);

ToolServices
To make interactions with the IDE possible, Delphi defines a
TIToolServices class and creates a ToolServices object. A refer-
ence to this object is available to the expert when it’s invoked.
The public face of this class appears in the ToolIntf.pas file in
\Source\Toolsapi.

The ToolServices object allows us to open, save, and close forms
and projects, as well as create new modules within a project. It
returns the number and names of the forms and units in a pro-
ject, and allows us to examine the Component palette. It also
provides a mechanism for reporting exceptions to the IDE.
if ToolServices.IsFileOpen(sFileName) then
with ToolServices.GetModuleInterface(sFileName) do
try
ediEditor := GetEditorInterface;

fmiForm := GetFormInterface;

if ediEditor.BufferModified or
fmiForm.FormModified then
slsModified.Add(sFileName);

finally
fmiForm.Free;

ediEditor.Free;

Free;

end;
end;
{ Ask for action if modified files haven't been saved. }
if slsModified.Count > 0 then

case MessageDlg(

'Some files in this project have'#13#10 +

'been modified but not yet saved.'#13#10 +

'Save these files?',

mtConfirmation, mbYesNoCancel, 0) of
mrYes:

for i := 0 to slsModified.Count - 1 do
ToolServices.SaveFile(slsModified[i]);

mrNo: { Ignore. };
mrCancel: Abort;

end;
finally

slsModified.Free;

end;

{ Highlight current form. }
i := lbxForms.Items.IndexOf(ChangeFileExt(

ExtractFileName(ToolServices.GetCurrentFile),'.dfm'));

if i > -1 then
lbxForms.Selected[i] := True

else if lbxForms.Items.Count = 1 then
lbxForms.Selected[0] := True;

end;

type
{ Encapsulate a string in an object. }
TString = class
private
FValue: string;

public
constructor Create(sValue: string);
property Value: string read FValue write FValue;

end;

{ Create a new object with an embedded string. }
constructor TString.Create(sValue: string);
begin

inherited Create;

FValue := sValue;

end;

Figure 3: A wrapper class for a string.

OP Tech

object Form1: TForm1

Left = 200

Top = 99

AutoScroll = False

Width = 243

Height = 147

Caption = 'TabSet Drag/Drop Demo'

Font.Color = clBlack

Font.Height = -11

Font.Name = 'MS Sans Serif'

Font.Style = [fsBold]

PixelsPerInch = 96

TextHeight = 13

object TabSet1: TTabSet

Left = 0

Top = 99

Width = 235

Height = 21

Align = alBottom

Font.Color = clWindowText

Font.Height = -11

Font.Name = 'MS Sans Serif'

Font.Style = []

Tabs.Strings = (

'First'

'Second'

'Third'

'Fourth'

'Fifth')

TabIndex = 0

TabOrder = 0

OnDragDrop = TabSet1DragDrop

OnDragOver = TabSet1DragOver

OnMouseDown = TabSet1MouseDown

end
end

Figure 4: An example of the text representation of a .DFM file.
In this utility, we use the ToolServices object to list the
forms in the current project and identify those (if any)
being modified. The list simplifies the selection of forms to
be searched — keeping in mind that the current form can
be automatically selected as soon as the expert appears. This
allows us to search the current form with minimal effort.

Initialization
In the initialization of the expert’s form, we want to retrieve
this list and place the values into a list box. To do this, we
need access to the ToolServices object from within the form.
This is easily accomplished by including the ExptIntf unit
in the uses clause of our unit. We also need to include the
ToolIntf unit to provide the definition of the class.

The initialization occurs in the Create method of our form.
First, call the Create method from the parent class, passing
the supplied parameter through to this call, allowing the
owner of the new form to be established. Thereafter, use the
ToolServices object to obtain the number of forms in the pro-
ject and their names, and to identify those currently being
modified. The names of the forms are added to the list box,
which has already been set to allow for multiple selection of
entries. Because of this, highlight the current form with the
Select property rather than the ItemIndex property. Figure 2
shows the new constructor for the expert form.

To keep the list of form names legible, we only display the
name of the file, unless the form doesn’t reside in the project
directory (in which case we want to display the full path
name). The path is easily extracted from the form name by
using the ExtractFileName procedure, but we want to keep the
full path name to supply to the scanning process later. Delphi
allows you to associate objects with given strings in all string
lists, such as the one inside a list box. Unfortunately, the value
that we want to store is a string, which isn’t an object.

To work around this, create a smaller wrapper class to encapsu-
late a string value (see Figure 3). It is derived directly from
TObject (by default) and has a single property, Value, which is a
string. To simplify its use, we have a customized constructor
that takes the value of the string to be contained. This can then
be accessed by referring to the property. The use of this class can
be seen in Figure 2. We created an instance of the wrapper class
19 January 1998 Delphi Informant
with the appropriate value, in this case the full name of the
form, and added it with the short filename to the list.

As we’ll see later, we will read the properties from the .DFM
files on the disk. This means if the forms have been updated but
not yet saved, we’re reading outdated values. To overcome this,
we can use the ToolServices object to check and save any forms.

For this, we need to create a module interface (TIModuleInterface)
for each form. From this, we can retrieve interfaces to the
Code Editor for the unit (TIEditorInterface) and to the form
itself (TIFormInterface). The BufferModified and FormModified
properties of these objects show if the unit or form has been
altered and should be saved. We keep a reference to any that
have changed and ask the user to confirm saving them. If they
agree, use the SaveFile method of the ToolServices object to
complete the process. Results can still be obtained even when
the latest versions are not saved, but obviously will not reflect
the most recent values.

Reading the Properties
As mentioned earlier, the values of the properties set in the
Object Inspector are held in the .DFM file in a binary for-
mat. These are the values we’re interested in, but we need an
easier way of accessing them.

Remember that we can view a text representation of the .DFM
file in the Code Editor (see Figure 4). Each object, including the
form, is identified by the keyword object, followed by its name

OP Tech

{ Break line into tokens separated by white space }
procedure GetTokens;

var
iPos, iLen: Integer;

sToken, sLiteral: string;
cDelimiters: set of Char;

begin
slsTokens.Clear;

iLen := Length(sLine);

iPos := 1;

repeat
{ Skip whitespace separators }
while (iPos <= iLen) and

(sLine[iPos] in cWhiteSpace) do
Inc(iPos);

if iPos > iLen then { End of line ? }
Break;

sToken := '';

{ Quote delimited; look for matching quote }
if sLine[iPos] = '''' then

cDelimiters := ['''']

{ String starting with an embedded literal }
else if sLine[iPos] = '#' then

cDelimiters := ['''']

else
cDelimiters := cWhiteSpace;

repeat
repeat

{ Check for embedded literal in string;
stored as #n }

if ('''' in cDelimiters) and
(sLine[iPos] = '#') then

begin
sLiteral := '';

Inc(iPos);

while (iPos <= iLen) and
(sLine[iPos] in ['0'..'9']) do begin

sLiteral := sLiteral + sLine[iPos];
and type. Next appears a list of the properties with values differ-
ent from the defaults set for that component. These appear as
the property name, an equals sign (=), and the property’s value.
String values are enclosed in quotes. Lists of strings are denoted
by enclosing the list in parentheses and placing each entry on a
separate line. Events also appear as properties with the value
being the name of the method to invoke. Objects contained in
another object appear inside the latter’s definition. This can con-
tinue to an arbitrary depth. When an object has been fully
defined, it’s delimited with an end keyword.

The .DFM file on the disk is in a binary format, but we want
the text representation to manipulate. To get this, use the
ObjectResourceToText procedure. This takes two streams as
parameters, reading the binary format from the first, and writ-
ing the text version to the second. Opening an input stream
on the .DFM file is simply a matter of creating a TFileStream
object and specifying the name of the file to read. To avoid
creating a temporary file for the output stream, we can gener-
ate it directly in memory by creating a TMemoryStream object.
After calling the conversion procedure, reset the output stream
to the beginning to initiate processing it:

{ Create streams for processing. }
stmForm := TFileStream.Create(TString(

lbxForms.Items.Objects[iForm]).Value, fmOpenRead);

stmMemory := TMemoryStream.Create;

{ Translate binary resource file to text. }
ObjectResourceToText(stmForm, stmMemory);

{ Move back to beginning of text format. }
stmMemory.Position := 0;

Streams into Tokens
For each of the form files selected by the user, we must open
it and convert it into the text version in a memory stream.
This stream then provides a sequence of bytes for us to read.
To make this flow more useful, break it into lines and divide
the lines into individual tokens.
20 January 1998 Delphi Informant

{ Build up a text line from the stream.
Return True when end of the stream encountered. }

function EndOfStream(stm: TStream): Boolean;

var
c: Char;

begin
sLine := ''; { Clear current line. }
try
{ Exception raised at end of stream. }
while True do begin
{ Read next character from stream. }
stm.ReadBuffer(c, 1);

if c = cCR then { End of line. }
begin
stm.ReadBuffer(c, 1); { Skip line feed. }
Result := False; { More to come. }
Exit;

end
else
sLine := sLine + c; { Add character to line. }

end;
except
on EReadError do { End of stream encountered. }
Result := True;

end;
end;

Figure 5: Reading a line from a stream.
The lines in the stream are delimited by a carriage return
and line feed combination. If this were a straight text file,
we could use the Pascal Readln procedure and EOF function
to process each line. Because memory streams don’t provide
this functionality, however, we must add it ourselves.
Inc(iPos);

end;
sToken := sToken + Chr(StrToInt(sLiteral));

end;

until (iPos > iLen) or
not ('''' in cDelimiters) or
(sLine[iPos] <> '#');

{ Collect characters in token }
if '''' in cDelimiters then { Skip opening quote }

Inc(iPos);

while (iPos <= iLen) and
not (sLine[iPos] in cDelimiters) do begin

sToken := sToken + sLine[iPos];

Inc(iPos);

end;
if '''' in cDelimiters then { Skip closing quote }

Inc(iPos);

until (iPos > iLen) or
not ('''' in cDelimiters) or
(sLine[iPos] <> '#');

{ And add to list }
slsTokens.Add(sToken);

until iPos > iLen;

end;

Figure 6: Extracting tokens from a line.

{ Check the tokens for meaning. }
procedure ProcessTokens;

var
i: Integer;

begin
if slsTokens.Count > 0 then
begin
{ Add new object. }
if (slsTokens[0] = 'object') or

(slsTokens[0] = 'inherited') then
begin
slsObjects.Add(Copy(slsTokens[1], 1,

Length(slsTokens[1]) - 1)); { Remove colon. }
Exit;

end;
{ Remove current object. }
if (slsTokens[0] = 'end') and not bInCollection then

begin
slsObjects.Delete(slsObjects.Count - 1);

Exit;
end;

{ Check inside list. }
if bInList then

begin
sValue := sValue + slsTokens[0];

{ Matched - record where it was found. }
if ((ragSearchIn.ItemIndex in iValues) and

Matched(slsTokens[0], sMatchValue)) or
((ragSearchIn.ItemIndex in iProperties) and
Matched(sProperty, sMatchValue)) then

bFound := True;

if slsTokens.Count > 1 then { End of list. }
begin
bInList := False;

if bFound then
slsCalls.Add(lbxForms.Items[iForm] + cSep +

slsObjects[slsObjects.Count - 1] + cSep +

sProperty + cSep + sValue + cSep +

TString(

Figure 7: Checking property values.

lbxForms.Items.Objects[iForm]).Value);

sProperty := '';

end;
end;

{ Check for end of collection. }
if bInCollection and (slsTokens[0] = 'end>') then

bInCollection := False;

{ Check normal property. }
if slsTokens.Count > 2 then
begin
sValue := '';

for i := 2 to slsTokens.Count - 1 do
sValue := sValue + slsTokens[i];

{ Matched - record where it was found. }
if ((ragSearchIn.ItemIndex in iValues) and

Matched(sValue, sMatchValue)) or
((ragSearchIn.ItemIndex in iProperties) and
Matched(slsTokens[0], sMatchValue)) then

slsCalls.Add(lbxForms.Items[iForm] + cSep +

slsObjects[slsObjects.Count - 1] + cSep +

slsTokens[0] + cSep + sValue + cSep +

TString(lbxForms.Items.Objects[iForm]).Value);

{ Start of list. }
if slsTokens[2] = '(' then

begin
bInList := True;

sProperty := slsTokens[0];

bFound := False;

sValue := '';

end;
{ Start of collection. }
if slsTokens[2] = '<' then

bInCollection := True;

end;
end;

end;

OP Tech
To begin, combine the effect of these two Pascal routines
into a single function that returns True when the end of the
stream has been encountered. If it returns False, it has the
side effect of updating a variable with the next line
retrieved from the stream (up to, but excluding, the carriage
return/line feed). This function is used to control our loop
for processing all the lines in each file (see Figure 5). It uses
the TStream.ReadBuffer method to read one character at a
time. These are concatenated into the current line until the
end of the line is reached. This method raises an
EReadError exception when it reaches the end of the input
stream. The routine traps this exception and returns a True
flag to the caller.

Once we have an individual line from the stream, divide it
into its component parts (tokens) for easier processing. From
the example in Figure 4, we can see that “white space” is used
to separate the items of interest, and string values are enclosed
in single quotes. The spacing before the first character varies
depending on the containership of the objects and properties.
Skip over any white space to extract the tokens, then read
characters until you find more white space. Each token that is
found in this way is added to a list of tokens for that line. It’s
easy to determine the total number of tokens found in that
line and to refer to any one of them. Figure 6 shows the code
that performs this.
21 January 1998 Delphi Informant
If the token started with a quote, it’s a string value and we
must read until we find a matching quote — possibly bypass-
ing spaces as we go. A complication arises if the string con-
tains an embedded quote or null character. This appears as a
character literal:

Caption = 'Keith'#39's form'

with quotes before and after to delimit the surrounding
strings. This special case must be handled in the code.

Finding the Matches
As we encounter each new object, denoted by the first token
for the line being the keyword object, we add it to a LIFO
(last-in-first-out) stack of object names. The current object is
at the top of the stack (the end of the list in our case). When
we encounter the end of an object (i.e. the first token is the
keyword end), remove the current object from the stack,
returning it to its parent.

For each property, we compare its name (the first token),
and/or value (the third token), with the value for which we
are searching. If it matches, we record the names of the
current form, the current object and its property, and the
property’s value. These are combined into another list of
strings. This allows the results to be easily sorted, making

{ Open the selected form and focus on the component. }
procedure TfrmPropExplorerExpert.btnShowClick(

Sender: TObject);

var
i: Integer;

sFileName: string;
fmiForm: TIFormInterface;

cpiComponent: TIComponentInterface;

begin
with stgResults do begin
i := Row;

while (i >= 0) and (Cells[0, i] = '') do
Dec(i);

if i >= 0 then
begin
{ Open file. }
sFileName := ChangeFileExt(Cells[4, i], '.pas');

ToolServices.OpenFile(sFileName);

{ Attach to the module. }
with ToolServices.GetModuleInterface(sFileName) do

try
{ Find the specified component... }
fmiForm := GetFormInterface;

cpiComponent :=

fmiForm.FindComponent(Cells[1, Row]);

if cpiComponent <> nil then
{ ...and focus on it. }
cpiComponent.Focus;

finally
cpiComponent.Free;

fmiForm.Free;

Free;

end;
Close;

end;
end;

end;

Figure 8: Selecting a component from the list.

OP Tech

ing the new expert from the Delphi 2 Help menu.
it simpler for the user to locate a particular object or prop-
erty in the results.

A radio group on the form allows us to restrict the search to
only the property names, their values, or both. Also, two
checkboxes have been added to the expert to control the way
matching occurs during processing. These allow the value
entered to be matched exactly as typed, or to ignore differ-
ences in case, and/or to match the whole of the property
value or just part of it.

If the property is a list of strings, then its initial property
value is an opening parenthesis. Once we see this, the pro-
cessing needs to change slightly. We must remember the
name of the property from the current line (the first token)
then check each entry in the list (now the first token in each
line) until we find its end. The final list element has a closing
parenthesis following its value (see Figure 7).

Additional complications arise when processing collections.
These are delimited by angle brackets (< >), and consist of a
list of nameless items — each with its properties and ending
keyword. These keywords must be ignored to
avoid closing off the parent object.

Displaying the Results
Once we’ve processed the form files, there’s
a string list that contains the properties Figure 9: Access
22 January 1998 Delphi Informant
with the required name or value. These have already been
sorted by the string list and now we must step through
each and extract the component parts into the string grid
that displays the results to the user. If no matches are
found, the grid displays this fact.

We can save the results of the search to a disk file using the
Save button. This asks for the name of the file to save, then
creates a four-column text report listing the form, object and
property names, and the property value. Each column is
restricted to 32 characters.

Alternatively, we can choose one of the objects and return
to the form designer with it selected by pressing the Show

button. To achieve this, we’ll use the ToolServices object.
First, make a call to its OpenFile method to ensure that
the unit and form for this object are available within
Delphi. Next, open interfaces to the module and the form
itself, before locating the desired component on that form
using the FindComponent method. Finally, select that com-
ponent with the Focus method of the component interface
(see Figure 8).

Implementation
Once the DLL has been created, our expert can be incorporated
into the Delphi IDE by updating the Windows registry. (This is
done using RegEdit.exe. Important note: Make no changes to
the registry without first backing it up.) Under the key
HKEY_CURRENT_USER\Software\Borland\Delphi\2.0\Experts
(or 3.0 as appropriate), add a new string value for the DLL:

PropExpl C:\Program Files\Borland\Delphi 2.0\

PropExpl\PropExpl.dll

Then it’s just a matter of restarting Delphi; the expert should
appear on the Help menu (as shown in Figure 9). Now you
can open a project and start searching it for that lost proper-
ty. As a demonstration, open the MASTAPP project in
\Demos\Db\Mastapp. The project has multiple forms and
hundreds of object properties available for searching. String
values in the form file(s) have their surrounding quotes
removed when they’re extracted as tokens, so no quotes are
necessary when entering a search value.

Uses for this utility include determining whether a partic-
ular method is being called by any event, and if so, which
one(s). It can also check standards throughout a project,
such as locating all Font.Name properties and checking
their settings.

Remember, however, that the expert only finds values that
have been saved to the form file on the disk. Properties that
have default values set are usually not saved to this file.

OP Tech
Furthermore, the expert cannot find values for properties
that have been updated in the current session, but haven’t
been saved; a warning to this effect appears on the expert.

Conclusion
Delphi is one of the most customizable development envi-
ronments running on Windows. We can add customized
components and make them indistinguishable from those
that come with Delphi. New form and project templates can
be added to the Object Repository for later use, just as stan-
dard ones. Experts to generate code for either forms or pro-
jects can be written in Delphi then integrated into the
Object Repository. External applications can be added to the
Delphi menus to provide additional support.

Lastly, we can develop specialized tools, designed to work
inside the Delphi IDE, and include them on the menus as
well. The utility presented in this article uses the
ToolServices object provided by Delphi to access some of
its internal workings. It then interacts with the IDE to
extract valuable information to help reduce our program-
ming efforts. ∆

The project referenced in this article is available on the Delphi
Informant Works CD located in INFORM\98\JAN\DI9801KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borlan’s products with Turbo Pascal on a CP/M machine. Occasionally
working with Delphi, he has enjoyed exploring it since it first appeared. You can
reach him via e-mail at kwood@ccsc.com.
23 January 1998 Delphi Informant

Algorithms
Delphi

By Rod Stephens

Figure 1: The i

24 January 1998 Delphi Informant
Sorts of All Types
Implementing Classic Sort Routines in Delphi

Sorting is one of the most heavily studied topics in algorithms — and for
good reason. First, sorting is a common programming task. Allowing a user

to sort and view information in different ways makes data more meaningful.
Second, sorting algorithms demonstrate many important algorithmic tech-
niques, such as binary subdivision and recursion. Studying these algorithms
allows you to hone your programming skills in a relatively simple setting.
Finally, and perhaps most importantly, differ-
ent sorting algorithms work differently under
different circumstances, so no single algo-
rithm is the best choice for all occasions.
Understanding which algorithm works best
with different sets of data is as important as
understanding the algorithms themselves.
Only by understanding a variety of algo-
rithms can you pick the one that is right for a
given task. This article describes four sorting
algorithms that can handle a wide variety of
sorting tasks:

Bubblesort
Selectionsort
Quicksort
Countingsort
tem “34” bubbles up to its correct position.
Bubblesort
Bubblesort is without a doubt the most misun-
derstood sorting algorithm ever invented. Some
programmers always use Bubblesort — even
though it’s usually not the fastest algorithm.
Others claim that Bubblesort is a bad algorithm
that should never be used. As is often the case
with such extreme positions, both are wrong.

Bubblesort is a highly specialized algorithm
that is useful under only two sets of circum-
stances. First, if the list of items to be sorted is
very short, Bubblesort is quite fast. Its method
of arranging items by switching them around
is very efficient if the list to be sorted contains
fewer than roughly 10 items. Second, if the
items to be sorted are already in mostly-sorted
order, Bubblesort is extremely efficient. If most
of the list is randomly arranged, however,
Bubblesort is abysmally slow. For this reason,
you must be careful before you use Bubblesort.

Bubblesort scans through a list looking for two
adjacent items that are out of order. When it
finds two such items, it swaps them. It repeats
this process until all the items are in order.

Let’s look at an example: In the list of num-
bers on the left of Figure 1, the item 34 is out
of order. When the algorithm passes through
the list, it finds that 34 and 67 are out of
order, so it switches them. During the second
pass, the algorithm sees that the items 65 and
34 are out of order, so it switches them. The
algorithm continues “bubbling” the item 34
toward the top of the array until it reaches its
correct position.

type
ValueType = Longint; // Type used in the arrays.
IndexType = Longint; // Type used to index arrays.

procedure Bubblesort(var List: array of ValueType;

min, max: IndexType);

var
last_swap, i, j: IndexType;

tmp: ValueType;

begin
// During this loop, min and max are the smallest and
// largest indexes of items that might still be
// out of order.

// Repeat until we are done.
while (min < max) do begin
// Bubble up.
last_swap := min - 1;

// for i := min + 1 to max.
i := min + 1;

while (i <= max) do begin
// Find a bubble.
if (List[i - 1] > List[i]) then
begin
// See where to drop the bubble.
tmp := List[i - 1];

j := i;

repeat
List[j - 1] := List[j];

j := j + 1;

if (j > max) then
Break;

until (List[j] >= tmp);

List[j - 1] := tmp;

last_swap := j - 1;

i := j + 1;

end
else
i := i + 1;

end; // while (i <= max) do.
// End bubbling up.

// Update max.
max := last_swap - 1;

// Bubble down.
last_swap := max + 1;

// for i := max - 1 downto min.
i := max - 1;

while (i >= min) do begin
// Find a bubble.
if (List[i + 1] < List[i]) then
begin
// See where to drop the bubble.
tmp := List[i + 1];

j := i;

repeat
List[j + 1] := List[j];

j := j - 1;

if j < min then
Break;

until (List[j] <= tmp);

List[j + 1] := tmp;

last_swap := j + 1;

i := j - 1;

end
else
i := i - 1;

end; // while (i >= min) do.
// End bubbling down.

// Update min.
min := last_swap + 1;

end; // while (min < max) do.
end;

Figure 2: Two-way Bubblesort.

Algorithms

25 January 1998 Delphi Informant
This algorithm is faster if it alternates upward and downward
passes through the list. During downward passes like those
illustrated in Figure 1, the item 34 can move only one posi-
tion upward. In this example, the algorithm requires four
passes through the list to move the item to its correct position.

On the other hand, an upward pass through the list would be
able to move the item many positions. It would see that 34
and 67 were out of position, and switch them. During the
same pass, it would then notice that 34 and 65 were out of
position so it would switch them, too. It would then switch
34 with 60 and 56 — all in one pass.

During each set of upward and downward passes, at least one
new item will reach its final position. If the list is initially
mostly sorted, the algorithm will need only a few passes
through the list to reposition the items that are out of order.

Figure 2 shows the Delphi source code for the two-way
Bubblesort algorithm. This code, and all of the code described
in this article, is demonstrated by the Sort program, and is
available for download (see end of article for details). You can
use the program to test the algorithms on random lists of vari-
ous sizes. The algorithm code is contained separately in the
unit SortAlgs.pas, so you can easily add it to your projects.

Selectionsort
Like Bubblesort, Selectionsort is efficient for very small lists.
It also has the advantage of being extremely simple, so it’s
easy to implement, debug, and maintain.

The Selectionsort algorithm begins by searching the list
for the smallest item. It then swaps that item with the
item at the front of the list. It then searches the remain-
ing items for the next smallest item, and swaps it into the
list’s second position. This algorithm continues searching
the shrinking list of unsorted items, picking out the
smallest and swapping it to the end of the sorted section
at the front of the list. When it has swapped every item
into its final position, the algorithm stops. The Delphi
source code for Selectionsort is shown in Figure 3.
procedure Selectionsort(var List : array of ValueType;

min, max : IndexType);

var
i, j, best_j: IndexType;

best_value: ValueType;

begin
for i := min to max - 1 do begin
best_value := List[i];

best_j := i;

for j := i + 1 to max do begin
if (List[j] < best_value) then
begin
best_value := List[j];

best_j := j;

end;
end; // for j := i + 1 to max do.
List[best_j] := List[i];

List[i] := best_value;

end; // for i := min to max - 1 do.
end;

Figure 3: Selectionsort.

procedure Quicksort(var List : array of ValueType;

min, max : IndexType);

var
med_value: ValueType;

hi, lo, i: IndexType;

begin
// If the list has <= 1 element, it's sorted.
if (min >= max) then
Exit;

// Pick a dividing item randomly.
i := min + Trunc(Random(max - min + 1));

med_value := List[i];

// Swap it to the front so we can find it easily.

List[i] := List[min];

// Move the items smaller than this into the left
// half of the list. Move the others into the right.
lo := min;

hi := max;

while (True) do begin
// Look down from hi for a value < med_value.
while (List[hi] >= med_value) do begin

hi := hi - 1;

if (hi <= lo) then
Break;

end;
if (hi <= lo) then

begin
// We're done separating the items.
List[lo] := med_value;

Break;

end;

// Swap the lo and hi values.
List[lo] := List[hi];

// Look up from lo for a value >= med_value.
lo := lo + 1;

while (List[lo] < med_value) do begin

lo := lo + 1;

if (lo >= hi) then
Break;

end;
if (lo >= hi) then

begin
// We're done separating the items.
lo := hi;

List[hi] := med_value;

Break;

end;

// Swap the lo and hi values.
List[hi] := List[lo];

end; // while (True) do.

// Sort the two sublists.
Quicksort(List, min, lo - 1);

Quicksort(List, lo + 1, max);

end;

Figure 4: Quicksort.

Algorithms
Quicksort
The Quicksort algorithm uses a recursive divide-and-conquer
technique. As long as the list to be sorted has at least two
items, this algorithm splits the list in two. It then recursively
calls itself to sort the two smaller sublists. To split a list,
Quicksort picks an item from the list to use as a dividing
point. It moves all the items that are smaller than the dividing
item to the beginning of the list; it moves the other items to
the end of the list. It then calls itself recursively to sort the
two sublists.

How the Quicksort algorithm selects the dividing item is
critical, and there are several possible approaches. The sim-
plest is to use the first item in the list. If the items are ini-
tially arranged randomly, there is a good chance the first
item will belong near the middle of the list. When the algo-
rithm uses that item to divide the list, the two smaller lists
will have roughly equal size. This makes the sublists grow
smaller very quickly, so it provides good performance.

On the other hand, if the list is initially sorted, this
method produces terrible results. When the algorithm uses
the first item to divide the list, it moves all the other items
into the second of the sublists (because the dividing item
is the smallest item present). The second sublist will con-
tain all the other items, so the algorithm makes little
progress. The algorithm will not only be slow, it also will
enter a very deep chain of recursion, possibly exhausting
the system resources.

A much better method for selecting a dividing element is to
pick one randomly. Then, no matter how the items are ini-
tially arranged, the item will probably not be too near the
smallest or largest. When the algorithm divides the list, the
two smaller lists will be significantly smaller than the original,
so the algorithm will make reasonable progress.

Quicksort suffers from one more special situation: If the
list of items contains many duplicates, the algorithm can-
not always separate the list into two smaller lists of rough-
ly equal size. For example, if the list holds 100,000 items
with values between 1 and 10, the algorithm will quickly
reduce the problem to sorting smaller lists containing
thousands of identical values. Quicksort handles these triv-
ial lists very inefficiently. The algorithm can be modified
to handle this special case, but most programmers just
don’t use Quicksort in such circumstances. This situation
is uncommon and, in any case, is better handled by the
Countingsort algorithm described in the next section.

In practice, Quicksort is extremely fast, so it’s the sorting
algorithm of choice for most programmers. The Delphi
source code for the Quicksort algorithm is shown in Figure 4.

Countingsort
It can be shown that the fastest possible sorting algorithms
that use comparisons must take on the order of N * log(N)
steps to sort a list of N items. In fact, Bubblesort and
26 January 1998 Delphi Informant
Selectionsort take on the order of N2 steps. Quicksort needs
only N * log(N) steps in most cases, though it can use N2
steps in the worst case.

Countingsort doesn’t use comparisons, so it isn’t restricted by
the N * log(N) limit, and, under the right circumstances, is
much faster than the others. On the other hand, Countingsort
works only under very specific circumstances. First, the items
being sorted must be integers; it’s difficult to sort strings using
Countingsort. Second, the items’ values must range over a rel-

procedure Countingsort(var List,

SortedList: array of ValueType; min, max: IndexType;

min_value, max_value : ValueType);

var
i, j, next_index : IndexType;

count_index : ValueType;

counts : PCountArray;

begin
// Create the Counts array.
GetMem(counts,

(max_value - min_value + 1) * SizeOf(IndexType));

// Initialize the counts to zero.
for i := 0 to max_value - min_value do

counts[i] := 0;

// Count the items.
for i := min to max do begin

count_index := List[i] - min_value;

counts[count_index] := counts[count_index] + 1;

end;

// Place the items in the sorted array.
next_index := min;

for i := min_value to max_value do begin
for j := 1 to counts[i - min_value] do begin

SortedList[next_index] := i;

next_index := next_index + 1;

end;
end;

// Free the memory allocated for the counts array.
FreeMem(counts);

end;

Figure 5: Countingsort.

Algorithms
atively limited set of values. If values range from 1 to 1,000,
Countingsort will give good results. If values range from 1 to
two billion, Countingsort will be slow; and most computers
do not have enough memory to make it work at all.

Countingsort begins by creating a temporary array with
bounds that cover the range of items in the list. If the items
range in value from 1 to 1,000, the algorithm creates an array
with bounds between 1 and 1,000.

Because Delphi doesn’t allow a program to dynamically resize
arrays, the example program declares the counts variable to be
a pointer to an array containing 100 million entries. It then
uses GetMem to allocate space for the counts array, as shown in
the following code fragment:

type
TCountArray = array[0..100000000] of IndexType;

PCountArray = ^TCountArray;

// Code omitted...

counts : PCountArray;

GetMem(counts,

(max_value - min_value + 1) * SizeOf(IndexType));

The algorithm then examines each item in the list, and
increments the counts array entry for the item’s value. For
instance, if an item has the value 12, the algorithm adds one
to counts(12). When this stage is finished, counts(i) holds the
number of items in the list that have the value i.
27 January 1998 Delphi Informant
The program can then read out the sorted list. It gives the
first counts(min_value) items the value min_value. It gives the
next counts(min_value + 1) items the value min_value + 1. It
continues through the list assigning values until it has com-
pletely filled the sorted list.

To sort N items that span a range of M values, Countingsort
uses roughly 2 * N + M steps. First, it uses M steps to initial-
ize the counts array entries to zero. Next, it uses N steps look-
ing through the list to count the item values. It then uses N
more steps to fill in the sorted list entries.

If N is large and M is small, 2 * N + M is much smaller than
N * log(N). For example, suppose a list contains 1 million num-
bers with values between 1 and 1,000. Then N * log(N) is
roughly 20 million, while 2 * N + M is only about 2 million.

Lists like this are particularly troublesome for Quicksort
because they contain many duplicate values. In one test on a
166 MHz Pentium, Quicksort took 15 seconds to sort this
list, while Countingsort took only 0.15 seconds — one
hundredth as long.

Figure 5 shows the Delphi source code for Countingsort.

Conclusion
Every sorting algorithm has its strengths and weaknesses.
Bubblesort is fast for short lists that are almost sorted, but slow
for others. Selectionsort is easy to program and fast for small
lists, but is painfully slow for large lists. Quicksort is fast most
of the time, but has trouble if the list contains many duplicate
values. Finally, Countingsort only works with integers that
span a small range of values, but for those lists it is unbeatable.

Here’s a checklist that can help you determine the correct
algorithm for your situation:

If the list is more than 99 percent sorted, use Bubblesort.
If the list is very small, use Bubblesort or Selectionsort.
If the list contains integers with a small range of values,
use Countingsort.
In all other cases, use Quicksort.

Choose your algorithm wisely, and one of these four will provide
excellent performance in almost any circumstance. ∆

The project referenced in this article is available on the Delphi
Informant Works CD located in INFORM\98\JAN\DI9801RS.

Rod Stephens is the author of several books, including Visual Basic Algorithms
[John Wiley & Sons, Inc., 1996]. He writes an algorithm column in Visual Basic
Developer; some of the material presented here has appeared there in Visual
Basic form. You can reach him on CompuServe at 102124,33 or
RodStephens@compuserve.com.

DBNavigator
Delphi

By Cary Jensen, Ph.D.

procedure T

begin
if Table1

begin
DBEdit

DBEdit

end
else
begin
DBEdit

DBEdit

end;
end;

Figure 1: Th

28 January 1998 Delphi Informant
Hitting the Highlights
Center Stage for Data-Entry Controls

Highlighting is a technique for drawing attention to one or more controls
through the use of distinctive colors. There are two primary reasons for

using highlighting in your Delphi applications: The first is to make it obvious
to users which control has focus, i.e. which one is ready to receive user input;
the second is to draw attention to one or more records, based on the data
they contain.
F

C

1

2

1

2

e

This month’s “DBNavigator” demonstrates
highlighting techniques. It begins by consid-
ering single-field controls, which display data
from a single field of a single record. Then it
moves to the two multi-record controls:
DBGrid and DBCtrlGrid.

Data-Based, Single-Field Highlighting
Single-field controls such as Edit and
DBEdit display a single value. You can use
several techniques to highlight data in a
single-field control, based on the data it dis-
plays. The most common is to use the
OnDataChange event handler for a
DataSource component. This event handler
orm1.DataSource1DataChange(Sender: TObject;

Field: TField);

ountry.Value = 'US' then

.Font.Color := clBlue;

.Font.Color := clBlue;

.Font.Color := clBlack;

.Font.Color := clBlack;

 HILITE project.
executes when a DataSet is first opened, as
well as each time a new record becomes the
current record. From this event handler,
your code can evaluate the contents of the
record, then set properties of one or more
single-field controls.

The HILITE project’s main form contains
a DBNavigator component, along with a
series of Label and corresponding DBEdit
components. Each DBEdit is associated
with a different field from the Customer.db
table (from the DBDEMOS alias). The
code in Figure 1, which is attached to
the OnDataChange event handler for
DataSource1, displays the contents of the
CustNo and Company fields in blue when-
ever the current record represents a US cus-
tomer, and in black otherwise.

Table1Country is an instantiated TStringField
that points to the Country column of the
Customer table. This code compares the con-
tents of the Country field to the string “US”,
and if found, sets the Font.Color property of
the DBEdits that display the customer num-
ber and company name to clBlue. If the field
does not contain the value US, the font color

Figure 2: The HILITE project displays the contents of US customers’
CustNo and Company fields in blue, and all others in black.

Figure 3: When a field has focus, it’s displayed in yellow; other-
wise, white is the rule.

procedure THighlight.Edit1Enter(Sender: TObject);

begin
if Sender is TEdit then

TEdit(Sender).Color := clYellow

else if Sender is TMemo then
TMemo(Sender).Color := clYellow

else if Sender is TDBMemo then
TDBMemo(Sender).Color := clYellow

else if Sender is TMaskEdit then
TMaskEdit(Sender).Color := clYellow

else if Sender is TDBEdit then
TDBEdit(Sender).Color := clYellow;

end;

Figure 4: The OnEnter event handler.

DBNavigator
of these DBEdits is set to clBlack. Figure 2 shows how this
form looks when a US customer record is displayed.

Highlighting Focus
If highlighting single-field controls based on data is easy, then
highlighting them based on focus isn’t much more difficult.
However, instead of writing one event handler, you must use
two: OnEnter and OnExit. From within the OnEnter event
handler, you set a single-field control to its highlighted color;
from within OnExit, you return the control to its normal color.

The problem with this approach is that you must attach
this code to every single-field control on your form. For
example, if your form contains eight DBEdits, you would
need to attach code to both event handlers for all eight.
This is not to say that you must write 16 event handlers.
Instead, you could write a single OnEnter and a single
OnExit, and use the same two for each of your DBEdits.
Doing so requires that you use the Sender parameter of
these event handlers to determine which DBEdit to affect,
for example:
29 January 1998 Delphi Informant
procedure TForm1.DBEdit1Enter(Sender: TObject);

begin
TDBEdit(Sender).Color := clYellow;

end;

procedure TForm1.DBEdit1Exit(Sender: TObject);

begin
TDBEdit(Sender).Color := clWhite;

end;

This technique is demonstrated in the project named
HILITE1(see Figure 3), which was simple in that each of the
single-field controls are DBEdits. Because all the fields were
displayed using DBEdits, the Sender parameter could be cast
as a DBEdit to control its color.

When more than one type of single-field control is used on a
form, the technique demonstrated in HILITE1 cannot be
used. This is because the Color property of a DBEdit is pub-
lished in the TDBEdit class, but is protected in the
TCustomEdit class, the direct ancestor of TDBEdit. Protected
properties cannot be accessed at run time. Consequently, to
write a generic event handler that will highlight a variety of
single-field controls, it’s necessary to test for class member-
ship using the is operator, then cast Sender to the appropriate
class before accessing its Color property. For example, the
code in Figure 4 demonstrates how the OnEnter event han-
dler may look.

While this might seem like a lot of code to write — especially
because you would need to create a similar OnExit event han-
dler — there is a solution that permits you to write this code
once, then reuse it many times. You can write a generic
OnEnter and OnExit event handler, like the one shown previ-
ously. Then, for the form, write a generic OnCreate event han-
dler that iterates through all components on the form at run
time, and assigns these event handlers to the corresponding
event properties of all single-field controls. Such a form can
then be saved to the Object Repository. Whenever you want
to create a new form that includes single-field, focused-based
highlighting, you can use the template in the repository.

Listing One (beginning on page 32) contains the complete
code for such a form. This code is associated with a project
named HILITE2. This form includes two public fields of
the type TColor, used to store the highlight color and the
normal color. It also declares two event handlers designed to
be assigned to the OnEnter and OnExit event properties.
Both are generic, capable of highlighting the most common

Figure 5: This form, created from a template, contains generic
field-highlighting code.

DBNavigator

Figure 6: Setting the dgRowSelect flag of the Options property
causes the DBGrid to highlight the current row.
single-field controls. Finally, an OnCreate event handler ini-
tializes the colors used for highlighting, then iterates through
all components on the form, using a for loop. Within this
loop, any single-field control encountered is assigned the
corresponding event handlers for its OnEnter and OnExit
properties; then the control is initialized to the normal
(unhighlighted) color.

If you create this form (or download it, see end of article
for details), you can add it to your Object Repository.
Then, whenever you want a form to show single-record,
focused-based highlighting, you can select this form from
the repository, and add your single-field controls. The form
shown in Figure 5 was created from a template containing
the code in Listing One.

Highlighting Multi-Record Controls
Delphi provides two multi-record controls. The DBGrid is
available in all versions of Delphi, while the DBCtrlGrid is
available in Delphi 2 and Delphi 3. These controls permit
you to display two or more records from a DataSet simulta-
neously. Consequently, they are useful in a number of data-
base applications.

Highlighting focus in DBGrids. The simplest type of high-
lighting in a DBGrid is focus-based. This requires no addi-
tional code. Instead, you merely set the dgRowSelect and/or
the dgAlwaysShowSelection properties, which are subproper-
ties of the Options property. When dgRowSelect is set to True,
the current row is highlighted. When dgAlwaysShowSelection
is set to True, the current row is highlighted, even when the
DBGrid doesn’t have focus. Figure 6 shows a DBGrid where
dgRowSelect and dgAlwaysShowSelection are set to True.

Data-based DBGrid highlighting. In Delphi 1, you control
the coloring of individual cells in a DBGrid by attaching
code to the OnDrawDataCell event property of the
DBGrid. This event handler, which is called as each cell in a
DBGrid is being painted, is passed four parameters: the
DBGrid being painted, the rectangular region being paint-
ed, the field associated with the current cell, and the draw-
ing state of the grid.
30 January 1998 Delphi Informant
From within this event handler, you can easily evaluate the data
being displayed in the DBGrid, then change the DBGrid’s can-
vas properties to control the color of the cell. During the paint-
ing of a particular cell, the cursor of the DataSet indicated by the
DBGrid’s DataSource property is associated not with the current
record, but with the record being painted. For example, if you
want to highlight only those records in the Customer.db table
associated with a given country, you can evaluate the Country
field of the table, changing the color of the DBGrid’s canvas
when a record for the country in question is being painted.

If you assign code to the OnDrawDataCell event handler, a
cell isn’t painted unless you make an explicit call to the
DBGrid’s DefaultDrawDataCell method. This must be called
whether or not you made changes to the DBGrid’s canvas
properties. When calling DefaultDrawDataCell, you pass to it
the rectangle being painted, the field being painted, and the
DBGrid’s drawing state. Fortunately, these are parameters of
OnDrawDataCell, and can be passed without modification.

The following code from the HILITE3 project demonstrates
this technique. From within this event handler, the Country
field of a Table component is tested against the value “US”:

procedure TForm1.DBGrid1DrawDataCell(Sender: TObject;

const Rect: TRect; Field: TField; State: TGridDrawState);

begin
if Table1.FieldByName('Country').AsString = 'US' then

DBGrid1.Canvas.Brush.Color := clTeal;

DBGrid1.DefaultDrawDataCell(Rect,Field,State);

end;

The effects are shown in Figure 7. What’s particularly inter-
esting about this technique is that it’s not necessary to revert
the DBGrid’s canvas to its original colors. From within this
event handler, changes made to the DBGrid’s canvas are tran-
sitory, and revert to their original values upon exit.

This technique can be extended easily. For example, you can
paint specific columns by testing which field is being painted,
ignoring the contents of the current record. On the other
hand, if you want to paint only certain columns for records
containing certain values, you can test both the record’s con-
tents and the field being painted.

Figure 7: The HILITE3 project demonstrates the use of an
OnDrawDataCell event handler.

DBNavigator

Figure 8: Current-record highlighting in a DBCtrlGrid.
While OnDrawDataCell is also available in Delphi 2
and 3, these later versions of Delphi provide a more-
appropriate event handler to use when painting a DBGrid:
OnDrawColumnCell, which is similar to OnDrawDataCell.
You must also call DefaultDrawColumnCell from within an
OnDrawColumnCell event handler to paint the contents of
the cell.

The primary difference between OnDrawDataCell and
OnDrawColumnCell is the parameters passed to these meth-
ods. OnDrawColumnCell is passed more parameters, which
can be used to inspect the characteristics of the cell being
drawn, and exert greater control over the display of data in
the DBGrid. For example, using the Column parameter
passed to OnDrawColumnCell, it’s possible to control the
column properties of the cell being painted.

While controlling column properties is beyond the scope of
this article, the following example demonstrates the same
effect as shown in the preceding example — with the excep-
tion that the OnDrawColumnCell event handler is used
instead of OnDrawDataCell:

procedure TForm1.DBGrid1DrawColumnCell(Sender: TObject;

const Rect: TRect; DataCol: Integer; Column: TColumn;

State: TGridDrawState);

begin
if Table1.FieldByName('Country').AsString = 'US' then

DBGrid1.Canvas.Brush.Color := clTeal;

DBGrid1.DefaultDrawColumnCell(Rect,DataCol,Column,State);

end;

Focus Highlighting of the DBCtrlGrid
The DBCtrlGrid is a free-form, multi-record control intro-
duced in Delphi 2. While the display capabilities of this con-
trol are somewhat limited, it’s a welcome addition to Delphi’s
repertoire of data-aware controls.

A DBCtrlGrid doesn’t have cells like those contained in a
DBGrid. Instead, it has panels on which certain other data-
aware controls, such as DBEdits and DBLookupComboBoxes
can be displayed. In addition, the only DBCtrlGrid-provided
event handler that relates to the painting of the control is
OnPaintPanel.
31 January 1998 Delphi Informant
At first glance, you might be tempted to set the DBCtrlGrid’s
canvas properties from within the OnPaintPanel event han-
dler, to control the color of individual panels. Doing so, how-
ever, is ineffective. Instead, you must explicitly draw onto the
panel yourself. This can easily be done using the canvas’
Rectangle method. (Alternatively, you could draw a bitmap for
an even more impressive effect.)

This painting of a DBCtrlGrid is demonstrated in the code
that follows. First, the color of DBCtrlGrid’s canvas brush is
set to clTeal. Next, the Rectangle method of the canvas is used
to paint a rectangle beginning at the upper-left corner of the
control, and extending to the lower-right portion. The result
is that the canvas background is painted in teal:

procedure TForm1.DBCtrlGrid1PaintPanel(DBCtrlGrid:

TDBCtrlGrid; Index: Integer);

begin
DBCtrlGrid.Canvas.Brush.Color := clTeal;

DBCtrlGrid.Canvas.Rectangle(0,0,DBCtrlGrid.Width,

DBCtrlGrid.Height);

end;

You might be tempted to conclude that the entire DBCtrlGrid
is being painted each time OnPaintPanel is called, but this isn’t
true. In fact, even though this code references the Width and
Height properties of the grid, only the current panel is being
painted. In other words, the grid seems to think it’s the size of
a single panel, and that it’s located at the coordinates corre-
sponding to the upper-right corner of that panel. In addition,
the Index parameter passed to OnPaintPanel indicates which
panel is being painted. You can compare this to the PanelIndex
property of the DBCtrlGrid, to highlight the current panel.
This is demonstrated in the following code, which is associat-
ed with the HILITE4 project:

procedure TForm1.DBCtrlGrid1PaintPanel(DBCtrlGrid:

TDBCtrlGrid; Index: Integer);

begin
if DBCtrlGrid1.PanelIndex = Index then

DBCtrlGrid.Canvas.Brush.Color := clTeal

DBCtrlGrid.Canvas.Rectangle(0,0,DBCtrlGrid.Width,

DBCtrlGrid.Height);

end;

Figure 8 shows how this code affects a DBCtrlGrid at run time.

Figure 9: The results of panel highlighting.

DBNavigator
Data-Based Highlighting in DBCtrlGrids
Highlighting the panels of a DBCtrlGrid is almost as sim-
ple as focus-based highlighting. However, instead of using
the Index parameter and the TDBCtrlGrid.PanelIndex prop-
erty, you use the values of fields in the DataSet being dis-
played in the DBCtrlGrid, as the basis for coloring panels.
This technique is demonstrated in the HILITE5 project
shown in Figure 9. The following is the OnPaintPanel
event handler for the DBCtrlGrid in this project:

procedure TForm1.DBCtrlGrid1PaintPanel(DBCtrlGrid:

TDBCtrlGrid; Index: Integer);

begin
if Table1.FieldByName('Country').Value = 'US' then

DBCtrlGrid.Canvas.Brush.Color := clTeal;

DBCtrlGrid1.Canvas.Rectangle(0,0,DBCtrlGrid.Width,

DBCtrlGrid.Height);

end;

Conclusion
By highlighting the active field or record, or highlighting
selected data, you can improve your user interface, helping
your users to more easily locate the information they need.
The techniques in this article permit you to easily add these
features to your Delphi applications. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\98\JAN\DI9801CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based data-
base development company. He is author of more than a dozen books, includ-
ing Delphi in Depth [Osborne McGraw-Hill, 1996]. He is also a Contributing
Editor of Delphi Informant, and was a member of the Delphi Advisory Board for
the 1997 Borland Developers Conference. For information concerning Jensen
Data Systems’ Delphi consulting and training services, visit the Jensen Data
Systems Web site at http://idt.net/~jdsi. You can also reach Jensen Data
Systems at (281) 359-3311, or via e-mail at cjensen@compuserve.com.
32 January 1998 Delphi Informant
Begin Listing One — The HILITE2 Project
unit hilite2u;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, DBCtrls, Mask;

type
THighlight = class(TForm)
procedure ControlEnter(Sender: TObject);

procedure ControlExit(Sender: TObject);

procedure FormCreate(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

HighlightColor: TColor;

UnhighlightColor: TColor;

end;

var
Highlight: THighlight;

implementation

{$R *.DFM}

procedure THighlight.ControlEnter(Sender: TObject);

begin
if Sender is TEdit then

TEdit(Sender).Color := HighlightColor

else if Sender is TMemo then
TMemo(Sender).Color := HighlightColor

else if Sender is TDBMemo then
TDBMemo(Sender).Color := HighlightColor

else if Sender is TMaskEdit then
TMaskEdit(Sender).Color := HighlightColor

else if Sender is TDBEdit then
TDBEdit(Sender).Color := HighlightColor;

end;

procedure THighlight.ControlExit(Sender: TObject);

begin
if Sender is TEdit then

TEdit(Sender).Color := UnhighlightColor

else if Sender is TMemo then
TMemo(Sender).Color := UnhighlightColor

else if Sender is TDBMemo then
TDBMemo(Sender).Color := UnhighlightColor

else if Sender is TMaskEdit then
TMaskEdit(Sender).Color := UnhighlightColor

else if Sender is TDBEdit then
TDBEdit(Sender).Color := UnhighlightColor;

end;

procedure THighlight.FormCreate(Sender: TObject);

var
i: Integer;

begin
HighlightColor := clLime;

UnhighlightColor := clSilver;

for i := 0 to Self.ComponentCount - 1 do
if Self.Components[i] is TEdit then

begin
TEdit(Self.Components[i]).OnEnter := ControlEnter;

TEdit(Self.Components[i]).OnExit := ControlExit;

TEdit(Self.Components[i]).Color :=

UnhighlightColor;

end
else if Self.Components[i] is TMemo then

begin
TMemo(Self.Components[i]).OnEnter := ControlEnter;

TMemo(Self.Components[i]).OnExit := ControlExit;

TMemo(Self.Components[i]).Color :=

http://idt.net/~jdsi

DBNavigator
UnhighlightColor;

end
else if Self.Components[i] is TDBMemo then
begin

TDBMemo(Self.Components[i]).OnEnter :=

ControlEnter;

TDBMemo(Self.Components[i]).OnExit := ControlExit;

TDBMemo(Self.Components[i]).Color :=

UnhighlightColor;

end
else if Self.Components[i] is TMaskEdit then
begin
TMaskEdit(Self.Components[i]).OnEnter :=

ControlEnter;

TMaskEdit(Self.Components[i]).OnExit :=

ControlExit;

TMaskEdit(Self.Components[i]).Color :=

UnhighlightColor;

end
else if Self.Components[i] is TDBEdit then
begin
TDBEdit(Self.Components[i]).OnEnter :=

ControlEnter;

TDBEdit(Self.Components[i]).OnExit := ControlExit;

TDBEdit(Self.Components[i]).Color :=

UnhighlightColor;

end;
end;

end.

End Listing One
33 January 1998 Delphi Informant

34 January 1998 Delphi Informant

New & Used

Alan C. Moore, Ph.D.

Figure 1: Orig
with Delphi 1.
WinGREP
A Powerful Search Tool

Even if you have some UNIX programming in your background, you might
not know that GREP is an acronym for Global Regular Expression Print. You

certainly do know, however, that it’s an extremely fast and flexible search utility.
The uses for GREP in Delphi programming
are endless. Let’s say you plan to use a partic-
ular Windows API function, and want to see
if and how Borland uses it in the VCL. Or,
let’s say you have a non-component support
class in the current project, but you can’t
remember the unit in which it’s declared. Or
you simply want to find the location of every
instance of a particular variable or constant in
a project. GREP can help with these search
tasks and those that are far more elaborate.
For example, you can perform searches that
filter out specific subsets (e.g. return all words
that begin with “work” except those that end
with “bak”). A traditional, command-line
version of GREP (\Delphi\Bin\Grep.com) is
included with Delphi 1 (see Figure 1).

What about WinGREP? How is it different
from the Grep.com that ships with Delphi 1, or
from other multi-file searching tools? As you
know, there’s a world of difference between
DOS and Windows applications, particularly if
we’re talking about DOS command-line appli-
inally from Turbo Pascal, Grep.com is still included
cations. For the latter, you must remember —
and accurately enter — the various option let-
ters. On the other hand, WinGREP provides all
the common Windows conveniences we’ve
become accustomed to. In fact, it integrates into
many popular IDEs (see Figure 2).

As you can see from the main WinGREP
window — Figure 3 shows the results of a
search — most of the search options are only
a click away. In addition, all commands
include fly-over hints. Once you’ve complet-
ed your search, you can jump right to the
line of code that contains the text for which
you’re searching in the IDE. WinGREP sup-
ports many popular IDEs, including all three
versions of Delphi, C++Builder, and many
more (again, see Figure 2 for a partial list.)
Let’s examine some features in detail.

General Options
WinGREP contains all the general options
you would expect. It comes in 16- and 32-bit
versions with identical functionality, including
support for long file names. With the 32-bit
version, you can add WinGREP to the
Windows Explorer menu and simply right-
click on any file to initiate a search. Of course,
you can either perform a search or a search-
and-replace operation. And it’s easy to navigate
files. It also includes command-line parameters
— to set WinGREP’s startup directory and
alternate configuration filenames — and you
can customize colors and fonts.

WinGREP’s strength lies in its search capabil-
ities, providing all the expected search options
and letting you know what’s taking place
through its status indicator. Best of all, these

Figure 2: Some of the IDEs that WinGREP supports.

New & Used

Figure 3: The main WinGREP window.

Figure 4: You can set file size, date filters, and which file attrib-
utes to include in a search.
searches are fast. I compared the same search with WinGREP
to one conducted with Norton Navigator. On a Pentium,
WinGREP finished in seven seconds, while Norton Navigator
took about 10. Delphi 3’s search tool took even longer.

During a search, you can set the file size and date filters, and
you can select which file attributes to include in the search (see
Figure 4). As Figure 3 shows, you can also set options such as
case sensitivity, subdirectory search, and expression type. The
latter can be a standard expression, a regular expression, or a
DOS expression. You can also specify what information to show
in the results, including line numbers, file names, and paths.
The results of the search are shown as it progresses. Therefore,
you can stop the search at any time if you see a particular match
you’re looking for. You can load and/or save search result sets to
or from a file. You can even export search results to text.

Special Delphi Features
WinGREP has a number of special features of particular
interest to Delphi programmers, chief among which is its
35 January 1998 Delphi Informant
ability to search binary
.DFM files for text. You can
search all the form definition
files in your project for spe-
cific information, such as
color constants, specific com-
ponents, and so on. As previ-
ously mentioned, WinGREP
is fully integrated into the
Delphi IDE. Therefore, you
can perform searches without
leaving Delphi, and can jump
to the line of source code
where the match is found,
right in the Delphi IDE. If
you purchased WinGREP 3.0
a while back and can’t get it
to work with Delphi 3, don’t
worry — you can download a
free update patch from
Hurricane Software’s Web site
that will solve that problem.

Conclusion
I was a bit hesitant to accept this particular assignment, as I
felt I already had sufficient searching tools and didn’t really
need to look at another one. I’m glad I didn’t give in to my
hesitation; from this point on, WinGREP will be my search-
ing tool. Give it a try. I think you’ll find it easy to use, fast,
and powerful. Most importantly, it provides excellent support
for Delphi. I recommend this product to any Delphi pro-
grammer who needs a professional-strength searching tool. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-
related applications with the Borland languages for more than 10 years. He
has published a number of articles in various technical journals. Using Delphi,
he specializes in writing custom components and implementing multimedia
capabilities in applications, particularly sound and music. You can reach Alan
at acmdoc@aol.com.

WinGREP 3.0 is a powerful, multi-
file searching tool for Delphi and
other programming languages. It
integrates smoothly with many
IDEs and comes with its own pro-
grammer’s editor. It’s very fast and
flexible, and provides special
Delphi support for searching .DFM
files.

Hurricane Software, Inc.
2401 SE 7th
Blue Springs, MO 64014
Phone: (888) 946-4737 or
(816) 373-9252
Fax: (816) 228-8372
Web Site: http://www.hurricane-
soft.com
Price: Single user, US$59. Contact
Hurricane Software for multi-user
and upgrade information.

http://www.hurricanesoft.com
http://www.hurricanesoft.com

36 January 1998 Delphi Informant

New & Used

By Alan C. Moore, Ph.D.

F
TG
Raize Components 1.6
A Significant Upgrade to an Outstanding Component Library

No doubt many readers have heard of Ray Konopka. Among other distinc-
tions, he’s the Delphi columnist for Visual Developer Magazine, a popular

presenter at Borland conferences, and the author of the classic Developing
Custom Delphi 3 Components [Coriolis Group Books, 1997]. What you may not
know is that he is also the chief architect of Raize Components, an impressive
series of Delphi components from Raize Software Solutions, Inc.
i

Raize Components 1.6 includes 50 new com-
ponents (not including the custom ances-
tors), that can be divided into two large
groups: standard and data-aware. Some, such
as TRzLabel and TRzDBLabel, are direct
descendants of components in the Visual
Component Library (VCL), while others go
deeper to the more basic components, such
as TWinControl and TGraphicControl. I’ll dis-
cuss the components in three groups: those
inherited from TGraphicControl, those inher-
ited from TWinControl, and those inherited
directly from TComponent.

TGraphicControl-Related Components
Of the components in this group (see
Figure 1), only two are descendants of higher-
TGraphicControl

TCustomLabel

TRzLabel

TRzDBLabel

TRzBorder

TRzCustomStatusPane

TRzStatusPane

TRzDBStatusPane

TRzCustomGlyphStatus

TRzGlyphStatus

TRzDBStateStatus

TRzPollingStatus

TRzClockStatus

TRzKeyStatus

TRzResourceStatus

TRzCustomProgressBar

TRzProgressBar

TRzDBProgressBar

TRzSpacer

TSpeedButton

TRzRapidFireButton

gure 1: Raize components descending from
raphicControl.
level VCL components: TRzLabel and
TRzDBLabel; both descend from
TCustomLabel. The remaining 17 descend
directly, or indirectly (through Raize base
and custom classes), from TGraphicControl.
These include the familiar status pane,
progress bar, speed button controls, various
status controls, and more.

While TRzStatusBar is a descendant of
TWinControl, the various panes that can be
dropped on it are descendants of
TGraphicControl. In Figure 2, taken from an
educational application I’m currently updat-
ing, I use four of the panes (from left to
right): TRzStatusPane, TRzResourceStatus,
TRzClockStatus, and TRzGlyphStatus. You can
also drop other controls on the TRzStatusBar.
(In this figure, you can also see the powerful
toolbars you can build with other compo-
nents we’ll be discussing later.)

With these tools, you can create attractive and
informative status panels. Best of all, you
don’t have to bother with the details of get-
ting the system time, resource information,
and so forth. Finally, because TRzStatusBar is
a direct descendant of TCustomControl (not
Delphi 2/3’s TStatusBar), it works well in all
versions of Delphi, and adjusts automatically
to the operating environment.

Of the various pane components, I especially
like the TRzGlyphStatus component, which I
use in my application to give a visual indica-
tion of whether a course file is loaded.

New & Used
Another TGraphicControl descendant, TRzBorder, provides a
simple way to add a custom border to a control that doesn’t
have one, or add custom dividers within a control.
37 January 1998 Delphi Informant

Figure 2: Sample application with TRzToolbar at top and
TRzStatusBar at bottom with four custom panes.

TWinControl

TCustomComboBox

TRzCustomComboBox

TRzComboBox

TRzColorComboBox

TRzFontComboBox

TRzLineComboBox

TDBComboBox

TRzDBComboBox

TRzDBLineComboBox

TDriveComboBox

TRzDriveComboBox

TCustomControl

TCustomPanel

TRzCustomPanel

TRzCustomRadioGroup

TRzRadioGroup

TRzDBRadioGroup

TRzPanel

TRzSplitter

TRzStatusBar

TRzToolbar

TRzTrackBar

TRzDBTrackBar

TCustomEdit

TRzLineEdit

TCustomMaskEdit

TDBEdit

TRzDBLineEdit

TCustomListBox

TRzCustomListBox

TRzListBox

TRzTabbedListBox

TDBListBox

TRzDBListBox

TRzCheckList

TDirectoryListBox

TRzDirectoryListBox

TFileListBox

TRzFileListBox

TRzButtonEdit

TRzDBButtonEdit

TRzCustomButton

TRzCustomCheckBox

TRzCheckBox

TRzDBCheckBox

TRzRadioButton

TRzSpinEdit

TRzDBSpinEdit

Figure 3: Raize components descending from TWinControl.
The final TGraphicControl component, and descendant of
TSpeedButton, is TRzRapidFireButton, which continuously
broadcasts click messages as long as the user holds down the
left mouse button over it.

TWinControl-Related Components
Some of the common controls in the TWinControl group
descend from Borland custom classes. As Figure 3 shows,
three custom classes and seven descendant classes are based
on TComboBox, and two custom classes and six descendant
classes are based on TCustomPanel.

You’ll notice that quite a few components descend direct-
ly from TWinControl or TCustomControl. As Konopka
pointed out at the 1997 Borland Developers Conference,
not everyone is completely satisfied with some of the
components in the VCL that ships with Delphi. The con-
trols in this library offer considerably more functionality
and flexibility.

While some Raize components enhance the functionality of
standard Windows controls, others allow behavior we expect
in the Windows environment, such as being able to resize
adjacent controls. Delphi now includes a splitter component
to enable this. However, I consider the Raize TRzSplitter
component superior to Delphi’s and to a similar splitter in
another Delphi library. With TRzSplitter, you simply drop
any control onto each of the two sectors at design time, and
you’re ready to operate.
Figure 4: A directory list box and a file list box using TRzSplitter.

Figure 5: TRzSplitter at design time with three individual panels.

Figure 6: The Toolbar Editor is just one of many component
and property editors included in this library.

New & Used
You don’t have to write any code to affect sizing operations.
Figure 4 shows a directory list box and a file list box using a
TRzSplitter. What if you need or want three or more
adjustable panels? No problem — simply place splitters with-
in splitters, and you’re ready to go.

Figure 5 shows the design-time look of a form that uses two
TRzSplitters to create three panes. Both of these splitters have
their align properties set to alClient. It also shows the power-
ful component editor you can use to visually manipulate
many of the properties.

A few other TWinControl descendants deserve special men-
tion. Most of the file-managing components are in this
group, including TRzFileListBox, TRzDirectoryListBox, and
TRzDriveComboBox. With these components, you can easily
set up an attractive and powerful file-managing dialog box.
They include support for long filenames, multiple columns,
shell icons, and updated three-dimensional glyphs in the style
of Windows 95. Figure 4 uses these components and some of
the Raize enhanced labels.
Data-Aware Component Special Feature(s)

TRzDBButtonEdit Uses embedded buttons
TRzDBCheckBox Supports multiline capti
TRzDBComboBox Supports intuitive keybo
TRzDBLabel Includes rotation of text
TRzDBLineComboBox Like TComboBox, suppo

but appears as a line.
TRzDBLineEdit Like TRzLineEdit, shown
TRzDBListBox Features fast keyboard
TRzDBLookupLineComboBox Enhanced TDBLookupCo
TRzDBLookupDialog Displays contents of a da
TRzDBProgressBar Percentage value display
TRzDBRadioGroup Includes many new way
TRzDBSpinEdit Can accept integer and
TRzDBStateStatus Shows current state of d
TRzDBStatusPane A FieldLabel property ca

in a dataset.
TRzDBTrackBar A Values string list prop

database table.

Figure 7: The data-aware Raize components.

38 January 1998 Delphi Informant
One of my favorite components is TRzToolbar. As you prob-
ably know, toolbars began to appear in applications even
before Windows 95 was released. They have become so pop-
ular that they’re now a standard interface object. However,
working with Delphi’s built-in toolbars (i.e. with panels and
speed buttons) is hardly trivial; you need to make a lot of
manual adjustments to get the proper appearance.

The Raize solution is much better. With the Toolbar Editor,
you can easily construct a toolbar in minutes. The
TRzToolbar will even wrap to multiple lines as the width
changes. This wonderful component editor (see Figure 6)
includes more than 60 commonly used tool bits that you can
easily add to your toolbar. Of course, you can use your own
custom tool bits, as I’ve done in this application. You have
complete control over how they’re arranged, whether the
appearance is flat, and whether the control is enabled. You
can even add separators and change their order.

TComponent Descendants
With the exception of TRzLauncher (which allows you to
launch an application from within your main application, and
notifies you when the launched application terminates), the
components in this group are specialized dialog boxes.
TRzLookupDialog provides a method, other than using a combo
box, for looking up strings in a list. TRzDBLookupDialog is its
data-aware cousin; and TRzSelDirDialog provides a convenient
way to prompt the user for a directory name and the ability to
create a new directory.

Data-Aware Components
Of the 50 components in the library, 15 are data-aware (see
Figure 7). These include a progress bar; spin edit; list, check,
and combo boxes; status panes; a track bar; and more. Most
of these components are in the demonstration program
included with the product, and are available at the Raize
Software Solutions Web site (http://www.raize.com). While
some components add data-aware capabilities not previously
 to display custom dialog boxes and lookup dialog boxes.
ons, 3D text styles, and custom glyphs.
ard searching and automatic completion.
.
rts intuitive keyboard searching and automatic completion,

as a single line; appearance of the line is programmable.
searching.
mboBox that appears as a single line.
taset for user to select; more flexible than a lookup combo.
ed can be automatically calculated from the data in a table.
s to customize its appearance including border properties.
 floating point values.
ataset.
n specify a static text string to prefix the data stored

erty is populated with the values to be written to a

http://www.raize.com

Figure 8: Some of the Raize data-aware components, including

Figure 9: The Raize String List Editor is a welcome substitute for
the one that comes with Delphi.

New & Used
available, most add useful functionality and visual versatility.
For example, the line-oriented components in Figure 8 enable
you to mimic the look of paper forms.

Flexibility through Properties
Not only does this library include a large number of com-
ponents, it also has a large number of properties to fine-
tune those components. This provides a high degree of flex-
ibility. One good example is the CustomThumb property
used with the track bar components. If you don’t like any
of the three built-in thumb-style properties, you can create
and use your own.

Similarly, you have many options in changing the appear-
ance of most of the controls in the library. Earlier, I men-
tioned the splitter component. If you want to change its
appearance, you can alter the border styles of each pane
individually, change the splitter style and width, and so on,
using the Object Inspector. You can also use the custom
component editor, which provides a preview area that shows

the effect of the changes
before you accept them.

Furthermore, Raize
Components’ custom classes
make it easy to create your
own descendants. You can
choose from the fully imple-
mented classes or the custom
classes. Additionally, because
the full source code for all the
components is provided, you
can find out how everything
works, and get ideas on
extending their capabilities.

Documentation and
Other Features
One of the exciting aspects of
this library is the addition of
a few property editors. We
discussed the Toolbar Editor

Raize Components 1.6 is an outstand-
ing library of standard and data-aware
controls that will add flare and func-
tionality to your applications. It
includes full source code, an extensive
demonstration program, full support for
all three versions of Delphi (and
C++Builder), and online support.

Raize Software Solutions, Inc.
2111 Templar Dr.
Naperville, IL 60565
Phone: (630) 717-7217
Web Site: http://www.raize.com
Price: US$199.95 for standard (dis-
counts for five or more copies);
US$30.00 for upgrade; US$209.95 for
bundle (Raize Components 1.6 and
Developing Custom Delphi 3
Components).

line-oriented ones.
39 January 1998 Delphi Informant
earlier. Another one of my favorites is the Raize String List
Editor (see Figure 9). It includes many welcome features
such as indenting/unindenting, opening/saving to file,
cutting/pasting operations, printing, undoing, and so forth.

On the whole, the documentation is pretty good. The
manual includes a brief description of each component and
each new property. You can learn quite a bit by studying
the component source code and example program source
code, although the latter doesn’t include all the compo-
nents. As you would expect from the author of Developing
Custom Delphi 3 Components, the code is very well written.

I wish there had been a bit more information in the manual and
in the Help files. Short examples showing each component and
property being used within a programming situation would have
been a great addition; I guess I’ve been spoiled by TurboPower’s
incredibly detailed manuals. However, I really did not find this a
major impediment to using these great components.

A Superb Library
This is an outstanding library of Delphi components —
solid, reliable, fast, and versatile. You should take a serious
look at Raize Components 1.6, particularly if you’re develop-
ing in 16 and 32 bit, and want your Delphi 1 versions to be
as attractive and modern as possible. I find myself relying
more on them as time goes on, and I couldn’t be happier. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he spe-
cializes in writing custom components and implementing multimedia capabilities
in applications, particularly sound and music. You can reach Alan on the Internet
at acmdoc@aol.com.

http://www.raize.com

File | New
Directions / Commentary
A Few Awards …
… and a Good-Bye

T he developer tools market is constantly changing, which makes accurately determining future winners
and losers in our industry a difficult, if not impossible, task. Nonetheless, as we begin this new year, I’ll

attempt to do just that. The envelope please ...
100% Pure Hype Award: Push Technology.
What a difference six months makes! Back in
early 1997, many industry pundits proclaimed
that push technology would bring an end to
the Web as we knew it. That prediction seems
laughable today; sure, push has its place, but it
will ultimately serve a minor role in the Web
framework.

50% Pure Hype Award: Java. Java certainly has
earned the hype award of the 1990s. Even peo-
ple who don’t know how to use a mouse know
about Java; in fact, I can hardly go to my den-
tist or grocery store without someone asking
me about it these days. But when you strip
away all the hype, how important is Java as an
application development language and plat-
form? Is it “our future” as Sun claims, or is it
“just a fad” as some in the Wintel community
say? My belief is that the eventual answer will
land somewhere between these extremes. Java is
an important technology, but for the foresee-
able future, it won’t dominate the industry.
Specifically, look for Java to gain importance on
the server side, but fall short on the client side.

Your Father’s Oldsmobile Award:
Client/Server RAD Tools. While developers
are perhaps more productive than ever with
client/server RAD tools such as Delphi and
Visual Basic, you have to admit they’re not the
sexy tools they once were. Today the “cool tool”
label is given only to Web application develop-
ment tools such as NetDynamics or Visual
InterDev. Nonetheless, losing their sex appeal
isn’t such a bad thing. After all, the feature set
of client/server tools is as mature as it will likely
get for some time, enabling developers to focus
on stability and reliability rather than the next
version of their tool.

It’s About Time Award: Distributed Objects.
If you’ve followed object-oriented technology
this decade, you’ve heard for years about dis-
tributed object architectures, but it wasn’t until
1997 that this technology moved from high-
cost, “bleeding edge” solutions to affordable,
mainstream technology, as evidenced in
Borland’s MIDAS. And while the industry will
40 January 1998 Delphi Informant
continue to battle over the standard of the
future — DCOM or CORBA — it’s clear that
distributed objects are becoming a legitimate
framework on which to build even “budget”
applications.

Cool Technology That’s Destined to Fail
Award: RandomNoise Coda. RandomNoise
Coda is a tool that enables you to create “Pure
Java” Web sites; that’s right — Web sites with-
out using HTML. While a Java-only solution
may offer some capabilities that can’t be ful-
filled by HTML, it’s never going to wildly suc-
ceed in the long run. No matter how popular
Java gets, it will never surpass the document-
publishing aspect of the Web.

Destined for Success Award: Extensible
Markup Language (XML). While Java isn’t
about to replace the ubiquity of HTML, this
isn’t to say that HTML will always be the best
platform on which Web applications will be
built. On the contrary, HTML has some inher-
ent limitations that make creating and main-
taining Web applications kludgy at best. XML,
a simplified version of Standard Generalized
Markup Language (SGML), offers a solution
by providing a bridge between the simplicity of
HTML and the flexibility and power provided
by SGML or Java. XML offers developers the
extensibility needed to manage data, not simply
present it. Additionally, XML extends rather
than replaces HTML, which — unlike prod-
ucts such as RandomNoise Coda — doesn’t
force people to abandon an entrenched stan-
dard.

Mother Hen Award: Microsoft. One reason
Microsoft is so successful in propagating the
use of its technology is the way it provides
for developers using their products and tech-
nologies. Microsoft developer relations may
not be perfect, but they sure beat other com-
panies in this area. The Microsoft Developer’s
Network (MSDN) program and Microsoft’s
Web site are prime examples of how a tech-
nology company can adequately arm devel-
opers with the information they need.
Microsoft knows it’s not enough to produce
great technology; developers need to be
equipped with solutions.

Righting the Ship Award: Microsoft. Microsoft
was late to focus on the Web, but has since
worked hard to play catch-up with Netscape
and others in the arena. At least in the area of
client-side Web technology, they’re clearly
emerging as a technology leader. With such
innovations as the Document Object Model
and Scriptlets, their Dynamic HTML technol-
ogy solution is extremely well thought out, and
is actually a breeze for developers to use. If
Redmond extends this innovation into other
areas of the Web, watch out!

Young Turks Award: NetObjects and Allaire.
With the flood of Web tools on the market, it’s
inevitable that many of the names you hear
today will be gone before the next millenium.
As the Web market matures, you’ll notice the
inevitable “shake out,” but when the dust set-
tles, NetObjects, in the HTML-authoring and
design market, and Allaire, in the server-side
application market, will be among the winners.

That’s All He Wrote
I want to end on a personal note: This is my
final “File | New” column. At the time of this
writing, I am finalizing plans to focus my ener-
gies on the Web tools market. Knowing that
this professional transition will take me away
from the pressing issues facing Delphi develop-
ers, I decided to “pass the pen” to another
Delphi developer. Alan Moore, a regular Delphi
Informant contributor, will continue “File |
New;” I look forward to reading his insights in
future issues. I have enjoyed the opportunity to
write this column over the past two years, and I
want to thank those of you who have corre-
sponded with me via e-mail during this time. ∆

— Richard Wagner

Richard Wagner is Chief Technology Officer of
Acadia Software in the Boston, MA area, and
Contributing Editor to Delphi Informant. He
welcomes your comments at
rwagner@acadians.com.

	Table of Contents
	Symposium
	Delphi Tools
	StarBase Adds Delphi Integration to StarTeam and Versions 2.0
	Shazam Report Wizard 3.03 Ships
	Insession Introduces TransFuse
	Pictorius Announces iNet Developer 3.0 for Windows 95/NT
	MicroGOLD Ships WithClass 97
	Delphi Books

	News
	Point-of-Sale Module Added to Accounting for Delphi
	Radiant Systems Adopts Delphi Client/Server Suite
	Borland Announces Visual dBASE 7 for Windows 95 & NT
	Borland Introduces High-End Internet Solutions Program
	Learning Tree Offers Object-Oriented Courses

	On the Cover
	File Access: Native versus SQL
	Running AS/400 Programs from Delphi
	ODBC
	SQL Links 3.5 (DB2 Driver)
	Light Lib/400
	Delphi/400
	Conclusion

	Columns & Rows
	Building the Database
	Saving Data
	Dialing Phone Numbers
	Conclusion

	OP Tech
	Property Values
	Expert Basics
	ToolServices
	Initialization
	Reading the Properties
	Streams into Tokens
	Finding the Matches
	Displaying the Results
	Implementation
	Conclusion

	Algorithms
	Bubblesort
	Selectionsort
	Quicksort
	Countingsort
	Conclusion

	DBNavigator
	Data-Based, Single-Field Highlighting
	Highlighting Focus
	Highlighting Multi-Record Controls
	Focus Highlighting of the DBCtrlGrid
	Data-Based Highlighting in DBCtrlGrids
	Conclusion
	Listing One

	New & Used
	General Options
	Special Delphi Features
	Conclusion

	New & Used
	TGraphicControl-Related Components
	TWinControl-Related Components
	TComponent Descendants
	Data-Aware Components
	Flexibility through Properties
	Documentation and Other Features
	A Superb Library

	File | New

