
ON THE COVER
6 Internet Delphi: Part I — Gregory Lee
Adding Internet e-mail capabilities — for automated registration,
program support, even database reporting — could wake up your
next ho-hum application. This series of articles tracks the development of
a Delphi e-mail program, beginning with Simple Mail Transfer Protocol.

FEATURES
10 Informant Spotlight
WWhhaatt’’ss NNeeww wwiitthh EExxppeerrttss?? — Ray Lischner
You might not know that Delphi 3’s Open Tools API sports some
enhancements. Discover how project creators and module creators, when
combined, let you create experts and wizards with ease.

19 Delphi at Work
AAuuttoommaatteedd AAcccceessss — Ian Davies
First Word, then Excel, and now Access. In this third installment, Mr
Davies shows how Automation may be ideal for manipulating Access
systems that include more than a database.

23 Greater Delphi
IInntteerrBBaassee IInnddeexxeess — Bill Todd
InterBase uses indexes more flexibly than do most databases. Learn how
careful index creation can yield the best possible performance.

27 Columns & Rows
TThhee PPaarraaddooxx FFiilleess:: PPaarrtt IIVV — Dan Ehrmann
Although the Paradox file format has extensive features for validity
checks and referential integrity, Delphi doesn’t support some, but goes
others one better. Here’s how it all shakes out.

32 DBNavigator
CCaacchheedd UUppddaatteess:: PPaarrtt IIIIII — Cary Jensen, Ph.D.
In previous installments, you learned the advantages of cached updates.
Now Dr Jensen explains the use of two event properties for those times
when you want complete control.

38 Sights & Sounds
OOppttiimmiizziinngg GGrraapphhiiccss — Peter Dove and Don Peer
Speed is a primary concern in graphics programming, and this ongoing
example project is no exception. This month, the authors weigh several
optimization methods to increase speed by 50 percent.

43 On the Net
NNeettCChheecckk:: PPaarrtt IIII — John Penman
If you develop for the Internet or intranets, you need a network debugging
tool — and Mr Penman has just the thing. This month, he adds Echo
processing and packet tracing to May’s NetCheck tool.

49 At Your Fingertips
DDiissppllaayyiinngg SShhoorrtteenneedd PPaatthhnnaammeess — Robert Vivrette
Suppose you want to retain the right and left portions of a too-long path-
name, and eliminate characters from the middle. The remedies for this
and other puzzlers are at hand this month.

REVIEWS
51 AdHocery for Delphi

Product Review by Bill Todd

DEPARTMENTS
2 Delphi Tools
5 Newslines
53 File | New by Richard Wagner

July 1997, Volume 3, Number 7

Internet Delphi
Creating an SMTP E-Mail Client Program

1 July 1997 Delphi Informant

Cover Art By: Tom McKeith

2 July 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

A
urorasoft Releases New Visual Toolbar for Delphi

a
t
c

i

allows users to drag-and-drop
between a customized float-
ing window and a stationary
position. It retains size, posi-
tion, and visible state auto-
matically, and users can cus-
tomize its floating toolbar
windows.

Toolbars can also be
developed by creating
up to 10 buttons at
once, dragging and
dropping buttons onto
the toolbar, setting the
toolbar size and position
visually, and setting
other properties through
a design interface.

Price: US$79
Contact: Aurorasoft, P.O. Box
104, Danville, CA 94526-0104
Phone: (800) 987-2426 or
(510) 939-3788
Fax: (510) 939-3779
E-Mail: sales@aurorasoft.com
Web Site: http://www.aurora-
soft.com
Adapta Software Launches AdaptAccounts 6.0

cations, and include transac-
tion importing facilities and
validation of externally
loaded data.

Price: The General Accounting pack
(includes System Manager, General
Ledger and Financial Reporter, Accounts
Receivable, and Accounts Payable)
ranges from US$1,495 to US$4,195.
The Accounting/Distribution pack
(includes the Inventory, Sales,
Purchasing, and general accounting
modules) ranges from US$2,695 to
US$7,695. Typical individual module
prices range from US$495 to
US$1,295. Existing users of
AdaptAccounts 5.0 or 5.7 can upgrade
for 40 percent plus US$75 per module.
Contact: Adapta Software Inc.,
4608 Cliffwood Place, Victoria, BC,
Canada V8Y 1B5
Phone: (250) 658-8484
Fax: (250) 658-2108
E-Mail: sales@adapta.com
Web Site: http://www.adapta.com
DemoShield Corp. has released
Demo-X, an ActiveX version of its

DemoShield product.
Demo-X contains tools for creating
drag-and-drop interactive buttons,

screen shots, hot spots, and animated
transitions — without scripting.
Demo-X is available free from
http://www.demoshield.com.

DemoShield Ships ActiveX
Aurorasoft of Danville, CA
has released Visual Toolbar
for Delphi, a component that
llows developers to create
oolbars for any type of appli-
ation.
Visual Toolbar, along with

ts Visual Toolbar Editor,
Adapta Software Inc. of
Victoria, Canada has
shipped AdaptAccounts 6.0,
a family of modules that can
be installed together or sepa-
rately. This version com-
bines Adapta’s integrated
accounting database applica-
tions with Windows 95 and
Windows NT environments
using Delphi.

Adapta’s line of modular
applications includes
System Manager, General
Ledger and Financial
Reporter, Accounts
Receivable, Accounts
Payable, Inventory, Sales,

Purchasing, Job
Costing, Bill of
Materials, and
Payroll.

All modules
are available
in multi-user
or single-user
versions,
with source
code avail-
able. Adapt-
Accounts’
modules can
also be inte-
grated with
other appli-

3 July 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
Amzi! Releases Intelligent Components

Amzi! Inc. of Stow, MA

has released Amzi! Prolog +
Logic Server 4.0, a C++
application that integrates
Prolog’s catch/throw mech-
anism to the catch/throw
mechanisms in Delphi,
C++, and Java. Because it’s
designed as a C++ applica-
tion, it allows other pro-
grams to create multiple
instances of the Logic
Server running in the same
or separate threads.

Amzi! Prolog + Logic Server
allows the execution of mul-
tiple Prolog engines for
applications such as Web
server-side applications, tele-
phony systems, and Java-
based and database server
components. It also supports
Unicode character sets,
allowing the creation of
Prolog components that can
reason over and speak any
language.

The Amzi! Prolog engine
is a native Unicode applica-
tion similar to Java and NT
4.0. The Prolog source code
can be written in Unicode
or ASCII, allowing predi-
cates and variables, as well
as strings to be represented
in the 16-bit Unicode char-
acter set.

Support of Internet and
Web-based applications has
been expanded with three
new components, the CGI
interface, the Java Class,
and the Sockets Logic
Server Extension.

The CGI interface allows
users to write server-side
applications for the Web,
making it possible to
embed all manner of expert
systems, advisors, problem
solvers, and intelligent
components on Web pages.
This interface consists of a
C program, the Prolog
framework, and a library
that provides an interface
between the Prolog script
and CGI/HTTP protocols.
The Java Class allows Prolog

components to be embedded
in Java programs and applets.
They include support for
exception handling.

The Sockets Logic Server
Extension allows users to
write clients and/or servers in
Prolog that communicate
with other Internet clients
and servers for e-mail, FTP,
news, HTML, and more.

Version 4.0 has an
enhanced IDE, including
improved project support.
Console versions of the
command-line tools are
available for building Amzi!
Prolog components while
compiling and linking the
main application. The latest
development environments
from Borland and Microsoft
are also supported.

Price: Personal edition, US$298;
Professional edition US$598.
Contact: Amzi! Inc., 40 Samuel
Prescott Dr., Stow, MA 01775
Phone: (508) 897-7332
Fax: (508) 897-2784
E-Mail: info@amzi.com
Web Site: http://www.amzi.com
Pretty Objects Computers, Inc. Announces Polyglot 2.24
Delphi 3 Superbible
Paul Thurrott, Gary Brent, Richard

Bagdazian, & Steve Tendon
Waite Group Press

IISSBBNN:: 1-57169-027-1
PPrriiccee:: US$54.99

(1,312 pages, CD-ROM)
PPhhoonnee:: (800) 368-9369
Pretty Objects Computers,
Inc. of Outremont, Quebec
has announced Polyglot 2.24,
an internationalization expert
for Delphi 2 that enables
users to create multilingual
applications.

Polyglot allows users to
determine what needs to be
changed to present applica-
tions in other languages by
exporting all character
strings to a table, and re-
importing them.

Polyglot also manages ele-
ments that are less visible,
such as the user’s Help file,
date formats, numbers, and
common Windows dialog
boxes.
Price: US$200 for first license;
US$100 for second to fifth license;
US$50 for additional licenses.
Contact: Pretty Objects Computers,
Inc., 5158 Hutchison, Outremont,
Quebec, Canada H2V 4A9
Phone: (514) 990-7026
Fax: (514) 990-7026
E-Mail: info@prettyobjects.com
Web Site: http://www.prettyobjects.com

4 July 1997 Delphi Informant

Delphi
T O O L S

New Products
and Solutions
Comparing Delphi 3 Versions

St
a

n
d

a
rd

Features P
ro

fe
ss

io
n

a
l

Cl
ie

n
t/

Se
rv

er

Visual drag-and-drop RAD X X X
32-bit, optimizing, native-code compiler X X X
Royalty-free, stand-alone EXEs and reusable DLLs X X X
Packages compiler technology for EXEs X X X
Interfaces for native COM and ActiveX support X X X
Access to Win32 API, ActiveX, multi-threading, OLE, COM, DCOM, ISAPI, NSAPI X X X
Creates multi-threaded Windows 95/NT applications X X X
Professional IDE with Editor and Debugger X X X
Object-oriented, extensible component and application architecture X X X
Object repository for storing and reusing forms, data modules, and experts X X X
Visual form inheritance and form linking X X X
Suite of Windows 95 common controls X X X
Visual component Library with over 100 drag-and-drop reusable components X X X
Create and use OLE automation controllers and servers X X X
Visual components creation for making component templates X X X
CodeTemplates Wizard X X X
CodeCompletion Wizard X X X
CodeParameter Wizard X X X
ToolTip Expression Evaluation X X X
DLL debugging X X X

Multiple database engine support X X X
Native drivers for MS Access, FoxPro, Paradox, and dBASE X X X
Data-aware components X X X
Separate business rules from application code with Data Module Objects X X X
Database Explorer for managing tables, aliases, and indices X X X
Integrated reporting X X X
Delphi 1 for 16-bit Windows 3.1 applications X X X
One-step ActiveX creation for maximum reusability (100 percent compiled
high-performance ActiveX controls with no run-time redistributables) X X
One-step ActiveForm creation to Web-enable applications X X
Live graphs and charting X X
Additional 30 VCL components X X
VCL source code and printed manual X X
ODBC connectivity X X
Maintain data integrity with scalable Data Dictionary X X
Develop and test SQL applications with Local InterBase X X
Cached updates X X

Internet Solutions Pack X X
InstallShield Express X X
Open Tools API X X
Printed documentation X X
SQL Links native drivers, with unlimited deployment license for Oracle,
Sybase, Informix, MS SQL Server, InterBase, and DB2 X
SQL Database Explorer X
SQL Monitor X
Visual Query Builder X
Develop and test multi-user SQL applications with InterBase (4-user license) X
Decision Cube Crosstabs for multi-dimensional data analysis X
Remote DataBroker X
ConstrainBroker X
Business ObjectBroker X
WebServer X
Support for Netscape NSAPI and Microsoft ISAPI with WebBridge X
WebModules for information publishing X
WebDispatch for responding to Web client requests X
WebDeploy X
Integrated Intersolv PVCS Version Manager X
CASE Tool Expert X
Data Pump Expert X
Hidden Paths of Delphi 3
Ray Lischner

Informant Press

IISSBBNN:: 0-9657366-0-1
PPrriiccee:: US$39.99

(300 pages, CD-ROM)
PPhhoonnee:: (800) 884-6367 or

(916) 686-6610

News
L I N E

Ju l y 1997

5 July 1997 Delphi Informant

Apple Computer’s
Worldwide Vice President

Joins Borland
Borland has appointed John

Floisand, 52, to vice president of
US Sales. Floisand has over 25
years of sales experience, most

recently with Apple Computer, Inc.
where he was responsible for

worldwide sales.
Floisand plans to use his experi-
ence in sales, customer service,
operations and support to help
build Borland’s direct support

business. This involves improving
relationships with VARs and sys-

tems integrators to extend support
for corporate customers.

Additionally, Floisand plans to
improve the segmentation of

Borland’s product range, packag-
ing, prices, distribution, and sup-

port to better serve customers.
During Floisand’s 11 years at

Apple Computer, he held various
management positions, including:
senior vice president of Worldwide
Sales; president of Apple Pacific;
vice president of Sales, Customer
Services, Operations and Support;

and director of UK Sales.
Borland Announces Spin-Off of Open Environment Consulting Group
Borland Improves Support for Corporate Developers

tions to database servers, and
usability of Borland products
in a workstation network or
client/server environment, on
a per incident basis.

Priority Developer Assist is
an annual developer support
service with priority hotline
assistance, during service
hours, on Borland workstation
products. The service covers
questions concerning installa-
tion, programming, connec-
tions to database servers, and
usability of Borland products
in a workstation, network, or
client/server environment for
a predefined number of 15
incidents or 12 months.
Extended Developer Assist
offers priority hotline ser-
vices during service hours
on Borland workstation
products, including extend-
ed products such as
Delphi/400. Questions con-
cerning the installation, pro-
gramming, connections to
database servers, and usabili-
ty for Borland products in a
workstation, network, or
client/server environment
are covered for a predefined
number of 15 incidents or
12 months.

For more information on
these programs, call Borland
at (408) 431-1064.
Droege’s 1997 Developers Competition
Scotts Valley, CA — Borland
has announced NetNumina
Solutions Inc., a spin-off of
its Open Environment
Division. Located in Boston,
MA, NetNumina has been
providing consulting services
on behalf of Borland to
Open Environment and
Borland customers, as well as
servicing new customers,
since April.

Under the terms of the
agreement, consulting ser-
vices provided to Borland
and its customers by Net-
Numina include pre- and
post-sale technical support,
training, custom develop-
ment projects, and place-
ment and management of
contract personnel at cus-
tomer sites.

The principals of
NetNumina were previously
the consulting arm of the
Open Environment
Division. They produced
over 150 multi-tier applica-
tions at Fortune 1000 com-
panies. NetNumina is cur-
rently extending its multi-
tier technology knowledge to
Web-deployed, distributed
object solutions.

Borland acquired the Open
Environment Corp. in
November 1996. Borland is
currently preparing Entera
4.0 (previously developed by
Open Environment) for
release, and is expanding the
Entera development team by
adding engineers.

Secondarily, Entera is an
enabling technology within
Delphi, Borland C++Builder,
JBuilder, and IntraBuilder.
Scotts Valley, CA — Increasing
its focus on corporate IT,
Borland announced a new
developer support system. This
new support structure includes
several programs differentiated
by levels of support, rather
than by product lines. Borland
hopes this unified process will
speed response times and
reduce the number of support
contracts needed.

Since May, Borland has been
taking orders for its new sup-
port contracts. Borland has, at
the same time, continued to
honor all existing contracts.
The new support programs
apply to customers in the US
and Canada, and are scheduled
to be in operation this month.
They include: Installation
Assist, offering customer sup-
port via telephone on Borland
workstation software prod-
ucts; and Primary Assist, pro-
viding per-minute telephone
support on local installation
and product usability.

Developers can choose
among several programs,
including Developer Incident
Assist, Priority Developer
Assist, and Extended
Developer Assist.

Developer Incident Assist
provides phone support for
questions concerning installa-
tion, programming, connec-
Durham, NC — Droege
Computing Services, Inc. has
announced the 1997
Developers Competition, to
be held October 7 to 9 in
Durham, NC.

In the past six years, this
competition has attracted one-
or two-developer teams from
16 countries. Contestants
build a typical business appli-
cation for a charity, and may
use any product on any plat-
form. Past events have pro-
duced applications for a Child
Protection Team, the Duke
Primate Center, the American
Dance Festival, Habitat for
Humanity, Sunshares,
Rainbow House, and others.
This year developers can

select from special categories,
including Internet, object-
oriented, RAD, GUI, and
client/server.
The results are judged by

industry experts, and the win-
ners split US$10,000 in cash.
Typically, another
US$500,000 of sponsor-
donated software products is
also distributed among the
contestants.

For more information,
visit http://www2.inter-
path.net/devcomp.

6 July 1997 Delphi Informant

Internet Delphi: Part I
Creating an SMTP E-Mail Client Program

On the Cover
Delphi 2 / SMTP / Winsock

By Gregory Lee
E-mail is being used in some ingenious and non-traditional ways that go
beyond sending a message to a friend or business acquaintance. Automated

product registrations, program support, even database reporting can be tied into
the global e-mail distribution system. Adding Internet e-mail capabilities could be
just the thing to turn your next ho-hum application into an exciting and useful
product.
Over the course of the next few months, we’ll
follow the development of a fully functional
Internet e-mail program written entirely with-
in Delphi. Although we’ll focus on traditional
e-mail functions, you can adapt the underly-
ing code to just about any application.

Getting Started
If you haven’t used Delphi to write an
Internet application before, you may want to
do a little homework. A few good books are
available that focus on programming for the
Internet, but ones that help you do it in
Delphi are few and far between. The August
1996 issue of Delphi Informant contains an
article I wrote that describes a Finger pro-
gram written in Delphi. Truth be told, there’s
not a lot to implementing the Finger proto-
col itself, and the bulk of that article is really
about Winsock.

Winsock is the Windows version of the origi-
nal Berkeley sockets interface. The sockets
interface was developed to provide a simple
API for network applications based on the
TCP/IP network protocol. You don’t need to
understand what TCP/IP is, or how it works,
to use Winsock. What you do need is the
WINSOCK.DLL and a basic knowledge of
the functions available. In the Delphi Finger
article, I touched on some of the more com-
monly used functions. If you want to under-
stand the low-level stuff, the Finger article is
a good place to start. To keep things simple
here, however, we won’t discuss the Winsock
interface much more.

Pick a Protocol
Internet e-mail is governed by two basic
protocols:
1) The Simple Mail Transfer Protocol

(SMTP) lays out the rules for sending
messages, from the e-mail clients’ point of
view.

2) The Post Office Protocol (POP) defines
the process for retrieving messages.

In this installment, we’ll focus exclusively on
the implementation of SMTP. POP is a little
more involved, but we’ll get around to it.
You’ll be able to apply a lot of what you learn
here when we get to POP.

On the Cover

Figure 2: A typical SMTP e-mail client session.

Figure 1: The ftp site ds.internic.net/rfc contains an index to all
RFC documents, as well as the documents themselves.
If you want a complete description of SMTP, you should read
RFC 821, “Simple Mail Transfer Protocol” by J. Postel (see
Figure 1). RFC stands for Request For Comment, and virtu-
ally every Internet standard is documented somewhere in an
RFC file. You can find this and other RFC documents at
ftp://ds.internic.net/rfc.

Connecting on Cue
In a typical e-mail session, users enter their address and the
address of the person to whom they’re sending the message.
They will then enter the subject and body of the message (see
Figure 2). When everything is ready to go, they’ll click the
Send button. This is our application’s cue to initiate the
SMTP conversation.

Before we can connect to the SMTP server, we must know
where to find it. Part of the server’s location can be taken
directly from the e-mail address of the person to whom the
message is being sent. In a typical e-mail address, everything
to the right of the @ sign is referred to as the host name. For
7 July 1997 Delphi Informant
example, in the e-mail address garry@goodnet.com, the host
name is goodnet.com. If you want an explanation of how the
host name is translated into an IP address, you can pore
through the Windows Socket Specification (or get a copy of
the Finger article mentioned earlier). From our perspective,
the process itself is less important than the result.

The host name gets us most of the way there, but we still
need to know where on the host system we can find the
SMTP mail server. RFC 821 tells us that the mail server will
be listening for calls at port number 25. You can think of
Internet port numbers as the extension numbers in a tele-
phone system. Most established protocols have a fixed port
number where clients and servers can count on hooking up.
These fixed port assignments are often referred to as “well-
known ports,” and the “well-known port” for SMTP happens
to be port 25.

With the host name and port number now in place, we’re
ready to establish the connection. Unfortunately, the connec-
tion itself doesn’t happen instantaneously. Depending on the
route the connection takes and the amount of network traffic,
it may take a few seconds. Sooner or later though, we should
get a notification message indicating a successful connection.

Welcome to the Machine
According to RFC 821, when we connect to the SMTP serv-
er, it will send us a greeting. Again, Winsock sends a notifica-
tion message to indicate that the data has arrived. We’ll use
the Winsock recv function to retrieve the greeting message.

The greeting could contain just about anything, but according
to SMTP, we can count on one constant element: the first three
characters in the greeting message will be 220. Now we could
check the first three characters of every message we get during
an SMTP session for these three magical characters, but it’s
more efficient to create something called a state machine, so we
only look for the 220 prefix when appropriate. The state
machine is also handy because it lets the program remember
how far along our session has progressed at any given time. Are
we waiting for the greeting? Have we sent the response? Are we
waiting for the server to acknowledge something we’ve sent?

A simple state machine can be implemented with one global
variable (the current state), and a case statement that executes
whatever code is appropriate, given the current state. At each
stage in the protocol, our program will proceed by sending
something new to the server, then waiting for a response.
When the response or acknowledgment message is received,
the state machine is bumped to the next level.

In our SMTP Email Client program, an SMTP state machine
is implemented using the global variable State and the case
statement inside the SmtpEngine procedure. To make the code
a little clearer, we’ve also defined a new type for the State vari-
able. Appropriately enough, we’ve called this new type TState
(see Figure 3). With the new type established in this way, the
function of the code in SmtpEngine is fairly obvious.

Figure 3: The definition of the TState variable type.

TState = (Inactive, Connected, HelloSent, FromSent,

ToSent, DataStart, SendingData, DataEnd,

QuitSent, UnChanged);

On the Cover
A Warm HELO
Initially, our State is Inactive. Once we’ve connected to the
SMTP server, our State changes to Connected. The Connected
case handles this state by scanning incoming messages for the
220 prefix we’re expecting. When we get the response we’re
looking for, we can proceed to the next step, which is to send
the server a warm HELO. No, that’s not a typo. RFC 821
indicates that we must respond to the server’s greeting by
sending a line back to the server with the keyword HELO, fol-
lowed by the name of the host system. Once we’ve sent it,
State is bumped to HelloSent.

The next time we receive a message from the server, it will fil-
ter through our state machine, and the new message will be
handled by the code in the HelloSent case. This code checks
for a reply: 250. Again, SMTP doesn’t dictate exactly what
the server will send us, but it does require that the first three
characters be 250. As soon as we receive that sequence, we
can proceed to the next step.

Return to Sender
One of the basic requirements of any e-mail system is that you
let the e-mail server know where a particular message is com-
ing from and where it’s headed. The need for the receiver’s
address should be obvious; however, the need for the sender’s
may not be so clear. The simple answer is that the SMTP serv-
er needs a return address in case things go bad. For example,
what if the user you’re sending this e-mail to just moved to
another system? Typically, the host system will notify you by
return mail, if an e-mail you’ve sent is undeliverable.

The format of the line we send to the server indicating the
return address is:

MAIL FROM:<user@host>

where user@host is our Internet e-mail address. After this
line is sent, we set the global state variable to FromSent, so
the state machine will know what to look for as a
response.

The code in the FromSent case will look for the appropriate
reply code, which, in this case is another 250. If you haven’t
bought into the importance of this state-machine scheme by
now, the fact that we’re getting a second 250 reply message
should close the deal. Up until this point, we could have got-
ten away with using the reply number to indicate our next
move; but if we’re getting the same reply to MAIL FROM
and HELO, that approach would clearly be inadequate.

Once the 250 reply is detected, we can send the destina-
tion address. The format of this line is:

RCPT TO:<user@host>
8 July 1997 Delphi Informant
where user@host is the Internet e-mail address of our
intended receiver. If there are multiple receiver addresses,
we simply wait for a reply and send another RCPT
TO:<user@host> message with the next address. Once all
the receiver lines are sent, the State variable becomes
ToSent, so the state machine will be ready to move forward
when a response arrives.

The ToSent case looks for another 250 and, once we get it,
we’re nearly ready to send the text of our message.

Are We There Yet?
Before we can actually send the text of the message, we
must give the SMTP server a little warning. The keyword
used to accomplish this is DATA. After the DATA message
has been sent, the State variable is set to DataStart, and
incoming messages are filtered through the DataStart case.

This time we’re looking for a return message of 354. Once
we get it, we can start sending the text of our e-mail. Sort
of. According to RFC 822, “Standard for the format of
ARPA Internet text messages” by D. Crocker, Internet e-
mail messages must conform to some additional rules.
Most of these rules have to do with something called head-
ers. Message headers are those things at the top of every
Internet e-mail you get; they tell you when and where the
message originated, who it was sent to, and how it came to
your system. Some of that stuff is tacked on along the way,
but a few things must be included from the beginning.

Specifically, we need to include a From header, a To header,
a Date header, and a Message-ID header. There are a lot of
other, optional, header lines such as Subject, Cc, Bcc,
Reply-To, as well as an undefined number of Extension
headers. Extension headers are easy to spot, because they all
start with a leading X-. Among other things, they’re often
used to identify the e-mail program and version that gener-
ated the message.

We already have most of the information needed for these
headers, so it’s just a matter of building some strings and shov-
ing them into the queue. Using the Delphi functions Time
and DateTimeToString, we can build the Date header easily
enough, but where does this Message-ID header come from?

The Message-ID header uniquely identifies a specific piece
of e-mail. There’s no way to be positive a message identifier
we generate will be unique. However, we can greatly
increase the odds by using something like our e-mail address
and the current date and time. After all, what are the odds
that somebody else is going to use our e-mail address to
identify a piece of their e-mail? If you combine that with
the current time, even we would have to try pretty hard to
create another message with exactly the same identifier.

After we place all the headers into the pipeline, a blank line is
sent after them to identify the end of the header section.
Now we’re ready to send the text of the message.

On the Cover

Gregory Lee is a programmer with over 15 years of experience writing applications
and development tools. He is currently the president of Software Avenue, Inc.,
which has just released a C++Builder Edition of their Delphi development tool,
Internet Developer’s Kit. Greg can be reached by e-mail at 76455.3236@compu-
serve.com.
Make It So
The text of the message is sent one line at a time. At this point,
we don’t even have to wait for the server to respond after each
line. The only problem we have to be even remotely concerned
about is the possibility that a line of the message will start with
the period character. That’s a potential cause for alarm, because
that happens to be the signal we use to tell the mail server that
we’ve reached the end of the message text. To send a line of text
that starts with a period, we must quote the period character by
preceding it with yet another period character. Simple enough.

Each of the lines are sent, and the state machine remains in the
SendingData mode until we reach the end of the text. Then we
send the termination signal — a line containing a single period
character — and advance the State variable to DataEnd. If all
goes well, the mail server responds to our signal with another 250
reply code.

To finish, we use the message QUIT, and advance the State vari-
able again to QuitSent. The mail server reacts by sending us a 221
reply code, then closes the connection. All we have to do now is
close our end of the connection, and let the user know the e-mail
has been sent.

Your Mileage May Vary
The most common error message you’re likely to encounter with
the sample program is:

Valid name, no data record of requested type

This message is a direct pass-through from Winsock. This usually
indicates that one of two name lookups has failed.

When we’re attempting to connect with the SMTP server, among
the first low-level tasks we must complete is to translate the given
host name into an Internet IP address. Every registered Internet
domain has at least one unique IP address.

The Internet uses the IP address for identification and routing.
The host name is essentially a convenient alias for this address.
The mechanism used to store and report the relationship between
host names and IP addresses is called the Domain Name System
(DNS). If the DNS lookup for a host name fails, Winsock will
give the error code for:

Valid name, no data record of requested type

You may also see this message on a LAN where the ‘HOST-
NAMES’ file has not been set up properly, or does not contain
an entry for the host name you’ve given.

After the host name has been resolved, a second name lookup
may be used to translate the service name ‘smtp’ into its associat-
ed “well-known” port number. The translation between common
Internet service names and their “well-known” port numbers is
handled by way of another (much smaller) lookup table. If this
translation fails, the Winsock error code again indicates:

Valid name, no data record of requested type
9 July 1997 Delphi Informant
To make things even more confusing, you may also see this
error message if you have one or more conflicting versions
of WINSOCK.DLL and/or WSOCK32.DLL on your sys-
tem. This often happens when one version of the DLL
exists in your \Windows\System directory and is used to
establish your local TCP/IP network connection, and
another version is used by the dialer that was provided
with your Internet account.

Different versions of Winsock and WSock32 are generally
not compatible, so the golden rule is: Whatever
WINSOCK.DLL or WSOCK32.DLL is used to establish
your Internet connection must also be the first and only
version available to your Internet client program. Typically,
the first hint that this is a problem occurs when you see:

Valid name, no data record of requested type

for a host name that you know is a valid registered domain.

Conclusion
To turn this into a full-featured mail program, we’ll probably
want to log the message at this point, or at least record some-
where the fact that a message has been sent. And then there’s
receiving messages — but we’ll get to that next time. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUL\DI9707GL.

10 July 1997 Delphi Informant

Informant Spotlight
Delphi 3

By Ray Lischner

What’s New with Experts?
A Look at Project and Module Creators

Figure 1: The Expert Cr
Delphi 3 has many new, exciting features — packages, interfaces, ActiveX
support, and more. What you might not know is that Delphi’s Open Tools

API also sports some enhancements. This article examines two of the major new
features for writing experts and wizards: project creators and module creators.
The Open Tools API lacks formal documen-
tation, so this article refers to specific source
files for the Open Tools API. These source
files are in the \Source\Toolsapi directory,
provided you have Delphi 3 Professional or
higher. If you’re not familiar with the Open
Tools API and writing experts in Delphi,
several books provide solid information:
Hidden Paths of Delphi 3 [Informant Press,
1997] and Secrets of Delphi 2 [Waite Group
Press, 1996] by Ray Lischner, Delphi
Component Design [Addison-Wesley
Developers Press, 1997] by Danny Thorpe,
and The Revolutionary Guide to Delphi 2
[WROX Press, 1996] by Paul Hinks, et al.

Start by looking at the TIToolServices class in
ToolIntf.pas, where you will see several new
methods. This article discusses the
ModuleCreate and ProjectCreate methods and
their related classes, TIModuleCreator and
TIProjectCreator (which you can find in
EditIntf.pas).
eation Wizard.
Jump Right In
First, let’s look at how project and module
creators work, using an expert-creation
wizard as an example. The wizard creates a
skeleton for an expert, based on a few tidbits
of information from the user. Specifically, it
creates a library project to create and register
the wizard. It also creates a unit that declares
the expert interface class. Figure 1 shows the
expert-creation wizard at work. It prompts
the user for the kind of expert to create and
an expert name, then uses this information
to create its files.

The first step is the same for any expert:
declare the expert interface class. Listing One
(beginning on page 14) shows the Expert
unit, which declares the TExpertCreator class.
The expert-creation wizard is a project
expert, so it defines an author, comment,
repository page, and so on. The Execute
method calls RunExpert, which is in the
ExptDlg unit, shown in Listing Two (begin-
ning on page 15). RunExpert opens the main
form to get the expert style and name from
the user. If the user clicks the OK button, the
expert employs the user’s information to
instantiate a TExpertInfo object, which it
passes to CreateExpert in the ExptGen unit.

The interesting part of the expert is the
ExptGen unit (see Listing Three, beginning
on page 15). This unit declares the project
creator class, TProjectCreator, and a module
creator, TModuleCreator. The project creator
creates the library source file. Notice that
most of its methods return empty strings,
which tell Delphi to use its default settings.

Informant Spotlight

pCustom Custom project (empty project file).
pApplication Application (project starts with default program declaration).
pLibrary DLL (project starts with default library declaration).
pCanShowSource Delphi displays the project source file.
pExisting The project source file already exists.

lag Literal Description

gure 2: The flags for ProjectCreate.
For example, GetFileName must
return the filename for the project’s
source file. An empty string, howev-
er, tells Delphi to use its default —
Project1.dpr — in the current direc-
tory. The two most interesting meth-
ods are NewProjectSource and
NewDefaultModule.

c
c
c
c
c

F

Fi
NewProjectSource returns the source code for the project’s .DPR
file. In this case, the source code is relatively short, so this func-
tion calls Format to produce the result string. The parameters for
Format are the project name and the expert interface class.
Delphi supplies the project name as an argument to
NewProjectSource. Your expert supplies the class name, from the
TExpertInfo object. You must ensure that the source code is cor-
rect, or your expert’s user might be upset when he or she is
unable to compile the resulting project.

After Delphi creates the project source file, it calls
NewDefaultModule, which creates the sole unit for the
project. As you might expect, given the topic of this article,
NewDefaultModule uses a module creator for the expert
interface unit.

The module creator, TModuleCreator, has a more difficult job
than the project creator. Just like TProjectCreator, most of the
methods of TModuleCreator return empty strings. As you might
have already guessed, that tells Delphi to use its defaults for the
filename, and so on. NewModuleSource, however, is complex. It
returns the complete source code for the module file — in this
case, the expert interface unit. You can use the same Format tech-
nique that you used in the project creator, but it’s hard to work
with. Instead, the module creator writes its text to a stream.

One of the advantages of using a stream is that you can define a
custom class — in this case, TTextStream. With a custom stream
class, you can define methods that work the way you want. The
TTextStream class defines methods that make it easier to write to
the stream one line at a time.

To summarize, the CreateExpert procedure does the real
work of creating the project. CreateExpert constructs an
instance of TProjectCreator and passes that instance to
ToolServices.ProjectCreate. Delphi calls the methods of the pro-
ject creator to obtain information about the project, and uses
that information to create and open a new project. The project
creator adds units to the project in the NewDefaultModule
method. The sample expert has one unit, so NewDefaultModule
creates one module creator instance and passes that object to
ToolServices.ModuleCreate. Delphi calls back to the module cre-
ator to obtain information about the unit file, and creates the
unit’s source file accordingly. Now it’s time to look more closely
at the creator classes, and understand what they do.
Project Creators
A project creator puts you in control when creating a new pro-
ject. The project creator instructs Delphi how to create the pro-
ject’s source (.DPR) and resource (.RES) files. It can tell Delphi
11 July 1997 Delphi Informant
to use existing files, or to create new ones. Note that Delphi
doesn’t actually create a file on disk when the project creator
runs. Instead, it creates files in memory. When the user saves the
project, Delphi saves its in-memory buffers to disk. This is the
same behavior as when Delphi creates its default project. Delphi
assigns the name Project1 to the project and Unit1 to the blank
form, but doesn’t create any files on disk. This gives the user the
greatest degree of flexibility to rename the project or units when
saving files, or to abandon the project without saving anything.

To use a project creator, you first derive a class from the interface
class, TIProjectCreator, overriding all its methods. The expert cre-
ates an instance of your project creator class, and passes that
object as the first argument to TIToolServices.ProjectCreate. When
your expert calls ProjectCreate, Delphi calls back to your project
creator object to learn the project’s name, source file, resources,
and so on. The declaration for the ProjectCreate method of
TIToolServices is:

function ProjectCreate(ProjectCreator: TIProjectCreator;

CreateFlags: TCreateProjectFlags): TIModuleInterface;

If you don’t need to specify the project’s source file and
resources, you can let Delphi create a default project by pass-
ing a nil pointer for the ProjectCreator argument. In this case,
the CreateFlags argument tells Delphi what kind of project to
create. Figure 2 lists the project creation flags; except for
cpCanShowSource, the flags have meaning only if
ProjectCreator is nil. When ProjectCreator is nil, you must
choose one of cpCustom, cpApplication, or cpLibrary to specify
what kind of project you want Delphi to create.

The cpApplication project is Delphi’s default application and
default main form. The cpLibrary project is Delphi’s default DLL
project. The cpCustom flag is for any other kind of project. For a
cpCustom project, Delphi starts with an empty file, which is not
what you usually want your expert to do. Instead, when using
cpCustom, your expert can create the project source file explicitly,
and use the cpExisting flag to tell Delphi that the file exists.

If you set the cpExisting flag (and ProjectCreator is nil) and the
project source file doesn’t exist, Delphi will create a default
project file, according to the cpApplication (default project file,
but with no forms), cpLibrary (default DLL project), or
cpCustom (empty source file) flag.

Regardless of whether ProjectCreator is nil, you can use the
cpCanShowSource flag when you call ProjectCreate. This flag
tells Delphi to display the project source file in its Code
Editor. If you exclude cpCanShowSource, Delphi hides the
project source file. For an application with forms, you

would typically omit cpCanShowSource; but for projects
such as a library, you would most likely want to include this
flag. ProjectCreate returns a module interface object for the
new project file. You use the module interface to further
modify the project file. No matter how your expert uses the
interface, it must call Free to release the interface.
TIProjectCreator Class
The first argument to ProjectCreate is the project creator
object. If you want to create a default project, pass a nil
pointer. If you want to define the resource, project source
file, filename, or other aspects of the project, you must
define a project creator. The following sections describe the
functions and procedures of TIProjectCreator. Remember to
override all of these, because TIProjectCreator declares them
as virtual, abstract methods. (You can find the declaration
for TIProjectCreator in the EditIntf.pas file.)

Existing Function
function Existing: Boolean;

Override the Existing function to return True if the project
files exist, or False if your expert is creating new files. If you
define Existing to return False, Delphi assumes the files
don’t exist, and calls NewProjectSource, NewDefaultModule,
and NewProjectResource. If one or more files exist, define
Existing to return True. Delphi looks for the files; if a file
exists, Delphi doesn’t call the corresponding function. That
is, if the .DPR file exists, Delphi doesn’t call
NewProjectSource. If the .RES file exists, Delphi doesn’t call
NewProjectResource. Delphi doesn’t look for any unit files —
if Existing returns False, Delphi doesn’t call
NewDefaultModule.

GetFileName Function
function GetFileName: string;

Override the GetFileName function to return the full path to
the project’s .DPR file. If the file doesn’t exist, Delphi doesn’t
create the file yet, but marks the project as modified, so the
user can choose to save the file, or abandon the new project
without creating any files. The GetFileName function can
also return an empty string, in which case Delphi uses a
default project name (e.g. Project1) in the current directory.

GetFileSystem Function
function GetFileSystem: string;

Override the GetFileSystem function to return the name of a
registered file system that will store the project’s source and
resource files. In most cases, your project creator will return
an empty string, telling Delphi to use the default file system.

NewDefaultModule Procedure
procedure NewDefaultModule;

Delphi calls the NewDefaultModule procedure after it calls
NewProjectSource. You can use NewDefaultModule to add
units and forms to the project. If Existing returns True,
Delphi doesn’t call NewDefaultModule. If you want a project
that doesn’t have any units or forms, write NewDefaultModule
so it returns without doing anything.
12 July 1997 Delphi Informant
NewProjectResource Procedure
procedure NewProjectResource(Module:

TIModuleInterface);

Delphi calls the NewProjectResource procedure after
NewDefaultModule to report to your expert about the project’s
resource file. If Existing returns True, and the project resource file
exists, Delphi doesn’t call NewProjectResource. If Existing returns
False, or if the resource file doesn’t exist, the Module argument is
the module interface for the new resource file. You can call its
GetProjectResource method to obtain a resource file interface.

When Delphi calls NewProjectResource, the resource file is empty.
Remember that when you save a project, and you haven’t speci-
fied an application icon, Delphi supplies a default MAINICON
resource. In other words, if you’re satisfied with the default appli-
cation icon, you can write NewProjectResource, which will do
nothing except free the module interface.

One important aspect of a module interface object is that
Delphi creates a single TIModuleInterface object for each file,
and shares that object with all the experts that need it. Delphi
uses reference counting to make sure it doesn’t free a module
interface object while an expert still retains a reference to it.
When your expert finishes using any module interface object, it
must free the object reference so Delphi can keep an accurate
reference count. Thus, even if NewProjectResource doesn’t use its
Module argument to add any resources, it must call Module.Free
to release the object reference.

NewProjectSource Function
function NewProjectSource(const
ProjectName: string): string;

Delphi calls the NewProjectSource function to obtain the con-
tents of the project’s source (.DPR) file. If Existing returns
True, and the project source file exists, Delphi doesn’t call
NewProjectSource. Otherwise, Delphi calls NewProjectSource,
and passes the name of the project as the ProjectName argu-
ment. Typically, your expert would use the name in the source
file’s program or library statement. This function must return
the full contents of the file as a single string.
Module Creators
A module creator is similar to a project creator, but they differ
in many of their details. The biggest difference is that a project
creator creates a project, while a module creator creates a mod-
ule — that is, a unit source file and possibly a form or data
module. The methods of TModuleCreator work slightly differ-
ently than the corresponding methods of TProjectCreator, so
you can’t always apply to module creators what you learned
from project creators.

To use a module creator, you must derive a class from
TIModuleCreator, and override its methods. Your expert creates
an instance of your derived module-creator class, and passes that
object to the tool services ModuleCreate function. The declara-
tion for the ModuleCreate function is:

function ModuleCreate(ModuleCreator: TIModuleCreator;

CreateFlags: TCreateModuleFlags): TIModuleInterface;

Informant Spotlight

Add the new module to the currently open project.
Make the new module the main form. Requires
cmAddToProject. Ignored if there is no form.

 Mark the module as modified so Delphi will prompt the user
to save it before closing the file.
Show the form in the form designer (ignored if there is
no form).
Show the unit in the Code Editor.
Mark the module as unnamed. When the user closes or saves
the file, Delphi will prompt the user for a filename.

Description

ificant flags for ModuleCreate.
The ModuleCreate function creates
a new unit, form, or data module,
in a manner that your expert
defines. You define how to create
the module by deriving a class
from TIModuleCreator. Your
expert creates an instance of your
derived, concrete class. This cre-
ator object returns the module
name, file system, and so on.
Delphi calls back to your module
creator object after it creates a
form, passing a form interface object as an argument.

cmAddToProject
cmMainForm

cmMarkModified

cmShowForm

cmShowSource
cmUnNamed

Flag Literal

Figure 3: The sign
ToolIntf.pas lists several flags in the TCreateModuleFlags type.
The ModuleCreate function heeds only some of the flags in its
second argument. The other flags are there for CreateModule
and CreateModuleEx. Figure 3 describes the flags that matter
to ModuleCreate.

When your expert calls ModuleCreate, Delphi calls back to your
module creator object, calling GetAncestorName, GetFormName,
GetFileName, Existing, GetFileSystem, NewModuleSource, and
FormCreated (in that order). Delphi creates the unit and form
files and returns a TIModuleInterface object. Most form experts
can free the module interface without doing anything else with it.

If you return an empty string from GetFileName, make
sure you include the cmUnNamed f lag when calling
ModuleCreate. Delphi generates a default name, but the
user probably wants to choose a different name when sav-
ing the file. The cmUnNamed flag tells Delphi that the cur-
rent name is just a placeholder, so Delphi prompts the user
for a real filename when it saves the file.

If Existing returns False, make sure you include the
cmMarkModified f lag. This tells Delphi to mark the new files
as modified, forcing the user to save them before closing the
files or project. If you omit cmMarkModified, Delphi will let
the user close the project without saving the new unit or form
files. In most cases, a form expert will use the cmShowSource
and cmShowForm flags. Without them, Delphi creates the new
files, but doesn’t show the files to the user. A form expert’s job
is to create new units and forms, and the user probably wants
to see the newly created source code and form.

A project expert, on the other hand, might omit cmShowSource
and cmShowForm for certain units. Perhaps the project expert
creates an application with several forms, including an About
dialog box. The About box is less important than the applica-
tion’s main form. The project expert can use cmShowForm and
cmShowSource when creating the main form, but omit these
flags when creating the About box. This avoids cluttering the
screen with too many forms.

TIModuleCreator Class
Find the declaration of the TIModuleCreator class in the EditIntf
unit. To use this class, derive a class from TIModuleCreator, over-
riding all its methods. Your expert uses your derived class in a
13 July 1997 Delphi Informant
call to TIToolServices.ModuleCreate, as previously discussed. This
section describes the TIModuleCreator class in depth.

Existing Function
function Existing: Boolean;

Override the Existing function to return True if the module
source file exists, or False if your expert will create a new file. If
Existing returns True, the file must exist, or Delphi raises an
EFOpenError exception. Note that this behavior is different
from that of a project expert, which checks whether the file
exists, but continues regardless.)

Note that Delphi ignores the cmExisting flag in the call to
TIToolServices.ModuleCreate. If the module files exist, make sure
Existing returns True.

FormCreated Procedure
procedure FormCreated(Form: TIFormInterface);

Delphi calls the FormCreated procedure after it has created the
form. If the source file (as returned from NewModuleSource)
doesn’t contain a {$R *.DFM} directive, Delphi doesn’t call
FormCreated. If the unit source file contains a {$R *.DFM}
directive, Delphi creates the form, and passes the form interface
to FormCreated. Typically, your expert would use the form inter-
face to set the form’s properties, add components, and so on.

GetAncestorName Function
function GetAncestorName: string;
Override the GetAncestorName function to return the name of
the ancestor form. If your new form doesn’t use form inheri-
tance, return an empty string or Form. To create a data module,
use DataModule as the ancestor name. If your module creator is
creating a source unit without a form, return an empty string.

GetFileName Function
function GetFileName: string;
Override the GetFileName function to return the path to the
unit’s source (.PAS) file. Your module creator can also return
an empty string, in which case Delphi chooses an appropriate
default filename, e.g. Unit1.pas in the current directory.
Delphi extracts the unit name from the filename by stripping
the drive, directory, and extension.

If Existing returns True, the file named by GetFileName
must exist. If the file doesn’t exist, Delphi will raise an
EFOpenError exception.

Informant Spotlight
GetFileSystem Function
function GetFileSystem: string;
Override the GetFileSystem function to return the name of the
file system where you want Delphi to store the form and
source file. You must name a registered file system or return
an empty string to use the default file system.

GetFormName Function
function GetFormName: string;
Override the GetFormName function to return the name of
the unit’s form. Return an empty string if your module cre-
ator is not creating a form, or if you want to use a default
form name, e.g. Form1. Another way to obtain a form name
is by calling TIToolServices.GetNewModuleAndClassName.

If you define GetFormName so it doesn’t return an empty
string, you must ensure the form name is a valid
Delphi/Pascal identifier, and is unique in the project. Your
expert can test whether a form name is unique by comparing
it with the names of all the other forms in the current project.

NewModuleSource Function
function NewModuleSource(UnitIdent, FormIdent,

AncestorIdent: string): string;
Delphi calls the NewModuleSource function to obtain the
source code for the new module. The UnitIdent argument is
the name of the new unit, FormIdent is the name of the form,
and AncestorIdent is the name of the ancestor form. Your
module creator must return the contents of the unit’s .PAS
file as a string.

If you’re defining a form or data module, make sure the
unit’s source code contains a proper declaration of the form’s
class, and a reference to the form description (.DFM) file. If
you want to create a plain unit without a form, feel free to
ignore the FormIdent and AncestorIdent arguments.

Remember to preface the form and ancestor names with
“T” to turn the names into type names. If your form does-
n’t use form inheritance, the ancestor name is Form. This
makes your job easier when creating the source code for the
form; you can use the same code to generate the source
string for all situations.
Conclusion
Project and form experts are ideal solutions for defining
standardized projects, units, and forms. Templates in the
Object Repository are static, and offer little flexibility.
Experts, on the other hand, have the full power of Delphi
to ask questions of the user and create customized projects,
units, and forms. Delphi 3 makes your job easier with pro-
ject and module creators.

Project creators give your expert access to Delphi’s default
application and library projects; or your expert can take
control, and define the project’s source and resource files.
Module creators give you control for individual units and
forms. Combine the two, and you can create experts and
wizards with ease. D
14 July 1997 Delphi Informant
The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUL\DI9707RL

This article was adapted from Hidden Paths of Delphi 3
[Informant Press, 1997], Ray Lischner’s latest book covering
undocumented aspects of Delphi. Hidden Paths of Delphi 3
reveals the hitherto undocumented Open Tools API.
Lischner’s first Delphi book, Secrets of Delphi 2 [Waite Group
Press, 1996], continues to be pertinent for Delphi 3.

Ray Lischner is a contributor to several Delphi periodicals, and is a familiar figure
on the Delphi Usenet newsgroups. He is the founder and president of Tempest
Software, which specializes in consulting and training for object-oriented lan-
guages, components, and tools. He also teaches Computer Science at Oregon State
University, is the president of the Corvallis chapter of the Software Association of
Oregon, and serves on the board of directors for the Pacific Northwest Software
Quality Conference. You can reach him at delphi@tempest-sw.com.
Begin Listing One — The Expert Unit
unit Expert;

{ Expert-creation wizard. }

interface

uses Windows, Classes, SysUtils, Forms,

Dialogs, ExptIntf, ToolIntf;

type

TExpertCreator = class(TIExpert)

public

procedure Execute; override;

function GetAuthor: string; override;

function GetComment: string; override;

function GetGlyph: HICON; override;

function GetIDString: string; override;

function GetMenuText: string; override;
function GetName: string; override;
function GetPage: string; override;
function GetState: TExpertState; override;
function GetStyle: TExpertStyle; override;

end;

implementation

uses ExptDlg;

resourcestring
sAuthor = 'Tempest Software';

sComment = 'Create an expert';

sName = 'Expert Wizard';

sPage = 'Projects';

procedure TExpertCreator.Execute;

begin
RunExpert;

end;

function TExpertCreator.GetAuthor: string;
begin

Result := sAuthor;

end;

function TExpertCreator.GetComment: string;
begin

Result := sComment;

end;

Informant Spotlight
{ Use the application's icon as the expert's icon. If you
define a package for this expert, make sure it has
the MAINICON resource. }

function TExpertCreator.GetGlyph: HICON;

begin
Result := LoadIcon(hInstance, 'MAINICON');

end;

function TExpertCreator.GetIDString: string;
begin

Result := 'Tempest Software.ExpertCreator';

end;

function TExpertCreator.GetName: string;
begin

Result := sName;

end;

function TExpertCreator.GetPage: string;
begin

Result := sPage;

end;

function TExpertCreator.GetStyle: TExpertStyle;

begin
Result := esProject;

end;

function TExpertCreator.GetMenuText: string;
begin

Result := '';

end;

function TExpertCreator.GetState: TExpertState;

begin
Result := [];

end;

end.

End Listing One
Begin Listing Two — The ExptDlg Unit
unit ExptDlg;

{ Expert-creation wizard. }

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, ExptGen;

type
TMainDlg = class(TForm)

ExpertStyle: TRadioGroup;

Label1: TLabel;

ExpertName: TEdit;

OkButton: TButton;

Button1: TButton;

procedure ExpertStyleClick(Sender: TObject);

procedure ExpertNameChange(Sender: TObject);

private
{ Private declarations }
procedure EnableOkButton;

function GetExpertInfo: TExpertInfo;

public
{ Public declarations }

end;

procedure RunExpert;

implementation

uses ToolIntf, ExptIntf;

{$R *.DFM}
15 July 1997 Delphi Informant
{ Run the expert when the user invokes it. }
procedure RunExpert;

var
Dlg: TMainDlg;

Info: TExpertInfo;

begin
Dlg := TMainDlg.Create(Application);

try
if Dlg.ShowModal = mrOK then

begin
Info := Dlg.GetExpertInfo;

try
CreateExpert(Info);

finally
Info.Free;

end;
end;

finally
Dlg.Free;

end;
end;

{ Enable the OK button only when the user has selected
an expert style and entered a name. }

procedure TMainDlg.EnableOkButton;

begin
OkButton.Enabled := (ExpertStyle.ItemIndex >= 0) and

(ExpertName.Text <> '');

end;

procedure TMainDlg.ExpertStyleClick(Sender: TObject);

begin
EnableOkButton;

end;

procedure TMainDlg.ExpertNameChange(Sender: TObject);

begin
EnableOkButton;

end;

{ Create a TExpertInfo object to store the information
the user supplied. }

function TMainDlg.GetExpertInfo: TExpertInfo;

begin
Result := TExpertInfo.Create(

TExpertStyle(ExpertStyle.ItemIndex),ExpertName.Text);

end;

end.

End Listing Two
Begin Listing Three — The ExptGen Unit
unit ExptGen;

{ Expert-creation wizard. }

interface

uses ToolIntf, ExptIntf;

type
TExpertInfo = class
private

fStyle: TExpertStyle;

fName: string;
function GetClassName: string;

public
constructor Create(Style: TExpertStyle; Name: string);
property Style: TExpertStyle read fStyle;

property Name: string read fName;

property ClsName: string read GetClassName;

end;

procedure CreateExpert(Info: TExpertInfo);

implementation

Informant Spotlight
uses SysUtils, Classes, EditIntf, TypInfo;

resourcestring

sInvalidStyle = 'Invalid expert style, %d';

sMainLogic = ' { Fill in the main logic here. }';

sMainIcon1 = '{ In a package, you must explicitly add the';

sMainIcon2 = ' MAINICON resource to the package. In a DLL,';

sMainIcon3 = ' set the icon in the project options. }';

sAuthor = 'Author';

sOrganization = 'Organization';

sFormPage = 'Forms';

sProjectPage = 'Projects';

type

TProjectCreator = class(TIProjectCreator)

private

fInfo: TExpertInfo;

public

constructor Create(Info: TExpertInfo);

function Existing: Boolean; override;

function GetFileName: string; override;

function GetFileSystem: string; override;

function NewProjectSource(

const ProjectName: string): string; override;

procedure NewDefaultModule; override;

procedure NewProjectResource(

Module: TIModuleInterface); override;

property Info: TExpertInfo read fInfo;

end;

TModuleCreator = class(TIModuleCreator)

private

fInfo: TExpertInfo;

public

constructor Create(Info: TExpertInfo);

function Existing: Boolean; override;

function GetAncestorName: string; override;

function GetFileName: string; override;

function GetFileSystem: string; override;

function GetFormName: string; override;

function NewModuleSource(UnitIdent, FormIdent,

AncestorIdent: string): string; override;

procedure FormCreated(Form: TIFormInterface); override;

property Info: TExpertInfo read fInfo;

end;

{ Create the expert. }
procedure CreateExpert(Info: TExpertInfo);

var
ProjectCreator: TProjectCreator;

begin
ProjectCreator := TProjectCreator.Create(Info);

try
ToolServices.ProjectCreate(ProjectCreator, []);

finally
ProjectCreator.Free;

end;
end;

{ TExpertInfo class }
constructor TExpertInfo.Create(Style: TExpertStyle;

Name: string);
begin

inherited Create;

fStyle := Style;

fName := Name;

end;

{ Build a class name from the expert name by removing all
non-alphanumeric characters and prepending 'T' for Type. }

function TExpertInfo.GetClassName: string;
var

I: Integer;

begin
Result := 'T';
16 July 1997 Delphi Informant
for I := 1 to Length(Name) do
if Name[I] in ['a'..'z','A'..'Z','_','0'..'9'] then

Result := Result + Name[I];

end;

{ TProjectCreator class. Remember the expert info object. }
constructor TProjectCreator.Create(Info: TExpertInfo);

begin
inherited Create;

fInfo := Info;

end;

const
CRLF=#13#10;

{ Create and return contents of project's source file. }
function TProjectCreator.NewProjectSource(

const ProjectName: string): string;
begin

Result := Format(

'library %s;' + CRLF + CRLF +

'uses ShareMem, Forms, ExptIntf, ToolIntf;' +CRLF+CRLF+

'{$R *.RES}' + CRLF + CRLF+

'function InitExpert(ToolSvc: TIToolServices;' + CRLF +

' RegProc: TExpertRegisterProc;' + CRLF +

' var Terminate: TExpertTerminateProc):' + CRLF +

' Boolean; stdcall;' + CRLF +

'begin' + CRLF +

' Result := True; { return False for error }' + CRLF +

' ToolServices := ToolSvc;'+CRLF+

' Application.Handle := ToolSvc.GetParentHandle;'+CRLF+

' RegProc(%s.Create)' + CRLF + 'end;' + CRLF + CRLF +

'exports InitExpert name ExpertEntryPoint resident;' +

CRLF + CRLF + 'begin' + CRLF + 'end.' + CRLF

, [ProjectName, Info.ClsName]);

end;

function TProjectCreator.Existing: Boolean;

begin
Result := False { New files. }

end;

function TProjectCreator.GetFileName: string;
begin

Result := '' { Default filename. }
end;

function TProjectCreator.GetFileSystem: string;
begin

Result := '' { Default file system. }
end;

{ Add the expert interface to the project. }
procedure TProjectCreator.NewDefaultModule;

var
ModuleCreator: TModuleCreator;

begin
ModuleCreator := TModuleCreator.Create(Info);

try
with ToolServices.ModuleCreate(ModuleCreator,

[cmAddToProject,cmShowSource,cmUnNamed,

cmMarkModified]) do
{ Free the module interface. }
Free;

finally
ModuleCreator.Free;

end;
end;

{ Default resources. Remember to free the
module interface. }

procedure TProjectCreator.NewProjectResource(

Module: TIModuleInterface);

begin
Module.Free;

end;

{ TModuleCreator class. Remember the expert info object. }

Informant Spotlight
constructor TModuleCreator.Create(Info: TExpertInfo);

begin
inherited Create;

fInfo := Info;

end;

{ The TTextStream class inherits from TStringStream.
It makes it a little easier to write lines of text
to a stream. }

type
TTextStream = class(TStringStream)
public

constructor CreateEmpty;

procedure FormatLn(Fmt: string; Args: array of const);
procedure WriteLn(Line: string);
procedure NewLine;

end;

constructor TTextStream.CreateEmpty;

begin
inherited Create('');

end;

procedure TTextStream.NewLine;

begin
WriteString(CRLF)

end;

procedure TTextStream.FormatLn(Fmt: string;
Args: array of const);

begin
WriteString(Format(Fmt, Args));

NewLine;

end;

procedure TTextStream.WriteLn(Line: string);
begin

WriteString(Line);

NewLine;

end;

{ Return a string containing all source code for module. Use
a TTextStream to keep this function manageable. }

function TModuleCreator.NewModuleSource(

UnitIdent, FormIdent, AncestorIdent: string): string;
var

Stream: TTextStream;

ClsName: string;
begin

ClsName := Info.ClsName;

Stream := TTextStream.CreateEmpty;

with Stream do
try

FormatLn('unit %s;', [UnitIdent]);

NewLine;

WriteLn('interface');

NewLine;

WriteLn('uses Windows, ToolIntf, ExptIntf;');

NewLine;

WriteLn('type');

FormatLn(' %s = class(TIExpert)', [ClsName]);

WriteLn(' public');

WriteLn(' procedure Execute; override;');

WriteLn(' function GetAuthor: string; override;');

WriteLn(' function GetComment: string; override;');

WriteLn(' function GetGlyph: HICON; override;');

WriteLn(' function GetIDString: string; override;');

WriteLn(' function GetMenuText: string; override;');

WriteLn(' function GetName: string; override;');

WriteLn(' function GetPage: string; override;');

WriteLn(' function GetState: TExpertState; override;');

WriteLn(' function GetStyle: TExpertStyle; override;');

WriteLn(' end;');

NewLine;

WriteLn('implementation');

NewLine;

FormatLn('procedure %s.Execute;', [ClsName]);

WriteLn('begin');

if Info.Style in [esForm, esProject, esStandard] then
17 July 1997 Delphi Informant
WriteLn(sMainLogic);

WriteLn('end;');

WriteLn('');

FormatLn('function %s.GetAuthor: string;', [ClsName]);

WriteLn('begin');

if Info.Style in [esForm, esProject] then
FormatLn(' Result := ''%s'';', [sAuthor])

else
WriteLn(' Result := '''';');

WriteLn('end;');

NewLine;

FormatLn('function %s.GetComment: string;', [ClsName]);

WriteLn('begin');

if Info.Style in [esForm, esProject] then
FormatLn(' Result := ''%s'';', [Info.Name])

else
WriteLn(' Result := '''';');

WriteLn('end;');

NewLine;

if Info.Style in [esForm, esProject] then
begin

WriteLn(sMainIcon1);

WriteLn(sMainIcon2);

WriteLn(sMainIcon3);

end;
FormatLn('function %s.GetGlyph: HICON;', [ClsName]);

WriteLn('begin');

if Info.Style in [esForm, esProject] then
WriteLn(' Result := LoadIcon(hInstance, ''MAINICON'');')

else
WriteLn(' Result := 0;');

WriteLn('end;');

NewLine;

FormatLn('function %s.GetIDString: string;', [ClsName]);

WriteLn('begin');

FormatLn(' Result := ''%s.%s'';', [sOrganization, Info.Name]);

WriteLn('end;');

NewLine;

FormatLn('function %s.GetMenuText: string;', [ClsName]);

WriteLn('begin');

if Info.Style in [esStandard] then
FormatLn(' Result := ''%s'';', [Info.Name])

else
WriteLn(' Result := '''';');

WriteLn('end;');

NewLine;

FormatLn('function %s.GetName: string;', [ClsName]);

WriteLn('begin');

FormatLn(' Result := ''%s'';', [Info.Name]);

WriteLn('end;');

NewLine;

FormatLn('function %s.GetPage: string;', [ClsName]);

WriteLn('begin');

if Info.Style in [esForm] then
FormatLn(' Result := ''%s'';', [sFormPage])

else if Info.Style in [esProject] then
FormatLn(' Result := ''%s'';', [sProjectPage])

else
WriteLn(' Result := '''';');

WriteLn('end;');

NewLine;

FormatLn('function %s.GetState: TExpertState;', [ClsName]);

WriteLn('begin');

if Info.Style in [esStandard] then
WriteLn(' Result := [esEnabled];')

else
WriteLn(' Result := [];');

WriteLn('end;');

NewLine;

FormatLn('function %s.GetStyle: TExpertStyle;', [ClsName]);

WriteLn('begin');

FormatLn(' Result := %s;',

[GetEnumName(TypeInfo(TExpertStyle), Ord(Info.Style))]);

WriteLn('end;');

NewLine;

WriteLn('end.');

Result := DataString;

finally

Informant Spotlight
Free;

end;
end;

function TModuleCreator.Existing: Boolean;

begin
Result := False; { Create new files. }

end;

function TModuleCreator.GetAncestorName: string;
begin

Result := ''; { Not using inheritance. }
end;

function TModuleCreator.GetFileName: string;
begin

Result := ''; { Use the default filename. }
end;

function TModuleCreator.GetFileSystem: string;
begin

Result := ''; { Use the default file system. }
end;

function TModuleCreator.GetFormName: string;
begin

Result := ''; { Not a form. }
end;

procedure TModuleCreator.FormCreated(

Form: TIFormInterface);

begin
{ This unit has no form, so Delphi should never call

this method. If you define a module creator that
defines a form, remember to free the form interface,
as shown below. }

Form.Free;

end;

end.

End Listing Three
18 July 1997 Delphi Informant

19 July 1997 Delphi Informant

Delphi at Work
Delphi 2 / Object Pascal / Microsoft Access / Visual Basic for Applications

By Ian Davies

Automated Access
Creating Automation Clients: Part III
In this third and final installment of the Automation series, we’ll cover the use of
Microsoft Access as an Automation Server. (In the May issue of Delphi Informant I

discussed using Word as an Automation server; last month I covered using Excel.)
Access version 2 for Windows 3.1 uses Access
Basic as its underlying programming language,
but versions 7 and 8 for Windows 95 (sup-
plied with the Professional Editions of Office
95 and Office 97, respectively) use Visual
Basic for Applications (VBA). Because Access
version 2 cannot act as an Automation server, I
will concentrate on the use of VBA for the
remainder of this article.
Access as an Automation Server
Access exposes the Application object, which
can be used for Automation. It can be used in
the following way:

Acc := CreateOLEObject('Access.Application');
where Acc is declared as a Variant elsewhere
in the program. The instance data of the
Automation object is stored in Acc, and it is
through this that you gain access to its
underlying functionality. For example, to
open an existing database, you would call
the OpenCurrentDatabase method of the
Application object, as follows:

Acc.OpenCurrentDatabase(

filepath := '...path and filename of database...');

Similarly, the NewCurrentDatabase method
will create a new, empty database (the filepath
variable is implied in this case):

Acc.NewCurrentDatabase(

'...path and filename of new database...');

Each open database has an associated DoCmd
object that exposes various properties and
methods specific to that database. For exam-
ple, to open a pre-defined query in the cur-
rent database, use the OpenQuery method of
the DoCmd object:

Acc.DoCmd.OpenQuery('Sales by Category');

Similarly, the OpenReport method will open
and print the report specified by the argument
it is passed.

Figure 1 shows a Delphi form, in design mode,
that demonstrates the principles discussed

Figure 1: An Automation example.

Delphi at Work
here. The program uses the Northwind sample database that
ships with all versions of Access.

One important point concerning the Northwind database is that
of its splash screen: When the database is opened — normally or
through Automation — it displays a splash screen. If you were
using Access directly, the splash screen must be cleared before any
progress can be made, because it’s shown modally. When control-
ling Access using Automation, however, this isn’t necessary,
because the commands directly reference the underlying object,
so your application proceeds as if the splash screen wasn’t there.

(It’s possible to prevent the splash screen from appearing by
sending a + keystroke, which simulates holding down S,
before the database is opened. However, because the splash
screen doesn’t inhibit the functionality of Access when used
through Automation, and considering that the databases you’re
likely to use probably won’t have a splash screen, I won’t delve
into the complexity of sending keystrokes to other applications.)

The Open Query and Print Report buttons implement the previ-
ous two examples. I chose to use the “Ten Most Expensive
Products” query in the example, because this demonstrates a
nice feature of Access — its implementation of SQL that makes
generating statistics of this kind very simple. The Export Data

button executes a pre-defined query, exports the data returned
by that query in dBASE format, and finally opens and displays
the table using Delphi’s Table and DataSource components.
The export is performed using Access’ TransferDatabase
method, and is called with various parameters describing the
type of transfer to be carried out, the format of the export, the
path of the destination table, the type of the source object, the
name of the source object, and the destination filename:

Acc.DoCmd.TransferDatabase(acExport, 'dBase 5.0',

'C:\Program Files\Borland\Delphi 2.0\Demos\Data\', acQuery,

'Ten Most Expensive Products', 'qry.dbf');

All the methods used here, together with their respective para-
meters, are fully documented in Access’ online Help, and need
only slight modifications to get them to work via Automation
from Delphi.

When closing the application, the instance of Access also needs
to be closed. This is performed by calling the Quit method of
the Application object.

Using Access, macros that perform some local function can be
stored within the database and executed remotely using
20 July 1997 Delphi Informant
Automation. This is achieved by calling the RunMacro method
of the DoCmd object, passing the name of the macro as a
string parameter. For example:

Acc.DoCmd.RunMacro('Macro1');

This means that processes not available, nor appropriate to be
performed via Automation, can still be used. They are imple-
mented directly in Access and controlled from Delphi.
Data Access Objects
Technically speaking, Data Access Objects (DAO) is a COM
(Component Object Model) interface to the JET database
engine (Microsoft’s counterpart to the Borland Database
Engine). DAO to a Delphi programmer is, in some respects,
similar to Access, insofar as it’s an Automation server. However,
it’s typically used for a different purpose. In general, DAO is
used for manipulating data, and Access is used for presenting it.
DAO is more efficient than Access at getting data stored in an
Access database (a .MDB file), because it comprises — and
therefore loads into memory — only the functionality necessary
for manipulating the data, not any visual functions such as
reporting, graphical querying, table manipulation, etc.

DAO exposes the dbEngine object as its top-level object used
in Automation as follows:

dbEngine := CreateOLEObject('DAO.dbEngine');

where dbEngine has been declared as a Variant. The dbEngine
object can be used to control various functions, such as imple-
menting transaction control, creating new databases, opening
existing databases, setting access privileges, and returning
details of error messages. In the following example, we are
using the OpenDatabase method to open an existing database,
the instance details of which are stored in the dbs variable
(which has previously been declared as a Variant):

dbs := dbEngine.OpenDatabase(
'... path and filename of database...');

Having established a reference to a particular database, we can
now create what is known in the Microsoft world as a recordset.
You can think of a recordset as a collection of records in a data-
base, such as a table, part of a table, a query, or part of a query.
This object is also stored in a Variant and can be used as follows:

rst := dbs.OpenRecordset('Ten Most Expensive Products');

Rather than a specific pre-defined object in a database,
recordsets can take as a parameter a SQL query statement.
For example:

rst := dbs.OpenRecordset('Select * From Employees',

dbOpenSnapshot);

As previously stated, DAO is useful for manipulating data,
rather than displaying it. The previous examples demon-
strated how queries can be executed, but there was no way
for the results to be viewed. The functionality discussed

Figure 2: A demonstration form that uses DAO to access data.

procedure TQueryForm.FillStringGrid(Data: Variant);

var
NumRows, NumColumns, l, M: Integer;

begin
{ Move to the last record in the recordset to ensure the

RecordCount method references all the records. }
Data.MoveLast;

Data.MoveFirst;

{ Retrieve the number of fields and records, then
set the size of the string grid. }

NumRows := Data.RecordCount;

NumColumns := Data.Fields.Count;

StringGrid1.RowCount := NumRows + 1;

StringGrid1.ColCount := NumColumns;

{ Add Captions to first row of string grid. }
for l := 0 to NumColumns - 1 do

StringGrid1.Cells[l, 0] := Data.Fields[l].Name;

{ Cycle through each cell in the recordset placing its
value in the appropriate place in the StringGrid. }

for l := 0 to NumRows - 1 do begin
for M := 0 to NumColumns - 1 do

if Data.Fields[M].Value <> Null then
StringGrid1.Cells[M, l + 1] := Data.Fields[M].Value

else
StringGrid1.Cells[M, l + 1] := '';

{ Move to the next record in the recordset. }
Data.MoveNext;

end; { for }
end;

Figure 3: A function to display the contents of a dataset in a
string grid.

Delphi at Work
here has been implemented in the example shown in Figure 2.
It includes the two queries already mentioned, plus a func-
tion that returns the results and displays them in a string
grid (see Figure 3), a facility that performs an indexed
search on a particular table, and an example of inserting a
new record with some sample data into a database table. A
more complex example using DAO would involve having
multiple databases and multiple recordsets within those
databases open at once, possibly stored in a Variant array.

If you’ve used Delphi’s standard facilities for accessing
tables and queries, using DAO will be reasonably familiar
to you. To add a record to a database, for example, you
would call the Add method of the recordset, set the values
21 July 1997 Delphi Informant
of each field, and post the changes using the Update
method. Similarly, to search for a particular value in a data-
base, you would set the active index and call the Seek
method. The steps involved are identical to those you
would use if you were using a database native to Delphi,
but the syntax is different. After these differences are over-
come, DAO is an ideal way to get to existing data stored in
an Access database.
Licensing
It’s appropriate to mention the licensing implications of
using third-party products as Automation servers. In gener-
al, you have no rights to distribute any part of the
Automation server with your application unless permission
is obtained from the author of the server software (which
will typically involve a licensing fee). However, if you used
Visual Basic or Visual C++ (or another similar Microsoft
development tool) as the development language, you have a
royalty-free license to distribute the Microsoft JET database
engine and its associated DAO with your application.

Unfortunately, this doesn’t extend to developers using non-
Microsoft tools, such as Delphi. If you know your clients
have the rights to use a product that can be used as an
Automation server, you are permitted to make full use of its
capabilities, provided the number of system users doesn’t
exceed the number of licenses of the Automation server.
Different license agreements have different restrictions, so
it’s always wise to check with the author of the Automation
server before implementing any system based on it.
Conclusion
Access (and its associated file format) is an extremely popu-
lar database management system, largely because it’s part of
the Microsoft Office Professional suite. Using Automation is
only one way to get at data in its databases; various third-
party add-ons are available for Delphi that offer native
access to the data without the overhead of using an
Automation server. However, Automation is the ideal solu-
tion if you’re interested in manipulating systems that exist in
Access that include more than a database.

Referring generally to office suites, you can choose the com-
ponent of the suite that best suits a particular sub-task and
call (what are likely to be) pre-defined functions to produce
an extremely rapid solution. For example, Excel provides
many complex functions that would be pointless and diffi-
cult to recreate in Delphi. Using Automation, they are only
a function call away, yet, at all times, control is maintained
by your application. An ideal application of Automation is if
your client wants to maintain control over the content of,
for example, printed reports, to make changes at will, yet
still be able to access them via a program pre-written in
Delphi (this was described in detail in Part I of this series).
This removes the need to rebuild reports using a specialized
reporting tool for what could only be a minor amendment.
Furthermore, if implementing a new system, the creation of
the reports (or conversion of existing ones) could be carried

Delphi at Work
out by the system users, while development of the code to
access them could proceed in parallel — only a small inter-
face routine would be required to bridge the gap.

Although I have referred specifically to Microsoft Office and
its components in this series, the principles discussed can be
applied to any Automation server. Even if you aren’t interest-
ed in implementing such a system in a practical situation,
you should at least have an idea of how complex Automation
servers are designed, should you ever decide to create your
own in Delphi. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97 \JUL\DI9707ID.

Ian Davies is a developer of 16- and 32-bit applications for the Inland Revenue
in the UK. He began Windows programming using Visual Basic about four years
ago, but has seen the light and is now a devout Delphi addict. Current interests
include Internet and intranet development, inter-application communication, and
sometimes a combination of the two. Ian can be contacted via e-mail at
106003.3317@compuserve.com.
22 July 1997 Delphi Informant

InterBase Indexes
Inside InterBase: Part II

Greater Delphi
InterBase / Object Pascal / SQL

By Bill Todd

23 July 1997 Delphi Informant
In Part I of this series (presented in last month’s issue), we explored creating and
using InterBase triggers and generators. In this installment, we continue looking

inside InterBase, focusing on the use of its indexes.
Why Indexes?
The reasons to create indexes in an InterBase
database are the same as for any other:
Indexes provide a fast way to find specific
rows in a table, and the means to enforce
uniqueness. Because any index is a sorted list
— unlike the table data itself — the database
management system (DBMS) can find any
value quickly. The ability to enforce unique-
ness stems directly from the ability to find a
value quickly; each time you add a row to the
table, the DBMS must first search for the
unique value to see if it already exists.

You can create an index on a single column,
or on multiple columns in a table. InterBase
allows a maximum of 16 columns in an
index. By maintaining a sorted list of the val-
ues in the column(s) being indexed, an index
lets you find rows fast. Therefore, you can
use a multi-column index to search for a
value or values in the first n columns.

For example, assume you have an index on an
Items table that includes the
CustomerNumber, OrderNumber, and
PartNumber columns. A DBMS can use this
index to find rows by:
■ customer number,
■ customer number and part number, or
■ customer number, part number, and

order number.

However, the index is useless if you need to
find a row by part number alone; the index
is sorted first by customer number. The
only way to find a part number in the
index is to scan it sequentially — you
might as well scan the table.
Creating Indexes
Creating indexes has advantages and disad-
vantages. For the best performance from
InterBase, you must understand the type of
indexes to create and when to create them.
By indexing all the columns you may use to
select records, you’ll garner the best perfor-
mance locating rows. However, indexes
hurt performance when you are inserting,
modifying, or deleting rows. This is because
the indexes must be updated each time you
insert or delete a row, or modify an indexed
column in a row.

Indexes also consume disk space. However,
this is usually a minor consideration because
disk space is relatively inexpensive compared
to users’ lost time with a slow application.

Therefore, you should create an index under
these three conditions:
1) The column(s) are used frequently in the

WHERE clause of a query.
2) The column(s) are used frequently to join

tables in a query.
3) The column(s) are used frequently in the

ORDER BY clause of a query.

With InterBase, including the same column
in multiple indexes is a bad idea. For exam-
ple, if you have three columns to index, you’ll
need six indexes to include all the different
combinations of column order. However,
InterBase can use multiple, single-column

Figure 1: The InterBase Server Manager’s Database Statistics window.

Greater Delphi

Number of levels in the index tree.
kets Number of leaf pages in the index.

Total number of pages in the index.
 data length Average length of each index entry in bytes.
 Total number of rows in the index with

duplicate values.
 Number of rows for the value that has the

most duplicate entries in the index.
ibution Histogram showing the number of pages in

each of the percent fill ranges.

Explaining the numbers in the Database Statistics window shown
.

Definition
indexes when a query includes selection criteria for both
columns. So you’ll get better overall performance creating a
single-column index on each of the three columns, than by
creating six, three-column indexes.

However, this isn’t true if you use the columns in only one
order. For example, if you always select rows from the
Items table by specifying a customer number, an order
number, and a part number, you’ll get the best perfor-
mance by creating a single index on all three columns.
The same is true if you always order a query’s results by
the same columns. If the ORDER BY clause exactly
matches the fields and order of an existing index,
InterBase will use the index to order the result set, instead
of retrieving the requested rows and sorting them.

Additionally, you’ll get better performance using single-col-
umn indexes if a query’s WHERE clause includes the OR
operator to connect selection criteria on two columns. This
is because InterBase indexes are used for moving through
records in order, and as bitmaps. In an OR operation,
InterBase will use single-column indexes to evaluate the
selection conditions, then combine them to retrieve the
required rows. (Yes, bitmapped indexes existed long before
FoxPro started using them.)

The database page size also plays a role in index perfor-
mance. A larger page size means each index page
holds more entries. That, in turn, means fewer
pages must be read from disk to search the index.
The page size also affects the depth of the index
tree. If an index is more than four levels deep,
consider increasing the page size. If the index
depth on data that changes frequently is less than
three levels, consider decreasing the page size.
However, don’t decrease the page size to the point
that one record will not fit on a page.

To determine the number of levels in the index,
use the InterBase Server Manager. Select Tasks |

Database Statistics from the menu to open the

Depth
leaf buc
nodes
Average
total dup

max dup

Fill distr

Figure 2:
in Figure 1

Item
24 July 1997 Delphi Informant
Database Statistics window. In the Database Statistics win-
dow, select View | Database Analysis to display the statistics
for all the tables and indexes in the database. To find the
information for a particular index, select Search from the
main menu, and search for the index name. Figure 1 shows
the statistics for the CUSTNAMEX and CUSTREGION
indexes. The table in Figure 2 explains these statistics.

InterBase automatically creates an index whenever you define a
primary key, foreign key, or unique constraint. You can create
additional indexes using the SQL CREATE INDEX statement.
Its syntax is:

CREATE [UNIQUE] [ASCENDING | DESCENDING] INDEX IndexName

ON TableName (column1, column2, ...)

For example, this statement creates a unique index on the
Items table:

CREATE UNIQUE INDEX ITEMX

ON ITEMS (CustomerNumber, OrderNumber, PartNumber)

You can abbreviate ASCENDING as ASC and DESCENDING
as DESC. The index’s name must be unique within the database.
You can create multiple indexes on the same column. So if
you need to order records both ways, you may want to create
an ascending and a descending index on a date column. You
cannot create a unique index if the column already contains
duplicate values.
Modifying Indexes
To permanently remove an index, use the SQL DROP
INDEX command. For example, this command permanently
removes the index named ITEMX from the database:

DROP INDEX ITEMX

You can also temporarily deactivate an index using the
ALTER INDEX command. For example, these commands
deactivate the ITEMX index, then reactivate it:

ALTER INDEX ITEMX INACTIVE

ALTER INDEX ITEMX ACTIVE

Setting the index to ACTIVE rebuilds the index; on a large
table, this may take some time. One case where you’ll want
to deactivate indexes is when importing a large number of

Greater Delphi
records into a table. Deactivating the indexes on the table,
importing the data, then rebuilding the indexes by activating
them is faster than incurring the overhead of updating the
indexes for each new row as it’s imported.

Although indexes normally require no maintenance on
your part, some attention is occasionally necessary to
ensure optimum performance. InterBase indexes use a bal-
anced B-tree structure; over time, they can become unbal-
anced if many records are added and deleted. Deactivating
and reactivating the indexes will rebuild them, and correct
this problem.
Figure 3: The Basic ISQL Set Options dialog box.

Figure 4: Displaying the query’s plan.
Selectivity
For each index, InterBase also generates a statistic referred to as
selectivity. Selectivity indicates the number of unique values in
the index, in relation to the number of rows in the table. The
query optimizer uses this number to determine if an index
should be used to process a particular query, or if scanning the
table will be faster. Adding and/or deleting large numbers of
records could change the index’s selectivity.

The selectivity of the index is calculated when the index is built.
It is not updated as rows are added and deleted from the table.
Although selectivity is re-computed any time the index is
rebuilt, you don’t have to rebuild the index to update the selec-
tivity. You can update the selectivity using the SET STATIS-
TICS command:

SET STATISTICS ITEMX

None of these steps are necessary if you periodically back up
and restore your database. A backup and restore rebuilds all
indexes, and thus recalculates their selectivity. Additionally, a
backup and restore performs a sweep to remove outdated
record versions, and re-packs the database so the pages are uni-
formly filled.

When you use a SQL SELECT statement to retrieve records
from an InterBase database, the optimizer examines your
query and formulates an execution plan. To determine which
indexes to use, and how to use them to provide the best per-
formance, the optimizer looks at:
■ the size of each table involved in the query,
■ the available indexes,
■ the selectivity of the indexes,
■ the contents of the WHERE clause, and
■ the contents of the ORDER BY clause.
A Definite Plan
Although the InterBase optimizer is very good, it’s always possi-
ble it won’t use an index when you think it should. If you experi-
ence poor performance from a query, you should examine
whether the query plan created by the optimizer appears to make
optimal use of available indexes.

To see the optimizer’s plan for executing a query, start ISQL
and select Session | Basic Settings to display the Basic ISQL Set
Options dialog box (see Figure 3). Check the Display Query
25 July 1997 Delphi Informant
Plan box; ISQL will display the query plan for each query you
execute. Figure 4 shows the result of the following query:

SELECT E.FIRST_NAME, E.LAST_NAME, E.PHONE_EXT, D.DEPARTMENT

FROM EMPLOYEE E, DEPARTMENT D

WHERE E.DEPT_NO = D.DEPT_NO

The results window contains the query, plan, and query
result, respectively. In this example, the plan is:

PLAN JOIN (D NATURAL, E INDEX (RDB$FOREIGN8))

This shows the optimizer will perform the natural join between
the Employee and Department tables using the index,
RDB$FOREIGN8. The index has a system-generated name
because it was created automatically when the foreign key on
the DEPT_NO field in the Employee table was defined.

To override the plan created by the optimizer, use the PLAN
clause of the SQL statement (see Figure 5). An InterBase exten-
sion to standard SQL, the PLAN clause lets you specify your
own plan instead of letting the optimizer create one. You
should use this capability sparingly. First, it’s unlikely you’ll

Figure 5: Specifying a plan.

Greater Delphi
find a case where you can create a better plan than the optimiz-
er. Second, one of the great benefits of dynamic query optimiza-
tion is that the query plan may change over time, as the charac-
teristics of the tables change. For example, if an index’s selectivi-
ty drops dramatically, the optimizer will recognize this, and stop
using the index. If you add an index to a table, the optimizer
will detect the new index automatically, and use it when appro-
priate. On the other hand, if you specify a plan in your SQL
statement, the plan will never change — no matter what hap-
pens to the database — unless you change it.
Conclusion
You will get the best possible performance from your
InterBase application by carefully creating indexes on fields,
or combinations of fields, that you use to select and/or order
rows. InterBase is more flexible in its use of indexes than
most databases, in that it can effectively use multiple single-
column indexes to select rows, based on values in multiple
columns. Therefore, creating single-column indexes is gener-
ally better than creating multi-column indexes, unless you’re
sure you’ll always select and/or order by the same columns
in the same order.

Next month, we’ll look at managing security for your
InterBase databases. D

Bill Todd is President of The Database Group, Inc., a database consulting and development
firm based near Phoenix, AZ. He is a Contributing Editor of Delphi Informant; co-author of
Delphi: A Developer’s Guide [M&T Books, 1995], Delphi 2: A Developer’s Guide [M&T
Books, 1996], and Creating Paradox for Windows Applications [New Riders Publishing,
1994]; and a member of Team Borland providing technical support on CompuServe. He is
also a nationally known-trainer, and has been a speaker at every Borland Developers
Conference and the Borland Conference in London. He can be reached on CompuServe at
71333,2146, on the Internet at 71333.2146@compuserve.com, or at (602) 802-0178.
26 July 1997 Delphi Informant

27 July 1997 Delphi Informant

The Paradox Files: Part IV
Validity Checks and Referential Integrity

Columns & Rows
Paradox / BDE / Delphi

By Dan Ehrmann

Figure 1: The Datab
Developers use the Paradox file format every day, yet the Delphi documenta-
tion offers little information about it. To help fill that gap, the first two articles

in this series explored the internals of Paradox .DB files: table structure, BDE
record and block management, field types, and record size calculation. The third
article examined primary and secondary indexes. In this, the fourth article of the
series, we’ll examine validity checks and referential integrity.
What Is a Validity Check?
A validity check, abbreviated as ValCheck, is a
data formatting requirement that you define
for a field, and that’s enforced for you by the
BDE whenever you add or modify the value
in that field.

ValChecks are defined and modified from the
Restructure dialog box of the Database
Desktop. When this dialog box first opens,
the panel on the right side allows you to set
ValChecks for each field (see Figure 1).
ValChecks are saved in the TableName.VAL
file, a member of the table’s family of files.
ase Desktop’s Restructure dialog box.
This file has an undocumented binary for-
mat, so you can’t modify it directly.

The Paradox file format supports the fol-
lowing types of ValChecks:
■ required value (the field cannot be left

blank);
■ minimum value in a field;
■ maximum value in a field;
■ default value in a field when a record is

inserted; and
■ a format mask that can also control

allowable values in a field.

Figure 2 lists each Paradox field type, and
the ValChecks that are valid for that type.

ValChecks have been available in the
Paradox file format since its earliest ver-
sions. A former limit of 64 ValChecks per
table was removed with the advent of Level
7 tables. (For more information on Paradox
table “levels,” see the “The Paradox Files:
Part I,” in the April 1997 Delphi
Informant.)

ValChecks provide a number of benefits,
because they’re defined and enforced at the
database level, rather than within your
application. This allows you to maintain
them in one place, and make them available

28 July 1997 Delphi Informant

Alpha All valid
Number All valid
Money (Currency) All valid
Short All valid
Long Integer All valid
BCD All valid
Date All valid
Time All valid
Timestamp All valid
Autoincrement Minimum only
Logical Required and

Default only
Memo Required only
Formatted Memo Required only
Graphic Required only
OLE Required only
Binary Required only
Byte Required only

Figure 2: Field types and valid ValChecks.

Field Type ValChecks

Columns & Rows
to every application
that uses the same
set of tables. As
you’ll see, however,
Delphi provides
only limited sup-
port for ValChecks,
reducing their ben-
efit in your applica-
tions.
The Minimum
and Maximum
ValChecks
The purpose of
ValChecks is self-
evident. You can
define one to set a
lower or upper
boundary, or define
them both to set a
range. The bound-
Figure 3: The Paradox picture language.

@ Any character
Any number (0-9)
? Any letter (uppercase or lowercase)
& Any letter (converted to uppercase)
~ Any letter (converted to lowercase)
! Any character (letters converted to uppercase)
[] Bracket-optional entries
{ } Group-required entries
*<num> Specify a number of repetitions of a group

or character
* Specify any number of repetitions
; Literal escape character
Other chars Treated as literals

Character Meaning
ary value itself is a valid entry (i.e. with a Minimum ValCheck
defined, allowable values are equal to or greater than the
defined value.) Obviously, the Maximum ValCheck must be
larger than the Minimum.

When you use Delphi’s field editor to add static field
objects to your form, Delphi doesn’t pick the underlying
ValChecks for those field types that have MinValue and
MaxValue properties. This is an unfortunate omission on
Borland’s part.

When you specify these ValChecks with an Alpha field, the
BDE gets the sort order from the table language. (If you don’t
specify a custom table language, each table is defined with a
default language driver that you specify in the BDE
Configuration program.) When you define a Minimum
ValCheck for an Autoincrement field, the BDE uses this
value to seed the counter. New records increment from the
specified value.

Delphi and the BDE do not test these ValChecks until you
post the new or updated record. If one of them is violated,
you’ll receive the following error:

EDBEngineError

Minimum (or Maximum) validity check failed.

Field: <name>.

The minimum or maximum value isn’t shown, and there’s no
easy way to obtain it. If you use the MinValue and MaxValue
properties instead, you’ll receive the following error when the
value limits aren’t met:

EDatabaseError

X is not a valid value for field <name>.

The allowed range is <min> to <max>.

As you can see, the second error is more informative for the user.
The Default ValCheck
Use this option to specify a starting value for the field when a
new record is inserted. You can then overwrite the default
value with any other valid entry. The Default ValCheck is
fully supported by Delphi. Delphi 3 includes a DefaultValue
property for many of the TField-derived objects, which can
be used in place of the ValCheck.

Special keywords. For Date fields, you can enter the keyword
Today in the Default ValCheck to place the current system
date into the field. You can also enter this keyword in the
Minimum or Maximum ValChecks, to set the current date as
the lower or upper limit. (This option has been supported
since the file format’s earliest versions.)

For Time and Timestamp fields, you can enter the keyword
Now in the Default ValCheck to place the current system time
or date/time in the field. You can also enter this keyword into
the Minimum or Maximum ValChecks, to set the current
time or date/time as the lower or upper limit. (This option
was added in Level 7.)
The Required ValCheck
This ValCheck specifies that a value is required in the field
before the record can be posted. If you post without a value,
you’ll receive the following error message:

EDatabaseError

Field <name> must have a value.

Delphi’s static field objects include a Required property. When
you instantiate one of these objects, and if the DataSet con-
nection is active, Delphi will set the Required property to
True, if there is a Required ValCheck. You can also set this
property manually without the underlying ValCheck being
set, but you must then write code in the OnValidate event, to
enforce the property.
The Picture ValCheck
Pictures are format strings that control which values can be
entered in a field, and how those values should be displayed.
Figure 3 shows the characters in Paradox’s picture “language,”
while Figure 4 shows some sample pictures.

###-##-#### US Social Security Number
*3#-*2#-*4# US Social Security Number
#&#-&#& Canadian postal code
red,green,blue,yellow One of four listed colors.
red,b{rown,l{ack,ue}} One of four listed colors; grouping

ensures the first matching entry
isn’t filled.

!*@ Anything, but capitalize the first
character if it’s a letter.

##/##/#### Date with a four-digit year.
!*{ !,@} Capitalize the first letter in each

word (“proper case”).

Figure 4: Picture examples.

Picture Meaning

Columns & Rows
Delphi provides no support for Paradox’s Picture ValCheck
on data entry or posting. Instead, Delphi provides properties
with some of the same capabilities, specific to each field type:
■ TFloatField, TCurrencyField, TSmallIntField,

TIntegerField, TBCDField, and TAutoIncrementField
objects provide the DisplayFormat and EditFormat proper-
ties. (EditFormat is ignored for Autoincrement fields.)

■ TDateField, TTimeField, and TTimeStampField objects
provide the DisplayFormat and EditMask properties.

■ TStringField objects use only the EditMask property, because
the displayed value is the same as the entered value.

■ TBooleanField objects use the DisplayValues property to
control how True and False are represented in data-
bound controls.
 5: The Database Desktop’s Referential Integrity dialog box.
Referential Integrity
When one or more fields in a table refer to the primary
key of another table, those fields are said to be a foreign
key, i.e. a key “imported” from another table. Foreign keys
are necessary to enforce data consistency among the vari-
ous tables in the database. The Referential Integrity (RI)
rule states that when two sets of fields in two tables are in
a primary key/foreign key relationship, every foreign key
value in one table must match an existing primary key
value in the other table.

For example, a typical Stock table might contain fields for
VendorID, StockType, and PackagingType. Each of these
fields is likely to be a foreign key to a supporting table
containing the valid vendors, stock types, and packaging
types. RI ensures that only entries in each of these
supporting tables can be used to populate the
appropriate fields in the Stock table.

Certain types of operations on a database might
cause existing foreign-key data to become invalid.
For example, if a vendor goes out of business, what
happens to the stock items supplied by that vendor?
And if your company decides to exit from a specific
line of business, what happens to all the items with
that stock type?

For update and delete operations, the RI rule defines
three possible outcomes: Figure
29 July 1997 Delphi Informant
1) A change should be cascaded through the database. For
example, if you change a vendor ID or delete a vendor, you
might choose to cascade this change through the Stock table.

2) A change should be prohibited if records depend on the
value being updated or deleted. For example, you might
stop the user from deleting a vendor if products sold by
that vendor are still within their warranty period.

3) A change should cause linked values to be set to null or
blank. For example, if you decide to no longer support
a particular type of packaging, all stock items that use
the packaging method might have this field set to null.

The Paradox file format doesn’t support all these outcomes.
In fact, only the following limited options are available:
■ For update operations, you can elect to cascade or prohib-

it the change. Paradox does not support changing to null
for update operations.

■ For delete operations, only prohibit is supported. Paradox
tables do not support “cascaded delete” or “change to null.”
This means that you must manually delete linked rows
from the foreign-key table before you can delete the match-
ing row from the primary-key table. (This operation will
succeed, because there will then be no dependent rows.)

This limited support for RI is one of the more serious limita-
tions in the Paradox file format. It’s unfortunate that Borland
doesn’t offer more.
Defining RI
RI is defined from the foreign-key table back to the primary-
key table. For example, an RI relationship between the Stock
and Vendor tables is defined from the Stock table, referring
back to the primary key of the Vendor table.

To set up RI, use the Restructure dialog box in the Database
Desktop. To display the appropriate panel, click on the Table

properties drop-down list in the top right corner. To define an RI
rule, click the Define button to see the dialog box shown in
Figure 5. On the left side, select the field or fields that define the
foreign key. On the right side, select the table whose primary key
matches this foreign key. You can also define how the RI rela-
tionship should behave for updates. When you close the dialog
box, you’ll be prompted to enter a name for the RI relationship;
this name follows the same rules as the field and index names
described in earlier articles.

Columns & Rows
Strict RI. In Figure 5, notice the Strict referential integrity

check box. This setting is a holdover from the days when
Paradox for DOS and Paradox for Windows applications
coexisted on networks. Paradox for DOS didn’t support the
RI features added to the Paradox file format with Level 4.
When this box was checked, the table could be accessed only
by Paradox for Windows, to protect against the possibility
that a Paradox for DOS application would subvert RI. This
setting is ignored by the BDE.
Figure 6: The Database Desktop’s Table Lookup dialog box.
How Does RI Work?
RI information is saved in the .VAL files for both tables.
The BDE first places a maintained secondary index on the
field or fields comprising the foreign key. This index allows
the BDE to quickly sort and filter the table by these fields,
and to manage the foreign-key side of the relationship. It
also allows Delphi to create a one-to-many relationship
within the primary-key table as the master, and the foreign-
key table as the linked detail. When you’re prompted to
specify the name of the RI relationship, you’re actually
specifying the name of this secondary index.

For the foreign-key table, the BDE stores the name of the
field or fields comprising the foreign key, the name of the
table whose primary key forms the other end of the rela-
tionship, and the name of the index used to manage the
link. It also stores the prohibit or cascade setting for the
update rule.

For the primary key table, the BDE stores the name of the
dependent foreign-key table, and the name of the index used
to manage the link. This information allows the BDE,
Database Explorer, and Database Desktop to list the tables
that depend on this table. A data-modeling tool could use this
information to trace the RI relationships in either direction.
RI and Delphi
Because its database operations are performed by the BDE,
Delphi fully supports Paradox’s implementation of RI. If you
try to insert a value into a field that has an RI relationship to
another table, and the inserted value isn’t in the other table,
you’ll receive the following error message:

EDBEngineError

Master record missing.

Unfortunately, Delphi doesn’t tell you which field contains
the errant value, nor does it move you to that field once
you’ve cleared the error dialog box.

If you try to change the primary-key value in the other
table, or delete the record with that value — and if there
are records using that value — you’ll receive the following
error message:

EDBEngineError

Master has detail records. Cannot delete or modify.

Again, Delphi doesn’t tell you the name of the table where
the detail records reside. (There could be more than one.)
30 July 1997 Delphi Informant
No additional information is available from the EDBEngineError
object, or from the TDBError objects in the BDE error stack.
The Table Lookup “ValCheck”
In its earliest days, the Paradox file format didn’t support RI at all.
Instead, Paradox provided a Table Lookup feature that worked in
a similar fashion. A Table Lookup can be established on any field
in a table, linking that field to the single-field primary key of
another table. (There’s no support for composite primary keys.) A
value entered in that field must exist in the lookup table.

Table Lookup information is also stored in the .VAL file. To
configure a Table Lookup, use the Restructure dialog box in
the Database Desktop. Click the Table properties drop-down
list in the top-right corner to display the appropriate panel.
Click the Define button to see the dialog box shown in
Figure 6. On the left side, specify the single field on which
to perform a lookup. On the right side, select the lookup
table, whose primary key must match the field already
selected. Two additional options can be set:
■ A Lookup access parameter is designed for table view in

the Database Desktop and Paradox itself, and for native
Paradox forms. When set to Help and fill, this option pro-
vided a Cs hot key to display the lookup table
in a dialog box, so that a value could be selected. When
set to Fill no help, this option only validated the entry,
and didn’t provide the hot key or pop-up dialog box.

■ A Lookup type parameter controls which fields are filled
when a lookup is performed. When set to Just current

field, only the lookup field itself is filled. When set to
All corresponding fields, the lookup field and any addi-
tional fields with the same name and type are filled.
Table Lookup and Delphi
If you have a Table Lookup defined, Delphi will validate
the lookup value on record-post (not on field-depart, as the
Database Desktop and Paradox do.) If the value isn’t in the
lookup table, you’ll receive the following error message:

EDBEngineError

Field value out of lookup table range.

Delphi doesn’t tell you which field has the bad value. Also,
Delphi doesn’t provide native support for the Lookup access

Columns & Rows
and Lookup type options described previously. There is no
automated way to display the lookup table, nor to fill in
additional values based on matching field names.

In general, don’t bother setting up table lookups unless
you plan to manipulate data with the Database Desktop or
Paradox itself. The RI features described previously pro-
vide the same validation as an entered value in a lookup
table. To display an actual lookup list, use a DBLookupComboBox
component instead of a TDBEdit component. The ListSource
and ListField (Delphi 3) or LookupSource and LookupField
(Delphi 1 and 2) properties allow you to bind this compo-
nent to a lookup table. You even have explicit control over
the fields displayed in the drop-down list, as well as the
size of the list.
Should You Use ValChecks and RI with Delphi?
Although the Picture ValCheck exists in the Paradox file
format, Delphi ignores it, and newer, better-integrated fea-
tures have replaced its functionality. The situation for
Table Lookup is similar; Delphi and the BDE support it,
but RI and built-in components have replaced it.

While Delphi and the BDE support the Minimum and
Maximum ValChecks, you can also set minimum and maxi-
mum properties at the TField level. When you do this,
Delphi provides more-informative error messages. For this
reason, many developers don’t use these ValChecks, either.

Delphi fully supports the Default and Required ValChecks.
It provides analogs in the DefaultExpression and Required
properties for TField objects, so you can set these proper-
ties in either place. However, as I noted previously, if you
set the TField.Required property to True, and don’t set the
underlying Required ValCheck, you must write your own
code in the OnValidate event to trap for a blank field.

RI is an essential part of any database definition. It links
normalized tables to ensure that the data in each table
remains consistent and fully synchronized. It’s unfortunate
that the Paradox file format doesn’t support all RI options,
but the available support shouldn’t be ignored.
And in the Future?
Borland is adding advanced database features to Delphi
and the BDE. For example, Delphi 3 supports the follow-
ing new properties on TField-descendent objects:
■ CustomConstraint, to specify and test application-specific

constraints imposed on a field’s value, using SQL-based
search expressions. For example: Value >= 0 AND Value
<= 100.

■ ConstraintErrorMessage, to specify a custom error mes-
sage when the constraint is violated.

■ ImportedConstraint, a read-only property that holds
server-based constraints.

Borland also intends to enhance a BDE-based, centralized
database catalog that can draw from heterogeneous data
31 July 1997 Delphi Informant
sources. This catalog will support complex constraints pro-
grammed in SQL and host languages. These constraints
will serve as business rules that function across different
data sources, and for any application using that catalog.
With this feature, Borland implements the theory behind
Paradox’s ValChecks in a far more powerful and flexible
way that’s independent of file formats.
Next Time
The next article in this series will examine the Paradox file
format’s encryption and security mechanisms, and how the
BDE manages passwords for Paradox tables. It will also dis-
cuss table-language options that allow you to define tables
with different character sets and sort orders. D

Dan Ehrmann is the founder and President of Kallista, Inc., a database and
Internet consulting firm based in Chicago. He is the author of two books on
Paradox, and is a member of Team Borland and Corel’s CTech. Dan was the
Chairman of the Advisory Board for Borland’s first Paradox conference, which
evolved into the current BDC. He has worked with the Paradox file format for
more than 10 years. Dan can be reached via e-mail at dan@kallista.com.

32 July 1997 Delphi Informant

Cached Updates: Part III
The OnUpdateRecord and OnUpdateError Event Handlers

DBNavigator
Delphi 2 / Delphi 3

By Cary Jensen, Ph.D.
In the past two issues, this column has explained the use of cached updates in
Delphi 2 and 3. This third and final installment of the series will look at event

handlers related to cached updates: OnUpdateRecord and OnUpdateError.
A Quick Recap
Update caching is a mechanism by which all
changes made to a DataSet are stored locally,
then applied simultaneously using the
ApplyUpdates method of a DataSet or
Database component. Cached updates are
enabled by setting a DataSet’s CachedUpdates
property to True. The cached edits are applied
only specifically to the corresponding
DataSet; closing a table, or setting
CachedUpdates to False without actually
applying the updates, cancels all cached edits.

When updates are being cached, you can
offer editing options that would otherwise be
unavailable. For example, you can permit the
user to view all edited records in the cache,
including those that have been deleted. Also,
you can display both the original and new
field values for records that have been modi-
fied. Finally, you can permit the user to revert
any cached edit, restoring the record to its
original state.

Last month, we looked at the UpdateSQL
component. This component can be used
with a DataSet to allow a user to edit read-
only DataSets, such as SELECT queries that
make use of the DISTINCT keyword. The
UpdateSQL component permits you to define
up to three SQL queries — one each for
delete, insert, and modify updates. These SQL
statements can be quickly and easily con-
structed using the UpdateSQL Editor, a com-
ponent editor for UpdateSQL components.
You might remember that there are four pri-
mary advantages to using cached updates:
■ a decrease in network traffic,
■ an increase in performance,
■ more user interface options, and
■ greater programmatic control over the

posting of individual records.

This month’s DBNavigator will concentrate
on the final advantage, programmatic control
over applying updates.
Using Cache-Related Event Handlers
For those instances where you want complete
control over the application of cached
updates, the DataSet class provides two event
properties: OnUpdateRecord and
OnUpdateError. From OnUpdateRecord, you
replace Delphi’s attempt to update the records
with your own; in other words, you supply
completely customized update behavior.
OnUpdateError is triggered if an exception is
raised during the attempt to update a record,
whether the exception originated from
Delphi’s own update process, or from
OnUpdateRecord.

Using OnUpdateRecord. As mentioned, if
you need to define custom update behavior,
you assign an event handler to the
OnUpdateRecord event property. However,
although this series’ preceding two articles
demonstrated how to turn on cached updates
with an open table, the technique can’t be
used with OnUpdateRecord. Specifically, if

Figure 1: The values of UpdateKind and their meanings.

Value Description
ukModify Current record has been modified.
ukInsert Current record is newly inserted.
ukDelete Current record is scheduled for deletion.

uaFail Record couldn’t be updated; raise an
exception and abort updating. (This is
the default value.)

uaAbort Same as uaFail, except that a silent
exception is raised, meaning that no
error message is displayed to the user.

uaSkip Current record was not updated.
Continue applying updates.

uaRetry Not meaningful in an OnUpdateRecord
event. Used for OnUpdateError to make
another attempt at updating a record
whose previous attempt generated
an exception.

uaApplied The event handler successfully updated
the record.

Value Description

Figure 2: The values of UpdateAction and their meanings.

DBNavigator

Figure 3: The CACHE5 project demonstrates the use of
OnUpdateRecord and OnUpdateError.
you open a table, then set its CachedUpdates property to
True, code associated with OnUpdateRecord won’t be exe-
cuted. However, if you set CachedUpdates to True at design
time, or before opening a table (either by setting its Active
property to True, or by calling the table’s Open method),
the table’s OnUpdateRecord event handler will execute
properly. This behavior is not a bug, but rather an artifact
of how OnUpdateRecord is implemented.

In the following example, a Query component will be cached,
rather than a Table component. With a Query component,
OnUpdateRecord is triggered whether it is set before or after
the activation of the Query. Consequently, the following
example can be similar to the preceding examples.

Here’s the declaration for the OnUpdateRecord event handler:

procedure(DataSet: TDataSet; UpdateKind: TUpdateKind;
var UpdateAction: TUpdateAction)

The first parameter, DataSet, identifies the DataSet com-
ponent to which updates are being applied. More specifi-
33 July 1997 Delphi Informant
cally, the updates are being applied to the current record of
this DataSet. Because DataSet controls which record is cur-
rent when OnUpdateRecord is executing, it’s extremely
important not to perform any record navigation during the
execution of OnUpdateRecord. (This same caution applies
to OnUpdateError.)

The second parameter, UpdateKind, identifies the type of
update that needs to be applied. This parameter has three possi-
ble values, as shown in Figure 1.

The third parameter, UpdateAction, informs the Query com-
ponent of what you’ve done with the current record. There
are five valid values for this property, as shown in Figure 2.
The default value of UpdateAction is uaFail. This value causes
the entire update to fail. Therefore, if you are successful in
updating the current record, it’s imperative that you assign a
value of uaApplied.

The use of the OnUpdateRecord event handler is demonstrat-
ed in the CACHE5.DPR project, shown in Figure 3. The
DataSet being cached in this example is a Query. In addition,
a Table component appears on this form. This table points to
the same table as the Query, and is used to perform the
updates for individual records when the cached update is
applied. Also, the Query’s RequestLive parameter doesn’t need
to be set to True, because the updates will occur via the
OnUpdateRecord event handler, which edits the Table, not the
Query. In fact, leaving the Query’s RequestLive property set to
False ensures that updates are performed only within a
cached-update mode.

Figure 4 shows the OnUpdateRecord event handler assigned
to the Query. It includes a case statement to test the value of
UpdateKind. If the current record is being inserted, and a
new record is added to the table, then the fields of the Query
are assigned to the fields of the table, and the record is post-
ed. If the record has been modified, then the existing record
is located in the table, and its fields are updated. If the
record has been deleted, again the corresponding record is
located in the table and deleted. If the actions of this event
handler don’t raise an exception, the final statement sets the
UpdateAction parameter to uaApplied. If an exception is
raised, the UpdateAction’s default value of uaFail remains
unchanged, causing the update to fail.

Using OnUpdateError. If you create an OnUpdateError event
handler, it will be executed if the attempt to update a particular
record fails. This is true whether the update is being performed
by the default DataSet behavior, an UpdateSQL object, or code
attached to OnUpdateRecord. Unlike OnUpdateRecord, which
doesn’t work properly with Table components under all condi-
tions, OnUpdateError works properly for any DataSet.

The following is the declaration for the OnUpdateError
event handler:

procedure(DataSet: TDataSet; E: EDatabaseError;
UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

F
Q

Figure 5: The OnUpdateError event handler of the CACHE5 project.

DBNavigator
As with OnUpdateRecord, OnUpdateError is passed parameters
for a DataSet, an UpdateKind, and an UpdateAction. These
parameters contain the same information as the correspond-
ing parameters for OnUpdateRecord. In addition, the E para-
meter points to the exception raised during the failure. You
use this exception to determine how to handle the error.

Unlike OnUpdateRecord, where it makes no sense to use the
UpdateAction value of uaRetry, uaRetry plays an important role
in handling update errors. Specifically, in addition to aborting
the update or skipping the current record, you can also make
any changes necessary to the record, then attempt to update it
again. Setting UpdateAction to uaRetry causes the DataSet to
34 July 1997 Delphi Informant
attempt to post the current record again, either through its
internal code, or by calling your OnUpdateRecord event han-
dler again.

The use of OnUpdateError is demonstrated in the CACHE5
project (see Figure 5). Here the event handler is looking for a
specific type of error: a key violation. If this error is encoun-
tered, the user can assign another key value, after which the
update to the record is retried.

Within this event handler, the invalid key value is stored in
the variable NewVal. This value is then displayed in an
InputQuery dialog box, which allows the user to enter a cor-
rect key value.

Once the value is entered, the DataSet for which the event
handler is executing is placed into the dsEdit state using the
Edit method, and the new value is assigned to both the Value
and NewValue properties of the key field. The
OnUpdateRecord event handler is then re-triggered by setting
the UpdateAction parameter to uaRetry.

If you want to permit a user to edit changes to a record
being posted during a cached update, there are two reasons
for caution:
procedure TForm1.Query1UpdateRecord(DataSet: TDataSet;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

var

i: Integer;

begin

// Post pending cached edits.

if DataSet.State in [dsEdit,dsInsert] then

DataSet.Post;

// Update the record.

if UpdateKind = ukInsert then

begin

Table1.Insert;

for i := 0 to Table1.FieldDefs.Count - 1 do

if DataSet.Fields[i].Value <> Null then

Table1.Fields[i].Value := DataSet.Fields[i].Value;

try

Table1.Post;

UpdateAction := uaApplied;

except

Table1.Cancel;

raise;

end;

end

else

// Not an insert. Locate the existing record.

if Table1.Locate('CustNo',

DataSet.Fields[0].OldValue,[]) then

case UpdateKind of

ukModify:

begin

Table1.Edit;

for i := 0 to Table1.FieldDefs.Count - 1 do

if Table1.Fields[i].Value <>

DataSet.Fields[i].Value then

Table1.Fields[i].Value :=

DataSet.Fields[i].Value;

try

Table1.Post;

UpdateAction := uaApplied;

except;

Table1.Cancel;

raise;

end;

end;

ukDelete:

begin

Table1.Delete;

UpdateAction := uaApplied;

end;

end;

end;

igure 4: The OnUpdateRecord event handler assigned to the
uery.
procedure TForm1.Query1UpdateError(DataSet: TDataSet;

E: EDatabaseError; UpdateKind: TUpdateKind;

var UpdateAction: TUpdateAction);

var

BdeError: PChar;

NewVal: string;

begin

GetMem(BdeError, 1024);

try

BDE.DbiGetErrorString(DBIERR_KEYVIOL,BdeError);

// Test if a key violation message is in the exception.

// If a key violation occurred, permit the user

// to enter a new key.

if E.message = copy(StrPas(BdeError),1,

Length(E.message)) then

begin

NewVal := DataSet.Fields[0].NewValue;

if InputQuery('Key violation',

'Enter new key',NewVal) then

begin

DataSet.Edit;

DataSet.Fields[0].Value := NewVal;

DataSet.Fields[0].NewValue := NewVal;

UpdateAction := uaRetry;

end

else

// Use uaAbort since the user has clicked Cancel.

// No error message is necessary.

UpdateAction := uaAbort;

end

else

; // The default UpdateAction is uaFail.

// Permit the update to fail.

finally

FreeMem(BdeError);

end;

end;

DBNavigator
■ If the user happens to leave the workstation during the
update, a transaction may be left open, awaiting the
user’s return.

■ With the preceding code example, I’ve found that if the
user enters a second invalid key in response to an initial
invalid key, the record can’t be posted, and an exception
will be raised when a valid key is entered. This behavior
may be due to a bug in the cached-updates feature.

Consequently, the best approach may be to use OnUpdateError
to copy any invalid record to a temporary table for manual
processing by an administrator, setting the UpdateAction para-
meter to uaSkip when the record has been copied.

Alternatively, you can either validate and post the updated record
from within OnUpdateError, or use an UpdateSQL object to
update the record instead of an OnUpdateRecord event handler.
Regardless, you should rigorously test any OnUpdateError event
handler if you plan to use it for correcting invalid records.
Figure 6: The CACHE6 project demonstrates the use of two
UpdateSQL components to update the result set of a join.
Executing UpdateSQL Queries from OnRecordUpdate
In the preceding example of the OnUpdateRecord event han-
dler, Table methods such as Locate, Insert, and Delete were used
to perform the updates of the cached edits. Furthermore, you
learned that the UpdateObject property of a DataSet is ignored
if a procedure is assigned to OnUpdateRecord. This doesn’t
mean, however, that you can’t use an UpdateSQL object with
an OnUpdateRecord event handler. In fact, it’s possible, and in
some cases highly desirable, to assign one or more UpdateSQL
components from your code to OnUpdateRecord.

The most common reason for using UpdateSQL compo-
nents from within OnUpdateRecord is that the DataSet is a
read-only query that contains a join between two or more
tables. A single UpdateSQL component can’t be used to
update both tables; you need one UpdateSQL component
for each table that needs updating.

When two or more UpdateSQL components are in use
(unlike when they’re used singly), don’t use the UpdateObject
property of the DataSet. Instead, call methods of the
TUpdateSQL class to execute the queries associated with the
various UpdateSQL components.

The most common technique is to call the UpdateSQL
method Apply, which has the following declaration:

procedure Apply(UpdateKind: TUpdateKind);

When you call Apply, it executes the UpdateSQL statement
associated with the type of update. For example, if you pass
this method a parameter of ukDelete, the DeleteSQL state-
ment of the specified UpdateSQL component is executed.

The other alternative is to call SetParams, followed by ExecSQL.
The following are the declarations of these two methods:

procedure SetParams(UpdateKind: TUpdateKind);

procedure ExecSQL(UpdateKind: TUpdateKind);
35 July 1997 Delphi Informant
Actually, the call to Apply encapsulates calls to SetParams,
which performs the run-time binding of the query parame-
ters, followed by ExecSQL. The only time you would want to
use SetParams and ExecSQL is when a particular query
includes parameters in addition to the defaults.

For example, to perform a ukDelete action on an orders
table without deleting records that have shipped within the
last month, you could include — in the DELETE query —
a parameter used in the WHERE clause to test the ship-
ping-date field. Then, when applying the updates, you
would begin by calling SetParams to perform the default
run-time parameter binding, then assign an appropriate
date value to your date parameter, and finally call ExecSQL.

If the SQL statements you assign to your UpdateSQL compo-
nents don’t use aliases (DatabaseNames), you’ll also need to assign
UpdateSQL’s DataSet property before calling Apply or SetParams.
DataSet is a run-time property that points to the DataSet affected
by the SQL statements. This permits the UpdateSQL compo-
nent to use the Database being used by the DataSet.

The use of multiple UpdateSQL components is demonstrated
in the project CACHE6, shown in Figure 6. This project
includes a read-only query that joins two tables. These tables,
CUSTOLY1.DB and RESERVA1.DB, are copied from the
CUSTOLY.DB and RESERVAT.DB tables supplied with
Delphi, from within the OnCreate event handler for the
main form.

Also from within the OnCreate event handler, Query1 is
assigned to the DataSet properties of both UpdateSQL
components. The following SQL statements are associated
with Query1:

SELECT d.ResNo, d.EventNo, d.CustNo, d.NumTickets,

d.Amt_Paid, d.Pay_Method, d.Card_No, d.Card_Exp,

d.Pay_Notes, d.Purge_Date, d.Paid,

d1.Last_Name, d1.First_Name, d1.VIP_Status,

d1.Address1, d1.Address2, d1.City, d1."State/Prov",

d1.Post_Code, d1.Country, d1.Phone, d1.Fax,

d1.EMail, d1.Remarks

FROM "Reserva1.db" d, "Custoly1.db" d1

WHERE (d1.CustNo = d.CustNo)

procedure TForm1.FormCreate(Sender: TObject);
var

OldTable: TTable;

NewTable: TTable;

begin
OldTable := TTable.Create(Self);

NewTable := TTable.Create(Self);

try
OldTable.DatabaseName := 'DBDEMOS';

OldTable.TableName := 'CUSTOLY.DB';

NewTable.Tablename := 'CUSTOLY1.DB';

NewTable.DatabaseName := 'DBDEMOS';

NewTable.BatchMove(OldTable,batCopy);

NewTable.AddIndex('','CustNo',[ixPrimary, ixUnique]);

OldTable.TableName := 'RESERVAT.DB';

NewTable.Tablename := 'RESERVA1.DB';

NewTable.BatchMove(OldTable,batCopy);

NewTable.AddIndex('','ResNo',[ixPrimary, ixUnique]);

Query1.DatabaseName := 'DBDEMOS';

Query1.Open;

UpdateSQL1.DataSet := Query1;

UpdateSQL2.DataSet := Query1;

finally
OldTable.Free;

NewTable.Free;

end;
end;

Figure 7: The OnCreate event handler for the CACHE6 project’s
main form.

DBNavigator

UPDATE "Reserva1.db"

SET EventNo = :EventNo,

CustNo = :CustNo,

NumTickets = :NumTickets,

Amt_Paid = :Amt_Paid,

Pay_Method = :Pay_Method,

Card_No = :Card_No,

Card_Exp = :Card_Exp,

Purge_Date = :Purge_Date,

Paid = :Paid

WHERE ResNo = :OLD_ResNo

Figure 8: The ModifySQL property of UpdateSql1.

UPDATE "Custoly1.db"

SET "Custoly1.db"."Last_Name" = :"Last_Name",

"Custoly1.db"."First_Name" = :"First_Name",

"Custoly1.db"."VIP_Status" = :"VIP_Status",

"Custoly1.db"."Address1" = :"Address1",

"Custoly1.db"."Address2" = :"Address2",

"Custoly1.db"."City" = :"City",

"Custoly1.db"."State/Prov" = :"State/Prov",

"Custoly1.db"."Post_Code" = :"Post_Code",

"Custoly1.db"."Country" = :"Country",

"Custoly1.db"."Phone" = :"Phone",

"Custoly1.db"."Fax" = :"Fax",

"Custoly1.db"."EMail" = :"EMail"

WHERE "Custoly1.db"."CustNo" = :"OLD_CustNo"

Figure 9: The ModifySQL property of UpdateSQL2.

INSERT INTO "Custoly1.db"

("Custoly1.db"."Last_Name", "Custoly1.db"."First_Name",

"Custoly1.db"."VIP_Status", "Custoly1.db"."Address1",

"Custoly1.db"."Address2", "Custoly1.db"."City",

"Custoly1.db"."State/Prov", "Custoly1.db"."Post_Code",

"Custoly1.db"."Country", "Custoly1.db"."Phone",

"Custoly1.db"."Fax", "Custoly1.db"."EMail")

VALUES

(:"Last_Name", :"First_Name", :"VIP_Status", :"Address1",

:"Address2", :"City", :"State/Prov", :"Post_Code",

:"Country", :"Phone", :"Fax", :"Email")

Figure 10: The InsertSQL property of UpdateSQL2.
The code in Figure 7 is the OnCreate event handler for the
CACHE6 project’s main form. When the cached updates are
applied, the OnUpdateRecord event handler calls the Apply
methods of the UpdateSQL1 and UpdateSQL2 components.

Here’s the OnUpdateRecord event handler for the Query:

procedure TForm1.Query1UpdateRecord(DataSet: TDataSet;

UpdateKind: TUpdateKind; var UpdateAction: TUpdateAction);

begin
UpdateSQL1.Apply(UpdateKind);

UpdateSQL2.Apply(UpdateKind);

UpdateAction := uaApplied;

end;

As you can see, the event handler is very simple.

Probably the hardest part of using UpdateSQL components
from within OnUpdateRecord is ensuring the queries associat-
ed with the component make sense. While this may seem
obvious, it can be much harder than you think. In CACHE6,
for instance, the UpdateSQL2 component, which is used to
update the CUSTOLY1.DB table, does not include a
DeleteSQL query. As you can imagine, the fact that a reserva-
tion is deleted for a customer doesn’t mean that the user also
wants to delete the customer. Likewise, the memo fields and
36 July 1997 Delphi Informant
autoincrement fields can’t be modified. Your SQL statements
must take this into account.

The ModifySQL property of UpdateSQL1 contains the
SQL statements shown in Figure 8. Here’s the InsertSQL
property from the same component:

INSERT INTO "Reserva1.db"

(EventNo, CustNo, NumTickets, Amt_Paid, Pay_Method,

Card_No, Card_Exp, Purge_Date, Paid)

VALUES

(:EventNo, :CustNo, :NumTickets, :Amt_Paid, :Pay_Method,

:Card_No, :Card_Exp, :Purge_Date, :Paid)

The DeleteSQL property of UpdateSQL1 is shown here:

DELETE FROM "Reserva1.db"

WHERE ResNo = :OLD_ResNo

Let’s now consider the SQL statements from UpdateSQL2. The
ModifySQL property is shown in Figure 9. Finally, Figure 10 is
the InsertSQL property from UpdateSQL2.

Conclusion
Cached updates greatly increase the number of options you
have when it comes to editing records. In addition, they can
generally improve your application’s performance. In its
simplest case — that of editing a single table — cached
updates are easy to employ. Even when your caching needs
are complex, however, Delphi’s cached-update capabilities
provide the tools necessary to get the job done right. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUL\DI9707CJ.

DBNavigator
Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including
Delphi In Depth [Osborne/McGraw-Hill, 1996]. Cary is also a Contributing Editor
of Delphi Informant, as well as a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://gramercy.ios.com/~jdsi. You can also reach Jensen Data
Systems at (281) 359-3311, or via e-mail at cjensen@compuserve.com.
37 July 1997 Delphi Informant

38 July 1997 Delphi Informant

Sights & Sounds
Delphi 2 / Object Pascal

By Peter Dove and Don Peer

Optimizing Graphics
Delphi Graphics Programming: Part V

Figure 1: The
Speed is a primary concern in graphics programming, and optimization is
one of the most studied areas of games programming. This month, we’ll

discuss several methods of optimization, and apply them to our example pro-
gram (see Figure 1).
To keep TGMP as object-oriented as possi-
ble, we’ll exclude some of the more “exotic”
optimization methods. Our goal is to
increase the speed that TGMP rotates the
Shaded Textured Cube, at its default posi-
tion, by 50 percent. So first, we’ll optimize
the DIB class, then TGMP.

Note that optimization involves knowing where
to optimize. A function called only once dur-
ing an object’s life is probably not worth opti-
mizing. However, a method that’s called
repeatedly is worthy of attention. An extreme
example is a deeply nested loop. If the inner
loop contains inefficiencies, they’re magnified
in exact relation to the number of times the
loop is executed.
 sample application — times six.
Multiplication and Division
The first optimization method we’ll cover is a
quick way to divide and multiply integers.
Using the shl and shr operators enables you
to shift integers bitwise, to the left or right. If
you bit-shift an integer 1 to the left, you mul-
tiply its value by 2 (binary is base 2). If you
bit-shift an integer 1 to the right, you divide
its value by 2.

Bit-shifting is quick — it only takes one clock
cycle of the processor to perform a bit-shift.
Multiplication and division operations will
take many times longer depending on the
processor you use. Here’s an unoptimized line
of code, and its optimized equivalent using a
bit-shift operation in place of conventional
multiplication (from the DrawHorizontalLine
procedure in DIB16.PAS):

{ Previous statement. }
BasePointer := Pointer(FScanWidthArray[Y] +

(X * 2));

{ Optimized statement. }
BasePointer := Pointer(FScanWidthArray[Y] +

(X shl 1));
Two Timing
One of the DIB class’ main tasks is to clear
the backpage. Unfortunately, the backpage is
cleared only one pixel at a time. Because a
pixel is 16 bits of data, and the largest inte-
ger size accessible in Delphi 2 is 32 bits, this
begs the question, “How can we clear the
backpage in 32-bit hits rather than in 16-bit

procedure TDIB16bit.ClearBackPage(Color : Word);

var
X, XColor : Integer;

BasePointer : ^Integer;

begin
{ Loop through bitmap, setting every pixel

to Color parameter. }
BasePointer := FPointerToBitmap;

XColor := Color and (Color shr 16);

// Optimization: Shift division.
// Replace div 2 with shr 1.
for X := 0 to (((FScanWidth shr 1) *

(FBHeader.bmiHeader.biHeight))-1) shr 1 do
begin

BasePointer^ := XColor;

{ Inc increments a pointer by the size of the type that
the pointer points to; in other words, 4 bytes. }

Inc(BasePointer);

end;
end;

Figure 2: The new, optimized ClearBackPage procedure.

Sights & Sounds
hits?” Theoretically, this would cut the operation time in
half. Incidentally, the ClearBackPage procedure is also a
good candidate for optimization; it’s called numerous
times and consumes large chunks of program time.

So how do we do it? Recall in Part IV, we talked a lot about
bit-shifting. Figure 2 shows the fully-commented
ClearBackPage procedure with all optimizations in place.
Note that BasePointer is now a pointer to a 32-bit integer
value. To write two pixels at a time, we move the Word Color
into the top 16 and bottom 16 bits of a 32-bit integer. The
new XColor variable is 32-bit, so we perform an and opera-
tion on Color, with Color shifted to the left 16 bits. We
incorporated bit-shifting optimization methods with the bit-
shifting, replacing the two division operations. Also, we are
“blitting” 32 bits at a time, instead of 16 bits.
Lookup Tables
Lookup tables offer a quick way to pre-calculate multiple vari-
ables and place them into an array. Thus, the program only
has to view a place in memory for a result, rather than calcu-
late it. In this section, we’ll implement lookup tables in the
SetPixel and DrawHorizontalLine procedures of the DIB class.

This unoptimized code from SetPixel is called every time a
pixel is drawn in the
texture-mapping modes:

Integer(BasePointer) :=

Integer(FPointerToBitmap) +

(Y * FScanWidth) + (X * 2);

Also consider the following calculation. It only returns the
beginning of the DIB class, then the Y offset into it:

Integer(FPointerToBitmap) + (Y * FScanWidth)

An array of pre-calculated Y positions can do a better job.
We easily implement the arrays by adding this code to the
DIB class:
39 July 1997 Delphi Informant
{ Private section of the class. }
FScanWidthArray : array [0..800] of Integer;

{ Place at the end of the Create constructor. }
for X := 0 to 800 do

FScanWidthArray[x] :=

(FScanWidth * X) + Integer(FPointerToBitmap);

This new optimized line in the SetPixel procedure now uses
the lookup table:

{ Using a lookup table and bit-shifting to increase speed. }
BasePointer := Pointer(FScanWidthArray[Y] + (X shl 1));

You probably noticed we also included another optimiza-
tion, converting:

(X * 2)

to:

(X shl 1)

Now let’s optimize TGMP. The optimized code for
DIB16.PAS is available for download (see end of the article
for details).
Reciprocals
There are still many ways of optimizing the code to obtain
more speed. In this vein, we’ll further optimize the GMP
unit and the TGMP class.

The floating-point processor doesn’t take the same amount of
time for all calculations. For example, floating-point division
takes much longer than floating-point multiplication. Thus,
we should favor the use of floating-point multiplication
wherever possible. A good way to do this is by using recipro-
cals. The reciprocal of a number is 1 divided by that number.
For example, the reciprocal of 31 is 1/31, or 0.032258.

Before optimization, the RemoveBackfacesAndShade procedure
continued the following:

R := Round(((255 - GetRValue(AnObject.Color)) / 31) *

Intensity) + GetRValue(AnObject.Color);

G := Round(((255 - GetGValue(AnObject.Color)) / 31) *

Intensity) + GetGValue(AnObject.Color);

B := Round(((255 - GetBValue(AnObject.Color)) / 31) *

Intensity) + GetBValue(AnObject.Color);

Here’s the optimized code which uses reciprocals:

R := Round(((255 - GetRValue(AnObject.Color)) * 0.032258) *

Intensity) + GetRValue(AnObject.Color);

G := Round(((255 - GetGValue(AnObject.Color)) * 0.032258) *

Intensity) + GetGValue(AnObject.Color);

B := Round(((255 - GetBValue(AnObject.Color)) * 0.032258) *

Intensity) + GetBValue(AnObject.Color);
Fixed-Point Math
Integer math is much faster than floating-point math (espe-
cially when it comes to division), but how can we use
integer math when we need to handle decimal values? We
can simulate floating-point precision with integer math,
using a number of bits to represent the fraction.

{ Unoptimized code without floating-point division. }
if RenderMode = rmSolidTexture then

begin
for Y := 0 to 479 do begin

if YBuckets[Y].StartX = -16000 then
continue;

Length := (YBuckets[Y].EndX - YBuckets[Y].StartX) + 1;

TextXIncr := ((TextureBuckets[Y].EndPosition.X —

TextureBuckets[Y].StartPosition.X)) /

Length ;

TextYIncr := ((TextureBuckets[Y].EndPosition.Y —

TextureBuckets[Y].StartPosition.Y)) /

Length ;

TextX := TextureBuckets[Y].StartPosition.X;

TextY := TextureBuckets[Y].StartPosition.Y;

for I:=YBuckets[Y].StartX to YBuckets[Y].EndX do begin
if I < 0 then

begin
TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

Continue;

end;
if I > Width then

begin
TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

Continue;

end;
{ Use the FDib SetPixel method instead of the

Windows GDI SetPixel. }
FDib.SetPixel(I, Y, FCurrentBitmap[Round(TextX),

Round(TextY)]);

TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

end;
end;

end; { if RenderMode = rmSolidTexture ...}

Figure 3: From the unoptimized RenderYBuckets procedure.

Sights & Sounds
For example, let’s say you select 16 bits for the precision; you
have just placed a decimal point in the middle of the 32-bit
integer. Using eight bits of a 32-bit integer to represent the
fraction provides a precision of 1/256.

Converting a normal integer value into a fixed-point value
is the easiest way to perform this optimization. The code in
Figure 3 is from the RenderYBuckets procedure. The Length
variable is a normal integer. To convert it (or any normal
integer) into a fixed-point integer, shift the bits left by the
number of bits of precision (e.g. eight) you have decided to
use. You can see this effect with these two statements:

TextXIncr := ((TextureBuckets[Y].EndPosition.X -

TextureBuckets[Y].StartPosition.X) shl 8) div Length ;

TextYIncr := ((TextureBuckets[Y].EndPosition.Y -

TextureBuckets[Y].StartPosition.Y) shl 8) div Length ;

The start position is subtracted from the end position, and
the result shifted eight bits to the left. The divisor, Length,
remains untouched, i.e. it was not shifted. If you converted
length into a fixed point, the equation would suffer from
incorrect scaling — the value would be too low. The oppo-
site occurs when using fixed-point multiplication — you
must downscale the answer by eight bits.

The results, TextXIncr and TextYIncr, are correctly formatted,
fixed-point numbers. If length were converted into a fixed-
40 July 1997 Delphi Informant
point number (by shifting left eight positions), you would take
TextXIncr and TextYIncr, then shift right eight bits to normalize
it to a fixed-point number.

To reconvert a fixed-point number into a normal integer,
simply reshift it right by the precision you selected (in this
case, eight bits). Of course, the problem with fixed-point
math is that the highest value available is the highest value
(32), minus precision (24 bits in this case).

Let’s look at an integer multiplication example that
assumes eight bits of precision. Let’s say we have a variable,
X, with a value of 55; and a variable, Y, with a value of 10.
First we convert each into an 8-bit fixed-point value using
the shl operator:

55 shl 8 = 14080

and:

10 shl 8 = 2560

Next, we multiply:

14080 * 2560 = 36044800

Then we normalize:

36044800 shr 8 = 140800

Last, we obtain the conventional integer value:

140800 shr 8 = 550

which we can check using good ol’ multiplication:

10 * 55 = 550

Now let’s look at division. This formula, (2 / 10) * 20 = 4, for
example, just can’t be done with integer math. First, let’s eval-
uate the expression in the parentheses. Sixteen bits of preci-
sion is needed to ensure this example is correct. Convert 2 to
a fixed-point value:

2 shl 16 = 131070

The divisor, however, doesn’t need to be converted:

131070 div 10 = 13107

Now we convert 20 into a fixed-point value:

20 shl 16 = 1310700

The final equation is:

13107 * 1310700 = 17179344900

Sights & Sounds

with Object3D.PolyStore[P] do begin
if Z <> 0 then

begin
for I := 0 to NumberPoints - 1 do begin

NewX :=

Point[I].X * PreCalCos - Point[I].Y * PreCalSin;

NewY :=

Point[I].X * PreCalSin + Point[I].Y * PreCalCos;

Point[I].X := NewX;

Point[I].y := NewY;

end;
end;

end; { with }

Figure 5: The Delphi with statement optimizes your code by
resolving a pointer (to Object3D.PolyStore[P] in this case) once
for an entire block of code.
Now correct the multiplication overflow:

shr 16 = 262140

Next, convert it into a conventional number by shifting right
16 bits:

262140 shr 16 = 4

The fully-optimized code from the RenderYBuckets procedure,
with additional comments, is shown in Figure 4.
More on Optimization
Optimizing with with. Delphi supports other optimiza-
tions, such as with its with statement (see Figure 5). Here,
the with statement has the compiler save a pointer to
Object3D.Polystore[P], so the pointer doesn’t have to be
evaluated each time through the for loop.
41 July 1997 Delphi Informant
Speed, speed, speed. Our original goal was to improve the
engine’s speed by 50 percent. Did we achieve it? On one
machine, the code from Part IV ran at 10 frames per second
(fps) with fully-lighted texturing. The new, optimized code
runs at 14 fps, so we’re not quite there yet. However, many
optimizations remain. For now, we’ll leave the final fps up to
you; look at the different optimization sections provided and
see if you can apply them to other portions of TGMP. And
don’t worry, we’ll continue to implement optimizations in
our next article.

It’s in the cards. Note that the code will only run as fast as
your graphics card can run. On a system with a Matrox
Mystique graphics card, the fully-lighted textured cube ran
at an amazing 30 fps. The commercial version of TGMP
(due for release soon), ran at over 70 fps. Optimization
software has shown most of the overhead in TGMP is con-
sumed by the blitting-to-screen process. Thus, the faster
your card, the faster the cube will spin. This can also be
proven by reducing the window size in ARTICLE5.EXE
while it’s running. Each time you reduce the window size,
the fps will increase proportionately.

From our readers. A reader, Fred Mitchell, found that the
CrossProduct function was wrong, and we have corrected it
accordingly. The RemoveBackfacesAndShade method was
also altered to ensure it consistently refers to the new
PolyWorld array instead of sometimes referring to the
PolyStore or PolyWorld array. This was an oversight in the
upgrade to the World Coordinate System (from Part IV).
Our Fifth Application
Essentially, our fifth application is the same as that pre-
sented in Part IV, with two major additions:
1) We added code to the Timer1.Timer event that analyzes

the frames per second, running a type constant counter
within the event. When the counter reaches 50, it evalu-
ates the time elapsed since it arrived at 50. The rest is
simple math. The result is displayed in the title bar to
indicate any speed improvements you may want to make.

2) The SetLightSourcePosition procedure in TGMP configures
the light vector’s exact orientation. The method accepts
two parameters: the position of the light in space, and its
direction, i.e. a point in space to which the light “looks.”
if RenderMode = rmSolidTexture then
begin

for Y := 0 to Height do begin
if YBuckets[Y].StartX = -16000 then

continue;

Length := (YBuckets[Y].EndX - YBuckets[Y].StartX) + 1;

{ Floating-point to fixed-point. }
TextXIncr := ((TextureBuckets[Y].EndPosition.X -

TextureBuckets[Y].StartPosition.X)

shl 8) div Length ;

TextYIncr := ((TextureBuckets[Y].EndPosition.Y -

TextureBuckets[Y].StartPosition.Y)

shl 8) div Length ;

{ Turns TextX and TextY into fixed-point
integers with 8 bits of precision. }

TextX := TextureBuckets[Y].StartPosition.X shl 8;

TextY := TextureBuckets[Y].StartPosition.Y shl 8;

for I:=YBuckets[Y].StartX to YBuckets[Y].EndX do begin
if I < 0 then

begin
TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

Continue;

end;
if I > Width then

begin
TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

Continue;

end;

{ To turn a fixed point integer to a normal integer,
shift the bits right by the same amount shifted
left when turning them into fixed point integer. }

{ Uses the FDib SetPixel method instead of
the Windows GDI SetPixel. }

FDib.SetPixel(I, Y, FCurrentBitmap[TextX shr 8,

TextY shr 8]);

{ Addition of fixed point numbers is the same as
normal integers and it is the same with
subtraction of fixed point numbers. }

TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

end; { for }
end; { for }

end; { if RenderMode = rmSolidTexture }

Figure 4: From the fully-optimized RenderYBuckets procedure.

Sights & Sounds
The complete source for our fifth application developed
with the TGMP component is available in ARTICLE5.PAS.
Conclusion
Aside from adding the camera coordinate system, next
month we’ll add more optimizations (so you can compare
those you devised with the ones we implemented), allow
for embedding sprites into the 3D engine, and change the
system to cope with displaying more than one object at a
time. Finally, we’ll provide the ability to display and build
the scene at design time. See you then. D

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97 \JUL\DI9707DP.

Peter Dove is a partner in Graphical Magick Productions, specialists in graphics,
training, and component development. He can be reached via the Internet at
peterd@graphicalmagick.com.

Don Peer is a Technical Associate with Greenway Group Holdings Inc. (GGHI). He
can be reached via the Internet at dpeer@mgl.ca.
42 July 1997 Delphi Informant

43 July 1997 Delphi Informant

On the Net
Delphi 2 / Object Pascal / Internet / Intranets

By John Penman

NetCheck: Part II
Completing the 32-Bit Network Debugging Tool

Figure 1: N
design time.
In the whirls of the Internet and intranets, developers must ensure their net-
work programs remain robust. A network debugging tool, therefore, is

essential for any developer building Internet and/or intranet applications.
In Part I of this series (presented in the May
Delphi Informant), we began examining
NetCheck, a simple network debugging
application that uses three, non-visual
Delphi components, each encapsulating a
well-known debugging service:
1) Sonar, a wrapper for the ping application;
2) EchoC, an echo client wrapper for the

Echo service, similar to ping; and
3) Trace, which encapsulates the TraceRoute

service. Trace maps the route of the pack-
ets between the sending and receiving
machines. This mapping can help find any
bottlenecks or “breaks” in the network.

In May, we implemented Sonar in NetCheck.
This month, we’re extending the utility by
adding the EchoC and Trace components
(see Figure 1).
Kicking Out the Jams
Recall that Sonar operates in blocking
mode, causing the user interface to “freeze”
etCheck showing Sonar, EchoC, and Trace at
and preclude user interaction. Because Trace
descends from Sonar, it inherits this not-
too-serious, but inconvenient, problem.

To overcome the effects of blocking, we’ll
use the TThread class to add multi-tasking
capability to Trace and Sonar. However,
we’ll take a different approach when han-
dling the Echo service. To work asynchro-
nously, EchoC uses the Winsock function,
WSAAsyncSelect. This permits you to work
with NetCheck while processing the back-
ground, without using threads.
Full of Echoes
The Echo service is used to verify the con-
nection between the target host and client
machine, and that the server is operating at
the application level. In contrast, Sonar and
other ping applications test the connection
only at the target machine’s network inter-
face; this doesn’t indicate the target machine’s
operating system is functioning. The down-
side of using the Echo service is that an echo
server must be running on the target host.
Ping applications, including Sonar, do not
require such a server.

When the host responds positively to an
echo request using the Echo service, you
know the server is working with a viable
connection. (EchoS.pas is the source to
implement the EchoS component, used by
the echo server program, EchoServe.exe.
Because EchoS is similar to EchoC, we won’t
cover it in detail. EchoS.pas is available for
download; see end of article for details.)

44 July 1997 Delphi Informant

Figure 2: The Object Inspector
showing EchoC’s published prop-
erties.

On the Net

Figure 3: The controls on the Echo page allow you to change
the default values before attempting an echo.
The operation of the echo
client is simple: It sends a
test message at predeter-
mined intervals to the
echo server, on port seven
(IPPORT_ECHO). The
server then reflects the test
message back to the client.
If the echo server doesn’t
respond, either the net-
work interface or target
machine’s operating system
is down, or both. Another
possibility is that the echo
server program hasn’t start-
ed. When this happens,
Sonar can be used to verify
the connection at the tar-
get machine’s network
interface, to narrow the
number of possible causes.
The EchoC Component
The TEchoC class descends from the TComponent class to
form the basis of the EchoC control (see Listing Four
beginning on page xx). The TEchoC.Create constructor
includes the CheckWS function to initialize WinSock.DLL
before use. If the .DLL isn’t available, EchoC posts an
error message, and closes NetCheck.

Two methods, Start and Stop, are declared in TEchoC ’s
public section:

public
{ Public declarations }
procedure Start;

procedure Stop;

The Start procedure calls GetHost to resolve a given host
name before beginning the echo process. The Stop procedure
halts the echo process.

You control EchoC’s behavior through its published proper-
ties, PortNo, Interval, and NoEchoes. They allow you to speci-
fy a port, the time lapse between transmissions, and the
number of times to send a message, respectively. Although
the Echo service uses the standard IPPORT_ECHO port to
transmit messages, you can change it to any port number.
However, you must also change the echo server’s port; other-
wise, communication is not possible.

You can alter the values of published properties at design
time (see Figure 2) or run time. For flexibility, these prop-
erties are available through appropriate controls on the
Echo page in NetCheck (see Figure 3). For example, to
change the interval between transmissions from 0 to 999
seconds, use the UpDown component for Interval (secs). In
the same way, you can indicate the number of messages to
send in No of echoes.
The Echo service can use the Transmission Control Protocol
(TCP), or User Datagram Protocol (UDP) to send messages.
TCP, a streaming protocol, guarantees reliable delivery of data,
using a virtual circuit between the sender and receiver
machines across the network. UDP, a connectionless protocol,
does not require a virtual circuit. Unlike TCP, UDP contains
no error checking, and consequently, has lower overhead.

TCP is analogous to using registered snail mail to send infor-
mation safely, requiring the recipient to acknowledge receipt.
UDP is similar to using regular snail mail; the recipient doesn’t
acknowledge receipt. In this case, EchoC only uses UDP; how-
ever, you can easily implement the TCP version of the Echo
service. (TCP is partially implemented in the EchoC and
EchoS components. I leave this enhancement to you.)
Processing Echoes
The GetHost method configures a socket to transmit mes-
sages and receive message echoes. A socket is an endpoint
in a communication link, used to send data and listen for
incoming data.

After GetHost creates the socket, Start calls AllocateHwnd
to create the FWnd and FTWnd handles to invisible win-
dows for the EchoEvent and TimerEvent event procedures,
respectively. When the socket receives notification that
data is ready to read or send, the EchoEvent procedure
responds. To make triggering of EchoEvent possible,
WSAAsyncSelect is called through StartAsyncSelect to put
the socket, FSocketNo, into non-blocking mode. EchoC is
now ready to work asynchronously.

After sending a message, the socket waits in the background
for an echo reply. When the socket receives the data (from the
target host), Winsock sends an FD_READ notification. This
triggers EchoEvent to call GetData to read the data. EchoC
then posts the echo reply to memEchoMsg, a Memo control on
NetCheck’s Echo page. After an interval of Interval seconds,
Windows sends a WM_TIMER message. This triggers the
TimerEvent method to call SetData to send another message.

Each time Windows triggers TimerEvent, TimerEvent com-
pares FWriteCount — a counter that is incremented with

Figure 4: EchoC in action.

Figure 5: The Echo Server program responding to echo requests
from NetCheck.

On the Net
each transmission — with FNoEchoes. If FWriteCount
exceeds FNoEchoes, TimerEvent calls the following code in
TimerEvent to halt transmission:

if FWriteCount > FNoEchoes then
begin

KillTimer(FTWnd,1);

DeallocateHWND(FTWnd);

FDone := True;

OnDoneEvent;

Exit;

end;

OnDoneEvent then posts a message to the Stop method to
halt the echo process.

To use the EchoC component, select the Echo page in
NetCheck and enter the target host’s name or IP address in
Host name or IP address. Then, alter the default settings for
the port number, interval, and number of echoes. Finally,
enter the test message in the Edit control, edEchoTestMsg.

To start the echo process, click the Echo button. The
exchange of data immediately appears in the memEchoMsg
Memo control (see Figure 4). Figure 5 shows the Echo
Server program responding to echo requests from NetCheck.
You can halt transmission at any time by clicking the Stop

button, which activates the Stop method. The asynchronous
nature of EchoC provides the freedom to cease the process.
45 July 1997 Delphi Informant
Tracing Packets
Trace checks the connectivity and the route between two
machines, tracking any bottlenecks or “breaks” between client
and server. Trace can also be used to determine if a routing
problem is causing a network application failure. Although you
can’t solve any network problems that cause the packets to dis-
appear en route, you can obtain evidence of a routing problem.

Like all TraceRoute programs, Trace uses the Time To Live
mechanism (TTL) in the Internet Protocol (IP). TTL indi-
cates the number of hops a packet can travel before expiring.
Recall from Part I in May that a hop is a link between any
two machines on a path over the network. Twenty hops may
exist between the sending and target machines.

Let’s say a packet’s TTL is 32, and the target host is 33 hops
from the sending machine. This packet will expire before
reaching its destination. However, if a packet’s TTL is greater
than 32, it will probably reach that destination. All
TraceRoute (a.k.a. hopcheck) programs use this principle to
map the route between the sender and receiver.

When you start a trace, the initial TTL of an ICMP packet
is one. The first machine on the route receives it, and decre-
ments the packet’s TTL. When the router sees the packet’s
TTL is zero, it returns an error message, indicating the pack-
et’s TTL has expired.

Next, note the first machine’s address and send another packet
with a TTL of two. The first machine decrements the TTL by
one, then forwards the packet to the next machine when it
sees the TTL is non-zero. When the second machine receives
the packet, it decrements the packet’s TTL by one. After see-
ing this packet’s TTL is zero, the second machine returns an
error message. Again, note the address of the second machine
and increase the TTL by one to three. Continue this cycle of
sending the packet with increasing TTL until it reaches the
destination host, or dies because of a network problem.

Using the TTL mechanism isn’t foolproof, because the
routes can vary between each packet sent. In spite of this,
TTL is a useful tool.
The Trace Component
The Trace component was created by deriving the TTrace class
from the TSonar class. Therefore, Trace inherits TSonar’s Create
constructor. This method checks the status of the ICMP and
Winsock DLLs. Create sets the TTL to a default value of 128,
a reasonable value to cover most routes (see Figure 6).

TTrace uses TSonar’s GetHost method to obtain the address
of the target machine to trace. Like the Sonar component,
Trace must initialize the TIPOptions and TICMPEchoReply
records before starting a trace. (For more information on
this, refer to Part I.)

The heart of the Trace component is the DoTrace method.
First, DoTrace obtains the addresses of the IcmpCreateFile,
IcmpCloseHandle, and IcmpSendEcho functions, exported

type
TTrace = class(TSonar)
private

{ Private declarations }
FTimeToLive : Byte;

FIPFound, FHostFound : string;
procedure ResolveHost;

protected
{ Protected declarations }
pEchoReply : pIcmpEchoReply;

procedure DoTrace; virtual;
procedure Stats; override;

public
{ Public declarations }
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;
procedure Trace;

published
{ Published declarations }
property TimeToLive : Byte

read FTimeToLive write FTimeToLive default 128;

end;

Figure 6: The TTrace class.

On the Net

Figure 7: The Trace page, after tracing a route between
www.informant.com and the sender.
by the ICMP.DLL. Then, pEchoReply and FIPOptions are
initialized, with the FIPOptions.TTL field set to 1.

Before starting the IcmpSendEcho function, DoTrace creates a
handle for IcmpCreateFile. As with the calls to the ICMP and
Winsock DLLs, DoTrace checks the result of the
IcmpCreateFile function. If IcmpCreateFile returns a value of
INVALID_HANDLE_VALUE, DoTrace aborts with an error
message, and exits to NetCheck.

A while loop executes the IcmpSendEcho function until the
control variable, Finished, is set to True by the following code:

if (pEchoReply.Status = IP_SUCCESS) or
(FIPOptions.TTL > FTimeToLive) then
Finished := True

else
Inc(FIPOptions.TTL);

After the IcmpSendEcho function is executed, the code
examines the pEchoReply.Status field. If it contains an
IP_TTL_EXPIRED_TRANSIT value, the packet’s TTL has
expired. Next, the application checks that the address returned
by IcmpSendEcho is valid, then calls ResolveHost to resolve the
name of the machine that dispatched the error message. Then
TTL is increased by 1, provided the value of FIPOptions.TTL
is less than that of FTimeToLive (set at design time).

If pEchoReply.Status contains the value
IP_REQ_TIMED_OUT, a time out has occurred, perhaps
because of heavy network traffic. When the ICMP packet
finally reaches the target host, IcmpSendEcho returns a value of
IP_SUCCESS, then calls ResolveHost to determine the host’s
name. Then, Stats is called to post the number of hops to
reach the host, and target the host’s name. Finally the Finished
flag is set to True to terminate the while loop.
Mapping a Path
In NetCheck, select the Trace tab. First, enter the target host’s
name or IP address, then click the Trace button to begin the
trace. The Trace button calls the Trace component’s Trace
46 July 1997 Delphi Informant
method, which in turn, calls GetHost to obtain the target
host’s address. Trace then calls DoTrace to send the packets.
Each time the Trace component receives data from a machine,
it posts a message to the memTraceMsg Memo control,
through the component’s Msg property (see Figure 7).

You can press the Abort button to cancel the trace at any time.
However, Trace operates in blocking mode. This causes
NetCheck’s user interface to be unresponsive, preventing you
from using Abort. To enable the use of the Abort button, we
must put Trace to work in non-blocking mode. This is where
threads can help.
Using Threads
We aren’t implementing true non-blocking versions of Sonar
and Trace. The intent is to add multi-threading capability
without changing these components. Sonar and Trace remain
blocking in nature; they’re placed on a thread separate from
the primary thread, which is usually the user interface. Thus,
NetCheck’s interface can be used to perform other tasks. For
example, we can exercise Trace’s capabilities while simultane-
ously using EchoC.

Adding threading capability to Sonar and Trace without
compromising their integrity, however, involves breaking a
cardinal rule: I don’t use the Synchronize method of the
TThread class. Any messages the components send to update
NetCheck’s Memo and ProgressBar components should be
done through Synchronize. I didn’t use the Synchronize
method because it would have required me to “hardwire” the
locations of these controls (i.e. Memo, Edit, etc.) from with-
in the Sonar and Trace components. Therefore, be careful
when using Sonar and Trace components in non-blocking
mode. (In testing these components, I didn’t encounter any
problems by not using Synchronize.)

To add multi-threading capability to Trace, use Delphi’s New
Items dialog box to create a new class, TTraceThrd, in the
TraceThrd unit (see Figure 8). The Create constructor initializes a
private copy of the TTrace class in FTrace. To make this
TTraceThrd class available to NetCheck, declare Tracer in the
interface section of the TraceThrd unit, and add TraceThrd to

On the Net

type
TTraceThrd = class(TThread)
private

{ Private declarations }
FTrace : TTrace;

protected
procedure Execute; override;

public
constructor Create(TTracer : TTrace; Name : string);

end;

Figure 8: The TTraceThrd class enables Trace to be non-blocking.

procedure TpdMain.bbtnTraceClick(Sender: TObject);

begin
with Trace1 do begin

if Mode = Blocking then
begin

HostName := edTraceHost.Text;

Trace;

end
else

begin
TimeToLive := OldTimeToLive;

Tracer := TTraceThrd.Create(Trace1,

edTraceHost.Text);

end;
end;

end;

Figure 9: Attach this code to the Trace button.
the uses clause in Main.pas. Next, add the code in Figure 9 to the
Trace button. (These techniques are applicable to Sonar as well.)

Now when you need to abort a trace, click the Abort button.
It simply resets Trace’s TimeToLive property to 1, halting the
trace completely. Before starting Trace in non-blocking
mode, set the Mode property to Non blocking in the
rgTraceMode RadioGroup control.
Conclusion
With these enhancements, NetCheck is a basic debugging
tool that can be used as-is, or extended to include more fea-
tures. For example, you may want to include the option to
select a TCP or UDP for the Echo service. Additionally, you
may want to enhance the interface by adding a pick list of
favorite hosts that could be stored in the Windows 95 or
Windows NT 4.0 registry.

We covered the internals of a Delphi application for network
debugging. However, network debugging techniques is a large
topic, far beyond the scope of this article. To help you, a list of
references is included here. (I particularly recommend Chapter
13 in Windows Sockets Network Programming.) D
References
Chapman, Davis, Building Internet Applications with Delphi 2
[QUE, 1996].
Dumas, Arthur, Programming Winsock [SAMS, 1995].
Quinn, Bob, and David Shute, Windows Sockets Network
Programming [Addison-Wesley, 1996].
Stevens, W. Richard, UNIX Network Programming [Prentice
Hall, 1990].
Taylor, Don, et al., KickAss Delphi Programming, Chapters 4
and 5 [Coriolis Group, 1996].
Verbruggen, Martien. Source code for the demonstration ping
47 July 1997 Delphi Informant
program is available on the Web from http://www.tcp.chem.-
tue.nl/~tgtcmv and http://www.dephi32.com/apps.

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\JUL\DI9707JP.

John Penman is the owner of Craiglockhart Software, which specializes in provid-
ing Internet and intranet software solutions. John can be reached on the Internet
at jcp@iafrica.com.
Begin Listing Four — The TEchoC Class
type

CharArray = array[0..MaxBufferSize] of char;
TConditions = (Success, Failure, None);

TTransport = (TCP, UDP);

TEchoC = class(TComponent)
private

{ Private declarations }
FParent : TComponent;

FStatus : TConditions;

FVersion, FVersionDate, FComponentName,

FDeveloper : string;
FStatusWS, FOkay : Boolean;

FProgress : Integer;

Fh_addr : pChar;

FMsgBuf : CharArray;

function CheckWS : Boolean;

protected
{ Protected declarations }
FNoSent, FNoRecv, FNoEchoes, FMin, FMax, FAve,

FwMsg, FRTTSum : Word;

FHostName, FHostIP : string;
FOnRecv, FOnNewData, FOnProgress,

FOnDone : TNotifyEvent;

FSocket : TSocket;

FHwnd : THandle;

FSockAddr, FSockAddrIn : TSockAddrIn;

FAddress : DWord;

FHost : PHostent;

FSocketNo : TSocket;

FProtocol : PProtoEnt;

FService : PServent;

FReadCount, FWriteCount : Integer;

FTransport : TTransport;

FWnd, FTWnd: HWND;

FMessage, FMsg, FTestMsg : string;
FInterval, FEchoPortNo : Integer;

FDone : Boolean;

procedure StartAsyncSelect;

procedure EchoEvent(var Mess : TMessage);

message SOCK_EVENT;

procedure TimerEvent(var Mess : TMessage);

message WM_TIMER;

procedure OnRecvEvent;

procedure OnNewDataEvent;

procedure OnProgressEvent;

procedure OnDoneEvent;

procedure SetUpAddress;

procedure SetUpAddr;

procedure GetHost;

procedure SetPortNo(ReqdPort : Integer);

function GetPortNo : Integer;

On the Net
function GetMessage : string;
procedure SetMessage(ReqdMsg : string);
function GetData : string;
procedure SetData(DataReqd : string);
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;

public
{ Public declarations }
procedure Start;

procedure Stop;

property Status : TConditions

read FStatus write FStatus default Success;

property Transport : TTransport

read FTransport write FTransport default UDP;

property Msg : string read FTestMsg write FTestMsg;

property StatusMsg : string read FMsg write FMsg;

published
{ Published declarations }
property Done : Boolean

read FDone write FDone default FALSE;

property Interval : Integer

read FInterval write FInterval default 1;

property PortNo : Integer

read FEchoPortNo write FEchoPortNo

default IPPORT_ECHO;

property HostName : string
read FHostName write FHostName;

property IPAddress : string read FHostIP write FHostIP;

property NoEchoes : Word

read FNoEchoes write FNoEchoes default 5;

property OnRecv : TNotifyEvent

read FOnRecv write FOnRecv;

property OnNewData : TNotifyEvent

read FOnNewData write FOnNewData;

property OnProgress : TNotifyEvent

read FOnProgress write FOnProgress;

property OnDone : TNotifyEvent

read FOnDone write FOnDone;

end;

End Listing Four
48 July 1997 Delphi Informant

At Your Fingertips
Delphi / Object Pascal

By Robert Vivrette

Displaying Shortened Pathnames
... and Other Brief Treats

Figure 1: Wha
is resized?

procedure TFor
var

B : array[0
R : TRect;

begin
StrCopy(B,'C

'I

R := Client

InflateRect

DrawTextEx(

DT_PATH_E

Panel1.Capt

end;

Figure 2: The p

Figu

49 July 1997 Delphi Informant
There are times when you may need to display a long pathname in a short
space; for example, the Panel caption in Figure 1. This panel has been

placed on the form with its Align property set to alClient. As a result, the space
available for the caption changes when the form is resized. When the width of
the form is reduced, the caption is truncated on the left and right.
Suppose, however, that you want to retain the
right and left portions of the path, and elimi-
nate characters from the middle. The Win32
API provides this capability with the
t will happen to the pathname when the form

m1.FormResize(Sender: TObject);

..255] of Char;

:\Program Files\Borland\Delphi 3.0\' +

mages\Buttons\ZoomIn.bmp');

Rect;

(R,-10,-10);

Canvas.Handle,B,-1,R,

LLIPSIS or DT_MODIFYSTRING or DT_CALCRECT,nil);
ion := B;

athname-shortening technique.

re 3: The shortened pathname.
DrawTextEx API call. We won’t be using the
function to actually draw text, but to modify
the string we send.

The first few parameters of DrawTextEx are
the Canvas’ Handle (a Windows Device
Context), the string to display, the length of
that string (-1 calculates it for us), and the rec-
tangle defining the text area. Then comes a
combination of several flags, only three of
which interest us here. The first is
DT_PATH_ELLIPSIS, which eliminates some
characters in the string and replaces them with
three dots (an ellipsis). The second is
DT_MODIFYSTRING, which modifies the
passed string so that we get an altered string
back after the function returns. The last is
DT_CALCRECT, which is used to calculate
the rectangle occupied by the text. We’re not
interested in this value, but DT_CALCRECT
has the side effect of telling DrawTextEx not to
draw the text. If we left out this flag, the path
would be displayed on the Panel Canvas, sepa-
rate from the Caption. The result? The func-
tion modifies the passed string, making it a
shortened form of the original.

Figure 2 demonstrates the technique, and
Figure 3 shows the result. The InflateRect call
simply reduces the size of the rectangular area,
so the text has a bit of a “margin.” I use
StrCopy to copy from a constant, so that we
start with a fresh, undisturbed copy of the
string each time. (Remember — it’s modify-
ing the return value.)

50 July 1997 Delphi Informant

Figure 5: This syntax tells Delphi
to look right under its nose.

Figure 4: The element’s string value
added to a list box.

At Your Fingertips
Speeding TList
Memory
Allocation
Here’s a tip for
fans of the
Delphi TList
object. In look-
ing through
Delphi’s online
Help, you may
have noticed
that a TList has
a Capacity

property. This property
isn’t used to set the maxi-
mum size of the list, but
to give Delphi an idea of
how many items the list
will contain.

As you may already
know, when you add
items to a TList, the list
dynamically allocates
memory for the new
items. If you add an item
to the list when there’s
no free space, Delphi
requests a chunk of
memory for several more
items (between four and
16, depending on how
many are currently in the
list). But what if you
need to add, say, 50,000
items? Delphi would
request little chunks of
memory over 12,500
times.

 is
Instead, you can estimate how many items the list will
have, then set its Capacity property accordingly. Afterward,
if you didn’t add as many as you thought, you can reset
Capacity to reflect the real number. The result is that you
will have one memory allocation at the start, none during
the adding of the items, and one small deallocation after-
ward. If the starting allocation isn’t sufficient, Delphi will
generate a memory exception at the outset.

Look at the following pseudo-code to see how this might be
done in practice:

ListOfBooks.Clear;

ListOfBooks.Capacity := 50000;

repeat
blah ... blah ...

ListOfBooks.Items.Add(TheNewBook);

blah ... blah ...

until DoneAddingBooks;
ListOfBooks.Capacity := ListOfBooks.Count;
Enumerated Types
Have you ever created a set type and wanted to access the
actual names of each element? Granted, it doesn’t happen
often, but it’s nice to know how when you need to. For
example, if you wanted to access the names of a TPenStyle
set, you might be inclined to do something like this:

case ThePenStyle of
psSolid : ShowMessage('psSolid');

psDash : ShowMessage('psDash');

psDot : ShowMessage('psDot');

psDashDot : ShowMessage('psDashDot');

psDashDotDot : ShowMessage('psDashDotDot');

psClear : ShowMessage('psClear');

psInsideFrame : ShowMessage('psInsideFrame');

end;

However, there’s a better way. Delphi’s RTTI (Run-Time
Type Information) can obtain this information for you:

procedure TForm1.FormCreate(Sender: TObject);

var
a : Integer;

begin
for a := Ord(Low(TPenStyle)) to Ord(High(TPenStyle)) do

ListBox1.Items.Add(GetEnumName(TypeInfo(TPenStyle),a));

end;

This cycles through the elements of TPenStyle. You get the first
and last elements with Low and High, respectively, then use Ord
to get the element’s ordinal number. Then we use GetEnumName
to get the name of the enumerated type. GetEnumName wants
the type information record for the type as the first parameter;
we get this value by calling TypeInfo. The result is the string value
of the element, and we add this value to a list box (see Figure 4).
Navigating in Close Quarters
Sometimes, database applications must access Paradox data
files (*.DB) in the currently logged directory. The developer
has several options, the best of which is to set up a database
alias that gives access to the data file. A second option would
be to enter a fully qualified path into the Database property.
Of course the disadvantage is that if the application is moved
to another machine, the database file might not reside in that
location and the application wouldn’t be able to find it.

Wouldn’t it be nice if you could tell Delphi to look for the
database in the same directory as the application regardless of
where it is? Well, you can! All you need to do is put a period
and a backslash in the DatabaseName property of a Table
component (see Figure 5). When you access the TableName
property, you’ll see the database files in the currently logged
directory. Even if you move the application elsewhere, it will
still be able to find database files in its own directory. D

Robert Vivrette is a contract programmer for Pacific Gas & Electric, and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached via e-mail at RobertV@csi.com.

51 July 1997 Delphi Informant

New & Used

By Bill Todd

AdHocery for Delphi
The Key to Seizing Query Control

Figure 1: A s

Figure 2: The
Need to provide ad-hoc query capabilities for your users? AdHocery from
Nevrona Designs not only makes providing such capability easy, it also

provides control of the user interface. With AdHocery, your users can see only
the data they want, either on screen or in reports.
Understanding AdHocery
The easiest way to understand AdHocery is to
examine a sample program that uses it. Figure 1
shows a form with a Query, DataSource, and
DBGrid connected to display the result set of a
query. The SQL statement is:

SELECT CustNo, Company, City, State,

Country, Addr1, Addr2

FROM Customer

The goal of this project is to let the user
select the records returned by the query,
ample ad-hoc query form.

 AdHocSource Fields Editor.
using any combination of Company, City,
State, and Country. To provide the ad-hoc
query capability, start by placing an
AdHocSource component — one of the five
AdHocery components — on the form.
Next, set the AdHocQuery component’s
BaseQuery property to Query1, to connect it
to the Query component on the form.
Double-click AdHocSource to display its
Fields Editor, as shown in Figure 2. Now
right-click, select Add Fields from the menu,
and add the Company, City, State, and
Country fields.

Now drag the four fields from the Fields Editor
window, and drop them onto your form.
AdHocery automatically creates four DBEdit
components with labels, then sets their
DataSource properties to the AdHocSource
component, and their DataFields property to
their respective fields. The Fields Editor also
lets you specify the comparison operator for
each field. By default, the comparison operator
is =, but you can specify other conditions, such
as <, <=, >, or >=. You can also use the Fields
Editor to add multiple instances of a field, so
you can specify ranges in the query. To allow
the user to enter a range for a numeric field,
you would add the field twice in the Fields
Editor — specifying >= as the comparison
operator for one instance, and <= for the sec-
ond. This allows you to drop two instances of
the field on the form — one for the minimum
value, and one for the maximum.

If the operation is:

= ('..' Enabled)

Figure 3: The AdHocery SQL dialog.

New & Used

Figure 4: Operations between forms can be specified.
the user can specify a “starts with” value for that field by
adding two periods to the end of the value. Behind the scenes,
AdHocery changes the operator from = to LIKE, and replaces
the .. with %. To give users the full power of the SQL LIKE
operator, change the operation to LIKE in the Fields Editor.
Now users can enter the SQL % wildcard anywhere in the
search value.

Finally, drop two buttons on the form, and set their captions
to Show SQL and Apply, respectively. Add the following lines
of code to the button’s OnClick event handlers:

// The Show SQL button’s OnClick event handler.
AdHocSource1.ShowSQL;

// The Apply button’s OnClick event handler.
AdHocSource1.ExecuteSQL;

If you compile and run this program, you can enter any com-
bination of values in the DBEdit components, then click the
Apply button, and see the result of your query in the DBGrid.
To see the SQL generated by AdHocery, click the Show SQL

button, and you’ll see a display similar to Figure 3.

While this example provides basic query capability, it doesn’t
support logical AND and OR operations, or compound con-
ditions other than “and-ing” between fields. To make more
complex queries easy, AdHocery provides two other compo-
nents: AdHocTreeView and AdHocGrid. The AdHocTreeView
52 July 1997 Delphi Informant
component works with the
DBEdit components to allow you
to build a complex query condi-
tion using AND, OR, and
grouping (parentheses).

The AdHocGrid component also
lets users build complex queries, as
shown in Figure 4. The grid
approach resembles query-by-
example in many respects, and
enables users to build complex
queries in an intuitive format. A
particularly nice feature of
AdHocGrid is the ability to specify
logical AND and OR operations
between cells. This makes building
lists, such as:

City = Honolulu OR Miami

Nevrona Designs’ AdHocery 1.0
offers unsurpassed control of
ad-hoc query potential, offering
powerful interfaces for both the
developer and the user.

NNeevvrroonnaa DDeessiiggnnss
1930 S. Alma School Rd., Ste. B214
Mesa, AZ 85210-3041

PPhhoonnee:: (888) 776-4765;
(602) 491-5492
FFaaxx:: (602) 530-4823
EE--MMaaiill:: info@nevrona.com
WWeebb SSiittee:: http://www.nevrona.-
com/designs
PPrriiccee:: US$149
(the condition in Figure 4), very easy for users. Another
nice feature of the AdHocTreeView and AdHocGrid com-
ponents is that you can change the text on the context
menus that appear when the component is right-clicked, to
suit your taste and the sophistication of your users.

AdHocery includes one more component, AdHocLookupGrid,
which, like a multi-select list box, lets users easily specify a
list of values to match in one field of a query. For example,
you could present a list of states, and let users select only
those that interest them. AdHocery also provides a power-
ful developer interface — via public methods and events
— that lets you control every aspect of the query-genera-
tion process in code.
Conclusion
AdHocery is a great tool. It gives you the ability to let the
users of your programs construct complex and powerful
queries easily, with a choice of user interface. This allows
you to exploit query generation in a way most useful to
the users of each program you write. AdHocery is the best
ad-hoc query tool I’ve seen — it will certainly remain in
my toolbox. D

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix, AZ. He is a Contributing Editor of Delphi
Informant; co-author of Delphi 2: A Developer’s Guide [M&T Books, 1996],
Delphi: A Developer’s Guide [M&T Books, 1995], Creating Paradox for Windows
Applications [New Riders Publishing, 1994], and Paradox for Windows Power
Programming [QUE, 1995]; and a member of Team Borland providing technical
support on CompuServe. He has also been a speaker at every Borland Developers
Conference. He can be reached on CompuServe at 71333,2146, on the Internet
at 71333.2146@compuserve.com, or at (602) 802-0178.

File | New
Directions / Commentary

Delphi on the Web
Software development need not be an isolated process. Macho programmers may continue to insist on
coding every line themselves, but the rest of us can take advantage of the Web as a resource for com-

ponents, tips, techniques, and other technical information. The Web offers a plethora of Delphi sites. This
month, I’ve given “gold stars” to the top five Delphi-related sites on the Web.
Delphi Super Page
Maintained by Robert Czerwinski, this
is my favorite site to visit when looking
for components and other Delphi
resources. It has the largest library of
VCL components I’ve seen, and can be
quickly searched using a variety of cri-
teria (e.g. 16-bit and/or 32-bit, free-
ware and/or shareware, etc.). Com-
ponent descriptions, while not as
extensive as Torry’s Delphi Pages or The
Delphi Deli, are more than adequate.
Finally, Robert does a terrific job of
updating the site regularly.

Torry’s Delphi Pages
Running neck and neck with the Delphi
Super Page, this site is administered by
Maxim Peresada and Victor Gvozdev.
Not only is its library extensive, it also
provides helpful comments — by a dog
named Torry — about many of the
components; awards the best compo-
nents with a special “Torry’s Top”
award; and notes the most popular
downloads. Another nice feature is a
page that lets you know what’s new on
other Delphi sites.
53 July 1997 Delphi Informant
The Delphi Deli
If the two previous sites provide the “meat
and potatoes” for Delphi developers (com-
ponents), The Delphi Deli, maintained by
Sylvia Lutnes, strives to provide a full
menu. Yes, it offers a component library,
but it also has information on Delphi mail-
ing lists, book reviews, FAQs, a chat room,
and more. This is a well-rounded site, par-
ticularly for those folks who want to do
more than just download the latest VCL.

The Delphi EXchange
Maintained by Brad Choate, this site offers
a large collection of VCLs, as well as addi-
tional resources such as Delphi news and
announcements, volunteer Delphi experts
(DEXperts), and programming tips. The
Delphi EXchange also features perhaps the
most exhaustive list of Delphi-related Web
links I’ve seen. When searching for compo-
nents, you can take advantage of its power-
ful search engine, or drill down by category,
using an outline view of its file library. My
one “wish” for this site is better file descrip-
tions, e.g. is a file freeware? Does it include
source code? This shortcoming aside, The
Delphi EXchange is a source I visit often.
The Delphi Information Connection
This site, maintained by

David and Susan Bernard, deserves special
mention. It’s an “all-around site,” contain-
ing not only a wealth of components, but
also links and other resources. Its design is
notable, featuring a graphic Table of
Contents in the form of Delphi’s Object
Inspector. Unfortunately, it looks as
though the site hasn’t been updated since
late 1996; hopefully it will be revived
soon, before it becomes outdated.

While each of these “gold star” sites
deserve special merit, there are a vast
array of other Delphi-related Web sites
that also prove helpful to developers (see
table below). You owe it to yourself to
check ’em out. D

— Richard Wagner

Richard Wagner is Contributing Editor to
Delphi Informant and Chief Technology
Officer of Acadia Software in the Boston,
MA area. He welcomes your comments at
rwagner@acadians.com.
Delphi Super Page Excellent Excellent Good Fair Very good
sunsite.icm.edu.pl/delphi/

Torry’s Delphi Pages Very good Listing only Excellent Very good Very good
carbohyd.siobc.ras.ru/torry/

The Delphi Deli Good Good Excellent Excellent Good
www.intermid.com/delphi/

The Delphi EXchange Very good Excellent Fair Good Excellent
www.delphiexchange.com

The Delphi Information Connection Good Very good Very good Very good Good
www.delphi32.com
The Delphi Temple Fair Listing only Good Average Good

simtel.coast.net/~jkeller/
The Delphi Companion N/A N/A N/A Very good Very good

www.xs4all.nl/~dgb/delphi.html
Delphi Source Good N/A Fair Good Very good

www.doit.com/delphi/
Delphi Station Limited Listing only Fair Good Very good

www.technosoftinc.com/delphi.shtml

(all URLs begin with http://) Number of
Components

Searching File
Descriptions

Additional
Resources

Links to Other
Delphi Sites

	Table of Contents
	Delphi Tools
	Aurorasoft Releases New Visual Toolbar for Delphi
	Adapta Software Launches AdaptAccounts 6.0
	DemoShield Ships ActiveX

	Amzi! Releases Intelligent Components
	Pretty Objects Computers, Inc. Announces Polyglot 2.24
	Comparing Delphi 3 Versions
	Books for Sale

	Newsline
	Borland Announces Spin-Off of Open Environment Consulting Group
	Borland Improves Support for Corporate Developers
	Droege’s 1997 Developers Competition

	Internet Delphi: Part I
	Getting Started
	Pick a Protocol
	Connecting on Cue
	Welcome to the Machine
	A Warm HELO
	Return to Sender
	Are We There Yet?
	Make It So
	Your Mileage May Vary
	Conclusion

	What’s New with Experts?
	Jump Right In
	Project Creators
	TIProjectCreator Class
	Module Creators
	Conclusion
	Listing One
	Listing Two
	Listing Three

	Automated Access
	Access as an Automation Server
	Data Access Objects
	Licensing
	Conclusion

	InterBase Indexes
	Why Indexes?
	Creating Indexes
	Modifying Indexes
	Selectivity
	A Definite Plan
	Conclusion

	The Paradox Files: Part IV
	What Is a Validity Check?
	The Minimum and Maximum ValChecks
	The Default ValCheck
	The Required ValCheck
	The Picture ValCheck
	Referential Integrity
	Defining RI
	How Does RI Work?
	RI and Delphi
	The Table Lookup “ValCheck”
	Table Lookup and Delphi
	Should You Use ValChecks and RI with Delphi?
	And in the Future?
	Next Time

	Cached Updates: Part III
	A Quick Recap
	Using Cache-Related Event Handlers
	Executing UpdateSQL Queries from OnRecordUpdate
	Conclusion

	Optimizing Graphics
	Multiplication and Division
	Two Timing
	Lookup Tables
	Reciprocals
	Fixed-Point Math
	More on Optimization
	Our Fifth Application
	Conclusion

	NetCheck: Part II
	Kicking Out the Jams
	Full of Echoes
	The EchoC Component
	Processing Echoes
	Tracing Packets
	The Trace Component
	Mapping a Path
	Using Threads
	Conclusion
	References
	Listing Four

	Displaying Shortened Pathnames
	Speeding TList Memory Allocation
	Enumerated Types
	Navigating in Close Quarters

	AdHocery for Delphi
	Understanding AdHocery
	Conclusion

	Delphi on the Web

