
ON THE COVER
7 Face Value — Robert Vivrette
You’ve heard the adage, “First impressions are everything.” This is
especially true when it comes to the UI of your Windows application.
This month, Mr Vivrette presents the basic elements of good UI design
for your Delphi programs. You’ll see that controls placement, form
margins, use of hints, and user-configurable options are all essentials
for quick user acceptance.

12 3-D Labels with a Twist — Keith Wood
Flash back: the June ’95 DI featured the 3-D Label component that
spruces up your applications. Flash forward: in this issue, Mr Wood
takes that component several steps further by introducing enhanced
features such as depth, shadow, and rotation capabilities. But this
Label component isn’t just another pretty face — it demonstrates
important Delphi OOP design principles.

FEATURES
18 Informant Spotlight — Michael Maloof
Long the bête noire of Windows 3.x, the GDI resource beast haunts
Windows 95 as well. In fact, it’s even more elusive — until now. Mr
Maloof provides us with a Delphi utility that monitors GDI and can be
incorporated into your Delphi applications.

24 Sights & Sounds — Charlie Howell
Using the TAnimated VCL, Delphi programmers can add animation
sequences to their programs. They can even be synchronized with sound.
Mr Howell shows off this extensible component and explains how your
application doesn’t have to be “all work and no play.”

28 Visual Programming — Jim Callan
Rich application functionality can sometimes lead to periodic processing
delays, and developers need to let users know what’s going on. To help
you let them know, Mr Callan examines using progress indicators and
changing the mouse pointer to manage user expectations.

33 DBNavigator — Cary Jensen, Ph.D.
Delphi 2 is an even more robust environment for creating effective data-
access applications. Dr Jensen demonstrates how to display multiple records
with the enhanced DBGrid and DBCtrlGrid components. He also discusses the
new Columns Editor and properties that give users the best views of data.

38 The API Calls — Karl Thompson
How will the application you’re getting ready to deliver work in a low-
memory situation? How about low disk space? Low GDI? There’s a utility
that can answer these questions and you already own it. This month, Mr
Thompson shows how stress can be good for you — and your applications.

43 At Your Fingertips — David Rippy
Delphi 1 and Delphi 2 tips just for your perusal! This month, Mr Rippy
explains how to: automatically set focus to a subsequent edit field in a
data entry screen; have your program check for another running program;
and ensure that your program points to the application’s directory.

PRODUCT REVIEW
40 ImageLib Portfolio 3.1 — Douglas Horn
This month, Mr Horn reviews ImageLib Portfolio 3.1 by SkyLine Tools,
Inc. He finds the product well worth its cost, and notes it’s the “little
things” that make it a must-have third-party tool.

DEPARTMENTS
2 Delphi Tools
5 Newsline
45 File | New by Richard Wagner

1 July 1996 Delphi Informant

Cover Art By: Doug Smith

July 1996, Volume 2, Number 7

Face Value
Creating an Attractive and Useful Interface

2 July 1996 Delphi Informant

Methods for creating, joining,

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi 2 by Example
Scott Warner & Paul Goldsman

QUE

ISBN: 0-7897-0592-3
Price: US$29.99 (472 pages)
Phone: (800) 848-8199
Systems Advisory Group
Enterprises, Inc. of Amarillo,
TX has released its RingZero
GDK component suite, allow-
ing Delphi 2 developers to
access the Microsoft game
SDK. The suite includes com-
ponents for DirectDraw,
DirectSound, DirectPlay, and
DirectInput.

RingZero provides access to
Microsoft’s Common Object
Model programming inter-
face. It also includes compo-
nent properties to control
the variables associated with
setting video modes, palettes,
surfaces, sound, communica-
tions, etc., plus tools and
example code.

RingZero features direct
access to video memory,
backbuffers, blit operations,
and built-in page flipping. It
also allows developers to
write their own PutPixel and
DrawLine specialty func-

Systems Advisory
Group Releases
RingZero GDK
tions. Sprite example classes
are included with the
demonstration files.

Sound can be added using
play, stop, and position calls.
For advanced sound pro-
grammers, mixing unique
buffers into a primary buffer
is supported.

RingZero includes Send/-
Receive methods for commu-
nicating during multi-player
games. Players and groups can
be identified and controlled.
and maintaining sessions are
also included.

Price: RingZero Suite, US$99 (all four
components); RingZero Suite with source,
US$199. No royalty fees are required.
Contact: Systems Advisory Group
Enterprises, Inc., 2201 Civic Circle,
Ste. 1001, Amarillo, TX 79109-1853
Phone: (800) 580-0025 or
(806) 354-8185
Fax: (806) 354-8366
E-Mail: Internet: RingZero@sage-
inc.com
Web Site: http://www.sage-inc.com
Data Dynamics Ships DynamiCube OCX for Windows 95 and Windows NT

Data Dynamics, Ltd. of

Columbus, OH has released
DynamiCube, a 32-bit OLE
custom control (OCX) for
Windows 95 and Windows
NT. DynamiCube OCX
provides data analysis and
dynamic OLAP views within
any application developed
with tools supporting 32-bit
OLE controls. It works with
all data sources supported by
ODBC, JET, and RDO.
DynamiCube doesn’t require
a server-based OLAP engine.
It works directly with existing
relational data sources to pro-
vide dimensional views of that
data. DynamiCube allows
developers to create virtual
multidimensional dynamic
views of tables for users, with-
out writing code.

DynamiCube features
unlimited n-dimensional
views; drag-and-drop data
pivoting at run time; a
design time layout editor
with drag-and-drop areas
and live data; multiple aggre-
gate and statistical functions,
and summary levels.

It also offers drill-down and
roll-up at any summary level,
data filters of any dimen-
sion’s data items that provide
focused views of the data
without requerying the
source database, and custom
methods to retrieve, graph,
or print summarized data
within an application.

DynamiCube supports mul-
tiple data items, and time
series fields (year, quarter,
month, week) can be auto-
matically calculated from the
source database date field.

DynamiCube demonstra-
tion software can be down-
loaded from the CompuServe
MSBASIC and VBPJ-
FORUM forums, as well as
Data Dynamics’ Web site.

Price: US$499, including royalty-free
distribution with Delphi 2 or Visual
Basic 4.0 applications.
Contact: Data Dynamics, Ltd., 2600
Tiller Lane, Columbus, OH 43231
Phone: (614) 895-3142
Fax: (614) 899-2943
E-Mail: CIS: 72672,550
Web Site: http://www.data-
dynamics.com

3 July 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi Nuts & Bolts For Experienced
Programmers Second Edition

Gary Cornel
Osborne/McGraw-Hill

ISBN: 0-07-882203-3
Price: US$24.95 (376 pages)
Phone: (800) 722-4726
DFL Software Releases Light Lib Magic Menus

DFL Software Inc. of

Toronto, Ontario, Canada is
now shipping Light Lib
Magic Menus, a VCL that
offers Delphi developers an
alternative to the standard
Windows menu system.

It enables developers to add
background images, textures,
bitmap menu items, tool
button palettes, and more to
their applications.

Light Lib Magic Menus
has classes which parallel the
Delphi menu classes. There’s
a MagicMenu class and a
MagicItem class. For exam-
ple, to have a bitmap
behind a menu, drop a
MagicMenu control on a
form, assign it to an existing
menu, and then specify the
bitmap it should use. This
architecture allows develop-
ers to switch between con-
ventional and Magic Menus
at run time.
Light Lib Magic Menus
allows developers to create
menus featuring attributes
such as bitmap or textured
backgrounds, 3D text styles,
or combined icons and text
(such as the Windows 95
“Start” menu). They also
support menu structures
where entire menus are
composed of bitmaps, and
users select options by
selecting a bitmap rather
than a text option.

Price: US$99
Contact: DFL Software Inc., 55
Eglinton Ave. E, Suite 208, Toronto, ON,
Canada M4P 1G8
Phone: (416) 487-2660
Fax: (416) 487-3656
BBS: (416) 487-4041
CIS Forum: GO DFLSW
Web Site: http://www.dfl.com
High Gear, Inc. Announces High Gear 1.0 VCL Components

High Gear, Inc. of

Brookfield, WI is shipping
High Gear 1.0, a set of 19
native VCL components for
Delphi and Delphi 2.

High Gear includes a
suite of 10 controls with
3D text effects. Text can
appear raised, lowered, or
normal. The 3D controls
include the Bitmap Button,
Speed Button, Label, Data
Aware Label, Panel, Data
Aware Panel, Group Box,
Data Aware Group Box,
Radio Group, and Data
Aware Radio Group. All of
the data-aware 3D controls
have their caption property
linked to a field in the data
source, thereby displaying a
value stored in the data-
base.

High Gear also provides a
progress bar that can be ori-
ented horizontally or verti-
cally, and has several
options for appearance
including pie, multi-color
intensity meter, and the
standard Windows 95
progress bar.

The High Gear Track Bar
enables end-users to graphi-
cally specify an integral
value. It can be oriented
horizontally or vertically,
and has the appearance of
the standard Windows 95
track bar.
High Gear includes two
components for customiz-
ing a Delphi form’s back-
ground. The Form
Gradient is a non-visual
component that displays a
gradient pattern on the
background of a form.

The Form Tile is a non-
visual component that can
be used to tile a graphic file
across the back of a form.

High Gear ships with on-
line help, full source code,
and is compatible with both
Delphi and Delphi 2.

Price: US$149, royalty-free. Includes
free technical support via phone, fax,
and e-mail.
Contact: High Gear, Inc., 17125 C
West Bluemound Rd., Ste. 114,
Brookfield, WI 53008-0949
Phone/Fax: (414) 524-1045
Order Number: (800) 463-3574
E-Mail: Internet: highgear@high-
gear.com
Web Site: http://www.high-gear.com/

4 July 1996 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

The Revolutionary Guide
to Delphi 2

Paul Hinks, et all.
WROX Press

ISBN: 1-874416-67-2
Price: US$49.95
(711 pages, CD-ROM)
Phone: (800) USE-WROX
Crystal Announces 16- and 32-Bit Delphi VCL for Crystal Reports

Crystal, of Vancouver, BC,

Canada, a subsidiary of
Seagate Technology, Inc., has
announced a new 16- and
32-bit Delphi Visual
Component Library (VCL)
for Crystal Reports
Professional 4.5. The new
VCL provides developers
with an interface that
enables visual control over
the integration of Crystal
Reports technology into
Delphi applications.

There are more than 80
properties in the new VCL,
including existing VBX
properties that allow devel-
opers to convert existing
VBX applications to the
new VCL. For example, an
MDIChild property is
included, which simplifies
the creation of an MDI-
Child preview window and
verifies the form holding the
VCL is the parent.

The new Crystal Reports
VCL design doesn’t require
 CIS Forum: GO REPORTS
Delphi developers to set
each data table in the report
individually, like the current
Crystal Reports VBX. The
DatafileLocation property of
the new VCL enables devel-
opers to set all the data
tables in one step, provided
all the tables are located in
the same directory.

Price: The updated VCL for Delphi is
available as a free download from the
Crystal Web Site.
Contact: Crystal Inc., 1095 West
Pender Street, Fourth Floor, Vancouver,
BC, Canada V6E 2M6
Phone: (800) 877-2340 or
(604) 681-3435
Fax: (604) 681-2934
E-Mail: Internet: sales@crystalinc.com
Web Site: http://www.seagate.com/-
software/crystal/

Nevrona Designs Releases ReportPrinter Pro 2.0 for Delphi

Nevrona Designs of Mesa,

AZ is now shipping
ReportPrinter Pro 2.0, a suite
of native Delphi components
for creating reports that are
compiled into an application
without external files.

Version 2.0 features a
source code generating
report expert, a group of
components for creating
table style listings, a
ReportSystem component
with default setup, and sta-
tus and preview screens. It
has an integrated Help file,
memo printing with word
wrapping (even across mul-
tiple pages), form letter
functions, as well as rotated
and justified text.

ReportPrinter also
includes snaking columns,
full graphics (bitmaps, rec-
tangles, ellipses, etc.), page
positioning for pre-printed
forms, measurements in
inches or metric, scaling to
any percent of the original
size, print to file, printer
control (paper size, orienta-
tion, etc.), and direct print-
er output for electronic
forms.

ReportPrinter offers print
preview with zooming, pan-
ning, print-after-preview,
and multiple page display. It
is compatible with any data-
base that can be accessed
from within Delphi, or can
be used without a database.
Using ReportPrinter’s com-
ponents and class library,
reports are created in Delphi
with minimal coding.

Price: US$149 (includes component
source, printed documentation, and a
30-day, money-back guarantee);
US$49 upgrade for existing
ReportPrinter 1.1 users.
Contact: Nevrona Designs,
1930 S. Alma School, Ste. C204,
Mesa, AZ 85210-3043
Phone: (602) 491-5492
Fax: (602) 530-4823
E-Mail: Internet: info@nevrona.com;
CIS: 70711,2020
Web Site: http://www.nevrona.com/-
designs

5 July 1996 Delphi Informant

News
L I N E

Ju l y 1996

Delphi Success
According to Windows

Watcher, a newsletter that
covers Microsoft technologies,
Delphi Developer 2 is ranked
first and Delphi Desktop 2 is

fifth on the Windows bestseller
list, as reported by Ingram
Micro, a top distributor.

Delphi Developer 2 outsold
Microsoft Office, as well as
products from WordPerfect,

Intuit, and Corel.
In addition, Borland has sold
over 350,000 units of Delphi

in the last 12 months.
Borland Releases Delphi 2 Internet Solutions Pack
HTML
Markup language

for building
Web browsers

HTTP
Send, receive or

search HTML
documents

NNTP
Connection to

network
newsgroups

FTP
File Transfer

Protocol to send
or retrieve files

SMTP
Simple mail

transport

TCPCtrl
Exchange data

like a telephone

UDPCtrl
Broadcast
data like
a radio

PopCtrl
Post Office
protocol to
receive mail
Scotts Valley, CA —
Borland has introduced the
Delphi 2 Internet Solutions
Pack, enabling Delphi
developers to build Web-
enabled applications. The
Delphi 2 Internet Solutions
Pack features eight ActiveX
controls. These include an
HTML component for
building Web browsers, an
NNTP component for con-
necting to network news-
groups, a PopCtrl compo-
nent with Post Office pro-
tocol to receive e-mail, an
SMTP component for sim-
ple mail transport, an
HTTP component for
sending, receiving, or
searching HTML docu-
ments, an FTP component
for sending and receiving
files, a TCPCtrl for

exchanging data, and a
UDPCtrl for broadcasting
data.

Because Delphi is a
native code compiler,
developers can write DLLs
that communicate with an
Internet server via ISAPI,
CGI, or NSAPI. With the
addition of the Internet
Solutions Pack, developers
can extend their client/-
server applications to the
Internet or an intranet.

Delphi’s Borland
Database Engine can man-
age the security and process
query requests from any
HTML client. The query
result sets are dynamically-
generated virtual Web
pages, and appear to end-
users as a part of the Web-
enabled application.
Because the Borland
Database Engine is server
neutral, servers from
Oracle, Microsoft, and
Sybase, as well as InterBase,
DB2, or any ODBC data-
base can be used.

For a limited time,
Borland will be offering
QuickSite as a premium
with the purchase of
Delphi. QuickSite allows
developers to create and
publish Web sites from a
graphical environment. It
eliminates the task of
learning HTML program-
ming, and lets developers
focus on the site’s content.
For more information visit
Borland Online at
http://www.borland.com.
Crystal Announces Crystal Reports 5.0

Vancouver, BC, Canada —

Crystal, a wholly-owned
subsidiary of Seagate
Technology, Inc. announced
it will release Crystal Reports
5.0, Professional and
Standard editions, by the
third quarter of 1996.

Available for both 16- and
32-bit platforms, Crystal
Reports 5.0 will feature two
key components: Crystal
Report Designer and Crystal
Report Engine. Version 5.0
will also add broader database
support and the ability to dis-
tribute reports via communi-
cations infrastructures, such
as Lotus Notes, Microsoft
Exchange, and the Internet.

In addition, Crystal is plan-
ning to release a Crystal
Reports 5.0 New Features
Interactive Learning CD in
the third quarter of 1996.

For more information, visit
Crystal’s Web site at http://-
www.seagate.com/software/-
crystal, or call (800) 877-
2340 or (604) 681-3435.

6 July 1996 Delphi Informant

News
L I N E

Ju l y 1996

Borland Reports Revenue
in Fourth Quarter

Borland International Inc.
has announced its fourth

consecutive quarter of prof-
itability since they restruc-

tured operations in January
1995. In its fourth quarter

and end of fiscal year
1996, which ended March
31, 1996, Borland record-
ed revenues of US$62.9

million. Net income for the
fourth quarter of fiscal year

1996 was US$8 million.
Revenues for fiscal year

1996 were US$215.2 mil-
lion, and net income was

US$14.3 million.
Borland Acquires Open Environment Corporation
E
A
A
a
p
7
a

O
w
c
w
s

e
t
i
E
h
B
h

Scotts Valley, CA — Borland
International Inc. announced
it will acquire Open
Environment Corp. Based in
Boston, MA, Open
Environment provides scal-
able, multi-tier client/server
products for a variety of cor-
porations.

Under the terms of the
agreement, Open
Environment shareholders
will receive .51 shares of
Borland common stock for
each share of Open
Environment common stock
— providing the shares issued
for each Open Environment
share have market value of no
more than US$25 and no less
than US$12.75. Open
Environment has approxi-
mately eight million shares
and vested options outstand-
ing, giving an indicated value
of approximately US$64 mil-
lion for the transaction.
Borland has approximately
US$31 million shares out-
standing.

According to Gary Wetsel,
president and CEO of
Borland, this acquisition is
part of Borland’s plan for
increasing their presence in
the client/server and Internet
markets. Wetsel also stated the
acquisition of Open
Environment more than dou-
bles Borland’s world-wide
client/server sales force and
adds client/server and intranet
support, consulting, and edu-
cation capabilities.
Borland plans to use Open
nvironment’s North
merican, European, and
sian direct sales organizations
s well as their partnership
rogram, which includes over
5 strategic client/server VARs
nd systems integrators.
With the acquisition of
pen Environment, Borland
ill combine its rapid appli-

ation development tools
ith Open Environment’s

calable, multi-tier solutions.
The transaction is expect-
d to be completed later
his summer. For more
nformation visit Open
nvironment’s Web site at
ttp://www.openenv.com or
orland Online at
ttp://www.borland.com.
DSW Plans Delphi 2 Client/Server and Java Tours

Atlanta, GA — The DSW

Group Limited has an-
nounced it will offer the
Borland Delphi 2 Client/-
Server Tour, with over 40
stops in the US. The tour
includes a Java, and two
Delphi seminars.

The first 2-day seminar,
Delphi 2 Fundamentals, cov-
ers the Delphi architecture,
creating forms, working with
databases, Pascal, component
creation, and more.

For advanced Delphi devel-
opers, DSW is offering
Advanced Delphi 2. This 2-
day seminar focuses on visu-
al form inheritance, MAPI
applications, the Object
Repository and Database
Explorer, advanced SQL,
advanced component cre-
ation, OCXes, and more.

Delphi seminar attendees
will receive a free copy of
Delphi 2 and the latest ver-
sion of Delphi 1.

In addition, DSW is offer-
ing a Java seminar. This 1-
day seminar will teach the
fundamentals of Java, and
will include instruction on
Borland’s new Java develop-
ment tools. Seminar atten-
dees will receive Borland’s
Java Debugger and the Java
Development Kit.
Tour registration packages

range from a five-day packet
for US$1,355; four-day pack-
et (includes both Delphi ses-
sions), US$1,160; three-day
package (includes either
Delphi 2 Fundamentals or
Advanced Delphi 2, and the
Java session), US$890; two-
day package (includes either
Fundamentals or Advanced),
US$695; or the Java seminar
alone is US$295.

For details call (800) OK-
DELPHI [(800) 653-3574].
Netscape Licenses Java Compiler from Borland

Scotts Valley, CA — Netscape

Communications Corp. has
announced plans to include
Borland’s AppAccelerator
compiler for Java applications
in Netscape Navigator.

As a result, Netscape
Navigator users can access
Java applications available on
Web pages and corporate
intranets. The non-exclusive
agreement between the two
companies extends Netscape’s
Java support by enhancing
Java application performance
throughout Netscape’s open
software platform.

Borland’s AppAccelerator
reads the intermediate byte
code produced by Java devel-
opment tools and translates it
“on-the-fly” into machine-exe-
cutable instructions on the
local client system. Already
shipping, Borland C++
Development Suite 5.0
includes the AppAccelerator
compiler, a graphical program
debugger, and an integrated
version of Sun’s Java Develop-
ment Kit. Netscape plans to
incorporate Borland’s
AppAccelerator technology
into future versions of
Netscape Navigator. Specific
terms of the agreement were
not announced at press time.
More information about
Netscape is available on their
Web site at http://home.-
netscape.com, or by calling
(415) 937-3777.

7 July 1996 Delphi Informant

Face Value
Creating an Attractive and Useful Interface

On the Cover
Delphi / Object Pascal

By Robert Vivrette

Figure
F irst impressions are important. What your application says to the user is
going to reflect positively or negatively on your ability to develop a

functional and professional product.
This article will address issues of how to
develop a professional application. Some of
the topics we’ll cover may seem obvious —
some may even seem trivial. However, the
tips and techniques presented form at least
a basic set of quality standards that pro-
grammers today should consider when
developing applications.

To illustrate some of the principles that we’ll
cover in this article, I have written a handy
utility called BMPVIEW (see Figure 1) that
displays all the bitmap files (.BMP) in a
directory. Although it might seem a mun-
dane application, it illustrates a number of
important elements of program design.

Be Considerate of the Environment
These days it can almost be said that no two
 1: The BMPVIEW program.
PCs are the same. As a result, your applica-
tion should make as few assumptions about
the user’s machine as possible. However, it is
appropriate to make some threshold
assumptions, such as “the PC must be run-
ning Windows 3.1 or higher, and should be
a 386DX/33 or better to run properly.” The
less you assume beyond that, the better.

For example, your program should not
assume a certain screen size or color depth.
As much as possible, different screen resolu-
tions should be tested. Screen resolution
could vary from 640x480 up to 1280x1024,
or higher. If you design a program to look
good at lower resolutions, it might wind up
resembling something the size of a postage
stamp at higher resolutions.

In addition, PCs can have different color
depths. Generally, users are running their
machines in 16 or 256 color configura-
tions. Yet some users may be running
thousands (or millions) or colors. Here are
some questions to consider:

What impact will these changes have on
your application?
Are you using 256-color images that will
look hideous on a 16-color machine? If
this is the case, should you include 16-
color versions of the graphics and have
your application adapt?
If the program must have 256 colors or
better, does it test for it, then provide the
user with a helpful explanation of what
must be done to use the program to its full
capability?

On the Cover
In addition, you should test to see what happens when you
run other programs concurrently. Keep in mind that
Windows must manage the palette of colors used by every
application, and when you switch between programs, the
visual effect could be unpleasant.

Something that may be more difficult to test would be the
effect of running an application on a machine with a gray-
scale monitor. Will your selected colors be too subtle to
discern when viewed in shades of gray? If you have the
luxury of knowing that all users of the application will
have color displays, you can dismiss this issue.

Now, designing your program to tolerate certain resolutions
or colors is one thing, but will it take advantage of them?

UI Aerobics
Every time I evaluate a program, I put it through a brief
regimen of calisthenics. I resize the application window
with every edge, maximize it, minimize it, even see how
large or small I can get it. What if the user shrinks the
application window — will the edges obscure controls?
Many novice users may be stumped by the appearance this
might give. Alternatively, if you expand the program to fill
the screen, what happens? Will all the controls retain their
location and the rest of the form contain nothing but
empty space? A well-designed application should adapt
and take advantage of the extended screen space, moving
and expanding the size of list boxes, edit boxes, memo
fields, and the like.

The BMPVIEW program does just that. It can dynamically
adjust its controls to handle any screen resolution on which it
might be run. The key to this is to use the TForm Resize
event (see Figure 2).

Whenever the main window of the program is resized, I make
certain adjustments to the controls. The first is to move the two
buttons in the bottom left of the screen. I move them to a point
that is six pixels up from the bottom edge (ClientHeight) of the
main form. Since ClientHeight is changing during the resize, the
buttons will maintain their distance from the bottom edge.
8 July 1996 Delphi Informant

procedure TBitmapViewerDialog.FormResize(Sender: TObject);
begin

{ Align the Samples panel to the bottom left }
with SamplesPanel do

SetBounds(Left,Self.ClientHeight-Height-6,
Width,Height);

{ The DirList should take up all space
remaining above }

DirList.Height := SamplesPanel.Top-DirList.Top-6;
{ Perform Update to ensure all controls paint before

the BmpList }
Update;
{ BmpList should take up all space remaining on form }
with BmpList do

SetBounds(Left,Top,Self.ClientWidth-Left-6,
Self.ClientHeight-Top-6);

end;

Figure 2: The Resize event of TForm.
Next, I adjust the directory list control to stop six pixels
above the top edge of one of the buttons (which we just
moved). We are not adjusting the width or placement of the
directory list control. Thus, only its height will change.

Last, I use the remaining space for the bitmap viewer list box. I
want to keep its upper left corner the same, but I want the
width and height to be six pixels short of the bottom right cor-
ner. Delphi provides the ability to do most of this automatical-
ly for most controls by means of the Align property. However, I
have found that there are many behaviors that Align cannot
duplicate, so I often revert to using the Resize method.

If you’re assuming the program will always be the same size,
you should set the form’s BorderStyle property to bsSingle to
prevent resizing. Better yet, why not use the bsDialog style so
that it will have a more attractive 3D look?

If you want to allow resizing — but only within certain
limits — you should have the program respond to the
WM_GETMINMAXINFO message. Whenever a user
resizes a form, Windows sends one of these messages. The
response it receives determines the limits of how large or
how small the form will be permitted to become. The nice
part about this is that it is done as the form is being resized.
By setting a minimum width and height in this way,
Windows allows the user to reduce the form’s size only until
this limit is reached. Then the form’s edge stops moving.

Again, the BMPVIEW program uses one of these message
handlers. There is no point allowing the user to resize the
application below a usable size. When the form shrinks past
a certain point, the bitmap list box and/or the directory list
box will disappear, making the application non-functional
until it’s enlarged. The following message handler limits the
form’s size to 300 pixels wide and 250 pixels high:

procedure TForm1.WMGetMinMaxInfo(
var Message : TWMGetMinMaxInfo);

begin
with Message.MinMaxInfo^ do begin

ptMinTrackSize.X := 300; { Minimum width }
ptMinTrackSize.Y := 250; { Minimum height }

end;
Message.Result := 0;
inherited;

end;

With the dynamic moving and sizing of the main form and
its controls — as well as the low-end limit to the form’s size
— it can truly take advantage of any kind of screen real estate
that we throw at it. The BMPVIEW program extends these
capabilities by allowing the user to modify the number of
columns displayed as well as the height of each of the items
in the bitmap list box.

Figure 3 shows how the program might look after a user
resizes it.

Look for Annoyances
Do you see any annoying things in the Delphi IDE? Not

Figure 3: Configuration settings allow the appearance and behav-
ior of BMPVIEW to be changed. Here, you can see that six columns
of bitmaps are shown, without file name extensions. Notice the
abbreviated length of this figure when compared to Figure 1.

On the Cover
many I’ll bet, and there’s a good reason. Since Delphi was
written with Delphi, its developers and programmers had to
use elements of it (such as the IDE) every day. Since they had
to use it constantly, they didn’t tolerate little functional
annoyances. The product is, of course, better as a result. They
wouldn’t put up with these problems, and they knew we
wouldn’t either.

When developing your application, keep this same attitude. If
you see an element of the program that is annoying or unnec-
essarily difficult, fix it. Don’t think “Well, I’ll fix it in version
1.1.” Just because you’ll allow these annoyances does not mean
that your users will. And they may not let you get to 1.1!

What kind of annoyances am I talking about? Let’s address a
few that come to mind.

Save Configuration Information. This is one of my biggest
gripes. Whenever your program ends, it should write certain
information to an .INI file so it can restore these defaults the
next time it runs. This would include things such as form size
and placement; default directories for common dialog boxes
(e.g. Open and Save dialog boxes); overridden filters in com-
mon dialog boxes (e.g. the wild-card specifications for an
Open dialog box), etc.

These settings should not be written to the WIN.INI file (unless
there is a specific reason to do so). Rather, they should be writ-
ten to a private .INI file or, better yet, to the System Registry in
Windows 95. For this simple application, I’ll be writing these
settings to a private .INI file called BMPVIEW.INI that Delphi
will automatically place in the \WINDOWS directory.

The BMPVIEW program makes full use of the TIniFile object
to read and write configuration information. It remembers the
last directory it was in, the window size and placement, as well
as the various configuration settings within the program (such
as the number of columns to display, or the height of each
item in the bitmap list box). The procedures shown in Figure 4
control the loading and saving of this information.
9 July 1996 Delphi Informant
The ReadSettings method is called when the form is created.
This loads the information from the .INI file and sets the
appropriate values of the various application properties. The
WriteSettings method does just the reverse; it writes the cur-
rent state of these values so the next time the program is exe-
cuted, it will start with the same settings.

A Logical Tab Order for Controls. Make sure the tab order
has been set and that it’s appropriate. A user should be able
to anticipate where the focus will move if F is pressed.
Test this with a user who is unfamiliar with the application.

Sometimes it may be appropriate for you to move the focus for
the user. For example, if you know that after clicking on a par-
ticular button the user will need to fill in an edit field, why not
shift the focus there immediately so the user can begin typing?

Support for the Keyboard. This seems to be a commonly
overlooked topic. Before you ship your program, ask your-
self, “Without a mouse, could the user effectively navigate
the application?” The answer should always be “Yes.” It’s a
common thing to overlook, but many developers assume
that the mouse will always be available. Not a good
assumption! What if your user is running the program on a
laptop and forgot the mouse? Would the application be
unusable or difficult to use?

I test this by placing the mouse out of reach and then putting
the program through its paces. Command buttons and
menus should have hot-key shortcuts and the tab sequence
should cycle through all appropriate controls. Make a note of
all program functions that cannot be accessed and add key-
board support for them.

In the BMPVIEW program, I included a pop-up menu over
the Bitmaps list box to control the number of columns to
display, the height of each item, and the method of loading
and displaying bitmaps (see Figure 5). It was necessary to
include a way of activating this pop-up menu using the key-
board. This was done by turning on the main form’s
KeyPreview property, and then modifying its OnKeyDown
method as follows:

procedure TForm1.FormKeyDown(Sender: TObject;
var Key: Word; Shift: TShiftState);

begin
if (Shift = [ssCtrl]) and (Key = VK_1) then

PopUpMenu1.PopUp(Left+ BmpList.Left+
(BmpList.Width div 2),
Top+BmpList.Top+Height-ClientHeight+

(BmpList.Height div 2));
end;

This procedure instructs the form to activate the pop-up
menu in the middle of the Bitmaps list area when the user
presses C 1.

Overuse of Hints. Delphi’s Help Hint feature is wonderful,
and it takes little or no programming to implement a fully
functional hint system in your program. However, just because
it’s easy to include does not mean that you should add this fea-

Figure 4: The ReadSettings and WriteSettings procedures are responsible for reading and writing information from and to the appli-
cation’s .INI file.

{ Free the TIniFile object }
SettingsIni.Free;

end;

procedure TBitmapViewerDialog.WriteSettings;
begin

{ Write out configuration & Window settings to INI file }
SettingsIni := TIniFile.Create('BMPVIEW.INI');
SettingsIni.WriteBool('Options','SaveSettings',

pmSaveSettings.Checked);
{ Only save remaining items if SaveSettings is checked }
if pmSaveSettings.Checked then

begin
SettingsIni.WriteString(
'Options','Directory',DirList.Directory);

SettingsIni.WriteInteger(
'Options','Columns',BmpList.Columns);

SettingsIni.WriteInteger(
'Options','ItemHeight',BmpList.ItemHeight);

SettingsIni.WriteBool(
'Options','Hints',pmHints.Checked);

SettingsIni.WriteBool(
'Options','LowerCase',pmLowerCase.Checked);

SettingsIni.WriteBool(
'Options','NoFilename',pmNoFilename.Checked);

SettingsIni.WriteBool(
'Options','NoExtension',pmNoExtension.Checked);

SettingsIni.WriteInteger('Window','Left', Left);
SettingsIni.WriteInteger('Window','Top', Top);
SettingsIni.WriteInteger('Window','Width', Width);
SettingsIni.WriteInteger('Window','Height',Height);

case WindowState of
wsNormal :

SettingsIni.WriteInteger('Window','State',0);
wsMaximized :

SettingsIni.WriteInteger('Window','State',1);
wsMinimized :

SettingsIni.WriteInteger('Window','State',2);
end;

end;
SettingsIni.Free;

end;

procedure TBitmapViewerDialog.ReadSettings;
begin

{ Read all configuration and window settings from the INI file }
SettingsIni := TIniFile.Create('BMPVIEW.INI');
{ Configuration Settings }
DirList.Directory :=

SettingsIni.ReadString('Options','Directory','C:\');
BmpList.Columns :=

SettingsIni.ReadInteger('Options','Columns',2);
BmpList.ItemHeight :=

SettingsIni.ReadInteger('Options','ItemHeight',24);
pmHints.Checked :=

SettingsIni.ReadBool('Options','Hints',True);
pmSaveSettings.Checked :=

SettingsIni.ReadBool('Options','SaveSettings',True);
pmLowerCase.Checked :=

SettingsIni.ReadBool('Options','LowerCase',False);
pmNoFilename.Checked :=

SettingsIni.ReadBool('Options','NoFilename',False);
pmNoExtension.Checked :=

SettingsIni.ReadBool('Options','NoExtension',True);
{ Window position settings }
FormL := SettingsIni.ReadInteger('Window','Left', -99);
FormT := SettingsIni.ReadInteger('Window','Top', -99);
FormW := SettingsIni.ReadInteger('Window','Width', -99);
FormH := SettingsIni.ReadInteger('Window','Height', -99);
FormState := SettingsIni.ReadInteger('Window','State',0);
{ Perform SetBounds only if all parameters have

been specified }
if (FormL >= 0) and (FormT >= 0) and

(FormW > 0) and (FormH > 0) then
SetBounds(FormL,FormT,FormW,FormH);

{ Set the previous window state }
case FormState of

0 : WindowState := wsNormal;
1 : WindowState := wsMaximized;
2 : WindowState := wsMinimized;

end;
{ Set initial menu check states }
SetColumnCheck(BmpList.Columns);
SetPixelCheck(BmpList.ItemHeight);
SetHintsCheck;

On the Cover

Figure 5: Another view of the BMPVIEW program. The user con-
figured the Bitmaps listbox to enable hints, display two columns
of bitmaps, omit the file name extension, and save settings on
exit. For ease of use and versatility, these settings can also be
configured via the keyboard.
ture. I’ve seen programs where every on-screen control has an
associated hint. This gets annoying after about 10 minutes.

The recommendation, therefore, is to only include hints on
things where it’s necessary. If there are a lot of hints, you
might want to have a configuration option to allow the user
to enable or disable them. (And, in light of our first annoy-
ance mentioned above, you’re going to save the hint status to
an .INI file, aren’t you?)

Do You Feel Like You Look?
It’s an overly-used phrase, but there is much to be said for a
program’s “look and feel.” As stated at the beginning of this
article, a user’s first impression of an application is important.
With that in mind, let’s look at a few things that affect a pro-
gram’s “look and feel.”

Use of Color. Windows applications inherit much of their
color settings from the operating system itself. When select-
ing colors for forms, buttons, etc., be careful when using
hard-coded color references such as clGreen or clRed. Instead,
use appropriate constants such as clButtonFace, or clWindow.
10 July 1996 Delphi Informant
This way, your application will fit in with the color settings
that the user has defined from within Windows, and can still
look good after the user selects a different setting.

On the Cover

Robert Vivrette is a contract programmer for Pacific Gas & Electric and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached on CompuServe at 76416,1373.
Use of Fonts. You just purchased that cool set of 800 typefaces
and are all set to jazz up your applications. Yes, these new fonts
will work on your applications as long they continue to run on
your machine. However, once the program is moved to anoth-
er computer, these fonts will probably no longer be available.

In this situation, Windows will substitute standard fonts for
your fancy ones, which will probably mess up all your careful
positioning of labels and controls on the form. To avoid this,
stick with fonts that you know will be on all users’ machines,
such as MS Sans Serif, System, Arial, Courier, Times New
Roman, or Small Fonts (to name a few). This way, the fonts
your program uses will be the same on any machine.

Placement of Controls. Make sure the program’s layout is
neat and organized. Consider all these questions:
1) Are all controls placed in a logical arrangement? Are com-

monly used sets of controls located near each other to
minimize mouse travel? Controls that are supposed to be
in a row should be exactly on the same pixel row.

2) Does the form have an even margin around the edges?
Controls that are jammed against the side of a form
show that you didn’t care enough to place them cor-
rectly. There should also be an even distribution of
space between controls.

3) Do buttons have glyphs attached to them? Plain buttons
with just text are dull and flat looking. Spruce up the
buttons by using the BitButton controls and assigning
appropriate glyphs to them.

By paying careful attention to the details that increase your
application’s usability, and by allowing the user to customize
settings in the program, you’ll find that user acceptance will
come more easily.

The Sample Application
Figure 1 shows the BMPVIEW program in one configura-
tion. By changing a few of the configuration settings (e.g.
11 July 1996 Delphi Informant
disabling file names, and increasing the number of columns
displayed), the application can now look more like Figure 3.

When I created this program, I thought it would make an
excellent replacement for the bitmap property editor in the
Delphi IDE. Once installed in the IDE, this replacement
allows the developer to click on Glyph properties for
SpeedButtons or BitButtons and use this property editor to
select an appropriate bitmap.

The change-over from bitmap viewer to property editor is
actually quite simple (see end of article for download infor-
mation). This project is featured in Chapter 5 of a book I
co-authored, entitled Delphi In Depth [Osborne/McGraw-
Hill, 1996]. If you would like to learn more about how
BMPVIEW the bitmap viewer became BMPPROP the
property editor, it’s covered in detail in the book.

Conclusion
The way your program is put together reflects the kind of
programmer you are. Hopefully the material we have covered
here will serve to show some of the concepts and practices
that go into the construction of a professional, intuitive, and
attractive Windows application.

It’s often the little things you do to a program that will have
the greatest impact. The best part is that you aren’t alone.
With the help of the Delphi programming environment, it’s
surprisingly easy to achieve all of this, and much more. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\JUL\DI9607RV.ZIP.

3-D Labels with a Twist
Extending a Custom Delphi VCL

On the Cover
Delphi 1 / Object Pascal

By Keith Wood

Figure 1: Anatomy of a

12 July 1996 Delphi Informant
In the June 1995 issue of Delphi Informant, Jim Allen and Steve Teixeira
introduced “A 3-D Label Component.” In this article, we’ll build on the

foundation laid in that article to make the component more flexible and
customizable.
This article describes changes to the 3-D
Label to enhance its appearance and pro-
vide for many different effects, including
rotation. Along the way, we’ll discuss inter-
action between component properties,
plan for ease-of-use, and run the entire
component production cycle — from
design to implementation. Next month,
we’ll build property editors and add help.

Let’s get started.

Wish List
The 3-D Label component described pre-
viously added three new properties to the
standard Delphi TLabel component. These
included Offset, a property that represented
the “depth” of the effect; LabelStyle, which
indicated if the lettering was raised or low-
ered; and AsButton, a flag to indicate
whether the Label should act as a button
when pressed.
 3-D Label component.
A 3-D Label has three parts: the highlight,
shadow, and original text (see Figure 1).
The first two have three attributes we may
want to alter:
1) the position or direction with respect

to the main text
2) the distance from that text
3) the color

Ideally we would like to control each of these
individually without affecting any other
attribute. To make things easier, however, it
would be nice to have preset combinations of
these attributes that could be set with a single
value. Thus we could have a style property
— similar to the original 3-D Label — that
sets distance and direction, and a color
scheme property that changes the colors of
all the parts, including the original text.

Besides all this, we’d like to rotate the text
to any angle and perhaps still apply a 3-D
effect to it. This can all be done without
too much effort to produce a very flexible
Label component for your use.

For reasons described in the earlier article
by Allen and Teixeira, the component is
based on the TCustomLabel component
that comes with Delphi. This is because “it
has all the functionality we want to either
publish or override, and it doesn’t publish

On the Cover
anything of its own.” The name of the new component is
TLabelEffect, since it does more than just 3-D Labels.

Basic Properties
The new properties we’ve identified for this component are
the direction and distance of both the highlight and shad-
ow from the original text, and their colors. The directions
(to make things a little easier without losing too much
functionality) are restricted to the cardinal directions only,
i.e. up, down, left, right, and their combinations.

Since a limited number of combinations exist and we
want to make setting these properties as intuitive as pos-
sible, we are using an enumerated type. This allows us to
restrict the range of values that may be applied to the
properties, as well as provide something meaningful for
the user to work with.

The type definition appears as:

type TEffectDirection =
(edNone, edUp, edUpRight, edRight, edDownRight,
edDown, edDownLeft, edLeft, edUpLeft);

The first value, edNone, prevents us from shifting the
highlight or shadow away from the original text, there-
by effectively hiding it. This allows us to produce
effects with only one shadow, for example, or to rotate
the text without a 3-D effect. The order of the remain-
ing values follows around the circle clockwise from the
12 o’clock position. The names of the properties are
DirectionHighlight and DirectionShadow.

Since we don’t want the shadows getting too far away
from the original text, the distance properties,
DepthHighlight and DepthShadow, are also restricted to a
small range. If we specify these as subranges — rather than
just integers — Delphi will automatically perform validity
checks to ensure they remain in the prescribed range. The
type definition for these then becomes:

type TEffectDepth = 0..10;

The colors of the highlight and shadow use the standard
TColor type available in Delphi. The properties are called
ColourHighlight and ColourShadow. The color of the origi-
nal text is still controlled by the Font.Color property pro-
vided by the TCustomLabel component.

We’ll also publish several of the properties and events pro-
vided by the TCustomLabel component, including
Alignment, Color, Font, Transparent, Visible, and WordWrap.
The functionality for most of these is automatically provid-
ed by that class. Isn’t OOP wonderful?

First Cut
These properties are enough to get us started. Each of
them will directly affect the display of the text on screen
while and when they are changed. This means that meth-
13 July 1996 Delphi Informant
ods must be called to set each property so that we can
force the image to be repainted. Reading the values of the
properties has no side-effects and therefore can refer
directly to the internal variables.

The declarations and writing methods for each of these
properties are very similar, so only one will be shown
here. For the DirectionHighlight property we need an
internal variable — that is hidden outside the compo-
nent — to hold the current value. By convention this
variable is called FDirectionHighlight and its declaration
appears in the private part of the component definition.

Then, since we want to be able to access this property
through the Object Inspector, we have the following dec-
laration in the published section:

property DirectionHighlight:
TEffectDirection read FDirectionHighlight

write SetDirectionHighlight
default edUpLeft;

To enable us to set this value we must declare the writing
method in the private section, again, hiding it from out-
side the component, and place the code for it in the
implementation section of the unit:

procedure TLabelEffect.SetDirectionHighlight(
EdDirection: TEffectDirection);

begin
if FDirectionHighlight <> EdDirection then

begin
FDirectionHighlight := EdDirection;
Invalidate;

end;
end;

By checking that the value has actually changed before
saving its new value, you’ll reduce the number of times the
image must be redrawn. This redrawing is caused by the
Invalidate method.

The default value for the property defined in its declara-
tion does not actually set the value. Instead, the default
directive indicates when the component should save the
property value when writing to a stream.

If the property is set to the default value, then this value
need not be saved. The setting of the actual initial value is
done in the Create method. Also in Create we set the ini-
tial values of some other properties we’re using, including
the font name and size.

For reasons that will become obvious later, you should use
a TrueType font. Note also that the size is increased since
this component is probably going to be used as a heading
or to grab the user’s attention.

We also set the AutoSize property to False. Since this prop-
erty is neither public nor published it cannot be altered by
anything else:

On the Cover
constructor TLabelEffect.Create(AOwner: TComponent);
begin

inherited Create(AOwner);

{ Initialize default values for internal fields }
FDirectionHighlight := edUpLeft;

...

AutoSize := False;
Height := 33;
Width := 142;
Transparent := True;
Font.Name := 'Times New Roman';
Font.Size := 20;

end;

Painting the Label
Of course, none of this will do anything until we alter
the painting of the text to reflect the properties we’ve
defined. For this we must override the Paint method of
the TCustomLabel component. Instead of just painting
the text, we must draw each component that comprises
our 3-D Label. To ensure the effect appears as expected,
this is done in the order of shadow, highlight, and orig-
inal text.

Figure 2 shows the Object Pascal code for the Paint
method. First, we must work out the minimum depth
of a highlight or shadow from the original text so we
can correctly position each relative to each other and
have all of them inside the canvas. This value cannot be
greater than zero since that is the offset for the original
text. To make this easier, a Min function is defined to
return the minimum of two integer values:

function Min(I, J: Integer): Integer;
begin

if I < J then
Min := I

else
Min := J;

end;

A constant array is declared in the unit to consider the
effects of differing directions on the depth values. It has
one entry for each of the direction values listed earlier, with
each entry having a multiplier for the X and Y directions:

type TDirXY = (drX, drY);
const IOffsets:

array [TEffectDirection, TDirXY] of -1..1 =
((0, 0),(0,-1),(+1,-1),(+1, 0),(+1,+1),
(0,+1),(-1,+1),(-1, 0),(-1,-1));

We must also set the font of the canvas to that specified
by the user, and paint the background for the Label if the
Transparent property is False.

For each of the shadow, highlight, and original text we
then set the canvas’ font color appropriately, define a rec-
tangle in which to draw the text, and draw it. The rectan-
gle must be offset by the depth value modified by the
direction requested for the shadow and highlight, adjust-
ing all this by the minimum offset found above. Using the
14 July 1996 Delphi Informant
API procedure DrawText allows for the alignment of the
text to be handled automatically.

The component could now be compiled and put into use.
Each of the new properties can be set individually to
achieve many different 3-D effects.

Making It Easier
We don’t want to have to set each property separately to
get the effect we’re after. It would be a lot nicer to
package combinations of these properties into single,
easy-to-use properties.

The first of these combines the depth and direction prop-
erties for the highlight and shadow. Called EffectStyle, it
takes a limited range of values, again making it ideal for
an enumerated type:

type TEffectStyle = (esNone, esCustom, esRaised,
esSunken, esShadow, esFlying);

The esCustom value is used to indicate that the user has
altered one of the preset values. This is to avoid confusion
where the EffectStyle wouldn’t reflect the current appear-
ance of the Label.

To achieve this, the write methods for the constituent prop-
erties are modified to alter the EffectStyle to esCustom when-
ever they are changed. To avoid an infinite loop — where
setting the EffectStyle sets the constituent property that then
sets the EffectStyle, etc. — a flag is introduced to indicate
when a change originates in the altering of the overall style:

procedure TLabelEffect.SetDirectionHighlight(
EdDirection: TEffectDirection);

begin
if FDirectionHighlight <> EdDirection then

begin
FDirectionHighlight := EdDirection;
{ Default to custom style when changed }
if not BChangingStyle then

SetEffectStyle(esCustom);
Invalidate;

end;
end;

Setting the EffectStyle property will have side-effects requir-
ing the use of a write method. The method in Figure 3
sets the appropriate values into the depth and direction
properties defined above. Note that the affected properties
are set through their associated methods rather than set-
ting the internal variables directly. This ensures that any
later changes to their implementation will have minimal
impact on this method.

The flag is first set to stop an infinite loop. Then the
constituent properties are set based on the style’s new
value. Note that there is some color property processing
in here as well, since the “Flying” style is defined to
have two shadows. Also, the AsButton property is reset
if the style is not “Raised” or “Lowered.” Finally the
flag is reset so that any further changes to the con-

Figure 2: The first cut of the Paint method for TLabelEffect.

procedure TLabelEffect.Paint;
const

WAlignments: array [TAlignment] of Word =
(DT_LEFT, DT_RIGHT, DT_CENTER);

var
IMinOffset: Integer;
RctTemp: TRect;
StrText: array [0..255] of Char;

begin
{ Find minimum of all offsets,

including the font itself }
IMinOffset := Min(

Min(Min(Min(
IOffsets[DirectionHighlight,drX] *
DepthHighlight,
IOffsets[DirectionShadow,drX] *DepthShadow),
IOffsets[DirectionHighlight,drY] *
DepthHighlight),
IOffsets[DirectionShadow,drY] *
DepthShadow),0);

{ Ensure canvas font is set }
Canvas.Font := Self.Font;

with Canvas do begin
{ Fill in background }
if not Transparent then

begin
Brush.Color := Self.Color;
Brush.Style := bsSolid;
FillRect(ClientRect)

end;
end;

{ Don't overwrite background above }
Canvas.Brush.Style := bsClear;

{ Get label's caption }
GetTextBuf(StrText, SizeOf(StrText));
Canvas.Font.Color := ColourShadow;

{ Create a rect that is offset for the shadow }

RctTemp := Rect(
ClientRect.Left - IMinOffset +
IOffsets[DirectionShadow,drX] * DepthShadow,
ClientRect.Top - IMinOffset +
IOffsets[DirectionShadow,drY] * DepthShadow,
ClientRect.Right - IMinOffset +
IOffsets[DirectionShadow,drX] * DepthShadow,
ClientRect.Bottom - IMinOffset +
IOffsets[DirectionShadow,drY] * DepthShadow);
{ Draw shadow text with alignment }
DrawText(Canvas.Handle, StrText, StrLen(StrText),

RctTemp, DT_EXPANDTABS or DT_WORDBREAK or
WAlignments[Alignment]);

Canvas.Font.Color := ColourHighlight;
{ Create a rect that is offset for the highlight }
RctTemp := Rect(

ClientRect.Left - IMinOffset +
IOffsets[DirectionHighlight,drX] * DepthHighlight,
ClientRect.Top - IMinOffset +
IOffsets[DirectionHighlight,drY] * DepthHighlight,
ClientRect.Right - IMinOffset +
IOffsets[DirectionHighlight,drX] * DepthHighlight,
ClientRect.Bottom - IMinOffset +
IOffsets[DirectionHighlight,drY] * DepthHighlight);
{ Draw highlight text with alignment }
DrawText(Canvas.Handle, StrText, StrLen(StrText),

RctTemp, DT_EXPANDTABS or DT_WORDBREAK or
WAlignments[Alignment]);

{ Restore original font colour }
Canvas.Font.Color := Font.Color;
{ Create a rect that is offset for the original text }
RctTemp := Rect(

ClientRect.Left - IMinOffset,
ClientRect.Top - IMinOffset,
ClientRect.Right - IMinOffset,
ClientRect.Bottom - IMinOffset);

{ Draw original text with alignment }
DrawText(Canvas.Handle, StrText, StrLen(StrText),

RctTemp, DT_EXPANDTABS or DT_WORDBREAK or
WAlignments[Alignment]);

end;

On the Cover
stituent properties will alter the style to esCustom.
Similarly, the colors of all three parts of the Label are con-
trolled by the ColourScheme property. Again the valid val-
ues come from an enumerated type:

type TColourScheme = (csCustom, csText, csWindows,
csEmbossed, csGold, csSteel);

The csCustom value functions as for esCustom, indicating a
change to a preset value.

The color schemes are held in an array, indexed by the
ColourScheme property itself. This array cannot be made a
constant since the csCustom entries are updated whenever
the colors change, so that the rest of the component works
easily. Therefore the array is initialized in the Create
method of the Label, and the csCustom entries are updated
in the write methods for the color properties.

As for the EffectStyle property, a flag is used for control when
the color scheme is reset to csCustom. This is set at the begin-
ning of the SetColourScheme method and reset at its end.

There are no changes to the Paint method for the Label
since the new properties only allow us to alter the original
15 July 1996 Delphi Informant
properties as a group, without adding any new variants to
the final appearance.

Rotating Text
The next step is to allow the text to be rotated. The
Angle property is added for this purpose, and represents
the number of degrees through which the text will be
rotated counter-clockwise from the x-axis. If this prop-
erty is left at zero — its initial value — the component
will function exactly as before.

To limit the range of values available for this property, it’s
declared as a subrange:

type TAngleRange = 0..360;

Again, this allows Delphi to enforce valid values for us.
Note that normally 0 and 360 degrees would be regarded
as the same thing, but for our purposes they are different.
If the Angle is 0 then the Label behaves exactly as before,
with full alignment and word wrap. If any other value is
specified, then the Label is centered in a circle with a
diameter equal to the width of the text. Allowing a value
of 360 degrees means that we can still display the Label

procedure TLabelEffect.SetEffectStyle(
EsStyle: TEffectStyle);

begin
if FEffectStyle <> EsStyle then

begin
{ So it doesn't reset to custom }
BChangingStyle := True;
BChangingScheme := True;
FEffectStyle := EsStyle;
SetColourHighlight(ClrSchemes[ColourScheme,

cpHighlight]);
case FEffectStyle of

esRaised:
begin

SetDirectionHighlight(edUpLeft);
SetDirectionShadow(edDownRight);
SetDepthHighlight(1);
SetDepthShadow(1);

end;
.
.
.

else
SetAsButton(False);

end;

{ So further changes set style to custom }
BChangingStyle := False;
{ So further changes set colour scheme to custom }
BChangingScheme := False;

end;
end;

Figure 3: The SetEffectStyle method (abbreviated).

On the Cover

Figure 4: Creating the sloping font.

procedure TLabelEffect.SetTextAngle(Cnv: TCanvas;
AAngle: TAngleRange);

var
{ Storage area for font information }
FntLogRec: TLogFont;

begin
{ Get the current font information. We only want to

modify the angle. }
GetObject(Cnv.Font.Handle, SizeOf(FntLogRec),

Addr(FntLogRec));
{ Modify the angle. "The angle, in tenths of a degrees,

between the base line of a character and the x-axis."
— Windows API Help file. }

FntLogRec.lfEscapement := AAngle * 10;
{ Request TrueType precision }
FntLogRec.lfOutPrecision := OUT_TT_ONLY_PRECIS;
{ Delphi will handle the deallocation of

the old font handle }
Cnv.Font.Handle := CreateFontIndirect(FntLogRec);

end;
horizontally but also based at the same point as for other
angles (run the accompanying demonstration form to see
the effects of this).

Normally fonts are only available in a horizontal aspect,
since this is what is commonly required. We don’t want
to have to go through complicated programming steps
to convert a standard font into one sloped appropriate-
ly. Fortunately, Windows provides a simple solution to
this in the form of the API procedure CreateFontIndirect
(see online Windows API help for more details).

CreateFontIndirect takes a definition of the desired font,
in the form of a TLogFont structure, and finds or gener-
ates a matching font for our use. One of the attributes of
the desired font is the escapement, or the angle between
the base line of a character and the x-axis (measured in
tenths of degrees).

Thus to get the font we want, we simply load the
TLogFont structure with the current settings of the canvas’
font, change the escapement angle to the required value,
and ask Windows for a font similar to the one shown in
Figure 4. The new font is then set as the default for the
canvas and we can draw text as usual.

In addition, here’s an important point: The output preci-
sion attribute of the TLogFont structure should be set to:

OUT_TT_ONLY_PRECIS
16 July 1996 Delphi Informant
This will ensure that a TrueType font is chosen, allowing it
to be more easily rotated.

To ease the processing required to position the text on the
canvas, the Alignment property of the text is ignored
(effectively taLeftJustify). In fact, it’s set to this value as a
side-effect of setting the Angle to a value other than 0.

We need to use trigonometry to determine the starting
point for the sloping text. Remember that the text is
centered in a circle of appropriate diameter. This is all
handled in the code and is left to those interested
enough to examine it. To reduce the amount of calcula-
tion required, the cosine and sine of the angle are calcu-
lated once when the Angle property is set, and are then
saved for later use. Similarly, the conversion factor from
degrees to radians is calculated once during the Create
method of the Label, and then saved. All of Delphi’s
trigonometric functions work on angles expressed as
radians (there are 2*Pi radians in 360 degrees).

Having computed the starting point, it’s simply a matter
of calling the TextOut method of the canvas to display the
text. Note that any 3-D effects that may be applied do not
alter their direction with respect to the canvas; that is, the
effects are not rotated with the text.

Further trigonometry is required if the background for
the Label is not transparent. In this case, the bounding
rectangle must be tilted by the same amount as the text,
and then filled with the background color. Delphi
makes this easy with the Polygon method of the canvas.
It takes an array of points, plots the lines between them
(joining the last back to the first), and then fills the
interior with the current brush style and color. The
hardest part is working out where the points are that
form the rotated rectangle.

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra. He
started using Borland’s products with Turbo Pascal on a CP/M machine. Although
not working with Delphi currently, he has enjoyed exploring it since it first
appeared. You can reach him via e-mail at kwood@nla.gov.au or by phone
(Australia) 6 291 8070.

Figure 5: TLabelEffect's capabilities.

On the Cover
Conclusion
That completes the TLabelEffect component, allowing
for an almost unlimited range of 3-D effects, with the
common ones just a click or two away. It also allows for
the Label to be rotated, with or without a 3-D effect.
Along the way we saw how properties can affect one
another and interact to work as a whole.

To install the component into Delphi, copy the files
LBLEFFCT.PAS and LBLEFFCT.DCR into the library
directory (DELPHI\LIB). Then select Options | Install

Components from Delphi’s menu. Add LblEffct to the
list of units and click OK to start the installation. The
17 July 1996 Delphi Informant
new LabelEffect component will appear on the
Standard page of the Component Palette. Check out
the demonstration form that accompanies the compo-
nent (shown in Figure 5), especially the “Sundial”
example, to see its capabilities.

In our next article we’ll look at providing property editors
for the two preset properties, EffectStyle and ColourScheme,
and providing help links for the component. Until then,
enjoy playing with your new Label. ∆

I wish to thank Bill Murto and Curtis Keisler for their
RotateLabel component and TextRotation examples,
respectively (available on the Internet). These provided
most of the code for the text rotation in this component.
I hope I have added something more to their efforts, and
spurred someone else to improve it further.

The demonstration files referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\JUL\DI9607KW.

18 July 1996 Delphi Informant

Informant Spotlight
Delphi 2 / Object Pascal

By Michael Maloof

An Eye on GDI
A Delphi 2 Object for Monitoring the Wily GDI Beast
I t’s no secret: most programmers know that Windows 95 is not a true 32-
bit operating system. Everyone seems to appreciate that some compro-

mises were necessary to ensure compatibility with existing 16-bit applica-
tions. What may surprise you is that one of those 16-bit compromises can
seriously affect the stability of your Delphi 2 applications.
Tracking your application’s GDI (Graphics
Display Interface) usage, and the available GDI
resources, are common tasks for Windows 3.1
and Delphi 16-bit development. It’s all too easy
to build spectacular forms with layers of panels,
tabs, and grids. Running out of memory is just
as easy. Often the GDI is exhausted, with
symptoms ranging from partially displayed
screens to a completely frozen machine.

Woebegone Days
With Windows 95, Delphi 2, and the multi-
gigabyte, flat-address-space world of 32-bit
programming, those GDI woes are gone for-
ever, right? Not quite. Windows 95 has done
much to improve the limitations of
Windows 3.1 programming, but the GDI
remains true to its 16-bit heritage.

The bad news is the GDI is still a 16-bit
resource and remains limited to 64K.
However, the good news is that Windows 95
uses less GDI memory than Windows 3.1 by
shifting items such as TrueType font support
to other areas of the system.

Is a 64K GDI region still a serious issue? It can
be if left unmonitored. The point is that you
need to know your program’s impact on the
GDI, and you should keep an eye on the sys-
tem-wide GDI usage. This is easily done using
one of the commercial utilities on the market.
For example, Norton Utilities for Windows 95
contains a sophisticated resource monitor that
can be set to warn you of impending doom.
There are even shareware and freeware moni-
tors available (one is included in the
Accessories folder with Windows 95).

Delphi: An Ideal Custom Solution
While these external monitors can do the job,
the ideal solution is to create a Delphi-based
GDI resource monitor that can be linked to
your application. The Delphi approach allows
you to track your GDI usage with much finer
granularity. During development, you can
observe the GDI impact of specific control
creation events by simply calling your GDI
monitor before and after the event.

A Delphi-based GDI monitor could even be
used to protect your application from other
GDI-eating applications. Simply check the
available GDI memory at critical points in
your application, and warn the user to close a
few applications or windows before continuing.

Building a GDI resource monitor in Delphi
should be simple. In fact, a few 16-bit ver-
sions of Delphi-based resource monitors
already exist. The problem is that the one
function used to measure the GDI, namely
GetFreeSystemResources, is no longer avail-
able. (At least, it’s no longer part of the pub-
lished Win32 API.)

From the Microsoft point of view,
GetFreeSystemResources is no longer support-

Informant Spotlight

Figure 1: This simple Delphi 1 project makes a call to the
Windows 3.x API function, GetFreeSystemResources, and returns
the result to the program that calls it.
ed. Its replacement, GlobalMemoryStatus, is a useful function
that returns a wealth of information, but absolutely nothing
about GDI usage. This is unfortunate considering the impor-
tance of this resource.

Get Me Some Free Resources
Of course, the GetFreeSystemResources function isn’t really
gone. It still exists as part of the Windows 95 support for 16-
bit applications. You’ll find the function in the file
USER.EXE. The question is, how do you call this 16-bit
function from your 32-bit Delphi application?

There are three ways this could be accomplished. The
Microsoft approved method for calling a 16-bit routine from a
32-bit Windows 95 application is to use a flat thunk. The
process is actually uglier than its name, and involves the use of
a thunk compiler and separate 16- and 32-bit DLLs to per-
form this 16-to-32-bit magic. In spite of being the approved
method, this only works under Windows 95, meaning that
your code must compensate for running under Windows NT.

The undocumented method — which happens to be the
one Microsoft uses — involves the use of the
LoadLibrary16, FreeLibrary16, and GetProcAddress16 func-
tions found in the KERNEL32.EXE. Matt Pietrik discov-
ered these undocumented functions, and described their use
in his “PC Tech” column in the September 26, 1995 issue
of PC Magazine. Considering Microsoft’s reliance on these
functions, they’re probably safe to use, but like the flat
thunk, they’ll work only on Windows 95.

The easy method — which happens to be the one I use —
takes advantage of the fact that Delphi 2 includes the original
Delphi 16-bit program. You can use the 16-bit version to build
a very small, non-visual program that does nothing but call
GetFreeSystemResources and return the GDI utilization. This 16-
bit application is called from inside your 32-bit Delphi applica-
tion, and the return value can be processed any way you see fit.

This technique works equally well under Windows 95 and
Windows NT. (It should be noted that Windows NT, as a
true 32-bit operating system, does not have a GDI usage
problem. The fact that this technique works under NT sim-
ply means that your code can safely call the GDI monitor
without worrying about the current platform.)

Credit for the easy method must be given to Lou Grinzo,
who presents the technique in his book Zen of Windows 95
Programming [The Coriolis Group, Inc., 1996].

Getting Started
The first step is to create the 16-bit application that will call
GetFreeSystemResources and return the current GDI utiliza-
tion. Let’s step through the process:

Launch the 16-bit version of Delphi and start a new pro-
ject. Then use the Project Manager to remove the Unit1
file from the default Project1. The resulting project source
code is shown here:
19 July 1996 Delphi Informant
program Project1;

uses
Forms;

{$R *.RES}

begin
Application.Run;

end.

This leaves a project with only one unit: Project1. Edit
Project1 and remove the Forms unit from the uses clause.
By removing the Forms unit, you’ll find that Delphi can
produce a very small executable.
Add the WinTypes and WinProcs units to the uses clause.
These units give us the access we need to the Windows
16-bit API and the associated constants.
Finally, remove the Application.Run statement, and replace it
with a Halt statement that calls the GetFreeSystemResources
function and passes our request for the GDI utilization. The
result is shown in Figure 1. The Halt statement tells an
application to terminate, but it can also pass back an exit
code to the application that launched it. In this case, our
exit code is the amount of free GDI resources.
A Simple Example
The next step is to integrate this executable into a 32-bit
Delphi application. To illustrate the basic principle, we’ll cre-
ate a simple form that contains a Gauge and a Button. When
the Button is pressed, the Gauge progress value will be set to
the available GDI.

Using a default project and form, place a Gauge component
on the form. In our example, the Gauge’s Kind property was
set to gkVerticalBar. Place a Button on the form, and change
the Button’s Caption property to Display GDI (see Figure 2).
Once the Gauge and Button have been placed on the form,
double-click on the Button to create the framework for the
ButtonClick procedure and enter the code shown in Figure 3.

Figure 2 (Top): Building a simple GDI monitor with Delphi 2
that calls the Delphi 1 application shown in Figure 1.
Figure 3 (Bottom): The sample application’s ButtonClick
procedure.

procedure TForm1.Button1Click(Sender: TObject);
var

StartupInfo: TStartupInfo;
ProcessInfo: TProcessInformation;
GdiValue: DWORD;
cp: Boolean;

begin
FillChar(StartupInfo, SizeOf(TStartupInfo), 0);

// Get GDI resource utilization by calling
// our GETGDI.EXE 16-bit Delphi application.
cp := CreateProcess(nil,'GETGDI.EXE', nil, nil, False,

NORMAL_PRIORITY_CLASS, nil, nil,
StartupInfo, ProcessInfo);

if cp then
begin

WaitForSingleObject(ProcessInfo.hProcess, 1000);
GetExitCodeProcess(ProcessInfo.hProcess, GdiValue);
CloseHandle(ProcessInfo.hProcess);
Gauge1.Progress := GdiValue;

end
else

Gauge1.Progress := 0;

end;

Figure 4: Using the TTimeMemGDI object.

program Project2;

uses
Forms,
TimeMemG,
Unit2 in 'Unit2.pas' {Form1};

{$R *.RES}

var
TimeMem : TTimeMemGDI;

begin
Application.Initialize;
// Create an instance of the object.
TimeMem := TTimeMemGDI.Create;
// Capture starting values.
TimeMem.Start;
// Create the sample form.
Application.CreateForm(TForm1, Form1);
// Capture the ending values.
TimeMem.Stop;
// Show the impact of creating this form.
TimeMem.DisplayInfo('Creating Sample Form');

Application.Run;

end.

Informant Spotlight
You’ll notice we’re using a call to CreateProcess to launch our 16-
bit application, GETGDI.EXE. Windows 95 will go through
the following specific search sequence to find this executable:

The directory from which the main application was
loaded.
The current directory.
The Windows System directory.
The Windows directory.
The directories that are listed in the PATH environment
variable.

When you run this simple example and press the Button,
the current GDI-free percentage is returned from our
GETGDI executable. The Gauge reflects this percentage.
Assuming that Delphi is still running, you may notice that
your GDI-free percentage is already in the 80s. Considering
that you were probably in the high 90s when Windows 95
started, you’ve already lost a fair amount of memory.
20 July 1996 Delphi Informant
A GDI Monitoring Object
Where did the GDI go? While prototyping a new Delphi 2
application, I was rudely awakened by Norton’s System
Doctor warning me that my GDI resources were dangerously
low. This led to the discovery of the 16-bit nature of the
Windows 95 GDI, but that was only the beginning.

Knowing that the GDI is still a limited resource and know-
ing how to preserve that resource are two distinct issues.
Which form consumed the most GDI? Which components
or controls could be eliminated? Which forms should be cre-
ated during program initialization, and which ones should be
created only on demand? How many forms can be opened
before the application approaches critical mass?

The search for these answers resulted in the creation of a
TTimeMem object. Our lead Delphi programmer, Lynn Settle,
constructed the TTimeMem object to measure the elapsed time
and the memory consumed between two events. [TTimeMem
is available for download from Library 7 in the Delphi Forum
on CompuServe. The file name is TIMEMEM.ZIP.] It was
during the creation of the TTimeMem object that we discov-
ered there was no apparent way to track the GDI.

Using the technique presented in this article, we now have a
TTimeMemGDI object that adds GDI tracking to the origi-
nal object’s capabilities. This object can be integrated into
your application in many ways.

To illustrate the use of the object, it’s included in the main
project source file shown in Figure 4. By incorporating
TTimeMemGDI in this fashion, we can now allow Delphi to
create the sample form, and measure the form’s impact on
the GDI, as well as other system resources (see Figure 5).
The complete .PAS file for TTimeMemGDI is shown in
Listing One, starting on page 21.

21 July 1996 Delphi Informant

Figure 5: An example of the GDI
Monitor at run time.

Informant Spotlight

Michael Maloof is CEO of Smart Shop Software, Inc., a Coeur d’Alene, ID-based
publisher of software for the manufacturing industry. Following Jeff Duntemann’s
software publishing advice, Michael married his best friend, moved to a beautiful
place, and brings his golden retriever to work every day. You can reach Michael
through CompuServe at 76050,1607.
By creating an instance of
the TTimeMemGDI object
and calling the Start
method, we have an accu-
rate picture of the initial
environment. The Stop
method is called immedi-
ately following the
CreateForm procedure, and
the DisplayInfo method
gives a complete picture of
what has changed between
the two events.

You can use the
TTimeMemGDI object
by calling sequences of
Start, event of interest,
Stop, and DisplayInfo.
You can also measure the
increasing impact of a
series of events using a sequence such as, Start, event #1, Stop,
DisplayInfo, event #2, Stop, DisplayInfo. By continually calling
only the Stop and DisplayInfo methods, you’ll see the cumula-
tive effect of the events.

Conclusion
We concentrated our GDI resource reduction efforts on
descendants of the TWinControl. We eliminated virtually all
of our TPanel components using Eric Uber’s TGraphicPanel,
which descends from TBevel, but has the same visual prop-
erties as a TPanel. We also substantially reduced the number
of TDBNavigator components. Furthermore, we carefully
monitor the GDI situation as we create forms on demand.
[Eric’s TGraphicPanel is found in the file, GRAPHPNL.ZIP,
located in Library 9 of the Delphi Forum on CompuServe.]

By using this technique we reduced the GDI usage in our
application from an unbelievable 90 percent to about 30 per-
cent, or roughly about twice as much as Delphi itself. That’s
not bad for a major vertical market application that relies
heavily on Grid, Page, and Tab Controls. This reduction is
especially significant because we’ll soon be applying for
Windows 95 Logo Certification.
One element of the certifi-
cation process is a general
stability test. Figure 6
shows the application
being exercised while run-
ning Microsoft’s Stress util-
ity (available on the
MSDN CDs). Among
other things, the Stress
utility randomly consumes
between 40 and 60 percent
of the GDI. An application that consumes more than 40 per-
cent of the GDI may not survive in that environment. Will

Figure 6: The Windows Stress
utility at run time.
your application? [For more information about the Windows
3.x Stress utility, see Karl Thompson’s article “Gimme Some
Stress!” beginning on page 38.]

It’s unfortunate that the GDI beast still haunts Windows 95,
but with a little effort you can prevent your Delphi applica-
tions from becoming its next meal. ∆

The demonstration files referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\JUL\DI9607MM.
Begin Listing One: TTimeMemGDI
unit TimeMemG;

interface

uses SysUtils, Windows, Dialogs, Classes, Forms;

type
TTimeMemGDI = class(TObject)
private

StartTime: TDateTime;
UsedTime: TDateTime;
// Bytes of physical memory.
TotalPhys: Integer;
// Percent of memory in use.
StartMemoryLoad: Integer;
EndMemoryLoad: Integer;
// Bytes physical memory available.
StartAvailPhys: Integer;
EndAvailPhys: Integer;
// Bytes available in paging file.
StartAvailPageFile: Integer;
EndAvailPageFile: Integer;
// Bytes available in the user mode portion of
// the virtual address space.
StartAvailVirtual: Integer;
EndAvailVirtual: Integer;
// Percent GDI resources available.
StartAvailGDI: Integer;
EndAvailGDI: Integer;

public
// Capture start time, memory stats, and GDI free.
procedure Start;
// Capture stop time, memory stats, and GDI free.
procedure Stop;
// Display information.
procedure DisplayInfo(InfoTitle: String);

end;

implementation

procedure TTimeMemGDI.Start;
var

SysMemoryStatus: TMemoryStatus;
StartupInfo: TStartupInfo;
ProcessInfo: TProcessInformation;
GdiValue: DWORD;
cp: Boolean;

2

Informant Spotlight
begin
FillChar(SysMemoryStatus, SizeOf(TMemoryStatus), 0);
//SysMemoryStatus.dwLength := SizeOf(TMemoryStatus);
GlobalMemoryStatus(SysMemoryStatus);

{ Get starting memory info. }
StartMemoryLoad := SysMemoryStatus.dwMemoryLoad;
StartAvailPhys := SysMemoryStatus.dwAvailPhys;
StartAvailPageFile := SysMemoryStatus.dwAvailPageFile;
StartAvailVirtual := SysMemoryStatus.dwAvailVirtual;

FillChar(StartupInfo, SizeOf(TStartupInfo), 0);

// Get starting GDI resources percentage.
cp := CreateProcess(nil,'GETGDI.EXE', nil, nil, False,

NORMAL_PRIORITY_CLASS, nil, nil,
StartupInfo, ProcessInfo);

if cp then
begin

WaitForSingleObject(ProcessInfo.hProcess, 1000);
GetExitCodeProcess(ProcessInfo.hProcess, GdiValue);
CloseHandle(ProcessInfo.hProcess);
StartAvailGDI := GdiValue;

end
else

StartAvailGDI := -1;

// Before I go, brother could you spare the time?
StartTime := NOW;

end;

procedure TTimeMemGDI.Stop;
var

StartupInfo: TStartupInfo;
ProcessInfo: TProcessInformation;
GdiValue: DWORD;
cp: Boolean;
SysMemoryStatus: TMemoryStatus;

begin
// How long has it been?
UsedTime := NOW - StartTime;

SysMemoryStatus.dwLength := SizeOf(SysMemoryStatus);
GlobalMemoryStatus(SysMemoryStatus);

// Get ending memory info.
TotalPhys := SysMemoryStatus.dwTotalPhys;
EndMemoryLoad := SysMemoryStatus.dwMemoryLoad;
EndAvailPhys := SysMemoryStatus.dwAvailPhys;
EndAvailPageFile := SysMemoryStatus.dwAvailPageFile;
EndAvailVirtual := SysMemoryStatus.dwAvailVirtual;

FillChar(StartupInfo, SizeOf(TStartupInfo), 0);

// Get ending GDI resources percentage.
cp := CreateProcess(nil,'GETGDI.EXE', nil, nil, False,

NORMAL_PRIORITY_CLASS, nil, nil,
StartupInfo, ProcessInfo);

if cp then
begin

WaitForSingleObject(ProcessInfo.hProcess, 1000);
GetExitCodeProcess(ProcessInfo.hProcess, GdiValue);
CloseHandle(ProcessInfo.hProcess);
EndAvailGDI := GdiValue;

end
else

EndAvailGDI := -1;
end;

{ The DisplayInfo procedure allows you to visually
inspect the values captured by the Start and Stop
methods. The InfoTitle parameter allows you to
display a meaningful title, such as 'After Order Entry
Form Creation.' This approach was adequate for our
needs, but certainly leaves room for significant
enhancements.}
2 July 1996 Delphi Informant
procedure TTimeMemGDI.DisplayInfo(InfoTitle: string);
const

CRLF = #10+#13;
TAB = #9;

var
Hour, Min, Sec, MSec: Word;

var
TimeMemMessage,
StrUsedMemoryLoad,
StrUsedAvailPhys,
StrUsedAvailPageFile,
StrUsedAvailVirtual,
StrUsedAvailGDI,
StrStartMemoryLoad,
StrStartAvailPhys,
StrStartAvailPageFile,
StrStartAvailVirtual,
StrStartAvailGDI,
StrEndMemoryLoad,
StrTotalPhys,
StrEndAvailPhys,
StrEndAvailPageFile,
StrEndAvailVirtual,
StrEndAvailGDI: string;

begin
DecodeTime(UsedTime, Hour, Min, Sec, MSec);

StrUsedMemoryLoad :=
IntToStr(EndMemoryLoad - StartMemoryLoad);

StrUsedAvailPhys :=
FloatToStrF((StartAvailPhys - EndAvailPhys),

ffNumber, 10, 0) ;
StrUsedAvailPageFile :=
FloatToStrF((StartAvailPageFile - EndAvailPageFile),

ffNumber, 10, 0) ;
StrUsedAvailVirtual :=
FloatToStrF((StartAvailVirtual - EndAvailVirtual),

ffNumber, 10, 0) ;
if (StartAvailGDI = -1) or (EndAvailGDI = -1) then

StrUsedAvailGDI := 'Unable to determine'
else

StrUsedAvailGDI :=
FloatToStrF((StartAvailGDI - EndAvailGDI),

ffNumber, 10, 0) ;
StrTotalPhys :=
FloatToStrF(TotalPhys, ffNumber, 13, 0);

StrStartMemoryLoad :=
FloatToStrF(StartMemoryLoad, ffNumber, 13, 0);

StrStartAvailPhys :=
FloatToStrF(StartAvailPhys, ffNumber, 13, 0);

StrStartAvailPageFile :=
FloatToStrF(StartAvailPageFile, ffNumber, 13, 0);

StrStartAvailVirtual :=
FloatToStrF(StartAvailVirtual, ffNumber, 13, 0);

if StartAvailGDI = -1 then
StrStartAvailGDI := 'Error accessing GetGDI.exe'

else
StrStartAvailGDI :=
FloatToStrF(StartAvailGDI, ffNumber, 13, 0);

StrEndMemoryLoad :=
FloatToStrF(EndMemoryLoad, ffNumber, 13, 0);

StrEndAvailPhys :=
FloatToStrF(EndAvailPhys, ffNumber, 13, 0);

StrEndAvailPageFile :=
FloatToStrF(EndAvailPageFile, ffNumber, 13, 0);

StrEndAvailVirtual :=
FloatToStrF(EndAvailVirtual, ffNumber, 13, 0);

if EndAvailGDI = -1 then
StrEndAvailGDI := 'Error accessing GetGDI.exe'

else
StrEndAvailGDI :=
FloatToStrF(EndAvailGDI, ffNumber, 13, 0);

TimeMemMessage :=
'Elapsed time: ' + IntToStr(Min) + ' Minutes ' +
IntToStr(Sec) + ' Seconds ' + IntToStr(MSec) +

2

Informant Spotlight
' Milliseconds' + CRLF+CRLF +

'Total physical memory: ' + StrTotalPhys +CRLF+CRLF+
'Percent of memory in use:' +CRLF+
TAB + StrStartMemoryLoad + '% before' +CRLF+
TAB + StrEndMemoryLoad + '% after' +CRLF+
TAB + StrUsedMemoryLoad + '% used' +CRLF+CRLF+

'Free physical memory:' +CRLF+
TAB + StrStartAvailPhys + ' before' +CRLF+
TAB + StrEndAvailPhys + ' after' +CRLF+
TAB + StrUsedAvailPhys + ' used' +CRLF+CRLF+

'Paging file free:' +CRLF+
TAB + StrStartAvailPageFile + ' before' +CRLF+
TAB + StrEndAvailPageFile + ' after' +CRLF+
TAB + StrUsedAvailPageFile + ' used' +CRLF+CRLF+

'Available virtual address space:' +CRLF+
TAB + StrStartAvailVirtual + ' before' +CRLF+
TAB + StrEndAvailVirtual + ' after' +CRLF+
TAB + StrUsedAvailVirtual + ' used' +CRLF+CRLF+

'Available GDI resources:' +CRLF+
TAB + StrStartAvailGDI + ' before' +CRLF+
TAB + StrEndAvailGDI + ' after' +CRLF+
TAB + StrUsedAvailGDI + ' used';

ShowMessage(InfoTitle + CRLF+CRLF + TimeMemMessage);
end;

end.

End Listing One
3 July 1996 Delphi Informant

24 July 1996 Delphi Informant

Sights & Sounds
Delphi 1 / Object Pascal

By Charlie Howell

Animation Made Simple
Using the TAnimated Component to
Integrate Animation and Sound into Applications

Figure 1: A file transm
Windows 95 desktop.
create an animated ef
Animation has become an integral part of user-friendly applications.
Since the release of Windows 95, who among us has resisted the

temptation to delete files — or even whole directories — just so we could
watch them fly into the recycle bin? An hourglass that remains inactive for
more than a few seconds is a sure way to induce a yawn or a reboot.
However, animated audio/visual features hold a user’s attention, inform
them of ongoing processes, and can be downright entertaining.
Potential uses for animated sequences during
time-consuming processes include file manage-
ment operations, establishing online connec-
tions, SQL processing, and last — but certain-
ly not least — ODBC connections. Each of
these operations may leave users wondering
what their computer is doing, unless the devel-
oper provides some meaningful visual cues.

David Baldwin’s freeware TAnimated compo-
nent makes it a snap for developers to include
animation in Delphi applications. TAnimated
offers the ability to display a sequence of
bitmaps at specific intervals, respond to pro-
gram events, allow continuous looping or start-
stop display, and synchronize sounds with ani-
mation. In short, the possibilities of TAnimated
applications are limited only by the developer’s
creativity. As a native Delphi VCL component,
all the capabilities of TAnimated become a part
of the developer’s executable file.

What is TAnimated?
TAnimated is a non-windowed descendant of
TGraphicControl. The component is a virtual
movie projector that displays bitmap “film-
strips” like the file transmission example shown
in Figure 1. Key properties provide a tremen-
ission “filmstrip” using the PCs from the
This bitmap is shown one section at a time to
fect.
dous amount of flexibility for the developer.
For fluid animation, individual frames of the
filmstrip may be displayed in sequence, at a
preset interval ranging from one millisecond to
32 seconds. Although the full range of positive
integers may be specified by the interval prop-
erty, Baldwin’s Help file explains actual display
intervals are in multiples of 55 milliseconds.

Animation is “live” at design time, once the
number of frames in the filmstrip and the dis-
play interval is specified via the Object
Inspector, and Play is set to True. This provides
a useful way to test bitmap filmstrips before
compiling a program or writing code to con-
trol what users will see. After setting the Loop
property to True, a TAnimated component will
loop or replay to display continuous move-
ment. Alternatively, a filmstrip may be played
through once in response to an event.
Additionally, animated sequences may be set to
play in forward or reverse, a feature that makes
a single filmstrip useful for two-way opera-
tions, like uploading and downloading files.

TAnimated also offers the option to set Play to
False and display specific filmstrip frames at run
time via the integer Frame property. This pro-
vides an easy way to use state change graphics
like the trash can shown in Figure 2.

TAnimated includes a TransparentColor proper-
ty that allows specification of a color in the

Figure 3: These three procedures demonstrate how to assign a
task to run in the background using the OnIdle event of
TApplication while displaying an animated sequence.

procedure TForm1.Button1Click(Sender: TObject);
begin

{ Specify TIdleEvent }
Application.OnIdle := TimeConsumingProc;
ShowAnimation;

end;

procedure TForm1.ShowAnimation;
begin

{ Show TAnimated form }
AnimatedForm2.Visible := True;
{ Start animation }
AnimatedForm2.Animated1.Play := True;
{ Display continuous animation }
AnimatedForm2.Animated1.Loop := True;
{ Start TIdleEvent method }
TimeConsumingProc;

end;

procedure TForm1.TimeConsumingProc(Sender: TObject;
var Done: Boolean);

begin
{ Insert the time consuming task here with statement

to break out of task }

{ Disable OnIdle event using nil pointer }
Application.OnIdle := nil;
{ End animation by hiding form }
AnimatedForm2.Visible := False;

end;

Sights & Sounds
bitmap to appear transparent. The
TransparentColor property is useful
for blending the component into a
form, but it also offers the possibili-
ty of layering two or more
TAnimated components to create a
complex animation.

Besides standard drag-and-drop mouse events, a type of
TNotifyEvent, OnChangeFrame, was added by the component
developer to allow sounds to be synchronized with specific film-
strip frames. The sample application included with TAnimated
includes the source code required to test for the presence of
MMSYSTEM.DLL and then play a .WAV file. Of course, the
OnChangeFrame event could also be used to start any event.

An Issue of Scale
The size of the TAnimated component must remain equal to a
single frame of the filmstrip. If the form’s Scaled property is set
to True at design time (default setting), and the screen resolu-
tion is altered to enlarge or reduce the screen font, the size of
the component will change. The result is like watching
Grandma’s old television, i.e. the individual frames slide across
the component, rather than being displayed frame-by-frame.

If TAnimated components are the only components on the
form, simply set the form’s Scaled property to False at design
time. The size of the form and the components will remain
unchanged at different screen resolutions. However, if other
font-based components are included on the form, they may not
fit at lower screen resolutions. An alternative is to accept the
form’s default Scaled property at design time. If the form and its
components must be resized, be sure to set the form’s AutoScroll
property to False. Then, reset the size of the TAnimated compo-
nent at run time (upon activation of the form), as shown below:

procedure TAboutBox.FormActivate(Sender: TObject);
begin

{ Reset size of TAnimated component to 32 pixels
x 32 pixels and play animation }

Animated1.SetBounds(Left,Top,32,32);
Animated1.Play := True;

end;

Using this approach, the form will rescale to accommodate any
font-based components, and the size of the TAnimated compo-
nent will reset to a single frame size to assure proper playback.

Maintaining Fluid Animation
Animation may slow down or fail to play altogether if other
tasks are allowed to dominate the processor. It may be necessary
to interrupt processing to allow frames to change, or process a
task in the background to maintain fluid animation in the fore-
ground. Delphi provides an easy way to do both, but there are
considerations to help decide which approach to implement.
For tasks processed in a loop, an Application.ProcessMessages
command may be inserted inside the loop. This gives the
TAnimated component an opportunity to change frames each
time the loop is repeated, if the timing coincides with the

Figure 2: A two-frame
state change filmstrip.
25 July 1996 Delphi Informant

interval property setting.
If a task cannot be interrupted or broken into small chunks
(e.g. a SQL query), it may be impossible to maintain fluid
animation in a 16-bit application. In this case, the
Application.ProcessMessages command may be used to inter-
rupt processing and change frames before and after per-
forming the task.

We’ll demonstrate this approach in an example SQL applica-
tion. First however, let’s discuss background computing.

If a task can be broken into small blocks, or if it requires lit-
tle processing time, fluid animation may be played in the
foreground while the task is processed in the background. A
task can be assigned to run in the background using the
OnIdle event of TApplication. To do this, declare the
TIdleEvent method in the private part of the type declaration
of the form. Then, assign the name of the method to the
OnIdle event and write an event handler (see Figure 3).

Delphi online help states that a complete TApplication event
handler should be written and declared as a method of the
main form, and the code should be executed as soon as the
application is run. However, declaring and handling the OnIdle
event in a secondary form works just fine. Specify and run the
TIdleEvent in the secondary form, and after the process is com-
plete, use the nil pointer to disable the method.

A Practical Application for TAnimated
Delphi shipped with an example application named “Stocks
Version 1.0”. By default, the application resides in the direc-
tory \DELPHI\DEMOS\DB\STOCKS.

Sights & Sounds
Compile the application. Then, from the Broker’s Command
Center menu, select View | Market Browser. The Market
Browser form includes four combo boxes that allow a user to
filter a data set by industry, bond rating, risk-level, and a buy-
sell-hold recommendation. The underlying code in the proce-
dure UpdateGridQuery is a marvel of dynamic SQL. However,
the Market Browser form is pretty boring (see Figure 4), and
an hourglass is displayed while the query is processed.

We’ll add a TAnimated component during processing to pro-
vide a graphical cue that confirms the user’s selection from the
Industry combo box. When a user selects an industry and the
SQL statement begins processing to update the grid, a “search”
form will appear that displays a magnifying glass; a split second
later, an icon representing the selected industry will appear in
the magnifying glass. The form caption will show that a search
for matching records is underway, and will signal when the
search is complete. Then, the requested data will appear in the
Market Browser grid and the search form will disappear.

Here’s how to do it. Add a new form to the project; name it
fmSearch and save it in SEARCH.PAS. From the Object
Inspector set the BorderStyle to bsDialog and Position to
poScreenCenter. Also change the form’s Scaled property to False.
This ensures the size of a TAnimated component will remain
unchanged at different screen resolutions. Add Search to the
uses clause of the Browser unit. For this example, everything
will be controlled from the UpdateGridQuery procedure in the
Browser unit to make it easy to follow the sequence of events.

Next, select a TAnimated component from the Component
Palette and place it on fmSearch. This assumes you have already
installed the component (following guidance in the Delphi
User’s Manual or the TAnimated “readme” file). From the
Object Inspector, select the TAnimated BitMap property and
load the filmstrip shown in Figure 5. Set the FrameCount prop-
erty to 8, and the height and width to 85 pixels and 87 pixels,
respectively (i.e. the size of a single frame of the filmstrip).
26 July 1996 Delphi Informant

Figure 4 (Top): The Market Browser in search or query mode.
Figure 5 (Bottom): The state change filmstrip used to confirm a
combo box selection.
The UpdateGridQuery procedure is called from each of the
four combo boxes on the Market Browser form, and upon
activation of the form. To enable the search form to appear
only in response to a user updating the combo boxes, add an
if statement to test whether the fmMktBrowser form is already
visible. Within the same statement, add code to change the
search form caption, set the TAnimated component to the first
frame or blank magnifying glass (frame 0), and make the form
visible. Insert an Application.ProcessMessages command so that
TAnimated will be displayed before the SQL statements take
over the processor.

By using the integer combo box index (DropIndustry.ItemIndex),
it is simple to add code to select the integer frame value of
TAnimated that matches the selected industry. The industry
icons shown in the filmstrip in Figure 5 were arranged in an
order corresponding to the industries listed in the combo box.
If a user picks the first selection, or All, the blank magnifying
glass will remain visible until the query is processed. After the
TAnimated Frame property is changed, an
Application.ProcessMessages command again interrupts processing
to allow the frame to change before the SQL query is opened.
Add code to change the search form caption, and then hide the
form after the grid is updated.

The modified UpdateGridQuery procedure is shown in
Figure 6. The original developer’s comments are enclosed in
brackets { } and the new comments are enclosed in paren-
theses (). The new and improved Market Browser is shown
in search mode in Figures 7 and 8. It works!

So, how does the addition of the component, bitmap, and
code affect performance? The updated version of the Stocks
executable file is a mere 20KB larger than the original, and
there’s no noticeable difference in the time required to
process the queries. In fact, the queries seem to take less time,
because the animation is distracting.

Last Minute Tips
Unlike a mechanical movie projector, TAnimated is guaran-
teed to not break down. If you load a bitmap, set a few prop-
erties, and nothing happens, be sure that the FrameCount and
the Interval properties are set to values greater than 1 and 0,
respectively. Also, be sure that Play is set to True.

There are no rules that require a developer to set the FrameCount
property to the actual number of frames in a bitmap filmstrip. A
single filmstrip may be used to play fluid animation to depict an
ongoing process, and then subsequent frames may be displayed
to depict a completed process. At design time simply set the
FrameCount property to the number of frames corresponding to
the fluid animation sequence. Then, after completing the process
at run time, set Play to False, increase the frame count, and jump
to the frame that depicts the completed process.

Conclusion
The possibilities for integrating animated sequences into
applications are virtually unlimited using the TAnimated com-
ponent. Remember to ensure the component will not be

27 July 1996 Delphi Informant

r
t
t

Y
i
s
t

R
B
C

D
a
o
P
b

T
a
I

Figure 6: The modified UpdateGridQuery procedure.

procedure TfmMktBrowser.UpdateGridQuery;
var

WhereUsed: Boolean;

function SQLPrefix: string;
begin

if WhereUsed then
SQLPrefix := 'and '

else
begin

WhereUsed := True;
SQLPrefix := 'where '

end;
end;

begin
(* Show Search form only if Browser is already open *)
if fmMktBrowser.Visible then

begin
fmSearch.Show;
fmSearch.Caption := 'Searching...';
(* Set magnifying glass to first frame
(no industry icon) *)

fmSearch.Animated1.Frame := 0;
(* Interrupt processing to allow animation to appear *)
Application.ProcessMessages;

end;
Screen.Cursor := crHourGlass;
WhereUsed := false;
with GridQuery do begin

Close;
SQL.Clear;
SQL.Add('select * from MASTER');
if DropIndustry.ItemIndex > 0 then
begin

(* Set magnifying glass frame to selected industry *)
fmSearch.Animated1.Frame := DropIndustry.ItemIndex;
(* Interrupt processing to allow frames to change *)
Application.ProcessMessages;
{ Lookup the industry code from the INDUSTRY table }
TempQuery.Close;
TempQuery.SQL.Clear;
TempQuery.SQL.Add('Select IND_CODE from INDUSTRY');
TempQuery.SQL.Add(

'where LONG_NAME "' +
DropIndustry.Items[DropIndustry.ItemIndex] + '"');

TempQuery.Open;
{ Store the industry code; used for RS report }
IndustCode := TempQuery.Fields[0].AsString;
{ Now add the clause to the Grid SQL }
SQL.Add(SQLPrefix+FldIndustry + ' =' + IndustCode);

end;
if DropRating.ItemIndex > 0 then

SQL.Add(SQLPrefix + FldRating + '="' +
DropRating.Items[DropRating.ItemIndex]+ '"');

if DropRecommend.ItemIndex > 0 then
SQL.Add(SQLPrefix + FldRecommend + ' ="' +

DropRecommend.Items[DropRecommend.ItemIndex]+ '"');
if DropRisk.ItemIndex > 0 then

SQL.Add(SQLPrefix+FldRisk + '="' +
DropRisk.Items[DropRisk.ItemIndex] + '"');

SQL.Add('order by CO_NAME');
Open;

end;
(* Close the Search form *)
if fmMktBrowser.Visible then
begin

fmSearch.Caption := 'Search Complete';
(* Interrupt processing to allow form caption to
change before closing form *)

Application.ProcessMessages;
(* Hide the search form *)
fmSearch.Hide;

end;
Screen.Cursor := crDefault;

end;

Figure 7 (Top): The modified Market Browser in search mode
after selecting Telecommunications. Figure 8 (Bottom): The
modified Market Browser in search mode after selecting
Hotels/Gaming.

Sights & Sounds
esized at different screen resolutions, and that a fluid anima-
ion sequence will not be bogged down by other processing
asks. Your users will be impressed!

ou may have noticed that I have carefully avoided one
mportant question about TAnimated — if Play and Loop are
et to True, and the Visible property is set to False, do the pic-
ures continue to move? ∆

eferences
aldwin, L. David, TAnimated Help file, 1995.
antù, Marco, Mastering Delphi [Sybex Inc., 1995].

avid Baldwin’s freeware TAnimated component, source code,
nd his example application may be found in the VCL library
f the Borland Delphi Forum on CompuServe (GO DEL-
HI), and on the CD-ROM that ships with Marco Cantù’s
ook Mastering Delphi.

he demonstration applications referenced in this article are
vailable on the Delphi Informant Works CD located in
NFORM\96\JUL\DI9607CH.
Charlie Howell is an environmental scientist employed by the US Environmental
Protection Agency, a free lance writer, and a wannabe programmer. He has
developed and distributed database applications and spreadsheet templates for
analyzing and sharing environmental data and information. You can reach
Charlie at (214) 506-0812 or via e-mail at chowell@cyberramp.net.

28 July 1996 Delphi Informant

Visual Programming
Delphi / Object Pascal

By Jim Callan

Worth the Wait
Strategies for Keeping Users Patient

Figure 1: The Database
Desktop’s progress indicator
showing a query with 88
percent to go.
R ich application functionality inevitably leads to periodic processing
delays. How application designers prepare users for these delays sepa-

rates production applications from mere programming diversions. This arti-
cle examines the most popular techniques used in software products to
manage user expectations for snappy performance: progress indicators and
changing the mouse pointer.
With the advent of Windows and the Delphi
programming environment, even apparently
simple applications can contain sophisticated
features such as database access, report gener-
ation, intensive numeric computations, glitzy
graphics, and telephony access to online
information sources like the Internet.

After basic functionality, most users look at
an application’s response time when judging
quality. In this era of instant gratification —
when now is never fast enough — processing
delays can be disappointing for unsuspecting
users. Since it is inevitable that processing
delays will occur in such feature-rich applica-
tions, the challenge becomes how to set and
manage user expectations when processing
delays do occur.

Setting Expectations
Changing the mouse cursor (a.k.a. mouse
pointer) and using graphical progress indica-
tors (a.k.a. meters or gauges) are the two most
common methods employed in Windows
applications to notify users of impending
delays. Progress indicators are typically used to
indicate percentage complete and percentage
remaining during lengthy operations. Almost
every standard Windows application uses a
progress meter during installation, and many
applications employ them during file transfers
or lengthy screen updates. Figure 1 illustrates a
typical progress indicator as employed by
Borland’s Database Desktop during a lengthy
database query operation.
Use of the hourglass mouse pointer has become
a consistent method of setting user expecta-
tions, and is just as ubiquitous as the progress
indicator. Although use of progress meters
tends to be application specific, changing the
mouse cursor to the hourglass pointer has liter-
ally been standardized by Microsoft. (See sec-
tion 3.6.1.1 on Graphical Feedback in The
Windows Interface: An Application Design Guide
[Microsoft Press, 1992], which promotes both
the progress indicator and the hourglass mouse
pointer as recommended techniques for prepar-
ing users for lengthy delays.)

Progress Indicators
Although Delphi component vendors have
been flourishing since Delphi’s introduction,
and many are offering some value-added
meter components, Delphi ships with every-
thing you need to build acceptable progress
indicators for your applications. You very
well may find the TGauge component on the
Samples page contains all the functionality
you require for many applications.

To build an example progress indicator, start
a new project. On the default form, drop the
following components:

A TButton from the Standard page,
a TTimer from the System page, and
a TGauge from the Samples page (see
Figure 2).

Using the Object Inspector, set the Enabled
property for Timer1 to False and the

Visual Programming

 2: The sample form at
time.

Figure 3: The Timer1
object is shown in the
Object Inspector. Set
its properties as
shown here.

unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, Gauges,
ExtCtrls, StdCtrls;

type
TForm1 = class(TForm)

Button1: TButton;
Timer1: TTimer;
Gauge1: TGauge;
procedure Timer1Timer(Sender: TObject);
procedure Button1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

{$R *.DFM}

procedure TForm1.Timer1Timer(Sender: TObject);
begin

Gauge1.Progress := Gauge1.Progress + 1;
if Gauge1.Progress = 100 then
Interval property to 100
(see Figure 3). Double-
click the Timer1 compo-
nent and add the follow-
ing code to the OnTimer
event procedure:

Gauge1.Progess :=
Gauge1.Progress + 1;
if Gauge1.Progress >= 100
then

Timer1.Enabled := False;

Every tenth of a second the
progress meter will advance by one
percent. In 10 seconds the meter
will have advanced to 100 percent
and will turn off the timer.

First, however, we need a way to
enable the timer. Double-click the
Button1 component and add the
following code to the button’s
OnClick event:

Gauge1.Progress := 0;
Timer1.Enabled := True;

Figure
design
Figure 4 (Top): The
code for your Unit1.

Figure 5 (Left): The
sample progress indi-
cator at run time.

Timer1.Enabled := False;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin

Timer1.Enabled := True;
end;

end.
In this way, when the button is clicked, the timer starts
ticking off tenths of seconds for a period of 10 seconds.
Your unit should match Figure 4. Run the program and
click the button to display your sample progress indicator
as shown in Figure 5.

Using Meters in Production Programs
Although the simple progress meter example in Figure 5
makes use of a Timer component, timers are not generally
required for most programs. You will typically want to
embed progress meter updates inside the traditional for..do,
do..while, and repeat..until loop constructs that contain
your processing logic. You can use a timer when the process-
ing logic you are encapsulating behind the progress meter
involves multiple loops, each of which has somewhat irregu-
lar processing periods. Although this use of timers often
makes users wait longer than the processing will require, it
does provide a consistent delay. It is best to profile your pro-
gram and place code to update the meters appropriately.
Note that timers tend to be scarce Windows resources; care-
ful programmers use them sparingly.

In a production program you would probably want to use
the TGauge component with a TPanel to give your progress
meter a chiseled, 3-D effect. Since progress indicators are
application specific, you may want to experiment with the
TGauge’s Kind property to determine if dials or vertical
meters are more appropriate for the situation.

If you find you need a fancier meter, you can add function-
ality to TGauge through the miraculous powers of inheri-
tance, or you could use the source code for the TGauge
29 July 1996 Delphi Informant
component (source for the Samples page components ships
with Delphi) as a model and build your own. If you would
rather buy than build, you can always purchase third-party
meter components like the Visual Progress component
from Shoreline Software, the TOvcCustomMeter component
in Turbo Power’s Orpheus suite, or the Gauge control from
Borland’s RAD Pack for Delphi, just to name a few.

Before we leave the subject, some cautions regarding
progress indicators are in order. The quality and appropri-
ateness of a progress indicator is judged by its accuracy. If
your meter says that you are 50 percent complete, users
would like to be able to rely on it. Avoid jumpy and dis-
continuous meter updates; don’t race out to 90 percent
complete in the first 10 seconds, only to spend five min-
utes completing the last 10 percent.

.

Visual Programming

Figure 6: Adding a
CheckBox component to our
sample application.
Cursors for Everyone
All controls in the Visual Component Library that ships
with Delphi contain a Cursor property that specifies which
pointer to display when the mouse is moved over the con-
trol. If you search the online help under the topic of
“mouse pointer” and choose the topic “Cursor Property”
you will be directed to two important help resources for
changing the mouse cursor: “Cursor Property for All
Controls” and “Cursor Property for Screen Objects.” The
first topic provides examples of each of the predefined sys-
tem mouse pointers, and is not only helpful for lengthy
delay processing, but for remembering the constants used
for selecting any of the predefined system pointers that
you may need for other applications.

The second topic provides a simple try..except block exam-
ple of changing the Screen object’s cursor. Delphi applica-
tions have a predefined TScreen object that encapsulates the
screen. Changing the Screen’s cursor amends it for the
application. Changing the Cursor property of a component
simply defines the cursor that will appear when the mouse
is over that component. In this case we want the change to
be system-wide, so we use the Screen’s Cursor property.
(Note that the initial Delphi release does not document the
crMultiDrag cursor [value 16] in its online help. You’ll like-
ly find it useful for drag-and-drop applications.)

Changing the Mouse Pointer
As an example of how to change the mouse cursor to the
hourglass pointer during a processing delay, start a new pro-
ject with an empty form. As in our first example, place a
TButton component from the Standard page and a TTimer
component from the System page on your form. Using the
Object Inspector, set the Interval property to 5000 (five sec-
onds) and the Enabled property to False for Timer1. To
Button1’s OnClick event, add:

Timer1.Enabled := True;
Screen.Cursor := crHourGlass;

and to Timer1’s OnTimer event add:

Timer1.Enabled := False;
Screen.Cursor := crDefault;

Now, run the application and click the mouse to start the
timer. After five seconds the mouse pointer will revert back
to the default pointer. Similar to our previous program, the
button’s OnClick procedure changes the Screen cursor to the
hourglass and starts the timer. Conversely, after five seconds,
the timer’s OnTimer procedure changes the cursor back and
disables the timer.

Although this example illustrates how to change the mouse
cursor, we will next explore how this example lacks robust-
ness and fails to provide the behavior many users expect.

Wild Mouse Runs Amok
Our new mouse-changing program has a flaw; it employs an
30 July 1996 Delphi Informant
untamed mouse. What you might not have noticed is that
the program permits users to continue queuing and process-
ing Windows events. Although the mouse indicates that the
program is busy (the conventional meaning of the hourglass),
the program actually remains idle, i.e. it will eagerly continue
processing keyboard and mouse events.

To illustrate what a wild mouse means to your users, drop a
TCheckBox component from the Standard page on the form
you just created, as shown in Figure 6. Now run the program
and click the check box “on” and “off ” while the mouse
pointer looks like an hourglass. What went wrong?
The program in Figure 6 pro-
vides a simple contrived exam-
ple of how you can change the
mouse pointer, yet continue to
process keyboard and mouse
events. Instead of this simple
example, imagine a complex
database or graphics applica-
tion that changed the mouse
pointer to the hourglass during

a particularly lengthy query or screen refresh. When the
application completes the query or screen refresh, it must
then run off and service each additional mouse click the user
has queued for the program. If you’ve ever used a program
like this, then you’ve visited the land of pure frustration. You
spend most of your time waiting for the program to catch up

It’s plainly unacceptable. So, how do you tame the wild mouse?

Taming of the Shrew
The problem with the wild mouse lies not in the method by
which the mouse pointer is changed, but rather in how
Windows events are processed after the pointer has changed
shape. Changing the shape of the cursor in no way alters
how Windows events are processed. Additional program-
ming is required to change the way Windows events are
processed by your application. Most of the time you will
want to ignore both keyboard and mouse events while your
application is off doing its thing. When your application
completes its processing, you will then want to restore the
mouse cursor and begin handling mouse events normally.

The proper way to change the mouse pointer thus becomes:
1) Change the mouse cursor to the hourglass pointer.
2) Begin filtering of mouse and keyboard events from the

Windows event queue.
3) Begin the lengthy process.
4) End the lengthy process.
5) Remove the mouse and keyboard event filters from the

Windows event queue.
6) Restore the mouse cursor to the previous pointer.

Luckily for us, the Delphi designers left hooks in the
TApplication event model to make filtering of raw Windows
events easy.

Visual Programming
Before we examine the technique, however, it may be pru-
dent to understand — at least at an abstract level — how a
Delphi program receives Windows events. What’s really going
on in a Delphi application?

Fable of the Great Loop
Pretty early on one gets the idea that events are critical to
a Windows program. As we know from our two example
programs, Delphi makes responding to various Windows
events a simple task. Windows programming — for those
of us that have had to dip in to pure Pascal or C — can
often be much less trivial. Why is Delphi so much easier?

The very first Windows programs were huge loops that con-
tained nested case statements. Applications would constantly
(when they received focus) request Windows events in a big
loop, looking for events of interest. Windows would periodi-
cally detect a user action (like a mouse movement) and drop
an event on the queue. The application would then filter this
event through a large sieve of case statements, finally per-
forming something nifty or simply ignoring the event.

Through the use of encapsulation and delegation — both key
notions to object-oriented programming — we have since
moved beyond the Great Loop.

How Delphi Encapsulates Events
Delphi, through the TApplication object that is built into each
program, encapsulates the Great Loop as depicted in Figure 7.

Windows constantly watches for user or machine activity. When
an event occurs it is placed in an event queue. These events are
then queued for the appropriate application by virtue of each
Windows message being “tagged” by what is termed a handle.
Beneath the covers of the TApplication object, your application
sits in a tight loop. It gets a message and processes the message.
The TApplication object encapsulates all the default behavior, so
all we have to do is respond to exceptional events.

Although Figure 7’s explanation of Delphi’s event model is
simplistic, it will serve our needs for the next section. Please
refer to Delphi’s online help for TApplication, and in particu-
lar, the ProcessMessages procedure and the OnMessage event for
additional information on how the event model operates. If
you purchased the source code to the Visual Component
Library, you may want to trace through some of the
TApplication and TForm code in a simple application to
examine the Delphi event model in detail.

Keyboard and Mouse Events
One thing you’ll notice when you begin working with raw
Windows events in Delphi is that TApplication event handlers
are created differently than event handlers you might create
for other components. The main difference is that, because
the Object Inspector cannot be used to generate code, you
must create your own procedure and map your own event
handling procedure into the hook provided by Delphi’s
TApplication object. See the topic “Handling Application
31 July 1996 Delphi Informant
Events” in Delphi’s online documentation for a detailed dis-
cussion and examples of these event handling differences.

For our purposes, we will need to define a procedure that will
“de-queue” and ignore all keyboard and mouse events while
our application is involved in lengthy processing. So every
time Windows places a message on our application queue, we
will examine the message and remove it if it’s a keyboard or
mouse event, and leave it alone if it is any other kind of
event. We will be using a Boolean flag to determine if our
application is involved in lengthy processing.

Create the Handler
We will be extending the example program in Figure 6 to prop-
erly ignore keyboard and mouse events, so our first step is to cre-
ate the OnMessage event handler for our TApplication object.
OnMessage event handlers, defined as TMessageEvents, are proce-
dures that receive two arguments. The first is an encapsulated
Windows message, and the second is a Boolean flag that the pro-
cedure uses to indicate whether additional handling is required.
Anticipating that we will require a Boolean flag to tell us when
our application is off processing, we will also add the line:

HardAtWork : Boolean;

to the private section of the unit to define the flag. To define
an OnMessage handler called AppMsg, we will also add the line:

procedure AppMsg(var Msg: TMsg; var Handled: Boolean);

to declare the procedure in the private section of the unit we
defined in Figure 6.

Searching on TMsg in the Windows API section of Delphi’s
online help provides the definition of the TMsg data structure.
We will only need to know what kind of message Windows is
sending to the application, so only the message field is of
interest in this example. Referring back to our conceptual
event model in Figure 7 reminds us that the GetMessage
Windows API function is used to retrieve Windows messages
from an application’s event queue. Searching the online help
for the GetMessage Windows API provides all the information
that we require to perform our message filtering.

The GetMessage function retrieves messages for a specific
window (using the Window’s handle), and can be used to
filter specific types of messages. The MsgFilterMin and
MsgFilterMax arguments specifically perform this service
Figure 7: The Great Loop.

Visual Programming

Figure 8: Use this code to complete the AppMsg procedure.

unit Unit1;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls, ExtCtrls;

type
TForm1 = class(TForm)

Button1: TButton;
Timer1: TTimer;
CheckBox1: TCheckBox;
procedure Button1Click(Sender: TObject);
procedure Timer1Timer(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
HardAtWork: Boolean;
procedure AppMsg(var Msg: TMsg;

var Handled: Boolean);
end;

var Form1: TForm1;

implementation

{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject);
begin

Timer1.Enabled := True;
Screen.Cursor := crHourGlass;
HardAtWork := True;

end;

procedure TForm1.Timer1Timer(Sender: TObject);
begin

Timer1.Enabled := False;
Screen.Cursor := crDefault;
HardAtWork := False;

end;

procedure TForm1.FormCreate(Sender: TObject);
begin

{ Turn off special processing }
bHardAtWork := False;
{ Next, assign our custom event handler }
bApplication.OnMessage := AppMsg;

end;

procedure TForm1.AppMsg(var Msg: TMsg; var Handled: Boolean);
begin

{ Perform default handling }
Handled := False;
if HardAtWork then

if ((Msg.message >= WM_KEYFIRST) and
(Msg.message <= WM_KEYLAST)) or

((Msg.message >= WM_MOUSEFIRST) and
(Msg.message <= WM_MOUSELAST)) then

{ Ignore the event completely }
Handled := True;

end;

end.

Jim Callan, an 18-year computing veteran and former consulting direc-
tor for Oracle Corporation, is currently president of Gordian Solutions,
Inc., an information technology consulting provider in Cary, NC. A fre-
quent writer and speaker on information technology and client/server
computing, Jim specializes in product design. He can be reached at
(919) 460-0555 or by e-mail at 102533.2247@compuserve.com.
when non-zero. The most important phrase for our exam-
ple will be found in the comments section of the
GetMessage documentation. The constant pairs WM_KEY-
FIRST and WM_KEYLAST and WM_MOUSEFIRST
and WM_MOUSELAST delineate the upper and lower
boundaries of keyboard and mouse events respectively.
Using these constants greatly simplifies our filtering proce-
dure. Note: the “Handling Messages” chapter (Chapter 7)
of the Delphi Component Writer’s Guide also includes an
excellent discussion of trapping Window messages.

Armed with GetMessage, complete the AppMsg procedure def-
inition as shown in Figure 8. The next step is to establish
AppMsg as TApplication’s OnMessage handler by adding the
following line to the form’s OnCreate event:

Application.OnMessage := AppMsg;

We have now established a custom event handling proce-
dure to call when we receive Windows messages, as well as
a filtering mechanism for keyboard and mouse events to
use when our application is processing.

One Well-Behaved Mouse
The final step in our program is to notify our message filter-
ing procedure when to filter and when not to filter messages
from Windows. By adding the line:

HardAtWork := True;

to the OnClick procedure from Button1 and:

HardAtWork := False;

to the OnCreate and OnTimer procedures for our Form
and Timer respectively, we have tamed the mouse. Re-run
the program. Start the timer by pressing the button, then
attempt to change the check box while the timer is tick-
ing. Voilà! You have tamed the shrew.

Conclusion
Setting and meeting user expectations is a basic principle in
good application design. This article has demonstrated the
two most popular techniques used in commercial applica-
tions to keep users patient during lengthy processing delays.
You should find the progress indicator and the hourglass
cursor two indispensable tools for keeping your users happy.

A bonus program that includes both a progress indicator and
both techniques for altering the mouse cursor discussed in this
article may be found in the file BONUS.ZIP. The bonus pro-
gram also includes an alternative technique for changing the
cursor, and an occasionally useful (in specialized applications)
method of freezing the mouse cursor (and all other hardware
events) during processing. May your mice never run wild. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\JUL\DI9607JC.
32 July 1996 Delphi Informant

33 July 1996 Delphi Informant

DBNavigator
Delphi 2 / Object Pascal

By Cary Jensen, Ph.D.

Once Is Not Enough
Enhanced Multi-Record Views in Delphi 2

Figure 1: The C
Many database applications require that you simultaneously display
two or more records from a single table. In Delphi 1, the DBGrid pro-

vides you with a simple component for displaying multiple records, but
Delphi 2 improves your options.
First, the DBGrid in Delphi 2 is more
sophisticated than that of Delphi 1. Further,
Delphi 2 adds a new multi-record compo-
nent — the DBCtrlGrid. This installment of
DBNavigator shows you how to leverage
these enhanced features.

There are three basic areas where the DBGrid
component has been improved. These
include greater control over the visual appear-
ance of the DBGrid using the Columns
Editor, the addition of new event properties,
and the addition of a new value for the
Options property that permits users to select
multiple records in the DBGrid. Each of
these are described separately in this article.
olumns Editor is a new feature of Delphi 2.
The Columns Editor
Using the Columns Editor dialog box (see
Figure 1), you can easily control the visual
appearance of a DBGrid. After you have
associated the DBGrid with a DataSource
that points to an active DataSet, you can dis-
play the Columns Editor by double-clicking
the DBGrid component, or by right-clicking
it and selecting Columns Editor from the dis-
played SpeedMenu.

The Columns Editor is blank when you ini-
tially bring it up. Consequently, it is neces-
sary to first add to the Columns list the fields
you want to display in the DBGrid. (This
needs to be done whether or not you have
instantiated fields using the Fields Editor.)
You do this by clicking the Add All Fields but-
ton on the Columns Editor dialog box. This
will create one column entry for each field in
the corresponding DataSet.

Once you have added all fields, you can
selectively remove one or more of the list-
ed columns. You do this when you want to
display less than all of the DataSet fields in
the DBGrid. (This can be done in both
Delphi 1 and Delphi 2 by instantiating
Field components for the DataSet, and
then setting the individual Field compo-
nents’ Visible property to False.) You can
also control the order that the fields appear
in the DBGrid by dragging the various
column names to new positions in the
Columns list. The column that appears at

Alignment Alignment of text in cell

ButtonStyle Type of button to display when editing cell

Color Default color of cell background

DropDownRows Number of rows to display in drop-down list

FieldName Name of field for selected column

ReadOnly Control whether field can be edited or not

Width Width of cell, in pixels

Font Font used to display cell contents

PickList Use to create a drop-down list for a field

Figure 2 (Top): The fields of the Column Properties page of the
Columns Editor. Figure 3 (Bottom): The fields of the Title
Properties page of the Columns Editor.

Alignment Alignment of column caption

Caption Text of column caption

Color Color of column caption cell background

Font Font for column caption

Figure 4 (Top): The String list editor is displayed when you click
the PickList button on the Columns Editor dialog box.
Figure 5 (Bottom): The Graphic field’s column settings for the
EDITBTTN.DPR project.

DBNavigator
the top of the list will appear in the first column of the
DBGrid, the column that appears in the second position
will be the second column, and so forth.

After you have defined which columns the DBGrid will dis-
play, use the Tabbed notebook on the right side of the
Columns Editor to customize the display of each column.
Begin by selecting the column you want to control. Next,
specify the characteristics you want for that column. The first
tab, Column Properties, permits you to control how the field
will look within the DBGrid, as well as how it will behave.
The second tab, Title Properties, is used to control the
appearance of the DBGrid column captions. Figure 2 con-
tains a list of the Column Property fields and their functions.
Figure 3 displays a similar list for the Title Properties tab.

One of the more interesting options on the Columns Editor
dialog box is the ButtonStyle field. Using this field you can
configure the DBGrid to display either a drop-down list or
an ellipsis-style button (...) when the corresponding field is
being edited in the DBGrid.

When you set ButtonStyle to cbsAuto, a drop-down button will
be displayed if the corresponding field is a lookup field (defined
using the Fields Editor), or if you have defined a picklist for that
field. If you set ButtonStyle to cbsEllipsis, an ellipsis button —
similar to the one used to signify a property editor dialog box in
the Object Inspector — will be displayed when the correspond-
ing field is being edited. If the ellipsis button is clicked, an event
handler assigned to the new OnEditButtonClick event property
will be executed, if defined. From within this event handler, you
can determine which field is current, and program a custom
response to the button click.

Creating the picklist that is displayed when the ellipsis but-
ton is clicked is easy. Begin by selecting the field for which
you want to create the picklist from the Columns list. Next,
34 July 1996 Delphi Informant
set the ButtonStyle to cbsAuto. Finally, click on the PickList

button. Delphi will display a String list editor, as shown in
Figure 4. Use the String list editor to enter the values that
you want displayed in the drop-down list that will appear
when the user clicks the drop-down arrow associated with
the defined field.

If the values you want to appear in this list are already values
that appear in another table, consider creating a lookup field
as opposed to defining a picklist. [Creating a lookup field is
described in Dr Jensen’s article, “Elysian Fields”, in the May
1996 Delphi Informant.] This way, your drop-down list will
always be up-to-date.

Creating a custom editor that is accessed by clicking an ellipsis
button is only slightly more involved. First, select the field for
which you want to create the custom editor. Then set the
ButtonStyle property to cbsEllipsis. Next, select the DBGrid in
the Object Inspector and display the Events page. Double-click
the OnEditButtonClick event property to create an event han-
dler that will be executed when the ellipsis button is clicked.
The code you add to this event handler should evaluate which
field is selected, and provide a corresponding approach.

DBNavigator

Figure 6: The form that displays the Graphic field’s contents is
shown modally when the ellipsis is clicked for the Graphic field
in the DBGrid.
The use of a custom editor is demonstrated in the project
EDITBTTN.DPR. Figure 5 shows the Columns Editor for a
DBGrid that is associated with the BIOLIFE.DB table, a
Paradox table stored in the directory pointed to by the
DBDEMOS alias (this alias is created when you install
Delphi). Notice in this figure that the ButtonStyle has been
set to cbsEllipsis.

All this setting does is instruct Delphi to display an ellipsis next
to the Graphic field when that field is being edited. In order for
something to happen when this button is clicked, it is also nec-
essary to add an event handler to the OnEditButtonClick event
property of the DBGrid. The following is the code used for this
event handler in the EDITBTTN.DPR project:

procedure TForm1.DBGrid1EditButtonClick(Sender: TObject);
begin

if DBGrid1.SelectedField.Name = 'Table1Graphic' then
Form3.ShowModal;

end;

This event handler uses the SelectedField property of the
DBGrid to identify which field’s ellipsis button was clicked.
Although in this example project there is only one field with
an ellipsis button, it is generally a good idea to test which
field is selected, in case you decide to add ellipsis buttons to
the DBGrid in the future. It is also important to note that in
this case the Graphic field was instantiated using the Fields
Editor. This was necessary to be able to refer to the Name
property of the current field. If the current field had not been
instantiated, the Name property would return a null string.

When the event handler determines that the Graphic field’s
ellipsis button was clicked, it displays a form named Form3. This
form contains a single DBImage component associated with the
Graphic field, as well as a Close button. Because Form1 (the one
on which the DBGrid is attached) and Form3 share the same
Data Module, Form3 will display the bitmap stored in the
Graphic field corresponding to the current record on Form1.
Figure 6 shows how the screen might look when you click the
ellipsis button for the second record in the BIOLIFE.DB table.

New Event Properties
There are four new event properties for the DBGrid compo-
nent in Delphi 2. The preceding section introduced one of
these, the OnEditButtonClick event property. The three other
event properties are OnColumnMoved, OnDrawColumnCell,
and OnStartDrag.

OnColumnMoved is executed when the user changes column
order at run time. Of course, this can only occur if the Options
property contains the dbColumnResize value. The parameter list
of the event handler you assign to the OnColumnMoved event
property includes an integer that identifies which column is
moved, as well as the position to which it was moved.

The OnDrawColumnCell event property provides you with
an event handler from which you can control the painting
of the cells in a DBGrid. This event property is an
improved replacement for the OnDrawDataCell event
35 July 1996 Delphi Informant
property. While the OnDrawColumnCell event handler
parameter list includes a parameter that indicates which
column is being repainted, the OnDrawDataCell event
handler parameter list does not.

The final new event property, OnStartDrag, is an event
property that is instantiated in the TControl object in Delphi
2, and inherited by all descendant objects. Use this event
property to perform any necessary initialization of a drag-
and-drop operation.

Creating MultiSelect DBGrids
The Properties page of the Object Inspector of the DBGrid
component includes only one enhancement in Delphi 2, but
it’s an important one. The Options set property includes one
new value — dgMultiSelect. When this value exists in the
Options set, the user can highlight more than one record with-
in the DBGrid by holding down C while selecting records.

There is one critical property to use when working with
DBGrids that permit multiple record selection. It is the
SelectedRows property, which is of the type TBookMarkList.
This is a poorly documented property, and until Borland
ships an improved Help file for Delphi 2, you need to have
the VCL source code to adequately work with it.
(TBookMarkList is defined in the DBGrids unit.) However,
there are two essential properties of the TBookMarkList class
that you will need: Count and Items. Count is an integer that
identifies how many records have been selected, and Items is
an array of TBookMarkStr objects that can be cast as
TBookMark objects and then be used to locate a selected
record. Other notable properties of SelectedRows are
CurrentRowSelected (a Boolean property that reports whether
the current record is one of the selected records), Delete
(remove an item from the TBookMarkList), Clear (remove all
items from the TBookMarkList), and Refresh (remove any
items from the TBookMarkList associated with records that
have been deleted in the time since they were selected).

Figure 7: The MultSel project demonstrates the use of the
SelectedRows property of the DBGrid. Using this property it is
possible to determine which records of a DBGrid are selected.

DBNavigator

Figure 8 (Top): The OnClick event handler for the Show
Selected Keys button. Figure 9 (Bottom): A DBCtrlGrid at
design time.

procedure TForm1.Button1Click(Sender: TObject);
var

CurrentRecord : TBookMark;
i : Integer;

begin
// Ensure that the SelectedRows property is up to date.
DBGrid1.SelectedRows.Refresh;
// Do not continue as no records are selected.
if DBGrid1.SelectedRows.Count = 0 then

Exit;

// If the current record has not been posted,
// attempt to post it.
if Table1.State in [dsEdit, dsInsert] then

// If the following statement raises an exception,
// the remainder of this event handler will not execute.
Table1.Post;

// Store a bookmark for the current record.
CurrentRecord := Table1.GetBookMark;
Table1.DisableControls;
try

// Clear any current contents of the ListBox.
ListBox1.Clear;
// For each of the selected records.
for i := 0 to DBGrid1.SelectedRows.Count - 1 do

begin
// Move to the record.
Table1.GotoBookMark(TBookMark(
DBGrid1.SelectedRows.Items[i]));

// Add the record's key to the ListBox.
ListBox1.Items.Add(
Table1.FieldByName('CustNo').AsString);

end;
finally

// All done. Move back to the original current record.
Table1.GotoBookMark(CurrentRecord);
// Restore the DataSet.
Table1.EnableControls;
// Free the temporary bookmark.
Table1.FreeBookMark(CurrentRecord);

end;
end;
The use of the SelectedRows is demonstrated in the project
MultSel shown in Figure 7. The main form of the MultSel
project contains a DBGrid that includes the dgMultSelect value
in the Options set. When the Show Selected Keys button is
clicked, the ListBox labeled Keys of Selected Records is populat-
ed with the CustNo value of each selected record. Figure 8 is
the code associated with the OnClick event handler for the
Show Selected Keys button.

(Note: The author wishes to thank Martin Rudy of
Para/Matrix Solutions, Inc., for his work in deciphering the
SelectedRows property. The preceding example is based in part
on an example presented by Martin in the book Delphi In
Depth [Osborne/McGraw-Hill, 1996].)

Overview of the DBCtrlGrid
In addition to the DBGrid, Delphi 2 also includes the
DBCtrlGrid for displaying two or more records simultane-
ously. The DBCtrlGrid is a fairly simple container object
that automatically replicates itself at run time. Any objects
that have been placed in the main panel of the DBCtrlGrid
at design time will automatically be displayed in every panel
of the grid at run time. An example of the DBCtrlGrid
component at design time is shown in Figure 9.

One reason the DBCtrlGrid is so simple is because it’s very
limited in terms of the types of objects it can contain. Here’s
a list of the components that can appear in a DBCtrlGrid:

DBCheckBox
DBComboBox
DBEdit
DBLookupComboBox
DBText
GroupBox
Label
Panel

Other characteristics that make the DBCtrlGrid so simple
are its properties. There are only five basic properties you
need to adjust in most instances. These are the DataSource
property (to associate the DBCtrlGrid with a DataSource),
the ColCount and RowCount properties (to control how
many rows and columns to display), and the Height proper-
36 July 1996 Delphi Informant
ty (which in conjunction with the ColCount and RowCount
properties controls the size of the individual panels). The
final property, Orientation, controls whether records are
displayed in “newspaper” style (the second record will
appear in the second row), or in a left-to-right orientation
(the second record will appear in the second column).

Figure 10: Components placed into the primary panel of a
DBCtrlGrid are replicated at run time.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including Delphi
In Depth [Osborne/McGraw-Hill, 1996]. He is also Contributing Editor of Paradox
Informant and Delphi Informant, and is this year’s Chairperson of the Paradox
Advisory Board for the upcoming Borland Developers Conference. You can reach

DBNavigator
Figure 10 depicts how the DBCtrlGrid shown in Figure 9
looks at run time. This DBCtrlGrid has its ColCount and
RowCount properties set to 2. Notice that the fields placed in
the main panel are repeated for each of the four panels.
37 July 1996 Delphi Informant
However, the data displayed in these panels is associated with
different records of the corresponding DataSet. This form is
associated with the project GRIDDEMO.DPR.

Conclusion
Delphi 2 gives you more control than ever before over the
display of multiple records. The enhancements to the
DBGrid component provide your applications with new and
interesting ways to display data to your users. Likewise, the
DBCtrlGrid component, although limited, offers additional
flexibility in the display of data. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\JUL\DI9607CJ.
Jensen Data Systems at (713) 359-3311, or via CompuServe at 76307,1533.

38 July 1996 Delphi Informant

The API Calls
Delphi 1 / Object Pascal / Windows 3.x Stress DLL

By Karl Thompson

Gimme Some Stress!
Put Your Delphi App to the Test
with the Windows Stress DLL
OK. You’ve just finished writing a major application on your new
Pentium-166 PC with 32MB of RAM. Everything works fine — and boy

is it fast! You’re ready for commercial release, but you have some nagging
questions: How will it run on more modest computers? or, How will it run
on even a powerful machine when Windows’ resources are stretched?
How do you test an application under such
conditions?

Enter Stress
Windows 3.x installs STRESS.DLL into the
\Windows\System directory. STRESS.DLL
contains functions that allow the developer to
easily limit various system resources. These
resources include the number of file handles,
the amount of drive space, and Global, User,
and GDI memory pools.

The Delphi 1 project that accompanies this
article, Stress, is an interface to the Stress unit
that ships with Delphi 1. The Stress unit is
itself an interface to the STRESS.DLL API.

While Stress can be run as a stand-alone
application, you’ll only get limited functional-
ity if you use it that way. Its greatest function-
ality comes when STRESSME.PAS is incor-
porated as a unit into a debug version of your
Delphi 1 application. (More about this later.)

Stress Functions
STRESS.DLL exports five functions that can
be used to allocate system resources:

AllocDiskSpace creates a file,
STRESS.EAT, that eats up (if you will)
disk space on a partition until only the
amount of space that is passed as a parame-
ter is left on that partition. AllocDiskSpace
will create STRESS.EAT on one of three
partitions: the partition that Windows is
installed on, the one that has a TEMP
directory that Windows uses for storing
temporary files, or the current partition.

AllocFileHandles will limit the number
of file handles available to the current
instance of the program, up to a maxi-
mum of 256. Whenever a file is opened,
a file handle is consumed. Therefore, you
may want to test your application with
only a small number of handles available.
Try 40 handles or so to start.

AllocGDIMem will limit the amount of
GDI memory that is available to your
application. Every programmer is familiar
with the number that is reported in the
Window’s About Program Manager box
as Free System Resources. There are two
64K memory segments, GDI memory
and User memory, that Windows man-
ages for the storing of resources.

The segment that has the least amount
of free memory is used to report this
System Resource percentage. If the GDI
segment has 32K free and the User seg-
ment has 40K free, Windows will report
50 percent free System Resources. To
test your application in a low resource
environment, use AllocGDIMem and
AllocUserMem to reduce the amount of
available memory.

Figure 1 (Top): Using the Stress program to limit global memory
to 8MB. Figure 2 (Middle): The Drive Space page allows you
to limit the amount of disk space. Figure 3 (Bottom): The
File Handles page.

Karl Thompson is a Delphi/Paradox/SQL developer serving clients from New York
City to Philadelphia. He has been programming with Borland’s Pascal language
since 1984. He can be reached via the Internet at 72366.306@compuserve.com,
phone at (609) 730-1430, or fax at (609) 730-1530.

The API Calls
AllocUserMem limits the amount of memory available
on the User Heap.

AllocMem limits the amount of memory available on the
Global Memory Heap. Global memory is the entire memory
area that Windows manages, including virtual memory. This
function can be used to limit the memory available to make
a developer’s 32MB system look as if it is a 4MB system.

In addition to these, STRESS.DLL also exports complemen-
tary functions that free the consumed resources. [For a more
in-depth discussion of Windows resources, see Karl
Thompson’s article “A Walk on the Wild Side” in the April
1996 Delphi Informant.]

In all cases, a subsequent call to any of these functions will
automatically de-allocate the appropriate resource allocated
by a previous call. For example, if AllocFileHandles is called
with a parameter of 40, and again with 50, the allocation of
40 file handles is de-allocated; then the allocation of 50 file
handles is made. For further information on all of these func-
tions, see the Windows API Help file that ships with Delphi.

Using the Stress Program
If you want to use up some disk space or reduce the size of
the memory pools, you may run PSTRESS.EXE as you
would any other Windows program. However, if you want to
reduce the number of file handles that are available to your
application, you must include StressMe in your program’s uses
statement. You’ll then want to put a button or menu choice
on one of your program’s forms that loads the StressMe form.

A small project file, tStress, has been included with this article
that shows how to call the StressMe unit from an application.
Note that the form is not created automatically (see from
Delphi’s menu: Options | Projects) and that it is explicitly freed
after it is shown. By explicitly creating and freeing the form,
the StressMe unit does not affect the way your application
runs. You may want to go one step further by using a condi-
tional define that will exclude the call to StressMe when the
define is not declared. That way you can easily switch back
and forth between a debug build and a production build.

Using Stress is straightforward. Select a tab, set a value, and
then click on Apply. For example, if you want to limit your
global memory to 8MB, click on the Memory tab or use the
M accelerator key and fill in the edit box on the first row with
8000 (see Figure 1). After you click on the Apply button, the
Total Memory should read 8MB and the Free Global will be
something less than this amount. Figures 2 and 3 are the
other pages of the Stress program.

Conclusion
I hope we’ve added some good stress to your life this month.
Use the project in good health! ∆

The demonstration Stress project referenced in this article is available
on the Delphi Informant Works CD located in
INFORM\96\JUL\DI9607KT.
39 July 1996 Delphi Informant

40 July 1996 Delphi Informant

New & Used

By Douglas Horn

ImageLib Portfolio 3.1
Extras Enhance Already Worthwhile Tool

Figure 1: ImageLib’s multimedia
box allows users to preview files
opening them.
Surprise! ImageLib Portfolio 3.1 by SkyLine Tools, Inc. is full of interesting
extras that customers probably don’t realize they’re getting. There’s no

question this library of graphics and multimedia components is worth its price
based on its advertised features, but the little things Delphi developers will
discover in using ImageLib make the product even more difficult to resist.
ImageLib Portfolio is available as either a
Windows 3.1 16-bit or Windows 95 32-bit
VCL. Each contains components for dis-
playing, modifying, and converting graphics
and multimedia files. These data-aware
components handle nearly any display or
conversion tasks a user could imagine.
ImageLib supports .BMP, .GIF, .ICO, .JPG,
.PCX, .PNG, .TIF, and .WMF graphics,
and .AVI, .MID, .MOV, .RMI, and .WAV
multimedia files. In addition, the tool sup-
ports multiple color depths and compres-
sion levels for the various graphics formats.
Conversion is as simple as loading a file in
one format and saving it in another. (.ICO
and .WMF formats are read-only.)

The first extras that ImageLib users may
notice are two unfamiliar file formats —

.CMS and .SCM. These for-
mats — and their editors that
are included in ImageLib’s
cornerstone components —
allow developers to incorpo-
rate vertical or horizontal
scrolling text messages perfect
for multimedia presentations
or program credit screens.

ImageLib is primarily a data-
aware graphics viewing and
conversion tool. ImageLib ver-
sion 3.0 contained only four
components to version

 open dialog
before
3.1/95’s 16. For the most part, the 12 new
components are thoughtful extras that
make development faster and easier, rather
than adding radically new features.

ImageLib has four closely related core com-
ponents: TPMultiImage, TPDBMultiImage,
TPMultiMedia, and TPDBMultiMedia.
TPMultiImage is capable of displaying any
of the image formats listed earlier. The com-
ponent can also save files of one format to
any compatible format. (.JPG and .CMS
files, for example, would be incompatible
because one stores images, while the other
stores scrolling text.) TPMultiMedia is iden-
tical to TPMultiImage, except that in addi-
tion to image files, it plays multimedia files
such as .AVI, .MOV, .MID, and .WAV.
Both components are descendants of
Delphi’s TImage component.

As users would expect, the components sup-
port image zooming, rotation, printing, and
Clipboard functions. As descendants of
TImage, the components also support
Delphi Canvas functions that developers can
use to modify images. Many users will be
surprised to find they can also capture still
images from multimedia files, add format-
ted, rotated captions on images, and scan
images from TWAIN-compliant scanners.

TPDBMultiImage and TPDBMultiMedia are
data-aware versions of TPMultiImage and

Figure 3:
ImageLib’s
icon list and
combo box
components
allow devel-
opers to dis-
play graphics
in lookup lists
and combo
boxes.

Figure 2: The prefabricated toolbar components control
ImageLib’s components, such as this multimedia file.

New & Used
TPMultiMedia. The main difference between the two sets of
components is that the former work with images and multi-
media in distinct files, while the latter, data-aware versions,
work with images and multimedia in BLOB (Binary Large
Object) database files. ImageLib’s data-aware controls sup-
port Paradox and dBASE tables.

The components TMIMediaPlayer and TPDBMediaPlayer
control TPMultiMedia and TPDBMultiMedia. Both are little-
changed descendants of Delphi’s own TMediaPlayer. The
main difference is that the custom components sense installed
multimedia components and disable options that aren’t sup-
ported by the computer system. For example, on a system
without QuickTime for Windows installed, the custom
media players would disable .MOV files, while Delphi’s
TMediaPlayer component would allow users to select the files
(unless excluded programmatically), thus causing an error.

TMMOpenDialog and TMMSaveDialog are open and save
dialog boxes for image and multimedia files (see Figure 1).
These dialog boxes include the functions of Windows com-
mon dialog boxes (though unfortunately, they look nothing
like common dialog boxes), with the ability to preview
images, videos, or sounds prior to opening them. Users can
enable or disable both automatic display of image files and
automatic play of multimedia files. The TMMSaveDialog
allows users to view an existing file before saving a file to the
same name. This feature should help prevent users from acci-
dentally overwriting files. And since their Delphi source code
is included, they’re useful not only as ready-made compo-
nents, but also as learning guides for incorporating the VCL’s
core components into applications.

Another aid to opening files is ImageLib’s TThumbPreview
component. TThumbPreview creates and displays thumb-
nail views of images in a directory, allowing users to quick-
ly see a catalog of the available images, rather than having
to move through images one at a time. By clicking on an
image a user can open the full-sized version in the
TPMultiImage.

To make development faster and easier, the VCL also
includes a toolbar corresponding to each of the display com-
ponents (see Figure 2). The toolbars contain numerous but-
tons covering the major functions of each display compo-
nent. Each includes scan, open, save, copy to Clipboard, and
other familiar functions. Toolbars for data-aware components
add the data navigation buttons of Delphi’s TDBNavigator,
and toolbars for multimedia components add the buttons of
the TMediaPlayer component. Like other Delphi toolbars,
ImageLib’s toolbars’ buttons can be displayed or concealed as
the developer or user chooses.

The TDBIconListBox, TDBIconComboBox, and
TDBIconEditor components allow developers to incorpo-
rate icon images into Delphi list boxes and combo boxes
from a table’s BLOB field (see Figure 3). TDBIconEditor
allows the BLOB field icons to be edited.
41 July 1996 Delphi Informant
As a native Delphi VCL, ImageLib is compatible with
Delphi and Delphi applications. The only program error this
reviewer encountered was an occasional “Divide by zero”
error while trying to load .GIF images. However, turning off
the “break on exception” parameter via Delphi’s Options |

Environment menu command corrected the problem.

While ImageLib is a Delphi VCL, the tool’s core func-
tionality resides in a DLL file, with the VCL acting as a
wrapper to ease Delphi programming. While there are
many reasons to prefer pure Delphi VCLs over
VCL/DLL tools, at least SkyLine Tools documents all
Pascal interface calls for those developers who choose to
reference the DLL directly. This is just one sign of
ImageLib’s fine documentation. The printed, indexed
manual is over 160 pages. It not only documents all the
unique properties and procedures for each component,
but also includes program snippets where necessary. The
online Help file is a clone of the printed manual, and
can be integrated into Delphi’s online Help.

ImageLib includes code documentation, in addition to the
printed manual and online help file. The program includes
source code for each of the components, as well as the many
sample programs. All program code is well documented with

4

New & Used

Douglas Horn is a free lance writer and Contributing Editor to Delphi
Informant. He can be reached via e-mail at horn@halcyon.com. Readers
may browse a collection of his past articles at his World Wide Web site,
http://www.halcyon.com/horn/default.htm.
program remarks. By including
this amount of documentation,
the folks at SkyLine Tools have
made ImageLib almost imme-
diately understandable, even to
novice programmers.

One further example of the
thought put into ImageLib is
the fact that the message strings
of the DLL are externalized to
a resource file for easier transla-
tion and internationalization of
applications built using
ImageLib. This is just good
programming practice, but it’s
done so rarely that it seems like
a bonus. Complete internation-
alization of applications created
with third-party tools is often
nearly impossible because
developers do not follow this
rule. Hopefully in the future
more will follow SkyLine Tools’ example.

This is not a comparative review. However, as Delphi
Informant reviewed a similar product this year, LightLib
Images by DFL Software [April 1996], this analysis would

ImageLib Portfolio 3.1 is a Delphi
VCL/DLL for incorporating image and
multimedia files into Delphi applica-
tions, and is available in 16- and 32-
bit formats. The development tools are
notable for their extras such as sample
toolbars, video frame capture, exten-
sive sample code, and documentation.
Performance is excellent, as is pro-
grammability. Source code is avail-
able, and distribution of compiled
applications is royalty-free.

SkyLine Tools, Inc.
11956 Riverside Drive, Suite 206
North Hollywood, CA 91607
Phone: (800) 404-3832 or
(818) 766-3900
Fax: (818) 766-9027
E-Mail: 72130.353@compuserve.com
Web Site: http://theclassifieds.com/-
skyline_tools
Price: 16-bit version US$139; 32-bit
Delphi 2 version US$169; and 16- and
32-bit bundled US$199.
2 July 1996 Delphi Informant
be remiss if it did not reference some major differences
between the two products. First, while both tools use BLOB
files extensively, LightLib Images uses its own BLOB format
which compresses images better than Paradox BLOBs.
ImageLib, on the other hand, uses standard BLOBs that are
compatible with existing (and future) applications.

When testing the time required to load .JPG, .TIF, and
.BMP graphics, ImageLib was faster than LightLib Images
on all but very large .BMP files where LightLib Images
was marginally faster. On a Pentium 100MHz computer,
ImageLib was able to load a 73KB .JPG file from an IDE
drive in one second, while LightLib Images took five sec-
onds to load the same file.

For ImageLib’s price, most users would be satisfied with
the core TPMultiMedia and TPDBMultiMedia compo-
nents alone. However, the source code, additional com-
ponents, documentation, and sample programs are all
useful extras that make the tools easier and more enjoy-
able to use. ∆

43 July 1996 Delphi Informant

At Your Fingertips
Delphi 1 / Delphi 2 / Object Pascal

By David Rippy

Figure 3

procedure

begin
if (Le

Perf
end;

I

f we are to achieve results never before accomplished, we must employ
methods never before attempted. — Sir Francis Bacon
: The O

TForm

ngth(Ed
orm(WM_
How can I automatically set focus to the
“next” edit field in a data entry screen
when I’ve finished entering the value for
the current field?
For many “heads down” data entry programs,
you don’t want to slow users by requiring them
to use the mouse to advance to the next field.
Here’s a way to automatically set focus to the
next control on the screen as soon as the user
enters the last character in the current edit field.
ure 1 (Top): Setting an
it component’s MaxLength
operty. Figure 2 (Bottom):
cus will be automatically
t to Country after the user
ters the two-digit State
First you must
enter a value for
the field’s (i.e. the
Edit component’s)
MaxLength proper-
ty as shown in
Figure 1. For exam-
ple, if the edit field
is designed to store
a two-character
state abbreviation
(see Figure 2),
enter 2. Then
add the code
shown in
Figure 3 to the
OnKeyPress
event handler
for the Edit1
control. This
code executes
each time the
user presses a
key while in

Fig
Ed
pr
Fo
se
en
nKeyPress event handler for Edit1.

1.Edit1KeyPress(Sender: TObject;
var Key: Char);

it1.Text) = (Edit1.MaxLength - 1)) then
NEXTDLGCTL, 0, 0);

Code.
the Edit1 field. After each key press, the
number of characters entered in Edit1 is
compared to its MaxLength property.

You might be surprised that the code com-
pares the length to MaxLength - 1. This
occurs because the code in the event han-
dler executes before the key is entered in the
field. Try comparing this against
MaxLength without subtracting 1 and see
what happens. If the user has entered the
last required character, the message
WM_NEXTDLGCTL is sent to Windows,
and focus advances to the next field
(Country in this case).

Thanks to Randy White for posing this ques-
tion. — D.R.

How can a program check if another pro-
gram is running?
I recently wrote a utility application that
updated the executable of another applica-
tion. Naturally, I needed to ensure the
other application was not running concur-
rent with the utility program. Surprisingly,
this is an easy task. All that is required is
one call to the Windows API function,
GetModuleHandle. You pass to
GetModuleHandle the name of the exe-
cutable file you are checking for (OTHER-
APP.EXE in this case), and it returns its
handle. If the program is not running, it
returns a zero.

Examine the event handler for the OnClick
method in Figure 4. When Button1 is pressed,
this code displays the handle for OTHER-
APP.EXE in Edit1 (see Figure 5). If OTHER-
APP.EXE is not running, 0 is displayed.

Note: This tip applies only to Delphi 1.
This is because GetModuleHandle is part of

David Rippy is a Senior Consultant with Ensemble Corporation, spe-
cializing in the design and deployment of client/server database
applications. He has contributed to several books published by Que,
and is a contributing writer to Paradox Informant. David can be
reached on CompuServe at 74444,415.

Figure 6 (Top): We had to hard-code the path for PICTURE.BMP.
Figure 7 (Middle): The OnCreate event handler for Form1.
Figure 8 (Bottom): Now the picture loads properly.

Figure 4 (Top): The OnClick event handler for Button1.
Figure 5 (Bottom): If OTHERAPP.EXE is running, its handle is
displayed in the Edit box.

procedure TForm1.Button1Click(Sender: TObject);
begin

Edit1.Text := IntToStr(GetModuleHandle('Otherapp.exe'));
end;

procedure TForm1.BitBtn1Click(Sender: TObject);
begin

Image1.Picture.LoadFromFile('Picture.BMP');
end;

procedure TForm1.FormCreate(Sender: TObject);
var

sAppExe : string;
begin

sAppExe := ExtractFilePath(Application.ExeName);
ChDir(sAppExe);

end;

New & Used
the Windows 16-bit API, and does not work the same in
the 32-bit Windows 95/NT API. It would be much more
difficult to implement this tip in the 32-bit world due to
address spacing and registry considerations, but it just
might show up as a future tip in this column. — Fred
Rahmanian, Ensemble Corporation

How can I ensure that my program is pointing to the
application’s directory?
By using this tip, you can assure your application always
“points” to the directory where its executable (.EXE)
resides. This is useful if your application performs actions
that relate to file directories such as loading an image,
playing a .WAV file, or setting the Database property of a
TTable component. This helps make your application
more directory-independent, assuming the files you need
are in the same directory as the executable.

Examine the code in Figure 6. This code loads a bitmap
image (.BMP) into the Image1 component on the form. PIC-
TURE.BMP is located in the same directory as our program,
but we had to hard-code its path. This is because the current
directory has not been set properly, and the application
would not have found the .BMP by default in the directory it
was using. The result would be a run-time error indicating
that the image could not be found.

Now examine the form’s OnCreate event handler in Figure 7.
By using the ExtractPath and ChDir commands, we can set
the current directory to the same directory where the pro-
gram’s executable resides. After this is done, we no longer
need to hard-code the directory where the image is stored,
and the picture loads properly (see Figure 8). — D.R.
44 July 1996 Delphi Informant
Quick Tip for Laptop and Notebook Computer Users
If you use a laptop as your development platform, you proba-
bly spend a great deal of time repositioning windows, show-
ing and hiding the Object Inspector, and switching between
form and code view. 640x480 simply doesn’t provide enough
room to work! Here’s a reminder of a few useful key strokes
that will make life with the laptop more bearable:

9 — Compile and run the program
!— Toggle to show/hide the Object Inspector
@ — Toggle between viewing the form and its unit
C@ — Show a list of units
V@ — Show a list of forms
A0 — Show a list of all open windows

— D.R. ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in
INFORM\96\JUL\DI9607DR.

File | New
Directions / Commentary

Levis, Stalin, and Software
“Real world” is turning into one of those hackneyed terms in software development. User interface design is obsessed
with finding real world metaphors that work in applications. Similarly, object-oriented design aims to create software
objects that model their real world counterparts. As you can see, we as developers are captivated with bringing real world
content into our software products — but how often do we look at software systems themselves and see how they are
related to other systems in our world? In that light, let’s take a look at four lessons that can be gleaned from “human sys-
tems.” I believe that by looking at these truths, we can learn to design better software.
Rugged Individualism. Successful sys-
tems let an individual be himself or
herself. In the retail world, companies
like Levi Strauss are now using “mass
customization” to provide better ser-
vice to its customers — in this case, a
custom-fit pair of jeans. In the politi-
cal world, the history of the former
Soviet Union shows us it is impossible
to truly advance and prosper without
a democratic society. This same need
for freedom also exists in the software
realm. While people worked with
inflexible, controlled programs for
years, they typically did their work in
spite of them, rarely flourishing in
such an environment. (In fact, as was
the case with the thriving Soviet black
market, much of the energy may be
spent going around a rigid system, not
working within it.) In other words,
your users need freedom to “do their
own thing.” Alan Cooper writes in his
thought-provoking book About Face:
The Essentials of User Interface Design
[IDG Books, 1995], “Users really like
personalization. It allows them to feel
part of the computing process; to buy
into the task being performed.”
Windows 95 — which has an inter-
face geared towards customization —
provides a great example of this
democratic ideal. Don’t design your
software as Stalin would; if so, it will
never produce the effects for which
the software was designed.

Balanced Approach. Paradoxically,
successful systems also provide structure.
Too much individualism can be detri-
mental, and can leave people feeling
lost. As a father, I have discovered the
intrinsic need that children have for
45 July 1996 Delphi Informant
structure and discipline — not
unadulterated freedom. Bringing this
discussion back to our software world,
we can say that personalization is
important, but only within a strong
framework. Moreover, within this
backdrop, the individual needs of
users are quite different. For example,
some users will change their Windows
color schemes daily, while others will
never stray from the default settings.
Your applications must account for
both types of users. Cooper con-
cludes: “Personalization is one of
those idiosyncratically modal things.
People either like it or they don’t.”

Decentralization. Successful systems are
decentralized. Maintaining a central
focus always sounds great in principle,
especially to those in leadership. But
the reality is that “centralized” systems
rarely work. Think of the economic
world in the twentieth century: free
economies prospered while centrally
planned economies of communist
governments floundered. This also
holds true in our software domain.
Server-based applications running on
terminal emulators are relics. While
the World Wide Web renews the call
by some for centralized solutions, the
fact is that the Web will be successful
because there is “freedom” on the
desktop, not because people will rush
out to buy Internet terminals. People
can accept centralization when it
makes sense, but not when it limits
their individualism.

Fallen Systems. Successful systems are
built with realistic expectations. As
much as we hate to admit it, human
systems are “fallen systems.”
Realizing this, our Founding Fathers
structured a divided government in
such a way as to prevent a single
individual from achieving absolute
power. Their premise was to plan for
the possibility of problems. However,
the temptation in system design is
often the opposite: to build a perfect
world. People have always tried to
achieve this — be it through govern-
ment, economics, education, or phi-
losophy — but it has never been
achieved. So too in the software
realm. The expectations of develop-
ers and users in software are so high
that we are bound to be disillusioned
when problems develop. While we
should not excuse bugs, we do need
to put them into the proper context.
Software is a human invention, and
just like other products of the
human intellect, it is fallible. If we
recognize this reality, we can plan for
problems and put appropriate safe-
guards into place.

Not in a Vacuum. Software develop-
ment is never performed in a vacuum.
The products we develop are used by
people living in the “real world.”
Thus, the same way people react to
political, economic, and commercial
systems will be the way users respond
to your software. ∆

— Richard Wagner

Richard Wagner is Contributing Editor
to Delphi Informant and the Chief
Technology Officer of Acadia Software in
the Boston, MA area. He welcomes your
comments at rwagner@acadians.com.

	Table of Contents
	Delphi Tools
	Systems Advisory Group Releases RingZero GDK
	Data Dynamics Ships DynamiCube OCX for Windows 95 and Windows NT
	DFL Software Releases Light Lib Magic Menus
	High Gear, Inc. Announces High Gear 1.0 VCL Components
	Crystal Announces 16- and 32-Bit Delphi VCL for Crystal Reports
	Nevrona Designs Releases ReportPrinter Pro 2.0 for Delphi

	NewsLine
	Borland Releases Delphi 2 Internet Solutions Pack
	Crystal Announces Crystal Reports 5.0
	Borland Acquires Open Environment Corporation
	DSW Plans Delphi 2 Client/Server and Java Tours
	Netscape Licenses Java Compiler from Borland

	Face Value
	Be Considerate of the Environment
	UI Aerobics
	Look for Annoyances
	Do You Feel Like You Look?
	The Sample Application
	Conclusion

	3-D Labels with a Twist
	Wish List
	Basic Properties
	First Cut
	Painting the Label
	Making It Easier
	Rotating Text
	Conclusion

	An Eye on GDI
	Woebegone Days
	Delphi: An Ideal Custom Solution
	Get Me Some Free Resources
	Getting Started
	A Simple Example
	A GDI Monitoring Object
	Conclusion
	Listing One: TTimeMemGDI

	Animation Made Simple
	What is TAnimated?
	An Issue of Scale
	Maintaining Fluid Animation
	A Practical Application for TAnimated
	Last Minute Tips
	Conclusion
	References

	Worth the Wait
	Setting Expectations
	Progress Indicators
	Using Meters in Production Programs
	Cursors for Everyone
	Changing the Mouse Pointer
	Wild Mouse Runs Amok
	Taming of the Shrew
	Fable of the Great Loop
	How Delphi Encapsulates Events
	Keyboard and Mouse Events
	Create the Handler
	One Well-Behaved Mouse
	Conclusion

	Once Is Not Enough
	The Columns Editor
	New Event Properties
	Creating MultiSelect DBGrids
	Overview of the DBCtrlGrid
	Conclusion

	ImageLib Portfolio 3.1
	Gimme Some Stress!
	Enter Stress
	Stress Functions
	Using the Stress Program
	Conclusion

	At Your Fingertips
	How can I automatically set focus to the “next” edit field in a data entry screen when I’ve finished entering the value for the
	How can a program check if another pro-gram is running?
	How can I ensure that my program is pointing to the application’s directory?
	Quick Tip for Laptop and Notebook Computer Users

	Levis, Stalin, and Software

