
Delphi Informant May 1996 1

ON THE COVER
9 OLE Internet Access — Joseph C. Fung

Netscape’s Navigator dominates the Internet browser arena,
but how can we leverage its power and popularity with
Delphi 2? Mr Fung answers this question by presenting an
example-laden guide to using Navigator as an automation
server.

16 An HTML Generator — Keith Wood
Planning on building a Web site? Is your Object Pascal
better than your HTML? Or is writing line after line of HTML
simply too boring? If so, you’ll be happy to read Mr Wood’s
HTML primer, and download his full-featured HTML-gener-
ating component.

FEATURES
26 Informant Spotlight — Ray Lischner

Virtual or dynamic? Dynamic or virtual? Which is
faster? Which is “better?” Mr Lischner analyzes Object Pascal’s
two types of virtual methods, benchmarks their performance,
and demystifies the arcana of DMTs and VMTs.

30 DBNavigator — Cary Jensen, Ph.D.
In this month’s “DBNavigator,” Dr Jensen provides us with
an interactive tour of Delphi 2’s enhanced Fields Editor and
expands on his discussion of the new data module. It is
now simpler than ever to create and place DBEdit and
DBLookupCombo components.

34 Dynamic Delphi — Andrew Wozniewicz
In the third installment of his series on building DLLs in Delphi,
Mr Wozniewicz shows us how to interface a DLL, export and
import functions by ordinal numbers, explicitly load libraries,
and more. He also provides us with step-by-step instructions to
build the example application.

40 In Development — Craig Jones
Mr Jones finishes his three-part introduction to Quality
Assurance. The focus this month is on the tools and processes
you need to put in place to develop and deliver reliable soft-
ware. The emphasis is on practicality, since these processes
are worthless if they’re never put to use.

45 At Your Fingertips — David Rippy
Our favorite tipster returns with tips and tricks for Delphi 1
and 2. This month, Mr Rippy reveals how to: tile bitmap
images on forms and quickly make the same change to
several objects programmatically. He also has some com-
ments about Object Pascal comments.

REVIEW
47 Teach Yourself Delphi in 21 Days

Book review by James Callan

47 Teach Yourself Database Programming
with Delphi in 21 Days
Book review by James Callan

DEPARTMENTS
2 Editorial
3 Delphi Tools
6 Newsline
49 File | New

Cover Art By: Doug Smith

May 1996, Volume 2, Number 5

OLE Internet Access
Using Netscape Navigator as an

Automation Server

When the snow falls the flakes / spin upon the long axis / that concerns them most intimately /
two and two to make a dance ... — William Carlos Williams

Symposium
Delphi is the crowning achievement of a programming environment revolution that began in 1983 when Turbo Pascal blasted us out of
the CP/M command line and into the world of gorgeous IDEs (Integrated Development Environments). What a relief not to invoke

a compiler and debugger from a command-line prompt. What a joy to have the cursor placed in the source code file at the position of the
error with a useful explanation in a status bar. Even the assembly language demigods I rubbed desks with in those days were intrigued,
while suggesting for weeks that Frank Borland and his cronies in some garage in Santa Cruz were promoting the hoax of the century.

Delphi and Java: Language Revolutions to Crown the 20th Century
.

,

But the rest, as they say, is history. And
if Frank was promoting a hoax, it’s still
fool proof. Customizable speedy IDEs and
programming languages have been sharing
disk space for a decade, and we’ve been
enjoying it. We enjoy it so much that we
expect every new programming environ-
ment to have more than a few of our
favorite things: code and string editors,
object inspectors, project managers, built-
in debuggers, component palettes, hooks
to everything we can imagine, and so on.
(Delphi… sigh…you gotta love it.)

But then, every now and then, some-
thing happens that shakes the founda-
tions. This time the foundations are shak-
ing from a revolution in the Online arena
Suddenly we’re all drooling over the
Internet, the World Wide Web, and Java.
The hype is almost incredible, the enthu-
siasm contagious, the prospects staggering
and the products new and mostly as
cyberspaced as cyberspace itself.

No…I haven’t forgotten that there was a
lot of hype about Windows 95. But that
hype was mainly about an improvement
in something we already knew about
(Windows 3.x), not about something new
and perhaps even a little crazy. The
Internet and particularly the World Wide
Web are attracting a kind of excitement
and energy that was rampant in mid-80s
PC development when hackers experi-
mented with their computers and gave
their code freely to the public domain.
When it seemed like everyone had a new
idea about modifying computers, design-
ing peripherals, or generating code.

The new Net/Web hackers, like those
early PC hackers, see opportunity and
challenges everywhere they turn. Web
hackers show their creations to the world.
Anyone with a connection to the Net and
a few tools can download a truckload of
new nifty Net-Web applications for free.
And everyone and their sisters want to be
involved somehow, some way.

But perhaps the most telling aspect of
the Web-o-lution, the clue that lets us
know something really interesting is hap-
pening, is the enthusiasm the computing
community has bestowed on Java.
A taste of Java. Java is both a general pur-
pose programming language and a Web
applet development language. Applets are
Java programs (or applications) that you
download from the Web with a browser
such as Netscape 2.0 and run on your
computer.

As a general purpose programming lan-
guage, Java may be the answer to the
prayers of frustrated C++ programmers
everywhere. Java is based on C++ syntax,
but is simpler and easier to use than C++,
and it’s portable across many platforms.
Java developers can write an application
once for any operating system and never
need to port it — the Java applications
you create on one platform will run with-
out modification on other operating sys-
tems and computers. (Talk about a breath
of fresh air.)

Java, like C++ and Delphi, is object-ori-
ented and provides a run-time environ-
ment. Although Java is interpreted for
faster prototyping and quicker develop-
ment cycles, it’s also robust and potential-
ly quite high-performance. Many C++
programmers abandoned C++ because of
the painful C++ compile-link-load-test-
crash-debug-crash cycle.

Java applications are robust. The Java
run-time system manages memory and
garbage collection automatically. Multiple
threading (which allows more than one
flow of control within a single applica-
tion) is built into the Java environment to
allow CPU and resource intensive applica-
tions such as number crunchers and inter-
active graphics to process in the back-
ground while users perform other tasks.

Java applications are flexible, dynamic;
they adapt to changing environments by
dynamically downloading code modules
throughout a network. Java can be used
for stand-alone, Internet, and intranet
application development. To run a Java
applet for example, all one needs is a Java-
compatible browser such as Hot Java or
Netscape 2.0, or the Applet Viewer that
comes with Sun Microsystems’ JDK (Java
Development Kit).

The Java run-time system has built-in
protection against viruses and break-ins.
In theory at least, end-users can feel
secure downloading Java code from any-
where on the Internet.

Java on the rocks. But there is a rub, one
I’m finding as a Java explorer, more than
a little taxing. While Java might be the
language of the future, Java development
environments are a blast from the past.
Java developers compile Java from the
command line, and there’s nothing to
drag and drop. Although Java represents
one future vision of programming, with
respect to developer convenience, it’s a
vision of the past.

Although heavy hitters such as Borland
have announced Java development tools,
I’ve seen nothing yet that’s better than
Java extensions placed over a C++ envi-
ronment. And speaking from the satisfied
point of view of a Delphi programmer, I
gotta say “no thanks.” What Delphi pro-
grammer in his right mind wants to deal
with a C++ environment? That’s too many
steps backward to get ahead.

But what to do? After all, I agree with
the pack: the Web and Java are too excit-
ing to ignore, even without a nice IDE.
One solution, primitive yes, but better
than Java straight at least, is Java on the
Rocks, a little Java IDE I created (you
guessed it) in Delphi to unprimitivise my
Java development environment.

Java on the Rocks is an IDE composed
of Delphi components (menu, edit boxes,
option dialogs, etc.) that gives me a little
room to develop and connects me a little
less painfully to the DOS command line.
Although Java on the Rocks is also primi-
tive, it at least lets me explore Java with-
out giving up all my hard-earned Delphi
conveniences. Now I can enjoy the latest
language revolution a bit less painfully.

I’ll describe the code and give it to you
in an upcoming “The Way of Delphi.”
Meanwhile, I’m translating Java on the
Rocks to Java and trying to decide
whether Java or Delphi has more to offer
explorers at the end of the 20th century.

Gary Entsminger is a Contributing
Editor to Delphi Informant.
Delphi Informant May 1996 2

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi Power Toolkit for Windows
Harold Davis

Ventana

ISBN: 1-56604-292-5
Price: US$49.95
(750 pages, CD-ROM)
Phone: (800) 743-5369
TurboPower Releases Orpheus 2.0 For Delphi and Delphi 2

TurboPower Software Co.

of Colorado Springs, CO
has announced Orpheus 2.0
for use in Delphi and
Delphi 2. Orpheus is a col-
lection of true VCL data
entry components for
Delphi. This new version
offers 32-bit support, a
data-aware table, a data-
aware array editor, a format-
ted data-aware picture label,
and alarm components.

Orpheus also includes vali-
dated data-aware fields for
string, numeric, currency, and
date/time variables. It has a
text editor with 16MB capaci-
ty, undo/redo, and word
wrap. Orpheus includes a list
box with unlimited capacity,
multiple selection, and colors,
along with a notebook page
with top and side tab options.
It has a flexible table that
holds edit fields, combo
boxes, bitmaps, and check
boxes. It also includes two-,
four-, and five-way spinners.

A free trial version is
available via the Internet
and TurboPower’s BBS, and
includes the full functional-
ity of Orpheus. However, it
runs only when the Delphi
development environment
is operating. A Delphi help
file is included.

Price: US$199, includes source,
documentation, free technical support
by phone, e-mail, and fax, and a 60-
day money-back guarantee.

Contact: TurboPower Software Co.,
PO Box 49009, Colorado Springs,
CO 80949-9009
Phone: (800) 333-4160 or
(719) 260-9136
Fax: (719) 260-7151
BBS: (719) 260-9726
CIS Forum: GO PCVENB
Web Site: http://www.tpower.com
Stylus Releases Toolkit for Windows 95 and Windows NT

Stylus, of Cambridge, MA,

announced the release of
Visual Voice Pro Version 3.0
for Windows 95 and
Windows NT. Visual Voice
3.0 turns any OLE control-
compatible environment,
such as Delphi 2.0, C++ 4.0,
PowerBuilder 5.0, Visual
Basic 4.0, or Paradox 7 for
Windows 95 and Windows
NT into a full-featured tele-
phony application develop-
ment toolkit. Visual Voice 3.0
is a 32-bit upgrade to Stylus’
telephony software toolkit. It
uses the multi-tasking fea-
tures of Windows NT to sup-
port 72 simultaneous phone
line connections per PC.

Using Visual Voice 3.0,
developers can create appli-
cations with touch-tone data
access, fax-on-demand, voice
mail, and Internet telephony
applications. Systems devel-
oped with Visual Voice 3.0
can interact with an avail-
able data source, network,
and groupware platform
because of third-party built-
in support available for
Windows-based environ-
ments. Typical business sys-
tems built with Visual Voice
3.0 include 24-hour cus-
tomer order services, bene-
fits enrollment hotlines, fax-
on-demand, and unified
messaging systems.
In addition to the OLE
control interface, Visual
Voice 3.0 provides a 32-bit
DLL and class library inter-
face for Visual C++.

Visual Voice 3.0 also
includes documentation,
online help, a tutorial, and
sample applications for dis-
tribution as-is, or for use in
development. The sample
applications include voice
mail, fax-on-demand, IVR
order status, and an out-dat-
ing application.

Price: Visual Voice Pro 3.0 is available
for multi-line Dialogic voice boards.
Pricing starts at US$495 for Windows
95 and US$795 for Windows NT.

Contact: Stylus, 201 Broadway,
Cambridge, MA 02139
Phone: (617) 621-9545
Fax: (617) 621-7862
E-Mail: Internet: sales@stylus.com
or info@ stylus.com
Web Site: http://www.stylus.com.
Delphi Informant May 1996 3

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

The Way of Delphi
Gary Entsminger
Prentice Hall PTR

ISBN: 0-13-455271-7
Price: US$39.95 (400 pages)
Phone: (800) 947-7700
Software Development Tools Releases AppBridge AutoCode for Delphi

Software Development

Tools, Inc., of Boston MA,
announced a Delphi version
of its AppBridge AutoCode, a
tool that generates Delphi
host navigation code and
graphical user interface (GUI)
versions of IBM mainframe
or AS/400 screens.
With AppBridge AutoCode

users can create host naviga-
tion code, thus creating GUI
versions of partial or complete
host screens, and integrate
generated code into a range of
development environments.
This is accomplished by turn-
ing on AutoCode and navigat-
ing the host system.

AutoCode provides addition-
al value by enabling compa-
nies to modify how users
interact with host-based appli-
cations. With AutoCode, mul-
tiple host screens can be com-
bined into a single screen.
Using a variety of develop-
ment tools, companies can re-
engineer their applications
from the client end by chang-
ing the work flow, without
altering the host side.
AppBridge AutoCode is

part of the SDTI
WorkBench, a family of
client/server migration tools
that enable customers to
move from host-based sys-
tems to client/server at their
own pace, while leveraging
their tool and application
investments along the way.

AppBridge AutoCode is
available as a stand-alone
product, as part of AppBridge,
or as part of the suite of SDTI
WorkBench migration tools.
AppBridge AutoCode runs on
Windows 95, Windows NT,
IBM mainframe, and AS/400
environments.

Price: AppBridge AutoCode for Delphi,
US$1,295 per developer license.

Contact: Software Development Tools,
Inc., 60 State St., Suite 700, Boston,
MA 02109
Phone: (617) 854-7454
Fax: (617) 854-7453
E-Mail: CIS: 75553,3027
Sherlock Releases Formations 2.1 for Delphi

Sherlock Software of Baton

Rouge, LA is shipping
Formations 2.1, a set of 20
graphics VCLs for Delphi.

Formations is a toolkit that
offers 256-color form back-
ground alterations for Delphi.
The Granite, Marble, Brick,
and Stone components trans-
form backgrounds into 30
styles of rock sculpture in 16-
and 32-bit environments.

In addition to backgrounds,
Formations offers 16 compo-
nents that enhance form
design. These include a
ClearButton component that
displays a 3D button with the
texture of the background
beneath it. Formations’ four
SlideBar components show
handles that match the 30
background styles, producing
the same three-dimensional
appearance.

Formations’ other compo-
nents include two running
clocks (analog or digital dis-
play), and a SlideShow com-
ponent that allows program-
mers to “slide” one photo on
top of another from 12 differ-
ent angles. In addition, you
can create full-color animation
using the Movie component.

Other VCL components
include: Scrolling text in a
marquee fashion, a
FontCombo, alternate radio
buttons and check boxes,
password dialog, and a multi-
style 3D Label component.

Price: US$199. No royalties required;
includes online and written documenta-
tion, free support via telephone or fax,
two additional components free with
registration, and a 30-day money-back
guarantee.

Contact: Sherlock Software, 8386-D
Airline Highway, Baton Rouge,
LA 70815
Phone: (504) 924-2511 or
(504) 924-2566
Fax: (504) 924-2572
Delphi Informant May 1996 4

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Special Edition Using Delphi 2
Jonathan Matcho, et al.

Que

ISBN: 0-7897-0591-5
Price: US$49.99
(891 pages, CD-ROM)
Phone: (800) 428-5331
Sylvan Ascent Announces Geographic Mapping Capabilities for Web Sites

Sylvan Ascent, Inc., of

Santa Fe, NM, recently
released a new version of
SylvanMaps/OCX for embed-
ding mapping capabilities
into interactive Web pages.
This version will allow pro-
grammers to embed mapping
functionality into programs
written in Delphi and other
programming languages that
support OCXes.

Like the original Windows
version, the Web version of
SylvanMaps/OCX enables
mapping from any database
that follows the Open Data-
base Connectivity (ODBC)
standard.

A range of mapping func-
tions are built into Sylvan-
Maps/OCX, including display,
SQL and geo-querying, dis-
tance measurement, visual
spatial analysis, address match-
ing, and a map-key control.

The installation program
adds the map control and
map-key control to the pro-
gramming software’s tools
palette. Programmers can
then select the control, drag
and drop, and set the
required parameters. The
result is live mapping from
any size database built into a
Web site.

SylvanMaps/OCX is bun-
dled on a CD-ROM and
includes mapping data. In
addition, translators will be
provided for ArcView shape
files, US Census Bureau
TIGER files, USGS DLG,
AutoCAD, DWG, and Sylvan
Ascent's own CD\MAPs.
Price: US$495, includes free technical
support via e-mail and telephone. A
demonstration version is available at
Sylvan’s Web site.

Contact: Sylvan Ascent, Inc.,
PO Box 4792, Santa Fe, NM 87502
Phone: (800) 362-8971 or
(505) 986-8739
Fax: (505) 986-0906
E-Mail: Internet: sylvan@sylvan-
maps.com
CIS: GO SYLVANASCENT
Web Site: http://www.sylvan-
maps.com/ocx
Open Horizon’s Connection Application Broker Supports Delphi 2

Open Horizon, Inc. of

Belmont, CA has released
Connection Application
Broker, an add-on to Open
Horizon’s Connection family
of database access and enter-
prise services connectivity soft-
ware. Application Broker
enables Delphi developers to
link 2-tier applications to
shared business logic created
with standard programming
languages (e.g. C, C++, and
COBOL), transaction process-
ing monitors (including CICS,
TUXEDO, Encina, and TOP
END), and enterprise develop-
ment environments (such as
Forte and Dynasty). The
Application Broker uses the
built-in capabilities of the
Delphi toolkit to provide
transparent integration.
The Application Broker is a
server-resident module that
snaps on to the base Con-
nection connectivity product.
Developers of server-based
application logic can register
their business rules inside the
Application Broker, making
those services available to
clients throughout the enter-
prise. Front-end GUI tools
such as 16- and 32-bit Delphi
Client/Server 2.0 are able to
invoke the application services
through built-in capabilities
that come bundled with the
product. Through the
Application Broker’s imple-
mentation of dynamic bind-
ing, Delphi applications can
automatically discover new
business rules on the server as
they become available.

By combining Connection
Database Broker module(s)
with the Application Broker,
Delphi developers can support
2- and 3-tier systems simulta-
neously in one application.

The Connection Client
supports Windows 3.1, Win-
dows NT, Solaris, AIX, and
HP/UX. Future platforms
will support Macintosh,
OS/2, and Windows 95.

Price: The Connection Application Broker
is US$149 per client workstation; there’s
no charge for the server.

Contact: Open Horizon, Inc., 1301
Shoreway Rd., Ste. 126, Belmont, CA
94002
Phone: (415) 598-1200
Fax: (415) 593-1669
E-Mail: Internet: info@-
openhorizon.com
Web Site: http://www.open-
horizon.com.
Delphi Informant May 1996 5

News
L I N E

May 1996

Developers Competition
Heads to Chicago,

San Jose, and Boston
Droege Computing Services and

Digital Consulting Inc. (DCI) will be
co-producing a series of Developers
Competitions to be held in Chicago,

San Jose, and Boston.
Each competition will require contes-
tants to develop a typical database
application based on specifications

detailing a real-life problem.
Chicago will feature the RAD

Developers Competition held during
Database and Client/Server World,

December 10-12, 1996. In San
Jose, developers can compete in the

Internet Developers Competition,
scheduled during the Internet Expo,

February 18-20, 1997. The
Client/Server Developers

Competition will take place during
the Database and Client/Server

World, May 20-22, 1997 in Boston.
Competition winners will advance to
the 1997 Developers Competition,

scheduled for October 1997 in
Raleigh/Durham, NC.
For more details visit

http://www2.interpath.net/devcomp/.
Arthur Andersen Selects Delphi: Joins Partner Program

Dallas, TX — Arthur

Andersen announced it has
adopted Delphi as its devel-
opment environment corpo-
rate-wide. In addition, Arthur
Andersen will now train all
new employees on Delphi.

Arthur Andersen has also
joined Borland’s Premier
Value Added Partner
Program. This alliance inte-
grates Arthur Andersen’s
Business Consulting services
with Borland’s client/server
technology.

Arthur Andersen’s business
consulting practice assists
mid- and large-sized compa-
nies in improving their busi-
ness processes and technolo-
gies by specializing in opera-
tional and organizational
improvement, performance
measurement, and middle
market technology implemen-
tation services. The company
provides creative solutions for
its clients through audit, tax,
business advisory, and special-
ty consulting services.

Borland International Inc.
recently launched the Premier
Value Added Partner Program
for client/server system inte-
grators and consultants who
provide corporations and gov-
ernment clients with applica-
tions, consulting, and training
services for Borland’s
client/server software products
(Delphi Client/Server,
InterBase, ReportSmith, and
Paradox Client/Server).

Borland’s Premier Value
Added Partner Program’s
annual fee includes software,
rebates, technical support, and
marketing tools and programs.
Each partner must also com-
plete Borland sales and prod-
uct training. For more infor-
mation, contact Borland at
(408) 431-5117.
Microsoft Announces
ActiveX Technologies

San Francisco, CA —
Microsoft Corp. has
announced ActiveX
Technologies, small, full-fea-
tured components for the
Internet, intranets, and PCs.
Using ActiveX Technologies,
developers can add active
content, including animation,
3D virtual reality, video, and
other multimedia content to
static Web pages.

ActiveX Controls form a
framework for creating inter-
active content using software
components, scripts, and
existing applications. Speci-
fically, ActiveX Technologies
enable developers to build
Web content using ActiveX
Controls (formerly OLE
Controls), active scripts, and
active documents.

ActiveX Controls work with
several programming lan-
guages, including Delphi,
Microsoft Visual C++, Visual
Basic, and others. ActiveX
Controls enable developers to
embed a variety of software
components, such as graphics
viewers, animation sequences,
credit-card transaction
objects, or spreadsheet
applets, into hypertext
markup language (HTML)
pages. In addition, Java
applets can co-exist with
ActiveX Controls on an
HTML page.

A key benefit of using
ActiveX Technologies is its
ability to integrate applica-
Borland Announces Support for ActiveX Controls

San Francisco, CA —

Borland International,
along with other vendors,
has announced support for
Microsoft ActiveX Controls
(formerly called OLE
Controls). ActiveX Controls
provide functionality for
Web pages, including
sound, video, animation,
security, credit-card
approval, and more.
ActiveX Controls are an
open architecture supported
by software vendors, corpora-
tions, and tools vendors. A
developer can use any tool or
language to create controls
that support specific platform
functionality such as multi-
media, graphics, data access,
and more. For details, visit
Microsoft’s Web site at
http://www.microsoft.com.
“Microsoft Announces ActiveX Technologies”
continued on page 7
Blue Sky Software Corp. http://www.blue-sky.com/
Borland International Inc. http://www.borland.com/
Brainstorm Technologies http://www.braintech.com/
Crystal, A Seagate Software Company http://www.seagate.com/software/crystal/
DART http://www.dart.com/
Digital Equipment Corp. http://www.digital.com/
FarPoint Software http://www.fpoint.com/fpoint/
LEAD Technologies http://www.leadtools.com/
Macromedia http://www.macromedia.com/
MicroHelp http://www.microhelp.com/
Nesbitt Software http://www.nesbitt.com/
NuMega Technologies Inc. http://www.numega.com/
Oracle http://www.oracle.com/
Pinnacle Publishing Inc. http://www.pinpub.com/
Powersoft Corp. http://www.powersoft.com/
ProtoView Development Corp. http://www.protoview.com/
Quarterdeck Corp. Inc. http://www.quarterdeck.com/
Sax Software http://www.saxsoft.com/
Sheridan Software Systems Inc. http://www.shersoft.com/
Stylus Innovations http://www.stylus.com/
SuccessWare (NetSync) http://www.gosware.com/
Sylvan Ascent Inc. http://www.sylvanmaps.com/ocx/
Visual Components http://www.visualcomp.com/
Voysys http://www.voysys.com/
Delphi Informant May 1996 6

News
L I N E

May 1996

Category Vendors
Testing SQA, Segue Software, and Mercury Interactive

OOP Design Computer Systems Associates, Logic Works, Rational
Software, db Logic, and MicroGold

Version Control Intersolv (PVCS version control system is included in
Delphi Client/Server Suite 2), and MKS

Database AppSource, Arbor Software, Attachmate, Platinum
Technologies, Popkin Software, LBMS, Asymetrix,
Brainstorm, Sequelink, and SDP Technologies

Interface Components Woll2Woll Software, Shoreline Software, Apiary,
TurboPower, and more

Communications Dart, Silverware, TurboPower, and MicroHelp

Installation InstallShield Corp. (InstallShield Express is
included in Delphi Client/Server Suite 2), Eschalon
Development, Great Lakes Business Solutions, 20/20
Software, and Sax Software

Conversion Eagle Research and more

Graphics/Imaging DFL Software, Mobius, Lead Technologies, and
GigaSoft

Emerging Technologies TIMC, Voysys, and GIS Systems
(vector maps, virtual
reality environments,
telephony, etc.)

Internet/Web Sax Software, HREF Tools, and Nesbitt Software

Expert/Code Generator Apiary

Network Apiary

Help Systems MicroHelp and Blue Sky Software Corp.
Microsoft Announces ActiveX Technologies (cont.)

tions into Web browsers so
data managed by those appli-
cations becomes accessible as
Web pages. This technology,
called ActiveX Documents,
lets a user navigate a corporate
intranet to view a depart-
ment’s Web page, examine
spreadsheets, and query data-
bases — all from within the
Web browser and without
converting it into HTML.

ActiveX Technologies
includes the ActiveX Server
Framework, based on the
Microsoft Internet
Information Server (IIS)
integrated with the
Windows NT Server.

The ActiveX Server
Framework is composed of
ActiveX Server Scripting
and ActiveX Server
Controls. ActiveX Server
Controls can be used to
build server-driven active
content, allowing customers
to tie into legacy systems or
build applications from
reusable object components.
ActiveX Server Scripts can
be written using most script-
ing languages.

In addition, Microsoft has
co-developed an ActiveX
plug-in for Netscape
Navigator with nCompass
Labs Inc., enabling Netscape
Navigator browsers to view
active content.

ActiveX Technologies are
available in the Microsoft
ActiveX Development Kit.
The kit has over 600MB of
Internet information.

It includes Microsoft
Internet Explorer 3.0 (devel-
oper pre-release), Microsoft
Internet Information Server,
a sample application, Help
files, and Windows NT 3.51
updates to support IIS. A
CD-ROM version of the
ActiveX Development Kit
will be available for US$99.

For details visit http://www.-
microsoft.com/intdev/. Online
product information is avail-
able at http://www.windows.-
microsoft.com/.
Seventh Annual Borland Developers Conference Nears

Scotts Valley, CA — Borland

International’s 7th Annual
Borland Developers
Conference (BDC) is coming
to Anaheim, CA on July 27 -
31, 1996. This year’s confer-
ence will feature more than
200 sessions hosted by devel-
opment experts, a free CD-
ROM including proceedings,
samples, and source code from
all conference tracks, and your
choice of a free copy of
Borland’s Delphi Developer,
Borland C++ Developer and
Suite, Paradox, Visual dBASE
Professional, or InterBase.

BDC will offer core tracks
focusing on: Delphi, Borland
C++, Paradox, Visual
dBASE, InterBase, and Java.
In addition, elective tracks
covering industry trends,
business solutions, operating
systems issues, and more are
planned. These topic threads
include solutions, program-
ming, tools and techniques,
methodologies, client/server,
and the Internet.
Attendees can also access a
computer lab containing the
latest Borland products in a
network environment, and
discuss issues with Borland
technical experts.

Early registration costs
US$945 (if received by
June 7, 1996), a savings of
US$250 off the regular
conference price of
US$1,195. To register, call
(800) 350-4244. If outside
the US and Canada, call
(805) 495-7800, ext. 239.
Third-Party Vendor Support for Delphi 2 on the Rise

Scotts Valley, CA — Borland

International’s Delphi 2 is
gaining support from third-
party vendors.

Over 1,300 components,
such as OCX and VCL con-
trols, support Delphi 2, as
well as automated testing,
CASE/data modeling, team
development, data warehous-
ing, online analytical process-
ing (OLAP), and distributed
computing and transactional
middleware tools.

Book publishers are also
entering the Delphi 2 market.
Those producing Delphi 2-
related books include SAMS,
Addison-Wesley, Que,
Osborne/McGraw-Hill, IDG
Books, Sybex, M&T Books,
Ventana, and MIS Press.

Over 130 training centers
are supporting Borland
products, and most are
adding Delphi 2 course-
ware and instruction to
their training programs.
For more information, call

Borland’s developer partner
program, Borland Connec-
tions, at (800) 353-2211.

For technical information,
call Borland’s Tech Fax ser-
vice at (800) 822-4269.
Delphi Informant May 1996 7

News
L I N E

May 1996
ICG to Host Internet Developers’ Forum for Database Professionals

Elk Grove, CA — Informant

Communications Group, Inc.
(ICG) will host the Internet
Developers’ Forum 96 for
database professionals, April
28 through May 1, 1996, at
the Santa Clara Convention
Center in Santa Clara, CA.
The three-day conference

will feature a keynote presen-
tation by Marc Benioff, Senior
Vice President, Web/Work-
group Systems Division,
Oracle Corp. Benioff will dis-
cuss Oracle’s Internet prod-
ucts, and future directions for
implementing client/server
applications with Oracle tools
and the Internet.

Conference attendees will
also benefit from over 60
educational product-training
sessions, covering a wide
array of Internet and data-
base application products,
add-ins, development tools,
and World Wide Web data-
base techniques.

“Our Delphi Informant,
Paradox Informant, and Oracle
Informant readership has been
demanding more information
about Internet Database devel-
opment, and they view the
Web as the next step for
client/server applications,” said
Mitchell Koulouris, president
and CEO of ICG.
The Internet Developers’

Forum 96 will feature five
concurrent tracks, including:
CGI Tools and Languages,
covering Java, JavaScript,
Delphi, and Perl; Database
connectivity, featuring a panel
of database vendors discussing
new product features for the
Web; and sessions on general
database development for the
Internet. Other sessions will
focus on server security opti-
mization and maintenance,
including firewall and security
issues, and server optimiza-
tion; Web site design and
maintenance, covering
HTML programming and
case studies of hot Web sites;
and business on the Web.

A variety of special events
will also be featured, including
a Sunday evening book-sign-
ing party at an opening recep-
tion. Renowned technical
authors will be onsite to min-
gle with attendees and sign
their books; each attendee will
have a choice of one signed
book. In addition, a vendor
reception will feature table-top
displays of their database ser-
vices and products.

Approximately 1,500 confer-
ence-goers are expected to
attend Internet Developers’
Forum 96, ranging from data-
base developers and consul-
tants to corporate MIS repre-
sentatives to VARs and net-
work/datacomm managers.
Conference attendees will rep-
resent users of Oracle,
Access/NT/BackOffice,
Delphi, Paradox, and other
RDBMSs and tools.

For details, call Outstanding
Marketing Events at (408)
462-4777 or visit the Forum’s
Web site at http://www.devfo-
rum.com.
JavaSoft Announces Java Database Connectivity

Palo Alto, CA — JavaSoft,

an operating company of
Sun Microsystems, Inc.,
announced the release of
Java Database Connectivity
(JDBC), a database access
application programming
interface (API) that enables
developers to write Java
applications that access data-
bases. The API specification
is available on the Internet at
http://java.sun.com.

JDBC gives developers a
framework to create portable
solutions that access a vari-
ety of databases. JDBC sup-
ports interchangeable
DBMS drivers through a
driver manager that auto-
matically loads the correct
JDBC-compatible driver for
the specific database.

JavaSoft will bundle the
JDBC Driver Manager into
future releases of Java prod-
ucts. In addition, JavaSoft will
release a software bridge from
JDBC to Microsoft’s database
driver interface (ODBC).
Several companies are using

the JDBC API, including:
Gupta Corp., Informix
Software, Inc., IBM’s
Database 2 (DB2), Object
Design, Inc., Oracle Corp.,
Sybase, Inc., as well as data-
base connectivity and tools
vendors Borland International
Inc., Intersolv, Open Horizon,
OpenLink Software, Persist-
ence Software, RogueWave
Software Inc., SAS Institute
Inc., Visigenic Software, Inc.,
and WebLogic, Inc.

JavaSoft will support com-
pliance test suites that devel-
opers will use to test JDBC-
based products, ensuring
that each application has the
highest level of Java power
and compatibility. Initial
test suites are expected to
be available in June.
Delphi Informant May 1996 8

Using OLE Automation to
Access the Internet
Netscape Navigator as an Automation Server

On the Cover
Delphi 2.0 / OLE / Object Pascal / Netscape

By Joseph C. Fung
Your Web browser makes it simple for you to surf the World Wide Web
and gain access to a wealth of information. The current crop of Web

browsers — or “Internet clients” as they are becoming known — can
retrieve hypertext Web documents, download files, handle e-mail, and let
you read newsgroups.
To use your Web browser to visit a particu-
lar Web address or Internet site, simply
enter the site’s Web address — the URL
(Uniform Resource Locator) — and the
browser connects and retrieves information
for you. A forms-capable Web browser, such
as Netscape Navigator or Microsoft Internet
Explorer, even lets you submit information
to a Web server by filling in fields on a
form. A CGI (Common Gateway Interface)
program on the server can process this
information, perform a desired action, then
return a response to you. The Web browser
takes care of details such as network access,
file retrieval, and security, so you can con-
centrate on exploring the Internet.

Delphi lets you build Internet and intranet
programs that range from client/server
applications to CGI programs, but you may
need to obtain third-party Internet compo-
nents or tools. [For more information on
forthcoming third-party tools, see the side-
bar “Delphi and the Internet” on page 14.]

Fortunately, you can also use Delphi 2’s
OLE automation capabilities to leverage
Netscape Navigator’s built-in feature set
and experiment with creating your own
simple Internet-enabled program.

What Is OLE Automation?
OLE automation defines a standard way in
which an application can programmatically
control or be controlled by another pro-
gram. This ability lets you tap the func-
tionality of many applications to create a
single, integrated solution. Before OLE
automation, the few ways to do this
included using macro or key stroke
recorders, or using the proprietary macro
language of another application.

OLE automation changes this by letting an
application known as an automation server
expose one or more objects that surface
functionality you can access. The program
that works with these objects is called an
automation controller. A Delphi program
can have automation server and automa-
tion controller capabilities. Netscape
Navigator is an automation server so you
can use a Delphi program to control it.

Using OLE Automation to Control
another Application
To access an automation object, you use the
Object Pascal CreateOLEObject function to
instantiate the object. CreateOLEObject
accepts the ProgID of an automation object
and returns a reference to it as a Variant (a
special data type that can store different
types of data and is intended primarily for
OLE programming). ProgID is the pro-
grammatic string identifier, or name, of the
automation object. Each automation server
registers the ProgID of all its automation
objects into the system registry when you
Delphi Informant May 1996 9

On the Cover
install the server. The ProgID lets you identify and instanti-
ate an automation object without knowing the file name or
location of the automation server that creates it.

Once you’ve instantiated an automation object in your
program, you use standard Object Pascal syntax to work
with it. The automation object can be treated as a normal
object with the following exceptions. First, all the proper-
ties and method arguments must be passed as Variants.
This means that any value that you use must be a Variant
or can be implicitly or explicitly converted into a Variant.
Second, calls to the automation object’s methods are late-
bound, so checking the method’s validity, type, or number
of arguments, is not done until run time. Therefore, if you
call a method that is not part of the automation object, an
exception is raised in your program.

The code fragment in Figure 1 illustrates how to use
CreateOLEObject to instantiate an OLE object for Excel 7
and use it to add a new workbook.
Figure 1: Sample code to control an Excel automation object.

var
// Declare variable to reference object.
ExcelObject : Variant;

begin
// Create instance with Excel.Application ProgID.
ExcelObject := CreateOLEObject('Excel.Application');
// Add a new workbook.
ExcelObject.Workbooks.Add;

end;
Using Netscape Navigator as an Automation Server
One of the automation objects that Netscape Navigator 2.0
exposes has a ProgID of Netscape.Network.1. This automa-
tion object lets you use Netscape Navigator’s Internet
access and file retrieval capabilities in your application.

The automation object defines many methods and proper-
ties. Here are some of the methods:

Open: Connects to and begins retrieving from a speci-
fied URL. If the method fails (e.g. Navigator is busy),
the method returns False. Open takes five arguments:
pURL, iMethod, pPostData, lPostDataSize, and
pPostHeaders. The first argument, pURL, is a string
that specifies the URL of the Web site. The second
argument, iMethod, indicates the type of operation to
perform. When reading from a Web site, you pass a 0
to indicate that you want to read. The remaining argu-
ments pertain to posting data to the Web site. Since
you are only reading, you can also pass 0 as values for
these arguments.
Close: Disconnects any current connection and resets
the automation object. You should call Close when you
are finished with the automation object.
GetStatus: Returns an integer indicating the status of the
load. It returns a non-zero value in the case of an error.
Read: Retrieves data from the Web site and stores it into a
buffer that you specify. Read returns -1 if there is no more
data to read, 0 if there is currently no data to read, or a
positive number indicating the number of bytes actually
read. Read takes two arguments, pBuffer and iAmount.

The first argument, pBuffer, is an OLE BSTR type and
refers to the buffer that receives the data. The second
argument, iAmount, specifies the size of the buffer. To
keep things simple, you can use a string as the type for
the buffer instead of a BSTR; Delphi automatically
converts the string into a BSTR for you. When
Netscape Navigator stores any returned data into your
buffer, it does not update the internal byte count of the
string or BSTR, for that matter. Because of this, you
must correct the byte count manually after calling Read.

This brief description only describes the methods used in
the examples in this article. If you are interested in learning
more about the objects surfaced by Netscape Navigator, you
can find the documentation for the OLE automation inter-
face at http://home.mcom.com/newsref/std/oleapi.html.

Using Netscape Navigator to Connect to a Web Site
The following two examples show how you can use
Netscape Navigator to connect to the Internet and down-
load useful information. Each sample application uses the
Netscape Navigator automation object to connect to a
particular Web site. Specifically, the application passes a
URL to the automation object and requests some data to
retrieve. During this interaction, Netscape Navigator is
not visible so all you’ll see is your main form.

To run these examples, you’ll need to establish an Internet
connection and have a copy of Netscape Navigator 2.0.
The Internet connection should be active before you try
any of the samples. If you’re using a dial-up connection,
you may want to use Windows 95 Dial-Up Networking or
a third-party dialer to connect to your Internet Service
Provider (ISP). If you don’t have a copy of Netscape
Navigator, you can obtain one by purchasing the Netscape
Internet Starter Kit at a store, or by downloading an eval-
uation copy from the Netscape home page at their Web
address, http://www.netscape.com.

Quote.Com Background
The first example uses the Quote.Com Web site
(www.quote.com) to download stock quotes. Quote.Com
is a company that provides financial market data, such as
stock quotes, financial commentary, and business news to
Internet users. Normally, you must have a paid subscrip-
tion to the service to use it. New users who don’t want to
pay can still try the service on a limited basis, but they
must register online to obtain a user account and password.
Users who do not register may still try the service, but are
limited to using the stock ticker “MSFT” (Microsoft) in
the demonstration area (see Figure 2). This example
assumes that you are not registered, so it uses MSFT as the
default ticker. If you register with Quote.Com, you can use
other stock tickers with the sample application.
Delphi Informant May 1996 10

type
TStockForm = class(TForm)

MainMenu1: TMainMenu;
File1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;
Exit1: TMenuItem;
Bevel1: TBevel;
StockButton: TButton;
Label1: TLabel;
StockSymbol: TEdit;
GroupBox1: TGroupBox;
QuoteLabel: TLabel;
Label2: TLabel;
procedure FormClose(Sender: TObject;

var Action: TCloseAction);
procedure Exit1Click(Sender: TObject);
procedure About1Click(Sender: TObject);
procedure StockButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);

private
LoginName: string; // Registered user login name.
Password: string; // Registered user password.

public
{ Public declarations }

end;

var
StockForm : TStockForm;

Figure 2: A Web page for quick quotes.

On the Cover
This screen allows you to enter your user name and pass-
word, a stock ticker, and the type of information you
want. When you press the Retrieve button, a URL con-
taining these parameters is sent to the Web server. A CGI
program at the Web server parses this URL and returns
the requested information as a hypertext document.
NetscapeObject : Variant;

Figure 4 (Top): The TStockForm class and variable declarations.
Figure 5 (Bottom): The FormCreate event handler.

procedure TStockForm.FormCreate(Sender: TObject);
begin

// This sample application only works if you use MSFT as
// the stock symbol. To obtain stock quotes for other
// companies, you must register with Quote.Com and obtain
// a login name & password. When you do, enter them here.
LoginName := '';
Password := '';

end;
The Stock Quote Example
The Stock Quote example
program shows you how you
can use a Delphi program to
connect to the Web server
and download a stock quote
for a specific ticker. The pro-
gram has a single form that
lets you enter a stock ticker
and press a button to obtain
a current quote for the stock. The screen in Figure 3
shows the appearance of the Delphi program after you
request a stock quote for MSFT.

The main unit, STOCKFRM.PAS, contains a definition
for the form class, TStockForm (see Figure 4), and also
declares a Variant, NetscapeObject, to reference the
Netscape automation object after you’ve created it.

TStockForm has two private variables, LoginName and
Password. By default, the form’s OnCreate handler assigns a
blank string to both of these variables. Therefore, you
must use MSFT as the stock ticker. LoginName and
Password are sent to the server when you request a quote.
If you register with Quote.Com, be sure to change the
code in OnFormCreate so that your user name and pass-
word are used (see Figure 5).

On the form is a TEdit component named StockSymbol
that lets you enter a stock ticker. After entering a valid
stock ticker, you can press the Request button. This exe-
cutes the StockButtonClick method that does the work of
retrieving the stock quote and displaying it on the
QuoteLabel label component.

Figure 3: The form for our
stock quote sample.
The StockButtonClick method (see Figure 6) starts the
Netscape Navigator automation server by calling
CreateOLEObject with the ProgID of the automation
object, then assigns it to the Variant, NetscapeObject.
Next, the automation object’s Open method is called
with the correct address for the quote server. The text for
the URL is composed so that all the necessary values are
passed to the CGI program at the Web site to retrieve
the stock quote. This includes the site address, stock
ticker, quote type, and the user name/password combina-
tion. Since only reading is being performed, zeros can be
passed as the remaining arguments to the Open call.

If the site is successfully contacted, the server’s Read
method is used to download the stock information into
a buffer that is then displayed on the form. Before the
information is displayed, the buffer is checked to see if
the server returned an error message instead of the
stock information. Normally, the stock quote is
returned as a string containing comma-delimited val-
ues. In an error situation, this particular server returns
a hypertext document indicating the error. To deter-
Delphi Informant May 1996 11

Figure 6: The StockButtonClick handler.

procedure TStockForm.StockButtonClick(Sender: TObject);
var

Buffer : string;
BytesRead : Integer;

begin
Screen.Cursor := crHourGlass;
// Launch Navigator if we haven't done so already.
if VarIsEmpty(NetscapeObject) then

begin
QuoteLabel.Caption :=

'Please wait. Loading Netscape for the first time';
QuoteLabel.Refresh;
try

NetscapeObject :=
CreateOLEObject('Netscape.Network.1');

except
ShowMessage('Could not start Netscape 2.0.

Please exit.');
Screen.Cursor := crDefault;
Exit;

end;
end;

// Begin the process of connecting and downloading.
try

QuoteLabel.Caption := 'Downloading data';
// Attempt to open the URL.
if NetscapeObject.Open('http://www.quote.com/cgi-bin' +

'/quote-form?symbols = ' +
StockSymbol.Text + '&login=' +
LoginName + '&passwd=' +
Password + '"etype=Quicken',
0,0,0,0) then

begin
// Check status first.
if NetscapeObject.GetStatus = 0 then

begin
// Set size of Buffer.
SetLength(Buffer,2048);
// Loop until something is read.
while True do

begin
// Read just a buffer full.
BytesRead:=NetscapeObject.Read(Buffer,2048);
// Nothing read. Server busy?
if BytesRead = 0 then

continue
else

break;
end;

// Correct the Buffer size.
SetLength(Buffer,BytesRead);
if (Copy(Buffer,1,1) = '<') or

(BytesRead < 1) then
// Error at site or time-out.
QuoteLabel.Caption :=
'No information downloaded.'

else
QuoteLabel.Caption := Buffer;

end;
end

else
begin
// Any one of several problems may have
// occurred here. The DNS server may be
// having trouble locating the URL or
// the connection is bad or the URL has
// moved or is no longer there, etc.
QuoteLabel.Caption := 'Can not connect';
Exit;

end;
finally
Screen.Cursor := crDefault;

end;
end;

On the Cover

Figure 7: The FormClose handler.

procedure TStockForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
// Shut down Netscape if we started it.
if not VarIsEmpty(NetscapeObject) then

begin
// Call Netscape's Close method.
NetscapeObject.Close;
// Free the variant.
NetscapeObject := Unassigned;

end;
end;

Figure 8: The Web page for NBC’s Intellicast weather site.
mine if the latter occurred, the first character of the
buffer is compared to '<' to see if the buffer contains
the start of an HTML tag.

After you are finished with the program, you can close it.
When the form closes, its FormClose handler (see Figure 7)
uses the VarIsEmpty function to determine if the automation
server needs to be cleared. If so, the server is closed, then the
NetscapeObject variable is assigned a value of UnAssigned.

Intellicast Background
The second example uses the NBC News Intellicast Web
site (www.intellicast.com) to display a GIF graphics image
that depicts the 4-day weather forecast for a city (see
Figure 8). The NBC News Intellicast Web site provides
weather and skiing information for major locations around
the world. This service is free to online users and no regis-
tration is required.

When you request a forecast for a particular city, the Web
site returns a hypertext document containing summary
information and the image of the weather forecast. The
URL of the weather image for each city takes the form:

www.intellicast.com/weather/xxx/4-day.gif

where xxx is a three-letter city abbreviation.

This URL is static, but the image is continually updated by
NBC News so that it displays the current weather forecast.
Delphi Informant May 1996 12

Figure 9: The form for the weather service sample.

On the Cover

Figure 10: The type declaration for the sample form.

type
TWeatherForm = class(TForm)

StatusPanel: TPanel;
Image1: TImage;
Gauge1: TGauge;
Label1: TLabel;
MainMenu1: TMainMenu;
File1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;
Exit1: TMenuItem;
Bevel1: TBevel;
Panel1: TPanel;
CityListBox: TListBox;
Panel2: TPanel;
procedure FormCreate(Sender: TObject);
procedure CityListBoxDblClick(Sender: TObject);
procedure FormClose(Sender: TObject;

var Action: TCloseAction);
procedure Exit1Click(Sender: TObject);
procedure About1Click(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
WeatherForm : TWeatherForm;
NetscapeObject : Variant;

Figure 11: The form’s OnCreate handler.

// Initialize city list.
procedure TWeatherForm.FormCreate(Sender: TObject);
begin

with CityListBox.Items do begin
AddObject('Atlanta', TMapURL.Create('atl'));
AddObject('Atlantic City', TMapURL.Create('acy'));
AddObject('Boston', TMapURL.Create('bos'));
AddObject('Chicago', TMapURL.Create('ord'));
AddObject('Dallas', TMapURL.Create('dfw'));
AddObject('Detroit', TMapURL.Create('dtw'));
AddObject('Hoboken', TMapURL.Create('ewr'));
AddObject('Houston', TMapURL.Create('iah'));
AddObject('Las Vegas', TMapURL.Create('las'));
AddObject('Los Angeles', TMapURL.Create('lax'));
AddObject('Miami', TMapURL.Create('mia'));
AddObject('Minneapolis/St. Paul',

TMapURL.Create('msp'));
AddObject('New Orleans', TMapURL.Create('msy'));
AddObject('New York', TMapURL.Create('lga'));
AddObject('Philadelphia', TMapURL.Create('phl'));
AddObject('Phoenix', TMapURL.Create('phx'));
AddObject('Pittsburgh', TMapURL.Create('pit'));
AddObject('San Francisco', TMapURL.Create('sfo'));
AddObject('Seattle', TMapURL.Create('sea'));
AddObject('St. Louis', TMapURL.Create('stl'));
AddObject('Tulsa', TMapURL.Create('tul'));
AddObject('Washington, DC',TMapURL.Create('dca'));

end;
end;
The Weather Forecast Example
The Weather Forecast example program has a main form,
WeatherForm, with a TListbox component of major cities
and a TImage component. When you double-click on a
city, the application connects to the Intellicast site and
downloads its weather image. This image is then displayed
in the TImage. Figure 9 shows a weather forecast for the
New York metropolitan area.

The main unit, WEBFORM.PAS, defines the form
class TWeatherForm and the Variant NetscapeObject, to
reference the automation server (see Figure 10).

The form contains the list box, CityListBox, which stores the
name of each city and an associated TMapURL object for
that city. Each TMapURL object stores the three-letter abbre-
viation for a city and has a method, DisplayWeather, that is
executed when you double-click on a city in the list box. The
form’s OnCreate handler, FormCreate, populates the list box
with the list of cities and TMapURL objects (see Figure 11).

The MAPURL.PAS unit defines the TMapURL class.
TMapURL has a Create constructor that accepts a three-
letter city abbreviation as an argument. This abbreviation
is stored in a private string, FCityAbbrev, which is used by
DisplayWeather to build the correct URL for the city’s
weather forecast. DisplayWeather does all the work of con-
necting to the Web site, downloading the weather image,
then displaying it on the form:

type TMapURL = class(TObject)
private

FCityAbbrev : string;
public

constructor Create(CityAbbrev: string);
procedure DisplayWeather;

end;

DisplayWeather defines a TMemoryStream (GIFStream), a
string (Buffer), and an integer (BytesRead). These variables
are used to download the GIF image and convert it into a
bitmap. The weather image is a GIF image that cannot be
used in a TImage, so it is translated in memory into a
bitmap (.BMP) before displaying it.

When DisplayWeather is executed, it creates the
Netscape Navigator automation object by passing a
ProgID of Netscape.Network.1 to CreateOLEObject.
Delphi Informant May 1996 13

Joseph C. Fung is Director of Technology and Tools at PCSI, a leading client/server
and Internet/Intranet consulting and development firm. He is the co-author of the
forthcoming Delphi In Depth [McGraw-Hill, 1996], and Paradox for Windows
Essential Power Programming [Prima, 1995], and is the architect of AppExpert
and ScriptView. Recently, Mr. Fung chaired an Advisory Board for the Borland
Developers Conference. He can be reached at (201) 816-8002.

On the Cover
Next, the server’s Open method is called with the URL
of the city’s weather image. The URL for the image can
be easily constructed because its format is known.
Zeroes are passed as the remaining arguments to Open.

Once the connection is established, the image retrieval
process begins. The image is downloaded as 2K chunks
into Buffer by executing the server’s Read method. After
each chunk is received, it is transferred into GIFStream
using the TMemoryStream method WriteBuffer. These steps
are repeated until the image is fully retrieved and Read
returns a value of -1.
After the image is downloaded, it’s converted into a
bitmap format using a freeware GIF-to-BMP conver-
sion routine, GIFConvert. Finally, the image is dis-
played on a TImage on the form.

.GIF to .BMP Conversion Routine
Listing One on page 15 adapts the GIF-to-BMP graphics
conversion routine (GIF2BMP.PAS) developed originally
by Sean Wenzel and updated for Delphi by Richard
Dominelli. The comments in the GIF2BMP.PAS source
code indicate that the code may be freely used provided the
original authors are credited. The routines contained in
GIF2BMP have been minimally changed so that they can
be used for this article. The source code is not listed here,
but is available (see end of article for details). The original
source code can be found on CompuServe and several
Delphi-related Web sites.

Conclusion
Building custom applications for the Internet and intranets
requires sophisticated tools and experience, but this doesn’t
need to be a road block. OLE automation lets you use an
existing Web browser and experiment with adding browser-
type Internet capabilities to your Delphi application in a
low-cost way. To explore this avenue further, you should
visit the Netscape home page to learn more about the addi-
tional objects that Navigator exposes. ∆

Portions of this article were adapted from material for
Delphi In Depth [McGraw-Hill, 1996] by Cary Jensen,
Loy Anderson, Joseph C. Fung, Ann Lynnworth, Mark
Ostroff, Martin Rudy, and Robert Vivrette.

The demonstration projects referenced in this article are
available on the Delphi Informant Works CD located in
INFORM\96\MAY\DI9605JF.
Delphi is a very powerful development tool that can be used today
and tomorrow to create useful Internet applications. Examples of
the types of Internet programs you can create include: client/server
database programs, Netscape plug-ins, Web browsers and servers,
and CGI programs that run on Web servers. Delphi also lets you
take advantage of emerging technologies.

Borland is currently working on a Delphi-type development
environment for Java, Sun Microsystems’ hot Internet pro-
gramming language. This evolving language has many
strengths, and creates applets that are executed by a cross-plat-
form interpreter. If you want to create a Web application that
can be accessed publicly by any Windows, Macintosh, or
UNIX user, Java is compelling. Future versions of Delphi will
be closely tied to Borland’s overall Internet strategy. Microsoft
is also working on a set of Internet development technologies
based on Win32 and OLE for the Windows platform.

The Sweeper API enables developers to Internet-enable Win32
programs using tools such as Delphi, Visual Basic, and C++.
The Internet Server API (ISAPI) and CryptoAPI let you
extend Microsoft’s Internet Information Server and add cryp-
tography to your program. OLE Document Objects
(DocObjects) will let you host OLE controls in Web pages,
much as you do with Java applets. Because OLE controls are
automation objects, they have automation capabilities.

Delphi and Delphi users are in a unique and positive situation.
Delphi can be used immediately to build many types of Internet
applications. Not only can you use today’s technology, you can
take advantage of future technologies as Microsoft evolves and
extends the Internet APIs for the Windows platform.

— Joseph Fung

Delphi and the Internet
Delphi Informant May 1996 14

Delphi Informant May 1996 15

Begin Listing One — An Adaptation of GIF2BMP.PAS
constructor TMapURL.Create(CityAbbrev: string);
begin

inherited Create;
// Store the city abbreviation.
FCityAbbrev := CityAbbrev;

end;

procedure TMapURL.DisplayWeather;
const

BaseURL : string = 'http://www.intellicast.com/weather/';
var

GIFStream : TMemoryStream;
Buffer : string;
BytesRead : Integer;

begin
Screen.Cursor := crHourGlass;
// Launch Netscape Navigator.
if VarIsEmpty(NetscapeObject) then

begin
WeatherForm.StatusPanel.Caption :=

'Please wait. Loading Netscape for the first time';
WeatherForm.StatusPanel.Refresh;
try

NetscapeObject :=
CreateOLEObject('Netscape.Network.1');

except
ShowMessage(

'Could not start Netscape 2.0. Please exit.');
Screen.Cursor := crDefault;
Exit;

end;
WeatherForm.StatusPanel.Caption := '';

end;

try
WeatherForm.StatusPanel.Caption :=

'Downloading weather information';
WeatherForm.StatusPanel.Refresh;
// Attempt to open the URL for the weather
// forecast GIF.
if NetscapeObject.Open(

BaseURL + FCityAbbrev + '/4day.gif',0,0,0,0) then
begin

// Create temporary memory stream to store GIF.
GIFStream := TMemoryStream.Create;
try

while NetscapeObject.GetStatus = 0 do begin
// Set size of Buffer.
SetLength(Buffer,2048);
// Read a chunk.
BytesRead := NetscapeObject.Read(Buffer,2048);
if BytesRead = -1 then

// Nothing left to read.
Break

else
begin

// Correct the Buffer size. Read does
// not update it correctly.
SetLength(Buffer,BytesRead);
// Store GIF segment into stream.
GIFStream.WriteBuffer(

Pointer(Buffer)^,Length(Buffer));
// Loop up to read more chunks ...
Continue;

end;
end;

// Convert the GIFStream to a BMP so that we
// can display it in a TImage.
with TGIF.Create do

try
SetIndicators(WeatherForm.Gauge1,

WeatherForm.StatusPanel);
Stream := GIFStream;
// Reset position of GIF stream to origin.
Stream.Seek(0,0);
GIFConvert;

finally
Free;

end;
finally

GIFStream.Free;
end;

end
else

begin
// Any one of several problems may have occurred
// here. The DNS server may be having trouble
// locating the URL or the connection is bad or
// The URL has moved or is no longer there, etc.
WeatherForm.StatusPanel.Caption := '';
ShowMessage('Sorry! URL for the Intellicast ' +

'weather site cannot be located.');
Exit;

end;
finally

Screen.Cursor := crDefault;
WeatherForm.StatusPanel.Caption := '';
WeatherForm.Gauge1.Progress := 0;

end;
end;

end.
End Listing One

On the Cover

An HTML Generator
Use a Delphi Component to Build Your Web Site

On the Cover
Delphi 1 / Object Pascal / HTML

By Keith Wood

Figure 1: A sa
the code easil
shown in Figu

<html>
<head>
<title>Keith
</head>
<body>
<h1>Keith Wo
<hr>
<p>Welcome t
<p>Text can
<i>italicise
©,&AEli

First li
Second l
Third li

<p>Include a
border=0 alt
<p>Links can
<a href="sou
this.</p
</body>
</html>
Building your own World Wide Web (WWW) site can be a daunting task.
You need to understand HTTP, MIME, HTML, and possibly even CGI

[see the sidebar “Internet Definitions” on page 23]. However, by using the
encapsulation available in Delphi’s components, you can hide much of this
complexity from the novice user.
This article describes a component that
allows us to generate HTML with a
Delphi program, without an in-depth
understanding of HTML. The compo-
nent, THTMLWriter, allows values from
other sources — typically a database — to
be included in the documents produced,
creating truly up-to-date pages for display.

HyperText Markup Language
HTML is a language that describes how a
page will be presented. It’s interpreted by
various browsers that display the page to
the user. HTML is not WYSIWYG since
the final display is determined by the
mple HTML document. The use of tags makes
y understandable. The result of this code is
re 2.

 Wood's Home Page</title>

od's Home Page</h1>

o your own home page.</p>
be easily highlighted or
d</i>. Special characters can be inserted :
g;, é. Lists can be added :</p>

st item.
ist item.
st item.

n image if you want :<img src="athena.jpg"
="Demonstration image" align=middle></p>
 also be added. This one
rceb.htm">shows the code that produced
>

browser. The advantage of this is that
browsers can be implemented on many dif-
ferent platforms with various capabilities.

Let’s discuss the HTML elements that are
normally implemented on a home page.

Tags. An HTML document consists of a
straight text file with markup instruc-
tions encoded within tags. These tags are
delimited by angle brackets (< >)
allowing them to be easily identified.
Each tag has a name indicating its pur-
pose, and may have one or more attrib-
utes to control its function. Many tags
contain text or other tags, and some
remain empty (i.e. they stand alone).

To indicate the end of a particular tag, its
name is enclosed in angle brackets as
shown above, but with a slash preceding
the name. An example of a container tag is
the paragraph marker <p>, which matches
its closing version, </p>.

An example of an empty tag is the image
directive:

Figure 1 is a sample HTML document and
Figure 2 displays its appearance in a browser.

Head and Body. An HTML document is
divided into two parts: the head and
body. Among others, the head contains
tags that provide information about the
Delphi Informant May 1996 16

Figure 2: The visual representation of the HTML code shown in
Figure 1. The I-View browser is being used to view the page.

On the Cover
document as a whole, including the document’s title
and the base URL for this and related documents. The
title is the only mandatory tag in the header block. An
example of a document header is:

<head>
<title>Keith Wood's Home Page</title>
</head>

The body of the document is the part that is displayed
to the user. It can contain text, images, tables, lists, and
links to other documents. HTML allows up to six levels
of headings, <h1> to <h6>, with each heading displayed
in a slightly different way. HTML also allows text to be
grouped into paragraphs. Sections of text can be for-
matted in various ways with physical tags such as
(for bold) and <i> (for italics), or with logical tags,
such as and <code>. How the latter are dis-
played is determined by the browser. For example:

<h1>Keith Wood's Home Page</h1>
<p>Welcome to your own home page.</p>
<p>Text can be easily highlighted or
<i>italicised</i>.</p>

Images. Images can be included in the document, with the
standard formats being X-bitmap, .GIF, and JPEG files.
For example:

<img src="athena.jpg" border=0 alt="Demonstration image"
align=middle>

These can be positioned relative to surrounding text
and resized if required. A text alternative to images is
also available for those browsers that cannot handle
images, or have been disabled by the user to save load
time.

Lists. Several styles of lists can be displayed in HTML
documents, with the main ones being unordered (usual-
ly displayed with bullets) , ordered , and glos-
sary <dl>, consisting of a series of terms and their defin-
itions. Some lists can be embedded to create multi-lay-
ered structures. Here’s an example of an unordered list:

First list item.
Second list item.
Third list item.

Links. The most important part of an HTML docu-
ment is its links. Using the tag <a>, links provide refer-
ences to other parts of the same document or related
documents, which can be anywhere in the world.

A section of text or an image is marked as the anchor
(or hotspot) for the link, and is presented to the user in
some highlighted format. Clicking on an anchor causes
the browser to request the specified document (identi-
fied by its URL) from its server and display the results:

shows the code that
produced this

The Table Construct. Some columnar formatting can
be provided by the table construct, <table>. Tables are
comprised of rows, <tr>, which are themselves com-
prised of headings, <th>, or cells, <td>. These headings
and cells contain text and other HTML tags. The bor-
ders can be sized or made invisible, and even colored in
some browsers. Items within headings and cells can be
aligned both horizontally and vertically. For example:

<table>
<tr><th>Column 1</th><th>Column 2</th></tr>
<tr><td>Cell 1,1</td><td>Cell 2,1</td></tr>
</table>

Forms. Forms provide a way for users to interact with
the document, supplying entered information to the
server. Normally a CGI program receives the parameters
and processes them accordingly. This can be used to
search Web indexes, respond to surveys, or just about
anything else you can imagine. The processing of CGI
programs is beyond the scope of this article, but the fol-
lowing code demonstrates how simple form input capa-
bility can be implemented:

<form method=get action="search">
<p>Enter word to search for: <input type=text name="value">
<input type=submit name="action" value="Search"></p>
</form>

Spacing, etc. Additional spacing within an HTML docu-
ment is ignored, unless it occurs within a preformatted
Delphi Informant May 1996 17

On the Cover
section. This means that consecutive spaces, tabs, and car-
riage returns are all treated as if they were a single space.
The document’s formatting is done by the browser, based
upon the embedded tags. Tags that are not understood by
a browser are ignored. This allows new features to be
added incrementally without adversely affecting existing
browsers and documents.

The basic definition of HTML is referred to as version
2.0. This includes all the basic tags, but excludes tables.
Further extensions to this standard have been proposed
and are being finalized into HTML 3.0. These include
tables, client-side image maps, and common attributes for
many existing tags.

In the meantime, various browser providers are including
non-standard extensions to HTML that work within their
products. The leading organization in this category is
Netscape. Their extensions include specifying colors for the
page background, text and links, centering text and images,
customizing lists and horizontal rules, etc. Netscape’s other
principal extensions are tables and background images,
which have now been included in the proposed HTML
3.0 standard. Microsoft’s new Internet Explorer has added
its own extensions, primarily in the area of multimedia.
(For additional resources see Figure 12.)

An HTML Writer Component
The Delphi component that helps us generate HTML is
THTMLWriter. Since it’s non-visual, it’s derived directly
from TComponent. Therefore, THTMLWriter can be
placed on the Component Palette and easily incorporated
into our projects.

THTMLWriter consists of only four properties and many
methods to produce the various tags available in HTML.
The properties are:

Filename: The name of the file to which the generated
HTML is directed. Filename defaults to
HTMLWRTR.HTM (in Windows, HTML files have the
.HTM extension). When changed, the previous file is
closed and the new one is opened, or created, ready for
output.
Errors: We’ll discuss the Errors property in “Errors and
Warning.”
IncludeMIMEType: Set to True if the MIME header is
automatically included in the output. This would nor-
mally be done if the program is functioning in a CGI
environment.
Version: A read-only property that shows THTMLWriter’s
current version.

A Two-Tiered Approach
To maximize the usefulness of THTMLWriter, we imple-
ment a two-tiered approach for generating HTML.
First, there is a set of functions that return string values.
These correspond to the different HTML tags and allow
the HTML formatted text to be returned for further
manipulation in the program. Then a set of procedures
that correspond to the functions writes the formatted
text to the output file.

At each point, appropriate error processing is per-
formed. In the functions, this relates to mandatory
attributes and warnings about various HTML exten-
sions. For the procedures, the error processing involves
relationships between tags. Note that THTMLWriter is
not intended to support every possible combination of
tags and attributes, just the most common. Of course,
you can always extend it.

Since a container tag can surround an arbitrary number of
characters, we cannot guarantee that a string value (limited
to 255 characters) will always satisfy the requirement. Thus
all such tags come in opening and closing versions, with
convenient shortcuts for smaller text values. A good exam-
ple of this is the paragraph tag. A paragraph in HTML
begins with <p> and ends with </p>. This is implemented
in the FormatParagraphStart and FormatParagraphEnd
functions, with the corresponding ParagraphStart and
ParagraphEnd procedures (see Figure 3).

The HTML tag is built by the FormatParagraphStart func-
tion, including the alignment attribute if it’s not the
default. If the alignment attribute is used and we want to
be informed about HTML 3.0 extensions, then a warning
exception is raised. In the corresponding ParagraphStart
procedure, the value returned above is written to the out-
put file. The additional code ensures that the tag is not
being placed in an invalid position in the document, and
then registers its own presence.

The sTags variable is a TStringList containing all the
opening tags that haven’t been closed. This allows for
warnings to be generated later when tags are closed out
of sequence. The try..except block ensures that the tag
is written to the output even when the warning in the
function is raised. It’s then re-raised to allow the gener-
ating program to see and handle this exception.

The ParagraphEnd procedure first checks that the paragraph
tag is the next one that must be closed — an error is raised if
it isn’t. ParagraphEnd must then remove the tag from the list
of those open and write the result to the output. Note that
the ending tag is written followed by an end-of-line, using
Writeln. Recall that spacing within an HTML document is
generally ignored and that this is done merely to improve
the readability of the generated document. Thus, these
methods allow us to write the following Object Pascal code:

ParagraphStart(ahDefault);
Text('This text makes up the entire paragraph.');
ParagraphEnd;

which in turn generates this HTML:

<p>This text makes up the entire paragraph.</p>
Delphi Informant May 1996 18

Figure 3: Procedures and functions for starting and ending paragraphs.

{ Return start of paragraph as a string. }
function THTMLWriter.FormatParagraphStart(

ahAlign: THTMLAlignHoriz): string;
begin

Result := '<p';
if ahAlign <> ahDefault then

Result := Result + ' align=' + sAlignHoriz[ahAlign];
Result := Result + '>';

if (ahAlign <> ahDefault) and (erHTML3 in Errors) then
raise EHTMLWarning.Create(tcParagraph,

'ALIGN is HTML 3.0extension',Result);
end;

{ Write start of paragraph. }
procedure THTMLWriter.ParagraphStart(

ZhAlign: THTMLAlignHoriz);
begin

CheckNesting(tcParagraph,False,True,False,True,True);
sTags.Add('p');
try

Write(fOutput,FormatParagraphStart(ahAlign));

except on e: EHTMLWarning do
begin

Write(fOutput,e.Result);
raise;

end;
end;

end;

{ Return end of paragraph as string. }
function THTMLWriter.FormatParagraphEnd: string;
begin

Result := '</p>';
end;

{ Write end of paragraph. }
procedure THTMLWriter.ParagraphEnd;
begin

CheckClosing(tcParagraph,(sTags.IndexOf('p') < 0),
'p','paragraph');

sTags.Delete(sTags.Count - 1);
Writeln(fOutput,FormatParagraphEnd);

end;

On the Cover
To make it easier to create small paragraphs, two extra
methods are defined: the FormatParagraph function and the
Paragraph procedure. They combine the paragraph start and
end methods above with the specified text in between. This
allows us to generate an entire paragraph in one statement:

Paragraph('This text makes up the entire paragraph.',
ahDefault);

Some tags have many attributes, most of which are not nor-
mally required. To make these tags easier to use, they can be
invoked in two formats: with all the available parameters
specified, or with just those parameters that are most com-
monly used (including none).

An example of this is the img tag that displays an image in
the document. In its full format, img takes 10 parameters,
of which three are common. Thus, one method,
FormatImageParams, is defined that takes all the parameters
and processes those that are not default values. The shorter
version, FormatImage, simply calls the full one, passing
across those parameters that have been supplied and send-
ing default values for the remainder (see Figure 4).

Doing it this way means that the actual processing is only
done in the one place, making maintenance easier, with
changes to the full version being immediately reflected in
the shorter version. Other tags that have similar versions
include the body, the horizontal rule, lists, and tables.

Another thing to notice about the image processing
code is the call to the function CheckIfPercentage. This
is required because an image’s height and width can be
specified as an absolute value (the actual number of pix-
els), or as a relative amount (the percentage of the cur-
rent browser size). To enable the methods to handle
both cases without additional parameters, we make use
of the fact that a size must be a positive value. We can
then flag the fact that a percentage is required by using
a negative value (with zero indicating that the default
value be used).

To avoid having to remember that we must negate the
value (and to reduce the confusion in the next person that
has to maintain our code) a function is provided with the
THTMLWriter component that converts the value for us.
The Percent function takes a positive integer value and
returns its negative counterpart. The negative value is then
decoded in HTML generation and produces the required
percentage value.

Thus, we can write the following code to have the image
fill the entire browser:

ImageParams('athena.jpg','Athena',EmptyStr,aiDefault,
Percent(100),Percent(100),0,0,0,False);

These relative/absolute values are also used in horizontal
rules, marquees, and tables.

Colors in HTML are represented differently than those in
Delphi. To overcome this, the processing converts from
Delphi TColor values to a format suitable for HTML. This
format is #RRGGBB where RR is the hexadecimal notation
for the red component, GG for the green, and BB for the
blue. Thus clYellow is converted to the string representa-
tion '#FFFF00'. All this is hidden behind the scenes and
need not concern us.

Maps
Another interesting Object Pascal construct arises in the
generating of areas in an in-line (or client-side) map. An
area is defined by its shape (rectangle, circle, or polygon)
and the appropriate coordinates. For example:

A rectangle is defined by the x and y coordinates of its
top-left and bottom-right corners.
A circle is defined by the x and y coordinates of the
center and its radius.
Delphi Informant May 1996 19

Figure 4: Image processing methods.

{ Return image, with all parameters, as string. }
function THTMLWriter.FormatImageParams(

sImage, sAlt, sMap: string; aiAlign: THTMLAlignImage;
Height, iWidth: Integer; iHSpace, iVSpace, iBorder: Byte;
bIsMap: Boolean): string;

begin
if (sImage = EmptyStr) and (erErrors in Errors) then

raise EHTMLError.Create(tcImage,'Missing image source');

Result := '<img src="' + sImage + '" border=' +
IntToStr(iBorder);

if sAlt <> EmptyStr then
Result := Result + ' alt="' + sAlt + '"';

if aiAlign <> aiDefault then
Result := Result + ' align=' + sAlignImage[aiAlign];

if iHeight <> 0 then
Result := Result+CheckIfPercentage('height',iHeight);

if iWidth <> 0 then
Result := Result + CheckIfPercentage('width',iWidth);

if iHSpace <> 0 then
Result := Result + ' hspace=' + IntToStr(iHSpace);

if iVSpace <> 0 then
Result := Result + ' vspace=' + IntToStr(iVSpace);

if sMap <> EmptyStr then
Result := Result + ' usemap="' + sMap + '"';

if bIsMap then
Result := Result + ' ismap';

Result := Result + '>';

if ((iBorder<>0) or (iHSpace<>0) or (iVSpace<>0)) and
(erNetscape in Errors) then
raise EHTMLWarning.Create(tcImage,

'BORDER,HSPACE,VSPACE are Netscape extensions',
Result);

if ((iWidth <> 0) or (iHeight <> 0) or
(aiAlign <> aiDefault) or (sMap <> EmptyStr)) and
(erHTML3 in Errors) then

raise EHTMLWarning.Create(tcImage,
'WIDTH,HEIGHT,ALIGN,USEMAP are HTML 3.0 extensions',
Result);

end;

{ Write image, with all parameters. }
procedure THTMLWriter.ImageParams(sImage,sAlt,sMap: string;

aiAlign: THTMLAlignImage; iHeight,iWidth: Integer;
iHSpace,iVSpace,iBorder: Byte; bIsMap: Boolean);

begin
CheckNesting(tcImage,False,True,False,True,True);

try
Write(fOutput,FormatImageParams(sImage,sAlt,sMap,

aiAlign,iHeight,iWidth,iHSpace,
iVSpace,iBorder,bIsMap));

except on e: EHTMLWarning do
begin

Write(fOutput,e.Result);
raise;

end;
end;

end;

{ Return image as string. }
function THTMLWriter.FormatImage(sImage,sAlt: string;

aiAlign: THTMLAlignImage): string;
begin

Result := FormatImageParams(sImage,sAlt,EmptyStr,aiAlign,
0,0,0,0,0,False);

end;

{ Write image. }
procedure THTMLWriter.Image(sImage,sAlt: string;

aiAlign: THTMLAlignImage);
begin

ImageParams(sImage,sAlt,EmptyStr,aiAlign,
0,0,0,0,0,False);

end;

On the Cover
With a polygon, a list of x and y coordinate pairs define
the shape, with the last pair combining with the first.

To handle this in THTMLWriter we need to pass across a
variable number of parameters. Fortunately, this can be
done in Object Pascal by declaring the parameter as an
array of values, integers in this case. Normally an array’s
size must be declared, but by omitting the array size in the
declaration, we can pass arrays of different sizes to the one
routine (provided that the elements are of the correct type):

iCoords: array of Integer;

This is known as an open array. We can then process the
array elements as necessary. To determine the number of
elements in the array we use the High function. It returns
the number of items less one, since the elements are num-
bered from zero. Figure 5 shows the implementation of
this construct. Note that this can be extended to cater to a
variable number of variable type parameters.

Straight Text
Straight text can be added to the generated document with
the Text method, which simply writes the supplied value
directly to the file. If the text contains any of the reserved
characters, then these must be “escaped”, i.e. converted to
non-active values. These characters are the angle brackets
(< >), ampersand (&), and quotation mark ("). Two
methods are provided to perform this: FormatEscapeText,
which returns the string in escaped form, and EscapeText,
which writes the escaped text to the file.

Similarly, lists of strings can be written directly into the
document or can be escaped first with the TextList and
EscapeTextList methods. Note that these methods can be
used to include any HTML constructs that have not been
covered in the rest of THTMLWriter. Simply build the
required syntax in a string (or list of strings) and then
write it directly into the generated document.

The InsertFile method allows large sections of HTML or text
to be copied into the generated document. No escaping of
characters is performed by InsertFile as it is assumed that the
document has already been processed in this way if necessary.
This allows common sections of documents to be maintained
in one place and used by many documents. Note that the file
is inserted as static text. (We’ll discuss allowing for dynamic
replacement of values in the section, “HTML Templates.”)

The Initialise method resets all internal variables that are
used in checking relationships between tags. This should
be called before any HTML is generated to ensure that
Delphi Informant May 1996 20

Figure 5: The FormatMapArea function with an open array
parameter.

{ Return area for in-line map as string. }
function THTMLWriter.FormatMapArea(shShape: THTMLShapes;

iCoords: array of Integer; sUrl,sAlt: string): string;
var

i : Integer;
sSep : string;

begin
if erErrors in Errors then

begin
i := High(iCoords) + 1; { Num of entries in array. }
if ((shShape = shRect) and (i<>4)) or

((shShape = shCircle) and (i<>3)) or
((shShape = shPolygon) and ((i<6) or Odd(i))) then

raise EHTMLError.Create(tcMap,
'Invalid number of coordinates for ' +
sShape[shShape]);

end;

Result := '<area shape=' + sShape[shShape];
if shShape <> shDefault then

begin
sSep := ' coords="';
for i := 0 to High(iCoords) do

begin
Result := Result + sSep + IntToStr(iCoords[i]);
sSep := ',';

end;
Result := Result + '"';

end;
if sUrl = EmptyStr then

Result := Result + ' nohref'
else

Result := Result + ' href="' + sUrl + '"';
if sAlt <> EmptyStr then

Result := Result + ' alt="' + sAlt + '"';
Result := Result + '>';

end;

On the Cover
errors are not introduced from any earlier processing.
The Finalise method checks that all the open tags have
been correctly closed, before writing the terminating
HTML tags (unless a file insertion or merge was per-
formed) and then closing the output file. Finalise should
be the last thing called in generating the document.

Figure 6 presents a complete list of the methods available
in THTMLWriter. Procedures are listed on the left and
their corresponding functions (where applicable) are dis-
played on the right. Each set of procedures and functions
are grouped by purpose.

HTML Templates
In addition to directly generating HTML for our page,
THTMLWriter can also generate a template document. A
template is basically just another HTML document, but
has special tags indicating where variable information
should be inserted. This replacement is done under pro-
grammatic control. There are advantages to generating a
page with a template:

Most of the document can be written directly in
HTML, making the document easier to maintain, and
allowing for minor alterations without having to
recompile the program.
The template cleans up the code in the generating pro-
gram. Instead of describing each line and construct
individually, the document can be produced with a sin-
gle method call.
The implementation of variable tags within a template is
different than in standard HTML. Braces ({ }) are
used to identify these tags, and hold the name of the
variable whose contents will appear here. For example,
let’s say a variable name User has been assigned the value
'Keith Wood'. Using a template that contains this code:

<h1>{user}'s Template Demonstration</h1>

generates this HTML:

<h1>Keith Wood's Template Demonstration</h1>

This has been extended to allow for entire files to be insert-
ed into the template. Follow the opening brace with a caret
(^) and the name of the file to be added, and the file will
be inserted at that point. For example, if the file FOOT-
ER.FTP contains:

<hr>
<p>Generated by the THTMLWriter
component.</p>

then, a template with the following code:

<p>The footer for the page comes from another file.</p>
<p>View the source code
and templates.</p>
{^footer.htt}
</body>

generates this:

<p>The footer for the page comes from another file.</p>
<p>View the source code and
templates.</p>
<hr>
<p>Generated by the THTMLWriter
component.</p>
</body>

This technique can be used for common sections of
HTML, allowing them to be maintained in a single place
while having their effect apply to the entire site. Examples
of their use are the body tag, allowing a common color
scheme to be applied in document footers and in toolbars.

Both of these replacement strategies are applied recursively.
This means that a file can be inserted that also contains
variable tags that are themselves replaced. Similarly, a vari-
able can be replaced with another variable tag causing dif-
ferent files to be inserted depending on some condition.

As a convention, these template files should have an exten-
sion of .HTT, to differentiate them from straight HTML
files (.HTM).

A New Class
To enable these variables and their values to be speci-
fied, a new class has been defined in the unit along
with the THTMLWriter component. This is the
THTMLDictionary class. It’s based on TStringList, but
adds two new methods. The first is AddFieldAndValue
Delphi Informant May 1996 21

Delphi Informant May 1996 22

Procedures Functions Procedures Functions

LinkStart FormatLinkStart
LinkEnd FormatLinkEnd
Link FormatLink

TableStartParams FormatTableStartParams
TableStart FormatTableStart
TableEnd FormatTableEnd
TableRowStartParams FormatTableRowStartParams
TableRowStart FormatTableRowStart
TableRowEnd FormatTableRowEnd
TableHeadingStartParams FormatTableHeadingStartParams
TableHeadingStart FormatTableHeadingStart
TableHeadingEnd FormatTableHeadingEnd
TableHeadingParams FormatTableHeadingParams
TableHeading FormatTableHeading
TableCellStartParams FormatTableCellStartParams
TableCellStart FormatTableCellStart
TableCellEnd FormatTableCellEnd
TableCellParams FormatTableCellParams
TableCell FormatTableCell

FormStart FormatFormStart
FormEnd FormatFormEnd
TextField FormatTextField
PasswordField FormatPasswordField
CheckboxField FormatCheckboxField
RadioField FormatRadioField
SubmitField FormatSubmitField
ResetField FormatResetField
ImageField FormatImageField
HiddenField FormatHiddenField
SelectStart FormatSelectStart
SelectEnd FormatSelectEnd
SelectOption FormatSelectOption
TextAreaStart FormatTextAreaStart
TextAreaEnd FormatTextAreaEnd
TextArea FormatTextArea

Text
EscapeText FormatEscapeText
TextList
EscapeTextList
InsertFile
MergeFile
Initialise
Finalise

Figure 6: The THTMLWriter component’s methods.

Content FormatContent
Head FormatHead
Title FormatTitle
IsIndex FormatIsIndex
Base FormatBase
Meta FormatMeta
Comment FormatComment

BodyParams FormatBodyParams
Body FormatBody
Sound FormatSound

HeadingStart FormatHeadingStart
HeadingEnd FormatHeadingEnd
Heading FormatHeading
ParagraphStart FormatParagraphStart
ParagraphEnd FormatParagraphEnd
Paragraph FormatParagraph

ImageParams FormatImageParams
Image FormatImage
MapStart FormatMapStart
MapEnd FormatMapEnd
MapArea FormatMapArea

ListStartParams FormatListStartParams
ListStart FormatListStart
ListEnd FormatListEnd
ListItemParams FormatListItemParams
ListItem FormatListItem

HorizRuleParams FormatHorizRuleParams
HorizRule FormatHorizRule
LineBreak FormatLineBreak
WordBreak FormatWordBreak

TextEffectStart FormatTextEffectStart
TextEffectEnd FormatTextEffectEnd
TextEffect FormatTextEffect
FontStart FormatFontStart
FontEnd FormatFontEnd
Font FormatFont
BaseFont FormatBaseFont
SpecialChar FormatSpecialChar
SpecialCharValue FormatSpecialCharValue
MarqueeStart FormatMarqueeStart
MarqueeEnd FormatMarqueeEnd
Marquee FormatMarquee

On the Cover

On the Cover
by its name) and its associated value to the list of variables
to be inserted. AddFieldAndValue is the method used in
our programs. The other method, GetValue is called dur-
ing THTMLWriter’s template processing. Given a field
name, GetValue returns its corresponding value. If the
variable does not exist in the dictionary, the variable tag in
the template is simply deleted.

The dictionary makes use of the TStringList’s ability to
store an associated object with each string.
Unfortunately, all we want to store is another string,
but TStringList is expecting a value derived from
TObject. One of the ways to overcome this is by defin-
ing a new class, THTMLFieldValue (derived directly
from TObject), that has a single property which is the
string we require.

All this is handled behind the scenes and should not be
manipulated directly. This allows us to write code similar to
this example:
dicDictionary := THTMLDictionary.Create;
try

dicDictionary.AddFieldAndValue('user',Username2.Text);
with HTMLWriter do begin

Initialise;
MergeFile('template.htt',dicDictionary);
Finalise;

end;
finally

dicDictionary.Free;
end;

Errors and Warnings
Various errors can occur while generating HTML. These are
all handled as exceptions within THTMLWriter, allowing us
to trap, identify, and handle them as necessary. To ease this
process, a special base exception, EHTMLException, is defined
in the unit with THTMLWriter. The error and warning excep-
tions, EHTMLError and EHTMLWarning, are then derived
from EHTMLException. This means that these exceptions can
be easily identified as having been raised by THTMLWriter.

Each of these exception classes has a Tag property that
identifies the type of construct that caused the error. These
are defined by the THTMLTagCategory type and can be
translated using the TagCategory array, with Tag as the
index. Additionally, the EHTMLWarning class has a Result
property that contains the formatted HTML text for fur-
ther manipulation within the generating program.

THTMLWriter can produce two types of exceptions: errors
and warnings. Errors are situations that should not be
ignored, such as missing mandatory values for tags, while
warnings cover circumstances that may not be what we
intended. Another major difference in their implementation
is that when a warning is raised, the original action requested
is guaranteed to have been completed. This allows the warn-
ing to be reviewed and processing to continue. (Note that
not all error conditions are trapped in the THTMLWriter
component, only those that are most common.)

Warnings come in four flavors. These are basic warnings, such
as not having a Submit button on a form, and constructs that
are HTML 3.0, Netscape, or Microsoft Internet Explorer
extensions to HTML 2.0. This means that we can check on
tags that may not be correctly interpreted in various browsers.

To allow us to control the kind of errors and warnings that
are generated, THTMLWriter publishes an Errors property,
which is a set of the different error
and warning types described above
(see Figure 7). Simply include in
the set those errors and warnings
that you want to understand. The
default value is to only be notified
of errors and basic warnings. Note
that this set can be empty, mean-
ing that no errors or warnings are
raised. I suggest that this is done
only after debugging the generat-
ing program.

Figure 7: The Delphi
Object Inspector show-
ing the nested values
for the Errors property.
Internet Definitions

CGI Common Gateway Interface. The standard for
external gateway programs to interface with
information servers such as HTTP servers. The
program should generate an HTML or other
document for return to the user.

GIF Graphic Interchange Format, a file format
standard developed by CompuServe as a
device-independent method for storing
images. GIF allows high-quality, high-
resolution graphics to be displayed on a
variety of graphics hardware and is intended
as an exchange and display mechanism for
graphic images.

HTML HyperText Markup Language. The page
description language used on the World
Wide Web.

HTTP HyperText Transfer Protocol. A generic,
stateless, object-oriented protocol, suitable
for hypermedia information systems. It’s the
main protocol for moving HTML and other
documents around the Web.

JPEG A standard image compression mechanism,
JPEG (pronounced “jay peg”) is the acronym
for Joint Photographic Experts Group, the
original name of the committee that wrote
the standard. JPEG is designed for compress-
ing either full-color or gray-scale images of
natural, real-world scenes.

MIME Multipurpose Internet Mail Extensions. A
standard for describing the contents of
documents transferred through e-mail and
HTTP. The default type for HTML documents
is text/html.

URL Universal Resource Locator. The address
of a document, it takes the form:

//host.domain[:port]/path/document.

WinCGI The Windows version of CGI.

WWW World Wide Web. The hypertext/graphical
part of the Internet.
Delphi Informant May 1996 23

On the Cover
Demonstration
The demonstration project included with this article shows
some of THTMLWriter’s functionality (see Figure 8). It pre-
sents four options for generating HTML, each of which takes
a parameter for inclusion in the output. In each case, the
HTML is written into a predefined file whose name is then
displayed. This file should then be loaded into your browser
to view its appearance. Links from these generated pages
show you the Object Pascal code that produced them using
the THTMLWriter component. If you don’t have a browser,
you can download one (e.g. Netscape); or download I-View
(a browser intended for use on local documents only); or use
a Delphi viewer component such as THtmlViewer.
Figure 8: The sample application, THTMLWriter Demonstration.
After entering a value in the Your name field, the user clicks the
Basics button. An information dialog box appears and instructs
you to view the updated .HTM file in your browser.

Figure 9 (Top): The table demonstration page showing how the
cells of an HTML table are formatted. Figure 10 (Middle): The
form demonstration page with entry fields, radio buttons, and
check boxes. Figure 11(Bottom): The THTMLWriter’s template
document feature was used to create this page.
The basic demonstration shows the variety of constructs
that can be produced through THTMLWriter. It
includes examples of headings, text formatting, images,
lists, and links. The user’s name, as entered on the
screen, is inserted into the title and the first heading in
the document (as is shown in Figure 1). Follow the link
to see how all this was done.

The table demonstration asks for the number of columns
to be generated, between two and five, and then produces
a table accordingly (see Figure 9). Note that most of the
table procedure calls use the simplest version, while the
last table cell requires all the possible parameters to be
specified so it can be centered across all the columns.

In the form example (see Figure 10), the various interactive
controls available in a form are shown. The text entered on
the screen becomes the default value for the Comments field.
After entering any values required, you press the Submit but-
ton to send the form. This one doesn’t go anywhere of course,
but simply calls itself. This should display the parameters
entered in the Location box at the top of the browser.

Finally, Figure 11 shows the result of using a template
for generating HTML documents. The name entered on
the screen is inserted into the template, along with the
Delphi Informant May 1996 24

Keith Wood is an analyst/programmer with CSC Australia, based in Canberra. He
started using Borland’s products with Turbo Pascal on a CP/M machine. Although
not working with Delphi currently he has enjoyed exploring it since it first
appeared. You an reach him via e-mail at kwood@nla.gov.au or by phone
(Australia) 6 291 8070.

HTML 2.0 Reference http://www.w3.org/hypertext/WWW/MarkUp/html-spec/html-spec_toc.html

HTML 3.0 Reference http://www.w3.org/hypertext/WWW/MarkUp/html3/Contents.html

Netscape Extensions http://www.netscape.com/assist/net_sites/html_extensions.html

Microsoft Internet
Explorer Extensions

HTML Tutorial http://www.utirc.utoronto.ca/HTMLdocs/NewHTML/htmlindex.html

CGI http://hoohoo.ncsa.uiuc.edu/cgi/

WinCGI http://www.city.net/win-httpd/httpddoc/wincgi.htm

I-View Browser http://www.talentcom.com/iview.htm

THtmlViewer Component http://www.empire.net/~dbaldwin/

Figure 12: HTML-related references available on the Internet.

http://www.microsoft.com/intdev/browser/iexplore.htm

On the Cover
current date and time and a random number between 1
and 100. A second document is included in the first,
showing how common sections can be maintained in
one spot only and used in many documents as required.

(Note that the demonstration program runs best outside
the Delphi IDE. Otherwise, exceptions that are trapped
internally appear and disrupt the flow of the program.)

Conclusion
The THTMLWriter component allows us to generate
HTML on-the-fly. It provides access to most of the fea-
tures of the various HTML versions, along with many
Netscape and some Microsoft Internet Explorer exten-
sions. It detects many errors and warns us of possible
problems while generating our pages.
Combine THTMLWriter with a CGI component and you
have a Web site just waiting to happen. All from our
familiar Delphi environment.∆

The THTMLWriter component and demonstration project
referenced in this article are available on the Delphi
Informant Works CD located in INFORM\96\MAY\-
DI9605KW.
Delphi Informant May 1996 25

Informant Spotlight
Delphi / Object Pascal

By Ray Lischner

Virtual or Dynamic?
An Examination of Object Pascal’s Virtual Methods

Figure 1 (Top): S
mance. Figure 2

{ Simple clas
methods. Me
the four me
method call

type
TBaseClass

procedure
procedure
procedure
procedure

end;
TIntermedia

procedure
procedure

end;
TDerivedCla

procedure
procedure

end;

{ Basic timing
for each met

Obj := TDerive
try

Ticks := Get
for I := 1 t

Obj.Dynam
Ticks := Get

finally
Obj.Free;

end;
Delphi’s dialect of Object Pascal is unusual among object-oriented pro-
gramming languages in that it gives programmers a choice of using

virtual or dynamic methods. Although their semantics are the same, the
two kinds of methods have different performance characteristics, so you
need to decide which to use when devising new classes. This article reveals
the details of virtual and dynamic methods. Using this information, you
can decide which best suits your needs.
Borland’s Object Pascal Language Guide
offers this guideline on page 92: “In gener-
al, virtual methods are the most efficient
way to implement polymorphic behavior.
Dynamic methods are useful only in situa-
tions where a base class declares a large
number of virtual methods, and an applica-
imple class declarations for measuring perfor-
(Bottom): A timing loop to measure performance.

s declarations for virtual and dynamic
asure the relative performance of calling
thods, to compare the speed of virtual
s with that of dynamic method calls. }

= class
DynamicMethod; dynamic;
OverrideDynamic; dynamic;
VirtualMethod; virtual;
OverrideVirtual; virtual;

teClass = class(TBaseClass)
OverrideDynamic; override;
OverrideVirtual; override;

ss = class(TIntermediateClass)
OverrideDynamic; override;
OverrideVirtual; override;

 loop. Duplicate this loop
hod. }
dClass.Create;

TickCount;
o Iterations.Value do
icMethod;
TickCount - Ticks;
tion declares a large number of descendent
classes with few overrides of the inherited
virtual methods.” Let’s take a look inside
Delphi to understand why this is true.

Due to an unfortunate collision of terminol-
ogy, virtual and dynamic methods are both
referred to as virtual methods. To keep the
distinction clear, the virtual and dynamic
keywords are shown in boldface when refer-
ring to the specific kinds of methods, and the
word virtual is in a plain typeface when refer-
ring to a generic virtual method, that is, a
method that can be virtual or dynamic.

Performance of Virtual and
Dynamic Methods
Virtual and dynamic methods have iden-
tical syntax. You can change a virtual
method to a dynamic method, or vice
versa, without changing the behavior of
your program. All that changes is the
running time and amount of memory
used. Let’s compare the running time for
calling the two kinds of virtual methods.

Figure 1 shows some simple class declara-
tions. The goal is to compare the speed of
calling the virtual methods. VirtualMethod
and DynamicMethod are declared in the
base class and called for an instance of the
derived class. VirtualOverride and
DynamicOverride are overridden in the
derived class. The performance tests mea-
sures the calling time for all four methods.
Delphi Informant May 1996 26

Informant Spotlight

Figure 3 (Top): Relative performance of virtual and dynamic
methods. Figure 4 (Bottom): Virtual Method Tables (VMTs).
Figure 2 shows a timer that measures the relative perfor-
mance of a method call with a loop that calls the
method many times. The timer creates an instance of
TDerivedClass and repeatedly calls one of the methods.
To account for the time taken by the loop itself, the
timer separately measures a loop that does nothing, and
subtracts that time from the other measurements.

Figure 3 shows a graph of the elapsed time for varying num-
bers of iterations. The actual time depends on the system
and environment where the tests are run. In any case, the
relative performance is more important than the absolute
numbers. Steeper lines indicate slower performance.

As you can see, dynamic methods are slower than virtual
methods. Overriding a virtual method has no impact on
performance. (This is hard to see because the two lines
coincide, indicating identical performance.) Overriding a
dynamic method improves performance.

Therefore, if speed were your sole concern, you should
always use virtual methods. There are times, however,
when you might want to consider dynamic methods,
namely, when space is at a premium.

In this contrived example, virtual and dynamic meth-
ods take up about the same amount of memory, but as
you add more methods and more classes, dynamic
methods tend to use less space than virtual methods. To
understand this, it is necessary to look at how virtual
and dynamic methods are implemented in Delphi.

The Virtual Method Table
Every class has a Virtual Method Table (VMT) that
contains a pointer for every virtual method defined by
the class and its base classes. The VMT also points to a
Dynamic Method Table (DMT) that contains entries
for every dynamic method defined or overridden by the
class. Unlike the VMT, the DMT contains no entries
for methods defined in a base class.

Figure 4 illustrates the VMTs for the example classes. A
VMT contains two parts. The first part contains the
instance size and several pointers: to other tables, to the
class name, to the VMT for the base class, and to the vir-
tual methods defined by TObject. The second part of the
VMT is a table of code pointers for all the virtual meth-
ods defined by the class and its base classes.

In Delphi 1, the “pointers” in the first part of the VMT
are near pointers: offsets into the code segment that
contains the methods for the class. In Delphi 2, the
pointers are 32-bit pointers. Thus, the VMT is a differ-
ent size in Delphi 1 and Delphi 2, and using the point-
ers is different in Delphi 1 and Delphi 2. That’s one
reason why Borland does not document these details.
They are free to change the VMT implementation
without dealing with backward compatibility issues.
Nonetheless, it is a simple matter to hide these differ-
ences in some simple functions, providing portable
access to the VMT.

Every object has a pointer to its class’ VMT. This pointer
is stored as the first field of the object. The ClassType
method returns a pointer to the second part of the VMT.
To access the first part, you need to subtract the VMT size
from the ClassType pointer.

To access the second part of the VMT, simply treat the
pointer value that ClassType returns as a pointer to an
array of code pointers. The compiler assigns a number to
a virtual method; this number is an index into the VMT
pointers. A call to a virtual method, therefore, is very
simple and quick: just index into the VMT, and call that
method. Figure 5 shows the equivalent Pascal code.
Delphi Informant May 1996 27

Figure 5: Pascal equivalent to calling a virtual method.

procedure CallVirtualMethod(Obj: TObject;
MethodIndex: Integer);

type
PVmt = ^TVmt;
TVmt = array[0..MaxVmt] of Pointer;
TProcedure = procedure of object;

var
Vmt: PVmt;
Method: TProcedure;

begin
{ Get the pointer to the VMT. }
Vmt := Obj.ClassInfo;
{ Lookup the method by its index. }
TMethod(Method).Code := Vmt[MethodIndex];
TMethod(Method).Data := Obj;
{ Call the virtual method. }
Method;

end;

Informant Spotlight

Figure 7: Pascal equivalent to calling a dynamic method.

procedure CallDynamicMethod(Obj: TObject;
MethodNumber: Integer);

type
TProcedure = procedure of object;

var
Vmt: PVmt;
Method: TProcedure;

begin
Vmt := GetVmt(Obj.ClassType);
TMethod(Method).Data := Obj;
TMethod(Method).Code :=

GetDynamicMethod(Vmt,MethodNumber);
Method;

end;
The Dynamic Method Table
Dynamic methods are also assigned numbers, but the
numbers are not indexes into tables. Instead, a Dynamic
Method Table (DMT) is a sparse table. Each entry consists
of a method number and a method’s code pointer. A call
to a dynamic method is compiled into a search through
the DMT for a matching method number. If the method
number cannot be found, the search continues with the
parent class’ DMT.

The search for a dynamic method is performed by a spe-
cial subroutine which is written in assembly language for
maximum speed. Looking up a dynamic method
requires understanding the format of the DMT. Borland
does not document the format of the DMT, so let’s take
some extra time to understand what the DMT looks
like. Figure 6 depicts the DMTs for the example classes.
Figure 6: Dynamic
Method Tables (DMTs).
A DMT is organized to help Delphi look up dynamic meth-
ods rapidly. The DMT starts with a count of the number of
dynamic methods in the table. Then, the table contains a list
of the dynamic method numbers for every dynamic method
defined or overridden by the class. This list is followed by a
list of code pointers for the dynamic methods. Each method
pointer corresponds to a method number.

The DMT is organized this way to allow rapid lookup for
a dynamic method number. The Intel x86 instruction set
has a special instruction (SCAS) that scans a sequence of
numbers, looking for a specific number.

Figure 7 shows the equivalent Pascal code for looking up
and calling a dynamic method. The code depends on sev-
eral routines that get information out of the VMT and
DMT. These routines are included in the full code listings,
in the VmtInfo unit.

Why Dynamic Methods?
Dynamic methods have an advantage over virtual meth-
ods because a DMT does not contain any entries for
ancestor classes. This means DMTs can be much smaller
than VMTs. Adding a virtual method to a base class has a
multiplicative effect: the number of virtual methods times
the number of base classes.

Conversely, dynamic methods avoid the multiplicative
effect of virtual methods. Changing one method from vir-
tual to dynamic might eliminate hundreds of VMT
entries, while adding one DMT entry. The downside of a
DMT is that searching for a dynamic method entry is
slower than looking up a virtual method.

It is a classic trade-off: dynamic methods usually have
smaller tables and slower lookup, and virtual methods
usually have larger tables and faster lookup.

However, this is only half the story. Consider what hap-
pens when a dynamic method is overridden in every
derived class. A DMT contains a method number and a
method pointer, but a VMT contains only a method
pointer. The result is that the DMTs take up more space
than the equivalent VMTs, so dynamic methods can be
larger and slower.

Therefore, it is proper to use dynamic methods only when
you know that a method will rarely be overridden. The
benefit is greatest when there are many derived classes, few
of which override the dynamic method.

Dynamic methods slow down even more as the class
inheritance tree grows. Calling a dynamic method
requires searching in every DMT from the derived class
Delphi Informant May 1996 28

Informant Spotlight

Ray Lischner is the founder and president of Tempest Software, which spe-
cializes in object-oriented components and tools. Mr Lischner has been a
software developer for over a decade, at large and small firms across the
United States. His current work in progress is Delphi Secrets, a book that
reveals undocumented aspects of Delphi, to be published by the Waite
to the base class that defines the method. If a class over-
rides the method, then the search can end early.
However, most dynamic methods are not overridden (for
very good reasons, as described earlier), so a dynamic
method call usually searches almost every ancestor class.

When you use dynamic methods, you can help the perfor-
mance by leaving out DMTs whenever possible. If a class
does not declare or override any dynamic methods, then it
has no DMT, which means the DMT pointer in its VMT
is nil. This helps to speed up the search for the dynamic
method because it is faster to skip over a missing DMT
than it is to search a small DMT.

Message Handlers Are Like Dynamic Methods
Another consideration is that message handlers are also
stored in the DMT, mixed with the dynamic methods:
dynamic methods are assigned negative numbers; message
handlers use positive numbers. This is why you cannot
declare a message handler for any message number greater
than $7FFF. It would be considered a negative number,
which interferes with dynamic methods.

Message handlers are called in a manner similar to dynam-
ic methods. The message number is looked up in the
DMT, and the corresponding method is called with the
message record as the sole argument. Thus, when consid-
ering whether a class should have any dynamic methods,
realize that a message handler takes up space in a DMT,
just like a dynamic method.

If a class has at least one message handler or at least one
dynamic method, then it has a DMT. If a class has no
DMT, then looking up dynamic methods or message han-
dlers is slightly faster. If a class has many message handlers,
then looking up a dynamic method or message handler in
the DMT is slightly slower because the DMT is larger.

Real Numbers
To help understand the impact on the space occupied by
a DMT, let’s consider a real class: TControl. Every visual
control in Delphi (including forms) inherits from
TControl, so it has 189 subclasses. (Note that these num-
bers are for the December Beta release of Delphi 2. The
figures for the final release may vary slightly.) TControl
and its base classes define 25 virtual methods. Every one
of the 189 subclasses of TControl must contain an entry
for every one of the 25 virtual methods, plus any other
virtual methods that the derived classes define. Every
control and form you create in a project also has its own
copy of these 25 virtual method pointers. In Delphi 1
and Delphi 2, a code pointer is always four bytes long.

TControl and its base classes also define 26 dynamic meth-
ods. Most of these methods are rarely overridden in a
derived class. If these dynamic methods were virtual, then
all 189 derived classes would have their VMTs grow by 26
entries, or a total growth of 19K bytes.
There are times when saving 19K bytes in an application
is significant. There are other situations where the use of
dynamic methods does not result in nearly so large a space
reduction.

Let’s compare TControl with another Delphi class.
TGraphicsObject has one dynamic method and seven
virtual methods. It has three derived classes (TFont,
TPen, TBrush), none of which override the dynamic
method (Changed). This results in a space saving of
four bytes, since TGraphicsObject would not have a
DMT if the Changed method were virtual.

The Changed method is called when any aspect of a
graphical object changes, such as font size, pen color, or
brush style. In some applications, such as a word processor
or bitmap editor, this might happen often. For a method
that might be called often, virtual is usually better than
dynamic. When the use of dynamic saves only four bytes,
the choice is clear — in this case, clearly wrong.

Conclusion: When in Doubt, Go Virtual
This excursion into virtual methods supports the guide-
lines of the Object Pascal Language Guide, but the Guide’s
advice is not strong enough. Although dynamic methods
are useful in the root classes of the VCL, there is almost
no other situation that calls for dynamic methods.

For the component writer and application programmer
alike, it is best to use virtual methods:

Certainly, you should use the virtual directive for
any method called from a time-sensitive or com-
pute-intensive loop.
If a class doesn’t have many derived classes, then use
virtual.
If most of the virtual methods are overridden in
derived classes, use virtual.
If you can afford a little extra space, use virtual.
If the classes in the inheritance tree contain many mes-
sage handlers — which slow down dynamic method
calling — use virtual methods.

Only when space is at a premium should you use dynamic
methods, and then only in the situations defined by the
Object Pascal Language Guide: a class with many derived
classes that do not override many methods.

Perhaps the best and simplest rule is: When in doubt,
use virtual. ∆

The demonstration project referenced in this article is
available on the Delphi Informant Works CD located in
INFORM\96\MAY\DI9605RL.
Delphi Informant May 1996 29

Group Press in 1996.

DBNavigator
Delphi 2 / Object Pascal

By Cary Jensen, Ph.D.

Elysian Fields
Leveraging the Delphi 2 Fields Editor
Delphi 2, the new 32-bit version of Delphi, has been available for a
couple of months now. And although you might have expected this

version to be little more than a 32-bit port of the existing product, it is
much more. Delphi 2 contains so many new features that it represents a
major leap forward for this already revolutionary product.
Fortunately for database developers, many
of the enhancements are database related.
This month’s “DBNavigator” takes a closer
look at one of these enhancements, the
new Fields Editor. This powerful tool will
be demonstrated by creating several simple
data entry forms.

In Delphi 2 this will almost always start
with creating a data module.

The Data Module
As you learned in last month’s column, the
data module is a form-like object on which
you place data access components.
Specifically, you place your DataSource
and DataSet (Table, Query, and
StoredProc) components on a data mod-
ule. These components can then be made
available to any form in your application
by adding the data modules’ units to the
form unit’s uses clause.

An example of a data module is shown in
Figure 1. It contains a DataSource and Table
component. Just as you would on a form,
you link the DataSource to the Table by set-
ting the DataSource’s DataSet property to
Table1 (or whatever name you have assigned
Figure 1: A
data module
including a
DataSource and
a Table.
to the table). Likewise, the Table is defined
by setting its DatabaseName and TableName
properties. In the data module shown in
Figure 1, the DatabaseName has been set to
DBDEMOS (an alias installed by Delphi), and
the TableName to CUSTOMER.DB.

As mentioned earlier, you now can add the
data module unit’s name to the uses clause
for any unit that needs to access the
DataSource or Table. This can be done
manually by typing in the uses clause, or
by selecting File | Use Unit from the form
that needs this access. There is also a third
way in which Delphi automatically adds
this unit to the form’s uses clause — a tech-
nique that employs the new Fields Editor.

The Delphi 2 Fields Editor
The Fields Editor is a tool you use to
instantiate (create) TField components for
the fields of a DataSet. In addition, the
Fields Editor permits you to create calcu-
lated fields (fields whose read-only con-
tents are based on a calculation), as well as
lookup fields (fields that display associated
data from another DataSet).

The Fields Editor in Delphi 2 is similar in
several respects to that found in Delphi 1.
However, it sports a slimmed-down interface,
as well as a number of powerful new features.

To access the Fields Editor, right-click a
DataSet component and select Fields Editor

from the SpeedMenu displayed, or simply
Delphi Informant May 1996 30

DBNavigator

Figure 5 (Top): This DBEdit component and associated Label
component were created on this form by dragging the CustNo
field from the Fields Editor and dropping it onto the form.
Figure 6 (Bottom): Delphi displays this dialog box the first time
you drag-and-drop a field from a Fields Editor onto a form that
is not yet using the field’s associated data module.
double-click the DataSet
component. Figure 2
shows the new Fields
Editor (on the left) beside
its Delphi 1 counterpart.
As you can see, the new
Fields Editor is smaller,
and omits the button
panel. However, it retains
the “VCR” buttons used to
navigate the records of an active
DataSet during design time.

You use a SpeedMenu to
control many of the features
of the new Fields Editor (see
Figure 3). For example, to
instantiate one or more
fields for a DataSet, you
right-click the Fields Editor
and select Add fields. To cre-
ate a new calculated field or
a lookup field, select New

field. Each of these selections
results in the display of an
appropriate dialog box you
use to select or define the
fields you are creating.
Once you accept the dialog box, control returns to the Fields
Editor, and the fields created appear in the Fields Editor list
box. Figure 4 shows how the Fields Editor appears when all
fields from the CUSTOMER.DB table are instantiated.

Figure 2: The Delphi 2
Fields Editor (on the
left) and its Delphi 1
predecessor.

Figure 3: Many of the
features of the Fields
Editor are accessed
using its SpeedMenu.
Figure 4: All
fields from the
CUSTOMER.DB
table have been
instantiated, and
are listed in the
Fields Editor.
Placing Fields from the Fields Editor
One of the major new features of the
Fields Editor is that it permits you to
drag and drop fields onto a form. For
example, if you want to place the
CustNo field of the CUSTOMER.DB
table onto a form, simply select the
CustNo field in the Fields Editor, drag
it onto the form, and release. Delphi
will place the field where you speci-
fied, as shown in Figure 5.

Earlier in this article I mentioned
that Delphi automatically adds the
unit name of a data module to a
form. This is how it happens: If you
use drag-and-drop to add a field
from the Fields Editor to a form, and the field you are
dropping is associated with a data module, and that
data module’s unit has not yet been added to a uses
clause on the form’s unit, Delphi displays the dialog
box shown in Figure 6. If you select Yes in this dialog
box, Delphi adds the appropriate uses clause to the
implementation section of the form’s unit.
This drag-and-drop technique can greatly increase your
productivity when designing forms, because you no
longer need to place each DBEdit and Label separately
for each field, then assign the appropriate properties to
make them active. Although you could use the Form
Expert (the Database Form Expert in Delphi 1), the drag-
and-drop technique provides greater flexibility. For exam-
ple, instead of dragging and dropping directly onto a
form, you could drop your new fields into a DBCtrlGrid,
a multi-record object (MRO) component that ships with
the Delphi 2 Developer and Client/Server editions.

You can also drag-and-drop multiple fields using standard
Windows techniques. To select more than one field, hold
down V to select sequential fields, or C to select any
combination of fields, while you select fields in the Fields
Editor. The selected fields will be highlighted (see Figure 7).
You can then drag them as a group by grabbing any part of
the highlighted selection. When you perform the drop, all
of the selected fields are placed on the form (see Figure 8).

Creating Lookup Fields
In addition to instantiating the fields of a DataSet, the
Fields Editor permits you to define two new types of
fields: calculated and lookup. Delphi 1 also permits you to
define a calculated field, and has already been described in
this column (see Delphi Informant, July, 1995).
Delphi Informant May 1996 31

DBNavigator

Figure 7:
Select more
than one
field in the
Fields
Editor by
V-clicking
or
C-clicking.

Figure 8: If
you select
more than one
field in the
Fields Editor,
the selected
fields can be
dropped onto
a form in a
single drag-
and-drop
operation.

Figure 10: Use the New Field dialog box to create Calculated
and Lookup fields. The dialog box in this image is being used to
define a lookup field.
The lookup field, however, is new with Delphi 2. A
lookup field is a field in one DataSet that displays data
from another DataSet, based on an association between
the two. For example, the ORDERS.DB table in the
DBDEMOS directory has a field named CustNo that
contains the customer number the order is associated
with. The table does not hold the customer name —
this information is stored in the CUSTOMER.DB
table (specifically, in the Company field of the CUS-
TOMER.DB table). By creating a lookup field for the
ORDERS table, you can define a new field that dis-
plays the customer’s name based on the customer num-
ber. The lookup field performs the task of “looking up”
the customer’s name in the CUSTOMER.DB table and
displaying it.

This technique is demon-
strated by creating a cus-
tomer name lookup field for
the ORDERS.DB table. The
first step is to create a data
module that contains two
DataSets, one for the table
we will create the lookup
field in, and one for the
lookup table (see Figure 9). It contains one DataSource
and two DataSets. The DataSet property of the
DataSource is set to Table1. The DatabaseName proper-
ties of both Table1 and Table2 are set to DBDEMOS. The
TableName property of Table1 is set to ORDERS.DB, and
the TableName property of Table2 is set to
CUSTOMER.DB. The Active property of both of these
Tables has been set to True.

The next step involves the Fields Editor. Here all fields are
instantiated, as described earlier in this article. (Note that

Figure 9: A data module
for the example form.
it is not necessary to instantiate all, or even any, of the
fields in a DataSet to create a lookup field.) We can now
create the lookup field. Right-click the list box in the
Fields Editor and select New. Delphi responds by display-
ing the New Field dialog box (see Figure 10).

The New Field Dialog Box
At Name, enter the name of the field you are creating. For
this example we will use the name CustName. As you type
the field name, the name of the TField component that
will be created is entered for you in the Component box.
You can change the name of the TField component, but
this is rarely necessary.

In the Type field enter or select the type of field. In this
example, customer name is a string field, so we enter
String here. You then use the Size field to define the
size of the field. This is only necessary with String,
Bytes, and VarBytes fields. In this case we will enter 30,
which is the size of the Company field in the CUS-
TOMER.DB table.

You use the radio buttons in the Field type group located in
the center of this dialog box to define the type of field you
are creating. Select Lookup. Doing so enables the fields in
the Lookup definition group of the New Fields dialog box.

You use the fields in the Lookup definition group of this
dialog box to identify the association between the cur-
rent table and the lookup table. Begin by setting Key

Fields to the field in the current table that has a counter
part in the lookup table. The value of this field is used
to perform the lookup. In this example, select the
ORDERS.DB field named CustNo, the identifier for
the customer.

While the Key Fields drop-down menu only includes single
fields, it is possible to define a lookup based on more than
one field. To do so, you must manually enter the fields
that associate the two DataSets, separating the field names
with semicolons.
Delphi Informant May 1996 32

DBNavigator

Figure 13: Dropping a lookup field
onto a form produces a
DBLookupComboBox. This form
demonstrates using this combo box
to select the customer for a new
order. Once the customer name has
been selected, the customer’s num-
ber will automatically appear in the
CustNo field. This requires that you
set the ReadOnly property on the
DBLookupComboBox to True.
Next, set DataSet to the DataSet that points to the lookup
table. Here we’ll select Table2.

Once you have defined the DataSet, the Lookup Keys

and Result Field edits become enabled. For Lookup Keys

select the field in the lookup table that corresponds to
the field in the Key Fields list. If you have entered two
or more fields into Key Fields, you must enter the corre-
sponding fields in Lookup Keys. In this example, select
the CUSTOMER.DB table field named CustNo. In this
example, both the Key Fields and Lookup Keys have the
same name, but this is a coincidence and won’t neces-
sarily be true in all cases.

Finally, define which field in the lookup table will sup-
ply the data for the lookup field you are defining. Select
the lookup table field from the Result Field drop-down
menu. In this case, select the CUSTOMER.DB table
field named Company.

This completes the lookup field definition. Save it by
selecting the OK button on the New Fields dialog box.
DataSource1 on the data mod

Figure 11:
The new
lookup
field,
CustName,
has been
dragged to
a new
position in
the Fields
Editor list
box.

Figure 12: A DBGrid containing a
Once you have saved your
lookup field definition,
the new field name will
appear in the Fields
Editor. By default, new
fields are placed at the
bottom of the list of
fields. You can move this
field to a new position in
the Fields Editor list box
by dragging it. This is
desirable because if you associate a DBGrid with a
DataSet, and you have instantiated fields for that
DataSet, the order of the fields in the DBGrid is based
on the order of the fields in the Fields Editor list box.
Figure 11 shows this new field, CustName, dragged to
the third position in the Fields Editor.

Figure 12 shows a DBGrid that has been placed on a
form, and whose DataSet property has been set to
ule. This required the data

 lookup field.

Cary Jensen is President of Jensen Data Systems,
based database development company. He is au
dozen books, including the upcoming Delphi In D
MacGraw-Hill, 1996]. He is also Contributing Ed
Informant and Delphi Informant, and this year’s
Paradox Advisory Board for the upcoming Borlan
Conference. You can reach Jensen Data Systems
or through CompuServe at 76307,1533.
module’s unit first be
added to the form
unit’s uses clause.
(This is easily accom-
plished by selecting
File | Use Unit from
Delphi’s main menu
while on the form.)
Notice that the com-
pany name associated
with the customer
number appears in
every record.

Dragging Lookup
Fields
There is one final
interesting feature of
the Fields Editor.
When you drag a
lookup field from the
Fields Editor onto a
form, Delphi does not just place a DBEdit and Label
— it instead places a DBLookupComboBox. The form
shown in Figure 13 was created by dragging the
OrderNo, CustNo, and CustName fields from the
Fields Editor onto the form.

A DBLookupComboBox permits the user to drop-
down a menu of all possible lookup values in the
lookup table. When added to a form by dropping a
lookup field from the Fields Editor, the default
DBLookupComboBox’s ReadOnly property is set to
False, permitting only a view of other customer names
at run time. However, by setting this property to True,
the user can easily change the customer associated with
a particular order by selecting a new name from the
combo box. Doing so automatically updates the
CustNo field in the table.

Conclusion
Many new features await the database developer upgrading
to Delphi 2. The new and improved Fields Editor is just
one of them, but a welcome one indeed. ∆

The demonstration projects referenced in this article are
available on the Delphi Informant Works CD located in
INFORM\96\MAY\DI9605CJ.
Delphi Informant May 1996 33

 Inc., a Houston-
thor of more than a
epth [Osborne/

itor of Paradox
 Chairperson of the
d Developers
at (713) 359-3311,

Dynamic Delphi
Delphi 1 / Object Pascal

By Andrew Wozniewicz

DLLs: Part III
Interfacing, Importing, and Exporting Functions
O ver the last two months, we’ve introduced Delphi as an environment for
developing dynamic link libraries. Now it’s time for us to create a corre-

sponding import unit for the custom DLLFirst library we’ve created. [To create
the DLLFIRST.DLL, see Andrew Wozniewicz’s articles “DLLs: Part I” and “DLLs:
Part II” in the March and April issues of Delphi Informant.]
Creating the Import Unit
Let’s develop a test application that will
use the subroutines implemented in the
DLLFirst unit. Follow these steps:

Create a new, blank Delphi project and
call it DLLTest (DLLTEST.DPR). Save
the main form unit of the new project
as FRMFIRST.PAS.
Select File | New Unit. A new, minimal
unit file is created by Delphi. This will
be the import unit that enables your
application to use the subroutines in
DLLFIRST.DLL.
Save the new unit file as FIRST.PAS.

Interfacing the DLL
The interface section of the library import
unit appears identical to the interface sec-
tion of any regular unit. It simply lists the
subroutines available, which in this case,
are the subroutines exported by the DLL.

The difference between an import unit
and a regular unit lies in its implementa-
tion. Whereas the implementation section
of a regular unit must provide the actual
implementation code, the implementation
section of a library import unit delegates
the implementation’s details to the exter-
nal library. It merely binds the subroutine
headings declared in the interface to the
implementation provided elsewhere.

Remember that we already have implement-
ed the string-handling subroutines inside
the DLLFirst library. There is no point
repeating that code in the library import
unit. The only missing link is the ability to
tell the using application which subroutine
listed in the unit’s interface corresponds to
the appropriate entry points of a DLL.

To delegate the details of the implementa-
tion of a subroutine to an external module,
and to allow the program to compile with-
out actually “seeing” the subroutine’s imple-
mentation directly, the external directive is
used. This replaces the implementation of a
subroutine, indicating that it’s given outside
the current project. The external directive is
placed after the implementation heading of
a subroutine. For example:

procedure Clear; external 'CUSTOM';

function StripStr; external 'DLLFIRST';

The external directive completely
replaces the implementation of a subrou-
tine. Instead of the familiar begin..end
keywords and the implementation code
inside the block they delimit, the exter-
nal directive indicates that the imple-
mentation code is compiled and deployed
separately, outside the current project.

Several possibilities can follow the external
keyword. The simplest of these calls for the
library’s file name, — DLLFIRST — in this
case, to be included after the directive. This
enables the compiler to bind the subroutine
declared inside the import unit to its imple-
mentation that resides in a DLL by the
declared name. When giving the name of
the external library in this way, a file name
Delphi Informant May 1996 34

Dynamic Delphi

Figure 1: FIRST.PAS is an import unit for the DLLFirst library.

unit First;
{ (Implicit) Library Import Unit for DLLFIRST.DLL.

This unit is to be listed in the uses clause
of applications wishing to use the services
of DLLFIRST.DLL. }

interface
function FillStr(C : Char; N : Byte): string;
function UpCaseFirstStr(const s: string): string;
function LTrimStr(const S: string): string;
function RTrimStr(const S: string): string;
function StripStr(const s: string): string;

implementation

const
LibName = 'DLLFIRST';

function FillStr; external LibName;
function UpCaseFirstStr; external LibName;
function LTrimStr; external LibName;
function RTrimStr; external LibName;
function StripStr; external LibName;

end.
extension of .DLL is assumed (the library on disk must
actually have the .DLL extension). It’s possible to have
DLLs with other extensions, but Windows can automatical-
ly load libraries only with the default extension of .DLL.

When we run the program using this type of binding,
after we make a call to the DLL, Windows attempts to
resolve it by using the subroutine name declared in the
import unit and searching for the same name inside the
indicated DLL. For example, this statement:

function StripStr; external 'DLLFIRST';

indicates that the implementation for the StripStr function
resides in the external library DLLFIRST.DLL. Windows
automatically loads DLLFIRST.DLL and searches for a
subroutine StripStr that matches the requested function by
name to resolve the call.

We’ll also discuss other ways of binding subroutines
declared on the application (.EXE) side to their DLL-
based implementations. Right now, let’s continue with the
DLLFirst example, using the simplest possible binding:
binding by the declared name.

Interfacing DLLFIRST
Based on the comments provided in our previous articles,
you’re ready to provide the interface unit for the DLLFirst
library. The good news is that the declarative part of the
unit (the subroutine headings that you need to list there)
are nearly identical to those we entered within the interface
of the XString unit. Figure 1 implements a library import
unit for the DLLFirst library we implemented previously.

The interface section provides declarations of the subrou-
tines imported from the external library. Note that the func-
tion headings are (and in fact, must be) identical to those in
XSTRING.PAS, with the exception of the export directive,
which is missing in the import unit. The import unit does
not implement these functions, but instead provides a way
of importing their implementations from an external DLL.
Therefore, an export directive is unnecessary here.

The implementation section — instead of providing the
implementations of the functions listed in the unit’s inter-
face — provides their external bindings that enable
Windows to find the appropriate implementation at run
time. In addition, we can see the implementation headings
for each of the imported subroutines, followed by the
external directives indicating the library from where the
functions will be imported.

Note that you have a great deal of flexibility in how
you can specify the library’s name. In Figure 1, the
name of the library is provided as a string constant so
that the constant name is repeated with the external
directives, and the constant itself is defined. This
approach makes it easy to change the name of the
external library because the constant declaration is the
only place where you would need to change it before
recompiling the import unit.

Remember that recompiling the import unit does not
cause the DLL itself to be recompiled. The two entities are
totally separate. In fact, it’s possible to create discrepancies
between the two entities. For example, you can declare the
same subroutine with a different number of parameters on
either side. This leads to potentially serious bugs that can
be difficult to find. So be forewarned: Always double-
check that the subroutine declarations inside the import
unit correspond exactly to those declared in the DLL.

The import unit in Figure 1 is a typical example of a simple
import unit, using the implicit binding. Implicit here
means that we don’t have to do anything special for the calls
to any of the listed subroutines to be resolved automatically
at run time — beyond declaring them with the external
directives as shown. Windows handles the details of when
and how to load the external library and how to obtain the
actual run-time addresses of the subroutines you are calling.

We’ve already taken the first step toward creating the unit in
Figure 1. Namely, we’ve created the FIRST.PAS import unit,
whose function is to import implicitly the subroutines from
the DLLFirst module. Complete the library import unit,
FIRST.PAS, by entering the code as shown in Figure 1.
Make sure that you save the unit file before proceeding.

Creating the Example Program
We’re now ready to try the external subroutines we’ve cre-
ated and imported via the FIRST.PAS import unit. To
visualize the results returned by the various external func-
tions, let’s create a simple form-based Delphi application.
Follow these steps:
1) Select the FrmFirst unit and bring the Form Designer

window to the foreground.
Delphi Informant May 1996 35

Dynamic Delphi

unit FrmFirst;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)

Edit1: TEdit;
Edit2: TEdit;
Label1: TLabel;
ButtonUpCaseFirst: TButton;
ButtonLTrim: TButton;
ButtonRTrim: TButton;
ButtonStrip: TButton;
procedure ButtonUpCaseFirstClick(Sender: TObject);
procedure ButtonLTrimClick(Sender: TObject);
procedure ButtonRTrimClick(Sender: TObject);
procedure ButtonStripClick(Sender: TObject);

private
{ Private declarations }
public
{ Public declarations }

end;

var
Form1: TForm1;
2) Inside the Form Designer, place two copies of the Edit
component. These are found on the Standard page of
the Component Palette. Place Edit1 and Edit2 (as they
are named by default) one below the other. Clear their
Text property so that they appear blank on the form.

3) Change the ReadOnly property of the second edit box,
Edit2, to True. Change its Font.Color property to clRed.

4) From the Standard page, select a Label component and
place it on the form between the two Edit compo-
nents. By default, the Label’s name is Label1. Change
the Label’s AutoSize property to False, and extend the
enclosing box so that it accommodates the names of
the external subroutines. Clear the Label’s Caption
property so that it initially appears blank.

5) Place several Button components on the form, one for
each of these four functions: UpCaseFirstStr, LTrimStr,
RTrimStr, and StripStr. Rename the buttons (named by
default Button1, Button2, etc.) to ButtonUpCase,
ButtonLTrim, ButtonRTrim, and ButtonStrip, respective-
ly. Change the Caption property of each button to
reflect the functions they represent: UpCaseFirst,
LTrim, and so on. Figure 2 shows the completed main
form of the example program.
Figure 2: The DLLTest program’s main form.

implementation

uses
First;

{$R *.DFM}

procedure TForm1.ButtonUpCaseFirstClick(Sender: TObject);
begin

Edit2.Text := UpCaseFirstStr(Edit1.Text);
Label1.Caption := (Sender as TButton).Caption;

end;

procedure TForm1.ButtonLTrimClick(Sender: TObject);
begin

Edit2.Text := LTrimStr(Edit1.Text);
Label1.Caption := (Sender as TButton).Caption;

end;

procedure TForm1.ButtonRTrimClick(Sender: TObject);
begin

Edit2.Text := RTrimStr(Edit1.Text);
Label1.Caption := (Sender as TButton).Caption;

end;

procedure TForm1.ButtonStripClick(Sender: TObject);
begin

Edit2.Text := StripStr(Edit1.Text);
Label1.Caption := (Sender as TButton).Caption;

end;

end.

Figure 3: The completed form unit of the example DLLTest
program.
6) Modify the ButtonUpCaseFirst button’s OnClick
method thus:

procedure TForm1.ButtonUpCaseFirstClick(Sender:
Tobject);
begin

Edit2.Text := UpCaseFirstStr(Edit1.Text);
Label1.Caption := (Sender as TButton).Caption;

end;

The first of the two statements exercises one of the sub-
routines we’ve implemented inside the external library:
UpCaseFirstStr. After the user clicks the UpCaseFirst

button, the contents of the Edit1 edit box are converted
via a call to the external UpCaseFirstStr function and
the result is displayed inside the Edit2 box.

The second of the two statements inside the event handler
updates the contents of the Label1 component so that its
Caption property reflects the function most recently applied.
The Label’s caption is set to the sending button’s caption.
The button’s label provides a visual clue to the user.

Note how the type of the argument to the
TForm1.ButtonUpCaseFirstClick method is assumed to
be a TButton. The as type conversion is used on the
Delphi Informant May 1996 36

Dynamic Delphi
generic TObject-typed Sender argument to obtain the
desired caption.

Complete the form unit by providing event handlers for
the OnClick event of each remaining button. The result-
ing unit is shown in Figure 3. Be careful to copy every-
thing shown in Figure 3 inside your form unit, including
the following uses clause in the implementation section:

uses
First;

This is where we are making the imported, external sub-
routines visible to the code inside the FrmFirst unit.
Including First in the uses clause makes it possible to
call the external functions that are declared there.
Without having the unit First listed in the uses clause,
attempting to call any of the imported subroutines would
result in a compile-time error: “Unknown identifier.”

Compile and run the example program. The DLLTest exam-
ple should appear as shown in Figure 4 and should enable us
to enter a string value inside the top edit box (the Edit1 com-
ponent). After entering a text string inside the first edit box,
press one of the function buttons. The result of applying the
selected external function appears within the second edit box.
Figure 4: The
DLLTest program.
The fact that we are calling external functions each time a
button is pressed is transparent to the user. The functions
just appear to work, regardless of where they were imple-
mented. You call them in exactly the same way you would
call functions implemented in a unit that is statically
linked to the program.

Exporting by Ordinal
Consider a variation on the way in which we exported the
string-handling functions from the DLLFirst library. Recall
that the exports clause of the DLLFirst library module:

exports
FillStr,
UpCaseFirstStr,
LTrimStr,
RTrimStr,
StripStr;

In this case, the functions were exported by simply declar-
ing their names in Object Pascal code. However, there is
another way of exporting subroutines from DLLs: by
ordinal number. Here’s an Object Pascal example with
two custom functions:

exports
LTrimStr index 13,
RTrimStr index 14;
To export a subroutine by an ordinal number, we must list
it inside the exports clause of the library module with the
additional index directive specifying the ordinal number
by which the subroutine will be known. The ordinal num-
ber we specify after the index keyword must be a true con-
stant expression evaluating to a 16-bit (Word) value at
compile time.

Remember that exporting a subroutine by ordinal number is
always in addition to exporting it by name. The client appli-
cation will have the capability to bind dynamically to the
exported subroutine by ordinal number, in addition to being
able to bind to it simply by the declared name, as before.

We now can change the exports clause of the DLLFirst
library to the following:

exports
FillStr index 11,
UpCaseFirstStr index 12,
LTrimStr index 13,
RTrimStr index 14,
StripStr index 15;

By doing so, we have introduced an explicit ordinal
number by which each of the routines may be identi-
fied by Windows at run time in addition to being iden-
tified by their names.

Importing by Ordinal
The client application can import the subroutines by their
declared names, even if they were explicitly exported by an
ordinal number. If it’s more convenient, however, the client
can also import the subroutines by their ordinal numbers.

Importing subroutines by an ordinal results in programs
running slightly faster and it’s more efficient than
importing by name. In the latter case, Windows must
exert extra effort to search for the subroutine’s name
and to convert it into an actual callable address.

However, importing by ordinal runs a potentially
greater risk of making an incorrect connection to the
DLL. Importing by name is less error-prone.

To import a subroutine by a specific ordinal number
rather than by a name, place the index directive —
followed by a number, after the external part of the sub-
routine external binding. The number after the index
directive may be a decimal or hexadecimal constant, or a
constant expression using symbolic names. For example:

procedure Clear; external 'CUSTOM' index $11;
function StripStr; external 'DLLFIRST' index 47;

As an example of how to import subroutines by ordinal
numbers rather than by their names, consider the modi-
fied FIRST.PAS library import unit shown in Figure 5. It
uses the “import by ordinal” feature to rename the subrou-
tines being imported.
Delphi Informant May 1996 37

Figure 5: A modified library import unit for the example DLL-
FIRST.DLL using the “import by ordinal” feature.

unit First;

{ Modified Library Import Unit for DLLFIRST.DLL.
This unit is to be listed in the uses clauses
of applications wishing to use the services
of DLLFIRST.DLL. }

interface
function XFillString(C : Char; N : Byte): string;
function XTitleString(const s: string): string;
function XLeftTrimString(const S: string): string;
function XRightTrimString(const S: string): string;
function XStripString(const s: string): string;

implementation

const
LibName = 'DLLFIRST';

function XFillString; external LibName index 11;
function XTitleString; external LibName index 12;
function XLeftTrimString; external LibName index 13;
function XRightTrimString; external LibName index 14;
function XStripString; external LibName index 15;

end.

Dynamic Delphi
This library import unit is functionally equivalent to
the import unit shown in Figure 3. The difference here
is that this modified import unit renames the imported
functions so that they are known to the using applica-
tion under different names instead of their declared
names inside the DLL that implements them.

This trick is possible thanks to the “import by ordinal”
feature of Windows. This enables us to bind a subroutine
prototype inside an import unit to an arbitrary external
subroutine. The external declarations assume that the sub-
routines were exported by the specified ordinal numbers
from the DLL.

Note that the changes to the import unit do not affect the
signatures of the imported functions: their parameter lists
and return types remain identical to those in Figure 3.

This is understandable once you realize that we are
importing the same subroutines as before, implemented
inside the DLLFirst library. The signatures of these sub-
routines did not change just because we chose to import
them in a different way.

Exporting by Different Name
The flexibility of choosing a different name for an import-
ed subroutine does not depend on it being exported by an
ordinal number. It’s still possible to import a subroutine
by a name different than the export name specified within
the DLL.

Correspondingly, it is possible to export a subroutine from
a DLL under a different name than the name declared in
the source code. Both these feats are accomplished with

the name directive.
Here’s an example:

exports
LTrimStr name 'TrimStringOnLeft',
RTrimStr name 'TrimStringOnRight';

The name directive is used much like the index directive
inside the exports clause to make the exported subroutines
known externally under their assumed names. The name
directive also can be used to import subroutines under dif-
ferent names than those under which they were exported.
For example:

procedure Clear; external 'CUSTOM' name 'CustomDLLClear';
function StripStr; external 'DLLFIRST' name 'XStripStr';

The name directive therefore can be used on both the
exporting and importing side to resolve naming con-
flicts, or simply to change the name of the subroutine
being bound dynamically for convenience reasons.

So far, we’ve learned the techniques involving import
units where the subroutines to be imported are identi-
fied with the external directive. Import units enable
the subroutines in DLLs to be imported implicitly; the
process of loading the library and resolving the address
of the subroutine at run time is automatic and trans-
parent to the programmer using the DLL. It is the
responsibility of Windows.

The implicitly loaded DLLs usually are loaded by
Windows at the time the application starts. If any of
the DLLs imported implicitly are missing or simply
cannot be found, the application fails to load. The
application never gets a chance to correct the problem
by prompting the user to specify the location of the
required files and changing to the indicated directory,
for example. Windows prevents the application from
loading before it can respond to user events.

Another serious drawback to using an implicit import is
that the name of the DLL has to be hard coded, or fully
known at compile time. As you may recall from the earlier
sections, the name of the implicitly imported DLL must
be a string constant.

Fortunately, there is a way to gain an even greater con-
trol over the process of loading DLLs. Instead of
importing the required subroutines implicitly via an
external statement, you can take the responsibility for
loading the DLL into memory and retrieving the
addresses of the subroutines inside that DLL explicitly.
This way, you can defer loading the library until you
can determine at run time what the name of the library
is and where it is located.

Next month, we’ll conclude our series on creating DLLs
with Delphi. ∆
Delphi Informant May 1996 38

Dynamic Delphi
This article was adapted from material for Teach Yourself
Delphi in 21 Days [SAMS, 1995], by Andrew Wozniewicz
and Namir Shammas.

The source files referenced in this article are available on the
Delphi Informant Works CD located in INFORM\96\MAY\
DI9605AW.
Delphi Informant May 1996 39

Andrew J. Wozniewicz is president and founder of Optimax Development Corporation
(http://www.webcom.com/~optimax), a Chicago-based consultancy specializing in
Delphi and Windows custom application development, object-oriented analysis, and
design. He has been a consultant since 1987, developing primarily in Pascal, C, and
C++. A speaker at international conferences, and an early and vocal advocate of
component-based development, he has contributed articles to major computer
industry publications. Andrew can be contacted on CompuServe at 75020,3617 and
on the Internet at optimax@optidevl.com.

In Development
Software Development Techniques

By Craig L. Jones

PQA: Part III
Practical Quality Assurance Techniques for Delphi
A s every programmer knows, much can go wrong with even the sim-
plest of programs. Worse yet, the number of possible problems grows

geometrically with the size of an application. The good news is that just a
little quality assurance (QA) savvy can go a long way towards heading off
disaster. As with any discipline, the fastest route to success lies in acquiring
the proper tools of the trade and learning how to use them correctly.
This is the third installment of a three-part
series on assuring the quality of Delphi
programming projects. The series is pri-
marily directed towards Delphi program-
mers and assumes no prior knowledge on
the subject of QA. It is hoped that pro-
grammers who previously gave quality
assurance little thought will discover some
enthusiasm for applying the techniques
presented here.

The emphasis of this series has been on
exploring practical techniques for quality
assurance. In the previous installments,
some general QA theory was presented
along with how it applies to the different
stages of program development. Eight
types of testing were outlined: require-
ments verification, design validation, unit
testing, integration testing, user accep-
tance testing, alpha testing, beta testing,
and gamma testing. And a tool kit was
established for performing unit testing,
probably the most important of the eight
types of testing.

Testing Tools
In this installment we’ll go on a whirl-
wind tour of several other types of testing
tools that are available, and some tech-
niques for using them effectively. Some
of these tools are commercially available,
while others need to be developed specifi-
cally for the project at hand. In all cases,
these are tools no serious software devel-
oper should be without.

(Please note that this article only describes
these tools in terms of general concepts,
and does not endeavor to name any partic-
ular products or vendors. An effort was
made to seek out commercial products
with Delphi-specific features worthy of
mention. However, this author was not
made aware of any such tools in release as
of the time of this writing. Perhaps the
upcoming Software Testing Analysis and
Review trade show, “STAR ’96,” will fea-
ture Delphi-specific products. In any case,
the May 15th event in Orlando, FL, will
certainly provide ample opportunity to
explore the offerings of all of the major
players in the software quality assurance
industry. Call (800) 423-8378 to inquire
about the US$30 exhibits-only admission,
or to check on the possibility of obtaining
an exhibitors guide without attending.)

User Action Automation Tools
User action automation tools, the most
common type of commercially available
testing tools, work by watching the events
that occur as a tester runs through the
execution of a program being tested. The
key stroke events, mouse events, and
Windows messages are recorded in a
script that can be played back at high
speed to repeat the test at will. Hundreds
Delphi Informant May 1996 40

In Development
of separate scripts might be recorded to test different
aspects of the program in different ways, and then played
back sequentially (unattended).

Screen snapshots are taken along the way which can be
compared to the snapshots taken during previous runs.
At the end of a new run, any differences in the screen
snapshots are presented to the tester who can take one of
three actions: 1) flag the difference as representing a bug
that was introduced, 2) accept the difference as a positive
change, or 3) ignore the difference as inconsequential.

Usually, the scripts that are created can be edited, either to
change the key stroke, mouse, or message actions that occur,
or to change when the snapshots are taken. Such editing can
be tricky, so it’s often easier to just re-record the script in
question. On the other hand, some changes are readily
invoked. For example, if the program being tested is changed
so that the “Find” function is moved from the “Edit” menu
to its own “Search” menu, then it could be a simple matter
to change any tests that use AE (being the hot key for
the Edit menu) to use AS instead, where appropriate.

The scripting languages interpreted by these testing tools
can be quite robust, providing flow control (looping and
branching), for example. Various timing factors can be
customized, making it easy to slow down playback and
pinpoint trouble spots. Some of the scripting languages are
modeled after complete, standard programming languages
such as Basic, and are even user-extensible.

The variety of comparisons that can be achieved by these
tools can be sophisticated as well. Some tools can only com-
pare window images as bitmaps. Others are able to apply
optical character recognition (OCR) scanning to the bitmaps
and thus compare the text found within. Yet other tools are
able to hook into the application development environment
via specialized application programming interface (API) kits
and deal directly with the underlying objects and properties.

One of the pitfalls with this type of testing tool is that it is
almost too easy to use. It’s tempting to jump right in, cre-
ating scripts left and right, without planning. The result is
that some functions are tested 10, 20, or even 100 times,
while other functions are neglected. Without proper direc-
tion, user-interface (UI) intensive functions tend to
monopolize a tester’s time, while more important func-
tions that aren’t as UI-intensive are left until the end, and
then rushed (if they are tested at all).

Load Testing
Once a suite of tests are developed and the application is
made to pass those tests one-by-one, the next challenge
is to run the tests in a multi-user environment. This is
where “load testing” comes in. Here the object is to
identify not only glaring problems such as table and
record locking conflicts, but also to measure perfor-
mance under varying loads.
Load testing can be achieved to some degree by simply set-
ting up the tests in your test suite to run on multiple
workstations in a parallel, offset, and/or random manner.
Some testing tools provide specific support for load testing
by coordinating the execution of tests on the various
workstations, allowing the test sequence timing to be pro-
grammed for specific possible conflicts.

Data Generators & Sanitizers
A comprehensive test plan will eventually require that
the system being tested is populated with a substantial
set of data. A certain small amount of data might be
provided by virtue of testing the data entry functions,
but at some point in the testing cycle — especially dur-
ing load testing — large amounts of data will be
required. Entering such data by hand will likely be cost-
and time-prohibitive. Thus, developers often turn to one
or more data generator utilities.

Commercial data generators do exist for the more com-
mon types of data (company names and addresses, inven-
tory parts, invoices, etc.), but it is usually necessary to
develop such utilities in-house. If the project under devel-
opment is a system rewrite, then perhaps one or more
databases already exist that can be tapped.

If the data is at all sensitive, then a “sanitizer” should be
written to scramble the identities. This obviously pertains
to medical and legal records, but it also applies to business
information that might hint at ways for a competitor of
the data’s owner to gain an advantage.

If an available existing database proves to be too large and
unwieldy, then yet another tool, a purge mechanism,
might be crafted and applied. Such a mechanism might be
based on a pivotal data structure, such as the customer list,
and then radiate out to touch each of the related data
structures (invoices, products, vendors, etc.). To prime the
process, first reduce the customer table to a handful of
customers and then let your purge mechanism delete all of
the extraneous data having nothing to do with those cus-
tomers, directly or indirectly. With a little planning, por-
tions of the mechanism might be used in the application
itself as a year-end cleanup feature.

The use of standardized data generators and sanitizers
should be encouraged at the earliest possible juncture in
the project development cycle. Left on their on, program-
mers can come up with some of the strangest and silliest
sample data that is sometimes downright embarrassing.
Furthermore, it is amazing how easily such inappropriate
data can find its way into specification documents, user
manuals, help screens, marketing literature, demo disks,
and other materials.

Defect Tracking
Defect (bug) tracking software merely provides facilities
for keeping track of the problems discovered during test-
Delphi Informant May 1996 41

Category Severity Description
Level

Specification 3 Vital problem; program is unusable

compliance 2 Major problem; fails to meet major requirement

1 Minor problem

0 Cosmetic problem

Crash level 3 System crashes and data corruption is likely

2 System crashes, but data corruption is unlikely

1 System continues after error/warning message

0 System continues normally

Availability 3 No work-around

of a work- 2 Work-around is difficult/tedious/error-prone

around 1 Work-around is simple

0 Work-around is unnecessary

Figure 1: Three ways a problem report might be ranked by
severity. By combining such factors in a weighted average,
resources for solving the problems can be allocated efficiently.

In Development
ing. Defect tracking software can be as simple as a home-
grown, single table database, or it can be in the form of a
comprehensive commercial package. The primary purpose
of a bug tracking system, of course, is to make sure that
the nastiest bugs are eliminated and that no bugs, no mat-
ter the severity, are forgotten.

It is unrealistic to expect every bug in any given project to
be squashed completely. As Stella, Lady Reading, is attrib-
uted with saying, “The whole point of getting things done
is knowing what to leave undone.” Therefore, bug trackers
allow for the problem reports to be graded according to
their severity, usually in multiple categories such as the
likelihood of occurrence and how difficult it is for the user
to work around the problem (see Figure 1).

Bug trackers can provide some interesting metrics that are
highly useful in managing the project. Severity factors,
turn-around times, reoccurrence frequencies and the like,
can all be combined to provide valuable projections. The
project manager can then examine possible alternate sce-
narios. For example, what if instead of having to allocate
25 hours of an analyst’s time to the complete redesign of a
module, a way could be found to work within the existing
design and settle for only reducing the problem from a
level 3 severity to a level 1 severity?

Version Control Systems
This is not a quality assurance topic per se, but the sub-
ject of version control systems (VCS) goes hand-in-hand
with quality assurance under the heading of software
configuration management (SCM). Briefly, a VCS main-
tains libraries of source code and related files, keeping
track of every change that is made to every file through-
out the development cycle. If ever a question arises about
how a file, or set of files, appeared before they were
changed, the VCS can be directed to disgorge the files in
that previous form.
Using a good version control system to keep track of soft-
ware revisions has numerous benefits, only one of which is
making it easier to track down the cause of an elusive bug.
Several days or even weeks may pass between the time that
a defect is first noted and resources can be allocated to
attend to it. In the meantime, the source code in question
could have been modified a dozen times, making it impos-
sible to recreate the defect, much less fix it. The solution is
to have your version control system provide you with a
copy of the software as it was at the time the defect was
first discovered. Once the error is discerned within the old
source code, it becomes an easy matter to assure that the
newest version of the code is free of the error.

The Build Process
A second QA issue under the SCM heading is that of
assuring consistency with your build process. “Build
process” refers to whatever step-by-step procedures must
be followed in order to produce a deployable product. At
the root of the process are the particular steps necessary to
compile the software into the deliverable EXE and DLL
files, to prepare any associated data files, and then to make
them ready for installation.

Such a build process will have to be followed every time a
test candidate is needed. More than anything else having
to do with QA, the watchword here is “consistency,” for
no matter how well the software is debugged, all is for
naught if the delivery mechanism is unreliable. This
applies not only to the build process itself, but also to
numerous ancillary aspects.

Figure 2 contains a rough checklist to serve as a basis for
the build process of any software project. It is divided
into six sections. The first two sections are to be com-
pleted by the developers before the build takes place.
The latter four sections are completed by personnel tak-
ing on the roles of SCM and SQA as appropriate.

The following is a summary of all six sections:
1) Complete any pending changes. These are some simple

measures that developers can take to avoid introducing
new problems.

2) Check in all files that were checked out. There is no
point in performing a build if half-completed changes
will interfere with successful operation.

3) Plan the build. Prepare to inform the users (beta testers)
of the significant changes, and any special handling that
will be required to install and use the new build.

4) Make a build candidate. This is the root of the build
process.

5) Verify the build. Perform primary testing of the new
build.

6) Publish the build. Distribute the new build for further
testing or final release.

Coding Standards & Practices
Obviously, the best way to eliminate bugs from a project
Delphi Informant May 1996 42

A Software Build Process Checklist
Complete Any Pending Changes

Search for place-holder comments that still need to be
replaced with code.
Update the file and function prologs and add other
necessary comments.
Verify that all new code meets the established coding
standards.
Check the spelling of all new user-interface text
(prompts, error messages, etc.).
Create or modify appropriate unit test drivers
and run them.
Remove extraneous debugging code.
Turn off debugging compiler switches.

“Check in” Files
“Check in” all modified files to the version control
system (VCS).
Compare files that might have been modified without
having been checked out first and resolve conflicts.

Plan the Build
Compile a list of significant changes (compare the new
code base to the code base from the previous build
and/or confer with VCS logs, checked off task lists,
status reports, etc.).
Determine if any changes will require special handling
during this build (because of changes to data files,
.INI files, etc.).
Prepare a build memo informing users of the significant
changes, standard or special installation notes, known
problems with the new build, etc.

Make a Build Candidate
Check out a fresh set of source code files.
Update the build number (and/or other relevant numbers
and/or dates: version, revision, release) as appropriate.
Insure that the proper build environment is in place.
Run the “Make” scripts, batch files, etc. to build all of
the deliverables (executables, run-time libraries, etc.).

Verify the Build
Run whatever build tests have been established
(a non-stop sequence of unit test-drivers, an automated
integration test, a manual testing checklist, etc.).
Inspect the deliverables for missing files, wrong file
names, unusually sized files, etc.

Publish the Build
Transfer the new deliverables to the delivery medium
(network volume, distribution diskettes, etc.) as
appropriate.
Finalize and distribute the build memo.
Monitor at least one installation to check the build
memo instructions.

Figure 2: A generic checklist for the process of building the pro-
gram deliverable(s).

In Development
is to prevent them from being introduced in the first
place. This is just one of the ways that establishing and
enforcing a thorough set of coding standards can help.
Standards help to avoid unreliable coding practices, to
increase effective communications between team mem-
bers, and to present a consistent user interface.

Some of the issues that should be covered by a compre-
hensive set of standards include:

Programming conventions relevant to Pascal in general
and Delphi in particular (e.g. when and how to use
exception handling)
Naming conventions for variables, constants, types,
procedures, functions, objects, methods, files, directo-
ries and their corresponding aliases, database tables and
their fields, compiler directive tokens, etc.
Comment formatting and content (e.g. the layout of
file and function prologs)
User interface issues (e.g. using complete sentences in
all error and warning messages)

The most difficult problem to overcome when develop-
ing a set of standards is the tendency to overdo it. If the
standards document is unwieldy, it won’t get used. So it
may be necessary to compromise, to keep the standards
simple enough that the programmers can remain mind-
ful of them.

One way to enforce the chosen standards is via the use of
a smart text editor with programmable macros. For
example, just as the editor might automatically follow an
if keyword with then begin end;, so could it be pro-
grammed to automatically follow a GetMem call with a
corresponding FreeMem statement. In the case of the if-
statement macro, the programmer is merely saved some
typing time. In the latter case, however, the programmer
is reminded of an all-important cleanup function that
might otherwise be forgotten.

The Role of the Chief Engineer
When one thinks of the personnel assigned to any given
software development effort, it is easy to visualize the tra-
ditional roles and titles. Top down, the positions go some-
thing like:

Director
Project Managers
Team Leaders
Analysts, Programmers, Testers, Writers, and
(these days) Graphic Artists

No matter how many people are available to cover these
roles, be it 30 or just one, they all have to be covered.
There is one additional role, however, that ought to be
taken on as well. This role is variously named; it is
sometimes called Project Coordinator or Chief
Engineer. By whatever title, this role is vital. Yet it is
too often underplayed in large organizations and com-
pletely ignored in small ones.
Delphi Informant May 1996 43

In Development
The Chief Engineer is someone assigned to remain
omniscient (“all seeing”) in his or her approach to the
development of the project, or projects, at hand. The
Chief Engineer is charged with maintaining the “big
picture,” but unlike the managers and the team leaders,
does so from the perspective of the analysts, program-
mers, and testers who are down in the trenches. In other
words, this person needs to be someone who works with
specific implementation issues on a daily basis.

Some of the tasks taken on by a Chief Engineer can
include:

overseeing the details of inter-project and inter-module
communications/interfaces
overseeing adherence to whatever global requirements
have been put forth (e.g. user interface “look and feel”
issues), which are too easily overlooked
coordinating and/or performing code and design
reviews
continuously reexamining whatever coding standards
are adopted by the organization to keep them simple
and practical so developers will actually apply them
troubleshooting any inter-team problems that
may arise
acquiring, building, or commissioning the QA and
development tools needed for optimum productivity
training the team members to properly apply the tools,
techniques, standards, and practices
otherwise attend to the productivity capability of the
line workers

Conclusion
According to Dr Dennis Waitley, “If you fail to plan, then
by default, you plan to fail.”

Throughout this three-part series we’ve seen how using the
proper tools, with proper planning, can make it relatively
painless to successfully assure software quality. In Parts I and
II we built a QA tool kit to accommodate the task of system-
atically developing unit test drivers that are machine-exe-
cutable. This month we explored a number of other tools
and techniques applicable to software quality assurance. ∆
Delphi Informant May 1996 44

Craig Jones is a contract software engineer in Southern California, with over 14
years of programming and consulting experience. He is the programming stan-
dards SIG leader for the Orange County Delphi Users Group. He is also a member
of Team Borland, supporting Paradox and Delphi on the GEnie network. Mr Jones
can be reached at craig.jones@genie.geis.com or on CompuServe at
71333,3515.

At Your Fingertips
Delphi 1 / Delphi 2 / Object Pascal

By David Rippy

Figure
event h

If one advances confidently in the direction of his dreams, and endeavors to live the life
which he has imagined, he will meet with a success unexpected in common hours.

— Henry David Thoreau
How can I tile a bitmap image on my form?
Here’s a cool trick that you can implement
on any Delphi form to give it a visual
edge. With just a few lines of code, you
can tile a bitmap of your choice onto the
form’s canvas as shown in Figure 1.
Figure 1: A sample form with a tiled bitmap in
the background.
The code needed for this tip is located in
two of the form’s event handlers: OnCreate
and OnPaint (see Figures 2 and 3). The code
in the OnCreate event handler creates an
instance of the bitmap (myBitmap) that will
be tiled on the form. The OnPaint event
handler tiles myBitmap onto the form start-
ing from the top left corner and continuing
to the lower right corner. The placement of
the code is important. By placing the tiling
 2: This code is found in the Form’s OnCreate
andler.
code in the form’s OnPaint event handler,
the bitmaps are repainted appropriately if
the form is moved or resized.

Bitmaps of any size can be used, but you
typically want to use something small
(40x40 pixels or so). Also, it’s important to
select an image that tiles well. Appropriate
selections will appear to be a single, large
image when they are placed adjacent to one
another. The nerd bitmap in Figure 4 is an
example of an image that does not tile well
— plus your clients may not appreciate the
humor. — D.R.

How can I quickly make the same change
to several objects programmatically?
Have you ever wanted to reference several
objects on a form without hard-coding the
name of every object? For example, the
form shown in Figure 5 contains six
CheckBox components and two buttons,
labeled Check All and Uncheck All. The pur-
pose of the Check All button is to place a
check mark in every CheckBox on the
form. To accomplish this, you might first be
tempted to explicitly change the Checked
property of each CheckBox individually:

CheckBox1.Checked := True;
CheckBox2.Checked := True;
...

This works, but if the number of CheckBox
components you want to reference increased
to 20 or 30, you would quickly find your-
self writing a lot of code unnecessarily.

Here’s a better way. Examine the
OnClick method for the Check All button
shown in Figure 6. Two properties are
key: Components and ComponentCount.
The Components property is an array that
Delphi Informant May 1996 45

Figure 5: How
can we access all
six CheckBoxes
without hard-cod-
ing their names?

Figure 3 (Top): This
code is located in the
Form’s OnPaint event
handler.

Figure 4 (Left): The
nerd bitmap doesn’t
tile very well.

Figure 6: This code is found in the OnClick event handler of the
Check All button.

At Your Fingertips
contains a list of all the components
owned by an object. In our case, we
want to know all the components
owned by the form. The
ComponentCount property tells us
how many components are owned
by the form. Once we have the
number of components and their
names, a for loop is used to iterate
through the CheckBoxes, setting
each Checked property to True.

You could use code such as this to
perform just about any type of oper-
David Rippy is a Senior Consultant with Ensemble Corporation,
specializing in the design and deployment of client/server
database applications. He has contributed to several books
published by Que, and is contributing writer to Paradox
Informant. David can be reached on CompuServe at
74444,415.
ation on a set of objects. For instance, you could change
the style or color of each of the objects, perform math
on their values, or alter their Visible property. There are
lots of applications. Use your creativity! — D.R.

Comments on Comments
As a programmer you likely “comment out” large sections
of code to help zero in on a bug. Since Object Pascal does
not support nested comments, this can be difficult. There
is a trick, however! Object Pascal supports two kinds of
comments — “standard” Pascal comments and Turbo
Pascal comments. For example, both of the following
comments are valid:

(* This is a Pascal comment *)
{ This is a Turbo Pascal / Object Pascal comment }
Luckily, you’re allowed to nest the different types of com-
ments. This means the following code is a comment:

(* for x:= 0 to 100
myArray[x] := 0; {initialize array to zero} *)

With Delphi 2, you also have the option of using C++ style
comments. To comment out a single line of code, just pref-
ace the line with a double-slash (//). The compiler considers
everything to the right of the two slashes to be a comment.

Warning: Don’t use double-slashes if you’re developing for
16-bit and 32-bit platforms. These comments are not sup-
ported by the Delphi 1 compiler. And they don’t turn blue
either. — David Faulkner and Russ Acker

Quick Tip: Delphi 2 Trim Functions
Delphi 2 includes three new functions (defined in the
SysUtils unit) that allow you to trim white space with a
minimum of effort: Trim, LeftTrim, and RightTrim. Each
of these functions accepts a single string as a parameter,
and returns the trimmed string.

Trim removes both leading and trailing “white space” and
control characters from a string. LeftTrim and RightTrim
remove white space and control characters from the begin-
ning and end of a string, respectively.

Here’s an example of the Trim function:

Edit3.Text := Trim(Edit1.Text) + ', ' + Trim(Edit2.Text)

— Russ Acker, Ensemble Corporation ∆

The demonstration projects referenced in this article are
available on the Delphi Informant Works CD located in
INFORM\96\MAY\DI9605DR.
Delphi Informant May 1996 46

TextFile
Kick the Habit and Teach Yourself Delphi in 21 Days
“Twenty-One Days to Delphi/Paradox
Knowledge” continued on page 48

“Kick the Habit and Teach Yourself
Delphi in 21 Days” continued on page 48
If you’re a novice program-
mer, a bit rusty with Pascal,
or are simply seeking to learn
more about the exciting
world of object-oriented
Windows programming,
then buy and read Teach
Yourself Delphi in 21 Days.
You can kick the habit of
programming ignorance and
join the ranks of knowledge-
able Delphi enthusiasts.

Teach Yourself moves the
reader — day by day —
towards a fairly extensive
understanding of the Delphi
environment, the built-in
components, and the Object
Pascal programming lan-
guage. Authors Andrew J.
Wozniewicz and Namir
Shammas focus on the fun-
damentals of Object Pascal,
and through the insightful
use of example programs,
questions and answers, and
end-of-chapter workshops,
subtly teach object-oriented
programming.

The first week introduces
Windows programming
basics, Delphi tools, and
the IDE, laying a firm
foundation for the Object
Pascal language. After
building the familiar “Hello
World,” readers quickly
move on to a desktop cal-
culator, and top the week
off with a file browser.
Along the way, the well
chosen projects demon-
strate and build familiarity
for data types, operators,
branching, and loops. The
Q&A and Workshop sec-
tions at the end of each
chapter assist the reader to
begin generalizing the con-
cepts of Delphi and
encourage self-exploration.
Novices should be warned
that the first four chapters
contain numerous syntax,
keyboard, and diagram-
ming errors. But don’t give
up; play around with dif-
ferent key strokes and try
to look ahead — persis-
tence rewards those who
make it beyond day six.

In week two, you begin by
mastering arrays, strings,
structures, and user-defined
data types, and by mid-week
you’ve used subroutines and
are learning object-oriented
programming. Day 11 builds
understanding of encapsula-
tion and inheritance, and by
day 12 you can polymorph
with the best. The VIRTU-
ALS program that you create
on day 12 (and the authors’
subsequent explanation of
virtual and dynamic meth-
ods) is instructive even for
many seasoned programmers
who may not understand
how function tables operate.
By the end of the second
week you can define proper-
ties, respond to Windows
events, use the Windows API,
use Run-Time Type
Information, and handle
exceptions.

Week three brings graphics,
drawing on the canvas, and
the visually satisfying
rewards of programming.
Building upon the founda-
tion of Object Pascal, Teach
Yourself brings it all together
with printer output, menus,
edit boxes, scroll bars, and
the litany of standard Delphi
components used to con-
struct an editor. The DO
and DON’T advice for
Twenty-One Days to Delphi/Paradox Knowledge

Many programmers turn to
Delphi when considering
desktop database or
client/server applications.
After all, Delphi was
designed in-part to ease
writing database applica-
tions. Finally, from SAMS
Publishing, comes Teach
Yourself Database Program-
ming with Delphi in 21
Days, a book exclusively
dedicated to database appli-
cation development. If you
are new to programming or
are considering Delphi to
maintain desktop databases,
you should consider this
book. However, if you have
been using Delphi a while
and have been eager for an
advanced client/server
guide, your wait continues.
Visual Basic and C++ pro-
grammers will recognize the
authors, Nathan and Ori
Gurewich, from their previ-
ous books on database pro-
gramming and multimedia
development. Fans of the
authors will be happy to
note that they have includ-
ed a CD that contains
plenty of .AVI, .MIDI,
.WAV, and .DB files, as
well as all the program
examples described in the
book. The authors don’t
assume readers have data-
base programming experi-
ence, and the abundance of
diagrams and figures gener-
ously interspersed ensures
that no previous program-
ming experience is required
to complete the exercises.
The authors take you day-
by-day, starting with “Hello
World,” and then plunge
into the Database Desktop
to create the tables used in
subsequent lessons. You use
the Database Expert to cre-
ate sample applications and
then dissect the generated
applications to determine
how they are built. After a
thorough discussion of the
Delphi Informant May 1996 47

Kick the Habit and Teach Yourself Delphi in 21 Days (cont.)
many of these components
can save you hours. Day 19,
dedicated to database pro-
gramming, provides concise
and critical information to
get you started writing data-
base applications. The 38-
page chapter on database
programming teaches basic
database concepts,
master/detail forms, and
even illustrates field linking
and the use of calculated
fields. You’re off to creating
custom components on day
20, and building DLLs on
day 21. To top off your
Delphi whirlwind, authors
Wozniewicz and Shammas
toss in an extra day so that
the truly addicted can play
with DDE and OLE.

If you are completely new
to programming, fear not.
The authors have gone to
extremes to make the first
week promote knowledge
with a minimum of
assumptions. You’ll find the
book clearly and carefully
written. Experienced pro-
grammers will be impressed
with, and refreshed by, the
clarity and depth of expla-
nation provided. For those
who are wondering, as we
all do when facing a “21
day” book, just how long
each of your 21 days will
become: expect to spend
anywhere from 20 minutes
to one hour and 40 min-
utes, with the average being
about 40 minutes per day.

Although it does contain
more than its fair share of
typos and printing gaffs
(which will be especially
troublesome to the beginner
audience that will find this
book the most useful) Teach
Yourself is the best structured
path to Delphi knowledge.
Delphi converts, beginners,
and programmers wanting a
better understanding of
Object Pascal, will have a
difficult time finding a bet-
ter introduction than Teach
Yourself Delphi in 21 Days.

— James Callan

Teach Yourself Delphi in 21
Days by Andrew J.
Wozniewicz and Namir
Shammas, SAMS Publishing,
201 West 103rd St.,
Indianapolis, IN 46290,
(800) 428-5331

ISBN: 0-672-30470-8
Price: US$29.99
912 pages
Twenty-One Days to Delphi/Paradox Knowledge (cont.)
navigator, you use the
Fields Editor, introduced on
day four, to alter field prop-
erties, and by day five
you’re adding calculated
fields. Your first week wraps
up by linking master-detail
tables, using FindKey to
search for records, and
familiarizing yourself with
the important topic of data
validation and exceptions.

In week two, while laying
out data entry forms, you
begin to explore table
lookups and static validation
lists. Although the book
makes clear that its intent is
not to explain data modeling
and database design, some
readers may be disappointed
to find the important topic
of referential integrity hid-
den away as an answer to the
exercises in chapter nine. By
then, the reader, having an
acute sense of déjà vu, would
probably prefer discussing
field events like SetText, con-
verting case on data entry,
customizing complex valida-
tion routines, cascading
deletes, and learning other
meaty database topics, rather
than trudging over another
half page devoted to imple-
menting an exit button.

Day 10 introduces SQL,
and by day’s end, you’re
implementing queries and
ranges. Multi-form projects
are lightly glossed on day 11
in order to provide a con-
text for the interesting topic
of bookmarks. The real fun
begins on day 12 with an
animated dance routine fea-
turing an Amazon “cutie” in
a tight fuchsia dress and
tiny Texas Tom, both doing
the two-step thanks to a
DBImage. You add synchro-
nized sound to programs
with a VBX included on the
CD, and by the end of the
second week, you’re listen-
ing to banjo picking and
space-age reggae.

Week three has you watching
.AVI flicks of Einstein and
former presidents, while set-
ting up dynamic SQL state-
ments behind the scenes. A
lengthy read on day 16
rewards you with lively ani-
mation and virtual reality,
also assisted by a VBX
included on the CD. The
book ends with some help-
ful, albeit often ignored,
insights into writing reports
with ReportSmith. Here
you’ll find multi-table
reports and groups well cov-
ered, and derived fields and
the crosstab given equally
complete treatment.

Written for new and casual
users, Teach Yourself
Database Programming with
Delphi in 21 Days promotes
pragmatics over purity. It
offers practical step-by-step
database fundamentals,
spiced with multimedia and
virtual reality. Although the
book starts slowly and
repeats topics, later chapters
and the CD resources add
adventure to weeks two and
three. When using the CD,
make sure that you create a
/Dprog directory, preferably
off your C drive, or you
may experience difficulty
running the examples.
Except for obvious spelling
oversights found on both
the CD and in the book,
you will find the book an
accurate and easy read.
Experienced programmers,
however, should pass on this
book. It’s also important to
note that the “database”
referred to in the title is
Paradox. You’ll find nothing
about working with true
RDBMSs (e.g. Oracle or
InterBase), transaction pro-
cessing, or even the
Database component. So the
wait continues. Although
you’ll find broader database
coverage and application
scaling techniques in Delphi
Unleashed [SAMS, 1995] or
Delphi: A Developer’s Guide
[M&T Books, 1995], a
comprehensive guide for the
Delphi database developer
still eludes us.

— James Callan

Teach Yourself Database
Programming with Delphi
in 21 Days by Nathan and
Ori Gurewich, SAMS
Publishing, 201 West 103rd
St., Indianapolis, IN 46290,
(800) 428-5331

ISBN: 0-672-30851-7
Price: US$39.99
569 pages, CD-ROM
Delphi Informant May 1996 48

File | New

Down and Out
W e talked last month about the decentralization of the computer world and its implications for Web development. This month
we continue that theme by looking at a technology that deals with decentralization within the database realm.
Corporate data in the 1990s is moving
down and out. The popularity of
client/server architecture has certainly been
a driving force in this decentralization of
data. Not only are PCs replacing main-
frame terminals, people are doing more
with company data through powerful
query and analysis tools on the front-end.
Additionally, data is moving increasingly
outward rather than being stored and
maintained at a single site. Geographically
dispersed companies that have already
invested in client/server technology are
seeking solutions that can deal with dis-
persed data sets. Perhaps as important, the
popularity of notebook computing has cre-
ated a demand by a mobile work force to
work with data remotely and periodically
synchronize with their office. These trends
point out that there are more people doing
more with data — data that is spreading
out to more places.

For developers, the task of designing
client/server applications that can keep up
with these trends is proving difficult. For
many, the solution is fast becoming replica-
tion. Asynchronous replication (sometimes
referred to as “store and forward”) is a tech-
nology that allows you to maintain a single
set of data among two or more separate
locations. To achieve synchronization, repli-
cation tracks updates made to a specific data
set and then ensures these changes are
shared with other replicated databases.
Replication is emerging as the most impor-
tant database technology in the mid-1990s.
While server-to-server replication is nothing
new, what is becoming evident is the fact
that replication will eventually emerge as a
technology for the “masses,” not just the
Fortune 500. Smaller firms and departments
can employ replication to meet a variety of
needs unthinkable just a few years ago when
floppy disks and ZIP files were the principle
means of refreshing data.

Dealing with Distributed Data. Replication
is not the first nor only approach to dealing
with distributed databases. Many companies
have a centralized database operating over a
Wide Area Network (WAN), but available
bandwidth and high cost make this idea
unattractive to many. Web technology offers
a possible alternative to WANs for a central-
ized solution, but as we discussed in last
month’s “File | New,” Web applications are
not a client/server panacea. A third alterna-
tive, commonly referred to as the “two-
phase commit,” has largely been considered
a failure. A common element of these three
approaches is that they require a “live” link
somewhere in the process in order for users
to actually work with data. However, syn-
chronous communication is not only
impractical in certain contexts, it also raises
cost, bandwidth, and reliability concerns.
Replication is thus proving to be more cost
effective, faster, and more reliable.

Synchronizing Data. A fundamental issue
you face with replication is how dispersed
data can be synchronized when data is
exchanged from one site to another. There
are two approaches. First, a primary site (or
“publish & subscribe”) scheme has a single
site as the owner of the data; this site pub-
lishes the data to subscriber databases that
have only read-only access to the original
data. Second, peer-to-peer (or “update any-
where”) replication allows data to be updat-
ed at more than one site at the same time.
While the latter approach is much more
flexible, it also leaves open the possibility of
“colliding records” (records that are simulta-
neously updated in two or more sites).
These collisions can be risky. Conflicts have
to be resolved in an efficient manner, but
not even a sophisticated conflict resolution
scheme can deal with the non-database
actions taken after the data is committed
locally, but before it is rejected during syn-
chronization. Warnings aside, I am discover-
ing that many companies are demanding an
“update anywhere” solution, simply because
it is the “real world” way in which their
business works.

Shrink-Wrapped vs. Custom Solution.
Replication support is becoming as ubiq-
uitous to SQL servers as spell checkers are
to word processors. Not just a value added
feature, it is now becoming essential to
being competitive in the SQL database
marketplace. However, as robust as the
current offerings of database vendors are,
they are difficult to administer (especially
Oracle) and remain fairly strict and nar-
row in terms of how you can implement
them. First, not all products support all
forms of replication. Oracle7 is the only
major database to support the “update
anywhere” model; in contrast, Microsoft
SQL Server and Sybase support a primary
site model only. Second, while Oracle and
Sybase have solutions for notebook-to-
server replication, Microsoft SQL Server
currently remains limited to a server-to-
server model (although Microsoft should
have a desktop solution before the end of
the year). Third, when you buy into any
of these solutions, you are limiting your-
self to a vendor-specific solution; none of
these products currently support replica-
tion across multiple vendor databases. The
third party replication products on the
market currently do not help much either;
they fail to pack the power or speed you
need for many real world situations.
Therefore, as much as replication technol-
ogy has matured, there are holes remain-
ing in the marketplace. Given these limi-
tations, developers continue to find the
need to develop custom solutions. We’ll
look at some of the issues involved with
designing your own replication scheme in
a future “File | New.”

Balancing Act. The early days of PCs brought
users to computers in an effort to increase
productivity. Today, we are doing just the
opposite: moving the computers out to the
users. The challenge we have as application
developers is to support this flexibility while
maintaining the data integrity of a centralized
environment. Replication can be a solution to
this dilemma, but be sure to use caution as
this technology continues to evolve.

— Richard Wagner

Richard Wagner is the Chief Technical
Officer of Acadia Software in Boston,
MA. He welcomes your comments at
rwagner@acadians.com.
Delphi Informant May 1996 49

	Table of Contents
	Symposium
	Delphi Tools
	TurboPower Releases Orpheus 2.0 For Delphi and Delphi 2
	Stylus Releases Toolkit for Windows 95 and Windows NT
	Software Development Tools Releases AppBridge AutoCode for Delphi
	Sherlock Releases Formations 2.1 for Delphi
	Sylvan Ascent Announces Geographic Mapping Capabilities for Web Sites
	Open Horizon’s Connection Application Broker Supports Delphi 2

	NewsLine
	Arthur Andersen Selects Delphi: Joins Partner Program
	Microsoft Announces ActiveX Technologies
	Borland Announces Support for ActiveX Controls
	Seventh Annual Borland Developers Conference Nears
	Third-Party Vendor Support for Delphi 2 on the Rise
	ICG to Host Internet Developers’ Forum for Database Professionals
	JavaSoft Announces Java Database Connectivity

	Using OLE Automation to Access the Internet
	What Is OLE Automation?
	Using OLE Automation to Control another Application
	Using Netscape Navigator as an Automation Server
	Using Netscape Navigator to Connect to a Web Site
	Quote.Com Background
	The Stock Quote Example
	Intellicast Background
	The Weather Forecast Example
	.GIF to .BMP Conversion Routine
	Sidebar - Delphi and the Internet

	Conclusion
	Listing One — An Adaptation of GIF2BMP.PAS

	An HTML Generator
	HyperText Markup Language
	An HTML Writer Component
	A Two-Tiered Approach
	Maps
	Straight Text
	HTML Templates
	A New Class
	Errors and Warnings
	Sidebar - Internet Definitions

	Demonstration
	Conclusion

	Virtual or Dynamic?
	Performance of Virtual and Dynamic Methods
	The Dynamic Method Table
	Why Dynamic Methods?
	Message Handlers Are Like Dynamic Methods
	Real Numbers
	Conclusion: When in Doubt, Go Virtual

	Elysian Fields
	The Data Module
	The Delphi 2 Fields Editor
	Placing Fields from the Fields Editor
	Creating Lookup Fields
	The New Field Dialog Box
	Dragging Lookup Fields
	Conclusion

	DLLs: Part III
	Creating the Import Unit
	Interfacing the DLL
	Interfacing DLLFIRST
	Creating the Example Program
	Exporting by Ordinal
	Importing by Ordinal
	Exporting by Different Name

	PQA: Part III
	Testing Tools
	User Action Automation Tools
	Load Testing
	Data Generators & Sanitizers
	Defect Tracking
	Version Control Systems
	The Build Process
	Coding Standards & Practices
	The Role of the Chief Engineer
	Conclusion

	At Your Fingertips
	How can I tile a bitmap image on my form?
	How can I quickly make the same change to several objects programmatically?
	Comments on Comments
	Quick Tip: Delphi 2 Trim Functions

	TextFile
	Kick the Habit and Teach Yourself Delphi in 21 Days
	Twenty-One Days to Delphi/Paradox Knowledge

	File | New

