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1 Introduction

Those of us who pursue neuroeconomic research do so in the belief that neurobiological and decision

theoretic research will prove highly complementary. The hoped for complementarities rest in part on

the fact that model-building and quantification are as highly valued within neuroscience as they are in

economics. Yet methodological tensions remain. In particular, the ‘axiomatic’ modeling methodology

that dominates economic decision theory has not made many neuroscientific converts. We argue in

this chapter that neuroeconomics will achieve its full potential when such methodological differences

are resolved, and in particular that axioms can and should play a central role in the development of

neuroeconomics.

The axiomatic approach to modelling is the bread and butter of decision theory within economics.

In pursuing this approach, model-builders must state precisely how their theories restrict the behavior

of interesting data. To make such a statement, the model-builder must write down a complete list of

necessary and sufficient conditions (or axioms) that their data must satisfy in order to be commensurate

with their model. The classic example in decision theory (which we discuss more in section 2) is the case

of ‘utility maximization’. While this had been the benchmark model of economic behavior almost since
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the inception of the field, it was left to Samuelson [1938] to ask the question: "Given that we do not

observe ‘utility’, how can we test whether people are utility maximizers?". In other words: "what are

the observable characteristics of a utility maximizer?". It turns out that the answer is the ’Weak Axiom

of Revealed Preference’ (WARP), which effectively states that if someone chooses some option x over

another y, they cannot later be observed choosing y over x. If (and only if) this rule is satisfied, then

we can say that the person in question seems to choose in order to maximize some fixed, underlying

utility ordering. Although this condition may seem surprisingly weak, it is the only implication of

utility maximization for choice, assuming one does not directly observe utility. Furthermore, it turns

out that there are many cases in which it systematically fails (due, for example, to framing effects,

status quo bias or ‘preference reversals’). In the wake of this pivotal insight, the axiomatic approach

has been successfully used within economics to characterize and test other theories which share with

utility maximization that they involve ‘latent’ variables (those which are not directly observable).

It is our belief that axiomatic modelling techniques will prove to be as valuable to neuroeconomics

as they are in economics: As with utility, most of the forces under study in neuroeconomics are not

subject to direct empirical identification, but are rather best defined in relation to their implications

for particular neurological data. Axioms are unique in the precision and discipline that they bring to

debates concerning such latent forces, in that they capture exactly what they imply for a particular

data set - no more and no less. Moreover, they capture the main characteristics of a model in a

non-parametric way, thus removing the need for ‘spurious precision’ in relating latent variables to

observables - as well as the need for the many free parameters found in a typical neurobiological

model. An axiomatic approach also fixes the meaning of latent variables by defining them relative

to the observable variables of interest. This removes the need for auxiliary models, connecting these

latent variables to some other observable in the outside world. In section 3, we illustrate our case with

the neurobiological/neuroeconomic question of whether or not dopamine encodes a ‘reward prediction
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error’ [Caplin and Dean , 2008; Caplin, Dean, Glimcher, and Rutledge, 2008]. We show the value of

an axiomatic model in identifying the latent variables rewards and beliefs in terms of their impact on

dopaminergic responses, just as revealed preference theory identifies utility maximization relative to

its impact on choice.

Note that we see the use of axiomatic methods not as an end in and of itself, but rather as a guide to

drive experimentation in the most progressive possible directions. Not only do good axiomatic models

immediately suggest experimental tests, they lend themselves to a ‘nested’ technique of modeling and

experimentation, in which successively richer versions of the same model can be tested one step at a

time. Ideally, this creates rapid feedback between model and experiment, as one refines in the face of

experimental confirmation, and adjusts in the face of critical contrary evidence. This nested modeling

technique results in a shared sense of the challenges that stand in the path of theoretical and empirical

understanding. One reason that this approach has proven so fruitful in economics is that our theories

are very far from complete in their predictive power. There is little or no hope of constructing a simple

theory that will adequately summarize all relevant phenomena: systematic errors are all but inevitable.

The axiomatic method adds particular discipline to the process of sorting between such theories. In

essence, the key to a successful axiomatic agenda involves maintaining a close connection between

theoretical constructs and empirically observable phenomena.

Overall, axiomatic modelling techniques strikes us as an intensely practical weapon in the neuro-

scientific arsenal. We are driven to them by a desire to find good testing protocols for neuroeconomic

models, rather than by a slavish devotion to mathematical purity. In addition to operationalizing in-

tuitions, axioms allow one to capture important ideas in a non-parametric way, removing the need for

overly specific instantiations, whose (all but inevitable) ultimate rejection leaves open the possibility

that the intuitive essence of the model can be retained if only one finds a better fitting alternative
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in the same model class. By boiling a model down to a list of necessary and sufficient conditions,

axioms allow one to identify definitive tests. With the implied focus on essentials and with extraneous

parametric assumptions removed from the model, failure to satisfy the axioms implies unequivocally

that the model has problems which go far deeper than a particular functional form or set of parameter

values. The rest of this essay illustrates these points: In section 2, we discuss briefly the success that

the axiomatic method has had within economics. In section 3 we discuss some of our own work in ap-

plying the same methodology to a neurobiological/neuroeconomic question: whether or not dopamine

encodes a ‘reward prediction error’. Section 4 concludes by outlining some next steps in the axiomatic

agenda in neuroscience.

2 The Axiomatic Method in Decision Theory

Within decision theory, axiomatic methods have been instrumental to progress. It is our contention that

neuroeconomic applications of this approach are highly promising, for almost exactly the same reasons

that they have proven so fruitful in economics. In essence, the key to a successful axiomatic agenda

involves maintaining a close connection between theoretical constructs and empirically observable phe-

nomena. A quick review of doctrinal history highlights the possible relevance of these techniques for

neuroeconomics.

In general, the starting point for an axiomatic theory in economics has been an area in which

strong intuitions about the root causes of behavior are brought to play, and in which questions arise

concerning how these intuitive causes are reflected in observables. This interplay between theory and

data was evident from the first crucial appearance of axiomatic methods in economics: the revealed

preference theory initiated by Paul Samuelson.

The debate which gave birth to the revealed preference approach, and so axiomatic modelling within
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economics, goes back to the beginning of economic thought, and the question of what determines

observed market prices. The notion of ‘use value’, or the intrinsic value of a good, was central in early

economics, with debates focusing on how this related to prices. The high price of diamonds, which

seem to have low use value, relative to water, which is necessary for sustaining life, was seen as a

source of great embarrassment for proponents of the idea that prices reflected subjective evaluations of

the relative importance of commodities. Understanding of the connection between this early notion of

‘utility’ and prices was revolutionized when marginal logic was introduced into economics in the late

nineteenth century. It was argued that prices reflect marginal not total utilities (i.e. the incremental

utility of owning an additional unit of a commodity), and that marginal utility fell as more of a

commodity was available. Water is abundant, making marginal units of low value. However if water

were to be really scarce, its market value would increase tremendously to reflect the corresponding

increase in marginal utility. Thus, if water were as scarce as diamonds, it would be far more valuable.

There were two quite different responses to this theoretical breakthrough, one of which led to a

long philosophical debate that has left little mark on the profession, and the other of which produced

the most fundamental axiomatic model in choice theory. The philosophical response was produced

by those who wanted to dive more fully into the sources and nature of utility, and whether or not

it really diminished at the margin, and what form of ‘hedonometer’ could be used to measure it. It

could be argued that the form of utility offered by diamonds is fundamentally different than that

offered by water: diamonds may be of value in part because of their scarcity, while water is wanted

for more survival. One could further reflect philosophically on how well justified was each such source

of utility, how it related to well-being, and why it might or might not decrease at the margin. The

alternative, axiomatic response resulted when those of a logical bent strove to strip utility theory of

inessential elements, beginning with Pareto’s observation that the utility construct was so flexible that

the concept that it diminished at the margin was meaningless: the only legitimate comparisons, he
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argued, involve better than, worse than, and indifferent to: information that could be captured in an

ordinal preference ranking.1 This observation made the task of finding “the” measurable counterpart to

utility seem inherently hopeless, and it was this that provoked Paul Samuelson to pose the fundamental

question concerning revealed preference that lies at the heart of modern decision theory.

Samuelson noted that the information on preferences on which Pareto proposed building choice

theory was no more subject to direct observation than were the utility functions that were being

sought by his precursors: neither preferences or utilities are directly observable. In fact, the entire

content of utility maximization theory seemed purely intuitive, and Samuelson remarked that there

had been no thought given to how this intuitive concept would be expected to play out in observed

choices. His advance was to pose the pivotal question precisely: if decision makers are making choices

in order to maximize some utility function (which we cannot see), what rules do they have to obey in

their behavior? If the theory of utility maximization had been shown to have no observable implications

for choice data, Samuelson would have declared the concept vacuous.

In a methodological achievement of the first order, it was shown by Samuelson and others that there

are indeed implied restrictions, identified precisely by the Weak Axiom of Revealed Preference. In the

simplest of cases, the axiom states essentially that if I see you choose some object x over another object

y, I cannot in some other experiment see you choose y over x. The broader idea is clear. This revealed

preference (Samuelson favoured "revealed chosen") methodology calls for theory to be tied closely to

observation: utility maximization is defined only in relation to the observable of interest - in this case

choice. There is no need for additional, auxiliary assumptions which tie utility to other observables

(such as ‘amount of food’ or ‘softness of pillow’). Furthermore, the approach gives insights into the

limits of the concept of utility. As utility only represents choice, it is only defined in the sense that

1An ‘ordinal’ relation is one which includes only information on the ranking of different alternatives, as opposed to a
‘cardinal’ relation which contains information about how much better one alternative is than another.
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it represents an ordering over objects: it does not provide any cardinal information. In other words,

any utility function which preserves the same ordering will represent choice just as well; we can take

all utility values and double them, add 5 to them or take logs of them, and they will all represent

the same information. It is for this reason that the concept of utility diminishing at the margin is

meaningless: for any utility function which shows diminishing marginal utility we can find another one

with increasing marginal utility which represents choice just as well.2

To understand how best to apply the axiomatic methodology, note that Samuelson was looking to

operationalize the concept of utility maximization, which has strong intuitive appeal. Having done so,

the resulting research agenda is very progressive. The researcher is led to exploring the applicability

of a particular restriction on choice data. Where this restriction is met, one can advance looking for

specializations of the utility function. Where this restriction is not met, one is directed to look for the

new factors that are at play that by definition cannot be covered by the theory of utility maximization.

After 150 years of verbal jousting, revealed preference theory put to an end all discussion of the purview

of standard utility theory and moreover suggested a progressive research program for moving beyond

this theory in cases in which it is contradicted. Ironically, it has taken economists more than sixty years

to follow up on this remarkable breakthrough and start to characterize choice behaviors associated with

non-maximizing theories.

The area of economics in which the interplay between axiomatic theories and empirical findings has

been most fruitful is that of decision making under uncertainty. The critical step in axiomatizing this

set of choices was taken by von Neumann and Morgenstern, who showed that a “natural” method of

ranking lotteries3 according to the expected value of a fixed reward function (obtained by multiplying

2What is meaningful is whether the rate at which a decision maker will trade one good off against another - the
marginal rate of substitution - is increasing or decreasing.

3Economists conceptualize choice between risky alternatives as a choice between lotteries. Each lottery is identified
with a probability distribution over possible final outcomes. Such a lottery may specify, for example, a 50% chance of
ending up with $100 and a 50% chance of ending up with $50.
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the probability of obtaining each outcome with the reward associated with that outcome) rests on the

highly intuitive substitution, or independence axiom. This states that if some lottery p is preferred to

another lottery q, then the weighted average of p with a third lottery r must be preferred to the same

weighting of q with r.

This theory naturally inspired specializations for particular applications as well as qualitative crit-

icisms. Among the former are the theory of risk aversion [Pratt, 1964] and asset pricing [Lucas, 1971],

which now dominate financial theory. Among the latter are such behaviors as those uncovered by Al-

lais [1953], Ellsberg [1961], Kahneman and Tversky [1973], and various forms of information seeking or

information averse behavior. These have themselves inspired new models, with those that have them-

selves been axiomatized having a particularly strong claim to theoretical attention, such as the models

of ambiguity aversion [Schmeidler, 1989; Gilboa and Schmeidler, 1989], disappointment aversion [Gul,

1991], rank-dependant expected utility [Quiggin, 1982], and preferences over the date of resolution of

uncertainty [Kreps and Porteus, 1978].

The interaction between theory and experimentation has been harmonious due in large part to the

intellectual discipline that the axiomatic methodology imposes. Theory and experimentation ideally

advance in a harmonious manner, with neither getting too far ahead of the other. Moreover, as stressed

recently by Gul and Pesendorfer [2008], axiomatic methods can be used to discipline the introduction of

new psychological constructs, such as anxiety, self control, and boundedly rational heuristics, into the

economic cannon. Rather than simply naming these variables in a model and exploring implications,

the axiomatic method calls first for consideration of precisely how their inclusion impacts observations

of some data set (albeit an idealized data set). If their inclusion does not expand the range of predicted

behaviors, they are not seen as "earning their keep". If they do increase the range of predictions,

then questions can be posed concerning when and where such observations are particularly likely. One
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can then translate this into the language of “latent variables”. Thus the axiomatic method can be

employed to ensure that any new latent variable adds new empirical predictions that had proven hard

to rationalize in its absence.4

3 Axioms and Neuroeconomics: The Case of Dopamine and Reward

Prediction Error

Among the parent disciplines of neuroscience in general are physics, chemistry, biology, and psychol-

ogy. Quantitative modeling abounds in the physical sciences, and this is mirrored in various areas of

neuroscience, such as in the field of vision. Yet there remain many psychological constructs relating

to motivation, cognitions, construal, salience, emotions, and hedonia, that, while subject to powerful

intuition, continue to elude quantification.

An element shared by the disciplines out of which neuroscience has evolved is that axiomatic meth-

ods have either been entirely neglected, or are seen as having contributed little to scientific progress. In

particular axiomatic methods have earned something of a bad name in psychological theory, in which

their use has not been associated with a progressive interaction between theory and data. Within the

physical sciences, the data is so rich and precise that axioms have typically been inessential to progress.

However, we believe that neuroeconomics is characterized by the same combination of conditions that

made the axiomatic method fruitful within economics. Intuition is best gained by working with con-

cepts such as ’reward’, ’expectations’, ‘regret’ and so on, but the exact relation of these concepts to

observables needs to be made more precise. It is the axiomatic method that allows one to translate

4The axiomatic method does not call for the abandonment of common sense. After all, one can
provide many axiomatizations of the same behavior involving quite different latent variables, and an
aesthetic sense is used in selecting among such axiomatizations. Yet anyone who wishes formally to reject
one equivalent axiomatization over another must identify a richer setting in which they have distinct
behavioral implications.
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these intuitive notions into observable implications in as clear and general a manner as possible.

We illustrate our case with respect to the neurotransmitter dopamine. The reward prediction

error model (RPE) is the most well-developed model of dopaminergic function, and is based on such

intuitive concepts as rewards and beliefs (i.e. expectations of the rewards that is likely to be obtained

in a particular circumstance). Yet as in the case of utility theory, these are not directly observable.

Commodities and events do not come with readily observable ‘reward’ numbers attached. Neither are

beliefs subject to direct external verification. Rather, both are latent variables whose existence and

properties must be inferred from a theory fit to an experimental data set. The natural question in

terms of an axiomatic agenda are analogous to those posed in early revealed preference theory: what

is the ideal data set on which to test the RPE model, and how does the model restrict the resulting

observations? If there are no restrictions, then the theory is vacuous. If there are restrictions, are

the resulting predictions verified? If so, can one develop further specializations of the theory that

are informative on various auxiliary hypotheses? If not, to what extent can these be overcome by

introducing particular alternative theories of dopaminergic function? This is precisely the agenda that

we have taken up (Caplin and Dean [2007] and Caplin et al. [2008]), and to which we now turn.

A sequence of early experiments initially led neuroscientists to the conclusion that dopamine played

a crucial role in behavior by mediating ‘reward’. Essentially the idea was that dopamine converted

experiences into a common scale of “reward” and that animals (and by extension people) made choices

in order to maximize this reward (see for example Olds and Milner [1954] and Kiyatkin and Gratton

[1994] as well as Gardner and David [1999] for a review). The simple hypothesis of “dopamine as

reward” was spectacularly disproved by a sequence of experiments highlighting the role of beliefs in

modulating dopamine activity: whether or not dopamine responds to a particular reward depends on

whether or not this reward was expected. This result was first shown by Schultz et al. [1993] and
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Mirenowicz and Schultz [1994]. The latter study measured the activity of dopaminergic neurons in a

thirsty monkey as it learned to associate a tone with the receipt of fruit juice a small amount of time

later. Initially (i.e. before the animal had learned to associate the tone with the juice), dopamine

neurons fired in response to the juice but not the tone. However, once the monkey had learned that

the tone predicted the arrival of juice, then dopamine responded to the tone, but now did not respond

to the juice. Moreover, once learning had taken place, if the tone was played but the monkey did not

receive the juice then there was a “pause” or drop in the background level of dopamine activity when

the juice was expected.

These dramatic findings concerning the apparent role of information about rewards in mediating

the release of dopamine led many neuroscientists to abandon the hedonic theory of dopamine in favor

of the RPE hypothesis: that dopamine responds to the difference between how “rewarding” an event is

and how rewarding it was expected to be.5 One reason that this theory has generated so much interest

is that a reward prediction error of this type is a key algorithmic component of reward prediction error

models of learning: such a signal is used to update the value attached to different actions. This has led

to the further hypothesis that dopamine forms part of a reinforcement learning system which drives

behavior [see for example Schultz, Dayan, and Montague 1997].

The RPE hypothesis is clearly interesting to both neuroscientists and economists. For neuroscien-

tists, it offers the possibility of understanding at a neuronal level a key algorithmic component of the

machinery that governs decision making. For economists, it offers the opportunity to directly observe

beliefs, as well as further develop our models of choice and learning. However, the RPE hypothesis is

far from universally accepted within the neuroscience community. Others [e.g. Zink et al., 2003] claim

that dopamine responds to ‘salience’, or how surprising is a particular event. Berridge and Robinson
5The above discussion makes it clear that reward is used in a somewhat unusual way. In fact, what dopamine is

hypothesised to respond to is effectively unexpected changes in lifetime ‘reward’: dopamine responds to the bell not
because the bell itself is rewarding, but because it indicates an increased probability of future reward. We will return to
this issue in section 4.
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[1998], claim that dopamine encodes ‘incentive salience’, which, while similar to RPE, differentiates

between how much something is ‘wanted’ and how much something is ‘liked’. Alternatively, Redgrave

and Gurney [2006] think that dopamine has nothing to do with reward processing, but instead plays a

role in guiding attention. Developing successful tests of the RPE hypothesis which convince all schools

is therefore a ‘neuroeconomic’ project of first-order importance. Developing such tests is complicated

by the fact that the RPE model hypothesizes that dopamine responds to the interaction of two latent

(or unobservable) variables: reward and beliefs. Anyone designing a test of the RPE hypothesis must

first come up with a solution to this quandary: how can one test whether dopamine responds to changes

in things that we cannot directly measure.

The way that neuroscientists studying dopamine currently solve this latent variable problem is by

adding to the original hypothesis further models which relate beliefs and rewards to observable features

of the outside world. More specifically, ‘reward’ is usually assumed to be linearly related to some ‘good

thing’, such as fruit juice for monkeys, or money for people. Beliefs are usually calibrated using a

reward prediction error model. Using this method, for any given experiment, one can generate a time

series of ‘reward prediction error’, which can in turn be correlated with brain activity. This is the

approach taken in the majority of studies of dopamine and RPE (see for example. Montague and

Berns [2002], Bayer and Glimcher [2005], Bayer, Lau and Glimcher [2007], O’Doherty et al. [2003,

2004], Daw et al [2006] and Li et al. [2007]).

We argue that this approach, while providing compelling evidence that dopamine is worthy of

further study, is not the best way of testing the dopaminergic hypothesis, for four related reasons.

First, it is clear that any test of the RPE model derived in this way must be a joint test of both the

RPE hypothesis and the proposed relationship between reward, beliefs and the observable world. For

example, the RPE model could be completely accurate, but the way in which beliefs are formed could
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be very different from that in the proposed model under test. Under these circumstances, the current

tests could incorrectly reject the RPE hypothesis.

Second, such an approach can make it very difficult to successfully compare and contrast different

models of dopamine activity, as the models themselves are poorly defined. If, for example, one finds

that a certain data set provides more support for the RPE hypothesis than the salience hypothesis, a

committed follower of the salience school could claim that the problem is in the definition of reward

or salience. Given enough degrees of freedom, such a person could surely come up with a definition of

salience which would fit the provided data well. Thus, tests between hypotheses can descend into tests

of specific parametric specifications for ‘salience’ or ‘reward’.

Third, this can lead in practice to tests which do not have a great deal of power to differentiate

between different hypotheses. Figure 1 shows the path of three different variables calibrated on the

experimental design of Li et al. [2007]: RPE as calculated by the authors, reward only and RPE using

a least squares learning rule. It is obvious that these three lines are almost on top of each other.

Thus, the fact that calculated RPE is correlated with brain activity is not evidence that such an area is

encoding RPE: the RPE signal would also be highly correlated with any brain area which was encoding

reward. Or indeed one which just kept track of the amount of money available.

Fourth, the technique usually employed to solve such problems, which is to run statistical ‘horse

races’ between different models, is in itself problematic: statistical tests of non-nested models are

themselves controversial. The ’degrees of freedom’ problem discussed above makes it very difficult to

discount a particular model, as the model may be adapted so as to better fit the specific data. And

even if one does show that a particular model fits better than another, all this tells us is that the model

we have is the best fitting of those considered. It doesn’t tell us that the model is better than another

model that we haven’t thought of, or that the data doesn’t deviate from our proposed model in some
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important, systematic way.

Because of these problems, we take an alternative, axiomatic approach to modeling RPE. Just as

with utility theory, this approach is completely agnostic as to how latent variables are related to other

variables in the outside world. Instead, these variables are identified only in relation to their effect on

the object of interest - in this case dopamine. We ask the following question: ‘Say that there is such

a thing as ’reward’ which people hold with regard to different objects, and ‘beliefs’ (or expectations),

which they assign to different circumstances, and dopamine responds to the difference between the two:

what are the properties that dopamine activity must obey?’ In other words, when can we find some

definition of rewards and some definition of expectation such that dopamine responds to the difference

between the two. The resulting theory takes the form of a set of behavioral rules, or axioms, such that

the data obeys the RPE model if and only if these rules are satisfied. The problem of jointly testing

the RPE theory and the definition of reward and belief is solved by defining both concepts within the

theory, and only in relation to dopamine.

Our axioms enable us to characterize the entire class of RPE models in a simple, non-parametric

way, therefore boiling the entire class of RPE models down to its essential characteristics. The axioms

tell us exactly what such models imply for a particular data set - nothing more and nothing less. Hence

our tests are weaker than those proposed in the traditional way of testing the RPE hypothesis described

above. We ask only whether there is some way of defining reward and expectations so as to make the

RPE model work. The traditional model in addition demands that rewards and beliefs are of a certain

parametric form. Our tests form a basic minimal requirement for the RPE model. If the data fails our

tests, then there is no way that the RPE model can be right. Put another way, if brain activity is to

satisfy any one of the entire class of models that can be tested with the ’traditional’ approach, it must

also satisfy our axioms. If dopaminergic responses are too complicated to be explained by our axioms,
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then a fortiori they are too complex to be fit using standard models of reward prediction error learning.

Moreover our approach allows us to perform hierarchical tests of a particular model - starting with the

weakest possible formulation, then testing increasingly structured variants to find out what the data

will support. A final and related point is that it allows for constructive interpretation of failures of the

model. By knowing which axiom is violated, one can determine how the model-class must be adjusted

to fit the data.

Box 1: A Glossary of Terms

In this text box we provide a guide to the terms and symbols used in describing the RPE model

and its axiomatic basis:

Prize: One of the objects that a decision maker could potentially receive (e.g. amounts of money,

squirts of juice) when uncertainty is resolved.

Lottery: A probability distribution over prizes (e.g. 50% chance of winning $5, 50% chance of

losing $3).

Support: The set of prizes that one can potentially receive from a lottery (e.g. for the lottery

50% chance of winning $5, 50% chance of losing $3, the support is {$5, $3}).

Degenerate Lottery: A lottery with a 100% probability of winning one prize

∈ : ‘is a member of’ in set notation (e.g. x ∈ X indicates that x is an element of the set X, or

’New York’∈‘American Cities")

R : The set of all real numbers

|: ‘such that’̇ For example {(z, p)|z ∈ Z, p ∈ Λ(z)} means any z and p such that z is an element

of Z and p is an element of Λ(z)

→: ’mapping to’. Used to describe a function, so f : X → Y indicates a function f which

associates with each element in set X a unique element in set Y

In order to provide the cleanest possible characterization, we develop the RPE model in the simplest
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environment in which the concept of a reward prediction error makes sense. The agent is endowed a

lottery from which a prize is realized. We observe the dopaminergic response when each possible prize z

is realized from lottery p, as measured by the dopamine release function. Many of the mathematical

subtleties of the theory that follow derive from the fact one cannot observe dopaminergic responses to

prizes that are not in the support of a particular lottery.6

Definition 1 The set of prizes is a metric space Z with generic element z ∈ Z.7 The set of all simple

lotteries (lotteries with finite support) over Z is denoted Λ, with generic element p ∈ Λ. We define

ez ∈ Λ as the degenerate lottery that assigns probability 1 to prize z ∈ Z and the set Λ(z) as all lotteries

with z in their support,

Λ(z) ≡ {p ∈ Λ|pz > 0}.

The function δ(z, p) defined on M = {(z, p)|z ∈ Z, p ∈ Λ(z)} identifies the dopamine release function,

δ :M → R.

The RPE hypothesis hinges on the existence of some definition of “predicted reward” for lotter-

ies and “experienced reward” for prizes which captures all the necessary information to determine

dopamine output. In this case, we make the basic rationality assumption that the expected reward of

a degenerate lottery is equal to its experienced reward as a prize.8 Hence the function r : Λ→ R which

defines the expected reward associated with each lottery simultaneously induces the reward function

on prizes z ∈ Z as r(ez). We define r(Z) as the set of values taken by the function r across degenerate

lotteries,

r(Z) = {r(p) ∈ R|p = ez, z ∈ Z).

6 In Caplin and Dean [2007] we cover the case in which lotteries are initially chosen from a set, and relate the reward
representation below to the act of choosing.

7A metric is a measure of the distance between the objects in the space.
8Dean [2007] allows for the reward function to differentiate between realized prizes and the lotteries that yield them

with certainty.
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What follows, then, are our three basic requirements for the DRPE hypothesis. Our first require-

ment is that there exists some reward function containing all information relevant to dopamine release.

We say that the reward function fully summarizes the DRF if this is the case. Our second requirement

is that the dopaminergic response should be strictly higher for a more rewarding prize than a less

rewarding one. Furthermore, a given prize should lead to a higher dopamine response when obtained

from a lottery with lower predicted reward. Our third and final requirement is that, if expectations

are met, the dopaminergic response does not depend on what was expected. If one is knows for sure

that one is going to receive a particular prize, then dopamine must record that there is no “reward

prediction error”, regardless of how good or bad is the prize might be. We refer to this property as

“no surprise constancy”. These requirements are formalized in the following definition.

Definition 2 A dopamine release function δ : M → R admits a dopaminergic reward prediction

error (DRPE) representation if there exist a reward function r : Λ → R and a function E : r(Z) ×

r(Λ)→ R that:

1. Represent the DRF: given (z, p) ∈M ,

δ(z, p) = E(r(ez), r(p)).

2. Respect dopaminergic dominance: E is strictly increasing in its first argument and strictly

decreasing in its second argument.

3. Satisfy no surprise constancy: given x, y ∈ r(Z),

E(x, x) = E(y, y).
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We consider this to be the weakest possible form of the RPE hypothesis, in the sense that anyone who

believes dopamine encodes an RPE would agree that it must have at least these properties. In Caplin

and Dean [2007] we consider various refinements, such as the case in which dopamine literally responds

to the algebraic difference between experienced and predicted reward (i.e δ(z, p) = F (r(ez) − r(p)))

and the case in which predicted reward is the mathematical expectation of experienced rewards (i.e

r(p) =
P

z∈Supp(p) p(z)r(ez)). Both of these represent much more specific refinements of the DRPE

hypothesis

It turns out that the main properties of the above model can be captured in three critical axioms

for δ : M → R. We illustrate these axioms in Figures 2-4 for the two prize case in which the space of

lotteries Λ can be represented by a single number: the probability of winning prize 1 (the probability

of winning prize 2 must be 1 minus the probability of winning prize 1). This forms the x−axis of these

figures. We represent the function δ (i.e. dopamine activity) using two lines - the dashed line indicates

the amount of dopamine released when prize 1 is obtained from each of these lotteries (i.e. δ(z1, p)),

while the solid line represents the amount of dopamine released when prize 2 is obtained from each

lottery (i.e. δ(z2, p)). Note that there are no observations at δ(z1, 0) and δ(z2, 1), as prize 1 is not in

the support of the former, while prize 2 is not in the support of the latter.

Our first axiom demands that the order on the prize space induced by the DRF is independent

of the lottery that the prizes are obtained from. In terms of the graph in Figure 2, if dopaminergic

release based on lottery p suggests that prize 1 has a higher experienced reward than prize 2, there

should be no lottery p0 to which dopaminergic release suggest that prize 2 has a higher experienced

reward that prize 1. Figure 2 shows a violation of such Coherent Prize Dominance. It is intuitive

that all such violations must be ruled out for a DRPE to be admitted. Our second axiom ensures that

the ordering of lotteries by dopamine release is independent of the obtained prize. Figure 3 shows a
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case that contradicts this, in which more dopamine is released when prize 1 is obtained from lottery p

than when it is obtained from lottery p0, yet the exact opposite is true for prize 2. Such an observation

clearly violates the DRPE hypothesis. Our final axiom deals directly with equivalence among situations

in which there is no surprise, a violation of which is recorded in Figure 4, in which more dopamine is

released when prize 2 is obtained from its degenerate lottery (i.e. the lottery which gives prize 2 for

sure) than when prize 1 is obtained from its degenerate lottery.

Formally, these axioms can be described as follows:

Axiom 1 (A1: Coherent Prize Dominance) Given (z, p), (z0, p0), (z0, p), (z, p0) ∈M ,

δ(z, p) > δ(z0, p)⇒ δ(z, p0) > δ(z0, p0)

Axiom 2 (A2: Coherent Lottery Dominance) Given (z, p), (z0, p0), (z0, p), (z, p0) ∈M ,

δ(z, p) > δ(z, p0)⇒ δ(z0, p) > δ(z0, p0)

Axiom 3 (A3: No Surprise Equivalence) Given z, z0 ∈ Z,

δ(z0, ez0) = δ(z, ez)

These axioms are clearly necessary for any RPE representation. In general, they are not sufficient

(see Caplin et al. [2008] for a discussion of why, and what additional axioms are required to ensure an

RPE representation). However, it turns out that these three axioms are sufficient in the case in which

there are only two prizes - (i.e. |Z| = 2). For a more general treatment of the problem see Caplin and

Dean [2007] and Caplin et al. [2008].
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Notice how these axioms allow us to perform a clean, non-parametric test of the RPE hypothesis,

without having to specify some auxiliary models for how rewards are related to prizes, and how beliefs

(or reward expectations) are formed. The only assumption we make is that the ’rewarding nature’ of

prizes, and the beliefs attached to each lottery, are consistent over time. Our tests allow us to differen-

tiate the RPE model from other models of dopamine activity: while A1-A3 form crucial underpinnings

for the RPE hypothesis, they appear inconsistent with alternative hypotheses relating dopamine to

salience (e.g. Zink et al. [2003]), and to experienced reward (e.g. Olds and Milner [1954]). Consider

two prizes z and z0, and two lotteries, p, which gives a 1% chance of winning z and a 99% chance of

winning z0, and p0 which reverses these two probabilities. It is intuitive that that receiving z from p

would be a very “salient”, or surprising event, where as receiving z0 would be very unsurprising. Thus

a system responding to salience should give higher readings when z is obtained from p than when z0 is

obtained from p. However, this situation is reversed when the two prizes are obtained from p0. Thus we

would expect A1 to fail if dopamine responded to salience. A similar argument shows that A2 would

also fail, while A3 would hold, as the salience of getting a prize from a sure thing lottery should be

the same in all cases. With regard to the older theory that dopamine responds only to “experienced

reward’, this would lead A3 to be violated - different prizes with different reward values would give rise

to different dopaminergic responses, even when received from degenerate lotteries.

In Caplin et al [2008] we describe the methodology by which we test the axioms described above,.

Essentially, we endow subjects with lotteries with varying probabilities (0, 0.25, 0.5, 0.75, 1) of winning

one of two prizes (-$5, $5). We then observe brain activity using an fMRI scanner when they are

informed of what prize they have won for their lottery. We focus on three areas within the brain which

are rich in dopamine output: the left and right ventral stratum and the Medial Prefrontal Cortex

(MPFC). Within these regions, we functionally select for areas which respond positively to prize value

and lottery expected values. While observing these areas is clearly not the same as observing dopamine,
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other authors [e.g. O’Doherty et al., 2003; 2004; Daw et al, 2006] claim to have found RPE-like signals

using a similar technique. The noisy nature of fMRI data does, however, force us to confront the issue

of how the continuous and stochastic data available to neuroscientists can be used to test axiomatic

models. This is an area greatly in need of systemization. Caplin et al. [2008] take the obvious first step

by treating each observation of fMRI activity when some prize p is obtained from some lottery z as a

noisy observation of actual dopamine activity from that event. By repeated sampling of each possible

event, we can used standard statistical methods to test whether we can reject the null hypothesis

that,for example, δ(p, z) = δ(q,w) against the hypothesis that δ(p, z) > δ(q, w). It is these statistical

tests to test the axioms that form the basis of our theory.

4 Concluding Remarks

While our data is, at present, preliminary, it suggests that we will indeed identify areas of the brain

whose activity is in line with the basic RPE model. If confirmed, we can then begin to refine our

model of dopamine activity, e.g. by deepening our understanding of how reward assessments vary

with beliefs. In Caplin and Dean [2007], we illustrate this process with an extreme example in which

beliefs must be equal to the mathematical expectation of experienced rewards. A further step is to

introduce models of subjective beliefs and learning to the RPE model, a direction of expansion required

to capture the hypothesized role of dopamine in the process of reinforcement learning. Once we have

completed initial experiments, we intend to use the apparatus to start addressing questions of economic

importance. We intend to explore use of dopaminergic measurements to open a new window into the

beliefs of players in game theoretic settings and to understand addictive behavior (an endeavour already

begun by Bernheim and Rangel [2003]).

In practical terms, improvements in measurement technology will be vital as we refine our axiomatic
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model. For that reason we are intrigued by the measurement techniques pioneered by Phillips [2003]

and others, that are enabling dopaminergic responses to be studied ever more closely in animals. The

increased resolution that these techniques makes possible may enable us to shed an axiomatic light on

whether or not dopamine neurons are asymmetric in their treatment of positive than negative reward

prediction errors, as conjectured by Bayer and Glimcher [2005]. Axiomatically inspired experimentation

may allow progress to be made also on whether or not signals of reward surprise may be associated

with neurons that are associated with different neurotransmitters, such as serotonin.

Our axiomatic approach to neuroeconomics forms part of a wider agenda for the incorporation of

non-standard data into economics. Recent advances in experimental techniques have lead to an explo-

sion in the range of data available to those interested in decision making. This has caused something

of a backlash within economics against the use of non-standard data in general and neuroscientific

data in particular. In the impassioned defence of “Mindless Economics”, Gul and Pesendorfer [2008]

claim that non-choice data cannot be used as evidence for or against economic models, as such models

are not designed to explain such observations . By design, our axiomatic approach is immune to such

criticisms as it produces models which formally characterize both choice and non-choice data. In a

separate sequence of papers, we apply the same approach to a data set which contains information on

how choices change over time [Caplin and Dean, 2007; Caplin, Dean and Martin, 2008]. We show how

this expanded data set can give insight into the process of information search and choice.

Ideally, an expanded conception of the reach of the axiomatic methodology will not only open

new directions for neuroeconomic research, but will also connect the discipline more firmly with other

advances in the understanding of the process of choice, and the behaviors that result.
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Figure 1 

 
: Estimated signals generated from simulations from the experiment in Li et al [2005]: 

Taking the experimental design reported in this paper, we simulate an experimental run, 
and calculate the output of various transforms of the resulting sequence of rewards. The 
graph shows the path of reward itself, a reward prediction error signal calculated from a 

reinforcement learning model and a reward prediction error signal calculated with a 
least-squares model of learning. 
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Figure 2 
 

A violation of  A1: when received from lottery p, prize 1 leads to higher dopamine release than 
does prize 2 indicating that prize 1 has higher experienced reward. This order is reversed when 
the prizes are realized from lottery p’, suggesting prize 2 has higher experienced reward. Thus a 

DRPE representation is impossible. 
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Figure 3 
 



A violation of A2: Looking at prize 1, more dopamine is released when this prize is obtained 
from p’ than when obtained from p, suggesting that p has a higher predicted reward than p’. 

The reverse is true for prize2, making a DRPE representation impossible 
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Figure 4 
 

A violation of A3: the dopamine released when prize 1 is obtained from its sure thing lottery is 
higher that that when prize 2 is obtained from its sure thing lottery. 

 


