
ON THE COVER
8 Delphi Patterns — James Maycott
Mr Maycott illustrates how to implement a subscribe/notify scheme using
a custom component and Delphi events to allow objects to send mes-
sages to each other. It’s an introduction to message handling and the
increasingly popular concept of patterns.

FEATURES
17 Informant Spotlight — Dana Scott Kaufman
We’ve already learned that Delphi 2 makes creating multithreaded appli-
cations a relatively straightforward task. But what about multithreaded
queries? There are a few wrinkles, but Mr Kaufman shares the tricks of
the trade and provides a working example.

21 DBNavigator — Cary Jensen, Ph.D.
Is there no end to the Delphi 2 bounty? This month, Dr Jensen offers a
friendly introduction to the new Object Repository. Say “Good-bye” to the
Gallery and “Hello” to Visual Form Inheritance; now it’s even easier to
share/reuse code.

26 Visual Programming — Tony Yeung
Experts are popular with users and developers alike, so it’s good to hear
that most experts can be easily implemented with standard Delphi compo-
nents. But what about “big” experts — the kind that exhaust Windows
resources? Mr Yeung shares a custom component and some advice.

32 Delphi Reports — Mark Ostroff
ReportSmith is a robust reporting tool that allows you to build powerful,
complex reports featuring graphs, crosstabs, drill-downs, live data pivot-
ing, etc. Mr Ostroff completes his two-part series by discussing a feature
new to ReportSmith 32 — the Delphi Connection.

37 Delphi Kiosk — Chip Overstreet
Enterprise applications are moving from two-tier to three-tier architec-
tures for two important reasons: reuse of business rules and easier, cost-
effective maintenance of those rules. Mr Overstreet presents some new
tools that can help you leverage your current Delphi Client/Server appli-
cation investment.

41 At Your Fingertips — David Rippy
Our favorite tipster returns in strong fashion. This month he favors us
with sage advice on using a single DBNavigator for multiple DBGrids on
a form, employing u and d to navigate records in a
table, as well as creating marquee-style text on a form.

REVIEWS
43 ReportPrinter Pro 2.0 — Product Review by Bill Todd
46 UDFlib — Product Review by Bill Todd
48 Delphi 2 Multimedia Adventure Set

Book Review by Alan C. Moore, Ph.D.
48 Delphi In Depth — Book Review by Alan C. Moore, Ph.D.
49 Building Delphi 2 Database Applications

Book Review by Larry Clark

DEPARTMENTS
2 Editorial by Zack Urlocker
4 Delphi Tools
6 Newsline
51 File | New by Richard Wagner

1 September 1996 Delphi Informant

Cover Art By: Tom McKeith

September 1996, Volume 2, Number 9

Delphi Patterns
Creating a Generic Notification Mechanism

Marathon to Delphi

Symposium
A fter we had finished Delphi 1, Gary Whizin, the Director of Delphi Development, used to joke that
it was like running a 10K race, then discovering you had entered a marathon. It was certainly no

sprint to the finish, but rather, a lot of hard slogging. We set our goal and then worked to achieve the
milestones that would lead us to the goal. We’ve found it to be a pretty good way to do things.
Delphi 1 took almost exactly two
years of development. In the first
year we built on our compiler tech-
nology, created the development
environment, and built the founda-
tions of the Visual Component
Library. In the second year we
added more components, more
tools, and database support.
Although the goal had always been
to provide database capabilities in
Delphi, the scope and significance
of what it means to support
client/server development, well, that
was the “Heartbreak Hill” of our
marathon. We knew our goal. So we
paced ourselves, slogged through
the hard parts, and yes, we finished
on time. I’ve shipped quite a few
products in my career, but Delphi 1
stands alone. It’s the product I’m
most proud of.

In the case of Delphi 2, we knew
what we had signed up for. We set out
to create a full 32-bit version with
support for Windows 95 and
Windows NT. Luckily, we had a head
start. We’d begun work on the 32-bit
Object Pascal compiler back when
Delphi 1 first started. Our goal was to
ship Delphi 2 within 1 year.

I try to work out regularly, even
during the most hectic periods of
the development schedule. I do this
to maintain balance in my life and
to reduce stress. I was a weekend
runner, taking part in the occasion-
al 5K or 10K race — but I always
wondered about a marathon. In the
2 September 1996 Delphi Informant
fall, after signing off on beta releas-
es of Delphi 2, Molly, a friend of
mine at work, asked me if I wanted
to run a half marathon. To be hon-
est, she caught me off guard. I was
slightly dumbstruck, but also curi-
ous about running such a distance.
I agreed — after all, the race was
still four weeks away. At the time, I
was running once or sometimes
twice a week, usually somewhere
between five and eight miles. What
the heck; I figured I’d be able to
add 15 minutes to my time for a
couple of weeks and increase my
distance to 12 miles before the race.
How hard could it be? Actually,
running a half marathon isn’t that
hard. At least, not compared to
walking down stairs the following
day. Or the day after that. It hurt
like hell, but I did it. It was the
most significant milestone in a very
long and personal project.

Who me? Run a m-m-m-arathon?
Well, I didn’t know about that. But I
knew I could add another 15 minutes
to my “long run” distance in two or
three weeks. I knew my goal; I just
didn’t think about it too often.
Instead, I focused on my short term
milestone: my next long run.

Delphi 2 development continued
steadily during the fall. I had originally
hoped to ship it within 90 days of the
Windows 95 release date, but I was a
little optimistic. Instead, we added
some additional important client/serv-
er features, including Data Modules,
SQL Explorer, and cached updates.
We were into a regular groove with
Delphi and things were proceeding on
track to meet our ship date.

Meanwhile, my running was getting
serious. I made sure I ran my long
run every two or three weeks. It was
my personal “milestone,” much like
the regular builds we did of the
software. I remember trying to cram
a two-hour run in before going
from California to Toronto for
Christmas. It was the longest lunch
break I ever took. I figured it would
be a heck of a lot easier to run in
the warmth of Santa Cruz than in
the misery of a Canadian cold
front. In the meantime, I got good
at finding pay phones along my
route so I could check on how
things were going.

Finally, February came around and
we were getting ready to sign off the
final version of Delphi 2 and send it
to manufacturing. It had been hard
slogging for a few days to beat the
first anniversary of Delphi 1’s
release. It was a significant emotional
deadline for folks on the team,
though certainly not a rigid deadline
for the company. Wednesday was
our “internal” team date by which
we wanted to sign off. I didn’t really
think we’d make that day — and we
didn’t. Thursday was a flurry of bug
fixes, testing, new builds, more
minor bugs. By Friday, I was begin-
ning to become concerned. We were
still finding a few bugs, and every-

Symposium
one on the team was getting tired of
evening and weekend work. Our
sign-off date moved to the weekend.
We could still get to manufacturing
on Monday morning, well in
advance of our anniversary.

Saturday was pretty much a blur. I
brought in some food, as did others,
and everyone was testing like mad.
We found a few last minute glitch-
es; enough to keep fixing the “stop
ship” bugs as well as some minor
inconveniences. We may not find or
fix every bug, but if it’s something
that can’t be easily worked around,
we do our best. In a fit of weird-
ness, someone built a “sign-off
shrine” to Delphi in one of the
empty offices. We sacrificed old
sign-off candidate CDs, leftover
Chinese food, Tums, aspirin, car-
tons, you name it, all of it lighted
by the eerie glow of a lava lamp
from tech support. Several folks
broke into a case of beer that a cus-
tomer had sent us.

On Sunday, things were looking
good. We had a few of the integra-
tion folks stay around “on call” so we
could build all three of the Delphi
products: Delphi Client/Server Suite,
Delphi Developer, and Delphi
Desktop. Unfortunately, we still
found a couple of unlikely bugs in
the demonstration programs, which
meant rebuilding all three products,
3 September 1996 Delphi Informant
an automatic process that takes a
couple of hours. We’d stopped find-
ing bugs, so folks had to hang around
the office waiting for their official
“sign-off.” Around noon, things were
looking good, so I went for a run. A
long run. Just enough time that all
three builds would be finished and
sign-off would be proceeding with
final testing when I got back.

It was a stark, sunny day. The nicest
I’d seen in weeks. I chugged past the
old Borland buildings on Greenhills
road, where my office had been when
I started about six years ago. The
hills, once intimidating, were just a
warm-up to me now. I continued on
for about five miles, past De Laveaga
Park, where we’d held a few Borland
picnics over the years. I continued on
for another few miles, spotted a pay
phone, and checked my voice mail.
No messages. So I kept on running.
At just over two hours, I was back
into the civilization, if you can call it
that, of Scotts Valley. I bought a
Gatorade and juice. I called in again;
things were proceeding on track.

Now the hard part. I started on Bean
Creek. Bean Creek is about an eight-
mile run with a very steep hill that
extends for nearly a mile. Even
though I’d already clocked about 15
miles, I knew this next part would
be hard. And it was. But it was also
familiar. I’d run Bean Creek dozens
of times during training. I knew the
curves, the hills. I knew where to
look for deer. I knew where to speed
up and where to slow down. And if
my body forgot for a few miles that I
had already run 15 miles, well I was-
n’t going to let on. Not for a minute.
Coming down the final hill I was
getting a little buggy. I was talking to
myself. Talking myself into it. I had
just under two miles to go to get to
the next milestone. Just 15 minutes.
Step by step. Two miles. Not even.

After four months of training, I’d
broken three hours and more than
20 miles.

When I got back to the office, we
signed off Delphi 2 in just under
365 days.

I continued my training for another
two months, logging three more
“long runs” before tapering down for
the race. On April 28th, I ran the Big
Sur Marathon in under four hours.
It’s the race I’m most proud of.

— Zack Urlocker

Zack Urlocker is Director of Product
Management at Borland International.
He’s currently working on the next
Delphi “marathon.” He can be reached
on CompuServe at 76217,1053.

4 September 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi In Depth

Cary Jensen, Ph.D., et al.
Osborne/McGraw-Hill

ISBN: 0-07-882211-4
Price: US$42.95
(812 pages, CD-ROM)
Phone: (800) 722-4726
Distinct Adds Five New OLE Custom Controls to its Visual Internet Toolkit

Distinct Corp. of

Saratoga, CA has shipped
the Visual Internet Toolkit
version 1.2. Additions to
version 1.2 include five
OLE custom controls
(OCXes): TCP Server,
VT220 (terminal), TFTP,
Finger, and WhoIs. These
new controls enable Delphi
2, Visual C++, FoxPro,
PowerBuilder, Access, and
Visual Basic programmers
to develop 32-bit TCP/IP,
Internet, and intranet
applications for Windows
95 and Windows NT envi-
ronments.

The upgraded Visual
Internet Toolkit provides
developers with OCXes, as
well as methods for appli-
cation development. With
the new OCXes, users can
integrate a TCP server
within their application for
multiple client connectivi-
ty, while adding VT220
terminal emulation capabil-
ities to their specific envi-
ronment. The VT220 OCX
offers the developer a
VT220 emulation with
keyboard remapping, as
well as color and font sup-
port to integrate within
their application.

The TFTP OCX is
designed for developers
needing to integrate TFTP
functionality into their
application.

The Finger OCX will
allow developers to design
an application that includes
a feature to retrieve detailed
information about users on
the network. The WhoIs
OCX will enable developers
to retrieve information
about network sites. Visual
Internet Toolkit also
includes sample programs,
and code is provided.

Price: US$295. Distinct also offers a
subscription program to developers that
includes free upgrades and technical
support for one year. The price with
subscription is US$545.
Contact: Distinct Corp., 12900
Saratoga Ave., Saratoga, CA 95070
Phone: (408) 366-8933
Fax: (408) 366-1153
E-Mail: Internet: mkgt@distinct.com
Web Site: http://www.distinct.com
Apiary’s OCX Expert Converts Delphi 2 VCLs into OLE Controls

Apiary, Inc. of Little

Rock, AR announced sup-
port for the Delphi 2 prod-
uct line with its OCX
Expert, which provides a
way to create 32-bit OLE
Controls (OCXes) using
Delphi 2.

Prior to the OCX Expert
release, generating OLE
Controls was accomplished
using C++ and Microsoft
Foundation Classes (MFCs).
Now developers can use the
OCX Expert to convert
most Delphi 2 VCLs into
OCXes with little or no
changes. The Expert guides
the programmer through a
series of question, or steps,
to determine the properties
and methods that should be
exposed in the OCX. After
completion, the OCX is
portable and can be used in
most environments support-
ing OLE containers such as
Paradox 7, Microsoft Word
for Windows, Borland C++,
Visual Basic 4.0, and others.

A visual representation of
the steps required to deter-
mine the appropriate prop-
erties and methods for an
OCX can be found at
Apiary’s Web site.

Price: US$249
Contact: Apiary, Inc., 10201 W.
Markham, Suite 108, Little Rock,
AR 72205
Phone: (501) 221-3600
Fax: (501) 221-7412
E-Mail: Internet: info@apiary.com
Web Site: http://www.apiary.com

5 September 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi 2 Developers’ Solutions
Nathan Wallace and Steve Tendon

Waite Group Press

ISBN: 1-57169-071-9
Price: US$59.99
(892 pages, CD-ROM)
Phone: (800) 428-5331
TurboPower Software
Company of Colorado
Springs, CO is shipping
Memory Sleuth 1.0, an appli-
cation designed to help pro-
grammers find and repair bugs
when developing in Delphi 2.

Prior to this release, debug-
ging tools reported errors as
hexadecimal addresses that
needed to be decoded and
matched to a programmer’s
source code. Memory Sleuth
requires no source code
changes or complex com-
pile/link switch settings. It
tracks memory and resource
allocation problems, and
reports the line number in
the source code where the
memory allocation took
place.

The program’s Snapshot
feature captures informa-
tion about a running pro-
gram. When a developer’s
program ends, Memory
Sleuth provides statistics on

TurboPower Releases
Memory Sleuth 1.0
its peak resource usage.
Additionally, Memory

Sleuth has the ability to
embed debugging messages
in an application’s source
code. These messages
appear on the Output
Debugging window.
Programmers can use these
messages to follow their
program’s execution path, as
well as check the value of
key variables.

Memory Sleuth 1.0 ships
with online documentation,
free support, maintenance
updates, and a 60-day money-
back guarantee.

Price: US$49
Contact: TurboPower Software
Company, P.O. Box 49009, Colorado
Springs, CO 80949-9009
Phone: (800) 333-4160 or
(719) 260-9136
Fax: (719) 260-7151
E-Mail: Internet: orders@tpower.com
Web Site: http://www.tpower.com
New Delphi Component Library for Database Development

In Livermore, CA,

Woll2Woll Software
announced the release of
InfoPower 2.0, an upgrade
to its component library for
Delphi 1 and 2.

In version 2, InfoPower fea-
tures picture-mask validation
support. This allows develop-
ers to define picture masks
that force end-users to enter
specific characters, digits, and
special characters, and only in
specific positions within a
field. Picture-masks are used
during editing for automatic
filling of values and validation
when posting records.

InfoPower has also added
visual filtering and visual
querying components. End-
users now have the ability to
visually filter a table or query,
or modify the WHERE clause
of an existing SQL statement.
Although the dialog is capable
of sophisticated SQL genera-
tion, it completely hides the
filtering and SQL details from
the end-user.

New functionality to the grid
includes the ability to embed
control types such as bitmaps
and spinedits, support for scal-
able row heights with word-
wrapping, and support for
selecting multiple records.
Other additions to
InfoPower 2.0 include
enhanced lookup support,
allowing users to fill a drop-
down list using a SQL
SELECT statement, or
records from a dependent
table for filtered lookups.
Version 2.0 also has a fea-

tures-enhanced memo dialog
to integrate with third-party
spell checkers, allowing the
combo box to display alias val-
ues, and support for auto-fill
of the current date.

Price: US$199; source is available for
an additional US$99.
Contact: Woll2Woll Software, 2217
Rhone Dr., Livermore, CA 94550
Phone: (800) 965-2965 or
(510) 371-1663
Fax: (510) 371-1664
E-mail: Internet: woll2woll@-
woll2woll.com or CIS: 76207,2541
Web Site: http://www.woll2woll2.com

6 September 1996 Delphi Informant

News
L I N E

Sep tember 1996

Delphi Client/Server
Certification

Borland International has
added new programs and

resources — including certifica-
tion for Delphi Client/Server,

updated training courses, and
an Authorized Education Center
Program — to its client/server

partner support program.
Borland is offering the Delphi

Client/Server certification
exam, as well as a Train-the-

Trainer course.
Currently, Borland’s Delphi

Client/Server Train-the-Trainer
course is scheduled for

September 16-20 (Atlanta,
GA). Borland is also planning
special training for Delphi 1
users migrating to Delphi 2.
For a certification fact sheet,
certification study objectives,
course fact sheets, and other

information, visit Borland
Online at

http://www.borland.com.
Borland Announces New International Translation Tools for Delphi

Scotts Valley, CA —

Borland International Inc.
announced two new tools
for translating Delphi appli-
cations into international
languages: the Delphi
Language Pack and the
Delphi Translation Suite.
These tools allow developers
to localize Delphi applica-
tions into Danish, Dutch,
English, French, German,
Italian, Portuguese, Spanish,
and Swedish.
The Delphi Language Pack

includes system messages for
Delphi’s Visual Component
Libraries (VCLs) and
Borland Database Engine
(BDE), as well as translated
message templates for Delphi
forms, dialog boxes, and
menus. It also includes the
Delphi Language Manager
that allows developers to
switch between languages.
The Delphi Translation

Suite is a localization solu-
tion for corporate develop-
ers, ISVs, VARs, and system
integrators who need to
deliver larger-scale applica-
tions internationally with a
more thorough translation
than the Delphi Language
Pack can provide. The suite
can help translate new or
existing applications, and
includes all the functionality
of the Delphi Language Pack
— plus a suite of develop-
ment tools to automate and
test the translation process
from one codebase.

Enhancements or bug-fixes
to the Delphi Translation
Suite apply immediately to all
translated versions. The
developer’s translation staff
doesn’t need to be technical
to do the localization, and
cannot access or modify the
application’s source code. The
Suite’s GUI conversion fea-
tures allow the translator to
preview how the translation
will appear, avoiding message
truncation problems and pick
letter duplicates. Most impor-
tantly, all the work of the
Delphi Translation Suite is
designed to be re-usable: as
new versions of applications
are created, only the new or
altered items need to be
translated.

The Delphi Language
Pack and Delphi Trans-
lation Suite are scheduled
to be available this Fall.

The Delphi Language Pack
is priced at US$199.95; the
Delphi Translation Suite is
US$3,499.95.

Special introductory pricing
is available for customers
who place orders before
September 30, 1996. For
more information call
Borland at (800) 233-2444.
Delphi Team Beats Usoft and Oracle

Portsmouth, UK — Dustin

Thomas, one of Borland’s
Premier Client/Server
Partners, received 1st place
in the 1996 RAD Race held
during Software Develop-
ment 96 at the NEC
Birmingham using Delphi
Client/Server. The RAD
Race is a two-day event
sponsored by D3, APT
Data Group’s monthly
development title, and the
consulting group Ovum.

Other teams competing
included second place win-
ners Usoft, using Usoft
Developer and Oracle;
Compsoft using Equinox;
ISDE using Prism; and
Software Design Associates
using Delphi and System
Architect. The Software
Design Associates team also
received a commendation.

The Borland/Dustin
Thomas team consisted of
developers Jason Voles and
Colleen Ridgewell.

The competition benefited
the National Association for
the Care and Resettlement
of Offenders, who will
implement the prize win-
ning application.
The application developed

was judged by a team of
industry professionals, includ-
ing Henk Bakker of Ovum;
D3’s Technical Editor Lloyd
Blythen; Greg Malewski of
Enterprise IT; Mark
Whitchorn of the University
of Dundee; and NACRO’s
National Computing Officer
Neil Russell.
Delphi 2 Receives Microsoft BackOffice Logo;
Borland Products to Support Windows NT 4.0
Anaheim, CA — Borland
International Inc. announced
Delphi Client/Server Suite 2
has received the Designed for
Microsoft BackOffice logo.

In addition, Borland
announced plans to support
Windows NT 4.0 with its
application development
tools and databases, includ-
ing Delphi, Borland C++
5.0, Paradox 7, ReportSmith,
InterBase 4.0, and the com-
pany’s new Intranet develop-
ment tool, IntraBuilder.
Microsoft’s Designed for
Microsoft BackOffice logo
program allows customers
to identify applications
that are designed to work
with the BackOffice family.
The products are tested
and approved by Micro-
soft’s own BackOffice
Software Testing Labs.
Borland’s products are also
currently applying for
Microsoft’s new Designed
for Windows NT and
Windows 95 logo program.

7 September 1996 Delphi Informant

News
L I N E

Sep tember 1996

Orlando Sep 10-13

Boston Sep 16-19

Raleigh Sep 23-26

Houston Sep 23-26

Minneapolis Sep 30-Oct 3

Atlanta Oct 8-11

Seattle Oct 8-11

Philadelphia Oct 14-17

Denver Oct 21-24

Los Angeles Oct 22-25

Dallas Oct 29-Nov 1

Newark Nov 4-7

Chicago Nov 4-7

Columbus Nov 11-14

Phoenix Nov 12-15

Washington, DC Nov 19-22

San Francisco Dec 3-6

Amsterdam Oct 22-25

London Oct 28-31

Delphi World Tour Update
Due to scheduling changes,
the Delphi World Tour has
announced new dates. The

table below outlines the new
dates and locations. In addi-
tion, the Delphi World Tour

added a stop in Phoenix and
removed its Frankfurt dates.
The Delphi World Tour is spon-
sored by Borland International,

Softbite International, and
Informant Communications

Group. These four-day seminars
cover Delphi 1 and 2 program-

ming techniques.
To receive a complete

brochure via fax, call (630)
833-9122 and request docu-
ment number 5. The brochure
can also be requested from
Softbite at (630) 833-0006.

Softbite’s Web site is located at
http://www.softbite.com.
Borland Posts First Quarter Loss; Wetzel Resigns

Scotts Valley, CA —

Borland International Inc.
announced it expects rev-
enues for the first fiscal
quarter, ending June 30,
1996, in the range of
US$34 to US$35 million.
As a result, Borland expects
to report a substantial oper-
ating loss and a loss per
share in the range of
US$.53 to US$.56. Borland
attributed the first quarter
revenue decline primarily to
lower than expected sales in
the US.

Borland also announced
the resignation of Gary A.
Wetsel as president and
CEO. The company has ini-
tiated a CEO search while
Dr William F. Miller,
Chairman of the company’s
Board of Directors, will serve
as acting CEO until a
replacement is appointed.
In addition, as an interim
measure, Borland has created
an office of the president,
reporting to Dr Miller. It
includes Paul Gross, senior
vice president of Research
and Development; Michael
Greenbaum, vice president
of Marketing and general
manager of Client/Server
Tools; and David
McGlaughlin, vice president,
International.
Borland’s BAJA Component Event Model Included in Java Beans

Anaheim, CA — Borland

International Inc. has
announced its BAJA com-
ponent event model for
Java applications develop-
ment is included in the
draft specification for
JavaSoft’s Java Beans com-
ponent model specification.
Borland and several other
industry leaders are partici-
pating in a JavaSoft-coordi-
nated effort to develop a
portable, platform-neutral
Java component API.

Announced during the
Borland Developers
Conference last month,
Borland also demonstrated
a working version of its
BAJA Property/Method/-
Event (PME) programming
component model integrat-
ed into Latte.

Java Beans will enable
developers to write Java
applets and applications
from reusable components
that can interact with other
Java applets and applica-
tions, as well as with other
component models.

Java Beans speeds applica-
tion development by allow-
ing developers to use exist-
ing Java applets and appli-
cations.

Java Beans, as exposed by
Borland’s Latte, provides
the primary-level building
blocks of functionality for
Java developers. Similar to
Borland’s Delphi, Latte
with Java Beans provides an
integrated approach to
building software with plat-
form independence. For
example, Java Beans, writ-
ten entirely in Java, will
allow components to be
inserted in any other com-
ponent architecture,
including Microsoft’s
ActiveX, OpenDoc, and
Netscape’s LiveConnect.
Borland and Open Environment Amend
Merger Agreement
Scotts Valley, CA —
Borland International Inc.
and Open Environment
announced they have modi-
fied the terms of the agree-
ment providing for the
merger of Open Environ-
ment with Borland.

Under the terms of the
amendment that was
approved by the Board of
Directors of both companies,
Open Environment share-
holders will receive a fixed
ratio of 0.66 shares of
Borland common stock for
each share of Open Environ-
ment common stock.

The exchange ratio had
been 0.51, but was subject
to change based upon the
value of Borland common
stock over a specified period
of time prior to the effective
date of the merger.

With this amendment, the
exchange ratio will no longer
be subject to adjustment
based upon the value of
Borland common stock.

Open Environment has
approximately eight million
shares and vested options out-
standing, giving an indicated
value of approximately US$40
million for the transaction.
Borland has approximately 31
million shares outstanding.

Completion of the trans-
action remains subject to
regulatory approvals and
approval by the stockholders
of Open Environment. The
transaction is expected to
close later this summer or in
early fall.
Errors and Omissions

Errors appear in Mark Ostroff ’s
article “Leveraging ReportSmith:
Part I” in the August 1996 Delphi
Informant. On page 28, paragraph
nine, third sentence, the correct
statement should be:

In the example shown in Figure
10, entering a variable name of
stateselection would result in
the value being ignored.

Also, to correct his biography,
Mark Ostroff has been in the
computer field for nearly 18 years
and has worked for Borland for
over six years.

We apologize for any confusion
these errors may have caused.

On the Cover
Delphi 1 / Delphi 2 / Object Pascal

By James Maycott

8 September 1996 Delphi Informant

Delphi Patterns
Creating a Generic Notification Mechanism in Delphi
In the object-oriented model, objects communicate by sending messages to
each other. In Delphi, this translates to the invocation of object methods.

Invoking a method requires that a connection exist between the sending and
receiving objects. So how do we have an object communicate with one or
several other objects to which it does not have apparent connections?
In this article, we’ll discuss a solution to this
problem that’s implemented by a
subscribe/notify scheme using a simple cus-
tom component and Delphi events. The
notification mechanism illustrates the use of
four object-oriented design patterns — the
Observer, Mediator, Proxy, and Singleton.

First, we’ll review methods and ways to invoke
them in Delphi. Our discussion will then cover
events as they relate to the custom component.
(Readers already familiar with these topics can
skip to the section, “Multi-Object Signaling.”)

Invoking Methods
An object’s behavior is implemented by the
procedures and functions (i.e. its methods)
that are defined by its class and ancestor
classes. In Delphi, methods can be invoked
in three ways, through:

class references,
object references, and
method pointers.

A class reference can be used to invoke meth-
ods that apply to an entire class (class
methods). Object references and method point-
ers can be used to invoke either class meth-
ods, or methods pertaining to a specific
object instance (object methods).

Invoking a method through an object refer-
ence or class reference is more common and
easier to understand, particularly for the
Delphi novice. When a method is invoked
through a reference, the method’s name —
as defined in the object’s class — is explicit-
ly stated along with the appropriate parame-
ters (if any). For example, this code invokes
a method through an object reference:

myObject.OneOfItsMethods('A String Parameter');

This example invokes a method through a
class reference (the class is TEdit). In this case,
the constructor is invoked at the class level to
create a new object instance:

myEdit := TEdit.Create(nil);

You can also invoke a method through an
indirect object reference. For example, an
object reference can be obtained as the return
value from a method, property, or utility
routine. In the following code snippet, the
itsAssociatedObject property returns a refer-
ence to another object. AnotherMethod is a
method of the other object:

myObject.itsAssociatedObject.AnotherMethod;

A method pointer, as its name indicates, can
contain the address of an object or class
method. As stated in Delphi’s online Help:
“Delphi allows you to declare procedural
types that are object methods, enabling you
to call particular methods of particular object
instances at run time.”

A variable of procedural method type (e.g. a
method pointer) can be assigned any object

On the Cover

Figure 1: Using a method pointer to invoke a function method
and procedure method.

var
iVar : integer;
DelegateFunction : TASampleFunctionMethodType;
DelegateProcedure : TASampleProcedureMethodType;

begin
{ Assume that SomeObject is accessible and that

FunctionA's signature is the same as that specified
by TASampleFunctionMethodType. }

DelegateFunction := SomeObject.FunctionA;
{ Assume ProcedureA's signature is the same as that

specified by TASampleProcedureMethodType.}
DelegateProcedure := SomeObject.ProcedureA;
{ Invoking the function method through an

object reference. }
iVar := SomeObject.FunctionA(3);
{ Invoking the same method through a method pointer. }
iVar := DelegateFunction(3);
{ Invoking the procedure method through an

object reference. }
SomeObject.ProcedureA('AB');
{ Invoking the same method through a method pointer. }
DelegateProcedure('AB');

end;
or class method provided the method’s signature matches
that of the type. Once an assignment is made, the method
pointer can be used to invoke the method.

Note that the signature of a function or procedure is defined
by its argument list (the types of the arguments) along with,
in the case of a function, the return value’s type. Some refer-
ences, such as Stanley Lippman’s C++ Primer [Addison-
Wesley, 1989], do not include the return value type as part of
the signature (others references do). In my example, I include
the return value of a function as part of the signature.

Before proceeding, let’s cover more terminology:
Procedural type. As used above, this is a type describing a
function or procedure with a specific signature.
Procedural method type. Refers to a procedural type that
must be an object or class method.
Procedure method type. Used to specifically refer to a pro-
cedural method type for a procedure.
Function method type. Used to refer to a procedural
method type for a function.

This first code snippet is a function method type declaration:

TASampleFunctionMethodType =
function(x : integer) : integer of object;

The following example illustrates a procedure method type
declaration:

TASampleProcedureMethodType =
procedure(str : string) of object;

Figure 1 shows an example of invoking a function method
and procedure method using a method pointer. Here are
three items to consider regarding method invocations:
1) When a method is invoked through an object reference, it

implies that the sending object has access to the entire
public interface of the receiving object. That is, the send-
ing object has knowledge of the receiving object’s overall
purpose and capabilities.

2) When an object method is invoked through a method
pointer, the sending object does not necessarily know the
class of the receiving object (e.g. its overall purpose). The
only thing that the sender knows for sure is the method’s
signature being invoked (and likely, the message’s purpose).

3) With regard to an object method invocation, whether
the invocation is through an object reference or method
pointer, some type of connection is required between the
sending and receiving object. In the former, the connec-
tion is a reference to the target object. In the latter, the
connection is the address of the method to be invoked.

Delphi Events
All object-oriented programming frameworks provide support
for events in some form. These frameworks generate applica-
tions that run on top of event-driven operating systems or
environments such as Windows, OS/2 PM, or X-Windows.
Therefore, there’s a clear need to support some type of event
abstraction.
9 September 1996 Delphi Informant
Just what is an event? Generally, you can consider an event
“something significant” that can happen to an object that
may need to be communicated to another object (or objects).
These “interested” objects can then take appropriate action
depending on the nature of the event.

Different frameworks enforce generating and propagating
events in various ways. With Delphi, translating an event’s
abstraction to its physical implementation occurs as follows:

A state change occurs to an object — the event generator
— that meets the criteria for one of its defined events.
The generator informs another object (the event receiver)
of the event by invoking a method through a method
pointer. This method pointer references an event handler
in the receiver.
The receiver reacts to the event by executing code within
its event handling method.

Figure 2 is an extract of the event-related code from the
source for the signaling component (we’ll discuss this in
more detail later). For now, here are some important items
to note:

TSignalChange is the definition (pre-defined signature)
of the event handler method type used to respond to
the component’s OnSignalChange event. Any event
handler defined for objects that use this component
must be of this type. In general, event handlers must
be procedure methods with the first parameter being a
TObject. This parameter normally contains a reference
to the object that invoked the event (the generator or
“Sender”). Other parameters can be added as needed
depending on the purpose of the event.
FOnSignalChange is a private member of the compo-
nent class. This attribute will be set to the address of a
method (the OnSignalChange event handler for the
receiver) with a signature that is the same as that
defined by TSignalChange.
OnSignalChange is a published property of the compo-

Figure 2: Event-related code from our signaling component.

Figure 3: A stock price service program that feeds price data to
a client application at regular intervals.

interface

type

{ 1 }
TSignalChange = procedure(Sender : TObject;

strKeyParm : string; strUserInfoParm : string;
intUserInfoParm : integer; objectParm : TObject)
of object;

{ The signal client class. }
TpcsSignalClient = class(TComponent)
private

{ Event handler method pointer. }
{ 2 }
FOnSignalChange : TSignalChange;
{ Method that will be invoked by signal server that

will, in turn, fire the OnSignalChange event. }
procedure SignalChange(Sender : TObject;

strKeyParm : string; strUserInfoParm : string;
intUserInfoParm : integer; objectParm : TObject);

...

published
{ Event handler property that will also show up

in Object Inspector.}
{ 3 }
property OnSignalChange : TSignalChange

read FOnSignalChange write FOnSignalChange;
end;

...

implementation

...

procedure TpcsSignalClient.SignalChange(Sender : TObject;
strKeyParm : string; strUserInfoParm : string;
intUserInfoParm : integer; objectParm : TObject);

begin
{ 4 }
if Assigned(FOnSignalChange) then

{ Only fire event if an event handler has
been assigned.}

FOnSignalChange(self, strKeyParm, strUserInfoParm,
intUserInfoParm, objectParm);

end;

...

On the Cover
nent that acts as a pseudo-variable for the
FOnSignalChange private attribute. This exposes the
event in the Delphi Object Inspector. You can then dou-
ble-click on the event to create a skeleton of the handler
for the owning component. When the handler’s skeleton
is generated, it’s also associated with the event. The
address of the handler is assigned to the event property.

Figure 2 illustrates the signaling of the event. For now, it’s
only important to know that the SignalChange method is
invoked when the event must be fired. The code simply
checks if a method address has been set to handle the
event. If so, the method at that address is called.

Multi-Object Signaling
A common scenario in applications, especially complex ones,
is the need to signal an event to multiple objects. Consider a
10 September 1996 Delphi Informant
stock price service program that feeds price data to a client
application at regular intervals (see Figure 3).

Let’s say the client application maintains its connection to
the service program through a stock update object.
Whenever a change occurs to a stock price, the stock update
object receives this information from the service application
and passes it to multiple user interface view objects.

Since the number of views can increase or decrease dynamical-
ly, what is the best mechanism for signaling these changes to
the views? Using standard method invocations would require
the stock update object to maintain a reference to each existing
view object. The stock update object would then invoke the
appropriate method for each view to signal the update. To sim-
plify this process it would make sense to define a specific
method for the notification and then implement this method
in any class that could connect to the stock update object.

We could try to inherit this method from a base class. However,
non-view objects (e.g. a report generator object) may also need
to use stock price data. The class hierarchy would, therefore, be
difficult to design in Delphi’s single inheritance model because it
precludes the use of mix-in classes. Clearly, this approach would
be awkward, and potentially expensive to implement.

Method pointers, in general, and Delphi events, in particular,
are a more natural fit for handling this situation. We could
define an event to represent the price change and have each
view object implement the corresponding event handler.
There are still some complications, however, because we must
signal the event to multiple receivers. We must build an
event handler method pointer list and maintain it dynamical-
ly, as well as provide a way for the views to specify the
address of their respective event handlers.

The design decision is whether to build the required
mechanism into the stock update object, or into a control
object that will act as an intermediary between the stock
update and the view objects (see Figure 4). Because this is
just one example of a common situation, we’ll build a
generic, reusable control object.

Figure 4: The stock price service program uses an intermediary
control object.

On the Cover
The Signaling Component
The PCSSIGNL.PAS unit (see Listing One beginning on page
14) defines two classes, TpcsSignalClient and TpcsSignalServer.
They work together to implement a subscribe/notify mechanism
for routing notifications (events) throughout an application.

You can add the TpcsSignalClient component to the
Component Palette. Any participant object wanting to use
the notification mechanism must attach to its own dedicated
TpcsSignalClient (signal-client) instance. With form objects,
you can do this visually by selecting the component from the
Component Palette and dropping it onto the form.

To attach to a signal-client instance at run time, an object
can invoke the TpcsSignalClient class constructor. Once a sig-
nal-client is attached to an object, that object can use the sig-
nal-client to send notifications to any “interested parties” (i.e.
other objects) in the application, and to receive notifications
when appropriate.

A notification is always associated with an application entity.
The term entity as used here, refers to any meaningful piece
of an application that can be considered as having a modifi-
able state. Some examples of application entities are a query
that may be refreshed; a file that may be updated; a section of
code that may be executed (e.g. a secondary thread under
Delphi 2); or any object whose state is meaningful to other
objects in the application.

Each application entity is identified by a string key. For
example, if we were to use signal-client objects from the stock
update example, we may select the following string to repre-
sent the stock update object entity:

STOCK UPDATES

Another good choice for the entity key would be the stock
update object’s class name. In general, an application’s devel-
oper must decide which entities are of interest, and assign a
unique string key for each entity.

To receive notifications, an object must perform three
actions. It must:
11 September 1996 Delphi Informant
1) attach itself to its own dedicated signal-client object as
previously described,

2) register for the entities it’s interested in, and
3) define a handler for the OnSignalChange event generated

by its attached signal-client.

If you place a signal-client component on a form, you can
establish a skeleton handler at design time by double-clicking
on the OnSignalChange event property. Otherwise, you must
manually enter the entire event handler and associate it with
the signal-client’s OnSignalChange event at run time — most
likely, immediately after the signal-client is instantiated. If at
some point the object is no longer interested in a notification
for a particular entity, it can de-register it.

For an object to send a notification it only needs to be
attached to a signal-client instance. The signal-client object
provides a method used to generate the notification.

The Signal-Server Object
The signal-client component allows objects to notify others
of significant events and receive such notifications. The sig-
naling mechanism also requires a central point of control for
handling the notification routing. This is the purpose of the
signal-server object, an instance of the TpcsSignalServer class.

While any number of signal-client instances can exist, there is
only one instance of the signal-server. The creation of this
unique instance is encapsulated within the signal-client class.
Objects that use the notification mechanism have no direct
knowledge of the server object — they only deal with the
interface presented by the signal-client.

The signal-server object maintains a master list of all the registra-
tion requests made by signal-client objects. Whenever a signal-
client requests that a notification be sent on behalf of its attached
object, the notification goes through the signal-server. The server
looks through its list of registrations for all other client objects
that are interested in the entity associated with the notification.
The server then invokes a method of each client that in turn fires
an event to the client’s attached object (delivers the notification).

Notification Content
Each notification contains: a string key identifying the entity
associated with the notification; an integer value; a string
value; and an object reference. Note that depending on the
purpose of the notification, the integer value and object refer-
ence can be used as needed.

The implementation of the stock update application in Figure 5
uses signal-clients and a signal-server. Although more objects
and messages are involved, a “hard” connection no longer exists
between the stock update object and each of the view objects.

Design Patterns in the Notification Mechanism
Any programmer wanting to improve his/her object-oriented
skills is advised to pick up a copy of Design Patterns: Elements of
Reusable Object-Oriented Software by Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides [Addison-Wesley,

Figure 5: This diagram depicts the implementation of the stock update applica-
tion using signal-clients and a signal-server.

On the Cover
1995]. This excellent book contains a descriptive list of
reusable object-oriented design patterns. The authors define a
design pattern as “a recurring pattern of classes and communi-
cating objects that are found in many object-oriented systems.”
Four of these patterns are used in the implementation of the
signal component’s notification mechanism. [For a review of
Design Patterns, see Richard Curzon’s “The Gang of Four
Speaks of Patterns” in the June 1995 Delphi Informant.]

The overall schema is an example of a variation of the
Observer pattern. As described in Design Patterns, the Observer
is used to “define a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically.” The Observer pattern
addresses all the design considerations regarding the signal
component mechanism we discussed earlier.

In addition, the pattern also provides more specifics regarding
the update of each dependent object’s state. One other differ-
ence worth noting is that while the signal component mecha-
nism requires an object to attach to a signal-client to partici-
pate (a form of composition), the Observer pattern uses
inheritance to provide the required interface. Note that the
registration, de-registration, and notification methods are
derived from abstract base classes.

The Mediator pattern, as described in Design Patterns, defines
an object that encapsulates how a set of objects interact. The
Mediator promotes loose coupling by preventing objects from
referring to each other explicitly. In addition, the Mediator
allows you to vary the interaction of objects independently.
In the notification mechanism, the signal-server instance acts
as the mediator between participant objects.

Design Patterns describes the Proxy pattern as a means of
“define[ing] a surrogate or placeholder for another object to
control access to it.” As you view the code for the signal-
12 September 1996 Delphi Informant
client component, you’ll notice that the
methods RegisterKey, UnRegisterKey, and
ChangeForKey simply invoke a method in
the signal-server with the same name. The
signal-server actually handles the notifica-
tion mediation between participating
objects.

You may ask, “Why are we introducing
another object, the signal-client, which
seems to provide redundant functionali-
ty?” The answer is that we want to be able
to represent an interface to the notifica-
tion mechanism as a tangible component
that can be used at design time. The sig-
nal-client serves this purpose, and acts as
a proxy to the signal-server object.

The fourth pattern used is the Singleton.
Design Patterns defines the Singleton as a
way to “ensure a class has only one instance,
and provide a global point of access to it.”
The signal component mechanism uses the Singleton pattern
to ensure only one instance of the signal-server object is cre-
ated, and that the signal-client proxy objects can have access
to it.

For a more detailed description of each of these patterns,
including the formal class hierarchies and object structures
involved, please refer to Design Patterns.

Examining the Code
Listing One shows the complete source listing of the notifica-
tion mechanism. This article is also accompanied by a simple
test harness to demonstrate the component’s use. In addition
to class definitions of the signal-client and signal-server, the
PCSSIGNL unit also contains related definitions and vari-
ables. The test harness is composed of the TESTSIGM,
TESTSIGU, and TESTOBJ units.

TpcsSignalClient
As mentioned, the signal-client acts as a proxy to the signal-
server. As such, the TpcsSignalClient class consists only of
methods and an event property.

TSignalChange is the definition of the procedural method
type that represents the OnSignalChange event.
OnSignalChange is fired by a signal-client to inform its
attached participant object of a state change to an entity for
which it has registered. The parameters for the event are:

Sender — Will always be the participant’s signal-client.
strKeyParm — A string key identifying the entity to
which the notification applies.
strUserInfoParm — Additional information as a string.
intUserInfoParm — Additional information as an integer.
objectParm — Additional information as an object. If the
entity key represents some application object, objectParm
would typically contain a reference to that object.

On the Cover

Figure 6: The test project
you can build using the
downloadable code from this
article.

Figure 7: After
clicking the
New Form but-
ton three times,
three instances
of the Test Entity
Change
Signaling form
display. Pressing
the Signal but-
tons on the
active form
causes the
numbers for the
other entities to
increment by
one in the other
inactive forms.
The purpose of the FOnSignalChange attribute and its corre-
sponding property OnSignalChange was addressed in the sec-
tion “Delphi Events.”

RegisterKey is called by a participant object to express interest
in an entity identified by strKeyParm. When a participant is
no longer interested in an entity, it will invoke UnRegisterKey
— again specifying the string key for the entity as a parame-
ter. If a participant wants to notify other interested parties of
a change to an entity’s state, it invokes ChangeForKey.

The parameters for the ChangeForKey method are the same as the
last four parameters of the OnSignalChange event. A participant
does not have to be registered to generate a notification indicating
a change to an entity’s state. The RegisterKey, UnRegisterKey, and
ChangeForKey methods simply forward the request to the signal-
server — this is the actual mediator in the mechanism.

The SignalChange method is invoked by the signal-server
when it needs to route a notification to a participant. Its
parameters are the same as that of the OnSignalChange event.

TpcsSignalServer
The first item to note about the TpcsSignalServer class is its
placement within the unit. Since the instantiation of the signal-
server is encapsulated within the signal-client’s class, we must
prevent the erroneous creation of other instances. We do this by
hiding the signal-server class in the implementation section.

The next thing to note is the way the signal-server object is
created. If you examine the constructor and destructor for the
signal-client, you’ll see that the signal-server’s Access and Release
methods are called instead of the signal-server’s constructor and
destructor. Access and Release ensure that only one instance of
the signal-server exists, and control access to that instance.

As you’ll recall, this is the intent of the Singleton design pattern.
Access checks if an instance of the signal-server exists. If not,
Access creates it through its private constructor. If the object
already exists, it’s returned. In either case, a reference count is
incremented to track how many signal-clients are using the sig-
nal-server. The Release method performs the opposite function. It
first decrements the usage count. When the count goes to zero,
the signal-server object is destroyed via its private destructor.

The signal-server implements its participant registration list
as the TStringList object strlstKeys. The Strings value for each
entry will contain an entity key. The Objects value will refer-
ence a signal-client object that has registered for the entity
on behalf of a participant. RegisterKey (called directly by the
signal-client’s RegisterKey method) adds an entry to strlstKeys
using strKeyParm and sigclientParm as the values for Strings
and Objects, respectively.

UnRegisterKey (called directly by the signal-client’s UnRegisterKey
method) iterates through strlstKeys and removes the entity speci-
fied by strKeyParm for the signal-client specified by
sigclientParm. If an asterisk (*) is specified by strKeyParm, all
entries corresponding to sigclientParm are removed from the list.
13 September 1996 Delphi Informant
ChangeForKey, called directly by the signal-client’s
ChangeForKey method, looks for the first occurrence of the
entity specified by strKeyParm in strlstKeys. For each occurrence
of the entity, the associated signal-client’s SignalChange method
is invoked. This, in turn, invokes the signal-client’s
OnSignalChange event, thereby notifying the target participant.
The Test Harness
To demonstrate the mechanism,
you can use the simple test har-
ness to create a test program.
First, the test program displays a
main form with a single New

Form button (see Figure 6).
Each time you press New Form,

a new instance of a second-level form is displayed. Each second-
level form instance has a signal-client component attached, and
can act as a participant in the notification mechanism.

The second-level form features three rows of controls. Each
row has a label, three pushbuttons, and a read-only edit field.
Each label caption (Entity1, Entity2, and Entity3) represents an
application entity with a state associated with it. The
Unregister and Register buttons are used to register and de-
register the form for the corresponding entity. The Signal but-
ton is used to emulate a state change. When you press Signal,
the value in the corresponding edit field will increase by one.
In addition, a notification will be generated that causes every
other registered second-level form to increase its correspond-
ing edit field (see Figure 7). Initially, all entities are registered.

The notification mechanism works in either 16-bit or 32-bit
mode. To try the signal component and the test program, fol-
low these instructions:

If you are using the 16- version of Delphi, rename
PCSSIGNL.DCR to PCSSIG32.DCR. Copy
PCSSIG16.DCR to PCSSIGNL.DCR.
Copy the files PCSSIGNL.PAS and PCSSIGNL.DCR to
a directory where you store custom components.
In Delphi 2, select Component | Install from the menu. In
the 16-bit version, select Options | Install Components

from the menu.

James Maycott is a Senior Software Engineer at PCSI, a leading client/server and
Internet/intranet consulting and development firm. He can be reached at (201)
816-8002, or through CompuServe at 75131,1763 (on the Internet use
75131.1763@compuserve.com).

On the Cover
Click the Add button; in the Add Module dialog box,
select the PCSSIGNL.PAS file that you just copied.
After you have selected the file and returned to the
Install Components dialog box, click the OK button.
This rebuilds your component library. When this is
complete, the pcsSignalClient component will be
added to your Component Palette under a tab labeled
Custom.
Open a new application project and remove the default
form unit that is created for you (do not save it).
Add the TESTSIGM.PAS unit to your project.
Save the project and then select Project | Build All (in
Delphi 2) or Compile | Build All (Delphi 1) from the menu.
Run the project and the main form will be displayed.

Click the New Form button three times. This creates three
instances of the second-level form. You’ll want to reposition
the forms to make them clearly visible.

Press the Signal button for one of the entities on one of the
second-level forms. The corresponding edit field on all the
forms will increase by one. The update of the edit field on
the same form as the button you pressed occurs as a result of
the form’s button click handler. The update of the other two
forms occurs as a result of notifications.

If you press the UnRegister button on a form, as a result of
a notification, it prevents the corresponding edit field
from being updated. You can re-enable such updates by
pressing the Register button.

If you press the
Signal button for
Entity 3, an
Information dia-
log box is dis-
played, indicat-
ing that non-
component
objects can also
access the notification mechanism (see Figure 8). This is
generated by an object that the main form instantiates when
it’s created. This non-component object is attached to a sig-
nal-client object and is registered for Entity 3.

The code for the test harness is basic, so I have not included
a detailed discussion of it.

Conclusion
A solid understanding of method invocation and event sig-
naling is a critical part of mastering an object-oriented
programming environment such as Delphi. Events are well
suited for implementing notification schemes in an appli-
cation. The component presented in this article is a simple
example of a small building block upon which more com-
plicated mechanisms can be built. Furthermore, this com-
ponent illustrates that object-oriented design patterns are
not just for the academic elite — they can and should
have a place in every programmer’s “bag-of-tricks.” ∆

Figure 8: The Information dialog box is
displayed when you click the bottom
Signal button on the active form.
14 September 1996 Delphi Informant
The demonstration files referenced in this article are available on
the Delphi Informant Works CD located in INFORM\96\-
SEP\DI9609JM.
Begin Listing One: The PCSSIGNL Unit

unit Pcssignl;

interface

uses
Classes;

type
{ -Signal Event Type Definition- This event will fire

in a signal-client component when told to do so by
the signal-server. The owner/user of this component
should implement a handler for this event. The
strKeyParm will identify what entity has changed, and
the event handler should act accordingly.
strUserInfoParm, intUserInfoParm, and objectParm can
contain additional information about the signal. }

TSignalChange = procedure(Sender : TObject;
strKeyParm : string; strUserInfoParm : string;
intUserInfoParm : integer; objectParm : TObject)
of object;

{ The signal-client class acts as a proxy to the
signal-server. }

TpcsSignalClient = class(TComponent)

private
{ Event handler method pointer. }
FOnSignalChange : TSignalChange;
{ Method that will be invoked by signal-server that

will in turn,fire the OnSignalChange event. }
procedure SignalChange(Sender : TObject;

strKeyParm : string; strUserInfoParm : string;
intUserInfoParm : integer; objectParm : TObject);

public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;
procedure RegisterKey(strKeyParm : string);
procedure UnRegisterKey(strKeyParm : string);
procedure ChangeForKey(strKeyParm : string;

strUserInfoParm : string; intUserInfoParm : integer;
objectParm : TObject);

published
{ Event handler property that will also appear in
object inspector. }

property OnSignalChange : TSignalChange
read FOnSignalChange write FOnSignalChange;

end;

procedure Register;

implementation

{ The signal-server class: Acts as a mediator of
notifications between participants. Since the instance
of the server object is only instantiated via a client
instance, we make the class definition private. }

type
TpcsSignalServer = class(TObject)

1

{

v

{

{

c
b

e
{

d

b

e

{

p

b

e

{

On the Cover
private
{ Will hold list of key/client pairs. The string part

of each entry will be the string key which identifies
the entity. The object part is the client object that
subscribed for the entity. }

strlstKeys : TStringList;
{ Since server object is instantiated and destroyed via

class methods Access and Release, the constructor and
destructor are private. }

constructor Create;
destructor Destroy; override;

public
class procedure Access;
class procedure Release(

sigclientParm : TpcsSignalClient);
procedure RegisterKey(

sigclientParm : TpcsSignalClient;
strKeyParm : string);

procedure UnRegisterKey(
sigclientParm : TpcsSignalClient;
strKeyParm : string);

procedure ChangeForKey(
sigclientParm : TpcsSignalClient;
strKeyParm : string; strUserInfoParm : string;
intUserInfoParm : integer; objectParm : TObject);

end;

 Variables private to the TpcsSignalClient and
TpcsSignalServer classes. Because Delphi's Object
Pascal does not support class attributes, we use
implementation variables that can only be accessed
within this unit. }

ar
{ The server instance. }
theSignalServer : TpcsSignalServer;
{ Number of clients attached to server. }
intUseCount : integer;

 --------- TpcsSignalClient Methods follow --------- }

 The constructor will ensure that the server object is
created via the singleton design pattern. }

onstructor TpcsSignalClient.Create(AOwner : TComponent);
egin
{ Initialize ancestor parts. }
inherited Create(AOwner);
{ Instantiate / Access the signal server object. }
TpcsSignalServer.Access;

nd;
 The destructor ensures that the client is detached from
the server. }

estructor TpcsSignalClient.Destroy;

egin
TpcsSignalServer.Release(self);
inherited Destroy;

nd;

 This method will register the client with the server
for notifications on updates to the entity identified
by the specified key.

Parameters:
strKeyParm : The key for the entity. }

rocedure TpcsSignalClient.RegisterKey(
strKeyParm : string);

egin
theSignalServer.RegisterKey(self, strKeyParm);

nd;

 This method will tell the server to no longer notify the
client for the entity represented by the key.
5 September 1996 Delphi Informant
Parameters:
strKeyParm : The key for the entity. If '*', the client
will no longer be notified for any entity changes that
it was previously registered for. }

procedure TpcsSignalClient.UnRegisterKey(

strKeyParm : string);
begin

theSignalServer.UnRegisterKey(self, strKeyParm);
end;

{ This method will tell the server that the entity
identified by the key has changed. The server will then
notify all registered clients of the change (except the
client that signaled the change).

Parameters:
strKeyParm : The key for the entity.
strUserInfoParm : Additional information for change

(string).
intUserInfoParm : Additional information for change

(numeric);
objectParm : Addtional information for change

(object) (e.g., the object causing the change, or the
object that changed). }

procedure TpcsSignalClient.ChangeForKey(
strKeyParm : string; strUserInfoParm : string;
intUserInfoParm : integer; objectParm : TObject);

begin
theSignalServer.ChangeForKey(self, strKeyParm,
strUserInfoParm, intUserInfoParm, objectParm);

end;

{ This method is invoked by the signal-server. If an event
handler has been defined for the OnSignalChange event,
it is fired.

Parameters:
Sender : The server object
strKeyParm : Key that identifies the entity
strUserInfoParm : Additional information (string)
intUserInfoParm : Additional information (numeric)
objectParm : Addtional information (object). }

procedure TpcsSignalClient.SignalChange(Sender : TObject;
strKeyParm : string; strUserInfoParm : string;
intUserInfoParm : integer; objectParm : TObject);

begin
{ Only fire event if an event handler has been

assigned. }
if Assigned(FOnSignalChange) then

FOnSignalChange(self, strKeyParm, strUserInfoParm,
intUserInfoParm, objectParm);

end;

{ --------- TpcsSignalServer Methods follow --------- }

{ This class procedure checks to see if the signal-server
object exists, and if not, it instantiates it
(singleton). The instance is assigned to theSignalServer
which can be seen by instances of TpcsSignalClient.
This method is called in the constructor for
TpcsSignalClient. }

class procedure TpcsSignalServer.Access;
begin

if not Assigned(theSignalServer) then
theSignalServer := TpcsSignalServer.Create;

intUseCount := intUseCount + 1;
end;

{ This class procedure is called by TpcsSignalClient
objects (in their destructor) to tell the signal-server
that it is no longer being used by the specifed client.

On the Cover
Parameters:
sigclientParm : The TpcsSignalClient instance that is
detaching from the server. }

class procedure TpcsSignalServer.Release(
sigclientParm : TpcsSignalClient);

begin
{ Remove all items for this client from the server's

internal list. }
theSignalServer.UnRegisterKey(sigclientParm, '*');

{ Decrement the client use count. }
intUseCount := intUseCount - 1;
{ If no clients are attached, destroy the server

instance. We’ll recreate it again when needed. }
if intUseCount = 0 then

theSignalServer.Free;
end;

{ Private constructor that is invoked by class Access
method when the server object needs to be instantiated. }

constructor TpcsSignalServer.Create;
begin

inherited Create; { Initialize ancestor part of object. }

{ Instantiate string list object for holding key /
client object pairs. }

strlstKeys := TStringList.Create;
{ Sort the list by the string key. }
strlstKeys.Sorted := True;
{ A key may be in the list multiple times. }
strlstKeys.Duplicates := dupAccept;

end;

{ Private destructor of the signal-server object.
Invoked by class Release method when use count is 0. }

destructor TpcsSignalServer.Destroy;
begin

strlstKeys.Free;
theSignalServer := nil;
inherited Destroy;

end;

{ This method is invoked by a signal-client to inform the
server that it wants to be notified when changes occur
relating to the specified key.

Parameters:
sigclientParm : The signal-client that wants to be

notified when a change occurs relating to the key.
strKeyParm : The key. }

procedure TpcsSignalServer.RegisterKey(
sigclientParm : TpcsSignalClient; strKeyParm : string);

begin
{ Add the key and client object to the string list. }
strlstKeys.AddObject(strKeyParm, sigclientParm);

end;

{ This method will remove the entries for the specified
key for the specified signal-client. Once unregistered,
the client will no longer be notified when a change
occurs relating to the specified key.

Parameters:
sigclientParm : The signal-client that no longer wants

to be notified on changes relating to the
specified key.

strKeyParm : The key. If '*', all items for the
specified client will be removed from the server's
internal list. }

procedure TpcsSignalServer.UnRegisterKey(
sigclientParm : TpcsSignalClient; strKeyParm : string);
16 September 1996 Delphi Informant
var
i : integer;
intInitialCount : integer;

begin
intInitialCount := strlstKeys.Count - 1;
for i := intInitialCount downto 0 do begin

{ Remove specific key only for specified client. }
if strKeyParm <> '*' then

begin
{ We must check both the key and the object. }
if (strlstKeys.Strings[i] = strKeyParm) and

(strlstKeys.Objects[i] = sigclientParm) then
strlstKeys.Delete(i);

end
else

begin { Remove all keys for specified client. }
{ We only need to check the object. }
if strlstKeys.Objects[i] = sigclientParm then

strlstKeys.Delete(i);
end;

end;

end;

{ This method is invoked by a client when it has caused
the entity associated with the specified key to change.
The server will go through its internal list of clients,
and for those that have registered for the key (except
the client that caused the change), will invoke the
client's private SignalChange method, which will fire an
event for the client component (if an event handler has
been defined).

Parameters:
sigclientParm : The signal client that caused the change

for the entity.
strKeyParm : The key representing the entity.
strUserInfoParm : Additional information (string).
intUserInfoParm : Additional information (numeric).
objectParm : Additional information (object). }

procedure TpcsSignalServer.ChangeForKey(
sigclientParm : TpcsSignalClient; strKeyParm : string;
strUserInfoParm : string; intUserInfoParm : integer;
objectParm : TObject);

var
i : integer;

begin
{ First occurrence of key in list. }
i := strlstKeys.IndexOf(strKeyParm);

if i <> -1 then { At least one key was found. }
repeat

if sigclientParm <> strlstKeys.Objects[i] then
(strlstKeys.Objects[i] as
TpcsSignalClient).SignalChange(sigclientParm,
strKeyParm,strUserInfoParm, intUserInfoParm,
objectParm);

i := i + 1;
until (i = strlstKeys.Count) or

(strlstKeys.Strings[i] <> strKeyParm);
end;

procedure Register;
begin

RegisterComponents('Custom', [TpcsSignalClient]);
end;

initialization
theSignalServer := nil;
intUseCount := 0;

end.

End Listing One

17 September 1996 Delphi Informant

Informant Spotlight
Delphi 2 / Object Pascal

By Dana Scott Kaufman

Threaded Queries
Creating Delphi 2 Multithreaded Applications
One of the more highly-touted features of Microsoft’s 32-bit operating
systems is the ability to multitask, i.e. perform more than one task at

a time. In Windows 95 and Windows NT, multitasking is implemented by
the use of processes and threads.
A process refers to an instance of a running
program. For example, an instance of
WordPad and two instances of Notepad
represent three processes. A thread describes
a path of execution within a process. Think
of it as the point in your program that is
currently being executed. When a process is
created by the operating system, the main
thread is also created. Every process has at
least one thread. Once the main thread is
running, it can create additional threads
within the process. For instance, an address
book program might have a thread that
searches for a name in a database, and
another thread that dials the modem.

When you run a simple Delphi 2 program,
you create a program containing a thread.
Delphi 2 allows developers to harness this
power for use in their programs. The advan-
tage is that by using multithreaded develop-
ment, programs no longer have to stop
functioning while various events occur.

Delphi 2 allows developers to create multi-
threaded programs quickly and easily. [For
a comprehensive introduction to Delphi
multithreading, see Joseph Fung’s article
“Do the Strand” in the June 1996 Delphi
Informant.]

A common task mentioned in the context
of multithreading is the database query. By
spawning a thread that executes a lengthy
query, the user can still do other things
while the thread is running. This article
will demonstrate how to implement multi-
threaded queries with Delphi 2.

Anatomy of a Thread
To successfully create multithreaded applica-
tions, you must know the correct place in a
thread to execute the queries. In Delphi,
threads are created by deriving a new class
from the built-in TThread class.

Next, the programmer is required to cus-
tomize several events in the new thread
function to make it perform as desired.
Commonly, the Create, Destroy, and
Execute methods are overridden. Resources
required by the thread are allocated in
Create; those resources are then de-allocat-
ed in Destroy. The Execute method is piv-
otal to multithreaded applications. After
the thread is created, Execute is automati-
cally called. All the code used to make the
thread perform a specific task should go in
the Execute method, or in a method called
from Execute.

Because several threads can access the same
resources at the same time, problems can
occur. For example, if two threads are writ-
ing to a form concurrently, Delphi may be
drawing one object and begin drawing

Informant Spotlight

Figure 2: The OnClick event for the Execute Query button.

procedure TMainForm.BitBtn2Click(Sender: TObject);
begin

{ Make sure database was selected. }
if DatabaseComboBox.Text <> '' then

{ Create new form to hold query result set. Pass query
information to the form. The TQueryForm contains the
actual thread. }

with TQueryForm.Create(Self,Memo1.Lines,
DatabaseComboBox.Text) do begin

{ Move form slightly to right. }
Left := Left + QFormLeft;
Show; { Display form. }
{ Check if next form will display off screen. If so,

start over on left hand side of screen. }
if ((Left+QUERYFORM_OFFSET+Width)<=Screen.Width) then

Inc(QFormLeft,QUERYFORM_OFFSET)
else

QFormLeft:=0;
end

else
ShowMessage('You must first pick a Database!');

end;

Figure 1: This simple
form demonstrates the
workings behind multi-
threading queries.

Figure 3: The demonstration
QueryResults form creates a
thread that repeatedly exe-
cutes the SQL query passed
to it.
under the influence of another thread, potentially causing
errors. Borland’s solution to this problem is to call any code
of a thread that might have problems with other threads, or
the main Delphi thread through the Synchronize method.

TThread (and any object descended from it) has a special
method named Synchronize. The Synchronize method suspends
all other threads from executing — even the Delphi main
thread — while the code contained in the method passed as a
parameter to the Synchronize method executes. A program can
execute only one “synchronized” method at a time. This
means developers should only place code that absolutely must
be synchronized in the Synchronize method. The prototype for
a thread’s Synchronize method is:

procedure Synchronize(Method: TThreadMethod);

The Golden Thread Rules
Here are some guidelines to follow when you’re creating a
multithreaded database application.

Each thread that will access a database requires its own
session. A session is a connection through the Borland
Database Engine (BDE) to a database. Each Delphi pro-
gram that uses databases has one default session automati-
cally assigned. Normally, any data access would go through
this session.

With multithreading, more than one database action can
occur simultaneously. Thus, a single TSession can cause a
bottleneck. The solution is to have each thread create its own
session. The BDE was designed to be “thread-safe” so that it
will allow each database activity with its own session to func-
tion independently.

Don’t open a TQuery or TTable component in a synchro-
nized method. As mentioned earlier, when code is executed in
a thread’s Synchronize method, all other threads are suspended.
If a query is opened in a synchronized method, all other
threads will stop (including the Delphi main thread) while the
query is executing. This will effectively make the program sin-
gle threading because everything will pause while the query is
executing. Luckily the BDE is multithread enabled. If we
open the TQuery or TTable without synchronizing it, other
threads can still execute.

TQuery and TTable components should not be attached to a
TDataSource when they’re opened. This is important. If a
TDataSource is attached to a TDataSet when it’s opened,
Delphi will try to draw the results on the form if any data-
aware components are attached.

To avoid this problem, disconnect the TDataSource from the
TDataSet in the Synchronize method before opening the
TDataSet. After the TDataSet is open, reconnect the
TDataSource in another Synchronize method. When the
DataSource is reconnected to the TDataSet, any components
attached to the DataSource (e.g. TDBGrid) will display the
results. Here’s an example:
18 September 1996 Delphi Informant
Synchronize(DisconDataSource); { Disconnect DataSource }
FQuery.Active := True; { Start Query }
Synchronize(ConnectDataSource); { Connect DataSource }

A Simple Example
To demonstrate how multithreaded queries work, we’ll cre-
ate a program that allows the user to input a query and
launch it as a thread in a separate window. The query will
execute repeatedly until the user closes the window.

To start, create a main form containing a TMemo for the users to
enter queries, a TComboBox for selecting a Database, and a
TButton to launch the query. Your form should resemble Figure 1.

The Execute Query button creates a new form to run the
query and displays the results. The SQL query to be exe-
cuted and the database to execute the query against are
passed as arguments in the Create statement (see Figure 2).
The real action occurs in the
QueryResults form (see Figure
3). It features a TDBGrid to
display the query answer set
and a button to close the query.

When the form is created, it
creates a thread that repeated-
ly executes the SQL query
passed to it (this functionality
is hidden from you). This

Informant Spotlight

Figure 5: The demonstration application’s Create constructor.

constructor TQueryThread.Create(AOwner: TForm;
SQLStrings: TStrings;
DatabaseName: string);

begin
inherited Create(False);
{ Create Session. Use new session for each Thread. }
FSession := TSession.Create(nil);
{ Name Session with ThreadID, it's unique. }
FSession.SessionName := IntToStr(ThreadID);
{ Create Query. }
FQuery := TQuery.Create(nil);
{ Attach session. }
FQuery.SessionName := FSession.SessionName;
{ Set query. }
FQuery.SQL.Assign(SQLStrings);
{ Set Database. }
FQuery.DatabaseName := DatabaseName;
{ Create DataSource. }
FDataSource := TDataSource.Create(nil);
{ Save reference to the form the thread will

display data on. }
FOwnerForm := AOwner;
{ Set Grids DataSOurce. }
TQueryForm(FOwnerForm).DBGrid1.DataSource := FDataSource;
{ Set thread to Free its resources when Terminated. }
FreeOnTerminate := True;

end;
makes it easy to launch many different queries. All the
main program has to do is create a TQueryForm and pass
the SQL statements to it. The database and QueryForm
will handle the rest. Here is the TQueryForm’s Create
method:

constructor TQueryForm.Create(AOwner: TComponent;
SQLStrings: TStrings; DatabaseName: string);

begin
inherited Create(AOwner);
{ Create a thread to execute the query }
FQueryThread := TQueryThread.Create(Self,SQLStrings,

DatabaseName);
end;

When the TQueryForm is closed, the thread associated with
the form must be terminated by adding code to the FormClose
event. We do this by calling the thread’s Terminate method:

procedure TQueryForm.FormClose(Sender: TObject;
var Action: CloseAction);

begin
FQueryThread.Terminate;

end;

A View of the Strand
Now let’s look at the thread. Our initial task is to create a new
class, TQueryThread that is derived from the TThread class.
Each thread will have several private fields. Each thread needs:

a TSession so it has its own handle to the database,
a TQuery that will do most of the work,
a TDataSource to hook the TQuery to a TDBGrid, and
a private reference to the form that created the thread, so
that it can connect the form’s TDBGrid to the thread’s
TDataSource.

Also, the Execute, Create, and Destroy methods must be over-
ridden so we can add our own code. Figure 4 is the class dec-
laration for TQueryThread.

The Create method is passed a reference to the form that creat-
ed it, as well as a list of SQLStrings containing the query to be
run and the database name. Create carries out several important
tasks. For example, it creates a new TSession for itself. Each
thread has its own ThreadId that is an Integer. We use this to
name the session because it’s unique in the context of the oper-
ating system, and each session must be uniquely named.
19 September 1996 Delphi Informant

Figure 4: Class declaration for TQueryThread.

TQueryThread = class(TThread)
private

FSession: TSession;
FQuery: TQuery;
FDataSource: TDataSource;
FOwnerForm: TForm;

protected
procedure Execute; override;

public
constructor Create(AOwner: TForm;

SQLStrings: TStrings;
DatabaseName: string);

destructor Destroy; override;
procedure DisconDataSource;
procedure ConnectDataSource;

end;
We must also create the TQuery to execute the SQL query. The
TQuery is then attached to the newly-created TSession and
assigned the SQL string and database the user has specified. We
must also save a reference to the form that created the thread so
we can later access components on the form. The TDBGrid,
located on the form, is then pointed to the new TDataSource.

Lastly, we set the thread’s FreeOnTerminate property to True.
This will cause the thread to automatically free its resource
when it’s terminated. Figure 5 shows the Create constructor.

The thread now has all the essential components for running
a query.

Executing a Query
Our next task is to create the query-executing routine. To do
this we override the Execute method (see Figure 6) which will
be automatically called after the thread is created. This is
where we’ll open the query.

The thread will continually re-execute the query until it’s termi-
nated. A while loop is used to accomplish this. First, we ensure
the TQuery is connected to a TDataSource. We use the
Synchronize method to guarantee that the code contained in the
procedure passed to the method will be running exclusively. This
will allow our code to use VCL components safely in the thread.

Next, to assure that the query is closed and disconnected from
the DataSource, we change the TQuery’s Active property to
False and the TDatabase DataSource property to nil. This must
be done in a synchronized function, because if any visual com-
ponent is connected to the TDataSource, they will be re-drawn
to show no data when the DataSet is disconnected from the
DataSource. The following method disconnects the query:

Dana Scott Kaufman is Chief Technical Officer and a Senior Consultant at Apogee
Information Systems, Inc., a consulting and development firm specializing exclu-
sively in Delphi- and Paradox-based applications. He has presented topics on
Delphi development at the 1996 Conference to the MAX in the Netherlands, and
topics on Java and Paradox at the 1996 Borland Developers Conference. Dana can
be reached at (508) 481-1400 or by e-mail at aisys@ix.netcom.com.

Figure 6: The demonstration application’s Execute method.

procedure TQueryThread.Execute;
begin

{ Run until thread is terminated. }
while not Terminated do begin

{ Disconnect DataSource. }
Synchronize(DisconDataSource);
{ Set label. }
TQueryForm(FOwnerForm).Label1.Caption :=

'Starting Query';
FQuery.Active := True; { Start Query. }
{ Set label. }
TQueryForm(FOwnerForm).Label1.Caption := 'Query Done';
{ Connect Datasource,the grid will be filled. }
Synchronize(ConnectDataSource);
{ Pause so we can see the results of the query. }
Sleep(1000);

end;
end;

Informant Spotlight
procedure TQueryThread.DisconDataSource;
begin

FQuery.Active := False; { Close Query }
{ Disconnect DataSource from Query }
FDataSource.DataSet := nil;

end;

Now we can execute the SQL query. We change the label’s text
so the user knows when the query is executing. Next, we set
the TQuery’s Active property to True. Notice we aren’t required
to open the query in a synchronized method. This allows other
threads to continue executing while our query is running.

After the query is open, we change the label to notify the user
that the query is done executing. We then re-connect the
TDataSource to the TQuery. Again, we call the procedure that
accomplishes this through the Synchronize method. When the
connection is made, the DataSource will cause the TDBGrid
on the form to re-draw and display the query results. While
doing this we must ensure this thread is the only one associ-
ated with the program that is executing. The code to connect
the DataSource is:
20 September 1996 Delphi Informant
procedure TQueryThread.ConnectDataSource;
begin

FDataSource.DataSet := FQuery;
end;

Finally, we use the Sleep function to make the thread pause
for a second so the result set is displayed in the TDBGrid
long enough for the user to see it. After that, the program
jumps to the beginning of the loop and restarts the process.

Conclusion
Multithreading programming can be a powerful develop-
ment technique when used properly. Database programming
is one of the best and most widely discussed uses for this
type of development.

While not a trivial task, in certain cases, adding multithread-
ed queries to an application can make for a much more pow-
erful and productive application. Delphi 2 includes all the
tools for providing these capabilities to your users. ∆

The demonstration files referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\SEP\DI9609DK.

21 September 1996 Delphi Informant

DBNavigator
Delphi 2

By Cary Jensen, Ph.D.

The Object Repository
Visual Form Inheritance and Other Delphi 2 Delights

Figure 1: The
In Delphi 1 you have two options when you want to reuse forms between
applications. One option is to add the form to the Gallery, and then select

it any time you need the same form in another application. Alternatively, you
can achieve the same effect by selecting File | Add File from Delphi’s main
menu, then selecting the unit associated with that form.
While you can reuse forms these same ways
in Delphi 2, the new version of Delphi also
lets you inherit from an existing form,
rather than simply reusing it. The inherited
form will have all the objects and event
handlers of the original form. However,
unlike form reuse, form inheritance permits
you to add additional objects and event
handlers — and even override inherited
event handlers — without affecting the
original form. This feature is referred to as
Visual Form Inheritance (VFI).

(It’s also possible to reuse a form by adding
it to a DLL, and then using the DLL from
multiple applications. However, this tech-
nique has limitations and is outside a dis-
cussion of the Object Repository, the focus
of this article. Consequently, DLL-based
forms are not included in this discussion.)
 New page of the Object Repository.
VFI is a feature of the Object
Repository, which is a replacement for
the Delphi 1 Gallery. There are several
types of objects that can appear in the
Object Repository, including experts,
templates, and container objects (forms
and data modules). Experts and tem-
plates are features the Object Repository
has in common with the Gallery.
Container objects, however, exist only in
Delphi 2, and are the basis of VFI.

Using Experts
The New page of the Object Repository,
shown in Figure 1, contains only experts.
Additional experts are located on the
Forms page (Database Form), Dialogs
page (Dialog Expert), and Projects page
(Project Expert). What these experts have
in common is that they are code based.
When you double-click on an expert, or
when you select an expert and click the
OK button on the Object Repository
dialog box, Delphi runs the expert.

The effect of running an expert depends
on which one you select. Some experts,
such as the DLL expert on the New page
of the Object Repository dialog box,
simply create a new project containing a
single source (.DPR) file that defines the
library. You then add to this .DPR file
any desired exports clauses, units, func-
tions, procedures, resources, compiler
directives, and so on.

Figure 2: The Component Expert greatly simplifies the process
of creating and registering a new component to the Component
Palette.

Figure 3: The main form of a project that contains the components
and event handlers necessary for a simple viewer.

DBNavigator

Figure 4: Use the
Add to Repository
dialog box to create
a template from a
saved project.
(Note: In Delphi 2, a project file that defines a DLL does not
necessarily need a unit. In Delphi 1, every DLL requires at
least one unit, even if it is a blank one. Failure to provide at
least one unit in a Delphi 1 DLL will result in an error mes-
sage each time you load the DLL project, but that appears to
be all. Unit-less DLLs in Delphi 1 seem to compile correctly.)

Other experts, such as the Component and Thread Object
experts on the New page, and the Database Form expert on
the Forms page, display a dialog box you use to provide the
expert with details about the object you want to create. For
example, the Component Expert (see Figure 2) requires you
to provide a class name, ancestor type, and Component
Palette page on which you want the component to be regis-
tered. After you’ve completed these experts, they generate any
required project (.DPR), unit (.PAS), and form (.DFM) files.

If you’re ambitious, you can create your own experts.
However, doing so is one of the more challenging tasks in
Delphi (in large part because of the limited documentation).
If you are interested in creating your own experts, take a
look at the DEMOS\EXPERTS directory, located under the
Delphi subdirectory (this is true in both Delphi 1 and
Delphi 2). In this directory you’ll find one (Delphi 1) or two
(Delphi 2) projects that define experts. The critical statement
in these projects is a call to the RegisterProc function. This
function, defined in the EXPTINTF unit, registers a new
expert with the IDE (Integrated Development
Environment). [Tony Yeung provides one approach to expert
creation in his article “Expert Help” beginning on page 26.]

Using Templates
Unlike experts, templates are simply a collection of project
files. When you select a template, Delphi:

prompts you to select a directory in which to copy
these files,
copies the files, and
opens the copy of the project.

In Delphi 1, the project files are located in subdirecto-
ries of the DELPHI\GALLERY directory. There are
three templates in Delphi 1: CRTAPP, MDIAPP, and
SDIAPP. Delphi 2 template subdirectories are located
in the Delphi 2\OBJREPOS directory. Delphi 2 also
has three templates: MDIAPP, SDIAPP, and
LOGOAPP.
22 September 1996 Delphi Informant
Adding Templates to the Repository
If you are building several applications that have a lot of
code, objects, and forms in common, you may want to
consider creating a template to hold the objects and code
you want to appear in each application. A simple example
of such an application, shown in Figure 3, illustrates the
main form, which includes a menu. After you have saved
this “start from here” application, select Project | Add to

Repository. Delphi displays the Add to Repository dialog
box shown in Figure 4.

Using the Add to Repository dialog box, you specify the
title of the template, provide a description, indicate on
which page of the repository you want it to appear, and
specify the author’s name. You can also click on the Browse

button to select a custom icon for the project. This must be
a 32x32 pixel, 16-color icon. After you have completed this
form, click OK to add the template to the Object
Repository. Figure 5 displays this newly added template on
the Projects page of the Object Repository dialog box.

Unlike the project templates that ship with Delphi, your
project is not automatically copied to the Delphi 2\OBJRE-
POS directory. Instead, the directory in which you have
stored your project template will serve as the home for the
template files. To reduce the likelihood you’ll delete the tem-
plate sometime in the future, it’s recommended that you
always store the projects you want to use as templates in a
subdirectory under Delphi 2\OBJREPOS.

Figure 5: The Simple Viewer project is now a template in the
Object Repository.

DBNavigator
If you decide to make a change to a template after saving
it to the Object Repository, remember two things:
1) These changes will not affect projects previously creat-

ed from the template.
2) Any subsequent projects created from the template will

make use of template changes.

Visual Form Inheritance
VFI is a natural extension of templates — with a twist. As
you learned at the beginning of this article, VFI permits
form inheritance (unlike templates, which only permit
copies). With copies, there is no further relationship
between two projects after the template has been selected
from the repository. By comparison, when you use the
Inherit feature of the Object Repository, the newly creat-
ed form is a descendant of the original. Therefore, subse-
quent changes to the original will be inherited by the
descendant the next time the project is compiled.

Any form or data module added to the repository can be
used in one of three ways: Copy, Inherit, and Use. You
define which of these techniques to use by means of the
radio buttons that appear at the bottom of the Object
Repository. In many cases — such as with all templates
and some experts — only the Copy radio button is avail-
able. Likewise, only the Inherit radio button is active when
the form or data module listed in the Object Repository is
part of the current project. Finally, all three radio buttons,
Copy, Inherit, and Use, are available for any form or data
module explicitly added to the Object Repository.

When you use Copy, the effect is identical to that pro-
duced by a template. Specifically, a copy of the form or
data module is added to the current project, using the cur-
rent state of the form or data module. Subsequent changes
to the form or data module will not affect the copy, and
vice versa. Clearly, using the Copy feature is not VFI.

Just as clearly, you are using VFI when you select the
Inherit radio button in the Object Repository. And when
you do, the unit that defines the selected object is added
to your project. In addition, a second unit and accompa-
nying form file (.DFM) is created, which includes a type
23 September 1996 Delphi Informant
statement that specifies a new object derived from the
selected class.

To see an example, start a new project by following these
steps: select File | New, select the About box object from the
Forms page, click Inherit, then click OK. Delphi will add the
ABOUT.PAS file (the unit that declares the AboutBox form)
to your project. In addition, it will generate a new unit that
derives a new object from the TAboutBox class.

The following is an example of a project source file as it
appears immediately after inheriting the About box from
the Object Repository:

program Project1;

uses
Forms,
Unit1 in 'Unit1.pas' { Form1 },
About in

'\PROGRAM FILES\BORLAND\DELPHI 2.0\OBJREPOS\ABOUT.pas'
{ AboutBox },

Unit2 in 'Unit2.pas' { AboutBox2 };

{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TForm1, Form1);
Application.CreateForm(TAboutBox2, AboutBox2);
Application.Run;

end.

In this example, the derived object is defined in Unit2. The
following is the code found within this unit:

unit Unit2;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs;

type
TAboutBox2 = class(TAboutBox)
private

{ Private declarations }
public

{ Public declarations }
end;

var
AboutBox2: TAboutBox2;

implementation

{$R *.DFM}

end.

Notice the TAboutBox2 class is derived from the
TAboutBox class. Because of this, the TAboutBox2 class
inherits all objects defined for the TAboutBox class, as well
as any event handlers created for it.

A Warning
Adding the inherited unit to your project makes it rather
easy to move to that unit and its associated form, as well
as make changes. It is very important you don’t make changes
to this original unit or its form. Any changes to the inherit-

DBNavigator

Figure 7: The
Confirm dialog box
prompts users to
“Include all?” when
moving objects from
the left list box to
the right list box.
ed unit or its form will be applied to the original, and will
affect every object inherited from it the next time the
descendant objects are compiled.

Just as you can add member fields or objects to any
derived class, you can add objects to a derived form or
data module. However, you cannot remove any compo-
nents from a form that is derived from another form (just
as you cannot remove fields or objects from a traditionally
derived class). Therefore, choose wisely the form you want
to inherit. Don’t inherit from a form or data module if it
contains any objects you don’t want in your derived class.

Selective Inheritance
As mentioned earlier, event handlers are also inherited.
In other words, even if you don’t add code to an inher-
ited form, all event handlers for the ancestor form are
still executed. Fortunately, Delphi makes it easy to skip
these inherited event handlers, if necessary.

This can be demonstrated by creating a new application
(select File | Application). Select File | New, then inherit
the Dual list box from the Forms page of the Object
Repository, as shown in Figure 6. Don’t forget to click the
Inherit radio button.
Figure 6: Inheriting from the Dual list box from the Forms page
of the Object Repository.
Now imagine you want to change the behavior of one of
the buttons on the derived Dual list box, DualListDlg2.
Note that the TDualListDlg class includes a button named
IncAllBtn. When clicked, it moves all objects from the left
list box to the right list box. Imagine you want to display a
dialog box asking for confirmation before moving the items,
even though the event handler declared in the TDualListDlg
class does not include such a behavior (see Figure 7).

To do this, display the form DualListDlg2. Then double-
click the IncAllBtn SpeedButton (the button with two
right arrows on it). Delphi will create the following
OnClick event handler for this button:

procedure TDualListDlg2.IncAllBtnClick(Sender: TObject);
begin

inherited;
end;
24 September 1996 Delphi Informant
Notice the reserved word inherited. This directive
instructs Delphi to execute the inherited event handler.
Now consider what happens if you make the following
modification to this event handler:

procedure TDualListDlg2.IncAllBtnClick(Sender: TObject);
begin

if MessageDlg('Include all?',mtConfirmation,
[mbOK,mbCancel],0) = mrOK then

inherited;
end;

With this new event handler, the inherited event handler is
only called if the user confirms he or she wants to include all
elements from the left list box in the right list box. If the
user does not select the OK button from the Confirm dialog
box, inherited is not called, and the inherited event handler
is not executed.

After you have made these changes, you need only two
more steps before you can execute this demonstration.
First, you must go to Unit1 and select File | Use unit.
From the Use unit dialog box, select Unit2. Finally,
you’ll want to add a button to Unit1, and display the
DualListDlg2 dialog box when that button is clicked.
The following is an example of such an event handler:

procedure TForm1.Button1Click(Sender: TObject);
begin

DualListDlg2.ShowModal;
end;

Saving a Form or Data Module to the Object Repository
If you have a form or data module that you want to
allow other projects to inherit, simply move to that
form, right-click, and then select Add to Repository.
Delphi displays the Add to Repository dialog box
shown in Figure 8. This form is similar to the one you
use to add a project template to the repository, except
that it only adds a single form or data module.
Furthermore, while projects can only be copied, adding
forms permits inheritance.

Deriving from the Current Project
If you want to inherit from a form that is already part
of the current project, it is not necessary to add that
form to the Object Repository. By default, when you
have a project open and select File | New, the Object
Repository will contain a page labeled with the name of
your project. On this page you will find the forms and

Figure 8: Right-click a form or data module and select Add To
Repository to display the Add to Repository dialog box.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi
In Depth [Osborne/McGraw-Hill, 1996]. He is also Contributing Editor of Delphi
Informant. You can reach Jensen Data Systems at (713) 359-3311, or via
CompuServe at 76307,1533.

DBNavigator
data modules of your project. These forms and data
modules can only be inherited from, they cannot be
copied or used.

Using Forms from the Object Repository
The final topic that relates to the Object Repository is
the Use radio button. If you decide to use a form or
data module from the Object Repository, you will find
yourself working with the original file. In other words,
25 September 1996 Delphi Informant
Use does not add a descendant of the object to your
project. Consequently, any changes you make to a form
or data module that you select with the Use option will
affect any classes derived from that form or data mod-
ule. In general, you should not employ the Use option.

Conclusion
While the Object Repository offers all of same features of
the Delphi 1 Gallery, it adds Visual Form Inheritance.
Using VFI, you can quickly and easily derive new classes
based on existing forms and data modules. When used
judiciously, VFI can improve the speed with which you
develop applications, as well as simplify the process of
application revision. ∆

The demonstration forms and report referenced in this article
are available on the Delphi Informant Works CD located in
INFORM\96\SEP\DI9609CJ.

26 September 1996 Delphi Informant

Visual Programming
Delphi 1 / Delphi 2 / Object Pascal

By Tony Yeung

Expert Help
Using Delphi to Create Complex Experts
Experts — known as “wizards” in Microsoft-ese — have become main-
stays of the Windows environment. The good news is that most experts

can be easily implemented with standard Delphi components. Use a TForm
with a TNotebook. Add a few pages with some controls. Add Back, Next,
and Finish buttons. Throw in some code to tie it all together. Voilà! You
have an expert.
Experts are best used in situations where
the user must be lead through a complex
procedure that requires many steps.
However, due to the number of steps, an
application’s resource consumption, and
response times, code complexity and reuse
can become difficult to manage.

In this article, we’ll discuss some of the prob-
lems that can arise with complex experts, and
cover an approach to solving them.

Problem: Resource Consumption
If your expert has 10 pages, each with 10
controls, Delphi treats it as a single dialog
box with 100 controls (more if you include
the notebook, pages, and Back, Next, and
Finish buttons).

When your expert is created, all controls
on all the pages are also created. Those of
us still developing software for Windows
3.x hold our breath as the resource meter
drops. Response times can also be affected
by a lot of initialization during form cre-
ation (e.g. loading list and combo boxes,
setting initial states of check boxes and
radio buttons, etc.).

You may think you’ll never have to write
an expert with that many pages — con-
sider yourself fortunate if this is the case.
However, experts tend to have many more
pages than steps required to complete the
task. As the user proceeds through the
expert, the subsequent pages that appear
depend on the user’s response at each
step. For example, in an expert that col-
lects information about a person for med-
ical purposes, the first page may prompt
the user to enter a person’s name, age, sex,
and smoking status. There may be subse-
quent pages that display if the informa-
tion entered on the previous page indi-
cates that the person is male, female,
smokes, or older than 65.

Problem: Code Complexity and Reuse
Because an expert is a single dialog box,
one unit exists to house all its code and
data. The code managing the various pan-
els and their controls is dispersed through-
out the unit.

If you would like to reuse one of the
pages from your expert in a second
expert, you must extract the code relat-
ing to that page from your first expert
and add it to the second. A client page
may find its way onto most of the
experts in an application. (Consider how
much work it would be to make a
change in the client page in all the
experts individually.)

Figure 1 (Top): An independent TClientDlg form.
Figure 2 (Bottom): The TClientDlg form as part of the expert.

Visual Programming
A Solution
This solution considers two main objectives:
1) Alleviate the resource crunch. Some of our more com-

plex experts have nearly 500 controls contained in the
10-15 pages of the notebook. When one of these dialog
boxes is open in the development environment, it uses
so many resources that it must be closed before opening
another dialog box or continuing to run the application.

2) Solve the code sharing problem. Although many of the
pages are identical between experts, they are imple-
mented with code copied between each of the dialog
boxes. Aside from being difficult to manage, the com-
plex dialog boxes have so much code controlling all of
the pages that they may have reached the 64KB limit
for code in a single segment.

Our solution involves two classes: TAutoNotebook and
TChildForm.

The TAutoNotebook Class
The critical part of the solution is the TAutoNotebook
component, a subclass of the TNotebook component.
TAutoNotebook adds only a few methods, properties, and
a list to accomplish its task. AUTONB.PAS (see Listing
Two beginning on page 29) is the source for the
TAutoNotebook class.

As with TNotebook, the Pages property is used at design
time to identify the individual pages in the notebook.
However, the page names do more than just create a blank
page for each string in the list. At run time, if the page
name corresponds to a form class, an instance of that form
will be created and its controls will appear when that page
receives focus. Figures 1 and 2 are TClientDlg forms
appearing independently, and as part of an expert dialog
box. Page names that are not form classes will behave as
they would with TNotebook. Therefore, you can combine
form pages with non-form pages.

The component uses a TList, FChildForms, to keep track of
the child forms it creates. This list is initialized in the Loaded
procedure with a nil pointer for each page in the notebook.
Any forms created at run time are stored in this list and
destroyed automatically in TAutoNotebook’s destructor.

The child forms, if needed, can be accessed directly
through the ChildForms property. You can also override the
normal creation order of the child forms by directly calling
the public procedure CreateChild. Normally, the child
forms are created when the page receives focus.

To have the component detect when a page gains focus,
one of the two new properties must be used to change
pages. AutoActivePage and AutoPageIndex serve the same
purpose as TNotebook’s ActivePage and PageIndex, respec-
tively. If you use TNotebook’s properties to change the cur-
rent page, TAutoNotebook won’t be called to create the
child forms for the pages. This is inconvenient, but neces-
27 September 1996 Delphi Informant
sary, because the method that changes pages in the base
class isn’t virtual, and therefore can’t be overridden.

Unfortunately, the ActivePage and PageIndex properties
can’t be hidden by the TAutoNotebook class. The
TNotebook component doesn’t follow the pattern of most
of the other components because it isn’t derived from a
TCustomNotebook class that implements all the behavior,
and a TNotebook class that simply exposes the properties.

When the page changes (using TAutoNotebook’s new
properties), the AutoSetPageIndex method is called.
Before changing to the new page, the ValidateChild
method is called to perform edits on the current page.
If the current page has a child form, ValidateChild calls
its CloseQuery method to allow the child form to per-
form its own edits. Thus if this child form is used inde-
pendently or as part of several experts, the same edits
will be applied.

Finally, if the edits succeed, AutoSetPageIndex calls
CreateChild. This creates the child form for the new page
before using TNotebook’s PageIndex property to change to
the new page.

Creating the Child Form
The TAutoNotebook method, CreateChild, is where the
magic occurs. GetClass is used with the page name to
determine if the name corresponds to a registered class:

frmClass := TFormClass(GetClass(Pages<nPage>));

Visual Programming

Figure 3: The first page of the Expert
Notebook Demo program.
We’ll discuss registration in greater detail later.

If the class is found, the return value from GetClass can be
used as a class reference to create an instance of the form:

if frmClass <> nil then
ChildForms<nPage> := frmClass.Create(Self);

To make the form appear as if it were a page in the expert,
the current page is assigned as the parent of the child
form’s controls. To simplify this process, the child forms
are designed with a TPanel named AutoNBPanel that holds
all the controls:

pnl :=
ChildForms<nPage>.FindComponent('AutoNBPanel') as TPanel;

if pnl <> nil then
pnl.Parent := TWinControl(Pages.Objects<nPage>);

This allows a search for this panel with FindComponent
and a reassignment of the parent without processing each
control individually. This also solves another problem
where the tab order for the controls is lost when they are
reassigned individually.

Class Registration
To make GetClass aware of the child form classes, they
must be registered with a call to RegisterClass. According to
the Delphi Component Writer’s Guide, RegisterClass is used
to register a class with the Delphi streaming system. Classes
are not normally required to be registered in this manner.
However, to create the child forms without specifying the
type at compile time, the call to RegisterClass is required.

The initialization section of the unit where the form is locat-
ed is an appropriate place to register the child form classes:

initialization
RegisterClass(TClientDlg);

end.

The TChildForm Class
Child forms are derived from TChildForm to facilitate
their management. This class is defined in the AutoNb
unit. Although Delphi 1 doesn’t easily support visual
form inheritance, you can derive your forms from a class
other than TForm by simply changing the class declara-
tion. This works well, provided the new parent class
doesn’t have any visual components you want to manipu-
late in design mode.

TChildForm provides some useful procedures that the child
forms can override to get control at certain times. The
Initialize, FocusPage, CancelChanges, and CommitChanges
procedures have default empty implementations. Subclasses
only have to override these methods if needed.

Initialize is called after the child form is created. A
pointer to the expert dialog box is passed to the child
form for convenience. Note that the normal creation
sequence still applies. You can put class initialization
28 September 1996 Delphi Informant
logic in either the Create constructor or OnCreate event
handler. The Initialize method, which occurs last in this
sequence, is provided if the child form must differenti-
ate its behavior, depending on whether it’s running
independently or as part of an expert. Initialize will only
be called in the latter case.

The FocusPage procedure is called just after the child form
becomes the active page. FocusPage corresponds to the
OnPageChanged event of the TNotebook class, and is called
after any event handler assigned to this event in the expert
dialog box.

CancelChanges and CommitChanges are used to cancel or
save changes to the child forms. In the sample application
that accompanies this article, these methods are called in
the event handlers for the Cancel and Finish buttons in the
expert dialog box.

The Sample Application
This article is accompanied by all the necessary files to run
the NBDemo sample application. You can build the appli-
cation by unzipping the files and executing the command
line compiler as follows:

c:\delphi\bin\dcc nbdemo.dpr

To use TAutoNotebook in your projects, install the compo-
nent in the conventional manner.
The NBDemo appli-
cation shows the
TAutoNotebook in
action (see Figure 3).
The application’s
client and address
dialog boxes are used
independently and as
part of the expert
dialog box. Although
not implemented in
NBDemo, any num-
ber of expert dialog
boxes can be created,
each using the same
child forms.
The Clients unit implements a simple client object that uses
an .INI file to store data. How this unit functions is unim-
portant since the specific details of any implementation of
TAutoNotebook will depend on the objects the application
uses and how they access their data.

The Expert
The EXPERT.PAS file is the source for the sample appli-
cation (see Listing Three beginning on page 31). This dia-
log box has two normal pages (the first and fourth) and
two child form pages. Clearly, most of the code is simply
for managing the buttons and changing the pages. As

Visual Programming
mentioned earlier, the handlers for the Cancel and Finish

buttons use the CancelChanges and CommitChanges meth-
ods of the TAutoNotebook to control the child forms.

The child forms are the client and address dialog boxes.
The client dialog box requires the user to enter a first
and last name to show that the same edits are per-
29 September 1996 Delphi Informant

Figure 4: This Error dialog box is dis-
played if a user fails to enter infor-
mation into First Name and Last
Name and clicks the OK button.

Figure 5 (Top): The address page.
Figure 6 (Bottom): The final page of o
formed regardless of
whether the dialog
box is running inde-
pendently or as part
of the expert (again
see Figures 1 and 2).
If the user does not
enter values into First

Name and Last Name,
Tony Yeung is a Systems Consultant with Manulife Financial. He has been devel-
oping in the Windows environment with Borland C++ and Delphi for several
years. Tony can be reached at 72302.2112@compuserve.com.
an error is raised (see Figure 4). The client and address
dialog boxes override the CommitChanges method to
save their changes.

The address page (see Figure 5) illustrates a slightly dif-
ferent approach to performing edits. Instead of waiting
until the user clicks on Next or OK before checking the
input, these buttons are not enabled until the input is
valid. To accomplish this, the address page uses some of
the optional procedures from TChildForm, Initialize,
and FocusChange, along with a saved pointer to the
expert’s Next button.

Figure 6 is the last page of the sample application. It’s
displayed when the user finishes entering the required
information.
ur sample application.
Conclusion
With some of my current projects, the ability to share a
child form among multiple experts is what makes this
approach valuable. Before implementing this technique,
we simply duplicated the code to manage identical pages
in each dialog box — creating a development and mainte-
nance nightmare.

Resource problems are also alleviated because the controls
on each of the pages are not created until that page
receives focus. As described, only a subset of the pages are
shown during the normal use of the expert. Therefore, the
total amount of resources required to use any of the
experts is significantly reduced. ∆

The demonstration project and other files referenced in this
article are available on the Delphi Informant Works CD
located in INFORM\96\SEP\DI9609TY.
Begin Listing Two: The AUTONB Unit
unit AutoNb;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, ExtCtrls;

type
TChildForm = class(TForm)
private
public

procedure Initialize(Expert : TComponent); virtual;
procedure FocusPage; virtual;
procedure CancelChanges; virtual;
procedure CommitChanges; virtual;

end;

TAutoNotebook = class(TNotebook)
private

FChildForms : TList;
{ Property Methods }
procedure AutoSetActivePage(const S: string);
function AutoGetActivePage : string;
procedure AutoSetPageIndex(nPage : integer);
function AutoGetPageIndex : integer;
function GetForm(nPage : integer) : TForm;
procedure SetForm(nPage : integer; AForm : TForm);

protected
procedure Loaded; override;
function ValidateChild : Boolean; virtual;

public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;
procedure CreateChild(nPage : integer);
procedure CommitChanges;
procedure CancelChanges;
{ New properties }
property AutoActivePage: string

Visual Programming
read AutoGetActivePage write AutoSetActivePage
stored False;

property AutoPageIndex : integer
read AutoGetPageIndex write AutoSetPageIndex
stored False;

property ChildForms[nPage : integer] : TForm
read GetForm write SetForm;

end;

procedure Register;

implementation

procedure Register;
begin

RegisterComponents('Samples',[TAutoNotebook]);
end;

{ Empty default implementations for TChildForm }
procedure TChildForm.Initialize(Expert : TComponent);

begin end;
procedure TChildForm.FocusPage; begin end;
procedure TChildForm.CommitChanges; begin end;
procedure TChildForm.CancelChanges; begin end;

{ TAutoNotebook Implementation }

constructor TAutoNotebook.Create(AOwner : TComponent);

begin
inherited Create(AOwner);
FChildForms := TList.Create;

end;

destructor TAutoNotebook.Destroy;
var

i : integer;
begin

for i := 0 to FChildForms.Count - 1 do
ChildForms[i].Free;

FChildForms.Free;
inherited Destroy;

end;

procedure TAutoNotebook.Loaded;
var

i : integer;
begin

inherited Loaded;
{ Put a nil pointer in the list for each page }
for i := 0 to Pages.Count - 1 do

FChildForms.Add(nil);
{ This will cause the current page to be setup }
AutoPageIndex := PageIndex;

end;

procedure TAutoNotebook.CommitChanges;
var

i : integer;
begin

{ Call each TChildForm to commit changes }
for i := 0 to FChildForms.Count - 1 do

if ChildForms[i] is TChildForm then

(ChildForms[i] as TChildForm).CommitChanges;
end;

procedure TAutoNotebook.CancelChanges;
var

i : integer;
begin
30 September 1996 Delphi Informant
{ Call each TChildForm to cancel changes }
for i := 0 to FChildForms.Count - 1 do

if ChildForms[i] is TChildForm then
(ChildForms[i] as TChildForm).CancelChanges;

end;

function TAutoNotebook.ValidateChild : Boolean;
begin

{ If the current page has a child form,
call its OnCloseQuery event handler }

if ChildForms[PageIndex] <> nil then
Result := ChildForms[PageIndex].CloseQuery

else
Result := True;

end;

procedure TAutoNotebook.AutoSetPageIndex(nPage : integer);
begin

{ Only change page if validation of current page is
okay }

if ValidateChild then
begin

{ Create the child if necessary }
CreateChild(nPage);
{ Let TNotebook change the page }
PageIndex := nPage;
if ChildForms[nPage] is TChildForm then

(ChildForms[nPage] as TChildForm).FocusPage;
end;

end;

procedure TAutoNotebook.AutoSetActivePage(const S: string);
begin

AutoPageIndex := Pages.Indexof(S);
end;

function TAutoNotebook.AutoGetActivePage : string;
begin

Result := ActivePage;
end;

function TAutoNotebook.AutoGetPageIndex : integer;
begin

Result := PageIndex;
end;

function TAutoNotebook.GetForm(nPage : integer) : TForm;
begin

Result := FChildForms[nPage];
end;

procedure TAutoNotebook.SetForm(nPage : integer;
AForm : TForm);

begin
FChildForms[nPage] := AForm;

end;

procedure TAutoNotebook.CreateChild(nPage : integer);
var

frmClass : TFormClass; { A class reference variable }
pnl : TPanel;

begin
if (FChildForms.Count > nPage) and

(ChildForms[nPage] = nil) then
begin

{ Look for a class with the name of the current page }
frmClass := TFormClass(GetClass(Pages[nPage]));
if frmClass <> nil then

begin
{ Class found, create and save in child list }
ChildForms[nPage] := frmClass.Create(Self);

3

Visual Programming
{ Look for the panel and reassign its parent }

pnl :=
ChildForms[nPage].FindComponent('AutoNBPanel')
as TPanel;

if pnl <> nil then
pnl.Parent:=TWinControl(Pages.Objects[nPage]);

if ChildForms[nPage] is TChildForm then
(ChildForms[nPage]
as TChildForm).Initialize(Owner);

end;
end;

end;

end.
End Listing Two
Begin Listing Three — EXPERT.PAS
unit Expert;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, ExtCtrls, AutoNb,
StdCtrls;

type
TExpertDlg = class(TForm)

nb: TAutoNotebook;
cmdNext: TButton;
cmdBack: TButton;
cmdFinish: TButton;
cmdCancel: TButton;
Label1: TLabel;
Image1: TImage;
Label2: TLabel;
procedure cmdNextClick(Sender: TObject);
procedure cmdBackClick(Sender: TObject);
procedure cmdCancelClick(Sender: TObject);
procedure cmdFinishClick(Sender: TObject);
procedure nbPageChanged(Sender: TObject);

private
{ Private declarations }
1 September 1996 Delphi Informant
public
{ Public declarations }

end;

var
ExpertDlg: TExpertDlg;

implementation

{$R *.DFM}

procedure TExpertDlg.cmdNextClick(Sender: TObject);
begin

nb.AutoPageIndex := nb.AutoPageIndex + 1;
end;

procedure TExpertDlg.cmdBackClick(Sender: TObject);
begin

nb.AutoPageIndex := nb.AutoPageIndex - 1;
end;

procedure TExpertDlg.cmdCancelClick(Sender: TObject);
begin

nb.CancelChanges;
end;

procedure TExpertDlg.cmdFinishClick(Sender: TObject);
begin

nb.CommitChanges;
end;

procedure TExpertDlg.nbPageChanged(Sender: TObject);
var

IsLastPage : Boolean;
begin

IsLastPage := nb.AutoPageIndex = nb.Pages.Count - 1;
cmdFinish.Enabled := IsLastPage;
cmdFinish.Default := IsLastPage;
cmdNext.Enabled := not IsLastPage;
cmdNext.Default := not IsLastPage;
cmdBack.Enabled := nb.AutoPageIndex > 0;

end;

end.
End Listing Three

32 September 1996 Delphi Informant

Delphi Reports
Delphi 2 / ReportSmith

By Mark Ostroff

Leveraging
ReportSmith: Part II
Making the Delphi Connection

Figure 1: Select
Last month we began this two-part series on Delphi’s ReportSmith by
explaining when and how to use ReportSmith in your Delphi develop-

ment, as well as how to call ReportSmith reports using report variables.
This month, we conclude this series by addressing the use of the new
Delphi Connection.
Getting Connected
The Delphi Connection consists of a new
connection type that gets its data from a
Delphi 2 DataSet object. To activate the
use of the direct Delphi Connection, you
must invoke ReportSmith by double-click-
ing on a TReport component within the
Delphi 2 IDE. This launches ReportSmith
in a Delphi-aware mode. You will then see
a new item labeled Delphi in the drop-
down list of available connection types
(see Figure 1). After you select Delphi as
the connection type, click on the Server

Connect button below the connection Type

drop-down list. ReportSmith will then
display the names of all the DataSet com-
ponents (i.e. TTables and TQueries) in
your application.
ing the Delphi Connection from ReportSmith.
Even if you have more than one DataSet in
your Delphi application, you’ll only be able
to select one. ReportSmith relinquishes all
control of the DataSet to Delphi. Thus, all
data selection, table joins, data groupings,
and sorting are performed by the Delphi
DataSet object. As a result, you probably
won’t use a TTable DataSet with the Delphi
Connection. The single DataSet restriction
usually proves too limiting to make TTables
a useful DataSet for these kinds of reports.

Where Do You Control Each Option?
Using the Delphi Connection requires a
little forethought when setting up the
Delphi DataSet. You may have to adjust
the way you set up the SQL statement of
your TQuery to accommodate the results
you want in your report. To attain the
desired report result, you must also adjust
some of the ways you work with
ReportSmith. The table in Figure 2 indi-
cates whether an option is controlled by
the Delphi DataSet or by ReportSmith.

Using the Delphi Connection
As in 16-bit reporting, report variables can
still be used. However, the primary use of
report variables in a Delphi/ReportSmith
application is to limit the record selection
to a user-supplied value. The techniques
described here provide an alternative way
to limit the reported records. (Note: You
may still occasionally need ReportBasic for
some reporting tasks.)

ReportSmith Option Controlled By
Tool

Tables Controlled mostly by ReportSmith, but limit-
ed to selecting a single Delphi DataSet.

Selections Determined by the Delphi DataSet only.

Sorting Determined by the Delphi DataSet only.

Derived Fields Still controlled in part by ReportSmith.
However, only derived fields created by
ReportBasic macro can be created. Any
derived field that needs to be part of the
record selection criteria or data grouping
should be built as a calculated field in the
Delphi DataSet.

Report Variables Still controlled by ReportSmith.

Database Determined by the Delphi DataSet only.
Grouping

SQL Text Determined by the Delphi DataSet only.

Report Grouping Still controlled by ReportSmith. In fact, this is
the only way to provide grouping in the
report beyond what was created in the
Delphi DataSet.

Summary Fields Still controlled by ReportSmith.

Field Selection Determined by the Delphi DataSet only.
Criteria

Merge Reports This option is disabled, since the Delphi
Connection only allows a single data source.

Delphi Reports

Figure 2: Control points in Delphi Connection reports.

Figure 3 (Top): The RS_Demo2 project.
Figure 4 (Bottom): The SQL SELECT statement for the
CustOrders DataSet.

SELECT CUSTOMER."CustNo",
CUSTOMER."Company",
CUSTOMER."City",
CUSTOMER."State",
ORDERS."OrderNo",
ORDERS."SaleDate",
ORDERS."ItemsTotal",
ORDERS."AmountPaid" ,

(ORDERS.ItemsTotal-ORDERS.AmountPaid) AS Amount_Due,
(CUSTOMER.Company + " " + CUSTOMER.City + ", " +
CUSTOMER.State) AS Account

FROM "CUSTOMER.DB" CUSTOMER, "ORDERS.DB" ORDERS
WHERE CUSTOMER.CustNo = ORDERS.CustNo
AND CUSTOMER."CustNo" = :CustNo

ORDER BY CUSTOMER."Company", ORDERS."OrderNo"
Limiting the record scope. By default, a Delphi
Connection provides all the records in the DataSet to
your report. Even if you can’t see the records on-screen in
your Delphi application, they will be included in your
Delphi Connection report. This can present a bit of a
challenge if you want to limit which records are included
in a report, yet provide access to a broader range of
records in your Delphi application.

The answer is to make use of a parameterized query as the
DataSet used by the report. This TQuery object will be
controlled by another DataSet object within your Delphi
application. The controlling DataSet object will limit the
records displayed at any one time in the report’s TQuery.
By navigating the controlling DataSet, you’ll be able to
navigate the report’s TQuery data as well.

The RS_Demo2 project shown in Figure 3 illustrates this
technique. It uses a TDBNavigator hooked to a TTable
named CustControl. A TQuery named CustOrders is the
data source for the DEMO2.RPT report. It is also used in
the DBEdit components and the DBGrid that provide the
data display. The records selected by the CustOrders
TQuery are controlled by the CustNo field in the
CustControl TTable. To provide the coordination between
CustOrders and CustControl, the DataSource property of
CustOrders is set to NavData, the TDataSource connected
to the CustControl DataSet. The SQL for the CustOrders
DataSet is shown in Figure 4. (This SQL SELECT state-
33 September 1996 Delphi Informant
ment was built entirely in the Visual Query Builder.)
The WHERE clause that states:

CUSTOMER."CustNo" = :CustNo

is the key (again, see Figure 4). The colon designates the
name of a parameter to use in determining which records
are selected and displayed. When the name of a parameter
matches the name of a data field in a DataSet pointed to
by a query’s DataSource property, the value of that field in
the current record is used in the WHERE clause. Thus, as
you navigate the records in CustControl, the parameter
used by CustOrders changes, and the query is automatical-
ly re-run. The result is that you can scroll through all the
customer accounts, yet only display and report on one
account at a time. The data display results of this kind of
set up are shown in Figure 3.

Creating the Delphi Connection report. To set up a report
to use this connection, double-click on the TReport compo-
nent. ReportSmith will be launched with the ability to
select Delphi from the list of types shown in the lower left
of the Select Table To Be Added dialog box. To activate it,
click on the Server Connect button after you select this con-
nection type. You should now see a list of DataSet names
from your currently open Delphi project. Select the
CustOrders DataSet and click on the Done button.

You will also notice at this point that some of the
report tool buttons at the top of the dialog box are dis-

Delphi Reports
abled. If you need to create derived fields or record
selections within your SQL, you’ll need to do so in the
Delphi DataSet. This is why the SQL text of the
CustOrders query includes SQL code to create two cal-
culated fields: the Amount_Due field and the Account
field (a concatenation of the company’s name, city, and
state).

You also must remove the DataSet, then add it back into
your report if you make any changes to the DataSet once
you begin designing your report. Otherwise, any newly
created calculated fields will not show up in the list of
available fields in ReportSmith.

Group headers and footers in Delphi Connection reports.
Your Delphi DataSet is in control of the SQL text being
used to build this type of report. Because most of the tool-
bar buttons affect the SQL code being built, the Delphi
Connection will disable many of them. Included in the
collection of disabled buttons are the ones that create
group headers and footers.

Fortunately, ReportSmith also provides another process for
creating these report constructs. Creating group headers
and footers thus becomes a two-step process:
1) Create a data field based group. Because even calculat-

ed fields are coming from the Delphi DataSet,
ReportSmith considers all fields supplied by the Delphi
Connection as data fields. Use the Tools | Report

Grouping option to call up the Define Groups dialog
box. Select the field from the list on the left upon
which you want to group the data. Then click the New

Group button. You can also click the Group Properties

button to further define the group’s options.
2) Insert a header or footer (or both) for the new group.

After you’ve created the group, you must create a header
or footer for that group. Select Insert Header/Footer from
the ReportSmith menu. Then select the appropriate
Group Name and activate either the Header or Footer (or
both) check box.

You can, of course, repeat this process with multiple
report groups. After you have created a header or footer
region, the summary buttons in the toolbar are activat-
ed. As with any other report, you can now select a col-
umn to summarize, and then click on the appropriate
summary button.

Design-Time vs. Run-Time Considerations
Because you want to create a new report at design time,
you don’t want to fill in values for the report name or
report directory properties of your TReport component.
(Otherwise, double-clicking the TReport will try to
launch ReportSmith with the named report — which
doesn’t yet exist.) This means you’ll have to supply these
parameters at run time before you try to activate the
report. An example of typical code (the code on the
Preview button) is shown here:
34 September 1996 Delphi Informant
procedure TRS_Demo2.BitBtn1Click(Sender: TObject);
begin

Report1.ReportName := 'Demo2.rpt';
Report1.ReportDir := ExtractFilePath(ParamStr(0));
Report1.Run;
CustOrders.Active := true;

end;

You can also see that the CustOrders DataSet is activated by
this code after running the report. Why? This brings up
another design-time vs. run-time consideration. This issue
arises because of the way the Delphi Connection manages the
DataSet itself. You’ll notice the CustOrders DataSet is active
when you first open the RS_Demo2 project. Now double-
click on the TReport component and open DEMO2.RPT.
When you close ReportSmith, you’ll see that the CustOrders
DataSet is no longer active.

To preserve the safety of data concurrency, the Delphi
Connection automatically deactivates the data connection
in your Delphi application as it passes control of the
DataSet to ReportSmith. This is actually a good idea.
Unfortunately, Delphi has no real way to determine when
control can be safely returned from ReportSmith, so your
code must reactivate the data connection.

Considerations When Your Application
Navigates Records
You naturally want the report to reflect the current set of
records displayed in your application. This coordination
happens automatically when you first activate the report.
After that, however, you have two separate applications
running in a semi-independent fashion. If you want to
maintain the coordination between the two, you must code
that for yourself in your Delphi application.

Fortunately, this coordination is rather uncomplicated.
Simply recalculate the report whenever you move to a new
record in CustControl, the controlling DataSet. Unfortu-
nately, the recalculating of the report will also deactivate the
data connection in your Delphi application. So your code
needs to handle a couple of side effects: the reactivation of
the data connection in your application, and the elimina-
tion of the resulting screen flicker. The example shown in
Figure 5 is tied to the OnClick event of the DBNavigator.

First of all, the reactivation of the CustOrders DataSet
must occur after the report is recalculated. The
RecalcReport is what will cause the deactivation. Second,
you want to eliminate any screen updates throughout the
process of recalculating the report, the resulting deactiva-
tion of the data connection in Delphi, and the coded
reactivation of that same DataSet. The code in Figure 5
uses the Windows API function LockWindowUpdate to
suppress screen redraws on your form. The value this
function expects to receive is the window handle of the
form to be locked. No window will have a handle of zero,
and only one window at a time can have its updates
locked. Thus, telling LockWindowUpdate to lock window
handle zero turns off the screen lock. Unlocking your

Figure 6 (Top): Key TDDEClientConv properties.
Figure 7 (Bottom): Key TDDEClientConv methods.

Property Function
ConnectMode The ConnectMode property determines the

type of connection to establish when initiating
a link with a DDE server application. A value
of ddeAutomatic (the default) means the link is
automatically established when the form
containing the TDDEClientConv component is
created at run time.

For most applications, you want to control when
the DDE conversation is established. Set this
property to ddeManual. This setting will estab-
lish the DDE conversation only when the
component’s OpenLink method is called.

DDEService This property specifies the DDE server appli-
cation to be linked to a DDE client. Typically,
DDEService is the file name (and path, if nec-
essary) of the DDE server application’s main
executable file without the .EXE extension.

At design time, you can specify DDEService
either by typing the DDE server application
name in the object inspector, or by choosing
Paste Link in the DDE Info dialog box.

DDETopic This property specifies the topic of a DDE
conversation. Typically, DDETopic is a filename
(and path, if necessary) used by the applica-
tion specified in DDEService. See the docu-
mentation for ReportSmith for the specific
information about specifying a valid DDETopic.
To control ReportSmith, you will typically use a
topic of “System” or “Command”.

At design time, you can specify DDETopic by
choosing Paste Link in the DDE Info dialog
box.

ServiceApplication The ServiceApplication property specifies
the main executable file name (and path,
if necessary) of a DDE server application,
without the .EXE extension. Typically, this is
the same value as the DDEService property.
Sometimes, however, DDEService is a value
other than the DDE server application’s
executable file name.

In either case, ServiceApplication must be
specified for Delphi to run an inactive DDE
server to establish a DDE conversation.
Make sure you supply a value of
ReportSmith if your application is supposed
to start ReportSmith.

Method Function
CloseLink Terminates an ongoing DDE conversation.

After a link is closed, no DDE communication
can take place between the DDE client and
server until another link is opened.

ExecuteMacro Attempts to send a macro command string to
a DDE server application. The command string
must be a null-terminated string that contains
the macro to be executed by the DDE server
application.

ExecuteMacro returns True if the macro was
successfully passed to the DDE server applica-
tion. If ExecuteMacro was unable to send a
command string, ExecuteMacro returns False.
If you need to send a macro command string
list rather than a single string, use the
ExecuteMacroLines method.

OpenLink Initiates a new DDE conversation. If the con-
versation was successfully opened, an
OnOpen event occurs and the OpenLink
method returns True. Otherwise, OpenLink
returns False.

Figure 5: If your code must handle side effects, such as the
reactivation of the data connection in your application and the
elimination of the resulting screen flicker, try this example — in
this case tied to the OnClick event of the DBNavigator.

procedure TRS_Demo2.DBNavigator1Click(Sender: TObject;
Button: TNavigateBtn);

begin

if Report1.ReportName <> '' then
begin

Screen.cursor := crHourGlass;
{ Eliminate screen flicker }
LockWindowUpdate(RS_Demo2.handle);
Report1.RecalcReport;
CustOrders.Active := true;
{ Restore form updating }
LockWindowUpdate(0);
Screen.cursor := crDefault;

end;

end;

Delphi Reports
form will cause it to automatically perform a refresh,
using the currently selected data.

Controlling ReportSmith via DDE
All versions of ReportSmith support DDE as both a client
and server. You can take advantage of this ability to con-
trol the run-time reporting environment from within your
Delphi application.

Setting up the DDE Conversation
Controlling ReportSmith from a Delphi application
involves the use of the TDDEClientConv component on
the System page of the Component Palette. This compo-
nent allows your application to initiate a DDE conversa-
tion with ReportSmith. (ReportSmith acts as the DDE
server in this situation.) Figure 6 shows the important
TDDEClientConv properties. You will also need to focus
on several key methods of the TDDEClientConv compo-
nent, as shown in Figure 7.

The RS_PANEL Project
Using DDE to control ReportSmith means you are, in
effect, creating an automated end-user. Two main avenues
exist for exercising this control: the System and Command
topics. The RS_PANEL project illustrates the use of both
DDE topics to control ReportSmith. This project builds a
Delphi application that uses DDE to control the zoom
factor, window state, and toolbar status of the running
version of ReportSmith. Figure 8 shows this ReportSmith
Control Panel in action.

Using the System DDETopic to “Drive by Menu.” Your
use of the System DDETopic becomes a fairly simple mat-
ter of driving the ReportSmith menus from your Delphi
application. A few issues of note exist in using the
ExecuteMacro method to drive the System DDETopic.

First, the menu command must be placed in a null-ter-
minated string. This means you’ll need to use StrPCopy
to place the command string into a null-terminated
35 September 1996 Delphi Informant

Figure 9: The procedure in RS_PANEL.

Figure 8 : RS_PANEL controlling ReportSmith’s IDE.

procedure TRSCtrlPanel.RGWindowStateClick(Sender: TObject);
var

TheMacro: array[0..79] of Char;
WinState: string;

begin
case RGWindowState.ItemIndex of

0: WinState := '3'; { Maximized }
1: WinState := '1'; { Normal }
2: WinState := '0'; { Hidden }

end;
StrPCopy(TheMacro,'ShowRS(' + WinState + ')');
RSWindowCtrl.OpenLink;
RSWindowCtrl.ExecuteMacro(TheMacro, True);

end;

Mark Ostroff has over 18 years experience in the computer industry. He
began by programming minicomputer medical research data acquisition
systems, device interfaces, and process control database systems in a
variety of 3GL computer languages. He then moved to PCs using dBASE
and Clipper to create systems for the US Navy, as well as for IBM’s COS
Division. He also volunteered to help create the original Paradox-based
“InTouch System” for the Friends of the Vietnam Veterans’ Memorial.
Mark has worked for Borland for the past six years as a Systems
Engineer, specializing in database applications.

Delphi Reports
array of type Char. The command string itself consists
of the text of the ReportSmith menu you want to exe-
cute. If you need to access a sub-menu, the command
string will consist of the main menu’s text, followed by
the DOS pipe character (i.e. the vertical bar “ | ”), then
followed by the text of the sub-menu. For example, the
command to toggle the display status of the
ReportSmith Toolbar would be View|Toolbar. Notice
that no spaces are allowed.

The following code from RS_PANEL illustrates how the text
of the currently selected radio button in the RGZoomLevel
RadioGroup component is used to drive ReportSmith.
StrPCopy is used to place the string View|Zoom(xx) into an
array named TheMacro. The actual value of xx is taken
directly from the text of the currently selected radio button.
Thus, this code is generic, and new values can be added to
the TRadioGroup without having to change this code:

procedure TRSCtrlPanel.RGZoomLevelClick(Sender: TObject);
var

TheMacro: array[0..79] of Char;
begin

StrPCopy(TheMacro,'View|Zoom(' +
RGZoomLevel.Items[RGZoomLevel.ItemIndex]+')');

RSZoomCtrl.OpenLink;
RSZoomCtrl.ExecuteMacro(TheMacro, True);

end;

Note that this code is using a manual DDE connection.
Opening and closing the DDE link will only let you
change ReportSmith once per execution. To provide
repeatable control of ReportSmith, you need to leave the
DDE link open till the Delphi form is closed.

The second issue with using the System topic is that the
command string must use the exact wording of the target
menu item. This becomes an issue in 16- and 32-bit com-
patibility with some menu items. If the text is different
between ReportSmith 2.5 and 3.0, you’ll need to add con-
ditional code to handle this.

The FormActivate procedure in RS_PANEL contains this
kind of conditional code. The menu command to toggle
viewing of the ruler is Rulers in ReportSmith 3.0, but the
2.5 version uses the singular Ruler. FormActivate uses a
standard Delphi compiler directive to correct the applica-
tion on start-up of the 16-bit version:
36 September 1996 Delphi Informant
procedure TRSCtrlPanel.FormActivate(Sender: TObject);
begin
{$IFNDEF WIN32}

{ 16-bit ReportSmith v2.5's View menu selection uses the
word "Ruler", not "Rulers" as does the 32-bit version }

CbxRuler.Caption := 'Ruler';
{$ENDIF}
end;

Using the Command DDETopic to “Drive by
Function.” The other DDETopic you will likely use is the
Command topic. This directly accesses internal
ReportSmith external functions. The procedure in
RS_PANEL illustrates how the Command topic can be
used to execute the ShowRS function to control the win-
dow state of ReportSmith (see Figure 9).

Notice that all components of a DDE conversation are
text-based. Even the Windows API window state-setting
index number must be passed to ReportSmith as a string.

Conclusion
ReportSmith is a very powerful reporting tool that can eas-
ily be integrated into your Delphi applications. Hopefully
this series has shown you a few techniques you can use in
your applications. ∆

Some of the material in this article is excerpted by permission
from the author’s chapter on ReportSmith in the book Delphi
In Depth, copyright 1996 by Osborne/McGraw-Hill. All
code examples given here are found on the CD which accom-
panies the book.

The demonstration project and report referenced in this article
are available on the Delphi Informant Works CD located in
INFORM\96\SEP\DI9609MO.

37 September 1996 Delphi Informant

Delphi Kiosk

By Chip Overstreet

Three-Tier Delphi
Open Horizon’s Connection and
Application Broker Products

Figure 1: Three-tier architecture
multiple platforms.
Three-tier architectures are characterized by the separation of the user
interface, business logic, and data access logic. Many organizations are

implementing three-tier architectures for enterprise applications to realize
two key benefits.
First, organizations have spent a great deal of
time and effort encoding their business rules.
With two-tier architectures, these rules are
embedded inside the client application, and
are therefore unavailable for use (or reuse) by
other applications. With a three-tier architec-
ture, the business rules are located on a shared
server, providing the potential for reuse.

Second, centrally locating business rules
makes maintenance much easier and more
cost effective. No longer does software need
to be propagated out to every client worksta-
tion each time a business rule is changed.

A set of new products has emerged —
known as “second-generation” client/server
development tools — that can be used to
build three-tier applications (see Figure 1).
These include products such as Dynasty,
Forte, Magna, and USoft Developer. While
these tools offer the ability to build three-tier
s allow business rules to be partitioned onto
applications, most have inherent limitations
that keep organizations from realizing the
full benefits of this new architecture.

There are three key limitations to these sec-
ond-generation client/server tools.

Limited reusability. Most second-generation
tools do not support true reusability. That is,
you can build shareable business rules, but the
only applications that can reuse these rules
must also be written with the same tool. To
deliver the promise of reuse, these technolo-
gies must be able to make their business rules
available to other front-end products, such as
Delphi Client/Server, Developer/2000,
PowerBuilder, Visual Basic, or even Excel.

Maintenance limited to servers. While these
tools make it possible to maintain business
rules centrally, you must still maintain each
client application that uses these rules. That
is, whenever a business rule is changed or a
new rule is added, each client application
must be modified by adding the new calls
and the interface information.

As companies rely on rapid change for com-
petitive advantage, their systems must be
capable of keeping pace. Therefore when
business rules change, the modification
should only be required in a single location.
Inability to leverage investments. Vendors of
most second-generation tools offer a simple
solution: Throw out your “Order Entry

Delphi Kiosk

Figure 3: The Application Broker acts as an interface between
client applications and server-resident business rules, regardless
of their implementation.
Application” written in Delphi Client/Server and start from
scratch using our tool.

For most organizations, significant investment has gone into
their Delphi Client/Server applications, not only in the design,
development, testing, and deployment, but also in training end-
users. Most do not want to discard their current systems, and
are looking for ways of leveraging their existing investments.

Open Horizon’s Connection Application Broker
Connection is a connectivity solution designed to assist orga-
nizations in extending departmental client/server implemen-
tations to enterprise solutions.

Connection is comprised of client and server components that
provide communications between each hardware platform
(see Figure 2). In addition to the communications,
Connection provides a set of Enterprise Brokers that enable
access to services:

Connection Database Brokers provide integration with
databases (relational or non-relational)
Security Brokers provide integration with security services for
user authentication, single-sign-on, and data encryption.
Directory Brokers provide integration with directory ser-
vices for centralized management of resource information.
Application Brokers provide integration with business
rules, transactions, legacy applications, etc.
Figure 2: Connection provides new or existing client/server
tools and applications with transparent integration with enter-
prise services.
Connection provides new or existing client/server tools and
applications with transparent integration with enterprise ser-
vices. Applications on the client — such as those written in
Delphi Client/Server — simply “plug into” Connection and
then gain immediate and transparent access to the services
highlighted above. For example, Connection with a Database
Broker can act as a plug-and-play replacement for products
such as Oracle’s SQL*Net.

This article discusses how Connection can be used to extend
traditional “two-tier” tools such as Delphi Client/Server to
support three-tier application architectures.

What Is a Broker?
When considering the finance market, a broker is someone who
acts as an interface between two or more clients that want to buy
and sell financial vehicles, such as stocks, bonds, or mutual
38 September 1996 Delphi Informant
funds. For example, to buy 100 shares of stock, you don’t have
to find a seller on your own. Simply call a broker, and they’ll
handle the request on your behalf. There is no need for you to
know how the request is fulfilled. Additionally, a broker can offer
advice in real time by informing you of changes in the market, as
well as new options that may be available. Finally, your interface
to the broker is simple — it’s a standard telephone.

What Is the Application Broker?
Open Horizon’s Application Broker performs a similar task to
a financial broker. The Application Broker acts as an interface
between client applications and server-resident business rules
(see Figure 3).
Client applications such as Delphi Client/Server, Developer/-
2000, PowerBuilder, or Visual Basic issue a request to the
Application Broker, which in turn invokes a business rule on
behalf of the client. The business rules can be virtually any
callable function — Pascal, C++, or COBOL programs, sec-
ond-generation “generated” rules, transactions, CORBA-com-
pliant distributed objects, legacy applications, etc.

The Application Broker is simply a broker of business rules.

How It Works
Using the Application Broker requires four steps: identifica-
tion, specification, registration, and invocation. Each is
described here:

Identification. The Application Broker is not a tool for devel-
oping business rules. Rather, it’s a tool that provides simple
access to existing business rules that you have either devel-
oped or that are already in use by other applications.

The first step is to identify a business rule that you want to
be invoked from your client applications. For example,
consider a simple Object Pascal function, called
AddNumbers, that takes two integers as input and returns
the sum of those integers:

function AddNumbers(Number1, Number2 : Integer) : Integer;
begin

AddNumbers := (Number1 + Number2);
end;

Specification. The next step is to specify interface informa-
tion about the rule. This information includes the application
name (a mechanism for grouping related business rules), the
business rule’s name, the input and output parameters, and

Delphi Kiosk
optional text descriptions of each. You may also specify such
things as error handling information and cursors for han-
dling multiple row returns.

This specification is done using a high-level application
interface language (AIL). Using the previous example for
AddNumbers, the AIL would read:

application mathFunctions "Math Functions"
procedure addNumbers "Adds Two Numbers"
takes int1 integer "First Number"
takes int2 integer "Second Number"
returns int3 integer "Sum of Two Numbers"

This interface file provides the Application Broker with the
information necessary to invoke the business rule.

Registration. After the AIL has been constructed (or gener-
ated using a GUI front-end tool), it’s then passed through a
compiler. The compiler accomplishes two tasks. First, it gen-
erates a C++ wrapper that is automatically linked to the
business rule. Second, it registers the interface information
inside the Application Broker.

The Application Broker can be considered as a meta-dictio-
nary that contains the information necessary to locate and
invoke one or more business rules.

Invocation. Once the business rule has been registered, it’s then
available to be invoked from any client application. To invoke
the AddNumbers business rule from within Delphi Client/Server,
the developer simply binds two integers and formats a string
containing the call information. Connection uses stored-proce-
dure-call semantics for specifying this information. With Delphi
Client/Server, simply use the built-in functionality for generat-
ing a stored procedure call — there is no need to write C code,
remote procedure calls, or even be aware of the network.

Communication from first-tier to second-tier. Under the
covers, Connection Client uses RPCs to issue the request.
Stored-procedure-call semantics are used because virtually
every application and tool on the market has built-in sup-
port. Even off-the-shelf applications such as Microsoft Excel
or WordPerfect can be used to invoke a business rule
because they have the ability to issue a stored procedure call.

As a Delphi Client/Server developer, you do not even require
knowledge of whether the business rule is implemented as a
C function, a distributed transaction, a legacy COBOL
application, or even a CORBA-compliant distributed object.

Dynamic Binding. Ongoing maintenance is one of the most
time-consuming and costly tasks in client/server computing.
Three-tier client/server architectures help to reduce mainte-
nance costs because business rules are maintained in a single
location on the server.

Nevertheless, three-tier architectures do not inherently
address situations where new rules are introduced, or where
39 September 1996 Delphi Informant
interface information changes. When these changes occur,
each client application using the rule must be identified
and updated. One of the main reasons why CORBA and
OLE are gaining popularity is that the discovery and bind-
ing of rules (distributed objects) is performed at run time.
Applications require no prior knowledge of the rules or
their interface information.

The Application Broker provides support for either a static or
dynamic binding model. With the static model, you hard-
code the name, and input and output parameters of the busi-
ness rule into each client application.

With the dynamic binding model, all this information can be
obtained at run time, thereby eliminating the need to modify
every client application each time a change is made. The
dynamic model also assists greatly in the development life
cycle. The business rules developers can work independently
building C functions, transactions, etc., and registering them
within the Application Broker. The Delphi Client/Server
developer can simply query the Application Broker at any time
to get the latest view of available business rules.

Migrating Delphi Client/Server Applications
to Support Three-Tier
Connection provides you with a simple mechanism for support-
ing three-tier architectures without the need to discard your
Delphi Client/Server applications and starting from scratch.

As described earlier, Connection with a Database Broker can
be used as a simple replacement for products such as
SQL*Net from Oracle (although Connection has been archi-
tected to provide higher performance). With this solution,
you can continue to run your Delphi Client/Server applica-
tion as it currently works in a two-tier environment.

With the addition of the Application Broker onto the server, the
infrastructure is in place to invoke business rules that reside on
the server. The migration can be incremental. Start by identify-
ing the business logic inside your Delphi Client/Server applica-
tions that you want to redeploy as a centralized, shareable busi-
ness rule. Once the rule has been specified and registered with-
in the Application Broker, simply replace the client-resident
Delphi business logic with a stored procedure call.

Additional Services
This article has focused mainly on extending Delphi
Client/Server applications to support three-tier architectures.
However, there are additional requirements that typically sur-
face when organizations begin to deploy client/server applica-
tions across the enterprise. One of these is support for
enhanced security, with requirements for user authentication,
single-sign-on, resource authorization, and data protection.
Another is support for directory, or naming services, which
enables location information about resources, including data-
bases, to be stored centrally rather than within each applica-
tion or on each client workstation (such as in an .INI file).

Delphi Kiosk
Connection provides customers with the ability to add
Security Brokers and Directory Brokers to the base
Connection product, thereby providing this support to
Delphi Client/Server applications transparently.

Conclusion
Organizations are moving rapidly to embrace three-tier appli-
cation architectures to obtain the benefits of reusability and
simplified maintenance. However, many of these benefits are
only partially realized with the tools on the market today.

As a Delphi Client/Server application developer, you now
have the ability to leverage your favorite tool to support
three-tier architectures without throwing out your existing
investment. At the same time, you can obtain true reusabili-
ty of business rules, as well as simplified maintenance on
both the client and server. ∆

For more information on Connection, please contact Open
Horizon by phone at (415) 598-1200, e-mail at info@openhori-
zon.com, or visit their Web site at http://www.openhorizon.com.
40 September 1996 Delphi Informant

Chip Overstreet is the Vice President of Marketing and Business Development for
Open Horizon. Prior to Open Horizon, he worked for Ochre Development, a sec-
ond-generation client/server tools company, and Oracle Corporation in both the
US and Australia.

41 September 1996 Delphi Informant

At Your Fingertips
Delphi / Object Pascal

By David Rippy

Y

ou are the product of your own brainstorm.
— Rosemary Konner Steinbaum

Figure 1 (Top): This form contain
two DBNavigator components.
Figure 2 (Bottom): The
DBNavigator in this form controls
both DBGrids.
How can I use a single DBNavigator for
multiple DBGrids on a form?
On a form containing two or more
DBGrids, it’s common for developers to
u
n
(
m
l
T
D
s
D

S
l
D
D
w
i
R

E
f
3
p
D
o
D
f
s
u
b

H
d
t
F
i
i
t

s
Figure 4 (Top): u and d will
advance records forward and backward.
Figure 5 (Bottom): The KeyDown event handler
for Form1.

Figure 3: OnEnter event handlers for DBGrid1
and DBGrid2.
se a separate DBNavigator compo-
ent for navigating each DBGrid
see Figure 1). This works fine in
ost cases, but can become a prob-

em if screen real estate is minimal.
o solve this problem, use a single
BNavigator component that is

mart enough to control each of the
BGrids on a form (see Figure 2).

urprisingly, all that is needed is one
ine of code added to each of the

BGrids. With this line of code, the
BNavigator will always “know”
hich DBGrid should receive

nstructions (i.e. First Record, Next
ecord, Insert, Delete, etc.).

xamine the OnEnter event handlers
or DBGrid1 and DBGrid2 in Figure
. As you can see, whenever the user
ositions the cursor in DBGrid1 or
BGrid2, the DataSource property

f DBNavigator1 is set to the same
ataSource as the DBGrid with

ocus. This means you can freely
witch between the two grids, and
se DBNavigator1 for traversing
oth. — D.R.

ow can I use u and
to navigate records in a

able?
or forms such as the one in Figure 4,
t’s nice to give users the ability to nav-
gate records using key strokes in addi-
ion to the mouse. The default behav-
ior of a form does not provide this, but it’s a
simple feature to implement.

In this example, the user can advance to
the prior or next record in the table using
u and d, respectively. All the
code necessary for this function is located
in the KeyDown event handler of Form1

Delphi Kiosk
(see Figure 5). In the event handler, a case statement
checks the value of Key (a parameter passed in as part of
the event handler). If the value of Key is 33 (VK_PRIOR),
the user pressed u, and the Prior method is called to
advance to the prior record in the table. If the value of Key
is 34 (VK_NEXT), the user pressed d, and the
table’s Next method is invoked.
Figure 6: You must set
the KeyPreview proper-
ty to True.

Figure 8 (Top): This code will enable and disable the TTimer.
Figure 9 (Bottom): TTimer1’s OnTimer event handler.
The final — and most important
— step in this tip is to set the
KeyPreview property of the form to
True (see Figure 6). KeyPreview
passes most key events to the Form
for processing, allowing the devel-
oper to insert key-handling code,
such as we have done in this exam-
ple. If KeyPreview is set to False
(the default), the code in the form’s
KeyDown event handler will not
execute.

TIP: You may be wondering how

to determine the values for specific keys such as u
and d. Add the following code to your form’s
KeyDown method (remembering to set the KeyPreview
property to True):

ShowMessage(IntToStr(Key));

Now, when you press a key, its corresponding Key value
will be displayed in a dialog box.

Note that I am using the actual numbers here, but you
may want to use the virtual key constants (i.e.
VK_PRIOR and VK_NEXT) which can be found in the
WinTypes.PAS (Delphi 1) or Windows.PAS (Delphi 2)
files located in the \SOURCE\RTL\WIN directories.
Using these constants will help keep your code much
more readable. — D.R.

How can I create marquee-style text on my form?
Creating marquee-style text is a unique way to jazz up
your forms, and requires minimal effort to implement.
First, drop a TLabel component onto your form, such as
the one shown in Figure 7. You can apply any color, size,
and font combination. Next, set the Caption property of
Label1 to the message you want to scroll. For best results,
add a few extra spaces to the end of the message.
42 September 1996 Delphi Informant

Figure 7: The TLabel component for the marquee-style text
example.
You also need to place a TTimer component on the form.
Set the Interval property of the TTimer to 500 (millisec-
onds). The Interval property determines the rate that your
message scrolls — the smaller the value, the faster the
scrolling. A value of 500 will update the message twice a
second. The button on the sample form toggles the
Enabled property of the TTimer to start and stop the
scrolling (see Figure 8).

The OnTimer event handler for the TTimer contains all of
the string manipulation necessary to give the illusion of
marquee-style text (see Figure 9). In a nutshell, we are
simply taking the first character of Label1’s Caption and
moving it to the end of the line. That’s it! Be sure to
experiment with different colors and typefaces. — D.R.

Quick Tip: Using Application.ShowHint
Most applications these days use Hints to indicate the func-
tion or purpose of a given control. Did you know you can
enable or disable all the Hints in your application with only
one line of code?

{ Set to False to disable all hints }
Application.ShowHint := True;

— D.R. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\SEP\DI9609DR.
David Rippy is a Senior Consultant with Ensemble Corporation,
specializing in the design and deployment of client/server data-
base applications. He has contributed to several books published
by QUE. David can be reached on CompuServe at 74444,415.

43 September 1996 Delphi Informant

New & Used

By Bill Todd

ReportPrinter Pro 2.0
Nevrona Designs’ Upgraded Report Writer

Figure 1: This m
of code.
If you read the review of ReportPrinter 1.1 in the December 1995 issue of
Delphi Informant and decided you didn’t want to use a code-based

reporting tool, it’s time to look again. When it first appeared on the Delphi
scene, ReportPrinter 1.1 from Nevrona Designs broke a lot of new ground.
With version 2.0, Nevrona has taken the product a step further.
ReportPrinter 1.1 was the first report writer,
that I am aware of, built entirely from
Delphi components, and capable of produc-
ing the entire reporting system in the exe-
cutable file. Because it is not a visual band-
oriented tool, ReportPrinter also broke tradi-
tion in the world of reporting tools by allow-
ing you to create reports with code.
Although creating reports with code is more
time consuming in many cases, this func-
tionality gives you the power and flexibility
to create unique reports.

Using ReportPrinter Pro 2.0, you can now
build on this powerful foundation to bring
together the best of both worlds. If you need
ultilevel report was produced with just two lines
to create reports entirely in code, you still
can. For example, to create a report where
the layout of each page is different, using
code lets you do it. You can still print any-
thing, including graphics and memos, in any
order, anywhere on a page, just as you could
in ReportPrinter 1.1.

Improvements
ReportPrinter Pro 2.0 brings forth an entire
suite of report shell components to make cre-
ating most report formats easy with just a
few lines of code. For example, Figure 1
shows a one-to-many-to-many report using
the sample Customer, Orders, and Items
tables that ship with Delphi. This report
includes headings at each level, and a total
quantity in the footing for the Items table.
To create this report, you need to write only
two lines of code.

If you need to make labels, take a look at the
TLabelShell component in Figure 2.
TLabelShell makes labels a snap because it
includes over 150 pre-defined Avery label
types. If you are using a custom label, simply
enter the dimensions, number down and
across, and you’re ready to go. This report
required 33 lines of code, most of it sup-
pressing blank lines.

The TDBTablePrinter component’s Table
Editor is another feature that makes creat-
ing columnar reports much easier in ver-

Figure 5: A form letter stored in a text file.

Figure 4: A description of ReportPrinter 2.0’s new components.

Figure 2: Labels printed with the new TLabelShell component.

Figure 3: The TDBTablePrinter component’s Table Editor.

Component Description
TReportSystem Integrates the functionality of the

TReportPrinter, TReportFiler, TFilePrinter and
TFilePreview components from version 1.1.

TDetailShell Prints detail sections in multi-level reports.

TMasterShell Prints master or detail levels in a multilevel
report. TMasterShell can be linked to other
TMasterShell, or to TDetailShell components to
create as many levels of detail as needed.

TReportShell This is the top of the shell component
hierarchy. It adds report header and footer,
as well as page header and footer capabilities
to the features provided by TMasterShell. A
typical multilevel database report is built from
one TReportShell component, and as many
TMasterShell and TDetailShell components as
needed.

TLabelShell A specialized component for printing labels.

TDBTablePrinter This component is designed to print tabular
reports from database tables. You can link
multiple TDBTablePrinter components together
to print master detail reports to any level.

TTablePrinter Identical to TDBTablePrinter except that it
doesn’t get its data from a database table.
Instead, you supply the data in code.

New & Used
sion 2.0 (see Figure 3). The Columns tab of the Table
Editor lets you quickly add columns to a report, rearrange
the columns, and set their properties. The Table Editor also
lets you set the properties of the various headers and foot-
ers in the report, and determine which ones will be active
in each report.

When creating a report with code, the new TReportSystem
component is a true time saver. It combines all the func-
tionality of the four components from version 1.1,
enabling you to view the report as it is created in the
screen previewer.

To see descriptions of the new components in ReportPrinter
2.0, take a look at the table in Figure 4. In addition to a rich
set of properties that allow you to customize reports at design
time, each new component has a complete set of events to
customize each component’s behavior.

Manipulating Text
In version 2.0, ReportPrinter has added some major memo
printing capabilities. It still allows you to print any memo
field anywhere on a report page, but now there is even more
power. You can easily manipulate the text of memos before
printing. Figure 5 shows a form letter stored in a text file
44 September 1996 Delphi Informant
that contains embedded tokens (i.e. %company%) in the text.
You can replace the tokens with other values — as the
report is being printed — to produce the letter shown in
Figure 6. Storing the text in an external file makes it simple
for users to modify the body of the letter without changing
the program. You can also store text containing tokens in
memo fields in a table, and replace the tokens with data
from another table, or with values entered by the user.

A tribute to its excellent design, the new ReportPrinter com-
ponents were built from the original ReportPrinter 1.1 class
library. This means all the programs using ReportPrinter 1.1
are completely compatible with the new version.

Figure 6: Here the tokens in Figure 5 have been replaced with
their respective values.

Nevrona Designs’ ReportPrinter
Pro 2.0 report writer allows you
to produce reports compiled into
a program for easy distribution,
create standard reports, graphics,
and memos and form letters with
embedded data, and modify
page layout from page to page.
ReportPrinter Pro 2.0 also han-
dles the task of precise position-
ing for pre-printed forms.

Nevrona Designs
1930 S. Alma School Rd., C-204
Mesa, AZ 85210-3043
Voice: (602) 491-5492
Fax: (602) 530-4823
E-Mail: Internet: tech@-
nevrona.com or CIS: 70711,2020
Web Site: http://www.nevrona.-
com/designs
Price: ReportPrinter Pro 2.0,
US$149.00; upgrade from
version 1.1, US$49.

New & Used

Bill Todd is President of The Database
Group, Inc., a Phoenix area consulting and
development company. He is co-author of
Delphi: A Developer’s Guide [M&T Books,
1995], Creating Paradox for Windows
Applications [New Riders Publishing,
1994], and Paradox for Windows Power
Programming [QUE, 1993]; a member of
Team Borland; and a speaker at every
Borland database conference. He can be
reached at (602) 802-0178, or on
CompuServe at 71333,2146.
Documentation Upgrade
On a final note, ReportPrinter 1.1’s documentation was
sorely limited, but that is no longer the case. ReportPrinter
Pro 2.0 includes a professional caliber 196 page manual. It
features 22 demonstration programs documented in 56
pages of tutorial text. This makes learning the product fun
and easy, instead of slow and frustrating. ReportPrinter
Pro 2.0 ships in both 16-and 32-bit versions, with full
source code.
45 September 1996 Delphi Informant
Conclusion
If you want to use only one report
writer for all your Delphi pro-
grams, this is it. ReportPrinter 2.0
allows you to compile a program
for easy distribution; create stan-
dard reports, graphics, and memos
and form letters with embedded
data quickly; modify page layout
from page to page; and add precise
positioning for pre-printed forms.

Whether you need all these fea-
tures or just a few, ReportPrinter
is a tool that can handle any
reporting task. ∆

46 September 1996 Delphi Informant

New & Used

By Bill Todd

UDFlib
Adding Functionality to Your InterBase Applications

Function
ltrim
ltrimc
rtrim
rtrimc
alltrim
alltrimc

center

cstradd
cstrdelete

cstr_plus_int

int_plus_cstr

lefts
rights
len
lower
lpad

pad

parse

pos
proper

quarter

replicate

reverse
substring

Figure 1: UDF
One of the shortcomings of InterBase is that it only includes eight func-
tions you can use in your SQL queries. Fortunately, InterBase also sup-

ports user-defined functions. This allows you to write your own functions in
the form of a C/C++ library or DLL, and attach the function library to any
InterBase database.
Description
Removes leading blanks from a string
Removes leading characters from a string
Removes trailing blanks from a string
Removes trailing characters from a string
Removes blanks from both ends of a string
Removes a user-specified character from both
ends of a string
Pads a string to the specified length and centers
it by adding the specified character(s) to the
beginning and end of the string
Concatenates two strings
Deletes a specified number of characters from
any location in a string
Converts an integer to a string and
concatenates it to a string
Converts an integer to a string and
concatenates a string to it
Copies the left most N characters of a string
Copies the right most N characters of a string
Returns the length of a string
Converts a string to lower case
Pads a string to any length by adding the speci-
fied character to the beginning of the string
Pads a string to any length by adding the speci-
fied character to the end of the string
Returns the characters between any occurrence
of the specified character
Returns the position of one string within another
Capitalizes the first letter of each word in the
string
Given a date, returns a string that identifies the
year and quarter (“96Q1”)
Fills a string with N occurrences of the specified
character
Reverses the characters in a string
Returns any substring of a string

lib string functions.
Using the user-defined function feature of
InterBase, MER Systems, Inc. has created
UDFlib. This library consists of over 100
functions you can add to any InterBase
application.

The UDFlib functions are grouped into
eight categories:
1) C string functions
2) conversion functions
3) date/time functions
4) double precision functions
5) float functions
6) integer functions
7) SmallInt functions
8) VarChar functions

Figure 1 shows the functions available for
both character and VarChar strings. When
working with VarChars just add the letter
“v” to the beginning of the function name.
For example, to take a substring of a char-
acter string use the substring function. To
extract a substring from a VarChar use
vsubstring.

The list of functions for other categories is
just as complete. The date/time category
includes functions to subtract two dates,
add a time to or subtract a time from a
date, compute the Julian date, return the
number of the week the date falls into, and
many others.

Bill Todd is President of The Database Group, Inc., a Phoenix area consulting and
development company. He is co-author of Delphi: A Developer’s Guide [M&T
Books, 1995], Creating Paradox for Windows Applications [New Riders
Publishing, 1994], and Paradox for Windows Power Programming [QUE, 1995];
a member of Team Borland; and a speaker at every Borland database conference.
He can be reached at (602) 802-0178, or on CompuServe at 71333,2146.

Figure 2: The SQL query.

New & Used
Installing UDFlib
UDFlib, like all user-defined functions, must be installed
in each database it’s used. Using the script file,
UDFLIB.SQL, that ships with the product simplifies the
process. First, run the install program that places the four
UDFlib files in the IBSERVER\BIN directory. Next, start
the InterBase ISQL utility, connect to your database, and
enter the command:

IN UDFLIB.SQL;

Exit from ISQL and you are done with the installation.

Using UDFlib
Using the functions in UDFlib is as simple as using the
functions built into InterBase.

Simply include the functions in any SQL statement. For
example, Figure 2 shows the SQL query:

select vproper(vlower(country)) as Country from customer

This uses the vlower function to force the value in the
Country column of the Customer table to lower case, and the
vproper function to change the first letter of each word to
upper case.
47 September 1996 Delphi Informant
About the only thing you
need to be careful of is
using the appropriate
function for the type of
column.

UDFlib includes a com-
plete online Help file with
a topic for every function.
The Help topic includes
not only the syntax for the
function, but a stored pro-
cedure and a WISQL
query example as well.
Although InterBase is
available on many plat-
forms, the current version
of UDFlib is available only
for InterBase for Windows
95 and Windows NT.

Conclusion
If you develop client/server
applications with InterBase
for Windows 95 or
Windows NT, UDFlib is a
must-have product. It adds
the functions you need for every task you may encounter
in virtually any application.

UDFlib is a library of over
100 functions that can be
added to an InterBase
application. The UDFlib
functions are grouped
into eight categories: C
string functions, conver-
sion functions, date/time
functions, double preci-
sion functions, float func-
tions, integer functions,
SmallInt functions, and
VarChar functions. UDFlib
is ideal for the client/serv-
er developer working with
InterBase for Windows 95
and Windows NT.

MER Systems, Inc.
58 Worthington Ave.
Richmond Hill, Ontario
Canada L4E 2S5
Phone: (416) 410-5166
Fax: (416) 410-5167
E-Mail: Internet:
rschieck@mers.com
Web Site:
http://www.mers.com
Price: US$250 per server
If you would like to try before you buy, download a
demonstration version from either the BDEVTOOLS or
DELPHI forums on CompuServe, or from MER Systems’
Web site at http://www.mers.com. ∆

TextFile
Delphi 2 Multimedia Adventure Set
“Delphi 2 Multimedia Adventure Set”
continued on page 49

“Delphi In Depth:
A Heavyweight Winner”

continued on page 50
Delphi and Multimedia. I’ve
waited a long time for a book
that deals adequately with this
topic — and I suspect I’m not
alone. As multimedia PCs
become the norm, we will be
expected to incorporate more
media in our applications.
Let’s face it, text and simple
graphics don’t cut it any more.
As users of our applications
see new Windows programs
with sound, animation, and
video clips, they will come to
expect all applications to
include at least some of these
features. While Delphi and
the Windows multimedia API
provide most of the basic tools
we need, until now there has
been a paucity of detailed
information on how to use
these tools, particularly the
more advanced ones. Delphi 2
Multimedia Adventure Set by
Scott Jarol, Dan Haygood,
and Chris D. Coppola finally
fills the vacuum.

Many Delphi books explicit-
ly indicate the level of experi-
ence the reader should have.
While the introduction leaves
you with the impression that
no particular background is
required, I feel some experi-
ence in Delphi and Object
Pascal is necessary to benefit
from this book. However, if
you have worked your way
through any of the introduc-
tory Delphi books, you
shouldn’t have any great diffi-
culties. And you’ll certainly
learn a lot about writing
Object Pascal code.

As you’ll soon discover, the
book’s organization is both
topical and progressive. Large
sections deal with hypertext,
graphic manipulation and
animation, and sound. Some
48 September 1996 Delphi Informant
sections begin with introduc-
tory chapters explaining basic
principles; most end with the
creation of an impressive
application.
The book begins — where

most general-purpose Delphi
books conclude their discus-
sion of multimedia — with
Delphi’s MediaPlayer control.
The first topic is hypermedia.
Dan Haygood introduces
hypermedia and the Hypertext
Markup Language (HTML).
He then provides an example
of a hypermedia engine to cre-
ate an interface between
Delphi and HTML. His code
provides excellent examples of
techniques for parsing, for-
matting, and displaying text.
He also provides an excellent
introduction to the Windows
95 Multimedia System. He
concentrates on a discussion of
sound and the use of .WAV
files, and adds multimedia
capabilities to the hypermedia
engine.
The second section, written

by Chris D. Coppola, explains
graphical imaging. Again, the
coverage is excellent. The text
and code examples are easy to
follow, and the topics intro-
duced — animation tech-
niques, dissolving images, and
other special visual effects —
should be of interest to many
programmers.

In the next section,
Haygood explains the art of
hyperimaging, or creating
hotspots on the screen.
Haygood expands on earlier
projects and concepts, and
introduces more advanced
topics. First, Haygood
expands the hypermedia
engine to become a func-
tional Web browser. Then
Coppola introduces the art
of animation delineating,
including topics such as
Delphi In Depth: A Heavyweight Winner

Delphi In Depth touts itself

as “the Heavyweight of All
Delphi Guides.” In this age
of exaggerated claims, one
might initially dismiss such a
statement. Nevertheless, after
spending many hours with
this book and its accompany-
ing CD-ROM, my opinion
is that this self-assessment
seems justified.

Unlike many early Delphi
books, Delphi In Depth doesn’t
simply paraphrase and expand
Borland’s documentation.
Rather, this book follows the
new trend, setting the stan-
dard for multi-topic or general
Delphi resources. Written by
an impressive collection of
authors headed by Cary
Jensen and Loy Anderson, it
addresses many cutting-edge
topics which should interest
most Delphi programmers.
While it’s not the longest book
available, it is filled with useful
tips, insightful advice, and
solid programming examples.
So let’s take an in-depth look.
The publisher claims this

book is targeted at every pro-
gramming level. However, a
slight caveat is in order. If
you’re new to programming,
and to Delphi, you may have
difficulty using this book as
your introduction. However,
the opening chapters provide
an excellent introduction to
Delphi for programmers who
have worked in other lan-
guages. The focus — as it
should be — is on Delphi’s
unique qualities, including its
seamless incorporation of
database capabilities. Someone
moving to Delphi from C++
or Visual Basic — let alone
traditional Pascal — hardly
needs a hundred or so pages
devoted to Object Pascal
basics. But such a developer
must understand Delphi’s use
of properties and events, its
exception-handling capabili-
ties, as well as its approach to
Object Oriented Program-
ming (OOP). These topics,
and the essential features of
the Visual Controls Library
(VCL) and Integrated
Development Environment
(IDE), are covered thoroughly,
albeit succinctly. One useful
discussion is of creating and
using new Delphi classes, and

TextFile
Delphi 2 Multimedia Adventure Set (cont.)
“Building Delphi 2 Database
Applications Fails to Deliver”

continued on page 50
sprite and cell animation.
Again, the treatment is
thorough, and includes
excellent code examples.

The final two chapters
address audio topics.
Coppola explains .WAV
files, and introduces more
sophisticated techniques
(beyond high-level func-
tions such as sndPlaySound).
In the final chapter, Scott
Jarol introduces the Musical
Instrument Digital Interface
(MIDI), which opens up a
whole new world of audio
possibilities. For me, this
final chapter was the most
interesting and helpful (as I
am a programmer/musi-
cian), but also the most dis-
appointing. I loved what
Jarol presented — I just
wish he had taken it fur-
ther. After all, MIDI is
probably the least explored
of all the Delphi multime-
dia topics. However, Jarol’s
explanation of some of the
low-level MIDI functions,
49 September 1996 Delphi Informant
and particularly the use of
Windows callback functions
and message callbacks,
should prove invaluable to
many aspiring multimedia
developers.

Delphi 2 Multimedia comes
with a well-designed CD-
ROM, which includes all the
book’s code in two versions:
in non-compiled form in the
programs directory; and in
compiled form (with .EXE
files) in the projects directo-
ry. I hope this approach will
become standard for pro-
gramming books in the
future. I found it particularly
helpful to begin my explo-
ration by simply running all
the programs, without hav-
ing to compile them in
Delphi. The CD-ROM also
includes useful shareware,
utilities (including the
Games SDK), and demon-
strations. And there’s no
superfluous junk!
The only downfall of this

book is the scattered references
to Visual Basic, apparently
carried over from a previous
series of multimedia books
published by the Coriolis
Group. As you read through
the text, you’ll be amused (or
aggravated) that references to
Visual Basic remain.

I highly recommend Delphi
2 Multimedia Adventure Set
for any programmer intent
on incorporating multimedia
into their applications. This
book is clear, comprehensive,
and interesting.

— Alan C. Moore, Ph.D.

Delphi 2 Multimedia
Adventure Set by Scott Jarol,
Dan Haygood, and Chris D.
Coppola, Coriolis Group
Books, 7339 E. Acoma
Drive, Suite 7, Scottsdale,
AZ 85260, (602) 483-0192,
http://www.coriolis.com.

ISBN: 1-883577-64-0
Price: US$44.99
844 pages, CD-ROM
Building Delphi 2 Database Applications Fails to Deliver

Paul Kimmel’s Building

Delphi 2 Database
Applications approaches a
subject users have been
anticipating. Prior to get-
ting this title, I had received
requests to recommend a
book specifically addressing
Delphi’s database aspects.
At the time, I couldn’t.
Regrettably, this is still true.

I expected a comprehen-
sive, focused presentation
of database topics from this
text. What I found instead
was a routine introduction
to Delphi, coupled with a
disappointing treatment of
its most elementary data-
base operations. Even the
length is disappointing —
this one barely breaks 400
pages (thanks to its index).
Brevity may be a virtue,
but omission of essential
topics is not — especially
with a US$49.99 price tag.

The book is divided into
four sections: Introduction;
Database Management;
Creating an Interface; and
Designing Reports. The
first and third sections
cover the same subjects
you’d find in any general
Delphi text. The second
section focuses on database
issues, and the fourth cov-
ers ReportSmith.

The real problem lies in
what is not covered.
The subject of client/server

databases is dispensed within
a couple of paragraphs,
which simply state you need
a more expensive version of
Delphi, and “you might
need a client/server platform
to develop Oracle or Sybase
database applications”
(emphasis added). One side-
bar begins, “While this book
does not go into detail about
specifics pertaining to
client/server development,
...” Detail? Specifics? It gets
nowhere near the subject.

One other disclaimer
occurs while dismissing
TDatabase, TStoredProcedure,
and TBatchMove as irrele-
vant, except in client/server
environments: “The puzzle
of building client/server
database applications has lots
of pieces, many of which
aren’t covered in this book;
some aren’t covered in any
book.”

SQL is treated almost as
poorly — only 13 incredi-
bly shallow pages are devot-
ed to the topic. After stat-
ing “The intent of this
chapter is not to endorse
the use of SQL specifically,”
Kimmel continues with,
“This book would be
incomplete, however, if
SQL were left out com-
pletely.” Considering the
subject is databases, I
should think so.

ODBC is covered in 15
pages, but only addresses
how to perform one-time
conversions from foreign
table formats into dBASE
or Paradox. The bulk of
this chapter discusses con-
verting an ASCII text file
to Paradox, which hardly
elevates ODBC to its high-
est purpose.

It’s hard to imagine a
database book that doesn’t
discuss searching, but
TTable’s GotoKey and
GotoNearest methods aren’t
even mentioned. In fact,
the index contains no refer-
ence to any of the words
“search,” “locate,” or
“find,” except in unrelated
contexts. On the other
hand, the section on
Database Management
begins by describing
Database Desktop’s Sort
Table dialog box, one of
the least useful options for
a relational database.

Although the title refer-
ences Delphi 2, the text
doesn’t distinguish between
version 1 and 2 features,
nor does it even mention
there are two versions (or

TextFile
Delphi In Depth: A Heavyweight Winner (cont.)
transforming a class into a
component. The authors then
demonstrate how to make the
new component installable in
either Delphi version through
the use of conditional compil-
er directives.
The introductory chapters

offer much to the relatively
new Delphi programmer. But
what about experienced
Delphi programmers? If
you’ve been programming in
Delphi for a while, you’ll
probably find much of the
material in the first two-thirds
of the book familiar. However,
most chapters contain hidden
gems which will be of interest
to even the most experienced
Delphi programmer. For
example, following the intro-
ductory chapters is one deal-
ing with writing property edi-
tors. I found this an absolute
delight. While there is only
basic information on writing
custom components, this
chapter rivals Ray Konopka’s
discussion of writing property
editors in Developing Custom
Delphi Components [Coriolis
Group Books, 1996]. This
alone should attract interest
from experienced Delphi
developers, as Borland’s docu-
mentation on this is minimal.
The chapter on resource

files was also a pleasant sur-
prise. Although the discus-
50 September 1996 Delphi Informant
sion of working with .WAV
files didn’t initially impress
me, I soon found something
new — .WAV files can be
included in resource files just
like bitmaps, cursors, string
tables, and so on, and can
thus be embedded in the
final executable (.EXE) file.

Midway through, Delphi In
Depth provides an excellent
introduction to database
issues. All essential aspects for
using database components,
aliases, the Fields editor, and
client/server techniques are
included. There is also a tuto-
rial on the available report-
generating tools. This section
explores more advanced top-
ics, such as using Dynamic
Data Exchange (DDE) in
ReportSmith, as well as the
latter’s macro language,
ReportBasic. Also included
are two chapters on graphics
— introductory and
advanced — covering topics
such as animation and pre-
venting screen flicker.

For experienced developers,
the final third of the book will
be most useful. If you are
moving to Delphi 2, the
thoughtful discussion of
multithreading will be invalu-
able. The authors present both
the uses and potential pitfalls
of using threads. The final sec-
tion of the book provides a
real-world programming
example (a case study of the
WebHub components) and
explores new territory for
many Delphi programmers.

For developers interested in
the Internet and the World
Wide Web, these last few
chapters should provide an
excellent starting place. The
authors discuss both practical
issues (such as accommodat-
ing Web surfers visiting your
page) and programming
issues (including integrating
the new Web-specific lan-
guages, such as Java, with
Delphi.) Needless to say, if
you’re going to program in
Java, you’ll need more than
what’s provided here. These
chapters will, however, help
you deal with some of the
cross-language integration
issues that arise when using
Delphi to add power to Web
applets.

But how does Delphi In
Depth deal with the capabili-
ties of, and differences
between, the two versions of
Delphi currently available?
Very well! The authors are
careful to clarify which
approaches are available in
each version. Where necessary,
they provide techniques to
accomplish the same task in
both versions. The code on
the CD-ROM is similarly
organized. As a programmer
who is still skipping between
the two versions of Delphi, I
appreciate the care the authors
have taken in presenting
things this way.

When I encounter a book
with such a wealth of valuable
information, my biggest com-
plaint is: I want more! For
example, I would have loved
to see the authors devote a
chapter or two to advanced
component writing. However,
I think the aim here is to
serve the needs of the largest
cross-section of programmers
in the Delphi community.

I highly recommend Delphi
In Depth for anyone who has
experience in Delphi and
wants to increase their exper-
tise, as well as for any pro-
grammer migrating from
Delphi 1 to Delphi 2.

— Alan C. Moore, Ph.D.

Delphi In Depth by Cary
Jensen, Loy Anderson, Joseph
Fung, Ann Lynnworth, Mark
Ostroff, Martin Rudy, and
Robert Vivrette.
Osborne/McGraw-Hill, 2600
Tenth Street, Berkeley, CA
94710, (800) 722-4726.

ISBN: 0-07-882211-4
Price: US$42.95
812 pages, CD-ROM
Building Delphi 2 Database Applications Fails to Deliver (cont.)
that Delphi 2 requires a 32-
bit environment). A sen-
tence tracing Delphi’s histo-
ry simply indicates Delphi
2 “was released within
months after the first ver-
sion rolled off the shelf and
shortly after Windows 95
became available.”
The contents reinforce the

impression that the book
was written for Delphi 1
and simply had a “2” grafted
onto the title. The section
on Designing Reports covers
ReportSmith, but makes no
mention of QuickReport.

In short, this book misses
its target. The book is
rated as suitable for
accomplished or expert
users; it decidedly is not.
At best, it might serve as a
low-level introduction to
database development.
However, many of the gen-
eral books on Delphi offer
as much (or more) infor-
mation on database topics.
Since those books also
address the other aspects of
Delphi, and cost no more
than this work, there’s sim-
ply no reason to settle for
such a poor effort.

I am eager to see a good
book on developing data-
base applications in Delphi,
but this is not the one.
Building Delphi 2 Database
Applications fails to deliver
what its title promises.
— Larry Clark

Building Delphi 2
Database Applications by
Paul Kimmel, QUE, 201
West 103rd Street,
Indianapolis, IN 46290,
(800) 428-5331.

ISBN: 0-7897-0492-7
Price: US$49.99
404 pages, CD-ROM

File | New
Directions / Commentary

Web-Enabling Delphi
I f you or your company are not already starting to look at the Web as a development platform, I am betting you will soon.
However, one of the hindrances to developing Web applications is you not only need to learn a new environment, but

new tools as well. Fortunately for Delphi developers, we can apply our existing knowledge of Object Pascal and VCLs to
build Web applications. This month, I’ll address the “Web application framework,” and how Delphi can be used within it.
Web Application Framework
If you are new to the Web, perhaps

the notion of using it as a development
environment seems perplexing. We are
all probably familiar with the architec-
ture of a typical Delphi client/server
application: a Delphi .EXE running on
a client PC connected to a database
server on a LAN or WAN. However,
because of the Web’s distributed nature,
a Web application is often composed of
many different pieces, using a variety of
technologies dispersed on the client
and server.

Client Side
On the client side, the main compo-

nent required is a Web browser. For
the user, the browser serves as the
“window” to the Web. For most Web
applications, you’ll want to use
Netscape Navigator, Microsoft Internet
Explorer, or another popular browser,
but you may have occasion to embed a
Web browser directly into your Delphi
application. Delphi’s new version 2.0
Internet Update contains an ActiveX
control you can use for this purpose.
Alternatively, you can use OLE
Automation to take control of a
browser to automate a task or perform
a custom process (see Joseph Fung’s
article “Using OLE Automation to
Access the Internet” in the May 1996
Delphi Informant).

However, as the Web has matured,
increased demands have been placed on
the client side to display multimedia
and other MIME types, as well as to
manage “executable content” within
the browser. Rather than beefing up
Web browsers into “mega-apps,” the
industry has chosen to handle these
tasks using client extensions. The three
most important client extensions
include Java applets, ActiveX controls,
and Netscape Plug-Ins. While Delphi
51 September 1996 Delphi Informant
cannot create Java applets, you can use
it to create ActiveX controls and
Netscape Plug-Ins.

Server Side
On the back end, the Web server

handles requests for static HTML
pages, but you’ll need to extend the
server to provide capabilities the serv-
er does not support by default. The
two common methods of doing this
are to use a CGI (Common Gateway
Interface) or a native server API.

Since the Web began, CGI has been
the de facto standard means of interfac-
ing external programs with a Web serv-
er. Using CGI, you can execute a CGI
script or program on the server to gen-
erate dynamic HTML for the client
(see Keith Wood’s article “An HTML
Generator” in the May 1996 Delphi
Informant). For example, when an
HTML form is submitted, it can run a
CGI program to process the form and
return an HTML document to the
client showing a result. You can use
Delphi to create a CGI program that
can be executed on any Web server run-
ning on a Windows platform. There are
many CGI components available on
the Web, such as one by HREF located
at http://www.href.com. Also look for
freeware and shareware components at
http://www.delphi32.com.

A second approach to integrating with
the Web server is through its native
API. Two of the most popular are the
Netscape Server API (NSAPI) and the
Microsoft Internet Server API (ISAPI).
The major advantage to using a server
API is that they are much more effi-
cient than CGI programs. CGI requires
a separate instance of the program be
executed for each client request, but a
server API extension is loaded as a
DLL. Consequently, CGI programs can
eat more memory, and also limit the
amount of data sharing that can be per-
formed. On the other hand, the prima-
ry disadvantage to their use is that your
solution is proprietary (specific to that
server). A CGI program is much more
flexible, and can be used on multiple
Web servers. Delphi can be used to cre-
ate NSAPI and ISAPI server DLLs. I
have not yet seen a NSAPI component
class available, but an ISAPI class we
developed is available at
http://www.acadians.com/delpisap.htm.

Hodge Podge of Tools
A Web application is often an assem-

bly of pieces on the client and server
sides that, when combined, form a
complete application. Within such an
environment, it is obvious that a hodge
podge of tools are often required to pull
off a Web-based application. If you can
live with its major limitation — being
tied to the Windows platform —
Delphi serves as a viable solution for
many of these Web development tasks.

— Richard Wagner

Are you using Delphi to build Web
applications? If so, drop me a note at
rwagner@acadians.com and let me
know how you are using it.

Surfing the Web? If so, visit the
“File | New” home page at
http://www.acadians.com/filenew/file-
new.htm. In addition to downloading
past articles, you can get the latest
tips and information from the world
of software development.

Richard Wagner is Contributing Editor to
Delphi Informant and Chief Technology
Officer of Acadia Software in the Boston,
MA area. He welcomes your comments at
rwagner@acadians.com or on the File | New
home page at http://www.acadians.com/-
filenew/filenew.htm.

	Table of Contents
	Marathon to Delphi
	Delphi Tools
	Distinct Adds Five New OLE Custom Controls to its Visual Internet Toolkit
	Apiary’s OCX Expert Converts Delphi 2 VCLs into OLE Controls
	TurboPower Releases Memory Sleuth 1.0
	New Delphi Component Library for Database Development

	NewsLine
	Borland Announces New International Translation Tools for Delphi
	Delphi Team Beats Usoft and Oracle
	Delphi 2 Receives Microsoft BackOffice Logo; Borland Products to Support Windows NT 4.0
	Borland Posts First Quarter Loss; Wetzel Resigns
	Borland’s BAJA Component Event Model Included in Java Beans
	Borland and Open Environment Amend Merger Agreement
	Errors and Omissions

	Delphi Patterns
	Invoking Methods
	Delphi Events
	Multi-Object Signaling
	The Signaling Component
	The Signal-Server Object
	Notification Content
	Design Patterns in the Notification Mechanism
	Examining the Code
	TpcsSignalClient
	TpcsSignalServer
	The Test Harness
	Conclusion
	Begin Listing One: The PCSSIGNL Unit

	Threaded Queries
	Anatomy of a Thread
	The Golden Thread Rules
	A Simple Example
	A View of the Strand
	Executing a Query
	Conclusion

	The Object Repository
	Using Experts
	Using Templates
	Adding Templates to the Repository
	Visual Form Inheritance
	A Warning
	Selective Inheritance
	Saving a Form or Data Module to the Object Repository
	Deriving from the Current Project
	Using Forms from the Object Repository
	Conclusion

	Expert Help
	Problem: Resource Consumption
	Problem: Code Complexity and Reuse
	A Solution
	The TAutoNotebook Class
	Creating the Child Form
	Class Registration
	The TChildForm Class
	The Sample Application
	The Expert
	Conclusion
	Begin Listing Two: The AUTONB Unit
	Begin Listing Three — EXPERT.PAS

	Leveraging ReportSmith: Part II
	Getting Connected
	Where Do You Control Each Option?
	Using the Delphi Connection
	Design-Time vs. Run-Time Considerations
	Considerations When Your Application Navigates Records
	Controlling ReportSmith via DDE
	Setting up the DDE Conversation
	The RS_PANEL Project
	Conclusion

	Three-Tier Delphi
	Open Horizon’s Connection Application Broker
	What Is a Broker?
	What Is the Application Broker?
	How It Works
	Migrating Delphi Client/Server Applications to Support Three-Tier
	Additional Services
	Conclusion

	At Your Fingertips
	How can I use a single DBNavigator for multiple DBGrids on a form?
	How can I use uand dto navigate records in a table?
	How can I create marquee-style text on my form?
	Quick Tip: Using Application.ShowHint

	ReportPrinter Pro 2.0
	Improvements
	Manipulating Text
	Documentation Upgrade
	Conclusion

	UDFlib
	Installing UDFlib
	Using UDFlib
	Conclusion

	TextFile
	Delphi 2 Multimedia Adventure Set
	Delphi In Depth: A Heavyweight Winner
	Building Delphi 2 Database Applications Fails to Deliver

	Web-Enabling Delphi

