
41 DBNavigator — Cary Jensen, Ph.D.
Components appear on the Component Palette, right? Not always. This
month, Dr Jensen exploits TScreen, one of three rogues that forsake the
Palette. Heady functionality ensues.

43 At Your Fingertips — David Rippy
Mr Rippy delves into his bag of tricks once again to produce an eclectic
assortment of tips for multimedia, time stamping, the SpeedBar, and more.

45 Case Study — R. Bryan Ellis
Monarch Technology Group, Inc. got the call to design an application
that tracked management expenses, but many of the intended users
weren’t computer-literate. Find out how they fared.

REVIEWS
48 Light Lib Magic Menus

Product Review by Doug Horn

51 KickAss Delphi Programming
Book Review by Alan Moore, Ph.D.

51 Secrets of Delphi 2
Book Review by Alan Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
4 Newsline
54 File | New by Richard Wagner

1 February 1997 Delphi Informant

Cover Art By: Doug Smith

February 1997, Volume 3, Number 2

Delphi ROCKS!

ON THE COVER
5 Delphi ROCKS! — John Ayres
In theory, Delphi could say “C-ya” to dominant game languages, but is
this supported in practice? Mr Ayres registers a resounding “Yes” with
his deep-space adventure.

14 A Game of Decode — Keith Wood
Writing games with Delphi isn’t just kid stuff, claims Mr Wood — it
helps develop breadth and dexterity. The same could be said of the
author’s brain-bending “Mastermind” clone.

FEATURES
19 Informant Spotlight — Danny Thorpe
Virtual methods are often maligned, but Mr Thorpe concludes a two-
part series by showing how their careful, controlled use can enhance
“smart linking” efficiency.

24 Sights & Sounds — Peter Dove and Don Peer
Does your wireframe world seem flat? Then you need more depth cue-
ing, say Misters Dove and Peer as they explain how to flesh out figures
with fills, light, and shade.

29 Delphi at Work — Ian Cresswell
Problem: You need to store data but don’t know how much. Solution:
a dynamic array. A what? Mr Cresswell explains how to fake a dynamic
array using the TList class.

35 Columns & Rows — Bill Todd
Ever written a program that uses Paradox tables and received error
messages like “Not initialized for network access” or “Directory is
busy”? Turn here for directory assistance.

Delphi ROCKS!Delphi ROCKS!
Delphi Games Programming

2 February 1997 Delphi Informant

NuMega Technologies Releases BoundsChecker 4.2Delphi
T O O L S

New Products
and Solutions
NuMega Technologies,
Inc. of Nashua, NH has
released BoundsChecker 4.2,
an error detection tool for
Windows. BoundsChecker
4.2 expands the number of
Windows APIs supported
by BoundsChecker, includ-
ing ActiveX and ODBC, as
well as supporting Windows
NT 4.0.

BoundsChecker helps
developers detect errors
within and between compo-
nents. In addition, it pro-
vides developers with sup-
port for Win32, COM,
ActiveX, ODBC, DirectX,
the CryptoAPI, Winsock,
SQA Upgrades its Windo
and other Windows-specific
APIs. This enables develop-
ers to detect API and OLE
interface errors between
components, and between
components and the operat-
ing system.

BoundsChecker 4.2 is a
tool for developers creating
and shipping ActiveX con-
trols. For developers building
client/server applications, it
checks many function calls
specific to ODBC 2.5. This
allows developers to check
calls from an application in
C, C++, or Delphi to its
ODBC-compliant database.

BoundsChecker provides
ws Client/Server Testing To
support for more than 100
new Windows NT 4.0 API
functions. Developers can
also determine the portabili-
ty of their applications across
all Win32 platforms.

Price: BoundsChecker 4.2 Standard
Edition, US$329; upgrades for existing
customers and corporate site license
options are available.
Contact: NuMega Technologies, Inc.,
#9 Townsend West, Nashua, NH
03063
Phone: (800) 468-6342 or
(603) 889-2386
Fax: (603) 889-1135
E-Mail: info@numega.com
Web Site: http: //www.numega.com
ol

SQA, Inc. has announced

SQA Suite 5.1, a new ver-
sion of its Windows
client/server testing tool.
SQA Suite 5.1 assists devel-
opers that build, deploy,
and/or migrate applications
across Windows platforms.

SQA Suite 5.1 can cap-
ture data and properties of
hidden components, allow-
ing objects to be manually
tested in a GUI. The suite
includes an SQA Manager
WebEntry; cross-Windows
testing solutions; a scalable,
server-based test repository;
portable scripts; OCX and
ActiveX testing; and load
and stress testing from a
single location.

SQA has also expanded its
Object Testing technology
to test objects without a
GUI. Hidden Object
Testing enables users to test
the properties and data of
objects that cannot be
manually tested. Examples
include Delphi DataSource
components, PowerBuilder
DataStores, and hidden
OCX/ActiveX controls.

SQA Suite features auto-
mated testing of enterprise-
level 16- and 32-bit
Windows NT and Windows
95 client/server applica-
tions, as well as 16-bit
Windows 3.x applications.

SQA Suite is comprised of
three products: SQA
RobotJ26, SQA Manager,
and SQA LoadTest.

Price: SQA Suite, single user license,
US$3,295; SQA Robot 5.1, single user
license, US$2,695; SQA Manager 5.1,
single user license, US$1,395.
Contact: SQA, Inc., One Burlington
Woods, Burlington, MA 01803
Phone: (800) 228-9922 or
(617) 229-3500
Fax: (617) 229-3780
E-Mail: info@sqa.com
Web Site: http: //www.sqa.com
Rapid Development
Steve McConnell
Microsoft Press

ISBN: 1-55615-900-5
Price: US$35 (647 pages)
Phone: (212) 886-9222

3

Delphi
T O O L S

New Products
and Solutions

SELECT Software Tools Announces Interface for Delphi

MITI Announces Upgrade to Developer’s Toolset
New Delphi Book

How Debuggers Work
Jonathon B. Rosenberg

Wiley Computer Publishing

ISBN: 0-479-14966-7
Price: US$34.95 (256 pages)
Phone: (212) 850-6336
February 1997 Delphi Informant
MITI of Menlo Park, CA
has upgraded its SQR fami-
ly of products, including
SQR Server 4.0 and SQR
Workbench 4.0 for
Windows, a production-
level report developer’s
toolset. The new versions
can export production
reports to HTML, as well as
offer Year 2000 support,
International support, and
decimal match functionality.

SQR Servers provide native
data access and manipula-
tion capabilities for more
than 80 database/operating
system combinations. SQR
Servers can produce multiple
reports and database updates
from a single pass through a
local or remote database.
SQR servers can be used
with most databases, includ-
ing Oracle, Sybase,
Informix, IBM DB2, Ingres,
Microsoft SQL Server, and
Centura SQLBase, and
across many operating sys-
tems, including MVS, AIX,
HP-UX, VAX/VMS,
SunOS, Solaris, Windows
NT, Windows 3.1, and
Macintosh.

SQR Workbench enables
developers to create pro-
duction reports, execute
those reports on any server
in the network, and print,
fax, e-mail, or file transfer
the reports within the
enterprise.

SQR Workbench can per-
form calculations on large
data sets, move and scrub
data among multiple data-
bases, warehouses, and data
marts, or help back up and
restore production systems.

Price: SQR Server 4.0 begins at
US$10,030 per platform; SQR
Workbench 4.0, US$795.
Contact: MITI, 1080 Marsh Rd.,
Menlo Park, CA 94025
Phone: (800) 505-4399 or
(415) 326-5000
Fax: (415) 326-5100
E-Mail: info@miti.com
Web Site: http: //www.miti.com
SELECT Software Tools,
Inc. and FMI Ltd. have
built SELECT Enterprise
for Delphi. The new object-
oriented modeling toolset
features analysis and design
capabilities, automated
process support, and an
integrated code generator
for Delphi 2.

SELECT Enterprise for
Delphi will manage and
automate the development
of applications in Delphi
from an object model, allow-
ing users to work on the
model and target implemen-
tation. Using the SELECT
Delphi Generator, developers
can ensure the model and
target development areas
remain consistent.
SELECT Enterprise for
Delphi features initial code
generation, allowing devel-
opers to generate a tem-
plate-driven code frame-
work for the application. It
can also generate code from
abstract models held within
SELECT. The code pro-
duced is governed by user-
definable templates.

Any implementation-spe-
cific information can be
stored within the repository
and used later for regenera-
tion and to match against
when reverse engineering.

Using SELECT’s Delphi
Generator, consistency
between the design/model-
ing and implementation of
Delphi code is maintained,
in addition to inheritance,
attributes, operations, and
roles and associations.

Price: US$2,995
Contact: SELECT Software Tools, Inc.,
1524 Brookhollow Dr., Santa Ana,
CA 92705
Phone: (800) 577-6633 or
(714) 825-1050
Fax: (714) 825-1090
E-Mail: julieb@selectst.com
Web Site: http://www.selectst.com

4 February 1997 Delphi Informant

News
L I N E

February 1997

Borland Announces New Java Development Tool

Borland and TCIS will Del
Washington, D.C. —
Formerly code-named Latté,
Borland has named its unre-
leased Java application devel-
opment tool Open JBuilder.

Open JBuilder provides
next-generation visual com-
ponent-based development
tools for Java-based, cross-
platform development.
Open JBuilder is a develop-
ment environment for pro-
jects ranging from Web-
delivered applets and appli-
cations to enterprise-wide,
distributed computing solu-
tions. It combines visual
development tools, a
reusable Java Beans compo-
iver Delphi for AS/400

Attention Winshoes User
nent architecture, and data-
base connectivity.

Customers can access
detailed information about
the product, including
white papers, product fact
sheets, and an evaluator’s
guide from Borland’s Web
site at http://www.bor-
land.com. Open JBuilder is
scheduled to ship in early
1997. Final pricing has not
yet been determined.

Borland has also announced
its Open JBuilder Partner
Program. The program is
designed to give Java develop-
ers several products and ser-
vices for creating, testing, and
s

marketing JavaBeans compo-
nents to Open JBuilder cus-
tomers. It will provide select-
ed independent software ven-
dors with pre-release versions
of Open JBuilder, access to
online technical support, a
free copy of Open JBuilder
when it’s released, electronic
access to the Open JBuilder
development team, and con-
tact with Borland’s developer
relations department.
Members will also be able to
participate in a number of co-
marketing activities.

For more information on
Borland’s Partner Program
for JavaBeans, visit
http://www.borland.com/-
internet/OpenJBuilderinfo.-
html.
Borland InterBase for
Windows NT on the
PowerPC Platform

Scotts Valley, CA —
Borland and Motorola
Computer Group have
released Borland InterBase
4.1 for Windows NT on the
PowerPC platform.

InterBase for the PowerPC
contains technology for large
enterprise client/server envi-
ronments, and provides
lock-free transactions on the
PowerPC.

InterBase 4.1 for
Windows NT PowerPC is
available for US$850 for
five users. For more infor-
mation, contact Motorola
at (602) 438-3481 or
Borland at (408) 431-1000.
Scotts Valley, CA — Borland

announced it has signed a
Letter of Intent to license
AS/400-compatible connec-
tivity and development soft-
ware from Traitement
Cooperatif & Integration de
Systeme (TCIS) of Paris,
France. Under this agree-
ment, Borland will license
ClientObjects/400 and
ScreenDesigner/400 from
TCIS to connect Delphi
Client/Server to AS/400s.

In addition, the agreement
will allow Borland to resell
TCIS’ software with its
Delphi Client/Server Suite.
For more information, con-
tact Borland at (408) 431-
1000 or visit their Web site
at http://www.borland.com.
Phoenix Business Enterprises
(PBE) has ceased dealings
with NetMasters of Nashua,
NH, because of a breach of
contract. Registered users of
Winshoes (Internet Suite,
Internet Pros), should contact
Shoreline Software at sup-
port@shoresoft.com to verify
their product is registered.
Errors & Omissions
In the September issue of
Delphi Informant, the winners of
the 1996 RAD Race at Software
Development 96 were incorrectly
identified. The winners were
Jason Vokes and Colin Ridgewell
of Dunstan Thomas Ltd.

We apologize for any
inconvenience this may
have caused.

5 February 1997 Delphi Informant

On the Cover
Object Pascal / Delphi 2

By John Ayres

Figure 1: Delphi ROCKS! in pr
Delphi is an impressive tool for creating database applications of all
types and complexities. It’s excellent for creating business applica-

tions; with Delphi, programmers are more productive, creating quality
applications in less time than it would take with other languages.

Delphi ROCKS!
A Fast Action Asteroids Clone
There is one arena however, in which Delphi
has yet to make its mark. The language of
choice for the software entertainment indus-
try has long been C. Given Delphi’s incredi-
ble power and ability to interface with
DirectX and other gaming APIs, can Delphi
compete with other languages when it comes
to making state-of-the-art games? The
answer is a resounding “Yes!”

Object Pascal supports inline assembly and
pointer arithmetic, probably the two most
important language requirements in developing
complex gaming engines. C may have a few
ogress.
tricks to which Delphi doesn’t have a direct
correlation, but with clever programming,
Delphi can do anything C can. Even the
Delphi development team has said that they
can’t manually write optimized assembly code
better than the code the compiler generates.

Additionally, Delphi 2 now uses the same
back-end linker as Borland C++, so the
programs generated will run just as fast as
anything done in C. If Delphi can do any-
thing that C can, and C is the industry
standard in the gaming industry, then
Delphi should be a viable development
platform for creating games.

In this article, we’ll use Object Pascal and a
few Windows API functions to create Delphi
ROCKS!, a fast, arcade-style Asteroids clone
(see Figure 1).

Although most games use assembly language
and other advanced optimization techniques
to improve game speed, Delphi ROCKS!
uses only a few simple techniques.

Assembly language and other optimizations
tend to make the code difficult to follow. By
omitting these types of optimizations, the
code will be more accessible to inexperienced
Delphi programmers. Using only simple
optimization techniques will also demon-
strate just how powerful Delphi is, because it
can handle 2D sprite animation and polygon
graphic manipulation with reasonable speed.

Figure 3: The relationship between sine and cosine and an X,Y
coordinate.

On the Cover
The Game Engine Subsystems
From a high-level standpoint, Delphi ROCKS! can be
thought of as a complex animation. At every turn through
the game, a new image is created and shown on the screen,
similar to traditional cartoons. Therefore, we need:
1) A technique to display one frame of animation after

another, flicker free and as fast as possible;
2) Some specialized trigonometric functions and rotation

equations, because most of the graphics are polygons
capable of rotating to any angle;

3) A way to track and control the motion, velocity, shape, and
other properties of all the moving images on the screen,
such as the sprites (the asteroids and the player’s ship); and

4) A main control loop to bring these subsystems together
into a cohesive, fast action game.

The animation system is probably the most important part of
any game. Because the game’s speed is directly affected by
how fast the next frame of animation can be displayed on the
screen, the animation system has to be fast, without any visi-
ble transition from one frame to the next. So we’ll use an ani-
mation technique known as double buffering.

A double-buffering system typically has an off-screen buffer
the same size as the final image to be displayed on the screen.
In the main control loop, fill the off-screen buffer with black
to erase the previous image; then draw each sprite’s image on
this off-screen buffer. Finally, copy the entire buffer to the
main form (see Figure 2). This technique both erases the pre-
vious frame of animation and draws the new frame at the
same time, resulting in a flickerless animation. Every image
that must be displayed on the screen will first be drawn on
the off-screen buffer. Although this isn’t the fastest method of
animation, it’s more than adequate for this game.
Figure 2: Illustrating the use of an off-screen buffer.
Simple Math
Most of the game’s sprites will be represented by unfilled
polygons that can rotate to any orientation. To accomplish
this, certain trigonometric functions are required.
Fortunately, you don’t really need to know how they work —
just that they work for the techniques described. Specifically,
we’ll use the sine and cosine functions to determine an X and
a Y coordinate based on an angle. This coordinate will be
used when determining the velocity of a sprite. We will also
use two trigonometric functions to rotate a point around its
origin by a specified angle. These functions will be used when
rotating a polygon to a new orientation.
6 February 1997 Delphi Informant
The relationship between the sine and cosine functions and
an X,Y coordinate is relatively simple. Given any angle, the
X value can be determined by taking the cosine of the
angle, which will be between -1 and 1. The Y value is the
sine of the angle, which will also be between -1 and 1 (see
Figure 3). This is really the heart of the trigonometric func-
tions we need. In fact, this relationship alone is all we need
to determine how to move a sprite in a specific direction.

Let’s say we have an asteroid that’s moving at a 45 degree
angle. To move this sprite to its new location, we must add
values to its X and Y positions. We simply take the cosine
of a 45 degree angle and add this to its X position, then
take the sine of a 45 degree angle and add this to its Y posi-
tion. If we multiply the values returned from these func-
tions, we can make the asteroid move even faster. Therefore,
the basic sine and cosine functions will be used to deter-
mine the velocity of all the sprites in the game.

The rotation equations are simply an extension of this sine-
cosine relationship. These equations will rotate an X and Y coor-
dinate around the origin (0,0) by the given angle (see Figure 4).
(Although a detailed explanation of how these equations are
derived is beyond the scope of this article, rest assured that they
work as described.) Given a two-dimensional point and the
angle to which you want this point to be rotated, the new X and
Y coordinates can be generated from the following formulas:

NewXPosition = X * Cosine(Angle) - Y * Sine(Angle)

NewYPosition = X * Sine(Angle) + Y * Cosine(Angle)

The polygons for our sprites are stored as an array of points,
one for each vertex in the polygon, with the origin in the
center of the sprite. When an asteroid or the player’s ship
needs to be rotated, we simply feed each of the points from
the array to these equations, specifying the angle to which we
want the new point to be rotated. Through the magic of
math, we have a new polygon at the correct orientation.

Although many optimizations have been omitted (so the code
would be readable), we must discuss one math-specific opti-

Figure 4: Equations will rotate an X and Y coordinate around
the origin (0,0) by the given angle.

On the Cover
mization. The built-in trigonometric functions are, by their
very nature, incredibly slow. You wouldn’t want to use such
functions in a real-time game like this, as it would slow things
down considerably.

A useful optimization technique for many game elements is to
employ a lookup table. Basically, for any mathematical function
with inputs in a known range, the result for each set of inputs
can be determined during the game initialization and stored in
an array. Instead of computing the mathematical functions on-
the-fly, we simply index to an array of values based on the nor-
mal inputs to the math function. This results in an incredible
decrease in processor time for most functions, and will speed up
code tremendously. This is what we’ve done for the Sin and Cos
7 February 1997 Delphi Informant

Figure 5: The MoveSprite function repositions sprites.

{ Moves sprites according to velocity }
procedure TSprite.MoveSprite;

begin
{ Add X and Y velocities to sprite's current position }
XPos := XPos + XVel;

YPos := YPos + YVel;

{ Check for screen sides }
if XPos > 632 then XPos := 0;

if XPos < 0 then XPos := 632;

if YPos > 409 then YPos := 0;

if YPos < 0 then YPos := 409;

end;

{ Accelerates the sprite within a maximum velocity }
procedure TSprite.Accelerate;

begin
{ Adjust the X velocity }
XVel := XVel + CosineArray^[Angle];

{ Check for maximum limits }
if XVel > 10 then

XVel := 10

else if XVel < -10 then
XVel := -10;

{ Adjust the Y velocity }
YVel := YVel+SineArray^[Angle];

{ Check for maximum limits }
if YVel > 10 then

YVel := 10

else if YVel < -10 then
YVel := -10;

end;
functions. There is one array for each function and each array
has 360 elements, one for every angle. When we need to know
the sine or cosine of any angle, we simply index to the array at
that angle (e.g. CosineArray[45]for the cosine of a 45 degree
angle) to get the appropriate value.

Probably the most efficient way to control sprites is to think
of them as individual objects (again, see Figure 1). When
examining the general properties of each sprite, we can con-
clude that each sprite will need information on its current
position, its velocity, and the color in which it’s drawn. The
velocity will ultimately determine the direction of motion.
Because we’re dealing with rotatable, polygon-based graphics,
we need a way to track the angle to which the polygon is
rotated. We also need a way to track if the object is alive in
the world or has been destroyed. In addition, we need meth-
ods that act on these properties, specifically a way to move the
object on the screen by modifying its position according to its
velocity, and a way to accelerate the object, which operates on
the velocity alone. Therefore, our base sprite class will be:

TSprite = class
{ World coordinates relative to center of sprite }
XPos, YPos: Real;

{ World velocities }
XVel, YVel: Real;

{ If it's alive, it'll be moved }
Living: Boolean;

{ The color the sprite will be drawn in }
Color: TColor;`

{ Direction the sprite is facing }
Angle: Integer;

{ Moves the sprite based on velocity }
procedure MoveSprite;

{ Increases velocity }
procedure Accelerate;

end;

The MoveSprite function repositions sprites by simply adding
the X and Y velocities to the X and Y positions, respectively,
and wrapping the object to the other side of the screen if it
has gone beyond the edges (see Figure 5). The Accelerate pro-
cedure uses the Sin and Cos functions as described earlier.
Because we want to accelerate in the direction the object is
facing (to simulate thrust), we simply take the cosine of the
object’s Angle property and add that to the X velocity, and the
sine of the Angle property and add that to the Y velocity.
Depending on the direction of the angle, the acceleration
could be positive or negative, so we perform a check to limit
the object to a positive and negative velocity range. All the
sprites in the game need this basic functionality and will
descend from this base class.

Ammunition and Dust
Bullets, explosion particles, and exhaust particles are all
represented by a single dot on the screen, and are the sim-
plest sprites in the game. In addition to the basic func-
tionality, we need a way to track the lifespan of these
objects, because bullets have a specific range, and explo-
sion and exhaust particles should fade over time. For bul-
let objects, we need a way to track its bounding box,
something that is used in collision detection (we’ll discuss

Figure 6: The Draw procedure.

{ Moves and draws a particle }
procedure TParticle.Draw;

var
{ A placeholder for the particle color }
ParticleColor: Tcolor;

{ Used in determining color of particle }
ColorIndex: Real;

begin
{ Move this particle }
MoveSprite;

{ Decrease the LifeSpan, as another animation
frame has gone by }

Inc(LifeSpan, -1);

{ If the lifespan has run out, kill this particle }
if LifeSpan = 0 then

begin
Living := False;

Exit;

end;

{ If the particle is still alive, then draw it.
Determine where the color will fall in the
color array }

ColorIndex := MaxLife/5; { We have 5 colors }
{ And the particle color is ... }
ParticleColor := FadeColors[Trunc(LifeSpan/ColorIndex)];

{ Draw this particle to our off-screen buffer }
AsteroidForm.FOffscreenBuffer.Canvas.

Pixels[Round(XPos),Round(YPos)] := ParticleColor;

end;

On the Cover
this shortly). We also need to implement a procedure to
draw the sprite on the off-screen buffer. Thus, our class for
particles and bullets will be:

TParticle = class(TSprite)
{ Current life span, expressed in number of frames }
Lifespan: Integer;

{ Particle's maximum lifespan, used to determine color }
MaxLife: Integer;

{ Bounding box for bullets }
ColDelta: Integer;

{ Draws the particle and decreases its life }
procedure Draw;

end;

The Draw procedure for this class simply calls the inherited
Move method to update its position, decreases the Lifespan
property, then checks to see if it’s still alive. If so, Draw per-
forms a calculation to see the color in which the particle or
bullet should be drawn. To get the “fade out” effect, we
defined a static array of five colors. The color of the particle or
bullet is based on the maximum lifespan of the sprite and its
current lifespan. As the current lifespan reaches its maximum
lifespan, we use progressively darker colors (see Figure 6).
Finally, we draw a single dot on the off-screen buffer in the
appropriate color.

Lastly, we need a class to track the sprites represented with
polygons. Obviously, these sprites will need a property to
track the vertices of the polygon, so we need an array of
points. We’ll assume a maximum of 20 points, but since we
won’t use all of them in every sprite, we need a property to
track the number of used points in the polygon. For the rota-
tion equations to work, the points in the polygon will assume
that the origin is in the center of the polygon. We will also
8 February 1997 Delphi Informant
need: a property to track the bounding box of the sprite, as
used in collision detection (described later); a method to
draw these objects; and a method by which to rotate them.
Therefore, our basic class for polygon graphic sprites will be:

TPolygonSprite = class(TSprite)
{ Used to determine a bounding box relative

to the center of the sprite }
ColDelta: Integer;

{ The points for drawing the shape, relative
to the center of the polygon }

ThePolygon: array[0..19] of TRPoint;

{ The number of vertices used in ThePolygon }
NumVertices: Integer;

{ Draws and rotates the polygon }
procedure Draw;

{ Modifies the direction that the sprite is facing }
procedure Rotate(Degrees: Integer);

end;

As it turns out, the player’s ship needs one extra property,
that of a shield life, and the asteroids need one extra property,
that of a rotation rate. Therefore, this class is a base from
which the player’s ship and asteroids descend.

The Rotate method is simply a way to see if the polygon
went beyond a full rotation. The Draw procedure is where
the real work is. To draw the polygon shape, we’ll use a
Windows API function, PolyLine, which takes an array of
TPoints. Now, the property that stores the polygon is an
array of TRPoints. The difference is that TPoint is a record
with two members, X and Y, of type Integer, where TRPoint
is a record with X and Y members of type Real. A point
record with members of type Real was used to get a more
accurate polygon rotation. For the PolyLine function to
work, we need an array of TPoints that represents the poly-
gon in the proper orientation and in the proper position on
the screen. So we must iterate through each element in the
array, ThePolygon. Each TRPoint in the array is rotated using
the trigonometric rotation equations described earlier. The
XPos and YPos of the sprite is added to the X and Y results,
and these values are stored in a temporary array of TPoints.
This final array is used in the PolyLine function, drawing
the final, rotated polygon at the correct position in the off-
screen buffer (see Figure 7).

The particle explosion and ship exhaust effects are relatively
simple. As previously described, each moving dot is a sprite
of type TParticle. An array of TParticle is used for each explo-
sion and the ship exhaust. During the main control loop, a
function is called that iterates through each particle in the
array, moving and drawing it as needed. This is a simplistic
effect based on what we’ve already covered.

Of course, a method for determining when one sprite con-
tacts another is needed, specifically when a bullet hits an
asteroid, and when an asteroid hits the player’s ship. This
is known as collision detection, and the ColDelta property
of each sprite is used for this purpose. If we assume that a
box surrounds the entire sprite, we can use the Windows
API function IntersectRect to determine if these bounding
boxes are touching. If they are, a collision has occurred.

Figure 7: The Rotate method.

{ Modify the sprites current facing }
procedure TPolygonSprite.Rotate(Degrees: Integer);

begin
{ Modify the angle }
Angle := Angle + Degrees;

{ Check for boundaries }
if Angle>359 then

Angle := Angle - 359;

if Angle<0 then
Angle := 360 + Angle;

end;

{ This procedure rotates the points in the polygon to the
current facing and draws it to the off-screen buffer }

procedure TPolygonSprite.Draw;

var
{ A Polyline compatible polygon point array }
TempPoly: array[0..19] of Tpoint;

{ General loop control variable }
Count: Integer;

begin
{ Rotate the polygon by the angle using point rotation

equations from trigonometry & translate its position }
for Count := 0 to NumVertices-1 do begin

TempPoly[Count].X := Round((ThePolygon

[Count].X*CosineArray^[Angle] -

ThePolygon[Count].Y*SineArray^[Angle]) + XPos);

TempPoly[Count].Y := Round((ThePolygon[Count].X*

SineArray^[Angle] + ThePolygon[Count].Y*

CosineArray^[Angle]) + YPos);

end;

{ Adjust the pen and the brush of the
off-screen buffers' canvas }

AsteroidForm.FOffscreenBuffer.Canvas.Pen.Color :=

Color;

AsteroidForm.FOffscreenBuffer.Canvas.Brush.Style :=

bsClear;

AsteroidForm.FOffscreenBuffer.Canvas.Brush.Color :=

clBlack;

{ Draw the polygon using a Windows API function }
Polyline(AsteroidForm.FOffscreenBuffer.Canvas.Handle,

TempPoly,NumVertices);

end;

On the Cover
ColDelta is an offset from the center of the sprite. If you
take this value and add and subtract it from the XPos and
YPos values, respectively, you will have the coordinates for
the sprite’s bounding box. In Figure 8, you can see this
technique isn’t always accurate. One way to improve the
9 February 1997 Delphi Informant

Figure 8: The sprites’ bounding boxes.
accuracy is to reduce the size of the bounding rectangle so
that most of the sprite is included. The downside to this is
that sometimes a collision will happen that is not detected.
However, this technique is more than accurate enough for a
fast-action shooter like Delphi ROCKS!

Putting It All Together
Realistically, only a limited amount of bullets, asteroids, and
explosions will be on screen at one time. Thus, one-
dimensional arrays can be used to track the bullets, explo-
sions, and asteroids.

We could have used linked lists to track sprites, but the code
would become more complex. Also, as the size of the linked
list increases, the game will slow down, as there are more
sprites to move and more collision tests to make.
Additionally, there are several general procedures for moving
and starting the various sprites. Movement is easy; we simply
loop through each element in the appropriate array of sprites,
calling the Move method if its Living property is True. The
logic for starting a new asteroid or bullet is also fairly simple.
First, start iterating through the appropriate sprite array. At
each element in the array, check the Living property. If it’s
True, skip this element, but if it’s False, we can use it. We set
the Living property to True, and then generate new values for
the appropriate sprite.

Another crucial aspect needed in any game is a function to
translate input from the user. Although mouse or joystick sup-
port could have been included for this game, we’ll use the key-
board for simplicity. The OnKey events of the main form could
have been used for user input, but these events get their input
from the keyboard buffer. The result is that it cannot process
multiple keys simultaneously. For instance, if the player wanted
to turn and fire at the same time, the OnKey method might
first get an arrow key, starting the turn. It would then get the
spacebar, firing a bullet. The event is called for each key press,
so it will only process one at a time. The keyboard repeat rate
also affects the input, causing a pause if a key is held down.

Instead, through every iteration of the main control loop, we
call the ProcessUserInput function, which is a series of

GetAsyncKeyState API functions (see
Figure 9). These functions indicate if
the specified key is being depressed at
the time of the function call. We can
test specifically for each key that will
translate to an on-screen action, thus
providing the ability to perform multi-
ple actions at once, such as turning and
firing. Of course, no game would be
complete without a scoring method, a
count of the number of lives the player
has left, and an indication as to how far
in the game the player has progressed. A
score is tallied when an asteroid is
struck by a player’s bullet, based on the
size of the asteroid. This score is kept in

Figure 9: The ProcessUserInput procedure.

{ We use this routine instead of the OnKey events of the
form so that we can determine if more than one key is
being held down. This allows us to rotate, accelerate,
and fire all at the same time. }

procedure TAsteroidForm.ProcessUserInput;

begin
{ Counterclockwise rotation }
if (GetAsyncKeyState(VK_LEFT) and $8000) > 0 then

PlayerShip.Rotate(-15);

{ Clockwise rotation }
if (GetAsyncKeyState(VK_RIGHT) and $8000) > 0 then

PlayerShip.Rotate(15);

{ Fire a missile }
if (GetAsyncKeyState(VK_SPACE) and $8000) > 0 then

AsteroidForm.StartMissle(PlayerShip.XPos,

PlayerShip.YPos,PlayerShip.Angle,

PlayerShip.XVel,PlayerShip.YVel);

{ Acceleration }
if (GetAsyncKeyState(VK_UP) and $8000) > 0 then

begin
StartShipExhaustBurst;

PlayerShip.Accelerate;

end;
{ Turn the shields on }
if (GetAsyncKeyState(VK_RETURN) and $8000) > 0 then

PlayerShip.ShieldLife := SHIELDLIFESPAN;

end;

On the Cover

Figure 10: The psuedocode that shows the flow of logic for the
main control loop.

while (Still Playing The Game) do begin
case GameState of

Playing:

begin
if (The Player Has No More Ships) then

GameState:=Demo

if (There Are No More Asteroids) then
GameState:=Intermission

Erase The Offscreen Buffer

if (The Player Is Still Alive) then
Process User Input Move The Players Ship

else
Start A New Ship, Decreasing Number Of Lives Left

Draw The Players Ship, Including Shields

Draw The Ship Exhaust

Move And Draw All Bullets

Move And Draw All Asteroids

And Perform Collision Detection

Move And Draw All Explosions

Copy The Next Frame Of Animation To The Form

Process Any Windows Messages

end
Intermission:

begin
Clear Any Moving Sprites (Explosions,

Exhaust, Bullets, Etc.)

Increase The Current Level

Erase The Offscreen Buffer

And Display The Next Level Number

Copy The Next Frame Of Animation To The Form

Pause For Four Seconds

GameState:=Playing

Restart The Players Ship In The Middle

Of The Playing Field

Generate A New Set Of Asteroids

end
Demo:

begin
Erase The Offscreen Buffer

Move And Draw Random Asteroids

Display The Program's Title On Top Of The Asteroids

Copy The Next Frame Of Animation To The Form

Process Any Windows Messages

end
end

end
a global variable, and displayed as the caption in a panel at
the bottom of the main form (again, see Figure 1). The num-
ber of lives a player has left is also tracked, with three lives
being the maximum and one being lost each time the player’s
ship is struck by an asteroid. Finally, a variable to track the
level is incremented each time all of the asteroids on the
screen have been destroyed. The number of random
asteroids generated at the start of each level is affected by this
variable; more asteroids are created for higher levels.

The Main Control Loop
We finally have everything we need to assemble the game. From
a high-level standpoint, we need a main control loop that will
move all the sprites and draw each frame of animation as quickly
as possible (see Listing One beginning on page 11). You will
notice that this is implemented as a while loop. A Timer object
could be used, but even with an interval of one, timers are too
slow for fast animation, and a while loop will run as fast as the
processor allows.

The main control loop can be considered to have three states:
1) the active playing state, where the player is controlling

the ship and blowing away space rocks;
2) the intermission state, where the player has cleared a level

and the next level is being prepared; and,
3) the demo state, a “between-games” state where some ran-

domly generated asteroids are moved about the screen.

With this in mind, the control loop is implemented with a case
statement, with each game state having its own series of instruc-
tions. This is the largest procedure in the program, and as such,
it’s too large to explain in detail. However, the pseudocode in
Figure 10 shows the flow of logic for the main control loop.

The technique of controlling the game through a state-driven
loop should provide the ability to easily expand or modify the
10 February 1997 Delphi Informant
overall game behavior. For example, we could easily add a bonus
stage by simply plugging in another game state and a series of
instructions. We could also modify a game state’s behavior by
rearranging the functions within that state. A few paragraphs
back, I indicated that a Timer to control the speed of the game is
too slow for efficient animation. How then do you manage the
pacing of the game? Obviously a 166MHz machine will run the
game much faster than a 75MHz machine. The solution is to
have the computer waste a certain amount of time between each
cycle in the game. This is achieved through the following code at
the end of the Playing section of the MainLoop procedure:

PacingCounter := GetTickCount;

repeat
Application.ProcessMessages;

until (GetTickCount-PacingCounter) > 50;

The GetTickCount function is part of the Windows API and
returns the number of milliseconds that have elapsed since the
current Windows session was started. All we do is call this
function and save the result, then go into a message processing

On the Cover
loop and don’t come out until 50 milliseconds have elapsed.
The Application.ProcessMessages call ensures that other processes
in Windows get serviced so other programs remain responsive
while the game is running. To make the game run faster, you
would simply lower the number of milliseconds specified. Even
better, you could put a game option that specifies the speed of
play, with that option controlling the value in the repeat loop.

Room for Improvement
This is the type of game that has a lot of potential for interest-
ing improvements. A space background with stars and galaxies
instead of just dull black would really dress it up. The most
obvious feature this game lacks is sound. It would add a lot to
the game play to hear some explosions, the thrust of your ship,
the whine of the shields going up and down, and photon blasts.

A high score feature would also be nice, to track the 10 high-
est scores, storing them in an .INI file between games. The
original Asteroids also had an enemy ship that would come
out periodically; adding this would break up the monotony of
simply shooting asteroids. The original game also gave the
player only a limited amount of shields, and making the shield
effect last longer but depleting a maximum shield store every
time would add another strategic element. Powerups could
also be added to extend the maximum shield store, provide a
limited invincibility, add another life, or even provide new
weapons, such as fire and forget missiles that never miss their
target. Add all of this, plus a multi-player capability, and you
might just have a hot-selling game on your hands!

Although Delphi ROCKS! would make a good base from which
to start, some optimizations are needed to make it a competitive
commercial game. For starters, instead of using bitmaps for
everything, device-independent bitmaps would be faster. We can
directly access the bits of the image, and writing custom polygon
drawing methods would certainly increase the animation speed.

Also, instead of drawing the entire off-screen buffer to the
screen, we should use another animation technique, Dirty
Rectangle Animation. Simply put, this technique copies to the
screen only the combined area of the off-screen buffer that has
changed since the last frame. This is generally smaller than the
entire off-screen buffer, thus resulting in a faster animation as
less information needs to be copied to the form surface. The
use of DirectX would also improve things considerably, as you
would have almost direct access to the video memory buffer,
and direct control of what video resolution the user is running.

Conclusion
Although Delphi ROCKS! is nowhere near the complexity
of a state-of-the-art, three-dimensional, light-sourced,
first-person shooter, Delphi is capable of producing such a
game, and this article will hopefully open some eyes.
Delphi is just as capable of making quality games as any
other development platform. Maybe, through the actions
of hopeful and energetic Delphi programmers, some com-
pany will take the plunge and develop the first best-selling
game written in Delphi. ∆
11 February 1997 Delphi Informant
Further Reading
Unfortunately, most game programming books on the market
these days focus on C. However, the theories and algorithms
presented can be used in Delphi with little or no modifica-
tion. If you would like to learn more about game program-
ming, check out the following books:

LaMothe, A., Black Art of 3D Game Programming [Waite
Group Press, 1995].
LaMothe, Ratcliff, Seminatore, and Tyler, Tricks of the Game
Programming Gurus [SAMS Publishing, 1994].
Lampton, Christopher, Flights of Fantasy [Waite Group Press,
1993].
Norton, Michael, Spells of Fury [Waite Group Press, 1996].

References
The material in this article is based on a vector graphic Asteroids
clone presented in the book Teach Yourself Game Programming In
21 Days by Andre LaMothe [SAMS Publishing, 1994].

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\FEB\DI9702JA.

John Ayres is currently working as a software engineer for 7th Level, creating the
next generation of computer games. He is also on the board of directors for the
Delphi Developers of Dallas, one of the largest Delphi users groups in the United
States. John has over 7 years of programming experience in C, Assembly, and
Pascal, and keeps himself busy writing three new Delphi programming books.
Look for The Delphi 97 Windows API Guide, DirectX Game Programming for
Delphi 97, and Interface Design With Delphi 97 in the fall of next year. He can
be reached on CompuServe at 102447,10.
Begin Listing One — The Main Control Loop

{ This is the main control loop for the entire program.
This controls the action from a high level standpoint,
and is itself controlled by a state variable that
determines what should be happening. We want to do this
inside of a regular loop as opposed to putting this on a
timer event. This is because even with an interval of 1,
the timer is too slow, and a loop will give us the best
performance. }

procedure TAsteroidForm.MainLoop;

var
LevelPauseCounter: TDateTime;

{ For timing how long the level intermission has lasted }
Count: Integer;

{ General loop control }
begin

while FDoLoop do
{ Continue this loop until the user closes program }

case GameState of
Playing:

{ We are actively playing the game }
begin
{ If the player does not have any ships left, end the

game and go into demo mode }
if NumShipsLeft < 0 then EndGame;

On the Cover
{ If the player has killed all of the asteroids, go to
intermission and increase the level }
if not AnyAsteroidsMoved then

GameState := Intermission;

{ Erase the previous frame in the off-screen buffer, so
we can begin a new one }

with FOffscreenBuffer.Canvas do begin
Brush.Color := clBlack;

Brush.Style := bsSolid;

Fillrect(Cliprect);

end;

{ If the player is still alive, get user input
and move the player's ship }

if PlayerShip.Living then
begin

ProcessUserInput;

PlayerShip.MoveSprite;

end
else

{ We died, start us over }
StartPlayer(TRUE);

{ Draw the player's ship to the off-screen buffer }
PlayerShip.Draw;

{ If shields are on, draw them around the player's ship}
if (PlayerShip.ShieldLife > 0) then

with FOffscreenBuffer.Canvas do begin
Pen.Color := clGreen;

Brush.Style := bsClear;

{ Shields are represented by a simple circle }

Ellipse(Round(PlayerShip.XPos -

PlayerShip.ColDelta - 5),

Round(PlayerShip.YPos -

PlayerShip.ColDelta - 5),

Round(PlayerShip.XPos +

PlayerShip.ColDelta + 5),

Round(PlayerShip.YPos +

PlayerShip.ColDelta + 5));

{ Decrease the shield life span }

Inc(PlayerShip.ShieldLife, -1);

end;

{ Draw ship exhaust effect }

DrawShipExhaust;

{ Move all active missiles }

MoveMissles;

{ Move all asteroids and check for collisions }

MoveAsteroids;

{ Draw any explosions that have just occurred }

DrawExplosions;

{ Copy the next frame to the screen }

AsteroidForm.Canvas.Draw(0, 0, FOffscreenBuffer);

{ Display Score Changes }

Panel2.Caption := 'Score: ' + IntToStr(Score);

{ Process any pending Windows messages for 50

milliseconds }

PacingCounter := GetTickCount;

repeat

Application.ProcessMessages;

until (GetTickCount-PacingCounter) > 50;

end;

Intermission:

{ This does a slight pause in between levels }

begin

{ Kill any moving sprites }

ClearAll;

{ Increase the level }

Inc(CurLevel);
12 February 1997 Delphi Informant
{ Erase the former frame, so we can begin a new one }

with FOffscreenBuffer.Canvas do begin

Brush.Color := clBlack;

Brush.Style := bsSolid;

Fillrect(Cliprect);

end;

{ Draw the level on the off-screen buffer }

with FOffscreenBuffer.Canvas do begin

SetTextAlign(Handle, TA_CENTER);

Font.Name := 'Arial';

Font.Size := 30;

Font.Color := clRed;

Font.Style := [fsBold];

Brush.Style := bsClear;

{ Display the text centered in the off-screen buffer

}

TextOut(FOffscreenBuffer.Width div 2,

(FOffscreenBuffer.Height div 2)-

(TextHeight(‘ABC’) div 2),'LEVEL' +

IntToStr(CurLevel));

end;

{ Copy the next frame to the screen }

AsteroidForm.Canvas.Draw(0, 0, FOffscreenBuffer);

{ Process any ending Windows messages }

Application.ProcessMessages;

{ Show this intermission for approximately 4 seconds }

LevelPauseCounter := Time;

repeat

Application.ProcessMessages;

until (Time-LevelPauseCounter) > 0.00004;

{ Intermission is over, we are actively playing

the game again }

GameState := Playing;

{ Start the player in the middle of the screen, with

shields on }

StartPlayer(FALSE);

{ Display the game values }

Panel2.Caption := 'Score: ' + IntToStr(Score);

if NumShipsLeft>-1 then

{ Don't want to display a negative amount of ships }

Panel3.Caption := 'Lives Left: ' +

IntToStr(NumShipsLeft);

Panel4.Caption := 'Level: ' + IntToStr(CurLevel);

{ Now, generate some new asteroids,

based on our current level }

for Count := 0 to Random(5)+CurLevel do

StartAsteroid(Random(631),Random(408),Random(359),

Random(10) + 20);

{ This must be set so we enter the main playing loop }

AnyAsteroidsMoved := True;

end;

Demo:

{ We are not playing the game, so let's show some

general animation }

begin

{ Erase the previous frame, so we can begin a new one }

with FOffscreenBuffer.Canvas do begin

Brush.Color := clBlack;

Brush.Style := bsSolid;

Fillrect(Cliprect);

end;

{ Move the random asteroids }

MoveAsteroids;

{ Draw a message on the off-screen buffer }

with FOffscreenBuffer.Canvas do begin

On the Cover
SetTextAlign(Handle, TA_CENTER);

Font.Name := 'Arial';

Font.Size := 30;

Font.Color := clRed;

Font.Style := [fsBold];

Brush.Style := bsClear;

{ Display the text centered in the off-screen buffer }

TextOut((FOffscreenBuffer.Width div 2) -

(TextWidth('Delphi') div 2),

(FOffscreenBuffer.Height div 2) -

(TextHeight('ABC')div 2),'DELPHI');

Font.Name := 'Times New Roman';

Font.Style := [fsBold,fsItalic];

TextOut((FOffscreenBuffer.Width div 2) +

(TextWidth('ROCKS!') div 2) + 23,

(FOffscreenBuffer.Height div 2) -

(TextHeight('ABC')div 2) - 1,'ROCKS!');

end;

{ Copy the next frame to the screen }

AsteroidForm.Canvas.Draw(0,0,FOffscreenBuffer);

{ Process any pending Windows messages }

Application.ProcessMessages;

end;

end;

end;

End Listing One
13 February 1997 Delphi Informant

14 February 1997 Delphi Informant

On the Cover
Delphi / Object Pascal

By Keith Wood
W riting a game with Delphi isn’t just an exercise in frivolity. It’s a les-
son in DrawGrids, StringGrids, resource files, random numbers,

drag-and-drop, and .INI files — all of which are useful outside of games,
but more fun to learn while developing one.

A Game of Decode
Developing a “Mastermind” Clone in Delphi
The Game
The game we’ll develop is based on
Mastermind — a game in which players
decipher a hidden pattern of colored pegs by
proposing solutions that are automatically
scored. The scoring informs players how
Figure 1: A completed game of Decode.
many pegs match exactly, and how many
pegs are the right color, but in the wrong
position. From this information, players try
to solve the hidden pattern (see Figure 1).

To add variation to the game, players can
alter the size of the hidden pattern, the num-
ber of colors that can be used and/or repeat-
ed, and the maximum number of solution
attempts. Preset combinations are also avail-
able. We’ll also want to track the best scores
and preferred configurations. Both are
achieved using an .INI file.

First Steps
The playing board consists of several regions:
the solution; the pegs available for place-
ment; the turn numbers; the board showing
the attempts; the scoring display; and an
end-of-turn button. Because the window
changes size when the parameters of the
game are altered, these regions are controls
that correctly size themselves. The solution
and end-of-turn button reside on panels
aligned to the top and bottom respectively.

The remaining areas are DrawGrids or
StringGrids, generally aligned with the left or
right edges of the form. In each turn, players
drag or double-click available pegs onto the
board. After all the spots are filled, the turn is
completed by pressing the Done button. The
guess is scored and shifted down a row, unless
the puzzle was solved. This allows the current
“move” to remain close to the solution for
easy comparison at the end of the game.

Figure 2: Loading icons from a resource file.

{ Load peg icons from resource file }
for i := 1 to iMaxColours do begin

icnPegs[i] := TIcon.Create;

try
StrPCopy(pIcon, 'PEG' + IntToStr(i));

icnPegs[i].Handle := LoadIcon(HInstance, pIcon);

if icnPegs[i].Handle = 0 then
raise Exception.Create

('Icon PEG' + IntToStr(i) + 'not found');

except on e: Exception do
begin

MessageDlg('Error in loading icon '+ IntToStr(i)

+ #13#10 + e.Message, mtError, [mbOK],

0);

StrDispose(pIcon);

Close;

end;
end;

end;

Figure 3: Randomizing the hidden pattern.

{ Determine new code }
if bRepeats then

{ Repeats of colours allowed }
for i := 1 to iPegs do

iSolution[i] := Random(iColours) + 1

{ Select from all available colours }
else

begin
{ No repeats allowed }
for i := 1 to iColours do

{ Initialise with all colours }
iWorkColour[i] := i;

for i := iColours downto 2 do begin
j := Random(i) + 1;

{ Randomly select a colour from remainder }
k := iWorkColour[i];

{ And swap with the current one }
iWorkColour[i] := iWorkColour[j];

iWorkColour[j] := k;

end;
for i := 1 to iPegs do

{ Then copy into solution }
iSolution[i] := iWorkColour[i];

end;

On the CoverOn the Cover
Separate forms are required to enable us to alter the game’s
parameters and display the best scores. We’ll also add an
About dialog box.

Icon Resources
To make the game a “good” Windows program, we set the
form’s colors based on the Delphi constants that represent the
player’s preferences. This means that the background on
which we draw the pegs is unknown as we write the game. If
we simply draw the peg images (as bitmaps) over this, the
backgrounds may not match. So we’ll use icons that have a
transparent color already defined and blend in with the color
scheme in use.

We could load the icons into the Image components on the
main form and use them from there. A better way, however,
is to use a resource file. This contains all the images required
for the colored pegs that make up our guesses and the solu-
tion, as well as the scoring pegs. (The file is easily created
using Delphi’s Image Editor.)

To get these into the program, we must use an API call,
LoadIcon, which takes as parameters a handle for an exe-
cutable containing the icon and the name of that icon.
Delphi provides the handle to our application in the form of
the HInstance variable. The function returns a handle to the
icon, or zero if no handle could be found. To use these in
the program, we declare an array of TIcon and create them
before assigning their handles to those returned by the func-
tion call. See Figure 2 for the code that loads the peg icons.

Of course, we must include the resource file in the pro-
gram before we can access it like this. The $R compiler
directive does the job. It’s already being used in our pro-
gram to include the resource file for the form itself, the
.DFM file, and we can add our extra file following it.

Unfortunately, to work with both Delphi 1 and 2, we
must have two resource files, 16- and 32-bit respectively.
The inclusion of the appropriate file can be automatically
handled with conditional directives and the pre-defined
conditional symbol WIN32, which is only defined for
Delphi 2:

{$IFDEF WIN32}
{$R DECODE32.RES}

{ Icons/cursor for this application - 32 bit }
{$ELSE}
{$R DECODE16.RES}

{ Icons/cursor for this application - 16 bit }
{$ENDIF}

A New Cursor
For the drag-and-drop features described later, we want to
indicate that a drag is in operation. As expected, we use the
DragCursor property of the appropriate component to change
the cursor when it’s dragging. The default is the crDrag cur-
sor, an arrow with a page attached. In our case, however,
we’re dragging pegs around, so it would be nice to have the
cursor reflect this.
15 February 1997 Delphi Informant
Delphi maintains an array of cursors available for use in
the Cursors property of the Screen object. The values we
used to refer to these cursors, such as crDrag, are actually
the indexes into this array. New cursors can be added to
the array, then used like the standard ones.

First, we draw the cursor and place it in our resource file,
along with the icons. Then we define a constant to be
used as the index for our cursor, making sure it doesn’t
conflict with any existing constants. Standard constants
are indexed by zero or a negative number, so any positive
value should do:

const
crDragPeg = 1; { Cursor when dragging a peg }

Next, load the cursor from the resource file into the Cursors
array. This is done similarly to the previous loading of the
icons. Finally, assign the new cursor, via its index, to the
appropriate components:

On the Cover

Figure 4: Implementing drag-and-drop from the pegs grid to
the main game board.

{ Save starting point for drag }
procedure TfmMain.drgPegsMouseDown(Sender: TObject;

Button: TMouseButton; Shift: TShiftState; X, Y:

Integer);

var
iCol, iRow: LongInt;

begin
if bGameOver then

{ Do nothing }
exit;

if Button = mbLeft then
begin

ptOrig := Point(X, Y);

drgPegs.MouseToCell(X, Y, iCol, iRow);

if iRow < iColours then
{ Peg selected }
begin

drgPegs.BeginDrag(False);

bDragPeg := True;

end;
end;

end;

{ Accept a dragged peg }
procedure TfmMain.drgBoardDragOver(Sender, Source: TObject;

X, Y: Integer; State: TDragState; var Accept: Boolean);

begin
Accept := not bGameOver and (Source is TDrawGrid) and

(TDrawGrid(Source).Name = 'drgPegs') or
(TDrawGrid(Source).Name = 'drgBoard'));

end;

{ And make the move }
procedure TfmMain.drgBoardDragDrop(Sender, Source: TObject;

X, Y: Integer);

var
iCol, iRow, iPegCol, iPegRow: LongInt;

begin
drgBoard.MouseToCell(X, Y, iCol, iRow);

TDrawGrid(Source).MouseToCell(ptOrig.X, ptOrig.Y,

iPegCol, iPegRow);

if TDrawGrid(Source).Name = 'drgPegs' then
{ From pegs }
iAttempts[1, iCol + 1] := iPegRow + 1

else if (iPegRow <> iRow) or
(iPegCol <> iCol) then

{ From board }
begin

iAttempts[1, iCol + 1] :=

iAttempts[iPegRow + 1,iPegCol + 1];

if (iPegRow = 0) and
(iPegCol <> iCol) then

iAttempts[1, iPegCol + 1] := 0;

end;
CheckDone;

end;

{ Finished with selection }
procedure TfmMain.drgEndDrag(Sender, Target: TObject;

X, Y: Integer);

begin
bDragPeg := False;

bDragBoard := False;

drgBoard.Invalidate;

drgPegs.Invalidate;

end;
Screen.Cursors[crDragPeg] :=

LoadCursor(HInstance,'DRAG_PEG');

drgBoard.DragCursor := crDragPeg;

Getting Random
The game wouldn’t be interesting if it always generated the
same pattern, so we use Delphi’s random number generator
to introduce the required variation. Even then, however, the
generator produces exactly the same sequence of values every
time the program is run. It’s necessary to initialize the genera-
tor so it doesn’t repeat itself. This is done in the creation of
the main form as follows:

Randomize;

Every time a new game is started, we need to establish a new
pattern to be deciphered. Now, we give the player the option
of having colors repeat, and this drastically affects how we
generate the solution. If repeats are allowed, we simply select
any of the available colors at random in each position, regard-
less of what happens in any other position. We use the
Random function, which returns a random integer in the
range of zero to the parameter value minus one.

If repeats aren’t allowed, we must randomize the sequence of
available colors before making our selection, ensuring that at
most, one of each color appears in the solution. One way is to
set up an array of all the possible values. This array is then
randomized by stepping through it and picking an entry in
the remainder of the array to swap with the current one,
including itself. When completed, we can copy the first few
elements into the final solution and be assured they have been
selected randomly without repetition (see Figure 3).

Drag-and-Drop
The pegs can be placed using drag-and-drop. This imple-
mentation involves several steps. First, we must put the
control into drag mode when the player clicks and drags
the mouse over it. This can be done automatically by set-
ting the DragMode property to dmAutomatic. Because we
only want to be able to drag valid pegs and allow the
player to double-click on a peg to put it into play, we
can’t take this route. Instead we must capture the
OnMouseDown events themselves and start the dragging
from there.

In the OnMouseDown event, we check that the left mouse
button has been pressed, and if so, determine which cell
was selected. The coordinates are saved in the ptOrig vari-
able because we need to know them again when the peg is
dropped. If a valid peg has been chosen, then we begin the
dragging with the BeginDrag method. The parameter to
this method determines whether the dragging starts imme-
diately. In this case, we don’t want it to start right away, so
that we can respond to double-clicks as well. Finally, a flag
is set to indicate that this cell should be highlighted when
redrawn during the drag.

The next step is to allow the dragged peg to be dropped
somewhere. The OnDragOver event for the target does
16 February 1997 Delphi Informant
this. It takes as parameters the source control from which
we are dragging, the current mouse coordinates, the drag
state, and a flag indicating whether this control accepts the
dragged object. This last value is set to show that the
dragged object can be dropped here. In our case, we only
accept pegs from the pegs display or elsewhere on the
main game board.

On the Cover

Figure 5: Drawing a cell in a draw grid.

{ Draw the pegs placed so far }
procedure TfmMain.drgBoardDrawCell(Sender: TObject;

Col, Row: Longint; Rect: TRect; State: TGridDrawState);

begin
with drgBoard.Canvas do begin

if(gdSelected in State) and
bDragBoard then
Brush.Color := clBtnShadow

else
Brush.Color := clWindow;

FillRect(Rect);

if iAttempts[Row + 1, Col + 1] <> 0 then
Draw(Rect.Left + 1, Rect.Top + 1,

icnPegs[iAttempts[Row + 1, Col + 1]]);

end;
end;
When the player releases the mouse button, we must make
the indicated play. This is achieved through the
OnDragDrop event for the target. We determine which cell
was originally dragged from the ptOrig variable, and, based
on its source, either copy or move the specified peg onto
the board in the current column. The CheckDone proce-
dure enables the Done button if all the spots in the current
turn are filled.

Finally, the original control receives an OnEndDrag event,
allowing it to tidy up. Here we reset the dragging flags so
that no cells are highlighted, and redraw the peg and main
board grids to reflect their new configuration. This event
fires even when the object is dropped somewhere that doesn’t
accept it. Code for the entire drag-and-drop process is shown
in Figure 4.

DrawGrids and StringGrids
The game’s visual interface is comprised of DrawGrid and
StringGrid components that display the available pegs,
the turn number, the guesses so far, the score, and the
solution.

By default, the DrawGrids only display the background color
and any grid lines requested. To make them do more, we
must set their DefaultDrawing property to False and attach
the drawing code to the OnDrawCell event.

This event is then called for each cell as it is drawn, passing
the coordinates of the current cell, the rectangle in which to
draw within the grid, and the state of the cell — whether it’s
focused, selected and/or fixed.

Looking at the main playing board, we want to draw the
appropriate peg icon in each cell. First we fill the cell’s rectan-
gle with the background color, and if a peg exists in this cell,
we draw the icon for that peg over the top. The positioning of
the pegs is kept in the iAttempts array — a zero indicates a
blank cell, and a positive value indicates that a peg is present.

Note that the cells of the DrawGrid start their numbering
at zero, both vertically and horizontally. The code for
drawing the playing board cells is shown in Figure 5.

Additionally, we want to highlight the selected cell when it is
dragged (as a reminder of which one we picked). This is
achieved by combining the state of the cell with a flag indi-
cating whether we are currently dragging. The cell is high-
lighted by changing the background color to clBtnShadow
instead of the default clWindow. The code for the remaining
DrawGrids is similar.

The StringGrid is designed to display the text held in its Cells
property in the grid without our intervention. This is fine,
provided we only want left-justified text.

To generate any other formatting, we must take over the
drawing of the cells, just as we did for the DrawGrids. As
17 February 1997 Delphi Informant
before, we set the DefaultDrawing property to False and
respond to the OnDrawCell events.

.INI File Sections
As mentioned earlier, we’re keeping track of our preferred
configuration, along with the best scores, in an .INI file. The
former is standard .INI file manipulation, whereas the latter
is a bit different: we don’t know ahead of time what the
entries will be. A separate section is required for the best
scores to allow us to deal with them more easily.

The entries record the combination of parameters used in the
game, the number of turns taken to solve it, and the name of
the player who achieved this feat. Each entry in this section
has the following format:

PppCccRr=nnxxx...

where pp is the number of pegs in the solution; cc is the
number of colors; r is a “Y” or “N” indicating if repeats are
allowed; nn is the number of turns taken, and xxx... is the
name of the player who achieved this score. For example,
the value:

P05C06RY=07Keith

indicates that Keith took seven guesses to solve a puzzle with
five pegs and six colors, and that repeats were allowed.

On the best scores form, we want to read all the existing
entries and display the results in a StringGrid (see Figure 6).
First, we must find out what the current values are, which is
done with this statement:

IniFile.ReadSection(sScores, slScores);

This loads all the identifiers in the nominated section into
the specified string list. The string list has its Sorted property
set to True, so the entries are automatically placed in a mean-
ingful order.

We then step through each of these identifiers and extract
their corresponding value from the .INI file as usual. Both
the identifier and its value are broken up and loaded into the

Figure 7: Loading the best scores from an .INI file section.

{ Load the best scores from the .INI file, section
[SCORES]. Entries expected in format PppCccRr=nnxxx...,
where pp is number of pegs, cc is number of colours,
r is repeats flag, nn is number of turns,
and xxx... is player's name. }

procedure TfmScores.FormCreate(Sender: TObject);

var
slScores: TStringList;

i, j, k: Integer;

sValue: string;
begin

slScores := TStringList.Create;

with stgScores do
try

try
{ Read game parameters from .INI file }
slScores.Sorted := True;

fmMain.IniFile.ReadSection(sScores, slScores);

except
{ Ignore }

end;

{ Set grid size }
k := 1;

if slScores.Count = 0 then
RowCount := 2

else
RowCount := slScores.Count + 1;

{ And headers }
Cells[0,0] := 'Pegs';

Cells[1,0] := 'Colours';

Cells[2,0] := 'Repeats';

Cells[3,0] := 'Turns';

Cells[4,0] := 'Player';

{ Load best score details and extract }
for i := 0 to slScores.Count - 1 do begin

sValue := fmMain.IniFile.ReadString

(sScores,slScores[i],'');

try
Cells[0,k] := Format('%2d',

[StrToInt(Copy(slScores[i],2,2))]);

Cells[1,k] := Format('%2d',

[StrToInt(Copy(slScores[i],5,2))]);

Cells[2,k] := Copy(slScores[i], 8, 1);

Cells[3,k] := Format('%2d',

[StrToInt(Copy(sValue,1,2))]);

Cells[4,k] := Copy(sValue,3,Length(sValue) - 2);

Inc(k);

except
for j := 0 to 4 do

Cells[j, k] := '';

end;
end;

finally
slScores.Free;

end;
end;

Figure 6: Displaying the best scores in a string grid.

On the Cover
grid’s next row for display. The code for this is shown in
Figure 7.

The Reset button on the scores form clears all the current best
scores, allowing new champions to emerge. Existing entries in
the .INI file are easily deleted using:

IniFile.EraseSection(sScores);

Additional code then tidies up the StringGrid to reflect the
loss of these details.

Conclusion
Delphi enables us to write all sorts of programs, from
multi-user database applications to single-user utilities,
from mission-critical systems to amusements. More than
just fun, games have their uses in exploring different
aspects of Delphi we may not normally investigate. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\FEB\DI9702KW.

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra.
He started using Borland’s products with Turbo Pascal on a CP/M machine.
Occasionally working with Delphi, he has enjoyed exploring it since it first
appeared. You can reach him via e-mail at kwood@netinfo.com.au, or by phone
(Australia) 6 291 8070.
18 February 1997 Delphi Informant

19 February 1997 Delphi Informant

Informant Spotlight
Delphi / Object Pascal

By Danny Thorpe
Last month, we explored the magic of polymorphism and its Object
Pascal implementation, the virtual method. We discovered that the indi-

cator of which virtual method to invoke on the instance data is stored in
the instance data itself.

Smart Linking
Virtual Methods and Polymorphism: Part ll
This month, we conclude our exploration
with a discussion of abstract interfaces and
how virtual methods can defeat and enhance
“smart linking.”

Abstract Interfaces
An abstract interface is a class type that con-
tains no implementation and no data —
only abstract virtual methods. Abstract inter-
faces allow you to completely separate the
user of the interface from the implementa-
tion of the interface.

And I do mean completely separate; with
abstract interfaces, you can have an object
implemented in a DLL and used by routines
in an .EXE, just as if the object were imple-
mented in the .EXE itself. Abstract interfaces
can bridge:

conceptual barriers within an application,
logistical barriers between an application
and a DLL,
language barriers between applications
written in different programming lan-
guages, and
address space barriers that separate
Win32 processes.

In all cases, the client application uses the
interface class just as it would any class it
implemented itself.

Let’s now take a closer look at how an
abstract interface class can bridge the gap
between an application and a DLL. (By the
way, abstract interfaces are the foundation of
OLE programming.)
Importing Objects from DLLs: The Hard
Way. If you want an application to use a
function in a DLL, you must create a “fake”
function declaration that tells the compiler
what it needs to know about the parameter
list and result type of the function. Instead
of a method body, this fake function decla-
ration contains a reference to a DLL and
function name. The compiler sees these and
knows what code to generate to call the
proper address in the DLL at run time.

To have an application use an object that’s
implemented in a DLL, you could do essen-
tially the same thing, declaring a separate
function for each object method in the DLL.
As the number of methods in the DLL object
increases, however, keeping track of all those
functions will become a chore. To make
things a little easier to manage, you could set
up the DLL to give you (the client applica-
tion) an array of function pointers that you
would use to call any of the DLL functions
associated with a particular DLL class type.

You can see where this is headed. A Virtual
Method Table (VMT) is precisely an array of
function pointers (we discussed the VMT
last month). Why do things the hard way
when the compiler can do the dirty work for
you?

Importing Objects from DLLs: The Smart
Way. The client module (the application)
requires a class declaration that will make the
compiler “visualize” a VMT that matches the
desired DLL’s array of function pointers.

Informant Spotlight
Enter the abstract interface class. The class contains a hoard
of virtual; abstract; method declarations in the same order as
the functions in the DLL’s array of function pointers. Of
course, the abstract method declarations need parameter lists
that match the DLL’s functions exactly.

Now you can fetch the array of function pointers from the
DLL and typecast a pointer to that array into your applica-
tion’s abstract interface class type. (Okay; it actually needs to
be a pointer to a pointer to an array of function addresses.
The first pointer simulates the object instance, the second
pointer simulates the VMT pointer embedded in the instance
data, but who’s counting?)

With this typecast in place, the compiler will think you have
an instance of that class type. When the compiler sees a
method call on that typecast pointer, it will generate code to
push the parameters on the stack, then look up the nth virtu-
al method address in the “instance’s VMT” (the pointer to
the function table provided by the DLL), and call that
address. Voilà! Your application is using an “object” that lives
in a DLL as easily as one of its own classes.

Exporting Objects from DLLs. Now for the flip side. Where
does the DLL get that array of function pointers? From the
compiler, of course! On the DLL side, create a class type with
virtual methods with the same order and parameter lists as
defined by the “red-herring” array of function pointers, and
implement those methods to perform the tasks of that class.
Then implement and export a simple function from the DLL
that creates an instance of the DLL’s class and returns a point-
er to it. Again, Voilà! Your DLL is exporting an object that
can be used by any application that can handle pointers to
arrays of function addresses. Also known as objects!

Abstract Interfaces Link User and Implementor. Here’s the
clincher. How do you guarantee that the order and parameter
lists of the methods in the application’s abstract interface class
exactly match the methods implemented in the DLL?

Simple. Declare the DLL class as a descendant of the abstract
interface class used by the application, and override all the
abstract virtual methods. The abstract interface is shared
between the application and the DLL; the implementation is
contained entirely within the DLL.

Abstract Interfaces Cross Language Boundaries. This can also
be done between modules written in different languages. The
Microsoft Component Object Model (COM) is a language-
independent specification that allows different programming
languages to share objects as just described. At its core, COM
is simply a specification for how an array of function pointers
should be arranged and used. COM is the foundation of OLE.

Since Delphi’s native class type implementation conforms to
COM specifications, no conversion is required for Delphi
applications to use COM objects, nor is any conversion
required for Delphi applications to expose COM objects for
other modules to use.
20 February 1997 Delphi Informant
Of course, when dealing with multiple languages, you won’t
have the luxury of sharing the abstract interface class between
the modules. You’ll have to translate the abstract interface
class into each language, but this is a small price to pay for
the ability to share the implementation.

The Delphi IDE is built entirely upon abstract interfaces,
allowing the IDE main module to communicate with the edi-
tor and debugger kernel DLLs (implemented in BC++), and
with the multitude of component design-time tools that live
in the component library (CMPLIB32.DCL) and installable
expert modules.

Virtuals Defeat Smart Linking
When the Delphi compiler/linker produces an .EXE, the pro-
cedures, variables, and static methods that are not referenced
by “live” code (code that is actually used) will be left out of
the .EXE file. This process is called smart linking, and is a
great improvement over normal linkers that merely copy all
code into the .EXE regardless of whether it’s actually needed.
The result of smart linking is a smaller .EXE on disk that
requires less memory to run.

Smart Linking Rule for Virtuals. If the type infor-
mation of a class is touched (for example, by con-
structing an instance) by live code, all the virtual
methods of the class and its ancestors will be linked
into the .EXE, regardless of whether the program
actually uses the virtual methods.

For the compiler, keeping track of whether an individual
procedure is ever used in a program is relatively simple; fig-
uring out whether a virtual method is used requires a great
deal more analysis of the descendants and ancestors of the
class. It’s not impossible to devise a scheme to determine if
a particular virtual method is never used in any descen-
dants of a class type, but such a scheme would certainly
require a lot more CPU cycles than normal smart linking,
and the resulting reduction in code size would rarely be
dramatic. For these reasons (lots of work, greatly reduced
compile/link speed, and diminishing returns), adding smart
linking of virtual methods to the Delphi linker has not
been a high priority for Borland.

If your class has a number of utility methods that you don’t
expect to use all the time, leaving them static will allow the
smart linker to omit them from the final .EXE if they are not
used by your program.

Note that including virtual methods involves more than just
the bytes of code in the method bodies. Anything that a vir-
tual method uses or calls (including static methods) must
also be linked into the .EXE, as well as anything those rou-
tines use, etc. Through this cascade effect, one method
could potentially drag hundreds of other routines into the
.EXE, sometimes at a cost of hundreds of thousands of
bytes of additional code and data. If most of these support
routines are used only by your unused virtual method, you
have a lot of deadwood in your .EXE.

Informant Spotlight

Figure 1: Inverse virtual smart linking: TOfficeGadget.Whirr will
not be linked into this program, although Whirr is touched by the
live method TOfficeManager.OperateGadget.

type
TBaseGadget = class

constructor Create;

procedure Whirr; virtual; { Linked in: YES }
end;

TOfficeGadget = class(TBaseGadget)
procedure Whirr; override; { Linked in: NO }
procedure Buzz; { Linked in: NO }
procedure Pop; virtual; { Linked in: NO }

end;

TKitchenGadget = class(TBaseGadget)
procedure Whirr; override; { Linked in: YES }

end;

TOfficeManager = class
private

FOfficeGadget: TOfficeGadget;

public
procedure InstantiateGadget; { Linked in: NO }
{ Linked in: YES }
procedure Operate(AGadget: TOfficeGadget); virtual;

end;

{ ... Non-essential code omitted ... }
procedure TOfficeManager.InstantiateGadget;

begin { Dead code, never called }
FOfficeGadget := TOfficeGadget.Create;

end;

procedure TOfficeManager.Operate(AGadget: TOfficeGadget);

{ Live code, virtual method of a constructed class }
begin

AGadget.Whirr

end;

var
X: TBaseGadget;

M: TOfficeManager;

begin
X := TKitchenGadget.Create;

M := TOfficeManager.Create;

X.Free;

M.Free;

end.
The best general strategy to keep unused virtual methods —
and their associated deadwood — under control, is to declare
virtual methods sparingly. It’s easier to promote an existing
static method to virtual when a clear need arises, rather than
trying to demote virtual methods down to statics at some late
stage of your development cycle.

Virtuals Enhance Smart Linking
Smart linking of virtuals is a two-edged sword: What is so
often cursed for bloating executables with unused code can
also be exploited to greatly reduce the amount of code in an
executable in certain circumstances — even beyond what
smart linking could normally achieve with ordinary static
methods and procedures. The key is to turn the smart linking
rule for virtuals inside out:

Inverse Smart Linking Rule for Virtuals. If the
type information of a class is not touched by live code,
21 February 1997 Delphi Informant
then none of that class’ virtual methods will be linked
into the executable. Even if those virtual methods are
called polymorphically by live code!

In a virtual method call, the compiler emits machine code to
grab the VMT pointer from the instance data, and to call an
address stored at a particular offset in the VMT. The compiler
can’t know exactly which method body will be called at run
time, so the act of calling a virtual method does not cause the
smart linker to pull any method bodies corresponding to that
virtual method identifier into the final executable.

The same is true for dynamic methods. The act of construct-
ing an instance of the class is what cues the linker to pull in
the virtual methods of that particular class and its ancestors.
This saves the program from the painful death that would
surely result from calling virtual methods that were not linked
into the program. After all, how could you possibly call a vir-
tual method of an object instance defined and implemented in
your program if you did not first construct said instance? The
answer is: you can’t. If you obtained the object instance from
some external source, e.g. a DLL, then the virtual methods of
that instance are in the DLL, not your program.

So, if you have code that calls virtual methods of a class that
is never constructed by routines used in the current project,
none of the code associated with those virtual methods will
be linked into the final executable.

The code in Figure 1 will cause the linker to pull in all the
virtual methods of TKitchenGadget and TOfficeManager,
because those classes are constructed in live code (the main
program block), and all the virtual methods of TBaseGadget,
because it’s the ancestor of TKitchenGadget.

Because TOfficeManager.Operate is virtual, its method body is
all live code (even though Operate is never called). Therefore,
the call to AGadget.Whirr is a live reference to the virtual
method Whirr. However, TOfficeGadget is not constructed in
live code in this example —TOfficeManager.InstantiateGadget
is never used. Nothing of TOfficeGadget will be linked into
this program, even though a live routine contains a call to
Whirr through a variable of type TOfficeGadget.

Variations on a Theme. Let’s see how the scenario changes
with a few slight code modifications. The code in Figure 2
adds a call to AGadget.Buzz in the TOfficeManager.Operate
method. Notice that the body of TOfficeGadget.Buzz is now
linked in, but TOfficeGadget.Whirr is still not. Buzz is a static
method, so any live reference to it will link in the correspond-
ing code, even if the class is never constructed.

The code in Figure 3 adds a call to the static method
TOfficeManager.InstantiateGadget. This brings the construction
of the TOfficeGadget class into the live code of the program,
which brings in all the virtual methods of TOfficeGadget,
including TOfficeGadget.Whirr (which is called by live code)
and TOfficeGadget.Pop (which isn’t). If you deleted the call to
AGadget.Buzz, the TOfficeGadget.Buzz method would become

type
TBaseGadget = class

constructor Create;

procedure Whirr; virtual; { Linked in: YES }
end;

TOfficeGadget = class(TBaseGadget)
procedure Whirr; override; { Linked in: YES }
procedure Buzz; { Linked in: YES }
procedure Pop; virtual; { Linked in: YES }

end;

TKitchenGadget = class(TBaseGadget)
procedure Whirr; override; { Linked in: YES }

end;

TOfficeManager = class
private

FOfficeGadget: TOfficeGadget;

public
procedure InstantiateGadget; { Linked in: YES }
{ Linked in: YES }
procedure Operate(AGadget: TOfficeGadget); virtual;

end;

{ ... Non-essential code omitted ... }
procedure TOfficeManager.InstantiateGadget;

begin { Live code }
FOfficeGadget := TOfficeGadget.Create;

end;

procedure TOfficeManager.Operate(AGadget: TOfficeGadget);

{ Live code, virtual method of a constructed class }
begin

AGadget.Whirr;

AGadget.Buzz; { This touches the static method body }
end;

var
X: TBaseGadget;

M: TOfficeManager;

begin
X := TKitchenGadget.Create;

M := TOfficeManager.Create;

M.InstantiateGadget;

X.Free;

M.Free;

end.

Figure 3: With a call to InstantiateGadget, the construction of
TOfficeGadget becomes live and all of TOfficeGadget’s virtual
methods are linked.

Figure 2: Notice how the addition of a call to the static Buzz
method affects its linked-in status. TOfficeGadget.Whirr is still
not included.

type
TBaseGadget = class

constructor Create;

procedure Whirr; virtual; { Linked in: YES }
end;

TOfficeGadget = class(TBaseGadget)
procedure Whirr; override; { Linked in: NO }
procedure Buzz; { Linked in: YES }
procedure Pop; virtual; { Linked in: NO }

end;

TKitchenGadget = class(TBaseGadget)
procedure Whirr; override; { Linked in: YES }

end;

TOfficeManager = class
private

FOfficeGadget: TOfficeGadget;

public
procedure InstantiateGadget; { Linked in: NO }
{ Linked in: YES }
procedure Operate(AGadget: TOfficeGadget); virtual;

end;

{ ... Non-essential code omitted ... }
procedure TOfficeManager.InstantiateGadget;

begin { Dead code, never called }
FOfficeGadget := TOfficeGadget.Create;

end;

procedure TOfficeManager.Operate(AGadget: TOfficeGadget);

{ Live code, virtual method of a constructed class }
begin

AGadget.Whirr;

AGadget.Buzz; { This touches the static method body }
end;
var

X: TBaseGadget;

M: TOfficeManager;

begin
X := TKitchenGadget.Create;

M := TOfficeManager.Create;

X.Free;

M.Free;

end.

Informant Spotlight
dead code again. Static methods are linked in only if they are
used in live code, regardless of whether their class type is used.

Life in the Real World. Let’s examine a more complex exam-
ple of this virtual smart linking technique inside the VCL.
The Delphi streaming system has two parts: TReader and
TWriter, which descend from a common ancestor, TFiler:

TReader contains all the code needed to load components
from a stream.
TWriter contains everything needed to write components
to a stream.

These classes were split because many Delphi applications
never need to write components to a stream — most
applications only read forms from resource streams at pro-
gram start up. If the streaming system was implemented in
one class, all your applications would wind up carrying
around all the stream output code, although many don’t
need it.
22 February 1997 Delphi Informant
So, splitting the streaming system into two classes improved
smart linking. End of story? Not quite.

In a careful examination of the code linked into a typical
Delphi application, the Delphi R&D team noticed that bits
of TWriter were being linked into the .EXE. This seemed
odd, because TWriter was definitely never instantiated in
the test program. Some of those TWriter bits touched a lot
of other bits that piled up rather quickly into a lot of
unused code. Let’s backtrack a little to see what lead to this
code getting into the .EXE, and its surprising solution.

Delphi’s TComponent class defines virtual methods that are
responsible for reading and writing the component’s state in a

Informant Spotlight
stream, using TReader and TWriter classes. Because TComponent
is the ancestor of just about everything of importance in Delphi,
TComponent is almost always linked into your Delphi programs,
along with all the virtual methods of TComponent.

Some of TComponent’s virtual methods use TWriter
methods to write the component’s properties to a stream.
Those TWriter methods were static methods. Therefore,
TComponent virtual methods are always included in
Delphi form-based applications, and some of those virtual
methods (e.g. TComponent.WriteState) call static methods
of TWriter (e.g. TWriter.WriteData). Thus, those static
method bodies of TWriter were being linked into the
.EXE. TWriter.WriteData is the kingpin method that
drives the entire stream output system, so when it is
linked in, almost all the rest of TWriter tags along (every-
thing, ironically, except TWriter.Create).

The solution to this code bloat (caused indirectly by the
TComponent.WriteState virtual method) may throw you for
a loop: To eliminate the unneeded TWriter code, make
more methods of TWriter (e.g. WriteData) virtual!

The all-or-none clumping of virtual methods that we curse for
working against the smart linker can be used to our advantage,
so that TWriter methods that must be called by live code are
not actually included unless TWriter itself is instantiated in the
program. Because methods such as TWriter.WriteData are
always used when you use a TWriter, and TWriter is a mule
class (no descendants), there is no appreciable cost to making
TWriter.WriteData virtual. The benefits, however, are apprecia-
ble: making TWriter.WriteData virtual shaved nearly 10KB off
the size of a typical Delphi 2 .EXE. Thanks to this and other
code trimming tricks, Delphi 2 packs more standard features
(e.g. form inheritance and form linking) into smaller .EXEs
than Delphi 1.

What’s Really in Your Executables? The simplest way to find
out if a particular routine is linked into a particular project is
to set a breakpoint in the body of that routine and run the
program in the debugger. If the routine is not linked into the
.EXE, the debugger will complain that you have set an
invalid breakpoint.

To get a complete picture of what’s in your .EXE or DLL, con-
figure the linker options to emit a detailed map file. From
Delphi’s main menu, select Project | Options to display the
Project Options dialog box. Select the Linker tab. In the Map

File group box, select Detailed. Now recompile your project.
The map file will contain a list of the names of all the routines
(from units compiled with $D + debug information) that were
linked into the .EXE.

Because the 32-bit Delphi Compiled Unit (.DCU) file has
none of the capacity limitations associated with earlier, 16-
bit versions of the Borland Pascal product line, there is lit-
tle reason to ever turn off debug symbol information stor-
age in the .DCU. Leave the $D, $L, and $Y compiler
switches enabled at all times so the information is available
23 February 1997 Delphi Informant
when you need it in the integrated debugger, map file, or
object browser. (If hard disk space is a problem, collect the
loose change beneath the cushions of your sofa and buy a
new 1GB hard drive.)

Novelty of Inverse Virtual Smart Linking. This technique of
using virtual methods to improve smart linking is not unique
to Delphi, but because Delphi’s smart linker has a much finer
granularity than other compiler products, this technique is
much more effective in Delphi than in other products.

Most compilers produce intermediate code and limited symbol
information in an .OBJ format, and most linkers’ atom of
granularity for smart linking is the .OBJ file. If you touch
something inside a library of routines stored in one .OBJ mod-
ule, the entire .OBJ module is linked into the .EXE. Thus, C
and C++ libraries are often broken into swarms of little .OBJ
modules in the hope of minimizing dead code in the .EXE.

Delphi’s linker granularity is much finer — down to individ-
ual variables, procedures, and classes. If you touch one rou-
tine in a Delphi unit that contains lots of routines, only the
thing you touch (and whatever it uses) is linked into the
.EXE. Thus, there is no penalty for creating large libraries of
topically-related routines in one Delphi unit. What you don’t
use will be left out of the .EXE.

Developing clever techniques to avoid touching individual
routines or classes is generally more rewarding in Delphi than
in most other compiled languages. In other products, the
routines you so carefully avoided will probably be linked into
the .EXE anyway because you are still using one of the other
routines in the same module. Measuring with a micrometer is
futile when your only cutting tool is a chainsaw.

Conclusion
Virtual methods are often maligned for bloating applications
with unnecessary code. While it’s true that virtuals can drag
in code that your application doesn’t need, this series has
shown that careful and controlled use of virtual methods can
achieve greater smart linking efficiency than would be possi-
ble with static methods alone. ∆

This article series was adapted from material for Danny
Thorpe’s book, Delphi Component Design [Addison-Wesley
Publishing Co., 1996].

Danny Thorpe is a Delphi R&D engineer at Borland. He has also served as techni-
cal editor and advisor for dozens of Delphi programming books, and recently com-
pleted his book, Delphi Component Design, on advanced topics in Delphi pro-
gramming. When he happens upon some spare time, he rewrites his to-do list
manager to ensure that it doesn’t happen again.

24 February 1997 Delphi Informant

Sights & Sounds
Object Pascal / Delphi 2

By Peter Dove and Don Peer

Figure 1: The applica
Last month, we covered some 3D math fundamentals, created the TGMP
component, and developed an application to render wireframe objects.

This month, we’ll add some features to that application, including polygon
filling, flat shading, directional light sources, vectors, normals, bit shifting,
and backface removal. These features add volume to those wireframes
you’ve generated, and take you a step closer to building a 3D, rendered
component.

The World Is Flat
Delphi Graphics Programming: Part II
Let There Be Light
At times, wireframe objects will play tricks
on your eyes, making it hard to discern
which way the object is turning and which
side is closer. This is because, with wireframe
objects, your eyes get very little depth cueing
— only a few elements are available for the
eye and brain to create an accurate 3D pic-
ture of the object.

Adding shading in relationship to a light
source will help make the object appear three
dimensional. By doing this, you can see that
tion rendering an object in shaded mode.
as the object rotates away from the light
source, the faces become progressively darker,
while the other faces coming toward the light
source become progressively lighter. Figure 1
shows the application rendering an object in
shaded mode.

Getting Your Fill
Before we can add a light source to the
objects, we must add polygon filling. This
will, as the name implies, fill the polygons,
creating a solid look. To do this, we need to
change TGMP’s structure.

Fortunately, these changes aren’t as difficult
as you may think. First, we must change the
way we think about drawing the objects.
Last month, we saw that drawing the object
was just a matter of drawing many well-
organized lines, whereas now we must think
in terms of polygons.

A polygon is a figure of three or more sides
that is either concave or convex. Testing to
see what type of polygon you have is simple.
If you draw a line through the polygon and
the line only crosses two sides, then you are
dealing with a convex polygon. If any line
crosses more than two sides, then the polygon
is concave (see Figure 2). Our 3D rendering
engine will only support convex polygons

Figure 3: An illustration of the YBucket system.

Sights & Sounds

procedure TGMP.DrawSolidLine2D(X1, Y1, X2, Y2 : Integer);

var
CurrentX, XIncr : Single;

Y, Temp, Length : Integer;

begin
{ No point in drawing horizontal lines! The rest of

the polygon will define the edges }
if Y1 = Y2 then

Exit;

{ Swap if Y1 is less than Y2 so we always draw
from top to bottom }

if Y2 < Y1 then
begin

Temp := Y1;

Y1 := Y2;

Y2 := Temp;

Temp := X1;

X1 := X2;

X2 := Temp;

end;

Length := (Y2 - Y1) + 1;

{ Xincr is how much the X must increment
though each Y increment }

Xincr := ((X2 - X1) + 1) / Length;

CurrentX := X1;

{ Loop through Y Values and fill Y buckets }
for Y := Y1 to Y2 do

begin
{ All Ybuckets are initialized to -16000 }
if YBuckets[Y].StartX = -16000 then

begin
YBuckets[Y].StartX := Round(CurrentX);

YBuckets[Y].EndX := Round(CurrentX);

end
else

begin
{ Is Current X less than the Y StartX -

if so update StartX }
if CurrentX < YBuckets[Y].StartX then

YBuckets[Y].StartX := Round(CurrentX);

{ Is Current X greater than the Y EndX -
if so update EndX }

if CurrentX > YBuckets[Y].EndX then
YBuckets[Y].EndX := Round(CurrentX);

end;
CurrentX := CurrentX + XIncr;

end;
end;

Figure 4: The DrawSolidLine2D procedure.

Figure 2: Testing to see if a polygon is convex or concave.
because it’s much easier and quicker to scan convert (which
converts the 3D polygons into 2D horizontal scan lines) a
convex polygon.

The YBucket System
Many systems have been developed for drawing filled poly-
gons. We’ll use the YBucket system, an array of TYBucket.
Declare TYBucket as follows:

TYBucket = record
StartX, EndX : Integer;

end;

The YBucket system simply draws one of the lines that creates
the 3D object, and maintains a list of each Y-value change.
The X value is then stored in either StartX or EndX. After
we’ve drawn all the polygon’s lines, we’ll have a list of horizon-
tal lines for the number of Y points on the screen. These lines
are put together to create a convex polygon (see Figure 3).

Now we need to create a new procedure,
DrawSolidLine2D, that will work with our YBuckets. First,
25 February 1997 Delphi Informant
place the data member and procedure declaration in the
private section of TGMP:

YBuckets : array [0..479] of TYBucket;

procedure DrawSolidLine2D(x1, y1, x2, y2 : Integer);

Then add the code in Figure 4 to the procedure. As you can
see in the figure, DrawLine2D doesn’t draw anything visible;
it merely draws the outline of the polygon into our YBuckets.
A few support methods are necessary to draw the polygon on
the screen:

procedure DrawHorizontalLine(Y, X1, X2 : Integer);

will draw a line on the screen from X1 to X2 on the Y scanline,
and RenderYBuckets iterates through the array of YBuckets and
draws all the horizontal lines using DrawHorizontalLine.

procedure TGMP.ClearYBuckets;

var
X : Integer;

begin
for X := 0 to 479 do

YBuckets[X].StartX := -16000;

end;

procedure TGMP.DrawHorizontalLine (Y, X1, X2 : Integer) ;

begin
FBackBuffer.Canvas.Penpos := Point(X1, Y);

FBackBuffer.Canvas.LineTo(X2, Y);

end;

procedure TGMP.RenderYBuckets ;

var
Y : Integer;

begin
for Y := 0 to 479 do

if YBuckets[Y].StartX <> -16000 then
DrawHorizontalLine(Y, YBuckets[Y].StartX,

YBuckets[Y].EndX);

end;

Figure 5: The code for the ClearYBuckets, DrawHorizontalLine,
and RenderYBuckets procedures.

Sights & Sounds
The last support method is ClearYBuckets; it iterates through
the array setting the StartX to -16000. Setting the YBucket to
an initial value lets us know whether that line holds any X
values. This is necessary because we won’t draw on all the
screen space. Figure 5 shows the ClearYBuckets,
DrawHorizontalLine, and RenderYBuckets procedures.

Finally, we must change the RenderNow and Rotate proce-
dures, modify the TObject3D record type, and create a new
record type, TPolygon, that will allow TObject3D to express
the idea of polygons rather than lines. Listing Two on page
28 shows the changes required to the procedures
RenderNow and Rotate, and the modified TObject3D record
that incorporates TPolygon.

The Shady Life of TGMP
Before we add the shading, we must discuss some 3D math to
understand how shading works and how to implement compli-
cated lighting systems (i.e. systems with more than one light).

For the shading algorithm to work correctly, all points on
the polygon must be coplanar, meaning that the polygon
must be flat — it can’t have any warps, bends, or twists.
From this assumption, we can work out a normal to that
polygon. A normal is a vector that is perpendicular to the
plane of the polygon (see Figure 6).

A vector is a directed
line that has magni-
tude. Usually a nor-
mal has a magni-
tude/length of 1.
There are two basic
uses for vectors and
normals:
1) If we have a
normal for a poly-
gon, we can make a
polygon sided; thatFigure 6: A normal to a polygon.
26 February 1997 Delphi Informant
is, we can
give one side
a normal.
Then we can
perform a
calculation
on the nor-
mal and the
line-of-sight
vector to tell
whether the
polygon is
facing us.
(This is use-
ful for backface removal.)

2) When we combine the operation of a normal with a light
source vector, we can calculate the angle at which the light
strikes the surface of the polygon and therefore calculate the
shade (see Figure 7).

Backface removal is an operation used to determine if the
side of the polygon with the normal defined is facing
toward or away from the line-of-sight vector. If the poly-
gon is facing away from the line-of-sight vector, there is
no need to draw it. So effectively, for the moment at least,
our polygons can only have one side. This may sound like
a restriction, but in all closed objects such as a sphere and
a box, you cannot see the inside. Therefore, the polygons
only need to be one sided.

Several math procedures will enable us to calculate an
object’s lighting. The first procedure, GetVector3D, takes
two points and creates a vector from them, placing the
result into the Vector parameter of GetVector3D. Remember
that a vector is defined with one set of x, y, z points because
the origin is assumed to be from 0, 0, 0. Place the declara-
tion for this mathematical procedure in the private section
of the TGMP unit:

procedure TGMP.GetVector3D(var EndPoint, StartPoint,

Vector : TPoint3D);

begin
Vector.X := EndPoint.X - StartPoint.X;

Vector.y := EndPoint.Y - StartPoint.Y;

Vector.z := EndPoint.Z - StartPoint.Z;

end;

The next procedure, CrossProduct, assists in obtaining a normal
to a polygon. To find a normal to a polygon, you need two vec-
tors (which comprise three points of the polygon). Remember
that a normal is a vector at right angles to the plane of the poly-
gon. The procedure takes the two points in the U and V para-
meter and returns the result in the Normal parameter.

CrossProduct contains the formulas to calculate the two vectors:

procedure TGMP.CrossProduct(var U,V,Normal : TPoint3D);

begin
Normal.X := (V.Y * U.Z - V.Z * U.Y);

Normal.Y := -(V.X *(U.Z+ZDistance)-(V.Z+ZDistance)*U.X);

Normal.Z := (V.X * U.Y - V.Y * U.X);

end;

Figure 7: An illustration of the light source
and viewpoint of a polygon.

Sights & Sounds
To find the normal of a polygon, we’ll combine the GetVector3D
and CrossProduct procedures to produce the GetNormal proce-
dure. When three points of the polygon are passed to GetNormal,
it will create two vectors from the three points, producing the
normal from these two vectors. The GetNormal procedure creates
the two vectors by using P1 as the start point for both vectors,
and P2 and P3 as the end points, and returns the result in the
Normal parameter. The code for GetNormal is:

procedure TGMP.GetNormal(var P1, P2, P3, Normal : TPoint3D);

var
U,V : TPoint3D;

begin
GetVector3D(P2, P1, U);

GetVector3D(P3, P1, V);

CrossProduct(U,V,Normal);

end;

The next method, VectorMagnitude, returns the length of a
vector:

function TGMP.VectorMagnitude(var Normal: TPoint3D): Single;

var
X1 : Single;

begin
X1 := Sqrt((Normal.X * Normal.X) +

(Normal.Y * Normal.Y) +

(Normal.Z * Normal.Z));

{ Ensure result is non-zero to
avoid divide-by-zero errors }

if X1 = 0 then
X1 := 0.0000001;

Result := X1;

end;

The last math method, DotProduct, multiplies two vectors
(parameters U and V). Remember that a vector is repre-
sented by a point whose origin is assumed to be 0,0,0,
which is why the U and V parameters are defined as
TPoint3D. The resulting number provides a lot of informa-
tion about the angular relationship of the vectors. If the
resulting number is greater than 0, the angle is acute (less
than 90 degrees), and if the number is less than 0, the angle
is obtuse (greater than 90 degrees). When we combine the
light vector with a polygon’s normal, we use DotProduct to
determine the angle at which the light strikes the polygon.
We also use the DotProduct method to determine whether a
polygon is visible or backfacing:

function TGMP.DotProduct(var U,V : TPoint3D) : Single;

begin
Result := U.X * V.X + U.Y * V.Y + U.Z * V.Z;

end;

Now, to combine all the mathematical methods, we have one
method that iterates through the object and calculates all the
lighting and backface removal in one hit.

Now we can render the polygons, each with slightly different
shades of the same color. You will see all the previously men-
tioned functions, plus another method for setting the position
of the light source. Also, the GMP object contains two vari-
ables that deal with the lighting: LightStrength, which is as it
sounds; and AmbientLight, which is the natural amount of
light the scene emits that cannot be directly related to the
27 February 1997 Delphi Informant
light source. The ambient light is an attempt to emulate the
light reflected off objects. For instance, in a room, places are
lit because of the reflection of light off walls; this is what
ambient light attempts to simulate.

Additional Functionality
The RenderMode property controls how the render methods
output your object. RenderMode can be set to either
rmWireframe, rmSolid, or rmSolidShade.

Three data members, ViewPoint, LightSource, and LightStrength,
are included. ViewPoint is the position of the camera; LightSource
is a vector that describes the direction of the light; and
LightStrength controls the brightness of the light, and is a real
number that can be greater than 1, with 1 being full brightness.

The final two new methods are OrderZ and SetLightSource.
OrderZ simply orders the polygons by Z value so that the ren-
derer draws them in the correct order. SetLightSource takes a
point indicating the position, and a point indicating the point
in space to which the light is directed. Using these two
points, SetLightSource produces a vector that is used in the
lighting calculations.

Lastly, a slight addition to the Create constructor initializes
some of the extra data members and also sets a default
LightSource vector.

Our Second Application
In our second application, we will slightly modify the array
data for the cube and pyramid objects, because we’ll be
viewing the objects from a slightly different angle. We will
also add two more array types to hold the number of poly-
gon faces for the cube and pyramid objects. The two new
arrays are declared as follows in the type section of the
application code:

TPyramidPolys = array [0..4] of Integer;

TCubePolys = array [0..5] of Integer;

The balance of the code remains basically the same, except
for the introduction of the RenderMode menu items and a
procedure named ClearMenuCheck that clears the menu
and re-checks the menu options as they are selected.

Conclusion
This has been a fairly intense article because we had a lot of
information to cover. Next month, we’ll add texture mapping
to our 3D rendering component, and develop a cleaner compo-
nent for windows messaging and event handling. ∆

References
LaMothe, A., Black Art of 3D Game Programming
[Waite Group Press, 1995].
Lyons, Eric R., Black Art of Windows Game Programming
[Waite Group Press, 1995].

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\FEB\DI9702DP.

Sights & Sounds
Peter Dove is a Technical Associate with Link Associates Limited and a partner in
Graphical Magick Productions. He can be reached via the Internet at
peterd@graphicalmagick.com.

Don Peer is a Technical Associate for Greenway Group Holdings Inc. (GGHI) and a
partner in Graphical Magick Productions. He can be reached via the Internet at
dpeer@graphicalmagick.com.
Begin Listing Two — The RenderNow and
Rotate Procedures

TPolygon = record
Point : array [0..3] of TPoint3D;

{ Only allow polygons for now if to 4 points }
NumberPoints : Integer;

Visible : Boolean;

AverageZ : Single;

PolyColor : TColor;

end;

TObject3D = record
PolyStore : array [0..49] of Tpolygon;
{ Maximum 50 polys in an object }
NumberPolys : Integer;

Color : TColor;

end;

procedure TGMP.RenderNow(var Object3D : TObject3D);

var
X, I : Integer;

begin
{ Check to see which rendering mode will be used }
case RenderMode of

rmWireframe : // *** Wireframe ***
begin

FBackBuffer.Canvas.Pen.Color := Object3D.Color;

for X := 0 to Object3D.NumberPolys - 1 do
with Object3D.PolyStore[x] do begin

DrawLine3D(Point[0].X,Point[0].Y,Point[0].Z,

Point[1].X,Point[1].Y,Point[1].Z);

DrawLine3D(Point[1].X,Point[1].Y,Point[1].Z,

Point[2].X,Point[2].Y,Point[2].Z);

if NumberPoints = 3 then
DrawLine3D(Point[2].X,Point[2].Y,Point[2].Z,

Point[0].X,Point[0].Y,Point[0].Z)

else
begin

DrawLine3D(Point[2].X,Point[2].Y,Point[2].Z,

Point[3].X,Point[3].Y,Point[3].Z);

DrawLine3D(Point[3].X,Point[3].Y,Point[3].Z,

Point[0].X,Point[0].Y,Point[0].Z);

end;
end;

end;

rmSolid : // *** Solid ***
begin

FBackBuffer.Canvas.Pen.Color := Object3D.Color;

for X := 0 to Object3D.NumberPolys - 1 do
with Object3D.PolyStore[X] do begin

ClearYBuckets;

for I := 0 to NumberPoints -1 do
if I < (NumberPoints - 1) then
DrawLine3D(Point[I].X,Point[I].Y,Point[I].Z,

Point[I+1].X,Point[I+1].Y,

Point[I+1].Z)

else
DrawLine3D(Point[I].X,Point[I].Y,Point[I].Z,

Point[0].X,Point[0].Y,Point[0].Z);

RenderYBuckets;

end;
end;
28 February 1997 Delphi Informant
rmSolidShade : // *** Solid Shading ***
begin

RemoveBackfacesAndShade(Object3D);

OrderZ(Object3D);

for X := 0 to Object3D.NumberPolys - 1 do
with Object3D.PolyStore[X] do

if Object3D.PolyStore[X].Visible then
begin

FBackBuffer.Canvas.Pen.Color := PolyColor;

ClearYBuckets;

for I := 0 to NumberPoints -1 do
if I < (NumberPoints - 1) then

DrawLine3D(Point[I].X,Point[I].Y,

Point[I].Z,Point[I+1].X,

Point[I+1].Y,Point[I+1].Z)

else
DrawLine3D(Point[I].X,Point[I].Y,

Point[I].Z,Point[0].X,

Point[0].Y,Point[0].Z);

RenderYBuckets;

end;
end;

end;
end;

procedure TGMP.Rotate(X, Y, Z, Angle : Single;

var Object3D : TObject3D);

var
P, I : Integer;

NewX, NewY, NewZ : Single;

begin
for P := 0 to Object3D.NumberPolys - 1 do

with Object3D.PolyStore[P] do begin
if Z <> 0 then

for I := 0 to NumberPoints - 1 do begin
NewX := Point[I].X * cos(Angle) -

Point[I].Y * sin(Angle);

NewY := Point[I].X * sin(Angle) +

Point[I].Y * cos(Angle);

Point[I].X := NewX;

Point[I].y := NewY;

end;

if X <> 0 then
for I := 0 to NumberPoints - 1 do begin

NewY := Point[I].Y * cos(Angle) -

Point[I].Z * sin(Angle);

NewZ := Point[I].Y * sin(Angle) +

Point[I].Z * cos(Angle);

Point[I].Y := NewY;

Point[I].Z := NewZ;

end;

if Y <> 0 then
for I := 0 to NumberPoints - 1 do begin

NewZ := Point[I].Z * cos(Angle) -

Point[I].X * sin(Angle);

NewX := Point[I].X * cos(Angle) +

Point[I].Z * sin(Angle);

Point[I].z := NewZ;

Point[I].x := NewX;

end;
end;

end;

End Listing Two

29 February 1997 Delphi Informant

Delphi at Work
Delphi / Object Pascal

By Ian Cresswell
Application programmers sometimes require the ability to store indexed
data at run time. On the surface, the array data type appears ideal

for such problems, but arrays suffer from serious limitations.

Dynamic Arrays?
A Class Wrapper for TList
Arrays are declared at compile time and are
not well suited to problems involving the
dynamic use of data. Specifically, if you don’t
know how much data you want to store:

too much space can be predeclared for
too little data, or
too little space can be predeclared for too
much data.

The traditional means of overcoming such
difficulties is to build a dynamic data
structure — typically a linked list — and
find some way of indexing the structure to
make it behave as a “fake” array. In an
ideal world, the best means of storing such
data is to use a dynamic structure that can
have its elements accessed with an index.

In this article we’ll examine how to use a
built-in, indexed dynamic list provided
with Delphi.

Some Explanation
The TList class is normally associated with
Windows list boxes and was designed to con-
tain the information for an arbitrary list. The
“class wrapper” described here allows array-
like access to dynamic elements that are pre-
declared as being of the same type. (Note that
producing a generic list — a list containing
items of different types in any order — is also
possible in a similar manner. However, doing
this is beyond the scope of this article.)

During our discussion of the TList wrapper
class, we must address a number of neces-
sary tricks and tips. Most of these will be
introduced in the subtext. First, however,
we’ll talk about two key issues. First,
whether you like it or not, any class you
declare is automatically a descendant of the
TObject class. Therefore, declaring:

TMine = class

is the same as declaring:

TMine = class(TObject)

Furthermore, any instance of a class is also
dynamic. In other words, whenever you
declare a variable of a class type, it’s auto-
matically declared as dynamic without
requiring the traditional Pascal caret (^)
pointer notation. We’ll revisit this later
when we use a trick that relies on knowl-
edge of this particular Delphi feature.

The approach taken to writing the class
wrapper is inherently object-oriented; that
is, a minimal public interface is provided
to allow restricted access to protected and
private members. For protected and pri-
vate members to work as intended, with
respect to class access rights, a second
important issue and a quirk of Delphi
must be introduced. The protected and
private parts of a class are only truly pro-
tected and private if the class type declara-
tion is in a separate module (e.g. in a unit)
to that in which it’s used. This is directly
“inherited” from the use of private in pre-

Delphi at Work
vious implementations of Borland Pascal and is unusual in
comparison to other object-oriented languages. C++, for
instance, treats private and protected members as private
and protected regardless of where they are declared and/or
used.

TLists
Delphi’s TList class can have its elements accessed by the use
of an index, in much the same way as a one-dimensional
array. The TList class is merely a dynamic list of pointers to
other items, and allows the creation and management of
such lists (see Figure 1). The TList class is most commonly
used to maintain dynamic lists of strings for Windows list
boxes, etc. This provides a much higher level of abstraction
than the use of other lower-level, linked list code.
Figure 1: The structure of a TList.
TLists are one dimensional in nature, and can contain
pointers to 16,380 items for each list instantiation. (Note
that in Delphi 1, the limit for TLists is 16,380 items. This
is because TLists in Delphi 1 are working with a segment-
ed memory structure. In Delphi 2, the limit is only
restricted by available memory.) The code that accompa-
nies this article uses the following methods and properties
provided with TLists:

The Items property is used to access contained objects by
index number.
The Add method adds an item to the end of the list.
The Delete method deletes an item from a specified posi-
tion and turns the TList pointer to nil.
The Count property determines how many items are in
the TList.
The Pack method removes nil pointers in the TList.

For our purposes, we require some means of managing a
TList data type and making it behave as an n-dimensional
array. This will involve building a class that allows us to
access a protected TList descendant through a publicly
declared interface. The TList will contain pointers to
instances of another class that will contain the data we
want to access.

First, we’ll look at the class wrappers required for safely
implementing a TList-based dynamic array. In this exam-
ple, the class wrapper allows us to instantiate and manage
a real number-based TList object when required:
30 February 1997 Delphi Informant
TListClass = class
protected

TheList : TList;

public
constructor Create;

destructor Free;
procedure SetElement(value: ContainedType;

index: Integer);

function GetElement(index: Integer): ContainedType;

procedure AddToList(value: ContainedType);
procedure KillItem(index: Integer);

function GetNumItems: Integer;

end;

The following code shows the TContained class that is instan-
tiated for each ContainedType we want to represent:

TContained = class
protected

ContainedValue: ContainedType;

public
constructor Create(CopyIn: ContainedType);

procedure ChangeItem(CopyIn: ContainedType);

function GetValue: ContainedType;

end;

Immediately above these type declarations, a single line is
included to define the ContainedType type:

ContainedType = Integer;

The constructor is called as part of the instantiation
process and accepts an integer that is then copied to the
protected ContainedValue field during the objects’ con-
struction process.

The dynamic list of TContained objects is created by using
the Create constructor associated with TListClass, which in
turn uses the Create method provided for all objects. The
integers associated with these objects are tied to the
TListClass object.

Provided that the relevant integers are inserted into the list
in logical order, it’s possible to fake the use of an array
with any number of dimensions and of any type (with the
obvious memory availability considerations). It’s a simple
matter to calculate a unique position for a data item in a
one-dimensional list that is accessed by using n-D indices
(we’ll discuss this consideration in more detail later).

The destruction of the TContained objects must occur
before the TList descendant (holding pointers to them) is
itself removed. The consequence of destroying the list first
will be to lose any reference to the TContained objects, and
thereby to lose heap memory in an unrecoverable and
“leaky” manner. (The term “leaky” refers to an application
that does not restore all the memory it uses. This is nor-
mally caused by not disposing memory that was allocated
dynamically by the use of new, or perhaps not freeing,
objects after they have been created.)

Each element of the list is removed by calling its associated Free
method. The count field used with TList descendant objects is

Delphi at Work
used to step through each of the instantiated TContained
objects. Once all the TContained objects have been removed, it’s
possible to cleanly remove the TList descendant that was used to
contain references to them by using the Free method on it.
Observant readers will notice the use of dynamic memory with-
out the need to resort to the Pascal-style pointer (^) notation.

The TContained class has three methods that operate on a
single, protected data member of a user-specified type (Real,
in this case):
1) The first method to be used is the Create constructor that

accepts a ContainedType by value and copies it to the pro-
tected data member:

constructor TContained.Create(CopyIn: ContainedType);

begin
ContainedValue := CopyIn;

end;

2) The ChangeItem method is provided so the programmer
can modify the value of the protected data member at run
time. It accepts ContainedType by value and copies it to
the protected data member:

procedure TContained.ChangeItem(CopyIn: ContainedType);

begin
ContainedValue := CopyIn;

end;

3) A third method, the GetValue function, will return the
current value of the protected data member:

function TContained.GetValue: ContainedType;

begin
result := ContainedValue;

end;

The TListClass consists of six methods, a constructor, and
a destructor. The Create constructor is used to instantiate a
new TList descendant (TheList), a protected data member
of the class. This instantiation must occur at this point;
otherwise a dreaded GPF (General Protection Fault) will
occur. Such data member creation and initialization is,
after all, one of the main purposes of constructors:

constructor TListClass.Create;

begin
TheList := TList.Create;

end;

The destructor frees the memory consumed by TheList by
calling its Free method:

destructor TListClass.Free;

var
LoopCount : Integer;

begin
for LoopCount := 1 to GetNumItems do

{ Successively removes first item to empty list }
KillItem(0);

TheList.Free;

end;

Note that this process must occur after each contained
TContained object has been destroyed. A TList is a linked
31 February 1997 Delphi Informant
list of pointers to items (in this case TContained instantia-
tions), and the consequence of destroying a TList before its
items have been destroyed is memory leakage. When the
list is destroyed, we have no way of referencing what it
used to contain and therefore, no way of freeing the heap.
So, before calling the Free method of TListClass, we need
to traverse through the list and remove the TContained
items it holds.

The AddToList method takes a ContainedType variable by
value. A local TContained type is declared within the
method and the construction process is initiated. This
returns a pointer to the new object, which in turn, is added
to the end of the list instantiation. In other words, you can
view the big picture as being an instance of a TList object
that contains pointers to dynamically instantiated
TContained objects:

procedure TListClass.AddToList(value: ContainedType);

var
APtr : TContained;

begin
APtr := TContained.Create(value);

try
TheList.Add(APtr);

except
on Exception do

MessageDlg('Attempt to Add to a Non-Existent List',

mtwarning,[mbok],0);

end;
end;

The SetElement method is provided so a contained
TContained instantiation can have its protected data mem-
ber changed. The Items property of a list returns a pointer
to an item at a specified position within the list. This
generic pointer is then explicitly typecast to be a pointer
to a TContained object. The ChangeItem method associat-
ed with the TContained object can then be called and the
value of the specified element set:

procedure TListClass.SetElement(value: ContainedType;

index: Integer);

var
APtr : TContained;

begin
APtr := TContained(TheList.Items[index]);

APtr.ChangeItem(value);

end;

The GetElement method is similar to SetElement in all
respects. However, GetElement gets (rather than sets) the value
of the protected data member:

function TListClass.GetElement(

index: Integer): ContainedType;

var
APtr : TContained;

begin
APtr := TContained(TheList.Items[index]);

Result := APtr.GetValue;

end;

An additional feature is provided as part of the TList class
type. The Count property of a list is used to determine
how many elements currently exist in the list. The purpose

Delphi at Work
of the member function GetNumItems is to return this
value:

function TListClass.GetNumItems:Integer;

begin
Result := TheList.Count;

end;

As noted previously, before the list can be destroyed, we must
kill all the items that its pointers point to. The KillItem proce-
dure accepts an Integer by value that corresponds to the numeric
position of the item that will be destroyed. A pointer to the item
is retrieved and typecast, and then the Free method is called to
remove the previously instantiated TContained type. The list
then has the position that used to point to the killed item delet-
ed; this causes a nil pointer to appear at the index position. The
list’s Pack method is then called to remove the nil pointer from
the list. This is an example of dynamic list sizing in action:

procedure TListClass.KillItem(index: Integer);

var
APtr : TContained;

begin
try

APtr := TContained(TheList.Items[index]);

APtr.Free;

TheList.Delete(index);

TheList.Pack;

except
on EListError do

Messagedlg('Cannot remove item from empty list',

mtwarning,[mbok],0);

end;
end;

A Sample Program
During the development of this list container, a simple
form was designed and tied to a TListClass instance to
facilitate easy debugging. The form (see Figure 2) has four
buttons that allow the creation and destruction of a list and
the removal and insertion of items into the list. The entire
code listing for this demonstration form is provided in
Listing Three, beginning on page 33.
Figure 2: This
demonstration
form allows
you to test
TListClass.
The Create button instantiates a copy of TListClass and
assigns it to MyLC. MyLC is declared as being of TListClass
type in the global var section. In addition, to protect the form
from destroying a non-existent list, or adding items to a non-
existent list, the sample code manages enabling and disabling
of the form’s buttons.

When a user presses the Add Item button, a random integer is
added to the current list. Additionally, the current memory
available display, along with the number of items, is updated
on the form. Also, when the Add Item button is pressed, it
generates a random integer and uses the AddToList method of
32 February 1997 Delphi Informant
TListClass to add this integer to the list. Similarly, the Remove

Item button uses the KillItem method to delete the item cur-
rently being viewed.

Finally, the Destroy button causes the list instance to be killed
by calling the Free method. Note that because the TListClass
itself manages deletion of the individual items, we don’t need
to concern ourselves with leaking memory.

An interesting and unusual consequence of Delphi’s ability to
trap GPFs was noted during the development of this package.
“Dropped pointers” (i.e. lost pointer references) caused most
of the problems while the software was being written. I found
that debugging time was minimized by allowing the Delphi
IDE to raise exceptions and monitoring the faulty dynamic
objects by using variable watches. This approach also helped
me decide where to put the Delphi exception handlers.

Exception Handling and Error Trapping
A powerful feature of Delphi is the ease with which it can
handle exceptions. Typically, a dropped pointer will cause a
GPF; an exception handler can be written to prevent this
from happening.

The Delphi IDE can get in the way of testing your exception
handlers because it can also handle exceptions. When config-
uring your environment (Options | Environment | Preferences)
you’ll see an option named Break on Exception is available.
While you’re testing your exception handlers, you should
ensure that this option is disabled; otherwise the IDE will
trap the exception that is raised, and your custom handler
won’t be invoked immediately.

To remove the possibility of an attempt to kill a non-existent
item raising an exception, the KillItem method of TListClass was
altered to include a try..except construct. Although the design of
the demonstration program prevents you from making such mis-
takes (by dimming some of the buttons), you can comment out
these lines of code to see how Delphi manages these exceptions.
For example, if you were to create a list and then attempt to
remove an item from the empty list, the application will generate
an EListError exception on the line that attempts to get a pointer
to the non-existent item. This will only happen if the Break on
Exception option is enabled. You should always keep this option
turned on unless you’re testing your exception handler.

Trapping the raised exception, once it’s known, is a simple mat-
ter of wrapping the existing code in a try..except block and then
using an on..ExceptionName..do statement. If no exception is
raised, the code associated with the try keyword will execute;
otherwise the code associated with the except keyword will run.
In this case, the exception handler checks for an EListError and
displays a dialog box if this occurs. More complex error handling
should be an immediately obvious possibility. In the case of the
KillItem method, an exception provides the user with a “Cannot
remove item from empty list” error, instead of a GPF.

An exception can also be raised by adding an item to a list
that doesn’t exist. This will raise the exception because an

Delphi at Work
attempt was made to access data through an uninitialized
pointer. The AddToList method associated with TListClass
should be modified to rectify this potential problem:

try
TheList.Add(APtr);

except on EGPFault do
MessageDlg('Attempt to Add to a Non-Existent List',

mtwarning,[mbok],0);

end;

Other exceptions may be raised, and it’s always worthwhile to
add custom exception handlers where they are necessary. A
TList will raise an exception if the program tries to overfill it.
Each list may contain up to 16,380 pointer references. Trying
to add the 16,381st item would raise an EListError exception.
(Again, this is a Delphi 1 limitation; in Delphi 2 the number
is limited only by available memory.) Trapping other such
exceptions is left to the enthusiastic reader.

2D Array-Style Wrappers for TListClass
Using a TList wrapper to calculate an element’s position in a
faked, two-dimensional array is relatively straightforward.
The index is merely assumed to count normally (array-wise)
and the internals deal with the actual position in the
dynamic 1-dimension (or n=1) list using this simple modifi-
cation. Any multi-dimensional array (n=>2) can be mapped
to a one-dimensional array structure by applying a simple
mathematical formula.

Assuming that the array is two-dimensional and of size (I, J),
the linear list-based position of the element (x, y) is:

Linear index := (J*(x-1))+y;

A method can then be used in all calls to the TListClass meth-
ods that require multi-dimensional index parameters. In this
case, the LinearIndex function is specified to calculate a linear
index for a two-dimensional array.

function LinearIndex(j,x,y: Integer): Integer;

begin
result := (j*(x-1))+y;

end;

The calculation of linear indices for fake arrays of other
dimensionality is similar in nature to that shown above.

Conclusion
The TList wrapper class presented in this article was initially
developed for use with visual neural network software I’m
developing, and has been of tremendous use for this purpose.
Many modifications and additions can be made using the
other methods and properties associated with lists — this is
left to the enthusiast. As with any good object-oriented
model, the classes provided are extensible (through inheri-
tance) and the implementation is safe.

One major problem arose during the development of the TList
wrapper class and indicates a major failing of Delphi in compar-
ison to C++. In the code given earlier, I assume that all elements
in the list are of the same type. This is a reasonable assumption
33 February 1997 Delphi Informant
because it reflects the nature of normal array structures. It
requires the following line of code (or something similar):

ContainedType = Integer;

In C++, templates could be used to build generic classes that
deal with generic types. A linked list class could be built to deal
with a generic type T and then the decision about which type T
is used could be deferred until the code is being written. In
Delphi, if we required more than one different type of fake
array, we would have to needlessly duplicate code (copy-and-
paste style) to achieve this. Even with this limitation in mind,
the code provided here is powerful and really only amounts to a
few actual “do something” statements. Developing this sort of
code from scratch in a traditional non-object-oriented way
would be a tedious task. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\FEB\DI9702IC.

Dr Ian Cresswell is the Research Coordinator in the School of Computer Science at
the University of Central England in Birmingham, England. He welcomes com-
ments and suggestions via e-mail (icressw@leopold.win-uk.net) about this arti-
cle. He is currently working on a book that incorporates his two main interests —
Machine Intelligence Algorithms in Delphi.
Begin Listing Three — The Listtry Unit
unit Listtry;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,

Graphics, Controls, Forms, StdCtrls, ListUnit, Buttons;

type

TForm1 = class(TForm)
lblItem : TLabel;

lblMessage : TLabel;

lblStep : TLabel;

btnCreate : TBitBtn;

btnDestroy : TBitBtn;

btnUp : TBitBtn;

btnDown : TBitBtn;

btnAddItem : TBitBtn;

btnRemoveItem : TBitBtn;

procedure btnCreateClick(Sender: TObject);

procedure btnDestroyClick(Sender: TObject);

procedure btnUpClick(Sender: TObject);

procedure btnDownClick(Sender: TObject);

procedure btnAddItemClick(Sender: TObject);

procedure btnRemoveItemClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure FormDestroy(Sender: TObject);

private
procedure ShowTheMessages;

procedure RestrictMovement;

end;

var
Form1: TForm1;

implementation

var

Delphi at Work
MyLC : TListClass;

CurrPos : integer;

{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);

begin
Randomize;

ShowTheMessages;

end;

procedure TForm1.FormDestroy(Sender: TObject);

begin
if MyLC <> nil then

MyLC.Free;

end;

procedure TForm1.btnCreateClick(Sender: TObject);

begin
MyLC := TListClass.Create; // Create list
Currpos := 0;

Randomize;

ShowTheMessages;

btnCreate.Enabled := False; // Prevent another create
btnDestroy.Enabled := True; // Allowed to destroy list
btnAddItem.Enabled := True; // Allowed to add item

end;

procedure TForm1.btnDestroyClick(Sender: TObject);

begin
MyLC.Free; // Free the list
MyLC := nil;
CurrPos := 0;

ShowTheMessages;

btnCreate.Enabled := True;

btnDestroy.Enabled := False;

btnUp.Enabled := False;

btnDown.Enabled := False;

btnAddItem.Enabled := False;

btnRemoveItem.Enabled := False;

end;

procedure TForm1.btnAddItemClick(Sender: TObject);

begin
MyLC.AddToList(Random(32000));

ShowTheMessages;

RestrictMovement;

btnRemoveItem.Enabled := True;

end;

procedure TForm1.btnRemoveItemClick(Sender: TObject);

var
TotalItems : Integer;

begin
MyLC.KillItem(CurrPos); // Delete this item in the list
TotalItems := MyLC.GetNumItems; // Get new total items
if (CurrPos >= TotalItems) and

(CurrPos > 0) then
Dec(CurrPos);

btnRemoveItem.Enabled := (TotalItems > 0);

ShowTheMessages;

RestrictMovement;

end;

procedure TForm1.btnUpClick(Sender: TObject);

begin
Inc(CurrPos);

ShowTheMessages;

RestrictMovement;

end;

procedure TForm1.btnDownClick(Sender: TObject);

begin
Dec(CurrPos);

ShowTheMessages;

RestrictMovement;

end;

procedure TForm1.ShowTheMessages;

var
34 February 1997 Delphi Informant
TotalItems : Integer;

TmpStr : string[2];
begin

try
TotalItems := MyLC.GetNumItems;

if TotalItems > 1 then
TmpStr := 's.'

else
TmpStr := '.';

if TotalItems = 0 then
begin

lblMessage.Caption := 'List is empty.';

lblItem.Caption := '';

end
else

begin
lblMessage.Caption :=

'List contains '+IntToStr(MyLC.GetNumItems)+

' element'+TmpStr;

lblItem.Caption :=

'Item at Index #'+IntToStr(CurrPos)+' =

'+IntToStr(MyLC.GetElement(CurrPos))

end;
except

lblMessage.Caption := 'List is not created.';

lblItem.Caption := '';

end;
end;

procedure TForm1.RestrictMovement;

begin
btnDown.Enabled := (CurrPos > 0);

btnUp.Enabled := (CurrPos < (MyLC.GetNumItems-1));

end;

end.

End Listing Three

35 February 1997 Delphi Informant

Columns & Rows
Delphi / BDE / Paradox

By Bill Todd

Figure 1: Setting the BDE
Have you ever written a Delphi program that uses local Paradox tables,
and received error messages such as “Not initialized for network

access” or “Directory is busy”? Have you set up a multiuser program and
discovered that user A doesn’t see database changes made by user B? The
secret to avoiding these problems is correctly configuring the Borland
Database Engine (BDE).

Directory Assistance
Configuring the BDE for a Paradox Database
First, let’s set the Paradox network directory.
Run the BDE Configuration Utility that
ships with Delphi, select the Drivers page,
and click on the Paradox driver to view the
screen shown in Figure 1.

NET DIR
If your program will access files on a shared
network drive, you must set the NET DIR
parameter. NET DIR is the path to the
directory that contains the Paradox network
control file named PDOXUSRS.NET. The
following rules apply to the NET DIR path:

It must point to a shared network directory.
 Paradox driver parameters.
Users who will access Paradox tables must
have read, write, create, and delete rights
to the directory. PDOXUSRS.NET will
be created automatically by the BDE.
Users who will concurrently access
Paradox tables in a directory must use the
same network control file directory.
The NET DIR path must be the same
for all users.

If you’re configuring the BDE for a peer-to-
peer network, there’s one exception to the
last rule. How you handle peer-to-peer net-
works depends on whether you’re using the
16- or 32-bit BDE. Let’s look at the easy case
first. Because the 32-bit BDE supports UNC
file names, it’s easy to provide a path to the
NET DIR that’s the same for all machines.
The format of a UNC path is:

\\ServerName\ShareName\ShareDir

where ServerName is the name of the machine
on which NET DIR will reside, ShareName is
the name assigned to a shared directory, and
ShareDir is the path to a subdirectory under-
neath the directory shared as ShareName.
Using UNC, the NET DIR path will be the
same on all machines, including the server.

With the 16-bit BDE, you must use the same
NET DIR path on every machine, with one
exception: the drive letter can be different.

Columns & Rows
For example, suppose the directory for the network control
file is C:\NETDIR on the server. On all other machines, drive
C: on the server is mapped to drive G:, so the NET DIR set-
ting for these machines must be G:\NETDIR.

You can programmatically override the NET DIR setting
in the BDE configuration file at run time by setting the
Session.NetFileDir property. For example, the Object Pascal
statement:

Session.NetFileDir := 'G:\BDENET';

will set the network control file directory to the
G:\BDENET directory. If you need to change the network
control file directory in your program, do it in the project
file before any forms are opened, or in the OnCreate event
handler of the main form before any tables are opened.
Whether you set the network control file directory in the
main unit or in the project file, remember to include the
DB unit in the uses clause.

LEVEL
The internal structure of Paradox tables has changed sever-
al times over the years; the LEVEL parameter determines
the lowest (oldest) table version the BDE will create. The
default setting is 4, which is the format first introduced
with Paradox 4.0 for DOS (and subsequently used by
Paradox 4.5 for DOS, Paradox 1.0 for Windows, and
Paradox 4.5 for Windows). Level 5 tables were introduced
in Paradox 5.0 for Windows, and level 7 tables are sup-
ported by Paradox 7.0 for Windows 95 and Windows NT,
and Paradox 7 for Windows 3.1. You can also set the table
level to 3 if you need to create tables that can be accessed
by Paradox 3.5 for DOS or earlier versions.

The level of any table you create will be determined by the
table’s features. Let’s say the table level in the BDE config-
uration file is set to 4. If you create a table that uses the
long integer field type, or any of the other field types
added in Paradox 5.0, the BDE will automatically create a
level 5 table. If you use unique or descending secondary
indexes, the BDE will automatically create a level 7 table.
You may as well leave the default table level set to 4 (the
default) for maximum backward compatibility. You won’t
get better performance — or any other advantage — from
using a table level higher than the table and index struc-
tures require.

TYPE
The file TYPE parameter is set automatically by the BDE
Configuration Utility; you shouldn’t change it. The only two
valid values are FILE, used for Paradox and dBASE tables,
and SERVER, which is used for any database server.

LANGDRIVER
This setting selects the language driver used for your tables
and indexes. The language driver determines which language-
specific characters can be stored in tables and which sort
order is used to build indexes.
36 February 1997 Delphi Informant
The standard Paradox ASCII character set follows the ASCII
sort order, which sorts “a” after “Z”; that is, lower-case char-
acters follow upper-case characters. If you want “A” and “a”
to be sorted adjacent to one another, you might consider
changing to the Paradox International language driver. If you
do, however, be warned that — without rebuilding all the
indexes — a Paradox user with a different language driver
will not be able to use tables that you create.

BLOCK SIZE
The maximum amount of data a Paradox table can hold is
64KB times the block size. Because the default BLOCK
SIZE parameter is 2048 bytes, any Paradox table you create
is limited to 128MB in size. The allowable block sizes for
level 3 and 4 tables are 1024, 2048, and 4096. For level 5
and higher, you can also specify a block size of 8192,
16384, or 32768. The default size, however, is still 2048.

If you change the block size in the BDE configuration file,
all the tables you create after making the change will have
the new block size. To change the block size of an existing
table, first change the block size in the BDE
Configuration Utility, then copy or recreate the table.
Because reading or writing a single record means reading
or writing the entire block that contains the record, you
should not make the block size any larger than is necessary
to contain the data.

FILL FACTOR
The FILL FACTOR determines how full an index block
must be before Paradox will allocate another block when
building the index. The default is 95 percent. This means
that when the index is initially built, or when it’s rebuilt as
part of packing a table, each index block will have about
five percent of its space empty.

When you add a new record to a table, a record entry
must be made in each of the table’s indexes. Having some
free space in the index blocks means it’s less likely that the
affected blocks will be full; therefore, adding the new
record will be faster.

While the FILL FACTOR can be set to any percentage, leav-
ing too much free space in the index blocks makes the index
larger. If the index is larger, more index blocks must be read
when you search for a record, decreasing performance.

STRICTINTEGRTY
If STRICTINTEGRTY (Strict Integrity) is set to TRUE, pro-
grams that do not support referential integrity (such as Paradox
for DOS) will not be able to modify any table for which referen-
tial integrity is defined. To modify a table in Paradox for DOS,
set STRICTINTEGRTY to FALSE. If you do so, and want to
protect data integrity, you must write code to enforce referential
integrity in your Paradox for DOS application.

LOCAL SHARE
The BDE automatically provides table and record locking for
Paradox tables stored on a shared network drive. However, that’s

Figure 2: You may need to change the LOCAL SHARE default
setting on the System page.

Columns & Rows

function GetExeName: string;
{ Returns the name of the .EXE file with no path

and no extension. }
var

ExtPos : Integer;

Name, Ext : string;
begin

Name := ExtractFileName(Application.ExeName);

Ext := ExtractFileExt(Application.ExeName);

{ Find where the extension starts in the name. }
ExtPos := Pos(Ext, Name);

{ Extract the name without the extension. }
if ExtPos > 0 then

Name := Copy(Name, 1, ExtPos - 1);

Result := Name;

end; { GetExeName. }

Figure 3: A function to return the .EXE file name.
not the only situation where locking is required to ensure the
integrity of your data. If you run multiple programs that simul-
taneously access the same tables on your local drive, you need
locking to prevent one program from changing a record already
in use by another.

Figure 2 shows the System page of the BDE Configuration
Utility. By default, the LOCAL SHARE parameter is set to
FALSE. If you run multiple programs that access the same
tables, you must set LOCAL SHARE to TRUE to tell the
BDE to provide locking, even though the tables are on your
local drive, unless all the programs are using the same ver-
sion of the BDE. If you’re running a multiuser application
on a peer-to-peer network, you must also have LOCAL
SHARE set to TRUE. This is because the BDE “sees” the
drive on the server as a local drive rather than a shared net-
work drive, and each workstation is running its own copy of
the BDE.

Private Directory
If you’re a Paradox programmer, you’ll be surprised to learn
that the rules that govern the use of the private directory
are much different in Delphi than in Paradox. Paradox cre-
ates temporary files with fixed names in your private direc-
tory. Examples include ANSWER.DB, CHANGED.DB,
DELETED.DB and KEYVIOL.DB. Because these tempo-
rary tables show the same name for every user and every
instance of Paradox, each user and each session must have
its own private directory. When two instances of Paradox
are running on the same machine, this ensures that two
Paradox sessions will not try to create a table with the same
name in the same directory at the same time.

Although the BDE also creates temporary files in the private
directory when querying, sorting, and restructuring Paradox and
dBASE tables and when performing a query that joins tables on
two different servers, the BDE creates unique file names for its
temporary files. Therefore, it’s safe for multiple Delphi programs
running on the same machine at the same time to use the same
private directory as long as the program itself does not create files
with fixed names in the private directory.
37 February 1997 Delphi Informant
If multiple users are running the same program on a network,
and if the BDE will need to create temporary files as the pro-
gram runs, you’ll need to assign a separate private directory for
each user. When you start a Delphi database program, it opens
the default BDE session and sets the private directory to the
startup directory, which will be the one specified in the Start In

field of the program’s icon on the Windows desktop. If none is
specified, the startup directory will be the one that contains the
.EXE file. However, the BDE does not create lock files in the
private directory until either the BDE needs to create a tempo-
rary file in the private directory, or you set the path to the pri-
vate directory from within your program by assigning a path to
the Session.PrivateDir property.

Because the private directory isn’t locked when a program starts,
it’s possible for two different users to start the same program
and share the same private directory. However, as soon as the
BDE needs to create a temporary file, it will lock the private
directory for that user. If another user’s copy of the BDE needs
to create a temporary file, that user will receive an exception
warning that the “Directory is busy”. This is good; client/server
programs that don’t do heterogeneous joins, or use cached
updates, won’t have to worry about the private directory,
because the BDE won’t have to create any temporary files.

However, if you’re running a program that uses Paradox tables
and many users share a single copy of the program .EXE file on
a shared network drive, you have a problem. If every user is run-
ning the same copy of the .EXE, then every user will have the
same private directory — unless you specify a different startup
directory for each user or you change the private directory in
your code as soon as the program starts.

The best solution to this problem is to have each Delphi pro-
gram set the private directory to a unique directory when
starting. One way to do this is to create a subdirectory with
the same name as the program’s .EXE file, then place it on
your local hard drive.

The function shown in Figure 3 returns the name of the pro-
gram’s .EXE file with the path and extension removed. Figure 4
shows a procedure that creates a private directory.

procedure SetPrivateDir(DirPath: string);
{ Creates the specified directory if it does not

exist and makes it the private directory. }
begin

ForceDirectories(DirPath);

if DirectoryExists(DirPath) then
Session.PrivateDir := DirPath

else
raise Exception.Create(

'Cannot create private directory ' + DirPath);

end; { SetPrivateDir. }

Figure 4: Use the SetPrivateDir procedure to create a private
directory.

Columns & Rows
Using these routines, you can set the private directory from
within your program:

SetPrivateDir('c:\bdepriv\' + GetExeName);

This statement creates the private directory as a subdirec-
tory in the C:\BDEPRIV directory, maintaining all your
private directories in one location rather than sprinkling
them throughout the root directory of your local drive.
Alternately, you can create the private directories below
the users’ home directory on the network. Although per-
formance is better if the private directory is on a local
hard drive, the network is a better choice if some users
have limited hard disk space.

Because there are always exceptions, it’s a good idea to pro-
vide a way for the default private directory path to be over-
ridden. You can do this with an .INI file, registry entry, or
an optional command-line parameter for your program.
Using one of these techniques makes it easy to handle the
exceptional case in which one user needs a private directory
in a non-standard location.

Conclusion
If your Delphi programs use the BDE, you must configure it
properly, setting a unique private directory for each user and
each program. This allows safe multiuser and multitasking
operation. Configuring the BDE properly will allow multiple
programs to safely share data on network or local drives. ∆

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix, AZ. He is co-author of Delphi 2: A
Developer’s Guide [M&T Books, 1996], Delphi: A Developer’s Guide [M&T Books,
1995], Creating Paradox for Windows Applications [New Riders Publishing,
1994], and Paradox for Windows Power Programming [QUE, 1995]; and is a
member of Team Borland, providing technical support on CompuServe. He is also
a contributor to Delphi Informant, and has been a speaker at every Borland
Developers Conference. He can be reached on CompuServe at 71333,2146, on
the Internet at 71333.2146@compuserve.com, or at (602) 802-0178.
38 February 1997 Delphi Informant

39 February 1997 Delphi Informant

DBNavigator
Delphi 1 / Delphi 2

By Cary Jensen, Ph.D.

Figure 1: The p
class (* availabl

Propertie

ActiveControl
ActiveForm
ComponentCou
ComponentInd
Components
Cursor
Cursors
DataModuleCo
DataModules*
Fonts
FormCount
Forms
Height
Name
Owner
PixelsPerInch
Tag
Width
I t’s common to think of components as objects that appear on the
Component Palette, permitting them to be placed on a form and modi-

fied at design time. However, there are many components that don’t
appear on the palette. In fact, three are automatically created by Delphi at
run time: the Application, Screen, and Session components.

Screening Process
An Introduction to the TScreen Class
e

e

These three are instance variables of the
TApplication, TScreen, and TSession classes,
respectively. You can use these variables to
control a number of aspects of your applica-
tion. This month’s column takes a closer look
at the one variable you’re most likely to over-
look in your Delphi work: Screen.

The TScreen class, as well as the Screen
instance variable, is declared in the Forms
unit. Using this variable, you can:
roperties, methods, and events of the TScreen
 in Delphi 2 only).

s Methods Events

Create OnActiveControlChange
Destroy OnActiveFormChange

nt FindComponent
x Free

InsertComponent
RemoveComponent

unt*
obtain information concerning the compo-
nents and forms within your application,
obtain information about the names of
the fonts available on your system,
control the cursors used by your applica-
tion, and
call event handlers when focus moves
from control to control, and from form
to form within the application.

Figure 1 contains a list of all of the TScreen
properties, methods, and events.

Using the Screen component is demonstrat-
ed in this article by showing how to deter-
mine if a specific form is currently open,
get a list of the available fonts, control the
screen cursor, and respond to changes in
the active form.

Detecting an Open Form
Form control is one of the more interesting
and important topics in Delphi, because
most Delphi applications require several
forms — and many include dozens.

Under most circumstances, form control is
fairly easy. Specifically, if a given form is
auto-created (meaning it’s created from
within the project file [.DPR file]), and is
not destroyed until the application closes,
accessing such a form, even after the user
has closed it, isn’t difficult. This is because,

DBNavigator

Figure 2: If a
form has been
created and
then destroyed,
its instance
variable will
not have a nil
value.
unless you change the default behavior of the closing
form, a form that is closed by the user isn’t destroyed; it’s
merely hidden. Consequently, if you need to make the
form visible again, all you need to do is call the form’s
Show or ShowModal method, using the form’s instance
variable as a qualifier.

For example, if you have an auto-created form of the TForm2
class, and that form’s unit defines an instance variable named
Form2, you can always display the form using one of the fol-
lowing statements:

Form2.Show;

or

Form2.ShowModal;

However, accessing a previously created form is far more
complex if there is a possibility that the form can be
destroyed. Consider the following scenario: You have a form
that is not an auto-created form — you create this form at
run time by calling its Create constructor. Furthermore, it’s a
form you want to display several times. However, because you
don’t want it to take up resources when it is no longer used,
you ensure it’s destroyed each time it is closed.

With a form that is displayed using the Show method, you
can cause it to be destroyed when it is closed by attaching an
event handler to the form’s OnClose event property, and set-
ting the OnClose event handler’s Action parameter to caFree.
For example:

procedure TForm2.FormClose(Sender: TObject;

var Action: TCloseAction);

begin
Action := caFree;

end;

But what if you want to display this form again? How do you
determine if the form is still open (hidden or not), versus its
having been destroyed, in which case it needs to be recreated,
i.e. have its constructor called again?

When first attempting to perform this task, most Delphi
developers test whether the form’s instance variable is nil.
For example:

if Form2 <> nil then
Form2.Show

else
Form2 := TForm2.Create(Self);

While this code is successful for testing whether the Form2
instance variable has ever been assigned to an instance of a
TForm2 class, it will generate an exception similar to the
one shown in Figure 2 when this code is executed after the
form pointed to by Form2 has been destroyed. Specifically,
the Form2 instance variable, after having been assigned a
handle to a TForm2 instance, will not contain nil. That is,
destroying the form being pointed to by Form2 does not
set Form2 to nil.
40 February 1997 Delphi Informant
A reliable alternative is to test whether the Screen object’s Forms
property points to a member of the TForm2 class. Forms is a
zero-based array of pointers to existing forms. Each time a new
form is created, it’s automatically added to the Screen.Forms
array, and each time one is destroyed, it’s removed. You can use
the Screen.FormCount property to identify how many forms are
open. The following is a code segment that demonstrates how
to test whether an instance of the TForm2 class is currently in
existence (hidden or not), how to make it the active form if it
exists, and how to create it if it doesn’t:

var
Found, i: Integer;

begin
Found := -1;

for i := 0 to Screen.FormCount - 1 do
if Screen.Forms[i] is TForm2 then

Found := i;

if Found >= 0 then
Screen.Forms[Found].Show

else
begin

ShowMessage('Form2 not found - Creating...');

Form2 := TForm2.Create(Self);

Form2.Show;

end;
end;

To use this technique with any other form, substitute the
form class of the form you want to set focus to for the
TForm2 class in the preceding code segment.

The use of this technique is demonstrated in the project
named FORMS.DPR. The main form of this project is
shown in Figure 3. When Form2 has not yet been created,
both the Use Screen.Forms property button and the Use

Form2 <> nil button will correctly report that Form2 does
not exist, then create it. Likewise, if Form2 has already been
created, but not yet destroyed, both buttons can successfully
set focus to that form.
However, if Form2 has
been created, but subse-
quently destroyed, only the
Use Screen.Forms property

button will be able to
recreate it.

The Use Form2 <> nil

button will incorrectly
assume that Form2 still
exists (because the Form2
variable still points to the
memory that formerly
pointed to the now-
destroyed form), and will

Figure 3: The FORMS.DPR project
demonstrates the use of the
Screen.Forms property to deter-
mine if a form of the TForm2 class
is open, and open it if it isn’t.

DBNavigator
generate an exception when attempting to set focus to the
destroyed form.

Listing Available Fonts
The Screen component has a Fonts property — a TStrings prop-
erty that contains a list of the fonts available in Windows. If you
want to determine if a particular font is available, use the
IndexOf method of the TStrings class. This method returns -1 if
the specified string doesn’t exist, and the index of the matched
item if it does. For example, the following code demonstrates
how to test if the current system has the MS LineDraw font:

if (Screen.Fonts.IndexOf('MS LineDraw') <> -1) then
Form1.Font.Name := 'MS LineDraw'

else
ShowMessage('MS LineDraw not available');

The project shown in Figure 4 demonstrates another use of
the Screen.Fonts property. In this project, the Screen.Fonts prop-
erty is assigned to the Items property of a ListBox using the
following code:

ListBox1.Items := Screen.Fonts;

ListBox1.ItemIndex := 0;

Within the OnChange event handler of the ListBox, the
currently selected font name is assigned to the Font.Name
property of a Memo control using the following code:

Memo1.Font.Name := ListBox1.Items[ListBox1.ItemIndex];

Using this simple technique, you can easily inspect the vari-
ous fonts available on your system.

Setting the Screen Cursor
Using a variety of different cursor shapes within a Delphi
application seems easy. By setting the Cursor or DragCursor
property of a given object, you can define which cursor will
be displayed whenever the mouse passes over, or drags over,
the specified object. However, this technique doesn’t affect
the cursor shape when the mouse is not over the particular
component. So how do you change the shape of the cursor
for the entire application? For example, how do you change
the shape of the cursor to an hourglass shape for all objects
during the execution of a lengthy process?

The answer is found in the Cursor property of the Screen
component. Specifically, setting this property changes the
41 February 1997 Delphi Informant

Figure 4: The FONTS.DPR project demonstrates one use of
the Screen.Fonts property.
shape of the default cursor for the application as a whole
(regardless of the cursors defined for each individual com-
ponent). The following code demonstrates how this tech-
nique can be used:

{ Set the cursor to an hourglass shape }
Screen.Cursor := crHourGlass;

{ Perform a lengthy operation }
SomeLongProcessHere;

{ Restore the original default cursor shape }
Screen.Cursor := crDefault;

Responding to Changes in the Active Form
The Screen object has two event properties:
OnActiveControlChange and OnActiveFormChange. By assign-
ing event handlers to these event properties you can respond
to changes as focus moves between objects of the application
and forms of the application, respectively.

Both these event handlers are TNotifyEvent type properties,
meaning that they are passed a single argument of type
TObject when called. To determine which control or form
is becoming active, use the TScreen properties ActiveControl
and ActiveForm. While these properties define which object
is receiving focus, the event handler itself is called immedi-
ately before focus is assigned. Consequently, you can use
these event handlers to either respond to the fact that focus
is being moved, or to prepare the object to which focus is
moving. You cannot prevent the focus from changing.
However, you can use the SetFocus method to set focus to
another control from within the event handler.

Creating a TScreen Event Handler
There is one aspect of using the TScreen event properties that
makes them more difficult to use than most other compo-
nent event properties. Specifically, Delphi cannot create
TScreen event handlers for you. That is, because you cannot
work with a Screen component at design time, it isn’t possi-
ble to select one using the Object Inspector. Consequently,
the Object Inspector cannot create a TScreen event handler
and assign it to the Screen’s event properties.

Creating an event handler for a TScreen event property
requires three steps:
1) Create a forward declaration for the event handler in the

form’s type declaration.
2) Write the implementation of the event handler.
3) Assign the event handler to the appropriate Screen event

property.

Adding the forward declaration of the event handler to the
form’s type declaration involves declaring a procedure in
the form’s published section. For example, if you want your
Figure 5: The ONFRMCHG.DPR project demonstrates the use of
the Screen.OnActiveFormChange event handler to update the
Caption property of the main form in an SDI application.

DBNavigator
event handler to be named FormChange, you need to add
the following statement to your form’s type declaration:

procedure FormChange(Sender: TObject);

Here’s the complete type declaration for the form shown in
Figure 5:

type
TForm1 = class(TForm)

MainMenu1: TMainMenu;

File1: TMenuItem;

Exit1: TMenuItem;

OpenDialog1: TOpenDialog;

SpeedButton1: TSpeedButton;

Open1: TMenuItem;

N1: TMenuItem;

procedure FormChange(Sender: TObject);

procedure Exit1Click(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure Open1Click(Sender: TObject);

end;

(There are some Delphi developers who recommend you
never add your own code to the published section of a type
declaration created by Delphi. I disagree with this advice. By
adding event handlers that you must create manually to the
published section of a type declaration, you make them avail-
able during design time. This permits you to assign this same
event handler to other objects’ event properties at design time
using the Object Inspector.)

The second step to creating a Screen object’s event handler is to
create the implementation. Because the event handler is a method
of the form’s class, the procedure name in the implementation
section of the unit must be qualified with the form’s class name.

For example, the OnActiveFormChange event handler used
in the ONFRMCHG.DPR project shown in Figure 5
includes the following FormChange implementation:

procedure TForm1.FormChange(Sender: TObject);

begin
if Self = Screen.ActiveForm then

Self.Caption :=

'Screen.OnActiveFormChange Event Property Demo'

else
Self.Caption :=

'Detail form: ' + Screen.ActiveForm.Caption;

end;

The final step to manually creating an event handler for the
Screen object is to assign the name of the event handler
method to the Screen’s event property. In most cases, this is
performed in the OnCreate event handler for the form. The
following is the OnCreate event handler for the form in the
ONFRMCHG.DPR project:

procedure TForm1.FormCreate(Sender: TObject);

begin
Self.Top := 1;

Self.Left := 1;

Screen.OnActiveFormChange := FormChange;

end;

This event handler performs two tasks. First, it places the
SDI application’s main form in the upper-left corner of the
42 February 1997 Delphi Informant
screen when the application starts. Second, it assigns the
FormChange method to the OnActiveFormChange event prop-
erty of the Screen component.

Conclusion
Screen is an instance variable of the TScreen class. Using this
variable you can get information about, and control of, vari-
ous elements of your Delphi application that would other-
wise be inaccessible. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\FEB\DI9702CJ.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi
In Depth [Osborne/McGraw-Hill, 1996]. He is also Contributing Editor to Delphi
Informant. Cary is a member of the Delphi Advisory Board for the 1997 Borland
Developers Conference. You can reach Jensen Data Systems at (713) 359-3311,
or via CompuServe at 76307,1533.

43 February 1997 Delphi Informan

At Your Fingertips
Delphi / Object Pascal

By David Rippy

Figure 2: The OnCreate eve

Figure 1: The DBListBox in t
form is populated dynamical
run time.
No problem can stand the assault of sustained thinking. — Voltaire
t

nt h

his
ly a
How do I populate a DBListBox with the
contents of a table?
As a general rule, it’s good practice to pop-
ulate DBListBoxes and DBComboBoxes
dynamically at run time using a Table
object — instead of editing the compo-

nent’s string list at design time. The
obvious benefit is that when the Items
list of the DBListBox or DBComboBox
must be updated, you simply make the
change in the table rather than in the
program itself. Because the
DBComboBox and DBListBox have a
DataSource property, you may think
they have the capability to populate
themselves. However, this is not the
case. The DBComboBox and
DBListBox are for filling values in a
table rather than showing you values
from a table.

t

andler for Form1.
Luckily, we can show values from a table in
a DBListBox with just a few lines of Object
Pascal. Figure 1 displays a form containing a
DBListBox that will be populated at run
time. Examine the code snippet in Figure 2.
This code is located in Form1’s OnCreate
method, causing DBListBox1 to be populat-
ed with the names of several colors when
the form is created.

In a nutshell, Table1 is scanned using a
while construct. As Table1 (COLOR.DB)
is iterated, the Items property of
DBListBox1 is populated with the values
from the Color field in Table1.

For extra credit, see if you can figure out
how to set the default value of the
DBListBox to the first value of its Items
list. — D.R.

How can I repeatedly play a MIDI file?
With the advent of the “multimedia PC,”
users are beginning to request sound and
animation to enhance the basic functions
of their applications. Delphi makes it a
trivial task to add such features using the
MediaPlayer component.

MediaPlayer can play MIDI files (.MID),
wave files (.WAV), animations (.AVI), and
other forms of media. One of the most com-
mon requests is to have an application con-
tinually play a MIDI file in the background.
Unfortunately, MediaPlayer doesn’t feature a
property that allows looping. Thankfully,
this is an easy feature to implement.

procedure TForm1.MediaPlayer1Notify(Sender: TObject);

{ When MIDI song ends, restart }
begin

with MediaPlayer1 do
if (NotifyValue = nvSuccessful) and

(Mode = mpStopped) then
MediaPlayer1.Play;

end;

Figure 4: MediaPlayer1’s OnNotify event handler.
procedure TForm1.Button1Click(Sender: TObject);

begin
Label1.Caption := DateTimeToStr(FileDateToDateTime(

FileAge(FileListBox1.FileName)));

end;

Figure 6: The Date / Time button’s OnClick event handler.

Figure 3: A form containing the MediaPlayer component.

Figure 5: This form displays the date and time stamp for the
selected file.

At Your Fingertips
The form in Figure 3 contains a MediaPlayer component
(MediaPlayer1) that plays the MIDI file “Canyon”. To
cause Canyon to play repeatedly, we need to add some
code. Figure 4 shows the OnNotify event handler for
MediaPlayer1. OnNotify can trap four notification values:

nvSuccessful
nvAborted
nvFailure
nvSuperseded

The code in Figure 4 specifically looks for nvSuccessful, mean-
ing that MediaPlayer successfully completed its most recent
command.

We must also ensure that MediaPlayer has finished playing
the song by checking its Mode property. If the value of
Mode is mpStopped, a Play command is issued, causing
Canyon to play again. This process will continue until a
Stop command is issued to MediaPlayer by the user or
through code.

Note that because the MediaPlayer works with .AVI files, this
tip can be applied to animations as well. — D.R.

How can I determine the date and time stamp of a file?
There are many occasions when you may need to access a
file’s date or time stamp. Installation routines, for example,
rely heavily on this information to decide whether an existing
file should be replaced with a more recent version.

Delphi makes accessing the date and time stamp easy with
the FileAge command. Unfortunately, the Help documenta-
tion is not much “help” explaining its use, and actually
implies FileAge does something different.

Figure 5 shows a form containing the standard Delphi con-
trols for selecting a file: DirectoryListBox and FileListBox.
Pressing the Date / Time button will update Label1 with the
date and time stamp of the file selected in FileListBox1.
Examine the OnClick event handler for the Date / Time
44 February 1997 Delphi Informant
button (Button1) in Figure 6. You will notice that three
functions are involved:
1) First, the FileAge function is called and passed the file-

name currently selected in FileListBox1.
2) The return result is then converted to a TDateTime value

by using the FileDateToDateTime function.
3) That return result is then converted to a string representa-

tion of the date by using the function, DateTimeToStr.

This final result is then assigned to the Caption value of
Label1. — D.R.

Quick Tip: Working with the Delphi SpeedBar
If you use Delphi’s IDE function keys and menu choices
more frequently than the SpeedBar buttons, you can hide
the SpeedBar. To show or hide the SpeedBar, de-select
SpeedBar from the View menu. Alternatively, you can re-
size the Component Palette to show more or less of the
SpeedBar. — D.R. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\97\FEB\DI9702DR.

David Rippy is a Senior Consultant with Ensemble Corporation, specializing in the
design and deployment of client/server database applications. He has contributed
to several books published by QUE. David can be reached on CompuServe at
74444,415.

45 February 1997 Delphi Informant

Case Study

By R. Bryan Ellis
In the summer of 1996, an Atlanta-based Fortune 500 parcel service hired
Monarch Technology Group, Inc. to design and implement an accounting-

related application to track management expenses. The Employee Expense
Account (EEA) was created to enable over 30,000 managers to automate
their corporate credit card and personal expense accounts.

The Employee Expense Account
Monarch Technology Group Automates Corporate
Expense Tracking
Before the EEA, managers tracked expenses
manually and submitted a hard copy report
to the accounting department. While this
approach was somewhat effective, it left room
for error because each person performed cal-
culations and international currency
exchanges without the benefit of automation.

Some employees, however, used a spread-
sheet application for their calculations,
producing reports that did not match the
company’s standard expense account forms.
As such, management agreed that the best
solution was to create a custom software
product that provided the flexibility of the
paper-based approach with the accuracy
and automation of a spreadsheet solution.
Requirements
The requirements were considerable, with the
biggest challenge being the users themselves.
Although many potential EEA users are com-
puter literate, a substantial percentage would
see their first regular use of computers as a
result of this product. Consequently, a prima-
ry design requirement was to implement an
extraordinarily high level of user friendliness.
Another primary requirement was to simplify
the distribution requirements of the applica-
tion. The clear preference was to create a
solution that would exist as a single .EXE file
that could be distributed via a single diskette
or a network.

After determining the primary requirements,
the first step was to decide which develop-
ment tool to use. There was significant inter-
nal experience with Visual Basic, but the
need for a single-file solution prompted the
selection of Delphi. Monarch Technology
Group chose Delphi 1 because most of the
users operate on the Windows 3.x platform.

Having selected a programming tool, the
next step was to create a report module that
could print a form precisely matching the
client’s standard expense tracking form.
Although reports are usually implemented
later in the development process, this task
was given primary importance because the
report was complex and specialized. The idea
was to verify that it would be possible to cre-
ate the report in a reasonable amount of time
before continuing development on other
pieces of the application.

The Employee Expense Account was developed by R. Bryan
Ellis of Monarch Technology Group, Inc. to provide a simple
and automated system for tracking and managing corporate
expense accounts.

Target Audience: Employees needing to manage expense
accounts and corporate credit card usage.

Users: Over 30,000 parcel service managers.

Third-Party Tools: Orpheus by TurboPower Software Company.

Monarch Technology Group, Inc.
P.O. Box 1247
Stockbridge, GA 30281
Phone: (800) 377-0319
Fax: (770) 570-5079
E-Mail: Internet: bryan@monarch-technology.com
Web Site: http://www. monarch-technology.com

TurboPower Software Company
P.O. Box 49009
Colorado Springs, CO 80949
Phone: (800) 333-4160
Fax: (719) 260-7151
E-Mail: Internet: orders@tpower.com
Web Site: http://www.tpower.com

APPLICATION PROFILE

Case Study
Given the fundamental importance of the hard copy report,
significant consideration was given to the reporting tool.
Because a primary requirement was to fit the entire application
on a single diskette, many reporting tools — including
ReportSmith and Crystal Reports — were automatically elimi-
nated due to the size of their run-time files. Several other
reporting tools were evaluated, but in the end, Monarch
Technology Group manually coded the report using Delphi’s
printer canvas (TPrinter.Canvas). Although this made imple-
mentation of the report more time consuming, it provided the
necessary level of flexibility with a very small disk footprint.

The next step was to create the user interface. To achieve user
friendliness, two approaches for the user interface design
were evaluated. The first approach emphasized the traditional
menu-oriented look of most Windows applications. This
approach would maximize the inherent familiarity of the sys-
tem’s interface and users would immediately be comfortable
with the application.

However, this didn’t consider users who were unfamiliar
with computer software and would, therefore, be ill at ease
with any application, no matter how standardized it was.
With this in mind, Monarch Technology Group prototyped
a second style of user interface that involved an interview
metaphor similar to Microsoft-style wizards. With this
approach, the application could be broken down into a
series of prompt screens, each with a specific theme. This
provided for a much higher initial level of ease of use, but
the trade-off would be a relative loss of flexibility. After eval-
uating both styles of user interfaces, the wizard style was
determined to be most appropriate for the client’s user pop-
ulation because of the usability advantages associated with
that style of interface.

Breaking It Down
After some close study, it was determined the application
could be partitioned into six categories:
1) User Information,
2) ATM Advances,
3) Daily Expenditures,
4) Corporate Credit Card Expenditures,
5) Mileage Reimbursements, and
6) Reimbursement Allocations

Each category was to become an individual prompt screen which
the user would be presented in a logical sequence. The goal of
each prompt screen was to narrow the user’s focus to a particular
category and to acquire one or more specific pieces of informa-
tion about that category.

In most cases, the information to be gathered was simple
enough to use an Edit component for input. But in the case
of data to be entered for multiple days, such as Daily
Expenditures and Mileage Expenses, a more elaborate input
mechanism was required. In such cases, the grid component
in TurboPower’s Orpheus was used. Although Monarch
Technology Group accomplished all the requirements using
the Orpheus grid, the product definitely favored flexibility
46 February 1997 Delphi Informant
over simplicity, requiring relatively large amounts of code to
accomplish simple feats. In the end, however, the product’s
flexibility was a major boon to the development effort, and it
proved to be more than sufficient for Monarch Technology
Group’s requirements. Of particular value was the control that
Orpheus offers over cell focus changes and also the ability to
specify a data type and edit mask for grid columns.

Aside from the major categories previously listed, several
other screens had to be implemented. These screens allow
the user to make simple selections and navigation decisions.

For example, one screen allows the user to indicate whether the
expense account was for expenditures made using US dollars or

Case StudyCase Study
a foreign currency. Another screen offers a print preview for the
user to scan the newly created expense report. A final screen
enables the user to print the report or save the data to disk.

Success
After experimentation and fine tuning, the Employee
Expense Account application was rolled out. It met each
of the design requirements, including user friendliness,
distribution simplicity, and accurate and automated calcu-
lations for expense account data. EEA is now being used
by thousands of managers to track all types of foreign and
domestic expenditures. ∆

R. Bryan Ellis is principal of Monarch Technology Group, Inc., a consulting
firm focusing on process improvement and corporate software development.
He can be reached at (800) 377-0319, or visit Monarch’s Web site at
http://www.monarch-technology.com.
47 February 1997 Delphi Informant

48 February 1997 Delphi Informant

New & Used

By Douglas Horn
Some programming tools offer Delphi developers a radically different
approach to programming, allowing them to do things they never

dreamed possible. Light Lib Magic Menus from DFL Software, Inc. isn’t one
of these tools; it offers Delphi developers only cosmetic improvements.
Despite this, many developers may be eager to use its features.

Light Lib Magic Menus
DFL Software’s Tool Enhances Menus with Images
Magic Menus gives developers the ability to
add images to standard Delphi menus.
Although the product has several shortcom-
ings in its documentation and installation
routine, the core functionality of the code
performs as promised. Adding Magic Menus
to an application is simple, and can be sur-
prisingly powerful, after the developer gives
up on the documentation and plays around
with the components.

What to Expect
Simply put, Magic Menus allows a developer to
add bitmap images to a Delphi application’s
Figure 1: Magic Menus lets Delphi developers
add images as backgrounds and specify the
menu text’s typeface, size, style, and color,
improving the menu’s appearance.
menus. The images may be backgrounds or
icons, and will work with main, sub, and
popup menus. Magic Menus accomplishes this
by replacing the standard Delphi Form and
Menu unit with its modified versions. For this
reason, developers who use customized forms
or menus in their applications should be aware
that they may need to re-modify their compo-
nents to incorporate Magic Menus. Magic
Menus also uses two custom components to
hold properties for menus and menu items.

Because Magic Menus must replace standard
components, it contains two sets of compo-
nents — one for Delphi 1 (16-bit) and anoth-
er for Delphi 2 (32-bit). Each version has the
same properties and, from the programmer’s
and user’s standpoint, behaves identically. The
menus attainable from Magic Menus can be
very attractive, and are highly customizable.
For example, a developer can place a back-
ground image on any menu, as well as control
the menu text’s typeface, size, style, and other
attributes — something not possible with stan-
dard menus (see Figure 1). It’s difficult to deny
that menus with images and improved type-
faces liven up applications. They may not con-
tribute to a uniform-looking operating envi-
ronment, or add functionality, but they look
great. And for some programs, such as kiosk
presentations and educational programs, the
improved menus contribute to usability.

Types of Menus
Magic Menus offers seven menu styles.

Figure 2: Icons and images can be used instead of text, allow-
ing developers to create menu tool palettes and other effects.

New & Used
The Default style is a standard Windows menu. The
Bitmap style displays a bitmap image in lieu of any text,
and the BitmapText style displays a background bitmap
and a text label. Similarly, the BitmapUpDown style
allows developers to create a two-state “button,” with one
image used for the up state and another for the down
state. This can be used to create button menus for things
such as tool palettes (see Figure 2). The IconText style
places 16- or 32-bit icons next to text labels, much like
those on the Windows 95 start Menu. Finally, the User
and Custom styles add 3D and button-like effects that
some developers find useful.

Magic Menus also allows custom icons to be used for
checked menu items. Additionally, it allows special 3D effects
to be enabled or disabled for “grayed” menu items. Effects
may be applied throughout menus, or to specific submenus
or independent items. By combining various properties, it’s
possible to create impressive visual effects. It’s not difficult to
imagine creating user interfaces that operate independently of
language for specific multilingual applications.

Using Magic Menus with Delphi Applications
After installation, Magic Menus components are easily
added to Delphi applications. Because the customized
form and menu components replace Delphi’s original
components, the developer doesn’t need to worry about
specifically choosing these when building an application.
Developers can simply build menus as they normally
would with Delphi’s Menu Editor. To add Magic Menus’
effects, the developer simply needs to add the appropriate
components to the form — MagicMenu for menus, sub-
menus, and popups, and MagicItem to assign specific
effects to individual menu items.

After the MagicMenu and MagicItem components have been
added, they can be attached to a menu by associating them
with an existing menu component (as one would associate a
DataSource component with a table). All properties can be
49 February 1997 Delphi Informant
modified at the MagicMenu or MagicItem level, and a single
MagicMenu can control all menus, if desired.

Applications using Magic Menus compile just as any other
Delphi application. Program performance doesn’t seem to
suffer either, even when large bitmaps and complex menu
schemes are used. For slower computers, the component
files may be edited to build the components statically rather
than dynamically, which may offer some performance bene-
fits. Magic Menus is a Delphi VCL (as opposed to an OCX
or other non-Delphi tool), that serves as a wrapper around a
dynamic linked library (LLU16.DLL or LLU32.DLL).

Annoying Installation
These days, it’s rare for a software reviewer to call any great
attention to an installation routine. Windows applications
have adopted an increasingly standardized approach, and
most developers have come to realize that their customers
want to know what is being installed, as well as to be able to
control where it goes. Unfortunately, DFL’s installation rou-
tine flies in the face of this philosophy. The Magic Menus
installation routine is one of the more aggravating this
reviewer has encountered in some time.

The unsuspecting developer’s first clue that something is amiss
with the installation is when he notices that Magic Menus
ships on six floppy disks — seemingly far too many for such a
simple tool. When the installation routine begins, it asks what
development environments are on the system (including
Delphi 1 and 2, Microsoft Foundation Classes, CA-Visual
Objects, OCX, MS Visual Basic, and Visual FoxPro), and
informs the user that it will install the tool for all applicable
environments. That won’t sound too bad to most Delphi
developers, especially those who use both the 16- and 32-bit
versions. What the program neglects to say is that it will
install evaluation versions of all Light Lib products to the hard
drive. Ostensibly, this offers users a chance to sample these
tools, but few will want to. Another annoyance is that, after
the first twenty minutes of use, a screen — reminding the user
that this is an evaluation copy — pops up every minute that
the product is being evaluated. Users who don’t want this on
their system have no way to avoid installing the evaluation
copies. In fact, it’s never mentioned in the documentation.

Aggravating Documentation
If the installation routine is annoying, the documentation —
or lack thereof — is downright aggravating. This reviewer
applauds the trend toward online-only documentation, but
users need to be given some sort of “Getting Started” guide
to tell them what is required of their system and what to
expect from the installation. Magic Menus includes neither a
printed sheet nor a README file that can be viewed prior
to installation. If either were available, users could at least be
informed in advance of the peculiar installation routine.

The documentation consists of a meager Windows Help file
and a single sample application. The Help file only briefly
describes the MagicMenu and MagicItem classes, as well as
their ancestor class, MagicAbstract. The pertinent informa-

Figure 3: The text of a menu heading cannot exceed standard
size. The work-around is to create a bitmap image of the desired
text, although this has some programmatic drawbacks.

New & Used
tion contained in this Help file could easily fit on four print-
ed pages. It serves as a basic reference, but offers no examples
of how to implement Magic Menus into an application.

The single sample file allows a developer to get a basic under-
standing of how to use the tool. That is, it shows how to associ-
ate MagicMenu and MagicItem components with Delphi menus
and menu items, and how to set the basic properties. These are
the fundamentals, and there are few Delphi developers who will
find them hard to grasp. But to get the full use of the product
— to be able to recreate the menu effects shown in the Magic
Menus advertisements — takes some creativity and knowledge
of the product. To this end DFL is no help whatsoever. They
offer no tutorials beyond the extremely basic sample application.
For example, after playing with the product for a short while,
developers will discover that while they can set the size of the
menu text as shown in the sample, the menu items on the head-
ing cannot be enlarged beyond the standard menu height. This
can be frustrating, as the ads and brochure show that large menu
headings are possible. The developer is left to his own devices to
figure out that the only way to enlarge the menu heading “font”
is to create a bitmap with the desired word in the desired font,
then display this bitmap instead of text (see Figure 3).

In fact, after developers explore Magic Menus at some length,
they may question whether DFL fully understands the capabili-
ties of its tool. For example, the text file in the sample applica-
tion suggests that to prevent an image from inverting its colors
when selected, the developer should set the BitmapOperation
property to boCopy and the BitmapRelativePos property to False.
However, this doesn’t do what most developers would expect —
more reliable results can be obtained simply by setting the
BitmapDown and BitmapUp properties (controlling which
images are shown in the selected and non-selected menu states)
to the same image.

Conclusion
DFL’s Light Lib Magic Menus is a fine tool for upgrading
the appearance of menus in Delphi applications. The only
50 February 1997 Delphi Informant
noticeable bug in the tool itself
is the inability to control the
text size of a menu heading.
The work-around to this is
acceptable, but still offers the
occasional challenge (e.g.
changing menus or providing a
consistent menu appearance).
Aside from this shortcoming,
the tool does what no other
Delphi tool can. Unfortunately,
the clumsy installation routine
and substandard documenta-
tion mar the tool’s usefulness.
Delphi developers can likely
overcome the poor documenta-
tion, but would get a lot more
immediate usefulness if the
product were explained more
thoroughly. ∆

Light Lib Magic Menus v. 1.41 is a
cosmetic improvement for Delphi
that allows images to be used in
menus. The product works as
promised, but its usefulness is
marred by substandard documenta-
tion — developers must discover
the ins and outs of Magic Menus on
their own.

DFL Software, Inc.
55 Eglinton Avenue East, Suite 208
Toronto, ON, Canada M4P 1G8

Phone: (416) 487-2660
Fax: (416) 487-3656
E-Mail: sales@dfl.com
CompuServe: GO DFLSW
Web Site: http://www.dfl.com
Price: US$99

Douglas Horn is a freelance writer and computer consultant in Seattle, WA. His
Web site (http://www.halcyon.com/horn/default.htm) contains numerous articles
and programming samples from Delphi Informant and other magazines, but no
images of his dog. He can be reached via e-mail at horn@halcyon.com.

TextFile

Flawed Classic Still Man

KickAss Delphi Programming
could easily be titled
“Advanced Topics in
Delphi.” Based on its con-
tent and approach, this book
certainly deserves such a
description, but KickAss
Delphi is unquestionably
more attention-grabbing.

Entirely missing (thank
goodness) is an
introduction/tutorial of
Object Pascal. Instead, this
multi-author extravaganza
contains a wealth of powerful
Delphi code and useful new
components. Unfortunately,
the accompanying CD-ROM
contains as many problems:
pesky code errors, missing
files, missing 32-bit versions
of code, and incorrectly
named files. While many of
these problems are easily cor-
rectable (as we’ll see), others
are not.

In the first three chapters,
Jim Mischel discusses sever-
al interesting topics from
an advanced perspective.
Chapter 1 provides a prac-
tical introduction to writ-
ing 32-bit console applica-
tions (the Windows 95
equivalent of a DOS box).
Specific topics include text
file filtering, processing
command-line statements,
reading/writing text files
quickly, and adding the fil-
tering program to the
Repository to use as a tem-
plate in future projects.

Chapter 2 discusses impor-
tant principles of drag-and-
drop beyond Delphi’s basic
implementation. Chapter 3,
which covers DLLs, discusses
some of the more esoteric
51 February 1997 Delphi Informant
ages to KickAss
aspects of these useful
libraries, and provides an
example of wrapping a form
in a DLL.

The highlight of Chapter 2
is a new Form component
that accepts files dragged
from a Windows File
Manager program. (I found
it works equally well with
Norton Navigator.) Here, I
encountered the first “bug.”
Trying to install the Form
component, I received sever-
al compilation errors. After
a few e-mail messages,
Mischel pointed me in the
right direction to fix things.
The main drag-and-drop
unit exists in two incarna-
tions: FMDD and FMDD1.
The latter was designed for
use by the File Manager
Drag and Drop Component
(FMDDFORM.PAS); but
the former was mistakenly
listed in the uses clause and
in several statements in the
implementation section.
Here’s the fix to make
FMDDFORM.PAS work:

Change FMDD to
FMDD1 in the uses
statement
Change every instance of
FMDD.* to FMDD1.*

With these changes, I could
install the new component
onto the Component Palette.
Similar changes must be
made in the final project that
uses this component.
The next two chapters, by

John Penman, discuss the

“Flawed Classic Still Manages to KickAss”
continued on page 52
Secrets Revealed
Secrets of Delphi 2 by Ray
Lischner is a gold mine of
information on a wide vari-
ety of topics — many of
which are poorly document-
ed, or not documented at all.
While many of these topics
are advanced in nature, the
author’s approach in present-
ing them is accessible to
most Delphi programmers.
If you have been working
with Delphi for several
months or have worked your
way through one of the
introductory books, and are
anxious to explore more
advanced topics, this book
may be the perfect place to
begin. Whether your objec-
tive is to create custom com-
ponents, extend the capabili-
ties of Delphi’s programming
environment, or to simply
write powerful Windows
applications, you’ll find a
wealth of information in
these 800-plus pages.
Starting with a chapter titled
“The Readiness is All,” Secrets
moves through increasingly
complex and advanced topics.
Each chapter is organized in
similar fashion, beginning
with an introduction to the
topic, a capsule sketch of the
main sub-topics, a full discus-
sion of the topic accompanied
by numerous code examples,
and a brief summary.

Lischner devotes the second
chapter to an introduction of
components and properties,
discussing the differences
between design time and run
time, explaining the
ComponentState property and
default property types, and
introducing RTTI, which is
further explained later in its
own chapter. There Lischner
discusses how to retrieve
RTTI and explains the differ-
ent kinds of RTTI and their
use in published properties.

Other chapters enhance our
understanding of components
and their properties. For
example, three chapters deal
solely with property editors:
the first provides the funda-
mentals of writing property
editors, the second explains
some of their undocumented
features, and the third lists
and explains all the property
editors Delphi doesn’t docu-
ment. This latter chapter also
explains how to sub-class any
of Delphi’s property editors,
and provides an example of

“Secrets Revealed” continued on page 53

Chap. Short File Names Required File Names

9 Polypr~1.* PolyProject.*
9 Statsp~1.* StatsProject.*
9 Statsu~1.* StatsUnit.*
10 Dynami~1.* DynamicForm.*
10 DynamicForm.DPR DynamicForms.DPR
10 DynamicForm.RES DynamicForms.RES
10 OIComp~1.* OICompDemo.*
13 Splash~1.* SplashDem.*

Figure 1: Changes for the filenam

TextFile
Windows Winsock API, and
create a component that
encapsulates the entire inter-
face. Again however, I had
problems compiling the code
on the CD-ROM. I thought
the code was 32-bit; it’s actu-
ally intended for Delphi 1.
Interestingly, some techniques
that were legal in Delphi 1’s
implementation of Object
Pascal are no longer legal in
Delphi 2. For example, in one
method in the support unit,
WSAPIMP.PAS, there was an
attempt to modify a for loop
variable within the for loop;
this simply won’t fly in Delphi
2. You will need to assign
another variable, j, to the cur-
rent value of the for loop vari-
able, i, and modify the new
variable.

Now, at least, the code will
compile without error in
either version. However,
since the code on the CD-
ROM for this chapter was
16-bit, it didn’t work under
Delphi 2. Penman sent me
the complete 32-bit code,
which is very different from
the code that appears on the
CD-ROM. It worked fine.

For me, these two chapters
were in many ways the high
point of the book. I learned
several new things about
working with online com-
munications in Delphi.
Furthermore, Penman pro-
vides an excellent model for
wrapping any previously
unsupported interface into a
Delphi component — a
model I’ll use in the future.

Based on an article from
Coriolis’ Visual Developer
magazine, Ray Konopka pre-
sents his Def Leppard screen
saver in Chapter 8. As a
bonus, you get two new
components: a trackbar and
color combo box that gives
you the selectable names and
actual colors. There are also
useful discussions of anima-

Flawed Classic Still Man
52 February 1997 Delphi Informant
tion techniques and
Windows callback functions.
Again however, the code on
the CD-ROM did not
include the 32-bit version,
but Konopka did send the
version for Delphi 2. I
encountered one problem
that was easy to solve. The
name of the bitmap used for
the trackbar component was
the same as that for the
color combo box compo-
nent, generating a Duplicate
ID error when I tried to
install the components on
the Component Palette.
Using the Image Editor, I
changed the name of the
Bitmap Resource for the
trackbar component to
TRZTRACKBAR (it must
be upper case) and every-
thing worked fine.

Terence Goggin con-
tributed two interesting and
useful chapters, one docu-
menting the new floating
point Math unit in Delphi 2,
the other providing tech-
niques and components to
create dynamic user inter-
faces. This time, the code on
the CD-ROM was 32-bit,
but all the long filenames
were in short DOS form,
causing numerous problems
for the compiler. And in
Chapter 10, several required
files weren’t even present!
(When requested, Goggin
sent these to me.) You must
make the filename changes
in the table in Figure 1 for
the code to compile properly.

Towards the middle of the
book is an interesting chapter,
“Problems with Persistents
and Other Advice,” that
includes valuable tips, tricks,
and techniques. You’ll learn
about a “seeming” bug with
the TPersistent class, disabling
RadioGroup buttons, a new
drag-and-drop cursor to add a
Borland Pascal 7-style ForEach
iterator method to the

ages to KickAss (cont.)
TStringList class, and more.
In Chapter 11, Richard

Haven presents some interest-
ing approaches to working
with data in a table in a tree-
like, hierarchical fashion. The
discussion includes using
queries and SQL to accom-
plish these tasks, as well as
getting around the condition-
al branching limitation in
SQL. Again, there was a prob-
lem running the code on the
CD-ROM, and an internal
Borland compiler error was
generated!
The last four chapters by

Don Taylor re-introduce the
saga of “Ace Breakpoint,” a
character familiar to readers
of the Delphi Programming
EXplorer series. These chap-
ters revisit a few of the topics
introduced earlier, but in dif-
ferent ways, including drag-
and-drop techniques and
dynamic user interfaces (resiz-
ing forms). At the same time,
many new techniques are dis-
cussed. The floating toolbar
presented in Chapter 14 is
fascinating; however, it cries
out to be made into a com-
ponent. The message broad-
casting project in Chapter 15,
demonstrating how to set up
communication between two
independently running appli-
cations (a sender and receiv-
er), is brilliant. And the
Win95 Walking program that
provides information about
active modules should find a
place in many readers’ suites
of utilities.

Despite the considerable
frustrations I experienced
with the CD-ROM, I still
recommend this book. The
text itself is excellent, and on
that basis, KickAss Delphi
Programming deserves to
become a classic. At the same
time, however, I cannot over
emphasize the seriousness of
the problems with the code
on the CD-ROM. I trust
and expect that Coriolis will
find an adequate solution
both for the readers who
have already purchased the
book and for the copies yet
to be distributed.

— Alan C. Moore, Ph.D.

KickAss Delphi
Programming by Don
Taylor, Jim Mischel, John
Penman, Terence Goggin, et.
al. The Coriolis Group, 7339
E. Acoma Dr., Ste. 7,
Scottsdale, AZ 85260,
(602) 483-0192.

ISBN: 1-57610-044-8
Price: US$39.99 (504 pages, CD-ROM)

es.

TextFile
creating a dialog box to edit a
property.
There is a separate chapter

on Component Editors. After
an introduction, Lischner dis-
cusses the two basic classes,
TComponentEditor and
TDefaultEditor, and their
functions. It provides an
example of deriving a new
component editor, and con-
cludes with an overview of
Delphi’s built-in component
editors. A chapter entitled
“Metacomponents” introduces
this interesting component-
type — a component whose
sole function is to control the
behavior of other components.

In chapter 15, Lischner
starts by introducing the
TFieldDataLink class, discuss-
es its methods and properties
along with those of the
TDataLink class, and con-
cludes by building a simple
data-aware control (a data-
aware button) and a much
more complex one (a data-
aware rich text editor).
Finally, there is a superb
chapter on writing online
component Help files. This
chapter includes a nifty utility
called HdxDump which reads
a binary Help index (HDX)
file and extracts useful infor-
mation to a text file, includ-
ing keywords, titles, contexts,
and the source *.HLP files.

Other chapters present
information which will be of
particular use to application
developers. Chapters on the

Secrets Revealed (cont.)
53 February 1997 Delphi Informant
TStream class and the TList
class go beyond simply
explaining the uses of these
useful constructs. After
explaining some of the limi-
tations in these classes, the
author derives new classes
which address these limita-
tions. Other useful chapters
discuss some of the more
esoteric aspects of Delphi
forms, the Windows registry,
and the Windows heap. One
of the final chapters discusses
Delphi experts and how they
can be used to extend the
programming environment.
This chapter alone — which
surpasses any discussion I
have seen on this topic —
will ensure that Secrets con-
tinues to spend more time
off my bookshelf than on it.
The accompanying CD-

ROM includes all the code
in the book (and some that
had to be left out), utilities,
experts, and seventeen new
custom components. You can
install all the components in
either Delphi 1 or 2 from a
single registration unit.

I recommend this book
highly, particularly for inter-
mediate or advanced Delphi
programmers. Unlike some
of the advanced books I
have read, this book
assumes only the most basic
prior knowledge of Delphi.
This approach will be par-
ticularly welcome to inter-
mediate programmers who
may have heard about RTTI

o
T
t
d
f
b
u
t
m
w
f
a
o
L
w

—

S
L
2
M
(

I
P
(

r the Virtual Method
able, but know little more
han their names. Advanced
evelopers may find the first
ew pages of each chapter a
it boring; however, the
nexpected gem encoun-
ered a few pages later
akes the journey worth-
hile. Nowhere have I

ound so much interesting
nd obscure information in
ne book. I think Ray
ischner’s Secrets of Delphi 2
ill be a very popular book.

 Alan C. Moore, Ph.D.

ecrets of Delphi 2 by Ray
ischner. Waite Group Press,
00 Tamal Plaza, Corte
adera, CA 94925,

415) 924-2575.

SBN: 1-57619-026-3
rice: US$49.99
831 pages, CD-ROM)

File | New
Directions / Commentary
Delphi in the World of Shrink-Wrap

While RAD tools like Visual Basic have proven popular for custom software and shareware, the
world of Windows shrink-wrapped software has traditionally been dominated by the C and

C++ programming language family. Within this closed camp, however, Delphi is quietly emerging as
an attractive alternative to C++. Why are some well-known independent software vendors (ISVs)
using Delphi for product development? And — perhaps as important — why aren’t more looking
Delphi’s way?
Enabling Rapid Development. Not
surprisingly, the single most important
reason software houses are considering
Delphi is that development is much
faster than with Visual C++ or Borland
C++. The importance of Delphi’s visual
IDE rang home recently when I was
using Adobe PageMaker 6.0. Spoiled by
applications like Delphi, Word, and
Excel, I became frustrated by the lack of
common UI features available in
PageMaker, such as dockable toolbars,
extensible toolboxes, and so on. The
only logical reason I can think of why
these standard features are not present
in their 32-bit version was the addition-
al time that would have been added to
the product’s development schedule.
While such UI features may add con-
siderable development time to a C++
application, if PageMaker were written
in Delphi, I could add such features in
a heart beat.

Another factor in Delphi’s favor is that
a Delphi-based application has none of
the shortcomings of other RAD prod-
ucts. While you can spot a Visual Basic
application a mile away, you cannot tell
a Delphi application from one devel-
oped with C++.

Third, Delphi is proving attractive
because of its ability to integrate tight-
ly with C++. You can already use
Delphi to create or work with .OBJ
files. More important, Borland’s new
54 February 1997 Delphi Informant
“Delphi for C++” product — named
CBuilder — destroys the barriers
between C++ and Object Pascal. Now,
you can easily mix and match two
code bases, and even keep the Visual
Component Library standard you are
familiar with. Even if you have an
existing C++ code base, you can use
Delphi or CBuilder going forward.

Against the Grain. Given these com-
pelling advantages, why aren’t more
ISVs jumping on the Delphi bandwag-
on? Perhaps the biggest reason is that
Object Pascal and RAD environments
are simply counter-culture. The com-
mercial software world is dominated by
C++, and, on the Windows platform,
MFC (the Microsoft Foundation Class
Library). Delphi, therefore, goes against
the grain of most software shops.

And there’s more than a psychological
barrier; there are practical ramifications
to this issue. It’s far easier to find quali-
ty C++ expertise than strong Delphi
skills, especially in commercial software
circles. For example, one ISV I know of
wants to use Delphi in a future prod-
uct, but is having trouble finding expe-
rienced engineers.

Another hindrance is the lingering
issue of the viability of Borland, espe-
cially with the recent exodus of
Anders Hejlsberg, Delphi’s chief archi-
tect. Pondering the use of Delphi, an
engineer from a well-known vendor
recently asked me for my thoughts
about the product’s future.
Fortunately, Borland has persevered
through many trials since the early
1990s, and will likely do so again.
Even if the company itself does not
survive, Delphi surely will.

A final shortcoming of Delphi is that it
supports only the Microsoft Windows
platform. Although the Windows plat-
form predominates, Delphi would
make a poor choice as a development
environment if you need to develop
cross-platform products. With the rise
of Java, this limitation, which seemed
so inconsequential in 1995, is seen by
some as a major limitation in 1997.

Wrap It Up. If you produce off-the-
shelf Windows software, you owe it to
yourself to check out Delphi. It will not
be the best choice for all situations; for
some, however, it will be a tool that
increases chances for success in a highly
competitive marketplace. ∆

— Richard Wagner

Richard Wagner is the Chief Technology
Officer of Acadia Software in the
Boston, MA area. He welcomes your
comments at rwagner@acadians.com or
on the File | New home page at
http://www.acadians.com/filenew.

	Table of Contents
	Delphi Tools
	NuMega Technologies Releases BoundsChecker 4.2
	SQA Upgrades its Windows Client/Server Testing Tool
	MITI Announces Upgrade to Developer’s Toolset
	SELECT Software Tools Announces Interface for Delphi
	Books for Sale

	Delphi News
	Borland Announces New Java Development Tool
	Borland InterBase for Windows NT on the PowerPC Platform
	Borland and TCIS will Deliver Delphi for AS/400
	Attention Winshoes Users
	Errors & Omissions

	On The Cover
	The Game Engine Subsystems
	Ammunition and Dust
	Putting It All Together
	The Main Control Loop
	Room for Improvement
	Conclusion
	Further Reading
	References
	Listing One

	On The Cover
	The Game
	First Steps
	Icon Resources
	A New Cursor
	Getting Random
	Drag-and-Drop
	DrawGrids and StringGrids
	.INI File Sections
	Conclusion

	Informant Spotlight
	Abstract Interfaces
	Virtuals Defeat Smart Linking
	Virtuals Enhance Smart Linking
	Conclusion

	Sights & Sounds
	Let There Be Light
	Getting Your Fill
	The YBucket System
	The Shady Life of TGMP
	Additional Functionality
	Our Second Application
	Conclusion
	References
	Listing Two

	Delphi at Work
	Some Explanation
	TLists
	Exception Handling and Error Trapping
	2D Array-Style Wrappers for TListClass
	Conclusion
	Listing Three

	Columns & Rows
	NET DIR
	LEVEL
	TYPE
	LANGDRIVER
	BLOCK SIZE
	FILL FACTOR
	STRICTINTEGRTY
	LOCAL SHARE
	Private Directory
	Conclusion

	DBNavigator
	Detecting an Open Form
	Listing Available Fonts
	Setting the Screen Cursor
	Responding to Changes in the Active Form
	Creating a TScreen Event Handler
	Conclusion

	At Your Fingertips
	How do I populate a DBListBox with the contents of a table?
	How can I repeatedly play a MIDI file?
	How can I determine the date and time stamp of a file?
	Quick Tip: Working with the Delphi SpeedBar

	Case Study
	Requirements
	Breaking It Down
	Success
	APPLICATION PROFILE

	New & Used
	What to Expect
	Types of Menus
	Using Magic Menus with Delphi Applications
	Annoying Installation
	Aggravating Documentation
	Conclusion
	Informant Fact File

	TextFile
	Flawed Classic Still Manages to KickAss
	Secrets Revealed

	File I New

