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Abstract

We build on research from neurobiology to model the process through which the brain maps outside

evidence into decisions. The sensory system encodes information through cell-firing. Cell-firing

is measured against a threshold, and an action is triggered depending on whether the threshold is

surpassed. The decision system modulates the threshold. We show that the (constrained) optimal

threshold is set in a way that existing beliefs are likely to be confirmed. We then derive behavioral

implications. Our mechanism can explain in a unified framework a number of ‘anomalies’ noted

in psychology and economics: (i) belief anchoring (the order in which evidence is received affects

beliefs and choices); (ii) polarization (individuals with opposite priors may polarize their opinions

after receiving identical evidence); (iii) payoff-dependence of beliefs and (iv) belief disagreement

(individuals with identical priors who receive the same evidence may end up with different posterior

beliefs).
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1 Introduction

Economic theory has traditionally been interested in the analysis of choices. In particular, the

processes by which individuals reach decisions have been ignored, mainly because we had little

knowledge of the pathways going from perception to action. With the recent developments in

techniques to measure brain activity, the neurobiology and neuroscience literatures have substan-

tially improved our understanding of the biological mechanisms that transform sensory perceptions

into voluntary actions. These results can now be incorporated into formal economic models of

decision-making.

The objective of this paper is to offer a brain-based model of information processing that builds

on evidence from neurobiology. According to this evidence, there are five basic principles in the

physiological mechanisms of information processing.1 First, neurons carry information away from

the sensory system using an imperfect encoding technology: the level of neuronal cell firing depends

stochastically on the information obtained. Second, an action is triggered when the cell firing

activity in favor of one alternative reaches a certain threshold. Third, neuronal activity responds

to changes in payoffs and beliefs, that is, neurons compute approximately the ‘expected value’

associated to each alternative. Fourth, neurons also perform approximately ‘Bayesian’ inferences

conditional on the data retained. Fifth and crucial for our purpose, the triggering threshold can

be modified, and this affects how the evidence is interpreted.

Building on these premises, our analysis has three goals. First, we propose the first economic

model capable of predicting decisions when the underlying mechanism that processes information

exhibits the basic premises of neurobiology. Second, we characterize the decisions that result from

this mechanism in environments with varying degrees of complexity. Third and most importantly,

we analyze the behavioral implications for decision-making. In particular, we discuss behaviors

that could not arise in a traditional learning model. We now review these three contributions.

In section 2, we represent the underlying mechanism that maps sensory perception into actions.

We start with a very simple, two-states (A and B), two-actions (a and b) model, where payoffs

depend on the combination of action and state. The individual receives a signal from the outside

world which is encoded by the sensory system in the form of cell firing. The information stochas-

tically depends on the state, with high cell firing being more likely in state A and low cell firing in

state B. Cell firing is measured against a threshold. If it is surpassed, action a is undertaken, oth-

erwise action b is implemented. This model represents the underlying economical mechanism that

transforms perception into action. According to the previous evidence, the threshold can be mod-

1For brevity concerns, the evidence is summarily reviewed in section 2 as we present each ingredient of the model.
For the economist interested in a more detailed account of the relevant neurobiological literature, we refer to the
survey by Brocas (2009).
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ified. We assume that the system (broadly defined) that transforms perception into actions –the

decision system– selects the threshold that maximizes the expected payoff of the individual.2 This

representation is extended to complex and behaviorally more relevant environments that include

many actions and states, and allow the decision system to set several thresholds simultaneously

or sequentially. The model thus provides a common language for economists and neuroscientists

interested in the study of decision processes.

In section 3, we characterize information processing and decision-making. In the basic setting

with two states and two relevant actions, the threshold is optimally set in a way that beliefs are

likely to be supported. That is, if the agent becomes more confident that the state is A, the

threshold is decreased. Thus, the new threshold is more likely to be surpassed whether the state

is indeed A or not and, as a result, the agent is more likely to take the action which is optimal

in that state but suboptimal in the other (Proposition 1). The logic for this property is simple:

as the likelihood of A increases, stronger contradictory information is required to reverse that

belief. This result is reminiscent of the findings obtained in the classical theory of organizations

literature (Calvert (1985), Sah and Stiglitz (1986), Meyer (1991)) using related formal models. The

contribution of the theory section is to extend the model to behaviorally relevant environments,

where decisions are typically complex. We show that the result mentioned above holds under some

technical conditions when there is a continuum of relevant actions (Proposition 2). It also extends

to a dynamic setting with threshold re-optimization between stages (Proposition 3). In fact, the

ability to modify neuronal thresholds has a snowball effect on decision-making: a stronger belief

towards one state implies a greater threshold modulation in its favor, therefore a higher probability

that new information supports it, and so on.

In section 4, we provide some behavioral implications of this theory. This is the most critical

contribution of the paper. Information processing in the brain has two major ingredients: the

information received is noisy, and the decision threshold mechanism filters out some of it. In other

words, the evidence received from the sensory system is interpreted. We analyze the effect of the

interpretative feature of the mechanism, and focus on behaviors that would not emerge in a stan-

dard learning environment where the exact signals were processed. We obtain five implications.

First, we show that the sequence in which signals are received affects posterior beliefs and deci-

sions (Implication 1). Indeed, given the threshold mechanism induces the individual to confirm his

prior beliefs, a first piece of information may act as an anchor for subsequent learning experiences.

Second, individuals with different prior beliefs who receive identical signals may move their be-

liefs farther apart (Implication 2). This is again due to the interpretative feature of the threshold

2Maximization is the only assumption of the model which is not based on neurobiology evidence. We will not
defend it on the basis of “loose” evolutionary considerations. Instead, we argue that the point of the paper is
precisely to determine what type of decision-making we obtain in the best case scenario of optimal adjustment. For
rigorous evolutionary models of human economic characteristics, see e.g. Robson (2001a, 2001b).
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mechanism. Suppose two individuals are willing to take two different actions following their prior

beliefs, releasing mixed evidence will reinforce their priors and individuals will polarize both their

beliefs and their actions. Third, individuals with identical priors but different payoffs will hold

different posterior beliefs even if they are exposed to the same evidence (Implication 3). Indeed,

preferences shape beliefs: individuals who feel differently about the losses incurred when the wrong

action is undertaken will set different thresholds and therefore interpret identical information in

different ways. Fourth, the optimal decision-threshold mechanism generates payoff-dependent pos-

terior beliefs (Implication 4). As such, the preferences of an individual are best represented by an

expected utility function where probabilities are payoff-dependent. The formulation is thus remi-

niscent of the rank-dependent expected utility and the security-potential/aspiration models. Fifth,

cognitive limitations that result in setting an insufficient number of thresholds generates elimina-

tion strategies (Implication 5). More precisely, the decision system disregards the most unlikely

states and discriminates optimally among the remaining ones. Each of these five implications has

received strong empirical and experimental support in social psychology and behavioral economics.

In particular, an abundant literature on confirmatory biases documents anchoring and polarization

effects consistent with our two first implications. The relationship between preferences and beliefs

has also been extensively studied. Therefore, our model provides a representation of the underlying

neuronal mechanisms that generate some well known biases in a unified framework.3

Our work departs substantially from the existing neuroeconomics literature. Current theories

are largely interested in conflicts between brain systems. Behavioral anomalies are the result of

an interplay between a rational and an automatic system.4 Instead, we propose a model that

incorporates the physiological constraints faced by the brain in the process of decision-making.

Since we focus on the physiological mechanisms behind choice processes, our paper is closer in

essence to the “physiological expected utility” theory developed by Glimcher et al. (2005).5 There

are also several areas outside economics that study a related problem, although from a rather

different angle. Neurobiologists have worked on complex statistical algorithms that mimic what

neurons in the brain do (see e.g. Brown et al. (1998)). Theoretical neuroscientists have constructed

computational models of the brain based on the underlying biological mechanisms (see Dayan and

Abbott (2005) for an introduction). Psychophysicists have developed a “signal-detection theory”

to study the likelihood of finding a weak signal in a noisy environment (see Wickens (2002) for

3Our model is consistent with the “satisficing” model in Simon (1956), advocating that cognitive limitations
should be taken into account to propose a more realistic approach to rationality. In our model, the decision-maker
optimizes under physiological constraints.

4See Thaler and Shefrin (1981) and Shefrin and Thaler (1988) for the seminal contributions, and Zak (2004) or
Camerer et al. (2005) for reviews.

5There is also a recent experimental literature that explores the neurobiological foundations for social behavior
(see e.g. Zak et al. (2004) on the effect of oxytocin on trust, Spitzer et al. (2007) for a study of the neural mechanism
underlying social compliance and Fehr and Camerer (2007) for an overview).
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an introduction). Finally, there is a literature on neural networks and artificial intelligence which

builds models inspired by the architecture of the brain in order to solve specific tasks like data

processing or filtering (see Abdi (1994) for an overview).

The paper is organized as follows. In section 2, we present our model and review the neurobi-

ology literature. In section 3, we characterize the optimal thresholds and subsequent decisions in

environments with varying levels of complexity. In section 4, we develop several implications for

choice under uncertainty. In section 5, we provide some concluding remarks. All the proofs and

some supplementary material (extensions, robustness of the theory, and analytical examples) are

relegated to the appendix.

2 Modelling brain processes

Consider a primitive individual (he) whose options are to stay in the cave or go hunting. On a

dangerous day, the decision to go hunting can result in an injury. On a safe day, he may catch

a prey and save his family from starvation. Before making the decision, the individual can take

a look outside the cave. This conveys information about the hypothesis he should endorse: is it

dangerous to leave the cave or is it safe?

The brain uses a specific mechanism to analyze situations and make decisions. Neurons carry

information from the sensory circuitry, where information about the outside world is received, to the

decision-making circuitry, where the information is aggregated and interpreted. The objective of

this section is to provide a parsimonious model able to represent the brain mechanisms underlying

the decision process. We will first concentrate on a two-action discrimination task. This is the

situation that has been documented most extensively in neurobiology. To simplify the exposition,

we will use the previous example as an illustration. The model is generalized afterwards.

We build our theory around two well-known paradigms, both related to decision-making under

risk or uncertainty, where subjects choose an option that yields a stochastic payoff. One paradigm

focuses on utility evaluation. A monkey is offered alternatives with different payoffs and different

probabilities, and must pick one. Probabilities and rewards are chosen by the experimenter and

transmitted as objectively as possible to the subject (this is the setting pioneered by Platt and

Glimcher (1999)). Typically, the monkey faces the following problem: there are two alternatives,

i ∈ {a, b}, yielding payoff πi with probability qi and 0 with probability 1 − qi. An objective of

this line of experiments is to vary the magnitude of payoffs πi and probabilities qi and correlate

them with the activity of neurons believed to transform visual data into commands. The goal is

to determine whether neuronal cell firing is proportional to the expected value of the reward. The

other paradigm focuses on belief updating. A monkey is offered two options and must infer from

4



a noisy signal which one is objectively correct (this line of work uses variants of the random dot

stimuli experiment, see e.g. Newsome et al. (1989) and Salzman et al. (1990)). In this experiment,

the monkey must form a belief, that is, he must determine the probabilities he should apply to the

choice problem. Formally, there are again two alternatives, i ∈ {a, b}, each yielding payoff πi or 0

but now the probabilities are not transmitted to the subject. Instead, they must be inferred and

computed. Experiments in this literature vary the noise to signal ratio and correlate the activity

of neurons tuned to detect features of the signal with choice. The goal is to determine whether

neurons update information in an approximately Bayesian way.

Our decision-making problem combines aspects of both paradigms. As in the first paradigm,

we relate choices to posterior beliefs and magnitude of rewards. As in the second paradigm, we

derive posterior beliefs from prior knowledge and noisy information. In the following subsections,

we build our model step by step.

2.1 Building blocks of the theory

There are three ingredients necessary to make a decision.

2 Environment. It consists in the set of alternatives and states, which are exogenously given.

In our example, the alternatives are two actions, a (stay in the cave) and b (go hunting) and the

states are the number of predators out there, A (dangerous day with many predators) and B (safe

day with few predators). The action space is denoted by Γ with typical element γ, and the state

space is denoted by S with typical element s.

2 Preferences over outcomes. They reflect how the individual feels about the consequences of

his decision. These also correspond to the monkey’s assessment of the rewards in the neurobiology

experiments. In our example, there is an optimal action in each state: it is better to stay in

the cave on a dangerous day and to go hunting on a safe day. When actions and states are not

matched properly, the individual incurs losses (injury, starvation). This can be represented by

a loss function l̃(γ, s) where γ ∈ {a, b} and s ∈ {A,B}, l̃(a,A) = l̃(b, B) = 0 and l̃(γ, s) < 0

otherwise. The individual must form a representation of the losses he might incur. These losses

can be objective or subjective (e.g., individuals may differ in valuing the cost of an injury, or the

benefit of food for the family). We will denote by L the complete description of outcomes. It is a

map from Γ× S into R−. In our example, it is simply L = {l̃(a|A), l̃(b|A), l̃(a|B), l̃(b|B)}.

2 Information. The individual makes inferences from the information available. There are two

types of knowledge. First, before taking a look out of the cave, the individual has a sense of how

likely each state is. He may use memories of previous episodes to make that assessment. This

information can be summarized in a prior belief probability p ∈ (0, 1) that the state is A. Despite

its importance, we will ignore how priors are formed and simply assume that the individual is able
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to make a decision if he does not get to look outside the cave. Second, the individual receives

a signal about the outside world which is collected by the sensory circuitry (visual and auditory

cortices for instance) and processed to compute a posterior before making a choice. We now discuss

what a signal in the brain is.

2.2 Signals in the sensory system

The information received from the outside world is encoded and translated into neuronal activity.

This activity represents the signal in the brain. We will capture it with the continuous variable

c ∈ [0, 1], ordered from safest (c = 0) to most dangerous (c = 1) perceived environment. The

mechanism underlying the construction of c can be described as follows. Each neuron detects

‘danger’ or ‘no danger’. The variable c can be interpreted as the fraction of neurons that detect

‘danger’, and therefore favor the hypothesis that the state is A.6 This formalization encompasses

two polar cases: (i) the image received from the outside world is fully informative but some

neurons fire in the ‘wrong’ direction (mistakes in interpretation), and (ii) the image received is

already distorted by external factors (noise in the environment).

The existence of an entire range of c captures the stochastic variability in neuronal cell firing.

The evidence from neurobiology in favor of this hypothesis is overwhelming. Even when exposed

to the same stimuli, neurons do not always fire in the same way. Different neurons detect different

features and sometimes compete (Ma et al. (2006), Nichols and Newsome (2002)). Stochastic

variability also captures the metabolic costs associated to activity (Laughlin et al., 1998), and the

existence of noise in the process (e.g., stochastic neurotransmitter release (Stevens, 2003)). Part

of the variability can also be due to the context in which the image is received (e.g., naturalistic

conditions (Simoncelli, 2003)). Finally, initial signals are aggregated within and across populations

of neurons that detect different features which, again, results in noisy aggregation (Shadlen et al.,

1996).

At the same time, perception is intimately related to state. Formally, when the state is s,

the likelihood of c is f(c|s), with F (c|s) =
∫ c
0
f(y|s)dy representing the probability of a cell firing

activity not greater than c. To capture the idea that high cell firing (a majority of neurons carrying

the signal danger) is more likely to occur when s = A and low cell firing (a majority of neurons

carrying the signal no danger) is more likely to occur when s = B, we impose a standard Monotone

Likelihood Ratio Property (MLRP) assumption:7

6Signals may also be received independently from different sensory systems indicating how likely a danger is. In
that case, c can be seen as the aggregate of this information.

7MLRP implies: (i)
1−F (c|A)
f(c|A)

>
1−F (c|B)
f(c|B)

, (ii)
F (c|A)
f(c|A)

<
F (c|B)
f(c|B)

, and (iii) F (c|A) < F (c|B) ∀ c ∈ (0, 1). Note

that several papers in computational neurobiology adopt special cases of MLRP with specific functional forms. For
example, Ma et al. (2006) argue that a Poisson noise fits the data well. Formally, let d(s) be the tuning curve of a
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Assumption 1 (MLRP)
∂

∂c

(
f(c|B)

f(c|A)

)
< 0 for all c. (A1)

In this paper, we do not discuss the origin of the function f(·|s). The particular functional

form may be specific to the task, or specific to the individual, or to the individual for the task.

The function may be shaped over time through repeated exposure. For our purpose, it is simply

given.

2.3 Decision mechanism in the decision system

A decision is made on the basis of the overall knowledge of the problem. This knowledge consists

in preferences L and information (the prior p and the signal c). A decision is then a map between

knowledge and alternatives. Formally, it is a function D that assigns an action in Γ to any triple

(L, p, c). The objective of this section is to characterize this map under the assumption that (i)

decision-making in the brain is an economical process and (ii) its representation must be consistent

with actual neuronal cell-firing.

2 Decision-thresholds. Neuronal thresholds and synaptic connections filter information. De-

pending on how high neuronal thresholds and/or how strong synaptic connections are, neuronal

activity will be stopped or propagated along a given path and trigger an action. This mecha-

nism is economical in that it requires minimal knowledge to reach a decision. In a classical study,

Hanes and Schall (1996) use single cell recording to analyze the neural processes responsible for

the duration and variability of reaction times in monkeys. The authors find that movements are

initiated when neural activity reaches a certain threshold activation level, in a winner-takes-all type

of contest. This evidence suggests that the mechanism can be represented by a decision-threshold

mechanism: it is as if there exists a threshold x such that action b is triggered when c < x, and

action a is triggered when c > x. At the same time, it filters information out. In other words, the

mechanism provides an ‘interpretation’ of the information. The sensory system collects c and the

decision system interprets it as c < x or c > x. The decision system compares alternatives via this

mechanism (see Shadlen et al. (1996), Gold and Shadlen (2001) and Ditterich et al. (2003) for

further evidence).8 Overall, decision-making can be represented by a decision-threshold mechanism

of the form:9

D(L, p, c) =

{
a if c > x
b if c < x

neuron (which peaks at the state s the neuron detects best). The density is then f(c|s) =
e−d(s)d(s)c

c !
. The best fit

satisfies d(B) < d(A), which is more restrictive than MLRP.
8Similar models are used in other related settings. For instance, “explore vs. exploit” models of brain activity

also adopt a decision threshold representation (see McKenzie et al. (2009) for a discussion).
9Some models in the neuroscience literature are closely related to ours (e.g. Gold and Shadlen (2001)) while

others are also interested in how information is accumulated through time. We discussed those in section 2.6.

7



2 Expected utility evaluation. As briefly introduced in section 2, one strand of the neuroscience

literature is interested in testing for ‘argmax-like’ decision making. The basic question is: can we

represent the objective of the decision system as an expected payoff function? The answer is yes.

Indeed, conditional on a given structure of payoffs and probabilities, this literature studies how

alternatives are compared and selected and how this correlates with brain activity. A series of single

neuron recording experiments with primates have demonstrated that both changes in beliefs and

changes in payoff magnitudes are correlated with neuronal activity in the lateral intraparietal area

(Platt and Glimcher (1999), Padoa-Schioppa and Assad (2006, 2008)). Hence, those neurons carry

information regarding both the probabilities to apply to the decision (in our case, the posterior

beliefs) and the ensuing rewards, and compute approximately the “expected value” associated to

each alternative (see also Roitman and Shadlen (2002) and Glimcher et al. (2005)). For our model

it implies that, conditional on having reached a given posterior belief, the decision system will

evaluate each alternative in a way compatible with expected utility theory. Formally, when c < x

taking the recommended action b is valued at:10

L(Pr(A| c < x), b) = Pr(A| c < x)) l̃(b|A) + (1− Pr(A| c < x)) l̃(b|B)

and when c > x taking the recommended action a is valued at:

L(Pr(A| c > x), a) = Pr(A| c > x) l̃(a|A) + (1− Pr(A| c > x)) l̃(a|B)

2 Bayesian inferences. Another strand of the literature tests for belief updating. The question

here is: can we represent the behavior of neurons as performing approximately Bayesian inferences,

that is, as computing posterior probabilities conditional on the data retained? The answer again is

yes. One of the early theories, the “Efficient Coding Hypothesis” postulates that neurons encode

information as compactly as possible, so as to use resources efficiently (Barlow (2001), Simoncelli

(2003)). This theory has recently led to a myriad of sophisticated statistical models that describe

bayesian stochastic processing of information by neurons in visual, auditory and haptic perception

tasks (see e.g. Schwartz and Simoncelli (2001), Ernst and Banks (2002), Körding and Wolpert

(2004) and Ma et al. (2006)). Building on the work by Hanes and Shall (1996), Shadlen et al.

(1996) and Gold and Shadlen (2001) study a motion discrimination task, where monkeys must

decide whether the net direction of dots that appear on a monitor is upward or downward. The

authors develop a theory of how information is processed. It is shown that neurons “compute”

approximately the log-likelihood ratio of the alternatives in order to determine which hypothesis

should be supported by the evidence. Thus, according to this result, neurons incorporate the two

major ingredients of bayesian theory: prior probabilities, and stochastic information processing

10It is important to realize that the role of the probabilities in Platt and Glimcher (1999) are played by our
posterior beliefs, not the priors.
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(see also Deneve et al. (1999) for a numerical simulation model). For our model, it implies that

the likelihood that the state is A when c > x, can be estimated at its Bayesian posterior:

Pr(A|c > x) ≡ p(x) =
[1− F (x|A)]p

[1− F (x|A)]p+ [1− F (x|B)](1− p)
(1)

Similarly, if c < x, the likelihood that the true state is A is:

Pr(A|c < x) ≡ p(x) =
F (x|A)p

F (x|A)p+ F (x|B)(1− p)
(2)

A trivial implication of Bayesian updating is that, for any p and x, the belief about state A is

revised upwards if x is surpassed (p(x) > p) and downwards if x is not reached (p(x) < p). This

captures the idea that low cell firing is an imperfect indicator of state B and high cell firing is an

imperfect indicator of state A. Also, for a given p, suppose that x is surpassed. Then, the posterior

belief about state A is revised upwards more strongly if c is more tightly correlated with the true

state (in a stochastic dominance sense). This is consistent with evidence obtained in neurobiology:

using a similar experiment as Shadlen et al. (1996), Ditterich et al. (2003) show that when the

task is more difficult (fewer dots move in synchrony), monkeys make more mistakes.11

Notice that an outside observer may conclude the subject holds non-Bayesian beliefs when

those are elicited. This is the case because updating is done through an internally consistent but

constrained Bayesian process, where only the summary statistic c < x or c > x is retained.12 So,

for example, two different signals one stronger than the other but both above the threshold x will

be interpreted identically. In section 4 we extensively use this property of our model to discuss

behavioral implications that depart from standard theories of learning.

2.4 Optimal modulation

As explained before, the decision-threshold represents the mechanism through which information

from the sensory system is translated into decisions. There is ample evidence that neuronal thresh-

olds and synaptic connectivities are modulated, modifying the conditions under which information

is propagated along a pathway. The effect of setting a threshold is to decide how to interpret the

evidence. At the level of neurons, this can be achieved by a combination of tools. First, neu-

rotransmitter releases can affect neuronal thresholds (see Mogenson (1987)). Neurons that carry

11Similar results have also been obtained with human subjects using fMRI studies. For instance, Heekeren et al.
(2004) find that the mechanism by which the brain of a monkey computes perceptual decisions is also at work for
humans and for more sophisticated choices, such as image recognition.

12From a technical viewpoint, our model with coarse information partition is related to the recent literature on
categorical thinking (Fryer and Jackson, 2008), where individuals lump experiences in a limited set of categories,
and this categorization subsequently affects their decisions. An advantage of our approach is that it is based on the
physiology of information processing.
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signals of ‘danger’ will fire only if they receive a sufficiently strong cue regarding predators. If

their threshold is increased, they are less likely to fire. This also means that neurons will pass over

a ‘danger’ signal more infrequently. Second, synapses filter the information that is just relevant

to make a decision (by adjusting their strength, see Klyachko and Stevens (2006)). In terms of

our model, this means that x can and will be adjusted. Intuitively, it is natural that a high level

of cell-firing should be interpreted differently depending on the preferences and prior belief of the

individual. As such, modulation must be the mechanism used by the decision system to account

for L and p.13

Given the possibility of modulation, we want to construct a mechanism that sets the threshold

optimally. As discussed in footnote 2, optimality is an exploratory assumption, which allows us

not to impose any ad-hoc constraint on decision-making. It requires two conditions. First, x must

be such that the optimal action is different depending on whether the threshold is reached or not.

Formally, L(p(x), b) > L(p(x), a) and L(p(x), b) 6 L(p(x), a). However, many thresholds satisfy

this property. Let X(L, p) be the set of all such thresholds. At equilibrium, the optimal threshold

x∗(L, p) must be in that set.14 Second, among those, the optimal threshold is such that the decision

rule yields highest expected utility. Formally, it solves:

arg max
x∈X

V (x) = Pr(c > x)L(p(x), a) + Pr(c < x)L(p(x), b)

Overall, if modulation serves the purpose of improving decision making, the threshold will be

set in such a way that these two conditions are satisfied.15

2.5 General representation

The previous representation can be easily extended to include arbitrarily many states and actions.

Suppose the decision system must discriminate between n alternatives from Γ, each indexed by

i, and denote by P(S) the prior probability distribution over states. The decision process can be

represented by a mechanism with n− 1 thresholds:

D(L,P(S), c) =


1 if c ∈ [0, x1) = A1

2 if c ∈ [x1, x2) = A2

...
n if c ∈ [xn−1, 1] = An

13Interestingly, even though it is well known that thresholds can be modulated, the existing literature considers
models with fixed thresholds and does not optimize over x. This is arguably the major difference between our
constrained optimization approach and all the literature in computational neurobiology.

14When x 6∈ X(L, p), the subject takes the same action independently of whether the threshold is reached or not.
It means that information is irrelevant for decision-making. This is necessarily dominated by an informative signal.

15The mechanism could be implemented via a Hebbian type of learning mechanism (Hebb, 1961), which postulates
that an increase in synaptic strength arises from the presynaptic cell’s repeated and persistent stimulation of the
postsynaptic cell. The activation patterns in one episode (e.g., hunting in the past) should therefore affect the way
information is interpreted in the next one (looking outside the cave in the present).
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Alternative i’s value is L(P(S | c ∈ Ai), i) = Es
[
l̃(i | s) | c ∈ Ai

]
. Let Xi(L,P(S)) be the set of

thresholds xi such that it is optimal to take action i between xi−1 and xi and let V (x1, ..., xn−1) =

EAi [L(P(S | c ∈ Ai), i)]. Finally, denote by x∗i (L,P(S)) the optimal threshold. We obtain the

following representation.

Representation. In a generic n-action discrimination task, the decision is represented by the

following decision-threshold mechanism:

D(L,P(S), c) =


1 if c ∈

[
0, x∗1(L,P(S))

)
2 if c ∈

[
x∗1(L,P(S)), x∗2(L,P(S))

)
...

n if c ∈
[
x∗n−1(L,P(S)), 1

]
where (i) x∗i (L,P(S)) ∈ Xi(L,P(S)) for all i.

(ii) x∗i (L,P(S)) = argmaxxi∈Xi(L,P(S)) V (x1, ..., xn−1) for all i.

Naturally, as the number of alternatives grow, it will be more difficult for the brain to implement

the optimal mechanism.

2.6 The diffusion model

At this stage, it is instructive to compare our threshold model with the “diffusion model”, a leading

approach in neuroscience (see e.g. the survey by Ratcliff and McKoon (2008)). Although it has not

been formalized exactly in those terms, the diffusion model is close to the two-states (S ∈ {A,B}),
two-actions (γ ∈ {a, b}) “investment under uncertainty” model (Dixit and Pindyck, 1994), where

action a is optimal in state A and action b is optimal in state B.16 The probability of A is initially

assessed at p ∈ (0, 1). Finally, information about the likelihood of A is accumulated dynamically

and follows a Wiener process with a drift that depends on the state:

dp = ν(S) dt+ σεt
√
dt where ν(S) =

{
m if S = A
−m if S = B

with m > 0. In this dynamic setting, as long as the belief p is in a certain interval (p∗, p∗∗), the

individual keeps accumulating evidence. If the belief reaches the upper bound p∗∗ he takes action

a, whereas if it reaches the lower bound p∗ he takes action b.

The diffusion model shares important similarities with ours. First, there is a stochastic relation

between the state and the information perceived (the cell firing function f(· |S) and the drift ν(S)).

16For example, in the typical random dot stimuli experiment, the state is the direction of the majority of dots,
upwards or downwards, and the action is the subject’s best guess, upwards or downwards.
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Mistakes occur in equilibrium and their frequency depends, among other things, on the accuracy

of the aforementioned relation. Second, perception is continuous (cell firing c and information

accumulation dp) but there are only two terminal posterior beliefs: Pr(A | c > x) and p∗∗ trigger

action a whereas Pr(A | c < x) and p∗ trigger action b.

The diffusion model has one significant advantage over ours. Because it formalizes the dynamic

information accumulation process, it has a rich set of predictions regarding reaction time (i.e.,

the lag between the moment the task is presented and the moment the choice is made) and its

relationship with precision of information and likelihood of mistakes. This feature is not present

in our model. On the other hand, our model also has some advantages: it can be easily extended

to three or more actions and three or more states, and it is tractable enough to address formally

optimal threshold modulation. This second point is key since the entire premise of our analysis

(and of the neuroscience evidence) rests on the ability of the individual to modify thresholds and

our goal is to study the implications of such modulation for decision-making.17 Overall, we believe

that the model we build is the most appropriate given both the evidence and our objectives.

Finally, notice that our model is identical to a diffusion model with optimal bounds, no cost

of information and a fixed deadline for making a decision. Indeed, in the absence of a cost, it is

optimal to exhaust the accumulation of information and choose A or B depending on the final

posterior. In that formulation, c corresponds to the integral of the information accumulated.18

3 Optimal thresholds and action selection

In this section we characterize optimal thresholds and choices under different assumptions about

the number of alternatives and states. To isolate the effect of each assumption, we study each case

separately.

3.1 Choosing between many actions

Suppose there are only two states S = {A,B} and a continuum of actions Γ = [0, 1], where lower

values of γ denote going farther away from the cave to hunt. The preferences over outcomes are

17The bounds in the diffusion model where the individual stops accumulating evidence can, in principle, be
optimized (as it is done in the investment under uncertainty literature). However, this requires a cost of obtaining
(or waiting for) information, otherwise it is optimal to set the bounds at 0 and 1. Moreover, the location of these
bounds will depend crucially on the magnitude of that cost. In our view it is hard to justify such a “cost” based
on neural data. Some papers in neuroscience propose an optimization of the bounds (see Gold and Shadlen (2002)
and Bogacz (2007) for a review), but the objective function that is maximized is not a discounted expected utility.
It would be interesting to study the relationship between the optimal bounds derived in that literature and the
optimal bounds emerging from a formal economic model based on expected utility.

18Interestingly, this is quite close to the random dot stimuli setting, where monkeys first observe the movements
of dots for a fixed amount of time, then they make their choice, and finally they obtain a reward.
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captured by the following loss functions:

l̃(γ,A) = πA l(γ − 1), l̃(γ,B) = πB l(γ − 0)

where l(z) = l(−z) for all z, l′(z) < 0 for all z > 0, and πs > 0. The individual should go far away

on safe days (γ = 0 if s = B) and stay close on dangerous days (γ = 1 if s = A).19 Note that the

marginal cost of taking a wrong action in state s is proportional to πs. Therefore, πA > πB means

that hunting on a dangerous day is more costly than staying in the cave on a safe day (e.g., the

probability of a fatal injury may be greater than the probability of starvation). Given a posterior

belief µ, the expected payoff of taking action γ is:

L(µ, γ) = µ
[
πA l(γ − 1)

]
+ (1− µ)

[
πB l(γ)

]
(3)

Suppose that l(z) is weakly convex on both sides of its bliss point z = 0. Formally, l′′(z) > 0

for all z 6= 0 so that departures from the optimal action are decreasingly costly.20 In that case,

L(µ, γ) is weakly convex in γ and differentiable on (0, 1), so corner solutions are optimal. Denoting

by γ∗(µ) = arg max γ L(µ, γ) when l(z) is weakly convex, using (3) and given l(0) > l(1), we have:

γ∗(µ) =

{
1 if L(µ; 1) > L(µ; 0) ⇔ µ > p∗ ≡ πB/(πA + πB)
0 if L(µ; 1) < L(µ; 0) ⇔ µ < p∗ ≡ πB/(πA + πB)

Notice that dp∗/dπA < 0 and dp∗/dπB > 0: if the marginal cost of an incorrect action in a given

state increases, then the individual is more willing to take the action optimal in that state even at

the increased risk of erring in the other state. In our example, as predators become smarter and

more dangerous, the individual is more likely to decide to stay in the cave, even on days that are

apparently safe.

Suppose now that l(z) is strictly concave. Formally, l′′(z) < 0 for all z so that departures from

the optimal action are increasingly costly.21 Denote by γ∗∗(µ) = arg max γ L(µ, γ) when l(z) is

concave. Taking the first-order condition in (3), we have:

πB
πA

l′(γ∗∗(µ))

l′(1− γ∗∗(µ))
=

µ

1− µ
(4)

where ∂L(µ,γ)
∂γ

∣∣∣
γ=0

= −πA µ l′(1) > 0, ∂L(µ,γ)
∂γ

∣∣∣
γ=1

= πB (1 − µ)l′(1) < 0, and ∂2L(µ,γ)
∂γ2 < 0. In

this case, the optimal choice is always interior.22 Lemma 1 summarizes these findings.

19Most of our results could be extended to the case of asymmetric loss functions lA(·) and lB(·). However, we
already have two asymmetries in the model: f(c|B) vs. f(c|A) and πA vs. πB . Therefore, little would be gained in
terms of generality by adding a third asymmetry. Technically, it would simply amount to replacing the expressions
πB l(γ) with πB lB(γ) and πA l(γ − 1) with πA lA(γ − 1).

20This implicitly requires l(z) to have a kink at z = 0. A special case would be the linear loss function l(z) = −|z|.
21In this case, there may or may not be a kink at z = 0.
22Under more general specifications of l(·), the optimal choice with a concave loss could be at the boundary

(γ∗∗ ∈ [0, 1]). What is important for our theory is that weak convexity or concavity of l(·) determines whether the
solution has to be in a corner or not necessarily.
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Lemma 1 Suppose S = {A,B} and Γ = [0, 1]. The optimal action is generically unique and

corner if l′′(z) > 0 (γ∗(µ) ∈ {0, 1}) and unique and interior if l′′(z) < 0 (γ∗∗(µ) ∈ (0, 1)).

We can now characterize the optimal threshold mechanism in both situations.

3.2 Optimal threshold modulation when the loss function is convex

Given Lemma 1, when l′′(z) > 0 the problem boils down to a discrimination task with two states

and two relevant actions. Applying our representation, the value function is:

V (x) = Pr(c > x)L(p(x), 1) + Pr(c < x)L(p(x), 0) (5)

= p πA

[
(1− F (x|A))l(0) + F (x|A)l(1)

]
+ (1− p)πB

[
(1− F (x|B))l(1) + F (x|B)l(0)

]
The optimal threshold is x∗ = arg max x V (x), which leads to the following result.

Proposition 1 When l′′(z) > 0, the optimal process involves a single decision threshold x∗ which

is given by:
f(x∗|B)

f(x∗|A)
=

p

1− p
πA
πB

(6)

The optimal threshold implies that dx∗/dp < 0 and dx∗/dΠ < 0 where Π = πA/πB.

Proof: see Appendix 1. 2

The result has three implications. First and foremost, the threshold is set in such a way that

existing beliefs are likely to be confirmed. To see this, consider a symmetric situation with a

prior belief p > 1/2. Setting a high threshold is not efficient: whether it is surpassed or not, the

individual will still think that A is the most likely state. Instead, setting a low threshold is optimal.

If it is surpassed, the individual will slightly increase his confidence in state A. If it is not reached,

he will become convinced that the state is B. The individual will end up taking different actions

depending on the signal and, in both cases, he will be confident about his choice. Overall, the

optimal threshold balances the belief in favor of A conditional on the threshold being surpassed

and the belief in favor of B conditional on the threshold not being reached. In order to achieve

this balance, the threshold should be low whenever A is a priori more probable than B and high

otherwise.

Second, the optimal threshold depends on the relative payoffs. If the loss of taking the wrong ac-

tion when S = A increases, the threshold decreases, so it will be surpassed with higher probability.
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In equilibrium, the most costly mistakes are most likely to be avoided.23

Third, the choice is efficient in the sense that the individual would not gain anything if he could

observe the exact cell firing. Formally and using (6): Pr(A | c = x∗) = πB/(πA + πB). This means

that, γ∗ = 1 dominates γ∗ = 0 for all c > x∗ and γ∗ = 0 dominates γ∗ = 1 for all c < x∗. This,

in turn, implies that for the purpose of choosing an action, it is sufficient to learn whether x∗ is

surpassed or not. The result hinges on the weak convexity of the loss function. Convexity reflects

the fact that departures from the ideal choice are, at the margin, the most costly ones. Therefore,

it is suitable to model environments where life-threatening events occur as soon as the optimal

action is not taken.

It is interesting to note that our optimal threshold is in line with the proposal made in Gold

and Shadlen (2001). Based on neurobiology evidence, the authors hypothesize that neurons form

a decision variable that approximates the logarithm of the likelihood ratio, and the best decision

under one hypothesis is triggered when this variable is above (or below) a decision threshold.

They also hypothesize that the threshold affects how the evidence is interpreted and should be an

indicator of the possible expected values of the outcomes. Equation (6) formalizes this mechanism.

Finally, notice that Proposition 1 is reminiscent of Calvert (1985), Sah and Stiglitz (1986) and

Meyer (1991), with the obvious differences in interpretations. The theoretical contribution of the

paper consists in determining the optimal threshold(s) in more complex situations such as concave

losses and dynamic choices.

3.3 Optimal threshold modulation when the loss function is concave

Suppose now that l′′(z) < 0. As shown in section 3.1, the optimal action can be anywhere in (0, 1).

An optimal process would involve a continuum of thresholds. Because this is difficult to implement

in the brain, we determine what happens when only one decision-threshold x can be used. The

solution is not first-best but it is a constrained maximum.24 More precisely, the brain sets x. If it

is surpassed, the updated belief is p(x) and the action undertaken is γ∗∗(p(x)). If it is not reached,

the updated belief is p(x) and the action undertaken is γ∗∗(p(x)). Given (1), (2) and (4), these

23Note that (A1) ensures uniqueness of maximum. The assumption, although accepted in neurobiology (see
footnote 7), is not necessary for our main result. Indeed, if we adopted a substantially weaker first-order stochastic
dominance assumption (F (c|B) > F (c|A) for all c), then x∗ would not necessarily be unique. However, since V (x; p)
is submodular, the comparative statics with respect to p and Π would be preserved in all the local maxima. The
same submodularity argument can be applied to show that symmetry or continuity of l(z) are not necessary either
for the comparative statics to hold.

24We could extend the analysis to a situation with two or more thresholds. The resolution techniques would be
similar. Naturally, the resulting inefficiencies would be reduced.
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actions satisfy:

πB l
′(γ∗∗(p(x)))

πA l′(1− γ∗∗(p(x)))
=

p(x)

1− p(x)

(
=

p

1− p
1− F (x|A)

1− F (x|B)

)
(7)

πB l
′(γ∗∗(p(x)))

πA l′(1− γ∗∗(p(x)))
=

p(x)

1− p(x)

(
=

p

1− p
F (x|A)

F (x|B)

)
(8)

where γ∗∗(p(x)) > γ∗∗(p(x)). Differentiating (7) and (8) and using (A1), we obtain:

dγ∗∗(p(x))

dx
> 0 and

dγ∗∗(p(x))

dx
> 0

An increase in the threshold always induces the individual to choose a higher action. If it is

surpassed, then the evidence in favor of A is stronger. If is not reached, then the evidence in favor

of B is weaker. In both cases, higher actions follow. The new value function is identical to (5)

except for the actions selected in either case. Formally:

V (x) = Pr(c > x)L(p(x), γ∗∗(p(x))) + Pr(c < x)L(p(x), γ∗∗(p(x))) (9)

The optimal threshold discriminates optimally between the two actions. To find this threshold,

we first need to introduce a strengthened version of MLRP.

Assumption 2 (s-MLRP) The probability distributions satisfy:25

(i) f(c|B)
1−F (c|B) >

f(c|A)
1−F (c|A) , (ii) d

dc

(
f(c|B)
f(c|A)

1−F (c|A)
1−F (c|B)

)
6 0, (iii) d

dc

(
f(c|B)
f(c|A)

F (c|A)
F (c|B)

)
6 0 (A2)

Define the following function:

H(x) ≡ F (x|B)l(γ∗∗(p(x))) + (1− F (x|B))l(γ∗∗(p(x)))

We can now state our next result.

Proposition 2 When l′′(z) < 0, the optimal process requires a continuum of thresholds. A pro-

cess that can discriminate only between two actions sets one threshold x∗∗ and chooses actions

γ∗∗(p(x∗∗)) or γ∗∗(p(x∗∗)). The optimal threshold satisfies:

f(x∗∗|B)

f(x∗∗|A)
=

p

1− p
πA
πB

l(1− γ∗∗(p(x∗∗)))− l(1− γ∗∗(p(x∗∗)))
l(γ∗∗(p(x∗∗)))− l(γ∗∗(p(x∗∗)))

(10)

It is unique and such that dx∗∗/dp < 0 if dH(x∗∗)/dx > 0 and (A2) is satisfied.

Under (A1), dH(x∗∗)/dx > 0 guarantees dx∗∗/dp < 0 in every locally optimal threshold but

not uniqueness. Last, dx∗∗/dΠ < 0.

25Note that (i) and (ii) or (i) and (iii) in (A2) imply (A1), but the converse is not true.
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Proof: see Appendix 2. 2

When departures from the optimal action are increasingly costly, the quasi-concavity of the

value function V (x; p) is not guaranteed for generic values of f(·|A), f(·|B) and l(·). In fact, as x

increases, two countervailing forces are at play. First and as before, the threshold is less likely to be

surpassed and therefore more likely to induce the low action. Second, either outcome is a weaker

indicator that the state is B. Therefore, the final action will be higher both when the threshold is

surpassed and when it is not reached. Proposition 2 states that the main qualitative conclusions

of Proposition 1 extend to a concave loss function as long as the problem is well-behaved, that

is, if dH(x∗∗)/dx > 0. The interpretation of this condition is simple: starting from the optimal

threshold, a marginal increase in x increases the payoff of the individual if and only if the state is

B. In other words, as x increases, the direct effect of increasing the likelihood of choosing the low

action must dominate the indirect effect of choosing relatively higher actions. In Appendix 2, we

show that this condition is automatically satisfied when payoffs are quadratic (l(z) = α−βz2) and

πA = πB . We also provide a complete characterization of the optimal threshold for that event,

and an analytical solution of x∗ and x∗∗ in the linear and quadratic cases given specific functional

forms for the distribution functions. As in Proposition 1, if the loss of taking the wrong action in

a given state is increased, the individual will modify the threshold so as to favor that action.

Since concavity of l(·) captures a case where marginal departures from the ideal action are

increasingly costly, this functional form is suitable to model environments where small mistakes

are relatively harmless but large mistakes are very costly. Notice that not all the properties of the

previous proposition hold. In particular, there is now an efficiency loss due to the inability of the

individual to observe the exact cell firing level.26 Last, it is important to realize that this process

does not prevent the individual from taking any action in Γ. Once a threshold is set, it discriminates

only between two possible actions and only two possible posterior beliefs can be reached. However,

x can be set to reach any action and any posterior belief from an ex-ante perspective. The result

is then consistent with the experimental evidence according to which individuals can and often do

report beliefs that vary across trials.

3.4 The dynamics of look-ups

In this section, we go back to the case of a convex loss function (hence, corner optima) and assume

that the individual obtains two signals sequentially. The objective is to determine whether the

tendency to confirm existing beliefs is mitigated or amplified in a more realistic setting where several

pieces of information are processed sequentially. The analysis can also shed light on habituation,

that is, how past signals affect the interpretation of current information. We impose the following

26This loss will be smaller the greater the number of thresholds.
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characteristics on the representation of the dynamic process: (i) the process allows for threshold

re-optimization between look-ups; (ii) it has memory, which means that the prior belief before the

second look-up is simply the posterior belief after the first look-up; and (iii) it is forward-looking

so that threshold modulation at each date takes into account future learning opportunities.

The rationale for these choices is the following. First, the dynamic setting adds a new dimension

only under re-optimization between look-ups, otherwise it boils down to one look-up and a more

accurate information. Property (i) guarantees that we are in this scenario. Second, we do not

want to presuppose the existence of any exogenous loss of information between look-ups. Given

property (ii), all the information collected and processed after a look-up is retained. Third, we

want to concentrate on ‘intelligent processes’ that operate under constraints, rather than impose

exogenous limitations on contingent planning. Property (iii) ensures the process optimizes at each

period while anticipating future re-optimization. In other words, these choices put ourselves in a

scenario which is interesting without being ad-hoc.

The dynamic choice can be modeled as the following two-stage problem. The individual initially

holds a prior belief p. At stage 1, the sensory system collects c1. One or several thresholds are

set, information is interpreted, and beliefs are updated. At stage 2, the sensory system collects

c2. Again, one or several thresholds are set, information is interpreted and its recommendation is

implemented. We assume that ct is independently drawn from distribution Ft(ct|s) with t ∈ {1, 2}.
Distributions may be different across stages but ft(c|B)

ft(c|A) satisfies (A1) for all t.27

Again, we concentrate on optimal modulation and extend our earlier representation. The

choice problem can be represented by a sequence of decision-threshold mechanisms. Given (iii),

those mechanisms obey backward induction. At date 2, we know that one of the corner solutions is

optimal (γ ∈ {0, 1}), so one decision-threshold is enough (see Proposition 1). We denote the optimal

threshold by x∗, since it is identical to that described in section 3.2. At date 1, the process requires

a continuum of thresholds (just like in the static case with a concave loss function described in

section 3.3). A constrained process that can discriminate only between two alternatives will set one

forward looking decision-threshold that we denote by y∗. If it is surpassed, the posterior becomes

p(y∗) and the optimal second stage threshold is x∗(p(y∗)). If it is not reached, the posterior

becomes p(y∗) and the optimal second stage threshold is x∗(p(y∗)). Second stage thresholds are

obtained using (1), (2) and (6). They satisfy:

f2(x∗(p(y))|B)

f2(x∗(p(y))|A)
=

p(y)

1− p(y)

πA
πB

(
=

p

1− p
1− F1(y|A)

1− F1(y|B)

πA
πB

)
(11)

f2(x∗(p(y))|B)

f2(x∗(p(y))|A)
=

p(y)

1− p(y)

πA
πB

(
=

p

1− p
F1(y|A)

F1(y|B)

πA
πB

)
(12)

27The setting assumes costless signals. It could be easily extended to costly signals, in which case the individual
would also have to choose the optimal amount of information collected.
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The optimal threshold in the first stage maximizes the following value function:

W (y) = Pr(c1>y)
[
V (x∗(p(y))

]
+ Pr(c1<y)

[
V (x∗(p(y))

]
(13)

The first term is the likelihood of surpassing a cutoff y, in which case the posterior becomes

p(y), multiplied by the second-stage value function given this posterior (see (5)), and under the

anticipation of an optimal second-stage threshold x∗(p(y)) (see (11)). The same logic applies to

the second term. Notice that threshold y affects the utility of the individual only through its effect

on the posterior belief. Define the following function:

J(y) ≡ F1(y|B)F2(x∗(p(y))|B) + (1− F1(y|B))F2(x∗(p(y))|B)

We can now state our next result.

Proposition 3 In a dynamic setting with l′′(z) > 0, the optimal process requires a continuum of

first stage thresholds. A process that can discriminate only between two alternatives in the first

stage sets a threshold y∗ that satisfies:

f1(y∗|B)

f1(y∗|A)
=

p

1− p
πA
πB

F2(x∗(p(y∗))|A)− F2(x∗(p(y∗))|A)

F2(x∗(p(y∗))|B)− F2(x∗(p(y∗))|B)
(14)

It is unique and such that dy∗/dp < 0 if dJ(y∗)/dy > 0 and (A2) is satisfied.

Under (A1), dJ(y∗)/dy > 0 guarantees dy∗/dp < 0 in every locally optimal threshold but not

uniqueness. Last dy∗/dΠ < 0.

Proof: see Appendix 3. 2

Two-stage optimization problems are easily plagued by non-convexities in the overall maxi-

mand. Proposition 3 states that the qualitative conclusions of previous propositions are preserved

in the dynamic version of the model if a technical condition, dJ(y∗)/dy > 0, is satisfied. As before,

the intuition relies on the balance between the likelihood of the information and its impact. In

fact, the two-stage model with decreasingly costly departures is technically similar to the one-

stage model with increasingly costly departures. In particular, the same two effects operate when

the threshold is increased. First, a direct effect: the new threshold is less likely to be surpassed.

Second, an indirect effect: because surpassing a higher threshold is a stronger indicator of A and

not reaching it is a weaker indicator of B, an increase in stage 1 threshold is always followed by

a decrease in stage 2 threshold (dx∗(p)/dy < 0 and dx∗(p)/dy < 0). Condition dJ(y∗)/dy > 0

ensures that the direct effect dominates the indirect one. In Appendix 3 we show that the condi-

tion automatically holds for any first-period distribution that satisfies (A2) if the second-period

distributions are linear and symmetric.
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Most importantly, the result highlights the dynamic snowball effect of threshold modulation

on decision-making: a stronger belief towards one state implies a greater modulation in its favor,

therefore a higher probability that new information supports it, and so on. We now provide below

a simple analytical example that illustrates the theory.

Example 1. Suppose the density functions are identical in both stages, symmetric and linear:

ft(c|A) = 2c and ft(c|B) = f(1− c|A) = 2(1− c), t ∈ {1, 2}. Let πS = 1. From (6) and (14) and

after some algebra, the optimal first and second stage thresholds are:(
1− y∗

y∗

)2

=
p

1− p
⇔ y∗(p) =

√
1− p√

1− p+
√
p

and
1− x∗

x∗
=

p

1− p
⇔ x∗(p) = 1− p

Notice that x∗(p) ≷ y∗(p) ≷ 1/2 for all p ≶ 1/2: for a given belief, the cutoff is always more

extreme in the second than in the first stage. The intuition is that in the first stage the individual

chooses the partition that conveys most information whereas in the second stage he chooses the

partition that discriminates best among the two relevant alternatives. Finally, in Appendix 3,

we compute for this example the expected loss difference between using a process that employs a

continuum of first stage thresholds and using a process that employs only one. For this particular

example, the loss is small (2.5%).

A natural question would be to determine what happens as the number of information process-

ing stages increases. Obviously, the final partition of beliefs becomes finer, which means that a

greater number of posterior beliefs can be reached. Also, with three or more stages, the thresholds

at all but the last stage only affect the belief inherited at the following stage. Thus, we conjec-

ture that the main properties of the thresholds emphasized in Propositions 1 and 3 should, under

reasonable conditions, be preserved (unfortunately, we have not been able to solve this problem

analytically).

3.5 Summary

The results of section 3 can be summarized as follows. As in the organizations literature, threshold

processes are modulated in a way that existing beliefs are favored. Employing a one-threshold

process (rather than a continuum of them) does not result in an efficiency loss in one-shot life-

threatening situations (convex loss function). That result, however, does not extend to envi-

ronments that are behaviorally more common such as the case of increasingly costly departures

(concave loss function), and multiple look-ups. By contrast, the existence, qualitative properties

of optimal threshold modulation, and comparative statics are all preserved in those environments

under mild technical conditions. The theory extends in a number of other directions. In Appendix

4, we show that all the comparative statics are also preserved if we consider a compact state space
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(S ∈ [0, 1]). In Appendix 5, we show that optimal thresholds are more sensitive to initial beliefs

in complex situations (where the correlation between cell firing and state is low) than in simple

situations (where the correlation is high). Finally, the comparative statics obtained in this section

and related appendixes are also in line with the results of single cell recording activity reported in

neuroscience experiments. In the next section, we use these general comparative statics results to

discuss implications for belief formation and choice under uncertainty.

4 Behavioral implications for choice under uncertainty

There are two main elements in our theory. First, the information encoded in the sensory system

is stochastically correlated with the state. This is like a noisy report in a standard learning

context. Second and most importantly, the threshold mechanism results in a loss of information.

In particular, all signals on the same side of the threshold are pooled. This means that the evidence

received from the sensory system is incorporated in a bayesian but coarse manner. In this section,

we explore some implications of the model. We focus on behaviors that could not occur in a

traditional environment where the exact signals were processed.

4.1 Confirmatory biases

In social psychology, a confirmatory bias is described as an error of inductive inference. It is the

tendency of decision-makers to interpret evidence in a way that confirms their preconceived ideas

about the world and avoid information that contradicts them (see Nickerson (1998) for a review).28

Our model offers a neurobiological mechanism for this bias. As developed in section 3, when the

belief that the state is A becomes stronger, the brain sets a lower threshold. Evidence is then more

likely to be interpreted as endorsing A and less likely to be interpreted as endorsing B, both if the

true state is A and if the true state is B. This simple principle has some subtle implications.

Belief anchoring and the role of first impressions

Suppose the decision-maker has a flat prior about an issue and receives a first piece of evidence

that he uses to build a belief. According to our theory, once a belief is anchored, it is likely to

be reinforced when the decision-maker is exposed to new information. This yields the following

implication.

28As beautifully expressed by Leo Tolstoi, “the most difficult subjects can be explained to the most slow-witted
man if he has not formed any idea of them already; but the simplest thing cannot be made clear to the most
intelligent man if he is firmly persuaded that he knows already, without a shadow of doubt, what is laid before
him.” (The Kingdom of God is Within You, Chapter III).
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Implication 1 (Belief anchoring) The sequence in which signals are received affects the beliefs

and actions of the individual.

Consider the dynamic setting of section 3.4. Suppose for simplicity the environment is sym-

metric (f(c|A) = f(1 − c|B) and πA = πB) and the prior belief is p = 1/2, so that the first

stage threshold is y∗(1/2) = 1/2. Consider the following symmetric signals c and c, with c =

1 − c, c ∈ (x∗(Pr[A|c > 1/2]), 1/2) and therefore c ∈ (1/2, x∗(Pr[A|c < 1/2])). If c1 = c

and c2 = c, the thresholds at both stages are surpassed. The decision-maker has a poste-

rior belief Pr
[
A|c1 > 1/2, c2 > x∗(Pr[A|c > 1/2])

]
> 1/2 and takes action 1. Conversely, if

c1 = c and c2 = c, none of the thresholds is reached. The decision-maker has a posterior belief

Pr
[
A|c1 < 1/2, c2 < x∗(Pr[A|c < 1/2])

]
< 1/2 and takes action 0. From the perspective of an

outside observer, the first piece of evidence acts as a reference point and conditions how further

information is interpreted. In this particular case, a high first signal eventually leads to the action

optimal in state A and a low first signal eventually leads to the action optimal in B.29 Naturally,

the ordering of signals cannot affect beliefs or actions in a standard model where the exact signals

c and c are processed. The result is consistent with experimental evidence according to which first

impressions, acting as an anchor, matter. These observations have been made for important real

life situations such as employment interview (Dougherty et al. (1994)), medical diagnosis (Elstein

et al. (1978)) and judicial reasoning (Pennington and Hastie (1993)) among others.

In a similar vein and from the perspective of an outsider, subjects will appear stubborn. As they

build up their confidence on one state, they become more and more likely to interpret ambiguous

evidence as support for their beliefs. At the same time, strong contradictory evidence reverses

their belief more dramatically. More generally, this theory supports the idea that people develop

habits that are difficult to change and that people are less likely to change their mind with age.

Finally, from the perspective of an outside observer, decisions over time are interrelated. This

phenomenon might be at the source of observed trends in markets, especially in financial markets, in

which time series indicators are often correlated over time. As an example, it is widely documented

(but poorly understood) that financial returns follow GARCH processes, where current volatility

is affected by past volatility.

Polarization of opinions

Individuals who exhibit confirmatory biases may interpret the same information in opposite

ways. The result is known as the polarization effect : mixed evidence is given to subjects whose

existing views lie on both sides of the evidence and, as a consequence, their beliefs move farther

29Rabin and Schrag (1996) obtain a similar conclusion in a behavioral non-Bayesian updating framework where
it is assumed that the individual mistakenly interprets evidence against current beliefs as supporting them.
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apart. In an early work, Lord et al. (1979) presented studies on the deterrent effect of death penalty

to a pool of subjects. When asked about the merits of death penalty, people who were initially in

favor of (respectively against) capital punishment were more in favor (respectively against) after

reading the studies (see also Darley and Gross (1983) and Plous (1991)).

The literature explains this effect in terms of cognitive biases and non-Bayesian information

processing. It is argued that individuals focus attention on the elements that support their original

beliefs and (consciously or unconsciously) neglect the elements that contradict them. Our analysis

suggests that attentional deficits and non-bayesian information processing need not be at the origin

of this result. Instead, the decision-threshold mechanism can fully account for this behavior.

Implication 2 (Polarization) Individuals with different priors who receive identical information

may move their beliefs farther apart.

Formally, consider two individuals, i and j, with prior beliefs pi and pj (< pi). As shown in

section 3, x∗(pi) < x∗(pj). Suppose that ‘mixed evidence’ is released and both individuals perceive

the same level of cell firing c ∈ (x∗(pi), x
∗(pj)). Individual i will interpret the evidence in favor

of A, update his belief to p′i > pi and take a high action, whereas individual j will interpret the

evidence in favor of B, update his belief to p′j < pj and take a low action. Thus, the interpretative

feature of the threshold mechanism generates a bias in the way the information is processed, which

may lead to a polarized reading of identical evidence. Once again, this result cannot occur in a

bayesian world if individuals receive and process the same signal.

Other biases: miss error rates in visual detection tasks

When subjects are asked to visually detect targets, it is shown that miss error rates are relatively

higher if the frequency of targets is low (Mackworth (1970), Egglin and Feinstein (1996), Wolfe

et al. (2007)). In other words, low probability events (a knife in an airport luggage, a tumor in a

mammogram) are incorrectly evaluated relatively more often than high probability events. This

effect is usually explained as a criterion shift, an idea consistent with our model. The decision

threshold sets a criterion to interpret evidence, which is modulated by the likelihood of the event.

It thus rationalizes the fact that individuals tend to see what they expect to see, and to miss what

they do not expect to see.30

4.2 The role of payoffs on belief updating

The results of section 3 suggest a relationship between beliefs and payoffs: payoffs influence the

decision-threshold which, in turn, affects the set of attainable ex-post beliefs. In other words, infor-

30We do not want to overemphasize this application since it would be also consistent with a standard Bayesian
framework where attention is costly: as the likelihood of an event decreases, so does the expected benefit of looking
for an error. It is empirically difficult to discriminate between these two explanations.
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mation interpretation and subsequent belief formation are shaped by the desirability of outcomes.

This has a series of interesting implications.

Preferences and beliefs

The way information is interpreted depends on how the decision-maker feels about alternatives,

which itself affects the beliefs held ex-post. To illustrate this idea in the simplest possible terms,

consider a population of agents identical in all respects except for πA, the marginal disutility of

taking a low action when the state is A. This difference can be subjective (fear of dying) or

objective (likelihood of recovery from an injury). Assume that πA ∈ (π, π). All individuals have

the same prior p. They receive the same information and, for simplicity, experiment the same level

of neuronal cell firing c. We obtain the following result.

Implication 3 (Preferences shape beliefs) Individuals with identical priors but different utilities

will hold systematically different posterior beliefs.

From section 3, we know that dx∗/dπA < 0. Therefore, for a given cell-firing c, there exists a

cutoff π̃A such that c < x∗(πA) for all πA < π̃A and c > x∗(πA) for all πA > π̃A. Individuals in the

first group take action 0 and revise their belief downwards. Individuals in the second group take

action 1 and revise their belief upwards. In words, subjects sharing a prior and exposed to the

same evidence may end up making different choices and holding different opinions. So, for instance,

stronger individuals who are objectively less threatened by predators will decide more often to go

hunting than their weaker peers. This is rather obvious. More interestingly, they will also be more

likely to believe that the environment is safe. This second conclusion cannot occur in the standard

bayesian framework where the exact c is processed. It also suggests an endogenous mechanism for

what an outside observer may perceive as ‘overconfidence’ or ‘ex-post rationalization:’ individuals

who go hunting report low danger whereas individual who stay in the cave report high danger.

Interestingly, there is often a subjective component in payoffs. Our mechanism may account for

the fact that ‘delusional’ patients tend to report high confidence in states they consider undesirable.

Those beliefs are labeled as irrational in the psychology literature (Baron, 1988). According to our

analysis, they may be internally consistent. For example, an individual who is terrified of dying

(large perceived πA) will set a very low decision-threshold. As a consequence, he will interpret any

minor symptom as a threat to his life. A treatment will then be more effective if it is directed into

convincing the patient that his subjective fear of dying is unrealistically high than if the fear of

dying is left untouched and the treatment targets the (correct given his fear) interpretation of the

minor symptoms.
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Non expected utility theory

The result emphasized above on ‘preferences shaping beliefs’ relates more generally to the

idea that probabilities over outcomes and attitudes towards risks are interrelated. This issue

has long been explored in the literature on non-expected utility, and several alternative utility

representations have been suggested. Among the most notable, prospect theory proposes a prob-

ability weighting function to capture the tendency of decision-makers to over-react to small prob-

ability events and under-react to medium and large probability events (Kahneman and Tversky

(1979), Prelec (1998)). Rank-dependent expected utility offers a representations in which outcomes

are ranked and unlikely extreme outcomes are over-weighted (Quiggin (1982)). Finally, security-

potential/aspiration theory builds on the idea that fear and hope lead individuals to overweight

the probabilities attached to the most undesirable and the most desirable events, respectively (see

Lopes (1987) for the theory and Shefrin (2008) for applications to financial decision-making).31

In those models, probabilities are considered objective but weighting functions introduce a sub-

jective aspect as they may vary across individuals.32 Our model provides an alternative utility

representation that accounts for similar effects.

Implication 4 (Probability functions) An optimal decision-threshold mechanism generates payoff-

dependent posterior beliefs.

In our model, reports made on posterior beliefs are correlated with payoffs and behavior is

not consistent with expected utility theory. In particular, the individual can be represented as an

entity with generic utility function of the form:∑
s=A,B

Ps(πA, πB ,L)πs l̂(s, γ),

where Ps(πA, πB ,L) is the posterior belief and πs l̂(s, γ) is the loss when action γ is taken in state

s. The key issue is that the desirability of outcomes affects the decision-threshold, and therefore

the choices and posterior beliefs. Perhaps the main difference between our model and the general

approach followed in decision theory is that we do not explicitly consider a distinction between

objective and subjective probabilities in the brain. Instead, the individual forms an opinion based

on the stimuli received by the sensory system and on the report sent to the decision system. In

31There exists a growing literature studying how the brain represents probabilities and preferences over outcomes
in order to identify an appropriate model of decision-making under risk. See for instance Chew and Sagi (2008) for
an axiomatization of the source preference hypothesis, and Hsu et al. (2005) and Chew et al. (2008) for neuroimaging
studies identifying the brain regions that encode risk and uncertainty.

32Along those lines, there is also the generalized model of certainty equivalence developed by Chew (1983) which
satisfies some desirable properties of expected utility (transitivity, betweenness, stochastic dominance) and, at the
same time, resolves the Allais paradox.

25



particular, if the paradigm is uncommon (as in the Allais paradox for example) or presented in

ambiguous terms, the decision-maker may form subjective probabilities and set decision-thresholds

accordingly.

4.3 Elimination strategy in complex choices

The literature in social psychology has emphasized the difficulty for individuals to think through

complex decisions with many alternatives (Payne (1982), Timmermans (1993)). To deal with these

problems, individuals typically focus on a few salient options and neglect the rest. This was first

discussed in the “elimination by aspects” theory of Tversky (1972), and has subsequently received

strong experimental support (see e.g. Payne, Bettman and Johnson (1988)).

A three-state extension of our analysis can help understand this problem better. Suppose that

S = {A,O,B}, Γ = [0, 1] and denote by pS the prior probability of state S. Also, l̃(γ,A) = l(γ−1),

l̃(γ,O) = l(γ − 1
2 ) and l̃(γ,B) = l(γ − 0) with l(z) = −|z|. Finally, when S = O, the probability

of a cell firing level c is f(c|O), with d
dc
f(c|B)
f(c|O) < 0 and d

dc
f(c|O)
f(c|A) < 0 for all c. In words, ‘low’,

‘intermediate’ and ‘high’ cell firing is imperfect evidence of states B, O and A respectively.

Given a linear loss function, a simple extension of the argument in Lemma 1 implies that only

three actions can be optimal: γ̃ ∈ {0, 12 , 1}. An optimal process needs to set only two decision-

thresholds, which we denote x and x, to discriminate between these three alternatives. The actions

selected are 0 if c < x, 1/2 if c ∈ [x, x] and 1 if c > x. The constrained optimal strategy of a

process that can only set one decision-threshold is described below (and proved in Appendix 6).

Implication 5 (Elimination) The optimal one-threshold process discriminates perfectly between

the two actions that are a priori most likely and fully disregards the third one. The efficiency loss

relative to a two-thresholds process is greatest when all states are equally likely and smallest when

one of the states is highly unlikely.

A one-threshold process necessarily results in some loss, as it can only discriminate between two

actions. The issue is to determine where should the threshold be set. One could think that, even

if an action is left out, it will still affect how the individual discriminates between the other two.

This intuition is incorrect. Instead, the process sacrifices the action which is optimal in the state

most unlikely to occur (e.g., action 1 if pA is low relative to pO and pB), and then discriminates

optimally between the other two (e.g., sets threshold x to perfectly differentiate between actions 0

and 1/2). The result is very much in line with the elimination by aspects theory discussed above.

States are categorized by relevance, which is a function of how probable they are. The least relevant

option is fully disregarded and the most relevant ones are evaluated optimally within the reduced

set. When an option is ignored then, for the purpose of the choice to be made, it is as if it did not
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even exist. In other words, the heuristic of the elimination strategy is proved to be optimal in this

particular case and given the processing constraints. An immediate implication is that the cost of

discriminating between only two actions will be a function of how likely the third one is.

5 Conclusion

Building theoretical models of brain processes is an important step both for economics and neuro-

science. For economics, incorporating physiological costs and constraints in the capacity of individ-

uals to evaluate situations, process information and reach conclusions has two advantages. First,

it provides guidelines regarding the plausibility of different assumptions when we try and model

bounded rationality. Second, it provides micro-microfoundations for some well-documented biases

in choices.33 For neuroscience, formal models of the brain can provide testable implications about

the functionality of different brain systems and inspire new experiments (see Brocas and Carrillo

(2008) for a more detailed discussion of this methodology). This paper has taken one step in that

direction. We have provided a theoretical framework to study information processing in the brain.

We have then used this framework to predict decisions in behaviorally relevant environments. Last,

we have analyzed several implications of our theory and shown that our predictions are consistent

with some anomalies and biases documented in psychology. Interestingly, those biases all originate

in the same physiological constraints, and are thus likely to be observed in conjunction.

Our model can be extended in a number of directions. First and unlike the diffusion model,

we do not account for the temporal aspects of information processing. In our theory, it is simply

assumed that the threshold is reached. Correlating reaction times, experimental conditions and

likelihood of mistakes in an optimization model would be of significant value. Second, we could

analyze situations where individuals learn also from their choices. In particular, we could compare

the difference in beliefs before and after a decision is made and a stochastic outcome is realized.

This would shed light on the reaction to expected and unexpected events. Last, a natural exten-

sion would be to analyze how individuals take decisions in strategic settings. For instance, we

could measure the impact of confirmatory biases on decisions when agents engage in synergistic or

competitive activities.

33One could draw a parallel with the theory of organizations, where a more accurate modelling of firm con-
straints (agency problems, restricted information channels, limited resource allocation) has helped understanding
organizational choices.
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Appendix

Appendix 1. Proof of Proposition 1.

Assume that the parameters of the model are such that f(0|B)
f(0|A) >

p
1−p

πA
πB

> f(1|B)
f(1|A) .34 Taking the

first-order condition in (5), we find that x∗(p) satisfies (6). Given (A1), x∗(p) is unique and the

local second-order condition is satisfied:

∂2V

∂x2

∣∣∣∣
x∗

= −p f ′(x∗|A)πA(l(0)− l(1)) + (1− p)f ′(x∗|B)πB(l(0)− l(1))

= (1− p)πB f(x∗|A)(l(0)− l(1))
(
f(x∗|B)
f(x∗|A)

)′
< 0.

dx∗/dp < 0 is immediate from (A1). Finally, we can ex-post check that it is optimal to select

γ∗ = 1 when c > x∗ and γ∗ = 0 when c < x∗. We have:

Pr(A|c>x∗)> πB
πA+πB

⇔ pπA(1−F (x∗|A))>(1−p)πB(1−F (x∗|B))⇔ 1−F (x∗|A)
f(x∗|A) > 1−F (x∗|B)

f(x∗|B)

Pr(A|c < x∗) < πB
πA+πB

⇔ p πA F (x∗|A) > (1− p)πBF (x∗|B) ⇔ F (x∗|A)
f(x∗|A) <

F (x∗|B)
f(x∗|B)

Both inequalities are satisfied given (A1). This completes the proof.

Appendix 2. Proof of Proposition 2.

Given (9), we can rewrite the value function as:

V (x) = p(1− F (x|A))πAl(1− γ∗∗(p(x))) + (1− p)(1− F (x|B))πBl(γ
∗∗(p(x)))

+ pF (x|A)πAl(1− γ∗∗(p(x))) + (1− p)F (x|B)πBl(γ
∗∗(p(x)))

(15)

The optimal threshold maximizes (15) given (7) and (8). The first-order condition is:

∂V (x)

∂x

∣∣∣∣
x=x∗∗

= 0 ⇒ f(x∗∗|B)

f(x∗∗|A)
=

p

1− p
πA
πB

l(1− γ∗∗(p(x∗∗)))− l(1− γ∗∗(p(x∗∗)))
l(γ∗∗(p(x∗∗)))− l(γ∗∗(p(x∗∗)))

(16)

From (16) and using (7) and (8), we get:

∂2V (x; p)

∂x∂p

∣∣∣∣
x=x∗∗

= −πB
p

[
f(x∗∗|B)

(
l(γ∗∗(p))− l(γ∗∗(p))

)
+ F (x∗∗|B)l′(γ∗∗(p))

dγ∗∗(p)

dx

∣∣∣∣
x∗∗

+ (1− F (x∗∗|B))l′(γ∗∗(p))
dγ∗∗(p)

dx

∣∣∣∣
x∗∗

]
= −πB

p
× d

dx

[
F (x|B)l(γ∗∗(p)) + (1− F (x|B))l(γ∗∗(p))

]
x=x∗∗

34This condition ensures that the optimal solution is interior. If it is not satisfied, then the threshold is set at a
bound. This means that the threshold is either always surpassed (x∗ = 0) or never surpassed (x∗ = 1). In either
case, no new information is acquired and the prior coincides with the posterior. This uninteresting case corresponds
to the situation where the prior beliefs are so skewed towards one alternative that no signal could ever reverse them.
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Similarly,

∂2V (x; p)

∂x2

∣∣∣∣
x=x∗∗

= (1−p)πB
( f(x|B)
f(x|A) )

′

f(x|B)
f(x|A)

[
f(x|B)

(
l(γ∗∗(p))− l(γ∗∗(p))

)
+F (x|B)l′(γ∗∗(p))

dγ∗∗(p)

dx

f(x|B)
f(x|A)

( f(x|B)
f(x|A) )

′
(F (x|B)
F (x|A) )

′

F (x|B)
F (x|A)

+ (1− F (x|B))l′(γ∗∗(p))dγ
∗∗(p)
dx

f(x|B)
f(x|A)

( f(x|B)
f(x|A) )

′
( 1−F (x|B)

1−F (x|A) )
′

1−F (x|B)
1−F (x|A)

]
x=x∗∗

By (A2),
f(x|B)
f(x|A)

( f(x|B)
f(x|A) )

′
(F (x|B)
F (x|A) )

′

F (x|B)
F (x|A)

6 1 and
f(x|B)
f(x|A)

( f(x|B)
f(x|A) )

′
( 1−F (x|B)

1−F (x|A) )
′

1−F (x|B)
1−F (x|A)

6 1. Therefore,
∂2V (x; p)

∂x∂p

∣∣∣∣
x=x∗∗

< 0 ⇒

∂2V (x; p)

∂x2

∣∣∣∣
x=x∗∗

< 0 and the proposition follows.

Characterization of the equilibrium with quadratic loss. Suppose that l(z) = α−β z2 with

β > 0 and πA = πB = 1. Under this restriction, (7) and (8) become:

γ∗∗(p(x)) = p(x) and γ∗∗(p(x)) = p(x)

Therefore, (10) has the following simple expression:

f(x∗∗|B)

f(x∗∗|A)
=

p

1− p
(1− p(x∗∗)) + (1− p(x∗∗))

p(x∗∗) + p(x∗∗)
(17)

Let P ≡ p
1−p . The F.O.C. (17) can be rewritten as:

1− p
p2

∂V (x; p)

∂x

∣∣∣∣
x∗∗

= k(x∗∗, P )

where k(x, P ) ≡
(

1−F (x|A)
(1−F (x|A))P+(1−F (x|B)) −

F (x|A)
F (x|A)P+F (x|B)

) [
f(x|B)

(
1−F (x|A)

(1−F (x|A))P+(1−F (x|B))

+ F (x|A)
F (x|A)P+F (x|B)

)
− f(x|A)

(
1−F (x|B)

(1−F (x|A))P+(1−F (x|B)) + F (x|B)
F (x|A)P+F (x|B)

)]
. Differentiating the F.O.C.,

we get
∂2V (x; p)

∂x∂p

∣∣∣∣
x∗∗
∝ ∂k(x∗∗, P )

∂P

After some tedious algebra, and using (17), we get:

∂k(x∗∗, P )

∂P
= −f(x∗∗|A)

(
F (x∗∗|B)
F (x∗∗|A) −

1−F (x∗∗|B)
1−F (x∗∗|A)

)3
(

2P + F (x∗∗|B)
F (x∗∗|A) + 1−F (x∗∗|B)

1−F (x∗∗|A)

)(
P + F (x∗∗|B)

F (x∗∗|A)

)2 (
P + 1−F (x∗∗|B)

1−F (x∗∗|A)

)2 < 0

which guarantees that dx∗∗/dp < 0 is satisfied in every locally optimal threshold.
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Analytical example in the linear and quadratic cases. Let F (c|A) = c2 and F (c|B) = c.

From (6) and (17) and after some algebra, the optimal thresholds with linear (l(z) = −|z|) and

quadratic (l(z) = −z2) payoffs are respectively:

x∗(p) = 1−p
2p and x∗∗(p) =

√
1−p√

1−p+
√
1+p

where x∗ and x∗∗ are interior if p > 1/3. In this example, the optimal threshold is always less

extreme with quadratic than with linear payoffs: x∗ T x∗∗ T 1/3 for all p S 3/5.

Appendix 3. Proof of Proposition 3.

Taking the first-order condition in (13) and applying the envelope theorem, we get:

∂W (y; p)

∂y

∣∣∣∣
y=y∗

= 0 ⇒ f1(y∗|B)

f1(y∗|A)
=

p

1− p
F2(x∗(p(y∗))|A)− F2(x∗(p(y∗))|A)

F2(x∗(p(y∗))|B)− F2(x∗(p(y∗))|B)

πA
πB

The rest of the proof follows the exact same steps as the proof of Proposition 2 and is therefore

omitted for the sake of brevity.

Equilibrium with second stage linear densities. Let g2(c) = 2c and f2(c) = 2(1 − c),

πA = πB = 1, and let us and keep a general formulation for the first stage cell firing densities.

After some algebra, the first-order condition (14) can be rewritten as:

f1(y∗|B)

f1(y∗|A)
=

p

1− p
(1− p(y∗)) + (1− p(y∗))

p(y∗) + p(y∗)

which is exactly the same expression as (17), and the result follows.

Example 1, continued. Suppose l(0) = 1, l(1) = 0 and p = 1/2. It follows that y∗ = 1
2 ,

p( 1
2 ) = 3

4 , x∗(p( 1
2 )) = 1

4 , p( 1
2 ) = 1

4 , and x∗(p( 1
2 )) = 3

4 . A continuum of thresholds in stage 1 is

formally equivalent to observing the exact cell firing c1. Given p(A|c1) = c1, the expected loss

under that process is:

W̃ = p

∫ 1

0

Pr(c1|A)
[
1− F (x∗(p(A|c1))|A)

]
dc1 + (1− p)

∫ 1

0

Pr(c1|B)
[
F (x∗(p(A|c1))|B)

]
dc1 =

5

6

Suppose instead that the brain uses a process with only one threshold. The individual at stage

1 only learns whether c1 ≷ y∗ (= 1/2). Following (13), his expected loss is:

W = Pr(A)
[

Pr(c1 >
1
2 |A) Pr(c1 >

1
4 |A) + Pr(c1 <

1
2 |A) Pr(c1 >

3
4 |A)

]
+ Pr(B)

[
Pr(c1 <

1
2 |B) Pr(c1 <

3
4 |B) + Pr(c1 >

1
2 |B) Pr(c1 <

1
4 |B)

]
=

13

16
< W̃

In this example, the expected utility loss of using the one-threshold process is only 2.5%.
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Appendix 4. Optimal threshold with two actions and a continuum of states.

Let S = [0, 1] and Γ = {0, 1}. In our example, s ∈ S captures the proportion of predators in the

neighborhood. The individual decides between hunting (γ = 0) and staying in the cave (γ = 1).

We order the states by the increasing degree of danger, from safest (s = 0) to most dangerous

(s = 1). Payoffs are l̃(1, s) = πs l(1 − s) and l̃(0, s) = πs l(−s), where l(z) = l(−z) for all z and

l′(z) < 0 for all z > 0. The probability of cell firing level c given state s is now f(c | s). The

generalization of MLRP to the continuous case is:

Assumption 1’ (continuous MLRP)
d

dc

(
fs(c | s)
f(c | s)

)
> 0 for all c and s. (A1’)

The individual believes that the state is s with probability p(s). The expected payoff (3) is

generalized as L(p(s), γ) =
∫ 1

0
p(s)πs l(γ − s)ds and the optimal action is:

γ̂ = 1 if

∫ 1

0

p(s)πs

(
l(1− s)− l(s)

)
ds > 0 and γ̂ = 0 if

∫ 1

0

p(s)πs

(
l(1− s)− l(s)

)
ds < 0

To simplify the analysis, assume that πs = πl for all states s < 1/2 and πs = πu for all states

s > 1/2. The value function is:

V (x; p(s)) = Pr(c > x)L(p(s | c > x), 1) + Pr(c < x)L(p(s | c < x), 0)

=

∫ 1

0

p(s)πs

(
(1− F (c | s))l(1− s) + F (c | s)l(s)

)
ds

(18)

Denote by x̂(p(s)) = arg max x V (x; p(s)). Taking the F.O.C. in (18), we obtain:

−
∫ 1

0

p(s)πs f(x̂ | s)
(
l(1− s)− l(s)

)
ds = 0 (19)

The local S.O.C. is:

∂2V

∂x2

∣∣∣∣
x̂

= −
∫ 1

0

p(s)πs fx(x̂ | s)
(
l(1− s)− l(s)

)
ds

=

∫ 1

0

(
−fx(x̂ | s)
f(x̂ | s)

)
p(s)πs f(x̂ | s)

(
l(1− s)− l(s)

)
ds

Let h(s) ≡ −fx(x̂ | s)
f(x̂ | s)

. By (A1’), h′(s) 6 0. We can then rewrite the local S.O.C. as:

∂2V

∂x2

∣∣∣∣
x̂

=

∫ 1/2

0

h(s) p(s)πs f(x̂ | s)
(
l(1− s)− l(s)

)
ds+

∫ 1

1/2

h(s) p(s)πs f(x̂ | s)
(
l(1− s)− l(s)

)
ds

< h(1/2)

[∫ 1/2

0

p(s)πs f(x̂ | s)
(
l(1− s)− l(s)

)
ds+

∫ 1

1/2

p(s)πs f(x̂ | s)
(
l(1− s)− l(s)

)
ds

]
= 0
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which means that the threshold x̂(p(s)) defined by (19) is indeed a unique maximum.

Suppose now that
(
p(s)
q(s)

)′
6 0, then:

∂V (x; p(s))

∂x

∣∣∣∣
x̂(p(s))

= −
∫ 1

0

(
p(s)

q(s)

)
q(s)πs f(x̂(p(s)) | s)

(
l(1− s)− l(s)

)
ds

> −
(
p(1/2)

q(1/2)

)∫ 1

0

q(s)πs f(x̂(p(s)) | s)
(
l(1− s)− l(s)

)
ds

Therefore,

∂V (x; p(s))

∂x

∣∣∣∣
x̂(p(s))

= 0 >

(
p(1/2)

q(1/2)

)
∂V (x; q(s))

∂x

∣∣∣∣
x̂(p(s))

⇒ x̂(p(s)) > x̂(q(s))

In words, if one individual puts more weight in higher states than another one in a MLRP sense,(
q(s)
p(s)

)′
> 0, then he also sets a lower threshold. This property is simply a generalization of the

comparative statics on p to the case of a continuous distribution of beliefs.

Finally, we need to check that it is indeed optimal to choose γ̂ = 1 when c > x̂ and γ̂ = 0 when

c < x̂. Let J (x) ≡ L(p(s | c = x), 1)− L(p(s | c = x), 0), also p(s | c = x) ≡ j(s |x) = p(s)f(x | s)∫ 1
0
p(s)f(x | s)ds

and J(s |x) =
∫ s
0
j(s̃ |x)ds̃. We use the fact that πs = πl for all s < 1/2 and πs = πu for all

s > 1/2. Integrating by parts:

J (x) =

∫ 1

0

j(s |x)πs

(
l(1− s)− l(s)

)
ds

= πu

(
l(0)− l(1)

)
+

∫ 1

0

J(s |x)πs

(
l′(1− s) + l′(s)

)
ds

Therefore
dJ (x)

dx
=

∫ 1

0

Jx(s |x)πs

(
l′(1− s) + l′(s)

)
ds > 0

since, by (A1’), we know that Fs(x | s) < 0 and therefore Jx(s |x) < 0. From (19), J (x̂) = 0,

so J (x) T 0 for all x T x̂. This also proves that, for the purpose of the action to be taken, it is

equivalent to learn c or to learn whether c is greater or smaller than x̂.

Last, setting L̂ = πu
πl

and differentiating (19) with respect to L̂, we obtain:

1

πl

∂2V

∂x2

∣∣∣∣
x̂

∂x̂

∂L̂
−
∫ 1

1/2

p(s) fx(x̂ | s)
(
l(1− s)− l(s)

)
ds = 0

which implies that dx̂/dL̂ < 0. Summing up, the conclusions stated in Proposition 1 (no loss of

utility by setting only one optimal cutoff and comparative statics of optimal cutoff with respect

to prior beliefs and cost of wrong actions) extend to the case of two actions and a continuum of

states.
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Appendix 5. Optimal thresholds in simple vs. complex activities.

Consider activities “α” and “β” such that low cell firing when S = A or high cell firing when

S = B are uniformly less frequent in α-activities than in β-activities. Formally:

∂

∂c

(
fα(c|A)

fβ(c|A)

)
> 0 and

∂

∂c

(
fα(c|B)

fβ(c|B)

)
< 0 (20)

where fk(c|S) is the probability of cell firing c in situation k ∈ {α, β} given state S. The idea

is simply that “neuronal mistakes”, defined as low cell firing when S = A or high cell firing

when S = B, are uniformly less frequent in α-activities than in β-activities. In other words,

α activities represent simple (concrete, common, temporally close) choices whereas β activities

represent complex (abstract, exceptional, temporally distant) choices. For technical reasons, we

also assume that (A1) is satisfied in both type of activities.(
fα(c|A)
fβ(c|A)

)′
> 0,

(
fβ(c|B)
fβ(c|A)

)′
< 0,

(
fα(c|B)
fβ(c|B)

)′
< 0,

(
fα(c|B)
fα(c|A)

)′
< 0 ⇒ f ′α(c|A)

fα(c|A) >
f ′β(c|A)

fβ(c|A) >
f ′β(c|B)

fβ(c|B) >

f ′α(c|B)
fα(c|B) . Now, suppose there exists ĉ ∈ (0, 1) such that fα(ĉ|B)

fα(ĉ|A) =
fβ(ĉ|B)
fβ(ĉ|A) . Then,

d

dc

[
fα(c|B)

fα(c|A)
− fβ(c|B)

fβ(c|A)

]
c=ĉ

=
fα(ĉ|B)

fα(ĉ|A)

(
f ′α(ĉ|B)

fα(ĉ|B)
− f ′α(ĉ|A)

fα(ĉ|A)

)
− fβ(ĉ|B)

fβ(ĉ|A)

(
f ′β(ĉ|B)

fβ(ĉ|B)
−
f ′β(ĉ|A)

fβ(ĉ|A)

)
< 0

so fα(c|B)
fα(c|A) and

fβ(c|B)
fβ(c|A) cross at most once. Also,

(
fα(c|A)
fβ(c|A)

)′
> 0 and

(
fα(c|B)
fβ(c|B)

)′
< 0 ⇒ fα(0|B)

fα(0|A) >

fβ(0|B)
fβ(0|A) and fα(1|B)

fα(1|A) <
fβ(1|B)
fβ(1|A) . Together with the previous result, it means that there exists x̂ ∈

(0, 1) such that fα(x|B)
fα(x|A) T fβ(x|B)

fβ(x|A) for all x S x̂. Denote by x∗k(p) the optimal threshold in activity

k as a function of p. Given (6), there exists p̂ such that
fα(x

∗
α(p̂)|B)

fα(x∗α(p̂)|A) =
fβ(x

∗
β(p̂)|B)

fβ(x∗β(p̂)|A) = p̂
1−p̂ , that is,

x∗α(p̂) = x∗β(p̂) = x∗(p̂) ≡ x̂. For all p ≷ p̂,
fα(x

∗
α(p)|B)

fα(x∗α(p)|A) =
fβ(x

∗
β(p)|B)

fβ(x∗β(p)|A) = p
1−p ⇒ x∗β(p) ≶ x∗α(p) ≶ x̂.

Overall, optimal thresholds are more sensitive to initial beliefs in complex than in simple activities.

Now, suppose p < p̂. Then, x∗α < x∗β . Given (A1),
Fα(x

∗
α|A)

Fα(x∗α|B) <
Fα(x

∗
β |A)

Fα(x∗β |B) . Given (20),
Fα(x

∗
β |A)

Fα(x∗β |B) <

Fβ(x
∗
β |A)

Fβ(x∗β |B) . Finally,
Fα(x

∗
α|A)

Fα(x∗α|B) <
Fβ(x

∗
β |A)

Fβ(x∗β |B) ⇔ Prβ [A|0] > Prα[A|0].

Analogously, if p > p̂ then x∗α > x∗β . Given (A1) and (20),
1−Fβ(x∗β |B)

1−Fβ(x∗β |A) >
1−Fβ(x∗α|B)
1−Fβ(x∗α|A) >

1−Fα(x∗α|B)
1−Fα(x∗α|A) , and therefore Prβ [B|1] > Prα[B|1]. This proves that the individual is more likely to

make mistakes in complex rather than simple activities.
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Appendix 6. Proof of Implication 5.

Two-thresholds process. A necessary condition for cutoffs x1 and x2 (> x1) to be optimal is γ̃ = 0

if c ∈ [0, x1), γ̃ = 1
2 if c ∈ [x1, x2] and γ̃ = 1 if c ∈ (x2, 1]. The value function is then:

V (x1, x2) = Pr(c < x1)L(p(· | c < x1), 0) + Pr(c ∈ [x1, x2])L( 1
2 ; p(· | c ∈ [x1, x2]))

+ Pr(c > x2)L(p(· | c > x2), 1)

= −pB
[
(1− F (x2|B)) + 1

2 (F (x2|B)− F (x1|B))
]

(21)

−pO
[1

2
(1−F (x2|O)) +

1

2
F (x1|O)

]
−pA

[
1
2 (F (x2|A)−F (x1|A)) + F (x1|A)

]
Taking F.O.C. in (21), we obtain x and x. They solve:

f(x|B)

f(x|A)
=

pA
pB

+
pO
pB

f(x|O)

f(x|A)
and

f(x|B)

f(x|A)
=

pA
pB
− pO
pB

f(x|O)

f(x|A)

Notice that x < x for all pA, pO, pB ∈ (0, 1)3 and x = x∗ = x when pO = 0.We also have
∂2V (x1,x2)

∂x2
1

∣∣∣
x

= − 1
2pOf(x|B)

(
f(x|O)
f(x|B)

)′
− 1

2pAf(x|B)
(
f(x|A)
f(x|B)

)′
< 0, ∂2V (x1,x2)

∂x2
2

∣∣∣
x

= 1
2pOf(x|A)

(
f(x|O)
f(x|A)

)′
+

1
2pBf(x|A)

(
f(x|B)
f(x|A)

)′
< 0, and ∂2V (x1,x2)

∂x1∂x2
= 0. Therefore x and x are maxima. Last, it can be

easily checked that Pr(S | c ∈ Y), S ∈ {A,O,B} are such that γ̃ = 0 if Y = [0, x), γ̃ = 1
2 if

Y = [x, x], and γ̃ = 1 if Y = (x, 1] are indeed optimal.

One-threshold process. Let x̌ be the cutoff that solves:

f(x̌|B)

f(x̌|A)
=

pA
pB

It is immediate to see that x̌ ∈ (x, x). The three candidates for optimal cutoffs are: xa so that γ̃ = 0 if c < xa and γ̃ = 1 if c > xa
xb so that γ̃ = 0 if c < xb and γ̃ = 1/2 if c > xb
xc so that γ̃ = 1/2 if c < xc and γ̃ = 1 if c > xc

These cutoffs are formally defined by:
xa = arg max x V a(x) ≡ Pr(c < x)L(0; p(· |c < x)) + Pr(c > x)L(1; p(· |c < x))
xb = arg max x V b(x) ≡ Pr(c < x)L(0; p(· |c < x)) + Pr(c > x)L( 1

2 ; p(· |c < x))
xc = arg max x V c(x) ≡ Pr(c < x)L( 1

2 ; p(· |c < x)) + Pr(c > x)L(1; p(· |c < x))

It is straightforward to check that xa = x̌, xb = x, xc = x. Now, fix pO. Differentiating each

first-order condition with respect to pB , we get:

dxa
dpB

> 0,
dxb
dpB

> 0,
dxc
dpB

> 0
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Furthermore:

dV a(xa)

dpB
= F (xa|B) + F (xa|A)− 1 ≷ 0,

d2V a(xa)

dp2B
=
[
f(xa|B) + f(xa|A)

] dxa
dpB

> 0,

dV b(xb)

dpB
=
F (xb|B) + F (xb|A)

2
> 0,

dV c(xc)

dpB
=
F (xc|B) + F (xc|A)

2
− 1 6 0

Also, lim
pB→0

V a(xa) = −pO
2
< lim
pB→0

V c(xc) and lim
pB→1−pO

V a(xa) = −pO
2
< lim
pB→1−pO

V b(xb).

Combining these results, we have that there exist p∗ such that xc dominates xb if pB < p∗ and

xb dominates xc if pB > p∗. Also, there exist p∗∗ and p∗∗∗ such that xc dominates xa if pB < p∗∗

and xb dominates xa if pB > p∗∗∗. The ranking between p∗, p∗∗ and p∗∗∗ depend on the relative

values of pO and pA.
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