
1 March 2000 Delphi Informant Magazine

March 2000, Volume 6, Number 3

Cover Art By: Arthur Dugoni

ON THE COVER
5 OP Tech
Owner-drawn Property Editors — Ray Lischner
New in Delphi 5 is the ability for a property editor to draw anything
to display a property’s name and value, and if the property has a drop-
down list, you can draw each list item, as Mr Lischner explains.

FEATURES
9 Greater Delphi
CORBA: Part II — Dennis P. Butler
Mr Butler ends his two-part exploration of CORBA development by
describing how to build CORBA clients with Delphi (both early and late
binding) and with JBuilder.

16 Visual Programming
Visual Form Inheritance: Part II — Rick Spence
Mr Spence winds up his two-part introduction to Delphi’s woefully
underdocumented VFI capabilities by creating a generic table main-
tenance application.

21 DBNavigator
Interfaces Revisited: Part I — Cary Jensen, Ph.D.
More than a method, less than a class, but not an object, the Object
Pascal interface defies brief description. Dr Jensen is up to the task,
however, and provides an updated introduction.

25 On the ’Net
SAX for Delphi — Keith Wood
Mr Wood explains the importance of SAX (Simple API for XML) and then
demonstrates its power by building an impressive example application
for Delphi versions 3, 4, and 5.

30 Sound + Vision
FormShaper — Peter Morris
Tired of the standard rectangular windows? Have an exotic UI request
from a client? Mr Morris shares his FormShaper component, and shows
us how to think outside the box.

REVIEWS
33 ASTA 2.1
 Product Review by John Rendell

DEPARTMENTS
2 Delphi Tools
3 Newsline
36 File | New by Alan C. Moore, Ph.D.

2 March 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions

Mastering Delphi 5
Marco Cantù

SYBEX

ISBN: 0-7821-2565-4
Price: US$49.99 (1,085 pages)
Web Site: http://www.sybex.com

Woll2Woll Announces InfoPower 2000
 Woll2Woll Software
announced the avail-
ability of InfoPower
2000, a new version
of its visual compo-
nent suite for Delphi
and C++Builder.
 A major architectural change
has been made to InfoPower’s
database design by providing
true virtual dataset support.
This allows developers to use
any TDataSet natively (without
requiring a TwwDataSet
descendant). As a result, devel-
opers can directly use Delphi
5’s new ADO and InterBase
data objects, or any third-party
engine.
 InfoPower 2000 features a
new hierarchical data inspector,
a multi-purpose component for
editing or viewing data. It can
be used to group related fields
(even from different datasets),
provide a hierarchical view of
the data, embed InfoPower or
1stClass controls, or without
a dataset just like the Delphi
Object Inspector.
 InfoPower 2000 provides the
ability to create true paperless
forms just like the real hard-
copy form they are based on,
using the new custom framing
and glyph effects in the edit
controls.
 Developers can make the
TwwDBNavigator control
appear transparent with flat,
transparent navigator buttons,
each of which now contains
ZieglerSoft Releases ZieglerCollec
TActionList
support.
 The new
version also
provides
enhanced RichEdit word proces-
sor control by integrating Micro-
soft Word’s Spell and Grammar
Checker (Delphi 5 only).
 Also, InfoPower 2000
includes advanced filtering
capabilities, significant per-
formance enhancements, and
improved support for SQL
parsing. When using ADO or
Delphi 5’s InterBase objects,
it additionally supports filters
on calculated fields in a
developer’s
dataset, wild-
card searches,
and more.
Automatic
Aliases for
user-entered
text allow
filtering on
mapped values
that are stored
in the data-
base.
 In addition,
InfoPower
2000 also
enhances its

tion one v. 1.60 and Crt32 v. 2.05
grid with registry
and .INI support
for saving and
loading user
column positions

and sizes. The grid now dis-
plays multiple-line cell-level
tool tips when the cell text
doesn’t fit.

Woll2Woll Software
Price: InfoPower 2000 Standard,
US$199; InfoPower 2000 Professional,
US$299 (includes source code,
C++Builder compatibility, and support
for older versions of Delphi).
Phone: (800) 965-2965
Web Site: http://www.woll2woll.com
 ZieglerSoft released ZieglerCol-
lection one v. 1.60, a new ver-
sion of the development tool for
Delphi and C++Builder.
 In addition to Delphi 5 sup-
port, new features have been
added, such as forms, buttons,
check boxes, etc. that can take
any shape. All registered cus-
tomers get free upgrades to the
new version.
 The company also released
Crt32 v. 2.05, a new version
of its tool for moving Turbo/
Borland Pascal programs, using
the old Crt unit, to Delphi.
The product now supports
Delphi 5.

ZieglerSoft
Price: US$52 each.
Phone: (+45) 9811 3772
Web Site: http://www.zieglersoft.com

http://www.sybex.com
http://www.woll2woll.com
http://www.zieglersoft.com

3 March 2000 Delphi Informant Magazine

LWE Releases MATHEMATICS DLL TOOLKIT! Version 5.0Delphi

T O O L S

New Products
and Solutions
 LWE Research, Inc. announced
MATHEMATICS DLL TOOL-
KIT! Version 5.0, its unit
conversion and financial math
package for Delphi 5. MATH-
EMATICS DLL TOOLKIT! is
a DLL-based toolkit of mathe-
matical functions for the expe-
rienced programmer and the
novice programmer alike.
 MATHEMATICS DLL
TOOLKIT! 5.0 provides SI and
British numerical conversion
functions for area, force, heat
capacity, enthalpy, heat, energy,
work, heat flux, heat flow,
heat-transfer coefficients, length,
mass, mass flux, molar flux,
mass-transfer coefficients, power,
pressure, temperature, thermal
conductivity, viscosity, volume,
and weight (in troy measure-
ments) properties.
 The toolkit also provides DLL
functions for financial math cal-
ESB Announces ESB Professional Co

SkyLine Tools Announces ImageLib
culations, including compound
interest, annuity future, and
present value calculations (front-
and back-end loading), contin-
uous compounding, yield to
maturity, multiple compound-
ing, multiple compounding
annuity future, and present value
calculations (front- and back-
end loading). It provides class
wrappers to compute future
value, present value, interest,
number of years, and payment
amount. Set three values and the
class will compute the fourth.
The package also provides com-
ponent wrappers for docking
with the Delphi 5 palette.
 All functions in LWE Research’s
MATHEMATICS DLL
TOOLKIT! are designed to
provide 19 significant figures
of accuracy. Working in Win-
dows 95/98/NT, programmers
can write the code, display any
mputation Suite 1.1.2

 Corporate Suite 5.0
output the way they want it,
and let MATHEMATICS DLL
TOOLKIT! do the calculations.
 MATHEMATICS DLL
TOOLKIT! comes with
MATHEMATICS DLL TOOL-
KIT! DLL file, class DCU,
and component DCU; an
HTML manual explaining all
functions; information on float-
ing point limits for Borland and
Microsoft compilers; a sample
EXE describing how to attach
to the DLL; sample EXE Delphi
code describing how to use the
DLL calls or classes; and notices
of updates.

LWE Research, Inc.
Price: Single-user license, US$100; pro-
fessional license US$300; site licenses and
custom DLLs are available (call for more
details).
Phone: (800) 201-4559
Web Site: http://www.lweresearch.com
 ESB Consultancy announced
ESB Professional Computation
Suite 1.1.2 (ESBPCS), a collec-
tion of over 1,600 routines and
over 50 components for Borland
Delphi 4 and 5 that are aimed at
making computations easier for
the developer.
 Areas covered include
extended currency types, date
and time manipulation, trigo-
nometry, statistics, linear regres-
sion, probability distributions,
special functions, optimized
math, vectors, matrices, equa-
tion solving, fractions, business
math, accounting, complex
numbers, geometry, unit con-
versions, and more.
 Components include a variety
of custom-designed edit con-
trols for the various data types,
including Vector Editing and
Matrix Editing. There are com-
ponents to aid in statistics
and unit conversion, and many
of the components have data-
aware versions.
ESB Consultancy
Price: US$99 for single-developer license.
Phone: +61-8-9093-2133
Web Site: http://www.esbpcs.com
 SkyLine Tools Imaging
announced the release of Image-
Lib Corporate Suite 5.0 for
Delphi 5, the company’s imaging
tookit for Delphi developers.
 Features of the new version
of ImageLib Corporate Suite
include upgraded memory for
the larger images produced by
newer digital cameras; upgraded
TWAIN scanning that meets the
specifications for newer scanners;
a features package that allows
annotations to be customized by
the developer; a magnifying glass
feature, which allows the user to
zoom into a specific area of the
image rather than zooming into
the entire page (it also lets the
user move the magnifying glass
around on the screen, and con-
tinues to magnify only the area
under the “glass”); and an
improved IlDocumentImage,
with flicker-free annotations.

SkyLine Tools Imaging
Price: US$599
Phone: (818) 346-4200
Web Site: http://www.skylinetools.com

http://www.lweresearch.com
http://www.esbpcs.com
http://www.skylinetools.com

4 March 2000 Delphi Informant Magazine

News

L I N E

March 2000

 Scotts Valley, CA — Inprise

Inprise Announces VisiBroker 3.3 for Delphi

 Palo Alto, CA — Tamarack

Tamarack Hosts Newsgroup Search Engine for
Delphi and C++Builder

Inprise Collaborates with Su

Inprise Announces Inprise A
and VisiBroker for Java 4.0

I

Associates is hosting a news-
group search engine at http://
www.tamaracka.com that indexes
Delphi and C++Builder news-
groups. The archive of messages
goes back to May, 1997, and
includes newsgroups from Bor-
land, Advantage, TurboPower,
Vista Software, Woll2Woll, and
n on Delivery of Java 2 Pla

cation server by combining the

pplication Server 4.0

nprise/Borland Open-sour
 Scotts Valley, CA — Inprise
others. Searches against the 1.5
million-record database are per-
formed using Tamarack Associ-
ates’ Rubicon 2 full-text search
engine. Search results are
returned in either date (most
recent to least recent) or rank
order and may be viewed by arti-
cle or thread. The site focuses on
Borland development tools.
Corp. announced the availability
of VisiBroker 3.3 for Delphi.
With VisiBroker 3.3 for Delphi,
developers can create and deploy
distributed applications in com-
puting environments, including
Windows and Linux. VisiBroker
for Delphi provides a complete
CORBA environment for Delphi.
The product is available as a
free download, for developers who
have purchased Delphi 5 Enter-
prise Edition, at Inprise’s Web site
(http://www.borland.com/
visibroker/delphi).
 Inprise’s VisiBroker for Delphi
is designed to facilitate the
development of CORBA appli-
cations that are scalable, flex-
ible, easily maintained, and
based on industry standards.
CORBA simplifies the building
of applications that are distrib-
uted and interoperable across
the Internet and multiple
platforms, including Windows,
Linux, and Java. CORBA is
particularly important to the
Linux community, where it is
also used for inter-application
communication in Linux desk-
top environments, including
both GNOME and KDE.
ers, as well as simplify moving

tform for Linux

 Scotts Valley, CA — Inprise
Corp. announced it has jointly
produced a Linux version of the
Java 2 Platform, Standard Edi-
tion (J2SE) with Sun Micro-
systems. The agreement enables
programmers to develop and run
applications based on the Java
2 platform and deploy them
on Linux workstations and serv-
c

existing Java applications to the
Linux operating system.
 Earlier this year, Inprise
announced a free download of
the beta JBuilder Just-In-Time
compiler (JIT) for Linux. Now
Sun is licensing the JIT from
Inprise to complete the Java 2
Software Development Kit, nec-
essary for running high-perfor-
mance Java applications on the
Linux OS.
 The first release of the Linux
port of the Java 2 platform
developed by Sun and Inprise
is available immediately at
http://developer.java.sun.com/
developer/earlyAccess/j2sdk122/
and will be included in Inprise’s
JBuilder. Sun and Inprise plan
to ship the final version of the
Linux port in early 2000.
es InterBase 6
 New York, NY — Inprise
Corp. announced the shipment
and availability of Inprise Appli-
cation Server 4.0 and VisiBroker
for Java 4.0.
 Based on open industry
standards, the products deliver
a foundation for customers to
expand their presence on the
Web and provide them with the
technology infrastructure needed
to support enterprise-strength
Internet business applications.
 Inprise Application Server com-
bines the benefits of Enterprise
JavaBeans (EJB) and CORBA,
enabling customers to integrate
existing IT resources with new,
powerful Web applications. By
leveraging the proven scalability
and reliability of VisiBroker,
customers can create e-business
applications that can handle the
high volume of transactions
required for doing business on
the Web.
 The Inprise Application Server
also provides comprehensive sup-
port for the Java 2 Platform,
Enterprise Edition. Inprise is
redefining the value that devel-
opers can expect from an appli-
open, cross-platform, and cross-
language framework of CORBA
with the transactional business
logic of EJB technology.
 VisiBroker is the object request
broker designed to facilitate the
development and deployment of
distributed enterprise applica-
tions that are scalable, flexible,
easily maintained, and based on
industry standards.
 For more information, visit
http://www.borland.com, or call
(800) 632-2864.
Corp. announced plans to
jump to the forefront of the
Linux database market by
open-sourcing InterBase 6, the
new version of its cross-plat-
form SQL database. Inprise
plans to release InterBase in
open-source form for multiple
platforms, including Linux,
Windows NT, and Solaris.
 The source code for InterBase
6 is scheduled to be published
during the first part of this
year.
 The company also announced
it plans to continue to sell and
support InterBase 5.6 through
normal distribution channels.
Inprise plans to announce fur-
ther details of its roll-out plans
for the InterBase open-source
project on its Web site (http://
www.inprise.com).
 InterBase 6 is a cross-platform
SQL database designed for
business-critical, mobile com-
puting, and Internet-based
applications on Linux, Win-
dows NT, Solaris, and UNIX.

http://www.borland.com/visibroker/delphi
http://www.tamaracka.com
http://www.tamaracka.com
http://www.borland.com
http://www.inprise.com
http://www.inprise.com
http://developer.java.sun.com/developer/earlyAccess/j2sdk122/

5 March 2000 Delphi Informant Magazine

OP Tech
Delphi 5 / Property Editors / Open Tools API

By Ray Lischner

type
 TVisualFontP
 public
 procedure
 const Re
 end;

Figure 1: Class
Owner-drawn Property Editors
Exploring One of Delphi’s New Advanced Features

The Object Inspector is, of course, familiar to all Delphi users. At the heart of the
Object Inspector lie property editors; each property you see in the Object Inspector

has a corresponding instance of a property editor class.
Among Delphi’s advanced features is the ability
to define new property editors, provide new func-
tionality for existing properties, or define the
method for setting and displaying new properties
on new components. Before Delphi 5, the Object
Inspector could display only text for a property
value. New in Delphi 5 is the ability for a prop-
erty editor to draw anything it wants to display a
property’s name and value. If the property has a
drop-down list, you can draw each list item, too.
This article tells you how to use the new owner-
drawn feature of property editors.

Property Editor Refresher
A property editor is a class that inherits from
TPropertyEditor. You register a property editor
class for certain property types, property names,
and components. The Object Inspector checks
the type and name of each property it must dis-
play, and chooses an appropriate property editor
class. Then it creates an instance of the class —
one instance per property. When you select a dif-
ferent component, the Object Inspector frees all
the property editor objects and creates new ones
for the new component.

A property editor determines how to display a
property’s value and how the user can set a new
property value in the Object Inspector. For exam-
ple, TIntegerProperty calls IntToStr to display the
integer property value as a string, and StrToInt when
the user types a new property value. TColorProperty,
on the other hand, also uses an integer-type prop-
erty, but interprets the value of the integer as a
color, mapping the color value to a name (such as
clBlack or clBtnFace) if possible.
roperty = class(TFontProperty)

PropDrawValue(Canvas: TCanvas;
ct: TRect; Selected: Boolean); override;

 declaration for TVisualFontProperty.
A property editor implements its type-specific
behavior by overriding one or more methods of
TPropertyEditor. Most property editors override
GetValue, which gets the property value as a
string, and SetValue, which converts a string to a
property value and sets the property’s value in the
selected component. For more information about
writing property editors, see the DsgnIntf.pas
file that ships with Delphi 5 (in the Delphi5\
Source\Toolsapi directory by default), and Delphi
5 online Help (under “property editors, creating”).

The Basics
At its most basic level, implementing an owner-drawn
property editor is simply a matter of overriding
the PropDrawValue method of TPropertyEditor. For
example, TColorProperty overrides PropDrawValue to
show a small color swatch in the Object Inspector. To
understand how to use PropDrawValue, consider writ-
ing a new property editor for TFont-type properties.
The new property editor will display the font in use
by using the font to write the font’s name.

Delphi already has a property editor, TFontProperty,
which adds the ellipsis button in the Object Inspec-
tor so the user can select a font from the Windows
font chooser dialog box. Derive your new property
editor from TFontProperty as shown in Figure 1.

Delphi calls PropDrawValue when it needs to dis-
play the property value in the Object Inspector. It
passes a canvas to draw on and the bounds of the
drawing area. The Selected parameter isn’t used, so
you can ignore it.

Note that Delphi doesn’t set the clipping region to
the given rectangle. Be sure you confine your draw-
ing to that rectangle, or else you’ll be obscuring the
values of other properties.

The only task that TVisualFontProperty does is to
select the font to use for drawing the property value.
It sets the font name, style, and color, but only if

OP Tech

// doesn't fit, draw it on a temporary bitmap
// and stretch the bitmap.
procedure StretchIcon(Canvas: TCanvas;
 const Rect: TRect; Icon: TIcon);
var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap.Create;
 try
 Bitmap.Height := Icon.Height;
 Bitmap.Width := Icon.Width;
 Bitmap.Canvas.Brush.Color := clBtnFace;
 Bitmap.Canvas.FillRect(Rect);
 Bitmap.Canvas.Draw(0, 0, Icon);
 Canvas.StretchDraw(Rect, Bitmap);
 finally
 Bitmap.Free;
 end;
end;

procedure DrawGraphic(Canvas: TCanvas; const Rect: TRect;
 Graphic: TGraphic; const Value: string);
var
 R: TRect;
 HeightRatio, WidthRatio: Single;
begin
 Canvas.FillRect(Rect);
 // Fit the graphic into the given space. Maintain the
 // aspect ratio and adjust the height or width to fill
 // the given space.
 HeightRatio := (Rect.Bottom - Rect.Top) / Graphic.Height;
 WidthRatio := (Rect.Right - Rect.Left) / Graphic.Width;
 R := Rect;
 if HeightRatio < WidthRatio then
the color is different from the background color. The font size is left
as the default, so you don’t run into problems when the font property
has a very large or very small size. Figure 2 shows the implementation
of PropDrawValue.

The property value is ordinarily (TFont), which is not very informa-
tive. Override the GetValue method to display something more help-
ful, say the font name and size, as shown in Figure 3.

You can draw anything you want on the canvas. For example, the
property editor for icons and bitmaps is TGraphicProperty. It displays
the property value as a boring string, e.g. (TIcon). The property
editor would be more useful if it displayed a miniature icon.
TVisualGraphicProperty overrides PropDrawValue to do just that.

The property editor for TPicture is similar, so the common work is
done by a subroutine, DrawGraphic. This subroutine stretches the
graphical object to fit in the space available in the Object Inspector.
It maintains the original aspect ratio, and scales the image to fit in
the smaller of the available height or width. Windows doesn’t stretch
icons, so DrawGraphic calls StretchIcon to draw the icon on a bitmap
and stretch the bitmap. Figure 4 lists these subroutines.

DrawGraphic does all the hard work, so PropDrawValue is easy to
write. It makes sure the property has an actual graphical object. If
not, it lets the inherited method do its thing (namely, display (None)
as the property value). Figure 5 shows the PropDrawValue method.

Owner-drawn Name
You can also override the PropDrawName method, which works
the same way as PropDrawValue, but draws the property’s name.
Most properties don’t need any special treatment for the property
name, but one example I like is to show the Name property in
boldface. It’s an important property, and this makes it easy to find.
6 March 2000 Delphi Informant Magazine

// Instead of a boring (TFont) font value, show the font
// name and size using the chosen font style. The user
// might have chosen a large size, so select only the font
// name, leaving the size as the default size. Set the font
// color only if it is different from the background color,
// or else the user could not see the font name.
procedure TVisualFontProperty.PropDrawValue(
 Canvas: TCanvas; const Rect: TRect; Selected: Boolean);
var
 Font: TFont;
begin
 Font := TFont(GetOrdValue);
 if Font <> nil then begin
 if ColorToRGB(Font.Color) <> ColorToRGB(clBtnFace) then
 Canvas.Font.Color := Font.Color;
 Canvas.Font.Name := Font.Name;
 Canvas.Font.Style := Font.Style;
 end;
 inherited;
end;

Figure 2: Definition of TVisualFontProperty.PropDrawValue.

function TVisualFontProperty.GetValue: string;
var
 Font: TFont;
begin
 Font := TFont(GetOrdValue);
 if Font = nil then
 Result := inherited GetValue
 else
 Result := Format('%s, %d', [Font.Name, Font.Size]);
end;

Figure 3: Overriding the GetValue method.
Figure 6 shows the TBoldComponentNameProperty class and the
PropDrawName method.

Drop-down Lists
A property editor can have a drop-down list where the user can choose
a property value. Delphi uses the owner-drawn feature to improve the

// Windows doesn’t stretch icons, so if the icon
 R.Right := R.Left + Trunc(Graphic.Width * HeightRatio)
 else
 R.Bottom := R.Top + Trunc(Graphic.Height * WidthRatio);
 if (Graphic is TIcon) and
 ((HeightRatio > 1) or (WidthRatio > 1)) then
 StretchIcon(Canvas, R, TIcon(Graphic))
 else
 Canvas.StretchDraw(R, Graphic);
 // To the right of the graphic, let the inherited editor
 // draw the the usual text, e.g. TIcon.
 R.Left := R.Right;
 R.Right := Rect.Right;
 R.Top := Rect.Top;
 R.Bottom := Rect.Bottom;
 Canvas.TextRect(R, R.Left+1, R.Top+1, Value);
end;

Figure 4: Drawing a graphical object on the Object Inspector’s
canvas.

procedure TVisualGraphicProperty.PropDrawValue(
 Canvas: TCanvas; const Rect: TRect; Selected: Boolean);
var
 Graphic: TGraphic;
begin
 Graphic := TGraphic(GetOrdValue);
 if (Graphic = nil) or Graphic.Empty or
 (Graphic.Height = 0) or (Graphic.Width = 0) then
 inherited
 else
 DrawGraphic(Canvas, Rect, Graphic, GetVisualValue);
end;

Figure 5: PropDrawValue for a graphical object.

OP Tech
drop-down lists for the TColor and TCursor property editors. You can
do the same by overriding the ListDrawValue, ListMeasureHeight, and
ListMeasureWidth methods, which are shown in Figure 7.
7 March 2000 Delphi Informant Magazine

type
 TBoldComponentNameProperty =
 class(TComponentNameProperty)
 public
 procedure PropDrawName(Canvas: TCanvas;
 const Rect: TRect; Selected: Boolean); override;
 end;

procedure TBoldComponentNameProperty.PropDrawName(
 Canvas: TCanvas; const Rect: TRect; Selected: Boolean);
var
 Style: TFontStyles;
begin
 Style := Canvas.Font.Style;
 Canvas.Font.Style := Canvas.Font.Style + [fsBold];
 try
 inherited;
 finally
 // Restore the style so Delphi can draw
 // the property value.
 Canvas.Font.Style := Style;
 end;
end;

Figure 6: Drawing the Name property’s name in boldface.

procedure ListDrawValue(const Value: string;
 Canvas: TCanvas; const Rect: TRect; Selected: Boolean);
procedure ListMeasureHeight(const Value: string;
 Canvas: TCanvas; var Height: Integer);
procedure ListMeasureWidth(const Value: string;
 Canvas: TCanvas; var Width: Integer);

Figure 7: Methods for owner-drawn drop-down lists.

// Draw an item in the drop-down list. Display the checked
// or unchecked box for each item.
procedure TSetPropertyEx.ListDrawValue(const Value: string;
 Canvas: TCanvas; const Rect: TRect; Selected: Boolean);
var
 IsChecked: Boolean;
 OrdValue: Integer;
begin
 OrdValue := GetOrdValue;
 IsChecked := GetEnumValue(EnumInfo, Value) in
 TIntegerSet(OrdValue);
 Canvas.FillRect(Rect);
 Canvas.TextRect(Rect, Rect.Left + Checked.Width + 2,
 Rect.Top + 1, Value);
 if IsChecked then
 Canvas.Draw(Rect.Left + 1, Rect.Top + 1, Checked)
 else
 Canvas.Draw(Rect.Left + 1, Rect.Top + 1, Unchecked);
end;

procedure TSetPropertyEx.ListMeasureHeight(
 const Value: string; Canvas: TCanvas;
 var Height: Integer);
begin
 if Height < Checked.Height then
 Height := Checked.Height;
end;

procedure TSetPropertyEx.ListMeasureWidth(
 const Value: string; Canvas: TCanvas;
 var Width: Integer);
begin
 Width := Width + Checked.Width + 2;
end;

Figure 8: Owner-drawn list for set elements.
ListDrawValue is similar to PropDrawValue, but now the Selected
parameter means that the user has selected the list item. Delphi
automatically sets the canvas colors for unselected and selected list
items, so you can usually ignore the Selected parameter.

The Value parameter is the string to display. Delphi gets these strings
by calling GetValues, one of the standard methods of TPropertyEditor.
(You can learn more about GetValues in Delphi’s online Help.)

Before the Object Inspector displays the list, though, it calls
ListMeasureHeight and ListMeasureWidth to learn the size of each list
item. Set the Height or Width parameter to the desired height or width.
The drop-down list uses the maximum size of all list items and displays
every item in the same-sized rectangle, so don’t assume an item’s height
must match the height of the rectangle passed to ListDrawValue.

As the user scrolls through the list, Delphi calls ListDrawValue appro-
priately to draw the newly visible list items. The user might scroll
forward and backward many times. If the list item takes a lot of
time to draw, you should draw it in a separate bitmap and let
ListDrawValue quickly display the bitmap.

The next example is a property editor for set-type properties. The
drop-down list shows the set elements, and a check box next to each
element tells you whether that element is a member of the set. The
check box is one of the standard Windows check box bitmaps. The
property editor retrieves the bitmap once and displays the checked
or unchecked bitmap as needed. The global variables Checked and
Unchecked store these bitmaps as TBitmap objects. The listing in
Figure 8 shows the owner-drawn list methods for TSetPropertyEx.

The same logic for drawing check boxes can be used to display each set
element for displaying the values of Boolean-type properties.
 // Draw a check box and the Boolean text label,
// i.e. True or False.
procedure DrawBoolCheckBox(Canvas: TCanvas;
 const Rect: TRect; const Value: string);
begin
 Canvas.FillRect(Rect);
 Canvas.TextRect(Rect, Rect.Left + Checked.Width + 2,
 Rect.Top + 1, Value);
 if Value = BooleanIdents[False] then
 Canvas.Draw(Rect.Left + 1, Rect.Top + 1, UnChecked)
 else
 Canvas.Draw(Rect.Left + 1, Rect.Top + 1, Checked);
end;

{ TSetElementPropertyEx }
// Display a check box for each item, showing whether it's a
// member of the set. The user cannot click to check or
// uncheck, but double-click works.
procedure TSetElementPropertyEx.PropDrawValue(
 Canvas: TCanvas; const Rect: TRect; Selected: Boolean);
begin
 DrawBoolCheckBox(Canvas, Rect, Value);
end;

{ TBoolPropertyEx }
// Display a check box for ByteBool, WordBool, and LongBool
// items. The user cannot click to check or uncheck,
// but double-click works.
procedure TBoolPropertyEx.PropDrawValue(Canvas: TCanvas;
 const Rect: TRect; Selected: Boolean);
begin
 DrawBoolCheckBox(Canvas, Rect, Value);
end;

Figure 9: Owner-drawn Boolean property editors.

OP Tech
TBooleanPropertyEx applies to properties of type Boolean. The
ByteBool, WordBool, and LongBool properties are similar, but
require a different property editor. Figure 9 shows the simple
code needed for these property editors. The check box is slightly
confusing because you expect to single-click the check box to
change its value. Delphi doesn’t support single-click, but a dou-
ble-click invokes the property editor’s Edit method. For a set
element or Boolean property, a double-click toggles the property
value. Perhaps Delphi 6 will support single-click interaction in
property editors.

Using the Property Editors
The final task is to register these new property editors. Most of the
editors are easy to register, but the new set-type property editor
poses a problem. Each set is a distinct type, and you must register
the property editor separately for each. Fortunately, Delphi has
a little-known feature that lets you register a property editor for
all set-type properties. Instead of registering a property editor
for a single property type or name, you supply a property map
function. The function takes an object and property information
as arguments and returns the property editor class or nil. In this
case, the map function checks the property type and returns the
new set property editor for all properties whose type is tkSet.
Figure 10 shows the Register procedure and the map function.

After you write the Register procedure, all that’s left to do is to bundle
the new property editors in a package and install the package in
Delphi. Close existing forms to make sure you dispose of the old
property editors. Open a new form and you can see the new property
editors. Figure 11 shows an example of the visual font, icon, set, and
Boolean property editors.

Other New Property Editor Features
This article covers owner-drawn property editors, but Delphi 5 has
other new features, which you can explore on your own.

// Register the set property editor for all
8 March 2000 Delphi Informant Magazine

// set-type properties.
function SetMapper(Obj: TPersistent; PropInfo; PPropInfo):
 TPropertyEditorClass;
begin
 if PropInfo.PropType^.Kind = tkSet then
 Result := TSetPropertyEx
 else
 Result := nil;
end;

procedure Register;
begin
 RegisterPropertyEditor(TypeInfo(TFont), nil, '',
 TVisualFontProperty);
 RegisterPropertyEditor(TypeInfo(TGraphic), nil, '',
 TVisualGraphicProperty);
 RegisterPropertyEditor(TypeInfo(TComponentName),
 TComponent, 'Name', TBoldComponentNameProperty);
 RegisterPropertyEditor(TypeInfo(Boolean), nil, '',
 TBooleanPropertyEx);
 RegisterPropertyEditor(TypeInfo(ByteBool), nil, '',
 TBoolPropertyEx);
 RegisterPropertyEditor(TypeInfo(WordBool), nil, '',
 TBoolPropertyEx);
 RegisterPropertyEditor(TypeInfo(LongBool), nil, '',
 TBoolPropertyEx);

 RegisterPropertyMapper(SetMapper)
end;

Figure 10: Registering the new property editors.
GetVisualValue is similar
to GetValue, but it can
return a different string
that is meant solely for
displaying a value —
not for editing. GetValue
and SetValue work as a
team, converting a prop-
erty value to a string
and back again. Some-
times, you want to dis-
play a property value
with a different string
than what you use to
edit the property value,
in which case, you over-
ride GetVisualValue to
return the display string
and GetValue to return
the string for editing.

A new attribute,
paFullWidthName, tells
the Object Inspector to
display the property
name across the full
width of the Object
Inspector, leaving no
room for the property
value. At first glance, this seems like a strange attribute for a
property editor, but many components have a property named
About, whose sole purpose is to have an ellipsis button (paDialog),
which brings up an About dialog box. This property has no
meaningful value, so paFullWidthName might be helpful. Over-
ride PropDrawName and you can include your company logo (if
it’s small enough) next to the property name.

These new features aren’t documented in the Help files, but if
you have the Professional or Enterprise Edition, you can read
the source code in \Toolsapi\DsgnIntf.pas. Using the property
editors that come with Delphi as starting points, you can create
interesting and effective property editors. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works Companion Disk in INFORM\00\MAR\
DI200003RL.

Figure 11: The owner-drawn property
editors in action.

Ray Lischner is the author of Delphi in a Nutshell [O’Reilly & Associates,
2000] and other books and articles about Delphi. He talks about Delphi and
programming at conferences and user group meetings across the country. Ray also
teaches Computer Science at Oregon State University.

9 March 2000 Delphi Informant Magazine

Greater Delphi
CORBA / Delphi 4, 5 / VisiBroker / JBuilder

By Dennis P. Butler
CORBA
Part II: Creating Clients

Our server has been set up (last month in Part I of this two-article series), and should
provide objects as necessary for any clients looking for an instance of TOnlineAuction.

Now it’s time to create a client to access and use this object. In CORBA, there are two
ways a client can get an instance of a server object. The first is known as early binding,
or static binding. This means the client has knowledge of what type of CORBA object
it’s going to interface with. This means that another file, known as the stub, will be
used to handle the passing of data between the client and server — processes known as
marshaling and unmarshaling, respectively. The complexity of the marshaling process is
taken care of for us by the stub, which makes it much easier to implement.
The other way to access the server object from the
client is known as late binding, or dynamic bind-
ing. Dynamic binding is also commonly referred
to as DII, or Dynamic Invocation Interface. This
means the client has no prior knowledge of the
server object, and thus knows nothing about the
structure of objects that it can access. An observa-
tion at this point is that the client stub doesn’t
get used, since the client doesn’t have the facility
to know the structure of server objects at design
time. This knowledge is what is provided by the
stub to the client.

The advantage of DII is that clients can be created
that may never need to be rebuilt when a server
object is changed; the client code can remain con-
stant through many changes to the server object
that it uses. This is done through the use of another
CORBA construct known as the Interface Reposi-
tory. This holds run-time type information about
what is available to the client, and allows the client
to use the available services. A drawback to this
approach, as compared to early binding, is that it
is more complex, slower, and requires more work
for the developer.

In our Delphi example, it’s still relatively simple,
through the use of the type library files, and the
TAny class. Since we know what server implementa-
tion we’re looking for, we can access the methods
directly using TAny. In actual production situations,
the client may not know what server objects and
methods are available, and may need to have more
complicated code to accommodate this. For this
article, both early and late binding clients will be cre-
ated for use with the CORBA server we’ve created.
(There is also the capability in CORBA to provide
a DSI, or Dynamic Skeleton Interface. Like DII
for the server, this allows the CORBA servers to
have no knowledge at compile time of what objects
will be available to them. This is also done using
an Interface Repository to store information. This
technique won’t be covered in this series, but it’s
important to know that it’s available.)

Before we go any further, we should provide more
explanation for these new CORBA terms that we
have introduced:
§ Client Stub and Server Skeleton. These two

CORBA features are used to convert informa-
tion to be passed between the client or server
into the CORBA packet format to be sent over
the network. The stub is a layer between the
client and the ORB layer and provides a means
for the client application to send information
to the server. The server skeleton is a layer
between the server and the ORB layer that
converts the parameters and other information
sent by the client, so it can be used by the server
in performing the action the client requires.

§ Marshaling and Unmarshaling. Marshaling is
the process of converting parameter values and
other information so they can be sent over the
network. Marshaling is accomplished by the
stub to send information to a server. Unmar-
shaling is the opposite process, where the server
skeleton converts information that has been sent
over the network into the parameter values and
calls the appropriate function for the client.

§ Run-time Type Information. RTTI is infor-
mation available at run time about objects in a
system. Delphi and CORBA both incorporate

Figure 1: The Online Auction client.

Greater Delphi
this feature. It’s especially important when creating functionality
that will wait until run time to see what types of objects are
available for use, or for providing different types of functionality
based on what objects are being used.

Since it’s easier, the early binding client will be created first. By using the
Type Library editor, we have all the files we need for our early binding
client. The Type Library editor creates a stub file for us in the form
of a TLB file. When we create the client, we’ll need to add this file to
the uses section of the form, so we have a reference to the structure of
the server object. We also need to add CorbaObj to the uses section to
perform the binding necessary to communicate across the ORB.

Figure 1 contains an image of our client. It has functionality to
refresh the bid information, enter information for a new bid, and
place the bid.

Early Binding Client
As mentioned earlier, the early binding client uses the type library
file generated by the Type Library editor to get a reference to the
CORBA object that our server will create. The client code we have
to access and use this object is shown in Listing One (beginning
on page 12). In this client, we implement all the methods from our
server object. We’re able to do this because we know the structure
of the server object through the IOnlineAuction interface. We get the
reference to the interface to the server object when the client starts by
getting an instance from the CORBA factory. We can then perform
any operation on the object.

We must take several steps before running this client. The ORB
Smart Agent must be running on the network somewhere — on the
server machine, or on some other machine. To do this, run:

osagent -C

from the command line, or run VisiBroker Smart Agent from the
VisiBroker folder installed in the Delphi folder. The -C at the
command line designates that the osagent will run in the taskbar;
otherwise it will not appear there, so it may not be apparent
whether it’s running while you’re testing. Once the ORB Smart
Agent is running, start the server application.

Once the server has been started, it’s a good idea to ensure that the
server objects are available for any clients. The VisiBroker utility,
10 March 2000 Delphi Informant Magazine
osfind, can be used to do this. Run osfind from the command line
on the client machine to display a list of available objects within
the subnet of the machine. This will verify that the client has access
to the necessary server objects. For complicated implementations of
CORBA, the osagents can be configured to look for server objects, or
other osagents outside the current subnet. Although this isn’t covered
in this article, suffice it to say there are facilities to allow the client
to look virtually anywhere for a server object, as long as the osagents
have been set up correctly.

The final step is to run several clients. These should automatically
get a reference to the server by including the type library file that
was generated, and the client should have access to all server func-
tions. In our example, we can launch many clients from different
machines (within the same network subnet), and make successive
bids against the server.

As you can see, not much is required to create an early-binding
client to our server object in this simple example. DII is a little more
complicated, as we’ll see next.

Late Binding Client
As described earlier, the late binding client has no knowledge of the
structure of available server objects at design time, and must use
a facility called the Interface Repository to find what is available.
In this example, we’ll implement this client and describe the require-
ments, benefits, and drawbacks in using this approach.

Before we get to writing the client, there are a few requirements
that must be met. First, the interface for the object must be
registered with an interface repository. To do this, we must first
have an IDL file. This can be created easily by returning to the
Type Library editor and selecting Export to CORBA IDL. This is done
by dropping down the last button on the right of the toolbar
(see Figure 2). In this example, the CORBA IDL setting must be
selected. The MIDL export setting will not work with the interface
repository functionality we are going to use.

This will create the IDL file that corresponds to the server object
defined previously. The filename will be <ProjectName>.IDL
wherever the server application source has been saved. This IDL
must then be registered with an interface repository. The osagent
and the server should be started before starting the interface
repository. Then, start the interface repository. At this point, we
can load the IDL for our CORBA object into the repository,
so clients can see it’s available on one of the available servers.
The interface repository can be started by running the following
statement from the command line:

irep <Repository Name>

The repository name can be anything you want and will launch
the Interface Repository application. Once it’s open, you can
either select File | Load from the main menu, and select the IDL
file that was exported above, or run the following statement from
the command line:

idl2ir <IDL File Name>

Figure 2: Selecting Export to
CORBA IDL.

Greater Delphi

Figure 3: The Interface Repository with CServer IDL loaded.
Once this has been done, we’ve registered our interface with the
Interface Repository. To verify that the interface has been registered
with the Interface Repository, click the Lookup button after running
the above line from the command line or loading the IDL directly.
You should see something similar to Figure 3.

The only step left at this point is to create the client that will
access the Interface Repository, and use an object stored there.
To start, we’ll use the same form layout as in the early binding example.
Start a new project in Delphi. Instead of naming it Client.dpr (as in
the early binding example), name it Client_DII.dpr. Copy the client
form from the early binding example, and save it as cclient_dii.pas.
Also, change the Caption to designate that it’s the DII version of
the form. Finally, rename the form itself to TfrmDynamicCorbaClient.
These changes aren’t necessary, but serve to distinguish the different
client implementations.

Since we aren’t going to use the stub that was generated for us, remove
the reference to Cserver_TLB in the uses clause of the client that
was carried over from the early-binding example. The code is slightly
different, because we don’t have the client stub to give us a direct
reference to the interface. We use the TAny class, a CORBA interface
11 March 2000 Delphi Informant Magazine

Figure 4: Desktop with server, two static clients, and one dynamic c
type for DII, to get a reference from the interface repository for our
server object. In this case, we’ll get an instance of the object factory,
which will get a reference to the server object. This is done to mimic
the process of the non-DII client shown earlier.

Aside from additional coding needed to get references to our server
object through the object factory, the code for the late binding client
remains largely identical to the early binding client. The code for the
second client is shown in Listing Two (beginning on page 13). The
server and the early and late binding clients running simultaneously
are shown in Figure 4.

To review, here are the steps that were taken to run the server and two
types of clients on the same machine:
§ Start the ORB Smart Agent (osagent -C)
§ Start the server (CServer.exe)
§ Run the Interface Repository (irep inprisepso)
§ Load the interface into the Interface Repository (idl2ir

CServer.idl)
§ Run the early binding client (Client.exe)
§ Run the late binding client (Client_DII.exe)

In this example, we’ve shown how to implement both types of CORBA
clients through Delphi. This is fine in our small example, but in real-
world environments, the value of CORBA is that the clients or servers
can be written in any language with the common IDL interface. The
next section will review how to share this IDL information with other
languages, based on what we have already created in Delphi.

Clients in Other Languages
When we created the dynamic binding client, we needed to export
the IDL for our server object so the interface repository would have
a reference to what objects were available. This IDL file can also
be used by any other CORBA-compliant language to provide an
interface to our server object. Tools such as JBuilder and C++Builder
can be used to provide additional clients or servers based on this
IDL file. In this example, we’ll use JBuilder because it’s a wholesale
departure from the Delphi/C++Builder IDE.

In JBuilder, create a new application with a single frame. In the project
manager, add the CServer.idl file we just saved. The file will appear
in your JBuilder project’s file list. Right-click on the IDL file and

select Build. This runs the IDL file through the IDL2JAVA
precompiler. The IDL2JAVA precompiler converts the IDL
file to Java stub classes. The generated Java files can be
used to create CORBA servers to implement these objects or
CORBA clients to access the objects.

Design the frame so that it looks similar to the Delphi client
that was designed earlier. Figure 5 shows what was done for
our Java client.

The code for the early binding Java client will be similar to
the Delphi client; we’ll have variables for the object factory,
and a server object that will be obtained from that factory.
The code for the client is shown in Listing Three (beginning
on page 14).

As you can see, we’ve declared the object factory and inter-
face in our source file. In the constructor for the frame,
there’s a different method performed here than in Delphi
to attach to the ORB and obtain an object reference. All
that needs to be known is that the Java application is getting lient.

Greater Delphi

Figure 5: Java CORBA client.
a reference to the server object through the use of automatically
generated Helper files. By doing this, an object reference is obtained,
and is used in the same manner as the Delphi client. Helper files and
other CORBA files are generated from the IDL2JAVA utility, which
was run when the CServer.idl file was compiled. JBuilder uses this
method to create the stub and skeleton files, as compared to using the
Type Library editor in Delphi.

Once an object reference has been obtained, the code for the frame
itself is similar to the Delphi application. The Delphi CORBA server
has no knowledge of what language is being used for requests; Delphi
and Java clients make virtually identical calls to the server object
through their stub files. Our Java client could have been running on
a UNIX machine located on a different continent from our Delphi
server. As long as the CORBA subnet or osagents were configured
correctly, these separate processes could talk to each other just as
easily as if they were on the same machine. This simple Java/Delphi
example provides a mere glimpse of the full potential of CORBA.

Conclusion
There’s no doubt that CORBA will continue to gain momentum
in enterprise computing due to its tremendous assets: flexibility,
language independence, and a wide range of capabilities for virtually
every distributed need. Delphi combines these assets with RAD
development to make CORBA programming easier and faster for
the developer, without sacrificing CORBA’s capabilities. As we saw
in these simple examples, Delphi is an ideal platform for setting up
CORBA clients and servers for many types of applications.

Inprise developers also have advanced CORBA capabilities available
through the use of the MIDAS technology. MIDAS allows users
to create complicated queries easily through Delphi, and pass query
results back from remote datasets using CORBA as the transportation
format. This technology is especially powerful, because developers don’t
need to create complicated objects to hold query output; MIDAS
automates this task, creating stub and skeleton classes automatically.
The MIDAS technology is available in several Inprise development
tools and will continue to play a key part in RAD CORBA develop-
ment.

Going forward, Delphi developers can expect to see more CORBA
support in new releases of Delphi. The IDL2PAS utility, when
released, will give Delphi developers access to all CORBA features
12 March 2000 Delphi Informant Magazine
and will not limit implementations to the framework that Delphi
has provided. This will provide the best of both worlds: RAD devel-
opment for standard CORBA tasks as covered in this series, and
granular CORBA development for more specific and complicated
implementations through IDL2PAS.

Delphi has long been regarded as the best Windows development
tool. With the merging of CORBA technology to Delphi, this
reputation will only grow as Delphi’s capabilities now reach across
previously unbreakable boundaries, such as multiple operating sys-
tems and languages. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works Companion Disk in INFORM\00\MAR\
DI200003DB.

Dennis P. Butler is a Senior Consultant for Inprise Corp., based out of the Professional
Services Organization office in Marlboro, MA. He has presented numerous talks at
Inprise Developer Conferences in both the US and Canada, and has written a variety
of articles for various technical magazines, including CBuilderMag.com. He can be
reached at dbutler@inprise.com, or (508) 481-1400.
Begin Listing One — Implemented cclient.pas
unit cclient;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, CorbaObj, CServer_TLB, StdCtrls, Mask,
 Buttons;

type
 TfrmStaticCorbaClient = class(TForm)
 lblCurrentProduct: TLabel;
 lblBidPrice: TLabel;
 lblProduct: TLabel;
 lblCurrentHighBidPrice: TLabel;
 lblPrice: TLabel;
 btnRefresh: TBitBtn;
 edtBidPrice: TEdit;
 lblCustomerName: TLabel;
 edtUserName: TEdit;
 btnMakeBid: TBitBtn;
 lblCurrentHighBidUser: TLabel;
 lblUser: TLabel;
 lblBidStatus: TLabel;
 lblPlaceNewBid: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure btnRefreshClick(Sender: TObject);
 procedure btnMakeBidClick(Sender: TObject);
 public
 // Our interface to the server object.
 AuctionInterface : IOnlineAuction;
 end;

var
 frmStaticCorbaClient: TfrmStaticCorbaClient;

implementation

{$R *.DFM}

Greater Delphi
// On create, we immediately establish connection to server
// using interface defined in type library stub and do
// client initializations.
procedure TfrmStaticCorbaClient.FormCreate(Sender: TObject);
begin
 // Call factory to get reference to the server object.
 AuctionInterface :=
 TOnlineAuctionCorbaFactory.CreateInstance('');
 // Set the product name; resets it for each client. This
 // wouldn't be done in production, but it's done here to
 // demonstrate use of accessor methods created by Type
 // Library editor for object properties.
 AuctionInterface.Set_ProductName(
 'Delphi 5 Enterprise Edition');
 // Refresh with server to get latest information.
 btnRefresh.Click;
end;

// Refreshes information from server. This example doesn't
// implement server callbacks, so refreshes must be
// done manually.
procedure TfrmStaticCorbaClient.btnRefreshClick(
 Sender: TObject);
begin
 // Update price and customer name information for
 // current product.
 lblPrice.Caption := FloatToStrF(
 AuctionInterface.GetCurrentPrice, ffCurrency, 18, 2);
 lblUser.Caption := AuctionInterface.GetCurrentUser;
 lblProduct.Caption := AuctionInterface.Get_ProductName;
end;

// Call object to place a new bid against the server.
procedure TfrmStaticCorbaClient.btnMakeBidClick(
 Sender: TObject);
begin
 // Do some client-side data checking to save speed.
 if edtUserName.Text = '' then
 begin
 ShowMessage('You must enter a user name first.');
 Exit;
 end;
 // Validate floating point value.
 try
 StrToFloat(edtBidPrice.Text);
 except
 ShowMessage('Invalid amount entered.');
 end;
 // Place Bid.
 case AuctionInterface.PlaceBid(
 StrToFloat(edtBidPrice.Text), edtUserName.Text) of
 0 : ShowMessage('Bid amount insufficient.');
 1 : ShowMessage('Bid successful!');
 end;
 // Refresh information.
 btnRefresh.Click;
end;

end.

End Listing One
Begin Listing Two — Implemented cclient_dii.pas
unit cclient_dii;

interface

uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs, CorbaObj, StdCtrls, Mask, Buttons;

type
 TfrmDynamicCorbaClient = class(TForm)
 lblCurrentProduct: TLabel;
13 March 2000 Delphi Informant Magazine
 lblBidPrice: TLabel;
 lblProduct: TLabel;
 lblCurrentHighBidPrice: TLabel;
 lblPrice: TLabel;
 btnRefresh: TBitBtn;
 edtBidPrice: TEdit;
 lblCustomerName: TLabel;
 edtUserName: TEdit;
 btnMakeBid: TBitBtn;
 lblCurrentHighBidUser: TLabel;
 lblUser: TLabel;
 lblBidStatus: TLabel;
 lblPlaceNewBid: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure btnRefreshClick(Sender: TObject);
 procedure btnMakeBidClick(Sender: TObject);
 public
 // Servers declared as type TAny; special type for
 // CORBA interfaces using DII.
 AuctionFactory,
 AuctionServer : TAny;
 end;

var
 frmDynamicCorbaClient: TfrmDynamicCorbaClient;

implementation

{$R *.DFM}

procedure TfrmDynamicCorbaClient.FormCreate(
 Sender: TObject);
begin
 try
 // Bind to ORB instance for object factory.
 AuctionFactory :=
 ORB.Bind('IDL:CServer/OnlineAuctionFactory:1.0');
 // Create reference to server object from factory.
 AuctionServer := AuctionFactory.CreateInstance('');
 except
 ShowMessage('Failed to connect to server.');
 raise;
 end;
 // Refresh information on screen.
 btnRefresh.Click;
end;

procedure TfrmDynamicCorbaClient.btnRefreshClick(
 Sender: TObject);
begin
 // Update price and customer name information for
 // current product.
 lblPrice.Caption := FloatToStrF(
 AuctionServer.GetCurrentPrice, ffCurrency, 18, 2);
 lblUser.Caption := AuctionServer.GetCurrentUser;
 lblProduct.Caption := AuctionServer.Get_ProductName;
end;

procedure TfrmDynamicCorbaClient.btnMakeBidClick(
 Sender: TObject);
var
 rlBidPrice : Double;
 sBidUser : WideString;
begin
 // Do some client-side data checking to save speed.
 if edtUserName.Text = '' then
 begin
 ShowMessage('You must enter a user name first.');
 Exit;
 end;
 // Validate floating point value.
 try
 StrToFloat(edtBidPrice.Text);
 except
 ShowMessage('Invalid amount entered.');
 end;
 // Place Bid; use local variables as intermediaries
 // to calls.

Greater Delphi
 sBidUser := edtUserName.Text;
 rlBidPrice := StrToFloat(edtBidPrice.Text);
 case AuctionServer.PlaceBid(rlBidPrice, sBidUser) of
 0 : ShowMessage('Bid amount insufficient.');
 1 : ShowMessage('Bid successful!');
 end;
 // Refresh information.
 btnRefresh.Click;
end;

end.

End Listing Two
Begin Listing Three — CorbaClient package
// Title: Corba Java Client
// Version: 1.0
// Copyright: Copyright (c) 1999
// Author: Dennis Butler
// Company: Inprise Corporation
// Description: CORBA Client for Delphi Server
package CorbaClient;

import java.util.*;
import java.awt.*;
import com.sun.java.swing.*;
import borland.jbcl.layout.*;
import java.awt.event.*;
import borland.jbcl.control.*;

public class Frame1 extends DecoratedFrame {
 public static void main(String[] args) {
 Frame1 frame1 = new Frame1();
 frame1.show();
 }

 // CORBA Object Factory and Object Interface.
 CServer.OnlineAuctionFactory pOnlineAuctionFactory;
 CServer.IOnlineAuction pOnlineAuction;

 Double rlTotal = new Double(0.00);
 XYLayout xYLayout1 = new XYLayout();
 JLabel jLabel1 = new JLabel();
 JLabel jLabel2 = new JLabel();
 JLabel jLabel3 = new JLabel();
 JLabel jLabel4 = new JLabel();
 JLabel jlblCurrentBid = new JLabel();
 JLabel jlblCurrentProduct = new JLabel();
 JLabel jlblCurrentUser = new JLabel();
 JButton jButton1 = new JButton();
 JLabel jLabel5 = new JLabel();
 JLabel jLabel6 = new JLabel();
 JLabel jLabel7 = new JLabel();
 JTextField jtfUserName = new JTextField();
 JTextField jtfBidPrice = new JTextField();
 JButton jButton2 = new JButton();

 public Frame1() {
 try {
 // Initialize the ORB.
 System.out.println("Initializing the ORB");
 org.omg.CORBA.ORB orb =
 org.omg.CORBA.ORB.init((String[]) null, null);

 // Bind to OnlineAuctionFactory object.
 System.out.println(
 "Binding to OnlineAuctionFactory object");
 pOnlineAuctionFactory =
 CServer.OnlineAuctionFactoryHelper.bind(
 orb, "OnlineAuction");

 // Get an instance of OnlineAuction.
 System.out.println(
 "Getting an instance of OnlineAuction");
 pOnlineAuction =
 pOnlineAuctionFactory.CreateInstance(
 "NewOnlineAuction");
14 March 2000 Delphi Informant Magazine
 }
 catch(org.omg.CORBA.SystemException e) {
 System.err.println("System Exception");
 System.err.println(e);
 }

 try {
 jbInit();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void jbInit() throws Exception {
 xYLayout1.setHeight(311);
 xYLayout1.setWidth(400);
 jLabel1.setText("Current High Bid Price");
 jLabel4.setForeground(Color.blue);
 jlblCurrentProduct.setText("< NA >");
 jlblCurrentUser.setText("< NA >");
 jButton1.setText("Refresh");
 jButton1.addMouseListener(
 new java.awt.event.MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 jButton1_mouseClicked(e);
 }
 });
 jLabel5.setForeground(Color.blue);
 jLabel6.setText("Auction User Name");
 jLabel7.setText("Bid Price");
 jButton2.setText("Place Bid");
 jButton2.setText("Place Bid");
 jButton2.addMouseListener(
 new java.awt.event.MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 jButton2_mouseClicked(e);
 }
 });
 jLabel5.setText("Place New Bid");
 jlblCurrentBid.setText("< NA >");
 jLabel4.setText("Current Bid Status");
 jLabel3.setText("Current High Bid User Name");
 jLabel2.setText("Current Product");
 this.setLayout(xYLayout1);
 this.add(jLabel1, new XYConstraints(57, 50, -1, -1));
 this.add(jLabel2, new XYConstraints(93, 31, -1, -1));
 this.add(jLabel3, new XYConstraints(21, 68, -1, -1));
 this.add(jLabel4, new XYConstraints(6, 3, -1, -1));
 this.add(jlblCurrentBid,
 new XYConstraints(207, 51, 183, -1));
 this.add(jlblCurrentProduct,
 new XYConstraints(207, 31, 182, -1));
 this.add(jlblCurrentUser,
 new XYConstraints(207, 70, 176, -1));
 this.add(jButton1,
 new XYConstraints(138, 100, 102, 30));
 this.add(jLabel5, new XYConstraints(8, 146, -1, -1));
 this.add(jLabel6, new XYConstraints(72, 182, -1, -1));
 this.add(jLabel7, new XYConstraints(130, 206, -1, -1));
 this.add(jtfUserName,
 new XYConstraints(188, 182, 145, -1));
 this.add(jtfBidPrice,
 new XYConstraints(188, 205, 85, -1));
 this.add(jButton2,
 new XYConstraints(139, 230, 105, 35));
 }

 // Place new bid button.
 void jButton2_mouseClicked(MouseEvent e) {
 Double rlTotal = new Double(jtfBidPrice.getText());

 if (pOnlineAuction.PlaceBid(
 rlTotal.doubleValue(),
 jtfUserName.getText())==0) {
 Message m = new Message(this, "Sorry",
 "Bid Amount
Insufficient");
 m.show();

Greater Delphi
 }
 else {
 Message m2 = new Message(this, "Success",
 "Bid Successful");
 m2.show();
 }
 }

 // Refresh button.
 void jButton1_mouseClicked(MouseEvent e) {
 Double rlTotal =
 new Double(pOnlineAuction.GetCurrentPrice());
 // Update price and customer name information
 // for current product.
 jlblCurrentBid.setText(rlTotal.toString());
 jlblCurrentUser.setText(
 pOnlineAuction.GetCurrentUser());
 jlblCurrentProduct.setText(
 pOnlineAuction.Get_ProductName());
 }
 }

End Listing Three
15 March 2000 Delphi Informant Magazine

16 March 2000 Delphi Informant Magazine

Visual Programming
VFI / OOP / Object Repository / Delphi 4, 5

By Rick Spence

Figure 1: First
Visual Form Inheritance
Part II: Generic Table Maintenance

L ast month we discussed the merits and mechanics of Visual Form Inheritance (VFI).
I mentioned that one of the best ways to use VFI was to produce a generic table

maintenance form. Regardless of the table you’re maintaining, your users will need to
perform the standard add, edit, and delete operations. VFI allows you to write most of this
code and perform most of this form layout once, in a generic superclass. You can then create
forms that inherit from this form, designing these new forms with data and components
specific to the actual table you’re editing.
l

This article describes a basic framework you can
use as the basis for your data-editing forms.
We’ll discuss two layouts for the main form. If
you choose to use this code, you can either start
with one of these or design your own. Either
way, you should be able to use most of the code
and ideas in this article. And if you subsequently
change your mind about the layout, you only
have to make the change in one place because
you’re using VFI.

The generic table maintenance form allows users
to add new records, edit existing records, and
delete and browse records. There are other func-
tions you could implement here, but in the interest
of restricting the length of this article, we’ll leave
those as an exercise for you.

Generic Table Maintenance
Features and Layout
ayout of the generic database maintenance form.
Because we don’t know which table the form will
be working with, we can’t lay out editing controls
specific to a table. This will be done in the table-
specific subclasses that inherit from this generic
form. It’s our goal, though, to place as much code
and perform as much of the layout as possible
in this generic form. Let’s start with a basic form
layout that should work with most tables.

The PageControl of our generic maintenance
form contains two pages, labeled Form View and
Browse View (see Figure 1). The Browse View
page contains a database grid, which will list
records from the table being edited. The Form
View page is empty; subclasses will lay out this
page with data-aware controls specific to the
actual table being edited.

Note that the generic form includes a TDataSource
component, but doesn’t include any dataset
(TQuery, TTable, or TStoredProc) components.
There are two problems with placing a dataset
component directly on the generic form:
1) You’re tied to using that style of access,

e.g. TTable. The way we have the form, it
will work with any of these three TDataSet
components.

2) You can’t use existing datasets stored in a
data module. Our approach allows dataset
components to be located anywhere. They
could be in a data module, or in a subclass of
this generic form.

The grid and the navigator are linked to the data
source. As you’ll see, it’s the subform’s responsi-

Figure 2: Second layout of the generic database maintenance form.

Figure 3: The Customer Form, inherited from the generic form,
used to edit the Customer.db table from the DBDemos database.

Visual Programming

Figure 4: An additional page added to the child form.
bility to attach a dataset to the data source. This is the only link
between the form and the actual table being maintained.

Figure 2 shows an alternative layout, which still uses the PageControl
and two tab sheets, as well as a more modern Coolbar as the
container for the action buttons. You probably have your own ideas
for layout; whatever style you use, you should still be able to use the
code in this article. Again, the only link between this form and the
table being edited is through the data-source component.

The generic form is responsible for enabling/disabling the buttons
and other components when appropriate. The design doesn’t allow
editing, adding, or deleting records when the Browse View tab is
selected. All these actions must be performed with the Form View
tab selected. Furthermore, it won’t support auto editing. Auto
editing, which is the default behavior of the data source, allows
users to initiate editing by simply clicking in a data-aware control.
I prefer to require users to explicitly request editing by clicking
the Edit button. The Edit button can ensure that the Form View
tab is selected, enable the data-aware controls (they should be
disabled until the dataset is in edit mode), and move the dataset
into edit mode.

Subclass Responsibilities
Obviously, the generic form requires the subform to perform cer-
tain functions. Most importantly, the subclass must associate the
superclass’ data-source component with an actual dataset. It must
also lay out the subclass’ Form View page with controls linked
17 March 2000 Delphi Informant Magazine
to fields in the actual table. Figure 3 shows a table-specific form,
inherited from the generic form, used to edit the Customer.db
table from Delphi’s DBDemos database.

The subform includes a TTable component configured to access the
Customer table in the DBDemos database. The subform also sets
the DataSet property of the DataSource component to reference this
Dataset. Note that the DataSource component was introduced in
the superclass, but the subclass is setting one of its properties. If
you looked at the .DFM file for the subform, you wouldn’t see the
declaration of the DataSource component, but you would see its
DataSet property being set. The subform, of course, is responsible for
laying out the Form View page with data-aware controls specific to
the table being edited (again, see Figure 3).

To summarize, the subclass’ responsibilities are:
1) attaching the DataSource component to a dataset; and
2) laying out the Form View page with controls specific to the table
 being edited.

You could eliminate the second responsibility by performing a default
layout if the user doesn’t supply one. The superclass could implement
a method to dynamically create data-aware controls from the fields
in the table. The actual coding of this isn’t too difficult; however,
formatting issues arise when there are more fields as a result of more
room on the tab sheet.

The most common mistakes programmers make when working
with VFI is to forget to implement the subclass responsibilities.
In this case, it’s not too difficult to implement the subclasses.
There are only two things they must do, but, in the real world,
the interface between the superclass and the subclass can be more
involved. In my designs, I always try to implement some default
behavior in a superclass, allowing the subclasses to override this
behavior if they need to. When the subclass absolutely must
implement something — as in this case, where it must associate
the datasource with a dataset — I write code in the superclass to
verify that the subclass actually implemented it. We’ll cover this
in the next section.

Note that the layout inherited from the superclass is often only the
starting point for subforms. In addition to adding controls to the
Form View page, subforms can also add additional action buttons and
pages (see Figure 4). The child form has added a Registrations page to
show the registrations for each student, as well as a menu. Because this
is an MDI child form, its menu will merge with its parent.

Visual Programming
Generic Table Maintenance Implementation
Now we’ll take a look at the generic superclass. Note that we’ll pres-
ent the class as a finished design, but that’s rarely the way it works
in practice. In the real world, it’s doubtful you’ll get the design
perfect the first time; rather, it will evolve as you start working
with subclasses. Class design is an iterative process. You’re continu-
ally finding redundancies in subclasses and “removing” them by
moving them up the class hierarchy. Also, note that the superclass
is relatively simple. You’ll probably want to extend it to allow
ordering, filtering, and searching of records.

One of the requirements of the generic superclass is to disable
the data-aware controls when the user isn’t editing or adding
18 March 2000 Delphi Informant Magazine

// Generic routine to enable/disable children of WinParent.
// Pass the WinControl whose children you want to set,
// True to enable the controls, and False to disable.
procedure TMaintainTemplateFrm.SetChildControls(
 WinParent: TWinControl; State: Boolean);
var
 i : Integer;
begin
 with WinParent do
 for i := 0 to WinParent.ControlCount - 1 do begin
 Controls[i].Enabled := State;
 // If this control can have children (i.e. it's a
 // TWinControl which has a Controls property),
 // enable/disable them.
 if Controls[i] is TWinControl then
 SetChildControls(TWinControl(Controls[i]), State)
 end;
end;

Figure 5: Generic recursive code to enable/disable a windowed
control’s children.

procedure TMaintainTemplateFrm.DeleteBtnClick(
 Sender: TObject);
begin
 if MessageDlg('Delete this record', mtConfirmation,
 [MBYes, MBNo], 0) = mrYes then
 DataSource1.DataSet.Delete;
end;

procedure TMaintainTemplateFrm.NewBtnClick(
 Sender: TObject);
begin
 DataSource1.DataSet.Append;
 EditMode;
end;

procedure TMaintainTemplateFrm.SaveBtnClick(
 Sender: TObject);
begin
 DataSource1.DataSet.Post;
 BrowseMode;
end;

procedure TMaintainTemplateFrm.CancelBtnClick(
 Sender: TObject);
begin
 DataSource1.DataSet.Cancel;
 BrowseMode;
end;

procedure TMaintainTemplateFrm.EditBtnClick(
 Sender: TObject);
begin
 EditMode;
 DataSource1.DataSet.Edit;
end;

Figure 6: Generic code implementing the Edit, Delete, New,
Save, and Cancel buttons.
records. The easiest way to implement this is to disable the page,
but that doesn’t “gray out” the edit controls. The only way to
have the edit controls grayed out is to explicitly disable each one.
The superclass, of course, doesn’t know the names of the controls
on the Form View page. They’re introduced in the table-specific
subclasses and are different in each subform. There are two ways
to implement this disabling:
1) Have each subform implement the disabling/enabling of its

controls.
2) Write the code once in a generic manner in the superclass.

Naturally, we’ll opt for the second approach. We need to implement
a generic routine that will enable/disable all the child controls of the
Form View page. Controls that can have other controls as children
are based on the TWinControl class. TWinControl defines two proper-
ties you can use to access its children: ControlCount, which denotes
the number of children, and Controls, which is the array of references
to those controls.

To disable all the children of a TWinControl called WinControl, it’s
tempting to write:

for i := 1 to WinControl.ControlCount - 1

 WinControl.Controls[i].Enabled := False;

Although this works, it won’t gray out the children of any other
windowed control. For example, imagine you used this code to
disable the controls on the Form View page, and one of those
controls was a GroupBox with its own children. This code would
not gray out the controls inside the group box. To implement this
nested disabling, you need a recursive routine (see Figure 5).

Here’s how you would call SetChildControls to disable the Form View
page’s children:

setChildControls(FormTab, False);

The generic form operates in one of two modes. In browse mode,
the user is browsing records. In edit mode, they’re either editing an
existing record or adding a new record. The superclass defines two
routines that take care of enabling/disabling controls when moving
between the modes. When switching to edit mode, the superclass
needs to set focus to a control on the Form View page. Because these
controls are defined in the table-specific subclasses, the superclass
doesn’t know which controls exist. Therefore, it locates the first
TWinControl on the page. The GetFirstEditControl method, shown
in Listing One (beginning on page 19), shows this. The superclass
declares GetFirstEditControl as virtual and protected so the subclasses
can override it if necessary. This is a good example of the superclass
providing default behavior and allowing subclasses to override it.

The last thing to implement is the code for the Edit, Delete,
New, Save, and Cancel buttons. They follow a similar form: They
move the form into the appropriate mode; access the dataset using
DataSource.DataSet ; and call the appropriate DataSet methods (see
Figure 6). It couldn’t be simpler.

There is additional code in the template we won’t look at here.
The onCloseQuery event, for example, asks the user whether to
save or cancel changes before closing the form. There’s also code
that prevents the user from moving between pages when edits
are pending (the Pascal file is available for download; see end of
article for details).

Visual Programming

procedure TMaintainTemplateFrm.FormCreate(Sender: TObject);
begin
 // Check to ensure child form is a good boy...
 // 1. DataSource.Dataset must be set.
 // 2. Form View tab sheet must be layed out.
 if DataSource1.DataSet = nil then begin
 ShowMessage(
 'Template: Forgot to set DataSource.DataSet');
 PostMessage(Self.Handle, WM_Close, 0, 0);
 Exit;
 end;

 if FormTab.ControlCount = 0 then begin
 ShowMessage('Template: Forgot to layout form tab');
 PostMessage(Self.Handle, WM_Close, 0, 0);
 Exit;
 end;
 // Always start on Browse View tab sheet.
 DataPage.ActivePage := BrowseTab;
 // And start in Browse mode.
 BrowseMode;
end;

Figure 7: Superclass code ensuring that the subclass adheres to
its responsibilities.
Note the implementation of the Delete button. It simply asks the
user to confirm deletion of the record. It’s likely that subclasses will
override this method and issue a message pertinent to the record
being deleted. However, when you write code for this Delete button
in a subclass, Delphi generates a call to the superclass method:

procedure TfrmCust.DeleteBtnClick(Sender: TObject);
begin
 inherited;
end;

The inherited keyword refers to calling a method with the same
name in the superclass. In this case, you don’t want this, so
remove the call.

Defensive Coding
Whenever you write generic code — or code that will be used by
another programmer — it’s best to write that code as defensively
as possible. Your code defines an interface for the user of the code,
which may require the user to use your interface in a certain way
or, as in this case, for a subclass to implement something. Your
code can’t assume the users are using it correctly; in fact, it should
assume the worst.

Take the example of this generic maintenance form. Imagine
another programmer attempting to use this form, but neglecting to
associate the datasource with a dataset. When the user clicks any of
the buttons that operate on the table, Delphi raises an exception,
because your code is executing something like this:

DataSource.DataSet.SomeMethod

The other programmer will be able to find his or her error eventually,
but it would be easier if the superclass code could detect that the
subclass had not implemented what it was supposed to implement
and report the error in a friendlier manner.

In this example, the superclass’ FormCreate event can detect the
omission and display a message stating just that. The awkward part
is deciding what to do when you detect the error. Here, there’s no
point in having the form display, because the user can’t do anything.
19 March 2000 Delphi Informant Magazine
This isn’t as easy as it sounds. The form’s FormCreate event can’t
execute the Close method, and raising an exception doesn’t help
either. The exception is intercepted by the VCL, and the form
proceeds to display and execute.

The best solution I’ve been able to come up with is to use the
Windows API to post a WM_CLOSE message to the window.
By posting the message, it’s put into the queue for this window.
When the window is finished with its creation process, it con-
tinues to process messages and then receives the close message.
Figure 7 shows the FormCreate event for the superclass, which
checks to ensure the subclass has fulfilled its responsibilities. If
not, it closes the form.

Conclusion
This article shows how to use Visual Form Inheritance to implement
a generic table maintenance form. The superclass contains all the
code and layout common to all forms. Subclasses can implement
table-specific layout and code. The goal is to place as much code, and
perform as much of the layout as possible in the superclass, which
leads to more consistent user interfaces, faster development time, and
fewer errors.

In the interest of length, we only implemented a small number of
features in the superclass. You may want to extend it to allow users to
select in which order they want to browse (e.g. populate a combo box
with index names), search for, and filter records. Have fun. ∆

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works Companion Disk in INFORM\00\MAR\
DI200003RS.

Rick Spence is technical director of Database Programmers Retreat (http://
www.dp-retreat.com), a training and development company with offices in Florida
and the UK. You can reach Rick directly at 71760.632@compuserve.com.
General inquiries should be directed to Dpr@Aug.com.
Begin Listing One — The GetFirstEditControl method
// Utility routines to enable/disable buttons and to set
// focus to first edit control.
procedure TMaintainTemplateFrm.EditMode;
var
 FirstEditControl : TWinControl;
begin
 // Enable all the controls on the Form View tab sheet.
 // Simply enabling/disabling the tab does not gray
 // out the controls.
 setChildControls(FormTab, True);
 DataPage.ActivePage := FormTab;
 NewBtn.Enabled := False;
 EditBtn.Enabled := False;
 DeleteBtn.Enabled := False;
 SaveBtn.Enabled := True;
 CancelBtn.Enabled := True;
 DbNav.Enabled := False;
 // Set focus to first control, on the Edit tab, which can
 // receive focus.
 FirstEditControl := GetFirstEditControl;
 FirstEditControl.SetFocus;
end;

http://www.dp-retreat.com
http://www.dp-retreat.com

Visual Programming
procedure TMaintainTemplateFrm.BrowseMode;
begin
 // Disable all the controls on the Form View tab sheet.
 // Simply enabling/disabling the tab does not gray
 // out the controls.
 setChildControls(FormTab, False);
 NewBtn.Enabled := True;

 EditBtn.Enabled := not DataSource1.DataSet.Eof;
 DeleteBtn.Enabled := not DataSource1.DataSet.Eof;

 SaveBtn.Enabled := False;
 CancelBtn.Enabled := False;
 dbNav.Enabled := True;
end;

// Return the first TWinControl on the Form View tab.
function TMaintainTemplateFrm.GetFirstEditControl:
 TWinControl;
var
 lFound : Boolean;
 i : Integer;
begin
 lFound := False;
 i := 0;
 while (not lFound) and (i <= FormTab.ControlCount - 1) do
 begin
 lFound := (FormTab.Controls[i] IS TWinControl);
 if not lFound then
 i := i + 1;
 end;
 Assert(lFound, 'Template: No windowed controls found');
 Result := TWinControl(FormTab.Controls[i]);
end;

End Listing One
20 March 2000 Delphi Informant Magazine

21 March 2000 Delphi Informant Magazine

DBNavigator
Object Pascal Interfaces / OOP / Polymorphism / Inheritance / Delphi 4, 5

By Cary Jensen, Ph.D.

// Pseudocode.
interface

uses controls,

type
 TNewButton =
 public
 procedure
 end;
 TNewLabel =
 public
 procedure
 end;

implementation

procedure TNew
begin
 // Code to l
 // from a re
end;

procedure TNew
begin
 // Code to l
 // from a re
end;

Figure 1: Whil
LoadStrings in a
Interfaces Revisited
Part I: Declarations, Implementation,

and Method Name Resolution

I first wrote about interfaces in the April, 1998 issue of Delphi Informant Magazine.
There have been several important developments in the almost two years since. The

first is that Delphi 4 introduced a new and important way to implement an interface
in a class. The second — and arguably more important — is that the use of interfaces
is quickly extending well beyond its original purpose: the native support for COM
(Microsoft’s Component Object Model). As a result, it seems like the right time to revisit
this important topic.
But just what is an interface and why is it impor-
tant? An interface is a definition of methods and
properties that can be implemented by a class.
Interfaces provide for assignment compatibility
(often called polymorphism) between different
objects that implement a common interface.
More importantly, interfaces provide for poly-
morphism without the constraints normally
associated with polymorphism through inheri-
tance. Specifically, although two classes do not
inherit a particular method from a common
 stdctrls;

 class(TButton)

LoadStrings; virtual;

class(TLabel)

LoadStrings; virtual;

Label.LoadStrings;

oad the NewLabel's strings
source file.

Button.LoadStrings;

oad the NewButton's strings
source file.

e this code compiles, it’s not possible to call
 polymorphic fashion.
ancestor, they can be treated polymorphically
with respect to that method if that method is
defined for an interface that both classes imple-
ment. Another way to look at it is that interfaces
permit you to define an interface (methods
and properties) completely independent of an
object’s implementation.

This article begins by discussing why interfaces
are important in Object Pascal, and continues
with a detailed look at the characteristics of inter-
faces. This discussion includes interface declara-
tions, interface implementation requirements, and
method name resolution. In Part II, this series
will continue with an explicit example of interface
usage, including how to use the interface imple-
mentation by delegation introduced in Delphi 4.

Why Add Interfaces to Delphi?
The easy answer is to provide native support for
COM. However, the support for COM provided
for by interfaces is a by-product of their func-
tion. Specifically, interfaces provide an elegant
mechanism for treating objects polymorphically,
even when they have no common ancestors.

This concept is difficult to describe, but an exam-
ple can help illustrate it. Consider a situation
where you want to create a group of user-interface
(UI) components that share a common capability,
such as being able to load their string data from
a resource file. Furthermore, you might want to
introduce a new method, named LoadStrings, in
each of your new UI components, and from the
implementation of this method, load that compo-
nent’s strings from a resource file, possibly based on
the component’s Tag property.

DBNavigator
So far, so good. However, another aspect of this framework is
being able to generically instruct each of your components to
initiate their loading processes. In Delphi 1 and 2, where inter-
faces had not yet been introduced, this would have been all but
22 March 2000 Delphi Informant Magazine

// Pseudocode.
interface

uses controls, stdctrls;

type
 TLoadable = class(TObject)
 public
 procedure LoadStrings; virtual; abstract;
 end;
 TNewButton = class(TButton, TLoadable)
 public
 procedure LoadStrings; override;
 end;
 TNewLabel = class(TLabel, TLoadable)
 public
 procedure LoadStrings; override;
 end;

implementation

procedure TNewLabel.LoadStrings;
begin
 // Code to load the NewLabel's strings
 // from a resource file.
end;

procedure TNewButton.LoadStrings;
begin
 // Code to load the NewButton's strings
 // from a resource file.
end;

Figure 2: If Delphi supported multiple inheritance, you could
create another class (TLoadable) that includes an abstract, virtual
LoadStrings method.

// Code sample.
interface

uses stdctrls;

type
 ILoadable = interface
 procedure LoadStrings;
 end;
 TNewButton = class(TButton, ILoadable)
 public
 procedure LoadStrings;
 end;
 TNewLabel = class(TLabel, ILoadable)
 public
 procedure LoadStrings;
 end;

implementation

procedure TNewLabel.LoadStrings;
begin
 // Code to load the NewLabel's strings
 // from a resource file.
end;

procedure TNewButton.LoadStrings;
begin
 // Code to load the NewButton's strings
 // from a resource file.
end;

Figure 3: This code includes one interface declaration and two
class declarations.
impossible. Consider the pseudocode shown in Figure 1 (which
will compile).

While the code does compile, it’s not possible to call the LoadStrings
method of these objects in a polymorphic fashion. For example, the
following method won’t compile:

procedure DoLoadStrings(LoadableObject: TControl);
begin
 LoadableObject.LoadStrings;
end;

The problem is that, although LoadStrings may be a legitimate
method of a particular TControl instance you pass to
DoLoadStrings, it’s not a method of the TControl class. Only if
LoadStrings were a public or published method of TControl would
this method compile correctly.

The Multiple Inheritance Approach
If Delphi supported multiple inheritance, this problem could be
solved fairly easily. Specifically, you could create another class
(let’s call is TLoadable) that includes an abstract, virtual
LoadStrings method. Then, when you declare each of your custom
UI components, you could specifically declare them to descend
from both their natural ancestor (TNewButton from TButton and
TNewLabel from TLabel) and TLoadable. The pseudocode shown
in Figure 2 demonstrates how this might look.

Now all you would have to do is change the signature of DoLoadStrings
to look like the following:

procedure DoLoadStrings(LoadableObject: TLoadable);
begin
 LoadableObject.LoadStrings;
end;

Because this re-written method takes a TLoadable object as its parameter,
and because TLoadable objects have a visible LoadStrings method, every-
thing should work fine. The only problem is that Delphi doesn’t support
multiple inheritance, and, consequently, this code won’t compile.

The Solution: Interfaces
This is where interfaces come in. An interface is a declaration not
unlike the abstract virtual TLoadable class shown in Figure 2. Fur-
thermore, an interface can be used by two or more classes to make
those classes assignment compatible, in the same way that inheritance
provides polymorphism.

Consider the code sample shown in Figure 3. This code includes
one interface declaration, named ILoadable, as well as two class dec-
larations. Each of these classes implement the ILoadable interface.

In the language of interfaces, we say that both TNewButton and
TNewLabel implement the ILoadable interface. Furthermore, because
both of these classes implement a common interface, they are assign-
ment compatible with an interface reference. Therefore, we can make
this framework work generically by changing the single parameter of
our DoLoadStrings method to be of an ILoadable type. The following
code segment demonstrates how this completed method looks:

procedure DoLoadStrings(LoadableObject: ILoadable);
begin
 LoadableObject.LoadStrings;
end;

DBNavigator
Because DoLoadStrings can take any ILoadable object, the following
code fragment is completely legal:

var
 NewButton1: TNewButton;
 NewLabel1: TNewLabel;
begin
 NewButton1 := TNewButton.Create(Application);
 DoLoadStrings(NewButton1);
 NewLabel1 := TNewLabel.Create(Application);
 DoLoadStrings(NewLabel1);

Interface Declarations in Object Pascal
As you can see in the preceding sample code, an interface is
declared in a type declaration, much like a class. However, inter-
face declarations are different from class declarations in a number
of important ways. For example, an interface consists only of
method and property declarations. There are no member fi elds in
an interface.

The member fi elds of a class are used for holding data in an instance
of a class. Interfaces, unlike classes, can never be instantiated. There-
fore, an interface can never hold data, which is why an interface
cannot contain member fi eld declarations.

That interfaces have no member fi elds restricts how interface proper-
ties are declared. Specifi cally, while a class can implement the read
and write parts of a property by using direct access, interfaces can
only use accessor methods. Specifi cally, when a property is declared in
an interface, the read part of the property is specifi ed using a function
method, and the write part is defi ned using a procedure method.

The following is an example of a simple interface declaration that
contains a ShowMessage method and a MessageText property. The
remaining two methods, GetMessageText and SetMessageText, are also
considered methods of the interface:

type
 IShowMessage = interface
 function ShowMessage: Boolean;
 function GetMessageText: string;
 procedure SetMessageText(Value: string);
 property MessageText: string
 read GetMessageText write SetMessageText;
 end;

By comparison, a class declaration can specify a member fi eld in
both the read and write parts. This is called direct access, because
an object reading the property will be reading directly from the
member fi eld, and any object writing to the property will be writing
directly to the member fi eld.

All methods in an interface declaration are considered virtual and
abstract by defi nition. Consequently, you never use the virtual or abstract
directives in an interface declaration. In addition, there are no visibility
identifi ers (public, published, and so forth) in an interface declaration.
All methods and properties declared in an interface are treated as though
they were public, although a class implementing the methods can use
visibility identifi ers to control their visibility in the class.

A class implements an interface by including the name of the inter-
face in the parentheses that follow the class keyword in its type decla-
ration. This interface name is separated from the ancestor class name
by a comma. Furthermore, a single class can implement two or more
interfaces. When more than one interface is being implemented,
23 March 2000 Delphi Informant Magazine
you include a comma-separated list of those interfaces following the
ancestor class name.

Implementing the Methods of an Interface
A class that implements an interface is required to provide for the
implementation of every method declared in that interface. This
implementation may be provided either by explicit declaration or by
inheritance from an ancestor class. For example, if the TNewLabel
class is declared to implement the ILoadable interface, and this
interface declares a single method named LoadStrings, then the
TNewLabel class must either inherit a method with an appropriate
signature named LoadStrings, or it must explicitly declare and imple-
ment it. Furthermore, if the inherited LoadStrings method is an
abstract one, a concrete implementation of this method must be
provided for in the TNewLabel class implementation.

Although a class that implements an interface must implement all
methods declared in that interface, it is not required to implement
all, or even any, of the interface properties. For example, in the
IShowMessage interface described previously, a class implementing
IShowMessage doesn’t need to have a MessageText property.

This point can be confusing, but makes a lot of sense. The interface
property belongs to the interface. Whether the implementing object
contains the property is irrelevant. In fact, to make matters worse,
an object that implements an interface can have a property that
has the same name as a property declared in the interface, and yet
the interface property and the object property can be completely
unrelated. The compiler can tell which property is being accessed
based on whether the qualifi er of the property is an interface refer-
ence (in which case the interface’s accessor methods are invoked), or
an object reference (in which case whatever mechanism is used by the
object to implement the property is used).

The Interface Hierarchy
Interfaces are organized in a hierarchy, much like Delphi classes. In
Delphi, all interfaces, with the exception of IUnknown, descend from an
existing interface. IUnknown is the highest-level interface, meaning that
all interfaces necessarily descend from it. When you see an interface
declaration that doesn’t specify an ancestor declaration (like the
IShowMessage interface declared in the previous code sample), the inter-
face descends from IUnknown. Interfaces that descend from an interface
other than IUnknown include the ancestor interface in the interface type
declaration. This is demonstrated in the following interface declaration:

type
 INewInterface = interface(IDispatch)
...

When a class implements an interface, it is responsible for implement-
ing not only all the methods of that interface, but any of that interface’s
ancestor interface methods. Consider the following declaration, which
contains the Object Pascal declaration of the IUnknown interface:

IUnknown = interface
 ['{ 00000000-0000-0000-C000-000000000046 }']
 function QueryInterface(const IID: TGUID; out Obj):
 HResult; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
 end;

Knowing that IShowMessage descends from IUnknown, any class
that implements IShowMessage must not only implement the three

DBNavigator
IShowMessage methods, but also the three IUnknown methods.
Fortunately, as described earlier in this article, that implementation
can be inherited. For example, the TComponent class implements
the QueryInterface, _AddRef, and _Release methods. As a result,
any object that descends from TComponent can implement the
IShowMessage method by declaring and implementing only the
three IShowMessage methods. The IUnknown method implementa-
tions are satisfied by inheritance.

Interface References
An interface reference can point to an instance of an object that
implements the interface. Interface references can be variables, formal
parameters, object properties, and even return values from functions.
In the DoLoadStrings procedure described earlier, the interface refer-
ence was a formal parameter (LoadableObject).

You use an interface reference to invoke the methods of the inter-
face, as well as read and/or write the properties of the interface.
Doing so invokes the particular implementation of the method
or property accessor methods of the object being referred to.
For example, passing a TNewButton object to the DoLoadStrings
causes the particular implementation of LoadStrings defined by the
TNewButton class to be invoked. By comparison, passing a
TNewLabel to DoLoadStrings results in the LoadStrings behavior
defined within TNewLabel. However, an interface reference is
limited to working with only those properties and methods
defined by the interface; any methods, properties, or fields of the
object not part of the interface definition cannot be accessed from
an interface reference.

Consider again the DoLoadStrings method. Although you can pass
any ILoadable-implementing object to this method, you can only
use the formal parameter LoadableObject to invoke the ILoadable
methods. Specifically, even though you may pass a TNewButton
instance to DoLoadStrings, the compiler won’t permit you to access
the Enabled property of the TNewButton from LoadableObject — or
any other TNewButton property for that matter. Only LoadStrings,
QueryInterface, _AddRef, and _Release can be invoked, because they
are the only methods of the ILoadable interface. (Remember that
ILoadable descends from IUnknown, by definition.)

One more point concerning interface references is in order: You
can never cast an interface reference as an object. For example, you
cannot cast LoadableObject to TNewButton.

Interface Method Name Resolution
As you’ve already learned, any object that implements an interface
is required to implement the methods defined within that inter-
face. This can pose a problem if the interface declares a method
whose name is already in use by an object that needs to implement
the interface.

For example, imagine there is a class named TMessageObject that
must implement the IShowMessage interface, but has inherited the
method ShowMessage from its ancestor. This is a problem if the
inherited method is conceptually different from the interface method
of the same name. In this case, it’s necessary to implement a method
corresponding to the interface method, and distinguish it from the
inherited method.

Delphi provides for the mapping of interface methods onto imple-
mented methods of a different name. For example, consider the
following declaration of TMessageObject:
24 March 2000 Delphi Informant Magazine
type
 TMessageObject = class(TParentMessageObject,IShowMessage)
 FMessText: string;
 function IShowMessage.ShowMessage := DisplayMessage;
 function GetMessagText: string;
 procedure SetMessageText(Value: string);
 function DisplayMessage: Boolean;
 end;

This declaration specifies that TMessageObject descends from
TParentMessageObject, and implements IShowMessage. Because
TMessageObject already has a ShowMessage method (by inher-
itance), it’s necessary to map the IShowMessage.ShowMessage
method to a different method name, which in this case is
DisplayMessage. When using method resolution to map an interface
method onto a new method name, the interface method — and
the one to which it is being mapped — must have the same
argument list and return value.

Given the preceding type declaration, if the ShowMessage method
for an instance of TMessageObject is called using an object reference
(a reference of type TMesssageObject), the inherited ShowMessage
method is executed. However, if an instance of TMessageObject is
assigned to an IShowMessage variable and the ShowMessage method is
called, the DisplayMessage method will execute.

Conclusion
This discussion will continue in Part II of this series. Part II will
discuss how using objects with interface references differs signifi-
cantly from standard object usage. You will also find a detailed
discussion of interface implementation by delegation introduced
in Delphi 4. ∆

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant Magazine, and an internationally respected trainer of Delphi and
Java. For more information, visit http://www.jensendatasystems.com, or e-mail
Cary at cjensen@compuserve.com.

http://www.jensendatasystems.com

25 March 2000 Delphi Informant Magazine

On the ’Net
XML / SAX / Interfaces / Delphi 3, 4, 5

By Keith Wood

SAX name

AttributeList
DTDHandler
DocumentHand
EntityResolver
ErrorHandler
Locator
Parser
HandlerBase
InputSource
SAXException
SAXParseExcept

Figure 1: SAX d
SAX for Delphi
Demonstrating XML’s Simple API Standard

In last month’s issue of Delphi Informant Magazine, I introduced XML and explained how
to parse it using the Microsoft XML parser (“Generating XML”). This involved using a

customized application specific to this parser. In the XML world, there’s a standard called
SAX (Simple API for XML), which defines a set of interfaces that allow XML parsers and
document handlers to interoperate easily. This article sets out the Delphi version of SAX,
and provides a native XML parser and a wrapper for the Microsoft version. A simple XML
viewer is used to demonstrate the functionality.
XML in Brief
XML is a meta-language, i.e. a language for speci-
fying other languages. It’s a subset of SGML,
designed to be powerful, yet easy to use. XML
documents consist of tags, enclosed in angle brack-
ets (<, >), that contain text and/or other tags. They
have a strong hierarchical structure, facilitating
the automatic processing of their contents. Using
XML, we can declare exactly what that structure is
in domain-specific ways.

The definition of that structure is to be found
in the document type definition (DTD), which is
usually kept in a separate document. Each XML
document that claims to conform to a particular
DTD must have a reference to it at the start of
the file. For smaller documents, the DTD can be
specified within the XML file, or it can be absent

Type Delphi name
interface ISAXAttributeList
interface ISAXDTDHandler

ler interface ISAXDocumentHandler
interface ISAXEntityResolver
interface ISAXErrorHandler
interface ISAXLocator
interface ISAXParser
class TSAXHandlerBase
class TSAXInputSource
exception ESAXException

ion exception ESAXParseException

efinitions and Delphi equivalents.
altogether. XML documents without DTDs can
still be usefully processed, they just don’t claim to
obey any structure.

XML has advantages over HTML in that it
defines the structure and meaning of the embed-
ded data, whereas HTML simply describes how
to present that data without knowing what it
means. Thus, XML documents allow for the easy
interchange of data and can be processed in
meaningful ways automatically — searching for
particular elements, formatting for any number
of different output formats, or exported from
one program for import into a second applica-
tion and further processing there.

SAX
SAX was developed by the XML-DEV mailing
list under the leadership of David Megginson.
The aim was to produce an event-driven inter-
face to allow plug-and-play between the actual
parser and the application that used the con-
tained data. Details of the standard and a Java
implementation are available at http://www.
megginson.com/SAX.

SAX defines seven interfaces, two classes, and
two exceptions (see the table in Figure 1). There
are four handler interfaces, one each for resolving
entities (EntityResolver), handling entities and
notations (DTDHandler), dealing with the docu-
ment structure and content (DocumentHandler),

http://www.megginson.com/SAX
http://www.megginson.com/SAX

On the ’Net

{ Interface to handle XML documents. }
ISAXDocumentHandler = interface(IUnknown)
 ['{ 17FA1882-38A2-11D3-9ABD-8A070457C716 }']
 procedure SetDocumentLocator(Locator: ISAXLocator);
 procedure StartDocument;
 procedure EndDocument;
 procedure StartElement(Name: TSAXString;
 Attributes: ISAXAttributeList);
 procedure EndElement(Name: TSAXString);
 procedure Characters(Text: TSAXString);
 procedure IgnorableWhiteSpace(Text: TSAXString);
 procedure ProcessingInstruction(
 Target, Data: TSAXString);
 procedure Comment(Text: TSAXString);
end;

{ Interface to XML parser. }
ISAXParser = interface(IUnknown)
 ['{ 17FA1884-38A2-11D3-9ABD-8A070457C716 }']
 function GetEntityResolver: ISAXEntityResolver;
 procedure SetEntityResolver(Handler: ISAXEntityResolver);
 function GetDTDHandler: ISAXDTDHandler;
 procedure SetDTDHandler(Handler: ISAXDTDHandler);
 function GetDocumentHandler: ISAXDocumentHandler;
 procedure SetDocumentHandler(
 Handler: ISAXDocumentHandler);
 function GetErrorHandler: ISAXErrorHandler;
 procedure SetErrorHandler(Handler: ISAXErrorHandler);
 property EntityResolver: ISAXEntityResolver
 read GetEntityResolver write SetEntityResolver;
 property DTDHandler: ISAXDTDHandler
 read GetDTDHandler write SetDTDHandler;
 property DocumentHandler: ISAXDocumentHandler
 read GetDocumentHandler write SetDocumentHandler;
 property ErrorHandler: ISAXErrorHandler
 read GetErrorHandler write SetErrorHandler;
 procedure Parse(URI: TSAXString);
 procedure ParseSource(Source: TSAXInputSource);
end;

Figure 2: SAX DocumentHandler and Parser interfaces in Delphi.
and lastly, fielding any errors (ErrorHandler). These handlers are
brought together in the parser, described by its own interface
(Parser). The parser steps through the actual XML document and
calls the appropriate methods in the handlers as necessary.

The other two interfaces define how to specify the attributes for a
tag (AttributeList) and the whereabouts of the parser in the source
document (Locator). The latter allows for better error reporting if
something goes wrong.

Two helper classes are included: HandlerBase and InputSource. The
former is a default implementation of all the handler interfaces. The
parser uses an object of this type if no other handler is specified.
Typically, these default methods do nothing. By deriving our handler
from this base, we need only override those methods that we want
to have do something useful. The InputSource class defines an input
stream containing the XML document, and can load that stream
from local storage or across the Internet. It also contains details
about where the document came from and how it was encoded.

For error reporting, two exceptions are defined: SAXException and
SAXParseException. The first is the parent for all SAX exceptions and
includes a property allowing us to embed any other exception within
it. Thus, we can wrap a normal exception to make it appear as a
SAX exception. SAXParseException is derived from SAXException and
adds properties to identify the originating document and the position
within it that caused the error.

Handling Documents
The DocumentHandler interface is the one most users of XML docu-
ments are interested in. It provides a series of callback routines that
are invoked by the SAX parser at the appropriate times.

The StartDocument method signifies the beginning of a new XML
document, allowing the handler to perform any necessary initializations.
Similarly, EndDocument is called to terminate the document and release
any held resources. As elements are read from the XML document, the
StartElement method notifies us of their presence. The content of each tag
is then processed through further calls before the EndElement method is
invoked. Even for an empty tag, both of these routines are called.

Other content is denoted by calls to the appropriate routine:
Characters for text data, IgnoreableWhiteSpace for all whitespace
between tags, and ProcessingInstruction for embedded instructions.

The SetDocumentLocator method allows the document handler to
tie into the parse process, and to be able to find out where we are
in the source document. This means that the document handler
can perform further validations on the data, such as verifying date
or numeric formats, etc., and report any violations while indicating
the characters in error.

SAX Parser
The Parser interface enables us to register each of the four types of
handlers before invoking a parse on a particular XML document.
When starting a parse, the EntityResolver is queried to determine
the proper name of the document before loading it. This allows
us to supply a source document, given its public or system ID.
In this way, we can redirect document references or look them
up in an external table. While parsing, the DocumentHandler
and DTDHandler routines invoked as elements are encountered.
Hopefully, the ErrorHandler is not called upon to deal with errors
that may arise.
26 March 2000 Delphi Informant Magazine
As well as parsing the document internally, an implementation of the
interface could be a wrapper around an external parser, i.e. a driver for
that parser. This is what we’re doing with the Microsoft XML parser.

Exceptions
SAX defines two exception types: SAXException and its descendant
SAXParseException. As well as enabling us to easily identify all SAX
exceptions, SAXException provides for wrapping any other exception,
such as an I/O error, that might occur during processing. This allows
these miscellaneous exceptions to be treated in a common way and
still have access to the originals as necessary.

SAXParseException retains this ability and adds further details about
an error during parsing. Specifically, it notes the public and system
IDs of the document (its name/location) and the line and column
position where the error was detected.

The ErrorHandler interface defines three levels of errors: Warning,
Error, and FatalError. A warning can be safely ignored and the
parsed document will be useable. An error can also be ignored,
although the resulting document cannot be processed. The parser
may continue working only to reveal any further errors. And finally,
a fatal error results in the parser stopping completely. The default
actions for these routines are to ignore warnings and errors, and to
raise an exception for a fatal error.

Into Delphi
Translating the SAX specification into Delphi isn’t difficult.

{ Abstract base class for SAX parsers. }
TSAXCustomParser =
 class(TInterfacedObject, ISAXParser, ISAXLocator)
private
 ...
protected
 procedure ParseInput(stmXML: TSAXInputSource);
 virtual; abstract;
public
 constructor Create;
 destructor Destroy; override;
 { ISAXParser }
 ...
 procedure Parse(URI: TSAXString);
{ $IFNDEF VER100 } { Not Delphi 3. }
 overload; virtual;
 procedure Parse(Source: TSAXInputSource); overload;
{ $ENDIF }
 virtual;
 procedure ParseSource(Source: TSAXInputSource); virtual;
 ...
end;

Figure 3: Using conditional compilation to handle Delphi ver-
sions 3 through 5 in the one source file.

: A simple XML viewer using SAX.

On the ’Net
Delphi 3, 4, and 5 provide the interface construct, allowing you
to directly copy the API’s declarations. Of course, there are some
minor changes in keeping with Delphi’s naming standards: Inter-
faces start with “I,” classes with “T,” and exceptions with “E,” as
well as prefixing each name with “SAX” as a way of producing
unique names within the wider Delphi world. Also, most methods
starting with “get” were defined without that prefix, again in
keeping with the feel of Delphi.

Each interface is assigned a GUID to allow for its presence to be
determined at some later stage. The methods are basically copied
from the specification and some types are altered to reflect Delphi’s
capabilities. The results of translating the DocumentHandler and
Parser interfaces can be seen in Figure 2. All the interfaces and sup-
porting classes can be found in the XMLSAXI unit. (This unit, and all
other source discussed in this article, is available for download; see the
end of this article for details.)

Some larger changes were also made. A Comment method was
added to the DocumentHandler interface to deal with
these parts of the document. For normal processing,
these can be safely ignored, but applications such as view-
ers and editors are interested in such things. Also, the
handlers were implemented as read/write properties even
though the specification has them as (read-only) function
calls. Again, this felt more like Delphi and allows for the
testing of a handler’s presence within the parser.

In the DTDHandler interface, a DocumentType method
was added to receive notifications of the DTD declara-
tion within an XML document. This provides the han-
dler with enough information for it to retrieve the DTD
if it desires.

Classes were defined for the exception types, along with the
input source, a default handler and parser. TSAXInputSource
encapsulates a memory stream and can load this from either
a local file or across the Internet. For the latter, it makes use
of the THTTP class in Delphi 3 or the TNMHTTP class
in Delphi 4 and 5. All Internet access can be disabled by
defining NOHTTP as a conditional define. Figure 4
27 March 2000 Delphi Informant Magazine
TSAXHandlerBase implements the four handler interfaces, although
each routine generally does nothing. This provides a convenient
base upon which to build more useful handlers. All we need to do
is derive our handler from this base and override only the methods
we’re interested in, safe in the knowledge that the remainder will
function in a predictable way. An instance of this base class is
created by the XMLSAXI unit as HandlerBase, making it always
available for use in parsers. Note that we need to increment the
reference count for the handler so it doesn’t get released as we make
use of it within the parsers:

initialization
 { Create a default handler object. }
 HandlerBase := TSAXHandlerBase.Create;
 HandlerBase._AddRef; { Need to keep it around. }
finalization
 HandlerBase._Release;

The default parser, TSAXParser, is an abstract class that handles
all the nitty-gritty of registering the handlers and performing the
preparations for a parse. Practical parsers can inherit from this class
and implement the protected ParseInput method to perform the
actual processing of the XML document in the supplied stream.

Implementation
Of course, an interface declaration is just that — a blueprint for
how things should work. To be useful, we need to implement
that specification in actual classes. Because many parsers could use
the attribute list, its implementation was placed into its own unit,
XMLSAXAtt. Here we find a TSAXAttribute class to hold details
about an individual attribute, and the TSAXAttributeList class, which
manages a TStringList to provide the necessary interface methods.

A document handler can be found in the XMLDocModel unit.
It implements the document handler interface and generates a
simplified document model as it goes. This model is then avail-
able to the calling document for further processing through the
XMLDocument property. Recall that XML tags are structured
like a tree. This is reflected in the class that makes up the docu-
ment model. TXMLElement defines a single node with a type,
name, and value. It may also have attributes and a list of sub-

Figure 5: Element attributes in the XML viewer.

Figure 6: Text entries in the XML viewer.

On the ’Net
elements, each of which is also a TXMLElement. The document
tree can be easily processed through recursive routines to extract
the necessary information.

In Delphi 4 and 5, we have the option of overloading methods
and supplying default values and can
employ this in several places within
the implementations. For example,
in the TSAXCustomParser definition,
there are two versions of the Parse
method: one that takes a URI iden-
tifying the document source, and
one that takes an input source. In
Delphi 3, we need two differently
named methods to achieve this, but
in Delphi 4 and 5 we overload the
one method name to handle both
situations. This makes it easier for
the user because they don’t have to Figure 7: Icons for node types.

Icon Node type

 XML document

 Element tag

 Comment

 Processing instruction

 Text
28 March 2000 Delphi Informant Magazine
remember the name of the other version. To handle Delphi ver-
sions 3 through 5 in the one source file, we can use conditional
compiles, as shown in Figure 3.

Finally, there are two implementations of a SAX parser: a
native Delphi version, TSAXDelphiParser, in the XMLSAX
unit, and a wrapper for the Microsoft XML parser,
TSAXMSParser, in the XMLSAXMS unit. The Delphi version
neither validates the document with its DTD, nor does it
supply default and fixed values for attributes that don’t appear
in the document. Also, it doesn’t parse external entities. Even
so, it works well with stand-alone XML documents, even
when they include internal entities.

XML Viewer
Putting all of this into practice, we can now build a simple
XML viewer. Provided with a file name (as a command-line
parameter, or via the menu), it opens the file, parses the
XML, and displays it to the screen in a tree view (see Figures
4 through 6).

For each node within the tree, we identify its type with an
icon (see Figure 7) and display its details when it’s selected.
The document displays the DTD name, XML version, etc.,
along with any unparsed external entities and notation dec-
larations. Element nodes may have a series of attributes
attached that are shown in a string grid. Other nodes (text,
comments, and processing instructions) have their type dis-
played as a radio button selection, with their actual contents
appearing in a memo.

Menu items allow us to swap parsers, load a different docu-
ment, or exit the program. Others provide for expanding or
collapsing the entire tree structure beneath the selected node,
and for viewing the source document behind the structure.

To load this simple view, we create a document model han-
dler as previously described and connect it with our favorite
XML parser (as a SAX parser).

Again, we must increment the reference count for the docu-
ment handler, because we are going to be using it over and

over for the different parsers. Note that the document handler
also implements the DTDHandler interface, allowing it to process
DTD declarations:

xdhDocument := TXMLSimpleDocHandler.Create;
xdhDocument._AddRef; { Keep it around. }
...
xprSAXParser := TSAXDelphiParser.Create(xdhDocument,
 xdhDocument, nil, nil);

The resulting document model is processed recursively, as shown in
Listing One (on page 29) and creates corresponding nodes in the
tree view as we go. A pointer to the element in the model is saved
as the Data for the node, with the node’s caption coming from the
element’s name or value. Appropriate icons are specified through the
ImageIndex property based on the element’s type. As the user steps
from node to node, the attached element object is retrieved and
additional details are displayed on the right half of the form.

The application uses the Delphi XML parser by default. To use
the Microsoft XML parser instead, simply select it from the

On the ’Net
File | Parser | Microsoft menu option. Remember that the same
document handler is used in both cases. This is the whole point
of SAX!

Conclusion
SAX is a standard that allows XML parsers and document consumers to
interoperate in a well-defined and interchangeable manner. Any SAX-
compliant document handler is able to make use of any SAX-compliant
parser, and vice versa. This allows us to separate these two functions
and to reduce the maintenance burden. Furthermore, as new parsers
are made available, we can move to them with minimal changes to
our applications.

The SAX implementations described here provide a native Delphi
XML parser, as well as a wrapper around the Microsoft XML
parser. A document handler that generates a simple document
model is also provided. Together, these allow us to write a basic
XML viewer quite easily. ∆

References
XML specification: http://www.w3.org/XML
SAX specification: http://www.megginson.com/SAX
Microsoft XML parser: http://msdn.microsoft.com/xml/default.asp
XML information: http://www.xml.com,
http://www.xmlsoftware.com

The files referenced in this article are available on the Delphi Informant
Magazine Complete Works Companion Disk in INFORM\00\MAR\
DI200003KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. Often working with
Delphi, he has enjoyed exploring it since it first appeared. You can reach him via
e-mail at kwood@ccsc.com.
Begin Listing One — Loading an XML document
{ Load an XML document. }
procedure TfrmXMLViewer.LoadDoc(sFilename: string);
var
 i: Integer;

 { Add current element to the tree view, then recurse
 through children. }
 procedure AddElementToTree(xelElement: TXMLElement;
 trnNode: TTreeNode);
 var
 i: Integer;
 sName: string;
 trnNew: TTreeNode;
 begin
 { Display meaningful text. }
 if xelElement.ElementType in [xtComment, xtText] then
 begin
 sName := Copy(xelElement.Value, 1, 20);
 if Length(xelElement.Value) > 20 then
 sName := Copy(sName, 1, 17) + '...';
 end
 else
29 March 2000 Delphi Informant Magazine
 sName := xelElement.Name;
 trnNew := trvXML.Items.AddChildObject(trnNode, sName,
 xelElement);
 trnNew.ImageIndex := Ord(xelElement.ElementType);
 trnNew.SelectedIndex := trnNew.ImageIndex;
 for i := 0 to xelElement.Contents.Count - 1 do
 AddElementToTree(xelElement.Contents[i], trnNew);
 end;

begin
 pgcDetails.ActivePage := tshDocument;
 trvXML.Items.Clear;
 { Load the source document. }
 memSource.Lines.LoadFromFile(sFilename);
 dlgOpen.Filename := sFilename;
 { Parse the document. }
 xprSAXParser.Parse(sFilename);
 { Extract document level information. }
 edtDocType.Text := xdhDocument.Name;
 edtPublicId.Text := xdhDocument.PublicId;
 edtSystemId.Text := xdhDocument.SystemId;
 edtVersion.Text := Format('%3.1f',[xdhDocument.Version]);
 edtEncoding.Text := xdhDocument.Encoding;
 cbxStandAlone.Checked := xdhDocument.StandAlone;
 with xdhDocument.Entities, stgEntities do begin
 RowCount := 2;
 if Count > 0 then
 RowCount := Count + 1
 else
 Rows[1].Clear;
 for i := 0 to Count - 1 do begin
 Cells[0, i + 1] := Items[i].Name;
 Cells[1, i + 1] := Items[i].PublicId;
 Cells[2, i + 1] := Items[i].SystemId;
 Cells[3, i + 1] := Items[i].Notation;
 end;
 end;
 with xdhDocument.Notations, stgNotations do begin
 RowCount := 2;
 if Count > 0 then
 RowCount := Count + 1
 else
 Rows[1].Clear;
 for i := 0 to Count - 1 do begin
 Cells[0, i + 1] := Items[i].Name;
 Cells[1, i + 1] := Items[i].PublicId;
 Cells[2, i + 1] := Items[i].SystemId;
 end;
 end;
 { Add the structure to the tree view. }
 AddElementToTree(xdhDocument.XMLDocument, nil);
 trvXML.Items[0].Expand(False);
end;

End Listing One

http://www.w3.org/XML
http://www.megginson.com/SAX
http://msdn.microsoft.com/xml/default.asp
http://www.xml.com
http://www.xmlsoftware.com

30 March 2000 Delphi Informant Magazin

Sound + Vision
User Interface / Forms Design / Delphi 1-5

By Peter Morris

Figure 1: An e
FormShaper
Say Good-bye to Rectangular Forms

Developers employ many tricks to make their applications stand out from the crowd.
One of the most popular methods is using non-rectangular forms. Another way

is altering the shapes of buttons, panels, etc. However, these tricks are very primitive.
Consider the following code:
e

lli
procedure TForm1.FormResize;
var
 Region : HRGN;
begin
 Region :=
CreateEllipticRgn(0,0,width,height);
 SetWindowRgn(Handle, Region, True);
end;

First, a variable of type HRGN is defined, which
is a handle to a region (and could simply be a
THandle). Then, whenever the form is resized,
an elliptic region matching the size of our form
is created using CreateEllipticRgn. The region is
applied to the form using:

SetWindowRgn(HandleOfObjectToShape,
 HandleOfNewRegion, RedrawImmediately);

(Note: Windows owns regions associated with con-
trols, so there is no need to destroy the current
region before applying a new one.)
ptical form created with CreateEllipticRgn.
If you’ve never seen this before, you may be excited
(see Figure 1). Don’t get too excited, though. After a
short time, you realize that an elliptical form is almost
as boring as a rectangular one. This article reviews
some new methods that are available to developers for
spicing up an otherwise mundane application.

Playing with Shapes
Windows provides a suite of region-related com-
mands to make life more interesting:
§ CreateEllipticRgn
§ CreateEllipticRgnIndirect
§ CreatePolygonRgn
§ CreatePolyPolygonRgn
§ CreateRectRgn
§ CreateRectRgnIndirect
§ CreateRoundRectRgn
§ GetPolyFillMode
§ GetRegionData
§ GetRgnBox
§ InvertRgn
§ OffsetRgn

Although these commands offer more flexibility,
they still only give us the ability to create rather
straightforward form shapes. This is where com-
bining regions comes into play. This list is by no
means complete, so we’ll discuss additional com-
mands throughout this article.

Combining Regions
Now we’re going to start getting more compli-
cated. With Windows, it’s possible to create a
number of regions and combine them using the
CombineRgn command. Regions may be added
together, subtracted from each other, or XORed
(areas that do not overlap are combined; areas that
do overlap are excluded).

31 March 2000 Delphi Informant Magazine

Figure 2: Ways of combining methods.

Value Description

RGN_AND Combines the regions only where they overlap.
RGN_COPY Creates a copy of the region (SourceRegion1).
RGN_DIFF Makes a differential region (difference between
 Source1 and Source2).
RGN_OR Adds the two source regions together.
RGN_XOR Areas that don’t overlap are combined; overlapping
 areas are excluded.

Sound + Vision

procedure TForm1.Resize;
var
 Region,
 RectRegion : HRgn;
begin
 Region := CreateEllipticRgn(0,0,Width,Height);
 RectRegion := CreateRectRgn(32,32, Width-32, Height-32);

 // Combine Region with RectRegion;
 // store the result in Region.
 CombineRgn(Region, Region, RectRegion, RGN_XOR);

 // Once applied to our form, Region will be owned by
 // Windows, while RectRegion will not. In this case we
 // need to destroy RectRegion.
 DeleteObject(RectRegion);
 SetWindowRgn(Handle, Region, True);
end;

Figure 3: Combining a rectangle to achieve an interesting effect.

Figure 4: The result of the code in Figure 3.

// Code above here will load a black and white bitmap
// into a TBitmap variable called BMP.
with BMP do
 for Y:=0 to Height-1 do
 for x:=0 to Width-1 do begin
 // Is this pixel black?
 if Canvas.Pixels[X,Y] = clBlack then begin
 // If this is the first pixel, we create a new
 // region. Otherwise we add it to the region we
 // have created so far.
 if FRgn = 0 then
 FRgn := CreateRectRgn(X,Y, X+1, Y+1)
 else
 begin
 EXCL := CreateRectRgn(X,Y, X+1, Y+1);
 CombineRgn(FRgn, FRgn, EXCL, Rgn_XOR);
 DeleteObject(EXCL);
 end;
 end;
 end;

Figure 5: Creating a region from a bitmap.
The syntax of CombineRgn is:

CombineRgn(NewRegion, SourceRegion1, SourceRegion2,
 CombineMode);

Available modes of combining regions are shown in Figure 2.

You could combine a rectangle to our previous elliptical form using
RGN_XOR (see Figure 3) for a strange effect (as shown in Figure 4),
but this process is time consuming.

Even though we now have an extensive set of tools for altering a
form’s shape, we can’t easily make regions suitable for applications.
I could introduce you to the CreatePolygonRgn command, which
creates your region from an array of points. But this method is time
consuming, as well, and people tend to sacrifice quality to save time.
A region with poorly shaped edges is an eyesore and much worse than
a standard Windows rectangle.

The question is: Can we easily make complex regions quickly and
maintain high quality? Luckily, the answer is “Yes.”

Creating a Region from a Bitmap
At this point, it would be nice to be able to introduce the
CreateBitmapRgn command. It would allow us to draw a simple
black-and-white mask for the shape of the form using our favorite
graphics package and import it directly into our application.
Unfortunately, there is no such command.

Therefore, we must write this routine ourselves. This process involves
reading each pixel from a black-and-white bitmap mask: If the pixel
is white, we ignore it; if it’s black, we create a region the size of one
pixel and add it to a larger region, which will eventually be applied
to our form.

The problem with this method is that, although it offers the ability to
manipulate our form’s shape with pixel precision, it’s too slow. Anyone
who has ever tried the Canvas.Pixels property will know that this
method could take as long as one minute for an average size bitmap.
Luckily, there are a few ways we can reduce or eliminate this problem.
But first, Figure 5 shows one way to create our region from a bitmap.

The code in Figure 5 is quite simple, but if we tried to use it in
an application at run time, our application would take far too long
to start. The solution to our problem lies with two more Windows
commands: ExtCreateRegion and GetRegionData.

Loading and Saving a Region
After our region is created, it’s easy to acquire its data to write out
to disk, and then read it back as a Windows region. Luckily, this is
instantaneous, and — even better — it’s easy:
Figure 6: Selecting a 2-bit, black-and-white bitmap as the mask.

Sound + Vision
// Passing nil tells GetRegionData that we just
// want the size in bytes.
RegionSize := GetRegionData(FRgn, 0, nil);
// Allocate the correct amount of memory.
RegionData := AllocMem(RegionSize);
// Get the data for the region.
GetRegionData(FRgn, 0, RegionData);

The data now held in RegionData can be quite easily written to a stream:

// So that we know how many bytes to read back later.
TheStream.Write(RegionSize, SizeOf(Integer));
// Write the stream data.
TheStream.Write(RegionData^, RegionSize);

Reading the stream back into a region is equally simple:

// Read back the size.
TheStream.Read(RegionSize, SizeOf(Integer));
// Allocate the memory to hold our region.
RegionData := Allocmem(RegionSize);
// Read the region data back in to memory.
TheStream.Read(RegionData^, RegionSize);

Finally, making the RegionData back into a Windows region is as
simple as this:

Region :=
 ExtCreateRegion(nil, RegionSize, TRgnData(RegionData^));

SetWindowRgn(Handle, Region, True);

Choosing the Correct Implementation
The final step is choosing the correct way to implement this technol-
ogy. An easy way would be to write a “region-making” tool to create
region files from bitmaps. Your application could then load these
regions at run time. The problem is that you must ship many small
files along with your application.

I’ve written a TFormShaper component to implement this method.
This allows me to apply regions at design time and save the
RegionData in the same way a TImage would: embedded within
the application. (TFormShaper’s source code, and a demonstration
application, is available for download; see the end of this article
for details.)
32 March 2000 Delphi Informant Magazine

Figure 7: The demonstration application at run time.
To use the TFormShaper component, select Component | Install

from the Delphi IDE and add the cFormShaperReg.pas unit to a
design-time package.

After the cFormShaperReg.pas unit is installed on your Compo-
nent palette, follow these steps:
1) Drop a TFormShaper component on the form, right-click on the

component, and select Import Mask (I have provided one with my
downloadable code, as shown in Figure 6). An Open dialog box
will appear. Select a 2-bit (black and white) bitmap, which will
be used as the form shape (black = solid, white = transparent).
When you specify the file and click OK, the Mask image will be
processed and a region the shape of the Mask will be created. It
might take a couple seconds, so be patient.

2) Set the form’s BorderStyle property to bsNone; otherwise the size
of the banner will shift the Mask vertically.

3) Rather than assuming that you always want to apply the shape
to the form, you can set the ControlToShape property to any
TWinControl descendant, e.g. a Panel or PageControl.

4) In the form’s FormCreate method, add the statement:
FormShaper1.Active := True;. (You can also set its active
property to True at design time.)

5) Compile and run the project (see Figure 7).

The advantage of this technique is that we have done all the grunt
work (the creation of the region) at design time. The region is then
stored internally in the component and will be loaded automatically
when the application runs.

To improve the speed of the region creation, we can take advantage
of the ScanLine property in TBitmap. The downloadable code for this
article shows this improved technique, which dramatically reduces
the time necessary to build the region from the Mask bitmap.

Conclusion
In this article, we looked at ways to improve the look of your forms.
If you’re looking for a way to spruce up your development environ-
ment, sample some of the methods we discussed.

Who knows? You may set a trend. ∆
The files referenced in this article are available on the
Delphi Informant Magazine Complete Works Compan-
ion Disk in INFORM\00\MAR\DI200003PM.

Peter Morris is 26 years old and married with two children.
He works from home as a computer programmer for Insite
Technologies Ltd., writing a wide variety of non-standard-
looking Windows applications. He loved breaking away from
the Windows GUI standards, as he now writes special graphical
effects and animated components — the sort of things that
make people say, “Wow, how did he do that?” You can reach
Peter at MrPMorris@hotmail.com.

33 March 2000 Delphi Informant Magazine

New & Used

By John Rendell
ASTA 2.1
The Fast Way to Internet Applications

ASTA Technology Group claims ASTA 2.1 is “... the simplest way to create robust,
full-featured, Internet-enabled applications” — a pretty bold claim for a product that

competes with several other n-tier development tools. Because I’m working on a local-
table-to-InterBase conversion of a large staffing system, I couldn’t pass up the chance to
test ASTA to see if it lives up to its claim.
ASTA is a tool that allows development of three-
tier Internet-enabled database applications. This
means that the database runs on one tier, an
application server on a second tier, and clients
on a third.

In traditional two-tier development, the client
issues SQL statements, and the server responds
with corresponding data. In a three-tier environ-
ment, the SQL is usually coded into the applica-
tion server. The client triggers the application
server to issue the SQL statement, and the appli-
cation server returns the resulting rows from
the server. Needless to say, three-tier applications
require a lot of planning in creating the server
(the implications of which are too lengthy to go
into in this review).

ASTA differentiates itself by allowing traditional
two-tier practices to be used in a true three-tier
environment. (Figure 1 shows an abstract imple-
mentation diagram.) SQL can be generated from
the application server or the client, allowing for fast
application conversions.

After working with other three-tier products, I was
a little concerned about the learning curve. Work-
ing with ASTA was a nice surprise. After a few
tutorials, I felt comfortable enough to start con-
verting a large test application. ASTA provides an
application server and client datasets for accessing
data from the server.
Figure 1: ASTA allows traditional two-tier practi

AstaClient
TCP/IP

Ast
Servers
There are 10 optimized ASTA servers, depending
on your database needs. Because I use IBObjects
for accessing InterBase tables, I was happy to see
an ASTA IBObjects server. Other servers include
Direct Oracle Access, ADO, ODBC, ODBC
Express, IBExpress, and Advantage. Documenta-
tion is included to allow the coding of other
custom servers.

All ASTA servers can run in one of three modes:
§ Single (default): Client requests are queued

and processed in a FIFO (first-in-first-out)
order. Only a single connection to the database
server is used.

§ Pooled: A predefined number of connections to
the server are pooled, allowing for simultaneous
threaded access to the server. For example, if
created for 10 sessions, 10 connections to the
server are opened at run time (even if no clients
are connected). Clients use whatever connec-
tion is available. Additional threaded sessions
are dynamically created on an as-needed basis.

§ Persistent: Each client connects to a session
that is persistent for that client. A database
connection is used for each client. Because a
unique session is opened for each client, it
allows the developer more flexibility in control-
ling how data streams back to the client.

After selecting the threading model, all I had to
do was compile and run the server; no additional
ces to be used in a true three-tier environment.

BDE or
ODBC

aServer

Database

Figure 2: The ASTA server.

orkbench property brings up this dialog box.

New & Used
Figure 3: Selecting the SQLW

work was necessary. Unlike MIDAS, the ASTA server has some
nice client management tools (see Figure 2):
§ Connected clients
§ Messaging
§ Chat lines
§ Client errors
§ Broadcast messages
§ Login stamping

With these tools, client requests can be logged (great for debug-
ging) in the Client Request window. Clients can also be discon-
nected from the server. The chat tools are nice, but I decided not
to use them.

The application server is run as an executable. There is also an
application available that reloads ASTA servers, as well as an NT
service that manages ASTA servers.

Clients
Once the server was running, I had to create a client to actually use
the ASTA server. ASTA uses IP sockets to connect to the ASTA server
(unlike MIDAS, you cannot use DCOM). Each client application
must have an ASTA Client Socket. Because the Client Socket deter-
mines where the ASTA server resides, I had to provide an IP address
or machine name so I could use some of the ASTAClientDataSet
properties at run time.

ASTA uses a custom ASTAClientDataSet to converse with the
ASTA server. Again, ASTA’s ease of use shines with its
SQLWorkbench property. Selecting
this property opens a dialog box
with just about everything you
need to build your SQL state-
ments, as shown in Figure 3.

By default, all ASTAClientDataSets
are read-only. By changing the
EditMode property, you can have
ASTA apply updates on each
record post, or keep them cached
until you decide to apply the
changes. Again, ASTA has made
this easy to do with a dialog box
that guides you through selecting
the update mode, key field, and
the table to update.

Because the ASTAClientDataSet is
TDataSet compatible, you can use
any data-aware component you’d
like to edit and display data.
34 March 2000 Delphi Informant Magazine
ASTAClientDataSets are also memory-based, which allows fast pop-
ulation of controls. ASTAClientDataSets can also be used in brief-
case mode, allowing the data to be stored to a local drive and
retrieved for later editing/updating.

Advanced Options
With version 2, ASTA introduced some advanced tools for doing
more work on the server. There are two components: ASTAProvider
and ASTABusinessObjectManager. The ASTABusinessObjectManager
allows for custom SQL code to be issued from the server. There
are several examples included with ASTA that show how to use
this component.

My favorite, however, is ASTAProvider. This is a new component
that allows SQL to be generated on the server side and have some
server-side control on posting of records via Before/After events.
ASTAProviders also have one of the most revolutionary ways of
dealing with multiple clients and updates: broadcasts of single
record changes.

To give you an idea of how broadcasts work (and why I think they
are so great), the following is a requirement in the test application.
In the test application, I have a ToDo list. Each user has a list
of items that need to be completed. It’s possible (and probable)
that other users will send ToDo lists to other users. Each user’s list
must show these items as soon as possible. Some users may have
10 items, some hundreds.

Traditional methods of client/server and n-tier development have
no direct way of notifying other clients of changes that have been
made. A few ways around this is to use Database events (still
requiring the client to issue another query to find what changed)
or to refresh the query (in most cases requiring the query to
be closed and reopened). ASTAProviders have made this process
extremely easy:
§ Add an ASTAProvider to the application server and point it to

a TDataSet.
§ Add an ASTAClientDataSet to the client application. Choose the

Server Provider from the ProviderName property.
§ Change SQLGenerateLocation to Server (default is Client).
§ Change RegisterForBroadcasts to True.

New & Used
Once these steps are complete,
any change to the provider’s data-
set is broadcasted back to all lis-
tening clients. (However, the
OnProviderBroadcast method must
be coded to do something with it
— ASTA’s easy, but not that easy!)

Why is this revolutionary?
Assume there are 100 client con-
nections. Each client may have
100 items on a ToDo list. If the
only option to update these cli-
ents is to close and reopen the
query, then every few minutes,
the server would have to fetch
and return 10,000 records —
regardless of whether there were
any changes. By using broadcasts,
you’ve reduced this to only having
the server broadcast a changed
record to everyone. ASTA auto-
matically suppresses the broadcast
back to the issuing client — so
the client that issued the update
won’t receive its own changes.

Deployment
Once the actual application server is configured to access the
database, the ASTA server only needs to be copied to the server
and then run. On the client side, no configuration is needed.
Because all the database connections happen at the application
server, there really is nothing to configure (except the IP address
of the server, which can be read in from a central .ini file or stored
in the registry).

One of the overlooked benefits of using a three-tier environment
is security. By having the server on its own machine, it’s possible
to make the actual database server invisible; all database access is
controlled by the application server. ASTA only requires a user-
defined port to be opened on a firewall for Internet access.

Tech Support
Tech support is first rate. Questions on the list server were answered
within 24 hours.

Suggested Improvements
There are many example projects and some online Help, but I really
wish the documentation was better; the online documentation is not
complete (many of the advanced functions and procedures are not
listed). Having to hop from an example to the online Help to figure
out how something works is not very productive.

Another minor nit pick: When compiling the source code, there are
a lot of warnings and hints, most of it due to coding style. Not a big
deal, but something I’d like to see cleaned up.

Wish List
As no product is perfect, I would like to see the following things
in future versions:
§ Load balancing/Fail Over.
§ Automatic reconnecting — it’s currently possible with code, but

I’d like to see it as an automatic feature.

ASTA is an Internet development tool
that delivers on its promise as being “...
the simplest way to create robust, full-
featured Internet-enabled applications.”
If you’re looking for a fast way to move
your existing applications to the Internet
(or even on a local LAN), look no further
— ASTA has you covered.

ASTA Technology Group
24 Ragged Ridge Rd.
Camden, ME 04843

Phone: (800) 699-6395
E-Mail: info@astatech.com
Web Site: http://www.astatech.com
Price: ASTA Entry Suite (includes com-
ponents and license for one server),
US$399; additional server licenses,
US$249 (a license is required for each
server); source code, US$249; site/
enterprise licenses are available.
35 March 2000 Delphi Informant Magazine
§ Better online documentation (as noted previously).
§ Server as an NT Service (ASTA Technology Group is working

on this now).

Conclusion
I liked ASTA so much I decided to use it on my current project.
The ability to broadcast changes made the decision a no-brainer.
ASTA makes moving applications from any format to client/server
or the Internet very easy. From simple SQL at the client level, to
full-blown server processing, ASTA has it covered. ∆

John Rendell is President of Little Wiggler Software, Inc., specializing in upsizing
database applications. When not playing in Deja 80s — a retro band — he can
be reached at john@little-wiggler.com.

File | New
Directions / Commentary
Multimedia Resources on the Internet

In the August, 1999 issue of Delphi Informant Magazine, I wrote about multimedia resources in book form. I also
promised to devote another column to exploring some of the resources available on the Internet. I’ll begin by discussing

links that have a direct connection to Delphi and then mention more general links that provide valuable supplementary
information. Delphi multimedia sites can be divided into two groups: Those dealing with general audio and those dealing
with MIDI. We’ll begin with the more general sites.
General Delphi multimedia sites. Swift Software (http://www.
swiftsoft.de) provides a full line of professional multimedia software,
including Delphi components for manipulating wave data, working
with mixers, and handling .avi files. There are also components that
go beyond the ordinary multimedia operations to filter sounds, create
sound effects, and work with newer technologies — including Direct-
Sound (3D) and MPEG. (I haven’t tested these, so I can’t comment
on their quality.) There are also a number of freeware Delphi tools
and components on this site. These include a Debug Monitor with a
Delphi unit that sends commands and messages to the debug window;
a TimeStamp Expert, an add-on that automatically creates headers and
time stamps in your code; a freeware MP3 BladeEncoder Component;
and Video for Windows, a Delphi import unit for the VFW SDK.
These tools and components include source code.

If you’re just getting started in multimedia and would rather “do it your-
self” than use preexisting components, be sure to visit Alex Simonetti
Abreu’s cool site, Athena’s Place (http://www.bhnet.com.br/~simonet/
howtoprojs.htm). It consists of eight how-to projects with full source
code — most of which is related to multimedia. These projects include
examples for creating and saving a wave file to your own custom format,
saving a wave file to a BLOb field, creating high-resolution timers using
the multimedia services, and detecting multimedia devices and setting
their volumes. There are also examples of creating and using resource-
only DLLs (which can be used with multimedia data), extracting version
information from DLLs, EXEs, VXDs, and more.

Dave’s MIDI Software (http://www.netcomuk.co.uk/~dave.ch/
midisoft.html) is a major Delphi MIDI site, which contains links
to many other sites. Here you will find his valuable freeware collec-
tion, MidiComp. It includes MIDI input and output components
for Delphi, as well as demonstration applications that use these
components. I’ve tried some of these components and recommend
them for your consideration.

Delphi Multimedia (http://www.kobira.co.jp/sakura/d_multi.htm)
has a number of nice downloads. While you’re there, be sure to
check out David J. Taylor’s SweepGen application.

My favorite Delphi multimedia site is probably Colin Wilson’s
(http://www.wilsonc.demon.co.uk/delphi.htm). The site features a large
collection of freeware multimedia components and demonstration appli-
cations. These include Mixer Demo, which encapsulates the master
volume control along with balance, mute, and bass and treble, as well as
MIDI volume, balance, and mute controls. Additional examples include
Mixer Explorer, which displays the mixer components supported on
a particular system in a tree view; the feature-rich MIDI Controls &
Sequencer application; MIDI Controls Demo, which plays MIDI files
and displays MIDI events in a “piano-roll style; a MIDI Jukebox, which
uses the MIDI Controls and the mixer components; and the Multimedia
36 March 2000 Delphi Informant Magazine
Level Data and Meter application, which includes an LED Ladder con-
trol and a Multimedia Meter Data control. These applications include
full source code. There are also a number of NT-specific routines, among
many others. Indeed, this is a very rich site well worth visiting.

Other multimedia sites. Though not a Delphi site, EDN Access
(http://www.ednmag.com/reg/1995/110995/) contains articles on vari-
ous technologies, including one from 1995 entitled “Multimedia
Codecs Move beyond Basic Conversion.” Although it’s a bit dated, this
article is very detailed. The Synth Zone (http://www.synthzone.com/
sampling.htm) is devoted to audio samples and sampling resources. It
includes a very large list of links to sites where you can find tools and
sounds. Another site with many links, Audio Lab’s Audio & Acoustic
Links (http://audiolab.uwaterloo.ca/aa_links.html), provides access to
additional sites containing useful technical information.

The Audio section of the Online Communicator (http://www.
communicator.com/audio1.html) has a number of useful links to audio
technology sites, including some related to MPEG audio. The “Channel
1” file library is a good source for shareware and freeware programs and
utilities, including several hundred multimedia items. Unfortunately, you
won’t find much source code here.

A similar site, 32bit.com (http://www.32bit.com/software/listings/
multimedia), contains a large multimedia section. This site is well
organized and easy to navigate. Again, there are a large number of
utilities but without source code.

The Audio File Format FAQ (http://home.sprynet.com/~cbagwell/
audio.html) has up-to-date information on many audio file formats.
It also has links to some interesting articles, including one on audio
effects algorithms.

The MidiWeb (http://www.midiweb.com) includes a section on pro-
gramming (C/C++ and Visual Basic). Also, in other pages on the site,
you can download MIDI files.

Finally, The MIDI Farm (http://www.midifarm.com) is a vastly compre-
hensive MIDI site that contains information on commercial products
and a large collection of MIDI files and other resources.

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical
journals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly sound
and music. You can reach Alan on the Internet at acmdoc@aol.com.

http://www.swiftsoft.de
http://www.bhnet.com.br/~simonet/howtoprosjs.htm
http://www.bhnet.com.br/~simonet/howtoprosjs.htm
http://www.netcomuk.co.uk/~dave.ch/midisoft.html
http://www.netcomuk.co.uk/~dave.ch/midisoft.html
http://www.kobira.co.jp/sakura/d_multi.htm
http://www.wilsonc.demon.co.uk/delphi.htm
http://www.ednmag.com/reg/1995/110995/
http://www.synthzone.com/sampling.htm
http://www.synthzone.com/sampling.htm
http://audiolab.uwaterloo.ca/aa_links.html
http://www.communicator.com/audio1.html
http://www.communicator.com/audio1.html
http://www.32bit.com/software/listings/multimedia
http://www.32bit.com/software/listings/multimedia
http://home.sprynet.com/~cbagwell/audio.html
http://home.sprynet.com/~cbagwell/audio.html
http://www.midiweb.com
http://www.midifarm.com

	Table of Contents
	Delphi Tools
	Woll2Woll Announces InfoPower 2000
	ZieglerSoft Releases ZieglerCollection one v.1.60 and Crt32 v.2.05
	LWE Releases MATHEMATICS DLL TOOLKIT!Version 5.0
	ESB Announces ESB Professional Computation Suite 1.1.2
	SkyLine Tools Announces ImageLib Corporate Suite 5.0

	Delphi News
	Inprise Announces VisiBroker 3.3 for Delphi
	Tamarack Hosts Newsgroup Search Engine for Delphi and C++Builder
	Inprise Collaborates with Sun on Delivery of Java 2 Platform for Linux
	Inprise Announces Inprise Application Server 4.0 and VisiBroker for Java 4.0
	Inprise/Borland Open-sources InterBase 6

	OP Tech
	Property Editor Refresher
	The Basics
	Owner-drawn Name
	Drop-down Lists
	Using the Property Editors
	Other New Property Editor Features

	Greater Delphi
	Early Binding Client
	Late Binding Client
	Clients in Other Languages
	Conclusion
	Begin Listing One - Implemented cclient.pas
	Begin Listing Two — Implemented cclient__dii.pas
	Begin Listing Three — CorbaClient package

	Visual Programming
	Generic Table Maintenance Features and Layout
	Subclass Responsibilities
	Generic Table Maintenance Implementation
	Defensive Coding
	Conclusion
	Begin Listing One — The GetFirstEditControl method

	DBNavigator
	Why Add Interfaces to Delphi?
	The Multiple Inheritance Approach
	The Solution:Interfaces
	Interface Declarations in Object Pascal
	Implementing the Methods of an Interface
	The Interface Hierarchy
	Interface References
	Interface Method Name Resolution
	Conclusion

	On the 'Net
	XML in Brief
	SAX
	Handling Documents
	SAX Parser
	Exceptions
	Into Delphi
	Implementation
	XML Viewer
	Conclusion
	References
	Begin Listing One — Loading an XML document

	Sound + Vision
	Playing with Shapes
	Combining Regions
	Creating a Region from a Bitmap
	Loading and Saving a Region
	Choosing the Correct Implementation
	Conclusion

	New & Used
	Servers
	Clients
	Advanced Options
	Deployment
	Tech Support
	Suggested Improvements
	Wish List
	Conclusion

	File | New

