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Introduction to Communicating and Interpreting Statistical Evidence  

in the Administration of Criminal Justice  

 

0.1 Context, Motivation and Objectives 

Statistical evidence and probabilistic reasoning today play an important and expanding 

role in criminal investigations, prosecutions and trials, not least in relation to forensic 

scientific evidence (including DNA) produced by expert witnesses. It is vital that 

everybody involved in criminal adjudication is able to comprehend and deal with 

probability and statistics appropriately. There is a long history and ample recent 

experience of misunderstandings relating to statistical information and probabilities which 

have contributed towards serious miscarriages of justice. 

 

0.2 English and Scottish criminal adjudication is strongly wedded to the principle of lay fact-

finding by juries and magistrates employing their ordinary common sense reasoning. 

Notwithstanding the unquestionable merits of lay involvement in criminal trials, it cannot 

be assumed that jurors or lay magistrates will have been equipped by their general 

education to cope with the forensic demands of statistics or probabilistic reasoning. This 

predictable deficit underscores the responsibilities of judges and lawyers, within the 

broader framework of adversarial litigation, to present statistical evidence and 

probabilities to fact-finders in as clear and comprehensible a fashion as possible. Yet legal 

professionals’ grasp of statistics and probability may in fact be little better than the 

average juror’s.  

 

Perhaps somewhat more surprisingly, even forensic scientists and expert witnesses, whose 

evidence is typically the immediate source of statistics and probabilities presented in 

court, may also lack familiarity with relevant terminology, concepts and methods. Expert 

witnesses must satisfy the threshold legal test of competency before being allowed to 

testify or submit an expert report in legal proceedings.1 However, it does not follow from 

the fact that the witness is a properly qualified expert in say, fingerprinting or ballistics or 

paediatric medicine, that the witness also has expert – or even rudimentary – knowledge of 

                                                 
1 R v Atkins [2009] EWCA Crim 1876; R v Stockwell (1993) 97 Cr App R 260, CA; R v Silverlock 

[1894] 2 QB 766, CCR. 
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statistics and probability. Indeed, some of the most notorious recent miscarriages of justice 

involving statistical evidence have exposed errors by experts.  

 

There is, in short, no group of professionals working today in the criminal courts that can 

afford to be complacent about its members’ competence in statistical method and 

probabilistic reasoning. 

 

0.3. Well-informed observers have for many decades been arguing the case for making basic 

training in probability and statistics an integral component of legal education (e.g. Kaye, 

1984). But little tangible progress has been made. It is sometimes claimed that lawyers 

and the public at large fear anything connected with probability, statistics or mathematics 

in general, but irrational fears are plainly no excuse for ignorance in matters of such great 

practical importance. More likely, busy practitioners lack the time and opportunities to fill 

in persistent gaps in their professional training. Others may be unaware of their lack of 

knowledge, or believe that they understand but do so only imperfectly (“a little learning is 

a dang’rous thing”2). 

 

0.4. If a broad programme of education for lawyers and other forensic practitioners is needed, 

in what should this consist and how should it be delivered? It would surely be misguided 

and a wasted effort to attempt to turn every lawyer, judge and expert witness (let alone 

every juror) into a professor of statistics. Rather, the objective should be to equip forensic 

practitioners to become responsible producers and discerning consumers of statistics and 

confident exponents of elementary probabilistic reasoning. It is a question of each 

participant in criminal proceedings being able to grasp at least enough to perform their 

respective allotted roles effectively in the interests of justice. 

 

For the few legal cases demanding advanced statistical expertise, appropriately qualified  

statisticians can be instructed as expert witnesses in the normal way. For the rest, lawyers 

need to understand enough to be able to question the use made of statistics or probabilities 

and to probe the strengths and expose any weaknesses in the evidence presented to the 

court; judges need to understand enough to direct jurors clearly and effectively on the 

statistical or probabilistic aspects of the case; and expert witnesses need to understand 

                                                 
2 Alexander Pope, An Essay on Criticism (1711). 
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enough to be able to satisfy themselves that the content and quality of their evidence is 

commensurate with their professional status and, no less importantly, with an expert 

witness’s duties to the court and to justice.3 

 

0.5 There are doubtless many ways in which these pressing educational needs might be met, 

and the range of possibilities is by no means mutually exclusive. Of course, design and 

regulation of professional education are primarily matters to be determined by the relevant 

professional bodies. However, in specialist matters requiring expertise beyond the 

traditional legal curriculum it would seem sensible for authoritative practitioner guidance 

to form a central plank of any proposed educational package. This would ideally be 

developed in conjunction with, if not directly under the auspices of, the relevant 

professional bodies and education providers.  

 

The US Federal Judicial Center’s Reference Manual on Scientific Evidence (2nd edn, 2000) 

provides a valuable and instructive template. Written with the needs of a legal (primarily, 

judicial) audience in mind, it covers a range of related topics, including: data collection, 

data presentation, base rates, comparisons, inference, association and causation, multiple 

regression, survey research, epidemiology and DNA evidence. There is currently no 

remotely comparable UK publication specifically addressing statistical evidence and 

probabilistic reasoning in criminal proceedings in England and Wales, Scotland and 

Northern Ireland.  

 

0.6 In association with the Royal Statistical Society (RSS) and with the support of the 

Nuffield Foundation, we aim to fill this apparent gap in UK forensic practitioner guidance. 

This is the first of four planned Practitioner Guides on aspects of statistical evidence and 

probabilistic reasoning, intended to assist judges, lawyers, forensic scientists and other 

expert witnesses in coping with the demands of modern criminal litigation. The Guides are 

being written by a multidisciplinary team comprising a statistician (Aitken), an academic 

lawyer (Roberts), and two forensic scientists (Jackson and Puch-Solis). They are produced 

under the auspices of the RSS’s Working Group on Statistics and the Law, whose 

membership includes representatives from the judiciary, the English Bar, the Scottish 

                                                 
3 R v B(T) [2006] 2 Cr App R 3, [2006] EWCA Crim 417, [176]. And see CrimPR 2010, Rule 

33.2: ‘Expert’s duty to the court’, reproduced in Appendix B, below. 
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Faculty of Advocates, the Crown Prosecution Service, the National Police Improvement 

Agency (NPIA) and the Forensic Science Service, as well as academic lawyers, 

statisticians and forensic scientists. 

  

0.7 Users’ Guide to this Guide – Some Caveats and Disclaimers 

Guide No 1 is designed as a general introduction to the role of probability and statistics in 

criminal proceedings, a kind of vade mecum for the perplexed forensic traveller; or 

possibly, ‘Everything you ever wanted to know about probability in criminal litigation but 

were too afraid to ask’. It explains basic terminology and concepts, illustrates various 

forensic applications of probability, and draws attention to common reasoning errors 

(‘traps for the unwary’). A further three Guides will be produced over the next three years. 

Building on the foundations laid by Guide No 1, they will address the following more 

discrete topics in greater detail: (2) DNA profiling evidence; (3) networks for structuring 

evidence; and (4) case assessment and interpretation. Each of these topics is of major 

importance in its own right. Their deeper exploration will also serve to elucidate and 

exemplify the general themes, concepts and issues in the communication and 

interpretation of statistical evidence and probabilistic reasoning in the administration of 

criminal justice which are introduced in the following pages. 

 

0.8 This Guide develops a logical narrative in which each section builds on those which 

precede it, starting with basic issues of terminology and concepts and then guiding the 

reader through a range of more challenging topics. The Guide could be read from start to 

finish as a reasonably comprehensive primer on statistics and probabilistic reasoning in 

criminal proceedings. Perhaps some readers will adopt this approach. However, we 

recognise that many busy practitioners will have neither the time nor the desire to plough 

through the next eighty-odd pages in their entirety. So the Guide is also intended to serve 

as a sequence of self-standing introductions to particular topics, issues or problems, which 

the reader can dip in and out of as time and necessity direct. Together with the four 

appendices attached to this Guide, we hope that this modular format will meet the 

practical needs of judges, lawyers and forensic scientists for a handy work of reference 

that can be consulted, possibly repeatedly, whenever particular probability-related issues 

arise during the course of their work.  
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0.9 We should flag up at the outset certain challenges which beset the production of this kind 

of Guide, not least because it is likely that we have failed to overcome them entirely 

satisfactorily. 

 

 First, we have attempted to address multiple professional audiences. Insofar as there is a 

core of knowledge, skills and resources pertaining to statistical evidence and probabilistic 

reasoning which is equally relevant for trial judges, lawyers and forensic scientists and 

other expert witnesses involved in criminal proceedings, it is entirely appropriate and 

convenient to pitch the discussion at this generic level. The successful integration of 

statistics and probabilistic reasoning into the administration of criminal justice is likely to 

be facilitated if participants in the process are better able to understand other professional 

groups’ perspectives, assumptions, concerns and objectives. For example, lawyers might 

be able to improve the way they instruct experts and lead their evidence in court by 

gaining insight into forensic scientists’ thinking about probability and statistics; whilst 

forensic scientists, for their part, may become more proficient as expert witnesses by 

gaining a better appreciation of lawyers’ understandings and expectations of expert 

evidence, in particular regarding the salience and implications of its probabilistic 

character. 

 

We recognise, nonetheless, that certain parts of the following discussion may be of greater 

interest and practical utility to some criminal justice professionals than to others. This is 

another reason why readers might prefer to treat the following exposition and its 

appendices more like a work of reference than a monograph. Our hope is that judges, 

lawyers and forensic scientists will be able to extrapolate from the common core of 

mathematical precepts and their forensic applications and adapt this generic information to 

the particular demands of their own professional role in criminal proceedings. For 

example, we hope to have supplied useful information that might inform the way in which 

a trial judge might assess the admissibility of expert evidence incorporating a probabilistic 

component or direct a jury in relation to statistical evidence but we have stopped well 

short of presuming to specify formal criteria of legal admissibility or to formulate concrete 

guidance that trial judges might repeat to juries. We have neither the competence nor the 

authority to made detailed recommendations on the law and practice of criminal 

procedure. 
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0.10 The following exposition is also generic in a second sense directly related to the preceding 

observations. We hope that this Guide will be widely used in all of the United Kingdom’s 

legal jurisdictions. It goes without saying that the laws of probability, unlike the laws of 

the land, are valid irrespective of geography. It would be artificial and sometimes 

misleading when describing criminal litigation to avoid any reference whatsoever to legal 

precepts and doctrines, and we have not hesitated to mention legal rules where the context 

demands it. However, we have endeavoured to keep such references fairly general and 

non-technical – for example, by referring in gross to “the hearsay prohibition” whilst 

skating over jurisdictionally-specific doctrinal variations with no bearing on probability or 

statistics. Likewise, references to points of comparative law – such as Scots law’s 

distinctive corroboration requirement – will be few and brief. Readers should not expect to 

find a primer on criminal procedure in the following pages. 

 

0.11 A third caveat relates to the nature of the information about probability and statistics that 

this Guide does contain, and it is possibly the most significant and difficult to articulate 

clearly. Crudely stated, the question is: how accurate is this Guide? 

 

 Insofar as accuracy is a function of detail and precision, this Guide cannot be as accurate 

as a textbook on mathematics or forensic statistics. The market is already well-served by 

such publications.4 This Guide necessarily trades a measure of accuracy qua 

comprehensiveness for greater comprehensibility and practical usefulness, with references 

and further reading listed in the Appendices for those seeking more rigorous and 

exhaustive treatments. Our focus will be on the fundamentals of statistical evidence and 

probabilistic reasoning – and the generalisations contained in parts of this Guide are 

presented as mathematically valid generalisations. 

 

Conversely, this Guide grapples with some conceptually difficult and intellectually 

challenging topics, aspects of which need to be expressed through specialist terminology 

and notation. Appendix A provides a glossary of such technical terms, which appear in the 

main text in bold italic. As with the law, we are assuming a non-specialist audience and 

have endeavoured to keep mathematical technicalities to a minimum. That said, it is 

perhaps worth stating at the outset that readers should not expect the following simplified 

                                                 
4 See e.g. Aitken and Taroni (2004); Robertson and Vignaux (1995). 
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account of statistical evidence and probabilistic reasoning in criminal proceedings to be in 

any way simplistic or even simple to grasp in every respect. We take ourselves to be 

addressing a rather rarefied class of “general reader”, comprised of criminal justice 

professionals who have a strong occupational interest, and indeed professional duty, to 

acquaint themselves with the fundamentals of probability and statistics and their 

implications for the routine conduct of criminal litigation. 

 

0.12 “Accuracy”, then, is partly a question of objective facts and partly a function of striking an 

appropriate balance for the purposes at hand between tractable generalisations and 

exhaustive technical detail. It is also a matter of irreducible controversy. Since scientific 

facts are popularly regarded as straightforwardly true or false, this observation requires 

elucidation. 

 

 Assuming the basic axioms of mathematics,  mathematical propositions, theorems and 

solutions are either true or false, deductively valid or invalid. Likewise probabilistic 

calculations are either correct or incorrect. However, like any field of scientific inquiry, 

there remain areas of theory and practice that are subject to uncertainty and competing 

interpretations by specialists. Moreover, even if a particular mathematical result is 

undeniably sound, its potential forensic applications (including the threshold question of 

whether it should have any at all) may be matters of on-going debate and even intense 

controversy between proponents and their critics, who may be adopting different starting 

points and assumptions. 

 

 The following exposition is intended to present “just the essential facts” about statistical 

evidence and probabilistic reasoning in as neutral a fashion as possible. The specific 

issues, formulae, calculations and illustrations we present are meant to function as a kind 

of intellectual toolkit. We attempt to identify and explain the strengths and weaknesses of 

each tool without necessarily recommending its use for a particular forensic job. Whether 

or not readers already do or might in future choose to employ some of these tools in their 

own professional practice, we hope that this Guide will better equip readers to respond 

appropriately and effectively when they encounter other lawyers or scientists freely 

exploiting the statistics and probability toolkit in the course of criminal proceedings.  
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 Where we occasionally deemed it impossible or inappropriate to steer clear of all 

controversy, we have endeavoured to indicate the range of alternative approaches and their 

respective merits. For the avoidance of any doubt, this Guide does not pursue any strategic 

or broader reformist objective, beyond our stated aim of improving the communication 

and interpretation of statistical evidence and probabilistic reasoning in the administration 

of criminal justice. 

 

0.13 This Guide has evolved through countless drafts over a period of several years. It has 

benefited immeasurably from the generous (unpaid) input of fellow members of the RSS’s 

Working Group on Statistics and the Law and from the guidance of our distinguished 

international advisory panel. The Guide also incorporates helpful suggestions and advice 

received from many academic colleagues, forensic practitioners, representative bodies and 

other relevant stakeholders. We are grateful in particular to His Honour Judge John 

Phillips, Director of the Judicial Studies Board, for his advice in relation to criminal 

litigation in England and Wales, and to Sheriff John Horsburgh who performed a similar 

advisory role in relation to Scottish law and practice. Whilst we gratefully acknowledge 

our intellectual debts to this extraordinarily well-qualified group of supporters and friendly 

critics, the time-honoured academic disclaimer must be invoked with particular emphasis 

on this occasion: ultimate responsibility for the contents of this Guide rests entirely with 

the three named authors, and none of our Working Group colleagues or other advisers and 

commentators should be assumed to endorse all, or indeed any particular part, of our text. 

  

We welcome further constructive feedback on all four planned Guides, information 

concerning practitioners’ experiences of using them, and suggestions for amendments, 

improvements or other material that could usefully be included. All correspondence 

should be addressed to: 

Royal Statistical Society 

Chairman of the Working Group on Statistics and the Law,   

12 Errol Street,  

London, EC1Y 8LX 

or by email to c.g.g.aitken@ed.ac.uk, with the subject heading “Practitioner Guide No.1”. 
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Our intention is to revise and reissue all four Guides as a consolidated publication, taking 

account of further comments and correspondence, towards the end of 2013. The latest date 

for submitting feedback for this purpose will be 1 September 2013. 

 

Finally, we acknowledge the vital contribution of the Nuffield Foundation*, without whose 

enthusiasm and generous financial support this project could never have been brought to 

fruition. 

 

Colin Aitken,                   November 2010 

Paul Roberts,  

Graham Jackson. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*The Nuffield Foundation is an endowed charitable trust that aims to improve social well-being in the widest 

sense. It funds research and innovation in education and social policy and also works to build capacity in 

education, science and social science research. The Nuffield Foundation has funded this project, but the 

views expressed are those of the authors and not necessarily those of the Foundation. More information is 

available at www.nuffieldfoundation.org.   
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1. Probability and Statistics in Forensic Contexts 

 

1.1 Probability and Statistics – Defined and Distinguished 

Probability and statistics are overlapping but conceptually quite distinct ideas with their 

own protocols, applications and associated practices. Before proceeding any further it is 

vital to define these key terms, and to clarify the relationships between them. 

 

Most of this report is devoted to analysing aspects of probability, more particularly to 

forensic applications of probabilistic inference and probabilistic reasoning. At root, 

probability is simply one somewhat specialised facet of logical reasoning. It will facilitate 

comprehension to begin with more commonplace ideas of statistics and statistical 

evidence. 

 

1.2 Statistics are concerned with the collection and summary of empirical data. Such data are 

of many different kinds. They may be counts of relevant events or characteristics, such as 

the number of people who voted Conservative at the last election, or the number of drivers 

with points on their licenses, or the number of pet owners who said that their cat preferred 

a particular brand of tinned cat food. Statistical information is utilised in diverse contexts 

and with a range of applications. Economic data are presented as statistics by the 

Consumer Price Index. In the medical context there are statistics on such matters as the 

efficacy of new drugs or treatments, whilst debates on education policy regularly invoke 

statistics on examination pass rates and comparative levels of literacy. 

 

Statistics may also relate to measurements of various kinds. Familiar examples in criminal 

proceedings include analyses of the chemical composition of suspicious substances (like 

drugs or poisons) and measurements of the elemental composition of glass fragments. 

Whilst these sorts of forensic statistics are routinely incorporated into evidence adduced in 

criminal trials, any kind of statistical information could in principle become the subject of 

a contested issue in criminal litigation. These measurements are sometimes known 

generically as ‘variables’, as they vary from item to item (e.g. variable chemical content of 

narcotic tablets, variable elemental composition of glass fragments, etc.). 
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1.3 Probability is a branch of mathematics which aims to conceptualise uncertainty and render 

it tractable to decision-making. Hence, the field of probability may be thought of as one 

significant branch of the broader topic of “reasoning under uncertainty”.  

 

Assessments of probability depend on two factors: the event E whose probability is being 

considered and the information I available to the assessor when the probability of E is 

being considered. The result of such an assessment is the probability that E occurs, given 

that I is known. All probabilities are conditional on particular information. The event E 

can be a disputed event in the past (e.g. whether Crippen killed his wife; whether 

Shakespeare wrote all the plays conventionally attributed to him) or some future 

eventuality (e.g. that this ticket will win the National Lottery; that certain individuals will 

die young, or commit a crime). 

 

The best measure of uncertainty is probability, which measures uncertainty on a scale 

from 0 to 1. In useful symbolic shorthand, x denotes ‘some variable of interest’ (it could 

be an event, outcome, characteristic, or whatever), and p(x) represents ‘the probability of 

x’. An event which is certain to happen (or certainly did happen) is conventionally 

ascribed a probability of one, thus p(x) = 1. An event which is impossible – is certain not 

to happen or have happened – has a probability of zero, p(x) = 0. These are, respectively, 

the upper and lower mathematical limits of probability, and values in between one and 

zero represent the degree of belief or uncertainty associated with a particular designated 

event or other variable. Alternatively, probability can be expressed as a percentage, 

measured on a scale from 0% to 100%. The two scales are equivalent. Given a value on 

one scale there is one and only one corresponding value on the other scale. Multiplication 

by 100 takes one from the (0; 1) scale to the (0%; 100%) scale; division by 100 converts 

back from the (0%; 100%) scale to the (0; 1) scale. 

 

Probability can be “objective” (a logical measure of chance, where everyone would be 

expected to agree to the value of the relevant probability) or “subjective”, in the sense that 

it measures the strength of a person’s belief in a particular proposition. Subjective 

probabilities as measures of belief are exemplified by probabilities associated with 

sporting events, such as the probability that Red Rum will win the Grand National or the 

probability that England will win the football World Cup. Legal proceedings rarely need 

to address objective probabilities (although they are not entirely without forensic 
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applications).5 The type of probability that arises in criminal proceedings is 

overwhelmingly of the subjective variety, and this will be the principal focus of these 

Practitioner Guides. 

 

Whether objective expressions of chance or subjective measures of belief, probabilistic 

calculations of (un)certainty obey the axiomatic laws of probability, the most simple of 

which is that the full range of probabilities relating to a particular universe of events, etc. 

must add up to one. For example, the probability that one of the runners will win the 

Grand National equals one (or very close to one; there is an exceedingly remote chance 

that none of the runners will finish the race). In the criminal justice context, the accused is 

either factually guilty or factually innocent: there is no third option. Hence, p(Guilty, G) + 

p(Innocent, I) = 1. Applying the ordinary rules of number, this further implies that p(G) = 

1-p(I); and p(I) = 1-p(G). Note that we are here specifically considering factual guilt and 

innocence, which should not be confused with the legal verdicts pronounced by criminal 

courts, i.e. “guilty” or “not guilty” (or, in Scotland, “not proven”). Investigating the 

complex relationship between factual guilt and innocence and criminal trial verdicts is 

beyond the scope of this Guide, but suffice it to say that an accused should not be held 

legally guilty unless he or she is also factually guilty. 

 

Mathematical probabilities obeying these axioms are powerful intellectual tools with 

important forensic applications. The most significant of these applications are explored 

and explained in this series of Practitioner Guides. 

 

1.4 The inferential logic of probability runs in precisely the opposite direction to the 

inferential logic of statistics. Statistics are obtained by employing empirical methods to 

investigate the world, whereas probability is a form of theoretical knowledge that we can 

project onto the world of experience and events. Probability posits theoretical 

generalizations (hypotheses) against which empirical experience may be investigated and 

assessed. 

 

                                                 
5 Eggleston (1983: 9) mentions the example of proceedings brought under the Betting and Gaming 

Act 1960, where the fairness of the odds being offered in particular games of chance was in issue. 
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 Consider an unbiased coin, with an equal probability of producing a ‘head’ or a ‘tail’ on 

each coin-toss. This probability is 1 in 2, which is conventionally written as a fraction 

(1/2) or decimal, 0.5. Using “p” to denote “probability” as before, we can say that, for an 

unbiased coin, p(head) = p(tail) = 0.5. Probability theory enables us to calculate the 

probability of any designated event of interest, such as the probability of obtaining three 

heads in a row, or the probability of obtaining only one tail in five tosses, or the 

probability that twenty tosses will produce fourteen heads and six tails, etc. 

 

Statistics, by contrast, summarise observed events from which further conclusions about 

causal processes might be inferred. Suppose we observe a coin tossed twenty times which 

produces fourteen heads and six tails. How suggestive is that outcome of a biased coin? 

Intuitively, the result is hardly astonishing for an unbiased coin. In fact, switching back 

from statistics to probability, it is possible to calculate that fourteen heads or more would 

be expected to occur about once in every 17 sequences of tossing a fair coin twenty times, 

albeit that probability theory predicts that the most likely outcome would be ten heads and 

ten tails if the coin is unbiased. But what if the coin failed to produce any tails in a 

hundred, or a thousand, or a hundred thousand tosses? At some point in the unbroken 

sequence of heads we would be prepared to infer the conclusion that the coin, or 

something else about the coin-tossing experiment, is biased in favour of heads. 

 

1.5 In summary, probabilistic reasoning is logically deductive. It argues from general 

assumptions and predicates (such as the hypothesis that “this is a fair coin”) to particular 

outcomes (predicted numbers of heads and tails in a sequence of coin-tosses). Statistical 

reasoning is inductive. It argues from empirical particulars (an observed sequence of coin-

tosses) to generalisations about the empirical world (this coin is fair – or, as the case may 

be, biased). To reiterate: probability projects itself out onto the empirical world; statistics 

are derived and extracted from it. 

 

1.6 Presenting Statistics 

Statistics that summarise data are often represented graphically, using histograms, bar 

charts, pie charts, or plotted as curves on graphs. Data comprising reported measurements 

of some relevant characteristic, such as the refractive index of glass fragments, are also 

often summarised by a single number, which is used to give a rough indication of the size 

of the measurements recorded.  
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1.7 The most familiar of these single number summaries is the mean or average of the data. 

For the five data-points (counts, measurements, or whatever) 1, 3, 5, 6, 7, for example, the 

average or mean is their sum (1+3+5+6+7) divided by the number of data-points, in this 

case 5. In other words, 22 divided by 5, which equals 4.5.  

 

An alternative single number summary is the median, which is the value dividing an 

ordered data-set into two equal halves; there are as many numbers with values below the 

median as above it. In the sequence of numbers 1, 3, 5, 6, 7, the median is 5. For an even 

number of data points, the median is half-way between the two middle values. Thus for 

the six numbers 1, 3, 5, 6, 7, 8, the median is 5.5. The mean and median are sometimes 

known as measures of location or central values. 

  

A third way of summarising data in a single number is the mode. The mode is the value 

which appears most often in a data-set. One might say that the mode is the most popular 

number. Thus, for the sequence 3, 3, 3, 5, 9, 9, 10, the mode is 3. However, the median of 

this sequence is 5, and the mean is 6. This simple illustration contains an important and 

powerful lesson. Equally valid ways of summarizing the same data-set can produce 

completely different results. The reason is that they highlight different aspects of the data.  

 

1.8 All of these summaries are estimates of the corresponding characteristics (mean, median 

or mode) of the population from which the sample was taken. In order to assess the 

quality of an estimate of a population mean it is necessary to consider the extent of 

variability in the observations in the sample. Not all observations are the same value 

(people are different heights, for example). What are known as measures of dispersion 

consider the spread of data around a central value. One such measure which is frequently 

encountered in statistical analysis is the standard deviation. The standard deviation is 

routinely employed in statistical inference to help quantify the level of confidence in the 

estimation of a population mean (i.e. the mean value in some population of interest). It is 

calculated by taking the square root of the division of the sum of squared differences 

between the data and their mean by the sample size minus one. Large values for the 

standard deviation are associated with highly variable or imprecise data whereas small 

values correspond to data with little variability or to precise data. At the limit, if all 

observations are equal (e.g. every observation is 2), their mean will be equal to each 
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observation (the mean of any sequence of observed 2s is 2). By extrapolation, the 

differences between each observation and the mean will be zero in every case and the 

standard deviation will be zero.  

  

To illustrate: consider the sample (set of numbers) 1, 3, 5, 7, 9. The sample size is 5 (there 

are five members of the sample) and the mean is 5 (1+3+5+7+9 =25; 25/5 = 5). The 

standard deviation is calculated as the square root of  

[{(1-5)2 + (3 -5)2 + (5-5)2 + (7-5)2  + (9-5)2}, divided by 4] 

which is the square root of  

(16 + 4 + 0  + 4 + 16)/4 = 40/4 = 10. 

The square root of 10 is 3.16, which is the standard deviation for this sample set. 

 

By way of contrast, compare the sample (set of numbers) 3, 4, 5, 6, 7. This sample 

likewise has five members and a mean of 5. However, the standard deviation is much 

smaller. It is the square root of  

[{(3-5)2 + (4 -5)2 + (5-5)2 + (6-5)2  + (7-5)2}, divided by 4] 

 which is the square root of  

(4 + 1 + 0  + 1 + 4)/4 = 10/4 = 2.5. 

 Thus, the standard deviation is the square root of 2.5 = 1.58. The smaller value for the 

standard deviation of the second set of numbers reflects reduced variability (illustrated by 

the reduced range within which the numbers all fall) in comparison to the first sample set. 

   

1.9 Statistical Method – Sampling and Confidence Levels 

  Statistics relate to a designated “population” of relevant events, individuals, characteristics 

or measurements, etc. Data collection and analysis encompassing every member of a 

population of interest (an entire set or “census”) need not involve probabilistic reasoning 

at all. However, statistics derived from a sample of a larger population can support 

inferences about the general population only on the basis of probabilistic reasoning. 

 

 Suppose that we wish to survey judicial attitudes regarding the reforms of English hearsay 

law introduced by the Criminal Justice Act 2003. The relevant population is therefore 

serving judges in England and Wales. Ideally, we might canvass the attitudes of every 

single judge through a well-designed questionnaire or interview schedule. Having 

conducted this research project we might discover, say, that overall 73% of judges are in 
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favour of the reforms, but that 80% think they are too complex whilst 14% believe that we 

would have been better off leaving the old common law unreformed. There is nothing 

probabilistic about these statistics, because every member of the relevant population was 

included in the survey (and by redefining “relevant population”, probabilistic calculations 

could still be avoided without conducting a comprehensive census, e.g. “25% of the 

twenty judges we interviewed thought that…”).  

  

 More typically, it is impractical to interview every member of a relevant population and 

insufficiently rigorous simply to interview an arbitrary subset without any consideration of 

the methodological implications. Resort to some kind of sampling process is consequently 

almost inevitable.  

 

1.10 Ideally, a good sample is constituted by a “random sample” of the target population, i.e. 

that group of individuals about whom information is sought. In a random sample, every 

member of the target population has an equal probability of being selected as part of the 

sample. One must ensure that the population from which the sample is taken (the sampled 

population) actually is the target population. Imagine an opinion survey for which the 

target population is all undergraduates at a particular university. Neither a sample of those 

students arriving at the university library when it opens on a Monday morning, nor a 

sample of those students propping up the Union bar at 10.00 p.m. on a Saturday night 

would successfully match the sampled population to the target population. Sometimes a 

target population may usefully be divided into sections known as strata defined by 

relevant characteristics of interest (in a survey to determine whether the population 

supports a new law concerning sex discrimination one might wish to stratify by gender 

 to ensure that the views of men and women are  represented in proportion to their 

fractions of the population). A stratified sample contains suitable proportions from each 

pertinent stratum of the target population.  

 

In practical contexts, including forensic science and criminal litigation, it is often 

impossible to identify existing random samples or to generate new ones, stratified or 

otherwise. Instead, resort must be had to convenience samples, that is, samples 

conveniently to hand. Diamond (2000) calls these data sets “nonprobability convenience 

samples”, underlining their acknowledged lack of randomness. Convenience samples 

might be, for example, “all glass fragments examined in this particular laboratory over 
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the last five years” or “every shoe-mark comparison that I have seen in my career”. The 

methodological robustness of convenience samples and the legitimacy of their forensic 

applications are perennially debated. Evett and Weir (1998, 45) comment that “every case 

must be treated according to the circumstances within which it has occurred, and… it is 

always a matter of judgement…. In the last analysis, the scientist must also convince a 

court of the reasonableness of his or her inference within the circumstances as they are 

presented as evidence”. 

 

1.11 One form of inference from sample data to a general population is known as estimation. 

For example, we might seek to estimate the proportion of all judges in favour of the CJA 

2003’s hearsay reforms by interviewing a sample of judges. The reliability of any such 

estimate depends on the appropriateness and robustness of the sampling method 

employed. A carefully constructed random sampling of, say, 10% of all trial judges in 

every Crown Court is likely to produce more reliable data – i.e., is likely to be more 

representative of the population as a whole – than taking a straw poll of the first three 

judges one happens to encounter in the precincts of the Royal Courts of Justice.  

 

1.12 Statisticians employ probabilistic formulae to measure levels of uncertainty associated 

with particular estimates. Uncertainty is often expressed in terms of “confidence levels”. If 

a sampling procedure produces a particular statistic – e.g. that 75% of judges polled on 

balance support the CJA 2003’s hearsay reforms – how confident can one be that this 

result is truly representative of the opinions of the entire population of judges? (Recall that 

the result of our imaginary census of all judges was a 73% approval rating.) Our random 

sample might have accidentally included judges with more extreme, or more moderate, 

opinions than their judicial colleagues. Inclusion of these “outliers” would skew our data – 

but ex hypothesi we do not know whether the 75% statistic derived from our sample over- 

or under-estimates judicial enthusiasm for the CJA 2003, or is in fact truly representative 

of the opinions of the entire population of trial judges. 

 

 By reference to the size of the sample as a proportion of the entire population of interest 

(in our example, trial judges in England and Wales) and making certain assumptions about 

variability in responses, it is possible to calculate confidence intervals for the percentage 

of CJA-supporting judges across the entire population. We know before conducting any 

survey that the true percentage of judges who favour the CJA 2003’s hearsay reforms must 
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logically lie somewhere between 0% and 100%. We could say that we are 100% confident 

that the true statistic will lie in this range. As the statistical range narrows, our confidence 

level will diminish. Taking the 75% judicial approval rating as our datum, we can be more 

confident that the true figure is within the range 75% plus or minus 10% (i.e., the range 

65% - 85%) than in the smaller range 75% plus or minus 2% (i.e., the range 73% - 77%).  

 

1.13 Statisticians routinely combine the sample mean (the mean value for the sample) with the 

sample standard deviation to calculate intervals known as confidence intervals within 

which the population mean (the mean value for the entire population) lies with a certain 

level of confidence. In this context, “confidence” resembles a probability (although its 

epistemological status is quite different). Confidence levels are usually expressed as a 

percentage between 0% and 100%. The wider the interval, the greater confidence one has 

that the stated confidence interval contains the population mean. Confidence intervals are 

simply a way of representing uncertainty in estimating the population mean. 

 

The only way to be 100% confident that the interval contains the population mean is to 

make the interval infinitely wide. This is a logical consequence of uncertainty, which can 

only be (theoretically) eliminated by including every possible value within the interval.  

Fortunately, we can construct very short intervals with very high degrees of confidence 

such as 95% or 99%, which are the “gold standard” in social science research and 

elsewhere. Results falling outside these confidence levels are declared statistically 

significant.  

 

However, confidence intervals and related judgements of statistical significance are not 

appropriate measures of the value of evidence in criminal proceedings, for several 

important reasons. First, the selection of a confidence level is subjective and arbitrary. 

Why 95%? Why not 99% or 99.9%, or for that matter 75% or 70%? Levels of confidence 

which are conventionally regarded as satisfactory in social science research have no 

bearing on the level of confidence ideally required for epistemically warranted verdicts in 

criminal proceedings. Secondly, employing categorical levels of confidence leads to 

evidence “falling off a cliff” – i.e., it is excluded entirely - if it falls outside the chosen 

confidence interval, even by a tiny margin. Evidence which may be highly probative 

within the stated confidence interval is arbitrarily allotted a value of zero if a small change 

takes it outside that (arbitrarily chosen) confidence interval. Whatever the merits for social 
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science in proceeding in this fashion, it is plainly unsatisfactory for evidence to be allowed 

to “fall off a cliff” in criminal proceedings, especially when it is recalled that assessments 

of statistical significance are merely a way of representing variation in data. Consequently, 

the fact that a particular estimate falls outside one’s preferred confidence interval does not 

necessarily mean that this result is uninteresting or provides an inaccurate measure of real 

world events which are themselves subject to natural variation.  

 

1.14 Statistical Evidence and Inference 

Statistical inference is the science of interpreting data in order to improve our 

understanding of events in the world, which in turn may contribute to evidence-based 

public policy-making. For example, statistical inference from meteorological data might 

help us to understand climate change and to develop more successful strategies for dealing 

with it. There is an obvious affinity between statistical inference employing probabilistic 

reasoning (i.e. reasoning employing probabilities) and criminal adjudication, which is also 

a form of “reasoning under uncertainty” – we do not know whether the accused is guilty or 

innocent, and the trial is meant to resolve that issue in a publicly acceptable fashion and to 

translate it into an appropriate legally-sanctioned verdict.  

 

1.15 It is useful, where possible, to be able to measure uncertainty about issues such as guilt or 

innocence, so that one can compare levels of uncertainty for different events or different 

pieces of evidence. One might compare, for example, the probability that the accused is 

guilty, in light of the evidence adduced at trial – conventionally denoted p(G|E) (“the 

probability of Guilt, given the Evidence”); and p(I|E), the probability of innocence, given 

the evidence. These are illustrations of the conditionality of specific probabilities to which 

reference has already been made. The probability of the event of interest – guilt or 

innocence – is conditioned on (assumes) the evidence adduced at trial. Note the use of the 

vertical bar | to denote conditioning: to the right of the bar is the assumed known (here E, 

the evidence); to the left of the bar is the uncertain variable for which a probability is 

being calculated. In relation to fact-finding in criminal proceedings, this will often be G, 

guilt; or I, innocence. Since it is certain that the accused is either factually guilty or 

factually innocent (there is no third option), p(G|E) + p(I|E) = 1 (meaning that the 

probability of Guilt, given the Evidence; plus the probability of Innocence, given the 

Evidence, logically exhausts the range of all eligible possibilities). 
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Here, uncertainty is a measure of belief in the truth of the matter at issue (e.g. guilt or 

innocence). The more strongly it is believed that the accused is guilty, the closer that p(G) 

will approximate to one. In the criminal justice context, the fact-finder’s beliefs are 

ultimately decisive. Note that, whilst the accused is either factually guilty or not (there is 

no third option), the measure of one’s belief in each of the two possible alternatives can be 

represented by two probabilities taking any value between zero and one. Where there are 

two exhaustive and mutually exclusive possibilities, the probability of one can always be 

calculated if the other is known, e.g. p(G) = 1-p(I); and vice versa, p(I) = 1-p(G). 

Empirical events are never absolutely certain, however, so they can only ever approximate 

one (true) or zero (false). This is just another way of saying that reasoning about empirical 

events is always, irremediably, reasoning under uncertainty. 

 

1.16 Statistical information may be directly relevant to the matters in issue in criminal 

proceedings, e.g. in assessing levels of risk involved in particular activities such as driving 

or operating hazardous machinery. If we wish to know whether the accused was reckless 

or negligent in causing injury to the victim it is pertinent to know the background or “base 

rate” level of risk for that particular activity. If accidents of a particular sort happen all the 

time, it is so much less likely that the accused was culpably negligent on this occasion. 

(Base rates are further discussed in section 2(d), below.) 

 

1.17 Statistics are also a useful way of summarising and presenting pertinent information in 

legal proceedings. For example, large spreadsheets of data may conveniently be 

summarised in tables or displayed graphically, and this is entirely appropriate provided 

that such “demonstrative evidence” is properly understood and that its probative value is 

competently evaluated. 

 

1.18 As well as contributing items of evidence in the form of statistics, statistical methods can 

also be employed to interpret data and to evaluate evidence. Examples that might well be 

encountered in criminal litigation include:  

 

• Reliance on statistical evidence of the quantities of drugs on banknotes, to help the 

fact-finder to assess – relying on an expert’s statistical analysis – whether the 

banknotes are associated with drug dealing (where the quantities of drugs detected 

are greater than what might be expected for banknotes in general circulation).  
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• Reliance on statistical evidence comparing the chemical compositions of drugs 

from two different seizures, to help the fact-finder to assess – relying on an 

expert’s statistical analysis – whether the seized items originated from the same 

source.  

 

• Reliance on statistical evidence concerning the occurrence of sudden unexplained 

infant death (in the general population, or amongst families with particular 

characteristics), to help the fact-finder to assess – relying on an expert’s statistical 

analysis – whether the occurrence of multiple deaths in any one family should be 

treated as suspicious. 

 

In each of these illustrations (and countless others that might have been given) statistics 

are being used, not merely as data with evidential significance for resolving disputed facts 

which could conceivably be adduced in court as expert evidence, but also as a basis for 

drawing further inferential conclusions the adequacy of which can be assessed by 

employing statistical methods and probability theory. Insofar as expert testimony 

incorporates such statistical or probabilistic reasoning, those experts who produce the 

evidence, those lawyers who adduce and test it, and those judges and fact-finders who 

evaluate it all need to grasp the rudiments of statistical inference at a level appropriate to 

their allotted roles in criminal litigation. 

 

1.19 It is useful to distinguish between two types of sample which typically feature in the 

evaluation of scientific evidence in criminal proceedings. Unfortunately, there is no 

standard or agreed terminology to express the relevant distinction, which is between (i) 

samples of known origin and (ii) samples of unknown origin relative to an issue in the 

case. A sample of unknown origin can be described as the recovered sample or the 

questioned sample, whereas samples of known origin are often described as the control 

sample or reference sample. The issue is not where the sample came from, since samples 

taken from a crime scene (or victim, or abandoned vehicle, etc.) could be either recovered 

or control samples, depending on the issue being addressed. The objective is normally to 

link physical traces associated with an offence to the perpetrator, but sometimes this 

involves working from samples deposited by an unknown donor at the crime scene or on a 
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victim, etc, and sometimes working in the opposite direction, from samples known to be 

associated with a suspect or victim which can be linked back to the crime scene or suspect, 

etc.  

 

For example, fragments of glass collected by an investigator from a broken window at the 

scene of the crime would be a control sample if the question is: does glass found on the 

suspect’s clothing come from the broken window at the scene of the crime? The origin of 

the fragments is known to be the window. Similarly, a DNA swab taken from a suspect is 

a control sample as the origin of the profile is known to be the suspect. Suppose in the first 

case a suspect is found and fragments of glass are recovered from his clothing. These 

fragments are a recovered sample, since their origin is unknown: it may or may not be the 

window at the crime scene. Suppose in the second case a DNA profile is obtained from a 

blood stain at the crime scene. This is also a recovered sample of unknown origin. It may 

have come from the suspect, innocently or otherwise, or it may have come from another 

person entirely.   

 

The control/reference sample may have been taken from a crime scene, victim or suspect.  

Conversely, a recovered/questioned sample might equally derive from any of these 

sources. Samples are categorised according to the unknown factor the forensic scientist is 

seeking to investigate, rather than by reference to their physical location and provenance. 

 

1.20 Finally, statistical methods may be utilised to generate new data with forensic applications 

(although this may be relatively rare in routine forensic science practice). The first task is 

to define the forensic problem, which initially confronts investigators and is ultimately 

determined by jurors in contested criminal trials, e.g., have banknotes recovered from the 

accused been used in drug dealing activity?6 A determination is then made as to what 

information is relevant (e.g. to what extent are banknotes in general circulation 

contaminated with traces of illegal substances?) and this in turn allows the investigator to 

assess how a reliable sample might be generated in order to produce new data supporting 

sound inferential conclusions.  

 

                                                 
6 Cf. R v Benn and Benn [2004] EWCA Crim 2100, discussed in §2.22, below. 
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1.21 We are now beginning to glimpse the power and variety of the potential applications of 

statistical inference in the administration of criminal justice. It must be stressed, however, 

that statistical inferences are ultimately only as good as their underlying data, which in 

turn depends upon (1) the appropriateness of the research design (including sampling 

methodology) and (2) the integrity of the processes and procedures employed in data 

collection. Conversely, if data-collection was sloppy and incomplete or samples were 

poorly chosen, the validity of the inferences drawn from statistical data may be seriously 

compromised. 

 

1.22 When statistics are being presented and interpreted in forensic contexts (or for that matter, 

in any other context), there are always two principal dimensions of analysis to be borne in 

mind: 

 

(i) Research methodology and data collection: Do statistical data faithfully 

represent and reliably summarise the underlying phenomena of interest? Do 

they accurately describe relevant features of the empirical world? 

 

(ii) The (epistemic) logic of statistical inference: Do statistical data robustly 

support the inference(s) which they are said to warrant? Is it appropriate to rely 

on particular inferential conclusions derived from the data? 
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2. Basic Concepts of Probabilistic Inference and Evidence 

 

2.1 The first sections of this Guide have discussed statistics and statistical evidence in a 

general way, and introduced some elementary features of probability, including basic 

notation. In this section and the next we undertake a more systematic and detailed 

examination of probabilistic reasoning in criminal proceedings. 

 

2.2 The starting point for thinking about information which is statistical or presented in the 

form of a probability is exactly the same as the starting point for interpreting evidence of 

any kind. The essential issue is: what does the evidence mean? The meaning of evidence is 

a function of the purpose(s) for which it was adduced in the proceedings, which in turn are 

defined by the issues in the case. 

 

In the context of criminal adjudication, the interpretation of evidence has two principal 

dimensions. First, the judge must assess whether the evidence is legally admissible. 

Evidence is admissible if (and only if) it is (i) relevant and (ii) not excluded by an 

applicable exclusionary rule (such as the hearsay prohibition, rules excluding unfairly 

prejudicial bad character evidence, or prosecution evidence inconsistent with the demands 

of a fair trial). Secondly, the fact-finder (jurors or magistrates) must assess the probative 

value of the evidence. This involves determining how the evidence combines with other 

evidence in the case to support or undermine the prosecution’s allegations or the accused’s 

counterclaims. Relevance and probative value are both derived from the logic of inductive 

inference. Relevant evidence is that which, as a matter of logic and common sense, has 

some bearing on a fact in issue in the proceedings.7 The same point can be expressed in 

terms of probability.8  

 

                                                 
7 “[T]o be relevant the evidence need merely have some tendency in logic and common sense to 

advance the proposition in issue”: R v A [2002] 1 AC 45, [2001] UKHL 25, [31] per Lord Steyn. 

8 Cf. James Fitzjames Stephen, A Digest of the Law of Evidence (Stevens, 12th edn, 1948), Art. 1: 

“any two facts to which [relevance] is applied are so related to each other that according to the 

common course of events one either taken by itself or in connection with other facts proves or 

renders probable the past, present or future existence or non-existence of the other”. 
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Evidence is either relevant or irrelevant, legally speaking. There is no middle ground. 

Probative value (or the “weight” of the evidence) is the measure of the extent to which 

relevant evidence contributes towards proving, or disproving, a fact in issue. This is a 

matter of degree. 

 

2.3 Statistical evidence will be relevant and potentially admissible in English criminal 

proceedings just insofar as it helps to resolve a disputed fact in issue. Probabilistic 

reasoning will be useful or even indispensable in criminal proceedings if it is needed to 

interpret statistical evidence or is otherwise a feature of logical inference and common 

sense reasoning. In order to interpret and evaluate statistical evidence and to assess the 

adequacy of any probabilistic inferences which the evidence is said to support, criminal 

justice professionals need to be familiar with a handful of key concepts that statisticians, 

forensic scientists, and other expert witnesses use to express probabilities and statistical 

data. These key concepts include: 

(a) (absolute and relative) frequencies; 

(b) likelihood of the evidence; 

(c) the likelihood ratio; 

(d) base rates for general issues (prior probabilities); 

(e) posterior probabilities; 

(f) Bayes’ Theorem; and 

(g) independence. 

 

This section will explain and illustrate each of these key concepts in turn. It is perhaps 

worth reiterating that we are not necessarily advocating any of these approaches to 

conceptualising evidence and inference in criminal adjudication. It is often possible to 

arrive at particular inferential conclusions simply by applying inductive logic and 

“common sense” reasoning without needing to resort to mathematical formulations or 

consciously-articulated probability calculations. Our aim in describing the intellectual 

tools examined in this section is to make them more readily accessible to readers who 

might wish to use them and – no less importantly – to help judges, lawyers and forensic 

scientists monitor, interpret, evaluate and challenge their use by other professionals in the 

course of criminal proceedings. Section 3 of this Guide extends and reinforces the 

exposition by identifying common errors (“traps for the unwary”) and explaining how to 

avoid them. 
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2.4 (a) Frequencies, relative and absolute 

Frequencies are counts of observed events, characteristics or other phenomena of interest 

to any inquiry. They answer the question: how often does x occur? Considered in 

isolation, such counts produce absolute frequencies. However, it is often more useful to 

ascertain relative frequencies, that is, frequencies relative to a repeated number of 

observations (e.g. the frequency of rolling a “6” relative to the number of times a six-sided 

die is rolled). The relative frequency is the number of occurrences of a feature of interest 

(“rolling a six”; “drawing an ace from a pack of playing cards”; “finding another person 

with the same DNA profile”; or whatever), divided by the total number of times the 

process is repeated. 

 

In the forensic context, stated frequencies normally relate to the occurrence of case-

specific evidence, whereas frequencies for the occurrence of issues are usually described 

as base rates. We will have more to say about base rates in due course (§2.16 – §2.18). 

 

2.5 Frequencies can be illustrated by imagining a roulette wheel with thirty-seven slots, 

numbered 0-36 in the standard pattern. Consider an experiment (or “trial”, in the non-legal 

sense) in which the wheel is spun 1,000 times and the slot on which the ball lands each 

time is recorded. The number of times on which the ball lands on a particular slot is the 

absolute frequency for the number corresponding to that slot. Division of the absolute 

frequency by 1,000 (the number of spins) gives that slot’s relative frequency. Similar 

observed frequencies (absolute and relative) can be recorded for each slot. Relative 

frequencies are often reported as percentages.    

 

For example, in 1,000 spins the ball might be observed to come to rest in the slot 

numbered one (“slot no.1”) 35 times. This is a relative frequency of 3.5% (35 divided by 

1,000). In a fair wheel the ball is equally likely to come to rest in any one of the 37 slots, 

so the expected number of times the ball would come to rest in slot no.1 is one out of 

every 37 spins, or 1/37 = 2.7%. Statistical methods can then be used to assess the 

implications (if any) of this evidence of an observed relative frequency of 3.5% in 1,000 

spins against a hypothesis that the wheel is fair with an expected relative frequency of 

2.7%. One might want to determine, for example, whether the wheel is fair or biased. 
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2.6 Assessing the adequacy of an inference is never a purely statistical matter in the final 

analysis, because the adequacy of an inference is relative to its purpose and what is at 

stake in any particular context in relying on it. A gambler might treat an observed 

frequency of 3.5% relative to an expected frequency of 2.7% as sufficient reason for 

putting his money on no.1, but this discrepancy would not warrant a criminal trial jury 

drawing the inference that the casino owner is guilty of cheating with a biased roulette 

wheel. In fact, according to probabilistic calculation, one should expect at least 35 slot 

no.1s in 1,000 spins about once in every 13 sequences of 1,000 spins. The ultimate 

inferential conclusion that the evidence proves the accused’s guilt beyond reasonable 

doubt or so that the fact-finder is “sure” is never based solely on the probability of any 

event; not least because fact-finding in criminal adjudication involves normative issues of 

juridical classification and moral reasoning (Roberts and Zuckerman, 2010: 133-37). 

However, the inference of guilt beyond reasonable doubt might well be supported – even 

very strongly supported – by statistical analysis of relevant data and probabilistic 

reasoning employing absolute or relative frequencies, where the probability of obtaining 

particular data (evidence) purely by chance is exceedingly small (unlikely, “beyond 

reasonable doubt”). Imagine, for example, that the accused claimed to have won the 

National Lottery jackpot five weeks on the trot or that all three of his bigamous wives on 

whom he had taken out life insurance accidentally drowned in the bath.9 At some point in 

the story, “pure coincidence” as an explanation of apparently incriminating circumstances 

ceases to retain much plausibility – though it is vital to remember that certain kinds of 

evidence are prone to replicated error (e.g. a string of eyewitnesses might all misidentify 

an innocent person as the culprit because she does in fact resemble the real offender). 

 

2.7 Spinning a roulette wheel 1,000 times represents a sample subset of the conceptually 

infinite population of all possible spins of the wheel. The observed frequency of 3.5% is 

correspondingly an estimate of the true (relative) frequency of the no.1 slot for that wheel, 

just as a straw poll of voters attempts to sample the voting intentions of the entire 

electorate. Successive repetitions of 1,000 spins of the wheel (repeat sampling) would 

almost certainly produce different estimates of the true frequency. This gives rise to some 

complex issues of sampling, which are addressed in technical Appendix B. 

 

                                                 
9 R v Smith (George Joseph) (1916) 11 Cr App R 229, CCA. 
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What is known as the “error” in the estimate is a measure of the differences in the 

estimates produced by repeat sampling, such as repeated experimental trials  each 

comprising 1,000 spins of a roulette wheel. “Error” here is specialist statistical 

terminology, not to be confused with the commonplace notion of making mistakes. It is 

not a “mistake” when the roulette wheel produces three slot no.1s on the trot, though this 

might not be a very good sample from which to generalise because it is so small. For 

statisticians, “error” models the natural variation in measurements or counts of empirical 

phenomena, such as spinning a roulette wheel and recording where the ball lands. Error 

helps to relate the sample to the population. The error can be determined statistically, and 

this will give us a measure of the quality or “precision” of the estimate. If the precision of 

the estimates for every slot were calculated over a series of experimental trials, the 

strength of the evidence supporting the proposition that the wheel is biased could also be 

calculated. Note that knowledge of the total number of spins (sample size) is essential in 

order to assess the precision of an estimate. A trial involving 1,000 spins will produce 

more precise estimates than a trial involving 100 spins, but less precise estimates than a 

trial involving 10,000 spins of the wheel. Likewise, an inferential conclusion about the 

fairness or bias of the wheel will be more reliable if it is based on frequencies with 

calculated measures of precision for all thirty-seven numbers, and not just for the no.1 

slot. All else being equal, more data lead to sounder inferences (although no amount of 

bad data – e.g. those derived from poorly designed experiments or inappropriate samples – 

will ever reliably warrant inferential conclusions). 

 

2.8 Relative frequencies may in principle be calculated for any population of items, perhaps 

conceptually unbounded by size. The items might be each individual spin of a roulette 

wheel or roll of a die, or types of glass, footwear marks, bloodstain patterns, or DNA 

profiles – relative to, respectively, all spins of the wheel, all rolls of the die, all types of 

glass seen in a particular laboratory, all types of footwear seen in a laboratory, all 

bloodstain patterns observed over a period of time, or all DNA profiles in some defined 

population.  

 

Relative frequencies always state or assume that there is some reference sample against 

which the frequency of the event in question may be assessed. A further assumption is that 

this comparison is illuminating and salient for the task in hand. In the context of criminal 

proceedings, for example, one would expect that a relative frequency would be capable of 
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supporting an intermediate inference about the strength of evidence bearing on disputed 

facts, leading to the ultimate inference that the accused is innocent or guilty. Nonetheless, 

there is ample scope for debating the generation of appropriate and meaningful reference 

samples, and this has occasionally become a bone of contention in criminal appeals.10 

 

2.9 Relative frequencies are routinely included in scientific evidence adduced in criminal 

proceedings. For example, an expert report might contain statements resembling the 

following: 

 

• “The glass submitted for analysis is seen in approximately 7% of reference glass 

exhibits examined in this laboratory over the last 5 years.” 

 

• “Footwear with the pattern and size of the sole of the defendant’s shoe occurred in 

approximately 2% of burglaries.”  

 

• “In one survey of men’s clothing, bloodstaining of the quantity and in the pattern seen 

on the defendant’s jacket has been found to occur in 1% of jackets inspected in this 

laboratory.”  

 

It is vital for judges, lawyers and forensic scientists to be able to identify and evaluate the 

assumptions which lie behind these kinds of statistics. The value of the evidence cannot be 

ascertained unless its meaning is properly understood. For each of these three examples, 

the size of the reference sample needs to be considered (the actual number of glass 

samples examined by the relevant laboratory in the last five years; the number of 

burglaries from which the 2% statistic was derived; the number of jackets in the survey of 

men’s clothing) . 

 

2.10 One might begin by querying the appropriateness of the reference samples. In relation to 

the first statement, for example: How were the reference glass exhibits selected? Were 

                                                 
10 R v Benn and Benn [2004] EWCA Crim 2100 (employing database of banknotes collected from 

the Bank of England as a reference sample for banknotes in general circulation); R v Dallagher 

[2003] 1 Cr App R 12, CA (earprint expert’s database comprised a personal collection of about 

600 hundred photographs and 300 earprints).  
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they just those deriving from criminal investigations? Are glass samples from the 

catchment area of the laboratory relevant to the current investigation? How, if at all, does 

the frequency of occurrence of glass types examined in a forensic science laboratory help 

to evaluate a “match” (whatever that means) between glass fragments found on the 

clothing of a suspect and glass recovered from a crime scene? Evidence reporting a 

comparison of the elemental compositions of glass fragments from a crime scene and from 

a suspect’s clothing will be conditioned on various factors, such as the precise location 

from which fragments were recovered (e.g. the surface of an item of clothing).  

 

Likewise in relation to the second statement, one might ask whether the appropriate 

reference sample should be limited to footwear marks from burglaries. Do burglars prefer 

particular kinds of footwear? Do footwear sole patterns differ from year to year? They 

presumably do for men and women, and between age groups. Might a better reference 

sample be constructed from sales data from leading retailers?  Production or sales figures 

data may be adduced in evidence in criminal proceedings as proxies for relative frequency 

of occurrence , e.g. “Between April 2005 and March 2007, 10,000 pairs of shoes of the 

same sole pattern and size as the defendant’s shoes were sold in 10 outlets in the North of 

England”. This example deliberately highlights many of the assumptions that may be 

embedded in such data. What is the relevance of the specified dates? Why only in the 

North of England (do people never travel to buy shoes?) And what percentage of the entire 

market has been cornered by those 10 outlets? (Is it 10 outlets out of 12, or out of fifty?) 

The adequacy of a reference sample might be challenged on any or all of these grounds. 

Unless footwear marks taken from burglaries constitute a perfectly representative sample 

of footwear ownership amongst the general population (which seems rather unlikely and 

anyway cannot simply be assumed), choosing an alternative reference sample will produce 

a different relative frequency. So the construction and selection of reference samples could 

have a major bearing on the way in which statistical evidence is presented and interpreted. 

Experts in particular fields may be willing and able to advise on the relative strengths and 

weaknesses of particular reference samples, or may operate with their own assumptions. 

Ultimately, however, it is for the legal system to determine whether such data adequately 

support particular inferences for the purposes of criminal adjudication. 

 

2.11 The selection of items submitted to the laboratory for analysis also involves a sampling 

process amenable to statistical evaluation. For example, a scene of crime officer (SOCO) 
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or forensic scientist will not submit for scientific analysis every fibre, glass fragment, or 

blood droplet identified at a crime scene, but will instead make selections of samples to be 

tested. Any sampling process introduces a risk that the sample will be skewed and 

unrepresentative, but non-randomized samples of this kind require particularly careful 

scrutiny. (For obvious reasons, such samples are sometime referred to as convenience 

samples, but this terminology is not employed consistently and forensic scientists may 

reserve the term for more systematically collected data as opposed to crime-scene 

samples). As we have seen, the precision of an estimate can be determined statistically, 

and may be affected by, amongst other things, the size of the sample. If a desirable level 

of precision is specified in advance, the sample size can be determined accordingly (e.g. 

forensic chemists can specify how many tablets of a questioned substance need to be 

submitted for chemical analysis out of the entire consignment of tablets seized by customs 

officials), though care must always be taken in specifying the precise nature of the 

inference drawn from any non-random sample. 

. 

Notice, again, that statistical reasoning is involved at two discrete stages of this evidential 

process. First, we can ask how representative of the entire population of items is the 

sample of items submitted for analysis, e.g. how representative is the sample of glass 

tested at the laboratory of all the glass pieces that were present at the scene from the 

broken window? If the answer to this question is or may be “not very”, any inferences 

drawn from the evidence produced by the test will be correspondingly weakened, 

ultimately to vanishing point. Secondly, assuming that the tested items constitute a 

representative sample of the glass in the broken window, the evidential significance of 

finding matching fragments of glass on the suspect’s clothing must still be assessed. What 

is the probative value of this finding, for example, if the matching fragments represent a 

specified percentage of a designated reference sample, such as “7% of reference glass 

exhibits examined in this laboratory over the last 5 years”? 

 

2.12 Finally, observe that our illustrative statements employ vague concepts such as “pattern” 

and “quantity” the meaning of which is not self-evident. When is a series of marks a 

“pattern”? How precise is the measure of “quantity”? Moreover, what is the relationship 

(if any) between quantity, pattern and activity, e.g. between blood spatter and violent 

assault? The value of the evidence adduced in any particular trial cannot be determined 

satisfactorily unless and until these matters are clarified. 
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2.13 (b) Likelihood of the evidence 

Statisticians and forensic scientists sometimes use the phrase “the likelihood of the 

evidence”. This is shorthand for “the likelihood of finding the evidence in the context of 

the crime scene and the environment of the suspect” (or its contextual equivalents). 

References to “likelihood” in this context are often synonyms for “probability”. For 

example, the conclusion that “it is very likely that this correlation would be seen if the 

suspect were guilty” is equivalent to saying that “there is a high probability that this 

correlation would be seen if the suspect were guilty”. 

 

An expert’s assessment of the likelihood (or probability) of obtaining particular findings 

should be based on data relevant to the type of evidence in question.  

Relevant “data” are of different types. Towards the harder end of the spectrum, experts 

may be able to draw on extensive surveys, databases or experimentation. At the softer end 

of the spectrum, the only available relevant data may be the expert’s personal experiences 

and memories of previous casework.11 The question is not whether “data” can be assigned 

to one artificial classification or another – “hard” or “soft” – but rather whether the 

available data constitute an adequate basis for inferring particular inferential conclusions 

for particular purposes. Irrespective of their quality and status, data enable the expert to 

assign a likelihood (or probability) for particular findings that is necessarily personal and 

subjective, even in relation to ostensibly “hard” data. 

 

2.14 For reasons that will become more apparent as we proceed, it is often illuminating and 

sometimes essential to express the extent to which evidence supports a particular 

proposition relative to another proposition in terms of the ratio of two likelihoods: (i) the 

likelihood of the evidence if one proposition is true; and (ii) the likelihood of the evidence 

if the other proposition is true. In the context of criminal proceedings, one might compare 

the likelihood of the evidence, given the prosecution’s proposition (e.g. that the accused 

was at the scene of the crime); as against the likelihood of the evidence, given the defence 

proposition (e.g. that the accused was not at the scene of the crime).  

 

                                                 
11 The Court of Appeal recently endorsed expert witnesses’ reliance on personal experiences and 

unpublished studies in R v Weller [2010] EWCA Crim 1085. 
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Suppose that a bloody footwear mark taken from the scene of the crime is said to “match” 

(in some specified sense of what constitutes a “match”) the sole of a shoe in the accused’s 

possession. The probability of finding this evidence of a match if that shoe made the mark 

(which would be the prosecution’s proposition) will often come close to 1 (unless, for 

example, the shoe has been worn for a considerable time after the commission of the 

offence, in which case the shoe’s tread pattern might have been different at the time of the 

burglary). Crucially, however, the probability of finding the evidence of a match if 

another shoe made the mark (a possible defence proposition) will be more than 0. For a 

very rare mark, the probability could be miniscule (approaching zero) but in other 

circumstances it could be closer to 1, e.g. if the vast majority of the burglars in that area 

wear the same fashionable training shoes. 

 

These two likelihoods (or probabilities) then represent “the likelihood of the evidence if 

the prosecution’s proposition is true” and “the likelihood of the evidence if the defence 

proposition is true”. The relative values of these two likelihoods provide a measure of the 

meaning and probative value of the evidence. This is usually represented as a ratio known 

as the likelihood ratio, which is further elucidated in §2.17, below.  

 

In certain scenarios, the likelihood of the evidence if the defence proposition is true is 

closely related to the frequency of occurrence of the evidence. For example, if the 

frequency of occurrence of some characteristic, say males with blue eyes, is estimated at 

30% (equivalent to a probability of 0.3) for some specified suspect population, then the 

probability that a particular male suspect would have blue eyes, on the assumption that 

this suspect is actually innocent, is 30% (or 0.3). 

 

2.15 It is not always possible to obtain a good estimate for a population relative frequency 

based on sample data: relevant datasets may be incomplete or non-existent. In these 

circumstances, relative frequencies may be replaced by estimates based on an expert’s 

personal experience and knowledge of the type of evidence in question. Here are some 

examples: 

 

“This type of glass occurs in about 10% of the glass samples that I have 

encountered in the course of my work.” 
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Equivalently: 

 

“In my experience, one in ten of the glass samples that I have analysed at this 

laboratory have been glass of this type,” 

or 

“From my experience of analysing glass samples at this laboratory, the probability 

of encountering this type of glass is 0.1.” 

 

Observe that the first example expresses the expert’s conclusion as a percentage, the 

second as a proportion (or relative frequency), and the third as a probability (or 

likelihood). In each case, the progression from data (the expert’s personal experience) to 

inferential conclusion (percentage, proportion or probability) is clearly indicated.  

 

2.16 Whenever such percentages, proportions or probabilities are stated, it is imperative to 

scrutinise the basis on which the subjective assessment has been made. The person 

asserting the probability or likelihood should be able to justify it by reference to 

reasonable assumptions. Probabilities representing subjective measures of belief ideally 

should be formulated in ways which draw attention to their subjectivity, as the following 

examples demonstrate (with emphasis): 

 

“I estimate the probability (likelihood) of finding this type and size of shoe sole pattern 

at scenes of burglary in this area as 2% (or 1/50 or 0.02).” 

 

“If the defendant had not hit the victim, it is my opinion that the probability of finding 

blood-staining of the quantity and in the pattern seen on his jacket is 1% (or 1/100 or 

0.01). I base this estimate on data from a survey of men’s clothing.”  

 

The second example invites follow-up questioning about the nature of the quoted survey, 

its sampling and other methodological parameters, and its overall adequacy as a reference 

sample in relation to the issues in the case. There is an apparent implication that if the 

defendant had hit the victim (the prosecution’s proposition) there is a probability higher 

than 1% (and perhaps substantially higher) of finding this pattern of blood-staining. 

However, this kind of assertion may express little more than a forensic scientist’s intuitive 

inference from experience. Its underlying assumptions must be identified and opened up 
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to critical scrutiny before one can begin to assess the true value of the evidence in 

resolving disputed facts. 

 

2.17 (c) The likelihood ratio 

As previously stated (and as its name transparently implies), the “likelihood ratio” is an 

expression of the ratio of two relevant likelihoods (or probabilities). Here is one example 

(with emphasis) that might be encountered in criminal proceedings: 

 

“The blood-staining on the jacket of the defendant is approximately ten times 

more likely to be seen if the wearer of the jacket had, rather than had not, hit the 

victim.” 

 

Notice that this likelihood ratio expresses the likelihood of the evidence, under the two 

competing propositions, as opposed to the likelihood of the act of hitting. It does not state 

that “given the blood-staining on the jacket, it is ten times more likely that the wearer of 

the jacket had hit, rather than had not hit, the victim”, which is an altogether different 

proposition introducing many more contingencies than the blood-staining evidence per se 

is capable of addressing.  

 

Our initial example states the value of the evidence explicitly conditioned on two 

competing propositions. This exemplifies the kind of statement that a forensic scientist 

might write in a report or give in oral testimony. The second, reformulated statement 

addresses the issue of whether the defendant had or had not hit the victim in the context of 

the evidence of the blood-staining and any other relevant evidence in the case. This is the 

type of question which fact-finders, rather than expert witnesses, should be left to resolve 

in contested criminal trials. 

 

2.18 Unfortunately, these two types of statement are frequently confused in practice, producing 

what is popularly (but not very helpfully) known as “the prosecutor’s fallacy”. This is one 

of the principal “traps for the unwary”, which is fully explained and, hopefully, neutralised 

in Section 3 of this Guide. 

 

2.19  The likelihood ratio can still be calculated when the evidence is in the form of continuous 

measurements as opposed to discrete events or characteristics. For example, evidence of 
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the refractive index of glass fragments can be derived from a comparison of two sets of 

measurements: one set from the control/reference sample (e.g. glass from the scene of the 

crime) and the other set from the recovered/questioned sample (e.g. glass of unknown 

origin recovered from the suspect’s clothing following his arrest). The value of this 

evidence can be assessed by considering two competing propositions: (i) that all the glass 

came from the same source; and (ii) that the recovered sample and the control sample did 

not come from the same source (i.e. the two samples have different sources). The 

likelihood ratio of the glass evidence is the ratio of: (i) the likelihood of the observed 

measurements if the two glass samples share a common source; and (ii) the likelihood of 

the observed measurements if the two glass samples have different sources.    

 

Forensic scientists and other expert witnesses often translate the numerical likelihood ratio 

into a verbal formulation expressing a measure of strength for a particular proposition. For 

example, the expert might state that:  

 

“My findings provide moderate [weak/strong/very strong/etc] support for the 

theory that the accused, rather than some other person, was the driver of the car 

used in the robbery.” 

 

Alternatively, some experts employ a numerical scale (e.g. a six- or ten-point scale) as a 

more jury-friendly proxy for the likelihood ratio or as a more intuitive and looser 

quantification of the probative value of their evidence.12 In whatever way the likelihood 

ratio (or other asserted measure of probative value) is translated into evidence, and even if 

the likelihood is presented in its raw numerical form, it is essential that advocates, judges 

and fact-finders are able to interpret its true meaning and thereby assess the probative 

value of the evidence. Experts themselves can and should provide vital assistance by 

clearly acknowledging their use of a conventional linguistic or numerical scale to express 

the strength of evidential support, and explaining how it maps onto the likelihood ratio, in 

their written statements and testimony. 

 

 

                                                 
12 Cf. R v Atkins [2009] EWCA Crim 1876; R v Shillibier [2006] EWCA Crim 793; R v Bilal 

[2005] EWCA Crim 1555. 
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2.20 (d) Base rates for general variables (prior probabilities) 

Base  rates (sometimes also called background rates) are  the  relative  frequencies  of  

variables in a general population before consideration of special circumstances or 

evidence relating to the case in hand.  These do not need to be expressed quantitatively. 

For example (using fictitious statistics merely for the purposes of illustration): 

 

• “The incidence of death directly attributable to Drug A is 85% of all deaths of abusers 

of Drug A. ” 

 

• “Death attributable to natural hypoglycaemia in elderly non-diabetic patients is 

extremely rare.” 

 

Whereas frequencies relate to specific evidence, base rates refer to general events and 

other background variables. This vital distinction further clarifies the respective roles of 

expert witnesses and fact-finders in criminal proceedings. Base rates for general variables 

are independent of case-specific information, to which they form the backdrop. Thus, base 

rates may well be introduced by a competent expert before another expert presents, and 

takes into account, the results of their own examinations. Base rates can also be used to 

assign prior probabilities for those events. The term “prior” encapsulates the fact that such 

probabilities are developed prior to any evidence specific to the instant case. 

 

The first question for the expert (or for the first expert) in each of our examples would be  

‘what is the base rate for the event or characteristic in question (general prevalence among 

Drug A abusers of death directly attributable to Drug A; incidence of death caused by 

natural hypoglycaemia in elderly non-diabetic patients)’? The second question for the 

expert (or the question for the second expert) is ‘what is the probability of their findings, 

taking account of the prosecution’s and defence’s competing propositions’? In the first 

example, the expert would need to consider data on (i) levels of Drug A found in drug-

abusers who had died as a consequences of ingesting Drug A; and (ii) levels of Drug A 

found in drug-abusers who had not died as a direct result of ingesting Drug A. In our 

second example, the expert would derive a likelihood ratio from data on (i) the levels of 

insulin found in elderly non-diabetic patients who had died through natural 
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hypoglycaemia; and (ii) data relating to deaths in similar patients resulting from induced 

hypoglycaemia. 

 

Finally, the question for the fact-finder (not the expert) in each case is ‘what is the 

probability, in light of the evidence adduced at trial, that the accused is guilty (that the 

death was directly attributable to the drug; that the elderly deceased was injected with 

insulin, etc.)’? 

 

2.21 Base rates can have significant implications for inferential conclusions. Imagine a medical 

diagnostic test with a high probability of a positive result if the patient has the disease 

(this measure is known as sensitivity) and a high probability of a negative result if the 

patient does not have the disease (known as specificity). This hypothetical diagnostic test, 

then, is both very sensitive to the presence of the disease and very specific to it. Suppose 

that a particular patient is diagnosed with the disease. What is the probability that the 

patient actually has the disease? The fact that the diagnostic test is both very sensitive and 

very specific does not, as might be thought, guarantee that a positive diagnosis is very 

likely to be correct. This is a function of base-rates. Imagine that nobody in the region has 

the disease (the base-rate is zero). No matter how sensitive and specific the diagnostic test 

is – perhaps it only errs one time in a million – on this assumption every single positive 

diagnosis will be wrong. The probability of a correct diagnosis when the base rate is zero 

is zero, irrespective of the diagnostic power of the test. 

 

2.22 Base rates that are derived from samples (as distinct from those derived from a census) 

invite methodological questions paralleling those concerns previously identified in relation 

to calculating the relative frequencies of evidence. Base rates will be a poor base-line for 

any inferential purpose if data collection was poorly executed or the sampling procedure 

was methodologically flawed. Even if base rates supply methodologically robust 

information for some purposes, they will not necessarily serve to illuminate the matters 

specifically in issue in criminal proceedings. As in relation to frequencies of evidence, one 

must carefully scrutinise the inferential link, if any, between background base rates and 

the issues requiring proof in the current trial. 

 

A different sample drawn from the same population will, almost certainly, give a different 

answer for a relative frequency. This does not mean that either or both of these 
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frequencies is “wrong”. Rather, both frequencies are (different) estimates of a true 

unknown rate. In Benn and Benn,13 a case concerned with base rates for trace quantities of 

drugs on banknotes in general circulation, the Court of Appeal remarked that, “the 

question of the validity of a database depends upon the purpose which is to be served”.14 

Deficiencies in the database were not considered fatal to the safety of the convictions 

where “the comparison made between the notes in the appellants’ possession and the 

database was merely part of the prosecution case showing a connection between the 

appellants and the cocaine”. Whilst the value of the statistical evidence was thus 

marginalised as merely part of the general background to the prosecution’s case, the Court 

did not really consider that sampling deficiencies arguably robbed this evidence of any 

discernable meaning or probative value. 

 

As we saw in 1.13, the reliability of an estimate can be determined by specifying, at a 

stated level of confidence (e.g. 95% or 99%), an interval within which the true rate is 

thought to fall. The narrower the interval for a given confidence level, the more reliable 

the estimate. 

 

2.23 (e) Posterior probabilities 

All probabilities are predicated (or “conditioned”) on specified assumptions. This is 

merely another way of expressing the inherent conditionality of probability as a species of 

reasoning under uncertainty. Thus, for example, one might calculate the probability that 

the accused is guilty, given the evidence that has been presented in the trial – in 

mathematical notation, p(G|E). Whereas base rates for general variables inform prior 

probabilities, conditional probabilities conditioned on case-specific events or evidence can 

be described as posterior probabilities – such as the probability that the accused is guilty 

after (posterior to) having heard all the evidence. The ultimate posterior probability, of 

guilt or innocence and their corresponding legal verdicts, is always a question for the fact-

finder in English and Scottish criminal proceedings. 

 

2.24 Expert witnesses must not trespass on the province of the jury by commenting directly on 

the accused’s guilt or innocence, and should generally confine their testimony to 

                                                 
13 R v Benn and Benn [2004] EWCA Crim 2100. 

14 ibid. [44]. 
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presenting the likelihood of their evidence under competing propositions. However, 

experts are not absolutely precluded from stating posterior probabilities relating to 

intermediate facts proving or constituting the offence, if invited to do so by the court and 

providing that such statements are appropriately qualified and contextualised. The court 

must understand, and be prepared to accept, the suppositions on which statements such as 

the following are predicated: 

 

• “In my opinion, it is highly likely that the defendant kicked the victim.” 

 

• “I believe there is a 99% chance (probability of 0.99) that the defendant 

handled explosives.” 

 

• “In my opinion, the accused is very likely to have been the author of the 

ransom note.” 

 

All these statements relate specifically to evidential facts and only indirectly to the 

ultimate issue of guilt or innocence. It may be helpful, in appropriate cases, for expert 

witnesses to express their conclusions in this form (also note that our examples 

commendably flag up the subjective nature of the inference as the expert’s “opinion”, 

“belief”, etc.). However, it is vital to appreciate that posterior probabilities relate to 

disputed facts rather than to information adduced in evidence, and the two must never be 

confused. Experts normally testify to relative frequencies (to inform likelihoods of the 

occurrence of evidence), or occasionally to base rates (prior probabilities), rather than to 

the truth or falsity of contested issues in the trial (posterior probabilities). Where experts 

depart from the norm by testifying directly to posterior probabilities, they should do so 

deliberately and advisedly, not merely through confusion. Insofar as experts do testify to 

posterior probabilities, they must spell out and justify the conditioning assumptions and 

prior probabilities supposedly warranting them. 

 

2.25 (f) Bayes’ Theorem 

Bayes’ Theorem is a mathematical formula that can be applied to update probabilities of 

issues in the light of new evidence. One begins with a prior probability of an issue and 

some pertinent item of evidence. Bayes’ Theorem calculates a posterior probability for the 
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issue, conditioned on the combined value of the prior probability and the likelihood ratio 

for the evidence. This posterior probability can then be treated as a new prior probability 

to which a further additional piece of evidence can be added, and a new posterior 

probability calculated (now taking account of the original prior probability and the 

likelihood ratios for both pieces of evidence). The process can be repeated over and over, 

finally resulting in a posterior probability conditioned on the entire corpus of evidence in 

the case.  

 

Fact-finding in criminal adjudication is, generally speaking, accomplished by ordinary 

common sense reasoning rather than through the application of mathematical formulae, as 

the Court of Appeal emphatically reiterated in Adams.15 It should be borne in mind, 

however, that although most evidence adduced in criminal proceedings does not come 

with a pre-assigned quantified numerical value attached (e.g. what is the probability that 

an eyewitness identification is accurate? Or the probability that a confession is true?), 

much forensic science evidence (including DNA profiling) is predicated on quantified 

probabilities and is consequently directly amenable to Bayesian calculations. Moreover, 

even unquantified evidence can be assigned a subjective probability in Bayesian 

reasoning.  Bayes Theorem is a codification of the reasoning that should be applied in the 

assessment of evidence.  It is a statement of logic.  Its application ensures evidence is 

assessed rationally. 

 

2.26 Bayes’ Theorem is best illustrated through a simple artificial example. Consider a 

population of interest comprising 1,000,001 people. One person has committed a burglary, 

the other million are innocent. Suppose that by chance 1% of the innocent people 

(1,000,000/100 = 10,000) have carpet fibres on their clothing matching the carpet at the 

burgled premises. Assume that the burglar’s clothing also picked up these fibres during 

the burglary. These distributions are summarised in Table 2.1: 

 

                                                 
15 R v Adams (No 2) [1998] 1 Cr App R 377, CA. 
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Table 2.1:  Numbers of innocent and guilty people  

on whom fibres are present and absent 

 

Fibres Guilty Innocent Total 

Present 1 10,000 10,001 

Absent 0 990,000 990,000 

Total 1 1,000,000 1,000,001 

 

We can read off from the final right-hand column of the ‘Present’ row that the fibres were 

found on 10,001 individuals – 10,000 of whom are innocent and one of whom is the guilty 

burglar. 

 

From these data we can construct prior probabilities for guilt and innocence, before the 

evidence of the fibres is considered. The prior probability of guilt is 1/1,000,001 – one 

person out of 1,000,001 is guilty. In other words, the probability that a person selected at 

random from the population would be guilty is 1/1,000,001. Complementarily, the 

probability that a person selected at random from the population is innocent is 1,000,000/ 

1,000,001.  

 

The posterior probabilities for guilt and innocence can be obtained from the row labelled 

“Present” in which there are 10,001 people of whom 1 is guilty. Thus, after the evidence 

of the fibres is considered, the posterior probability of guilt is 1/10,001 – one person out of 

10,001 is guilty. In other words, the probability a person selected at random from the 

population on whom relevant fibres are found would be guilty is 1/10,001. 

Complementarily, the probability that a person selected at random from the population on 

whom relevant fibres are found is innocent is 10,000/10,001. 

 

The likelihood ratio is the ratio of the probability for the presence of the relevant fibres 

amongst the guilty (the proportion of people in Table 2.1’s Guilty column for whom the 

fibres are present) to the probability for the presence of the relevant fibres amongst the 

innocent (the proportion of people in Table 2.1’s Innocent column for whom the fibres are 

present). In this simple example, the probability for the presence of the relevant fibres 

amongst the guilty is one divided by one, i.e. 1. The probability for the presence of the 

relevant fibres amongst the innocent is 10,000 divided by 1,000,000, or 1/100. The ratio of 
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these probabilities is 1 divided by 1/100 which is 100. This may be summarised in words 

as “the evidence of the presence of relevant fibres is one hundred times more likely if the 

person is guilty than if the person is innocent”. 

 

2.27 These probabilities can also be expressed, equivalently, in terms of odds ratios. The prior 

odds a person selected at random from the population is guilty are given by the ratio of the 

two prior probabilities for guilt and innocence, namely 1/1,000,001 divided by 

1,000,000/1,000,001 or 1 to 1,000,000. This equates to saying that, “the odds are one 

million to one against guilt for a person selected at random from the population”; or that 

“the odds are one million to one in favour of innocence for a person selected at random 

from the population”.  

 

The posterior odds that a person selected at random from the population on whom relevant 

fibres are found is guilty are given by the ratio of the two posterior probabilities, namely 

1/10,001 divided by 10,000/10,001 or 1 to 10,000. This equates to saying that, “the odds 

are ten thousand to one against guilt for a person selected  at random from the population 

on whom relevant fibres are found”; or that “the odds are ten thousand to one in favour of 

innocence for a person selected at random from the population on whom relevant fibres 

are found”.   

 

2.28 Bayes’ Theorem links the prior odds, the posterior odds, and the likelihood ratio in the 

following way:   

 

posterior odds = likelihood ratio × prior odds. 

 

That is to say, the posterior odds are calculated by multiplying together the likelihood ratio 

and the prior odds (or again, the posterior odds are the product of the likelihood ratio and 

the prior odds). 

 

In our example, the prior odds are one in a million, the posterior odds are one in ten 

thousand and the likelihood ratio is one hundred. This is a verification of Bayes’ Theorem, 

since one in ten thousand is 100 times one in a million. Of course, it is not necessary to 

apply the sledgehammer of Bayes’ Theorem to crack this simple example, the results of 

which could be obtained more or less directly by common sense mathematical calculation. 
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Bayes’ Theorem comes into its own, and may have significant forensic applications, when 

the calculations are more complex and the issues to be addressed may not be so self-

evident. 

 

2.29 Bayes’ Theorem can be expressed more formally and in a way which applies directly to 

criminal proceedings, as follows:   

 

The posterior odds in favour of the prosecution proposition are equal to the product of:  

 

(i) the ratio of the probability of the evidence if the prosecution’s proposition is 

true, to the probability of the evidence if the defence proposition is true (i.e. the 

likelihood ratio); and  

 

(ii) the prior odds in favour of the prosecution proposition. 

 

Referring back to Table 2.1, the evidence is the presence of fibres on the clothing of a 

suspect (recovered sample) that are of the same type and colour as carpet fibres at the 

crime scene (control sample). The prosecution proposition is that the suspect is guilty of 

the crime. The defence proposition is that the suspect is innocent. The likelihood of the 

evidence given (conditioned on) the truth of the prosecution’s proposition is 1, or p(E|G) = 

1. The likelihood of the evidence given (conditioned on) the truth of the defence 

proposition is 10,000/1,000,000 = 1/100, or  p(E|I) = 1/100. The probability of guilt given 

the evidence – p(G|E) – is 1/10,001. The probability of innocence given the evidence – 

p(I|E) – is 10,000/10,001. 

 

Notice that the first pair of quantities is conditioned on the assumption of guilt or of 

innocence (as the case may be), whereas the second pair of quantities is conditioned on the 

evidence. Moving from the first pair to the second pair of quantities involves transposing 

the conditional. It can be see that “E”, representing the evidence, occupies the position to 

the left of the conditioning bar in the first pair of quantities, whereas in the second pair its 

position has shifted (been transposed) to the right of the bar. Bayes’ Theorem can be 

described as a logical and legitimate procedure for transposing the conditional. Illegitimate 

transposition of the conditional is (for better or worse) widely known as “the prosecutor’s 

fallacy”, which is explained and debunked in Section 3 of this Guide. 
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2.30 A second illustration demonstrates the power of Bayes’ Theorem as a formula for 

updating conditional probabilities and should help to clarify its current and potential 

forensic applications. 

 

Suppose that an accident is caused by an unidentified bus. A total of 1,000 buses are in 

service in the vicinity. Blue Bus Company owns 90% of these 1,000 buses and Red Bus 

Company owns the remaining 10%. An eyewitness testifies that the bus that caused the 

accident was Red. However, a psychologist gives uncontradicted expert testimony that 

eyewitness identifications of this type are accurate only about 80% of the time. That is to 

say, an eyewitness will report seeing a Red (or Blue) bus when the bus was truly Red (or 

Blue) 80% of the time. Conversely, the eyewitness will report that the bus was Red when 

it was Blue (or Blue when it was Red) 20% of the time. 

 

The entire population of interest comprises 900 Blue buses (90% of 1,000) and 100 Red 

Buses (10% of 1,000). If the accident was in fact caused by a Blue bus, the eyewitness 

would accurately report 720 Blue buses (80% of 900) and misidentify the other 180 (20% 

of 900) as Red. If the accident was in fact caused by a Red bus, the eyewitness would 

accurately report 80 Red buses (80% of 100) and misidentify the other 20 (20% of 100) as 

Blue. On this scenario, a Red bus is four times more likely to be reported as Red than 

Blue. However, a priori there are nine times as many Blue buses as Red buses operating 

in the area. These results are summarised in Table 2.2. 

 

Table 2.2:  Numbers of Red and Blue buses, as reported and in fact 

 Actually Blue Actually Red Total 

Reported Blue 720 20 740 

Reported Red 180 80 260 

Total 900 100 1000 

 

 

2.31 Bayes’ Theorem states that the posterior odds are equal to the likelihood ratio multiplied 

by the prior odds. 
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The prior odds are 9:1 (or, simply,  9)  in favour of a Blue bus having caused the accident, 

or p(Blue) = 0.9. Complementarily, p(Red) = 0.1.  The prior odds in favour of a Red bus 

are the reciprocal of the odds in favour of a Blue bus and are hence 1:9 (or 1/9). 

 

We are told that the eyewitness testifies that the bus involved in the accident was Red. The 

likelihood ratio is the probability that a bus is reported as Red given that it is Red (80/100) 

divided by the probability that it is reported as Red given that it is Blue (180/900), which 

equals  4.  The posterior odds of the bus being Red when reported Red are the product of 

the prior odds and the likelihood ratio, 1/9 multiplied by 4  which equals 4/9.   The 

corresponding probability of a bus being Red given it is reported as Red is then 4/13 and 

the probability of a bus being Blue, given it is reported as Red is the complement of this, 

namely 9/13 (Check that the ratio of these two probabilities is 4/9 (or 4:9), the odds.) 

 

It seems counterintuitive that the evidence should favour the bus being Blue when the 

eyewitness testified Red: but Table 2.2 and Bayes’ Theorem both corroborate that 

conclusion. It is obvious at the outset that – all else being equal – a Blue bus was much 

(nine times) more likely to be involved in the accident than a Red bus. The eyewitness 

testimony decreases these prior odds to posterior odds of 9:4. Nonetheless, given the 

eyewitness’s stipulated error rate (20%), when the eyewitness testifies Red this actually 

favours Blue by a ratio of 180:80, or 9:4 – as can be read off from the “Reported Red” row 

of Table 2.2. Bayes’ Theorem powerfully confirms this counter-intuitive result. The 

likelihood ratio of 4 reduces the odds in favour of Blue from 9:1 to 9:4. In other words, the 

eyewitness evidence supports the proposition that the bus is Red, but not with sufficient 

probative force to make it more likely than not that the bus is Red, all things considered. 

This would require a probability greater than 0.5, or (equivalently) odds greater than 1:1 – 

“a fifty-fifty chance”, as we might say. (Note, however, that this conclusion is alarming 

for real-world litigation only on the supposition that eyewitnesses really do confuse red 

and blue 20% of the time, and – to our knowledge – there is no empirical evidence 

warranting that assumption.) 

  

The purpose of the example is two-fold.  First, it provides a numerical verification of 

Bayes Theorem.  Second, it shows how consideration of uncertainty about the accuracy of 

an eyewitness may be included in the evaluation of the evidence of the eyewitness.  One 
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can model the effect of various levels of uncertainty on the value of the evidence of the 

colour of the bus that was involved in the accident. 

 

2.32 (g) Independence  

The concept of independence is central to both legal proof and mathematical probability. 

In law, two or more independent items of evidence may be mutually corroborative. This is 

first and foremost a logical rule of inference which the law of criminal procedure 

sometimes elevates into a formal legal requirement (most formal corroboration 

requirements have been abolished in England and Wales, but Scottish law still retains a 

general demand for corroboration in serious criminal cases). The logic of corroboration 

through independent evidence extrapolated to probability theory by the product rule for 

independent events, which states that, if two events are independent, the probability of 

both of them occurring together (known as their conjunction) can be calculated by 

multiplying together the probability of the first event and the probability of the second 

event. These propositions are best demonstrated through simple illustrations using coin-

tossing and playing cards. 

 

2.33 Two events are independent in the probabilistic sense if the occurrence of one has no 

bearing on the probability of the occurrence of the other. Successive outcomes of the 

tosses of a coin or of tosses of several different coins are independent. Consider two fair 

coins, which when tossed are (by definition, as “fair” coins) equally likely to produce a 

head or a tail. The occurrence of a head when the first coin is tossed has no effect on the 

probability of a head when the second coin is tossed. On the toss of the first coin, the 

probability of a head is equal to the probability of a tail, which equals ½ or 0.5. These 

probabilities remain the same for the toss of the second coin and on subsequent tosses of 

these or of other fair coins. Independence holds no matter how many times the process is 

repeated. 

 

Consider one fair coin which is tossed twice. The probability of two heads in two tosses of 

the coin is (utilising the product rule) ½ x ½ = ¼, or p(two heads) = 0.25. The probability 

of two tails is exactly the same. However, the probability of one head and one tail is ½, or 

p(head and tail) = 0.5. This is because there are two ways in which the outcome of the two 

tosses of the coin can be a head and a tail: head followed by tail, or tail followed by head. 

The probability of each of these two sequences is ¼, and the probability of either one or 
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the other (known as their disjunction) is calculated by adding (not multiplying) the 

probability of each, as we say, exclusive event. In other words, ¼ + ¼ = ½. The events 

(head followed by tail) and (tail followed by head) are known as exclusive events since 

one occurs to the logical exclusion of the other. 

 

2.34 Now consider a slightly more complicated example. A normal pack of playing cards 

contains 52 cards in four suits, spades (�), hearts (�), diamonds (�) and clubs (�) with 

thirteen cards in each suit. The pack is well-shuffled. A card is picked from the pack at 

random, i.e. in such a way that each card is equally likely to be selected. Suppose that the 

ace of spades (A�) is the card drawn at random from the pack. This card is replaced, the 

pack is well-shuffled and then a second card is drawn, again at random. This process of 

selection is described as selection with replacement. These successive draws of cards are 

independent events. Replacing the first card drawn and then shuffling the pack ensures 

that the outcome of the first draw has no effect on the outcome of the second draw. In 

other words, the outcomes of the two draws are independent. The probability that the card 

drawn at the second draw is also the A� is the same as the probability that the first card 

was the A�, 1/52. Given that these are (as we have stipulated) independent events, the 

product rule applies, so that the probability of drawing the A� twice in succession is 1/52 x 

1/52 = 1/2,704. 

  

The same type of calculation can be extended to groups of cards. For example, the 

probability that a card picked at random from a pack is a � is 13/52 = ¼, or p(spade) = 

0.25. There are 13 � in the pack, and each is equally likely to be selected. 

 

2.35 If two or more events are not independent, then they are dependent. There is also a 

product rule for calculating the probability of the conjunction of dependent events. 

Consider again the selection of two cards at random from a normal pack, one after the 

other. This time, the first card selected is not returned to the pack after it has been viewed, 

so that the second card is drawn from a reduced pack of 51 cards. This type of selection 

process is called selection without replacement. 

 

What is the probability of selecting two aces without replacement? It is the product of the 

following two probabilities: 
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(i) the probability that the first card selected is an ace, which is 4/52 = 1/13; and 

 

(ii) the probability that the second card selected is also an ace, which is 3/51 = 1/17 

(since there are now only 51 cards remaining in the pack, of which 3 are aces). 

 

Thus, the combined probability, p(drawing two aces without replacement) is 1/13 x 1/17 = 

1/221. 

 

This result can also be derived and demonstrated by direct enumeration. The order in 

which the cards are drawn is significant. There are twelve ways of drawing two Aces, viz 

(��), (��), (��), (��), (��), (��), (��), (��), (��) (��), (��) and (��). There are 52 ways 

of choosing the first card without replacement and 51 ways of choosing the second card 

from the reduced deck. There are therefore 52 x 51 = 2,652 equally likely ways of 

choosing two cards from a pack of 52 cards. Of these 2,652 ways, twelve give two aces. 

Thus the probability of drawing two aces equals 12/2,652 = 1/221.   

 

2.36 In this example, the probability of the second event (drawing an Ace) is dependent on the 

first event (drawing an Ace). The probability of drawing a second Ace (i.e., assuming an 

Ace was drawn on the first draw) is 1/17. This is less than the probability (1/13) of 

drawing an Ace on the first draw. However, two events may also be associated in such a 

way as to increase the probability of the second event relative to the probability of the first 

event. This somewhat counterintuitive result is illustrated in Appendix B. 

 

2.37 The probabilistic foundations of games of chance have real-world analogues in criminal 

litigation. It is therefore vital for criminal practitioners to grasp the fundamentals of 

probabilistic thinking, and these fundamentals include the concept of independence. The 

nature of the dependency in examples involving packs of cards or tosses of coins is readily 

identifiable. In real life the dependencies are typically more difficult to ascertain. Yet as 

Section 3 will elucidate, it is a serious error to apply the simple product rule to events that 

are not, or may not be, independent. As a general rule of thumb, independence should be 

verified and demonstrated and not merely assumed by default. 



53 

3. Interpreting Probabilistic Evidence –  

Anticipating Traps for the Unwary 

 

3.1 Reasoning errors in criminal adjudication are by no means confined to information 

concerned with probabilities. However, probability, statistical evidence, and inferential 

reasoning associated with them do seem to be especially prone to recurrent errors and 

misinterpretation. Statistical and probabilistic evidence are typically adduced in court 

through the medium of a scientific report or expert witness testimony adduced at trial. 

There is consequently considerable overlap between an examination of probabilistic 

evidence and reasoning in criminal proceedings and the general topic of expert evidence, 

as previous sections have already intimated.  

 

3.2 This section begins by drawing attention to some fundamental principles for correctly 

interpreting reports or testimony provided by forensic scientists and other expert 

witnesses. We will emphasise, in particular:  

(a) the importance of correctly identifying the level of the propositions addressed 

by the evidence, in order to interpret its real bearing (if any) on the issues in the 

case; and  

(b) the nuanced language used by scientists to express their inferential conclusions, 

which requires a certain amount of “unpacking” in order to decode its true 

meaning.  

 

Thereafter, the following analytically distinct (though in practice, often compounded) 

reasoning errors will be examined and elucidated:  

(c) illegitimately transposing the conditional (“the prosecutor’s fallacy”); 

(d) source probability error; 

(e) underestimating the value of probabilistic evidence;  

(f) probability (“another match”) error;  

(g) numerical conversion error;  

(h) false positive fallacy;  

(i) fallacious inferences of uniqueness; and 

(j) unwarranted assumptions of independence. 
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Learning about these reasoning errors as an abstract intellectual exercise is not the same as 

successfully avoiding them in practice. Their twisted logic can seem enormously seductive 

and they are frequently perpetrated by professionals who ought to know better, especially 

in pressured situations such as giving evidence in criminal trials. This is all the more 

reason for lawyers and judges, as well as forensic scientists and other expert witnesses, to 

study the recurrent errors in probabilistic reasoning examined in this section. Forewarned 

is forearmed. Knowing what to look out for, coupled with eternal vigilance, is the best 

way to guard against falling into traps for the unwary. 

 

3.3 (a) Relating the evidence to the issue: what question does the expert’s evidence purport 

to answer? 

Expert evidence (or indeed, any other evidence adduced in criminal proceedings) might be 

conceptualised as offering an answer to a question. The ultimate question in criminal 

adjudication is always: is the accused guilty or innocent of the offence(s) charged? Of 

course, in deference to the presumption of innocence the ultimate question in English and 

Scottish criminal proceedings is not framed in this way. Instead, we ask: has the 

prosecution proved the accused’s guilt beyond reasonable doubt (or so that the fact-finder 

is “sure” of the accused’s guilt)? 

 

Expert evidence does not answer the ultimate question directly; this is a matter solely 

within the province of the fact-finder. Instead, expert evidence addresses intermediate 

evidential facts with a bearing on the ultimate issue. For example, an expert might testify 

that glass found on the accused’s clothing resembles (or “matches”) glass from the scene 

of the crime; or that the accused’s fingerprints are similar to (or “match”)16 those on the 

window of the burgled house; or that the type of firearm discharge residue (FDR) evidence 

found on the victim of a shooting supports the proposition that the accused’s gun fired the 

                                                 
16 The notion of a forensic science expert “declaring a match”, though familiar, is problematic. In 

the first place, the criteria for declaring “a match” may be contested amongst practitioners, or may 

be eminently contestable even where most or all competent practitioners agree on conventional 

criteria for determining what constitutes a match. More fundamentally, if all trace evidence 

ultimately rests on probabilistic calculations, experts perpetrate source probability error (discussed 

in (d), below) whenever they conclusively assert “a match”. 
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fatal shot. It is then a matter for the fact-finder to determine whether this evidence, taken 

together with all the other evidence in the case, is sufficient to warrant a finding of guilt. 

 

When one grasps that evidence (including expert evidence) is adduced by the prosecution 

or defence to answer a particular question, it follows that the meaning and value of that 

evidence cannot be determined without first identifying the original question. One cannot 

assess whether evidence is successful in proving a matter in issue until one knows what 

the issue is and how the evidence relates to it. This observation might sound banal; but it 

is not. In fact, nearly all of the reasoning errors described in this section are either 

variations on, or are at least exacerbated by, an elementary failure to identify, with 

sufficient care and particularity, the question which the evidence is capable of answering. 

 

3.4 A useful starting point in evaluating expert evidence is to identify the level of proposition 

(or type of answer) which the evidence addresses. Four different levels of proposition can 

usefully be distinguished: 

  (i) source level propositions; 

  (ii) sub-source level propositions; 

  (iii) activity level propositions; and 

  (iv) offence level propositions. 

 

Each of these levels of proposition is regularly encountered in criminal litigation.  

 

3.5 The following are examples of pairs of complementary source level propositions:  

• “The defendant is the source of the semen at the crime scene.”/ 

“The defendant is not the source of the semen at the crime scene.”  

 

• “The defendant’s sweater is the source of the fibres at the crime scene.”/ 

“The defendant’s sweater is not the source of the fibres at the crime scene.”  

 

• “The damaged window frame is the source of the paint fragments 

recovered from the defendant’s clothing.”/ 

“The damaged window frame is not the source of the paint fragments 

recovered from the defendant’s clothing.” 
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The value of evidence adduced in support of source level propositions is usually related to 

the relative frequency of the characteristic of interest.  Suppose this frequency is one in a 

thousand (1/1,000). As a first approximation, the value of evidence can be expressed as 

the reciprocal (“one over”) of that relative frequency, e.g. one divided by 1/1,000 or 1,000. 

For each of our three pairs of example source level propositions, there must be some 

reference sample (e.g. a database of DNA profiles; records of fibres recovered from crime 

scenes; or previous analyses of paint fragments found on clothing examined at the 

laboratory) allowing the expert to calculate the probability of the evidence if it came from 

an alternative source consistent with the accused’s innocence. Notice that source level 

propositions do not say anything about how the evidence came to be at the scene or on the 

defendant’s clothing, nor do they take into account such variables as the quantity, position 

or distribution of the recovered material. Source level propositions are limited to 

addressing whether or not a piece of evidence came from a particular source. Assessment 

of evidence under source level propositions requires little in the way of circumstantial 

information. 

 

3.6 Certain forensic science techniques, notably DNA profiling, have become so sensitive that 

it may be desirable to formulate expert evidence with greater circumspection and precision 

in terms of sub-source level propositions, such as the following: 

• “The DNA recovered from the crime sample came from Mr Smith.”  

• “The DNA recovered from the crime sample did not come from Mr 

Smith;” or “The DNA recovered from the crime sample came from some 

other person.”  

 

Sub-source level propositions introduce a greater degree of caution by taking the 

inferential process, as it were, one stage further back. The expert does not make any direct 

assertion about the type of biological material from which the DNA was ostensibly 

extracted (e.g., the semen or blood recovered from the crime scene). Rather, the evidence 

is restricted to the sub-source or cellular level – leaving open the possibility that the 

material from which the DNA has been extracted may not be the assumed, asserted or 

most obvious source. For example, biological samples recovered from the crime scene 

might contain mixtures of different types of cellular material – saliva, skin cells, 
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secretions, etc. – contributed by several human donors. In these situations, it will be very 

unlikely that the scientist is able to attribute the DNA to any one type of cellular material. 

 

3.7 Running in the opposite direction, activity level propositions are more coarse-grained and 

potentially provide more probative evidence than source level propositions. The following 

are examples of activity level propositions: 

• “The defendant had intercourse with the victim.” 

• “The defendant walked on the carpet in the burgled house.” 

• “The defendant smashed the window.” 

 

The expert is now addressing the issue of whether or not the accused actually did 

something (had intercourse; walked on a carpet; smashed a window, etc.), not merely 

whether or not physical evidence might have come from a specified source or sub-source. 

This is unavoidably controversial territory.  In order to arrive at the value of the evidence 

assuming an activity level proposition, the expert needs to factor into their analysis much 

more than merely relative frequencies. For example, it may be necessary to consider the 

physics of transfer and persistence of physical evidence, with associated subjective 

probabilities. It is also necessary to take into account any innocent explanations offered by 

the accused for the existence of apparently incriminating evidence. For example, an 

accused may say that his clothing had been sprayed by the victim’s blood when he, an 

innocent passerby, attempted to render first aid to the dying victim. The scientist’s role in 

this situation is to assess the likelihood of obtaining the pattern and distribution of blood-

staining that had been observed on the clothing if the accused’s suggestion were, or might 

have been, true. 

 

Crucially, in terms of the balance and usefulness of scientific findings, consideration of 

activity level propositions provides an assessment of the probative value of the absence of 

material (“missing evidence”); something that cannot be assessed if source (or sub-source) 

propositions are considered. 

 

3.8 Offence level propositions are the most coarse-grained and probatively consequential of 

all the types of statement that might be encountered in expert witnesses’ reports or 

testimony. They take the following form: 
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• “The defendant raped the complainant.” 

• “The defendant burgled the house.” 

• “The defendant committed criminal damage.” 

 

Offence level statements assert conclusions about criminal responsibility and liability, 

which are paradigmatically questions for the court. Expert witnesses should not testify to 

propositions at the offence level, because they involve factual and moral judgments that 

forensic scientists are not jurisdictionally competent to make (e.g. Did the victim consent? 

Was harm caused unlawfully?). Of course, it does not necessarily follow that, in practice, 

forensic scientists and other expert witnesses are always successful in steering clear of 

offence level propositions, sometimes there is a trespass beyond the logical scope of their 

evidence. 

 

3.9 Practitioner Guide No 4 will present a more systematic analysis of interpretational issues 

relating to the different levels at which evidential propositions may be stated. For these 

introductory purposes, it will suffice to underline three fundamental points. 

 

First, it is essential on every occasion to identify the precise question which scientific 

evidence is being adduced to answer. Testimony offered to answer the question, “What is 

the source (or even sub-source) of this evidence?” is plainly not equivalent to testimony 

answering the question, “Did the accused have intercourse with the complainant?”, still 

less does it answer the ultimate question, “Did the accused rape the victim?” Note that 

these are all questions for the fact-finder in criminal proceedings, since they all require 

inferential conclusions to answer them, albeit at different levels of proposition. That 

testimony or other evidence is being adduced to answer a particular question does not 

entail that the expert witness should try to answer that question directly. Generally 

speaking, expert witnesses should avoid stating inferential conclusions and instead restrict 

themselves to commenting on the likelihood of the evidence under each of two competing 

propositions, i.e. to expressing and explaining the likelihood ratio. 

 

Secondly, there is a delicate balance to be struck between the transparency and scientific 

rigour of an expert’s evidence and its potential helpfulness to the court. Sub-source 

propositions are the most rigorous and transparent, but they may not go very far in 
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resolving disputed questions of fact and could be open to misinterpretation (e.g. without 

guidance, the fact-finder could easily mistake a sub-source level proposition for a source 

level proposition). Source level propositions, likewise, may have limited utility for 

criminal adjudication. Even if source level testimony substantially warrants a particular 

inference, e.g. that a suspect is the source of a blood stain, this does not help determine 

whether the stains were transferred during a criminal assault or entirely innocently or by a 

third party. Activity-level propositions come closest to the questions that the fact-finder 

has to answer, but often build in more speculation and assumptions. The scientist may be 

able to draw on further relevant expertise, e.g. about transfer and persistence for trace 

evidence,17 that can be factored into an activity level proposition and provide valuable 

assistance to the fact-finder. In every case, however, it is essential that everybody in the 

courtroom understands the significance of what is being said, that the scientist’s 

assumptions and inferential reasoning should be available to critical scrutiny, and that 

expert witnesses are able to explain and justify the reasonableness of their assumptions if 

called upon to do so. 

 

Thirdly, it is worth repeating that evidence evaluation is always a fundamentally 

comparative enterprise. At all levels of proposition the scientist needs to consider the 

likelihood ratio for the evidence, i.e. the probability of the evidence given the prosecution 

proposition, compared with the probability of the evidence given the defence proposition. 

Ascertaining the prosecution proposition is normally fairly straightforward, e.g. “the 

accused is the source of the crime stain at the scene” (paving the way to potential further 

inferences, that the accused was present at the scene, and that he committed the offence 

there). It may be more difficult to generate realistic defence propositions if there has been 

limited pre-trial defence disclosure, although it is always possible to use the negation of 

the prosecution’s proposition as a default setting (“the accused did not leave the crime 

stain at the scene”, etc.). Postulating appropriate propositions for comparison is closely 

tied to the facts of each case, and it is a largely intuitive, non-mathematical exercise, 

rooted in “logic and experience” (in the sense familiar to criminal lawyers). These 

important issues affecting the value and interpretation of probabilistic evidence will be 

further explored and elucidated in Practitioner Guide No 4. 

                                                 
17 R v Weller [2010] EWCA Crim 1085; R v Reed and Reed; R v Garmson [2010] 1 Cr App R 23; 

[2009] EWCA Crim 2698. 
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3.10 (b) Interpreting the language of inferential conclusions 

It is also important to pay close attention to the precise language used in expert reports and 

testimony to express evidentially significant connections between phenomena (and expert 

witnesses should correspondingly take care to express such connections precisely). Many 

forensic scientists and other experts employ stock terminology in report-writing which, 

although a valid way of expressing preliminary conclusions, may be of limited value to a 

court and could potentially be misleading unless appropriately qualified and interpreted 

with circumspection.   Further discussion of these ideas may be found in Jackson (2009). 

 

3.11 “Consistent with”: It is sometimes said that the evidence is “consistent with” a particular 

proposition relating to a contested issue in the case, e.g.:  

 

“Traces of chemicals detected on the swab from the right hand of the suspect are 

consistent with coming from the explosive used at the scene of the explosion.”  

 

To say that something is “consistent with” something else means only that the stated 

proposition (hypothesis) is not excluded by the evidence. It says nothing about how likely 

the proposition is to be true. For example, buying a ticket is consistent with winning the 

National Lottery, but it does not make winning very likely. Buying a ticket is also 

consistent with not winning the National Lottery, and this second outcome is very much 

more likely than the first, though both are equally “consistent with” the premiss (buying a 

ticket).   

 

3.12 “Could have come from” / “Could have originated from”: Once a “match” (however 

defined) has been obtained between a control sample and a recovered sample, it is 

common practice for scientists to express an inferential conclusion, such as the following:  

 

• “The semen stain could have come from Mister X, the suspect.” 

• “The footwear mark at the crime scene could have been made by the shoe 

the accused was wearing.”  

• “The blood stain on the window-frame could have been left by the 

defendant.”  
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• “The fibres recovered from the defendant’s clothing could have originated 

from the victim’s sweater.” 

• “The person shown holding the knife in the CCTV footage could be the 

defendant.” 

 

Statements such as these might be understood as establishing a proven association 

between the crime and the accused. Notice, however, that “could have come from” does 

not rule out other possible sources. Indeed, it does not even say that the identified source 

is the most likely candidate. There may well be other explanations that have not been 

offered, or even considered, by the scientist, including explanations with a higher 

probability than the association specified in each statement. Like expressions of 

“consistency”, variations on “could have come from” or “could have originated from” 

give absolutely no indication of the likelihood that the postulated source is the actual 

source of the evidence. 

 

3.13 “Cannot be excluded”: Another phrase commonly employed by expert witnesses is 

“cannot be excluded”, as in the following examples:  

• “The defendant cannot be excluded as the stain donor.” 

• “The victim cannot be excluded as the source of the blood spatter on the 

accused’s shirt.” 

• “The broken window cannot be excluded as the source of the glass in the 

defendant’s shoe.”  

 

“Cannot be excluded” is the mirror-image of “could have come from” in its vagueness, 

and is equally susceptible to misinterpretation. There may be any number of alternative 

sources or explanations that likewise “cannot be excluded”, and some of these might be 

much more likely. The fact that a postulated source cannot be excluded does not mean that 

evidence of association is strongly or even more than minimally probative. 

 

3.14 A particular variant of the “cannot be excluded” formula is common in DNA and paternity 

cases, where it is expressed as the probability of exclusion. This probability states what 

proportion of the population the characteristic would exclude, regardless of who is the 

donor of the crime-stain. For example, if a relevant characteristic is shared by 0.1% (a 
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relative frequency of 0.001 or 1/1,000) of the population, then the probability of exclusion 

is 0.999. If a characteristic is present only in 0.1% of the population then it is absent in 

99.9% of the population. Thus, if the characteristic is present at the scene of the crime and 

identified as coming from the (unidentified) perpetrator, 99.9% of the population are 

excluded as donors of the characteristic.  

 

The probability of exclusion answers the question: “How likely is this characteristic to 

exclude Mister X if he is not the donor of the stain?” However, this could be a very 

misleading way of expressing the probative value of the evidence, because the court is 

normally interested in a completely different question: “How much more likely is the 

evidence if Mister X is the donor of the stain than if some randomly selected person were 

the donor?” (i.e. the likelihood ratio). The probability of exclusion does not address this 

second, forensically salient question, the answer to which turns crucially on the size of the 

suspect population. If the relevant population is, say, 1 million, there will be 1,000 

individuals with the relevant characteristic, notwithstanding a probability of exclusion of 

99.9%. 

 

3.15 Misinterpretations of the probability of exclusion set the pattern for most of the other 

recalcitrant reasoning errors identified in this section. The trump card, in every case, is 

scrupulous attention to the meaning of a particular proposition Always ask: what question 

does this evidence purport to answer? On what assumptions is this statement of probability 

conditioned? Avoiding elementary probabilistic reasoning errors is as banal and intensely 

difficult in practice as that. 

 

3.16 (c) Illegitimately transposing the conditional (“the prosecutor’s fallacy”)  

Several references have already been made to the probabilistic reasoning error popularly 

known as “the prosecutor’s fallacy”, but more technically and accurately described as 

illegitimately transposing the conditional. This is an error that in principle any participant 

in criminal proceedings could make: lawyers, judges, jurors, or forensic scientists. In  

many ways, forensic scientists who fall into this error could be regarded as the chief 

culprits, since if the expert makes a transpositional error in their initial report or testimony 

it is eminently foreseeable that lawyers, judges and fact-finders will simply adopt and 

perpetuate it. After all, the expert is supposed to be the expert and lawyers, judges and lay 

fact-finders claim no special expertise in reasoning with probabilities. However, erroneous 
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transpositions of the conditional have repeatedly been exposed in scientific evidence – 

especially DNA profiling testimony – adduced by the prosecution, and illegitimately 

transposing the conditional has for this reason widely come to be known as “the 

prosecutor’s fallacy”. Although not truly apt, the label has stuck. 

 

 We saw in Section 2(f) 2.25-2.31, above, that Bayes’ Theorem transposes the conditional 

legitimately by employing a valid mathematical formula for this purpose. We are now 

concerned with evidential propositions which purport to transpose the conditional 

illegitimately, without employing Bayes’ Theorem or any other recognised method of 

producing a valid conclusion. The error is typically perpetrated unconsciously, and is 

consequently all the more insidious and liable to precipitate miscarriages of justice for 

being hidden even from those ostensibly best equipped to avoid it. 

 

3.17 The most direct way of conceptualising the error is to say that it confuses (“transposes”) 

the conditioning event. Consider the following two propositions: 

 

  #1: If I am a monkey, I have two arms and two legs. 

 

  #2: If I have two arms and two legs, I am a monkey. 

 

These conditional propositions (“if….”) are clearly not equivalent!18 Proposition #1 is 

true, whereas proposition #2 is false. Moreover, proposition #2 patently does not follow 

from proposition #1. When criminal justice professionals illegitimately transpose the 

conditional they perpetrate an error equivalent to treating proposition #1 as though it were 

the equivalent of, or at least an authorised version of, proposition #2. 

 

3.18 Utilising shorthand probabilistic notation, the last example can be expressed as follows: 

 

p(A+L|M) � p(M|A+L); 

 

                                                 
18 Another example of patently non-transitive conditional propositions: #1 “If I am reading this 

Guide, I can read English”; #2 “If I can read English, I am reading this Guide”. 
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i.e. the probability of Arms and Legs, given (assuming; conditioned on) Monkey is not 

equal to the probability of Monkey, given (assuming; conditioned on) Arms and Legs. 

 

In the context of criminal proceedings, the standard form of the error confuses the 

probability of finding the evidence on an innocent person with the probability that a 

person on whom the evidence is found is innocent, i.e. 

 

 p(E|I) � p(I|E). 

 

Mathematical notation is particularly useful here, because we can see that “E” and “I” 

have changed places. On the left hand side of the equation, the conditioning event is “I” 

(“assuming innocence”). On the right hand side of the equation, “I” has swapped places 

with “E”, which has moved to the left side of the bar indicating the conditioning event 

(“assuming the evidence”). The conditional has been transposed. These are absolutely not 

equivalent expressions, as indicated by the “does not equal” sign (�) dividing the equation. 

 

 We have repeatedly stated that the value of evidence is always conditioned on particular 

assumptions, which should be specified. Consider the following pair of questions about 

the value of evidence: 

 

Assuming that the accused is innocent, what would be the probability of finding 

this trace evidence on him? 

 

Assuming that this trace evidence has been found on the accused, what is the 

probability that he is innocent? 

 

The italicised part of each question is the assumption on which the relevant probability is 

conditioned. The conditional is illegitimately transposed in criminal adjudication when 

questions of the first type are misrepresented or misinterpreted as questions of the second 

type. 

 

3.19 A more elaborate illustration should help to make these abstract propositions more readily 

comprehensible. 
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Suppose that the DNA profile of a suspect matches the DNA profile from a blood stain 

found at a crime scene. Assume that the DNA profile has a relative frequency in the 

relevant population of 1/1,000, i.e. one in every thousand people in that country has a 

matching DNA profile. Let us also stipulate that the relevant suspect population (specified 

through other, non-probabilistic, considerations such as geographical proximity and 

opportunity) contains 10,001 individuals, the offender and 10,000 innocent others.  

 

One member of the suspect population has been arrested, swabbed, and found to have a 

DNA profile that matches the profile of the crime stain. Since the relative frequency of the 

DNA profile in the general population is 1/1,000, the expected number of suspects with 

matching profiles is 10,000 x 1/1,000 = 10. These would be entirely random or 

“adventitious” matches with entirely innocent individuals. If the offender is known to be 

the 10,001st member of the suspect population, there are an expected 11 people in the 

suspect population with matching profiles – ten (expected) “random matches” plus the one 

offender. It should be emphasised that this “expected” number is a probabilistic projection, 

not an empirically-observed frequency. Eleven matches are “expected” in exactly the same 

sense as the “expected” number of heads in ten tosses of a fair coin is five.   

 

3.20 Having been told that the relative frequency of the DNA profile in the general population 

is 1 in 1,000, it is tempting to equate this to the probability that the suspect is innocent. In 

other words, to consider the probability of guilt to be 999/1,000; or in notational 

shorthand, p(Innocent) = 1/1,000; p(Guilty) = 1 – 1/1000 = 999/1,000. But this involves 

illegitimately transposing the conditional! The stated frequency of 1/1,000 does not 

represent the probability of the suspect’s innocence, but rather the probability that a person 

picked at random from the general population would have a matching profile, irrespective 

of any connection to the offence. 

 

There are 10,001 people in our suspect population. A particular suspect has been found to 

have a profile which matches the profile of the crime stain. If the matching profile were 

the only evidence available, the probability of the suspect’s being innocent would be 

10/11, which implies p(Guilty) = 1 – 10/11 = 1/11, or 0.09. A probability of 0.09 is not 

even close to proof on the balance of probabilities, let alone proof beyond reasonable 

doubt. Yet the error of transposing the conditional produced a fake p(Guilty) of 999/1000 

= 0.999, which would easily constitute proof beyond reasonable doubt according to most 
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commentators and participants in empirical research (always allowing for the fact that the 

courts resolutely refuse to quantify the criminal standard of proof, doubtless for good 

reason). This stylised illustration demonstrates just how devastatingly powerful such a 

reasoning error could be in lending credibility to unwarranted conclusions and possibly 

contributing towards miscarriages of justice. 

 

3.21 Some real-world examples of criminal appeals in which the conditional was illegitimately 

transposed at trial are given in Appendix B. The so-called “prosecutor’s fallacy” tends to 

be associated with DNA evidence. This is understandable inasmuch as DNA evidence 

involves quantified probabilities which are articulated in court as random match 

probabilities, thus routinely presenting opportunities for communication breakdown of one 

kind or another potentially involving illegitimate transpositions of the conditional. 

 

 However, it cannot be stressed too strongly or too often that illegitimate transpositions are 

not a peculiar feature of DNA evidence, but rather potentially could infect every type of 

evidence, including in particular all kinds of scientific and other expert evidence adduced 

in criminal proceedings. This follows from the fact that all types of evidence can be 

assigned subjective probabilities (taking account of relevant data, where available). For 

example, an expert might testify that there is an 80% probability that mud recovered from 

the accused’s car came from the riverbank near where the deceased’s body was 

discovered;19 or that there is a “distinct possibility” (perhaps 40%) that handwriting on a 

forged cheque is the accused’s.20 It would obviously be a crass error to misinterpret these 

probabilities, respectively, as “an 80% chance of guilt” or “a 40% chance of guilt” of the 

offences charged. However, both these illustrations of expert testimony involve a more 

insidious variant of illegitimate transposition, which is described in the next section. The 

general lesson is that the conditional may be illegitimately transposed whether or not the 

evidence is explicitly quantified and whether or not expert witnesses realise that they are 

implicitly drawing upon or assuming probabilistic calculations. 

 

 

3.22  (d) Source probability error 

                                                 
19 R v Shillibier [2006] EWCA Crim 793, [71]. 

20 R v Bilal [2005] EWCA Crim 1555, [7] – [8]. 
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When illegitimate transpositions of the conditional occur in relation to source level 

propositions, this is more technically known as source probability error. 

 

3.23 Suppose that a crime has been committed, and trace evidence is recovered linking a 

suspect to the scene, e.g. a DNA match between blood from a murder victim and blood 

recovered from the suspect’s clothing. A scientist determines a value for the frequency of 

the DNA profile in a relevant population as 1 in 7 million, and writes a report stating:  

 

“The probability that the blood on the clothing of the suspect came from someone 

other than the victim is 1 in 7 million. This implies that, with a complementary 

probability of 6,999,999/ 7 million, the blood on the suspect’s clothing came from 

the victim.”  

 

The stated conclusions are unwarranted. They comment erroneously on the source of the 

blood recovered from the suspect’s clothing. It would be legitimate for the scientist to say 

that, if the blood on the clothing of the suspect did not come from the victim, there would 

be a 1 in 7 million probability of matching the victim’s DNA profile. But this is not a 

proposition about the likelihood of the source; it is the random match probability. In order 

to calculate the probability that the victim is the source of the blood it would be necessary 

to know the size of the relevant population (and possibly much else besides, e.g., the 

probability of an error in testing or of contamination of samples). If there were, say, 14 

million potential blood-donors in the relevant population (and making the simplifying 

assumptions that there is no other pertinent evidence in the case and that all 14 million 

potential donors were antecedently equally likely to be the true source), the probability 

that the matching blood came from the victim would be 1/3 (the real victim plus the two 

other “expected” random matches in the population). 

 

The scientist in this example has transposed the conditional between p(finding a match, 

assuming the blood on the suspect’s clothing could have come from anybody in the 

relevant population) and p(the blood on the suspect’s clothing came from a source other 

than the victim, assuming a match), i.e. p(Match | Innocent Source) � p(Innocent Source | 

Match). The scientist then correctly calculates that p(Victim’s DNA | Match) = 1 – 

p(Innocent Source | Match), but irreparable damage has already been done by the initial 

illegitimate transposition of the conditional. On our assumed frequencies of occurrence in 
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the relevant population, 1 – p(Innocent Source | Match) = 1 – 2/3 = 1/3; again, nowhere 

near the erroneously asserted value for p(Victim’s DNA | Match) of 6,999,999/7 million. 

 

3.24 Returning to the non-DNA illustrations mentioned at the end of the last section (and 

ignoring for these purposes any complications regarding what constitutes “a match”), the 

probability that the mud has a common source in the first example is not 80%; and the 

probability that the handwriting in the second example is the accused’s is not 40%. Rather, 

these probabilities represent the probability that the recovered sample matches the control 

sample, assuming a common source: p (M | S). To calculate the probability of a common 

source, p (S | M), it is necessary to factor in the probability that the samples would match, 

even match perfectly, notwithstanding different sources. Simply put, there could be 

several – or many – people in the world with identical handwriting, and there could be 

several – or many – riverbanks with identical mud, just as there may be more than one 

person in the world with the same DNA profile. 

 

 One only needs to mention these possibilities to indicate the difficulties that may be 

encountered in identifying suitable databases from which to generate reliable frequencies 

of occurrence for identical handwriting, chemically indistinguishable mud, etc. Setting 

those complications to one side, we can see that the version of illegitimately transposing 

the conditional known as source probability error can be, and perhaps frequently is, 

perpetrated in relation to a range of quantified and unquantified scientific and other expert 

evidence adduced in criminal proceedings.  

 

The essential insight can be stated as a matter of logic without invoking any formal 

aspects of mathematics or probability calculations. A measure of similarity or “matching” 

simply cannot be equated with the likelihood of a common source. 

 

3.25 (e) Underestimating the value of probabilistic evidence 

Illegitimately transposing the conditional typically makes the evidence in question appear 

stronger than it actually is. When it relates to prosecution evidence (as it frequently does), 

illegitimately transposing the conditional constitutes phoney proof of guilt, eroding and 

potentially undermining the presumption of innocence. There is, however, a 

complementary reasoning error which involves undervaluing probabilistic evidence. This 

was dubbed “the defence attorney’s fallacy” by Thompson and Schumann (1987), as a 
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counterpoint to “the prosecutor’s fallacy”. Again, this terminology is not entirely apt and 

could mislead, because any participant in litigation, not only defence lawyers, might, in 

principle, undervalue evidence in this way. Moreover, “the defence attorney’s fallacy” is 

not a true mathematical fallacy (as the so-called prosecutor’s fallacy undoubtedly is), but 

rather a – conceptually speaking – straightforward misrepresentation of the value of 

probabilistic evidence. 

 

3.26 Suppose that the frequency of blood type AB in a relevant population of 200,000 people is 

1%. A suspect is found to have this blood type, matching blood recovered from a broken 

window at the scene of the crime. Intuitively, this is cogent – albeit not compelling – 

evidence linking the suspect to the crime-scene. 

 

However, a sceptic might want to argue that the evidence has minimal probative value.  

The argument supposedly supporting this conclusion runs as follows. There are 200,000 

potential suspects, and 2,000 of them would be expected (in the probabilistic sense) to 

have the blood type AB. If the suspect is merely one of 2,000 similarly situated 

individuals, the blood evidence might not be thought particularly probative against this, or 

any other, individual suspect. Indeed, it might now be argued that the evidence is 

insufficiently probative even to cross the minimal threshold of relevance to warrant legal 

admissibility. The evidence, it might be said, “proves nothing”. 

 

3.27 Although “relevance”, “probative value”, and “proof beyond reasonable doubt” are 

indubitably different concepts that need to be carefully distinguished, both in theory and in 

practice, the sceptical conclusion is overstated. The figure 1/2,000 does not represent the 

value of the evidence of the matching blood type. It is perfectly true to say that, taken in 

isolation, the blood evidence (merely) places the suspect in a pool of 2,000 potential 

suspects. However, prior to obtaining the blood evidence the accused was in an 

undifferentiated pool of 200,000 suspects. The effect of the blood typing evidence is to 

narrow down that pool by a factor of 100, or in other words to increase the probability in 

favour of guilt by a factor of 100. Properly evaluated, the evidence is slightly over 100 

times more likely if the suspect is the source of the blood on the broken window than if he 

is not the source (the probability of a match if the suspect is not the source is 

1,999/200,000, or approximately 1/100). In summary, the figure of 100 is taken to 

represent the value of the evidence. This is powerful evidence, as we intuitively grasp. 
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Although it would not be capable of proving guilt beyond reasonable doubt if considered 

in isolation, its probative value is not fairly expressed by saying that the evidence “proves 

nothing”. This interpretational error would be compounded if it were argued, more 

extravagantly still, that evidence of this kind should be excluded because it lacks sufficient 

probative value even to qualify as relevant evidence. 

 

3.28 Proof of guilt is normally established, when it is, through a combination of different pieces 

of incriminating evidence. In Scotland, this expectation is formalised by a formal 

corroboration requirement necessitating independent evidence of the accused’s guilt. 

Hence, the ultimate value of any particular piece of evidence, scientific or otherwise, must 

always be assessed contextually, in the light of its contribution to the case as a whole. This 

general precept is exemplified by the model jury direction suggested by the Court of 

Appeal in the well-known case of Doheny and Adams: 

 

“Members of the jury, if you accept the scientific evidence called by the Crown, 

this indicates that there are probably only four or five white males in the United 

Kingdom from whom that semen could have come. The defendant is one of them. 

If that is the position, the decision you have to reach, on all the evidence, is 

whether you are sure that it was the defendant who left that stain or whether it is 

possible that it was one of the other small group of men who share the same DNA 

characteristics”.21 

 

An unusual forensic application described in Gastwirth (1988), drawing on Usher and 

Stapleton (1979), arose in the following case. 

 

S, aged 16, became pregnant whilst a patient at a residential facility for those 

with severe mental disabilities. The pregnancy was terminated and the foetus 

examined to verify the most likely period of conception and to make serological 

tests. Because of the limited number (36) of men who possibly could have had 

access to S and the fact that about 90% of all men could be excluded based on 

appropriate tests, all 36 were asked to submit to serological tests and all agreed. 

                                                 
21 R v Doheny and Adams [1997] 1 Cr App R 369, 375, CA. Also see R v Lashley (2000) and R v 

Smith (2000), discussed by Redmayne (2001: 74). 
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The results of the test excluded all but four men and a further enzyme test 

excluded one more, reducing the potential list of suspects to three. These three 

included the police’s prime suspect and another other two men regarded as 

“highly unlikely” to be the perpetrators. The prime suspect was another patient 

in the home whose disability was somewhat less severe than S’s. The principal 

evidential value of the blood tests in this case was the elimination of innocent 

men from the list of suspects. 

 

3.29 (f) Probability (“another match”) error 

Two further quantities that are often confused in probabilistic reasoning are: (1) the 

frequency of an event within a designated population; and (2) the probability of a random 

match. This error might also potentially infect probabilistic evidence adduced in criminal 

proceedings, or its interpretation in criminal adjudication. It can be elucidated through a 

series of simple illustrations. 

 

3.30 Suppose that a crime is committed, and evidence of a blood stain with a profile frequency 

of 1 in a million is found at the scene and identified as belonging to the offender. Consider 

the proposition that the evidence was not left by a particular suspect. 

 

We know that the frequency of the profile of the stain is 1 in a million amongst the 

relevant population to which the offender is believed to belong. This means that if a 

person were chosen at random from that population the probability of that person’s profile 

matching the profile of the blood stain is 1 in a million. This is the random match 

probability. Notice, however, that this is not the same as saying that “the probability of 

finding another person in the population who has the same genetic profile is 1 in a 

million”. In the first scenario, a person is chosen at random and a DNA profile obtained. 

The conclusion states the probability of achieving a match “in one go” (akin to the 

probability of choosing the ace of spades when making one draw from a shuffled standard 

deck of cards, i.e. 1/52). The second, “another match” probability relates to the occurrence 

of the event across an entire population, which for the ace of spaces in a standard deck is 1 

(the card is definitely somewhere in the pack). 
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 Consider a population comprising one million + 1 individuals, where the additional  

“+1” is the offender and there are one million innocent people. Then it can be calculated 

mathematically (see Appendix B) that the probability of at least one match with the 

offender amongst the one million innocent people is just over 3 out of 5 (0.63). This 

probability is obviously much larger than the profile frequency of 1 in a million.  

 

3.31 The probability (“another match”) error arises when the profile frequency of 1 in a million 

is equated to the probability of finding at least one other person in the population with the 

same frequency. A small value for the (random match) profile frequency is taken to imply 

a small value for the probability that at least one other person has the same matching 

profile. There is only one chance in 1 million that a person picked at random from the 

population shares a DNA profile that is common to one in every million people, but there 

is a 63% chance that there is at least one other person, somewhere, in a population 

comprising 1 million people who shares that profile. 

 

 This result is somewhat counter-intuitive, but it is plainly demonstrable. Consider a 

“population” of two fair coins, in which for each coin the probability of a head when the 

coin is tossed is p(head) = 0.5. The coins are secretly tossed once each; we do not know 

the outcome. Call a third coin, lying heads up, the crime coin. The issue is, will the 

population of tossed fair coins contain a match for the crime coin? The probability of 

observing at least one coin with a head (“another match”) in the tossed coin “population” 

is not 0.5 (the random match probability for each coin), but 0.75. There are four, and only 

four, possible outcomes across the tossed coin “population”: (a) the first coin is a head, the 

second coin is a head; (b) the first coin is a head, the second coin is a tail; (c) the first coin 

is a tail, the second coin is a head; (d) the first coin is a tail, the second coin is a tail. In 

three out of these four scenarios (75%, or 0.75) there is at least one head, matching the 

crime coin, in the tossed coin population. Only in scenario (d) is there no matching 

“head”, giving a complementary probability of  p(no match with crime coin) equal to ¼ = 

25% = 0.25. 

 

Analogously for the DNA profile example, probability (“another match”) error is thinking 

that the probability of finding another person in the population of 1 million people (or 1 

million secretly tossed coins) with the same genetic profile as the offender (crime coin) is 

1 in a million. But the random match probability figure of 1 in a million is akin to the 
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expected probability of tossing one coin and getting a head (0.5), as opposed to the 

probability of finding another person (tossed coin) in the population who has the same 

genetic profile (came up heads) as the offender (crime coin).     

 

3.32 (g) Numerical conversion error 

Consider a characteristic which is prevalent in only 1 in a thousand, 1/1,000, people (e.g. a 

height greater than a certain designated value, such as two metres). It is sometimes 

claimed that the significance of evidence of this characteristic can be expressed in terms of 

the number of people who would have to be counted before there is another (random) 

match, being the reciprocal of the frequency (1,000, in this example); i.e. 1,000 people 

would need to be observed before someone else of that height would be encountered. This 

is an obvious fallacy, since the very next person observed could be that height or taller.    

 

A frequency of 1/1,000 does not mean that a match (with heights, as in this example, or 

with any other designated characteristic) is expected only on every thousandth 

experimental observation. This would almost be like saying that, if one in every thousand 

motorists will cause a serious accident, we should confiscate the licences of every 

thousandth driver we encounter. Numerical conversion error featured in the American case 

of Ross v State.22 The relative frequency of a DNA profile was calculated as 1 in 23 

million. On the strength of this calculation, the expert testified that he would not expect to 

encounter another individual with that profile until testing at least another 23 million 

people. This considerably exaggerates the probative value of a matching DNA profile. It 

can be calculated mathematically that, for a relative frequency of 1 in 23 million, just 

under 16 million people would need to be tested in order to achieve a probability of at 

least 0.5 (“as likely as not”) of identifying someone other than the defendant with that 

profile. 

 

 

 

3.33 (h) False positive probability (distinguished from the probability that a declared match 

is false) 

                                                 
22 Ross v State, Court of Appeals of Texas, Houston (14th Dist.) 13 February 1992, transcript 

quoted by Koehler (1993: 34). 
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Serious errors of interpretation can occur through ignorance or underestimation of the 

potential for a false positive. A false positive result in a scientific or medical test, for 

example, is one in which the test gives a positive result indicating the presence of the 

substance or disease for which the test was conducted when, in reality, that substance or 

disease is not present. In contrast, a false negative result is one in which the test gives a 

negative result indicating the absence of the substance or disease, etc. for which the test 

was conducted when in fact the substance or disease is present. 

 

Many types of scientific and other expert evidence adduced in criminal proceedings have 

the potential for generating false positives (and false negatives). For example, a forensic 

scientist might declare “a match” between a DNA profile taken from a crime scene and a 

DNA profile from a suspect. Suppose, in reality, the suspect does not have the same 

profile as the perpetrator nor is he the source of the crime scene stain. The result is a false 

positive. Reported matches relating to fingerprints, ballistics, and various forms of trace 

evidence (blood, semen, hairs, fibres, firearms residue, etc.), amongst others, are likewise 

susceptible to false positives (reported matches, where there is no match in fact). The false 

positive probability is the probability of reporting a match when the suspect and the real 

perpetrator do not share the same DNA profile, or where the suspect’s and crime-scene 

fingerprints, blood, fibres or whatever do not, in fact, match. 

 

3.34 Once again, it is vital to pay close attention to the precise wording of these expressions 

(that is, to specify the precise question which the evidence is being adduced to answer) 

and to be on one’s guard against illegitimate conflations of quite different quantities. Here, 

in particular, it would be fallacious to equate a value for the false positive probability (the 

prior probability of declaring a match falsely) with the value for the probability of a false 

match (the probability that any given declared match is false). Despite the linguistic 

similarity of these formulations, they represent categorically different concepts of 

probability. The first value is a measure of the reliability of testing procedures, which is 

given by the percentage of non-matches reported as matches (the frequency of reported 

matches that are not true matches); the second value is the probability that, a match having 

been declared, it will be a false match. The probability of a false positive is the probability 

of a match being reported under a specified condition (no match). It does not depend on 

the probability of that condition occurring, since the condition (no match) is already 

assumed to have occurred. By contrast, the probability that the samples do not match 
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when a match has been reported depends on both the probability of a match being reported 

under the specified condition (no match) and on the prior probability that that condition 

will occur.  Consequently, the probability that a reported match is a true match or a false 

match cannot be determined from the false positive probability alone. 

 

The distinction between false positive probability and the probability that a declared match 

is false has important implications for interpreting the reliability and probative value of 

scientific evidence. A particular laboratory may have a low false positive rate in the sense 

that it does not often report false matches. However, this does not necessarily mean that 

when the laboratory declares a match there is a high probability that it is a true match 

rather than a false positive. The probability that a declared match is a false positive is 

partly determined by pertinent base rates, which can have unanticipated effects (as we saw 

in the Blue and Red Buses hypothetical discussed in §2.30–§2.31). The following pair of 

hypothetical illustrations should serve to reinforce the message. 

 

3.35 Suppose that, in a relevant population of 10,000 individuals, the base-rate for Disease X is 

1% (100 people). A person chosen at random from the population therefore has a 

probability of 0.01 of being infected. The probability that a particular diagnostic test for 

the disease will give a positive result if a person has the disease is known to be 0.99. So 

for the 100 people that actually have the disease, 99 will give a positive test result. A 

negative result would be recorded for the other infected individual, who is the one false 

negative. 

 

The probability that this same diagnostic test will give a negative result if a person does 

not have the disease is stipulated to be 0.95. Thus, for the 9,900 people who do not have 

the disease, 9,405 would give a negative test result. The other 495 people will test 

positive, even though they do not actually have the disease. They are false positives and 

the false positive probability is 0.05 (5%). Employing the terminology of “sensitivity” and 

“specificity” introduced in §2.21, we can say that the sensitivity of the diagnostic test is 

0.99, and its specificity is 0.95. 

 

These results are summarised in the following table: 

 

Table 3.1: Results of a Diagnostic Test for Disease X 
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Diagnostic Test  

Positive Negative 

 

Total 

Disease X present 99 1 100 

Disease X absent 495 9,405 9,900 

Total 594 9,406 10,000 

  

Suppose that an individual tests positive for Disease X. What is the probability that this 

person actually has the disease? 

 

From the table, we can clearly see that the number of people expected to test positive for 

the disease is 594. Of those 594 people, 99 will actually have the disease. Thus, the 

probability that a person with a positive result for the test actually has the disease is 

99/594 = 1/6. Complementarily, the probability that a person with a positive test result 

does not have the disease is 495/594 = 5/6. 

 

The diagnostic test is both highly sensitive and highly specific to Disease X, generating an 

intuitive expectation that the test should be highly reliable. However, because the base rate 

for the disease in the population is very low (1%) the probability of a declared match 

being false is surprisingly high – 495/594 = 5/6. The probability that a declared match is a 

false positive is completely different to the false positive probability for the diagnostic 

test, which is a measure of the test’s specificity. From the table, we can see that the test 

will incorrectly diagnose 495 out of the 9,900 people in the population who are not 

infected with Disease X, i.e. 495/9,000 = 0.05; which is the complement of the test’s 

stipulated specificity (0.95). The probability that a declared match is false varies with 

changes in the base rate (and at the limit, if the base rate were zero the probability that a 

declared match is false would be 1, and vice versa), whereas the specificity of a diagnostic 

test is unaffected by changes in the base rates for infection. 

 

3.36 A second hypothetical example using the same numbers but this time referring to DNA 

evidence will clarify the significance of this distinction for criminal proceedings.  

 

 

Table 3.2: Results of DNA Profiling  



77 

DNA Evidence  

Present Absent 

 

Total 

Guilty 99 1 100 

Innocent 495 9,405 9,900 

Total 594 9,406 10,000 

 

Consider Table 3.2.  In this variation, the prior probability of guilt (base rate) is 1% 

(100/10,000); the probability that the evidence is detected on a person who is guilty is 0.99 

(99/100); the probability the evidence is absent on a person who is innocent is 0.95 

(9,405/9,900). The number of people on whom the evidence is present is 594, of whom 99 

are guilty. The other 495 on whom the evidence is detected are innocent false positives. 

Thus, the probability that person on whom the evidence is detected is guilty is 99/594 = 

1/6. 

 

The false positive fallacy (Thomson et al 2003) is to equate the antecedent probability of a 

false positive (presence of the evidence when a person is innocent) with the probability 

that a person on whom the evidence is present is nonetheless innocent. In this illustration: 

 

(i) the probability of a false positive is 495/9,900 = 1/20 = 0.05 (in other words, the 

test is 95% specific for matching DNA profiles); 

 

(ii) the probability a person is innocent when the evidence is present (a match has 

been declared for the DNA profiles) = 495/594 = 5/6 = 0.833 (approx.). 

 

The second probability is obviously much larger (and the corresponding event more 

likely) than the first, and it would be a serious error to confuse them with each other. 

 

3.37 (i) Fallacious inferences of certainty 

A very low probability of a random match is sometimes thought to equate to a unique 

identification. For example, a DNA profile with a very small random match probability 

might be taken to imply that the possibility of encountering another person living on earth 

with the same DNA profile is effectively zero; in other words, that there is sufficient 

uniqueness within the observed characteristics to eliminate all other possible donors in the 
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world. Influenced by similar thinking, the US Federal Bureau of Investigation decided that 

FBI experts could testify that DNA from blood, semen, or other biological crime-stain 

samples originated from a specific person whenever the random match probability was 

smaller than 1 in 260 billion (Holden, 1997). 

 

3.38 However, all such inferences of uniqueness are epistemologically unwarranted. 

Probabilistic modelling must be adjusted to accommodate the empirical realities of 

criminal proceedings. For example, there may be contrary evidence, such as an alibi, or 

risks of contamination of samples, etc. Also, some of the modelling assumptions 

underpinning the probabilistic calculations may be open to challenge. In the final analysis, 

no probability of any empirical event (e.g. the probability of another person matching a 

DNA profile), however small, can be equated to a probability of zero (no person with a 

matching profile living anywhere in the world). Even though a random match probability 

may be extremely small (one in ten billion, say – the world’s estimated current population 

being (only) six billion) it does not warrant the inference that a matching DNA profile 

uniquely identifies an individual. Quite apart from anything else, every set of identical 

twins in the world has the same DNA profile – and the chances of obtaining random 

matches are vastly increased in relation to parents and siblings.  

 

With a random match probability of, e.g., one in ten billion and a world population of six 

billion, the probability that there is at least one other person with the profile is about 0.46 

(and a corresponding probability of 0.54 that no-one else does). For six billion people and 

a random match probability of 1 in 260 billion, the probability of at least one other match 

in the population is about 0.02.  

 

3.39 There appears to be growing sophistication in probabilistic reasoning across the forensic 

sciences, which has been spearheaded by developments in DNA profiling. Commenting 

on this trend, Saks and Koehler (2005) anticipate “a paradigm shift in the traditional 

forensic identification sciences” suggesting that “the time is ripe for the traditional 

forensic sciences to replace antiquated assumptions of uniqueness and perfection with a 

more defensible empirical and probabilistic foundation”. The idea here is that DNA 

evidence and the probabilistic techniques applied to it will become a kind of “gold 

standard” for all forensic science evidence. DNA evidence will be explored at greater 

length in Practitioner Guide No 2. 
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3.40 (j) Unwarranted assumptions of independence 

Probabilistic concepts of independence and dependence were introduced in Section 2 of 

this Guide. Our final “trap for the unwary” involves assuming that two probabilities are 

independent, and therefore amenable to the product rule for independent events, when 

that assumption is unwarranted. Either known information demonstrates that the two 

events are related, or there are insufficient data to make any reliable assumption either 

way (and therefore the default assumption should be dependence in criminal proceedings). 

 

3.41 A real-world illustration of fallacious assumptions of independence is afforded by Sally 

Clark’s case.23 Research data showed that the frequency (probability) of sudden infant 

death syndrome (SIDS) in a family like the Clarks’ was approximately 1 in 8,543. From 

this it was deduced, applying the product rule for independent events, that the probability 

of two SIDS deaths in the same family would be 1/8,543 x 1/8,543 = 1/72,982,849, which 

was rounded down to produce the now notorious statistic of “1 in 73 million” quoted in 

court. The fact-finder was apparently encouraged to believe that the figure of 1 in 73 

million implied that multiple SIDS deaths in the same family would be expected to occur 

about once every hundred years in England and Wales. Of course, this calculation and 

deduction are valid only on the assumption that two SIDS deaths in the same family are 

entirely unrelated, independent, events. But this was a perilously fallacious assumption. 

 

In reality, the assumption of independence was directly contradicted by the research study 

from which the original 1/8,543 statistic was derived. Fleming et al (2000) reported that a 

sibling had previously died and the death ascribed to SIDS in more researched SIDS 

families than in control sample families (1.5%, five out of 323 families, and 0.15%, two 

out of 1288 families, respectively, and that these percentages were significantly different 

in the statistical sense). Far from warranting an assumption of independence, these 

empirical data suggest that multiple SIDS in the same family may be dependent events.  

 

3.42 Recall that interpretation of evidence is a fundamentally comparative exercise. The true 

probative value of evidence can be assessed only by considering it under at least two 

propositions, which in criminal proceedings can be modelled as “the proposition advanced 

                                                 
23 R v Clark [2003] EWCA Crim 1020. 
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by the prosecution” and the competing “proposition advanced by the defence” (which, in 

the absence of anything more suitable, may simply be the negation of the prosecution’s 

proposition).  

 

When the evidence is implausible under the defence proposition, it is tempting to jump to 

the conclusion that the prosecution’s case (proposition) must be true. But that inference is 

speciously premature. The evidence might be even more implausible assuming the truth of 

the prosecution’s proposition. For example, it might be very unlikely that two cases of 

SIDS would be experienced in a single family. But it might be even less likely that a 

mother would serially murder her two children (we must make assumptions here, of 

course, about the impact of other evidence). So, taken in isolation, the bare fact of two 

infant deaths in the same family is probably more likely to be SIDS than murder. Unlikely 

though the former innocent explanation may be, it is not as unlikely as the latter, 

incriminating explanation. 

 

3.43 Forensic scientists and other expert witnesses in criminal proceedings should guard 

against making unwarranted assumptions of independence. That two events or 

characteristics are truly independent should be demonstrated rather than merely assumed 

before applying the product rule for independent events to calculate the probability of their 

conjunction. Witnesses who testify on the basis of independence should be prepared to 

explain and justify their rationale for that supposition, whilst lawyers should be ready to 

probe statements of the form “research shows that…” in order to satisfy themselves that 

the quoted research is fit for purpose and that the evidence does not rest on unwarranted 

assumptions of independence. 
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4. Summary and Checklist 

 

4.1 Introduction: Communicating and Interpreting Statistical Evidence in the 

Administration of Criminal Justice 

Statistical evidence and probabilistic reasoning place intellectual demands on most of the 

professional participants in criminal proceedings, including lawyers, judges and expert 

witnesses. There is no room for complacency; errors and misunderstandings relating to 

probability and statistics have contributed towards serious miscarriages of justice.  

 

4.2 Every professional participant in criminal proceedings should ideally acquire sufficient 

knowledge of probability and cultivate the practical competence needed to interpret 

statistical information correctly in order to fulfil their respective roles in the administration 

of criminal justice. Probability is one specialised dimension of logical reasoning. Criminal 

justice professionals may or may not find it illuminating or convenient to employ the 

formal tools of probability and statistics in their own professional practice, but they do 

need to be able to recognise these techniques and successfully decode them when they are 

invoked or implicitly relied on by others. Moreover, the prospect of implicit or 

unconscious reliance on probabilistic reasoning places an even greater premium on 

vigilance. In short, judges, lawyers and expert witnesses should be responsible producers 

and discerning consumers of statistical information and probabilistic reasoning whenever 

they are introduced into criminal proceedings. 

 

4.3 1. Probability and Statistics in Forensic Contexts 

 Statistics are generalisations derived from observations of the empirical world. Statistical 

reasoning is characteristically inductive. Probability, by contrast, is a way of measuring 

uncertainty which is projected onto the world and thereby helps us to formulate and 

implements rational plans of action. Probabilistic reasoning is deductive. Both topics may 

be regarded as overlapping but conceptually distinct parts of the larger human endeavour 

of reasoning under uncertainty, of which criminal adjudication is one important 

manifestation. Probability obeys mathematical axioms with powerful real-world 

applications, which include important aspects of evidence and proof in criminal 

proceedings. 
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4.4 Statistics has many forensic applications, but it must be approached with care and 

interpreted correctly. There are many equally valid ways of presenting statistical data. For 

example, the mean, the median, the mode and the standard deviation are alternative ways 

of summarising estimates which emphasise different aspects of relevant data. The question 

is not whether these alternative estimates are “right” or “wrong”, but rather whether they 

are suitable for particular purposes. Thus, confidence intervals are regarded as appropriate 

expressions of uncertainty in social science and elsewhere, but they are not an appropriate 

way of evaluating evidence in criminal proceedings because they are irremediably 

arbitrary and unjustifiably cause valuable evidence to “fall off a cliff”.  

 

The validity of statistics is a function of sampling techniques and other methodological 

considerations, which need to be taken into account when assessing inferential conclusion 

based on statistical information. Probability theory can help with these assessments. In the 

final analysis, statistical inferences can only be as good (or as poor) as their underlying 

data. 

 

4.5 In summary, when statistics are being presented and interpreted in forensic (or any other) 

contexts, there are always two principal dimensions of analysis to be borne in mind: 

 

(1) Research methodology and data collection: Do statistical data faithfully 

represent and reliably summarise the underlying phenomena of interest? Do 

they accurately describe relevant features of the empirical world? 

 

(2)  The epistemic logic of statistical inference: Do statistical data robustly 

support the inference(s) which they are assumed or asserted to warrant? Is it 

appropriate to rely on particular inferential conclusions derived from 

statistical data? 

 

4.6 2. Basic Concepts of Probabilistic Inference and Evidence 

The starting point for the interpretation and evaluation of evidence is to identify the 

precise question that it purports to answer. More specifically, one must consider: 

 

• How is the evidence relevant? (Irrelevant evidence is never admissible.) 
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• If relevant, does the evidence fall foul of any general exclusionary rule? 

• If admissible, what is the probative value of the evidence? 

 

Insofar as probabilistic evidence and reasoning involve specialist skills and knowledge, 

legal professionals and expert witnesses should be able to discharge their allotted roles 

responsibly and in accordance with the interests of justice by mastering a relatively small 

number of basic concepts, theorems and other applications (such as the product rule for 

calculating the conjunctive probability of independent events). Probability theory is often 

illustrated through contrived examples involving tossing coins, drawing playing cards 

from a normal deck, spinning a roulette wheel, and the like. However, these hypothetical 

contrivances have powerful real-world implications, not least for criminal adjudication. 

 

4.7 Relative frequencies provide basic units of probability with the most immediate and 

extensive forensic applications. As base rates, frequencies relate to general variables or to 

background data such as production or sales figures. When incorporated into expert 

reports or testimony adduced in criminal proceedings, frequencies more commonly relate 

to case-specific evidence. All such relative frequencies informing probabilities are 

predicated or “conditioned” on certain assumptions. These assumptions should be 

specified in every case, and their adequacy for the task in hand explored, interrogated and 

verified. 

 

4.8 Evidence evaluation is always a fundamentally comparative exercise. Ideally, expert 

witnesses should testify to the likelihood of the evidence under two competing 

propositions (or assumptions), the prosecution’s proposition and the competing 

proposition advanced by the defence (which may simply be the negation of the 

prosecution’s proposition in the absence of fuller pre-trial defence disclosure). In other 

words, experts should testify to the likelihood ratio. Even if the evidence is unlikely 

assuming innocence, it could conceivably be even more unlikely assuming guilt. The 

probative value of the evidence cannot be assessed by examining only one of two 

competing propositions. 

 

4.9 Bayes’ Theorem states that the posterior odds are equal to the prior odds multiplied by the 

likelihood ratio. This theorem authorises legitimate transpositions of the conditional, 
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converting the probability of the evidence assuming guilt – p(E|G) – into the probability of 

guilt assuming the evidence; p(G|E). Bayesian reasoning applies most directly to 

quantified evidence, such as DNA profiles with mathematically calculable random match 

probabilities.  However, Bayes’ Theorem can in principle be extended to any kind of 

evidence, since one can always, theoretically, attach subjective probabilities to 

unquantified evidence of any description. The reasonableness of any subjective probability 

is always open to question, and its underlying assumptions should be identified and 

thoroughly tested in criminal litigation. Although the Court of Appeal has denounced 

attempts to encourage jurors to attempt Bayesian calculations, especially in relation to 

non-scientific evidence, many forensic scientists are confirmed or unconscious Bayesians 

and routinely employ likelihood ratios in the course of generating expert evidence 

ultimately adduced in court. This is entirely appropriate and justifiable (Bayes’ Theorem 

is, after all, a valid deduction from mathematical axioms), provided that such evidence is 

properly interpreted and its underlying assumptions and limitations are correctly 

identified and evaluated.  

 

4.10 Probabilistic evidence of all kinds is susceptible to recurrent reasoning errors. Bayes’ 

Theorem, for example, is associated with the so-called “prosecutor’s fallacy”. This Guide 

sought to identify, deconstruct and neutralise the most frequently encountered and 

persistent of these probabilistic “traps for the unwary”.  

 

4.11 3. Interpreting Probabilistic Evidence – Anticipating Traps for the Unwary 

Expert evidence employing probabilistic concepts or reasoning may address different 

levels of proposition. It is essential to ascertain (and for experts themselves to state 

clearly) whether the evidence addresses source, sub-source or activity-level propositions. 

Source and – especially – sub-source propositions afford the most focused and narrowly 

circumscribed ways of expressing an expert’s inferential conclusions, but they are not 

necessarily the most helpful to the court. Activity-level propositions are generally more 

helpful in resolving disputed questions of fact but tend to build in more inferential steps 

and are consequently, in this sense, less transparent regarding their underlying data and 

conditioning assumptions. In every case, it is the forensic scientist’s duty to identify the 

data and spell out the assumptions on which their expressed opinion is based. Experts 

should always steer clear of crime-level propositions, which are exclusively reserved to 

fact-finders in criminal adjudication. 
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4.12 It is also important to pay close attention to the nuanced language of expert reports. 

Phrases such as “consistent with”, “could have come from” and “cannot be excluded” are 

potentially misleading, inasmuch as they give no indication of the probative value of an 

asserted association. In fact, such conclusions are virtually meaningless unless pertinent 

alternatives are also considered. 

 

4.13 The conditional is illegitimately transposed when the probability of the evidence 

conditioned on innocence, p(E|I), is confused with the probability of innocence 

conditioned on the evidence, p(I|E). These are completely different concepts which often 

have radically different values. Mistaking one for the other is popularly known as “the 

prosecutor’s fallacy” owing to its (contingent) association with prosecution evidence, 

especially DNA profiling evidence. However, any participant in criminal proceedings – 

including forensic scientists and other expert witnesses – potentially can, and many 

frequently do, fall into this notorious trap.  

 

A variant of the illegitimate transposition of the conditional is known as the source 

probability error. This is perpetrated by confusing the probability of a match when the 

suspect is not the source, p(Match | Suspect not the source), with the probability the 

suspect is not the source assuming matching trace evidence, p(Suspect is not the source | 

Match). The first quantity is the random match probability; the second is predicated on a 

positive test result and depends on the size of the population of interest. As before, these 

quantities could represent dramatically different probabilities. A very small random match 

probability, for example, cannot be equated to a very small probability that matching 

samples in fact came from different sources. 

 

The conditional is legitimately transposed through the application of Bayes’ Theorem. 

Illegitimate transpositions arise through confusion and are always unjustifiable. Whether 

replicating the classical “prosecutor’s fallacy” or some variation on source probability 

error, illegitimate transpositions adopt the flawed logic of thinking that “If I am a monkey, 

I have two arms and two legs” implies that “If I have two arms and two legs, I am a 

monkey”. 
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4.14 A different kind of interpretative error involves undervaluing probabilistic evidence. 

Evidence can be highly probative even if, taken in isolation, it falls a long way short of 

constituting proof beyond reasonable doubt. Probabilistic evidence should not be 

disparaged, must less spuriously rejected as irrelevant, just because it fails to constitute 

self-sufficient and irrefutable proof of guilt. If this were the authentic legal test of 

relevance and admissibility, no evidence would ever be given in criminal trials. 

 

4.15 Further potential traps for the unwary lurk in the ease with which it is possible to confuse 

different probabilities or inadvertently break the axiomatic laws of probability. The 

following are particularly noteworthy and demand constant vigilance: 

  

• The random match probability must not be confused with the probability of 

obtaining another match somewhere in the population. The random match 

probability is the probability of obtaining a match “in one go”, not the probability 

that at least one other member of the population of interest will produce a match.  

The probability a particular person identified in advance will win a lottery is 

different from the probability the lottery will be won (by someone). 

 

• A population frequency does not state the number of items of interest that would 

need to be tested before a match is found. If there were 1,000 plastic balls in a bag, 

999 white and one black, the frequency of black balls in the ball population is 

1/1,000 but this clearly does not imply that one would expect to pull a black ball 

out of the bag only at the 1,000th attempt. Fallaciously equating these quantities is 

known as numerical conversion error. 

 

• The false positive probability must not be confused with the probability that a 

stated match is false. The false positive probability is a measure of the specificity 

of the test – with what regularity it produces an erroneous match. The probability 

that a stated match is false turns crucially on the relevant base rates, which are 

capable of producing strikingly counter-intuitive results on certain empirically 

plausible assumptions. Even a test with exceedingly good specificity – e.g. a false 

positive probability of 0.001 (one in a thousand) – will be wrong on every occasion 
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that it declares a match if there are no true positives in the tested population: i.e. 

the probability that a declared match is false would be 1. 

 

• No random match probability, no matter how tiny, can warrant any inference with 

100% certainty, e.g. a unique identification of a particular individual. Probability is 

concerned with uncertainty all the way to the vanishing point. 

 

• The product rule for independent events for calculating conjunctive probabilities 

should be applied only to verifiably independent events. Independence should 

never be a default assumption in criminal proceedings, where erroneous inferences 

risk serious miscarriages of justice. Independence must be demonstrated and 

verified before the product rule for independent events can safely be applied. 

 

 

. 
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Appendix A – Glossary 

 

‘|’, the conditioning bar: the vertical line used, in conjunction with p( ), to express 

conditional probabilities in mathematical notation. The event to the left of the 

conditioning bar is the unknown variable of interest for which a probability is to be 

calculated; the assumed or known event is located to the right of the bar. For example, 

p(Evidence | Guilt) denotes the probability of the evidence assuming guilt (not to be 

confused with p(Guilt | Evidence), the probability of guilt assuming the evidence) . 

 

p( ),  probability: Notational shorthand for the probability of the event or other variable in 

the parentheses. For example, p(G) denotes the probability that the accused is guilty; 

p(I) denotes the probability that the accused is innocent; and p(E) is shorthand for the 

probability of the evidence. 

 

x:  symbol to denote “event” or other variable of interest. Often used in conjunction with 

p( ), where p(x) denotes the probability of the variable x. 

 

Absolute frequency, see frequency. 

 

Addition rule of probability: For two mutually exclusive events or characteristics (i.e. 

their conjunction is impossible), the probability of one or the other being the case is 

the sum of the probabilities for each individual event. Thus, for blood groups A and 

AB, the probability that a person is A or AB is the sum of the probabilities (i) that they 

are A and (ii) that they are AB, or in notation p(A or AB) = p(A) + p(AB). Where 

events are not mutually exclusive, the probability of one or the other (or both) being 

the case equals the sum of the probabilities for each individual event or characteristic 

minus the probability of their conjunction, i.e. p(A or AB) = p(A) + p(B) – p(AB). 

Thus, the probability of having blue eyes and blond hair equals the probability of 

having blue eyes plus the probability of having blond hair, minus the probability of 

having both blue eyes and blond hair. 

 

Base rates, or background rates: The rate of occurrence or proportion of some event in a 

population of relevance to the matter being investigated. In criminal proceedings, this 
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might be the proportion of shoes of a particular design sold in the local area or during 

a specified time period, etc; or the number of cars with sliver metallic paint as a 

proportion of all cars sold in the last five years, or currently on the roads, etc. 

 

Bayes’ Theorem: a formula for legitimately “transposing the conditional”, according to 

which the posterior odds are equal to the product of the likelihood ratio and the prior 

odds. For example, the posterior odds in favour of guilt after having heard 

(conditioned on) the evidence is the product of (i) the likelihood ratio of the evidence 

and (ii) the prior odds in favour of guilt before the evidence was heard. The likelihood 

ratio is the ratio of (i) the probability of the evidence assuming that the prosecution’s 

proposition is correct to (ii) the probability of the evidence assuming that the negation 

of the prosecution’s proposition (“the defence proposition”) is correct.. 

 

Census: collection of data from the entire population of interest (in contrast to a “sample” 

comprising some subset of these data – see sampling). 

 

Complementary events, see events. 

 

Confidence interval: an interval constructed from a sample within which a population 

characteristic is said to lie with a specified degree of confidence, e.g., a “95% 

confidence interval”. Confidence internals typically describe the sample mean plus or 

minus a multiple of the standard error (the multiple chosen from the specified level of 

confidence). 

 

Conjunction: The conjunction of two events, x and y, is the event defined by the 

occurrence of both x and y. Thus, the conjunction of the event ‘accused has soil on his 

shoes’ and the event ‘shoe tread is similar to footprint in soil outside window of 

burgled house’ is the event ‘accused has soil on his shoes whose tread is similar to 

footprint in soil outside window of burgled house’. 

 

Convexity Rule: For any event or issue, the probability of its occurrence can be expressed 

as a numerical value between 0 and 1 inclusive. Only impossible events have a 

probability of zero (Cromwell’s rule). If a probability of zero is assigned to any issue 

(such as guilt or innocence) no evidence can ever alter that probability. 
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Count: the number (n) of times a certain event occurs. This could be the number of 

children in a family, the number of heads in 20 tosses of a coin, the number of times a 

ball falls in the ‘1’ slot in a roulette wheel, the number of consecutive matching 

striations in a bullet found at a crime scene and a bullet fired from a suspect gun, or 

any variable of interest that can be counted, as distinct from a measurement. Counts 

are whole numbers (integers), 0, 1,  2, etc.  However, the mean of a set of counts need 

not be an integer, e.g., the mean number of children in British families could be 1.5. 

Measurements need not take integer values. 

 

Cromwell’s Rule: only impossible events can realistically be assigned a value of zero 

(referring to Oliver Cromwell’s plea to the General Assembly of the Church of 

Scotland on 3 August 1650: “I beseech you, in the bowels of Christ, think it possible 

that you may be mistaken”(Oxford Dictionary of Quotations, 3rd edn 1979). 

 
Deductive logic, deduction: inferential conclusion, typically involving reasoning from 

generals to particulars (and contrasted with induction). In the standard deductive 

syllogism, a deductive conclusion follows by logical necessity from initially 

demonstrated or accepted axioms or premisses 

 

Dependent events: “events” (or, sometimes, “variables”) which affect the probability of 

some other event (variable) of interest. For example, the probability that an unknown 

person is male is affected by our knowledge of that person’s height, and even more so 

by knowing their name. Likewise, knowledge of size and shape of tyre marks left at a 

crime scene affect the probability that the marks were created by a particular make and 

model of getaway car. 

 

Disjunction: The disjunction of two events, x and y, is the event defined by the 

occurrence of x or y or x-and-y. The disjunction of the event “the accused has soil on 

his shoes” and the event “the shoes match the footprint at the crime scene” is the event 

“the accused has soil on his shoes; or the shoes match the footprint at the crime scene; 

or both the accused has soil on his shoes and the shoes match the footprint at the crime 

scene”. 
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Error: as a statistical term, denotes the natural variation in a sample statistic or in the 

estimate of a population characteristic (see also standard error). Statistical “error” has 

nothing to do with “mistakes” in common parlance. 

 

Events: states of affairs of interest, about which evidence may be given and probabilities 

calculated. One might refer to: “the event that the suspect’s DNA matches the crime 

stain sample”; “the event that the chemical composition of drugs from two different 

seizures is identical”; “the probability of the event that fibres from a crime scene 

match the accused’s jumper”, etc. Complementary events are two events such that one 

or the other must occur but not both together, i.e. p(x) + p(y) = 1. The event that a 

defendant is factually guilty and the event that a defendant is factually innocent are 

complementary, since the accused must be one or the other; he cannot be both or 

neither. 

 

Evidence: information relied on for a particular inferential purpose, such as  deciding 

whether the accused is guilty in criminal proceedings. “Legal evidence”, “judicial 

evidence”, and – in its original, literal meaning – “forensic evidence” are all synonyms 

for information which is admissible as evidence in legal proceedings. The principal 

forms of legal evidence are witness testimony, written statements, documents and 

physical objects (the latter are known as “real evidence”). The probative value of the 

evidence can be expressed in terms of conditional probabilities, i.e. as the ratio of the 

probability of the evidence conditioned on the prosecution proposition and the 

probability of the evidence conditioned on the defence proposition. 

 

Experiment: the collection of data in a controlled, (as we say) “scientific” fashion seeking 

to test a specified hypothesis (e.g. regarding the anticipated impact of particular 

variables) whilst eliminating potentially confounding factors. In an agricultural 

experiment, different fertilisers might be applied to different areas of farmland to 

allow variations in crop yield to be documented and assessed. A forensic scientist 

might compare the different patterns of glass fragments produced when rocks are 

thrown at windows from varying distances. Purely observational studies, involving no 

manipulation or intervention by the investigator, are not experiments in the formal 

sense, although they are sometimes described as “natural experiments” (and may be 
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the only kind of research possible regarding particular questions, owing to ethical or 

practical constraints).   

 

Facts in issue, see issue. 

 

False match: a match is declared but the identification is false. This could arise for a 

variety of reasons, including: (i) faulty criteria for declaring a match; (ii) 

misapplication of those criteria in practice, e.g. a fingerprint examiner erroneously 

judges two characteristics to be similar when they are dissimilar; (iii) confusion, 

contamination, or degradation of samples; or (iv) the crime sample and the control 

sample genuinely do match, but the accused is not in fact the source of the crime 

sample. 

 

False negative: a negative test result in a case where the feature being tested for (a 

disease, a chemical substance, a matching fingerprint, etc.) is actually present. 

 

False positive:  a positive test result in a case where the feature being tested for (a disease; 

a chemical substance; a matching fingerprint, etc.) is not actually present. 

 

Frequency,  

absolute frequency (of occurrence): the count of the number of items in a certain 

class, e.g. the number of sixes in 20 throws of a six-sided die; or the number of 

times the ball lands in the ‘1’ slot in 1,000 spins of a roulette wheel. 

 

relative frequency (of occurrence): the proportion of the number of items in a 

certain class, e.g. the proportion of sixes in 20 throws of a six-sided die (i.e. the 

absolute frequency of sixes divided by 20); or the proportion of times the ball 

lands in the ‘1’ slot in 1,000 spins of a roulette wheel (the number of balls in 

the ‘1’ slot divided by 1,000). Proportions take values between 0 and 1; and the 

sum of proportions over all possible outcomes (1, 2, …, 6 for throws of a die;  

0, 1, 2, .. 36 for a 37-slot roulette wheel) equals 1. Proportions can be 

converted into percentages by multiplying by 100 (thus, where a six is rolled 

four times in 20 throws of the die, the relative frequency of sixes is 4/20 = 1/5; 

which multiplied by 100, equals 20% sixes). 
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Independence, independent events or variables: events or variables x and y are 

“independent” when the occurrence or non-occurrence of x has no bearing whatever on 

the occurrence or non-occurrence of y. For example, successive tosses of a fair coin or 

rolls of a fair die are independent events. Independence is not a general default 

assumption; one must have good grounds for believing that two variables are 

genuinely independent. In forensic contexts in particular, it is perilous to apply the 

multiplication rule for independent events where assumptions of independence are 

unwarranted. 

 

Induction: in logic, “[t]he process of inferring a general law or principle from the 

observation of particular instances” (OED, 2nd edn 1989). More generally, induction 

may involve the formulation of empirically-based generalizations and their 

application to particular cases. 

 

Issue: the matter under investigation, that which is to be determined. In criminal 

proceedings, the “facts in issue” are defined by the elements of the offence(s) charged 

and any affirmative defences that the accused might advance. The ultimate issue in a 

criminal trial is whether the accused had been proved guilty to the requisite criminal 

standard (“beyond reasonable doubt”, or so that the fact-finder is sure of the accused’s 

guilt). 

 

Likelihood ratio: a measure of the value of evidence in terms of two probabilities 

conditioned on different assumptions. The likelihood ratio is the core component of 

Bayes’ Theorem. In relation to evidence of the accused’s guilt, for example, this is the 

ratio of (i) the probability of the evidence on the assumption that the accused is guilty 

to (ii) the probability of the evidence on the assumption that the accused is not guilty. 

 

Mean: the average of a set of numbers. The mean is the sum of the numbers divided by 

the number of members comprising the set. 

 

Measurement: a quantity that can be represented on a continuous line, in contrast to a 

numerical count which always takes a non-negative integer value (0, 1, 2, etc.).  For 

example, height is a continuous quantity. Other continuous quantities relevant to 
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criminal proceedings include the chemical composition of drugs and the elemental 

composition of glass. 

 

Measures of dispersion: quantitative expressions of the degree of variation or dispersion 

of values in a population or sample, e.g. the standard deviation. 

 

Median: the value dividing an ordered data set (one in which the members of the set are 

given in order of ascending or descending value) into two equal halves.  For a set with 

an odd number of members, the median is the middle value, for a set with an even 

number of members, the median is half-way between the two middle values. 

 

Mode:  the value which occurs most often in a set. If there are two values which occur 

most often the set is bimodal and if there are more than two such values, the set is 

multimodal. 

 

Multiplication rule, or product rule: see Appendix B. 

for independent events: the probability of x-and-y, where x and y are independent, 

equals the probability of x multiplied by the probability of y, i.e. p(x and y) = 

p(x) × p(y).  

 

for non-independent (“dependent”) events: the probability of x-and-y, where x 

and y are dependent, equals the probability of x multiplied by the probability of 

y given that x has occurred, i.e. p(x and y) = p(x) × p(y | x). This also equals the 

probability of y multiplied by the probability of x given that y has occurred, i.e. 

p(x and y) = p(y) × p(x | y). 

 

Nonprobability convenience samples:   see sampling, convenience. 

 

Numerical conversion error: The fallacious equation of the reciprocal of a population 

frequency with the number of items of interest that would need to be tested before 

a match is found. 

 

Odds: a way of expressing likelihood or probability, in terms of the ratio of the 

probabilities of two complementary events, i.e. two events, x and y, that are 
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mutually exclusive and exhaustive (either x or y must be the case, but their 

conjunction is impossible). The odds in favour of x are then p(x)/p(y). For 

example, a defendant is factually guilty or factually innocent of the crime with 

which he is charged, and there is no third option (“neither guilty or innocent”; or 

“both guilty and innocent”). The ratio of the probability of guilt to the probability 

of innocence is the odds in favour of guilt (the first named event); or the odds 

against innocence (the second named event). In sport, we speak of the odds against 

a horse winning a race or a football team winning a match or a competition. The 

odds version of Bayes Theorem incorporates prior odds and posterior odds in its 

formula for transposing the conditional. 

 

Odds ratio: the ratio of two sets of odds. For example, in R v Clark [2003] EWCA Crim 

1020 a research report calculated the odds in favour of a previous SIDS death 

amongst the study families selected because of a current SIDS death (“cases”) and 

the odds in favour of a previous SIDS death amongst control families with no 

current SIDS death. The odds in favour of a previous SIDS death in the case 

families was 5/318; in the control families the odds were 2/1,286. The ratio of 

these odds is 5/318 divided by 2/1286, which is approximately 10. This result may 

be expressed as “the odds in favour of a previous SIDS death amongst case 

families was about 10 times the odds in favour of a previous SIDS death amongst 

the control families”. 

 

Population, 

target: the entire set of individuals or items about which information is sought, in 

other words the “population of interest”. 

  

sampled: the population from which a sample is taken. It is essential to try to 

ensure that the sampled population is the same as the target population. In a 

crime involving fibre comparisons, for example, the target population is the 

population of fibres with which the recovered sample ought to be compared. 

Defining an appropriate target population involves contextual judgements which 

may be open to dispute. The sampled population is the population of fibres 

against which the recovered sample actually is compared. If woollen fibres are 
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known to come from items of clothing, an appropriate target population might be 

items of woollen clothing rather than, e.g., carpet fibres. 

 

Posterior probability: employed in Bayes’ Theorem, the probability after consideration 

of specified evidence. 

 

Prior probability: employed in Bayes’ Theorem, the probability before consideration of 

specified evidence. 

 

Probability: is a quantified measure of uncertainty. Some probabilities are objective, in 

the sense that they conform to logical axioms (e.g. the outcomes of tossing a fair 

coin or rolling a fair six-sided die). Subjective probabilities, by contrast, measure 

the strength of a person’s beliefs, e.g. in the likely outcome of a sporting event, in 

the accused’s guilt, in a witness’s veracity. Subjective and objective probabilities 

of events can be combined when applying the laws of probability. For example, 

when applying the multiplication rule to calculate p(x and y), either p(x) or p(y) 

could be subjective or objective.  

 

Probability of exclusion: the proportion of a particular population that a specified 

characteristic would exclude. For example, if one in five people in the UK has blue 

eyes, the probability that a person chosen at random from this population has blue 

eyes is 1/5. The probability of exclusion for the characteristic ‘blue eyes’ is 4/5. 

 

Production figures: data summarising the number of items of a particular kind produced 

by a specified manufacturer and/or over a specified time period and/or in a 

specified area. Production figures are sometimes adduced in evidence in criminal 

proceedings as proxies for relative frequency of occurrence.   

 

Product rule: see multiplication rule 

 

Proposition: in the context of criminal proceedings, an assertion or hypothesis relating to 

particular facts in issue. The probative value of scientific – or any other – evidence 

may be expressed in terms of the parties’ competing propositions, e.g. “the pattern 

of blood spatter on the accused’s clothing supports the prosecution’s proposition 
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that the accused repeatedly struck the victim with his fist rather than the defence 

proposition that the accused was merely a bystander who took no part in the 

assault”. 

  

crime level: a proposition about the commission of a criminal offence. 

 

activity level: a proposition about human conduct, which could be “active” such as 

kicking the victim, breaking a window, or having intercourse; or passive, such 

as standing still. 

  

source level: a proposition about the source of physical evidence, such as the 

source of fibres on a shoe, paint fragments on clothes, semen at the crime 

scene, etc.  

  

sub-source level: a proposition about physical evidence which does not purport to 

specify its provenance or derivation. This level of proposition may be 

appropriate where a forensic scientist is unable to attribute analytical findings 

to specific source material. It is commonly used to express DNA profiling 

evidence where the profile cannot be attributed to a particular crime stain, 

tissue sample or other particularised source material. 

 

Prosecutor’s fallacy, the: common, if rather imprecise, name for the reasoning error 

involved in illegitimately transposing the conditional. 

 

Random match probability: the probability that an item selected at random from some 

population will “match” (in some defined sense of “matching”) another pre-

selected item. For example, a DNA profile is obtained from a blood stain at the 

scene of a crime. The random match probability is the probability that the DNA 

profile of a person chosen at random from the general population will match the 

profile derived from the crime scene. 

 

Random occurrence ratio: a phrase which some lawyers and courts have used as a 

synonym for the random match probability. However, this terminology is 

misleading since the random match probability is not, in fact, a ratio. 
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Reciprocal: the reciprocal of a number is that other number such that the product of the 

two numbers equals 1. For example, the reciprocal of 6 is 1/6; the reciprocal of 1/6 

is 6; the reciprocal of 25 is 0.04; the reciprocal of 0.04 is 25, etc. 

 

Relative frequency, see frequency.   

 

Sales figures: data summarising the number of items sold by a specified retailer and/or 

over a specified time period and/or in a specified area. Such data are sometimes 

adduced in evidence in criminal proceedings as proxies for relative frequency of 

occurrence.    

 

Samples, 

control, or reference: a sample whose source is known, such as fragments of glass 

known to derive from a broken window at a crime scene, fibres taken from an 

article of clothing under controlled conditions, etc. 

 

crime:  a sample associated with a crime scene. This could be a recovered sample 

or a control sample, depending on the nature of the inquiry being undertaken 

and the matter sought to be proved. 

  

recovered, or questioned: a sample whose source is unknown, such as fragments 

of glass found on a suspect’s clothing, external (foreign) fibres taken from a 

crime scene, a footwear mark at the scene of the crime, etc. 

 

suspect: a sample associated with a suspect. This could be a recovered sample or a 

control sample, depending on the nature of the inquiry being undertaken and 

the matter sought to be proved. 

 

Sampling, 

convenience: a sample which has been taken because random sampling is 

impossible or impracticable. Also sometimes known as nonprobability 

convenience samples. Convenience sampling must be carefully controlled and 
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evaluated in order to mitigate the risks of bias in the sample, i.e. the sampled 

population may fail to match the target population. 

  

random: a sample in which every member of a population is equally likely to be 

selected. This may be facilitated by constructing a list, known as a sampling 

frame, of all members of the population. Sometimes this task is relatively 

straightforward, e.g. deriving a sampling frame for an electorate from an 

electoral register. Other kinds of sampling frame may be difficult or virtually 

impossible to construct in practice, such as the creation of a list of all beer 

bottles in order to sample glass from beer bottles.   

 

stratified: populations may sometimes usefully be divided into sections known as 

strata defined by relevant characteristics of interest (e.g. within a population of 

consumers, those who eat all meats; those who eat only fish and chicken; 

vegetarians; vegans, etc). A stratified sample contains suitable proportions 

from each pertinent stratum of the population. For drug sampling from a 

collection of plastic bags, the strata could be the plastic bags, and a suitable 

proportion (sample) of drugs could be taken from each bag (stratum). 

 

Sampling frame: see sampling, random 

 

Sensitivity: a measure of a test’s ability to detect the presence of the thing it is supposed 

to be testing for. In a medical context, this might be the probability of a positive 

test result if a patient does in fact have the targeted disease. More generally in 

forensic science, sensitivity is expressed as the probability of a positive test result 

indicating a common source for control and recovered samples if the samples do 

indeed come from a common source. Sensitivity is to be distinguished from 

specificity (a particular test could be highly sensitive but not at all specific, leading 

to a high proportion of false positives). 

 

Source probability error: fallaciously equating (i) the probability of finding a “match” 

between a control sample and a recovered sample where there is no common 

source (i.e. the random match probability) with (ii) the probability that two 

samples do not have a common source, where a “match” has been found. 
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Specificity: a measure of a test’s exclusivity in detecting the presence of the thing it is 

supposed to be testing for. In a medical context, this might be the probability of a 

negative test result if a patient does not in fact have the targeted disease. More 

generally in forensic science, specificity is expressed as the probability of a 

negative test result indicating that control and recovered samples have different 

sources if the samples do indeed come from different sources. Specificity is to be 

distinguished from sensitivity (a particular test could be highly specific but not at 

all sensitive, leading to a high proportion of false negatives). 

 

Standard deviation: a measure of the variation in a sample or a population. In a sample, 

the standard deviation is the square root of the division of the sum of squares of 

deviations of the observations in the sample from the sample mean by a number 

one less than the sample size.    

 

Standard error: the standard deviation of a sample, divided by the square root of the 

sample size. It is a measure of the precision of the sample mean as an estimate of 

the population mean. 

 

Statistic: a number conveniently summarising quantified data, often presented as a 

percentage or in graphical form using graphs, bar charts, pie charts, etc. Statistics 

normally refer to a sample rather than a census. 

 

Strata, see sampling, stratified  

 

Transposing the conditional: involves converting one kind of conditional probability 

into a different kind (in mathematical notation, switching round the variables on 

either side of the conditioning bar). Bayes Theorem is a formula for effecting this 

transposition legitimately, by allowing conditional probabilities to be updated in 

the light of new information. A common reasoning fallacy involves transposing the 

conditional illegitimately. When perpetrated with ‘I’ (innocence of the defendant) 

and ‘E’ (evidence), confusing p(E|I) and p(I|E), it is often described as the 

prosecutor’s fallacy, although the fallacy is by no means confined to prosecutors. 

A small value for p(E|I) (as in the random match probability for a DNA profile) 
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does not necessarily mean a small value for p(I|E), the probability of innocence in 

light of the evidence. A small probability of finding the evidence on an innocent 

person does not necessarily mean a small probability of innocence for a person on 

whom the evidence is found. A particularly widespread variant of illegitimately 

transposing the conditional is source probability error.  

 

Trial: in a statistical context, this is the process by which data are collected in order to 

investigate some phenomenon thought to be evidenced by those data. For example, a 

statistical trial might involve repeated tosses of a coin or spins of a roulette wheel. Or a 

clinical trial could be the process by which the responses of patients to particular drugs 

are evaluated in order to assess the efficacy of the drug in treating a disease.  
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Appendix B – Technical Elucidation and Illustrations 

 

Sample Size and Percentages 

Sample size is important when considering the precision of estimates. Consider an 

experimental trial like the example given in §2.7. The sample comprised 1,000 spins of a 

standard roulette wheel. In percentage terms, the difference between the expected and 

observed frequencies of the ball landing in the no.1 slot was calculated to be 0.8%; the 

difference in the absolute frequencies was 35 (observed) to 27 (expected) no.1 slots. Trials 

comprising 10,000 spins or only 100 spins, however, would be expected to produce, 

respectively, more or less reliable estimates. As a rule of thumb, the precision of an 

estimate is related to the square root of the sample size;  in order to double the precision of 

an estimate it is necessary to quadruple the sample size. 

 

Consider another illustration based on coin-tossing. Thirteen heads in twenty tosses of a 

fair coin (65% heads) is not unusual; using standard probabilistic calculations thirteen or 

more heads would be expected to occur once in every seven or eight sets of 20 tosses of a 

fair coin. However, 130 heads in 200 tosses of a fair coin (also 65% heads) would be 

unusual – 130 or more heads would be expected about once in every 550 sets of 200 tosses 

of a fair coin.. 

 

The Multiplication (Product) Rule for Probability
24 

The multiplication rule for probability concerns the conjunction of events. It is best 

introduced through an artificial example. Consider an urn containing black and white balls 

in proportions b and w, respectively, where proportions are taken to be numbers between 0 

and 1, and b and w are such that b + w = 1. The exact number of balls of each colour is not 

important. In addition to the colour of the balls, assume each ball is either spotted or plain 

with proportions s and p, and where s + p = 1. There are then four types of ball: ‘black, 

spotted’, ‘black, plain’, ‘white, spotted’ and ‘white, plain’, denoted c, e, d and f, 

respectively, such that c + d + e + f = 1; c + d = s; e + f = p; c + e = b; and d + f = w. 

These results are conveniently displayed in Table B1. 

 

 

                                                 
24 This section draws on Lindley (1991). 
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Table B1:  Proportions of black, white, spotted and plain balls in an urn  

 Black White Total 

Spotted c d s 

Plain e f p 

Total b w 1 

 

The proportions of spotted and plain balls (s and p) are given in the final column, labelled 

‘Total’. The proportions of the black and white balls (b and w) are given in the final row, 

also labelled ‘Total’. 

 

Let K denote the composition of the urn. Let B be the event that a ball drawn at random is 

black and S be the event that a ball drawn at random is spotted. Thus, the event that a ball 

drawn at random is black and spotted is denoted ‘B and S’. For conjunctions, the ‘and’ is 

often dropped. In this example ‘B and S’ would be written as BS. Proportions can easily be 

translated into probabilities, since they obey the same rules of logic. Thus, the probability 

that a ball drawn at random is black, given the composition K of the urn, is b. Similarly, 

the probability a ball drawn at random is spotted, given the composition of the urn, is s. 

The probability a ball drawn at random is spotted and black is c. 

 

A new idea is now introduced. Suppose someone else had withdrawn a ball at random and 

announced, truthfully, that it was black. What is the probability that this black ball is also 

spotted? It is equivalent to the proportion of spotted balls which are also black, which 

from Table B1 is c/b, spotted over black.  

 

Consider the trivial result that 

c = b × (c/b). 

 

In words, the proportion c of balls that are both black and spotted is the proportion b, balls 

that are black, multiplied by the proportion of spotted balls amongst the black balls (c out 

of b, or c/b). 

 

The equivalent result for probabilities is 

p(B and S) = p(B) × p(S | B). 
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Section 2.35 gives an example of this result applied to the drawing of Aces without 

replacement from a pack of playing cards. Event B is the drawing of an Ace in the first 

draw, event S is the drawing of an Ace in the second draw. The left-hand-side of the 

equation is the drawing of two Aces, which was shown by direct enumeration to have a 

probability of 1/221. For the right-hand-side, p(B)  = 1/13 and p(S | B) is the probability of 

drawing an Ace as the second card given that an Ace has been drawn as the first card, 

which has been shown to be 1/17. The product of 1/13 and 1/17 is 1/221, which is equal to 

the value on the left-hand-side.  

 

Conditional Probabilities for Dependent Events – A Counter-intuitive Result  

One might anticipate that the conditional probability of two dependent events would 

always be smaller than the probability of the first event taken in isolation. For example, 

the probability of drawing an Ace from a normal playing deck is 4/52 = 1/13, whereas the 

probability of drawing an Ace after an Ace has already been drawn without replacement is 

3/51 = 1/17. The probability of drawing an Ace after two Aces have already been drawn 

without replacement is even smaller, 2/50 = 1/25. 

 

However, in some cases the probability of an event conditional on another event is 

actually greater than the unconditional probability of the event. Imagine that the 

frequency of baldness in the general population is 10%. The probability that a person 

selected at random is bald is therefore 0.10. But notice how these probabilities change if 

we condition the probability of baldness on gender. Now we would intuitively expect the 

frequency of baldness conditioned on being male to increase, say to 20%; and the 

frequency of baldness conditioned on being female to decrease, say to (almost) 0%. 

Conditioned on gender, the probability that a person selected at random who is male is 

also bald is 0.20. And the probability that a person selected at random who is female is 

also bald is nearly zero. So the frequency of baldness conditioned on gender may be 

greater or less than the unconditional population frequency of baldness.  

 

This result is obtained only for dependent events, as where maleness also predicts 

baldness. If one were to assume independence of baldness and gender, the probability that 

a person selected at random from the population is bald would remain 0.10 as before, 

regardless of whether that probability were conditioned on the person’s being male, or 

female, or of unknown gender.  
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For dependent events only, a conditioning event (gender in the example) may cause the 

probability of the original event (baldness) to increase or decrease, depending on the 

nature of the conditioning event. 

 

Interrogating Base Rates   

Statistical data, such as those adduced in criminal proceedings as base rates (see §§2.20-

2.22, above), need to be interpreted with care. A statistic expressed as a percentage or 

relative frequency may be entirely valid, in a formal sense, and yet still potentially 

seriously misleading. Kaye and Freedman (2000), in their contribution to the US Federal 

Judicial Center’s Reference Manual on Scientific Evidence, identify a number of pertinent 

questions that one might ask when interrogating base rates: 

 

1. Have appropriate benchmarks been provided?  

Selective presentation of numerical information can be misleading. Kaye and 

Freedman (2000) cite a television commercial for a mutual fund trade association 

which boasted that a $10,000 investment in a mutual trade fund made in 1950 would 

have been worth $113,500 by the end of 1972. However, according to the Wall Street 

Journal, that same $10,000 investment would have grown to $151,427 if it had been 

spread over all the stocks comprising the New York Stock Exchange Composite 

Index. 

 

2. Have data collection procedures changed?  

One of the more obvious pitfalls in comparing data time series is that the protocols for 

data collection may have changed over time. For example, apparent sharp rises or falls 

in social data, such as morbidity or crime rates, may be mere artefacts of changes in 

data reporting or recording practices with absolutely no bearing on the underlying 

social reality. 

 

3. Are data classifications appropriate?  

 Data can be classified and organised in different ways. One must therefore be alive to 

the possibility that a particular classification has been selected quite deliberately to 

support a particular argument or to a highlight a favourable comparison – and by 
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implication to downplay unfavourable arguments or comparisons. Gastwirth (1988b) 

cites the following example from the USA. 

 

In 1980, tobacco company M sought an injunction to stop the makers of T low-tar 

tobacco from running advertisements claiming that participants in a national taste test 

preferred T to other brands. The plaintiffs objected that the advertising claims that T 

was a “national test winner” and “beats” other brands were false and misleading. In 

reply, the defendant invoked the data summarised in Table B2 as evidence.    

 

Table B2:  The preferences of participants in a national taste test  

for the comparison of T and M tobacco. 

 

 T much 
better 
than M 

T somewhat 
better than 
M 

T about the 
same as M 

T somewhat 
worse than 
M  

T much worse 
than M 

Number 45 73 77 93 36 

Percentage 14 22 24 29 11 

 

According to these data, more survey respondents judged T much better than M (14%) 

than those finding T much worse than M (11%). Also, 60% regarded T as better or the 

same as M (i.e. including the 24% who expressed no preference either way). But 

another way of interpreting these data is to note that 40% who expressed a clear 

preference actually preferred M to T, whilst only 36% actively preferred T to M. The 

court ruled in favour of the plaintiffs.  

 

4.  How big is the base of a percentage?   

When the base is small, actual numbers may be more informative than percentages. 

For example, an increase form 10 to 20 and an increase from 1 million to 2 million are 

both 100% increases. To say that something has increased “by 100 per cent” always 

sounds impressive, but whether it is or not depends, amongst other things, on the 

numbers behind the percentage. (Also recall the coin-tossing examples of 13 heads in 

20 tosses and 130 heads in 200 tosses, discussed in the first section of this Appendix.)   
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5. Which comparisons are made?  

Comparisons are always made relative to some base-line, so that the choice of base-

line (where eligible alternatives are available) may be a crucial factor in interpreting 

the meaning of any statistic. Suppose that a University reports that the proportion of 

first class degrees awarded in humanities subjects has increased by 30% on the 

previous year. All well and good. But is the previous year an appropriate base-line? 

What if the previous year was a markedly fallow year for first class degrees in the 

humanities, so that a 30% increase merely restores the level of firsts to what it was two 

years ago? Conversely, there may have been a big increase in firsts in the previous 

year as well, perhaps suggesting a worrying erosion in academic standards rather than 

an impressive improvement in student performance. In this and many other similar 

scenarios, choice of base-line has a major bearing on the meaning – and probative 

value – of statistical information. 

 

Illegitimately transposing the conditional – case illustrations    

There are numerous reported cases involving illegitimate transpositions of the conditional 

(“the prosecutor’s fallacy”). This is how it occurred in Deen
25 in relation to a DNA 

profile with a frequency of 1 in 3 million in the relevant population: 

 

Prosecuting counsel: So the likelihood of this being any other man but Andrew 
Deen is one in 3 million? 
 

Expert: In 3 million, yes. 
 

Prosecuting counsel: You are a scientist... doing this research. At the end of this 
appeal a jury are going to be asked whether they are sure that it is Andrew Deen 
who committed this particular rape in relation to Miss W. On the figure which you 
have established according to your research, the possibility of it being anybody 
else being one in 3 million what is your conclusion? 
 

Expert: My conclusion is that the semen originated from Andrew Deen. 
 

Prosecuting counsel: Are you sure of that? 
 

Expert: Yes. 
 

                                                 
25 R v Deen, CA, The Times, 10 January 1994. 



108 

The fallacy is perpetrated when the expert is induced to agree that the likelihood 

(probability) of the criminal being someone other than Andrew Deen, given the evidence 

of the DNA match, is one in three million. (This error was further compounded by the 

unwarranted source-level conclusion that Deen was the source of the stain, i.e. source 

probability error.) 

 

The relative frequency of the DNA profile in the relevant population was 1 in 3 million, 

meaning that one person in every 3 million selected at random from this population would 

be expected to have a matching profile. This is patently not the probability that a person 

with a matching profile is innocent, as the quoted exchange between the expert and 

prosecuting counsel clearly implies. The conditional has been transposed illegitimately. 

One cannot calculate the probability of guilt or innocence of a particular person without 

knowing the number of people in the relevant suspect population. If the suspect population 

comprised, say, 6 million individuals, one would expect two matching profiles amongst 

the innocent people. Add this to the offender (whose probability of matching can be taken 

to be 1) and the expected number of people with the profile is 3, giving a probability of 

guilt for a person with the profile – p(G|E) = 1/3.  

 

An expert witness called by the prosecution also illegitimately transposed the conditional 

in Doheny and Adams, as recounted by the Court of Appeal:26  

 
“A. Taking them all into account, I calculated the chance of finding all of those 
bands and the conventional blood groups to be about 1 in 40 million.  
Q. The likelihood of it being anybody other than Alan Doheny?  
A. Is about 1 in 40 million.  
Q. You deal habitually with these things, the jury have to say, of course, on the 
evidence, whether they are satisfied beyond doubt that it is he. You have done the 
analysis, are you sure that it is he?  
A. Yes.”  
The question, in leading form, and the numerical answer given to it constituted a 
classic example of the ‘prosecutor’s fallacy’. The third question was one for the 
jury, not for the witness. The witness gave an affirmative answer to it. It is not 
clear to what evidence, if any, other than the DNA evidence, he had regard when 
giving that answer. For the reasons that we gave in our introduction to this 
Judgment, this series of questions and answers was inappropriate and potentially 
misleading. 

 

                                                 
26

R v Doheny and Adams [1997] 1 Cr App R 369, 377-8, CA. 
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A third illustration comes from Gordon,27 where the relative frequencies of the DNA 

profiles in question were calculated to be 1 in ten-and-a-half million and 1 in just over 

seventeen million. An expert witness testified that ‘she was sure of the match between the 

semen samples and the appellant’s blood’.28 This is source probability error, since even 

the extreme unlikelihood of a random match does not permit the expert to infer a 

definitive source. Fundamentally, to confuse the probability that a DNA profile derived 

from a crime scene will match an innocent person’s profile (the random match 

probability) with the probability that a person with a matching profile is innocent, as the 

expert appears to have done in Gordon, is to commit the fallacy of illegitimately 

transposing the conditional. 

 

Calculating the probability of “another match”  

As we explained in §, the probability of finding “another match” should not to be 

confused with the random match probability. Here is the more technical explanation. 

 

Consider a characteristic which is prevalent in only 1 in a thousand, 1/1,000, people (e.g. a 

height greater than a certain designated value, such as two metres). It is sometimes 

claimed that the significance of evidence of this characteristic can be expressed in terms of 

the number of people who would have to be counted before there is another (random) 

match, being the reciprocal of the frequency (1,000, in this example); i.e. “1,000 people 

would need to be observed before someone else of that height would be encountered”. Yet 

this is an intuitively obvious fallacy, since the very next person observed could be that 

height or taller.    

 

This result can be demonstrated formulaically. It has been established that the probability 

that a person is no taller than two metres is 999/1,000. If n independent (unrelated) people 

are observed, we also know by repeated use of the product rule for independent events 

that the probability that none is taller than two metres is (999/1000)n (the probability is 

999/1000 on each selection, and we make n independent selections). The complementary 

event is that at least one person is taller than two metres in height, i.e. 1 - (999/1000)n. For 

it to be more likely than not that at least one person is taller than two meters, 1 - 

                                                 
27 R v Gordon [1995] 1 Cr App R 290, CA. 

28 ibid. 293. 
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(999/1000)n must be greater than 0.5. In fact the formula 1 - (999/1000)n equals 0.5 when 

n = 693, so it is more likely than not that at least one person will be taller than two metres 

after selecting 694 people – not after 1,000 selections. If 1,000 people were indeed 

observed, the probability that at least one of them would be over two metres in height is 

0.632.  In order to raise the probability of at least one other person of at least that height to 

0.9 one would need to look at 2,307 people, which is the value of n where 1 - (999/1000)n  

= 0.9. 

 

General Principles for the Presentation of Scientific Evidence 

Various attempts have been made over the years to formulate general principles to guide 

the presentation and interpretation of scientific and other expert evidence in criminal 

proceedings. Here, for ease of reference, we summarise two significant sources of 

normative guidance. 

 

First, Part 33 (Expert Evidence) of the Criminal Procedure Rules 2010 includes the 

following requirements:  

Rule 33.2 - Expert’s duty to the court 

(1) An expert must help the court… by giving objective, unbiased opinion on matters 
within his expertise. 

(2) This duty overrides any obligation to the person from whom he receives 
instructions or by whom he is paid. 

(3) This duty includes an obligation to inform all parties and the court if the expert’s 
opinion changes from that contained in a report served as evidence or given in a 
statement. 

Rule 33.3 - Content of expert’s report 

(1) An expert’s report must— 

(a) give details of the expert’s qualifications, relevant experience and 
accreditation; 

(b) give details of any literature or other information which the expert has 
relied on in making the report; 

(c) contain a statement setting out the substance of all facts given to the expert 
which are material to the opinions expressed in the report, or upon which 
those opinions are based; 

(d) make clear which of the facts stated in the report are within the expert’s 
own knowledge; 

(e) say who carried out any examination, measurement, test or experiment 
which the expert has used for the report and— 
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(i) give the qualifications, relevant experience and accreditation of that 
person, 

(ii) say whether or not the examination, measurement, test or experiment 
was carried out under the expert’s supervision, and 

(iii) summarise the findings on which the expert relies; 

(f) where there is a range of opinion on the matters dealt with in the report— 

(i) summarise the range of opinion, and 

(ii) give reasons for his own opinion; 

(g) if the expert is not able to give his opinion without qualification, state the 
qualification; 

(h) contain a summary of the conclusions reached; 

(i) contain a statement that the expert understands his duty to the court, and has 
complied and will continue to comply with that duty; and 

(j) contain the same declaration of truth as a witness statement. 
 

These criteria for expert report writing may be regarded mutatis mutandis as general 

expectations of scientific evidence adduced in legal proceedings in any form, including 

live oral testimony. The Court of Appeal has reiterated the vital importance of full 

compliance with CrimPR 2010 Rule 33 on many occasions. 

 

Further normative guidance might be found in the following list of criteria and associated 

principles, which have been advanced by the Association of Forensic Science Providers:29 

 

• Balance: The expert should address at least one pair of propositions. 

• Logic: The expert will address the probability of the evidence given the 
proposition and relevant background information and not the probability of the 
proposition given the evidence and  background information. 

• Robustness: The expert will provide factual and opinion evidence that is capable of 
scrutiny by other experts and cross-examination. Expert evidence will be based 
on sound knowledge of the evidence type(s) and use verified databases, wherever 
possible. 

                                                 
29 The Association of Forensic Science Providers aims to “represent the common interests of the 

providers of independent forensic science within the UK and Ireland with regard to the 

maintenance and development of quality and best practice in forensic science and expert witness in 

support of the Justice System, from scene to court, irrespective of the commercial pressures 

associated with the competitive forensic marketplace”: see Brown and Willis (2009); Association 

of Forensic Science Providers (2009). 
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• Transparency: The expert will be able to demonstrate how inferential conclusions 
were produced: propositions addressed, examination results, background 
information, data used and their provenance.  

 

These desiderata for expert evidence encapsulate several of the points stressed in this 

Report. The first principle expresses the idea that it is not sufficient to consider the value 

of evidence – even strongly incriminating evidence – in the abstract. Evidential value is a 

function of two competing propositions, the likelihood of the evidence on the assumption 

that the prosecution’s proposition is true and the likelihood of the evidence on the 

assumption that the prosecution’s proposition is false. The second principle reiterates the 

elementary injunction against illegitimately transposing the conditional. As a general rule, 

forensic scientists and other expert witnesses should be assessing the probability of the 

evidence, rather than commenting on the probability of contested facts (much less the 

ultimate issue of guilt or innocence). Robustness is concerned with scientific 

methodology, which must be valid and able to withstand appropriately searching scrutiny. 

The knowledge of the expert must be sound. Laboratory equipment must be in good 

working order, properly calibrated. Operational protocols should be validated with known 

error rates. Databases will have been verified or accredited as much as possible. Finally, 

the principle of transparency states that all of the assumptions, data, instrumentation and 

methods relied on in producing the evidence must stated explicitly or at least open to 

examination and verification by the court. 
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Appendix C – Select Case Law Precedents and Further Illustrations 

 

1. English and UK Law 

 

Pringle v R, Appeal No. 17 of 2002, PC(Jam) – illustrates a range of difficulties with the 

probabilistic interpretation of DNA evidence, inc: unwarranted assumptions of 

independence; “prosecutor’s fallacy” (illegitimately transposing the conditional) at 

trial; apparent misunderstanding of statistical frequencies on appeal.  

 

R v Adams (No 2) [1998] 1 Cr App R 377, CA – juries employ common sense reasoning 

in reaching their verdicts in criminal cases, and should not be encouraged by expert 

witnesses to employ mathematical formulae, such as Bayes’ Theorem, to augment – 

or more likely confuse – their ordinary reasoning processes (reiterating R v Adams 

[1996] 2 Cr App R 467, CA). 

 

R v Atkins [2010] 1 Cr App R 8, [2009] EWCA Crim 1876 – expert witness in “facial 

mapping” permitted to express conclusions about the strength of his evidence in 

terms of a (non-mathematical or statistical) six-point scale utilising expressions such 

“lends support”, “lends strong support”, etc. 

 

R v Benn and Benn [2004] EWCA Crim 2100 – judicial consideration of the adequacy 

of databases (here, in relation to patterns of cocaine contamination on banknotes). 

 

R v Bilal [2005] EWCA Crim 1555 – illustration of source probability error in relation to 

handwriting samples. 

 

R v Clark [2003] EWCA Crim 1020 – unwarranted assumption of independence, leading 

to inappropriate use of the product rule for independent events to calculate a 

fallacious probability of multiple sudden infant deaths (SIDS) in the same family. 

 

R v Dallagher [2003] 1 Cr App R 12, [2002] EWCA Crim 1903 –.expert was permitted 

to testify that D was very likely to be the donor of an earprint at the scene of the 

crime, on the explicit assumption that earprints are uniquely identifying 
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(notwithstanding the paucity of the research base justifying this assumption).  

Semble there is no source probability error if the probability of an innocent match is 

zero; though it is difficult to see how this assumption can ever be valid in the real 

world. 

 

R v Deen, The Times, 10 January 1994 (CA, 21 December 1993) – early example of 

“the prosecutor’s fallacy” (illegitimately transposing the conditional) leading to 

conviction being quashed on appeal. 

 

R v Doheny and Adams [1997] 1 Cr App R 369, [1996] EWCA Crim 728 – general 

discussion of the “prosecutor’s fallacy” (illegitimately transposing the conditional). 

DNA experts should testify to the “random occurrence ratio” (random match 

probability) rather than expressing any inferential conclusion about the donor of 

suspect DNA. 

 

R v George (Barry) [2007] EWCA Crim 2722 – application of basic principles of 

relevance and probative value to scientific evidence. The court heard evidence that 

the scientific findings were equally likely to be obtained if Mr George was or was 

not the person who had shot the victim, Jill Dando.  If, as other evidence suggested, 

it was just as likely that a single particle of firearms discharge residue (FDR) came 

from some extraneous source as it was that it came from a gun fired by the appellant, 

it was misleading to tell the jury that innocent contamination was “most unlikely” 

(with the apparent implication that the FDR evidence must therefore be materially 

incriminating).  

 

R v Gordon [1995] 1 Cr App R 290, CA – early illustration indicating some of the 

practical problems that may arise in relation to DNA evidence, inc: contested criteria 

for declaring a “match” between samples; and adequacy of choice of reference class 

(population database) and its bearing on the random match probability. 

 

R v Gray (Kelly) [2005] EWCA Crim 3564 – illustration of DNA expert inadvertently 

being tempted into source probability error by questions put in cross-examination. 

These slips were not regarded as affecting the safety of the conviction, where the 

value of the evidence has previously been correctly stated by the expert. 
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R v Gray (Paul Edward) [2003] EWCA Crim 1001 - CA cast doubt on an expert’s 

ability to make positive identifications using facial mapping techniques in the 

absence of reliable databases of facial characteristics. However, these remarks were 

distinguished in R v Atkins [2010] 1 Cr App R 8, [2009] EWCA Crim 1876. 

 

R v Reed and Reed; R v Garmson [2010] 1 Cr App R 23; [2009] EWCA Crim 2698 – 

provided that the basis for the opinion is clearly set out (and that this is properly 

reflected in the trial judge’s direction to the jury), an expert may present inferential 

conclusions about the likely provenance of biological material from which a DNA 

profile was extracted. Such testimony may incorporate unquantified probabilities of 

transfer and persistence, but must not advance speculative activity level propositions 

lacking any truly scientific basis. 

 

R v Robb (1991) 93 Cr App R 161, CA – expert witness is permitted to form opinion on 

basis of unquantified experience expressing minority view in the field; affirmed in R v 

Flynn and St John [2008] 2 Cr App R 20, [2008] EWCA Crim 970. 

 

R v Shillibier [2006] EWCA Crim 793 – example of source probability error in making 

comparisons between soil samples. 

 

R v Stockwell (1993) 97 Cr App R 260, CA – continued existence of a strict “ultimate 

issue rule” doubted; reiterated in R v Atkins [2009] EWCA Crim 1876. 

 

R v T [2010] EWCA Crim 2439 – the “Bayesian approach” to evaluating evidence, 

employing likelihood ratios, should be confined to types of evidence (such as DNA 

profiling) for which there exist reliable databases. In the current state of knowledge, 

expertise in footwear mark comparison does not meet this standard, and consequently 

should be limited to the expression of non-probabilistic evaluative opinions. 

 

R v Weller [2010] EWCA Crim 1085 – expert witness permitted to express conclusions 

about source, transfer, and persistence of genetic material based partly on experience 

and unpublished research. 
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2. Foreign and Comparative Sources 

 

Hughes v State, 735 So 2d 238 (1999), Supreme Court of Mississippi – explicit 

recognition and discussion of numerical conversion error. 

 

People v Collins, 68 Cal 2d 319, 66 Cal Rptr 497 (1968), Supreme Court of California 

– classic illustration of the misuses of forensic probability, including speculative 

relative frequency values with no evidential basis and unsubstantiated assumptions of 

independence when utilising the product rule for independent events. 

 

R v Montella [1992] 1 NZLR 63, High Court – a first instance ruling on admissibility, 

illustrating the use of a likelihood ratio to express the probative value of expert DNA 

evidence: “It is said that the likelihood of obtaining such DNA profiling results is at 

least 12,400 times greater if the semen stain originated from the accused than from 

another individual”. 

 

State v Bloom, 516 N W 2d 159 (1994), Supreme Court of Minnesota – clear exposition 

of source probability error and other common mistakes in probabilistic reasoning, and 

consideration of how probabilistic evidence might best be presented to juries. 

 

Smith v Rapid Transit, 317 Mass 469, 58 N E 2d 754 (1945), Supreme Judicial Court 

of Massachusetts – this very short judgment, upholding a directed verdict for the 

defendant in a negligence action, inspired the much discussed “Blue Bus” hypothetical 

and related problems associated with proof by “naked statistical evidence”: see, e.g., 

Redmayne (2008). 

 

US v Shonubi, 895 F Supp 460 (EDNY, 4 Aug 1995) [“Shonubi III”] – Judge 

Weinstein reviewed the general principles of forensic statistics. 

 

Wike v State, 596 So 2d 1020 (1992), Supreme Court of Florida –  an illustration of 

source probability error. Whereas other physical trace evidence adduced by the 
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prosecution is correctly summarized as being (merely) “consistent with” the accused 

or the victim being its donor, a DNA profile of a blood sample is erroneously 

described as “positively coming from” the victim. 

 

Williams v State, 251 Ga 749, 312 S E 2d 40 (1983), Supreme Court of Georgia – 

Justice Smith, dissenting, makes a number of pertinent points challenging the 

adequacy of the prosecution’s carpet fibre evidence, which was expressed to the jury 

in terms of a compound relative frequency of one in forty million. Smith J. objects that 

the individual relative frequencies which went into this calculation were mere surmises 

which were insufficiently proved by admissible evidence.  
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