
Cover Art By: Darryl Dennis

ON THE COVER
5 Patterns in Practice
Mediator Pattern — Xavier Pacheco
The Mediator pattern simplifies complex communication between
objects, while maintaining loose coupling, making it ideal for use in a
distributed process control system, as Mr Pacheco explains. 

FEATURES
9 Greater Delphi
CORBA: Part I — Dennis P. Butler
Mr Butler begins a two-part exploration of CORBA and CORBA develop-
ment with Delphi with an introduction to the technology, and a step-
by-step description of how to build a CORBA server. 

14 Inside OP
Modifying VCL Behavior — Jeremy Merrill
Mr Merrill shows us how to dynamically change the behavior of a
native Delphi visual component without creating a new class. The secret
is to intercept Windows messages sent to the control. 

18 Visual Programming
Visual Form Inheritance: Part I — Rick Spence
Decreased development time, fewer errors, a more-consistent UI. The
benefits of VFI sound terrific, but Delphi’s implementation of the tech-
nology is woefully underdocumented. Enter Mr Spence. 

23 Delphi at Work
Time Travels — T. Wesley Erickson
Mr Erickson asks pesky questions, e.g. “What will happen when your
app is deployed in a different time zone?” and “Have you considered
Daylight Savings Time?” then — thankfully — answers them. 

27 On the ’Net
Generating XML — Keith Wood
He’s already introduced us to XML scripting. Now Mr Wood demonstrates
how to generate XML documents from a database, then send the docu-
ments over the Internet.

REVIEWS
32 TSyntaxMemo

Product Review by Alan C. Moore, Ph.D.

DEPARTMENTS
2 Delphi Tools
4 Newsline
35 File | New by Alan C. Moore, Ph.D.

February 2000, Volume 6, Number 2

1 February 2000 Delphi Informant Magazine



2 February 2000 Delphi Informant Maga

Delphi
T O O L S

New Products 
and Solutions

FileStream.com Ships InstallConstruct 3.2.1

Raize Releases Raize Comp

CoRe Lab Announces ODAC
FileStream.com, Inc./Pacific
Gold Coast Corp. announced the
release of InstallConstruct 3.2.1,
designed for creation of Installer,
Setup Wizard, Uninstaller, and
HTML-based Internet
Component Download installers.
InstallConstruct is a compact
suite of wizards and tools that
makes creating Windows 3.1, 95,
98, NT, and Windows 2000
Installers easier, using step-by-step
procedures. These installer files are
ideal for efficient and profession-
al distribution of groups of pro-
gram and data files, which are
compressed for economy and
ready to be installed at the users’
convenience. 

InstallConstruct automatically
records the selected package
options of a project as a package
script file (*.adx). These script files
not only save you from the repeti-
tive task of creating other similar
packages and in updating the
existing ones manually, they also
support command-line batch pro-
cessing in unattended operation
so they can be created automati-
cally, without any user prompts.

Users of InstallConstruct can
create and customize a Setup
zine

onents 2.5

 2.0
Wizard with their own product
graphics and logo and display
formatted text, for Internet and
Intranet distribution of program,
single and multi-volume CD-
ROM, and disk distributions, as
well as create and customize
Uninstaller. InstallConstruct uses
the expanding wizard system,
which walks users through the
entire creation process to choose
from available options, without
the need for a programming
background or having to write
application-specific program-
ming codes.
This latest release adds support
of icons to be added to the com-
mon group under Windows NT
and Windows 2000 so all users
of the computer can have access
to it; creation of installers for
Font Delivery; and the option of
keeping backup copies of existing
files. In addition, this new release
also expands the total path
length limitation. International
language scripts are supported.

FileStream.com, Inc./
Pacific Gold Coast Corp.
Price: US$199
Phone: (800) 732-3002
Web Site: http://www.installconstruct.com
Raize Software Solutions, Inc.
announced Raize Components
2.5, the latest release of the com-
pany’s library of native VCL con-
trols for Delphi and C++Builder.

Raize Components 2.5 has more
than 90 components with the
addition of nine new controls.
Version 2.5 adds more design-
time editors and streamlines some
existing editors to make the com-
ponents easier to use.

Most of the components have
been enhanced in the new ver-
sion. For example, the behavior of
the TRzFrameController compo-
nent has been changed. It no
longer controls all the compo-
nents on the form that support
Custom Framing. Instead, each
component that supports Custom
Framing now has a new
FrameController property. As a
result, a RzFrameController will
only control those components
that reference itself through the
FrameController property. This lets
developers use multiple frame
controllers to control different sets
of components on the same form.
Likewise, a single
TRzFrameController can be used
in a DataModule to control com-
ponents on multiple forms.

Raize Components 2.5 also
introduces several features specifi-
cally for Delphi 5 developers. For
example, several new property
categories are registered with
Delphi 5, making it easier to
locate properties related to specif-
ic features in Raize Components.
For example, there are categories
for Custom Framing, Text Style,
and Border Style. 

Raize Components 2.5 takes
advantage of the owner-draw
list support in Delphi 5 proper-
ty editors by providing new
editors that show a preview of
the available items.

Raize Components 2.5 sup-
ports Delphi 1, 3, 4, and 5, and
C++Builder 3 and 4. Raize
Components 2.5 comes with
complete source code for all
components, packages, and
design-time editors at no addi-
tional charge.

Raize Software Solutions, Inc.
Price: US$249
Phone: (630) 717-7217
Web Site: http://www.raize.com
CoRe Lab Co. announced
Oracle Data Access Components
(ODAC) 2.0, a library of native
Delphi components for direct
access to Oracle.

ODAC 2.0 is an easier, more
flexible, more powerful, and
faster way of developing database
applications with Oracle. ODAC
allows developers to refuse using
the BDE for applications work-
ing with Oracle only. 

Features in ODAC 2.0 include
flexible automatic updating;
advanced locking and refresh
rows; advanced support of
Oracle objects, arrays, nested
tables, BLOB, and CLOB data
types; support of native Oracle8
call interface; embedded SQL
Designer to build queries; and
more.

CoRe Lab distributes versions
of ODAC for Delphi 3, 4, and
5 and C++Builder 3 and 4,
Professional and Enterprise edi-
tions. ODAC supports Oracle
7.3, 8, and Oracle 8i, including
Personal Oracle. 

CoRe Lab Co.
Price: US$99 for a single-developer
license; US$249 for source code (in addition
to developer license).
Phone: (800) 903-4152 (US orders only).
Web Site: http://www.crlab.com

http://www.installconstruct.com
http://www.raize.com
http://www.crlab.com


3 February 2000 Delphi Informant Magaz

Delphi
T O O L S

New Products 
and Solutions

20/20 Offers PC-Install 7 

20/20 Software, Inc. intro-

duced two new versions of its
PC-Install program for building
software installations in
Windows environments: PC-
Install 7 and PC-Install 7 with
Internet Extensions.

Both versions of PC-Install
include unlimited distribution
licenses and one year of free tech-
nical support. Significant new
benefits for software developers
in PC-Install 7 include a refined,
more flexible, and intuitive inter-
face that makes building installa-
tions quicker; several additional
editing tools, including global
search and replace, template, and
direct command editing, multi-
ple undo/redo, and drag-and-
ine

RightWare, Inc. Announces 

Excel Software Announces W
drop editing; an expanded list of
PC-Install system variables that
makes locating and using system
resources to control installations
easier, more efficient, and trans-
parent to the user; broader sup-
port for Visual Basic (VB) pro-
jects; automatic file collection for
VB 4 through VB 6; added sup-
port for automatic file collection
in ODBC and Delphi projects;
developer-defined local variables
that allow collecting nearly
unlimited amounts of data from
an end user; and a “Smart” unin-
stall feature that supports incre-
mental removal of installed com-
ponents.

For the end user, PC-Install 7’s
added features include a new
ARMS 2.0

inTranslator 2.0.2 
wizard-style uninstall interface
and automatic support for the
Add/Remove Programs control
panel. Users installing software
over the Internet using PC-
Install 7 with Internet Extensions
no longer need to restart their
installation from the beginning
when their connection fails.
Version 7 restarts automatically
at the point in the installation
where the connection was lost.

20/20 Software, Inc.
Price: US$249, or US$199 if downloaded
from 20/20 Software or its distribution part-
ners; PC-Install 7 with Internet Extensions,
US$449, or US$399 if downloaded.
Phone: (800) 735-2020
Web Site: http://www.twenty.com
RightWare, Inc. announced
the Active Risk Management
System 2.0 (ARMS), a two-com-
ponent suite of easy-to-use,
easy-to-deploy, enterprise-class,
team-based, risk-management
software.

ARMS allows users to: unify
their project team by improving
risk communication and have
team members stay in sync with
changing project risks and get
up-to-date information with the
ARMS Team Member compo-
nent; facilitate communication
by allowing the team members to
engage in online dialog about
project risks with the ARMS
Discussion Group feature; foster
a project environment that does
not exclude risk identifiers; create
a consistent understanding of the
project risks; import resources
from Microsoft Project into
ARMS Team Manager as users;
create and assign action items to
team members; get a better pic-
ture of how mitigation affects
project schedules; print reports,
such as the Risk Management
Plan, Mitigation Plan, and Top
10 Risk List; export reports to
DOC, RTF, PDF, and TXT for
further project visibility; optimize
the identification of risks by
selecting from over 200 risks and
over 14 categories; define project
risk attributes, such as time
frame, project phase found, and
status; link risks and track the
impact of change on related risks;
and more. 

RightWare, Inc.
Price: ARMS Team Manager, US$1,599
(Enterprise Edition) and US$999 (Standard
Edition); ARMS Team Member, US$1,299
(Enterprise Edition) and US$799 (Standard
Edition).
Phone: (877) 717-ARMS
Web Site: http://www.right-ware.com
Excel Software announced
WinTranslator 2.0.2 for soft-
ware design and code re-engi-
neering. WinTranslator is used
in conjunction with Excel’s
WinA&D product to create
class models or structure charts
from source code. It can also
create CRC cards for the
QuickCRC design tool from
Delphi, C++, or Java.
The WinTranslator 2.0.2

update makes several improve-
ments to version 2.0, including
additional customization options
to the re-engineering wizard that
steps the user through the
process of generating design from
code, and additional optimiza-
tions for Java re-engineering.

Excel Software
Price: US$495 for a single license; site
licenses are available.
Phone: (515) 752-5359
Web Site: http://www.excelsoftware.com
devSoft Releases ICK
Version 2.0

ddeevvSSoofftt  IInncc.. released version
2.0 of IInntteerrnneett  CCoommmmeerrccee  KKiitt
((IICCKK)), a developer’s toolkit for

secure access and manipulation
of Internet data. The toolkit
includes native Internet and

intranet development compo-
nents for development environ-

ments such as Delphi,
C++Builder, Visual Basic, Visual

C++, and others. 
The new release introduces

vGrid (‘virtual’ Grid), used to
dynamically exchange relational
(tabular) data over the Web. The
component may be used in both
server and client applications to

serve and access data. 
XML is used as the interchange

format. This approach makes it
possible to link together a variety
of applications from a variety of

platforms, built with different
development tools. The new

release brings a number of sig-
nificant improvements in the

other components of ICK as well,
including HTTP, HTTPS, FTP,

XMLp, and NetDial.
Improvements include better pro-
grammatic access to interactive
features and security, as well as
support for the latest versions of
development environments, such

as Delphi 5.   
ICK 2.0 costs US$245. For more
information call (919) 493-5805
or visit http://www.dev-soft.com.

http://www.twenty.com
http://www.right-ware.com
http://www.excelsoftware.com
http://www.dev-soft.com


4 February 2000 Delphi Informant Magaz

News
L I N E

February  2000

Inprise Announces New Agreement for VisiBroker

Inprise Announces Embedded Database Solution
with InterBase Version 5.6 
Scotts Valley, CA — Inprise
Corp. announced that its
VisiBroker CORBA Object
Request Broker will be utilized
in Cisco Systems’
CiscoWorks2000 family of
enterprise network manage-
ment products. 

As part of the agreement,
Inprise’s VisiBroker will be
embedded in Cisco’s Common
Management Foundation, a
software infrastructure used by
CiscoWorks2000 network man-
agement applications. 

CiscoWorks2000 is a family of
network management solutions
combining Cisco’s switch and
router management with Internet
ine

Dale Fuller Outlines Strateg
Application Service Provide
standards to transform network
management. Inprise’s VisiBroker
facilitates the development and
deployment of distributed enter-
prise applications that are scal-
able, flexible, and easily main-
tained. As systems get more com-
y in Support of
rs

ICG Announces
ComputerBoo
plicated with numerous sub-
applications, this combination
becomes more important for
companies thriving in today’s
Internet economy. 

For more information on Cisco,
visit http://www.cisco.com.
Scotts Valley, CA — Inprise
Corp. announced the availability
of InterBase version 5.6, the latest
version of Inprise’s embedded
database solution. This new ver-
sion is now available on the
Novell NetWare and Windows
platforms and includes updates to
SQL functions and roles, as well
 

as performance enhancements. 
InterBase 5.6 is certified on

NetWare 4.2 and 5.0, Microsoft
Windows NT 4.0 SP4,
Windows 95, and Windows 98. 

InterBase 5.6 Server software
for Windows or NetWare is
priced at US$200 for a one-
user server license. Additional
users are US$150 each,
US$1,200 for 10 users, or
US$2,100 for 20 users. Local
InterBase 5.6 software for
Windows is available on CD-
ROM for US$50. Activation
keys for Local InterBase 5.6 for
Windows are US$60 each,
US$800 for a package of 20, or
US$2,000 for a package of
100. There is no Local
InterBase for NetWare. 

For more information, visit
http://www.inprise.com.
the Launch of
kstore.com
San Diego, CA — Inprise
Corp. interim President and
Chief Executive Officer Dale
Fuller unveiled the company’s
new strategy in support of appli-
cation service providers (ASPs).
In addition, Fuller announced
plans to create Inprise
AppServices, a new service to
integrate software and services
from many application service
providers into a single suite. 

AppServices will allow cus-
tomers to access business applica-
tion sources through a Web-based
portal that includes a unified
suite of communication/
collaboration/productivity tools,
such as calendaring, messaging,
and discussion forums. 

Inprise and its partners plan to
build and host AppServices.
AppServices will enable end users
to access their applications and
desktop via any networked
device, operating system, or pro-
tocol, using a standard browser
interface. 

Inprise’s strategy for ASPs con-
sists of three layers. 
The first, a “user layer,” provides

users with a single point of entry
and universal registration system
from which to access applications
from various ASPs being used
within a company.

The second, a “transport
layer,” allows a user to access
ASP-hosted applications on dif-
ferent types of devices. 
Finally, a “messaging layer”
allows different applications from
various ASPs to communicate
with one another. 

According to International Data
Corporation, worldwide spending
for ASPs will increase from
US$150 million in 1999 to over
US$2 billion by 2003. 

For more information, visit
http://www.inprise.com.
Elk Grove, CA — Informant Communications Group,
Inc. announced the launch of ComputerBookstore.com,
an online bookstore featuring a wide variety of com-
puting, gaming, certification, training, science, and
business books, in addition to training materials,
videos, and documentation. 

ComputerBookstore.com offers a wide variety of
titles from all the major publishers, including
Addison-Wesley, IDG, Macmillan, Microsoft Press,
O’Reilly & Associates, Osborne/McGraw-Hill, SYBEX,
Wiley, and WROX, as well as smaller independent
publishers. 

In addition, ComputerBookstore.com features profes-
sional reviews, e-mail alerts, and other various interac-
tive activities.  

ComputerBookstore.com guarantees a savings of up
to 41 percent off the suggested retail price for all on-
sale items. January 2000 will feature various sales
throughout the month, including sales on gaming,
Osborne/McGraw-Hill, and Microsoft Press books.

Additional information regarding this new online
bookstore is available at http://www.
ComputerBookstore.com.

http://www.cisco.com
http://www.inprise.com
http://www.inprise.com
http://www.ComputerBookstore.com
http://www.ComputerBookstore.com


5 February 2000 Delphi Informant Maga

Patterns in Practice
Design Patterns / Mediator / Delphi 4, 5

By Xavier Pacheco

Mediator

ConcreteMediator

Figure 1: The Media
Mediator Pattern
Part I: Introduction to Process Control Frameworks

In March of last year (1999), I began a series of articles on design patterns and how to
use such patterns within the Delphi VCL framework. In those articles, I discussed the

Singleton, Template Method, and Builder patterns. 
t

This month, we’ll use the Mediator pattern to
illustrate how to solve the problem of process
flow control in a batch processing system. I ini-
tially planned for this entire example to appear in
one article — until I realized that there was too
much information. Therefore, the next three arti-
cles will focus on this pattern and how to use it in
a distributed process control system.

Let’s begin by defining the pattern in detail. As
stated in the classic, Design Patterns [Addison-
Wesley, 1995], by Erich Gamma, et al., the
Mediator pattern is used to “Define an object that
encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and
it lets you vary their interaction independently.”

The Mediator pattern is used when objects must
communicate with one another in well-defined ways,
but the communication is complex. The Mediator
pattern can simplify the communication between
objects. Additionally, the Mediator pattern can also
unbind the dependencies between objects. This facil-
itates object reuse and customizations. There are four
participants to the Mediator pattern (see Figure 1):

Mediator defines an abstract class or interface for
communication between the Colleague classes.
A ConcreteMediator implements the abstract
mediator. Each ConcreteMediator coordinates
the Colleague communication.
zine

Colleague

ConcreteColleague1 ConcreteColleague2

mediator

or pattern (from Design Patterns, Gamma, et al.). 
The Colleague is an abstract class or interface
that defines the class to be managed by the
Mediator class.
ConcreteColleague classes are self-contained
classes that communicate with a Mediator
class. Knowledge of the Mediator class is typ-
ical but not necessary.

Figure 2 shows how the Mediator pattern works
when implemented. The ConcreteMediator serves
as “traffic cop,” controlling the execution of, and
communication between, the ConcreteColleague
objects. In this scenario, ConcreteColleague
objects don’t communicate directly with each
other; rather, they rely on the Mediator to enforce
inter-object communication. This requires a stan-
dard form of communication as defined by the
abstract class definitions or interfaces.

Uses and Motivation
The Mediator pattern removes the complexities
and dependencies of inter-object communication.
This objective is especially applicable to process
control. Processes by definition are subject to
change because of constant improvements in the
way we design and handle information. Planning
and designing for changes in a process reduce the
pain of making modifications.

Any repetitive process we see in business today can
benefit from a system design that incorporates the
Mediator pattern. Before we delve into the techni-
calities of an example implementation, however,
let’s address the motivation of including the
Mediator pattern in the design.

Applications focused on managing processes
involve the systematic execution of tasks and
reporting of task status. If each task were responsi-
ble for knowing subsequent tasks and passing
behavioral statistics to those tasks, it’s easy to see
how the resulting application would be constrained



ConcreteMediator

ConcreteColleague

-Mediator:TMediator

ConcreteColleague

-Mediator:TMediator

ConcreteColleague

-Mediator:TMediator

ConcreteColleague

-Mediator:TMediator

ConcreteColleague

-Mediator:TMediator

Figure 2: Mediator pattern implementation.

TProcess
TTask1 TTask4

TTask5

+ExecuteTask

Patterns in Practice
to the initial definition of the process, i.e. the sequence of tasks nec-
essary to complete the process. Changes in the sequence of tasks
and/or the passing of behavioral parameters between tasks, in this
instance, would require updates to all objects involved — even if the
individual task behavior had not changed (see Figure 3).

In Figure 3, you see that if we were to modify the input and/or out-
put parameters of any given task, the changes to the system would
impact more than just the changed task. Additionally, this design
restricts the execution of tasks to the specified sequence. It becomes
difficult for the results of one task to determine the next task to be
implemented. A task would have to know about all tasks that it
might invoke. This violates the intent to loosely couple each task.
The Mediator pattern addresses these issues.

Adding a Mediator between the task objects removes the task-to-task
dependencies. The application is now free to alter the sequence of
tasks without modifying any of the individual tasks. Additionally, this
design can allow generic parameters (process modifiers, performance
statistics, error conditions, etc.) of one task to be passed to tasks that
aren’t necessarily next in sequence. Figure 4 illustrates how this might
look; notice the similarities with Figure 2.

Task Control Example
This article’s example illustrates a simplified architecture by which you
can control a series of tasks/processes. To reduce any possible confu-
6 February 2000 Delphi Informant Magazine

TProcess

TTask1

+ExecuteTask

TTask2

+ExecuteTask

TTask3

+ExecuteTask

TTask4

+ExecuteTask

TTask5

+ExecuteTask
Figure 3: Design without
Mediator is inflexible.
sion, “task” refers to an encapsulated unit of work, and “process” refers
to a series of tasks coordinated to achieve a defined purpose.

The example we’ll present is generic for now; we’ll expand on its
capabilities in later articles. The intent is simply to illustrate how the
Mediator controls the invocation of tasks, and how tasks can be
invoked non-sequentially.

Defining the ITask Interface
ITask defines an interface with a single function, ExecuteTask (see
Figure 5).

This function takes an OleVariant as a parameter and returns an
OleVariant. The reason is due largely to how the interface will be used
in a distributed environment. In my initial design of the process control
system, I had hard-coded parameters to exactly those needed by the spe-
cific tasks. This led to problems when a task’s parameters required modi-
fication, especially when that task had already been deployed on other
machines. I needed a way to re-implement a task and to re-deploy it
without having to unregister/register the task on a given machine. Also,
I did not want to have to re-compile the calling module that also passed
in hard-coded parameters. In a later article, we’ll see how to use a
TClientDataset to implement parameters for each task.

Defining the Mediator Interface
IProcess defines two methods, ExecuteProcess and MessageToProcess
(see Figure 6). Implementations of IProcess will serve as the
Mediator objects.

MessageToProcess is a method that will be used by each imple-
mentation of ITask to allow a message to be passed back to
the Mediator class of a given ITask implementation.
ExecuteProcess is similar to ExecuteTask in that it’s invoked by the
client of the process.
+ExecuteTask

TTask2

+ExecuteTask

TTask3

+ExecuteTask

+ExecuteTask

Figure 4: Design with Mediator is very flexible.

unit IntfTask;

interface

type
ITask = interface

['{712185C1-810F-11D3-8117-00008638E5EA}']
function ExecuteTask(AInParams: OleVariant):

OleVariant;
end;

implementation

end.

Figure 5: The ITask interface.



Patterns in Practice
Implementing ITask
Figure 7 illustrates the implementation of the ITask interface.

As you can see, TTask is implemented as an abstract class. This has
two primary purposes. First, we want to propagate the requirement
for descendant classes to implement the ExecuteTask method.
Second, we want to provide a mechanism by which the TTask
descendants would know about, or have a reference to, their
Mediator object. This is done through the TTask’s constructor.
7 February 2000 Delphi Informant Magazine

unit IntfProcess;

interface

type
IProcess = interface

['{ 712185C3-810F-11D3-8117-00008638E5EA }']
procedure MessageToProcess(AMessage: string);
function ExecuteProcess(AInParams: OleVariant):

OleVariant;
end;

implementation

end.

Figure 6: The IProcess interface.

unit ProcessClass;

interface

uses IntfProcess;

type
TProcess = class(TInterfacedObject, IProcess)
public

function ExecuteProcess(AInParams: OleVariant):
OleVariant; virtual; abstract;

procedure MessageToProcess(AMessage: string);
virtual; abstract;

end;

implementation

end.

Figure 8: Implementing IProcess with TProcess.

unit TaskClass;

interface

uses
IntfProcess, IntfTask;

type
TTask = class(TInterfacedObject, ITask)
protected

FMediator: IProcess;
public

function ExecuteTask(AInParams: OleVariant):
OleVariant; virtual; abstract;

constructor Create(AMediator: IProcess);
end;

implementation

constructor TTask.Create(AMediator: IProcess);
begin

inherited Create;
FMediator := AMediator;

end;

end.

Figure 7: ITask implementation TTask.
You’ll also notice that we’ve made TTask a descendant of
TInterfacedObject so the IUnknown methods are implemented.
IUnknown is the root definition from which all interfaces descend.
TInterfacedObject is a class that implements IUnknown’s reference
counting methods, so your classes don’t have to.

The IProcess Class
Figure 8 illustrates the implementation of IProcess as an abstract class.

TProcess descends from TInterfacedObject for the same reasons
mentioned for TTask. TProcess implements the IProcess interface,
and defines TProcess as an abstract class. Again, we want to force
implementations of ExecuteProcess and MessageToProcess.
unit DemoProcess;

interface

uses
Classes, ProcessClass;

type
TDemoProcess = class(TProcess)
private

FMessageStrings: TStrings;
public

function ExecuteProcess(AInParams: OleVariant):
OleVariant; override;

procedure MessageToProcess(AMessage: string); override;
constructor Create(AMessageStrings: TStrings);

end;

implementation

uses
IntfTask, Task1, Task2, Task3, Task4;

constructor TDemoProcess.Create(AMessageStrings: TStrings);
begin

FMessageStrings := AMessageStrings;
end;

function TDemoProcess.ExecuteProcess(
AInParams: OleVariant): OleVariant;

var
Task: ITask;
i: Integer;
InParam: Integer;

begin
Randomize;
InParam := AInParams;
for i := 1 to 10 do begin

case InParam of
1: Task := TTask1.Create(Self);
2: Task := TTask2.Create(Self);
3: Task := TTask3.Create(Self);
4: Task := TTask4.Create(Self);
else

Task := TTask3.Create(Self);
end;
InParam := Task.ExecuteTask(InParam);

end;
end;

procedure TDemoProcess.MessageToProcess(AMessage: string);
begin

FMessageStrings.Add(AMessage);
end;

end.

Figure 9: TDemoProcess, the concrete TProcess implementation.



Patterns in Practice

unit Task1;

interface

uses TaskClass;

type
TTask1 = class(TTask)
function ExecuteTask(AInParams: OleVariant):

OleVariant; override;
end;

implementation

{ Process will get executed here. This would consist of
reading the parameters from AInParams, using them and
then creating the output params which are passed back
as Result. }

function TTask1.ExecuteTask(AInParams: OleVariant):
OleVariant;

begin
FMediator.MessageToProcess(

'Executing TTask1.ExecuteTask');
Result := Random(5);

end;

end.

Figure 10: TTask1, an implementation of the TTask abstract class.
The Concrete TProcess Implementation
Figure 9 illustrates a concrete implementation of the TProcess
abstract class.

As mentioned earlier, we want to illustrate how the Mediator pattern
can be used to invoke tasks and how it can do so in a non-sequential
fashion. This simulates a scenario where a task can specify the next task
to get executed in a sequence. As this series progresses, we’ll expand on
this design to allow for asynchronous invocation of tasks by the
Mediator object.

TDemoProcess is a simple Mediator class that contains a reference
to a TStrings object and adds strings to those objects in the
MessageToProcess method. Therefore, TTask objects can communi-
cate to the TDemoProcess through the MessageToProcess method.
The reference to FMessageStrings, the TStrings instance, is set up
in the constructor for TDemoProcess.

TDemoProcess.ExecuteProcess creates and executes four different
implementations of the TTask class. We’ll use a randomly generated
return value from each TTask implementation to determine the next
TTask implementation to invoke in the sequence. We do this 10
times before leaving the procedure. This effectively illustrates non-
sequential invocation of TTask objects.

The Concrete TTask Implementation
Figure 10 illustrates one of five implementations of the TTask
abstract class.

The implementation of TTask is simple; it first passes a message
back to its Mediator through the MessageToProcess method, then
passes back a random number from 0 to 4. As shown in Figure 9,
TDemoProcess uses this randomly generated result to determine the
next TTask implementation to invoke.

This implementation of the Mediator pattern is simple, yet illustra-
tive as an expandable model for a Mediator pattern. We’ve created a
8 February 2000 Delphi Informant Magazine
simple set-up where a process (TDemoProcess) can create and invoke
tasks in a non-sequential fashion by using the resulting values from
each task to determine the next task to invoke. This is a very simple
implementation of a much more complex set-up, where the process
determines which task to implement based on status values con-
tained in a database server.

Conclusion
The Mediator pattern is an ideal approach to any system that
requires some form of process control, and where extensibility
and loosely coupled classes are essential. In the next article in this
series, we’ll show how to use another pattern to enhance the
Mediator capabilities shown here. We’ll illustrate how to allow a
variable number of parameters to be passed to each task and still
maintain loose coupling between each task and between tasks and
their Mediator object.

Many thanks to John Wilcher for his feedback and help with this
article. A Consulting Manager for Inprise Corp., John provided
his experience and some of the initial content for this article. He
also provides architectural and design consulting services as a
Principal Consultant for Inprise PSO. You can write John at
jwilcher@inprise.com, and visit Inprise’s PSO Web site at
http://www.inprise.com/services. ∆

References
I use these books whenever considering applying a design pattern to
a given problem. They are a must for any developer serious about
learning and using design patterns:

Design Patterns: Elements of Reusable Object-Oriented Software by
Erich Gamma, et al. [Addison-Wesley, 1995].
The Design Patterns Smalltalk Companion by Sherman R. Alpert,
et al. [Addison-Wesley, 1998].
Patterns in Java, Volume 1 by Mark Grand [John Wiley &
Sons, 1998].

Xavier Pacheco is the president and chief consultant of Xapware Technologies Inc.,
where he provides consulting services and training. He is also the co-author of
Delphi 5 Developer’s Guide published by SAMS Publishing. You can write Xavier
at xavier@xapware.com, or visit http://www.xapware.com.

http://www.inprise.com/services
http://www.xapware.com


9 February 2000 Delphi Informant Maga

Greater Delphi
CORBA / Delphi 4, 5 / VisiBroker / JBuilder 

By Dennis P. Butler
CORBA
Part I: Creating a Server

From the stand-alone personal computer, to heterogeneous distributed clients and
servers, and everywhere in between, the computing industry has evolved dramatically

over the past several decades. Computer professionals are constantly required to use
their skills to the utmost in their current environment, and then be able to migrate to the
next level when the current framework becomes too complicated or restricting. The evo-
lution of computing continues to point toward a common goal: simplify the work process
by better planning, faster development, and sharing of resources.
The CORBA architecture — short for Common
Object Request Broker Architecture — was
designed to accomplish this goal. The CORBA
architecture defines and implements the frame-
work for applications to communicate across
such previously unbreakable boundaries as multi-
ple operating systems and programming lan-
guages. This capability is achieved through the
use of a common interface and information pass-
ing mechanism implemented in different pro-
gramming languages.

There are several factors that set CORBA apart
from competitive proprietary information sharing
technologies. First of all, CORBA is an open stan-
dard; that is, the specification is constantly being
reviewed and updated by the OMG, or Object
Management Group. This group is made up of
hundreds of companies worldwide that decide
how to evolve the CORBA specification. This
process of evolution has been occurring since
1991, when CORBA 1.0 was released. Another
feature that sets CORBA apart from other tech-
nologies is that the interface is common among
languages, not the implementation of it. Other
information-sharing methods rely on operating-
system-specific implementations to pass informa-
tion. While this may be useful in LAN/WAN or
intranet environments, where operating systems
can be standardized, true distributed applications
that need to operate over any OS require a more
complete solution, such as CORBA. With
CORBA, the client doesn’t need to know any
details of how the object that it will obtain from a
server was implemented.
zine
The starting point for CORBA applications is the
interface that applications share when passing infor-
mation. This common interface that defines what
information is going to be passed is called IDL, short
for Interface Definition Language. IDL is its own
language, although the syntax is similar to that of
Java and C++. As its name implies, the only purpose
of this language is to define the interface for objects
that will be passed between CORBA applications.
The implementation and use of these objects is done
in the specific target language chosen. The only stip-
ulation here is that the target language has facilities
to map to the CORBA architecture.

This is where Delphi comes in. CORBA develop-
ment is typically associated with C++ or Java devel-
opment. However, even non-object-oriented lan-
guages, such as C and COBOL, have mappings to
CORBA, and thus can take advantage of the open
architecture. As we’ll see later in this article, Delphi
employs several methods to use CORBA in an
application. CORBA can be implemented through
the use of the Type Library editor for easily creating
IDL interfaces, through MIDAS to connect to
CORBA data, and soon Delphi will gain direct
facilities to compile IDL code into Pascal source,
which can be used to implement and use the
CORBA objects. Much like the IDL2JAVA utility,
this IDL2PAS utility will be available soon to
Delphi developers to give complete control and
flexibility in creating CORBA applications.

VisiBroker CORBA
VisiBroker is the ORB (Object Request Broker)
used throughout this two-article series and its exam-



Internet Client

VisiBroker
for Java ORB

  Java Applet

Web Server

VisiBroker
for Java ORB

  Gatekeeper
  Smart Agent

VisiBroker
for  C++ ORB

  Naming Services
  C++ Objects VisiBroker

for  C++ ORB
C++

Application

Java
Application

VisiBroker
for Java ORB

VisiBroker
for Java ORB

  Java Object
  Event Service
  Smart Agent

Internet

Intranet/
Enterprise

Firewall
Intranet Client

Enterprise Clien

Figure 1: Sample high-level CORBA implementation.

Greater Delphi

Figure 2: Creating the CORBA object interface. 
ples. VisiBroker is the Inprise implementation of the CORBA standard
that adds many additional features to assist developers when creating
applications. Support for thread management and connection manage-
ment is included, as well as many libraries and other utilities that are
created to assist developers when developing CORBA applications.
Knowledge of the intricacies of VisiBroker isn’t required for this series.
For the examples that are used, VisiBroker additions and standard
CORBA features are used together, much as they would be for actual
production situations.

Let’s take a quick look at a high-level diagram of how CORBA fits
into distributed applications (see Figure 1).

As you can see in this standard Inprise diagram, there can be many
levels of connection across boundaries, such as the Internet, an
intranet, or other internal networks. This diagram introduces many
VisiBroker-specific items, such as the Gatekeeper, Smart Agent,
Naming Services, and Event Service. All we need to grasp from the
diagram at this point is that one or more IDL interfaces for
CORBA objects has been generated, and instances of those server
object implementations are being passed to various clients. As
shown in the diagram, clients can include the Internet Client run-
ning a Java applet, or the C++ application running on the corporate
intranet.

This two-article series will show how Delphi can be used in this net-
work to also take advantage of the CORBA architecture. In this arti-
cle, we create a CORBA server. Next month, in Part II, we’ll address
CORBA clients. 

Before we get started with Delphi, let’s take a quick look at how
applications communicate with CORBA. This information will be
relevant later in the article when using Delphi to implement this
technology. We will start here with a very simple example of how a
basic CORBA application can be started between two machines:

First, the ORB Smart Agent (osagent) must be run on a machine
on the network. The osagent will keep track of all server object
implementations that have been registered with it, as well as
keeping track of other osagents.
Next, the server application must be run. This will register its
object(s) with the osagent to let it know that it has object imple-
mentation(s) available for client applications.
A client application is started. When the client application
requires a server object, it will issue a UDP broadcast to find
the closest osagent to search for that implementation. The
10 February 2000 Delphi Informant Magazine
osagent will find the object implementation that the client is
looking for, thus allowing a connection to be established
between the client and server. The client can now access the
server object directly.

Now that we know the steps that take place in a basic CORBA
application, we’ll apply them to Delphi to see how they’re
accomplished. For this first example, we’ll create an online auc-
tion demonstration, where the server will keep track of a partic-
ular product, and clients will bid against each other to try to buy
the product. For each successful bid, the client application will
notify that the bid was successful, and will update the screen to
show the high-bid amount. Further bids by other clients will
now have to outbid that new highest amount to win the product
(which, of course, is a copy of Delphi 5 Enterprise Edition). 

Example 1: The Online Auction
Our first step in this example is to create the CORBA object for
our server, and create the server that will implement this object. As
I mentioned earlier, the CORBA objects are defined by IDL.
Delphi developers don’t need to know IDL to create their object;
instead, this can be done through the use of the Type Library edi-
tor. This handy utility allows visual creation of objects and their
interfaces. This utility can also be used later to export to IDL for
use in other implementations of the object.

To create the server and its object, start a new Delphi application
and save the form and project. You may want to shrink the dimen-
sions of the form, as this will be your server application running on
your machine. For this example, I have named the files Cserver.dpr
and Cmain.pas. From the main menu of Delphi, select File | New,
then select the CORBA Object item on the Multitier page. The
CORBA Object Wizard will be displayed (see Figure 2). 

As you can see, the object to be defined is named OnlineAuction,
will be a shared instance, and will be single-threaded. The informa-
tion required by this dialog box is described in more detail here.

Class Name. Enter the base name of the object that implements the
CORBA interface for your object. Filling in the class name will do two
things; it will create a class of this name with a “T” prepended, and cre-
ate an interface for the class using this name with an “I” prepended.

Instancing. Use the Instancing combo box to indicate how your
CORBA server application creates instances of the CORBA object.
There are two possible values:

Instance-per-client — A new CORBA object instance is created
for each client connection. The instance persists as long as the
connection is open. When the client connection closes, the
instance is freed.

t



Greater Delphi

Figure 3: Delphi’s Type Library editor. 
Shared instance — A single instance of the CORBA object han-
dles all client requests. Because the single instance is shared by
all clients, it must be stateless.

Threading. Use the Threading Model combo box to indicate how
client calls invoke your remote data module’s interface. Again, there
are two possible values:

Single-threaded — Each object instance is guaranteed to receive
only one client request at a time. Instance data is safe from
thread conflicts, but global memory must be explicitly protected.
Multithreaded — Each client connection has its own dedicated
thread. However, the object may receive multiple client calls simul-
taneously, each on a separate thread. Both global memory and
instance data must be explicitly protected against thread conflicts.

In this example, the server object will be a shared instance because
we want all clients to access the same auction object, so they can bid
against each other. If we were writing an object for a banking appli-
cation, an object could be created that would contain information
specific to a banking account of the customer running the client
application. In this case, an Instance-per-client setting would be more
appropriate, since a separate object would be created for each client,
making the contents of that object private to the client.

The object is also created for single threading; since only one
client request will be processed at a time, multi-threading isn’t
necessary. Multi-threading is very useful when developing very
large applications that require a higher level of flexibility in situa-
tions where the server must be able to handle multiple requests
that may be occurring simultaneously. For this simple example,
we won’t take advantage of this feature.

Click OK to create the new unit and save the file. This will create the
Pascal shell for the CORBA object
interface. Instead of having to type in
the interface manually, Delphi allows
us to visually create the object inter-
face using the Type Library editor
(see Figure 3). (The Type Library
editor is available from the main
menu by selecting View | Type

Library.) 

The Type Library editor allows us
Figure 4: Completed type
library tree.
11 February 2000 Delphi Informant Magazine
to specify all the information we need to define the
interface of our CORBA object. For this example, we
want to create a server object for our online auction
that will hold information about the latest high-bid
amount and person. We will also add a property for the
product that is being bid upon. We also want to add
methods to place a new bid, and check information
about the current bid. In true object-oriented fashion,
properties cannot be modified directly. They must use
accessor methods to change their values. As we’ll see,
the Type Library editor takes care of this as well.

The Type Library editor is also used to define interfaces
to COM objects; in fact, this was the original purpose of
the Type Library editor. Because of this, it has some fea-
tures that aren’t used for CORBA objects. An example
of this is the “Help” information shown in Figure 3.
Also, some of the data types that are available in the
Type Library editor may not be CORBA-compliant data

types. Developers can easily research CORBA data types through
the Delphi or VisiBroker Help files.

As we can see in Figure 3, an Interface and CoClass have been creat-
ed for our CORBA object. All we are concerned with is the
Interface. The CoClass that has been created is COM-specific, and
can be ignored. Note that the interface has taken our CORBA
object name and prepended it with an “I”, as mentioned earlier.

Methods and properties are added by right-clicking on the
IOnlineAuction interface and selecting Method or Property from the
New menu. Add these methods to the IOnlineAuction interface:

PlaceBid returns an Integer, takes a Double (call it Amount) and
WideString (call it CustomerName) as parameters
GetCurrentPrice returns a Double, no parameters
GetCurrentUser returns a WideString, no parameters

Add the ProductName property to the IOnlineAuction interface.

When entering the parameters for the methods in the Type Library
editor, the following information is required:

Modifier specifies the nature of the parameter, such as whether it
should be treated as an in parameter, out parameter, etc.
Name is the name of the parameter.
Type is the data type of the parameter. The list contains the list
of CORBA-compliant data types.
Default Value specifies whether the parameter will have a
default value.

For the purposes of this example, the modifier was kept blank for all
parameters because no special setting was needed for this example. This
defaults the parameter to the in setting of IDL; thus modifications
made to the parameter variable once the called procedure is completed
won’t be reflected when control is returned. In fact, the Delphi compiler
will show a hint for a parameter within its method if an attempt is
made to modify the value of the parameter. There are several types of
modifiers that can be used that correspond to IDL parameter types. The
most commonly used parameters in IDL are in, out, and inout. This
means that parameter information flows into the server, out from the
server, or both. This is done with the Type Library editor settings of
blank(in), out(out), and var(inout).

When completed, the tree view for the Type Library editor should
look like Figure 4. Click on the “Refresh Interface” button (it looks



Greater Delphi
like the two-arrowed recycle symbol) from the Type Library editor
to synchronize the source file for the CORBA object. Note: This
isn’t entirely WYSIWYG, as is the standard Delphi IDE; the
“Refresh Interface” button must be clicked.

Once the refresh button has been clicked, the Type Library editor
can be closed, and the source file can be saved (csrvobj.pas in this
case). We now have our server object interface defined, and the
Pascal code shell from which we can add functionality for the
object. The Type Library editor has created some files for us, such
as the _TLB stub file that’s created based on the server applica-
tion project name. In this example, since the project was named
CServer, it’s CServer_TLB.pas. Since this file is automatically
generated, no additional work is needed on it. This file sets up
stub and skeleton classes for the server object, as well as defining
several other classes that may be used, such as the CORBA object
factory class and the COM CoClass class. The only thing we real-
ly need to know at this point is that the CORBA shell has been
created for us from how we defined the interface in the Type
Library editor, and a TLB file has been created from which we
can get our object reference for the server.

Our server source file csrvobj.pas has been filled in from the
Type Library editor with the methods and properties that were
defined. The empty shell, csrvobj.pas, is shown in Listing One.
Now we need to code the implementation of the object. We need
to add a few private variables to hold the current high-bid price,
the current high-bid customer, and the product being bid on. We
also need to initialize these private variables in the constructor
for the object. Finally, we need to implement the object with
code to provide functionality to the methods that have been cre-
ated for us. The completed source, with comments, is shown in
Listing Two. 

All that was provided by Delphi was the code shell; the rest had
to be filled in to give the object interface an implementation. We
now have the server for our object. To use this server of our
CORBA object, all we need to do is add the csrvpas unit to the
uses clause of any form of a project. When this is done, the ini-
tialization code for the object will be fired when that form is
used. Thus, the server will be started, and an object will be creat-
ed that is available for use.

Until Next Month
That’s it for this article. Next month, we’ll implement CORBA
clients, including one written in Java using Borland’s JBuilder
product. See you then. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200002DB.

Dennis P. Butler is a Senior Consultant for Inprise Corp., based out of the Professional
Services Organization office in Marlboro, MA. He has presented numerous talks at
Inprise Developer Conferences in both the US and Canada, and has written a variety
of articles for various technical magazines, including CBuilderMag.com. He can be
reached at dbutler@inprise.com, or (508) 481-1400.
12 February 2000 Delphi Informant Magazine
Begin Listing One — csrvobj.pas shell 
unit csrvobj;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
ComObj, StdVcl, CorbaObj, CServer_TLB;

type
TOnlineAuction = class(TCorbaImplementation,

IOnlineAuction)
protected

function Get_ProductName: WideString; safecall;
function GetCurrentPrice: Double; safecall;
function GetCurrentUser: WideString; safecall;
function PlaceBid(Amount: Double;

const CustomerName: WideString): Integer; safecall;
procedure Set_ProductName(const Value: WideString);

safecall;
end;

implementation

uses
CorbInit;

function TOnlineAuction.Get_ProductName: WideString;
begin

end;

function TOnlineAuction.GetCurrentPrice: Double;
begin

end;

function TOnlineAuction.GetCurrentUser: WideString;
begin

end;

function TOnlineAuction.PlaceBid(Amount: Double;
const CustomerName: WideString): Integer;

begin

end;

procedure TOnlineAuction.Set_ProductName(
const Value: WideString);

begin

end;

initialization
TCorbaObjectFactory.Create('OnlineAuctionFactory',

'OnlineAuction','IDL:CServer/OnlineAuctionFactory:1.0',
IOnlineAuction, TOnlineAuction, iSingleInstance,
tmSingleThread);

end.

End Listing One
Begin Listing Two — Implemented csrvobj.pas
unit csrvobj;

interface

// Note the included units for ComObj, CorbaObj,
// and Cserver_TLB.
uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,



Greater Delphi
ComObj, StdVcl, CorbaObj, CServer_TLB;

// Class is defined as a CORBA class that implements
// the IOnlineAuction interface.
type

TOnlineAuction = class(TCorbaImplementation,
IOnlineAuction)

private
// Private variables to hold object information
// about auction.
FProductName : WideString;
FCurrentPrice : Double;
FCurrentCustomer : WideString;

public
// Override create to initialize private variables.
constructor Create(Controller: IObject;

AFactory: TCorbaFactory); override;
protected

// Accessor methods for FProductName property.
function Get_ProductName: WideString; safecall;
procedure Set_ProductName(const Value: WideString);

safecall;
// Function to get the current price for the
// auction product.
function GetCurrentPrice: Double; safecall;
// Function to get the current customer for the 
// auction product.
function GetCurrentUser: WideString; safecall;
// Function to place a new bid.
function PlaceBid(Amount: Double;

const CustomerName: WideString): Integer; safecall;
end;

implementation

// Included with Delphi to initialize CORBA object.
uses

CorbInit;

// Overridden create for our object.
constructor TOnlineAuction.Create(Controller: IObject;

AFactory: TCorbaFactory);
begin

inherited;
// Initialize our private variables.
FProductName := '<NA>';
FCurrentCustomer := '<NA>';
FCurrentPrice := 0;

end;

// Method to get the property value for the current
// auction product.
function TOnlineAuction.Get_ProductName: WideString;
begin

Result := FProductName;
end;

// Method to set the property value for the current
// auction product.
procedure TOnlineAuction.Set_ProductName(

const Value: WideString);
begin

FProductName := Value;
end;

// Method to get the current price of the high bid.
function TOnlineAuction.GetCurrentPrice: Double;
begin

Result := FCurrentPrice;
end;

// Method to get the current customer name of the high bid.
function TOnlineAuction.GetCurrentUser: WideString;
begin

Result := FCurrentCustomer;
end;
13 February 2000 Delphi Informant Magazine
// Method to place a new bid: Take parameters for amount 
// of bid and customer who is placing the bid.
function TOnlineAuction.PlaceBid(Amount: Double;

const CustomerName: WideString): Integer;
begin

if Amount > FCurrentPrice then
begin

FCurrentPrice := Amount;
FCurrentCustomer := CustomerName;
Result := 1;

end
else

Result := 0;
end;

// Code provided by Delphi to call the generated CORBA
// object factory to get an object reference for the
// server. Note parameters match what we defined in the
// CORBA object wizard. Since it's in the initialization
// section, the code will run whenever this unit is
// included in the uses section of another unit and the
// server will be started.
initialization

TCorbaObjectFactory.Create('OnlineAuctionFactory',
'OnlineAuction', 'IDL:CServer/OnlineAuctionFactory:1.0',
IOnlineAuction, TOnlineAuction, iSingleInstance,
tmSingleThread);

end.

End Listing Two



14 February 2000 Delphi Informant Magaz

Inside OP
VCL / Windows Messages / Delphi 1-5

By Jeremy Merrill

unit LinkedLab

interface

uses
Messages, Cl

type
TLinkedLabel
private

// The ass
FAssociate
// Puts FA
FCapsLock:
// The dis
FGap:     
// True wh
FOnTop:   
// Saves t
FOldWinPro
// Used to
FUpdating:

protected
procedure
procedure
procedure
procedure
procedure
procedure

Operatio
procedure

public
constructo
destructor

published
property A

read FAs
property C

read FCa
property G
property O

end;

Figure 1: The T
Modifying VCL Behavior
A Practical Example Using Visual Components 

To make a visual component behave differently from its defaults, we generally have to
create a new component that descends from the original component’s class. This

article will show how to dynamically change the behavior of a native Delphi visual com-
ponent without creating a new class. 
ine

el;

asses, Controls, StdCtrls;

 = class(TLabel)

ociate control.
:  TControl;
ssociate into all caps mode.
   Boolean;     
tance between the label and the associate.
   Integer;     
en the label is on top of the associate.
   Boolean;     
he original value of FAssociate.WindowProc.
c: TWndMethod;  
 prevent infinite update loops.
   Boolean;     

Adjust(MoveLabel: Boolean);
SetGap(Value: Integer);
SetOnTop(Value: Boolean);
SetAssociate(Value: TControl);
NewWinProc(var Message: TMessage);
Notification(AComponent: TComponent;
n: TOperation); override;
WndProc(var Message: TMessage); override;

r Create(AOwner :TComponent); override;
Destroy; override;

ssociate: TControl
sociate write SetAssociate;
apsLock: Boolean
psLock write FCapsLock;
ap: Integer read FGap write SetGap default 8;
nTop: Boolean read FOnTop write SetOnTop;

LinkedLabel class declaration.
How is this possible? The secret is to intercept the
Windows messages being sent to the control. This
can be accomplished by using a TControl property
named WindowProc, which essentially points to a
component’s Windows message event handler.

To demonstrate this technique, we’ll create a
LinkedLabel component, which will link itself to
any TControl and dynamically modify its behav-
ior. TLinkedLabel will descend from TLabel, and
will feature four additional published properties:

Associate — the companion control whose
behavior we’ll be modifying.
CapsLock — when this Boolean property is
True, certain types of associate controls will
process lower-case keystrokes as upper case.
This doesn’t work with all controls, because
not all controls respond to the WM_CHAR
message in the same way. Testing reveals that
Edit, MaskEdit, Memo, and RichEdit controls
all respond to the CapsLock property, while
ComboBox does not. Obviously, CapsLock will
have little or no effect on many other compo-
nents, such as a Button or CheckBox control.
Gap — the distance between the LinkedLabel
and its associate control.
OnTop — this Boolean property determines
whether the LinkedLabel will appear to the
left of, or on top of, the associate control.

In addition, TLinkedLabel will keep the Enabled
and Visible properties of the LinkedLabel and its
associate synchronized. It will also maintain a set
distance and orientation from the associate con-
trol. This means that when you move the
LinkedLabel, the associate moves with it, and
vice versa.



Inside OP
Let’s take a look at the TLinkedLabel class declaration, shown in
Figure 1.

Now let’s look at the different methods of this component in detail,
starting with the constructor. Note that when creating a new object,
all of its associated memory is cleared. This will automatically set
15 February 2000 Delphi Informant Magazine

procedure TLinkedLabel.Adjust(MoveLabel: Boolean);
var

dx, dy: Integer;
begin

if (Assigned(FAssociate)) then begin
if (FOnTop) then

begin
dx := 0;
dy := Height + FGap;

end
else

begin
dx := Width + FGap;
dy := (Height - FAssociate.Height) div 2;

end;
if (MoveLabel) then

begin
Left := FAssociate.Left - dx;
Top := FAssociate.Top - dy;

end
else

begin
FAssociate.Left := Left + dx;
FAssociate.Top := Top + dy;

end;
end;

end;

Figure 2: The Adjust method.

procedure TLinkedLabel.SetGap(Value: Integer);
begin

if (FGap <> Value) then
begin

FGap := Value;
Adjust(True);

end;
end;

procedure TLinkedLabel.SetOnTop(Value: Boolean);
begin

if (FOnTop <> Value) then
begin

FOnTop := Value;
Adjust(True);

end;
end;

Figure 3: The set methods of the Gap and OnTop properties.

procedure TLinkedLabel.SetAssociate(Value: TControl);
begin

if (Value <> FAssociate) then begin
if (Assigned(FAssociate)) then

FAssociate.WindowProc := FOldWinProc;
FAssociate := Value;
if (Assigned(Value)) then

begin
Adjust(True);
Enabled := FAssociate.Enabled;
Visible := FAssociate.Visible;
FOldWinProc := FAssociate.WindowProc;
FAssociate.WindowProc := NewWinProc;

end;
end;

end;

Figure 4: The SetAssociate method.
FAssociate and FOldWinProc to nil, and FCapsLock, FOnTop, and
FUpdating to False, all without having to explicitly initialize them in
the constructor. Therefore, the only thing we need to set in the con-
structor is the default Gap value:

implementation

constructor TLinkedLabel.Create(AOwner: TComponent);
begin

inherited;
FGap := 8;

end;

Now we come to the Adjust method, which is responsible for position-
ing the LinkedLabel component or the associate control, depending on
the value of the MoveLabel parameter. As you’ll see in the code, the
actual position of the LinkedLabel in relationship to the associate is
based on the Gap and OnTop properties (see Figure 2). Although OnTop
only provides us with two possible orientations, there are many other
possibilities that could easily be programmed into this component.
However, adding a lot of “bells and whistles” to TLinkedLabel is not the
focus of this article, and has, therefore, been entrusted to the reader.

At this point, we come to the set methods of the Gap and OnTop
properties (see Figure 3). These are needed so we can reposition the
LinkedLabel when the Gap or OnTop values are modified.

Now we come to the SetAssociate method (see Figure 4). 

To understand it, we need to discuss the WindowProc property in more
detail. WindowProc is defined as of type TWndMethod. TWndMethod
can be found in the Controls unit with the following definition:

TWndMethod = procedure(var Message: TMessage) of object;

Notice that FOldWinProc is also defined as a TWndMethod, and
that the NewWinProc method has the same parameter structure
as TWndMethod. This allows us to point FOldWinProc to the
current value of WindowProc and assign WindowProc to the
NewWinProc method.

Why do we need to use FOldWinProc if WindowProc is just another
event property? Because the difference between WindowProc and any
other event property is that WindowProc is already pointing to an exist-
ing event handler. If we simply point WindowProc to our own method,
the control will no longer be able to respond to any Windows messages.
To solve this problem, we set FOldWinProc to the current value of
WindowProc before pointing WindowProc to the NewWinProc method.

In NewWinProc, we call the old message handler, via
FOldWinProc, after and acting upon specific Windows messages.
Because we modify the WindowProc property on the associate
control, it’s important that we restore its former value before
changing to a new associate component.

It’s also important that we don’t leave the associate’s WindowProc
property pointing to a routine that no longer exists. We therefore
call SetAssociate(nil) in the destructor, which, as we’ve seen, will
restore WindowProc to its original value:

destructor TLinkedLabel.Destroy;
begin

SetAssociate(nil);
inherited;

end;



Inside OP

procedure TLinkedLabel.NewWinProc(var Message: TMessage);
var

Ch: Char;
begin

if (Assigned(FAssociate) and (not FUpdating)) then begin
FUpdating := True;
try

case(Message.Msg) of
WM_CHAR:

if (FCapsLock) then begin
Ch := Char(TWMKey(Message).CharCode);
if (Ch >= 'a') and (Ch <= 'z') then

TWMKey(Message).CharCode := ord(UpCase(Ch));
end;

CM_ENABLEDCHANGED:
Enabled := FAssociate.Enabled;

CM_VISIBLECHANGED:
Visible := FAssociate.Visible;

WM_SIZE, WM_MOVE, WM_WINDOWPOSCHANGED:
Adjust(True);

end;
finally

FUpdating := False;
end;

end;
FOldWinProc(Message);

end;

Figure 5: The NewWinProc method.

procedure TLinkedLabel.WndProc(var Message: TMessage);
begin

if (Assigned(FAssociate) and (not FUpdating)) then begin
FUpdating := True;
try

case(Message.Msg) of
CM_ENABLEDCHANGED: FAzssociate.Enabled :=Enabled;
CM_VISIBLECHANGED:   FAssociate.Visible := Visible;
WM_WINDOWPOSCHANGED: Adjust(False);

end;
finally

FUpdating := False;
end;

end;
inherited;

end;

Figure 6: Instead of tapping into the WindowProc property, we
override the WndProc method.
In addition, we don’t want to be pointing to an associate that no
longer exists. By overriding the Notification method, we can know
when the associate control is destroyed, and reset our pointer to the
associate accordingly:

procedure TLinkedLabel.Notification(AComponent: TComponent;
Operation: TOperation);

begin
if ((Operation = opRemove) and

(AComponent = FAssociate)) then
SetAssociate(nil);

end;

Now we come to the NewWinProc method (see Figure 5). Here,
we simply look for specific Windows messages being sent to the
associate component. It’s important to realize that although this
method is only called by the associate control, it’s actually part
of the LinkedLabel, i.e. Self = LinkedLabel, not the associate
control. This is identical to creating an OnClick event handler
for a button. The OnClick event handler is created as part of the
button’s parent form and is not a new method extending the
TButton class.
16 February 2000 Delphi Informant Magazine
If you examine this routine, you’ll see we make no attempt to
process Windows messages. We react to specific messages, then
let the associate process them normally by calling FOldWinProc.
In the case of the WM_CHAR message, we change part of the
message, causing the component to think an upper-case charac-
ter was pressed. 

Finally, we look at two different messages to see if the associate has
been moved. This is because components that descend from
TWinControl will get a WM_MOVE message when they’re
moved, and other visual components (such as a Label) will get the 
WM_WINDOWPOSCHANGED message. The WM_SIZE message
is examined, because if the OnTop property is False, the position of the
LinkedLabel will change based on the height of the component.

The last method of our component is where we make adjustments
to the associate when the LinkedLabel is changed (see Figure 6).
Rather than override existing methods of TLabel to do this, we
employ the same technique we used to modify the associate’s behav-
ior. Notice that instead of tapping into the WindowProc property,
we override the WndProc method. How is this the same technique?
If you look at TControl ’s constructor, you’ll see that WindowProc is
initialized to point at the WndProc method. So in essence, we are
overriding the same method, but in a cleaner way, and without 
having to store the original value of WindowProc.

One final point should be made about the previous component.
You’ll notice the use of FUpdating in both NewWinProc and
WndProc. This variable is used to alert the LinkedLabel and the
associate that the other component is making a change. If you
don’t do this, it’s easy to create an infinite updating loop, or get
unexpected results. Here’s one flow of events that demonstrates
the need for the FUpdating variable:

The user drags the LinkedLabel to a new position.
WndProc receives a WM_WINDOWPOSCHANGED message,
and fires Adjust(False) to move the associate.
Adjust sets FAssociate.Left to the new value as part of reposition-
ing the associate.
FAssociate fires off a WM_MOVE message, indicating it has
changed position.
NewWinProc detects the WM_MOVE message and calls
Adjust(True) in an attempt to move the LinkedLabel to match
the associate’s new position.

As you can see, we haven’t even gotten a chance to change the asso-
ciate’s Top property to match the LinkedLabel’s new position before
the associate tries to move the LinkedLabel. By using the FUpdating
variable, the associate will not notice the WM_MOVE message and
won’t try to call Adjust to reposition the LinkedLabel.

A Couple of Issues
There are a couple of problems with the TLinkedLabel component that
I did not address in this article. The following are brief descriptions: 

You can cause all kinds of problems if you link two or more
LinkedLabels to the same component, and then destroy one or
more of them. You can end up breaking the link to other
LinkedLabels, and even cause the linked component’s
WindowProc to point to a non-existent routine. 
If you link a LinkedLabel to a component on a different
form, the Notification method won’t be called when that
component is destroyed. Calling FreeNotification when the
component is linked will fix this, but that doesn’t really
address the problem. The real problem is that we allowed it



Inside OP
to be linked to the component on the other form in the first
place. What we really want to do is restrict associates to only
those components with the same parent as the LinkedLabel.
Although it’s not difficult to do this, it’s a little tricky to only
show eligible components in the Associate properties drop-
down list in the Object Inspector. 

Conclusion
That’s about it. Replacing the WindowProc of an existing component
does have its limitations, but can be a very useful technique. I can’t
think of any other reasonable way to design a component like
TLinkedLabel and have the associate control move the LinkedLabel
when the associate is moved. I’m not going to try and list other pos-
sible uses for this technique, because they are countless and limited
only by a programmer’s ingenuity. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200002JM.

Jeremy Merrill is an EDS contractor in a partnership contract with the Veteran’s
Health Administration. He is a member of the VA’s Computerized Patient Record
System development team, located in the Salt Lake City Chief Information
Officer’s Field Office.
17 February 2000 Delphi Informant Magazine



18 February 2000 Delphi Informant Mag

Visual Programming
VFI / OOP / Object Repository / Delphi 4, 5

By Rick Spence
Visual Form Inheritance
Part I: An Introduction and Primer

If you use Visual Form Inheritance extensively, your development time will decrease,
your applications will have fewer errors, and your UI will have a more consistent look

and feel. Are these bold claims justifiable? This article shows how to get the most from a
Delphi feature known as VFI for short. Read on and see for yourself.
a

What Is Visual Form Inheritance?
VFI refers to Delphi’s ability to create new forms
that either inherit, or are derived from, existing
forms. VFI shares the advantages of inheritance in
general, the primary one being the ability to cap-
ture the similarities of different classes in a hierar-
chy. In this case, the classes are forms generated by
Delphi’s Form designer. Put another way, VFI
allows you to write code in one place that’s com-
mon to multiple forms. Writing code just once
obviously increases productivity and decreases
errors. This applies to forms in one application
and between applications.

There’s more to VFI than code reuse, however.
This is where the “Visual” part of VFI comes in.
You can use the Delphi Form designer to lay out
forms, and have that layout shared among forms.
Having forms share a layout leads to a more con-
sistent look and feel, and improves productivity.

Using VFI also allows you to design your forms in
a hierarchy. All changes to forms higher in the
hierarchy affect all inheriting forms. Likewise, you
can add components and/or code to forms, thus
changing all inheriting forms.

Assume you’re creating an application to manage
customers and their invoices. You determine you
need three general maintenance forms: one for the
customers, a second for their invoices, and a third
for the parts you’re selling. Although each form is
displaying different information, certain elements
of the forms are the same. Say, for example, that
each form needs a page control with two tab
sheets: one with a database grid, the other with
table-specific edit controls. Each form also needs
buttons to save and cancel changes, add and
delete records, etc.
zine
You could design each form separately, writing
code for each. A better approach would be to start
with a generic form that contains controls and
code common to all the forms, then use VFI to
create the forms based on the generic form, cus-
tomizing each new form as required.

Once you’ve created these forms, you can still add
functionality to the generic form. For example,
you may want to add a background logo to each
form or implement a generic search facility. All
you need to do is add this in the generic form,
and the specific forms automatically inherit this
look and behavior.

Understanding how VFI works requires a working
knowledge of a language’s implementation of
inheritance in general. A quick review is in order.

Inheritance in Brief
Inheritance is an object-oriented programming fea-
ture that allows you to create new classes based on
existing classes. The existing class is called a super-
class; the new class is called a subclass. Classes, of
course, contain data and code. Subclasses can see
the public code and data of their superclasses.

Delphi supports single inheritance, meaning class-
es directly inherit from only one class. (Some
other languages support multiple inheritance,
which allows one class to inherit from more than
one superclass.) Delphi also supports repeated
inheritance, which allows Class A to inherit from
Class B, and Class B to inherit from Class C. In
this case, Class A can see the public data and code
of Class B and Class C (see Figure 1).

Consider the following sample class produced
by Delphi’s Form designer:



Figure 2: The Forms tab of the Delphi 4 Object Repository.

Visual Programming
type
TFrmRichEdit = class(TForm)

btnCancel: TButton;
btnOK: TButton;
rtfNotes: TRichEdit;

private
{ Private declarations }

public
{ Public declarations }

end;

The class is named TFrmRichEdit and inherits from the TForm
class. TForm is one of many classes declared in the VCL. TForm
and its superclasses define data and code common to all types of
forms. This is where you’ll find the form’s font, caption, and
color. It’s also where you’ll find the Close, Show, and ShowModal
methods. Thus, TForm and its ancestors capture the similarities
of all forms. If Delphi didn’t support inheritance, the Form
designer would have to generate all these common methods and
data in every form you create.

To instantiate the TFrmRichEdit class, you first need to declare an
object of that class, which Delphi’s Form designer does for you:

var

frmRichEdit: TfrmRichEdit;

Then you can instantiate the class by calling its constructor, Create,
passing the form’s owner, Application:

frmRichEdit := TFrmRichEdit.Create(Application);

There’s inheritance in action again. Who declares the Create
method? One of TFrmRichEdit’s superclasses, i.e. TCustomForm.

Once you’ve created an object based on a subclass, you can directly
access that object’s data and methods:

frmRichEdit.btnOk.Enabled := False;

and the data and methods of its superclasses:

frmRichEdit.Caption := 'RTF Editor';
frmRichEdit.Show;

Caption is declared in TControl (several levels up in the hierarchy),
and the Show method is declared in TCustomForm.

So far we’ve discussed the public data and code of a class. What do we
mean by “public?” And are there other ways to declare data and code?
Public refers to the visibility, or scope, of the declarations. A class’ public
data and code are visible to the user of the class. In the previous sample
class, btnCancel, btnOk, and rtfNotes are all public instance variables. 

There are two other ways to declare instance variables and code in a
class: You can make them private or protected. Again, if you review
the class declaration just shown, you will see two empty sections
labeled private and public. These are sections where you can add
your own code and data. Any additions you make to the private sec-
tion of the class are only visible to methods of the class. Users of the
class can’t see the private data or methods.

Delphi’s Form designer doesn’t generate a protected section for
you, but you can add one. Any declarations you make in the 
19 February 2000 Delphi Informant Magazine
protected section are visible to
methods of the class, just as the
declarations in the private sec-
tion. The difference between
private and protected has to do
with subclasses. Subclasses can
see the protected declarations,
but not the private ones.

With that quick review behind
us, let’s put VFI to use.

Mechanics of VFI
To create forms based on exist-
ing forms, you need to use
Delphi’s Object Repository.
Using the Object Repository,
you can create a form based on a form already in the Object
Repository, or in your current project. As you’ll see, you use the
same IDE menu items.

To create a new form in your application, select File | New Form.
To create a form based on an existing form, select File | New.
This opens the Object Repository. Now you can choose what you
want to create. You can add your own forms to the Object
Repository, but there are some forms supplied with Delphi you
can use as starting points. Select the Forms page, and you’ll see
forms labeled Dual list box and About box (see Figure 2). These
forms are available for any application to use.

Notice the Copy, Inherit, and Use radio buttons at the bottom of
the form. These tell Delphi how you want your new form to
relate to the form in the Object Repository:

Copy means you want to duplicate the form in the Object
Repository in your own application. Your new form will be
completely independent from the form in the Object
Repository; if you subsequently change the form in the Object
Repository, this won’t change the new form.
Inherit means the new form is based on the form in the
Object Repository and retains its link to this form; if you
change the form in the Object Repository, this will also
change all forms inherited from this form. This is the most
common VFI option.

Class B

Class C

Class A

Repeated Inheritance
A inherits from B, which inherits from C.

Figure 1: Repeated inheritance.



Visual Programming

type
TDualListDlg = class(TForm)

OKBtn: TButton;
CancelBtn: TButton;
HelpBtn: TButton;
SrcList: TListBox;
DstList: TListBox;
SrcLabel: TLabel;
DstLabel: TLabel;
IncludeBtn: TSpeedButton;
IncAllBtn: TSpeedButton;
ExcludeBtn: TSpeedButton;
ExAllBtn: TSpeedButton;
procedure IncludeBtnClick(Sender: TObject);
procedure ExcludeBtnClick(Sender: TObject);
procedure IncAllBtnClick(Sender: TObject);
procedure ExcAllBtnClick(Sender: TObject);
procedure MoveSelected(List: TCustomListBox;

Items: TStrings);
procedure SetItem(List: TListBox; Index: Integer);
function GetFirstSelection(List: TCustomListBox):

Integer;
procedure SetButtons;

private
{ Private declarations }

public
{ Public declarations }

end;

Figure 3: Class declaration when you use the Dual list box from
the Object Repository.
Use means you want to directly use the form in the Object
Repository. Any changes you make directly change the form in the
Object Repository, thus changing forms inherited from this form.

Forms in your current application are also available for reuse.
When you open the Object Repository, there should be a tab
sheet whose caption is the name of your project. Select this and
you’ll see the forms in your current project. The only difference
between working with forms in the Object Repository and work-
ing with forms in your application is that you can only inherit
from forms in your existing application, i.e. only the Inherit radio
button is available. It’s the only option that makes sense.

Once you’ve created a new form that inherits from a form in the
Object Repository, you can still change the new form. You can
add new components and write new methods. You can also
change things you inherit from the form in the Object
Repository. You can move and resize inherited components, but
you can’t delete a component you inherited. Attempting to do so
will result in a design-time error message. Although you can’t
delete an inherited component, you can achieve the same effect
by making it invisible by setting its visible property to False.

Once you’ve changed a property of an inherited component, you’ve
broken the link for that property between the subform and the
superform. For example, assume you move a button to the left in a
subform, then move the same button in the form in the Object
Repository. Because the subform has broken the link to the Left
property from the superform, the component in the subform doesn’t
move (it would if you hadn’t broken the link). You can reestablish
the link by right-clicking on the component, and selecting Revert to

inherited. This undoes all changes to the subclass component.

When working with methods you inherit from a superclass, you have
several options. You can either replace the superclass method altogeth-
er, or execute your own code in addition to the superclass method.
Let’s look at an example. On the Forms page of the New Items dialog
box, double-click the Dual list box form with the Inherited radio button
selected. Double-click on the > button; this button enables you to
move a selected item from the left list box to the right list box. The
IDE will generate the following method template for you:

procedure TDualListDlg2.IncludeBtnClick(Sender: TObject);
begin

inherited;

end;

The keyword inherited means “Call a method with the same name
in the superclass.” The code in the superclass is what actually moves
the selected items from the left list box to the right list box:

procedure TDualListDlg.IncludeBtnClick(Sender: TObject);
var

Index: Integer;
begin

Index := GetFirstSelection(SrcList);
MoveSelected(SrcList, DstList.Items);
SetItem(SrcList, Index);

end;

This code is only called because the subclass explicitly makes a call
to it using the inherited keyword. You’re free to place your addition-
al code before or after the inherited call. You’re also free to remove
the inherited keyword, thus removing the call.
20 February 2000 Delphi Informant Magazine
A Quick Example
Imagine you’ve created several forms inheriting from the Dual list

box form in the Object Repository. You’ve customized the sub-
forms with information specific to your application, and now you
want to add drag-and-drop capabilities to each form; you want to
allow your users to drag items from the left list box into the right
list box. If you hadn’t used VFI, you would have to implement
the drag-and-drop capability in each subform. However, because
you used VFI, you can add the code in one place: the form in the
Object Repository. Here’s a step-by-step approach:
1) Select the Dual list box form in the Object Repository, with the

Use radio button selected.
2) Set the DragMode property of the left list box, SrcList, to

dmAutomatic. This automatically enables dragging when the
user holds the left mouse button down with an item selected.
The alternative mode is dmManual, in which case your program
must explicitly enable dragging in code.

3) Write the onDragOver event for the right list box, DstList, as:

Accept := (source = srcList);

The onDragOver event is fired when the user drags an item
over the control. The event is used to determine whether the
control is a valid destination for the dragged item. The code
we wrote tells Delphi to accept the drop if the source of the
drag is the SrcList list box.

4) Write the onDragDrop event of the DstList list box as:

IncludeBtnClick(Sender);

The onDragDrop event is fired when the user drops the item.
This code simply fires the same event as if the user had clicked
the > button, so there’s no point in duplicating that code.

VFI under the Hood
One of my favorite things about Delphi is that nothing’s hidden.
Everything we’ve just done is implemented in source code. To see
how VFI actually works, all you need to do is examine the code pro-



Visual Programming
duced by the Form designer. Let’s start by looking at the class decla-
ration generated when you simply copy a form from the Object
Repository into your application. We’ll use the Dual list box as our
example again. Figure 3 shows the class declaration.

And all the code is right there in the implementation section
(Figure 3 doesn’t show that). The important line is the one that
declares the class:

TDualListDlg = class(TForm)

This class inherits directly from TForm. Everything about Dual list
box is in this .PAS file, and its associated .DFM file.

Now consider Figure 4, which shows the entire Pascal file when you
inherit from the form in the Object Repository.

Again, the line declaring the class is important:

TDualListDlg3 = class(TDualListDlg)

This shows that the new form simply inherits from another class,
TDualListDlg. TDualListDlg, of course, is the form in the Object
Repository. Note how the new form’s uses clause includes that
unit (DUALLIST). Also note that the project source code, the
.DPR file, includes that unit, as well:

uses
Forms,
Unit1 in 'Unit1.pas' { Form1 },
Unit2 in 'Unit2.pas' { Form2 },
DualList in '..\OBJREPOS\DUALLIST.pas' { DualListDlg },
Unit3 in 'Unit3.pas' { DualListDlg3 };

Because your new form inherits from another form, your project
must include both forms.

Changes you make to your subform are simply made to the sub-
form’s .PAS and .DFM files. For example, if your subclass changes a
component’s position, that change is recorded in the subclass’ .DFM
21 February 2000 Delphi Informant Magazine

unit Unit3;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, DUALLIST, StdCtrls, Buttons;

type
TDualListDlg3 = class(TDualListDlg)
private

{ Private declarations }
public

{ Public declarations }
end;

var
DualListDlg3: TDualListDlg3;

implementation

{$R *.DFM}

end.

Figure 4: Pascal file for the Dual list box inherited from the
Object Repository.
file. In fact, all you will see in the subform’s .DFM file are the sub-
form properties that are different from its superclass. That’s the best
way to see exactly which properties were changed.

The final thing we need to look at in this section is the structure
of the Object Repository itself. You may be surprised to learn that
the Delphi Object Repository is nothing more than an interface to
an .INI file. The Delphi 4/5 Object Repository is stored in the file
Delphi32.DRO in the \bin directory of your Delphi installation.
Open it with Notepad or some other text editor to see for yourself.
Figure 5 shows the portion concerning the Dual list box.

The important line is the section heading. As you can see, it tells
Delphi where the code is located on the disk. There are similar
entries for each form in the Object Repository.

VFI in the Real World
Technical articles often paint a rosy picture of development. Just
follow these steps and you’re in programming utopia. In the real
world, VFI can save you time and make your programs more con-
sistent. But it does take effort. The first time you use VFI, you’ll
spend a lot of time designing your form hierarchies. Here’s how it
usually goes the first time you use it.

You start developing the way you always did: You create forms and
write code. Then you realize that several forms look pretty much the
same, and you’re writing similar code in each form. At this stage, you
decide VFI will help, so you find the common layouts and code and
move those into a generic form. You place that form in the Object
Repository, then rework the child forms to inherit from the main
form. But it doesn’t end there. It’s unrealistic to think you’ll come up
with a perfect design the first time. What usually happens is you con-
tinue developing the subforms, continually looking for things you can
move up the hierarchy to avoid duplication. I consider this class design
a very similar process to database normalization: You’re trying to avoid
redundancy and duplication, and it takes time.

This type of design work is an iterative process. You might not see
productivity benefits the first time you try it. Then again, you
might. An example springs to mind from one of my own develop-
ment projects. We designed a standard interface for editing database
tables. We provided all the usual features — add, edit, delete, search
for records, etc. — and allowed the user to access these activities
from the menu, as well as from the buttons located in a Coolbar. All
the common code and layout was stored in a common superclass
(which we use in all our applications), and the actual editing forms
were derived from this common form. The user didn’t care for the
Coolbar, and wanted it changed to a simpler interface. We had
almost 30 forms developed this way, but all we had to do was
replace the Coolbar with a Toolbar in one form and recompile.
[C:\PROGRAM FILES\BORLAND\DELPHI4\OBJREPOS\DUALLIST]
Type=FormTemplate
Name=Dual list box
Page=Forms
Icon=C:\PROGRAM FILES\BORLAND\DELPHI4\OBJREPOS\DUALLIST.ICO
Description=Dialog box with two list boxes. Supports moving
items from one list to the other.
Author=Borland
DefaultMainForm=0
DefaultNewForm=0
Ancestor=

Figure 5: Portion of Delphi Object Repository concerned with
the Dual list box.



Visual Programming
The real benefits of VFI, though, materialize the second or third
time you use a design. Remember that you can use the Object
Repository to share forms between applications. In our shop, the
first stage of our design is to list forms required for an application,
and note their similarities. We then decide whether to use existing
templates we’ve already developed, modify those slightly, or develop
new ones. Whichever way we go, we rarely start from scratch.

If you want to get started using VFI, I’d suggest you start with a
database maintenance form. Decide how you want the form to
look, design it once, and place it in the Object Repository. Place as
much common code in this generic form as possible, then create
actual forms containing data specific to the actual tables, inheriting
from this generic form. As you write code in the actual forms, con-
sider whether that code could be moved up the hierarchy. For each
piece of code you write, ask yourself whether that code is specific to
the data in this form, or whether it’s generic and other forms could
use it. If it’s generic, move it up the hierarchy.

Conclusion
VFI allows you to visually create new forms based on existing forms,
and provides the same benefits as inheritance in general. This, in
turn, leads to faster development time and more consistent and reli-
able applications.

Understanding how VFI actually works requires a good under-
standing of Delphi’s object model and inheritance in particular.
As you saw, VFI is nothing more than a language mechanism
(inheritance), some IDE features, and an .INI file! I consider it
one of the most powerful features of Delphi, and use it extensive-
ly. Next month, I’ll present a generic database maintenance form
I use in development, and show how this substantially reduces
my own development time. ∆

Rick Spence is Technical Director of Database Programmers Retreat
(http://www.dp-retreat.com), a training and development company with offices in
Florida and the UK. You can reach Rick directly at 71760.632@compuserve.com.
General inquiries should be directed to Dpr@Aug.com.
22 February 2000 Delphi Informant Magazine

http://www.dp-retreat.com


23 February 2000 Delphi Informant Mag

Delphi at Work
Date and Time Issues / Delphi 2-5

By T. Wesley Erickson
Time Travels
Of Time Zones, Daylight Savings, and other Delights 

If your application uses dates and times, what will happen when it’s deployed to
users in different time zones? Have you taken the effects of Daylight Savings Time

into consideration?
az
We know that many locations do not recognize
Daylight Savings Time; but what about locations
in the Southern Hemisphere, such as Brazil and
portions of Australia, where its implementation is
the opposite of that in the Northern Hemisphere?
Your particular application may not be affected,
but if you need to convert between local time and
Universal Coordinated Time (UTC) for any rea-
son, you should consider the effects that time-
zone changes will have on your program.

Who cares about changes in time zones? Your
users might. Consider the relatively trivial exam-
ple of a telephone dialer: Wouldn’t it be nice if
users were notified of the local time when call-
ing a phone number outside of the local calling
area? This would require a lookup table of area
codes to time zones, but it would certainly be a
reasonable enhancement to a dialing program.
Some types of programs are vitally concerned
with time-zone changes, particularly technical
programs, or those relating to navigation and
astronomy, to name a few.

You could ask your users to specify time-zone set-
tings when installing your product, but they
already specified their date, time, and time zone
when they set up their computers. Besides, mobile
computing is so pervasive, a user might easily
work in multiple time zones in a single day. It
seems intrusive to ask the user for information
already in the registry. At the same time, it’s your
responsibility to confirm that their settings make
sense and to offer alternatives if necessary.

A computer running Windows 95/98/NT main-
tains its internal time as Universal Coordinated
Time, and displays the local time based on the
user’s time-zone setting, and the current state of
Daylight Savings Time.
ine
If all your application needs is the current UTC
or local time, we could simply call the Win32
API procedures GetSystemTime or
GetLocalTime. These functions return a data
structure of type SystemTime:

type
SystemTime = record

wYear: Word;
wMonth: Word;
wDayOfWeek: Word;
wDay: Word;
wHour: Word;
wMinute: Word;
wSecond: Word;
wMilliseconds: Word;

end;

Most of the elements of the SystemTime record are
self-explanatory; wDayOf Week is an unsigned 16-
bit integer (i.e. Word) value in the range 0-6,
which identifies the day of the week, correspond-
ing to Sunday through Saturday.

The elements of SystemTime can be used to assign
a Delphi DateTime variable:

var
ST : SystemTime;
DT : TDateTime;

begin
// Get Universal Coordinated Time (UTC).
ST := GetSystemTime(ST);
with ST do

DT := EncodeDate(wYear, wMonth, wDay) +
EncodeTime(wHour, wMinute, wSecond,   

wMilliseconds);
end;

Note that SysUtils.Now is implemented in exactly
this fashion, using GetLocalTime (SysUtils.Now
replaces GetCurrentTime, which is obsolete).



Delphi at Work
Similarly, to determine if Standard or Daylight Time is in effect, we
can call the Win32 API function GetTimeZoneInformation:

var
Error : Double;
TZInfo : TTimeZoneInformation;

begin
Error := GetTimeZoneInformation(TZInfo);
case Error of

0 : { Unknown } ;
1 : { Standard Time } ;
2 : { Daylight Time } ;

end;
end;

Time Zone Information
GetTimeZoneInformation also returns a data structure (a record) that
contains the current time-zone settings, and the information needed
to convert between local and UTC times:

type
TTIMEZONEINFORMATION = record

Bias: Longint;
StandardName: array[0..31] of WCHAR;
StandardDate: TSystemTime;
StandardBias: Longint;
DaylightName: array[0..31] of WCHAR;
DaylightDate: TSystemTime;
DaylightBias: Longint;

end;

Elements of TTimeZoneInformation are shown in Figure 1.

The dates and times represented by StandardDate and DaylightDate are
implemented as a set. It’s not permissible to have only one or the other
specified; either both dates are specified (meaning Daylight Savings Time
is implemented), or both are unspecified, in which case wMonth must
be set to zero as a flag. Dates may be stored in either of two formats:

Absolute. wYear, wMonth, wDay, wHour, wMinute, wSecond, and
wMilliseconds are combined to refer to a specific date and time.
Relative. Also called “day-in-month” format, refers to a particular
occurrence of a day of the week, e.g. the last Sunday of the month.
24 February 2000 Delphi Informant Magazine

Figure 1: Elements of TTimeZoneInformation.

Bias Difference in minutes between local
time and UTC, based on the formula
UTC = local time + Bias.

StandardName Null-terminated string identifying
Standard Time, e.g. Pacific Standard
Time. May be empty, or set to user’s
preference with SetTimeZoneInformation.

StandardDate Record of type SystemTime that speci-
fies the date and time when Standard
Time begins.

StandardBias Minutes added to Bias during Standard
Time (normally zero).

DaylightName Null-terminated string identifying
Daylight Time, e.g. Pacific Daylight Time.
May be empty, or set to user’s prefer-
ence with SetTimeZoneInformation.

DaylightDate Record of type SystemTime that speci-
fies the date and time when Daylight
Time begins.

DaylightBias Minutes added to Bias during Daylight
Time (normally 60).
Relative dates are, by far, the more common, and are implement-
ed as shown here:

wYear must be set to zero as a flag.
wMonth identifies the month in which the change occurs.
wDayOf Week identifies the day of the week (0-6 corresponding
to Sunday-Saturday).
wDay identifies which occurrence of wDayOf Week (1-5
where 1 is the first occurrence, and 5 means “last
wDayOf Week in the month”).

The resulting Relative date is combined with the encoded time from
the SystemTime record to specify the exact date and time when the
change occurs.

Using this information, we can create a function that will tell us
whether Daylight time is in effect for a given date and time.
We’ll assume for this discussion that TZInfo is a global variable
of type TTimeZoneInformation that was returned by an earlier
call to GetTimeZoneInformation, perhaps during FormCreate, as
shown in Listing One (beginning on page 25).

Converting between Local Time and Universal Time
We now have enough information to convert local times to
UTC, and vice versa. On Windows NT, we might use
SystemTimeToTzSpecificLocalTime, which converts UTC to local
time in a specific time zone, but this function isn’t available to
users of Windows 95. We’ll continue to assume that TZInfo is a
global variable of type TTimeZoneInformation returned by an ear-
lier call to GetTimeZoneInformation, as shown in Listing Two
(on page 26).

We have one more step to make the program complete. Our pro-
gram can decipher time-zone information and convert local times to
UTC and back. How do we handle a situation where the time zone
changes while our program is running? The answer is found in the
Borland FAQ database (FAQ2020D). First, add the following code
to the private declaration section of your application:

TIMEZONE.EXE
TIMEZONE.EXE is an example application designed to demonstrate using Delphi to access
time-zone information, to convert between local time and UTC, and to respond to system-
wide changes in the time-zone setting (see Figure A). 

The program starts up initialized to the cur-
rent local date and time, and lists the cur-
rent time-zone setting (top), as well as the
UTC and date that correspond to the local
time and date in the edit controls. 

To keep the program simple, user inter-
action is limited to two edit controls and
two buttons. The user may select a date
using the DateTimePicker. The user may
enter a time in the Time edit control. If
the string entered by the user fails to
convert to a valid time, the exception
handler clears the control and sets the
time to midnight. 

The display is updated when any of the following actions occur:
The user clicks one of the controls.
The user selects a date, and the pop-up calendar closes.
The user tabs from one field to another.
The user presses R after making an entry in the Time edit control.

Two buttons are provided: Now sets the date and time to the computer’s current date and
time; Exit terminates the program. 

— T. Wesley Erickson 

Figure A: The Time Zone application.



Delphi at Work

Result := False
else // Daylight Time is implemented.

begin
// If wYear is zero, use relative SystemTime format.
if (TZInfo.StandardDate.wYear = 0) then

// Relative SystemTime format. 
// Calculate DateTime Daylight Time begins using
// relative format. wDay defines which wDayOfWeek
// is used for time change: wDay of 1 identifies
// the first occurrence of wDayOfWeek in the month;
// 2..4 identify the second through fourth
// occurrence. A value of 5 identifies the last
// occurrence in the month.
begin

// Start at beginning of Daylight month.
DTBegins := 

EncodeDate(Y, TZInfo.DaylightDate.wMonth, 1);
case TZInfo.DaylightDate.wDay of

1, 2, 3, 4 :
begin

// Get to first occurrence of wDayOfWeek. 
// Key point: SysUtils.DayOfWeek is 
// unary-based; TZInfo.Daylight.wDay is
// zero-based.
while (SysUtils.DayOfWeek(DTBegins) - 1) <>

TZInfo.DaylightDate.wDayOfWeek do
DTBegins := DTBegins + 1;

WeekNo := 1;
if TZInfo.DaylightDate.wDay <> 1 then

repeat
DTBegins := DTBegins + 7;
Inc(WeekNo);

until WeekNo = TZInfo.DaylightDate.wDay;
// Encode time Daylight Time begins.
with TZInfo.DaylightDate do

DTBegins := DTBegins + EncodeTime(
wHour, wMinute, 0, 0);

end;
5 : 

begin
// Count down from end of month to day of
// week. Recall that we set DTBegins to the
// first day of the month; go to the first
// day of the next month and decrement.
DTBegins := IncMonth(DTBegins, 1);
DTBegins := DTBegins - 1;
// Find the last occurrence of
// the day of the week.
while SysUtils.DayOfWeek(DTBegins) - 1 <>

TZInfo.DaylightDate.wDayOfWeek do
DTBegins := DTBegins -1;

// Encode time Daylight Time begins.
with TZInfo.DaylightDate do

DTBegins := DTBegins + EncodeTime(
wHour, wMinute, 0, 0);

end;
end;  // case.
// Calculate DateTime Standard Time begins using
// relative format. Start at beginning of
// Standard month.
STBegins := 

EncodeDate(Y, TZInfo.StandardDate.wMonth, 1);
private
procedure WMTIMECHANGE(var Message: TWMTIMECHANGE);

message WM_TIMECHANGE;

Then, add this wmTimeChange procedure to the implementation
section:

procedure TFormName.wmTimeChange(
var Message: TWMTIMECHANGE);

begin
// Get new Time Zone information.
Error := GetTimeZoneInformation(TZInfo);
// Use value returned by GetTimeZoneInformation
// for error trapping.
case Error of

0 : { Unknown } ;
1 : { Standard Time } ;
2 : { Daylight Time } ;

end;
// Update the form using new date/time settings...

end;

The wmTimeChange procedure can perform whatever action is
necessary to update your application with the newly changed
time zone.

Conclusion
Hopefully, you will find this little foray into the Win32 API to be
time well spent. Your application is now ready for prime time. Feel
free to check out my Time Zone application discussed in the sidebar
TIMEZONE.EXE. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200002TE.

T. Wesley Erickson is a Fire Suppression Captain with the Oceanside Fire
Department in Southern California. A firefighter for over 23 years, Wes holds a BS
in Computer Science and a teaching credential. His first involvement with com-
puters was in 1966, participating in a program at the Data Processing
Installation at MCB Camp Pendleton while he was in high school. Wes learned
more than he ever wanted to know about time zones while writing a lunar co-
longitude program, named the winner of the 1998 Computing Challenge by the
Computing Section of the Association of Lunar and Planetary Observers, a world-
wide organization of amateur astronomers. When not computing or star-gazing,
he can be found sailing, cycling, enjoying the company of his wife Mary, or play-
ing with grandson Jordan. You may contact Wes at twesley@compuserve.com,
or visit his Web site at http://home.pacbell.net/twerick.
25 February 2000 Delphi Informant Magazine

Begin Listing One
function DaylightSavings(DT: TDateTime): Boolean;
var

D, M, Y, WeekNo : Word;
DTBegins, STBegins : TDateTime;

begin
// Get Year/Month/Day of DateTime passed as parameter.
DecodeDate(DT,Y,M,D);
// If TZInfo.DaylightDate.wMonth is zero,
// Daylight Time not implemented.
if (TZInfo.DaylightDate.wMonth = 0) then

case TZInfo.StandardDate.wDay of
1, 2, 3, 4 :

begin
while (SysUtils.DayOfWeek(STBegins) - 1) <>

TZInfo.StandardDate.wDayOfWeek do
STBegins := STBegins + 1;

WeekNo := 1;
if TZInfo.StandardDate.wDay <> 1 then

repeat
STBegins := STBegins + 7;
Inc(WeekNo);

until (WeekNo = TZInfo.StandardDate.wDay);
// Encode time Standard Time begins.
with TZInfo.StandardDate do

STBegins := STBegins + EncodeTime(

http://home.pacbell.net/twerick


26 February 2000 Delphi Informant Magazine

wHour, wMinute, 0, 0);
end;

5 : 
begin

// Count down from end of month to day of
// week. Recall we set DTBegins to first
// day of the month; go to the first day of
// the next month and decrement.
STBegins := IncMonth(STBegins, 1);
STBegins := STBegins - 1;
// Find last occurrence of day of the week.
while SysUtils.DayOfWeek(STBegins) - 1 <>

TZInfo.StandardDate.wDayOfWeek do
STBegins := STBegins -1;

// Encode time at which Standard Time begins.
with TZInfo.StandardDate do

STBegins := STBegins + EncodeTime(
wHour, wMinute, 0, 0);

end;
end;  // case.

end
else

begin // Absolute SystemTime format.
with TZInfo.DaylightDate do begin

DTBegins := EncodeDate(wYear, wMonth, wDay) +
EncodeTime(wHour, wMinute, 0, 0);

end;
with TZInfo.StandardDate do begin

STBegins := EncodeDate(wYear, wMonth, wDay) +
EncodeTime(wHour, wMinute, 0, 0);

end;
end;

// Finally! How does DT compare to DTBegins and
// STBegins?
if (TZInfo.DaylightDate.wMonth <

TZInfo.StandardDate.wMonth) then
// For Northern Hemisphere...
Result := (DT >= DTBegins) and (DT < STBegins)

else
// For Southern Hemisphere...
Result := (DT < STBegins) or (DT >= DTBegins);

end;
end;

End Listing One

Begin Listing Two
function LocalTimeToUniversal(LT: TDateTime): TDateTime;

var UT: TDateTime; TZOffset: Integer;
// Offset in minutes.

begin
// Initialize UT to something,
// so compiler doesn't complain.
UT := LT;
// Determine offset in effect for DateTime LT.
if DaylightSavings(LT) then

TZOffset := TZInfo.Bias + TZInfo.DaylightBias
else

TZOffset := TZInfo.Bias + TZInfo.StandardBias;
// Apply offset.
if (TZOffset > 0) then

// Time zones west of Greenwich.
UT := LT + EncodeTime(TZOffset div 60,

TZOffset mod 60, 0, 0)
else

if (TZOffset = 0) then
// Time Zone = Greenwich.
UT := LT

else
if (TZOffset < 0) then

// Time zones east of Greenwich.
UT := LT - EncodeTime(Abs(TZOffset) div 60,

Abs(TZOffset) mod 60, 0, 0);
// Return Universal Time.
Result := UT;

Delphi at Work

end;

function UniversalTimeToLocal(UT: TDateTime): TDateTime;
var LT: TDateTime; TZOffset: Integer;

begin
LT := UT;
// Determine offset in effect for DateTime UT.
if DaylightSavings(UT) then

TZOffset := TZInfo.Bias + TZInfo.DaylightBias
else

TZOffset := TZInfo.Bias + TZInfo.StandardBias;
// Apply offset.
if (TZOffset > 0) then

// Time zones west of Greenwich.
LT := UT - EncodeTime(TZOffset div 60, 

TZOffset mod 60, 0, 0)
else

if (TZOffset = 0) then
// Time Zone = Greenwich.
LT := UT

else
if (TZOffset < 0) then

// Time zones east of Greenwich.
LT := UT + EncodeTime(Abs(TZOffset) div 60, 

Abs(TZOffset) mod 60, 0, 0);
// Return Local Time.
Result := LT;

end;

End Listing Two



27 February 2000 Delphi Informant Mag

On the ’Net
Web Applications / XML / Delphi 4, 5

By Keith Wood
Generating XML
And Delivering It Across the Web   

In previous articles, we were introduced to XML (Extensible Markup Language), and we’ve
seen how to process XML documents in a generic and reusable manner. This article looks

at generating the XML itself, and delivering XML documents across the Internet.
azine
XML as Data
XML documents encode the structure and content
for domain-specific data. Their hierarchy of tags pro-
vides a format that’s easy to manipulate programmat-
ically, while remaining legible to humans. XML pro-
vides a mechanism to transfer data between applica-
tions that is independent of their underlying pro-
gramming language and operating system.

Because XML documents contain data, it seems
natural to want to generate them from existing
data sources, i.e. databases. In general, each
record from a table becomes an element in the
XML document. Within this element appear
sub-elements for each of the record’s fields.
Fields that form the primary key of the record
should be specified as the ID attribute of the
record element. We place an element identifying
each table around these record elements. Around
these, in turn, we have the document element
that corresponds to the database.

Records from dependent tables appear as ele-
ments within their parent record. The linking
fields need not appear as field elements nor as
IDREF attributes, because the position of the
record element within the parent adequately
describes the relationship.

Across the Internet
When we want to generate HTML dynamically
from a Delphi application, we can use the
TWebModule object (created using the Web
Application Wizard), and the TPageProducer
object (from the Internet tab on the Component
palette). TWebModule objects handle the intrica-



On the ’Net
cies of dealing with the various server protocols (ISAPI, NSAPI,
CGI, Win-CGI). Indeed, they’re set up so we can write a program
for one protocol, then easily convert it for use with another.

A TPageProducer object allows us to provide an HTML template
— embedded as text or from an external file — that is output on
request. Within that template, special tags are intercepted by the
component and presented to us for replacement. These tags are
embedded in angled brackets as usual, and start with a pound
sign followed by the name of the tag. For example:

<#movies>
28 February 2000 Delphi Informant Magazine

Figure 1: The example database.

Figure 2: The Web Server Application wizard.

Figure 3: Putting the example application together. 
They may optionally have attributes specified in the usual HTML
style. The OnHTMLTag event is triggered for each of these tags
found, providing us with the type of the tag, its name, and any
attributes. We respond by using this information to supply the
text that replaces the tag in the output document. Enhancements
to the basic PageProducer provide for the generation of HTML
tables directly from a query or other data set.

This process can just as easily be used to generate XML instead of
HTML. We simply replace the HTML snippets in the PageProducer
objects with XML snippets, using the replacement tag mechanism to
substitute the values from the database.

Watching Movies
To help demonstrate the techniques described in this article, we’ll
use a database that contains information about local movies, and
where and when they’re showing. (The example projects for this
article are available for download; see end of article for details.)
The overall structure of the database is shown in Figure 1. For this
demonstration, the tables have been set up as Paradox files.

The Movies table holds the name, rating, length, director, and
synopsis of each film, with the stars appearing in the related Stars
table. Similarly, the Cinemas table holds the name, phone num-
ber, address, directions, and facilities for each theater. Prices for
the different session times are described in the Pricing table
attached to the Cinemas table. In the Screenings table, a movie
and a cinema are brought together, detailing show dates, and any
restrictions or theater features. The Sessions table holds the actu-
al times for each showing, along with a reference to the pricing
scheme that applies.

Generation
To create the XML dynamically, we start with a new application using
the Web Server Application wizard (see Figure 2). The wizard is
accessed by selecting Web Server Application from the New page of the
New Items dialog box (select File | New from Delphi’s main menu).

We’ll select the CGI option, although there is no reason not to
use one of the other types. Into this Web module we place tables

and data sources corresponding to the
database described previously, link them
appropriately, and activate them (see
Figure 3).

Next, we add several PageProducer com-
ponents: one for the overall document,
and one for each of the tables. Our main
PageProducer contains the XML prolog
and highest-level tags — those corre-
sponding to the database and main tables
(see Figure 4).

Within the PageProducer objects for each
table is an XML document fragment
describing the record structure. The entire
snippet is enclosed in a tag indicating the
type of record. Following this are the indi-
vidual fields and an enclosing tag for any
dependent tables. Using the field names as
the substitution tag names makes the pro-
cessing simpler during replacement. See the
fragment for the movie element in Figure 5.



On the ’Net
The event handler for the main PageProducer’s OnHTMLTag
event replaces the contents of the table tags with XML represent-
ing the records. For each one, it must step through all the records
in that table and apply the appropriate template from another
PageProducer, over and over. The GetRecords method performs
29 February 2000 Delphi Informant Magazine

<movie id="<#movie_id>"<#logo_url><#url>>
<name><#name></name>
<rating><#rating></rating>
<length><#length></length>
<director><#director></director>
<starring>

<#stars>  </starring>
<synopsis><#synopsis></synopsis>

</movie>

Figure 5: Document fragment for the movie element.

// Cycle through all the records in the table
// and generate the XML snippet.
function TwmdXML.GetRecords(tbl: TTable; pgp:

TPageProducer): string;
begin

Result := '';
with tbl do begin

First;
while not EOF do begin

Result := Result + pgp.Content;
Next;

end;
end;

end;

// Generate movie-watcher XML document.
procedure TwmdXML.pgpMovieWatcherHTMLTag(Sender: TObject;

Tag: TTag; const TagString: string; TagParams: TStrings;
var ReplaceText: string);

begin
if TagString = 'movies' then

ReplaceText := GetRecords(tblMovie, pgpMovie)
else if TagString = 'cinemas' then

ReplaceText := GetRecords(tblCinema, pgpCinema)
else if TagString = 'screenings' then

ReplaceText := GetRecords(tblScreening, pgpScreening);
end;

// Add details for a movie.
procedure TwmdXML.pgpMovieHTMLTag(Sender: TObject;

Tag: TTag; const TagString: string; TagParams: TStrings;
var ReplaceText: string);

begin
if TagString = 'stars' then

ReplaceText := GetRecords(tblStars, pgpStars)
else

ReplaceText :=
tblMovie.FieldByName(TagString).DisplayText;

end;

Figure 6: Handling tags for the main document and 
movie element.

<?xml version="1.0" standalone="yes"?>
<!--DOCTYPE movie-watcher SYSTEM "/movie-watcher.dtd"-->
<?xml:stylesheet type="text/xsl" href="/mw3.xsl"?>
<movie-watcher>
<movies>
<#movies></movies>
<cinemas>
<#cinemas></cinemas>
<screenings>
<#screenings></screenings>
</movie-watcher>

Figure 4: Main document outline for XML.
this task within the application, taking the table and
PageProducer as parameters. Event handlers for the PageProducer
objects associated with each table simply use the tag name to find
a field value from the table, or invoke the GetRecords method for
dependent tables (see Figure 6).

Formatting for individual fields is handled through the normal
Delphi mechanisms: the DisplayFormat property, or the OnGetText
event on the field itself. Some special formatting is performed using
the latter (see Figure 7). 

The autoincrementing identifiers for each table are made unique by
prefixing them with a character corresponding to the table name
(document-wide uniqueness is required of XML IDs). Some fields
are presented as attributes and aren’t included in the document if
their values are blank. Boolean fields are indicated by the presence or
absence of an empty tag. Finally, the memo fields must provide their
actual value rather than their type.

We generate the entire XML document by creating a default Web
action for the module. Within this we set the content type to
text/xml and invoke the main PageProducer to create the actual con-
tent. Finally, we indicate that we’ve supplied the Web response by
setting the Handled parameter to True. All this appears in the
demonstration project CGIXML.dpr.

Once the application is compiled and placed in our Web server’s
CGI directory, we can call it up and view the results (see Figure 8).
To do this, we’ll need to have Internet Explorer version 5 installed,
as it’s currently the only browser to support XML. Also, we need to
place the HTML style sheet for this document, mw3.xsl, into the
server’s normal document area so it can be retrieved.

TRecordPageProducer
In the first example, we manually cycle through all the records in
// Make id unique.
procedure TwmdXML.IDGetText(Sender: TField;

var Text: string; DisplayText: Boolean);
begin

Text := Copy(Sender.FieldName, 1, 1) + Sender.AsString;
end;

// Include attributes only if present.
procedure TwmdXML.AttributeGetText(Sender: TField;

var Text: string; DisplayText: Boolean);
begin

if Sender.AsString <> '' then
Text := ' ' + ModifyName(Sender.FieldName) +

'="' + Sender.AsString + '"';
end;

// Include empty field tag only if flag in DB set.
procedure TwmdXML.EmptyFieldGetText(Sender: TField;

var Text: string; DisplayText: Boolean);
begin

if Sender.AsBoolean then
Text := '<' + ModifyName(Sender.FieldName) + '/>';

end;

// Display longer text.
procedure TwmdXML.MemoGetText(Sender: TField;

var Text: string; DisplayText: Boolean);
begin

Text := Sender.AsString;
end;

Figure 7: Specialized formatting for various fields.



On the ’Net
a table to generate the section of the XML document that’s
derived from it. As we’ve seen, this process was repeated several
times on the different tables, all of which are doing basically the
same thing. In true Delphi tradition, we now capture that
process within a component, making it available for future use
with minimum effort.
30 February 2000 Delphi Informant Magazine

Figure 8: The formatted document in the browser.

// Iterate through the records in the dataset.
function TRecordPageProducer.ContentFromStream(

Stream: TStream): string;
var

stmNoRecs: TStream;
begin

Result := '';
if Assigned(FDataSet) then

if FDataSet.Active then
if FDataSet.RecordCount > 0 then

// Cycle through all the records.
with FDataSet do begin

First;
while not EOF do begin

Stream.Position := 0;
Result := 

Result + inherited ContentFromStream(Stream);
Next;

end;
Exit;

end;
// No data found.
if FNoRecsFile <> '' then

stmNoRecs := TFileStream.Create(FNoRecsFile,
fmOpenRead + fmShareDenyWrite)

else
stmNoRecs := TStringStream.Create(FNoRecsDoc.Text);

if Assigned(stmNoRecs) then
try

Result := inherited ContentFromStream(stmNoRecs);
finally

stmNoRecs.Free;
end;

end;

Figure 9: Generating a document snippet for each record.
The PageProducer component (from the Component palette’s
Internet tab) allows us to generate a section of a document
from a template. The QueryTableProducer and
DataSetTableProducer components transform the contents of
a query, or any data set respectively, into an HTML table for
inclusion in a document. What we want is somewhere in
between: to be able to process each record in a data set, but
without the hard-coded HTML output.

To achieve this, we create our own class, TRecordPageProducer,
which generates its section of the document for each record in the
attached data set. It builds on the abilities of TPageProducer in that
the document fragment can be specified as either embedded text
or a file reference, and inherit the substitution operations on fields
within the snippet.

We create the new component and derive it from TPageProducer.
Next, we add the new properties. Obviously, we add one to
refer to the attached data set, DataSet, as well as NoRecsFile
and NoRecsDoc, to allow for the reporting of a lack of data. The
constructor and destructor are overridden to allocate and release
the string list used by the NoRecsDoc property, and the
Notification method is overridden to clear our reference to the
data set if it’s deleted.

So much for housekeeping; now we can add the new function-
ality. Browsing through the code for TPageProducer we find
that all content requests end up going through the
ContentFromStream method. This means that if we override this
one method to cycle through each record, it will work no matter
how the content is requested.

In our version of the method, we first check if DataSet exists, is
open, and contains data. If so, we reposition the data set to the
beginning before stepping through each record and applying our
template to it (see Figure 9). Here we make use of the functionali-
ty of the ancestor to perform the processing of the template
through the call to the inherited ContentFromStream. Note that we
must reset the template stream to the beginning each time around
the loop as it is processed within the inherited method.

To automatically substitute field values for tags with their names,
we must override another inherited method. Some examination
reveals the DoTagEvent routine as the one we want. In
TPageProducer, it simply calls the OnHTMLTag event handler if
it exists. Instead, we want it to try to match the tag name with a
field name, and only call the event handler if that fails (see
Figure 10). An exception is raised if the data set isn’t active, or if
the field doesn’t exist. We trap this and redirect processing to the
user event instead.
// Replace field references automatically.
procedure TRecordPageProducer.DoTagEvent(Tag: TTag;

const TagString: string; TagParams: TStrings;
var ReplaceText: string);

begin
try

ReplaceText :=
FDataSet.FieldByName(TagString).DisplayText;

except
inherited DoTagEvent(Tag, TagString,

TagParams, ReplaceText);
end;

end;

Figure 10: Automatically replacing field references.



On the ’Net
Using this new component, instead of the basic PageProducer, makes
our code that much simpler. The original application has been updat-
ed in CGIXML2.dpr to demonstrate the new abilities.

Enhancements
The applications presented here demonstrate how to produce an
XML document from an existing database on demand. Recall,
however, that Web modules are able to accept additional parame-
ters from the user. These can be used to further customize the
output, either by providing a subset of the data in the first place,
or by referring to a different style sheet from within the docu-
ment. The latter allows for presenting the same XML document
in different ways, and can include its own selection criteria. In
fact, we could generate a customized style sheet, as well as the
original XML.

Another useful enhancement would be some sort of automatic
generation of the XML document directly from the database.
This could take the form of an expert that allows us to select the
database, tables, and fields required, specify how each field is to
be presented (as an element or an attribute), then create the Web
module for us. Alternately, it could work from the DTD and
match this with the fields in a selected database.

Conclusion
The Internet technologies built into Delphi enable us to quickly
generate server-side applications for processing and delivering
data. We can use these abilities to produce XML documents, as
well as conventional HTML documents. The full functionality of
Delphi can be brought to bear on the problem, allowing us to
access databases and to customize the produced documents.

To make the processing of information from data sources easier,
we created the TRecordPageProducer component that cycles
through each record in its attached data set and applies its
HTML/XML template to each one. ∆

References
XML specification: http://www.w3.org/XML
XML information: http://www.xml.com,
http://www.xmlsoftware.com

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200002KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. Often working
with Delphi, he has enjoyed exploring it since it first appeared. You can reach
him via e-mail at kwood@ccsc.com.
31 February 2000 Delphi Informant Magazine

http://www.w3.org/XML
http://www.xml.com
http://www.xmlsoftware.com


32 February 2000 Delphi Informant Mag

New & Used

By Alan C. Moore, Ph.D.

Figure 1: C a
Pascal Convert
TSyntaxMemo
The Easy Road to Syntax Highlighting

If you display source code in your applications (e.g. code editors, experts, or similar
tools), you want that code to look professional. In most cases, you want to duplicate

the syntax highlighting of the application that produced or compiled the code. If you’re
working with Delphi code, you would like your editor/viewer to have the same look as
the editor in Delphi’s IDE. You could go to a lot of trouble parsing the code and using a
RichEdit control to display it. I’ve tried it; it’s a lot of work.
On the other hand, you could try the excellent set
of components we’ll be examining in this review:
dbRock Software’s TSyntaxMemo. Although this
library consists of only three components, there’s a
great deal more power here than you might
expect. As we’ll see, you can take advantage of the
main features of this library by simply dropping a
couple of components on a form and setting a few
properties. Or you can get under the hood and do
some amazing things. We’ll begin with an
overview of the library, then take a closer look at
its components and their properties. 

An Overview
The library consists of three components:
TSyntaxMemo, the main component;
TDBSyntaxMemo, a data-aware version of the
main component; and TSyntaxMemoParser, a non-
visual component that provides the parsing func-
tionality for the other two. TSyntaxMemoParser is
azine

nd Pascal code displayed in the Automatic C to
er.
essential, so it’s a property of the two memo com-
ponents; it’s required to enable syntax-highlighting
functionality. In fact, with either TSyntaxMemo or
TDBSyntaxMemo, you can have multiple parsers.
Supporting TSyntaxMemoParser is a powerful
scripting language, and an arsenal of built-in
parsers for most of the common programming
and scripting languages: Pascal (Delphi), C, Java,
HTML, etc. Let’s start by taking a detailed look at
the main component.

Though TSyntaxMemo isn’t a descendant of
TMemo, you can use it exactly as you would
Delphi’s TMemo component. A syntax highlighting
editor component, TSyntaxMemo implements all
properties, methods, events, and messages of
TMemo, as well as many new ones. In one version
of my Sound Component Expert, I concluded the
component-producing expert by displaying an edit
window whose main component was a TMemo.
When I learned of this library and had a chance to
try it out, I was delighted with the difference that
substituting a TSyntaxMemo component for a
TMemo component made. Figure 1 shows an even
more impressive use of these components. In this
deceptively named Automatic C to Pascal
Converter, there is C code in the top pane and
Pascal code in the lower pane. 

So, how does TSyntaxMemo perform its magic?
TSyntaxMemo depends on one or more
TSyntaxMemoParser components to analyze code
in preparation for syntax highlighting. You can use
up to six different TSyntaxMemoParser compo-
nents with each TSyntaxMemo component. Of
course, each TSyntaxMemoParser component
would define a different source code format to be
highlighted. The selected TSyntaxMemoParser
component is controlled through the ActiveParser
property of TSyntaxMemo.



New & Used
TSyntaxMemo supports OLE-based drag and drop, allowing text
from other applications to be easily moved to and from editors cre-
ated using TSyntaxMemo. Unlimited undo and redo is built in. The
library also includes support for bookmarks, regular expressions in
search queries, display of glyphs in a customizable gutter, and file
sizes limited only by available memory.

TSyntaxMemo sports a powerful arsenal of nearly 70 new properties. I’ll
discuss some of them in a general way and a few of the more important
ones in more detail. The ActiveParser and various Parser? properties give
you complete control over which language (and what type of syntax
highlighting) you’re currently supporting. LanguageNames provides the
names of those languages you’re supporting, so you can display them in
a menu. This is demonstrated in one of the example programs we’ll
examine shortly. ClipCopyFormats controls which formats can be copied
to the Clipboard, and CursorTokenText provides the name of the type of
format at the cursor position.

Users have come to expect certain options in a modern editor.
With properties to support word wrap, undo/redo, setting tabs,
and bookmarks, TSyntaxMemo provides just about all the editing
capabilities you might want. The Options property we’ll be exam-
ining provides even more choices in this and other areas. A power-
ful example program, TSMEd, demonstrates most of the library’s
features (see Figure 2). The menu item selected in this example
shows clearly the languages supported.

Support for text color, font styles, and background color is essen-
tial (it’s included in the three def_? properties), but the control
over the appearance of this control goes much further. With the
Gutter, GutterColor, GutterFont, and GutterGlyph properties, you
can control the width, color, font, and glyphs used in the gutter
— if you choose to use the gutter, that is. Likewise, the
LineGlyphs, LineColor, and LineTextColor properties control the
glyphs, the background color, and the text color for a single line.
SelColor and SelTextColor control the background color and the
text color for selected text. Finally, margin color allows you to
get or set the background color for the margin area between the
left-edge gutter and the text area.

In sum, the TSyntaxMemo properties give you a great deal of control
over the elements of a code editor — from navigation, streaming
data, and searching, to special highlighting. One of these properties
is particularly rich. The Options property is a set of some 20 choices
that control editing and other behaviors. The options give you and
33 February 2000 Delphi Informant Magazine

Figure 2: The languages supported in the example program TSMEd.
your users a great deal of control
over printing, word wrapping,
word selection, and more.

There are also over 60 methods.
Many you would expect, such as
LoadFromFile, LoadFromStream,
SaveToFile, and SaveToStream.
You can also save and retrieve
bookmarks, and manipulate them
in other ways. The various cate-
gories into which the properties
fall — navigation, printing, word
wrapping, and word selection —
are also supported by these meth-
ods. There are also methods for
working with special glyphs and
marks. Finally, some 25 events
allow you to monitor and respond
to these and other kinds of activi-
ty during editing.

With the data-aware version of this
component, TDBSyntaxMemo, you
can edit or display a database’s
BLOB (binary large object) test field
with all the syntax highlighting you need. This component uses the Text
property to represent the contents of the BLOB field. As in any memo
component, it allows multiple lines of text. A descendant of
TSyntaxMemo, TDBSyntaxMemo contains the additional properties —
DataField and DataSource — necessary for it to work with a BLOB
field in a table. 

The final component, TSyntaxMemoParser, performs the actual work of
analyzing text in a particular language, and determines how that text
should be highlighted. It has considerably fewer properties and methods,
and is based on a powerful scripting language that controls the parsing. 

Although you can use the Compile property only at design time,
you can use the CompileScript method at run time to compile the
parser-defining text in the file specified by the Script property.
Similarly, by assigning to the Script property at design time, the
specified script will be compiled, and the compiled version of the
script will be saved with the application. However, at run time
you need to call the CompileScript method to explicitly compile a
script. UseRegistry must be True or RegisterKey will have no effect.
Parsers rely on scripts, because it’s these text files that define the
key elements of a language that may require special formatting
for displaying or printing. 

Parser Scripts
TSyntaxMemoParser uses scripts to define the analysis and appearance of
text in a TSyntaxMemo control. This library includes a number of built-
in scripts for popular languages and a good deal of information to help
you build your own. With these scripts, you can define most aspects of
the editing environment, such as TabColumns, Gutter settings, the prop-
erty editor display, and auto-replace entries. These scripts are written in
a standard way, with specific sections that carry out certain functions.
The dbRock Software Web site includes an excellent example of tech-
niques for defining special syntax circumstances. Learning this scripting
language isn’t trivial, particularly if you want to accomplish complex
tasks. Once you’ve mastered it, however, you can extend the capabilities
of these components considerably.

TSyntaxMemo is a powerful set of
syntax-highlighting components for
Delphi and C++Builder. TSyntaxMemo
includes full integration with
AddictSpell and supports on-the-fly
spell-checking as in recent versions of
popular word processors. This feature-
rich component set supports unlimited
undo/redo, use of Clipboard, and print-
ing of highlighted text. It includes a
good Help file and several excellent
demonstration programs. Customers
who register for the current version
will be entitled to free upgrades to
future versions of TSyntaxMemo.

dbRock Software
26 Kemp Avenue
Paisley PA3 4JS
Scotland
United Kingdom

Phone: 07712 899461
E-Mail: dbrock@dbrocksoftware.com
Web Site: http://www.
dbrocksoftware.com
Price: US$169



New & Used
Conclusion
I’m most impressed with this library. It’s clearly the best solution for
any developer who needs to add syntax highlighting functionality to an
application — either in a browser or a code editor. TSyntaxMemo
comes with full source code, a very good Help system, and excellent
support. One of the features I almost forgot to mention is the excellent
built-in property editor. Though the price is a bit high, it’s worth
remembering that you will never need to pay for an upgrade — they’re
free. Visit the dbRock Software Web site. If nothing else, the down-
loadable demonstrations highlight the awesome power of Delphi, and
the talent of the excellent developers we have in our midst. I recom-
mend these components highly and without reservation. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200002AM.

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applica-
tions with the Borland languages for more than 10 years. He has published a num-
ber of articles in various technical journals. Using Delphi, he specializes in writing
custom components and implementing multimedia capabilities in applications, par-
ticularly sound and music. You can reach Alan on the Internet at acmdoc@aol.com.
34 February 2000 Delphi Informant Magazine



File | New
Directions / Commentary
Delphi 5: A Portent?

By now most of you have read numerous reviews and articles about Delphi 5. Many of you have already upgraded.
Rather than simply go over that territory again, I would like to take a different approach and try to answer these

questions: How is the release of Delphi 5 different from that of Delphi 4? And what does this indicate about changes in
Inprise’s approach?
Delphi is Inprise/Borland’s flagship product. One indi-
cation of this is that the Delphi sessions have been the
best attended at recent Inprise conferences. In the first
Delphi session, the presenter asked, “When should we
release Delphi 5?” As you can probably imagine, many
in the audience shouted back, “Now!” But the presen-
ter was ready for that and came back with “Wrong answer! We’ll
release it when it’s ready.” Although it may seem the obvious answer,
it does represent a shift in philosophy, a return to the emphasis on
quality that made this company great in the first place. It represents a
shift of strategy for the company compared to the rushed release of
Delphi 4. The strategy embodies a rediscovery of one of the cardinal
rules of software production: Better late than lousy.

In reviewing the new features, I’ll begin with one that is sel-
dom mentioned: the Help files. Because I have been work-
ing on a book on Delphi and multimedia, the expand-
ed Help in this and other Microsoft API areas
caught my attention early on. The new Help is more
extensive and better organized. If you want to get a
good idea of the other improvements, check out the help topic,
“What’s new in Delphi.” I’ll outline some of the highlights.

An IDE overhaul. The enhancements to Delphi 5 fall into various
categories, including the IDE, debugger, database functionality, and
VCL. The most impressive changes are to the IDE. In fact, I can’t
recall any version of Delphi that matches this explosion of new capa-
bilities. Based on the reaction I saw to these features at the confer-
ence, and since, it certainly seems that Inprise is working to keep
Delphi the best development environment on the market. Let’s
examine some of the details.

All versions of Delphi 5 allow you to customize and load different
desktop layouts (including debugging desktops), and they feature an
Object Inspector with a new look that includes images in drop-down
lists and categories of properties. Now you can even modify the edi-
tor’s properties by customizing its key mappings. There was a session
on this latter capability at the Inprise conference, the first time I
remember a Borland engineer delving this deeply into Delphi’s inner
workings. The Project Manager includes a number of new features
that will remind CodeRush users of certain plug-ins under version 4.
Among many others, the file-management capabilities now include
drag-and-drop copying of files from a Windows folder into a project.
To-Do Lists, which allow you to keep track of project-related tasks,
are available in the Professional and Enterprise editions.

Better support for debugging. Another area that includes major
improvements is the debugger (see Robert Vivrette’s article, “Delphi 5
Drill-Down,” in the August, 1999 Delphi Informant Magazine for
further details). The debugging windows now include drag-and-drop

5
Delphi
35 February 2000 Delphi Informant Magazine
capabilities. Breakpoints, always important in debugging, are more
powerful than ever: You can now organize them into groups,

enabling or disabling them at will. You can even associate various
actions with your breakpoints. There is a new floating-point

debugging window, as well as several new debugging com-
mands and options. 

Of course there are many new database features, new and
improved components, and even some new tools in the
Enterprise edition. The database enhancements have
been covered extensively in this magazine (in particular,
see Dr Cary Jensen’s “Delphi 5,” also in the August, 1999

Delphi Informant Magazine). One of the frequently men-
tioned new features is frames — similar to compound

components in many ways, but more flexible and dynamic. I
was immediately intrigued with how these frames might com-

pare with the so-called “features” I wrote about in my review of
Nevrona Designs’ RAD tool, Propel (see the July, 1998 of Delphi

Informant Magazine). I learned that although frames are certainly
more powerful than compound components, they are not nearly as
powerful as Propel’s features, which are more flexible. With features
you can manipulate (delete, move, add to) the contained components
without changing the main feature, and you can encapsulate the
behavior of the original components in the composite feature. The
president of Nevrona Designs has informed me that he intends to
release the latest incarnation of Propel, ND-Patterns, as a free tool,
charging only for the source code and technical support. Visit their
Web site at http://www.nevrona.com for more details.

Besides this wonderful assortment of new features and improve-
ments, I am equally impressed with what isn’t in Delphi 5: The bugs
that plagued the release of Delphi 4. Of course, there are bugs —
there are always bugs. But the number and severity seems insignifi-
cant, especially when compared to the last release. This is a direct
result of Inprise obeying the better-late-than-lousy rule.

I agree with my colleagues who’ve praised this release of Delphi. It’s
an outstanding development tool! Further, I predict that if Inprise
continues to exercise such attention to quality and detail, the future
will be bright for Delphi and Inprise.

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical jour-
nals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly sound
and music. You can reach Alan on the Internet at acmdoc@aol.com.

http://www.nevrona.com

	Table of Contents
	Delphi Tools
	FileStream.com Ships InstallConstruct 3.2.1
	Raize Releases Raize Components 2.5
	CoRe Lab Announces ODAC 2.0
	20/20 Offers PC-Install 7
	RightWare, Inc. Announces ARMS 2.0
	Excel Software Announces WinTranslator 2.0.2
	devSoft Releases ICK Version 2.0

	Delphi News
	Inprise Announces New Agreement for VisiBroker
	Inprise Announces Embedded Database Solution with InterBase Version 5.6
	Dale Fuller Outlines Strategy in Support of Application Service Providers
	ICG Announces the Launch of ComputerBookstore.com

	Patterns in Practice
	Uses and Motivation
	Task Control Example
	Defining the ITask Interface
	Defining the Mediator Interface
	Implementing ITask
	The IProcess Class
	The Concrete TProcess Implementation
	The Concrete TTask Implementation
	Conclusion
	References

	Greater Delphi
	VisiBroker CORBA
	Example 1: The Online Auction
	Until Next Month
	Begin Listing One — csrvobj.pas shell
	Begin Listing Two — Implemented csrvobj.pas


	Inside OP
	A Couple of Issues
	Conclusion

	Visual Programming
	Inheritance in Brief
	Mechanics of VFI
	A Quick Example
	VFI under the Hood
	VFI in the Real World
	Conclusion

	Delphi at Work
	Time Zone Information
	Converting between Local Time and Universal Time
	TIMEZONE.EXE
	Conclusion
	Begin Listing One
	Begin Listing Two


	On the 'Net
	XML as Data
	Across the Internet
	Watching Movies
	Generation
	TRecordPageProducer
	Enhancements
	Conclusion
	References

	New & Used
	An Overview
	Parser Scripts
	Conclusion

	File | New

