
1 April 1997 Delphi Informant

April 1997, Volume 3, Number 4

The Paradox Files
The Data Is Out There

ON THE COVER
6 The Paradox Files: Part I — Dan Ehrmann
Developers use Paradox tables every day, but little information circu-
lates about how the file format works. Coincidence — or cover-up?
Agent Ehrmann exposes what really happens when you add or
remove a field, create an index, etc.

FEATURES
11 Delphi at Work — Ian Davies
Back in the heyday of DOS, plain text on-screen was de rigueur. But
Windows made anything less than rich text déclassé. Here’s a rich-
text component to help keep your applications in fashion.

17 OP Tech — Bill Todd
How can you write code for any form, in any program, to manipulate
components in any way you need? With the Components arrays, for
which Mr Todd offers three practical uses.

20 DBNavigator — Cary Jensen, Ph.D.
Need to access the BDE, or control Paradox table settings? Dr Jensen
explores the Session component — a database developer’s delight.

27 Sights & Sounds — Don Peer and Peter Dove
It’s time to speed things up! This month, Misters Peer and Dove
employ DIBs to make faster, finer 3D graphics a reality in their 
ongoing graphics series.

34 Informant Spotlight — James Hofmann and Cathi Pickavet
Ah, the difference a year makes: We’ve added exciting new categories
to the Readers Choice Awards. Find out who dominated, and who’re
just getting their feet wet, as determined by you, the reader.

39 Inside OP — Gary Warren King
Forms and dialog boxes often have interdependent field and display
properties whose friendliness can rapidly decay. Mr King shows how
to keep your UI responsive — by delaying events.

REVIEWS
43 Multi-Edit for Windows

Product Review by Alan Moore, Ph.D.

49 Delphi 32-Bit Programming SECRETS
Book Review by Richard Porter

49 Delphi Database Development
Book Review by Warren Rachele

DEPARTMENTS
2 Delphi Tools
4 Newsline
51 File | New by Richard Wagner

Cover Art By: Tom McKeith



2 April 1997 Delphi Informant

Delphi
T O O L S

New Products 
and Solutions

Delphi Component Design
Danny Thorpe

Addison-Wesley

ISBN: 0-201-46136-6
Price: US$36.95 
(348 pages, CD-ROM)
PPhhoonnee:: (800) 822-6339

The Essential Guide to 
User Interface Design

Wilbert O. Galitz
John Wiley & Sons, Inc.

ISBN: 0-471-15755-4
Price: US$44.95 
(626 pages)
Phone: (212) 850-6630
Videotex Launches Version 2.0 of T-BASE for Windows

images, as well as play
sound and video. Images are
scanned using TWAIN sup-
port, enabling programmers
to create applications that
can control any scanner
with a TWAIN driver. 

T-BASE supports images
in .JPG, .PCX, .TGA,
.DCX, .GIF, .BMP, .DIB,
and .TIF (including Group
III/IV) file formats.

Using T-BASE 2.0, devel-
opers can create such imag-
ing applications as ID
badges, signature verifica-
tions, commercial real estate
listings and floor plans,
accounting records, and
vehicle accident reports.

Price: T-BASE for Windows 2.0 compo-
nents are priced separately from US$75
to US$595. Special pricing is available
for registered users of earlier versions.
Contact: Videotex Systems, Inc., 
11880 Greenville Ave., Ste. 100, 
Dallas, TX 75243
Phone: (800) 888-4336 or 
(972) 231-9200 
Fax: (972) 231-2420
E-Mail: software@videotexsystems.com 
Web Site: http://www.videotex-
systems.com
TurboPower Software Announces OnGuard for Delphi 

portions of the product.

OnGuard enables develop-
ers to choose from several
protection mechanisms,
including time-limited ver-
sions or versions that are
limited to a particular num-
ber of executions. In addi-
tion, OnGuard lets devel-
opers add network metering
to their programs, thereby
limiting the number of
simultaneous users of their
programs in a network
environment.
OnGuard ships with 16-
and 32-bit support for
Delphi 1 and 2. It is royal-
ty free and includes full
source code.

Price: US$199
Contact: TurboPower Software Co.,
P.O. Box 49009, Colorado Springs, CO
80949-9009 
Phone: (800) 333-4160 or 
(719) 260-9136 
Fax: (719) 260-7151
E-Mail: info@tpower.com
Web Site: http://www.tpower.com
Videotex Systems, Inc. of
Dallas, TX has released 
T-BASE 2.0 for Windows,
an imaging library tool for
Delphi, with added ActiveX
controls.

Using the newest version
of T-BASE, developers can
image-enable any Windows
3.1, Windows 95, or
Windows NT application
that is ActiveX compatible
or can call DLLs. In addi-
tion, controls and DLLs are
available in 16- and 32-bit
versions. 

Version 2.0 can display,
print, scan, and convert
TurboPower Software Co.
of Colorado Springs, CO has
announced OnGuard, the
newest product in its line of
professional libraries and
tools for Delphi 1 and 2. 

OnGuard allows develop-
ers to create demonstration
editions of their products for
secure electronic distribution
over the Internet. After sam-
pling a downloaded pro-
gram, customers can contact
the developer to purchase a
key code that unlocks other



3 April 1997 Delphi Informant

Delphi
T O O L S

New Products 
and Solutions
Perconti Ships New INI-Aware Components for Delphi 3

ous versions can receive a
free upgrade.

Price: IAC’s for Delphi version 2.0
(standard edition), US$69; IAC’s for
Delphi version 2.0, (professional edition
with source code), US$99.
Contact: Perconti Data Systems, Inc.,
8601 Fourth Street North, Ste. 210, 
St. Petersburg, FL 33702 
Phone: (813) 576-7727 
Fax: (813) 576-8033 
E-Mail: info@perconti.com 
Web Site: http://www.perconti.com
InstallShield Software Corp. Releases InstallShield5 

and other syntax elements
are color-coded to help
developers locate parts of the
script when editing and
debugging. 

InstallShield5 Professional
provides several wizards,
including a Function
Wizard, to assist developers
in selecting a function and
specifying its parameters.

When creating the frame-
work for a new installation
project, developers can use
the Project Wizard. It con-
tains eight dialog boxes that
allow developers to specify
basic information about
their applications and instal-
lations. The Wizard then
builds and compiles a pro-
ject, including a script,
installation dialog boxes, and
more. 

Developers can also choose
to create a Quick Build for
testing purposes. In a Quick
Build, files are referenced,
but not included.

InstallShield5 Professional
also allows developers to
view and manage their file
groups and components
visually. No function calls
are required to copy files.
Developers can drag-and-
drop to specify and group
the files to be installed.

InstallShield5 Professional
provides multimedia sup-
port for its application
installations, including .AVI
video, .WAV and MIDI
sound, and 256-color
bitmap images. 

Price: US$795
Contact: InstallShield Software Corp.,
900 National Parkway, 
Schaumburg, IL 60173
Phone: (800) 374-4353
Fax: (847) 240-9138
E-Mail: info@installshield.com
Web Site: http://www.install-
shield.com
Perconti Data Systems,
Inc. of St. Petersburg, FL has
released IAC’s version 2.0, a
set of 19 INI-aware compo-
nents for Delphi 3.

Although it’s designed for
Delphi 3, IAC for Delphi
runs on all versions of Delphi.
It allows developers to save
user configuration options for
any system developed.

The set includes the fol-
lowing INI-aware compo-
nents: IASource, IAEdit,
IALabel, IACheckbox,
IAComboBox, IARadio-
Group, IAListBox, IAEdit-
Combo, IAMemo, IARadio-
Button, IASRButton, IASR-
BitBtn, IASRSpeedButton,
IASaveDialog, IAOpen-
Dialog, IADBComboBox,
IASpinEdit, IAMaskEdit,
and IAScrollBar.

Demonstration versions are
available from Perconti’s
Web site. 

All registered users of previ-
InstallShield Software
Corp. of Schaumburg, IL
has released InstallShield5
Professional.

Using this upgrade, develop-
ers can create Windows instal-
lations through a visual inter-
face. They can plan, script,
compile, debug, and build in
the same multi-paned devel-
opment environment. 

The new IDE features a
built-in script editor win-
dow, which places each
installation project into plain
view. Functions, keywords,



4 April 1997 Delphi Informant

News
L I N E

Apr i l  1997
Oracle Licenses Borland’s Java and C++ Development Tools

compatibility between tech-
nologies.

Borland C++Builder is a
new object-oriented develop-
ment tool that combines the
C++ programming language
with the RAD productivity
of Delphi. A beta version of
C++Builder is currently
available to customers on
Borland’s Web site at
http://www.borland.com.

JBuilder is Borland’s upcom-
ing Java application develop-
ment tool. Scheduled to ship
in the second quarter of FY
1998, JBuilder provides visual
component-based develop-
ment tools for cross-platform
development. JBuilder is a
development environment for
projects such as Web-delivered
applets, applications that
require client/server database
connectivity, and enterprise-
wide distributed computing
solutions.

“Oracle Licenses Borland’s Java
and C++ Development Tools”

continued on page 5
Borland Announces Delphi/400 Client/Server
Suite for IBM’s AS/400
ized object classes and
ClientObject/400’s APPC
AS/400 connectivity,
Delphi/400 Client/Server
Suite delivers a secure and
fast Windows interface for
the AS/400.

In addition to this product
launch, Borland announced
it has joined IBM’s AS/400
Partners in Development
business program. Through
this program, the two com-
panies will work to provide
Delphi-based software solu-
tions to the AS/400 com-
munity. 

Borland plans to demon-
strate Delphi/400 Client/-
Server Suite at three IBM
trade shows this year: 1997
IBM Business Partner

“Delphi/400”
continued on page 5
[ calenda

March

10-14 Spring Internet World, Los
Angeles Convention Center, Los
Angeles, CA. Visit http://www.-
events.iworld.com.

19-21 Internet World Asia ’97,
Putra World Trade Center, Kuala
Lumpur, Malaysia. Contact (800)
632-5537 or (203) 226-6967, or
visit http://www.events.-
iworld.com.

25-27 DCI’s Internet Expo,
London, England. Contact DCI at
(508) 470-3870 or visit their Web
site at http://www.DCIexpo.com.

April

1-3 DCI’s Web World, Westin
Swan, Orlando, FL. Contact DCI
at (508) 470-3870 or visit their
Web site at http://www.-
DCIexpo.com.

2-4 Software Development,
Moscone Convention Center,
San Francisco, CA. Contact
Miller Freeman at (415) 905-
2784 or visit http://www.-
sd97.com
r 1997 ]

8-10 Network World Unplugged, 
San Jose Convention Center,
San Jose, CA. Contact DCI at
(508) 470-3870, or visit their
Web site at http://www.-
DCIexpo.com.

8-11 Internet World Argentina
’97, Buenos Aires Sheraton
Hotel, Buenos Aires, Argentina.
Contact (800) 632-5537 or (203)
226-6967, or visit http://www.-
events.iworld.com.

8-11 Internet World Brazil ’97,
Ahembi Convention Center, Sao
Paulo, Brazil. Contact (800) 632-
5537 or (203) 226-6967, or visit
http://www.events.iworld.com.

21-24 Borland Developers
Conference Europe, London,
England. Contact Borland at
(408) 431-1000.

23-25 Internet World Japan ’97,
Makuhari Messe, Tokyo, Japan.
Contact (800) 632-5537 or (203)
226-6967, or visit http://www.-
events.iworld.com.
Scotts Valley, CA — Borland
and Oracle Corp. have
announced Oracle will
license Borland’s Java and
C++ development technolo-
gies for use with Oracle
database systems and appli-
cation development tools.

Under the terms of the
license agreement, Oracle
will integrate and distribute
Borland’s C++Builder and
JBuilder software tools with
a number of Oracle’s existing
and future products, includ-
ing Developer/2000,
Designer/2000, and Oracle
Power Objects (OPO).

The Oracle-Borland agree-
ment is aimed at extending
the tools available to Oracle
customers for their Internet
and intranet application
development. As part of the
license agreement, Borland
and Oracle development
teams will work together to
promote integration and
Scotts Valley, CA —
Borland has announced
Delphi/400 Client/Server
Suite, a client/server devel-
opment tool for the IBM
AS/400 hardware platform.
The Delphi/400 Client/-

Server Suite is based on
Delphi Client/Server Suite
2.0 for Windows 95 and
Windows NT, and AS/400-
compatible connectivity and
development technology
recently licensed by Borland
from TCIS of Paris, France.
This RAD tool combines a
visual component-based
design, an optimized 32-bit
native code compiler, and an
open, scalable database archi-
tecture in an object-oriented
environment. 

With the addition of the
ScreenDesigner/400 special-
Searchable Delphi Knowledge Base 
Now on the Web
Marlboro, MA — Apogee
Information Systems has
released an online, interac-
tive version of the DTopics
database created by Mike
Orriss. DTopics currently
includes over 700 entries
regarding Delphi program-
ming topics. 

Developed in IntraBuilder,
the new Web application
allows keyword- and 
description-based searches of
the database. It’s available
free on Apogee’s Web site at
http://www.apogeeis.com.  

Updates to the database
will be made each time
Orriss posts a new version
on CompuServe. For more
information call Apogee at
(508) 481-1400.



News
L I N E

Apr i l  1997
Oracle Licenses Borland’s Java and C++ Development Tools (cont.)
5 April 1997 Delphi Informant
computing environment. 
It incorporates application

partitioning, drag-and-drop
reusability, and through the
use of Java, ensures low cost
deployment on the Web.

OPO provides a drag-and-
drop application develop-
ment environment for
BASIC programmers. It also
eliminates the requirement
to code database interaction
while providing support for
Windows, ActiveX, and
other desktop standards.

For more information
about Oracle products, call
(415) 506-7000 or visit
Oracle’s Web site at
http://www.oracle.com.
Executive Conference;
AS/400 User Group
Conference; and AS/400
User Group Conference
Europe. The Delphi/400
Client/Server Suite pricing
starts at US$3,995. 

For more information on
Delphi/400, call (800)
233-2444.

Delphi/400 (cont.)
Southern California Delphi Developers’ Conference Scheduled

The conference runs from

8 a.m. to 5 p.m. at
Chapman University (287
North Center Street,
Orange, CA  92666). Early
registration costs US$99,
but increases to US$149
after April 19. For more
information, visit the
OCDUG Web 
site at http://www.ocdelphi.-
org.
Borland Awards Software and Trademark for
ReportSmith to Strategic Reporting Systems
sales of the ReportSmith
family of products. Borland
provided technical support
for ReportSmith through
January 31, 1997, and will
continue to make it avail-
able to Delphi Client/Server
Suite customers.

For more information, 
contact Strategic Reporting
Systems at (508) 531-0905
or e-mail rsmith@sea-
systems.com.
The Borland Canada 
Developer’s Conference

Canadian developers are planning to
meet May 21-23 in Toronto to discuss

the latest in software technologies 
and trends at the Borland Canada

Developer’s Conference. 
For more information, call (800) 265-
1362, (416) 444-1071, e-mail web-

master@dbcenteral.com, or visit
http://www.dbcentral.com.
Irvine, CA — The Orange
County Delphi User Group
(OCDUG), in association
with the Chapman University
chapter of the ACM,
announced it will hold the
second annual Southern
California Delphi Developers’
Conference at Chapman
University in Orange on
Saturday, May 10, 1997.

The conference will have
various educational tracks
aimed at both advanced and
new Delphi developers.

The keynote presentation
features Chuck Jazdzewski,
co-developer and chief archi-
tect of Borland’s Delphi. As
with last year’s conference,
the date was selected to coin-
cide with the release of a
new version of Delphi.
Scotts Valley, CA —
Borland announced it has
awarded a world-wide soft-
ware and trademark master
license for the ReportSmith
product line to Strategic
Reporting Systems, Inc. of
Peabody, MA.

As of December 31, 1996,
Strategic Reporting assumed
responsibility for world-
wide service, maintenance,
support, marketing, and
Oracle products for devel-
opers include Designer/2000,
Developer/2000, and OPO.
Oracle’s Designer/2000, a
repository-based modeling
tool, provides systems life-
cycle support through busi-
ness process re-engineering,
systems analysis and design,
and the automatic generation
of client/server and Web
applications.

Developer/2000 is the first
Oracle tool to deliver scal-
able deployment of database
applications in a network



6 April 1997 Delphi Informant

On the Cover
Paradox / BDE

By Dan Ehrmann

The Paradox Files: Part l
The Table Format, Header, Family Files, 
Data Blocks, and Table Levels

Figure 1: Paradox file format exten

Figure 2: Obsolete Paradox file for

Extension

.TV TableV
Parado

.FAM Linking
Deskto

.SET TableV

.F and .F1-.F14 Forms 

.R and .R1-.R14 Reports

Extension

.DB Table 
graph

.MB Memo

.PX The in

.Xnn and .Ynn Each p
index.
explain

.VAL ValCh
definit
Once there was a database program called Paradox. In the beginning,
it knew no distinction between Windows and DOS; there was just

Paradox, with its indivisible user interface, programming language, and file
format. But when Borland introduced Paradox for Windows in January of
1993, it separated Paradox into two components: the user interface and
the file format, connected by ODAPI, the Object Database API.
Over time, ODAPI became IDAPI, which
in turn became the Borland Database
Engine, or BDE. Paradox, the file format,
took on a separate identity from Paradox,
the desktop database tool. More recently,
sions.

mat extensions.

Description

iew settings (for Database Desktop and 
x for Windows only).

 file created with the .TV file (for Database 
p and Paradox for Windows only).

iew settings in Paradox for DOS.

attached to the table in Paradox for DOS.

 attached to the table in Paradox for DOS.

Description

definition and all data except memo, 
ic, and BLOb fields.

, graphic, and BLOb data.

dex for the table’s primary key.

air of files represents a separate secondary
 The naming convention for nn will be 
ed in the third article of this series.

eck, Table Lookup, and Referential Integrity 
ions.
Borland sold the desktop-database Paradox
to Corel, who will move it forward as part
of their Office product. Now the Paradox
file format is simply one of the native for-
mats in the BDE, which is shipped with
every one of Borland’s developer tools,
including Delphi, C++, C++Builder,
JBuilder, and IntraBuilder.

Many Delphi developers use Paradox
tables every day, but remarkably little
information circulates in the Delphi com-
munity about how the Paradox file format
really works. The manuals certainly
explain almost nothing. Yet the Paradox
file format is rich and robust, with many
features to serve even the most demanding
desktop applications. 

This series of articles will explain how
Paradox tables are structured internally,
and what really happens when you add or
remove a field from a table, create an
index, pack a table, present a password,
define referential integrity, or modify a
record on a network.

Databases and Files
Microsoft Access defines a database as a single
file with its own internal file system. Inside the
typical .MDB file are tables, indices, relation-
ships, forms, reports, queries, and code.
Paradox takes the opposite approach; a database



On the Cover

table.
is loosely defined as a subdirec-
tory containing related tables.
Elements of each table are
stored in separate files, which
are loosely linked together as a
family. You control the file
name, and the BDE controls
the extension. Figure 1 lists the
different extensions for the
Paradox file format.

(Older versions of the
Paradox file format supported
other files as part of the
table’s family. Figure 2 lists
the extensions used by older
versions of the Paradox file
format and by the Database
Desktop shipped with Delphi. These files don’t need to be
included with your tables when you deliver an application to
a client.) 

When you copy a table, you must copy all linked family mem-
bers as well. Otherwise, the family may become obsolete, rela-
tive to the .DB file, creating all manner of problems when your
application needs to read information from a family file.

Figure 3: Structure of a Paradox 
The Table Format
Internally, the Paradox file format is known as a clustered-key,
VSAM-block, fixed-length record file format, meaning that:

Data is stored in records that occupy a fixed length in the
table, irrespective of the number of characters in each
field. For example, a 20-character alphanumeric field
always occupies 20 characters inside the .DB file, even if
many values are shorter than 20 characters, or are blank.
Records are organized into physical blocks, which can be
accessed sequentially or randomly. Each block contains
one or more records. Records do not span blocks, often
resulting in empty space at the end of each block not
large enough to contain another record.
Blocks — and the records within each block — are orga-
nized so that records are physically stored in primary key
sequence. This feature significantly improves access speed
when the primary key is used.

Figure 3 shows the structure of a table. It begins with a table
header of at least 2KB, and may be a larger multiple of 2KB,
depending on the information to be stored there, including
the following (most of which will be explained in this and
subsequent articles):

The table level.
The Structure ID which is used to keep family members
synchronized. When the BDE opens one of the family
files, it checks to see that the Structure ID in the header
of that file is the same as the ID in the .DB file. If they
are different, it means that the .DB was updated apart
from its family members. Whenever you restructure a
table, the Structure ID is refreshed in all family members.
7 April 1997 Delphi Informant
The header size in bytes.
The record size in bytes.
The block size, being one of the following values: 1KB,
2KB, 4KB, 8KB, 16KB, or 32KB.
Whether the table is keyed or unkeyed.
The number of fields in the table, from 1 to 255.
If the table is keyed, the number of fields in the table’s
primary key.
An array of field types and sizes, indexed by the field
number.
An array of field names, indexed by the field number. 
The number of data blocks in the table, a two-byte value
that can track up to 64KB blocks.
A pointer to the first data block, used to initialize the for-
ward chain.
A pointer to the last data block, used to initialize the
backward chain.
The number of free blocks in the table, also a two-byte
value.
A pointer to the first free block.
The table language, used to define character translations
and sort orders.
The master password — itself encrypted — that was used
to encrypt the data in the table. Note that the header is
not encrypted, so it is always possible to read an encrypted
table’s structure and other information from the header.
An encrypted list of auxiliary passwords defined for the
table, together with the table and field rights defined for
each password.
The current value of the table’s Autoincrement field (only
one is allowed per table).

Some elements of the table’s header support Paradox for DOS
features (e.g. password rights for linked forms and reports,
whether the table maps to a remote table on a database serv-
er). These areas of the header are ignored by the BDE.

Data Blocks
When you create a table, no data blocks are allocated. The
table consists of the header only. When you then insert the



On the Cover
first record, a data block is appended to the .DB file immedi-
ately following the header. 

Data blocks can be 1KB, 2KB, 4KB, 8KB, 16KB, or 32KB
in size; the default is 2KB, but this can be changed in the
BDE Administration program. (Note that the 1KB size is
considered obsolete, and is normally not used.) Block size
does not vary within a table; when the table is created, the
BDE picks a block size and will use that size for every data
block appended to the .DB file.

Coupled with the 64KB limit in the number of data blocks,
the maximum table size (excluding header and free blocks)
is shown in Figure 4. In the real world, the Paradox file for-
mat grows unreliable, well before these theoretical limits are
reached. For example, restructuring tables larger than 100
or 200MB can take hours, especially when updating many
secondary indices.

The Paradox file format reserves six bytes at the beginning of
each block for three internal pointer series of two bytes each,
as follows: 

The sequential number of the next logical block. This series
of pointers is known as the forward chain. BDE computes
the physical starting address of the block by multiplying the
block number by its size, and adding the size of the header. 
The sequential number of the previous logical block. This
series of pointers is known as the backward chain.
A counter to indicate how many active records are con-
tained within that block. Data records are always stored
at the front of the block, so this pointer, coupled with
the record size stored in the header, tells the BDE exact-
ly how much of the block contains active data.

When a block is completely empty, it’s moved to the free-
block chain. This is a separate chain of available blocks
used when the BDE must allocate another data block for
the table. Free blocks have the same three pointers at their
beginning, although the “number of records” pointer is
always zero for a block in this chain.

The BDE will use the block size specified in the Paradox dri-
ver section of your BDE configuration file, unless this block is
too small for a single record — in the case of an unkeyed table
— or three records in the case of a keyed table. If the specified
block size is too small, the BDE uses the smallest block capa-
ble of holding that number of records, based on the table
type. It will then fit as many records as it can within each
block.

(The BDE uses a minimum of three records for a keyed
table because modern disk controllers read a whole block
from the hard disk, anyway. Research has determined that,
when your program is searching for a specific record, it’s
invariably quicker to read a complete block into memory,
then locate the record sequentially within the block.)

The BDE sometimes rounds the result of the record size cal-
culation. For example, with a block size of 4KB (4096 bytes),
8 April 1997 Delphi Informant
you might think that the maximum record size for a keyed
table would be (4096 - 6) / 3 = 1363 bytes. 

Instead, in a holdover from the days when 4KB was the
largest supported block size, the BDE considers 1350 bytes as
the maximum record size for a keyed table using a 4KB block
size. If your record is larger than 1350 bytes, the BDE uses an
8KB block for a keyed table.

Insert and Delete Records
Let’s consider a keyed table with a record size of 204 bytes.
(Don’t worry about how we arrived at this number; you’ll
learn how to calculate record size in the next article.)
Within a Paradox table, the BDE will use a 2KB block size,
and will fit 10 records into each block, using 2040 bytes in
the block for data, with six bytes reserved at the beginning
of the block, and only two bytes of wasted space.

Now let’s assume you insert four records into this table. The
BDE will fill the first four record slots in the block, and set
the record counter to “4”, as shown in Figure 5. (The first
cell in each of the following figures is the count of active
records in that block. Active records are shaded, while avail-
able record slots are unshaded.)

If you then delete record “C”, the BDE moves record “D”
up to occupy slot number 3 — formerly occupied by “C”.
The space formerly used by “D” is not blanked out, so the
original version of “D” still exists. But the record counter
is set to “3”, to indicate that only this many active records
remain in the block. This scenario is shown in Figure 6.

The next record inserted into the table will cause the obsolete
copy of “D” in record slot number 4 to be overwritten. For
example, if you insert a record after “A”, then “B” and “D”
are pushed over one record slot to maintain the keyed order
shown in Figure 7.

If you insert another six records into the table, the block
will be filled, as shown in Figure 8. When you insert the
eleventh record into the table, the BDE determines that the
current block is full, and that it must allocate another block.
When the new block is appended, the BDE also moves the
last record from the previous block, to leave an empty slot
in that block. This is done so a subsequent insert between
“A” and “J” does not require a new block to be allocated, or
a split to take place. In the previous example, record “J” is
moved to the new block, and the new record “K” is added
after this one, as shown in Figure 9.

Note that this is different from the fill factor parameter refer-
enced in the BDE configuration program for the Paradox file
format. The fill factor applies to index files only; we will dis-
cuss it in the third article of this series.

Suppose you next insert two records in this keyed table
between records “E” and “F”. Assume these are called “E1”
and “E2”. Since there is only one free slot in this block, “E1”



Figure 4: Maximum table size for different block sizes.

Data Block Size Maximum Table Size

1KB 64MB

2KB 128MB

4KB 256MB

8KB 512MB

16KB 1024MB

32KB 2048MB

On the Cover
is first placed in the existing block immediately following
“E”, causing the remaining records to be pushed back one
slot each, and the last slot to be filled by record “I”. When
“E2” is inserted, the block must be split again. But because
you are not inserting at the end of the block, the split hap-
pens at the insertion point, with all records after this one
placed in a new block, as shown in Figure 10.

In the previous example, the new block is added at the end of
the table’s file. The BDE then renumbers the forward and
backward chains for each of the three blocks. The forward
chain points to the blocks in this order: 1-3-2. The backward
chain points to the blocks in 2-3-1 order.
Figure 5: Inserting four records into a table.

Figure 6: Deleting the third record.

Figure 8: Inserting another six records into the table.

Figure 9: The BDE adds a new block and applies the fill factor.

Figure 10: The BDE adds another block.

Figure 7: Inserting a new record into the table.

9 April 1997 Delphi Informant
If you simply restructure the table using the Database
Desktop, the BDE does not remove empty record slots. It
also does not physically rearrange the blocks. However, if you
restructure with the Pack Table option selected, the BDE
rebuilds the table and “squeezes out” any unused space. Each
block is completely filled, and the free-block chain is emp-
tied. The BDE also re-sequences the blocks to have the same
order as the forward chain.

The fill factor applies only to keyed tables. With unkeyed
tables, there is less chance that a record will need to be insert-
ed into the table in a specific sequence, so the BDE does not
attempt to leave slots available.

Managing Block Use
Some tables grow continuously and almost never have records
removed. If records are always added at the end of the table
— for example, in an Orders table where the primary key is
an incrementing value — the table will grow continuously
and all data blocks will be largely filled. 

On the other hand, if new records are scattered throughout the
table — for example, in a Customer table where the primary
key starts with the customer’s name — the table will grow
more quickly because many blocks will have been split in order
to keep records in primary-key sequence. Therefore, many

blocks will not yet have been filled.
But consider also a table with a con-
tinuous stream of both added and
deleted records, such as the Orders
table previously described, where paid
orders are moved to an archive table.
It will tend to grow to an equilibrium
size and stay there. As records are
deleted near the beginning of the
table, blocks will be emptied, and will
move to the free-block pool, to be
used when new blocks are required at
the table’s end.

If you frequently insert or delete large
numbers of records, and if the table is
often queried, it’s a good idea to
restructure and pack the table after
such operations. Compressing and
reordering the data blocks in the .DB
file shrinks the table and places its
blocks in natural order. It also com-
presses the primary index file (.PX),
which indexes only the first record in
each block (as we’ll see in a subse-
quent article). 

If your table has many partially filled
blocks, compressing it can reduce the
size of the primary index substantially.
In addition, because the complete pri-
mary index is contained within every



On the Cover
maintained secondary index, compressing the table will
shrink secondary index files, and improve their performance
as well.

Table Levels
The BDE defines a level for each Paradox table, based on
the features it uses. Over the years, Borland has added new
field and index types to the Paradox file format, and each
change necessitated a bump in the level number to ensure
that the BDE would correctly handle the newer features.

Note: When the BDE opens a table, it first checks the
level, and if it finds a higher number than it knows how to
handle, raises an exception.

Level 4 corresponds to Paradox 4.0 for DOS and the first
version of the BDE. With this level, Borland substantially
modified Paradox’s network locking model to improve
multi-user performance. They also added new field types,
including memo fields, and new index types, including
multi-field and case-insensitive indices. Tables that were
originally created under earlier versions of Paradox for
DOS are treated by the BDE as Level 4 tables.

Tables at Levels 4, 5, and 7 are fully compatible with each
other, and can be used concurrently; you don’t need to use
Level 7 to achieve full 32-bit compatibility. (There is no Level
6.) When you define a new table, the BDE picks the lowest
level compatible with the features you specified, but never
lower than the level specified in the BDE configuration file. 
10 April 1997 Delphi Informant
For example, if you don’t specify descending secondary
indices, the BDE will not use a Level 7 table. If you
restructure a table to add a feature that requires a higher
level, the BDE changes the level accordingly. 

The default table level for new tables is defined in the BDE
Administrator program. You can use this parameter to force
Level 7 for all tables, although this isn’t necessary. Aside
from field changes described in next month’s article, and
index changes described in a subsequent article, Level 5
added support for the 8KB, 16KB, and 32KB block sizes. 

Conclusion 
The next article in this series will explore the different
types of fields in the Paradox file format. It will explain
the characteristics of each field, and show you how much
space each uses in the .DB file. 

With this information in hand, you will learn how to cal-
culate record size and the minimum possible table size.
The next article also includes a simple Delphi application
to calculate this information for any specified table. ∆

Dan Ehrmann is the founder and President of Kallista, Inc., a database and
Internet consulting firm based in Chicago. He is the author of two books on
Paradox, and a member of Team Borland and Corel’s CTech. Dan was the
Chairman of the Advisory Board for Borland’s first Paradox conference, which
evolved into the current BDC. He has worked with the Paradox file format for more
than 10 years. He can be reached via e-mail at dan@kallista.com.



11 April 1997 Delphi Informant

Delphi at Work
Delphi 2

By Ian Davies

Rich Text Control
Building a Poor Man’s Word Processor
with the RichEdit Component

Figure 1: The fu

Property

DefAttributes

SelAttributes

Paragraph
Sometimes the Memo component just doesn’t do the trick. Sure, it allows
you to enter multiple lines of text (255KB in Delphi 1, unlimited in Delphi

2), but there’s not much you can do with the text to add interest or emphasis.
With the RichEdit component, however, you can — and a lot more.
The RichEdit component has many features
not supported by the Memo component.
With it, you can:

change the typeface, style, size, and color
of individual characters in the text;
alter individual paragraph alignment;
facilitate the use of paragraph indents,
numbering, and tabs;
open, save, print, and search the contents
of the control; and
drag and drop selected text within the
component, or to other components or
word processors (such as Microsoft
Word) while retaining the text’s font
attributes. 

This article will describe how to use the
RichEdit component to create a basic word
processor. (The RichEdit component is based
on a Windows 95 common control, it is not
available in Delphi 1.)
ndamental properties of the RichEdit component. 

Description

Default attributes — Sets or returns 
the default styles to be applied to text 
being entered in the component.

Selected attributes — Sets or returns 
formatting to apply to the selected 
contents of the component.

Paragraph attributes — Controls the 
paragraph formatting applied to the 
current or selected paragraphs.
Basic Principles
The fundamental properties for manipulating
the text style in the RichEdit control are
DefAttributes, SelAttributes, and Paragraph (see
Figure 1). DefAttributes (which is of type
TTextAttributes) sets or returns the default
styles to be applied to text being entered into
the component (i.e. the style that will be
applied to text if no other style is applied).
SelAttributes (also of type TTextAttributes) sets
or returns the formatting to be applied to a
particular selection in the component. As its
name implies, the Paragraph property (of type
TParaAttributes) controls the paragraph for-
matting applied to the current or selected
paragraph(s). The TTextAttributes object
implements the functionality surfaced through
the DefAttributes or SelAttributes properties. 

The following code sets the Style property of
SelAttributes to fsBold, which means the font
style of the currently selected area in the
RichEdit component will appear in bold:

RichEdit1.SelAttributes.Style := [fsBold];

Other properties of TTextAttributes enable
you to set the font, its size, and its color.

RichEdit also has two methods for handling
printing and searching: Print and FindText.
These methods, combined with standard
dialog boxes, enable us to quickly build a
functional example.



Figure 2: This sample application shows how the RichEdit component
a simple word processor.

Delphi at Work

 application demonstrates how RichEdit can be made data aware.
A Working Example
Our sample application uses the power of RichEdit to imple-
ment much functionality in a few lines of code (see Listing One
beginning on page 13). Figure 2 shows the sample 
application.

In the toolbar, the Left, Center, and Right paragraph align-
ment speedbuttons set the Paragraph property of RichEdit to
taLeftJustify, taCenter, and taRightJustify, respectively.

Similarly, the Bullet speedbutton sets the Numbering
property of the TParaAttributes object to nsBullet or nsNone,
depending on whether the speedbutton’s Down property is
set to True or False. Finally, the font name and size combo
boxes set the Name and Size properties of SelAttributes to
their respective values.

The style property of the TTextAttributes (which is of type
TFontStyles) is a set of TFontStyle. This
allows the structure to contain more
than one value, so, for example, a font
can be bold and italic. You can imple-
ment this by adding or subtracting the
requested font style to the current style:

with RichEdit1.SelAttributes do
Style := Style + [fsBold];

This will make the current selection
bold, without affecting the other attrib-
utes that may have been set. For exam-
ple, if the font were italic, it will now
be bold and italic.

RichEdit contains an event,
OnSelectionChange, which is called
whenever the user changes the selected
text with the keyboard or the mouse. Figure 3: This sample
12 April 1997 Delphi Informant
This event is useful for implementing
changes in the state of, for example,
the font style speedbuttons. In our
sample program, the Style attributes are
retrieved whenever the selection
changes; the style button’s Down prop-
erty and the font name and size are set
accordingly.

Saving documents uses the standard
Windows TSaveDialog and a call to
the SaveToFile method of the Lines
property of RichEdit. Similarly, exist-
ing documents are opened using the
TOpenDialog component and a call to
the LoadFromFile method. 

RichEdit saves files in Rich Text
Format (.RTF), which is compatible
with virtually all leading word proces-
sors. You also have the option to save

the contents as unformatted text, by setting the PlainText
property to True, whereby RichEdit behaves similar to a
standard Memo component.

The Print, Print Setup, and Font dialog boxes are standard
Windows dialog boxes displayed using their Execute methods.
Following the display of the Print dialog box, TRichEdit’s
Print method is called to carry out the printing. 

A parameter can be supplied that will be used as the docu-
ment’s title when displayed in the print queue. Similarly, pro-
vided the OK button of the Font dialog box was clicked, the
Font property of the Font dialog box component is assigned
directly to the SelAttributes property.

Cut, Copy, and Paste are implemented by calling the
CutToClipboard, CopyToClipboard, and PasteFromClipboard
methods of RichEdit. Undo, however, does not have a cor-

 can be used to create 



Delphi at WorkDelphi at Work
responding method, and, therefore, cannot be called in this
way. Instead, we must send the Windows message
WM_UNDO to the control using the SendMessage function.

The Find facility, which locates specific items of text, is
achieved differently. The dialog box is displayed using the
TFindDialog Execute method, but the code that handles
the searching of items in the RichEdit control is placed in
the Find dialog box’s OnFind method. This method is
called whenever the user clicks the Find Next button in the
Find dialog box. 

The code in the sample application then attempts to
locate the text (that the user entered) using the POS func-
tion. If the text is found, it’s highlighted in the RichEdit
control; otherwise, an appropriate message is displayed to
the user.

This is a basic attempt at creating a useful application using
the RichEdit control. Possible enhancements include adding
a search and replace facility, updating the Find code to find
the next occurrence of a particular string, and implementing
a recently used file list. 

If you have the confidence to implement the RichEdit
component in your application or expand upon the simple
application provided here, then I have achieved my prima-
ry goal.

Rich Text in Databases
Since version 1, Paradox has provided a way of storing rich
text data in a database, and using it in its forms. This
facility is notably lacking from versions 1 and 2 of Delphi;
despite a Formatted Memo field being available through
the Database Desktop, the Database Desktop doesn’t pro-
vide a means of entering or viewing data contained in it.
(Borland has filled the hole, providing a TDBRichEdit
control in the forthcoming Delphi 3. This is used in the
same way as RichEdit, but now has DataSource and
DataField properties.)

Creating a data-aware RichEdit in Delphi 2 is possible by
reading and writing the contents of a RichEdit in a
Formatted Memo field using a TBlobField object:

Table1.Edit;

BlobStream:=

TBlobStream.Create(Table1FormattedMemo,bmWrite);

RichEdit1.Lines.SaveToStream(BlobStream);

BlobStream.Free;

Table1.Post;

When the BlobField is created (here it’s named
BlobStream), the field object that will store the rich text
is passed as a parameter to the Create method. The
BlobStream object is then passed as a parameter to the
RichEdit LoadToStream and SaveToStream methods, to
load and save the rich text in the appropriate field of the
current record (see Figure 3). The entire program is shown
in Listing Two on page 16. 
13 April 1997 Delphi Informant
Conclusion
Back in the days of MS-DOS, plain text was acceptable, even
expected. Word processors offered the ability to apply differ-
ent fonts and font styles to the printed output, but only the
most expensive provided the ability to see the effects on the
screen. With Windows, rich text is the norm, and anything
less just isn’t good enough. 

In this article, I have demonstrated how the powerful
RichEdit component can be used as the basis of a simple
word processor, and, further, how the contents of a RichEdit
component can be easily stored in a database. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\APR\DI9704ID.

Ian Davies is a developer of 16- and 32-bit applications for the Inland Revenue
in the UK. He began Windows programming using Visual Basic about four years
ago, but has seen the light and is now a devout Delphi addict. Current interests
include Internet and intranet development, inter-application communication, and
sometimes a combination of the two. Ian can be contacted via e-mail at
106003.3317@compuserve.com.
Begin Listing One — A RichEdit Word Processor
unit CEditForm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, Buttons, ExtCtrls, StdCtrls, 

ComCtrls, Menus;

type
TEditForm = class(TForm)

RichEdit1: TRichEdit;

Panel1: TPanel;

BoldButton: TSpeedButton;

ItalicButton: TSpeedButton;

UnderlineButton: TSpeedButton;

BulletsButton: TSpeedButton;

LeftAlign: TSpeedButton;

RightAlign: TSpeedButton;

CenterAlign: TSpeedButton;

FontName: TComboBox;

FontSize: TComboBox;

StatusBar1: TStatusBar;

MainMenu1: TMainMenu;

File1: TMenuItem;

Exit1: TMenuItem;

N1: TMenuItem;

PrintSetup1: TMenuItem;

Print1: TMenuItem;

N2: TMenuItem;

SaveAs1: TMenuItem;

Save1: TMenuItem;

N3: TMenuItem;

Open1: TMenuItem;

New1: TMenuItem;

PrinterSetupDialog1: TPrinterSetupDialog;

PrintDialog1: TPrintDialog;

OpenDialog1: TOpenDialog;

SaveDialog1: TSaveDialog;

Edit1: TMenuItem;

Find1: TMenuItem;



Delphi at WorkDelphi at Work
N5: TMenuItem;

Paste1: TMenuItem;

Copy1: TMenuItem;

Cut1: TMenuItem;

N6: TMenuItem;

Undo1: TMenuItem;

FindDialog1: TFindDialog;

Help1: TMenuItem;

About1: TMenuItem;

HowtoUseHelp1: TMenuItem;

SearchforHelpOn1: TMenuItem;

Contents1: TMenuItem;

ColorDialog1: TColorDialog;

Font1: TMenuItem;

N4: TMenuItem;

FontDialog1: TFontDialog;

StrikeoutButton: TSpeedButton;

function ContinueEvenIfDirty: Word;

procedure FormCreate(Sender: TObject);

procedure FormActivate(Sender: TObject);

procedure New1Click(Sender: TObject);

procedure Open1Click(Sender: TObject);

procedure Save1Click(Sender: TObject);

procedure SaveAs1Click(Sender: TObject);

procedure Print1Click(Sender: TObject);

procedure PrintSetup1Click(Sender: TObject);

procedure Exit1Click(Sender: TObject);

procedure FormClose(Sender: TObject; 

var Action: TCloseAction);

procedure Undo1Click(Sender: TObject);

procedure Cut1Click(Sender: TObject);

procedure Copy1Click(Sender: TObject);

procedure Paste1Click(Sender: TObject);

procedure Font1Click(Sender: TObject);

procedure Find1Click(Sender: TObject);

procedure FindDialog1Find(Sender: TObject);

procedure RichEdit1SelectionChange(Sender: TObject);

procedure BoldButtonClick(Sender: TObject);

procedure ItalicButtonClick(Sender: TObject);

procedure UnderlineButtonClick(Sender: TObject);

procedure StrikeoutButtonClick(Sender: TObject);

procedure BulletsButtonClick(Sender: TObject);

procedure LeftAlignClick(Sender: TObject);

procedure FontNameChange(Sender: TObject);

procedure FontSizeClick(Sender: TObject);

procedure FontSizeKeyPress(Sender: TObject; 

var Key: Char);

procedure About1Click(Sender: TObject);

private
{ Private declarations }
FName: ShortString;

public
{ Public declarations }

end;

var
EditForm: TEditForm;

implementation

{$R *.DFM}

function TEditForm.ContinueEvenIfDirty: Word;

begin
Result := mrNo;

if RichEdit1.Modified then
Result := MessageDlg(

'Changes were made. Do you wish to save them?', 

mtConfirmation, mbYesNoCancel, 0);

if Result = mrYes then Save1Click(nil);

end;

procedure TEditForm.FormCreate(Sender: TObject);

begin
//Initialise the variables.
FontName.Clear;

FontName.Sorted := True;

FontName.Items := Screen.Fonts;

OpenDialog1.InitialDir := ExtractFilePath(

Application.ExeName);

SaveDialog1.InitialDir := ExtractFilePath(
14 April 1997 Delphi Informant
Application.ExeName);

FName := '';

end;

procedure TEditForm.FormActivate(Sender: TObject);

begin
//Update the state of the indicators on the toolbar.

RichEdit1SelectionChange(Sender);

end;

procedure TEditForm.New1Click(Sender: TObject);

begin
//Check if changes have been made and, 

//if OK to continue, start from scratch.

if ContinueEvenIfDirty = mrNo then
begin

RichEdit1.Lines.Clear;

FName := '';

EditForm.Caption := 'TRichEdit Example';

RichEdit1.Modified := False;

end;
end;

procedure TEditForm.Open1Click(Sender: TObject);

begin
//Check if changes have been made and, 
//if OK to continue, load the RTF file.
if ContinueEvenIfDirty = mrNo then
begin

if OpenDialog1.Execute then
begin

try
Screen.Cursor := crHourGlass;

Application.ProcessMessages;

RichEdit1.Lines.LoadFromFile(OpenDialog1.FileName);

FName := ExtractFileName(OpenDialog1.FileName);

EditForm.Caption := 'TRichEdit Example - ' + FName;

RichEdit1.Modified := False;

finally
Screen.Cursor := crDefault;

end;
end;

end;
end;

procedure TEditForm.Save1Click(Sender: TObject);

begin
if FName = '' then
begin

//Saving for the first time.
SaveAs1Click(Sender);

end
else
begin

//Saved before.
RichEdit1.Lines.SaveToFile(FName);

RichEdit1.Modified := False;

end;
end;

procedure TEditForm.SaveAs1Click(Sender: TObject);

begin
//Check if changes have been made and, 
//if OK to continue, save the file.
if SaveDialog1.Execute then

begin
RichEdit1.Lines.SaveToFile(SaveDialog1.FileName);

EditForm.Caption := 'TRichEdit Example - ' +

ExtractFileName(SaveDialog1.FileName);

RichEdit1.Modified := False;

end;
end;

procedure TEditForm.Print1Click(Sender: TObject);

var
loop: Integer;

begin
//Display the print dialog box.
if PrintDialog1.Execute then
begin
//Print the required number of copies.



1

Delphi at WorkDelphi at Work
for loop := 1 to PrintDialog1.Copies do
RichEdit1.Print('TRichEdit Example : ' + FName);

end;
end;

procedure TEditForm.PrintSetup1Click(Sender: TObject);

begin
//Display the print setup dialog box.
PrinterSetupDialog1.Execute;

end;

procedure TEditForm.Exit1Click(Sender: TObject);

begin
Close;

end;

procedure TEditForm.FormClose(Sender: TObject; 

var Action: TCloseAction);

begin
//Check if changes have been made and, 
//if OK to continue, free the form.
if ContinueEvenIfDirty = mrNo then

Action := caFree

else
Action := caNone;

end;

procedure TEditForm.Undo1Click(Sender: TObject);

begin
if ActiveControl is TRichEdit then
begin

//Send the WM_UNDO message to the TRichEdit.
SendMessage(ActiveControl.Handle, WM_UNDO, 0, 0);

end;
end;

procedure TEditForm.Cut1Click(Sender: TObject);

begin
RichEdit1.CutToClipBoard;

end;

procedure TEditForm.Copy1Click(Sender: TObject);

begin
RichEdit1.CopyToClipBoard;

end;

procedure TEditForm.Paste1Click(Sender: TObject);

begin
RichEdit1.PasteFromClipBoard;

end;

procedure TEditForm.Font1Click(Sender: TObject);

begin
//Set the initial values in the Font 
//dialog box to the current style.
FontDialog1.Font.Assign(RichEdit1.SelAttributes);

if FontDialog1.Execute then
//Set the current style to the values
//in the Font dialog box.
RichEdit1.SelAttributes.Assign(FontDialog1.Font);

RichEdit1.SetFocus;

end;

procedure TEditForm.Find1Click(Sender: TObject);

begin
FindDialog1.Execute;

end;

procedure TEditForm.FindDialog1Find(Sender: TObject);

var
TextPos: integer;

begin
//Find the first occurrence of the selected text.
TextPos := Pos(FindDialog1.FindText, RichEdit1.Text);

//If the text is found ..
if TextPos > 0 then
begin

// .. highlight it in the RichEdit control.
EditForm.BringToFront;

RichEdit1.SelStart := TextPos - 1;

RichEdit1.SelLength := Length(FindDialog1.FindText);
5 April 1997 Delphi Informant
end
else

MessageDlg('Text not found', mtInformation, [mbOK], 0);

end;

procedure TEditForm.RichEdit1SelectionChange(

Sender: TObject);

begin
//Set the state of the items in the toolbar.
BoldButton.Down := fsBold in 

RichEdit1.SelAttributes.Style;

ItalicButton.Down := fsItalic in 

RichEdit1.SelAttributes.Style;

UnderlineButton.Down := fsUnderline in 

RichEdit1.SelAttributes.Style;

StrikeoutButton.Down := fsStrikeout in 

RichEdit1.SelAttributes.Style;

FontSize.Text := IntToStr(RichEdit1.SelAttributes.Size);

FontName.ItemIndex:= FontName.Items.IndexOf(

RichEdit1.SelAttributes.Name);

with RichEdit1.Paragraph do
begin

if Numbering = nsBullet then
BulletsButton.Down := True

else
BulletsButton.Down := False;

case Alignment of
taLeftJustify: LeftAlign.Down := True;

taRightJustify: RightAlign.Down := True;

taCenter: CenterAlign.Down := True;

end;
end;

end;

procedure TEditForm.BoldButtonClick(Sender: TObject);

begin
with RichEdit1.SelAttributes do

if BoldButton.Down then
Style := Style + [fsBold]

else
Style := Style - [fsBold];

end;

procedure TEditForm.ItalicButtonClick(Sender: TObject);

begin
with RichEdit1.SelAttributes do

if ItalicButton.Down then
Style := Style + [fsItalic]

else
Style := Style - [fsItalic];

end;

procedure TEditForm.UnderlineButtonClick(Sender: TObject);

begin
with RichEdit1.SelAttributes do

if UnderlineButton.Down then
Style := Style + [fsUnderline]

else
Style := Style - [fsUnderline];

end;

procedure TEditForm.StrikeoutButtonClick(Sender: TObject);

begin
with RichEdit1.SelAttributes do

if StrikeoutButton.Down then
Style := Style + [fsStrikeout]

else
Style := Style - [fsStrikeout];

end;

procedure TEditForm.BulletsButtonClick(Sender: TObject);

begin
if BulletsButton.Down then

RichEdit1.Paragraph.Numbering := nsBullet

else
RichEdit1.Paragraph.Numbering := nsNone;

end;



1

Delphi at WorkDelphi at Work
procedure TEditForm.LeftAlignClick(Sender: TObject);

begin
with RichEdit1.Paragraph do
begin

if Sender = LeftAlign then Alignment := taLeftJustify;

if Sender = CenterAlign then Alignment := taCenter;

if Sender = RightAlign then
Alignment := taRightJustify;

end;
end;

procedure TEditForm.FontNameChange(Sender: TObject);

begin
//Set the font to the name contained 
//in the FontName combo box.
RichEdit1.SelAttributes.Name := 

FontName.Items[FontName.ItemIndex];

end;

procedure TEditForm.FontSizeClick(Sender: TObject);

begin
//Set the font size to that contained 
//in the FontSize combo box.
RichEdit1.SelAttributes.Size := StrToInt(FontSize.Text);

end;

procedure TEditForm.FontSizeKeyPress(Sender: TObject; 

var Key: Char);

begin
{ If the user presses the CR key when the cursor is in 

the font size combobox call the routine to set the
font size of the current selection in the RichEdit. }

if Key = #13 then
begin

FontSizeClick(Sender);

Key := #0;

end;
end;

procedure TEditForm.About1Click(Sender: TObject);

begin
MessageDlg('This is where the about box goes', 

mtInformation, [mbOK], 0);

end;

end.

End Listing One
Begin Listing Two — Data Aware RichEdit
unit CMainForm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, Mask, DBCtrls, StdCtrls, ComCtrls,

ExtCtrls, DB, DBTables, Buttons;

type
TMainForm = class(TForm)

SaveButton: TButton;

LoadButton: TButton;

DataSource1: TDataSource;

Table1: TTable;

DBNavigator1: TDBNavigator;

RichEdit1: TRichEdit;

DBEdit1: TDBEdit;

FontButton: TButton;

FontDialog1: TFontDialog;

Label1: TLabel;

Table1Header: TStringField;

Table1FormattedMemo: TBlobField;

procedure FormCreate(Sender: TObject);

procedure FontButtonClick(Sender: TObject);

procedure SaveButtonClick(Sender: TObject);

procedure LoadButtonClick(Sender: TObject);

private
6 April 1997 Delphi Informant
{ Private declarations }
public

{ Public declarations }
end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);

begin
Table1.DatabaseName :=

ExtractFilePath(Application.ExeName);

Table1.Active := True;

end;

procedure TMainForm.FontButtonClick(Sender: TObject);

begin
FontDialog1.Font.Assign(RichEdit1.SelAttributes);

if FontDialog1.Execute then
RichEdit1.SelAttributes.Assign(FontDialog1.Font);

RichEdit1.SetFocus;

end;

procedure TMainForm.SaveButtonClick(Sender: TObject);

var
BlobStream: TBlobStream;

begin
Table1.Edit;

BlobStream:=

TBlobStream.Create(Table1FormattedMemo,bmWrite);

RichEdit1.Lines.SaveToStream(BlobStream);

BlobStream.Free;

Table1.Post;

end;

procedure TMainForm.LoadButtonClick(Sender: TObject);

var
BlobStream: TBlobStream;

begin
BlobStream :=

TBlobStream.Create(Table1FormattedMemo,bmRead);

RichEdit1.Lines.LoadFromStream(BlobStream);

BlobStream.Free;

end;

end.

End Listing Two



17 April 1997 Delphi Informant

OP Tech
Delphi / Object Pascal

By Bill Todd

Array of Tasks
Using the Components Array for a Variety of Jobs

Figure 1: A proc

procedure Disa

{ Disables any
form whose 
parameter. T
routine must

Parameters:
Form: 
TagValue:

var
I : Integer

begin
with Form d

for I := 

if (Com

begin
if

T

els
T

els
T

end; 
end;  { wi

end;
In the October 1996 Delphi Informant, Robert Vivrette introduced the
Controls and Components arrays (see Vivrette’s article “Parentage and

Ownership”). This article expands on that discussion, and offers three 
practical examples of using it to develop generic solutions to common
problems.
Managing Security
A common necessity in Delphi programs is
a system that manages security by requir-
ing users to log into the program with a
valid user name and password. The user
name and password are typically stored in
a security table — a table that also con-
tains a security level to control which fea-
tures of the program the user can access.
edure to disable controls.

bleControls(Form: TForm; TagValue: LongInt);

 TMenuItem, TButton, or TSpeedButton on the 
Tag property is greater than the TagValue
he uses clause of the unit that contains this
 include StdCtrls and Buttons.

The form whose controls are checked.
The maximum value of the Tag property that 
will allow the control to remain enabled. }

;

o begin
0 to ComponentCount -1 do
ponents[I].Tag > TagValue) then

Components[I] is TMenuItem then
MenuItem(Components[I]).Enabled := False

e if Components[I] is TButton then
Button(Components[I]).Enabled := False

e if Components[I] is TSpeedButton then
SpeedButton(Components[I]).Enabled := False;

 { if }
th }
One way to control a user’s access to pro-
gram features is to disable all the menu
choices and buttons a user isn’t allowed to
use. This isn’t difficult, but does require a
substantial amount of code in each form to
check the user’s security level, then explic-
itly disable each menu choice and button
the user isn’t allowed to use.

This process can be simplified by making
the user’s security level an integer. In this
system, larger numbers mean greater
access, and lower numbers represent less
access. The next step is to assign a security
level to each menu choice and button that
must be disabled. Fortunately, the Delphi
development team gave every component
an unused long integer property, named
Tag. The Tag property is not used by
Delphi. It exists only for our use. This
means that by setting the component’s Tag
property, you can assign the security level
to each component that must be disabled.
Assign the levels so a user can’t use any
menu item or button whose security level
is greater than the user’s security level.
Note that because the default value of the
Tag property is 0 (zero), you don’t need to
change the value of Tag for the compo-
nents available to all users.

The last step in implementing this system
is to write a routine that disables all menu



records in TQuery and TStoredProc components as well as
TTable.

Figure 2: A function to warn users of unposted records.

function AllTablesPosted(Form: TForm): Boolean;

{ Checks that all tables on form are in dsBrowse mode. }
var

I : Integer;

begin
Result := True;

with Form do begin
for I := 0 to ComponentCount -1 do

if Components[I] is TTable then
if (Components[I] as TTable).Active then

if (Components[I] as TTable).State <> dsBrowse then
begin

Result := False;

Break;

end;  { if }
{ Display error message. }
if Result = False then

MessageDlg('There is an unposted'+

(Components[I] as TTable).Name +'record in the'+

Caption + 

'form. Please Post or Cancel your changes.',

mtError, [mbOK], 0);

end;  { with }
end;

OP Tech

procedure RefreshLinkedTables(Form: TForm);

{ Refreshes all active tables on a form if all
tables are in dsBrowse state. }

var
I : Integer;

OkToRefresh : Boolean;

begin
OkToRefresh := True;

with Form do begin
{ Make sure all tables are in dsBrowse state. This

prevents refreshing a master when one of its
details has an unposted record, since refreshing
the master will post the detail. }

for I := 0 to ComponentCount -1 do
if Components[I] is TTable then

if (Components[I] as TTable).Active then
if (Components[I] as TTable).State<>dsBrowse then

OkToRefresh := False;

{ Refresh the tables. }
if OkToRefresh then

for I := 0 to ComponentCount -1 do
if Components[I] is TTable then

if (Components[I] as TTable).Active then
(Components[I] as TTable).Refresh;

end;  { with }
end;

procedure RefreshAllTables(Form: TForm);

{ Refreshes all active tables on a form. }
var

I : Integer;

begin
with Form do begin

for I := 0 to ComponentCount -1 do
if Components[I] is TTable then

if (Components[I] as TTable).Active then
if (Components[I] as TTable).State = dsBrowse

then
(Components[I] as TTable).Refresh;

end;  { with }
end;

Figure 3: Refreshing all tables on a form.

Figure 4: Refreshing linked tables.

OP Tech
items and buttons whose Tag value is greater than the
user’s security level. The Components array provides the
perfect way to do this, as shown in the code in Figure 1.

You can call this procedure from the OnCreate event han-
dler of any form by passing it two parameters. The first is
the form whose controls should be checked. The second is
the maximum Tag value for controls to remain enabled.
All TMenuItem, TButton, and TSpeedButton objects whose
Tag property is greater than the Tag parameter will be dis-
abled. Note that this also takes care of TBitButton objects,
because TBitButton is a descendant of TButton.

This procedure uses a for loop to iterate through the
Components array, checking each component to determine
if its Tag property is greater than the TagValue parameter.
If it is, the component is checked to determine if it’s a
TMenuItem, TButton, or TSpeedButton. If the component
is one of these types, or a descendant of one of these types,
its Enabled property is set to False.

Ensuring Records Are Posted
Another problem the Components array can easily resolve
is how to handle users who forget to post a new or
changed record before they close a form or move to anoth-
er form. To solve this problem you need a generic routine
that will check each Table control and warn the user if its
State property is anything other than dsBrowse. Figure 2
shows such a function.

Again, the code uses a for loop to traverse the
Components array, checking each component to determine
if it’s a TTable or one of its descendants. If it is, and the
table is open and the State property is not set to dsBrowse,
the function displays a message to the user and returns
False. You might want to modify this code to test for the
TDataSet type instead of TTable. This will detect unposted
18 April 1997 Delphi Informant
You can call this function in a form’s OnCloseQuery event
and prevent the user from closing the form until the
record is posted. You can also call this method in a form’s
OnDeactivate event handler to warn users of unposted
records when they move focus to another form, or in the
OnChange event handler for a tabbed notebook to warn
users before they move to another page.

Refreshing Data
The last example of using the Components array ensures that
users in a multi-user environment are viewing up-to-date infor-
mation. If you or your users are accustomed to using a desktop
database — such as Paradox — that periodically (and automat-
ically) refreshes the user’s view of a table, you may want to
implement that same functionality in your Delphi applications.
The procedure shown in Figure 3 takes a form as its only para-
meter, and if the table is active and in browse mode, calls
Refresh to re-read any data changed by another user.



OP Tech
However, there is a problem with this. If you have a form
that uses linked tables to show a one-to-many relationship,
refreshing the master table will cause any unposted records
in a detail table to post.

To avoid this problem, change the code as shown in Figure 4.
The procedure checks that all tables on the form are in
browse mode before refreshing any table. This prevents unex-
pected posts from occurring.

Conclusion
The Components and Controls arrays are extremely useful
for writing generic routines that must determine the type
and number of controls in a form or any of the container
objects in a form. Using these arrays you can write code
that will work with any form in any of your programs to
manipulate the form’s components in any way you need.

Employing the Components array, we have explored three
practical solutions to common problems. But it’s just the
beginning ... ∆

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of Delphi: A Developer’s
Guide [M & T Books, 1995], Delphi 2: A Developer’s Guide [M & T Books,
1996], and Creating Paradox for Windows Applications [New Riders Publishing,
1994], and is a member of Team Borland providing technical support on
CompuServe. He has also been a speaker at every Borland Developers Conference.
He can be reached at (602) 802-0178, on CompuServe at 71333,2146, or on
the Internet at 71333.2146@compuserve.com.
19 April 1997 Delphi Informant



20 April 1997 Delphi Informant

DBNavigator
Delphi 1 / Delphi 2

By Cary Jensen, Ph.D.

Controlling Your Sessions
Using the TSession Class
O ver the past two months, this column has looked at some
components that don’t appear on the Component palette. Two of

them, the Application and Screen variables, are defined in the Forms unit,
and are automatically available to any application that uses this unit.
A third variable, Session, is similar in many
respects. This variable, defined in the DB
unit, is automatically created for any applica-
tion that includes this unit. Session is an
instance variable of the TSession class, and it
provides access to properties, methods, and
events that generally relate to the Borland
Database Engine (BDE). Consequently, this
is a particularly useful variable as far as data-
base developers are concerned. 
Figure 1: TSession properties 
(*Delphi 2 only).

Property

Active *

ConfigMode *

DatabaseCount 

Databases 

Handle 

KeepConnections 

Locale 

PrivateDir 

Name 

NetFileDir 

Owner

Tag 

TraceFlags *
This month’s “DBNavigator” takes a look at
the TSession class, concentrating on the
Session instance variable. Three issues to 
consider are:

accessing BDE information,
controlling Paradox table-related
settings, and 
managing aliases in Delphi 2.

While Session is similar to Application and
Screen, it is also different in two important
ways:

Non-database applications generally don’t
include the DB unit, and therefore these
types of applications don’t have access to
the Session variable. Because Application
and Screen are defined in the Forms unit,
they are available for any application that
includes at least one form, and this
accounts for nearly all Delphi applica-
tions.
Delphi 2 includes a TSession component
on the Data Access page of the
Component palette. Consequently,
unlike Application and Screen, which
don’t appear on the Component palette,
at least as far as 32-bit versions of Delphi
are concerned, you can have design-time
access to a TSession component.

As mentioned earlier, the TSession class is
useful in database applications, providing
general support for aliases and Paradox
table-related issues. Figure 1 contains a list



21 April 1997 Delphi Informant

Figure 2: TSession methods
(*Delphi 2 only).

Figure 3: TSession event 
properties (*Delphi 2 only).

Figure 4: The BASIC project displays information 
gathered using TSession methods.

Method

AddAlias *

AddPassword

AddStandardAlias

Close

CloseDatabase

DeleteAlias *

DropConnections

FindDatabase

GetAliasDriverName *

GetAliasNames

GetAliasParams

GetConfigParams *

GetDatabaseNames

GetDriverNames

GetDriverParams

GetPassword

GetStoredProcNames

GetTableNames

IsAlias *

ModifyAlias *

Open *

OpenDatabase

RemoveAllPasswords

RemovePassword

SaveConfigFile *

DBNavigator

Events

OnPassword

OnStartup *
of the TSession properties.
Figures 2 and 3 contain the
TSession methods and event
properties, respectively.

Getting Basic BDE
Information
The Session variable provides
easy access to some of the
more basic types of informa-
tion available from the BDE.
This includes the available
aliases, tables, stored proce-
dures, and drivers, as well as
alias and driver parameters.
For example, using the
method GetAliasNames, you
can easily populate a
TStrings object with the list
of available aliases. Likewise,
using GetTableNames, you
can obtain a list of the tables
stored in a given alias. 

The project BASIC.DPR,
shown in Figure 4, demon-
strates some of the methods
that provide your application
with basic BDE information.
This project uses threeTSession
methods: GetAliasNames,
GetTableNames, and
GetAliasParams. 

The simplest of these meth-
ods is GetAliasNames, which
has the following syntax:

procedure

GetAliasNames(List:     

TStrings);

When you call this method,
the TStrings object is first
emptied, then populated
with a list of aliases. In
Delphi 1, this list includes
only those aliases defined in
the BDE configuration file,
IDAPI.CFG. If you want to
list local aliases, those
defined by Database compo-
nents, you must use the
GetDatabaseNames method. In Delphi 2, the aliases included
in the list are defined by the TSession property ConfigMode.
This property has three possible values: cmPersistent (only
those defined by IDAPI32.CFG), cmSession (only those
defined by Database components using the TSession compo-
nent), and cmAll (both persistent and local aliases).
Only slightly more complex is the GetAliasParams method.
This method, which has the following syntax, empties a spec-
ified TStrings object and populates it with the parameters of a
specified alias:

procedure GetAliasParams(const AliasName: string; 
List: TStrings);

The GetTableNames method has the following syntax:

procedure GetTableNames(const DatabaseName, Pattern: string; 
Extensions, SystemTables: Boolean; List: TStrings);

The first parameter, DatabaseName, is the name of the alias
that points to the table location, while the second parameter
allows you to specify a pattern for the inclusion of table
names. If you want to include all table names, use the pat-
tern *.*. The third and fourth parameters are Boolean val-
ues that enable you to choose whether to include extensions
in the listed table names, and whether to include the system
tables (SQL databases only), respectively. The final parame-
ter is the name of the TStrings object that will be emptied,
then populated with the table names as specified with the
first four parameters. 

The code in Figure 5 is associated with the OnCreate event
handler for the main form of the BASIC project, as well as
the OnChange event handler for the list box that displays
the aliases (ListBox1). Note that for this code to work prop-
erly, it was necessary to add the DB unit to this project’s
uses clause; this needed to be done manually, because the
project didn’t include data-aware components. If at least
one data-access component (such as a DataSource or a
Database) appeared on the form, the DB unit would have
automatically been added to the unit’s interface uses clause.

Other TSession methods that provide basic BDE information
include GetAliasDriverName (Delphi 2 only),
GetConfigParams (Delphi 2 only), GetDatabaseNames,
GetDriverNames, GetDriverParams, and GetStoredProcNames.

Controlling Paradox Table-Related Settings
For most local applications (those in which the data are 
stored in tables on a local hard disk or a local area net-



Figure 5: TSession methods.

procedure TForm1.FormCreate(Sender: TObject);

begin
// Get the alias list. 
Session.GetAliasNames(ListBox1.Items);

// Select the first alias in the list. 
ListBox1.ItemIndex := 0;

// Call the OnChange event handler for ListBox1. 
ListBox1Click(Sender);

end;

procedure TForm1.ListBox1Click(Sender: TObject);

begin
// Display the tables in the selected alias. 
Session.GetTableNames(ListBox1.Items[ListBox1.ItemIndex],

*.*',True,True,ListBox2.Items);

Label2.Caption := 'Tables in alias ' + 

ListBox1.Items[ListBox1.ItemIndex];

// Display the parameters of the selected alias. 
Session.GetAliasParams(ListBox1.Items[ListBox1.ItemIndex],

ListBox3.Items);

end;

Figure 6: The BDE Configuration Utility permits you to set the NET
DIR parameter for the Paradox driver.

DBNavigator
work), the Paradox table format is the preferred format for
several reasons.

First, the Paradox table format has the richest set of field
types on the desktop. The available field types range from
DateTime to Currency, from BLOb (Binary Large Object) to
Autoincrement, and from Graphic to BCD (binary coded
decimal). 

Second, Paradox tables support high-performance indexes
that provide quick filtering (using ranges) and sorting, as
well as table and record-level locking. 

Finally, the Paradox table format is the default format for a
number of BDE operations, including temporary files for
local SQL queries (SQL queries not run on a remote data-
base server) and error tables for failed BatchMove opera-
tions. 

A number of TSession properties, methods, and events are
directly related to the use of Paradox tables — specifically,
the PrivateDir, and NetFileDir properties, the
AddPassword, GetPassword, RemovePassword, and
RemoveAllPasswords methods, and the OnPassword event.
(The next section will begin by considering the NetFileDir
and PrivateDir properties. The password-related issues are
covered in a later section.)

The NetFileDir and PrivateDir Properties
If you use Paradox tables, or BDE operations that rely on
Paradox tables, you need to at least be aware of the
NetFileDir and PrivateDir properties of the Session vari-
able. For most applications, two rules apply to these prop-
erties. The first rule is that every user who can access
shared Paradox tables (tables that can be read or written to
by more than one user at a time) must all have their
Session’s NetFileDir property point to the same physical
directory. In other words, this directory must be a shared
directory (one that is on the network). In addition, each
22 April 1997 Delphi Informant
user must have read and write access to this directory.
The NetFileDir property specifically points to a directory
in which the BDE writes a file called the network control
file. This file, named PDOXUSER.NET, identifies each
session that can access shared Paradox tables. (Every BDE-
enabled application that has at least one session and some
applications, such as those written in Delphi 2 that use
additional TSession components from the Data Access page
of the Component palette, may have more than one.) 

If any user attempts to access a Paradox table that is currently
being accessed by one or more users, and all users don’t use
the same network control file, bad things happen. The most
common is that one or more of the sessions crash. For this
reason, the NetFileDir is an important property.

In most applications, and in particular, Delphi 1 applica-
tions, the NetFileDir property isn’t set by the application.
Specifically, it’s a parameter of the Paradox driver, and it’s
set when the BDE is installed. Figure 6 displays the
Drivers page of the BDE Configuration Utility with the
Paradox driver selected. Notice the NET DIR parameter
on the right-hand pane of this window. This is where this
property is typically set. If you must set this property at
run time, it must be set prior to activating any Databases
or DataSets. In other words, no form that is auto-created
can contain active Tables, Queries, StoredProcs, or
Databases. Furthermore, before making any one of these
components active, the NET DIR property of the Session
component must be set to a common network directory.

The second critical property when Paradox tables are being
used is the PrivateDir property. In short, every session
must use a different private directory. It’s into this directo-
ry that the BDE will create temporary tables, as needed.
For example, if you execute a query against local tables, or
execute heterogeneous queries (ones that involve both local
and remote tables, or one that involves tables from two or
more remote servers), the BDE must write temporary
tables that it will ultimately delete. To ensure that such a
query being executed by one user is unaffected by queries
being executed by another user, the BDE writes these to
the private directory of the session.



DBNavigator
By default, the private directory of the Session variable is set
to the directory in which the executable (.EXE) file resides.
As long as each user of a multi-user application is running a
local version of the .EXE, that is, the .EXE resides on his/her
hard drive in an un-shared directory, the default private direc-
tory should work fine (assuming that every BDE-aware appli-
cation on a user’s machine is stored in a separate directory,
and that only one copy of an application can run at a time). 

However, when the .EXE is stored on a shared drive, and
run by each user from that drive, your code must assign a
unique private directory before any Databases or DataSets
are activated. As with the NetFileDir property, this means
that no auto-created forms can contain activated
DataSources or DataSets. Furthermore, prior to activating
the first Database or DataSet of the application, your code
should set the TSession property PrivateDir.

The following code demonstrates one example of how this
can be accomplished:

procedure TForm1.FormCreate(Sender: TObject);

begin
if not DirectoryExists('c:\priv') then

if not CreateDir('c:\priv') then
raise Exception.Create('Cannot create c:\priv. '+

'Create this directory and retry');

Session.PrivateDir := 'c:\priv';

end;

This code, which appears in the OnCreate event handler for the
application’s main form, assumes that no Databases or DataSets
are active on this form. Furthermore, it’s assumed that the main
form is the only auto-created form in the application (every other
form will be created as needed, and presumably released when no
longer needed, but this second part is not critical to the issue of
private directories). One final assumption is that each user is run-
ning on a machine with a hard drive whose drive letter is C.

Using Encrypted Paradox Tables
If you are using tables from a remote database server, you must
supply a valid user name and password prior to accessing those
tables. These two pieces of information can either be assigned to
the Params property of a Database component or automatically
be requested by the BDE, by way of the Database Login dialog
box, when the application first attempts to access the server. 

If your application uses an encrypted Paradox table, a valid pass-
word is also required before the table can be accessed for the first
time by a user in a session. Unlike remote servers, however,
Paradox tables don’t use a Database component to supply their
passwords. 

Instead, passwords are supported through the TSession
class. (Paradox tables can be encrypted using either Paradox
for Windows or the Database Desktop, by creating or
restructuring a table, then selecting Password Security from
the Table Properties drop-down list.)

Similar to when your application uses tables from a remote
database server, the BDE can also automatically display a dialog
23 April 1997 Delphi Informant
box asking the user to enter a valid password. In addition, the
TSession class provides a number of methods for adding and
removing passwords at run time. To add a password, your appli-
cation can call AddPassword using the following syntax:

procedure AddPassword(const Password: string); 

You can also invoke the default password dialog box provided
by Delphi by calling the GetPassword method. When you call
this function:

function GetPassword: Boolean;

Delphi displays the dialog box shown in Figure 7. As you can
see, one or more passwords can be removed using the default
password dialog box. Alternatively, you can remove a password
through code by calling RemovePassword. You can remove all
passwords from a session in a single call to RemoveAllPasswords.
The following is the syntax of these methods:

procedure RemovePassword(const Password: string);

procedure RemoveAllPasswords;

When the BDE is provided a password, either through a call
to the appropriate TSession method or through the default
password dialog box, that password remains in effect until the
session is terminated, or the password is explicitly removed.
Also, the password is used by the BDE specifically to open a
table. Removing a password after a table has been opened has
no effect on the access to that table. That is, if you open a
table, then remove its password, you can continue to access
that table as long as you don’t close it. If you close an encrypt-
ed table whose password has been removed, you must re-enter
the password before being permitted to open it again. 

Use of the various password-related techniques is demonstrat-
ed by the PASSWORD.DPR project (see Figure 8). This pro-
ject uses an encrypted Paradox table named COMPS.DB.
This table has a master password (required), as well as a sec-
ondary password (optional). An encrypted Paradox table has
one master password, but can support any number of sec-
ondary passwords. Normally, only the owner of the table
knows the master password. The secondary passwords are pro-
vided to users, and they provide varying levels of access to a
table. The master password for COMPS.DB is the string
“MASTER”, and the secondary password is “SECONDARY”.
All Paradox table passwords are case-sensitive. (For more
information on Paradox passwords, refer to the online Help in
the Database Desktop or Paradox for Windows.)

Figure 9 shows the event handlers associated with the OnClick
events for the buttons on the PASSWORD project’s main form.
This code demonstrates calls to the various password-related
methods of the TSession class. Note that if you attempt to use
the Open Table button without first supplying a password, the
default password dialog box is automatically displayed.

Also related to the issue of passwords is the OnPassword event
property of the TSession class. Use this property if you want
to replace the default password dialog box with one of your



DBNavigator

Figure 7: The default password dialog box for encrypted Paradox
tables can be displayed automatically when an application
attempts to activate an encrypted Paradox table for which no pass-
word has yet been provided, or through a call to the TSession
method GetPassword.
own. Specifically, the event handler you assign to OnPassword
will be called if you call the GetPassword method, or attempt
to activate an encrypted Paradox table for which no password
has been issued. 

If you use this method, however, you should note that
Delphi 1 declares OnPassword to be a procedure pointer, not
a method pointer. Specifically, OnPassword is a procedure in
Delphi 1. Delphi 2 correctly declares OnPassword as a
method pointer, meaning that you assign a method to this
property. (For more information regarding OnPassword, use
Delphi’s online Help.)

Sessions and Delphi 2
There are two significant differences between the TSession
class declared in Delphi 1 and that declared in Delphi 2.
The first is that there are more properties, methods, and
one more event property in Delphi 2. Many of these
enhancements provide the ability to control aliases from
your Delphi 2 applications using a Session, rather than
relying on direct calls to the BDE. The second is that
Delphi includes a Session component on the Data Access
page of the Component palette. This component permits
you to create and manage sessions in addition to the
default session created by Delphi.

Using Additional Sessions
There is only one use for a manually-placed Session com-
ponent. It’s provided to support multithreaded access to
DataSets. In a multithreaded application, each thread
must access DataSets using a different session. Quite sim-
ply, doing this permits the BDE to manage each thread’s
access to an application’s DataSets as if the access was by
different users. In other words, multithreaded access to
data uses the same techniques for managing competition
for resources as does a multi-user application.

As you learned earlier, multi-user access to Paradox tables
involves two critical properties of the TSession class:
NetFileDir and PrivateDir. When using additional session
components and Paradox tables, the same rules that apply to
these properties must be observed. Specifically, all sessions
must use the same network file directory and different private
directories.

There is a special event property declared in the TSession
class in Delphi 2 to manage the assignment of values to
these two properties: OnStartup. This event handler is trig-
gered immediately before a session becomes active. In this
event handler, you should assign the current session’s
NetFileDir property to that associated with the default ses-
sion, and assign the PrivateDir property to one that is dif-
ferent from the default session, as well as different from any
other session’s PrivateDir property.

The following code demonstrates the use of the OnStartup
event handler:
24 April 1997 Delphi Informant
procedure TDataModule2.Session1Startup(Sender: TObject);

begin

if not DirectoryExists('c:\priv\thread1') then

if not FileCtrl.ForceDirectories('c:\priv\thread1') then

raise Exception.Create('Cannot create new session');

Session1.PrivateDir := 'c:\priv\thread1';

Session1.NetFileDir := Session.NetFileDir;

end;

This code assumes that no other thread, application, or
user is using the directory C:\PRIV\THREAD1 as its pri-
vate directory. Notice also that this code uses the
ForceDirectories procedure (declared in the FileCtrl unit)
to create the private directory. This procedure creates nest-
ed directories, even when the nested directory’s parent
directory doesn’t exist. Obviously, a unit using this proce-
dure must include the FileCtrl unit in one of its uses
clauses.

Managing Aliases in Delphi 2
In Delphi 1, the only way to create a new alias and add it
permanently to the IDAPI.CFG configuration file is to use
BDE calls. Importantly, these calls must be made before
initializing the default session. This means the BDE needs
to be manually initialized, updated, then un-initialized,
from an initialization section of a unit. Otherwise, the
attempt to add the alias fails.

Creating new aliases at run time is significantly easier with
Delphi 2 due to five new TSession methods: AddAlias,
DeleteAlias, IsAlias, ModifyAlias, and SaveConfigFile. In addi-
tion, the new property ConfigMode plays an important role in
alias control.

As you recall from earlier in this article, ConfigMode has
three possible values: cmLocal, cmPersistent, and cmAll. If
you set ConfigMode to cmAll or cmPersistent, any call to
AddAlias creates an alias that can be written to the BDE
configuration file (IDAPI32.CFG). However, simply calling
AddAlias creates the alias, but doesn’t perform the save. To
save a new alias that you create, you must call 



Figure 8: The PASSWORD project demonstrates the use of the 
various TSession methods for providing and removing passwords for
encrypted Paradox tables.

Figure 10: The ALIAS project demonstrates how to use the Delphi 2
TSession class to create, update, and delete aliases at run time.

DBNavigator

Figure 9: Calls to the various password-related methods of the
TSessions class.

procedure TForm1.OpenTableClick(Sender: TObject);

begin
if Table1.Active then

begin
Table1.Close;

Button1.Caption := 'Open Table';

end
else

begin
Table1.Open;

Button1.Caption := 'Close Table';

end;
end;

procedure TForm1.AddPasswordClick(Sender: TObject);

begin
Session.AddPassword(InputBox(

'Enter MASTER or SECONDARY','Password','MASTER'));

end;

procedure TForm1.RemovePasswordClick(Sender: TObject);

begin
Session.RemovePassword(InputBox(

'Enter MASTER or SECONDARY','Password','MASTER'));

end;

procedure TForm1.RemoveAllPasswordsClick(Sender:

TObject);

begin
Session.RemoveAllPasswords;

end;

procedure TForm1.CallGetPasswordClick(Sender: TObject);

begin
Session.GetPassword;

end;
SaveConfigFile. Following is the syntax of the AddAlias and
SaveConfigFile methods:

procedure AddAlias(const Name, Driver: string; List: 
TStrings);

procedure SaveConfigFile;

You can use IsAlias to determine if a particular alias already
exists, DeleteAlias to remove one, and ModifyAlias to change
one or more of an existing alias’ parameters. Here is the syn-
tax of these three methods:

function IsAlias(const Name: string): Boolean;

procedure DeleteAlias(const Name: string);

procedure ModifyAlias(Name: string; List: TStrings);
25 April 1997 Delphi Informant
The project named ALIAS.DPR demonstrates the use of
these methods. This project, shown in Figure 10, includes
buttons that permit you to add a new alias to your BDE
configuration file, remove it, and modify its PATH para-
meter. The code associated with this project is shown in
Listing Three.

Conclusion
The TSession class and its instance variable Session provide your
database applications with access to some of the features of the
BDE, without requiring you to resort to low-level BDE calls.
Furthermore, while some of the properties and methods of this
class are essential in multi-user applications, others are useful in
the inspection and management of aliases, tables, and drivers. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\APR\DI9704CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including
Delphi In Depth (Osborne/McGraw-Hill, 1996). Cary is also a Contributing Editor
of Delphi Informant, as well as a member of the Delphi Advisory Board for the
1997 Borland Developers Conference. For information concerning Jensen Data
Systems’ Delphi consulting and training services, visit the Jensen Data Systems
Web site at http://gramercy.ios.com/~jdsi. You can also reach Jensen Data
Systems at (281) 359-3311, or via e-mail at cjensen@compuserve.com. 
Begin Listing Three — ALIAS.DPR

procedure TForm1.FormCreate(Sender: TObject);

begin

// Set the ConfigMode to display all aliases.

Session.ConfigMode := cmAll;

// Populate the Alias list and Alias parameter list boxes.

Session.GetAliasNames(ListBox1.Items);

ListBox1.ItemIndex := 0;

ListBox1Click(Sender);

end;

procedure TForm1.CreateAlias(Sender: TObject);

var

AParams: TStringList;

begin



2

DBNavigator
if not Session.IsAlias('Informant') then

begin

AParams := TStringList.Create;

try

AParams.Add('PATH=' + 

ExtractFilePath(Application.ExeName));

Session.AddAlias('Informant','STANDARD',AParams);

Session.SaveConfigFile;

finally

AParams.Free;

end;

// Update the alias list.

Session.GetAliasNames(ListBox1.Items);

end

else

ShowMessage('Alias Informant already defined');

end;

procedure TForm1.DeleteAlias(Sender: TObject);

begin

if Session.IsAlias('Informant') then

begin

Session.DeleteAlias('Informant');

Session.SaveConfigFile;

// Update the alias list.

Session.GetAliasNames(ListBox1.Items);

end

else

ShowMessage('Alias Informant not defined');

end;

procedure TForm1.ChangeAlias(Sender: TObject);

var

AParams: TStringList;

Dir: string;

begin

if not Session.IsAlias('Informant') then

begin
6 April 1997 Delphi Informant
ShowMessage('Alias Informant does not exist');

Exit;

end;

AParams := TStringList.Create;

try

// Get the current PATH paramter.

Session.GetAliasParams('Informant',AParams);

Dir := copy(AParams.Strings[0],6,255);

// Get the new PATH parameter.

if InputQuery('Informant Alias Path','Path:',Dir) then

begin

// Update the alias parameters.

AParams.Clear;

AParams.Add('PATH=' + Dir);

Session.ModifyAlias('Informant',AParams);

Session.SaveConfigFile;

// Update the alias parameters list box.

ListBox1Click(Sender);

end;

finally

AParams.Free;

end;

end;

procedure TForm1.ListBox1Click(Sender: TObject);

begin

// Update the alias parameters list box. 

Session.GetAliasParams(ListBox1.Items[ListBox1.ItemIndex],

ListBox2.Items);

end;

End Listing Three



27 April 1997 Delphi Informant

Sights & Sounds
Object Pascal / Delphi 2

By Peter Dove and Don Peer

Getting DIBs on Speed
Delphi Graphics Programming: Part IV

Figure 1: Fully-shaded t
I t’s time to speed things up! This month, we expand on the texture-
mapping theories explained last month, enable our TGMP component to

perform full shading of texture-mapped objects, and make faster 3D
graphics a reality. We’ll give TGMP a boost in speed by creating a device-
independent bitmap (DIB) class capable of handling its drawing routines,
screen-clearing routines, and related procedures. And we’ll discover a little
more about pointers and bit manipulation.
On the raw, object side of the component,
we’ll enhance TGMP to process extremely
accurate graphic primitives through the use of
a custom file reader. To close out the article,
we’ll explain and implement the world coordi-
nate system. An example of the graphics made
possible by the information presented in this
jam-packed article is shown in Figure 1.
e

The DIB Class
To start, we’ll create a DIB class derived
from TObject. We’ll take this approach
because the class isn’t meant to serve as a
xture-mapped objects.
component that you drop on a form; rather,
it’s meant to supplement other components
such as TGMP, and will be declared accord-
ingly in the uses clause. However, before we
delve too deeply into class development, a
small explanation of DIBs might be useful. 

A DIB is what a .BMP file becomes on
your disk; it’s independent of any particular
device (such as a printer or monitor) and
carries all the information that any device
will need to display it. A DIB holds color
information, such as palette and bit depth,
along with file size information and any
compression algorithms used.

For our purposes, we want to create a DIB in
memory, rather than load it from disk. To
accomplish this, we’ll use a Windows API func-
tion called CreateDIBSection which takes the
following arguments:

a handle of a device context
a variable of TBitmapInfo (described later)
the constant DIB_RGB_COLORS or
DIB_PAL_COLORS indicating the type 
of color data
a variable to receive a pointer to the 
bitmap’s bit values
an optional handle to a file
mapping object (which we’ll set to nil)
an offset to the bitmap bit values within 
the file-mappingobject (which we’ll set to 0)

To call CreateDIBSection, which will create
a DIB in memory, we need to understand



Figure 2: The declaration of the TDIB16bit class.

TDIB16bit = class(TObject)
private

{ Private declarations }
FDIBHandle : HBitmap;

FBheader : TBitmapInfo;

FPointerToBitmap : Pointer;

FScanWidth : Integer;

FDeviceContext : HDC;

protected
{ Protected declarations }

public
{ Public declarations }
procedure FlipBackPage(DeviceContext : HDC);

procedure SetPixel(X, Y : Integer; Color : Word);

procedure ClearBackPage(Color : Word);

procedure DrawHorizontalLine(Y, X1, X2 : Integer;
Color : Word) ;

function GetHandle : HBitmap;

constructor Create(Height, Width : Integer);

destructor Destroy; override;
end;

Sights & Sounds
the TBitmapInfo type. This is best explained by following the
creation of our TDIB16bit class. The declaration for the class
is shown in Figure 2.

FDIBHandle is the DIB handle returned by the
CreateDIBSection function. FBHeader is the TBitmapInfo
variable mentioned previously. We also must pass
FPointerToBitmap, another parameter pointing to our DIB
pixel data, to CreateDIBSection. FScanWidth is the width of
each line in bytes. FDeviceContext is the device context with
which the bitmap is associated. We’ll follow the Create con-
structor of the TDIB16bit class line-by-line. The constructor
accepts the Width and Height of the required DIB:

constructor TDIB16bit.Create(Height, Width : Integer);

And calls the inherited Create method:

inherited Create;

The biWidth and biHeight of FBHeader are obvious; they
specify the Width and Height:

FBHeader.bmiHeader.biWidth := Width;

FBHeader.bmiHeader.biHeight := Height;

biPlanes specifies the number of planes for the target device.
This is always set to 1:

FBHeader.bmiHeader.biplanes := 1;

biBitCount specifies the color depth, and biCompression is set
to BI_RGB, which means “no compression”:

FBHeader.bmiHeader.biBitCount := 16;

FBHeader.bmiHeader.biCompression := BI_RGB;

The image size is dependent on the width of a line. A bitmap
scanline must end on a double-word boundary. For instance,
if the 16-bit bitmap were 31 pixels wide, the scanline would
hold enough space for 32 pixels, although the last pixel
wouldn’t be used. The formula to find the right width is: 

((bit depth * width) + 31) / 2) * 4
28 April 1997 Delphi Informant
Thus, in Object Pascal: 

FBHeader.bmiHeader.biSizeImage := 

((((16*FBHeader.bmiHeader.biWidth)+31) div 32)*4)*Height;

FScanWidth is stored so we won’t have to recalculate it:

FScanWidth := 

(((FBHeader.bmiHeader.biWidth * 16)+ 31) div 32) * 4;

The following are unimportant for us, and can safely be set
to zero:

FBHeader.bmiHeader.biXPelsPerMeter := 0;

FBHeader.bmiHeader.biYPelsPerMeter := 0;

FBHeader.bmiHeader.biclrUsed := 0;

FBHeader.bmiHeader.biclrImportant := 0;

biSize is the size of the bmiHeader structure within the
TBitmapInfo structure:

FBheader.bmiHeader.biSize := 40;

The bmiColors are unimportant for the moment, because
they relate only to 256-color bitmaps:

FBHeader.bmiColors[0].rgbRed := 255;

FBHeader.bmiColors[0].rgbBlue := 255;

FBHeader.bmiColors[0].rgbGreen := 255;

FBHeader.bmiColors[0].rgbReserved := 255;

We must also create a device context that we can supply to
CreateDIBSection. A device context allows the DIB to be
drawn on by other GDI (graphics device interface) objects,
such as brushes and fonts. Supplying 0 as an argument to
CreateCompataibleDC provides a device context compatible
with the current screen.

Passing the device context to CreateDIBSection with all the
other parameters returns a handle to the bitmap, and tells us
the location of the memory associated with the bitmap by
assigning an address to FPointerToBitmap. You can also sup-
ply the bitmap handle to a TBitmap. This is useful if you
want to harness TBitmap’s ability to save to disk:

FDeviceContext := CreateCompatibleDC(0);

FDIBHandle := CreateDIBSection(FDeviceContext,FBHeader,

DIB_RGB_COLORS,PointerToBitmap,nil,0);
A Pointed Discussion
Now let’s turn to the procedures and functions for the class.
The first procedure, FlipBackPage, accepts a device context as
a parameter:

procedure TDIB16bit.FlipBackPage(DeviceContext : HDC);

begin
StretchDIBits(DeviceContext, 0, 0, 

FBHeader.bmiHeader.biwidth, 

FBHeader.bmiHeader.biheight, 0, 0, 

FBHeader.bmiHeader.biwidth, 

FBHeader.bmiHeader.biheight, 

FPointerToBitmap, FBheader, 

DIB_RGB_COLORS, SRCCOPY);

end;

The device context could be the handle of a TCanvas
object, for instance. In fact, this is exactly what we’ll send
from our main TGMP class. The API call used in this pro-



Sights & Sounds
cedure is StretchDIBits. It accepts a device context, the
left, top, width, and height of the source bitmap, and the
same parameters for the destination area. It also takes
TBitmapInfo, which indicates the bitmap’s type; and the
copy mode, in this case SRCCOPY, indicating a straight
bit-for-bit copy. 

The ClearBackPage procedure does exactly that; it accepts a
color as a 16-bit word, and clears the back buffer:

procedure TDIB16bit.ClearBackPage(Color : Word);

var
X : Integer;

BasePointer : ^Word;

begin
BasePointer := FPointerToBitmap;

for X := 0 to ((FScanWidth div 2) * 

(FBHeader.bmiHeader.biHeight))-1 do begin
BasePointer^ := Color;

Inc(BasePointer);

end;
end;

We declare a pointer to a Word value, then assign
FPointerToBitmap to it. The X loop counter is worked out
by taking the number of bytes in a scanline and dividing it
by two, because there are two bytes in a word. The calcu-
lated value is then multiplied by the height of the DIB. 

To clarify, a pointer is a variable that holds an address to a
position in memory. So if we were to look at the contents
of FPointerToBitmap, we would find a 32-bit number indi-
cating the memory address at which the bitmap begins.
BasePointer is assigned a color and incremented within the
loop body. Notice that the BasePointer variable is followed
by a caret character (^), the Object Pascal pointer symbol. 
This tells the compiler to assign the value of Color to the
address referenced by BasePointer, not to the BasePointer vari-
able itself. BasePointer is incremented on the next line using
the Inc procedure. A pointer is incremented by the size of the
type that it references. In this case, the pointer is incremented
by two bytes (a word); in other words, the pointer moves
along the DIB memory by two bytes.

If you’re still a little stumped with pointers, imagine that
you are handed a cinema ticket with your seat number on
it. The ticket will point you to the place in the cinema
where you are meant to sit. If you think of a pointer as
your cinema ticket, it merely references where in memory
you want to go. The ticket isn’t the seat, but points to it. 
29 April 1997 Delphi Informant

Figure 3: Storing a color in a Word variable (16-bit color
mode). Red, green, and blue each get five bits; the highest order
bit is unused.
The GetHandle function is just one line of code that returns a
handle to the DIB:

function TDIB16bit.GetHandle : HBitmap;

begin
Result := FDIBHandle;

end;

The next procedure, SetPixel, accepts an X and Y position,
and color to set the pixel:

procedure TDIB16bit.SetPixel(X, Y : Integer; Color : Word);

var
BasePointer : ^Word;

begin
BasePointer := Pointer(Integer(FPointerToBitmap) +

(Y * FScanWidth) + (X * 2));

BasePointer^ := Color;

end;

Again, we declare BasePointer, but this time we calculate the
memory address of the x,y coordinates. To do this, we take
the FPointerToBitmap as the start address, then add 
(Y * FScanWidth) to get to the right line, then finally add 
(X * 2). X is multiplied by two, because there are two bytes
for every pixel, and memory addresses are measured one byte
at a time. Then we assign the value of the Color variable to
the address in memory to which BasePointer points.

The DrawHorizontalLine procedure works in a similar fashion.
It calculates the starting position of the horizontal line in mem-
ory, and loops through by a count of the parameters (X2 - X1):

procedure TDIB16bit.DrawHorizontalLine (Y, X1, X2 : Integer;
Color : Word);

var
X : Integer;

BasePointer : ^Word;

begin
Integer(BasePointer) := Integer(FPointerToBitmap) + 

(Y*FScanWidth) + (X1*2);

for X := 0 to (X2 - X1) do begin
BasePointer^ := Color;

Inc(BasePointer);

end;
end;

To close out our DIB class, the destructor deletes the DIB
and its associated resources:

destructor TDIB16bit.Destroy;

begin
DeleteObject(FDIBHandle);

DeleteDC(FDeviceContext);

inherited;
end;

It does this by using the Windows API call, DeleteObject,
which takes the object’s handle as a parameter. It then deletes
the device context we’ve held for the DIB using the API func-
tion, DeleteDC. Finally, the destructor calls the inherited
Destroy method, ensuring that any code in the class’ ancestor
destructor will be executed.
Color Crunching
You’ve probably noticed that many procedures in the DIB
class take a Word value (i.e. a two-byte unsigned integer)



Figure 4 (Top): CalculateRGBWord takes a TColor as an argument
and returns the appropriate 16-bit value. Figure 5 (Bottom): The
TPolygon and TObject3D records.

function TGMP.CalculateRGBWord(Color : TColor) : Word;

var
Calc : Single;

R, G, B : Integer;

begin
{ GetRValue, GetGValue, and GetBValue return a value

based on the color scale of 0 to 255. }
{ Gets the red value and rescale it from a 1/256 number

to a 0/31 number. }
Calc := GetRValue(Color) / 2.56;

Calc := Calc * 0.31;

R := Round(Calc);

{ Get the green value and rescale it from a 1/256 number
to a 0/31 number. }

Calc := GetGValue(Color) / 2.56;

Calc := Calc * 0.31;

G := Round(Calc);

{ Get the blue value and rescale it from a 1/256 number
to a 0/31 number. }

Calc := GetBValue(Color) / 2.56;

Calc := Calc * 0.31;

B := Round(Calc);

{ B Value is last five bits. Leave it alone. }
{ R is shifted left 10 bits to sit at position 15-11.}
R := R shl 10;

{ G is shifted left 5 bits to sit at position 10..6.}
G := G shl 5;

{ Add them together. }
Result := R + G + B;

end;

TPolygon = record
{ Allow only 4-point polygons. }
Point : array [0..3] of TPoint3D; 

NumberPoints : Integer; { Number of points in polygon. }
Visible : Boolean;  { Visibility of polygon; determined

by RemoveBackfacesAndShade. }
AverageZ : Single; { For Z Sorting. }
PolyColor : TColor; { Color of the polygon. }
DibColor : Word; { 16-bit value of PolyColor. }
Intensity : Byte; { Light intensity. }

end;

TObject3D = record
{ Stores local coordinates of the object's polygons. }
PolyStore : array [0..MAXPOLYS] of TPolygon; 

{ Stores world coordinates of the object's polygons. }
PolyWorld : array [0..MAXPOLYS] of TPolygon; 

NumberPolys : Integer;  { Number of polygons in object. }
Color : TColor;  { Color for solid shading & wireframe. }
DibColor : Word;   { 16-bit value of color. }
World : TPoint3D;  { Position of object in "the world". }

end;

Figure 6: The CalcIntensityLUT procedure works out the lookup
table.

procedure TGMP.CalcIntensityLUT;

var
X, Y: Integer;

UpIncrement, DownIncrement : Single;

begin
{ Find possible R, G, or B Values — 0 to 31. }
for X := 0 to 31 do begin

{ The up increment is from the initial 
color value to its brightest. }

UpIncrement := (31 - X) / 16;

{ The down increment is from the initial 
color value to its darkest. }

DownIncrement := X / 15;

{ Loops through from color 0 to color 15,
using DownIncrement. }

for Y := 0 to 15 do
IntensityLUT[X, Y] := Round(DownIncrement * Y);

{ Loops from color 16 to color 31, using UpIncrement.
}

for Y := 1 to 16 do
IntensityLUT[X, Y + 15] := 

Round((DownIncrement * 15) + (UpIncrement * Y));

end;
end;

Sights & Sounds
as the color. In 16-bit color mode, a pixel in a DIB takes
up two bytes (see Figure 3). The RGB values are embed-
ded in that value; the “first” bit of the 16 — the one with
the highest value — isn’t used. The next five bits are the
red value, the following five are the green value, and the
“last” five bits are the blue value. Each color has a value of
0 to 31.

We’ve written a support method, CalculateRGBWord, that
converts TColor into a Word value (see Figure 4), along with
various other methods tied into the shaded texturing model,
which we’ll address later.
30 April 1997 Delphi Informant
Shades of Change
In our last article, we explained the methodology behind the
texture mapping of polygons. To accommodate texture shad-
ing and the new DIB class, we’ll need to expand the current
TPolygon and TObject3D records (see Figure 5). In TPolygon,
we store an Intensity value, which is the light intensity against
that polygon. We use this with a texel (textured pixel) to
determine the texel’s correct shade. An extra line has been
inserted into the RemoveBackfacesAndShade procedure. It’s
shown here above an existing line:

AnObject.PolyStore[CurrentPoly].Intensity :=

Round(Intensity); { Line to add }
AnObject.PolyStore[CurrentPoly].PolyColor := 

RGB(R, G, B); { Existing line }

Next, for reasons of speed, we need to set up a two-
dimensional lookup table that will return a shade for any R,
G, or B value. The CalcIntensityLUT procedure works out
our lookup table (see Figure 6). You’ll also need to place this
statement in the Create constructor of TGMP:

CalcIntensityLUT;

Now that we have our lookup table, we need a function
that takes a 16-bit color and an Intensity value as argu-
ments, and returns a new 16-bit color with each correctly
shaded RGB element. This is complicated, because the
method has to extract the separate RGB values from the
Word value, then get the shades for each RGB, and recom-
bine them into a Word value. 

The method, named GetShadedWord (see Figure 7), is quite
interesting, because it covers some new programming ground
related to bit-wise manipulation. It shows how to use bit
masking, and works on the principle that and can conjoin
values to extract a new value. Figure 8 shows the logical
results of “and-ing” different binary values, then shows how
to extract the five-bit G value from a 16-bit value.



Figure 7: The GetShadedWord method.

function TGMP.GetShadedWord(Texture : Word;

Intensity : Integer) : Word;

var
intRed, intGreen, intBlue, intBitMask : Integer;

begin
{ Bitmask for 0000000000011111 is 31. This gives us

the last 5 bits for Blue. }
intBitMask := 31;

intBlue := Texture and intBitMask;

{ Bitmask for 0000001111100000 is 992. This gives us
the the middle 5 bits for Green. }

intBitMask := 992;

intGreen := Texture and intBitMask;

intGreen := intGreen shr 5;

{ Bitmask for 0111110000000000 is 31744. This gives us
the bits for the Red element — 15-11. }

intBitMask := 31744;

intRed := Texture and intBitMask;

intRed := intRed shr 10;

{ Get the new shades using the lookup table
we worked out before. }

intRed := IntensityLUT[intRed, Intensity];

intGreen := IntensityLUT[intGreen, Intensity];

intBlue := IntensityLUT[intBlue, Intensity];

{ Shift Red and Green into their correct places,
and add all the elements together. }

intRed := intRed shl 10;

intGreen := intGreen shl 5;

Result := intRed + intBlue + intGreen;

end;

Figure 8: Bit masking: “and-ing”, then extracting the last five bits,
for a value of 16.

Figure 9: Implementing shaded texturing in the RenderNow
procedure.

//********** Shaded  Texture ****************************
rmShadedTexture :

begin
RemoveBackfacesAndShade(Object3D);

OrderZ(Object3D);

LocalToWorld(Object3D);

for X := 0 to Object3D.NumberPolys - 1 do
with Object3D.PolyWorld[x] do begin

if (Object3D.PolyWorld[x].Visible = False) then
Continue;

ClearYBuckets;

FIntensity := Object3D.PolyWorld[x].Intensity;

if (NumberPoints = 3) then
begin

TextureStart.X := 63; TextureStart.Y:= 0;

TextureEnd.X := 0;  TextureEnd.Y := 127;

DrawTextureLine3D(Point[0], Point[1],

TextureStart, TextureEnd);

TextureStart.X := 0;   TextureStart.Y:= 127;

TextureEnd.X  := 127; TextureEnd.Y := 127;

DrawTextureLine3D(Point[1], Point[2],

TextureStart, TextureEnd);

TextureStart.X := 127; TextureStart.Y:= 127;

TextureEnd.X := 63;  TextureEnd.Y := 0;

DrawTextureLine3D(Point[2], Point[0],

TextureStart, TextureEnd);

end
else

begin
TextureStart.X := 127; TextureStart.Y:= 0;

TextureEnd.X := 127; TextureEnd.Y := 127;

DrawTextureLine3D(Point[0], Point[1],

TextureStart, TextureEnd);

TextureStart.X := 127; TextureStart.Y:= 127;

TextureEnd.X := 0;   TextureEnd.Y := 127;

DrawTextureLine3D(Point[1], Point[2],

TextureStart, TextureEnd);

TextureStart.X := 0; TextureStart.Y := 127;

TextureEnd.X := 0; TextureEnd.Y := 0;

DrawTextureLine3D(Point[2], Point[3],

TextureStart, TextureEnd);

TextureStart.X := 0;   TextureStart.Y:= 0;

TextureEnd.X := 127; TextureEnd.Y := 0;

DrawTextureLine3D(Point[3], Point[0],

TextureStart, TextureEnd);

end;

RenderYBuckets;

end;   { End of with statement. }
end;  { End of rmSolidTexture statement. }

Sights & Sounds
After all that preparation, we can finally add the
rmShadedTexture element to TRenderMode, then place a
new section of code to implement the shaded texturing in
the RenderNow procedure. The new section of code is
shown in Figure 9. Please notice, and tolerate for the
moment, that all the points are taken from PolyWorld
rather than PolyStore. This will all be explained shortly,
along with the LocalToWorld procedure.

The next step in implementing shaded texturing is adding a
new statement to the DrawLine3DTexture procedure. We
have given you a little more of the procedure listing than just
the statement, so you can see where the line is to be added:

case RenderMode of
rmSolidTexture :  { Existing line }

DrawTextureLine2D(NewStartPoint, NewEndPoint,

TextStart, TextEnd);

rmShadedTexture : { New line }
DrawTextureLine2D(NewStartPoint, NewEndPoint,

TextStart, TextEnd);

end;

At long last, we show you the final change needed before we
can move onto our object file reader. The RenderYBuckets proce-
dure has been modified; the new version is shown in Figure 10.
31 April 1997 Delphi Informant
GEO Files
What’s been annoying us most about the TGMP class is the
fact that we must type all the vertices of an object into the
application code. To eliminate any further vertices typing,
we’ll write a method that will read objects that have been
saved to disk. The first object file format that TGMP will
read will be for .GEO objects. The .GEO object file format
provides a useful, generic way of storing data in a text file.
The file format is shown below, with comments in braces:

3DG1 { This identifies this file as a .GEO file }

3 { This is the number of vertices }

1.000000 -1.000000 0.000000  { Vertice 0 - x,y,z }

0.923880 -1.000000 0.382683  { Vertice 1 - x,y,z }

0.707107 -1.000000 0.707107  { Vertice 2 - x,y,z }

3 0 1 2 25

In the last line, the first number indicates the number of
points in the polygon. The following three numbers tell you
which three vertices — from the list — you must join. The



if (RenderMode = rmShadedTexture) then
begin

{ Loop through all buckets. }
for Y := 0 to 479 do begin

if (YBuckets[Y].StartX = -16000) then
Continue;

{ Calculate all the Texture X,Y increments. }
Length := (YBuckets[Y].EndX - YBuckets[Y].StartX) + 1;

TextXIncr := ((TextureBuckets[Y].EndPosition.X -  

TextureBuckets[Y].StartPosition.X)) / length ;

TextYIncr := ((TextureBuckets[Y].EndPosition.Y -  

TextureBuckets[Y].StartPosition.Y)) / length ;

TextX := TextureBuckets[Y].StartPosition.X;

TextY := TextureBuckets[Y].StartPosition.Y;

{ Loop through all pixels on the Y line. }
for I:=YBuckets[Y].StartX to YBuckets[Y].EndX do

begin
{ Perform clipping if pixel's X value < 0. }
if (I < 0) then

begin
TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

Continue;

end;
{ Perform clipping if pixel's X value > width. }
if (I > Width) then

begin
TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

Continue;

end;
{ Use DIBClass to set pixel. Get texel from

FCurrentBitmap, and use GetShadedWord to return
correctly-shaded texel to pass into SetPixel. }

FDib.SetPixel(I,Y,GetShadedWord(FCurrentBitmap[      

Round(TextX),Round(TextY)],FIntensity));

TextX := TextX + TextXIncr;

TextY := TextY + TextYIncr;

end;
end;

end;

Figure 10 (Top): The modified RenderYBuckets procedure. 
Figure 11 (Bottom): The CUBE.GEO file.

3DG1 { Standard GEO file header }

8    { The number of vertices. }

-1.000000 -1.000000 -1.000000 { Vertice 0 }

-1.000000 1.000000 1.000000 { Vertice 1 }

-1.000000 1.000000 -1.000000 { Vertice 2 }

-1.000000 -1.000000 1.000000 { Vertice 3 }

1.000000 -1.000000 -1.000000 { Vertice 4 }

1.000000 1.000000 1.000000 { Vertice 5 }

1.000000 1.000000 -1.000000 { Vertice 6 }

1.000000 -1.000000 1.000000 { Vertice 7 }

4 0 3 1 2 25 { Polygon 1 }

{ The first number in Polygon 1 indicates number the of

points. Join Vertice 0 to Vertice 3 to Vertice 1 to

Vertice 2. }

4 4 0 2 6 25 { Polygon 2 }

{ Join Vertice 4 to Vertice 0 to Vertice 2 to Vertice 6. }

4 6 2 1 5 25 { Polygon 3 }

4 5 1 3 7 25 { Polygon 4 }

4 7 3 0 4 25 { Polygon 5 }

4 4 6 5 7 25 { Polygon 6 }

Sights & Sounds
final number (25 in this example) is a number you can use to
store color information, or anything else about the polygon
(e.g. a number in an array of textures).

We used the .GEO file format because it’s easy, and because
we had a lot of Lightwave-generated objects that came with a
converter to take the binary Lightwave file and output it to
an ASCII .GEO file. There are several major modelers, such
32 April 1997 Delphi Informant
as 3D Studio, SoftImage, and ElectricImage, that can create
similar objects. The .GEO file format is not widely used, but
is similar in many respects to the .PLG file format (.PLG files
can easily be edited into a .GEO format).

(The .PLG format was invented by the writers of the real-
time renderer REND386, and has become quite popular.
You can find a large number of converters on the Internet
that will take things like 3D Studio binary files and con-
vert them to .PLG. You can find a lot of information on
3D modelers and converters at: http://www.hit1.washing-
ton.edu/people/poup/internet/3D.html.)

Figure 11 shows the CUBE.GEO file used by the sample
application for this article. It’s completely commented,
with full explanations for all lines contained in the file,
and includes the full implementation of the .GEO file
reader function.

The World Coordinate System
The last subject we’ll cover in this article is the world coor-
dinate system (or WCS). So far we’ve been using the local
coordinate system, and have simply added a Z value to the
local coordinates to move the object back and forth. Now
we’ll introduce the ability to move the object around.

As you saw earlier, when we listed the TObject3D struc-
ture, there was a PolyWorld array and a world TPoint3D
structure. The world structure holds the x, y, z position of
the object in 3D space. In addition, if you look back at
the rmShadedTexture section of the RenderNow procedure,
you’ll see another procedure being called, namely
LocalToWorld. This procedure copies all the polygon infor-
mation from PolyStore to PolyWorld, and adds the world x,
y, z coordinates to the local coordinates as it copies them.
This means that we’ve translated the object from its local
coordinates to its world coordinates.

We won’t list the LocalToWorld procedure here, because it’s
fairly simple and is available with the source code. However,
we have provided a visual comparison of local to world
coordinates (see Figure 12). 

A World of Changes
Many minor changes have been made to the code in TGMP.
In the RenderNow procedure, for instance, all references to
PolyStore have been changed to PolyWorld to incorporate the
world coordinate system. Also, a call to the LocalToWorld
procedure has been inserted into each clause of the
TRenderMode case statement. The LightStrength property has
been added to allow you to control the brightness of the light
(a value of 1 represents 100 percent).

Another property is an event called BeforeFlip, which is sent
to TCanvas as a parameter. This allows you to add any
text/drawing on top of what has been rendered, before it’s
drawn onto the TGMP Canvas. The necessary code for



Figure 12: A comparison of local and world coordinate systems. Vertice A retains its original
coordinates through the translation.

Sights & Sounds
BeforeFlip is shown below, along with the code to declare our
three new mouse movement properties: the familiar
OnMouseMove, OnMouseUp, and OnMouseDown: 
type

TBeforeFlip = procedure (Canvas : TCanvas) of object;

{ Place in the private section. }
FBeforeFlip : TBeforeFlip;

FLightStrength : Single;

{ Place as first line in TGMP.FlipBackPage procedure. }
if Assigned(FBeforeFlip) then

FBeforeFlip(FBackBuffer.Canvas);

{ Place in published section. }
property LightStrength : Single read LightStrength 

write LightStrength;

property BeforeFlip : TBeforeFlip read FBeforeFlip 

write FBeforeFlip;

property OnMouseMove;

property OnMouseDown;

property OnMouseUp;

These mouse properties are defined similarly to the Align
property. They’ve already been declared in the class that
TGMP was inherited from, so a simple declaration will
cause them to appear in the object inspector of TGMP. 

Other changes include two new constants, MAXPOLYS and
MAXPOINTS, which control how many points and poly-
gons we want to allow for TObject3D. Another minor change
is the call to ClearBackPage which now uses the DIB class to
do the work:

FDib.ClearBackPage(CalculateRGBWord(FColor));

Notice how we use the CalculateRGBWord function to
return the 16-bit value that ClearBackPage requires. More
small changes throughout the code are similar to those
already mentioned. 
33 April 1997 Delphi Informant
A look through the TGMP source
code will reveal the other modifica-
tions. (All source associated with this
article is available on disk or online;
see end of article for details.)
The Fourth Edition
In our fourth application, we’ve added
a new menu item to allow for the
selection of various textures, and
introduced some limited movement
control of the objects through the use
of the mouse and keyboard.

You’ll also notice that the arrays for
the objects have been removed. These
arrays are no longer necessary, since
the objects are now read into memory via the file reader we’ve
created. Again, you must remember to set your display driver
to 16-bit color, rather than 256 colors. Otherwise you’ll think
we’ve placed a “mud” texture onto the rendered objects!
Conclusion — and a Look Ahead
This is a long article; still, we have to leave a number of
things out until next time. In the next installment we’ll
cover topics that will make TGMP a truly useful game
tool. First we’ll add the final coordinate system: the camera
coordinate system, that will allow you to move the camera
through your virtual world.

We’ll optimize the structure of the component to easily
allow multiple objects to be seen at once. We’ll also cover
many optimization techniques that will let TGMP process
polygons much faster. These techniques include lookup
tables, pre-calculation, fast multiplication, clipping, method
parameter reduction, loop optimization, fixed-point math,
and some common sense. We’ll also add a few design-time
features such as positioning of objects, setting of back-
ground bitmaps, and light-source positioning. Soon we’ll be
ready to make a game using TGMP. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\APR\DI9704DP.

Peter Dove is a partner in Graphical Magick Productions, specialists in graphics,
training, and component development. He can be reached via the Internet at
peterd@graphicalmagick.com.

Don Peer is a Technical Associate with Greenway Group Holdings Incorporated
(GGHI). He can be reached via the Internet at dpeer@mgl.ca.  



34 April 1997 Delphi Informant

Informant Spotlight 

By James Hofmann and Cathi Pickavet

RAD Results
The 1997 Delphi Informant Readers Choice Awards

3

WWeebbHHuubb

SSaaxx  CCoommmm  OObbjjeeccttss

IISSGGMM

5%

PPoowweerrTTCCPP

7%

4

9%

DDeevveellooppiinngg  CCuussttoomm
DDeellpphhii  CCoommppoonneennttss

MMaasstteerriinngg  DDeellpphhii  22
ffoorr  WWiinnddoowwss  9955//NNTT

DDeellpphhii  IInn  DDeepptthh

TThhee  DDeellpphhii  22
PPrrooggrraammmmeerr  EEXXpplloorreerr

TThhee  RReevvoolluuttii
GGuuiiddee  ttoo  DDee
When the votes were tallied last year, we thought the precedents had
been set — the Delphi market’s most powerful players had emerged.

Little did we know how quickly things would change. To start, Borland
released Delphi 2, then added Internet and intranet functionality. What fol-
lowed could only be described as a plethora of new tools developed at
RADical speeds.
To reflect Delphi’s ever-changing third-party
market, we altered this year’s ballot. You’ll still
see some of last year’s winners in repeat perfor-
mances, dominating their respective categories;
but don’t let your eyes stray, you might miss
some of the new categories and winners —
several we’re sure you’ll find quite surprising.
78%

%

AAssyynncc  PPrrooffeessssiioonnaall  22..00

aappii AAllll  OOtthheerrss INTERNET/
COMMUNICATIONS

3% 4%

9%

4%

%

11%

16%

19%

25%
DDeellpphhii  PPrrooggrraammmmiinngg

PPrroobblleemm  SSoollvveerr

DDeellpphhii  22
DDeevveellooppeerr’’ss

GGuuiiddee

DDeellpphhii  22
UUnnlleeaasshheedd

oonnaarryy  
llpphhii  22

3%

AAllll  OOtthheerrss

DELPHI BOOK
The voting was fast and fierce, so without
further ado ...
Best Internet/Communications
This year brought Internet and intranet
functionality into the Delphi developer’s
hands. To satisfy your end-users’ every need,
the great majority of you agree that
TurboPower’s Async Professional 2.0 is the
way to go. This communication toolkit for
Delphi 1 and 2 took 78 percent of the
votes, establishing itself as the clear winner.
And don’t forget TurboPower, because you’ll
see the name again. This company won two
categories in this year’s awards, the first to
ever do so.

Async Professional’s event-driven architec-
ture allows users to read, view, print, and
send faxes. It features complete serial port
control, terminal emulation, telephony
API, debugging tools, and more. According
to TurboPower, an upgraded version is
planned for release after Delphi 3 begins
shipping.
Best Delphi Book
From a field of over 25, Neil Rubenking hit
the tape first with his Delphi Programming
Problem Solver, from IDG Books Worldwide.
His “answer book” locked up 25 percent of
the votes to win the title of Best Delphi
Book. Covering Delphi 1 and 2, Delphi
Programming Problem Solver tackles many of
the vexing Delphi questions that can hinder
first time — or even seasoned — Delphi
programmers.



Informant Spotlight
Xavier Pacheco and Steve Teixeira came in second with
Delphi 2 Developer’s Guide, from SAMS Publishing. The
sequel to last year’s Best Delphi Book, this edition accounted
for 19 percent of the votes.
51%

4%

IInnffooPPoowweerr  22..00

OOrrpphheeuuss

EEsscchhaalloonn  PPoowweerr
CCoonnttrroollss  22

AABBCC  ffoorr
DDeellpphhii

AAllll  OOtthheerrss

VCL
3%

7%

5%
PPiippaarrttii  11..00
ffoorr  DDeellpphhii

30%

48%

3%

17%

28%

IInntteerrBBaassee  44..22

MMiiccrroossoofftt
SSQQLL SSeerrvveerr

OOrraaccllee

IInnffoorrmmiixx

AAllll  OOtthheerrss

DATABASE SERVER4%

51%

3%

9%

34%
IInnssttaallllSShhiieelldd

ssttaallllaattiioonn
  44..00

cchhaalloonn  SSeettuupp  22

PPCC--IInnssttaallll

AAllll  OOtthheerrss INSTALLATION SOFTWARE

3%

LL
Best VCL
The first of the repeat winners, Woll2Woll’s InfoPower 2.0 pre-
vailed as this year’s Best VCL. Garnering more than half the
votes in the category, InfoPower made an impressive showing.
In his January ’97 Delphi Informant review, Bill Todd touted it
as the “must-have addition to Delphi for anyone developing
database applications.” It’s fair to say you agree.

Here are just a few of InfoPower’s features: a Table compo-
nent that fully supports Borland Database Engine (BDE)
filters, a QBE component that fully supports QBE queries,
an enhanced data-aware grid component, high-
performance search controls, a customizable pop-up 
memo field editor, and DBComboBox, DBComboDialog,
DBLookupCombo, and DBLookupComboDialog 
components. And there are plans for a new and
improved version of InfoPower for Delphi 3. Stay tuned
to DI ’s “Delphi Tools” section for details.

Although still second, TurboPower’s Orpheus is closing
the gap in this category. Last year InfoPower secured 47
percent and Orpheus followed with 16. This year the per-
centages have changed to 51 and 30, respectively. And
next year’s competition has already begun ...

WWIISSEE IInn
SSyysstteemm

EEss
40%

5%

11%

18%

OOCCXX EExxppeerrtt

VViissuuaall  QQuueerryy
BBuuiillddeerr

IImmaaggee  BBAASSIICC
ffoorr  DDeellpphhii

AAllll  OOtthheerrss

OCX

6%

4%

MMeeddiiaaDDeevveellooppeerr  22..00

16%

VViissuuaall  DDeevveellooppeerrss
TTooooll  SSuuiittee

35 April 1997 Delphi Informant

eeaaddTToooollss  OOCCXX
Best OCX
New this year, the Best OCX category was very competitive.
Apiary Inc. took the top prize with its OCX Expert, receiving
40 percent of the votes. OCX Expert enables developers to
create 32-bit ActiveX controls using Delphi 2. It also con-
verts existing Delphi 2 VCL components to ActiveX controls
with few or no changes by the developer.

The run for second place was close, with Integra’s Visual
Query Builder finishing just two percent higher than Visual
Tools’ Visual Developers Tool Suite.
Best Database Server
For the second consecutive year, Borland’s InterBase has been
named Best Database Server, acquiring 48 percent of the
votes. The database server field included several industry
favorites, such as Microsoft SQL Server (28 percent), Oracle
(17 percent), and Informix (four percent).
Best Installation Software
In a repeat performance, InstallShield Corp. aced the Best
Installation Software category. Great Lakes Business
Solutions, Inc. took second with WISE Installation System
4.0. Moving from 30 and 26 percent to 51 and 34 percent
respectively, it looks as if InstallShield and WISE are moving
away from the pack.
Best Training
There’s a new face in the winner’s circle for Best Training —
ZAC Education’s Delphi Training Tour. After a whirlwind
tour of the US, ZAC garnered 43 percent of the votes.



43%

6%

9%

13%

ZZAACC EEdduuccaattiioonn’’ss
DDeellpphhii  TTrraaiinniinngg  TToouurr

IInnffooCCaann
MMaannaaggeemmeenntt

FFiinnaanncciiaall
DDyynnaammiiccss

CClliieenntt
SSeerrvveerrss

AAllll  OOtthheerrss

TRAINING

9%

7%

TThhee  DDSSWW  
GGrroouupp,,  LLttdd..

9%

DDaattaabbaassee
PPrrooggrraammmmeerr’’ss

RReettrreeaatt

4%

SSooffttbbiittee
IInntteerrnnaattiioonnaall

Informant Spotlight

RReeppoo

AA

55%

5%

12%

19%

PPVVCCSS
VVeerrssiioonn  MMaannaaggeerr

MMiiccrroossoofftt  VViissuuaall
SSoouurrccee  SSaaffee

MMKKSS SSoouurrccee
IInntteeggrriittyy

VVeerrssiioonnss

AAllll  OOtthheerrss VERSION CONTROL

9%
The wide variety of training companies competing this
year are yet another reminder of Delphi’s popularity.
InfoCan Management finished second, followed by a
three-way tie between Database Programmer’s Retreat,
Financial Dynamics, and Client Servers. With Delphi 3
shipping soon, this category is sure to be another tight
race next year.

Best Reporting Tool
In a race to the finish, Nevrona Designs’ ReportPrinter Pro 2.0
inched to victory as Best Reporting Tool. Finishing third last
year, ReportPrinter Pro narrowly bested the ’96 champ, Seagate
Software’s Crystal Reports, by a margin of three percent.

In the September 1996 Delphi Informant, Bill Todd gave
ReportPrinter Pro a thumbs-up, citing such enhancements as
the TDBTablePrinter component’s Table Editor, the
TReportSystem component, and some “major” memo printing
capabilities. 
28%

3%

16%

25%

RReeppoorrttPPrriinntteerr
PPrroo  22..00

CCrryyssttaall  RReeppoorrttss

rrttSSmmiitthh

ccee  RReeppoorrtteerr

AAllll  OOtthheerrss

REPORTING TOOL

7%

5%

RR&&RR RReeppoorrtt
WWrriitteerr

16%

QQuuiicckkRReeppoorrtt

29%

7%

3%
4%

5%

6%

7%

12%
12%

13%

SSyyssTToooollss
ffoorr  DDeellpphhii

LLiigghhtt  LLiibb  
MMaaggiicc  MMeennuuss

BBoouunnddss  CChheecckkeerr  44..00
CCDDKK

MMuullttii--EEddiitt

EEsscchhaalloonn  PPoowweerr
LLiibbrraarriieess

EExxcceeeedd  ZZiipp
CCoommpprreessssiioonn  LLiibbrraarryy

CClliieenntt  OObbjjeecctt//440000  
&&  TTccGGuuiiddee

DDyynnaaZZIIPP

GGTTSSiizzeerr

3%

AAllll  OOtthheerrss

DELPHI ADD-IN
Best Version Control
Proving again to be the Delphi developer’s versioning tool of
choice, INTERSOLV’s PVCS Version Manager dominated
the field, acquiring 55 percent of the votes to win the Best
Version Control category.

PVCS version 5.2 features an enhanced user interface,
allowing developers to drag a file from the project window
into a directory to check out the file. Check-in occurs
36 April 1997 Delphi Informant
when you drag a file from a directory to the project win-
dow. The check-in and check-out process is designed to
eliminate redundancy and unnecessary data, improving
performance. Apparently it’s a worthy enhancement, as the
PVCS Version Manager continues to be your favorite.

Microsoft’s Visual Source Safe — a write-in! — finished 
second with 19 percent of the votes.
Best Delphi Add-In
In the category with the most competitors, TurboPower’s
SysTools for Delphi outscored the others, grabbing 29 percent
of the votes for the Best Delphi Add-In. SysTools is a collec-
tion of system-level classes that parallel Delphi’s menu classes.
SysTools includes units for string manipulation, date and time
handling, container classes, high-precision math, data sorts,
registry and .INI file handling, and system access routines. (See
Alan Moore’s review of SysTools in the January 1997 DI.)

Finishing with 13 percent of the vote, DFL Software took
second with Light Lib Magic Menus, a product that adds
images to Delphi menus. (See Douglas Horn’s review of
Magic Menus in the February 1997 DI.)
Best Windows Help Authoring Tool
The closest race overall was in the Windows Help Authoring
category. The lead changed daily, if not hourly, as votes
poured in. In the end, ForeFront Inc.’s ForeHelp grabbed the
victory from last year’s winner — RoboHelp, from Blue Sky



40%

3%

13%

37%

FFoorreeHHeellpp

RRoobbooHHeellpp

VViissuuaall  HHeellpp  PPrroo

HHeellpp  MMaaggiicciiaann  
PPrroo  9955

AAllll  OOtthheerrss

WINDOWS HELP
AUTHORING TOOL

7%

72%

5%

4%

13%

AAppoolllloo  22..00

TTiittaann  AAcccceessss
ffoorr  DDeellpphhii

DDaattaa  EExxpplloorreerr

TThhee  OOrrggaanniizzeedd
DDaattaabbaassee  IInnssppeeccttoorr

AAllll  OOtthheerrss DATABASE TOOL

3%
3%

QQuueerryy  
MMaakkeerr

Informant Spotlight
Software. In this donnybrook, ForeHelp finished with 40
percent of the vote, and Blue Sky Software had 37 percent.

Best Imaging Component
Another first-timer in this year’s contest is the Best Imaging
Component category. However, the winner with 37 percent
of the vote, ImageLib from Skyline Tools, is no stranger to
Delphi developers. Skyline offers a special VCL/DLL pack-
age for Delphi developers to incorporate multimedia ele-
ments into their applications. (See Douglas Horn’s review in
the July 1996 DI.)

DFL Software continued with its competitive edge as Light
Lib Images finished second with 25 percent.
37%

5%

5%

25%

IImmaaggeeLLiibbCChhaarrtt  FFXX  33..00

FFaassttggrraapphh

AAllll  OOtthheerrss

IMAGING COMPONENT

4%
4%

GGrraapphhiiccss  SSeerrvveerr

17%

TTeeeeCChhaarrtt  11..0033

3%

IImmaaggeeKKnniiffee//OOCCXX

38%

5%

19%

21%

WWoollll22WWoollll
IInnffooPPoowweerr  22..00

TTuurrbbooPPoowweerr
OOrrpphheeuuss

SSuucccceessssWWaarree
AAppoolllloo  22..00

TTuurrbbooPPoowweerr
SSyyssTToooollss

TTuurrbbooPPoowweerr
AAssyynncc  PPrrooffeessssiioonnaall PRODUCT OF

THE YEAR

9%

8%

EEaaggllee  SSooffttwwaarree
CCDDKK

LLiigghhtt  LLiibb  IImmaaggeess
Best Database Tool
Is this the year for first timers, or what? Not only did we add
the Best Internet/Communications and Best Imaging
Component categories to the ballot, we also tossed in Best
Database Tool; Delphi is used so heavily in database develop-
ment, we thought a category recognizing some of the 
database-centric products was in order.

SuccessWare International, last year’s winner in the Best
Add-In category, has established its product, Apollo 2.0, as
the clear leader in this category. Apollo blasted off to a
first-place finish in the first year of competition, earning 72
37 April 1997 Delphi Informant
percent of the votes. Apollo has been recognized in other
award circles as well. In December, SharewareJunkies.com,
a Shareware evaluation site on the Web, had its visitors
vote on the Best Shareware of 1996. Conversion Buddy, a
product using Apollo as its database engine, won the award
for Best Windows Freeware program. 

Product of the Year
The Product of the Year category was handled a bit differ-
ently this year. (In the inaugural Readers Choice Awards,
the product with the most votes overall won the award.) 

Because some categories have heavier voting patterns than
others, the products in those categories stood a better 
chance of acquiring more overall votes, thus a better
chance of winning the coveted Product of the Year award. 

This year, we created a specific category where you either
entered the number of your product of choice from the
ballot, or wrote in the name of your favorite product. This
way, the products in the less mainstream categories had an
equal chance.

Having said all that — adding a separate category didn’t
change a thing! Woll2Woll Software’s InfoPower is the hands-
down Product of the Year for the second consecutive year. 
Not only did it receive 38 percent of the votes, besting



Informant Spotlight
TurboPower’s Orpheus (21 percent), it also received the most
votes overall from the ballot. 

Thank You
It takes dedicated, talented people to get such quality
Delphi products to the marketplace. We’d like to thank the
vendors who dare to dream, plan, create, test, and distribute
unique Delphi products. Some began developing third-
party products at night and on weekends. We salute your
perseverance; without your wares, the Delphi developer’s
job would be very different. 

This year looks to be even more exciting than the last two.
The Delphi community is well established and continues 
to grow, Delphi 3 is set to ship, and developers have a slew
of quality products to pick from. As the Delphi projects
abound, we hope to see you push the boundaries and set
new standards — and bring Delphi development into even
greater prominence. ∆
38 April 1997 Delphi Informant

Delphi Informant’s Products Editor James Hofmann is available at
jhofmann@informant.com. To contact Cathi Pickavet, Editorial Assistant for DI, 
e-mail cpickavet@informant.com.
Best Internet/Communications
Async Professional 2.0
TurboPower Software
Phone: (800) 333-4160 or
(719) 260-9136
Web Site: http://www.tpower.com

Best Delphi Book
Delphi Programming 
Problem Solver
By Neil Rubenking
IDG Books Worldwide
Phone: (800) 434-3422 or
(415) 655-3000
Web Site: http://www.idg-
books.com

Best VCL
InfoPower 2.0
Woll2Woll Software
Phone: (800) wol2wol or 
(510) 371-1663
Web Site: http://www.-
woll2woll.com

Best OCX
OCX Expert
Apiary Inc.
Phone: (501) 376-3600
Web Site: http://www.-
apiary.com

Best Database Server
InterBase 4.2
Borland International, Inc.
Phone: (408) 431-1000
Web Site: http://www.-
borland.com

Best Installation Software
InstallShield
InstallShield Corp.
Phone: (800) 374-4353 or
(847) 240-9111
Web Site: http://www.-
installshield.com

Best Training
Delphi Training Tour
ZAC Education 
Phone: (800) 463-3574
Web Site: http://www.-
zaccatalog.com

Best Reporting Tool
ReportPrinter Pro 2.0
Nevrona Designs
Phone: (888) PROGSOL or
(602) 899-0794
Web Site: http://www.-
nevrona.com/designs

Best Version Control
PVCS Version Manager
INTERSOLV
Phone: (800) 547-7827 or
(503) 645-1150
Web Site: http://www.-
intersolv.com

Best Delphi Add-In
SysTools for Delphi
TurboPower Software
Phone: (800) 333-4160 or
(719) 260-9136
Web Site: http://www.-
tpower.com

Best Windows Help 
Authoring Tool
ForeHelp
ForeFront Inc.
Phone: (800) 867-1101 or
(713) 961-1101
Web Site: http://www.ffg.com

Best Imaging Component
ImageLib 
Skyline Tools
Phone: (800) 404-3832 or
(818) 766-3900
Web Site: http://www.-
imagelib.com

Best Database Tool
Apollo 2.0
SuccessWare International
Phone: (800) 683-1657 or
(909) 699-9657
Web Site: http://www.-
gosware.com

Product of the Year
InfoPower 2.0
Woll2Woll Software
Phone: (800) wol2wol or 
(510) 371-1663
Web Site: http://www.-
woll2woll.com

Contacting the Winners



39 April 1997 Delphi Informant

Figure 1: The OnChange

Inside OP
Delphi / Object Pascal

By Gary Warren King

Timely Changes
Improve Your UI’s Responsiveness 
with a Nifty Timer Technique
I t’s common for forms to have interrelated UI controls. For example, we
may want a graph to change as we manipulate the values in a form’s

Edit components. Delphi makes it easy to handle this task with the
OnChange and OnExit events associated with most data entry controls.
There is a hidden problem, however. In
short, the OnChange event occurs too often,
and the OnExit event doesn’t occur often
enough.

Too Much OnChange
Because the OnChange event fires every
time you make a change to a data entry
field, it can occur too frequently. [Note:
The term field is used throughout this arti-
cle to refer to a data entry control (e.g. an
Edit component), not in its strict sense as
an object’s data member, nor as a database
table’s column.] For example, entering the
number 234.45 will set off six OnChange
events (more if there are typos and correc-
tions). If the calculations dependent on this
, OnExit, and TimerDelay demonstration form.
field are complex or time consuming (for
example, updating a graph), the responsive-
ness of the user interface will rapidly decay
— as will the user’s patience and productiv-
ity. Even rapid calculations and screen
updates may cause a disconcerting flicker.

To see this in action, take a look at the
demonstration project DEMO01.DPR (see
end of article for download information).
From the Method radio button group, select
Use OnChange to set the Update method (see
Figure 1). Note that the form’s fields do not
respond to change, and that an ugly screen
flicker occurs.

Getting off on the Last OnExit
Another alternative is to ignore OnChange,
and instead tie the calculations to the field’s
OnExit event. This means that no calculations
will occur until the user leaves the field. Here
we are guaranteed that the user is (at least tem-
porarily) satisfied with the value they entered,
and that it won’t be changing anytime soon.

The problem is that the user may make
changes and not exit the field. In this case,
the OnExit event will never fire because the
field was not exited. The form can there-
fore be left in an inconsistent state where,
for example, the values in the graph don’t
match the values on the rest of the form.
You can see this effect by selecting Use

OnExit in the demonstration application.

What to Do?
There are many possible solutions to the
updating problem. The following solution is



Figure 2: The timer’s OnTimer event becomes responsible for 
performing calculations.

Inside OP
based on the idea that, because we are creating software for
people to use, we can make better software by thinking about
how people will use it. If someone is interactively entering
and modifying data to create some sort of presentation, 
the flow of their actions will generally be to:

make some changes
see what happens
make some more changes
see what happens
etc. 

It would be nice if our software could model this sort of
activity. And with a little work, it can! To the program, “see
what happens” means to run through the calculations and
update the presentation of the data. The only tricky part is
understanding what the user’s view of “make some changes”
is. If we were watching someone work, we would see them
make modifications, then step back to see how things look.
In other words, we need software that can sense a batch of
modifications has occurred and that the modifications have
(temporarily) stopped. What we would like is a sort of
delayed OnChange event that is armed when a change occurs,
but does not go off until the changes have (at least temporari-
ly) stopped.
The Delphi Way
We can do this in Delphi by adding a Timer component
to our form and channeling the OnChange events of all
Edit components through it. The timer’s OnTimer event
then becomes responsible for performing the calculations
(see Figure 2).

An example will make this clear. Find a form on which you
want to implement the Timer Delayed OnChange event.
Add a timer (named Timer1 by default) to the form. Set the
Timer component’s Enabled property to False and its
Interval property to the number of milliseconds you want to
elapse between a change to one of the fields and a recalcula-
tion. Smaller values will cause the recalculations to occur
40 April 1997 Delphi Informant
more quickly (see the sidebar “Using the Demonstration
Program” for a discussion of this setting). Set the Timer
component’s OnTimer event to execute a call to the form’s
recalculation logic. Then attach the following code to the
OnChange events of each field that’s involved in the form’s
recalculation logic:

procedure TMyForm.ResetTimer(Sender: TObject);

begin

Timer1.Enabled := False;

Timer1.Enabled := True;

end;

This method turns the Timer on if it was off, and resets it to
its starting time if it was already running. If a specific field
must have more processing in its OnChange event, you can
use the following code for that field:

procedure TMyForm.Field1Change(Sender: TObject);

begin
ResetTimer(Sender);

{ Other processing for field 1... }
end;
Change Happens
To return to our initial example, if a user enters 234.45 into
an Edit component, the OnChange for that component will
still be triggered six times. Each time it is triggered, Timer1
will be reset to the beginning of its cycle. Only when the user
pauses will Timer1 have a chance to reach the end of its cycle
The demonstration program lets you see how the user
interface behaves when using the OnChange event, the
OnExit event, or the “delayed” OnChange event discussed
in the article. You can use the Method radio button to con-
trol how the interface behaves. If you are using the
TimerDelay method, you can use the Delay scrollbar to
control the length of the delay (in milliseconds) between
changes to the Amount and Interest Edit components and
the updating of the graph.

If you look at the code used to update the graph, you’ll see
I’ve added a 500-millisecond delay. I added this to the
demonstration to make the effects of the OnChange,
OnExit, and TimerDelay methods clear. Of course, you
wouldn’t add a delay to the recalculation routines in a real-
world project.

I first used this delayed OnChange technique in a project
that used VisualTools’ FirstImpression charting compo-
nent. This component provides some wonderful lighting
and gradient fill effects that made our graphs more visual-
ly appealing. Although these effects took longer to calcu-
late and paint, switching from the standard OnChange
method to the TimerDelay method immediately improved
the interface, and made using our product more appeal-
ing.

— Gary King

Using the Demonstration Program



Inside OP
Measuring typing speed sounds relatively straightforward
— take the number of keystrokes and divide by the
amount of time it took to execute them. However, this
approach excludes a few important details:

A person may type some, stop, then type some more. 
We don’t really want to add the “stopped” time into 
the total time for our calculation.
A person may hold a key down and engage the 
keyboard’s automatic repeat action. We don’t really 
want to let someone “cheat” this way.

The TypSpeed sample application solves these problems
by only adding keystrokes into the average time when
they occur less often than the keyboard repeat rate, and
more often than a calculated maximum delay.

Determining the keyboard’s repeat speed. Windows
provides numerous functions that can be used to
query (and sometimes set) the properties of the
Windows environment. One familiar API call is the
GetSystemMetrics function. Among other things, it
can tell you how large a standard scrollbar is, or the
width of a fixed window frame. A less familiar func-
tion is SystemParametersInfo:

function SystemParametersInfo(A, B: Word; C: Pointer;

D: Word): Bool;

This API call provides access to a hodgepodge of unrelat-
ed system information. As you can tell from the generic
types and names of its parameters, the function is not
intuitive to use. The use and meaning of each parameter
changes, depending on exactly which system property is
being queried or set.

We can make the function easier to use, more under-
standable, and less error-prone by creating a wrapper
class that “surrounds” the API call with standard Delphi
and Windows types. Because all we need for our current
project is the keyboard repeat speed, we’ll start with the
following simple class (in the DSWinSys unit):

TWinSystem = class(TObject)

private

function GetKeyboardRepeatSpeed: Word;

public

property KeyboardRepeatSpeed: Word

read GetKeyboardRepeatSpeed;

end;

We can add the remaining SystemParametersInfo values
as time permits, or as we need them for other projects.
To make using this class easy, use the initialization
section to create a global variable (WinSystem). Notice
that we use the AddExitProc procedure to ensure that
what we created is also freed:

How Fast Do You Type?
41 April 1997 Delphi Informant
procedure Cleanup_DSWinSys;

begin
WinSystem.Free;

end;

initialization

begin
AddExitProc(Cleanup_DSWinSys);

WinSystem := TWinSystem.Create;

end;

Note: In Delphi 2 and later use the finalization section
instead of AddExitProc. This would look like:

initialization
WinSystem := TWinSystem.Create;

finalization
WinSystem.Free;

Catching the Keystrokes. After we have a method of
determining the keyboard repeat speed, the rest of our
task is easy. Set the form’s KeyPreview property to True,
then attach the following to the OnKeyDown event:

procedure TForm1.FormKeyDown(Sender: TObject; var Key:

Word;

Shift: TShiftState);

begin
FThisKey := GetTickCount;

FElapsed := FThisKey-FLastKey;

if (FElapsed >= FMinDelay) and
(FElapsed <= FMaxDelay) then
begin

Inc(FTotalStrokes);

FTotalTime := FTotalTime + FElapsed;

lblAverageTypingSpeed.Caption :=

Format('%10.2f', [FTotalTime/FTotalStrokes]);

end;
FLastKey := FThisKey;

end;

This method records the total number of keystrokes
(FTotalStrokes), the total time it took to make them
(FTotalTime), and computes the average. We only count
keystrokes whose delay (the difference between Now and
FLastKey) is between FMinDelay and FMaxDelay. These
are set up in the form’s FormCreate method:

procedure TForm1.FormCreate(Sender: TObject);

begin
FTotalTime := 0;

FLastKey := GetTickCount;

FTotalStrokes := 0;

lblKeyboardRepeatRate.Caption :=

IntToStr(WinSystem.KeyboardRepeatSpeed);

lblAverageTypingSpeed.Caption := '';

Memo1.Lines.Clear;

FMinDelay := WinSystem.KeyboardRepeatSpeed * 2;

FMaxDelay := WinSystem.KeyboardRepeatSpeed * 15;

end;

After some experimentation, we limited the range to
between two- and 15-times the keyboard’s own repeat rate.
This works well, and seems to provide reasonable answers.

— Gary King



Inside OP

Gary King is the principal of DesignSystems (http://www.oz.net/dsig), makers of
Interface Gizmos and other fine products for Delphi. He can be reached at
gking@oz.net.
and tick, causing an OnTimer event. This event will then exe-
cute all the recalculation logic for the form. 

You can see how this will look (and feel) to your users by
selecting the Use Timer Delay in the Method radio button
group in the demonstration application (again, see Figure 1).
As long as you keep typing in the Amount and Interest edit
boxes, the graph will not be updated. As soon as you pause,
however, the graph will be updated.

Details, Details
It’s important to strike a balance between the program con-
stantly recalculating (too small a value) and the program
seeming to ignore changes (too large a value). Generally
speaking, I have found that a value between 500 and 1000
milliseconds (0.5 to 1 second) works well, and provides a nice
responsive feel. You can experiment on the demonstration
application by altering the Delay scrollbar. 

Because different people type at different speeds, you may
want to tie the delay to each user’s typing speed (see the
sidebar “How Fast Do You Type?” on page 41 to learn how
to determine your typing speed). This might require
adding a setup screen to your application or your program’s
installation.

Another important point in making programs that seem
smart to your users is that no recalculation should occur
unless the data has been modified. Delphi makes this easy for
an Edit component because the Modified property is set to
True when its value changes. Of course, as King Lear said,
“Nothing will come of nothing;” there are three problems
with the Modified property:

Modified is not reset automatically after your recalcula-
tions are complete. You must iterate through each Edit
component and reset its Modified property to False.
An Edit component doesn’t “understand” your applica-
tion. For example, you and I know that 3.0 is the same as
3.00. However, an Edit component will think the field
has been changed and thus set Modified to True and cause
a recalculation.
Only TEdit (and its descendants) has the Modified prop-
erty. If your form is using other user interface controls, 
you are forced to check for modifications manually.

There are ways around these problems, and they all involve
adding code to your application. The demonstration shows one
42 April 1997 Delphi Informant
way of resolving the issues by adding properties to the form
that mirror the values in the Edit components. Download the
code and take a look.

You may also want to provide more feedback to the user to
show that the form is in an inconsistent state and that calcu-
lations are occurring. The demonstration changes the form’s
caption during recalculation. If your application has a status
bar, you might want to use that instead.

Conclusion
This Timer technique is a great example of how a little
extra thinking, and a small amount of code, can produce a
better user interface. In this case, we have an interface that
will seem more responsive to users: It lets them do their
work without getting in the way, and it keeps things
updated without the need for explicit recalculation com-
mands. 

As the technical environment in which we work becomes more
complicated, our users will demand software that helps them
do their work, not software that makes them work. A proper
interface is near the heart of this goal. The following references
provide a good starting point for learning more about human-
computer interaction and user-interface design. ∆

References
Borenstein, Nathaniel. Programming as if people mattered:
friendly programs, software engineering, and other noble delu-
sions [Princeton University Press, 1991].
Cooper, Alan. About Face: The Essentials of User Interface
Design [IDG Books, 1995].
Norman, Donald. The Design of Everyday Things [Doubleday,
1990].
Norman, Donald. Things that Make us Smart [Addison-
Wesley, 1993].
Tognazzini, Bruce. Tog on Interface [Addison-Wesley, 1992].
Tognazzini, Bruce. Tog on Software Design [Addison-Wesley, 
1996].

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\APR\DI9704GK.



43 April 1997 Delphi Informant

Figure 1: Multi-Edit’s multiple doc

New & Used

By Alan C. Moore, Ph.D.

Multi-Edit for Windows
An Editor for the Power Programmer
For many of us, Delphi’s code editor is more than adequate. It includes
all the standard features you would expect: block selection, cut and

paste, search and replace, bookmarks, and so on. But what if these capa-
bilities are not enough? What if you need, or want, more control over the
code-editing process? Then it’s time to consider one of the specialized
code editors, of which the best known is Multi-Edit for Windows by
American Cybernetics.
This editor is easy to install, and you can
implement Delphi support before or after
installation. When you enable Delphi sup-
port, you inform Multi-Edit of the location
of the Delphi BIN directory. This allows you
to compile Delphi programs directly from
Multi-Edit. A new menu item, Delphi, is
added to Multi-Edit’s already feature-rich
menu system, and Multi-Edit is automatical-
ly added to Delphi 1’s Tools menu (I had to
manually add it to Delphi 2’s Tools menu).
In Delphi 2, the hotkey you select automati-
cally loads Multi-Edit, and toggles between
Multi-Edit and Delphi’s IDE. The available
menu system and the various hotkeys are
completely configurable.
ument interface.
Unlike Delphi, but similar to Borland
Pascal, the main window uses a multiple
document interface (see Figure 1). While
Multi-Edit for Windows is a 16-bit applica-
tion, it does have a number of Windows 95-
compatible features, including support for
long filenames, “Explorer-style” file prompts,
and background compiling.

Multi-Language Support/Enhanced
Capabilities
Multi-Edit supports many other program-
ming languages, including Assembler, BASIC,
C, dBASE, HTML, and Java. Enabling sup-
port for these languages/-
compilers is less straightforward than for
Delphi. Keywords and other language-specific
details are built into an internal database you
can access and modify. Built-in language-spe-
cific templates, which expand keywords into
common structures, are also available. For
example, in Delphi, you can type begin, hit
the Expand Template speedbutton, or
A9, and a begin..end block will be creat-
ed with the editing cursor placed in the body
of the block. Other common Pascal/-Delphi
structures include case, repeat, record, for,
object, if..else, function, procedure, try..final-
ly, and try..except. If the built-in templates
are not sufficient, you can define your own.
The application includes two special add-on
packages to enable seamless integration with
either Borland’s C/C++ or Delphi’s IDE.
When you install these, an extra menu item
allows you to compile, build, or check syntax
for an application in that particular language.



Figure 2: The Save File As dialog box.

New & Used
The main menu bar includes the familiar choices (File, Edit,
etc.), as well as Block, Search, Text, Macro, Tags, and Vcs

(Version Control System.) Many of the familiar menu items
have enhanced capabilities when compared with other editors
(such as Delphi’s IDE.) However, there are also some unfor-
tunate limitations. The first half of the manual discusses the
menu and sub-menu items in detail. Let’s take a look at some
of the more unusual features.
Figure 3: The Search dialog box.
Managing Files: Editing, Marking, and 
Searching for Text
The File menu includes all the standard choices, and a few
new ones. Information provides statistics on the currently
active file, including its status in memory. Merge activates
a dialog box that allows you to integrate any file into the
current file, starting at the current cursor position. Finally,
the Session Manager allows you to organize different pro-
jects into sessions, saving the complete editor status for
each session. The latter includes all files loaded, history
lists, and global variables. The standard File dialog boxes
(Open, Save, etc.) contain numerous welcome additions as
shown in the Save File As dialog box (see Figure 2). For
example, clicking the File button opens a list of File
Manager options that allow you to delete, move, or
rename files, among other choices. The All button selects
all the files in the current folder (directory), while None

deselects them all. 

I did encounter a problem with the Open File dialog box.
When I browsed different directories beyond the working
directory and double-clicked on a file, that file did not
open. Instead, a new file with the same name was opened
in the working directory. If you want to open a file in a
different directory, you must first click the Change but-
ton. I found this disconcerting.

The Edit menu also has some new and enhanced choices.
Selecting Undo lets you cancel up to 65,000 changes. You
can Redo as many changes as were undone, provided you
don’t make other changes to the file. Innovative new features
44 April 1997 Delphi Informant
include appending a marked block to text already in the cut-
and-paste buffer, showing the contents of that buffer, and
repeating a particular keystroke a number of times.

The Block menu is even more feature-rich. The obvious
choices of indenting, unindenting, copying, moving, and
deleting a selected block are present, along with some nice
additions, including saving to file, copying a block from
another window, and moving it to another window. There
are three block-selecting modes, providing tremendous flex-
ibility in editing source files: by lines of text, by columns of
text, and by stream (beginning and ending anywhere within
particular lines). A very helpful option is the persistent
block. With it you can mark a particular block, move the
cursor somewhere else, and move or copy the still-selected
(persistent) block to that location.

The Search menu is also powerful. Using the Search dialog
box (see Figure 3) you can search for individual words,
phrases, etc. using regular expressions. With other choices
in this menu you can set up to 10 bookmarks or random
access marks (which, unlike Delphi, remain active the next
time you open Multi-Edit), highlight global expressions
(the same string in all the files open in the current session),
or list files from the last file search. Another powerful fea-
ture is the Multiple File Search and Replace dialog box (see
Figure 4). As you can see, using the same kinds of expres-
sions found in the Search dialog box provides tremendous
flexibility to search for strings or complex patterns in mul-
tiple files. After a search is completed, you can open any
file containing the search string by double-clicking on any
of its entries in the resulting window (see Figure 5). After
you close this window, you can bring it up again at any
time by selecting List Files from Last Search, or by hitting
CG. I found this very useful.

The Text menu provides a host of text viewing and format-
ting options. For example, you can view any source or text



Figure 5: This window, which shows the results of a multiple file
search, allows you to open any of the files by simply double-
clicking its entry.

New & Used

Figure 4: The Multiple File Search and Replace dialog box.
file in hexadecimal mode, set layout options such as word-
wrap and indenting, sort text in a file, center a line, per-
form various operations on a paragraph (reformat, justify,
unjustify), set page breaks, and so on. One particularly
innovative option allows you to compare two files and cre-
ate a new file containing their differences. You can also
move through files and view the previous or next difference.
Tools, Tags, Version Control, and More
The Tools menu includes a number of useful items, includ-
ing a spellchecker, a template builder and editor (for creat-
ing new templates) as shown in Figure 6, an ASCII refer-
ence table, a notebook, and a calculator. With other
options you can compile code, manage background tasks,
find the next compiler error, comment or uncomment a
source file, install or manage add-on packages (authors of
add-on packages can download needed documentation
from American Cybernetics’ Web site), and customize
many of Multi-Edit’s features.
45 April 1997 Delphi Informant
The Tags menu allows you to create a Multi-Tags database
of source file functions, procedures, classes, and types so
you can browse the file in hypertext-like manner. After the
file has been scanned, you can select Browse Current File to
access a dialog box listing all the items (procedures, func-
tions, etc.). This allows you to quickly jump from one to
another. When you combine this feature with the book-
marks discussed earlier, moving around — even in a large
source file — becomes a snap.

The Vcs menu provides useful editing and archiving exten-
sions to the version control system you have installed. You can
lock or unlock files, maintain a log of files stored in the VCS
archive, and so on. The Help menu contains many special fea-
tures, including a Quick Overview that provides an introduc-
tion to using the product, information about technical sup-
port, and FAQs (Frequently Asked Questions). I was particu-
larly pleased with the innovative method for reporting bugs: a
dialog box records data about your computer hardware and
software configuration, provides a straightforward manner for
you to describe the bug, then e-mails the information to
American Cybernetics.

Macros also have their own menu. You can run, load, and
list macros, globals, and keystroke macros. If the macro
you want to load or run doesn’t share the exact name as 
its file, you must place the filename before it as in 
filename~macro-name. The Loaded Macros dialog box
(see Figure 7) is disappointing in some respects. You can’t
double-click on a macro name and execute it, nor can you
highlight and save the name to the clipboard. Having
addressed the Macro menu, let’s discuss macros themselves.
Multi-Edit’s Macro Language
The Macro Language built into Multi-Edit is powerful and
difficult. With a syntax similar to C, Multi-Edit uses its
Macro Language to implement many of its internal opera-
tions, including language indenting. In fact, the wizard that
sets the Delphi options during installation is a macro called
DELPHIWIZARD. Each macro exists in a source file with
a .s extension and a compiled macro file with a .mac exten-
sion. Those macros called by other macros require a proto-
type, which exist in a text file with a .sh extension. You can
edit a .s or .sh file with any text editor.

The Macro Language is sufficiently complex that the entire
second half of the Multi-Edit manual — some 100 pages
— is devoted to explaining it. It resembles a full-fledged
programming language, with labels, expressions, typed vari-
ables, branching, functions with parameters, and so forth.
There are many pre-defined functions and variables such as
BLOCK_BEGIN, COPY_BLOCK, cursor functions, file
operation functions, and machine-level interface functions.
You can build sophisticated dialog boxes with the language,
but there’s a catch: You need to study some of the source
files such as DLG_Exam to learn the intricate steps



New & Used

ure 6: The Edit Templates dialog box.
involved. There is even low-level
access to the Windows API. These
features provide tremendous power
and flexibility in creating your own
macros. 

As I have already hinted, however, there
is a down side: Working with the
Macro Language is hardly straightfor-
ward or intuitive. For example, from
the Macro menu you can view all the
available macros is a listbox, or run a
specific macro. You must, however, type
in the name of the macro you want to
run. Most macros require parameters. If
you don’t enter the proper parameters,
you’ll get an error message.
Unfortunately, the only way you can
get specific information on parameters
required for many macros is to examine
the source file where that macro is
defined. The process is similar to learn-
ing some of the undocumented or

Fig
poorly documented capabilities of Delphi (e.g. creating
experts). Unlike Delphi, however, there is little online Help for
pre-defined macros. Such an addition would be a major
enhancement, and make this product much more useful.
Finally, I found the documentation lacking in several respects.
Some features, such as the use of ASCIIZ string arrays in struc-
tures, is not adequately explained; many other features of the
Macro Language would benefit from expanded examples.
However, we can create useful and powerful macros if we are
willing to put forth the effort required.
Figure 7: The Loaded Macros dialog
box is disappointing: You can’t high-
light and copy macro names, nor can
you double-click and execute one.
My First Macro
Like many of you (I suspect), I don’t like unnecessary
work. In Delphi, when I formulate the structure for a new
class, I resent having to copy every function and procedure
heading, adding the class prefix, and copying everything
(including the begin..end block) to the implementation
section. So for my first macro, I created a structure that
would automate this process. 

Specifically, after scanning the methods (functions and proce-
dures) of the class, the macro would attach the class name
before each method and expand each method with
begin..end blocks in the implementation section. The basic
algorithm is as follows:
1)  If not on line with class definition, exit. 
2)  Get class name; save in global variable. 
3) Get next procedure or function name. 
4) Move to the implementation section after uses clause 

(if present). 
5) Create method headers with class name prefix. 
6) Expand each function or procedure with begin..end

block. 
7) Repeat steps 2-6 until there are no more methods. 
8) Exit. 
46 April 1997 Delphi Informant
The macro is shown in
Figure 8. The test
source file is shown in
Figure 9, and the
resulting source file
(after running the
macro) is shown in
Figure 10. This is not a
particularly simple
macro, even though it
doesn’t involve the cre-
ation of any dialog
boxes. If you do want
to use dialog boxes in
your macros, you
should study the files
dialog.s and 
pascal.s. The former is
the basic source for
dialog box creation;
the latter provides
excellent examples of
various dialog boxes
with different controls.
Unfortunately, there are no built-in debugging tools for
writing macros, so you must roll your own. Here’s what I
did. During the debugging phase, wherever I assigned a
value to a variable, I inserted two lines — one showing the
value assigned on Multi-Edit’s status line, the other a
KeyPress function so that execution would be suspended
until I had a chance to read the result:

ClassName = GET_WORD('');

make_message('ClassName = ' + ClassName);

Read_Key;

WORD_RIGHT;



Figure 8: Listing of BldClass macro.

macro_file BldClass;

struct MethodArray {str MethodStrs[100];}

void BldClass( ) trans2 {

str ThisWord; // Current word read

str ClassName; // To append to each function/procedure

str MethodHeader; // Current method with all parameters

WORD_DELIMITS = (' ');

ClassName = GET_WORD(' '); WORD_RIGHT;

if (! AT_EOL) {WORD_RIGHT;}

ThisWord = GET_WORD(' (');

if (CAPS(ThisWord) != 'CLASS') {

make_message('This is not a Class Definition');

Read_Key;

goto Finished;

}

// Find Implementation Section

Down;

Set_Mark(1);  // Come here after finding implementation

FIRST_WORD; ThisWord = GET_WORD(' ;');

while ( CAPS(ThisWord)!=('IMPLEMENTATION')) {

Down; FIRST_WORD; ThisWord = GET_WORD(' ;');}

ThisWord = GET_WORD(' ;');

if ( CAPS(ThisWord)==('USES')) {

REPEAT_LOOP:

FORWARD_TILL(';');

Down; FIRST_WORD;

if (AT_EOL) {goto REPEAT_LOOP;}

}

Set_Mark(2);  // After implementation, start writing here

Get_Mark(1);  // Go back to method body

// Now scan for procedure and function names

FIRST_WORD; ThisWord = GET_WORD(' ;');

while (CAPS(ThisWord) != 'END' ) {

if ((CAPS(ThisWord)==('PROCEDURE')) ||

(CAPS(ThisWord)==('FUNCTION'))) {

GetAnotherWord: WORD_RIGHT;

MethodHeader = GET_WORD(';');

MethodHeader = ThisWord + ' ' + ClassName +

'.' + MethodHeader + ';';

Down; First_Word;

Set_Mark(1); // Next time come back here and continue

// We have header; expand it in implementation section

Insert_Mode = 1; Get_Mark(2); CR;

Text(MethodHeader); CR; Indent;

Text('Begin'); CR; Indent;

Text('{Statements}'); CR; Undent;

Text('End;'); CR; Undent; CR;

Set_Mark(2); // Next time start writing here

Insert_Mode = 0;

Get_Mark(1); // Read Next Line of method 

First_Word; ThisWord = GET_WORD(' ;');

}

}

Finished:

Insert_Mode = 1; // Restore to insert mode

RM('Text^ClearRandomMark'); // Clear random marks

}

New & Used

Figure 9: Source file before running the macro.

unit Test1;

interface
TestClass = class

procedure Procedure1;

procedure Procedure2(param1, param2, param3);

function function1: integer;
procedure Procedure3(param1);

function function2: Boolean;

end;  { TestClass }

implementation

end.

Figure 10: Source file after running the macro.

unit Test1a;

interface
TestClass = class

procedure Procedure1;

procedure Procedure2(param1, param2, param3);

function Function1: integer;
procedure Procedure3(param1);

function Function2: Boolean;

end;  { TestClass }

implementation

procedure TestClass.Procedure1;

begin
{ Statements }

end;

procedure TestClass.Procedure2(param1, param2, param3);

begin
{ Statements }

end;

function TestClass.Function1: integer;
begin

{ Statements }
end;

procedure TestClass.Procedure3(param1);

begin
{ Statements }

end;

function TestClass.Function2: Boolean;

begin
{ Statements }

end;

end.

New & Used
There are several aspects of the macro source file I would like to
address. Most of the macro statements I used are described in
the chapter on System Functions and Variables, which contains
many functions for scanning and writing to source files, file
operations, and low-level system functions. First, the macro
function itself is declared as Void, because it does not return any
value. After the declaration, it is customary to list all the vari-
ables, with each preceded by its type. As in C++ or Object Pascal
2.0, use a double slash to begin comments. Functions like
WORD_DELIMITS, GET_WORD, and WORD_RIGHT set
and use strings of word-delimiter characters that give you a great
47 April 1997 Delphi Informant
deal of control over selecting words or tokens. Functions like 
FORWARD_TILL, DOWN, FIRST_WORD, SET_MARK,
and GET_MARK allow you to move the cursor around within a
source file. And the functions CR and TEXT allow you to write
new code in the source file. The line:

RM('Text^ClearRandomMark');

runs the macro, ClearRandomMark, found in the file
Text.Mac. You can call any of the other numerous macros
using the same syntax.



New & Used
Conclusion
Multi-Edit for Windows is clearly a powerful and beneficial tool
for Delphi programmers, especially those who spend a good deal
of time writing code. The more familiar I became with the prod-
uct, the less time I spent using Delphi’s editor. Now the only
time I return to Delphi is when I need to trace through a project
and debug it. However, particularly because of the documenta-
tion and the scarcity of good examples in the manual, I found
working with the Macro Language frustrating. On many occa-
sions, developing a macro caused Windows to freeze. Sometimes
I could resolve the problem by simply hitting Ck; other
times I was forced to reboot. 
Still, I found the product has
grown on me, and as I became
familiar with its features, I for-
got about the initial difficul-
ties. I was particularly pleased
with the new macro I created
— in the future, when I create
new support classes, it will
save me immeasurable key-
strokes. I can imagine a num-
ber of other useful macros I
may write, including one to
automate making changes to
the uses clauses in units to
transfer them from Delphi 1
to Delphi 2. I was particularly
impressed with the capabilities
of many of the feature-rich
dialog boxes that provide
options I have not seen else-
where. When I visited
American Cybernetics’ Web
site I found updated files and
technical papers for all their

products, including Multi-Edit for DOS and Multi-Edit for
Windows. You can also download a demonstration version of
the product. In summary, I found Multi-Edit for Windows to
be a wonderful programmer’s editor that should be a wel-
come addition to many developers’ arsenal of tools. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in
music composition and music theory. He has been developing education-related
applications with the Borland languages for more than 10 years. He has pub-
lished a number of articles in various technical journals. Using Delphi, he special-
izes in writing custom components and implementing multimedia capabilities in
applications, particularly sound and music. You can reach Alan on the Internet at
acmdoc@aol.com.
48 April 1997 Delphi Informant
Multi-Edit for Windows is a powerful pro-
grammer’s editor that includes built-in
Delphi support and support for many
other programming languages, including
Assembler, BASIC, C, dBASE, HTML, and
Java. Its menus include many standard
and enhanced options for editing, search-
ing multiple files, and managing projects.
Macros and templates help to automate
coding and working with files. Tools such
as a spellchecker, a notebook, and a 
calculator are welcome additions. 

AAmmeerriiccaann  CCyybbeerrnneettiiccss
1830 W. University Drive, Ste. 112,
Tempe, AZ 85281

PPhhoonnee:: (602) 968-1945
FFaaxx:: (602) 966-1654
EE--MMaaiill:: tech@amcyber.com 
CCoommppuuSSeerrvvee:: GO CYBERNET
WWeebb  SSiittee:: http://www.amcyber.com
PPrriiccee:: US$199



Delphi 32-Bit Programming SECRETS

TextFile
The first thing that struck me
about Delphi 32-Bit
Programming SECRETS by
Tom Swan and Jeff Cogswell
is the absence of figures.
Normally, a computer book
weighing this much has at
least a pound of screen shots
and diagrams — here, there
are two. Chapter 11 includes a
good illustration of window-
to-viewport mapping, and
chapter 7 includes a pointless
hierarchy diagram of an OLE
storage unit. 
Hardcore Delphi Database Development
The ink is not missed; this
book is loaded with informa-
tion and secrets. Of course
you knew that — it’s in the
title. I had doubts at first; the
secrets weren’t in the first few
chapters. I wondered if I’d
graduated to Delphi guru and
my diploma was lost in the
mail. Fortunately, the hints
get better as the book pro-
gresses. Many books promise
to deliver secrets; it’s refresh-
ing when one actually does.
[One that definitely delivers is
Ray Lischner’s Secrets of
Delphi 2 from Waite Group
Press, reviewed in the
February 1997 DI, ed.]
Chapter 4 covers 32-bit pro-
gramming for Windows, and
does so with an unusual topic:
a component that encapsulates
the creation of a control panel
applet. I found the material
fresh, and while the topic may
be a bit esoteric, the tech-
niques are quite interesting. As
with all the code in the book,
49 April 1997 Delphi Informant
this component is on the
accompanying diskette. The
installation of the components
is simplified, but I would add
the usual caveat about making
a copy of CMPLIB32.DCL.
Swan explains how to manual-
ly create the file in event of an
emergency, but I’ve found it’s
far simpler to keep a current
copy around.

Throughout most of the book,
Swan digs deep into the muck
of Windows. Covering OLE,
however, he treads lightly on
the surface. Deciding the sub-
ject is just too complex to
tackle, he lets Delphi handle
the gory details. This is proba-
bly a wise course, as OLE is
foreboding to most program-
mers. However, not wanting
to disappoint those searching
for secrets, Swan includes an 
excellent tip for debugging
OLE, as well as an Object
Pascal trick that could be used
in any situation. 
My favorite chapter is a long,
in-depth discussion of print-
ing. Although the topic is dry,
the authors make up for it
with plenty of good informa-
tion. As with the other com-
ponents and code, the print
preview component Swan and
Cogswell develop in this chap-
ter is given, without restric-
tion, to the readers. In addi-

“Delphi 32-Bit Programming SECRETS”  
continued on page 50
With its definitive title,
Delphi Database
Development will be
approached by program-
mers who have “A-to-Z”
expectations. Readers can
be assured that the A-to-Z
promise will be met, but in
a different manner than
other books. The dense
text, lack of illustrations,
and absence of the ubiqui-
tous “Tropical Fish” data-
base tell the reader this is
not a tutorial guide for neo-
phyte Delphi database pro-
grammers.
In contrast to books that
offer instruction on using
VCL components to build
database programs without
writing code, Delphi
Database Development pro-
vides in-depth information
for experienced Delphi pro-
fessionals who know many
lines of code are often nec-
essary to produce commer-
cial-grade applications. The
intended audience is profes-
sional programmers with
experience in Object Pascal,
the Delphi object model,
and database-specific pro-
gram development. 
Delphi Database Develop-
ment begins with a 12-page
chapter on database devel-
opment. Descriptions of
the VCL components, the
Borland Database Engine
(BDE), and the single rela-
tion example program are
the only offerings to novice
programmers. The remain-
der of the book documents
Delphi’s database tools in
low-level detail.
The second, third, and fourth
chapters cover the Data Access,
Visual Data, and TField con-
trols, respectively. The reader
must have experience with
these tools to successfully apply
this reference material; the pro-
vided examples don’t place the
function code within a project’s
context.

“Hardcore Delphi Database Development”  
continued on page 50



50 April 1997 Delphi Informant

Hardcore Delphi Database Development (cont.)

TextFile

Delphi 32-Bit Programming SECRETS (cont.)
tion to that excellent compo-
nent, Swan explains several of
Windows’ poorly written API
calls. I don’t know if this
knowledge can be classified as
secret, but I doubt I’d have
figured them out.
Finally, there’s chapter 13 —
unlucky 13. While the book is
not intended to be a compre-
hensive resource, Swan claims
this chapter will pull together
all information on files and
streams. They do a workman-
like job here, but I want more.
I want the secrets of the uni-
verse. I want fat-free that really
tastes good. At least I want to
stream my components to and
from disk. I’ve been searching
for what seems an eternity for
a definitive guide to streams
and filer objects. I had high
hopes for this chapter; it’s fine,
but not comprehensive.
While my overall impression
of this book is good, I do have
a few problems with it. Two of
the chapters — a long one on
memory management and
another on the IDE — are
difficult to follow. Perhaps
they were rushed to press; that
would explain the meandering
prose. Also, maddeningly,
there are no chapter sum-
maries. A brief terminating
paragraph would prevent a
tired programmer from trying
to peel apart pages when none
are stuck. More than once
Swan ends a chapter that
abruptly.
Despite its problems, I think
Delphi 32-Bit Programming
SECRETS will help most
Delphi programmers, and I
definitely recommend it.

— Richard A. Porter
Delphi 32-Bit Programming
SECRETS by Tom Swan with
Jeff Cogswell. IDG Books,
919 E. Hillsdale Blvd., Foster
City, CA 94404, 
(800) 434-2086.

ISBN: 1-56884-690-8
Price: US$44.99 
(738 pages, Disk)
Early chapters aren’t categori-
cally or functionally indexed.
So, the programmer must
know which concept to
research before delving in. The
book offers a consistent,
descriptive pattern through-
out. For example, a compo-
nent is presented with a
description of its application,
followed by tables listing its
properties, methods, and
events. The programmer
focusing on a single control
will find this reference faster
than navigating the myriad
windows in the Help system. 
An alphabetical list following
the tables then details each
scheduled item. The book was
disappointing in this respect
— the descriptions offer little
more than Delphi’s online
documentation. For instance,
the examples often contain
only one line of code showing
the Object Pascal syntax
underlying the component’s
property, but not the context
in which it’s used. Without
the surrounding code, the
developer is left to create
example/test code. 
The BDE Function Refer-
ence is the most useful sec-
tion, providing complete
documentation for the BDE
API. The authors provide
brief paragraphs to introduce
the BDE and its use with
Delphi. This section presents
the functions in alphabetical
sequence (a categorical refer-
ence to these functions is
presented in Appendix C,
which may have improved
the workability of this refer-
ence chapter). The entries for
each API function are much
more useful and comprehen-
sible to the developer than
the earlier component
entries. Additionally, the
code snippets used to present
the functions are greatly
expanded. For example, an
API call is shown surrounded
by code explaining the 
function’s use. 
Experience developing data-
base programs in any language
is required to make full use of
this reference guide. The pro-
grammer must understand the
specific task to accomplish
before consulting this book. 
The last 200 pages are tightly
focused appendices, providing
explicit information about
error return codes, BDE data
structures, converting Xbase to
Delphi code, database file for-
mats, alternatives to the BDE,
and InterBase SQL. This
dense collection of informa-
tion is useful, and after divin-
ing the methodology behind
the presentation, programmers
can quickly locate the required
answers. Delphi Database
Development bridges both
releases of Delphi with those
functions applicable only to
the 32-bit version.
An accompanying CD-ROM
in a computer text is almost
obligatory in the current sales
market; this book follows this
trend. However, the program-
mer must ponder the useful-
ness of the CD-ROM that
accompanies Delphi Database
Development. It presents few
complete programs, and load-
ing the CD-ROM, copying
the code, compiling, and run-
ning it takes longer than man-
ually entering the code. The
CD-ROM has a smattering of
demonstration copies of com-
mercial software and publish-
ing ventures. It also includes a
set of reasonably valuable pro-
grams submitted by a third-
party developer. The BDE
demonstration programs pro-
vide examples of several BDE
API calls, as well as several use-
ful tools when compiled. 
Delphi Database Development
is an important addition to
the library of any developer
building commercial database
applications in Delphi. This
dense, highly technical refer-
ence provides valuable infor-
mation not readily available in
the general Delphi press.
The book makes no preten-
sions about teaching the neo-
phyte Delphi developer the
basics of database program-
ming — other fine books can
fill this need. A working pro-
grammer needs quickly acces-
sible information, and this
book provides it. If you pur-
chase this book, remember to
also buy a good highlighter
pen and a package of Post-It
notes for marking pages that
you’ll repeatedly reference.
— Warren Rachele

Delphi Database Development
by Ted Blue, John Kaster,
Greg Lief, and Loren Scott.
M&T Books, 115 West St.,
New York, NY 10011, 
(212) 886-9222.

ISBN: 1-55851-469-4 
Price: US$44.95
(968 pages, CD-ROM)



File | New 
Directions / Commentary

Support! Now More Than Ever
If you develop software, chances are you or someone in your company is responsible for supporting
the applications you build. But how much importance do you give the support itself? Before you

take it too lightly, keep this in mind: Unless the software is operable by the targeted user, it quickly
becomes “shelfware.” I learned this lesson recently trying to install and configure a Web software
package on a Microsoft IIS Web server. While I discovered it can be done, the experience was not
without a lot of avoidable pain.
Dot your i’s, cross your t’s. Once I
downloaded the software from the ven-
dor’s Web site and prepared for set-up,
I became confused: I didn’t know
which installation instructions I should
follow. The step-by-step instructions
on the Web site were noticeably differ-
ent than the INSTALL.TXT file
included with the download. After I
determined the correct set, I still had
to wade through a series of errors and
inconsistencies in the documentation.
To top it off, after I had spent several
hours working with a junior technical
support engineer to track down a par-
ticular bug, I was disheartened to later
talk to a senior engineer who had full
knowledge of the problem. Such infor-
mation was neither disseminated inter-
nally nor to customers. Thus, gleaning
our first applicable principle from this
experience: Ensure documentation is
consistent and routinely updated.
Known bugs should be disseminated,
particularly if there are workarounds.
The Internet — or if applicable, cor-
porate intranets — can serve as an
excellent means of making such infor-
mation accessible to your user base. 
Home brew if you can. The software
package uses Perl scripts to provide its
run-time application environment.
Because Perl works with most Web
servers, it seems an obvious candidate for
51 April 1997 Delphi Informant
vendors not tied to a particular server. 
The downside is that while Perl is
ubiquitous in the UNIX world, get-
ting it to run with NT Web servers
(particularly Microsoft IIS) isn’t nec-
essarily straightforward. For example,
the documentation for the NT ver-
sion of Perl I downloaded differed
from the IIS docs. They did have one
thing in common, however: They
were both wrong! After considerable
trial and error, I was finally able to
stumble across a technical note on the
Microsoft Web site that discussed
how to correctly set the Registry
entries. The problem: I was forced to
fix the problem myself, because the
technical support people I talked with
had little experience using Perl on the
NT platform. Our second principle
therefore is to avoid relying on third-
party software. In situations where
that is not possible, remember this:
Any problem with that software is also
your problem. 
Time is money. During much of this
ordeal I was able to keep my patience,
but I eventually gave up and began
exploring alternative options. Soon
the thought of starting over with
another solution seemed less of a task
than completing the one I already
spent countless hours on. This leads
to our third principle: Software that is
easy to install, configure, and use gives
you an advantage over your competitors.
(A corollary is also true: If your soft-
ware is difficult to use, a user will often
react by switching to the competition,
even if it also proves difficult to use.)
Perhaps this is obvious for “end-user”
software, but it is also true for 
developer-oriented tools. I think
many software developers and compa-
nies miss this point. Remember the
principle “time is money” also holds
true for your targeted user. Perhaps
we can restate this as “the less time
required to learn how to operate your
software will give you more money.”
While I have singled out one software
vendor, it is likely each of you have
identical stories to tell. Think about
these experiences as you and your
company support software. Great pro-
gramming techniques, sound applica-
tion design, and unmatched perfor-
mance matter little if your software is
poorly supported. ∆

— Richard Wagner 

Richard Wagner is Chief Technology
Officer of Acadia Software in the Boston,
MA area, and is Contributing Editor to
Delphi Informant. He welcomes your
comments at rwagner@acadians.com.


	Table of Contents
	Delphi Tools
	Videotex Launches Version 2.0 of T-BASE for Windows
	TurboPower Software Announces OnGuard for Delphi
	Perconti Ships New INI-Aware Components for Delphi 3
	InstallShield Software Corp. Releases InstallShield5
	Books for Sale


	Newsline
	Oracle Licenses Borland’s Java and C++ Development Tools
	Borland Announces Delphi/400 Client/ Server Suite for IBM's AS/400
	Searchable Delphi Knowledge Base Now on the Web
	Southern California Delphi Developers’ Conference Scheduled
	Borland Awards Software and Trademark for ReportSmith to Strategic Reporting Systems
	The Borland Canada Developer's Conference
	Calendar


	The Paradox Files: Part l
	Databases and Files
	The Table Format
	Data Blocks
	Insert and Delete Records
	Managing Block Use
	Table Levels
	Conclusion

	Rich Text Control
	Basic Principles
	A Working Example
	Rich Text in Databases
	Conclusion
	Listing One — A RichEdit Word Processor
	Listing Two — Data Aware RichEdit


	Array of Tasks
	Managing Security
	Ensuring Records Are Posted
	Refreshing Data
	Conclusion

	Controlling Your Sessions
	Getting Basic BDE
	Controlling Paradox Table-Related Settings
	The NetFileDir and PrivateDir Properties
	Using Encrypted Paradox Tables
	Sessions and Delphi 2
	Using Additional Sessions
	Managing Aliases in Delphi 2
	Conclusion
	Listing Three — ALIAS.DPR


	Getting DIBs on Speed
	The DIB Class
	A Pointed Discussion
	Color Crunching
	Shades of Change
	GEO Files
	The World Coordinate System
	A World of Changes
	The Fourth Edition
	Conclusion — and a Look Ahead

	RAD Results
	Best Internet/Communications
	Best Delphi Book
	Best VCL
	Best OCX
	Best Database Server
	Best Installation Software
	Best Training
	Best Reporting Tool
	Best Version Control
	Best Delphi Add-In
	Best Windows Help Authoring Tool
	Best Imaging Component
	Best Database Tool
	Product of the Year
	Thank You

	Timely Changes
	Too Much OnChange
	Getting off on the Last OnExit
	What to Do?
	The Delphi Way
	Using the Demonstration Program
	How Fast Do You Type?

	Change Happens
	Details, Details
	Conclusion
	References

	Multi-Edit for Windows
	Multi-Language Support/Enhanced Capabilities
	Managing Files: Editing, Making, and Searching for Text
	Tools, Tags, Version Control, and More
	Multi-Edit’s Macro Language
	My First Macro
	Conclusion

	TextFile
	Delphi 32-Bit Programming SECRETS
	Hardcore Delphi Database Development

	Support! Now More Than Ever

