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  Preface 

 This is the  fi rst international handbook on the topic of metacognition and 
learning technologies. We are proud to have been invited by Springer to 
coedit such an important two-volume international handbook. The handbook 
represents the best cutting-edge interdisciplinary research from leading schol-
ars across the globe. The ubiquity and widespread use of learning technolo-
gies across various settings (e.g., classrooms, informal settings, and research 
laboratories) necessitate a theoretically guided and empirical basis for their 
use for learning and instruction. It has become clear in recent years that learn-
ers’ self-regulatory and metacognitive processes are a key in fl uence on their 
learning outcomes with computer-based learning environments. A deep 
understanding of the relations between self-regulation, metacognition, the 
design of learning environment, and learning outcomes is therefore highly 
desirable from both a scienti fi c and a practical perspective. This fundamental 
requirement has led dozens of interdisciplinary researchers to focus on under-
standing, measuring, supporting, and fostering metacognition and self- 
regulated learning in individual and collaborative groups. As such, the timely 
publication of this handbook is critical since it is the  fi rst to document the 
most in fl uential interdisciplinary research on the topic from researchers in the 
 fi elds of educational psychology, learning sciences, computing sciences, 
arti fi cial intelligence (AI), cognitive psychology, human–computer  interaction 
(HCI), educational technology, educational data mining, engineering, math-
ematics education, science education, teacher education, and literacy. 

 We hope that the handbook will be viewed as a standard of scholarship for 
conceptual, theoretical, empirical, and applied research in the several areas 
related to learning technologies and metacognition. This handbook is targeted 
as a resource; as such it should appeal to a broad interdisciplinary audience, 
including researchers, professors, graduate and upper-level undergraduate 
students, instructional designers, curriculum developers, teachers, and any-
one else interested in learning about learning technologies and metacogni-
tion. Our handbook can be used as the primary textbook for a graduate-level 
course in metacognition and learning technologies. It can also be used as a 
supplement for graduate courses on cognition, metacognition, learning, learn-
ing sciences, theories of learning and instruction, human–computer interac-
tion, arti fi cial intelligence (AI) in education, educational technology, and 
measuring complex cognitive, metacognitive, motivational, and affective pro-
cesses prior to, during, and following learning and problem solving. 



vi Preface

 The  International Handbook of Metacognition and Learning Technologies  
has 46 chapters thematically structured across seven sections: Models and 
Components of Metacognition, Assessing and Modeling Metacognitive 
Knowledge and Skills, Scaffolding Metacognition and Learning with 
Hypermedia and Hypertext, Intelligent Tutoring Systems and Tutorial 
Dialogue Systems, Multi-Agent Systems to Measure and Foster Metacognition 
and Self-Regulated Learning, Individual and Collaborative Learning in 
Classroom Settings, and Motivation and Affect: Key Processes in 
Metacognition and Self-Regulated Learning. Each section contains a varying 
number of chapters, ranging from four to nine, written by leading scholars in 
each topic area. The difference in the number of chapters across each section 
is representative of the focus of research in the area of metacognition and 
learning technologies. For example, there are nine chapters in the section on 
scaffolding metacognition and learning with hypermedia and hypertext 
because this area has traditionally been a dominant area of research. By con-
trast, there are only  fi ve chapters in the motivation and affect section because 
this area of research has been emerging more recently; it is our opinion that it 
stands to contribute immensely to our understanding of the role of metacog-
nition and learning technologies. 

 Our greatest challenge was assembling the  fi nest collection of contributors 
to the handbook. We as editors are extremely impressed with the quality and 
diversity of the chapters that are collected in this handbook. It is our profound 
hope that the readers of this handbook will  fi nd the chapters as stimulating 
and gratifying as we found them when assembling the handbook. Happy 
reading! Please don’t forget to monitor as you read.   

Montreal, QC, Canada Roger Azevedo
Pittsburg, PA, USA Vincent Aleven
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  Abstract 

 This international handbook is the fi rst compendium focused specifi cally 
on cutting-edge interdisciplinary research on metacognition and learning 
technologies. It presents current interdisciplinary research from the cogni-
tive, educational, and computational sciences on learning with educational 
technologies. The topic is of key importance to researchers and educators 
because there is a wealth of empirical data indicating that learners of all 
ages have diffi culty learning about complex topics in areas such as science 
and math. A major challenge for learners lies in monitoring and controlling 
key cognitive and metacognitive processes during learning. To synthesize 
current research, all handbook authors were asked to address the following 
in their individual chapters: (1) describe the context in which a particular 
learning technology is used to support or foster learners’ metacognition 
and self-regulated learning, (2) explain the conceptual and theoretical 
framework of cognition and metacognition, (3) provide evidence regarding 
the system’s effectiveness in detecting, modeling, tracking, and fostering 
learners’ metacognitive and self-regulatory behaviors, (4) discuss design 
implications for metacognitive tools to support metacognition and SRL, 
and (5) critically examine theoretical, methodological, analytical, and 
instructional challenges when using learning technologies for metacogni-
tion and SRL. The handbook is divided into fi ve sections: (1) models and 
components of metacognition, (2) assessment and modeling metacognitive 
knowledge and skills, (3) scaffolding metacognition and learning with 
hypermedia and hypertext, (4) ITSs and dialogue systems, and (5) multi-
agent systems to measure and foster metacognition and SRL.      

     V.   Aleven  
     Human-Computer Interaction Institute ,  Carnegie Mellon 
University, 5000 Forbes Ave ,   Pittsburgh ,  PA   15213 ,  USA    
 e-mail:  aleven@cs.cmu.edu   



2 R. Azevedo and V. Aleven

 This international handbook presents cutting-
edge interdisciplinary research on metacognition 
and learning technologies within speci fi c tasks 
and learning contexts. Current psychological and 
educational research on learning with advanced 
technologies provides a wealth of empirical data, 
indicating that learners of all ages have dif fi culty 
learning about complex topics in areas such as 
science and math. Learning with advanced tech-
nologies requires students to analyze the learning 
situation, set meaningful learning goals, and 
determine which strategies to use. During learn-
ing, students need to assess whether the strategies 
are effective in meeting the learning goal while 
they evaluate their emerging understanding of the 
topic and continuously determine whether any 
particular learning  strategy is effective for a given 
learning goal. In addition, they need to modify 
their plans, goals, strategies, and effort in relation 
to internal conditions (e.g., cognitive standards) 
and contextual conditions (e.g., scaffolding from 
a human tutor) while using a particular learning 
technology. Further, depending on the learning 
task, they need to re fl ect on their learning. 
Collectively, these processes involve metacogni-
tive monitoring and  control, and are sometimes 
also called self- regulated learning (SRL). 

 Traditionally, researchers have used or devel-
oped their own discipline-speci fi c frameworks, 
models, and theories to account for the various 
metacognitive and self-regulatory processes used 
by humans while using learning technologies to 
comprehend complex materials. Recently, several 
researchers have extended these theories and mod-
els by advancing models of metacognition and 
SRL that describe the in fl uence of mediating pro-
cesses related to students’ learning of these com-
plex topics and domains. These new models have 
been advanced to account for the various  phases  
(e.g., planning, metacognitive  monitoring, strat-
egy use, and re fl ection) and  areas  (e.g., cognitive, 
affect/motivation, behavior, and context) of learn-
ing. However, these emerging  frameworks pose 
signi fi cant conceptual, theoretical, empirical, and 
educational challenges for understanding students’ 
learning with advanced learning technologies. 

 A large variety of learning technologies are 
becoming widespread at a very rapid pace, such as 

distributed online or hybrid courses, open online 
repositories of educational materials, hypermedia 
environments, games, simulations, virtual worlds, 
intelligent tutoring systems (ITSs), tutorial dia-
logue systems, electronic portfolios, and peer 
review systems. The list goes on and on. As a 
practical matter, the better we understand how 
learners learn with these technologies, and what 
challenges they encounter, the more likely it is 
that instructional designers and developers of 
technology-enhanced learning will create learn-
ing environments that bene fi t learners and help 
them learn better, instead of being just a cheaper 
delivery vehicle for “old” instructional methods. 
A    particularly enticing perspective is that these 
learning environments will not only help learners 
acquire deep conceptual knowledge of complex 
topics, or robust cognitive skill, but will also help 
them become better learners across domains by 
allowing them to acquire, internalize, share (with 
other human and nonhuman agents), and practice 
key metacognitive and self-regulatory skills. 

 The study of self-regulation and metacogni-
tion in computer-based learning environments 
(CBLEs) is timely and important, for a number 
of reasons. First, it is becoming increasingly 
clear that the way learners monitor and regulate 
their learning in CBLEs is a major in fl uence on 
their learning outcomes. At the same time, 
CBLEs can be very taxing in terms of the amount 
of self-regulation that they require. It is impor-
tant, therefore, that these environments are 
designed with a good understanding of the chal-
lenges that learners face. It is good to see 
described in this handbook many CBLEs that are 
designed to scaffold aspects of SRL (e.g., meta-
cognitive knowledge versus metacognitive 
skills). Even better, many systems are designed 
to foster important self-regulatory or metacogni-
tive skills and we are beginning to see systems 
that assess and adapt to learners’ SRL and 
 metacognition so as to help them become more 
effective learners. 

 CBLEs are excellent platforms to study meta-
cognition and self-regulation for a number of 
methodological and practical reasons. First, they 
offer unprecedented opportunities for  fi ne-
grained data gathering at a large scale with very 
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frequent “sampling” (i.e., multiple data points in 
a single minute) over longer periods of time. 
Often, systems can gather data in an unobtrusive 
manner, which has many practical advantages. 
This trend toward unobtrusive, automated data 
gathering and analysis of log data from systems 
is very compatible with the recent methodologi-
cal emphasis on trace-based methodologies for 
studying SRL. It is also very compatible with the 
recent theoretical emphasis on event-based 
approaches and models of SRL. This is not to say 
that meaningful analysis of trace data or log data 
from CBLEs to study SRL is straightforward. 
There are many challenges due to the inherent 
uncertainty in any process that infers unobserv-
able mental processes from behavioral data. 
Adding to this fundamental challenge, there is a 
growing trend toward using interdisciplinary 
research methods and analytical techniques with 
multichannel data (e.g., log  fi les, eye tracking, 
physiological measures) to capture the complex 
nature of SRL and metacognitive processes. 
Nonetheless, interesting progress is being made, 
and it is good to see connections between SRL 
research and the burgeoning  fi eld of educational 
data mining. 

 In addition to these methodological reasons, 
CBLEs are also an attractive platform for study-
ing SRL when viewed from a practical perspec-
tive. There is great natural variety in the types of 
self-regulatory processes that learners may 
employ in these environments. Therefore, they 
offer researchers the opportunity to observe and 
study these processes. As a research strategy, 
researchers studying SRL or metacognition can 
vary the design of the environments in order to 
study the in fl uence of particular strategies. For 
example, researchers may vary the amount of 
learner control in an environment as a way of 
making certain metacognitive monitoring and 
control strategies more likely or less likely to 
occur. They may then observe the frequency of 
these strategies and its relation with learning out-
comes. This approach to research may yield 
interesting insights into how system design, self-
regulation, and learning outcomes are related. 
However, it is important to note that data on SRL 
and metacognitive processes must be analyzed 

vis-à-vis the context in which they are collected 
and analyzed. 

 The current state of research and educational 
applications of metacognition and learning tech-
nologies poses several challenges that are 
addressed in this handbook.  Theoretically , we 
document the assumptions and complexity of 
various models, frameworks, and theories 
of metacognition and how they relate to our 
understanding of learning with technologies. 
This is a critical step in understanding how dif-
ferent  fi elds conceptualize metacognition, the 
speci fi city and granularity of these models, the 
accuracy with which these models can be used 
to predict learning, and the relation between 
metacognition and other key learning processes 
(e.g., cognition, motivation, and affect). 
 Empirically , we summarize the different types 
of data that researchers collect when they seek 
to understand the nature of metacognitive pro-
cesses used during learning with advanced tech-
nologies. The foci will be on the methods used 
to collect, measure, and interpret data on meta-
cognition and learning technologies. This is a 
critical aspect of the handbook since the inclu-
sion of data from different disciplines will allow 
researchers to critically examine how various 
methods and analytical approaches can be used 
to understand the complex nature and dynamics 
of metacognitive knowledge and regulatory 
strategies used during learning with technology. 
 Methodologically , this handbook also addresses 
how the use of educational technologies enables 
novel ways of studying metacognition, for 
example it makes possible a dramatic shift 
toward capturing, storing, analyzing, and mak-
ing inferences based on highly detailed behav-
ioral data. The availability of large stores of data 
also brings with it the challenge of analyzing the 
data; as such the handbook also contains chap-
ters on novel data analysis techniques. Likewise, 
novel techniques have been developed and are 
described for analyzing the metacognitive data 
stream in a moment-by-moment fashion in order 
for the system to react adaptively to individual 
students’ metacognition.  Educationally , this 
handbook serves as a repository of theoretically 
driven and empirically based examples of 
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 effective ways that learning technologies can be 
used to enhance learning for students of all ages 
and in various tasks and domains. These exam-
ples can be used by professionals in science and 
math education, classroom teachers, industry, 
etc. This timely volume will present innovative 
interdisciplinary research and stands to contrib-
ute to numerous  fi elds and areas of research and 
instruction. 

   Brief Overview of Chapters in Each 
Section 

 The two-volume international handbook contains 
46 chapters contributed by an international group 
of leading researchers. We organized the chapters 
thematically into seven different sections. 

 To ensure uniformity across chapters, we 
asked each contributing author or group of 
authors to address (as much as possible) the fol-
lowing questions found below.
    1.    Provide an overview of the context in which a 

particular learning technology is used to study 
and foster students’ metacognitive or SRL. 
This should include a brief description of the 
type of learning technology used (e.g., hyper-
media, multimedia, ITS, microworld, hybrid 
system), the level (e.g., developmental, expert) 
of the target audience, and the domain or topic 
being addressed. Describe how the features of 
the learning technology have been designed to 
study and support metacognitive processing 
and SRL (e.g., adaptive help-seeking behav-
ior, explicit scaffolding techniques, question-
ing techniques, etc.), and their individual and 
combined role in supporting students’ learn-
ing of the task/topic/domain.  

    2.    Provide an overview of the metacognitive (or 
SRL) theoretical/conceptual framework and 
the underlying assumptions. This should 
include the model or framework assumptions, 
and an explanation of how the particular the-
ory/model addresses students’ metacognitive 
SRL processes (e.g., which speci fi c phases 
and areas are being targeted).  

    3.    Describe how effective their existing learning 
technology is in detecting, tracing, modeling, 

and fostering learners’ metacognitive and self-
regulatory behaviors, by summarizing their 
empirical  fi ndings. This should emphasize the 
nature of the measurement tools and analyti-
cal techniques used in the research.  

    4.    Discuss the implications for the design of 
metacognitive tools to support metacognition 
and learning. Which of these components or 
aspects of metacognition and SRL can and 
should be modeled and why?  

    5.    Examine the theoretical, methodological, 
 analytical, and instructional challenges. For 
example, discuss limitations of current 
 methodologies, theoretical models, analytical 
methods and assumptions, etc.     
 The  fi rst section focuses on  models and compo-

nents of metacognition . As such, we have  fi ve 
chapters that focus on a diverse set of models and 
components. A common theme in these chapters is 
the design and evaluation of speci fi c instructional 
interventions that are grounded in theoretical work 
focused on particular models of metacognition, 
often including monitoring. Thus, in this work, 
theoretical development and practical application 
are closely intertwined, which has many advan-
tages. In fact, close ties (and bidirectional in fl uence) 
between theory and practical applications are found 
in much of the work reported in this handbook. 

 The chapter by Grif fi n, Wiley, and Salas 
explains an empirically grounded and detailed 
theoretical framework for understanding the dis-
tinction between metacognitive knowledge and 
metacognitive monitoring. Particular emphasis is 
placed on the importance of improving the rela-
tive accuracy of metacognitive monitoring skills; 
typical instruction in study strategies may not be 
suf fi cient to improve monitoring. The chapter by 
Kramarski and Michalsky describes the results of 
eight controlled experimentations examining dif-
ferent conditions for implementation of the 
IMPROVE self-questioning prompts in Web-
based learning environments (Web-LEs) from 
two perspectives,  fi rst for students’ learning in 
the classroom, and second for preservice teach-
ers’ learning during their professional prepara-
tion. The IMPROVE method aims to support key 
aspects of self-regulation targeting learning pro-
cesses. By contrast the chapter by Pieschl, Stahl, 
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and Bromme raises two important issues regard-
ing the metacognitive self-regulation of learning 
with technologies. First, adaptation to the exter-
nal context is a core component of SRL. Second, 
learner characteristics play an important role in 
SRL and adaptation. As such, their empirical 
work emphasizes epistemic beliefs as an exem-
plary learner characteristic and they demonstrate 
the importance of this learner characteristic in 
terms of the deployment of various cognitive, 
metacognitive self-regulatory processes. Rawson 
and Dunlosky provide an overview of the 
retrieval-monitoring-feedback (RMF) technique, 
a learning technology designed to promote both 
durable and ef fi cient student learning of key con-
cepts from course material. This is a carefully 
designed technique that involves core concepts 
from cognitive psychology and metacomprehen-
sion research. The RMF program uses the stu-
dent’s monitoring judgments to schedule 
subsequent practice trials for each item. The tech-
nique has shown to yield relatively impressive 
levels of long-term retention of key concepts and 
it can be used to support learning for materials 
from many different topic domains and promises 
to bene fi t a wide range of learners. Lastly, the 
chapter by N. Schwartz and colleagues takes the 
position that learning and thinking are synergistic 
actions of the way people develop knowledge to 
adapt to the world. As such, they propose a con-
ceptualization of metacognition as a closed-loop 
model of biased competition by proposing that 
the actions are collateral cognitive operations 
sharing a unitary outcome of performance, with 
metacognition functioning as an integral operator 
in the actions. They propose a model from evi-
dence originating in neuroscience and cognitive 
psychology to show that metacognitive monitor-
ing and control are reciprocal functions of the 
same neurologic processes that excite and inhibit, 
in a recursive fashion, the regions of the brain 
responsible for two types of activities involved in 
learning. These are activities involved in process-
ing information relative to the goals of a task and 
other activities involved in processing the origi-
nal activities deployed to seek goal attainment. 
They conclude their chapter by explaining how 
the model explains the results of research investi-

gating the effects of metacognition on perfor-
mance in CBLEs. 

 The  assessment and modeling metacognitive 

knowledge and skills  is the focus of the second 
section of the handbook, which contains  fi ve 
chapters. All chapters describe innovative 
assessment methods that can be used in con-
junction with CBLEs; some of these methods 
are also applicable in other types of learning 
environments (i.e., without computers), whereas 
 others depend critically on the automated 
 logging that CBLEs provide. Interestingly, most 
work in this section is grounded in SRL or meta-
cognitive theory. As is typical of all sections in 
the handbook, this section highlights a range of 
theoretical and methodological perspectives, as 
well as different types of CBLEs. Interestingly, 
the section also highlights the use of a range of 
different types of data in the study of SRL. Many 
projects featured in this section created auto-
mated methods for assessment, which in the 
future can be used to make CBLEs adapt to indi-
vidual learners. 

 This section starts with Baker and colleagues’ 
chapter on why students “game the system,” a 
malaptive self-regulatory strategy, in which learn-
ers try to circumvent the hard work of learning, 
somewhat ironically by taking advantage of fea-
tures of the system that aim to support learning 
(e.g., using hints to get answers without under-
standing). This work leverages machine-learned 
models of student gaming, termed “detectors,” 
which can infer student gaming from students’ 
interaction with educational software recorded in 
log  fi les. These detectors are developed using a 
combination of human observation and annota-
tion, and educational data mining. They applied 
the detectors to large data sets and analyzed the 
detectors’ predictions. They used the detectors to 
discover and study the factors associated with 
gaming behavior, which can then be remedied 
through adaptive scaffolding. The chapter by 
Greene and colleagues focuses on a pervasive 
issue that shows that the lack of instructional scaf-
folding and high degree of user control inherent to 
most hypermedia-learning environments (HLEs) 
make them dif fi cult learning environments, espe-
cially for learners who lack the ability to 
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 appropriately self-regulate their learning. In order 
to address this issue, they introduce a two-tiered 
(i.e., the micro and macro level) approach to ana-
lyzing SRL data derived from think-aloud proto-
cols. This approach turns out to be informative in 
terms of the domain-, task-speci fi c self-regulatory 
processes that should be scaffolded in particular 
HLEs. They also report  fi ndings from a number of 
their research studies that illustrate how analyzing 
data at both tiers results in a comprehensive 
 understanding of how learners self-regulate in 
HLEs, and how the nature and quality of that self-
regulation interact with internal and external con-
ditions. Opfermann and colleagues’ chapter also 
focuses on the bene fi ts of hypermedia and require-
ments of hypermedia environments by presenting 
and detailing about how theories and models of 
SRL can serve as a framework for their research 
on the effectiveness of HLEs. In particular, they 
focus on multilevel componential and theoretical 
approaches, and analyses of cognitive, metacog-
nitive, learner characteristics and cognitive load 
interact during learning with HLEs. The chapter 
by van Gog and Jarodzka discusses the use of eye 
tracking to assess cognitive and metacognitive 
processes and cognitive load in CBLEs. They dis-
cuss the bene fi ts and limitations of eye tracking 
for studying such processes during learning and 
problem solving. In addition, they also provide 
examples of how eye tracking can be used to 
improve the design of instruction with CBLEs 
and discuss opportunities and challenges provided 
by eye-tracking technology. Finally, Veenman’s 
chapter ends this section by emphasizing how 
metacognitive skills are considered to be an orga-
nized set of metacognitive self-instructions for the 
monitoring of and control over cognitive activity. 
These self-instructions can be represented as a 
production system of condition-action rules. He 
discusses how in computerized learning tasks, 
online traces of learner activities can be unobtru-
sively stored in log  fi les. He also emphasizes the 
need to capture the dynamic change in metacogni-
tive processes over time, and how progressive pat-
terns of metacognitive activity can be identi fi ed in 
logged traces through time-series analysis. 

 The third section focuses on  scaffolding meta-

cognition and learning with hypermedia and 

hypertext . The nine chapters presented in this 
section highlight the widespread focus placed on 
the use of nonlinear learning systems by several 
researchers, of which hypertext and hypermedia 
are prime examples. In these environments, 
 learners typically study a complex web of related 
and challenging concepts. These environments 
lend themselves well to the study of SRL and 
metacognition, as learners working in these envi-
ronments face a challenging self-regulation prob-
lem and exhibit a wide range of self-regulatory 
 processes. At the same time, these environments 
are known to be challenging to learners due to the 
open-endedness and complexity in both the 
 targeted learning materials and the learning envi-
ronment itself. A common theme in this section 
is therefore the design and evaluation of various 
methods to scaffold learners working in complex, 
nonlinear learning environments. The nine chap-
ters focus on a diverse set of systems and types of 
scaffolding. As is the case in other sections of the 
handbook, the work presented in this section 
has a strong grounding in theories of SRL and 
metacognition. 

 The  fi rst chapter, by Bannert and Mengelkamp, 
provides evidence and discusses appropriate scaf-
folding (e.g., re fl ection prompts, metacognitive 
prompts, training and metacognitive prompts) for 
metacognitive re fl ection when learning with 
modern CBLEs. Speci fi cally, it focuses on 
prompting metacognitive and SRL skills during 
hypermedia learning. They end their chapter by 
proposing implications for the design of meta-
cognitive support to improve hypermedia learn-
ing. The chapter by Clarebout and colleagues 
discusses the relationship between metacognition 
and the use of tools. Being able to determine 
when the use of a tool would be bene fi cial for 
one’s learning is seen as a metacognitive skill. 
Different assumptions are made with respect to 
this relationship between metacognitive knowl-
edge (including instructional conceptions) and 
tool usage. They report on a series of studies in 
which different instruments were used to mea-
sure metacognitive knowledge and metacognitive 
skills to provide empirical underpinning for these 
assumptions. Dabbagh and Kitsantas’ chapter 
reviews research that examined whether tools 
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and features of learning management systems 
(LMSs), referred to in this research as Web-based 
pedagogical tools (WBPT), can be used to sup-
port and promote speci fi c processes of student 
SRL, such as goal setting, help seeking, and self-
monitoring, in online and distributed learning 
contexts. Five categories of WBPT are described, 
including administrative tools, content creation 
and delivery tools, collaborative and communi-
cation tools, learning tools, and assessment tools. 
In addition, they present  fi ndings from several 
studies and demonstrate how WBPT can be used 
to support a number of self-regulatory processes, 
and that college instructors and faculty can use 
WBPT to design effective learning tasks that pro-
mote student SRL. Ge’s chapter presents a Web-
based, database-driven cognitive support system 
for scaffolding self-regulation in the process of 
ill-structured problem solving. Of particular 
interest are the mechanisms of question prompts, 
expert view, and peer review in supporting self-
monitoring, self-regulation, and self-re fl ection 
during ill-structured problem solving. She sum-
marizes  fi ndings from several empirical studies 
on the effects of various support mechanisms 
conducted in several different knowledge domains 
(e.g., instructional design, education, and phar-
macy). Her  fi ndings show that the cognitive sup-
port system has a positive in fl uence on 
self-monitoring and self-regulation, which subse-
quently facilitates ill-structured problem-solving 
processes. The chapter by Lajoie and colleagues 
focuses on medical students’ metacognitive and 
self-regulatory behaviors during medical diagno-
sis using BioWorld, a technology-rich learning 
environment. The system offers an authentic 
problem-based environment where students solve 
clinical cases and receive expert feedback. Their 
team focuses on the evaluation of key system fea-
tures (e.g., the evidence table and visualization 
maps) to determine whether they promote meta-
cognitive monitoring and evaluation. Learning 
outcomes, based on novice/expert comparisons, 
are compared to other key measures of medical 
reasoning and problem solving (e.g., diagnostic 
accuracy, con fi dence, and case summaries). They 
present guidelines to foster key metacognitive 
and self-regulatory processes in medical problem-

solving tasks. Narciss and colleagues’ chapter 
summarizes the rationale and  fi ndings of several 
studies conducted by her team on rich open-
ended Web-LEs as learning technology in higher 
education. Their Web-LEs include a combination 
of scaffolds to support cognitive and metacogni-
tive learning activities with university students 
and across various topics (e.g., introductory psy-
chology). They close their chapter by discussing 
the limitations, challenges, and implications of 
using log- fi le data for investigating SRL with 
rich Web-LEs. The chapter by Puntambekar and 
colleagues emphasizes the dif fi culties experi-
enced by learners when self-regulating their 
learning in order to make navigation decisions 
that align with their goals with hypertext environ-
ments. This chapter presents their extensive work 
in helping students learn from hypertext using the 
CoMPASS hypertext system in middle school 
science classes in physics. The system detects 
students’ self-regulated behavior with log  fi les. 
The logs are used to analyze student navigation 
behavior and create clusters of navigation pat-
terns. In turn, these patterns are used to inform an 
algorithm that provides adaptive real-time navi-
gation prompts in order to scaffold metacognition 
and SRL. Venkatesh and colleagues’ chapter 
explores learner metacognition and self- regulation 
in information retrieval environments equipped 
with a powerful indexing technology called 
Topic Maps. Their mixed-method studies 
describe academic self-regulatory processes 
associated with graduate learners’ understand-
ings of ill-structured academic writing tasks and 
attempt to relate them to learners’ metacogni-
tive ability to judge their own performance on 
iterations of these writing tasks. Their  fi ndings 
are critical in highlighting the novel intra- sample 
statistical analyses used to uncover relationships 
between academic performance, metacognition, 
and task understanding. The last chapter in this 
section is by Winne and Hadwin and focuses on 
reviewing their model of SRL and identifying 
three obstacles learners face when they strive to 
effectively self-regulate learning autonomously. 
As such, they provide an overview of the nStudy 
software system, a Web application that offers 
learners a wide array of tools for identifying and 
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operating on information they study. The system 
is designed to be a “laboratory” for learners and 
researchers alike to explore learning skills, 
metacognition, and SRL as researchers collect 
rich logs of  fi ne-grained, time-stamped trace 
data that re fl ect the cognitive and metacognitive 
events in SRL. 

  ITSs and dialogue systems  are the focus of the 
fourth section of the handbook. Whereas hyper-
text and hypermedia systems (featured in the 
previous section) focus primarily on helping 
learners study and understand a complex set of 
interrelated concepts, ITSs typically focus on 
“learning by doing” or problem-solving practice. 
Dialogue systems are systems that interact with 
learners in natural language (e.g., English), in 
ways strongly reminiscent of human tutors. 
Typically, these dialogues revolve around a task 
to be solved that requires strong conceptual 
knowledge. Learning with ITSs and dialogue 
systems tends to involve a different range of self-
regulatory and metacognitive processes, than 
those reported in the chapters in the previous sec-
tion, although there is substantial overlap. The 
type of scaffolding offered also differs. The seven 
chapters presented in this fourth section present a 
variety of intelligent systems designed to mea-
sure, foster, and support various processes related 
to metacognition and SRL across several school 
domains, such as math and science and age 
groups. In addition, a couple of chapters also 
focus on speci fi c metacognitive and SRL pro-
cesses (help seeking and self-explanations), 
learning processes (e.g., use of multiple represen-
tations), and system features (e.g., open learner 
models) that can foster the development of meta-
cognition and SRL. As in other sections, there is 
great variety in the systems studied and the theo-
retical perspectives taken. A trend that can be 
 discerned is that these types of systems tend to 
focus on particular metacognitive strategies 
within larger theoretical frameworks. 

 The  fi rst chapter by Aleven focuses on help-
seeking behavior of students during tutored 
problem solving with an ITS, the Geometry 
Cognitive Tutor. As is typical of ITSs, this sys-
tem provides step-by-step guidance with com-
plex problems, including on-demand help (as 

well as step-by-step feedback). Help-seeking 
behavior is a key metacognitive process that can 
be initiated by learners and ITSs in order to fos-
ter and support problem solving. He discusses 
several key theories, including the ACT-R theory 
of cognition and learning, the Knowledge-
Learning-Instruction theoretical framework 
focused on learning from instruction, SRL theo-
ries, and educational psychology theories of help 
seeking. As a  fi rst step toward theoretical inte-
gration, he reviews his work and that of his col-
leagues on rule-based modeling of help seeking, 
which integrates cognitive and metacognitive 
aspects within a single modeling framework. 
The rule-based model has been used to provide 
students with feedback on their help-seeking 
behavior. Beal’s chapter describes and provides 
evidence of how AnimalWatch, an ITS, provides 
students with instruction in algebra readiness 
problem solving, including basic computation, 
fractions, variables and expressions, basic statis-
tics, and simple geometry. Students solve word 
problems that include authentic environmental 
science content. As they do so, they can access a 
range of multimedia resources that provide 
instructional scaffolding, such as video lessons 
and worked examples. The system enhances stu-
dents’ motivation by providing learners with 
choices about what science topic they would like 
to learn about, and when they would like to navi-
gate between different modules in the system. 
She summarizes several classroom evaluation 
studies, which have found positive effects on 
study-speci fi c measures of problem solving. The 
chapter by Bull and Kay emphasizes the role of  
open learner models (OLMs), which allow sys-
tems to maintain a model of the learner’s under-
standing as he or she interacts with an e-learning 
environment, which allows adaptation to the 
learner’s educational needs. An OLM makes the 
machine’s representation of the learner available 
to him or her. Typically, the state of the learner’s 
knowledge (as inferred by the system based on 
the learner’s performance over a series of prob-
lems) is presented in some form, ranging from a 
simple overall mastery score to a detailed dis-
play of how much and what the learner appears 
to know, his or her misconceptions, and progress 
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through a course. This means that an OLM pro-
vides a suitable interface onto the learner model 
for use by the learner and in some cases for oth-
ers who support his or her learning, including 
peers, parents, and teachers. As such, their chap-
ter considers some of the similarities between 
the goals of supporting and encouraging meta-
cognition in ITSs and learning in general, and 
the bene fi ts of opening the learner model to the 
user. Conati’s chapter describes her team’s 
research on providing computer-based support 
for the metacognitive skill of self-explanation. 
The distinguishing element of their work is that 
they aim to provide support for self-explanation 
that is student adaptive (i.e., tailored to the 
speci fi c needs and traits of each individual). She 
demonstrates her approach by illustrating how 
they built such models for two different ITSs: 
one that helps college students self-explain 
worked-out solutions of physics problems, and 
one that supports self-explanation during inter-
action with an interactive simulation for mathe-
matical functions. Interestingly, they were able 
to design a method (not unlike Baker and col-
leagues’ detectors) that automatically detects 
spontaneous, internal self-explanations, which 
are not expressed by the learner by means of 
overt, observable actions in the tutor’s user inter-
face. The chapter by Litman and Forbes-Riley 
focuses on ITSpoke, a dialogue system for quali-
tative physics, which engages students in a spo-
ken natural language dialogue about challenging 
physics concepts. Speci fi cally, their work focused 
on the hypothesis that automatically responding 
to student uncertainty (as detected in the stu-
dent’s speech) over and above correctness is one 
method for increasing both student learning and 
self-monitoring abilities. They tested this hypoth-
esis using spoken data from both wizarded and 
fully automated versions of their tutorial dia-
logue system, where tutor responses to uncertain 
and/or incorrect student answers were manipu-
lated. They present data on several metacogni-
tive metrics that are signi fi cantly correlated with 
student learning. These results suggest that mon-
itoring and responding to student uncertainty 
have the potential to improve students’ cognitive 
and metacognitive abilities. Renkl and col-

leagues’ chapter focuses on the use of multiple 
representations when using learning technolo-
gies. In fact, modern learning technologies (e.g., 
hypermedia systems, ITSs) usually provide 
information in multiple forms, such as text, 
“realistic” pictures, formal graphs of various 
kinds, or algebraic equations in order to foster 
learning. They argue that learners usually make 
 suboptimal use of such multiple external repre-
sentations. In this chapter, they present results 
from a series of experiments with older students 
(senior high school and up) that analyzed the 
effects of two metacognitive intervention proce-
dures (i.e., self-explanation prompts and “instruc-
tion for use”—information on how to use 
multiple representations) that have shown to fos-
ter conceptual understanding and procedural 
skills. The last chapter in this section by Stevens 
and colleagues focuses on how learning trajecto-
ries have been developed for thousands of stu-
dents who solved a series of online chemistry 
problem-solving simulations using quantitative 
measures of the ef fi ciency and the effectiveness 
of their  problem-solving approaches. Their 
analyses showed that the poorer problem solvers, 
as determined by item response theory analysis, 
were modifying their strategic ef fi ciency as rap-
idly as the better students, but did not converge 
on effective outcomes. This trend was also 
observed at the classroom level with the more 
successful classes simultaneously improving 
both their problem-solving ef fi ciency and effec-
tiveness. They present evidence that placing stu-
dents in collaborative groups increased both the 
ef fi ciency and effectiveness of the problem-solv-
ing process, while providing pedagogical text 
messages increased problem-solving effective-
ness, but at the expense of problem solving 
ef fi ciency. 

 The four chapters found in the  fi fth section of 
the handbook focus on  multi-agent systems to 

measure and foster metacognition and SRL . 
Animated pedagogical agents have a relatively 
long history in CBLEs and learning sciences 
research, but have only recently been applied to 
the modeling and scaffolding of self-regulatory 
and metacognitive processes. These agents are 
arguably a way of imbuing systems with 
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 personality, or multiple personalities, in an effort 
to make the interactions with the system take on 
a slightly more social nature, and make them 
more memorable, motivating, and engaging. 
Typically, the agent is visible in the interface 
(sometimes as a “talking head,” sometimes dis-
played “head to toe”) and produces speech out-
put. Typically, the agent takes on the role of a 
tutor, sometimes a tutor specialized in particular 
aspects of learning (e.g., monitoring learners’ 
metacognitive judgements, assessing learners’ 
use of learning strategies, modeling key meta-
cognitive and regulatory skills). Sometimes, the 
pedagogical agent takes on the role of a learning 
companion or of a student to be tutored (teach-
able agents). The social aspects of pedagogical 
agents may make them particularly well suited 
for supporting metacognition and self-regulation, 
as the social processes involved with these agents 
are a way of externalizing covert metacognitive 
and SRL skills for learners. The four chapters in 
this section represent contemporary cutting-edge 
work on the use of animated pedagogical agents 
embedded in hybrid intelligent systems (e.g., 
ITS, games, hypermedia) to detect, track, model, 
and foster middle school, high school, and col-
lege students’ metacognition and SRL. 

 The  fi rst chapter by Azevedo and colleagues 
emphasizes the importance of using multichannel 
trace data to examine the complex roles of cogni-
tive, affective, and metacognitive (CAM) self-
regulatory processes deployed by students during 
learning with multi-agent systems, such as 
MetaTutor. In MetaTutor, four different pedagog-
ical agents are responsible for modeling, track-
ing, and scaffolding key metacognitive and 
regulatory processes and skills used by students 
while they learn about challenging biology top-
ics. They argue and provide extensive evidence 
that tracing these processes as they unfold in real 
time is key to understanding how they contribute 
both individually and together to learning and 
problem solving. By treating SRL as an event, 
they provide empirical evidence from  fi ve differ-
ent kinds of trace data, including concurrent 
think-alouds, eye tracking, note taking and draw-
ing, log  fi les, and facial recognition, to exemplify 
how these diverse sources of data help understand 

the complexity of CAM processes and their rela-
tion to learning. Kinnebrew and colleagues’ 
chapter on Betty’s Brain, a CBLE that helps 
 students learn science by constructing causal 
concept map models, is based on the Learning 
by Teaching paradigm, where the system has 
 students take on the role and responsibilities of 
being the teacher to a virtual student named Betty. 
They provide evidence of classroom studies con-
ducted with elementary school children and dis-
cuss the generation of hidden Markov models 
(HMMs) that capture students’ aggregated behav-
ior patterns, which form the basis for analyzing 
students’ metacognitive strategies in the system. 
They also provide ample evidence on the use of 
sophisticated computational methods to analyze 
SRL behaviors. These methods stand to contrib-
ute to our existing conceptions and framework of 
metacognition and SRL, and are related to the 
work presented in Section 2, on assessing and 
modeling metacognitive knowledge and skills. 
Indeed, the kinds of assessment methods dis-
cussed in Section 2 can (and increasingly, do) 
form the foundation for the pedagogical agents 
discussed in the current section, who in order to 
interact effectively must assess student metacog-
nition. The chapter by Lester and colleagues 
presents their extensive evidence on narrative-
centered learning environments (e.g.,  Crystal 

Island ) that provide engaging, story-centric vir-
tual spaces that afford opportunities for discreetly 
embedding pedagogical guidance for content 
knowledge and problem-solving skill acquisition. 
Students’ abilities to self-regulate learning 
signi fi cantly impacts performance in these envi-
ronments and are critical for academic achieve-
ment and lifelong learning. Their chapter explores 
the relationship between narrative-centered learn-
ing environments and self-regulation for science 
learning. Empirical support from a series of stud-
ies with hundreds of middle school students pro-
vides evidence that narrative-centered learning 
environments are particularly well suited for 
simultaneously promoting learning, engagement, 
and self-regulation. The last chapter by Oppezzo 
and Schwartz emphasizes that producing lasting 
changes to metacognition, or the more encom-
passing construct of SRL, has strong parallels to 
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producing behavior change. As such, they dis-
cuss and illustrate how techniques and theories of 
behavior change can inform the design of 
instruction intended to support the development 
and transfer of SRL. They present a four-stage 
model of behavior change and use it to critique 
their own work on Teachable Agents. They also 
discuss the successes of the Teachable Agents in 
achieving SRL goals and improving learning for 
each stage of the model. 
  Individual and collaborative learning in classroom 

settings  is the theme of the nine chapters in Section 
6 of the handbook. Again, the number of chapters 
in this section re fl ects the interest and empirical 
work in the area of individual and group learning 
with various learning technologies by research 
from various  fi elds. As in other sections, the work 
is often  fi rmly grounded in SRL theory, as well as 
other theoretical frameworks from the learning and 
educational sciences, reading comprehension, lit-
eracy, science education, and complex systems. In 
addition, the work in the current section pays care-
ful attention to practical and theoretical issues that 
come up as technology-based scaffolds for SRL are 
embedded in classroom contexts. Interestingly, we 
see a variety of technologies  represented, ranging 
from electronic portfolios to systems that support 
scienti fi c inquiry and discovery learning to a toolkit 
for modeling biological processes, each with its 
own needs for metacognitive scaffolding. Many of 
these systems have been used in actual classrooms, 
underlining the relevance, to real educational set-
tings and contexts, of the work featured in the cur-
rent handbook. This theme runs throughout the 
handbook: Many chapters in other sections of the 
handbook also feature work carried out in real edu-
cational contexts. 

 The  fi rst chapter by Abrami and colleagues 
describes how they have developed, tested, and 
disseminated to schools an  E lectronic  P ortfolio 
 E ncouraging  A ctive and  R e fl ective  L earning 
(ePEARL). ePEARL is designed to be faithful to 
predominant models of self-regulation, as it scaf-
folds and supports learners and their educators 
from grade one through grade 12 and beyond. 
The system encourages learners to engage in the 
cyclical phases and subphases of forethought, 
performance, and self-re fl ection. In a series of 

studies, they have explored the positive impacts 
of ePEARL on the enhancement of students’ SRL 
skills, their literacy skills, and changes in teach-
ing while simultaneously researching classroom 
implementation  fi delity and teacher professional 
development. Chiu and colleagues view meta-
cognition and cognition as interacting  processes 
that together promote coherent understanding. 
As such, their chapter proposes that the use of the 
knowledge integration pattern to design instruc-
tional scaffolding encourages the interplay 
between these two processes. They present and 
discuss several  fi ndings that indicate that instruc-
tional activities designed using the knowledge 
integration pattern promote student learning from 
dynamic visualizations by helping to overcome 
deceptive clarity. The chapter by Dalton and 
Palincsar describes the empirical and theoretical 
roots of the  Reading to Learn  program of research, 
which was designed to investigate the metacogni-
tion and learning of upper elementary students in 
supportive e-text environments. They present 
their  fi ndings, using various instructional manip-
ulations (e.g., static, interactive, interactive dia-
gram/coaching) designed to provide both 
procedural and conceptual support. Their chapter 
includes a critique on the methods used in the 
intervention studies and a proposal for future 
research. Goel and colleagues’ chapter describes 
the Aquarium Construction Toolkit (ACT) proj-
ect which is an ongoing collaboration among 
learning, cognitive, computing, and biological 
scientists focusing on learning functional models 
of ecosystems in middle school science. The sys-
tem is an interactive learning environment for 
stimulating and scaffolding construction of 
Structure–Behavior–Function (SBF) models to 
reason about classroom aquaria. The authors 
summarize the results from the deployment of 
ACT in several middle school science classrooms 
with several hundred middle school students. 
They found signi fi cant improvements in students’ 
ability to identify the structure, behaviors, and 
functions of classroom aquaria, as well as their 
appropriation of SBF modeling by some middle 
school teachers for modeling other natural sys-
tems. Lastly, they describe SRL in ACT while 
looking ahead and outlining the design of a 
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 metacognitive ACT. The chapter by Molenaar 
and colleagues describes a new method for the 
computerized scaffolding of SRL in CBLEs with 
avatars. The system works with an attention man-
agement system that registers the attentional 
focus of learners with the intention to adjust scaf-
folding to students’ current activities. They pro-
vide evidence that their scaffolding system 
enhances group performance and students’ meta-
cognitive knowledge and that differential effects 
are most likely explained by a combination of 
quantitative and qualitative differences in the 
metacognitive activities triggered by problema-
tizing scaffolds compared with structuring scaf-
folds. Thillmann and colleagues’ chapter presents 
new assessment methods for different aspects of 
metacognition and SRL. They argue that meta-
cognitive knowledge about strategies and meta-
cognitive regulation of strategies are two distinct 
components of metacognition that make different 
demands on their respective assessment method. 
Also, they contend that metacognitive knowledge 
about and metacognitive regulation of strategy 
use should be assessed with regard to the same 
strategies, in order to be able to relate both mea-
sures and to localize speci fi c de fi ciencies. They 
exemplify their arguments using two CBLEs for 
scienti fi c discovery learning by illustrating two 
kinds of assessment methods, including a test 
format that intends to assess metacognitive 
knowledge about scienti fi c discovery strategies 
and log  fi les to assess metacognitive regulation of 
the use of these strategies during SRL with the 
CBLEs. Their results reveal that the relationship 
between metacognitive knowledge and metacog-
nitive regulation of the actual use of the same 
strategy is moderated by current motivation. The 
chapter by van Joolingen and de Jong discusses 
the use of models of inquiry processes, such as 
the Scienti fi c Discovery and Dual Search (SDDS) 
model and the inquiry cycle for the generation of 
support on the regulation of these processes. 
Based on their extensive research, they argue that 
such scaffolding must be adaptive as too much 
scaffolding can actually hinder learning. Further, 
in order to make scaffolding adaptive, the system 
needs to gather information about the learners’ 
task progress. They discuss a few ways of using 

less obtrusive methods for obtaining learner 
information, and present an example of how such 
information can be used to support learners in 
monitoring their progress. Carneiro and Steffens’ 
chapter focuses on the challenges of using digital 
technologies since these technologies offer an 
almost unlimited access to information and a 
wide variety of tools for information processing 
and communication. It has also become clear that 
managing these resources requires a new kind of 
literacy, digital literacy, and that part of this digi-
tal literacy is the capacity to regulate one’s own 
learning. As such, their chapter examines recent 
theoretical approaches to SRL with digital tech-
nologies. They also expand on research and 
implementation policies for technology-enhanced 
learning in Europe and present two examples of 
research on SRL: Taconet, a community of 
European researchers that grew out of a project 
on this topic, and the New Opportunities Initiative 
(NOI), a large-scale program implemented by the 
Portuguese Government to empower low-skilled 
workers in which the use of digital technologies 
and SRL play a vital role. Lastly, the chapter by 
Dettori and Lupi describes the use of audio tech-
nology and metacognition to improve pronuncia-
tion in the learning of a second language (L2). 
They describe a methodological approach to 
guide L2 learners to observe their utterances and 
become aware of their  pronunciation errors, with 
the support of peer collaboration and metacogni-
tive prompts. Identifying pronunciation errors is 
not easy because it requires good self-observa-
tion, evaluation, and re fl ection skills. 

 The last section of the handbook is on  motiva-

tion and affect as key processes in metacognition 

and SRL . While motivation has long been empha-
sized in theories and models of SRL, the  inclusion 
of affect and its interrelations with cognitive, meta-
cognitive, and motivational aspects of self-regula-
tion is more novel. (We do not mean to say that 
affect has been entirely ignored by SRL research-
ers; only that it has been less emphasized than cog-
nitive, metacognitive, and motivational realms.) 
The six chapters presented in this last section of 
the handbook represent some of the best research 
in the areas of motivation and emotions that has 
already had an impact in several  fi elds from 
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 educational psychology to affective computing. 
These chapters represent a growing awareness that 
motivation and emotions are a key and integral 
part of understanding cognitive and metacognitive 
self-regulation. Recent advances in affective com-
puting and CBLEs make this work particularly 
timely. This work is yielding automated methods 
for detecting learners’  affective state as they inter-
act with learning technologies. One theme in the 
chapters reviewed here is on how these detectors 
can lead to useful scaffolds for self-regulation in 
CBLEs, making these environments more adap-
tive to individual learners and ultimately more 
effective. As before, we can point to interesting 
cross-connections with other sections of the hand-
book, for instance, the work on automated assess-
ment of metacognitive and self-regulatory skills 
featured in Section 2. We as editors feel it is imper-
ative that we  continue to conduct interdisciplinary 
research on the role of cognitive, metacognitive, 
motivational, and affective processes prior to, 
 during, and following learning and problem 
 solving with CBLEs. The work featured in this 
handbook  section points the way. 

 The  fi rst chapter is by Bernacki and colleagues 
on overcoming the weaknesses of using self-
report questionnaires to measure motivation by 
proposing to capture motivational states during 
learning and problem solving. They hypothesize 
and illustrate that motivation can change during 
an activity or curricular unit. Therefore, without 
temporally  fi ne-grained assessment (i.e., without 
frequent sampling), dynamic relations between 
motivation, cognitive, and metacognitive pro-
cesses cannot be observed and studied. They 
describe a method for collecting  fi ne-grained 
assessments of motivational variables during 
learning mathematics with ITS and examine their 
association with cognitive and metacognitive 
behaviors. The utility of their method for assess-
ing motivation and use of these assessments to 
test hypotheses of SRL and motivation are dis-
cussed. Burleson’s chapter emphasizes the impor-
tance of understanding the affective state of a 
learner in determining when and how best to pro-
vide appropriate support. He describes an 
Affective Learning Companion built upon an 
Affective Agent Research Platform with the goal 

of discovering when, at various points in the 
problem-solving process, a student encounters 
optimal  fl ow experiences or nonoptimal Stuck 
experiences. Using theories from metacognition 
and motivation, the goal is to help students 
become aware of their emotional states, and to 
develop metacognitive strategies to use this 
awareness to persevere in the face of frustration. 
The  fi ndings focus on gender differences in meta-
affective skills, experiences of several affective 
states, goal orientations, and intrinsic-motivation. 
The chapter by Carr and colleagues describes the 
team’s extensive research with the Ecolab soft-
ware, an interactive learning environment for 
10–11-year-old learners designed to help chil-
dren learn about food chains and food webs. 
Their chapter discusses the results of their recent 
work on achievement goal orientation and help 
seeking within the Ecolab environment. They 
situate the results within the broader landscape of 
previous studies and discuss the evolutionary 
approach they have adopted to design metacogni-
tive learning tools. This methodology has been 
built up over a series of empirical studies with 
the Ecolab software that have demonstrated that 
children who achieved above-average learning 
gains use a high level of system help. Focusing 
speci fi cally on the relationships between young 
learners’ metacognition (e.g., help-seeking 
behavior) and their achievement goal orienta-
tions, they extend their research on metacognitive 
software scaffolding and the in fl uence of goal 
orientation on children’s learning. D’Mello and 
colleagues’ chapter argues that complex learning 
of dif fi cult subject matter with educational tech-
nologies involves a coordination of cognitive, 
metacognitive, and affective processes. Their 
chapter describes several key theories of affect, 
meta-affect, and affect regulation during learning 
followed by a summary of their empirical research 
that focuses on identifying the affective states 
that spontaneously emerge during learning with 
educational technologies, how affect relates to 
learning outcomes, and how affect can be regu-
lated. They provide extensive evidence across a 
large number of studies using a variety of educa-
tional technologies, different learning contexts, a 
number of student populations, and diverse 
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 methodologies to track affect. Lastly, they 
describe and evaluate an affect-sensitive version 
of AutoTutor, a fully automated ITS that detects 
and helps learners regulate their negative affec-
tive states (frustration, boredom, confusion) in 
order to increase engagement, task persistence, 
and learning gains. They conclude by discussing 
future directions of research on affect, meta-
affect, and affect regulation during learning with 
educational technologies. The chapter by Moos 
and Stewart emphasizes the need to extend 
research on SRL and hypermedia to extend 
beyond the use of cognitively based theoretical 
models of SRL. As such, they argue that future 
contributions to this theory to the  fi eld of hyper-
media learning need additional empirical research 
that systematically considers theoretically 
grounded constructs of motivation within SRL. 
The premise of their chapter is that motivation 
offers a potential explanation of individual differ-
ences in how students respond to negative feed-
back loops during hypermedia learning. They 
also highlight methodological and theoretical 
challenges, including the identi fi cation of speci fi c 
motivation constructs (e.g., outcome expecta-
tions, incentives, ef fi cacy expectations, attribu-
tions, and utility) that align with existing SRL 
theoretical frameworks. The last chapter, by 
Vollmeyer and Rheinberg, focuses on their para-
digm using microworlds with their biology-lab 
task. They introduce their cognitive-motivational 
process model which speci fi es variables that help 
to describe SRL. For example, initial motivation 
(probability of success, interest, anxiety, and 
challenge) affects performance through mediat-
ing variables, such as strategies and motivation 
during learning, while metacognition, especially 
planning, could be included as a further mediat-
ing variable. They present their  fi ndings and dis-
cuss which aspects of metacognition could be 
integrated into the model without risking an over-
lap with the construct of motivation. 

 We are deeply impressed with the conceptual, 
theoretical, empirical, and educational work pre-
sented here, including its relevance to educational 
practice, and the promise it holds for future devel-
opments both in research and practice. The seven 
sections found in this handbook represent the 

most impressive cutting-edge work conducted by 
colleagues around the world. The work is innova-
tive and inspirational: Not only do we see areas 
that traditionally have dominated research on 
metacognition and learning technologies, such as 
the extensive work on hypertext and hypermedia 
environments and ITSs and dialogue systems 
(see Sections 3 and 4), but we also see the huge 
promise from other emerging areas represented 
by the chapters on multi-agent systems, and moti-
vation and emotions found in sections  fi ve and 
seven of the handbook. As seen in the  fi rst two 
sections of the handbook, the conceptual and 
theoretical work on models, components, assess-
ment, and modeling of metacognition and SRL 
remains strong. This line of work is very much 
needed, because the emergence of novel learning 
technologies continues to challenge our ability to 
understand how they can potentially impact 
learners. Lastly, the section on individual and 
collaborative learning in classroom settings 
 represents a burgeoning area of research across 
various disciplines using a plethora of theoretical 
frameworks and models. It deals successfully 
with the individual and collaborative nature of 
metacognition and SRL in authentic classroom 
contexts.  

   Future Directions 

 As editors, we are extraordinarily pleased to have 
captured a collection of the most impressive 
interdisciplinary work in the area of metacogni-
tion and learning technologies. Despite the efforts 
represented in this handbook, there is still more 
work to be done. We conclude this introductory 
chapter by highlighting a few speci fi c issues that, 
we believe, necessitate further work in the areas 
of conceptual, theoretical, empirical, method-
ological, analytical, and educational issues. 

 First, there is a great need for theoretical clar-
ity, including better de fi nitions and descriptions 
of the components of metacognition and SRL. 
The challenge lies in the widespread proliferation 
of terms, constructs, mechanisms, and processes 
that are found in the literature. In addition, more 
theoretical work needs to be conducted so that 
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current theoretical frameworks, models, and con-
ceptualizations of metacognition and SRL can 
deal with important issues such as level of 
 granularity, comprehensiveness, descriptiveness, 
dynamic processes and feedback loops, and the 
role of context. For example, some models are too 
abstract or provide high-level descriptions of a 
few key metacognitive processes without specify-
ing how the recursive nature of dynamic metacog-
nitive and SRL processes may impact how a 
learner self-regulates and ultimately learns with 
the learning technology. Such a speci fi cation 
should include a learners’ cognitive architecture, 
learning technology, and other contextual factors. 

 Second, more research is needed to examine 
the complex interactions between cognitive, meta-
cognitive, motivational, and emotional processes. 
The complex interactions amongst these key pro-
cesses are critical in determining their role, 
in fl uence, and impact on one’s ability to monitor 
and regulate during learning with CBLEs. These 
issues are associated with a third issue—one of 
learning and instruction—namely, the fact that 
most models of learning and instruction provide 
very abstract, macro-level descriptions of learn-
ing, which make it dif fi cult for researchers and 
designers to build systems that adequately scaffold 
and foster metacognition and SRL. For example, 
imagine a learner using a hypermedia system to 
develop a deep conceptual understanding of a 
complex physical system. During learning, the 
learner indicates that he or she is not interested in 
the topic, does not value the need to learn about it, 
and has demonstrated low self-ef fi cacy in using 
effective learning strategies. In addition, he or she 
demonstrates an abundance of prolonged negative 
affective states during learning associated with 
confusion and frustration, rarely showing any 
enjoyment during learning. While the motivational 
and affective processes clearly indicate a lack of 
engagement in the task, he or she also has low 
prior knowledge of the domain, cannot seem to set 
relevant goals for the tasks, and repeatedly demon-
strates that he or she is not capable of assessing his 
or her emerging understanding of the most appro-
priate content to use. These learner characteris-
tics (whether transient or more stable) are 
inferred in real time from data collected with 

various sensors, so the question becomes—
“When and how does the system intervene and 
offer scaffolding and feedback?”    We do not know 
the answer to this question yet, because we lack 
theories and models of instruction that provide 
instructional prescriptions to handle the complex 
nature of cognitive, metacognitive, motivational, 
and  affective processes during learning. The sce-
nario provided raises the following questions: 
When does the system intervene, how does the 
system intervene, who or what should intervene 
(e.g., a peer, a teacher, a pedagogical agent, etc.), 
should the system intervene (at all), and what 
should the system offer (e.g., feedback, prompt-
ing, modeling, scaffolding)? If we are to design 
effective systems, general principles and guide-
lines need to be developed that help instructional 
designers (and systems) address these challenging 
questions. 

 Another key area that needs further attention 
is the measurement of metacognitive and self-
regulatory processes. As seen in several chapters 
and sections throughout the handbook, research-
ers are making strides in the measurement of key 
cognitive, metacognitive, motivational, and affec-
tive processes. Measurement of a wide range of 
these processes is crucial as we strive to under-
stand the nature of these processes prior to, dur-
ing, and following learning with CBLEs. We are 
beginning to see the emergence of multi-method, 
multichannel approaches to capture the complex 
nature, deployment, and use of these processes 
during learning. Analytical techniques from edu-
cational mining and machine learning are cur-
rently being used and can contribute in many 
important ways. For example, patterns emerging 
from thousands of data points can be used to 
challenge current conceptions of metacognition 
and SRL. Further, they can provide descriptive 
accounts of adaptive and maladaptive SRL behav-
ior, which are interesting from a theoretical 
 perspective, but can also be used by the system to 
foster metacognition and learning (e.g., by recog-
nizing maladaptive behaviors in real time and 
providing an adequate response). In addition, we 
need to expand our methodologies by using 
 longitudinal studies to capture and understand 
the qualitative and  quantitative changes in the 
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acquisition, internalization, and use of metacog-
nitive and regulatory processes over extended 
periods of time. We also need to continue to build 
and use our learning technologies as both research 
and learning tools. Naturally, the adoption of new 
methods and research designs will necessitate 
new analytical and statistical techniques, since 
current techniques are constantly challenged by 
the nature of the data collected in the area of 
metacognition and learning. For example, use of 
concurrent think-aloud data may be limited when 
data is non-normally distributed. For example, 
based on a learner’s verbosity, such data may 
yield few coded SRL processes and therefore 
violates assumptions of normalcy, thus limiting 
the use of inferential statistics. By contrast, log-
 fi le data is excellent in collecting  fi ne-grained 
temporal data at the millisecond data in an 
 unobtrusive manner. However, this data needs to 

be augmented with other data since  making 
 inferences about the presence of metacognitive 
processes is challenging. Researchers continually 
face the challenge to temporally collect and align 
multichannel theoretically derived data. This data 
needs to be captured, coded, scored, and inter-
preted in real time and post hoc, so we can 
advance the  fi eld by contributing to our theories 
and models, and so we can ultimately improve 
metacognition and self-regulation with learning 
technologies. These are just a few of the critical 
issues that need to be addressed in order to con-
tinue to make progress in our challenging inter-
disciplinary area of research. 

 In sum, we are encouraged by the advance-
ment we (researchers working in the  fi eld of 
metacognition and learning technologies) have 
made thus far and are excited about the work that 
lies ahead of us!       



    Part I 

  Models and Components 
of Metacognition         
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  Abstract 

 This chapter explicates an empirically grounded and detailed theoretical 
framework for understanding the various components of self-regulated 
learning. A key distinction is articulated between metacognitive knowl-
edge and metacognitive monitoring. It is argued that it is the accurate 
monitoring of learning experiences that is critical for effective self-
regulation during learning, and that various accuracy measures for 
judgments of learning differ in how well they assess this construct of 
monitoring accuracy. Particular emphasis is placed on the importance of 
improving the relative accuracy of metacognitive monitoring skills, and 
that typical instruction in study strategies may not be suf fi cient to improve 
monitoring.  The results of studies and manipulations that have resulted 
in superior monitoring accuracy are reviewed, and the implications for 
the development of learning technologies are discussed. A key observa-
tion is that in order to provide the opportunity for the development of 
effective regulatory skills, learning environments need to be careful not 
to deprive students of the opportunity to engage in self-regulation or 
monitoring of their own understanding.      
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   Supporting Effective Self-Regulated 
Learning: The Critical Role 
of Monitoring 

 Imagine that a student has several homework 
assignments to complete in one night including 
reading several passages for biology and a set of 
readings in social studies. The readings for 

biology are on vision, taste, and the auditory 
system. The readings in social studies are a text-
book passage on taxation without representation 
and two essays about the Boston Tea Party, one 
from an American perspective and one from a 
British perspective. For most daily schoolwork, 
students  fi nd themselves in situations such as this 
where they must regulate and monitor their own 
study behaviors. They must make important deci-
sions such as when to read, what to read, how to 
read, and how much to read. Critical to this pro-
cess is the ability to discriminate which readings 
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have been understood well and which have not. 
This requires readers to actively and consciously 
monitor their ongoing learning progress in order 
to compare to a goal state or in relation to their 
progress on other tasks competing for their 
limited time and resources. Only with accurate 
monitoring will a student engage in effective self-
regulated learning (SRL). Given the  importance 
of monitoring to SRL, it is of great interest to  fi nd 
contexts that may improve the monitoring skills 
of students as they learn from text. However, 
pursuit of this goal requires clarity about what 
exactly the phenomenon of monitoring is and how 
it relates to the other components of SRL.  

   Monitoring and Its Place in SRL 

 Within literature on SRL, there are researchers 
who use similar terminology to refer to different 
constructs. This creates some confusion and 
 potentially leads to incorrect inferences about 
what factors, individual differences, contexts, 
manipulations, and interventions in fl uence partic-
ular aspects of SRL. Hacker  (  1998  )  commented 
on two different approaches to “monitoring.” One 
approach, used primarily by cognitive psycholo-
gists, focuses upon learners’ monitoring of ongo-
ing learning via having students make overt 
judgments of their current level of understanding 
(judgments of learning, or JOLs) and comparing 
these to objective measures of the quality of their 
mental representations. The correspondence 
between these subjective and objective measures 
of learning is referred to monitoring accuracy or, 
more speci fi cally, metamemory accuracy when the 
learning goal is memory (usually of word-pairs) 
and metacomprehension accuracy when the learn-
ing goal is comprehension (usually of texts). The 
focus of this research approach is to determine 
which conditions support accurate monitoring. 

 In contrast, another approach, used primarily 
by educational researchers, tends to use terms 
like “comprehension monitoring” more broadly 
to incorporate several kinds of monitoring, such 
as monitoring of goals, use and monitoring of 
strategies, as well as monitoring of learning. This 
approach generally attempts to improve SRL by 

supporting the use of particular learning and 
study strategies and utilizes assessments such as 
self-report scales of strategy knowledge and use, 
rather than focusing on accurate monitoring of 
ongoing learning. 

 The basis for both of these approaches to SRL 
was present in the original notion of metacogni-
tion put forth by Flavell  (  1979  )  30 years ago, and 
both foci are still re fl ected in modern models of 
SRL. Flavell’s original construct of metacogni-
tion was de fi ned as “one’s knowledge of one’s 
own cognitive processes and products or anything 
related to them.” The key components from 
Flavell’s original theory of metacognition are 
depicted in Fig.  2.1 . In Flavell’s framework, meta-
cognitive processes are designed to optimize one’s 
cognitive  actions  in pursuit of learning  goals . 
There are two major factors that determine the 
coordination of actions and goals. The  fi rst is the 
application of preexisting metacognitive  knowl-

edge  about particular tasks, strategies, or a learn-
er’s abilities that can be used to select cognitive 
actions to increase learning. The second are meta-
cognitive reactions to  experiences  of subjective 
internal states that occur as a result of the cogni-
tive actions one executes and that re fl ect how 
learning is progressing. Metacognitive knowledge 
and experiences are distinct. Knowledge in fl uences 
actions that in turn impact learning outcomes and 
can produce subjective experiences. However, as 
depicted by the recursive loop in Fig.  2.1 , it is the 
internal metacognitive  experiences  associated 
with current attempts to learn that learners must 
monitor in order to judge their actual learning 
progress and make online revisions to their cogni-
tive actions (i.e., regulation). Otherwise they will 
be guided only by incomplete and often erroneous 
prior knowledge. Later theories articulated that 
this experience monitoring process occurs at 
another level of awareness, the “meta” level of 
processing, because the subjective experiences 
that are being re fl ected on are the result of the 
cognitive  processes or actions that students engage 
in at the “object” level (Fischer & Mandl,  1984 ; 
Nelson & Narens,  1990 ; for a recent discussion, 
see Grif fi n, Wiley, & Thiede,  2008  ) . Consistent 
with Flavell, this model depicts monitoring as the 
processing of one’s own ongoing cognitive states 
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(i.e., experiences), and regulation as the outcome 
of that processing whereby self-assessments of 
learning progress are used to alter the lower-level 
cognitive processing. Meanwhile, the implemen-
tation of strategies intended to improve learning 
occurs on the “object” level, as it represents a 
direct cognitive action. So while metacognitive 
knowledge contributes to cognitive processing, 
only monitoring of the ongoing learning experi-
ence has the quality of processing information 
about cognitive processes that de fi nes  meta cogni-
tive processing. Figure  2.1  depicts knowledge 
states and processes that do not necessarily entail 
meta-level processing as the solid lines and boxes. 
The dashed lines and ovals entail meta-level pro-
cessing where the learner is processing informa-
tion about their own cognitive states.  

 Similarly, Flavell  (  1979  )  points out a critical 
distinction between  cognitive strategies  that are 
used to increase learning versus  metacognitive 

strategies  that are deliberately used to produce 
experiences that can be monitored to self-assess 
learning progress. Metacognitive strategies are 
essentially self-tests to evaluate learning. 
“Cognitive strategies are invoked to  make  cogni-

tive progress, metacognitive strategies to  monitor  
it” (Flavell, p. 909). Sometimes the entire distinc-
tion between cognitive and metacognitive strategy 
use rests in the learner’s intended purpose for using 
a strategy. The same activity (e.g., asking oneself 
questions at the end of a chapter) could be 
employed as either type of strategy. If it is 
employed to deepen learning, it is a cognitive 
strategy. But if it is employed so that the learner 
can monitor and pay deliberate attention to the 
resulting subjective experiences to assess learning 
progress (such as the ease with which they 
answered the various questions), then it is a meta-
cognitive strategy. 

 The fact that certain strategies direct learners 
to attend to the meta-level experiences resulting 
from self-testing actions is depicted in the center 
of the model as a moderating in fl uence on the 
action-experience relationship. We refer to these 
as  monitoring strategies  to highlight the direct 
monitoring role served by only a subset of strate-
gies, distinct from the object-level cognitive pro-
cessing role of most strategies explored in SRL 
research. Only these experience monitoring strat-
egies are part of the regulatory loop. 

  Fig. 2.1    Components of the self-regulated learning process       
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   In fl uences of Metacognitive 
Knowledge on SRL 

 A common approach to improving SRL is to 
focus upon learners’ awareness and use of study 
strategies. In a review of 201 empirical studies 
published from 2003 to 2007 in the major educa-
tion journals on metacognition and SRL, 
Dinsmore, Alexander, and Loughlin  (  2008  )  
reported that de fi nitions of both constructs typi-
cally employ terms like monitoring and control. 
However, few of the studies actually assessed 
monitoring accuracy. Instead, most studies inves-
tigated awareness or use of study strategies, usu-
ally assessed with self-report measures. 

 Commonly used self-report inventories of 
metacognitive knowledge (Mokhtari & Reichard, 
 2002 ; Pintrich, Wolters, & Baxter,  2000  ) , includ-
ing the Metacognitive Awareness Inventory 
(MAI; Schraw & Dennison,  1994  )  are dominated 
by items that assess general study strategies 
(“I summarize,” “I read instructions carefully,” 
and “I try to break studying down into smaller 
steps”), general self-beliefs (“I am good at 
remembering information”), and beliefs about 
contexts that impact learning (“I learn more when 
I am interested in the topic”). Learners receive 
higher scores when they report always using the 
same normatively preferred strategy, which 
means they are not actually regulating strategy 
use to speci fi c contexts. Most of these scales have 
either no items (Moore, Zabrucky, & Commander, 
 1997  )  or very few items within a much larger 
scale (Mokhtari & Reichard,  2002 ; Pintrich et al., 
 2000  )  that explicitly assess monitoring strategies 
and goals. The MAI is somewhat of an exception 
with a few items designed to assess monitoring 
strategies, such as “I ask myself questions about 
how well I am doing while I am learning 
 something new” and “I ask myself how well I’ve 
accomplished my goals.” However, these items 
are typically analyzed as part of larger subscales 
that tap general information processing and study 
strategies, such as “I periodically review to help 
me understand important relationships” and 
“I summarize what I’ve learned.” In addition, 
these subscales are typically analyzed as compo-
nents of even broader latent constructs such as 

“Regulation of Cognition” which are combina-
tions of many things including pre-task planning 
strategies, such as “I set speci fi c goals before 
I begin a task” (Schraw & Dennison,  1994  ) . 

 Some research has found that learners who 
score higher on these instruments do show supe-
rior text comprehension (Schraw & Dennison, 
 1994  ) . Also, direct instruction in strategic read-
ing has been shown to produce both changes in 
responses to these strategy inventories and 
improved comprehension or learning outcomes 
(Caverly, Nicholson, & Radcliffe,  2004 ; Pressley, 
 2002 ; Zimmerman,  2002  ) . However, some critics 
have questioned whether these strategy invento-
ries re fl ect actual strategy use since these self-
reports have not been veri fi ed against converging 
measures of actual learning behaviors (Cromley 
& Azevedo,  2006  ) . 

 The bottom pathway from left to right in 
Fig.  2.1  represents the direct in fl uence that meta-
cognitive knowledge can have on learning out-
comes by impacting initial strategy selection 
during planning. This can entail generally effec-
tive strategies such as “summarize after reading” 
or context-dependent beliefs like “I learn more 
easily when interested” that interact with other a 
priori factors such knowledge about the task, 
topic, context, and beliefs about learning to deter-
mine strategy selection. In this model, metacog-
nitive knowledge acts as an object-level cognitive 
process that directly impacts learning. This means 
that any observed relation between strategy use 
and learning outcomes can occur completely out-
side the regulatory loop, and the presence of such 
a relation cannot be used to determine whether 
monitoring is accurate or even if experiences are 
being monitored. 

 In fact, strong a priori commitment to a strat-
egy that is generally effective could yield above 
average learning gains while also undermining 
online monitoring and regulation in certain situa-
tions where the strategy is suboptimal, resulting 
in inef fi ciency and costly use of resources. If 
strategy selection is based purely on a priori 
information, there is no opportunity for accurate 
monitoring of ongoing learning to play a role in 
SRL. Further, monitoring of actual learning out-
comes in relation to strategy use is a critical 
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source of information for updating and revising 
strategy knowledge in order to improve the 
ef fi cacy of strategy choice on future learning tri-
als. The exclusive reliance on a priori metacogni-
tive knowledge will stagnate the long-term 
development of more accurate strategy knowl-
edge because feedback from monitored learning 
outcomes is the presumed primary means by 
which errors in strategy knowledge are revised 
(Flavell,  1979 ; Winne & Hadwin,  1998  ) . 

 The fact that many forms of strategy knowl-
edge can have a direct effect on learning or an 
effect on strategy choice only in the planning 
stage is at least implicit in most models of SRL 
(e.g., Hacker,  1998 ; Nelson & Narens,  1990 ; 
Pintrich et al.,  2000  ) . For example, despite the 
highly recursive nature of Winne and Hadwin’s 
 (  1998 , Figure 12.1) SRL model, the arrows of 
in fl uence show that preexisting knowledge of 
tasks and strategies can in fl uence operations, 
cognitive products, and then performance with-
out engaging the “monitoring” and “control” 
components at the heart of the model. This sim-
ply means that even though learners may have 
some awareness of task demands and may match 
this to a known strategy, once this initial plan is 
implemented, its in fl uence on outcomes, prod-
ucts, and comprehension can occur without any 
online experience monitoring or responsive 
regulation. 

 Thus, a key point is that strategies that directly 
improve learning may or may not evoke meta-
cognitive experiences that are useful for accurate 
monitoring. Students who are aware of these 
strategies or who report using them may be more 
effective learners, but these results will necessar-
ily be unable to address whether they are better at 
online monitoring or regulation of their learning. 
Accurate online monitoring is important not only 
for revising strategies that have failed but also 
simply for knowing when the strategy needs to be 
repeated, due perhaps to idiosyncratic in fl uences 
such as a brief distraction that limited its bene fi ts. 
A priori strategy selection does not allow the 
learner to adapt to the numerous idiosyncratic 
contextual factors that foster and hinder compre-
hension processes as they actually occur. 
Judgments of learning that are based only in pre-

learning assumptions are not truly judgments of 
learning and cannot be used to modify and 
improve the initial strategies selected based upon 
those same assumptions.  

   In fl uences of Epistemic Beliefs on SRL 

 Similar issues can be raised about the burgeoning 
literature on learners’  epistemic beliefs  about the 
nature of knowledge and the process of knowing 
(with respect to the certainty, complexity, source, 
and potential revision of ‘true justi fi ed’ knowl-
edge) and its in fl uence on SRL (e.g., see Hofer & 
Sinatra,  2010  ) . Research on  epistemic metacog-

nition  has been shaped by models that construe 
epistemic beliefs as a type of general and abstract 
metacognitive knowledge (e.g., Hofer,  2004 ; 
Kitchener,  1983 ; Kuhn,  1999  ) . However, rather 
than integrating epistemic beliefs into traditional 
models of SRL, this literature has largely 
attempted to construct a parallel model that repur-
poses monitoring as being in the service of “mon-
itoring what [one] believe[s] to be true” and 
“monitoring and judging epistemic claims” for 
their truth status (Hofer,  2004 , pp. 48–49) rather 
than monitoring of learning progress. Similarly, 
evaluative strategies are said to be regulated, such 
as by checking for internal logical inconsisten-
cies in order to evaluate an argument’s validity 
(Richter & Schmid,  2010  )  and generally increas-
ing or decreasing one’s efforts in evaluating a 
claim’s veracity (Hofer,  2004  ) . 

 In contrast to these parallel models of epistemic 
metacognition, Winne and Hadwin  (  1998  )  inte-
grate epistemic beliefs into their more traditional 
SRL model as a component of metacognitive 
knowledge, where these beliefs serve as  cogni-

tive conditions  that can foster use of certain 
 learning strategies. For example, a belief that true 
knowledge is acquired effortlessly may promote 
the use of less effortful strategies. This expands 
upon and attaches an epistemic label to several 
kinds of general and abstract beliefs that Flavell 
 (  1979  )  also incorporated into the original model 
as part of metacognitive knowledge. Due to their 
level of abstraction and generality, epistemic 
beliefs might best be construed as determinants 
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of learning goals that interact with knowledge of 
particular strategies to determine actual strategy 
use and cognitive actions. 

 The model in Fig.  2.1  depicts the effects of 
epistemic beliefs on learning as occurring via ini-
tial strategy selection without any impact on the 
metacognitive monitoring loop. Consistent with 
this suggestion, several recent studies have shown 
effects of epistemic beliefs on both the initial 
selection of more effective strategies (Bromme, 
Pieschl, & Stahl,  2010 ; Stahl, Pieschl, & Bromme, 
 2006  )  and on learning outcomes (e.g., Mason, 
Boldrin, & Ariasi,  2010 ; Muis & Franco,  2010  ) . 
As with the study strategy literature, audiences 
might be misled to infer effects of epistemic 
beliefs on comprehension monitoring by the con-
fusing use of traditional metacognitive terms 
employed in discussions of these  fi ndings. For 
example, Stahl and colleagues  (  2006  )  have 
described the effects of epistemic beliefs on 
learners’ importance ratings of certain strategies 
for certain tasks in terms of superior  monitoring  
and  calibration . Mason et al.  (  2010 , p. 85) have 
inferred superior  self-regulation  from pre-task 
self-reported general strategies. Muis  (  2008  )  has 
discussed  monitoring  effects in reference to 
engaging in behaviors that appear to re fl ect moni-
toring attempts, but these were not analyzed sep-
arately from non-monitoring behaviors. Most of 
these outcome measures do not re fl ect attempts 
to monitor ongoing learning progress or regula-
tion in response to monitoring, and none re fl ect 
the accuracy of learners’ monitoring. The poten-
tial effect of epistemic beliefs on actual compre-
hension monitoring and online regulation is still 
awaiting empirical con fi rmation. 

 In summary, this model highlights how 
metacognitive knowledge of context, goals, 
beliefs, and study strategies can in fl uence 
 learning and even regulation at the planning 
and selection stages without impacting moni-
toring of ongoing learning via re fl ection on 
experiences. Metacognitive knowledge serves 
to inform learners  what  strategies they should 
employ, but it is separate from the metacogni-
tive processing that involves online monitoring 
of experience which can inform a learner  when  
strategies are effective and when they need to 
be regulated, reapplied, or revised.  

   Experience Monitoring 
and Metacomprehension Accuracy 

 As posed above, a central element in models of 
SRL is the self-regulatory loop – the part of the 
model where a reader re fl ects on their own pro-
cessing and alters their learning or study behav-
iors as a result. The regulatory loop depends on 
self-evaluation or judgments of learning (JOLs). 
Self-evaluation judgments, in turn, rely on cues. 
The quality of self-evaluation judgments depends 
largely on the quality of the cues that are used for 
the basis of these judgments. Such reasoning has 
been unpacked most extensively by Koriat in his 
cue-utilization theory. Koriat  (  1997  )  has dis-
cussed two classes of cues that learners use to 
draw inferences about their learning and future 
performance. One set are cues that are tied to the 
learner’s internal online subjective experiences 
that re fl ect their cognitive processing in the 
speci fi c situation. Because Koriat has been mainly 
concerned with judgments of learning during 
memorization tasks, he calls these mnemonic 
cues. These cues include the subjective sense of 
ease or  fl uency during learning (Benjamin & 
Bjork,  1996 ; Dunlosky & Nelson,  1992  ) . 

 The other kinds of cues are tied to objective 
features of the learning situation that are either 
 intrinsic  to the materials and task demands (e.g., 
relatedness of word-pairs, memory of details 
versus conceptual application) or  extrinsic  to 
the task or stimuli, but instead related to the 
context (e.g., how many times items were stud-
ied or what strategy was used). These knowl-
edge-based cues bypass the monitoring of 
subjective experience. Instead, people may 
make judgments based on their perceptions of 
the general effectiveness of certain strategies. 

 Although the cue-utilization theory was 
developed with reference to metamemory mon-
itoring of rather simple materials like word-
pairs, it can be adapted to metacomprehension 
of complex texts. Such an adaption is re fl ected 
in the model by Grif fi n, Jee, and Wiley  (  2009  )  
that distinguishes heuristic from representation-
based cues that can be used for self-evaluation. 
Representation-based cues, like mnemonic 
cues, are tied to subjective online experiences 
that re fl ect processing during learning and the 
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quality of the mental representation that a 
learner has actually formed. Heuristic cues are 
those based in a priori general assumptions 
about topic interest, domain knowledge, ability, 
and text and task features. The model proposes 
that these heuristic cues (which comprise meta-
cognitive knowledge) may have modest predic-
tive validity because they refer to things that 
can have some in fl uence on learning, but they 
are insensitive to idiosyncrasies of the speci fi c 
learning situation and can therefore be errone-
ous. For example, the heuristic knowledge that 
one is good at multiple-choice tests may predict 
higher than average overall performance on 
such tests, but will be of no help in predicting 
whether one will do better on a test about the 
Irish potato famine versus a test about earth-
quakes. In addition to capturing Koriat’s key 
distinction between cue types and providing a 
reason why mnemonic cues are generally more 
valid, this heuristic-representation distinction 
maps rather clearly onto Flavell’s  (  1979  )  knowl-
edge-experience distinction. The subjective 
experiences that readers need to monitor are 
those that arise from processes of building a 
mental representation of the meaning of a text. 
However, when metacognitive knowledge is 
used as a heuristic that directly in fl uences judg-
ments of learning, then it bypasses the active 
monitoring process and use of representation 
cues. In essence, the judgments are no longer 
about learning, but are merely performance pre-
dictions based on a priori knowledge of factors 
that may or may not have some impact on what-
ever learning actually occurred.  

   Measures of Monitoring Accuracy 

 In the metacomprehension literature, a standard 
approach has been developed to assess the accu-
racy of these self-evaluations and the ability of 
students to monitor their ongoing comprehen-
sion processes (Glenberg & Epstein,  1985 ; 
Maki,  1998  ) . In the typical metacomprehension 
paradigm, participants read a series of texts on a 
variety of topics, then rate their comprehension 
of each text, and complete a test for each text. 

Following the lead of metamemory research on 
paired associate learning (Nelson,  1984  ) , a per-
son’s monitoring accuracy is operationalized as 
the intraindividual correlation between a per-
son’s comprehension ratings and actual test per-
formances across the set of texts. More accurate 
self-evaluation or greater monitoring accuracy 
is indexed by stronger correlations. A standard 
term for this predictive accuracy measure is  rel-

ative metacomprehension accuracy . This rela-
tive accuracy paradigm targets ongoing active 
monitoring of actual learning progress indepen-
dent from either the level of progress itself 
(Nelson,  1984  )  or the learner’s ability to make 
heuristic guesses about average progress based 
on general a priori beliefs about themselves or 
the task (Grif fi n et al.,  2009  ) . 

 In addition, this paradigm attempts to tap into 
the kinds of decisions a student must make as 
they decide among homework activities. If a stu-
dent does not accurately differentiate well-learned 
material from less-learned material, time could 
be wasted studying material that is already well 
learned while no time would be devoted to mate-
rial that has not yet been adequately learned. 
Students will also fail to realize when current 
study strategies are not working and new ones are 
needed. Consistent with this proposition, relative 
monitoring accuracy has been demonstrated to 
relate positively to self-regulated learning out-
comes (Thiede, Anderson, & Therriault,  2003  ) . 

 There are several reasons why relative accu-
racy has become the standard for determining 
monitoring accuracy. The other measures of 
metacognitive judgments (i.e., con fi dence bias, 
absolute accuracy) differ from relative accuracy 
in important ways. A central premise of research 
on metacognitive monitoring and SRL is the 
 recognition that students do not have unlimited 
time to engage in study, and principled decisions 
need to be made about what should be studied or 
restudied for ef fi cient self-regulated learning. 
Only measures of relative metacomprehension 
accuracy address this aspect of SRL. 

 Beyond this ecologically valid feature of the 
relative accuracy paradigm, a major reason for 
the increasing dominance of the relative accu-
racy paradigm in metacomprehension research 
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is because it represents a measure of monitoring 
that is not heavily dependent upon average test 
performance (Nelson,  1984 ; Yates,  1990  ) . Other 
methods used to assess monitoring accuracy 
simply compute the difference between judg-
ments of learning and objective performance. 
As such, they are just as dependent upon how 
well a learner generally performs as they are on 
their skill in monitoring that performance. These 
methods include  absolute accuracy  which com-
putes the unsigned absolute difference and 
 con fi dence bias  which computes the signed dif-
ference (Maki,  1998  ) . Two people with poor 
monitoring skills who both just use a midpoint-
of-the-scale heuristic can have drastically dif-
ferent absolute accuracy or con fi dence bias just 
because of differences in performance. Not only 
will the readers differ in accuracy despite no dif-
ferences in their monitoring process, but one 
could have extremely high accuracy even though 
neither are actually monitoring at all and both 
are merely using a general anchoring heuristic. 
With relative accuracy, both readers would wind 
up with a poor accuracy score close to a correla-
tion of zero, which would validly re fl ect the fact 
that they failed to monitor. In addition, since 
average performance levels often re fl ect rela-
tively stable individual differences and can be 
systematically impacted by features of the learn-
ing context, all of these non-metacognitive fac-
tors will systematically produce differences in 
absolute accuracy and con fi dence bias, even 
when there are no differences in either the judg-
ments themselves or the psychological processes 
that give rise to them. Differences on these mea-
sures may not re fl ect anything about metacogni-
tive processes or skills. 

 Con fi dence bias brings even more interpretive 
problems, because it is not a linear measure of 
degree of accuracy but rather of the amount of 
directional bias in whatever errors exist. A score 
of zero re fl ects a lack of directional bias, and 
positive scores re fl ect more overcon fi dence errors 
while negative scores re fl ect more under-
con fi dence errors (see Yates,  1990  ) . One person 
with a higher score than another can be either less 
under-con fi dent or more overcon fi dent and either 
less accurate or more accurate depending on 

where each of these two people being compared 
happen to be in relation to the zero point. Group 
means for con fi dence bias re fl ect whether more 
people were over or under con fi dent and do not 
represent the average level of accuracy of indi-
viduals. As a result, differences in this measure 
re fl ect neither monitoring nor accuracy. 

 One bene fi t of relative accuracy that has not 
been previously emphasized is that the indepen-
dence of relative accuracy from average perfor-
mance makes it the only measure of accuracy 
that necessarily re fl ects the actual monitoring of 
ongoing learning. Because it is not dependent 
upon average performance, high relative accu-
racy cannot be achieved by the use of heuristic 
meta-knowledge, even when that knowledge 
is accurate. Instead, high relative accuracy 
requires active attention to the ongoing learning 
process and its variable outcomes. Whether a 
reader has accurate knowledge about their own 
general skill in science learning might greatly 
impact both their absolute accuracy and their 
con fi dence bias, but this heuristic will be of little 
relevance in predicting their understanding of a 
text on volcanoes relative to their understanding 
of a text on evolution. This positive feature of 
relative accuracy makes it a superior measure of 
a students’ ability to actually monitor ongoing 
learning processes which is the heart of the self-
regulation processes in SRL. Absolute accuracy 
and con fi dence bias measures are not capable of 
discriminating real monitoring from either per-
formance effects or the reliance on heuristic 
judgments that bypass monitoring processes in 
predicted overall performance levels. 

 As shown in Fig.  2.1 , knowledge of and use of 
study strategies that determine what actions and 
operations are enacted play a very different role 
in SRL than experience monitoring. Study strate-
gies are largely object-level constructs that guide 
actions which may or may not happen to evoke 
attention to meta-level experiences as represented 
by the regulatory loop. Yet, a number of research-
ers have used terminology such as metacognitive 
monitoring to refer to monitoring of one’s strat-
egy use. Even when increased knowledge of 
study strategies has positive effects on learning, it 
may not affect the regulation process. In fact, if 
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learners become overly con fi dent in their existing 
strategy-outcome beliefs, they may rely more 
heavily on these beliefs at the expense of moni-
toring subjective experience. Thus, theoretically, 
strategy instruction cannot be assumed to lead to 
better monitoring of learning progress and in fact 
could harm it. 

 In addition to a lack of theoretical basis to 
generally assume a positive effect of strategy 
knowledge or use on monitoring accuracy, there 
is a lack of empirical support. The few studies in 
the metacognitive knowledge literature that have 
measured JOLs have operationalized accuracy 
with the problematic measures of absolute accu-
racy or con fi dence bias (e.g., Schraw & Dennison, 
 1994  ),  while failing to account for the non-moni-
toring in fl uences of average performance and 
heuristic cues that plague these measures. 
Learning environments cannot be presumed to 
have improved monitoring processes unless 
improvements in JOL accuracy can be demon-
strated independent from any effects on perfor-
mance itself. And, unless a measure of relative 
accuracy is employed, then claims of bene fi ts in 
monitoring skills are unwarranted.   

   Improving Monitoring Accuracy 
with a Valid Cues Approach 

 Both models and data suggest that accurate meta-
cognitive monitoring of ongoing learning is cen-
tral to effective regulation of study (e.g., Metcalfe, 
 2002 ; Nelson & Narens,  1990 ; Thiede, Grif fi n, 
Wiley, & Redford,  2009 ; Winne & Hadwin,  1998 ; 
Zimmerman,  2002  ) . Because accurate moni-
toring is so critical for effective SRL, it is of great 
 concern that the typical  fi nding from the 
 metacomprehension literature is that levels of 
monitoring accuracy are quite low. Several inde-
pendent reviews have reported that the mean 
intraindividual correlation between comprehen-
sion ratings and test performance across numer-
ous studies is only about +0.27 (Dunlosky & 
Lipko,  2007 ; Lin & Zabrucky,  1998 ; Maki,  1998  ) . 
A recent comprehensive review of all published 
studies of relative monitoring accuracy for learn-

ing from text done in the last 30 years arrived at 
the same  fi gure of 0.27 for the average among 
baseline conditions (Thiede et al.,  2009  ) . This 
review also showed that the majority of manipula-
tions have little effect in improving this accuracy. 
The above analysis of cue validity suggests that in 
order to be accurate, students need to be monitor-
ing cues directly related to reading experiences 
and not just relying on heuristic bases for their 
judgments. However, there are many levels on 
which one can attempt to monitor their reading 
processes, and only some of these are predictive 
of comprehension. When considering learning 
from text, we must bear in mind that a text can be 
processed at several levels from surface memory 
of the exact words to constructing a conceptual 
model of the meaning of the text (Graesser, Millis, 
& Zwaan,  1997 ; Kintsch,  1998  ) . To make accu-
rate judgments of comprehension, readers need to 
re fl ect speci fi cally on experiences that correspond 
to the level of representation the learning task 
requires. Because it is a person’s situation model 
that largely determines his or her performance on 
tests of comprehension (Kintsch,  1998 ; McNamara 
et al.,  1996  ) , metacomprehension monitoring will 
be most accurate when situation-model level cues 
are utilized (Rawson, Dunlosky, & Thiede,  2000 ; 
Wiley, Grif fi n, & Thiede,  2005  ) . For example, 
Thiede, Grif fi n, Wiley, and Anderson  (  2010  )  
observed that most readers self-report that they 
base their judgments of learning upon heuristic 
judgment cues related to text features (e.g., “the 
text was long”) or upon beliefs about their own 
skill and familiarity with the topic. Readers’ 
reported use of representation cues was largely 
limited to how much of the text they could remem-
ber. Both the reliance on heuristic and immediate 
memory cues were associated with poor 
 monitoring accuracy, while those few readers who 
did self-report relying upon situation-model-level 
cues (like the ability to explain a causal process 
described in the text to someone else) tended to 
have superior monitoring accuracy. The assump-
tion that monitoring accuracy can be improved by 
shifting readers to rely more upon valid situation-
model cues is the foundation for our work 
described below. 
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   Instantiating a Relative Accuracy 
Paradigm 

 In these studies, our goal has been attempting to 
 fi nd conditions that improve readers’ ability to 
accurately judge their own level of comprehen-
sion from text using a standard relative accuracy 
paradigm. The texts are approximately 1,000 
words long and are on science topics such as the 
vision system. Sets of  fi ve to six texts on different 
topics are generally used. Students read all texts, 
then they are asked to judge their level of com-
prehension for each text (“How many items do 
you think you will get correct on a 5 item test?”), 
and then they take comprehension tests in the 
same order as reading. The comprehension tests 
consist of  fi ve multiple-choice items tapping 
inferences that follow from each text. 

   Design Considerations for Texts 

 Wiley et al.  (  2005  )  pointed out that the design of 
the expository texts and comprehension tests are 
both critical to examining metacomprehension 
accuracy. Only texts that have clearly distinguish-
able surface and situation-model representations 
and only test questions that can be answered using 
just one or the other representation will lead to 
interpretable results. Thus, we use explanatory 
science texts for which the situation model is not 
entirely explicit within the surface model of the 
text. Since creating the situation model for a text 
involves generating inferential connections, it is 
important to construct texts that can test whether 
the reader is making connections beyond what is 
explicitly stated. Our own texts typically describe 
a complex causal relation (e.g., the relation 
between continental and ocean plates and the 
emergence of volcanoes). For example, a well-
developed situation model for the volcano text 
would contain inferential links such as “the least 
likely place for a volcano is in the center of a 
plate.” The key here is that this connection needs 
to be constructed by the reader. The text itself 
does not contain this statement. Based on previ-
ous research (Kintsch,  1998  ) , we believe that 
comprehension is best represented by a person’s 
situation model for a text, and the quality of 

 reader’s understanding of a text can best be dis-
cerned by assessing whether the person can rec-
ognize causal inferences implied by a text 
(Trabasso & Wiley,  2005 ; Wiley & Myers,  2003  ) . 
When the test performance being predicted 
re fl ects the quality of a reader’s situation model, 
then the accuracy of the monitoring judgments 
represents meta comprehension,  as opposed to 
meta memory  for explicitly stated idea units within 
a text. Although readers must also comprehend 
explicitly stated ideas, researchers must take care 
to create tests that require actual understanding of 
those ideas rather than mere memory for words.  

   Design Considerations for Tests 

 We also have speci fi c considerations for the 
design of our comprehension tests. One impor-
tant feature is that they contain more than one 
or two items. Weaver  (  1990  )  addressed the 
weaknesses associated with assessing compre-
hension monitoring with limited items per text. 
In particular, he argued that a one-item test does 
not provide a reliable measure of comprehen-
sion. Moreover, using a one-item test creates an 
issue of content coverage, where computed 
monitoring accuracy is highly contingent upon 
the arbitrary overlap between what portion of 
the text the test covers and what portion the 
readers emphasized in their judgment. Thus, it 
is important to use tests with multiple items that 
assess comprehension of the majority of the 
content presented in the text. 

 Perhaps more important, the tests must also 
provide a valid measure of comprehension (i.e., 
tap the situation model of the text). With these 
concerns in mind, we have developed multiple-
choice tests (following Royer, Carlo, Dufrense, 
& Mestre,  1996  and Wiley & Voss,  1999  )  that 
directly tap understanding of text content by 
asking students to verify inferences that follow 
from the texts. Performance on the inference 
tests that we have developed reliably correlates 
with other learning assessments, including per-
formance on “how” and “why” essay questions 
(Sanchez & Wiley,  2006 ; Wiley et al.,  2009  ) , 
as well as with performance on the Nelson 
Denny (Grif fi n et al.,  2008  ) .  
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   Design Considerations for Judgments 

 The valid cues approach suggests that the more 
strongly a cue is diagnostic of the mental repre-
sentation that will determine test performance, 
the more valid and predictive of performance it 
will be. An extreme illustration of this point is 
that postdictions are generally very accurate 
(Maki & Serra,  1992 ; Pierce & Smith,  2001  ) . 
A postdiction is when a person simply predicts 
future performance based on a prior test that 
assesses the same mental representation. The 
cues that are generated by the initial test with the 
same items are directly diagnostic for later per-
formance, which explains the postdiction superi-
ority effect. However, note that providing learners 
with the actual test questions and the experience 
of answering them circumvents the need for 
engaging in monitoring of the learning experi-
ence. Postdiction judgments are more accurate 
because they do not rely upon the metacognitive 
system and do not require any actual metacogni-
tive monitoring which is what learners struggle 
with. For this reason, predictive judgments are 
more useful as a measure of online monitoring 
processes. It is also useful if the judgments are 
made in the same metric as the test scores.   

   Supporting Access to Valid 
Comprehension Cues 

 In earlier work (Thiede et al.,  2003  ) , having stu-
dents engage in delayed generation tasks (key-
word listing or summaries) after reading produced 
unprecedented levels of metacomprehension accu-
racy compared to an immediate generation control 
group. Because both groups engaged in genera-
tion, an implication was that the delay itself was 
responsible. However, Thiede, Dunlosky, Grif fi n, 
and Wiley  (  2005  )  conducted a series of follow-up 
studies that independently manipulated delay and 
generation tasks. Simply delaying judgments did 
nothing to accuracy and neither did having readers 
perform non-generative tasks at a delay, such as 
reading a list of keywords or being prompted to 
“think about the text.” The key to producing better 
monitoring accuracy was in making readers per-
form a speci fi c type of generative self-test. In this 

case, these generation tasks (summary or keyword 
listing) only yielded bene fi ts when performed at a 
delay. This is because these tasks can be done 
using surface memory when performed immedi-
ately, but the surface representation decays with a 
delay while the situation model is more robust 
over time (Kintsch, Welsch, Schmalhofer, & 
Zimny,  1990  ) . It was not delaying judgments 
themselves but being directed to perform a delayed 
generation task as a self-test that increased read-
ers’ access to the appropriate representation cues 
and improved monitoring accuracy. 

 Grif fi n et al.  (  2008  )  provided further evidence 
that certain types of self-testing targeted toward 
situation-model cues can increase accuracy. One 
study employed self-explanation as the type of 
self-test designed to increase access to valid cues. 
Readers who engaged in a self-explanation task 
while reading had signi fi cantly higher metacom-
prehension accuracy than those who simply 
reread. Self-explanation requires readers to 
simultaneously construct and self-test their situa-
tion model by asking themselves how certain 
ideas  fi t together with the theme of the text (Chi, 
 2000 ; Wiley & Voss,  1999  ) . Accuracy improved 
even without delaying judgments. Self-
explanation directly involves the situation model, 
making the timing less relevant to what cues are 
accessed by it, unlike keyword lists and summa-
ries that could be based largely in a surface repre-
sentation when performed immediately. Another 
important aspect of this study was that there was 
actually no effect of self-explanation on test per-
formance itself. One should not view the lack of 
learning gains in this study as con fl icting with 
other research on self-explanation, since these 
students received neither training in how to self-
explain nor did they have the opportunities for 
restudy that have supported better learning in 
other studies (Chi,  2000 ; McNamara,  2004  ) . 
Instead, the lack of effects on performance allows 
for the conclusion that self-explanation had its 
effect on monitoring, since performance was not 
affected but accuracy was improved. 

 Another study reported by Grif fi n et al.  (  2008  )  
has shown that simple rereading can improve 
metacomprehension accuracy, but only for 
readers with limited attentional resources or low 
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comprehension skill. These effects were inter-
preted as demonstrating that readers with limited 
or taxed attentional resources during a single 
 reading can use a second reading to attend to 
important online experience-based representation 
cues. Without the resources to attend to these 
cues during a  fi rst reading, readers are forced to 
rely more heavily on heuristic cues. Together 
these studies from the  fi rst phase of our research 
program suggest that the key factor in utilizing 
valid representation cues is having access to these 
cues, both by being able to attend to them when 
available and making them more available by 
employing self-tests designed to target the appro-
priate level of representation. This work utilizing 
delayed generation, rereading, and self- 
explanation has been successful at producing 
uncommon levels of monitoring accuracy, raising 
intraindividual correlations between judgments 
and performance from the usual 0.27 to above 0.6 
in most cases.  

   Supporting the Selection of Valid 
Comprehension Cues 

 The interventions previously described direct read-
ers to engage in cognitive actions designed to 
evoke certain metacognitive experiences and 
make valid representation cues more accessible. 
Although this increase in accessibility makes valid 
cue use more likely, optimal cue use will also 
require readers to actively discriminate and select 
among those cues available to them. If texts and 
tests require students to gain conceptual under-
standing, for example, of scienti fi c processes and 
phenomena from expository text, then it is impor-
tant to prompt students to override the “reading for 
memory” setting evident in their self-reported 
selection of memory cues over situation-model 
cues (Thiede et al.,  2010  ) . Readers need to realize 
that their goal for reading is to try to understand 
how or why a phenomena or process occurs and 
that the questions they will be asked will depend 
on making connections and causal inferences 
across sentences, in order to engage in monitoring 
of the most relevant experiences. This in fl uence of 
cue selection on monitoring is depicted in Fig.  2.1  

as the arrow from  monitoring goals  that intersects 
the link between  experiences  and  monitoring . In 
terms of Winne and Hadwin  (  1998  ) , we suggest 
that in order to engage in effective SRL, learners 
need meta-knowledge of standards on which their 
learning can be evaluated. In terms of the present 
model, learners’ monitoring goals need to re fl ect 
the appropriate level of understanding or type of 
learning, so that they can selectively attend to and 
make use of those metacognitive experiences that 
re fl ect this level of understanding. 

 Thus, in a second series of experiments, we 
attempted to shape the selection of valid cues by 
in fl uencing learners’ test expectancies with an 
explicit statement about the inferential nature of the 
 fi nal test items they should expect and the need to 
make connections between different parts of a text. 
Readers were also given practice texts and tests 
with inference items to set the expectation. This 
manipulation has been highly effective in improv-
ing relative monitoring accuracy (Thiede, Wiley, & 
Grif fi n,  2011  ) . In additional studies, we have found 
that when combining this test-expectancy manipu-
lation with a self-explanation instruction, the two 
interventions had independent effects, suggesting 
that both cue accessibility and cue selection are 
determining accuracy and are distinct contributors 
to cue use (Wiley et al.,  2008  ) .  

   Negative Effects of Providing Feedback 

 It is critical to note that in the above test-expec-
tancy studies, students were not provided with 
any performance feedback on the practice tests. 
The effects of test expectancy were assessed by a 
transfer paradigm in which monitoring goals had 
to be generalized from the practice trials and 
applied to new texts and tests. 

 Given that attention to internal experiences 
de fi nes metacognitive monitoring, externally 
provided performance feedback during practice 
tests may short-circuit effective monitoring of 
ongoing learning by shifting readers’ attention 
from internal to external cues. Overt judgments 
of learning will no longer be based in infer-
ences derived from the experience monitoring 
process, but rather based in the externally 
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provided information, such as simply anchor-
ing all future judgments on the numerical score 
one received on the previous tests. When exter-
nal feedback is predictive of future perfor-
mance, such as when the future tests are on the 
same material, the accuracy of JOLs may 
increase even though readers are no longer truly 
monitoring. However, when accurate JOLs 
depend upon actual meta-level monitoring 
because the feedback on past performance is 
not related to future performance, then JOL 
accuracy could be harmed by feedback. 

 An example of such a scenario is when learn-
ers’ might receive feedback on their performance 
on one set of texts, but later need to monitor their 
learning for a new set of texts on different topics. 
On the one hand, the practice tests provide a basis 
for abstracting a transferable expectancy they can 
use to guide their monitoring during future texts, 
but on the other hand the concrete numerical per-
formance scores on the practice tests may become 
the basis for future judgments on other texts, 
without regard to the fact that they are about dif-
ferent topics and thus require an independent 
judgment. In other words, the readers might 
merely transfer the concrete numerical perfor-
mance scores from one text to another rather than 
the more abstract concept about the general 
nature of the type of test and level of comprehen-
sion required. 

 We tested this scenario by employing the 
same test-expectancy paradigm previously 
described, but added two feedback conditions. 
Both feedback conditions were identical to the 
inference test-expectancy condition, except 
they also gave readers performance feedback 
(i.e., number of questions answered correctly) 
for the practice inference tests. One of the 
feedback conditions also reminded readers of 
their JOLs in relation to their actual practice 
performance. If feedback undermines experi-
ence monitoring, then the bene fi ts of having a 
valid monitoring goal created by inference test 
expectancy should disappear when that expec-
tancy is accompanied by prior performance 
feedback. The results supported this hypothe-
sis, revealing that the notably improved moni-
toring accuracy by providing inference test 

expectancies ( r  = 0.49) versus control ( r  = 0.15) 
was completely eliminated by simply adding 
feedback on practice test performance 
( r  = 0.21). Apparently, readers focused upon 
the external concrete practice feedback and 
failed to transfer an expectancy about the more 
general nature of the tests. We do not know 
whether the participants in this study actually 
failed to engage in monitoring due to the feed-
back or whether they simply failed to use the 
cues derived from that monitoring when mak-
ing their judgments. But, it is clear that readers 
were unduly in fl uenced by their past perfor-
mance scores when predicting future perfor-
mance, even though those scores had little 
relevance. Obviously, feedback can have a 
number of positive effects on learning. The 
point here is that the development of accu-
rate monitoring skills may be best aided by 
practice tests that are not accompanied by con-
crete numerical performance feedback.   

   Implications for the Design 
of Learning Technologies 

 This chapter has attempted to explicate an empir-
ically grounded and detailed theoretical frame-
work for understanding the various related but 
distinct components of SRL. The emphasis has 
been upon the importance of accurate metacogni-
tive monitoring for engaging in effective regula-
tion of learning. Understanding these conceptual 
and theoretical issues is critical for those who 
seek to develop instructional environments to 
foster the development of self-regulation skills. 
In particular, we highlight a few observations 
about the implications of this approach for the 
design of learning environments. 

   Regulation Is a Process of Making 
Decisions 

 Effective self-regulated learning involves deci-
sions about what to read next, what to reread, 
and what strategies to apply as you are reading. 
If you take those decisions away from the 
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learner, then you rob them of the opportunity 
to develop skills in regulating their learning. 
Learning environments may not be able to sup-
port both the most ef fi cient learning at the cog-
nitive level and the development of regulatory 
skills at the metacognitive level simultaneously. 
Conditions that aid learning of content (such as 
by matching dif fi culty of the learning task to 
each student’s ability or prescribing strategy 
use) may lead to improvements in learning for 
that unit when the student is supported by the 
system. However, they may obviate the need for 
the student to grapple with dif fi culties and make 
their own choices about what to study next and 
how to study it, which may have negative conse-
quences for their ability to engage in effective 
SRL in new, unsupported contexts.  

   Regulation Is a Process 
of Self-Evaluation 

 If you give feedback, then readers no longer need 
to self-evaluate. As we have shown above, giv-
ing feedback can be problematic for monitoring 
accuracy. Dictating the use of a particular learn-
ing strategy also obviates the need for self- 
evaluation. To support SRL, learning 
environments need to support self-testing and 
online monitoring strategies. Theoretically, the 
only types of strategy knowledge and use that 
should directly impact monitoring are those that 
explicitly direct learners’ attention toward meta-
cognitive processing, such as attending to the 
ease with which one can summarize information 
or answer self-generated questions as an indica-
tor of comprehension. However, these  metacog-

nitive  monitoring  strategies are not well 
represented on the most commonly used inven-
tories. They also do not seem to be the type of 
strategies that are taught or supported in most 
learning technology  environments. Indeed many 
intelligent tutoring and cognitive tutoring sys-
tems remove the need to monitor one’s own level 
of performance and regulate actions as the learn-
ing technology is often designed to monitor stu-
dents’ learning for them. 

 More often, the strategies that are supported 
by learning technologies are study strategies 
that more directly support learning. Learning 
environments designed to foster students’ 
knowledge of effective study strategies should 
avoid breeding excessive con fi dence in the 
global ef fi cacy of speci fi c strategies. Rather, 
students could be taught a repertoire of strate-
gies, made aware that strategy effectiveness is 
context dependent, and prompted to always 
monitor their learning progress and reassess 
effectiveness of each strategy in each particular 
learning context. This decision process would 
help to support re fl ection and regulation skills, 
especially if coupled with instruction in strategy 
use explicitly for the purpose of monitoring, 
such as self-testing or self-explanation.  

   Final Thoughts 

 Accurately monitoring one’s current state of 
understanding during a cognitive task is a central 
feature of effective control and self-regulation 
that impacts learning for both that task and poten-
tially for future tasks. Monitoring one’s “experi-
ences of puzzlement or failure,” such as a “sense 
that you do not yet know a certain chapter in your 
text well enough,” is critical for creating new 
subgoals, applying alternate strategies, and revis-
ing one’s metacognitive knowledge about the 
effectiveness of the strategies (Flavell, p. 908). In 
other words, the monitoring of the dynamic and 
changing states of one’s learning progress is what 
tells a reader  when  they need to intensify, reduce, 
stop, or alter the cognitive learning strategies 
being employed and is what informs the learner 
what strategies should be modi fi ed, deleted, or 
added to the strategy knowledge base for use on 
future tasks. Without this monitoring of actual 
learning, a learner is not engaging the heart of 
self-regulated learning. Further, without studies 
that directly assess the accuracy of this  monitoring, 
it is dif fi cult to draw conclusions about which 
learning technologies may improve the monitor-
ing skills needed for effective SRL. To provide 
the opportunity for the development of effective 
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regulatory skills, learning environments need to 
be careful not to deprive students of the opportu-
nity to monitor their own understanding.       
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  Abstract 

 This chapter describes the results of eight controlled experimentations 
examining different conditions for implementation of the IMPROVE self-
questioning prompts (Kramarski & Mevarech, 2003; Mevarech & 
Kramarski, 1997) in web-based learning environments from two per-
spectives,  fi rst for students’ learning in the classroom, and second for 
preservice teachers’ learning during their professional preparation. The 
IMPROVE method aims to support key aspects of self-regulation targeting 
learning processes. In evaluating the effect of the IMPROVE prompts, we 
focused our efforts on assessing progress at high levels of conceptual 
understanding in the learning domain, referring to mathematical or 
scienti fi c reasoning among students and teachers alike and also referring 
to designing traditional and technology-based lessons among the teachers. 
Thus, we assessed whether learners performed well not only on immediate 
posttests with items similar to training, but also on tests measuring near 
and far transfer. In addition, we assessed acquisition of self-regulated 
learning (SRL) that included of fl ine aptitude questionnaires and online 
process measures during real-time forum discussions. In this chapter we 
critically discuss the  fi ndings and raise directions for practical implica-
tions and future inquiry.      

  3      Student and Teacher Perspectives 
on IMPROVE Self-Regulation 
Prompts in Web-Based Learning       

        Bracha   Kramarski        and    Tova   Michalsky         

   Student and Teacher Perspectives 
on IMPROVE Self-Regulation 
Prompts in Web-Based Learning 

 This chapter reviews our recent research series 
examining different conditions for implementation 
of the IMPROVE self-questioning prompts 
(Kramarski & Mevarech,  2003 ; Mevarech & 
Kramarski,  1997  )  in Web-based learning envi-
ronments (WBLEs). The IMPROVE method 

    B.   Kramarski ,  Ph.D.   (*) •     T.   Michalsky ,  Ph.D.  
     School of Education ,  Bar-Ilan University ,
  Ramat-Gan   52900 ,  Israel    
e-mail:  bracha.kramarski@biu.ac.il  ; 
  tova.michalsky@biu.ac.il   

R. Azevedo and V. Aleven (eds.), International Handbook of Metacognition and Learning Technologies, 
Springer International Handbooks of Education 26, DOI 10.1007/978-1-4419-5546-3_3, 
© Springer Science+Business Media New York 2013



36 B. Kramarski and T. Michalsky

aims to support key aspects of self-regulation 
targeting learning processes. We focused on the 
different conditions’ impact on learning in two 
domain contents—mathematics and science—
and on acquisition of the targeted self-regulated 
learning (SRL) skills. We describe the results of 
eight controlled experimentations performed in 
the context of real educational settings from two 
perspectives,  fi rst for students’ learning in the 
classroom and second for preservice teachers’ 
learning during their professional preparation. 
Our studies followed educators’ and researchers’ 
call for SRL support to facilitate effective student 
learning in self-directed open-ended WBLEs 
(Pintrich,  2000 ; Zimmerman,  2000  )  as well as 
for teachers’ ability to promote these processes 
among students (e.g., Putnam & Borko,  2000 ; 
Randi & Corno,  2000  ) . 

 We have de fi ned four goals for effective support 
of SRL skills, where each builds on the previous 
one. The  fi rst goal is for learners (students and 
teachers) to advance their SRL skills within 
WBLEs while receiving IMPROVE prompts. 
Ideally, this advancement will lead to better learn-
ing gains in the domain targeted by the supported 
environment, which comprises the second goal of 
SRL support. The third goal is for learners to 
internalize the SRL knowledge and skills and 
thus to demonstrate better SRL in subsequent 
instruction using a similar environment (near 
transfer). Our fourth goal is that learners will 
improve their future domain-level learning (far 
and long-term transfer) based on the SRL they 
internalized. 

 In evaluating the effect of the IMPROVE 
prompts, we focused our efforts on assessing 
progress at high levels of conceptual understanding 
in the learning domain, referring to mathemati-
cal or scienti fi c reasoning among students and 
teachers alike and also referring to designing tra-
ditional and technology-based lessons among the 
teachers (e.g., Kramarski,  2008 ; Kramarski 
& Revach,  2009  ) . Thus, we assessed whether learn-
ers performed well not only on immediate post-
tests with items highly similar to training but also 
on tests measuring near and far transfer. 
Furthermore, we designed complementary means 
for assessing SRL, including of fl ine aptitude 

questionnaires and online process measures 
 during real-time learning. SRL assessment issues 
are very important, in light of SRL’s complex 
structure and researchers’ emphases on the need 
for measurements and methods to characterize 
unfolding patterns of engagement in online based 
SRL, in terms of tactics and strategies that consti-
tute SRL (e.g., Greene & Azevedo,  2010 ; 
Veenman,  2007 ; Winne & Perry,  2000  ) . 

 Next, we present the theoretical framework for 
our research and then a synthesis of our main stud-
ies (see Table  3.1  for a summary). Finally, we criti-
cally discuss the  fi ndings, propose practical 
implications, and raise directions for future inquiry.   

   Theoretical Framework 

   Web-Based Learning Environments 

 Standards of mathematics and science education 
have emphasized the importance of engaging stu-
dents in meaningful learning as part of a coherent 
curriculum for developing conceptual under-
standing (Programme for International Student 
Assessment—PISA,  2003  ) . These standards raise 
challenges for learning environments to engage 
students in multilayered processes of learning 
and teaching. 

 Researchers have explored a variety of WBLE 
alternatives as means of enhancing conceptual 
understanding in mathematics and science in dif-
ferent age groups (e.g., Azevedo,  2005 ; Kramarski 
& Michalsky,  2009a,   2010  ) . WBLEs are com-
puter-based tools that consist of nodes of infor-
mation inter-connected using hyperlinks. Such 
environments contain multiple representations of 
information including video, audio, diagrams, 
text, and animations (Azevedo,  2005 ; Azevedo & 
Jacobson,  2008  ) . WBLEs offer several unique 
advantages for promoting meaningful conceptual 
learning. Their linked structure affords opportu-
nities “to seek rather than to comply, to experi-
ment rather than to accept, to evaluate rather than 
to accumulate, and to interpret rather than to 
adopt” (Hanna fi n & Land,  1997 , p. 175). Such 
opportunities for learning arise not only at the 
individual level but also at the social level, where 
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individual group members reciprocally in fl uence 
each other in forum discussions. Forums serve as 
virtual communities in practice (Wenger,  1998, 
  2007  ) , enabling the sharing of knowledge and 
opinions with others in the group as well as the 
chance to argue in favor of one’s opinion. Learners 
must therefore explain their own thinking to other 
group members and also adapt their own thinking 
to others’ proposed solutions, which in turn may 
facilitate a more sophisticated conceptual under-
standing (e.g., Hadwin, Oshige, Gress, & Winne, 
 2010 ; Kramarski & Dudai,  2009  ) . Unfortunately, 
alongside these bene fi ts, research (e.g., Azevedo 
& Jacobson,  2008 ; Kramarski & Mizrachi,  2006  )  
has indicated that learners also often experience 
cognitive overload and disorientation in such 
environments, thus precluding realization of 
WBLEs’ full potential for effective learning. To 
offset this overload, researchers suggested the 
need to foster SRL skills in WBLEs (e.g., 
Azevedo,  2005 ; Kramarski & Dudai,  2009  ) .  

   Self-Regulated Learning 

 In recent years, research has focused on the impor-
tance of SRL in academic achievement. According 
to Zimmerman  (  2000 , p. 14): “Self-regulation refers 
to self-generated thoughts, feelings, and actions that 
are planned and cyclically adapted to the attainment 
of personal goals.” In general, self-regulated learn-
ers are proactive learners in processing academic 
skills such as setting goals, selecting and deploying 
strategies, and self-monitoring one’s effectiveness, 
rather than merely responding reactively to events 
that occur due to impersonal forces (Zimmerman, 
 2008  ) . Zimmerman  (  2000  )  developed a cyclical 
model of self-regulation based on implementation 
of various self-regulation processes in three cyclical 
phases within an environmental context: fore-
thought (e.g., planning), action and performance 
(e.g., monitoring), and self-re fl ection (e.g., 
evaluation). 

 Researchers have also begun to direct increas-
ing attention to individual self-regulation at the 
social level, where individual group members 
in fl uence each other through co-regulation, a pro-
cess known as shared reciprocal regulation (e.g., 

King,  1991  ) . Researchers emphasized that co-
regulation should be viewed as an essential part of 
a group’s work when peers or other group partici-
pants act as external regulators. Through critically 
examining others’ reasoning and participating in 
resolving disagreements, students learn to moni-
tor their own thinking, which in turn improves 
their conceptual reasoning (Azevedo,  2005 ; 
Hadwin et al.,  2010 ; Kramarski & Dudai,  2009  ) . 

 Research has demonstrated that students have 
dif fi culties in adopting SRL processes at both the 
individual and social levels (e.g., Arvaja, 
Salovaara, Hakkinen, & Jarvela,  2007 ; Azevedo, 
 2005 ;    Janssen, Erkens, Kirschner, & Kanselaar, 
 2012 ; Kramarski & Gutman,  2006 ; Kramarski & 
Dudai,  2009  ) . 

 Students often do not realize that they should 
regulate their ideas and do not know how to regu-
late effectively (e.g., setting goals). Consequently, 
students are not spontaneously open to sharing 
regulation with other group members (Janssen 
et al.,  2012 ; Kramarski & Dudai,  2009 ; Kramarski 
& Mevarech,  2003  ) . In light of these dif fi culties, 
Zimmerman  (  2000,   2008  )  suggested that multi-
component training is necessary to help learners 
better interpret the SRL phases in a learning envi-
ronment context.  

   IMPROVE Self-Questioning Prompts 

 Prompts enable learners to focus attention on their 
own thoughts and to understand their own activi-
ties during learning and teaching (Bannert,  2006 ; 
Davis,  2003 ;    White, Frederiksen, & Collins,  2009 ; 
White & Frederiksen,  1998  ) . Prompts differ in 
format, delivery method, goal, timing, and 
speci fi city (Davis,  2003  ) . They may occur in a 
text, on an index card, or on a computer interface 
(static or dynamic), or they may be delivered by a 
human tutor or peer, teacher, or arti fi cial agent 
(e.g., pedagogical agent). Prompts can be directed 
to the content, to the problem-solving process 
(e.g., strategy use), or to speci fi c metacognitive 
strategies (e.g., self-explanation; Aleven & 
Koedinger,  2002 ; Kramarski & Dudai,  2009  ) . 

 The IMPROVE metacognitive method 
(Introducing new concepts; Metacognitive 
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questioning; Practicing in small groups; 
Reviewing; Obtaining mastery; Veri fi cation; and 
Enrichment and remediation; Kramarski & 
Mevarech,  2003 ; Mevarech & Kramarski,  1997  )  
aims to support key aspects of self-regulation by 
actively using four self-questioning prompts tar-
geting learning processes:  comprehension ,  con-

nection ,  strategy ,  and re fl ection .  Comprehension  
questions help learners understand the task’s or 
problem’s goals or main idea (e.g., “What is the 
problem/task?”).  Connection  questions prompt 
learners to understand the task’s deeper-level 
relational structures by focusing on prior knowl-
edge and by articulating thoughts and self-expla-
nations (e.g., “What is the difference/similarity?” 
and “How do I justify my conclusion?”).  Strategy  
questions encourage learners to plan and select 
appropriate strategies and to monitor and control 
their effectiveness (e.g., “What is the strategy?” 
and “Why?”).  Re fl ection  questions play an impor-
tant role in helping learners to evaluate their 
problem-solving processes by encouraging learn-
ers to consider various perspectives and values 
regarding their solutions and processes (e.g., 
“Does the solution make sense?” and “Am I 
satis fi ed from the way I faced the task?”). Students 
are encouraged to use these questions before, 
during and after their problem-solving process, 
and in their discussions in small groups (tradi-
tional settings or online). Students are asked to 
answer them in writing (paper and pencil or elec-
tronic screen; see the following sections for the 
way students were prompted to use them). 

 The IMPROVE method is grounded in the 
SRL theoretical framework. The questions direct 
learners’ thoughts and actions throughout the 
cyclical SRL phases of the solution process 
(Zimmerman,  2000,   2008  ) . The method is also 
grounded in socio-cognitive theories of learning 
(   Bandura,  1986 ; Pintrich,  2000 ; Vygotsky,  1978 ; 
Zimmerman,  2000  ) , which extend the view of 
SRL to encompass not only the individual aspect 
but social aspects as well (Hadwin et al.,  2010  ) . 

 Initially, IMPROVE research focused on tra-
ditional learning environments for school stu-
dents in the mathematical domain and showed 
strong positive effects of IMPROVE support 

compared to non-metacognitive support 
(Kramarski & Mevarech,  2003 ; Mevarech & 
Kramarski,  1997  ) . Outcomes emerged for con-
ceptual understanding (i.e., mathematics reason-
ing and transfer) and for metacognitive knowledge 
(i.e., speci fi c problem-solving strategies). 
Following these positive effects, we adapted the 
IMPROVE model to WBLEs in both the mathe-
matics and science domains for both school stu-
dents and for preservice teachers’ professional 
development. First, we will present the studies on 
the students’ perspective and then on the teach-
ers’ perspective. Both kinds of studies raise one 
main question: Under what conditions can learn-
ers (students and teachers) be promoted effec-
tively with the SRL model based on IMPROVE 
self-questioning?   

   Integrating IMPROVE Self-
Questioning Prompts for Students 
in WBLEs 

 This section summarizes two lines of research in 
the mathematics and science domains about 
school students learning within WBLEs, as pre-
sented in the  fi rst part of Table  3.1 . The  fi rst line 
of research (studies A, B, and C) compared 
WBLEs with traditional human learning environ-
ments comprising cooperative and face-to-face 
(F2F) discussions while referring students to 
IMPROVE prompts on an index card. The 
Kramarski and Mizrachi  (  2006  )  study investi-
gated the effects of 4 weeks of online discussion 
on 86 seventh graders’ mathematical literacy and 
SRL, by comparing four learning conditions with 
and without metacognitive support: online 
+ META, online alone, F2F + META, and F2F 
alone. Students were assessed by (a) pre-/post-
mathematical authentic (i.e., real-life) problem-
solving tasks presented online, similar to those 
they practiced (PISA,  2003  ) , and (b) transfer 
measures referring to standard tasks that were not 
practiced on the Web and were presented in a dif-
ferent format (paper and pencil—far transfer). In 
addition, students completed two kinds of SRL 
self-reports, assessing general SRL for problem 
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solving (Kramarski & Mevarech,  2003  )  and 
speci fi c SRL in online discussions (i.e., motiva-
tion, reasoning, and communication). 

 Analytical analysis (i.e., repeated measures and 
MANCOVA) showed that students who were 
exposed to online discussions with IMPROVE self-
questions (online + META) attained the highest lev-
els of general SRL (i.e., problem solving) and of 
speci fi c SRL (i.e., online discussions) compared to 
students in the other three learning conditions. 
They also outperformed the other groups in their 
ability to solve online tasks, transfer tasks, and jus-
tify their reasoning. Interestingly, the speci fi c SRL 
of the online + META group increased, whereas the 
speci fi c SRL of the online alone group decreased. 
Differences were especially salient for motivation 
to perform online problem-solving activities. 
Findings from Kramarski and Mizrachi  (  2006  )  
suggest that integrating IMPROVE self-question-
ing prompts in online discussions may serve as a 
springboard for enhancing students’ mathematical 
literacy and SRL. 

 The other two studies in this group (B and C) 
obtained similar conclusions from a 12-week 
scienti fi c inquiry among 407 tenth graders. The 
Zion, Michalsky, and Mevarech  (  2005  )  study 
compared the effects of four learning methods on 
students’ scienti fi c inquiry skills: (a) metacogni-
tive-guided inquiry within asynchronous learning 
networked technology (MINT), (b) an asynchro-
nous learning network (ALN) with no metacog-
nitive guidance, (c) metacognitive-guided inquiry 
embedded within F2F interaction, and (d) F2F 
interaction with no metacognitive guidance. The 
study examined general scienti fi c ability and 
domain-speci fi c inquiry skills in microbiology. 

 Analytical analysis (i.e., repeated measures 
and MANCOVA) indicated that the MINT 
research group signi fi cantly outperformed the 
other three, while the F2F alone group acquired 
the lowest mean scores. No signi fi cant differ-
ences were found between the F2F groups with 
and without metacognitive guidance. The authors 
concluded that the MINT makes signi fi cant con-
tributions to students’ achievements in designing 
experiments and drawing conclusions. No trans-
fer measures were implemented in this study, and 
no SRL measures were reported. 

 In a follow-up study, Michalsky, Zion, and 
Mevarech  (  2007  )  investigated metacognitive 
awareness among 212 tenth-grade science 
 students exposed to IMPROVE self-questions in 
ALN versus F2F. Metacognitive awareness was 
assessed by two self-report measurements based 
on Schraw and Dennison  (  1994  ) , one a pre-/post-
paper and pencil test focusing on students’ 
knowledge about cognition and the other an 
online open questionnaire focusing on students’ 
regulation of cognition, which was implemented 
three times, once after each online scienti fi c 
inquiry solution. Analytical analysis (i.e., 
repeated measures and MANCOVA) indicated 
that the ALN + META students signi fi cantly out-
performed their F2F + META counterparts on 
both knowledge about cognition and regulation 
of cognition. These results were strengthened by 
a qualitative analysis of the latter measure on 10 
students under the two instructional methods. 
The improvement in regulation of cognition in 
the ALN + META online questionnaire clearly 
indicated the crucial effects of the metacognitive 
support on the progress and success of the 
scienti fi c inquiry processes. The authors con-
cluded that ALN with metacognitive self-ques-
tioning is a promising learning environment, 
holding great potential for enhancing metacogni-
tive awareness among students. 

 The second line of studies (D and E on 
Table  3.1 ) investigated the bene fi cial effects of 
electronic prompts (i.e., static self-questions on 
the screen) on students’ SRL and mathematical 
outcomes in WBLEs. Kramarski and Gutman 
 (  2006  )  investigated 65 ninth-grade students 
 during 5 weeks of e-learning with electronic 
prompts based on IMPROVE self-questioning 
(EL + IMPROVE) versus e-learning without SRL 
prompts (EL alone). Both groups practiced the 
linear function unit in a socio-computer setting 
(working in pairs), but neither was exposed to 
planned forum discussions. In the electronic unit, 
the EL + IMPROVE group received IMPROVE 
self-questioning prompts (comprehension, con-
nection, strategy, and re fl ection) embedded in the 
task, and they answered the electronic prompts 
onscreen. In addition, the EL + IMPROVE par-
ticipants were encouraged to think about good 
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mathematical explanations (e.g., “What is a good 
mathematical explanation?”) and metacognitive 
feedback (e.g., “What is the difference between 
the present expression and the expression that 
you found?”), and they received feedback on 
their  fi nal results. Students in the EL environment 
only received a computer-generated feedback to 
their  fi nal result. Study D evaluated each group 
with (a) pre-/post-mathematical measures 
(Kramarski & Mizrachi,  2006  )  on procedural 
knowledge (standard tasks), explanations (for-
mal, daily, computational, and drawing), and far 
transfer knowledge (real-life context); and (b) 
SRL measures of strategy use and self-monitor-
ing (Kramarski & Mevarech,  2003  ) . 

 Analytical analysis (i.e., repeated measures, 
MANCOVA, and correlations) showed that stu-
dents exposed to IMPROVE prompts in e-learn-
ing (EL + IMPROVE) signi fi cantly outperformed 
the EL students in mathematical procedural and 
transfer tasks and in providing logical mathemat-
ical arguments. We also found that the 
EL + IMPROVE students outperformed their 
peers in using self-monitoring strategies but not 
in the use of problem-solving strategies. Further 
analysis indicated signi fi cant correlations 
between using self-monitoring strategies and 
mathematical performance on transfer tasks, par-
ticularly in the EL + IMPROVE group. Our 
 fi ndings support the conclusion about the 
bene fi cial effects of integrating self-questioning 
prompts in WBLE for enhancing domain out-
comes and to strengthen SRL. However, the study 
provided data on mixed types of self-questioning 
prompts (IMPROVE, explanation, and feedback) 
in a socio-computer environment for students’ 
self-reported SRL, which did not provide insight 
about the differential effects of the explanation 
and feedback prompts for online self-/co-regula-
tion. These issues were addressed by the follow-
ing study (E). 

 Kramarski and Dudai  (  2009  )  investigated 
effects of co-regulation support in online mathe-
matical forum discussions among two experi-
mental groups and a control group (100 ninth 
graders during 5 weeks). The experimental 
groups were exposed to different group-metacog-

nitive prompts, based on the IMPROVE model 
for self-explanation guidance (SEG) and group 
feedback guidance (GFG). These groups were 
compared to a control group (CONT) that prac-
ticed mathematical problem solving in a socio-
computer setting without metacognitive support. 
Students participated in forums of small groups 
(four students). Prompts appeared in automatic 
pop-up screens as shown in Appendix  1  (Fig.  3.1  
 for IMPROVE prompts that were provided to 
the two experimental groups, Fig.  3.2   for SEG 
prompts, and Fig.  3.3   for GFG prompts). The 
SEG questions focused on the individual regula-
tion perspective, encouraging students to provide 
an elaborated explanation (why) for their think-
ing and to suggest a clear conclusion in forum 
discussions. The GFG questions encouraged stu-
dents to take a social perspective (group regula-
tion) and to provide elaborated feedback to all 
group participants in the forum discussions. 
Study E measured mathematical ability and SRL 
in complementary ways within one comprehen-
sive experimental framework: as analyzed from 
different online and of fl ine measures in mathe-
matics (online problem solving, mathematical 
feedback, and transfer test in the formal context) 
and in SRL (metacognitive feedback and self-
report questionnaire). 

 Mixed quantitative (repeated measures and 
MANCOVA) and qualitative analyses showed 
that GFG students outperformed SEG students in 
most mathematical and SRL measures and the 
control students in all measures. In addition, SEG 
students outperformed the control students in 
mathematical problem solving but not on mathe-
matical transfer ability or SRL. The study sug-
gested that providing online metacognitive 
feedback (based on IMPROVE self-questioning) 
in the GFG group enabled students to act as bet-
ter external regulators at a social level and to 
share multidimensional perspectives regarding 
solution processes that may challenge them to try 
to solve new problems. In contrast, the SEG 
approach enabled students to regulate their pro-
cesses at the individual level, which helped them 
only in the solution of familiar tasks but not in 
their transfer ability to new tasks. These conclu-
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sions support the importance of the social-cogni-
tive aspect in the SRL process (e.g., Pintrich, 
 2000 ; Zimmerman,  2000  ) . 

   Discussion of the Studies 
on the Students’ Perspective 

 These studies showed that prompting SRL with 
IMPROVE self-questioning in WBLE can lead to 
effective learning of mathematics and science 
and can strengthen SRL among school students 
ages 13–15. Our  fi ndings suggest that IMPROVE 
questions offer a powerful tool for making prob-
lem solving explicit in four aspects: (a) knowing 
 what  to do (i.e., comprehension questions), (b) 
looking for the  big  picture (i.e., connection ques-
tions), (c)  fi nding  how  and  when  to do (i.e., strat-
egy questions), and (d) focusing on  things to 

think  about (i.e., re fl ection questions). 
 In general, these  fi ve studies on students used 

conceptual and transfer measures for domain 
learning, as well as various SRL measures (self-
report and forum discussions) that were imple-
mented online and immediately at the end of the 
study.   

   Integrating IMPROVE Self-
Questioning Prompts for Preservice 
Teachers in WBLEs 

 This section presents three of our recent studies 
in an ongoing project of SRL support in mathe-
matics and science domains for preservice teach-
ers’ professional development (studies F, G, and 
H on Table  3.1 ). Before these studies, no research 
systematically investigated teachers’ professional 
development with SRL support, based on the 
same model to which students were exposed. 

 The  fi rst study (Kramarski & Michalsky, 
 2009a  )  observed teachers’ professional growth 
along three dimensions: SRL, pedagogical 
knowledge, and perceptions of teaching and 
learning. Examining teachers’ perceptions 
enabled a holistic view of teachers’ professional 
development because prior perceptions often 
serve as a lens through which preservice teachers 

view the new pedagogical knowledge being 
taught (e.g., Pajares,  1992  ) . We examined 194 
preservice teachers’ professional growth over a 
one-semester course (56 h), comparing four 
learning environments: e-learning supported by 
SRL (EL + SRL) or alone (EL) and F2F discus-
sions supported by SRL (F2F + SRL) or alone 
(F2F). In study F, the IMPROVE prompts were 
extended to pedagogical skills (e.g., identifying 
learning objectives and planning didactic materi-
als). In the EL environment, the IMPROVE self-
questions were displayed as automatic pop-ups 
during the practice of each pedagogical skill. 

 Three pre-/post-measures were administered. 
A self-reported SRL questionnaire (Motivated 
Strategies for Learning Questionnaire—MSLQ; 
Pintrich, Smith, Garcia, & McKeachie,  1991  )  
assessed self-perceptions of regulatory behavior 
(i.e., cognition, metacognition, and motivation). 
Pedagogical knowledge was measured by com-
prehension skills for analyzing pedagogical 
events and by design of teaching units (not prac-
ticed in the study) to assess transfer ability. 
Participants’ perceptions of teaching and learn-
ing were assessed through a metaphor question-
naire comprising four perceptions of teaching 
and learning along the continuum from teacher-
centered activity (transmitting information) to 
student-centered activity (self-construction of 
knowledge). 

 Statistical analyses (repeated measures and 
MANCOVA) showed that preservice teachers in 
both SRL-supported conditions outperformed 
their unsupported peers on all professional growth 
measures. Moreover,  fi ndings revealed that 
EL + SRL teachers were the highest on SRL abil-
ity (cognition, metacognition, motivation), peda-
gogical knowledge (comprehension and transfer 
of designing a learning unit), and student- centered 
learning perceptions (self-construction of knowl-
edge). Despite these bene fi cial  fi ndings, we sug-
gested caution in interpreting the data because 
SRL skills were self-reported and referred to 
teachers’ own learning regulation (i.e., the learn-
ers’ perspective) and not to their teaching regula-
tion ability in technology environments (i.e., 
teachers’ perspective). These issues were 
addressed by studies G and H. 
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 Kramarski and Michalsky  (  2010  )  undertook 
a more comprehensive, holistic examination 
of preservice teachers’ professional develop-
ment in technology uses than the previous 
study (Kramarski & Michalsky,  2009a  ) . Study 
G expanded the use of the IMPROVE model to 
incorporate two perspectives of SRL for pre-
service teachers: as a learner and as a teacher. 
We investigated pedagogical uses of hyper-
media termed “technological pedagogical con-
tent knowledge” (TPCK; Angeli & Valanides, 
 2009  ) , in which components of technology (T) 
and pedagogical content knowledge (PCK) 
should be developed concurrently via technol-
ogy-rich lessons designed “toward transfor-
mation of these contributing knowledge bases 
into something new” (Angeli & Valanides, 
 2009 , p. 5). In that study, like the previous 
one, practice of TPCK consisted of compre-
hension and design skills. The TPCK compre-
hension skills constitute basic skills such as 
analyzing technology pedagogical events. 
Design skills in TPCK require higher-order 
thinking that places the learner at the center 
of the learning process (i.e., to explore or col-
laborate with others). Comprehension tasks 
re fl ected the learner’s perspective (preservice 
teachers’ own learning), whereas design tasks 
re fl ected the teachers’ perspective (based on 
students’ learning). 

 We examined 95 preservice teachers’ profes-
sional development over a one-semester course 
(56 h), comparing two hypermedia environ-
ments: HYP + META versus HYP. The four 
types of IMPROVE metacognitive questions 
were displayed onscreen as automatic pop-ups 
at certain times during the practice of TPCK 
tasks and online discussions (see Appendix  2  
for examples). The study aimed to compare the 
differential effects of HYP + META versus 
HYP,  fi rst on the preservice teachers’ TPCK 
skills and second on their SRL in both perspec-
tives, as learner and as teacher. 

 Four measures were administered in study G 
at two testing intervals (pretest/posttest). Two 
measures assessed both TPCK skills (compre-
hension and design; Kramarski & Michalsky, 

 2009a  ) . The other two measures assessed SRL 
dimensions: the MSLQ self-report on teachers’ 
learning regulation (Pintrich et al.,  1991  ) , tapping 
cognition, metacognition, and motivation and 
online self-re fl ections regarding the online TPCK 
comprehension and design tasks. Participants 
received two re fl ection scores—for the learner 
and teacher perspectives—which we assessed 
with four rubrics for planning, monitoring, 
debugging, and evaluation of the process (Schraw 
& Dennison,  1994  ) . 

 Mixed quantitative (repeated measures, 
MANCOVA, and correlations) and qualitative 
analyses showed that HYP + META was more 
effective in developing TPCK (both for compre-
hension and design skills) and fostering SRL 
(both on self-report and online self-re fl ections), 
compared to HYP without explicit SRL support. 
Furthermore, the  fi ndings of our study (2010) 
demonstrated a higher level of self-re fl ections on 
the comprehension task (learner’s perspective), 
whereas preservice teachers continued to demon-
strate relative dif fi culties in re fl ecting on the 
design task (teacher’s perspective). Our  fi ndings 
support other conclusions that designers of pre-
service teacher instructional programs should 
invest more explicit metacognitive support focus-
ing directly on the perspective (as learner or as 
teacher) taken by the teacher (Putnam & Borko, 
 2000 ; Randi & Corno,  2000  ) . 

 The third study (Kramarski & Michalsky, 
 2009b  )  aimed to investigate which learning 
phase (Zimmerman,  2000  )  would be most 
effective for implementing the IMPROVE self-
questioning prompts in order to develop preser-
vice teachers’ SRL (both learner and teacher 
perspectives) and TPCK. We addressed this 
question through a quasi-experiment comparing 
three kinds of self-questioning prompts: pro-
vided before, during, and immediately after 
receiving the TPCK task in WBLE. The study 
was conducted during a one-semester course 
(56 h) and included 144  fi rst-year preservice 
teachers randomly assigned to one of three meta-
cognitive groups: planning, monitoring, or eval-
uation. During practice in the WBLE, each group 
was prompted with questions (based on the 
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IMPROVE model) adapted to the three SRL 
phases. The planning group was prompted with 
the  comprehension  questions to focus on the 
TPCK task  before  solving or designing it (the 
planning phase). The monitoring group was 
prompted with the  strategy  questions  during  the 
action and performance of the TPCK task. The 
 evaluation  group was prompted with the 
 re fl ection  questions at the end of the process to 
evaluate their problem solving and design of 
TPCK activities. Prompts appeared as pop-ups 
screens, and the preservice teachers were asked 
to answer prompts online, in the pop-up box. 

 This study (H in Table  3.1 ) assessed preser-
vice teachers’ SRL in both perspectives (learner’s 
and teacher’s) using two complementary self-
report measures: the MSLQ questionnaire 
(Pintrich et al.,  1991  )  to assess cognition, meta-
cognition, and motivation in learning; and the 
MAI questionnaire (Metacognitive Awareness 
Index; Schraw & Dennison,  1994  )  for assessing 
self-regulation along the teaching phases (plan-
ning, monitoring the action and performance, and 
evaluating the process). In addition, we examined 
TPCK with comprehension and design tasks 
similarly to both studies described earlier. 

 Analysis (repeated measures and MANCOVA) 
showed that prompting preservice teachers with 
re fl ection questions in the evaluation phase (after) 
had a synergic effect on the entire SRL process in 
terms of learning (cognitive, metacognitive strat-
egies, and motivation) and in terms of teaching 
(planning, monitoring, and evaluation), which in 
turn affected the TPCK of the comprehension 
and design of lessons. In contrast, the monitoring 
group (during) gained the lowest scores in both 
SRL measures and TPCK skills. Our  fi ndings 
support theoretical models that re fl ection plays 
an important role in acquisition of learning 
(e.g., Zimmerman,  2000,   2008  )  and teaching 
(e.g., Schön,  1983  )  competences. Despite these 
interesting  fi ndings, we suggest caution in inter-
preting the data because they were gathered as 
self-perceived data only at the beginning and end 
of the process; thus, we cannot draw conclusions 
on the pattern of SRL in both perspectives along 
the course of the study. 

   Discussion of Studies from 
the Teachers’ Perspective 

 Similar to the students’ studies, we found that 
integrating the IMPROVE self-questioning model 
in WBLEs is a promising learning approach for 
preservice teachers (in the mathematics and 
science domains), carrying great potential for 
enhancing SRL (both perspectives) and TPCK. 
We explained the  fi ndings based on the fact that 
the four IMPROVE questions (comprehension, 
connection, strategy use, and re fl ection) could 
help teachers “to (a) think  what  learning/teaching 
steps they need to take in their work; (b) identify 
 which  content of a task is suitable for teaching in 
a technology context; (c) decide  how  they should 
transform the content to make it teachable to their 
students; and (d)  fi nd out  how  tool affordances 
could support constructing meanings with 
learner-centered pedagogy; and (e)  why ” 
(Kramarski & Michalsky,  2010 , p. 16). 

 Despite our promising  fi ndings for implement-
ing the IMPROVE model in both perspectives 
(student and teacher), we recognize some limita-
tions in achieving our goals as discussed in the 
following section.   

   General Discussion: Limitations, 
Implications, and Future Research 

 The two-perspective research series (student and 
teacher) described here revealed promising 
effects regarding four goals for effective support 
of SRL skills with the IMPROVE method: attain-
ing conceptual understanding, SRL, near trans-
fer, and far transfer, where each builds on the 
previous one. Despite these effects, we recognize 
three main limitations in achieving our goals 
referring to (a) the transfer goal, (b) methodolog-
ical and analytical methods, and (c) implement-
ing instructional challenges. 

 The main limitation of the presented studies 
involves learners’ attainment of transfer. Our 
studies were directed mainly to near and far trans-
fer of IMPROVE to gain conceptual understand-
ing, but these studies did not examine long-term 
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transfer as regards fading, which would assess 
the interventions’ lasting effects when students 
were no longer exposed to IMPROVE prompts. 
The fading effects of scaffolding tools (i.e., the 
IMPROVE prompts) play a critical role in any 
intervention (Puntambekar & Hubscher,  2005  ) . 
In particular, the studies on preservice teaching 
ability were based on measures assessed during 
teachers’ preparation phase (i.e., designing a  lesson) 
and not during real class practice. We  suggest 
that future research should follow up on teachers’ 
professional development in authentic class set-
tings by observing and interviewing teachers at 
the in-service stage who previously underwent 
preservice training with the IMPROVE model, 
and then examining these data’s links to students’ 
learning outcomes. Such links can serve as an 
indicator of long-term transfer. 

 Another limitation refers to methodological 
and analytical methods for analyzing the data in 
our studies. As mentioned earlier, the IMPROVE 
method is based on socio-cognitive SRL models. 
Thus, in our studies, students and preservice 
teachers practiced peer-assisted learning on 
online forums. However, their regulation of learn-
ing was assessed individually (e.g., Kramarski & 
Dudai,  2009 ; Kramarski & Michalsky,  2009a, 
  2009b,   2010  ) . The need to use other methods to 
assess co-regulation in authentic settings is obvi-
ous. Future research based on mixed methods 
(quantitative and qualitative) and complementary 
means to assess SRL as an aptitude (question-
naires) and as an event (real time) may shed fur-
ther light on SRL prompts’ effects on co-regulation 
and academic performance along the course of 
the study and their lasting effects (Azevedo, 

 2005 ; Greene & Azevedo,  2010 ; Veenman,  2007 ; 
Zimmerman,  2008  ) . 

 Finally, the presented studies did not 
suf fi ciently focus on instructional challenges 
using different formats of IMPROVE prompts. 
In our studies, we distinguished between various 
formats of IMPROVE self-questioning prompts 
as provided in index cards, electronic pop-ups, 
and human delivery in WBLEs. However, no 
research thus far has scrutinized the effects of 
these various formats in comparison to other 
kinds of prompts such as dynamic pedagogical 
agents, while examining automatic delivery ver-
sus delivery following a request for help or while 
comparing formats’ different timing conditions 
for the learning phases (Zimmerman,  2000  ) . We 
are now conducting some ongoing studies that 
address these issues. 

 In conclusion, our research series (on students 
and teachers) described here makes an important 
contribution to theoretical research and raises 
practical implications regarding learning and 
teaching with WBLEs. Our studies call for further 
scrutiny of how students’ and teachers’ SRL in 
mathematics, science, and TPCK emerge in the 
context of self-/co-regulatory learning environ-
ments. This call for research re fl ects the urgency 
of the new goals outlined for student learning 
and teacher training in the mathematics and 
science domains (e.g., PISA,  2003  ) . The TPCK of 
preservice teachers who learn in WBLEs is a rela-
tively new topic that has not yet been investigated. 
Integrating the same SRL support based on the 
IMPROVE model into different learning subjects 
for both students’ learning and teachers’ TPCK 
frameworks should be a continuing goal.       

   Appendix 1 

  Self - Questioning Prompts Provided to the Two Experimental Groups     
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What is the 
problem?

What is the
strategy?

What is
similar/different?

Does it make
sense?

  Fig. 3.1    The IMPROVE metacognitive self-questioning prompts: comprehension, connection, strategy, and reflection       

Are my expressions 

correct?

What is my 

conclusion?Would another 

argument be 

appropriate ?

Is my explanation clear?

  Fig. 3.2    Self-questioning that provides self-explanation guidance (SEG): expressions, arguments,  conclusions, and 
clarity       

Did I read the solution?

How can I respond 

regarding the 

correctness of the 

solution/explanation?

Did I check the 

correctness of the 

solution/explanation?

How can I modify the 

solution/explanation?

  Fig. 3.3    Self-questioning that provides group feedback guidance (GFG): read, check, respond, and modify friends’ 
answers and explanations       
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   Appendix 2 

  Screen Shots for Comprehension Task (Student’s Perspective) and for Design Task (Teacher’s 

Perspective)      

Comprehension Task (Student’s Perspective   )
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  Abstract 

 In this chapter we raise two important issues regarding the metacognitive 
self-regulation of learning with technologies: First, adaptation to the 
external context is a core component of self-regulated learning. Empirical 
research regarding task complexity and text complexity – two exemplary 
external conditions – shows that learners systematically adapt their whole 
self-regulated learning process within a hypermedia learning environment 
to these contextual conditions. Therefore, careful construction and evalua-
tion of learning tasks and learning content is warranted. In this context 
communicating and teaching the demands of complex learning scenarios 
deserves special attention. Second, learner characteristics play an impor-
tant role in self-regulated learning and adaptation. Empirical research 
regarding epistemic beliefs – one exemplary learner characteristic – shows 
that learners with absolutistic beliefs will plan and execute different learning 
processes than those with sophisticated beliefs; these differences are espe-
cially pronounced under conditions of high complexity. Given the general 
superiority of the learning and adaptation processes of more sophisticated 
learners such beliefs should be a learning goal of their own and should be 
explicitly addressed in learning scenarios.      

  4      Adaptation to Context as Core 
Component of Self-Regulated 
Learning: The Example of 
Complexity and Epistemic Beliefs       

        Stephanie   Pieschl      ,    Elmar   Stahl   , and    Rainer   Bromme      

R. Azevedo and V. Aleven (eds.), International Handbook of Metacognition and Learning Technologies, 
Springer International Handbooks of Education 26, DOI 10.1007/978-1-4419-5546-3_4, 
© Springer Science+Business Media New York 2013

   Theoretical Framework 

 In our research about metacognition, epistemic 
beliefs, and learning with computer-based learning 
environments (CBLE), we rely on multiple theoreti-
cal frameworks. The COPES model of studying 
(Winne & Hadwin,  1998  )  depicts self-regulated 
learning (SRL) from an information processing per-
spective, focusing predominantly on cognitive and 
metacognitive processes. It is a well-suited umbrella 
for our research because it considers contextual 
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variables such as the complexity of the learning 
content as well as the role of learner characteristics 
such as epistemic beliefs. In line with the general 
COPES model but elaborating certain complemen-
tary aspects, we have more speci fi c assumptions 
about metacognitive calibration, for example, 
regarding complexity (Bromme, Pieschl, & Stahl, 
 2010 ; Pieschl,  2008,   2009  )  and about the function 
of epistemic beliefs in SRL (Bromme et al.,  2010 ; 
Greene, Muis, & Pieschl,  2010  ) . These will be elab-
orated subsequently but can be best understood 
against the backdrop of the COPES model. 

 Learning according to the COPES model occurs 
in four weakly sequenced and recursive stages: (1) 
task de fi nition, (2) goal setting and planning, (3) 
enactment, and (4) adaptation. In the task de fi nition 
stage, a student generates her own perception 
about what the studying task is and what con-
straints and resources are in place. Consequently, 
the student generates idiosyncratic goals and con-
structs a plan for addressing that study task. In the 
enactment stage the previously created plan of 
study tactics is carried out. The adaptation stage 
pertains to  fi ne-tuning of strategies within the 
actual learning task as well as to long-term adapta-
tions based on the study experience. All four stages 
are embedded in the same general cognitive archi-
tecture with  fi ve constituents whose acronym gave 
the model its name: conditions (C), operations (O), 
products (P), evaluations (E), and standards (S). 
Conditions pertain to external task conditions or 
task demands (e.g., task complexity) as well as to 
internal cognitive conditions or learner character-
istics (e.g., epistemic beliefs). Conditions in fl uence 
the whole learning process via operations and 
standards. Operations include all cognitive pro-
cesses (tactics, strategies) that learners utilize to 
solve a learning task. In each learning stage, these 
operations create internal (e.g., mental model) or 
external products (e.g., observable behavior). 
Students’ goals are represented as multivariate 
pro fi les of standards that can be described as a 
pro fi le of different criteria that a student sets for 
the learning task (e.g., targeted level of under-
standing). Evaluations occur during the whole 
learning process when a student metacognitively 
monitors her learning process, namely, the (inter-
mediate) products of her learning process, against 

her standards. When she notices discrepancies she 
is able to perform metacognitive control by exe-
cuting  fi x-up operations (e.g., rereading). 

 Within the COPES framework it is possible to 
model how students might adapt their SRL process 
to important external conditions and how learner-
related internal conditions might impact these 
adaptations. The COPES model speci fi es how con-
ditions interact with other parts of the cognitive 
COPES architecture within all phases of self-regu-
lated learning. However, this model is not speci fi ed 
with regard to speci fi c predictions for speci fi c con-
ditions. In line with this model we acknowledge 
that a multitude of external conditions might be rel-
evant for all kinds of learning scenarios and that a 
multitude of internal conditions might in fl uence 
SRL. However, we focus on two speci fi c examples 
in our research program: Regarding external condi-
tions, we focus on learners’ adaptation to the com-
plexity of the learning content, operationalized as 
adaptation to task complexity or text complexity. 
Regarding learner-related internal conditions, we 
focus on epistemic beliefs. 

   SRL and Calibration to Complexity 

 Complexity of the learning material is one of the 
most in fl uential external contextual demands to 
which learners should adapt their self-regulated 
learning process. As an example we illustrate 
how an ideal self-regulated learner might adapt 
her learning to task complexity according to the 
COPES model (Winne & Hadwin,  1998  ) : This 
learner is confronted with two tasks, task A is 
simple vocabulary learning task and task B is 
complex task of writing an argumentative essay. 
This learner would correctly diagnose task com-
plexity in the task de fi nition stage, namely, task A 
is simple and task B is complex. In the subse-
quent stage of goal setting and planning, she 
would set corresponding learning goals and plan 
to execute corresponding learning strategies, 
namely, for task A simple goals and strategies 
and for task B complex goals and strategies of 
deep elaboration. She would also generate corre-
sponding standards for metacognitively monitor-
ing her whole learning process, namely, simple 
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standards for task A and complex standards for 
task B. In the enactment stage, she would enact 
the previously planned learning strategies and 
constantly and diligently monitor her learning 
process against her standards, thus carefully self-
regulating her learning within both tasks. As a 
result, the products of learning would correspond 
to the given complexity of the task, namely, a 
simple memory trace for task A—vocabulary is 
memorized—while task B might require the con-
struction of a complex mental model and a com-
plex written essay. 

 We de fi ne task complexity in line with Bloom’s 
revised taxonomy of educational objectives 
(Anderson et al.,  2001  ) . Within this taxonomy, 
tasks are classi fi ed with regard to the complexity 
of the underlying cognitive operations (in ascend-
ing order): (1) remember, (2) understand, (3) apply, 
(4) analyze, (5) evaluate, and (6) create (from now 
on referred to as Bloom-categories). These cogni-
tive processes are assumed to be ordered on a sin-
gle dimension from simple to complex (hierarchy 
assumption), and each class of behaviors is pre-
sumed to include all the behaviors of the less com-
plex classes (cumulative hierarchy assumption). 
Note that task complexity in this sense does not 
equal task dif fi culty. As an illustration consider the 
following example: The question “What is the 
capital of Germany?” (Berlin) is a simple remem-
ber task and might be quite easy for German citi-
zens (probably 95% correct answers). The same 
type of question with less familiar content such as 
“What is the capital of Mongolia?” (Ulan Bator) is 
more dif fi cult (probably 20% correct answers) but 
not more complex. 

 To determine the extent of learners’ adapta-
tion to task complexity, we use a method trans-
ferred from traditional research on calibration 
(for more information see Pieschl,  2009  ) . In this 
context the accuracy of learners’ judgments (e.g., 
regarding their con fi dence) is investigated by 
determining how closely these judgments match 
learners’ performance on the corresponding cri-
terion tasks (e.g., a multiple-choice test). Such 
calibration can be measured on an absolute level, 
for example, with the bias score that denotes the 
absolute  fi t between judgments and performance 
or on a relative level, for example, with intraindi-

vidual correlations that denote the covariation of 
judgments and performance. We transfer the lat-
ter idea as well as the methodology of relative 
calibration to relate task complexity to learners’ 
SRL. More speci fi cally, we give learners tasks of 
different Bloom-categories and capture their 
SRL for each task. If learners’ SRL covaries 
positively with task complexity, we conclude 
that such a learner is well-calibrated with regard 
to task complexity: for example, if a learner uses 
more complex SRL processes for more complex 
tasks. The same idea and methodology can also 
be applied to investigate learners’ calibration 
with regard to other external conditions, for 
example, text complexity.  

   SRL and Epistemic Beliefs 

 Epistemic beliefs are internal conditions that 
strongly in fl uence learners’ self-regulated learn-
ing process (Winne & Hadwin,  1998  ) . Epistemic 
beliefs are learners’ personal beliefs about the 
nature of knowledge and knowing. Thus, episte-
mology involves questions pertaining to the ori-
gin, nature, form, limits, and methods of human 
knowledge and questions about the processes by 
which such knowledge is veri fi ed and justi fi ed 
(for an overview see Hofer & Pintrich,  2002  ) . 
One important theoretical assumption is that 
learners’ epistemic beliefs develop from strongly 
absolutistic towards more sophisticated episte-
mologies. The term absolutistic is used to indi-
cate that a person believes, for example, that 
knowledge is certain, an accumulation of facts, 
and can be transferred (effectively) by a person in 
a position of authority. Persons with a sophisti-
cated perspective on the other hand believe that 
knowledge is relative, contextual, and a complex 
network. They accept uncertainty and change-
ability of truth and the notion that knowledge is 
rather construed than given. 

 Based on the COPES model (Winne & 
Hadwin,  1998  )  and elaborations (Muis,  2007  ) , 
we assume that epistemic beliefs act as general 
knowledge structures through which the content 
to be learnt is apprehended, in other words, a 
learner automatically and probably without 
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conscious awareness perceives all learning con-
tent through their personal “lens” of epistemic 
beliefs (Bromme et al.,  2010  ) . With more sophis-
ticated epistemic beliefs, we assume that more 
 fl exible apprehension is possible. However, 
whether a learner acts on these perceptions might 
be highly context-dependent. For example, in 
certain contexts learners might not execute deep 
elaboration strategies even though they would be 
able to do so. This latter idea is consistent with 
context-sensitive epistemic beliefs (Bromme, 
Kienhues, & Stahl,  2008 ; Elby & Hammer,  2001 ; 
Greene et al.,  2010  ) . As an example we illustrate 
how epistemic beliefs might in fl uence how learn-
ers calibrate their SRL to task complexity accord-
ing to the COPES model and elaborations 
(Bromme et al.,  2010 ; Winne & Hadwin,  1998  ) . 
Imagine two learners: learner A has absolutistic 
epistemic beliefs in simple, stable, and certain 
knowledge and learner B has more sophisticated 
epistemic beliefs in complex, tentative, and 
uncertain knowledge. First, consider potential 
main effects of epistemic beliefs. According to 
the COPES model, conditions directly in fl uence 
learners’ standards and operations. If we apply 
this general model to the case of epistemic beliefs, 
we can conclude that learner A might set 
super fi cial standards for SRL (“The goal is 
achieved if I have memorized the facts”; “I will 
complete this task in a short time”) compared to 
learner B (“I have to deeply understand the sub-
ject-matter in order to apply it”; “I will need 
much time to complete the task”). Additionally, 
learner A might enact simple and often super fi cial 
learning tactics and strategies for task completion 
(memorizing) compared to learner B who might 
plan complex strategies of deeper elaboration 
(critically evaluating). Second, consider potential 
interactions with task complexity, namely, how 
epistemic beliefs might impact calibration to task 
complexity. If learners are confronted with the 
complex evaluate task requiring written argu-
ments and counterarguments about a controver-
sial topic, this task might be interpreted in multiple 
ways. The sophisticated learner B might attempt 
to verify each argument by searching for addi-
tional information, whereas the absolutistic 

learner A might take each argument at face 
value or might not even search for information 
contradicting her position given that she believes 
that there should be only one truth. For a very 
simple remember task like a factual question on 
the other hand, these potential differences might 
not be observable. Learner A might approach this 
task with simple strategies because she has a 
general bias to underestimate task complexity. 
Learner B also might plan simple strategies, but 
because this learner more adequately diagnoses 
task complexity. Therefore, we hypothesize that 
students with more sophisticated epistemic 
beliefs are better at  fl exibly and accurately diag-
nosing task complexity because their epistemic 
beliefs act as a more adequate and  fl exible 
apprehension structure (Bromme et al.,  2010  ) . 
Therefore, ideal self-regulated learners with 
sophisticated epistemic beliefs should demon-
strate better calibration to task complexity. 

 To summarize these arguments: First, we 
argue that adaptation to context is a core compo-
nent of SRL and that this adaptation can be cap-
tured by applying the idea and methodology of 
calibration to this issue. Learners who  fl exibly 
adapt their SRL to task complexity are well-cali-
brated with regard to task complexity. Second, 
we argue that epistemic beliefs play an important 
role in SRL, but not in all contexts equally. 
Rather, learners with more sophisticated beliefs 
in complex and tentative knowledge should be 
able to more  fl exibly apprehend the learning con-
tent. Therefore, these learners should show supe-
rior calibration with regard to complexity 
(Bromme et al.,  2010  ) . Both of these arguments 
have important implication for material construc-
tion and evaluation in educational research as 
well as in educational practice.   

   An Illustrative Example: Learning 
About Genetic Fingerprinting 

 We describe our learning material in detail as an 
illustrative example of how our theoretical 
assumptions outlined above could be investi-
gated further. This includes the development and 
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systematic formative evaluation of our hyper-
media environment as well as of corresponding 
learning tasks of different complexity. We 
acknowledge that other learning technologies and 
tasks might be equally well suited and that it 
might even be possible to investigate these issues 
in traditional learning scenarios. In this line of 
argumentation, the learning content is more 
important than the technological implementation. 
But in line with our emphasis on context, we 
concede that the technology itself also might 
suggest assumptions about the epistemology of 
the underlying domain. 

 We chose the topic of genetic  fi ngerprinting—a 
colloquial term for DNA (deoxyribonucleic 
acid) analysis—which is usually taught in 
German high schools but also at the University 
level for a multitude of reasons: First, tasks on 
all levels of complexity (Bloom-categories) can 
be constructed easily. On the one hand genetic 
 fi ngerprinting involves well-proven facts that 
can be used to construct simple remember tasks, 
for example about the structure of DNA. On the 
other hand, some issues within the topic of 
genetic  fi ngerprinting are discussed controver-
sially even within the scienti fi c community. For 
example, it is still not possible to sequence a 
whole human genome in a short period of time. 
Thus all statements regarding matches and non-
matches between two DNA pro fi les, for example 
in forensic cases, can only give probabilistic 
answers. For these issues more complex tasks 
are feasible. Second, these properties of genetic 
 fi ngerprinting also allow for different interpre-
tations of tasks and learning materials. For 
example, if learners possess the absolutistic 
epistemic belief that knowledge consists of sep-
arate and certain facts, they might concentrate 
on factual aspects such as the structure of DNA. 
On the other hand, if learners think that knowl-
edge consists of a complex network of interre-
lated and uncertain bits of knowledge 
(sophisticated view), they might pay more atten-
tion to the problems involved in genetic 
 fi ngerprinting. And third, the topic of genetic 
 fi ngerprinting is perceived as inherently inter-
esting by learners, mostly because of the foren-
sic cases discussed in mass media. 

   How Does Our Hypermedia 
Environment Help Studying SRL? 

 We opted for maximal control of our learning 
material and constructed our own hypermedia 
environment about genetic  fi ngerprinting. This 
hypermedia environment consists of 106 pages, 
which are directly linked by 193 hyperlinks. 
Additionally, each page can be accessed from all 
locations within the environment by advanced 
navigational features such as opening the table of 
contents and clicking on any selected page. Each 
page mainly contains text and within these texts 
all technical terms are hyperlinked to an explana-
tory glossary. Most pages also contain illustrative 
or instructional photos, pictures, or tables. Apart 
from this general description our hypermedia 
environment possesses speci fi c features that 
enable the investigation of our theoretical 
assumptions: 

 First, the pages of the main part of our hyper-
media environment are linked in a hierarchical 
structure, more speci fi cally the pages of the con-
tent chapters about three different methods of 
DNA analysis: mtDNA analysis (14 pages; 
sequence of the mitochondrial genome; see 
Fig.  4.1 ), STR analysis (18 pages; number of 
short tandem repeats at speci fi c noncoding loci), 
and Y-STR analysis (17 pages; same method 
applied to the male Y-chromosome). This means 
that short and easily comprehensible pages are on 
the top introductory level 1 (simple learning 
material), moderately complex pages are on level 
2 (moderately complex learning material), and 
detailed, more scienti fi c pages written for experts 
are on the deepest levels 3 (complex learning 
material). This hierarchical structure can be navi-
gated by direct hyperlinks that are labeled accord-
ing to a family tree metaphor, namely “parent” 
links lead to superordinate pages, “children” 
links to subordinate pages, and “sibling” links to 
neighboring pages on the same hierarchical level. 
Due to this hierarchical structure we can investi-
gate if and how learners adapt their SRL to the 
complexity of the learning material. Furthermore, 
if learners are working on speci fi c learning tasks 
the depth of their navigation gives us  fi rst hints 
about their depth of elaboration.  
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 Second, the hypertext encompasses additional 
pages in three thematic appendices with more 
biological background that go beyond the topic 
of genetic  fi ngerprinting, additional examples 
(e.g., forensic case studies), and information 
highlighting potential problems or uncertainties 
regarding methods of DNA analysis. Especially 
the problem appendices are interesting because 
they potentially facilitate the evaluation and 
justi fi cation of speci fi c methods and procedures. 
Therefore, we assume that learners with more 
sophisticated epistemic beliefs who think, for 

example, that knowledge is tentative would more 
frequently access such information. These appen-
dix pages are accessible not only from the table 
of contents but also from the main hypertext 
pages and are explicitly labeled (see Fig.  4.1 , bot-
tom) and additionally learners have a visual rep-
resentation of the structure of the hypertext (see 
Fig.  4.1 , top). Therefore, we assume that access-
ing these pages is deliberate. 

 Third, the authoring software MetaLinks 
(Murray,  2003  )  that was used to create the hyper-
medium automatically generates log fi les about 

  Fig. 4.1    Visualization of the hierarchical hypertext structure for the chapter on mtDNA analysis ( top ) and sample 
hypertext page ( bottom )       
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all learners’ actions. This trace data details learn-
ers’ ongoing navigation. More speci fi cally, it 
tracks the date and time of each user action 
including the navigational commands used and 
the hypertext pages that were accessed by these 
commands. Such data that directly records the 
task solution process has many advantages over 
self-report instruments, for example researchers 
can draw conclusions about learners’ SRL pro-
cesses. Learners’ self-reports about their meta-
cognitions and learning strategies often show 
little relation to their ongoing SRL process 
(Jamieson-Noel & Winne,  2003  ) . Therefore, it 
might be bene fi cial if researchers use traces, data 
about actual studying events recorded while indi-
viduals engage in learning, to directly observe 
learners’ SRL processes over time (Greene et al., 
 2010  ) .  

   Material Development and Evaluation 

 For investigating learners’ adaptation to context, 
more speci fi cally to task complexity and text 
complexity, it is paramount to construct adequate 
learning material and tasks and systematically 
evaluate their correspondence with theoretical 
assumptions. 

 Models of text comprehension (e.g., Kintsch, 
 1998  )  underline that levels of comprehension are 
not only dependent on the text itself but also on 
learner characteristics (e.g., prior domain knowl-
edge) and reading strategies. Therefore, text 
complexity can hardly be thoroughly determined 
by examining the text alone. However, in general, 
simple texts are characterized by short sentences 
with known words, high structure, conciseness, 
and stimulating additions to enhance readers’ 
motivation (e.g., Langer, Schulz von Thun, & 
Tausch,  1990  ) . More complex texts on the other 
hand are characterized by longer sentences, the 
use of unknown technical terms, less obvious 
structure, more detailed elaborations, and the 
absence of stimulating additions. We created 
texts for different levels of complexity for our 
hypermedium adhering to these criteria. 
Additionally, we had test readers evaluate pages 
of our hypertext with regard to text complexity. 

This series of pilot studies also tested whether the 
texts were comprehensible for laypersons. In the 
 fi rst pilot study, students of psychology ( n  = 24) 
had to evaluate the complexity of 31 printed texts 
developed for the chapter on mtDNA analysis. 
Results show that students judged texts intended 
for the simplest level 1 in the hypertext 
signi fi cantly simpler than those intended for level 
2. Those in turn were judged signi fi cantly sim-
pler than those intended for level 3. However, 
students still indicated a number of comprehen-
sion problems. Therefore, the texts were revised 
to be more comprehensible for laypersons. In the 
second pilot study students of psychology ( n  = 29) 
had to evaluate the complexity of 13 selected 
hypertext pages from the hypertext chapter of 
mtDNA analysis. Furthermore, more objective 
indicators of comprehension such questions 
about the content of the hypertext were adminis-
tered. Results indicate that participants judged 
hypertext pages on more complex hierarchical 
levels o be signi fi cantly more complex, that they 
needed more time to process more complex 
hypertext pages, and that they provided 
signi fi cantly fewer correct answers to multiple-
choice questions about the content of more com-
plex pages. Therefore, we concluded that our 
hierarchical hypertext levels did indeed system-
atically vary in text complexity. 

 We constructed tasks of different complexity 
in accordance with Bloom’s revised taxonomy of 
educational objectives (Anderson et al.,  2001 ; see 
above). Tasks for each Bloom-category were 
constructed in a cyclic process. First, two content 
experts extensively searched through textbooks 
about molecular biology and corresponding web-
sites and extracted relevant tasks. Furthermore, 
these experts were introduced to Bloom’ revised 
taxonomy and constructed several tasks repre-
senting all Bloom-categories. As a result, a pool 
of approximately 100 tasks was established, con-
taining molecular biology tasks as well as very 
speci fi c tasks for the topic of genetic  fi ngerprinting. 
Second, the two content experts as well as three 
content novices, all deeply familiar with the 
revised Taxonomy, independently categorized 
this pool of learning tasks according to the 
Bloom-categories. For 39 tasks all  fi ve raters 
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immediately agreed, for a further 25 tasks only 
one of the  fi ve raters diverged. For the remaining 
tasks divergence in categorizations was discussed 
by all  fi ve raters and led to rephrasing or deletion 
of tasks. As result a pool of 86 learning tasks was 
retained. Third, six tasks for each Bloom-category 
were chosen by the content experts, resulting in a 
total of 36 learning tasks. These tasks were used 
in a pilot study (Stahl, Pieschl, & Bromme,  2006  )  
where students ( n  = 72) had to classify these tasks 
into the correct Bloom-categories. In all subse-
quent studies those tasks were selected that were 
judged to be best matched to the Bloom-
categories. Due to our careful construction and 
evaluation of these tasks and due to the results of 
our pilot study we concluded that our tasks did 
indeed systematically vary in complexity.   

   Empirical Results 

   Calibration with Regard to Complexity 

 Task complexity has a high impact on SRL. For 
simple learning tasks, students in general demon-
strate effective SRL, for example more metacog-
nitive awareness, better learning strategies, and 
more complete information search (Pressley & 
Ghatala,  1988 ; Rouet,  2003 ; Veenman & Elshout, 
 1999  ) , but such simple tasks are detrimental for 
achieving deeper understanding (Gall,  2006  ) . For 
complex learning tasks, students in general dem-
onstrate less adequate SRL, for example less 
metacognitive awareness, fewer learning strate-
gies, and fragmentary information search 
(Pressley & Ghatala,  1988 ; Rouet,  2003 ; Veenman 
& Elshout,  1999  ) , but these complex tasks foster 
superior conceptual understanding (Gall,  2006  ) . 

 Only few studies directly measure learners’ 
calibration to task complexity. Results show that 
during the  fi rst phases of SRL learners demon-
strate good calibration regarding task complex-
ity, they systematically adapt their task de fi nitions, 
goals, and plans to task complexity (Pieschl, 
 2008 ; Stahl et al.,  2006 ; Stallmann,  2007  ) . For 
example, Pieschl  (  2008  )  confronted learners 
( n  = 102) with one task from each Bloom-category 
in random order. For each task, students had to 

imagine they had to solve the task with a hyper-
media system on genetic  fi ngerprinting and then 
had to answer a questionnaire about their task 
de fi nitions, goals, and plans. Results show 
signi fi cant intraindividual correlations between 
the Bloom-categories and learners’ responses on 
all scales. For example, learners indicate that they 
would not plan deep processing learning strate-
gies such as “elaborating deeply” for simple tasks 
but consider those of ascending importance for 
more complex tasks ( G  = 0.54; Goodman-Kruskal 
Gamma correlation). On the other hand they con-
sider super fi cial processing learning strategies 
such as “memorizing” quite important for simple 
tasks but of decreasing importance for more com-
plex tasks ( G  = −0.55). Results of studies focus-
ing on the enactment stages of learning show a 
similar pattern of results. Learners systematically 
adapt their SRL to task complexity (Pieschl, 
Stahl, Murray, & Bromme,  2012 ; Pieschl, 
Bromme, Porsch, & Stahl,  2008  ) . For example, 
Pieschl et al.  (  2012  )  confronted learners ( n  = 129) 
with multiple tasks from different Bloom-
categories, three of which were analyzed: 
A = remember, B = evaluate, and C = remember. 
These tasks had to be solved with the hypermedia 
system on genetic  fi ngerprinting. Computer-
generated log fi les were collected and learners 
had to answer a standardized questionnaire about 
their task-speci fi c SRL processes. Results of a 
log fi le analysis show that learners access more 
hypertext pages for complex tasks and spend 
more time on these kinds of tasks. Furthermore, 
the questionnaire data shows that they judge 
complex tasks to be more complex, are less 
satis fi ed with this kind of task, and they report 
deeper processing for this kind of task. 

 Text complexity also has a high impact on 
SRL. However, these effects seem to be highly 
learner-dependent. In general, readers tend to use 
strategies of deeper elaboration for more com-
plex texts (Veenman & Beishuizen,  2004  ) , but 
text complexity might be detrimental for less 
knowledgeable readers (Salmerón, Kintsch, & 
Canas,  2006  ) . Furthermore, most results indicate 
that metacognitive awareness might be better for 
texts of at least moderate dif fi culty than for sim-
ple texts (Weaver & Bryant,  1995  ) . 
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 Only few studies directly measure learners’ 
calibration to text complexity. Results show that 
learners demonstrate calibration regarding text 
complexity. For example, Pieschl, Stahl, and 
Bromme  (  2008  )  gave advanced students of biol-
ogy ( n  = 25) and of humanities ( n  = 26) 1 h time to 
learn as much as possible about mtDNA analysis 
with the hypermedia system about genetic 
 fi ngerprinting. Computer-generated log fi les were 
collected, learners had to give comprehensibility 
ratings for each accessed hypertext page, and 
subsequently learners had to answer a knowledge 
test. Results show that learners spend less time on 
simple hypertext pages than on more complex 
pages, access a higher percentage of simple 
hypertext pages than of complex pages, and judge 
the simpler pages’ comprehensibility higher than 
that of the complex pages. 

 To summarize, the empirical results reviewed 
above show consistent and strong effects of com-
plexity, for example regarding task and text com-
plexity: Regarding task complexity according to 
Bloom’s revised taxonomy, complex tasks are 
considered more complex and are considered to 
afford more metacognitive planning, re fl ection 
and cognitive enactment. Further, they take lon-
ger to solve and more hypertext pages are 
accessed to solve them. Regarding text complex-
ity, more complex hypertext pages are considered 
more complex and take longer to process. These 
effects are not only consistent across different 
phases of SRL but also across different methods 
(questionnaires, stimulated-recall interviews, 
think-aloud protocols, or navigation log fi les). 
Learners systematically adapt their whole SRL to 
complexity. Therefore, we conclude that adapta-
tion to context such as complexity is a core com-
ponent of self-regulated learning.  

   The In fl uence of Epistemic Beliefs 

 Epistemic beliefs are systematically related to 
SRL, for example on learners’ goal orientation 
(Bråten & Strømsø,  2004  ) , responses to learning 
strategy questionnaires (Cano,  2005  ) , reading 
strategies (Kardash & Howell,  2000  ) , help-seek-
ing behavior (Bartholomé, Stahl, Pieschl, & 

Bromme,  2006  ) , or written argumentation 
(Mason & Scirica,  2006  ) . In general, these stud-
ies show superior SRL processes and outcomes 
for learners with sophisticated epistemic beliefs, 
namely, main effects of epistemic beliefs. 

 Only few studies directly investigate the inter-
action between epistemic beliefs and external 
conditions such as complexity. For example, 
Pieschl et al.  (  2008  )  experimentally manipulated 
learners’ topic-speci fi c epistemic beliefs and 
tested the effects on calibration to task complex-
ity. More speci fi cally, advanced students of biol-
ogy ( n  = 14) and students of humanities ( n  = 21) 
were assigned to two matched subsamples that 
were either confronted with a neutral factual 
introduction to genetic  fi ngerprinting (control 
group; sample: “A gene is the basic unit of genetic 
information”) or with one that was enriched with 
comments about the epistemological nature of 
the presented facts (experimental group; sample: 
“ According to the present state of knowledge , a 
gene  can be considered  the basic unit of genetic 
information”; comments in italics). The CAEB 
questionnaire (connotative aspects of epistemo-
logical beliefs; Stahl & Bromme,  2007  )  was 
administered before and after this manipulation 
and showed that the manipulation was success-
ful. In the main part of the experiment, the learn-
ers were confronted with  fi ve tasks from different 
Bloom-categories: A = remember, B = remember, 
C = evaluate, D = understand, and E = remember. 
During this phase, students were asked every 
2 min “What are you currently thinking about?” 
to capture their concurrent thoughts and com-
puter-generated log fi les were collected. 
Furthermore, two in-depth retrospective stimu-
lated-recall interviews were conducted with each 
student, about a remember task and about the 
evaluate task. Results indicate signi fi cant calibra-
tion to task complexity on all SRL indicators. 
Regarding epistemic beliefs, we found main and 
interaction effects consistent with our assump-
tions. For example, log fi les indicate that learners 
in the experimental group spend more time on 
task across all tasks (main effect) and that the dif-
ference between the experimental and the control 
group was most pronounced for the complex 
evaluate task (interaction). A similar effect was 
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detected for learners’ concurrent thoughts 
(answers to the prompting question: “What are 
you currently thinking about?”) classi fi ed as 
planning: Learners in the experimental group 
uttered more planning thoughts across all tasks 
(main effect) and the difference between the 
experimental and the control group was most 
pronounced for the complex evaluate task (inter-
action). Similar effects were found in the task 
de fi nition, goal setting, and planning phases of 
SRL (Stahl et al.,  2006  ) . However, effects are less 
consistent for high school students (Stallmann, 
 2007  ) , and no effects were found under less 
re fl ective conditions (Bromme et al.,  2010  ) . 

 To summarize, the empirical results reviewed 
above show (mostly) consistent effects of 
epistemic beliefs. In general, more sophisticated 
beliefs are related to better SRL processes and 
outcomes. Additionally, epistemic beliefs seem 
to be most relevant under highly complex condi-
tions. For example, only for a complex evaluate 
task did more sophisticated learners need 
signi fi cantly more time and execute signi fi cantly 
more planning. And only for the most complex 
hierarchical hypertext pages did more sophisti-
cated learners access more hypertext pages and 
execute shorter, more precise searches within 
these pages (Pieschl et al.,  2008  ) . Learners’ SRL 
processes were signi fi cantly impacted by their 
epistemic beliefs. Therefore, we conclude that 
epistemic beliefs play an important role in SRL, 
especially under conditions of high complexity.   

   Challenges and Implications 

 In this chapter we exclusively focused on the exter-
nal condition of task and text complexity and on the 
internal condition of epistemic beliefs. But these are 
certainly not the only conditions relevant to SRL 
nor might they be the most relevant in all learning 
scenarios. This implies that our conclusions are lim-
ited to these exemplary conditions and that it is nec-
essary to determine relevant external and internal 
criteria for any given learning situation. 

 Furthermore, our approach of combining 
log fi le data with other data sources exempli fi es 
methodological challenges of multimethod 

approaches. First, log fi les offer rich information 
about not only the number of navigational actions 
but also the sequence of actions. We need new 
statistical and graphical ways of representing 
this data such as graph theory (Winne, Jamieson-
Noel, & Muis,  2002  ) . Additionally, it is an open 
question, which level of granularity offers mean-
ingful insight. Fine-grained methods that also 
entail sequence information such as path dia-
grams or time series analyses offer rich insights 
but also have strong limitations, mostly regard-
ing the comparability and interpretation of results 
(McEneaney,  2001  ) . Therefore, we decided to 
use aggregate measures such as time or number 
of accessed pages per task. These large-grained 
measures offer no information about the sequence 
of actions or the different navigational com-
mands used to execute these actions (Richter, 
Naumann, & Noller,  2003  ) . Therefore, these 
measures are limited because part of the wealth 
of information is systematically ignored. Second, 
if log fi les are analyzed as stand-alone measure 
conclusions about the cognitive processes behind 
the actions can be made only very carefully. For 
example, if a learner accesses an appendix page 
about problems we cannot be sure if she intended 
to  fi nd further information about the validity of 
the information presented in the base page, if she 
accessed this page by accident, or out of curios-
ity. We hypothesized that learners with more 
sophisticated epistemic beliefs would more fre-
quently access appendix pages about problems 
but the data did not con fi rm this hypothesis. 
However, we cannot conclude that learners with 
more sophisticated epistemic beliefs were not 
concerned with validating the learning content. 
They might have used other criteria for valida-
tion or they might not have found the problem 
appendices in the hypertext due to the structure 
of the hypertext on genetic  fi ngerprinting. Only 
if log fi le information is combined with other 
data sources such as think-aloud protocols, inter-
views, or questionnaire data can we be more cer-
tain in our interpretations. Combining different 
data sources, however, implies a different set of 
limitations and also depends on interpretations 
that are to some degree subjective. Despite these 
limitations of our research methods and analytical 
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procedures we strongly recommend the use of 
such multiple methods because only such meth-
ods can yield in-depth insights into ongoing 
learning processes. 

 The results of our empirical research have 
implications for the theoretical frameworks as 
well as for educational practice. Regarding the 
calibration to complexity, results show consistent 
effects indicating that adaptation to complexity is 
indeed a core component of SRL. However, while 
we diagnosed a signi fi cant and systematic cova-
riation of SRL processes with task complexity, 
the absolute adequacy of this adaptation is ques-
tionable. It might have only small detrimental 
effects to overestimate the complexity of simple 
tasks. For example, a learner might access multi-
ple hypertext pages to verify one’s own answer 
instead of only accessing the one relevant target 
page. One disadvantageous side effect would be 
that this learner had less time for other tasks and 
thus the ef fi ciency of learning might suffer. 
However, underestimating the complexity of 
complex tasks is more detrimental for learning. It 
might result in failure to achieve adequate inter-
nal (e.g., mental model) or external (e.g., essay) 
products of learning. For example, within our 
empirical studies the log fi les show that most stu-
dents did not access all relevant pages for the 
more complex tasks. Thus their understanding of 
the subject matter can only be fragmentary and 
incomplete. Furthermore, students themselves 
explicitly reported that they noticed this problem, 
for example: “I have given a very brief answer 
[…] but you could write much more about this 
topic […], ten pages.” However, we do not know 
if these problems are due to the fact that learners 
misperceived the complexity of this task, to the 
fact that learners adopted inadequate goals and 
plans, or to the fact that they were not able to 
execute adequate operations, for example because 
of the experimental time constraints, because of 
the complex navigation option within the hyper-
text, or because of their limited cognitive capac-
ity. Because of these issues students might have 
enacted less adaptation to task complexity than 
they were capable of or than they would have 
enacted in their natural learning setting (Bromme 
et al.,  2010 ; Pieschl et al.,  2012  ) . 

 Regarding epistemic beliefs, results clearly 
show the importance of this learner characteristic 
in all phases of SRL; more sophisticated epistemic 
beliefs are generally associated with superior 
SRL processes, better learning outcomes, and 
more adaptation to complexity. However, results 
also show partly inconsistent effects. Therefore, 
effects of epistemic beliefs do not seem as clear-
cut as theoretically assumed. One challenge in 
this context is the valid and reliable measurement 
of epistemic beliefs. Theoretically assumed 
dimensions of epistemic beliefs can often not be 
detected empirically and are controversially dis-
cussed (Bromme,  2005  ) . Besides these challenges 
of measurement, research on epistemic beliefs so 
far is mostly limited to correlational data. This 
means that we cannot determine if epistemic 
beliefs are causally responsible for speci fi c SRL 
processes or vice versa. This issue can only be 
determined by experimental studies (Pieschl 
et al.,  2008  ) . Furthermore, it is an open issue on 
which levels of granularity epistemic beliefs 
exist. Keeping the above mentioned limitations in 
mind, we tentatively conclude that epistemic 
beliefs impute and constrain learners’ assump-
tions about the learning content and thus can be 
conceptualized as general knowledge apprehen-
sion structures that can help overcome the learn-
ing paradox (Bromme et al.,  2010  ) . In this sense, 
more sophisticated beliefs allow for more ade-
quate apprehension of learning content and thus 
for better calibration. However, these general 
structures do not seem to exert the same in fl uence 
in all situations but may be activated or deacti-
vated by speci fi c contextual factors (Bromme 
et al.,  2008 ; Elby & Hammer,  2001 ; Greene et al., 
 2010  ) . Epistemic beliefs seem to be most relevant 
and in fl uential in complex learning scenarios. 

 For educational practice this implies that the 
use of complex tasks and complex information 
sources requires special attention. In these cases 
students will differ in their perception of these 
learning scenarios as well as in all subsequent 
SRL phases depending on their learner character-
istics such as epistemic beliefs. One way to deal 
with these differences is to provide adequate 
scaffolding, for example by eliciting an adequate 
understanding of the task or by stimulating 
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adequate goals for the task. In this context, it 
might be especially bene fi cial to also explicitly 
address the epistemic nature of the learning task 
and content as we could demonstrate that epistemic 
beliefs can be manipulated this way (Pieschl et al., 
 2008  ) . This kind of learning support could also 
result in superior calibration to task complexity.      
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  Abstract 

 In this chapter, we overview the  Retrieval-Monitoring-Feedback  (RMF) 
technique, a learning technology designed to promote both durable and 
ef fi cient student learning of key concepts from course material. In the 
RMF technique, key concepts are  fi rst presented for initial study followed 
by RMF trials. Phase 1 of each RMF trial involves retrieval practice, in 
which the concept term is presented as a cue and the student attempts to 
type the correct de fi nition into the computer. In Phase 2 of each trial, the 
student then monitors the quality of the retrieved response using computer-
generated feedback, which helps students evaluate whether their response 
includes the key ideas comprising the de fi nition. In Phase 3, the correct 
answer is presented intact for a self-paced restudy opportunity. The RMF 
program uses the student’s monitoring judgments to schedule subsequent 
practice trials for each item. Recent research has shown that the RMF 
technique can yield relatively impressive levels of long-term retention of 
key concepts. The RMF technique can be used to support learning for 
materials from many different topic domains and promises to bene fi t a 
wide range of learners.   

  5      Retrieval-Monitoring-Feedback 
(RMF) Technique for Producing 
Ef fi cient and Durable Student 
Learning       

        Katherine   A.   Rawson       and    John   Dunlosky     

    Overview of Context 

 A primary goal of education is the acquisition 
of durable knowledge, not just a transient 
increase in the familiarity of information. In 
many school settings, students learn informa-
tion that must be remembered months later, 

such as on standardized tests and for advanced 
courses that follow an introductory course on a 
topic. Accordingly, discovering how to support 
students’ learning of key concepts in a manner 
that ensures long-term retention is a major chal-
lenge for teachers and researchers. Overcoming 
this challenge will not be trivial, given current 
mandates that students demonstrate compe-
tence across many content areas before advanc-
ing in school. Thus, students must not only 
learn important class materials in a way to pro-
mote long-term retention but they must also do 
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so ef fi ciently, so as to allow time to learn all of 
the important content. 

   Learning Technology: Retrieval-
Monitoring-Feedback Technique 

 To help meet this challenge, we are currently 
developing a metacognitive intervention to 
improve the  durability  and  ef fi ciency  of students’ 
learning of key concepts, which often provide the 
foundational knowledge that is requisite for 
mastering more advanced content. Our interven-
tion capitalizes on well-established principles in 
memory research (e.g., Pyc & Rawson,  2009 ;    
Roediger & Karpicke,  2006a  )  and on recent 
advances from research on metacognitive moni-
toring (Dunlosky & Lipko,  2007 ; Lipko, 
Dunlosky, Hartwig, Rawson, Swan, & Cook, 
 2009  ) . More speci fi cally, our intervention, which 
we refer to as the  Retrieval-Monitoring-Feedback  
(RMF) technique, is founded on two principles: 
(a) The durability of learning can be improved by 
spaced  retrieval practice,  and (b) the ef fi ciency 
of learning can be improved if the scheduling of 
practice is based on accurate  monitoring  of learn-
ing that involves appropriate  feedback . 

 We begin with a brief summary of the RMF 
technique, which will help set the stage for the 
next sections. First, key concepts are presented 
one at a time on a computer screen. As an example 
of a key concept from Introductory Psychology, 
“The  self-serving bias  is the tendency to attribute 
positive outcomes to our own traits or characteris-
tics (internal causes) but negative outcomes to fac-
tors beyond our control (external causes).” Students 
study each item at their own pace. Next, items are 
presented for RMF trials, with each trial consisting 
of three phases. As illustrated in Fig.  5.1 , Phase 1 
of each RMF trial involves  retrieval practice , in 
which the concept is presented in question form 
(e.g., “What is the self-serving bias?”), and the 
student attempts to type the correct de fi nition into 
the computer. In Phase 2 of each trial, the student 
then  monitors  the quality of the retrieved response 
using computer-generated  feedback , which helps 
students evaluate whether their response expresses 
the key ideas comprising the de fi nition. In Phase 
3, the correct answer is presented intact for a 

self-paced restudy opportunity. Importantly, the 
RMF program uses the student’s monitoring 
judgments to schedule the next RMF trial for that 
concept. If the student judges that the response 
is incorrect, it will be scheduled for another RMF 
trial later in that study session. If the student judges 
that the response is correct, the program keeps 
track of how many times each item has been judged 
as correctly recalled. Once an item reaches a 
prespeci fi ed criterion, the program drops it from 
further practice. The RMF technique continues 
for a given session until all concepts have reached 
criterion.  

 In the remainder of this chapter, we explore 
the promise of the RMF technique for helping 
students to learn ef fi ciently and to retain impor-
tant concepts over meaningful periods of time. 
We  fi rst consider the target audience and topic 
domains for the RMF technique, and then we 
discuss the general frameworks of self-regulated 
learning that inspired its development. Finally, 
we describe this technique in more detail, dis-
cuss evidence relevant to its promise, and end 
with discussion of some limitations and future 
directions.  

   Target Audience and Topic Domains 

 A strength of the RMF technique is that it can be 
used by many students of differing ages and abili-
ties and for many topic domains and materials. 
Given that the RMF technique has been  developed 
to improve students’ learning of key concepts, it 
can be used to facilitate learning in any course or 
topic domain in which the content includes key 
concepts, facts, or de fi nitions. The broad applica-
bility of the RMF technique partly arises from the 
fact that many content courses at most grade lev-
els require learning of these kinds of materials. 
For example,  fi fth graders studying astronomy 
will need to learn the de fi nitions of  atmosphere , 
 orbit , and  lunar eclipse ; eighth graders studying 
measurement and statistics will need to learn the 
meaning of  independent events  and  probability ; 
and college students in a social psychology course 
will need to learn the phenomena to which the 
terms  self-serving bias  and  just-world hypothesis  
refer. 
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 Our assumption concerning the broad applica-
bility of the RMF technique is further bolstered by 
research that establishes that its key components—
accurate monitoring and the positive bene fi ts of 
retrieval practice—can be applied across a wide 
range of materials. Retrieval practice boosts  learning 
for foreign language vocabulary, de fi nitions, maps, 
facts, and text materials (e.g., Agarwal, Karpicke, 
Kang, Roediger, & McDermott,  2008 ; Carpenter & 
Pashler,  2007 ; Carpenter, Pashler, Wixted, & Vul, 
 2008 ; Chan,  2009 ; Pyc & Rawson,  2010 ; Roediger 
& Karpicke,  2006a  ) . Thus, all of these materials 

will bene fi t from the retrieval practice provided by 
the  fi rst phase of RMF trials (see Fig.  5.1 ). Also, 
when students use an appropriate monitoring tech-
nique, they can accurately monitor their learning of 
key concepts in many different topic domains. The 
monitoring technique illustrated in Fig.  5.1  uses 
idea-unit feedback that allows students to accu-
rately evaluate the quality of what they retrieve dur-
ing the retrieval phase (for details, Improving 
Monitoring of Ongoing Learning). 

 The RMF technique also promises to bene fi t a 
wide range of learners, because learners of many 

  Fig. 5.1    Illustrations of the three phases involved in each 
Retrieval-Monitoring-Feedback (RMF) practice trial. The 
 top panel  illustrates the retrieval phase, the  middle panel  

illustrates the monitoring with feedback phase, and the 
 bottom panel  illustrates the restudy phase. See text for 
details       
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ages pro fi t from retrieval practice and can monitor 
their learning accurately under the right conditions. 
Concerning the former, prior research has shown 
that retrieval practice can improve memory for pre-
school-age children, grade-school students, college 
students, and older adults (e.g., Fritz, Morris, 
Nolan, & Singleton,  2007 ; Logan & Balota,  2008 ; 
Pyc & Rawson,  2011 ; Rea & Modigliani,  1985  ) . 
Under the conditions supported by the RMF 
 technique (discussed in greater detail below), learn-
ers at least as young as middle-school age are very 
accurate at monitoring their learning (Lipko et al., 
 2009 ; Schneider & Lockl,  2008  ) . Thus, the RMF 
technique can be applied to materials from many 
different domains, and students of most ages should 
also be able to take advantage of the technique.   

   Conceptual Framework: Key 
Components of Self-Regulated 
Learning 

 The RMF technique was designed to achieve 
both ef fi cient learning and durable learning by 
helping students to effectively regulate their 
learning. The technique supports effective 
regulation by helping students to accurately monitor 
their learning (to produce ef fi cient learning) and 
to schedule retrieval practice of the to-be-learned 
materials both within and across study sessions 
(to produce durable learning). To understand why 
accurate monitoring and effective scheduling of 
practice are vital, we brie fl y consider general 
theoretical frameworks of self-regulated learning 
(SRL). These frameworks assume that  students 
use their ongoing monitoring of learning in an 
attempt to control their learning (Dunlosky & 
Ariel,  2011 ; Nelson & Narens,  1990 ; Winne 
& Hadwin,  1998 ; for overviews, see Dunlosky & 
Metcalfe,  2009 ; Zimmerman & Schunk,  2001  ) . 
More speci fi cally, students presumably monitor 
their learning to  fi gure out what they still need to 
learn and then control their subsequent study 
strategies and schedules accordingly. 

 To illustrate the relevance of these metacognitive 
processes to effective learning, consider two hypo-
thetical students. When preparing for an upcoming 

exam, a student may judge that she understands a 
concept well and thus decide to stop studying it. 
Preparing for the same exam, another student may 
judge that he has not yet mastered a key concept and 
thus decide to study that concept again during 
another study session. In both cases, the students are 
relying on their monitoring to decide how to control 
their learning. Because of this interplay between 
students’ monitoring and control processes (Flavell, 
 1979 ; Nelson & Narens,  1990  ) , SRL frameworks 
predict that the accuracy of monitoring will in fl uence 
both the ef fi ciency and durability of learning. For 
instance, if the  fi rst student inaccurately judged that 
she would remember the concept on the test (when 
in fact she had not yet learned it well enough to 
remember it later), then her decision to not study it 
further would lead to minimal durability for that 
concept. For the second student, if he inaccurately 
judged that he would not retain the concept (when 
in fact he had learned it well enough to remember it 
later), then his decision to study it further would be 
inef fi cient—his time would have been better spent 
learning other concepts. The importance of accurate 
monitoring for effective learning has been empiri-
cally established (Dunlosky, Hertzog, Kennedy, & 
Thiede,  2005  ) , consistent with the core assumptions 
of SRL frameworks. 

 The ef fi ciency and durability of learning also 
depends on effective control. In the examples 
above, even if both students perfectly monitored 
their learning, poor control decisions could com-
promise both the durability and ef fi ciency of 
learning. Unfortunately, research suggests that 
students do not spontaneously use the most appro-
priate study strategies or schedules of practice. 
For example, students often report passively 
rereading textbook chapters and lecture notes 
(e.g., Amlund, Kardash, & Kulhavy,  1986 ; Carrier, 
 2003 ; Feldt & Ray,  1989 ; Kornell & Bjork,  2007  ) . 
In one self-report study, 65% of the students said 
they reread textbook chapters to prepare for exams 
(the most frequently reported strategy), in com-
parison to only 19% reporting that they used test-
ing as a study strategy (Carrier,  2003  ) . However, 
passive rereading—especially when done in 
massed fashion the night before an exam—is an 
inferior strategy for achieving durable learning 
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(e.g., Cull,  2000 ; Cull, Shaughnessy, & 
Zechmeister,  1996 ; Fritz, Morris, Bjork, Gelman, 
& Wickens,  2000 ; Rawson & Kintsch,  2005  ) . 

 A much more effective study strategy involves 
 retrieval practice , in which a student attempts to 
retrieve concepts from memory sometime after 
they have been studied. Retrieval practice is 
 particularly effective when it is repeated with 
 intervening time and material between repetitions 
(i.e.,  spaced  practice) and when it is combined with 
subsequent restudy opportunities. The bene fi ts of 
spaced retrieval practice have been repeatedly rep-
licated in laboratory experiments (for a review, see 
Roediger & Karpicke,  2006b  ) . However, the bene fi t 
of retrieval practice for durable learning depends 
critically on the amount and timing of practice 
(e.g., Cepeda, Coburn, Rohrer, Wixted, Mozer, & 
Pashler,  2009 ; Pyc & Rawson,  2009 ; Rawson & 
Dunlosky,  2011  ) . Unfortunately, recent research 
suggests that even when students use retrieval prac-
tice to study, they may not spontaneously adopt an 
effective amount or timing of retrieval practice 
(e.g., Kornell & Bjork,  2007,   2008  ) .  

   Detailed Introduction of the RMF 
Technique 

 Inspired by the general SRL frameworks, the 
RMF technique combines two key components—
spaced retrieval practice and metacognitive mon-
itoring with feedback—in a straightforward 
fashion. A student  fi rst studies the to-be-learned 
concepts. Afterwards, he or she attempts to 
retrieve each concept, followed by monitoring 
with feedback (Fig.  5.1 ). The feedback provides 
students with information that they can use to 
judge the quality of their response. Because 
 judgments based on the particular form of feed-
back provided in the RMF technique are highly 
accurate (as described further below), a student’s 
judgments can be used to tailor the schedule of 
further practice for each particular concept. For 
instance, concepts judged as not correctly recalled 
are slated for another spaced retrieval attempt 
within that particular study session. Concepts 
judged as correctly recalled a suf fi cient number 
of times are slated to receive RMF trials in a 

future study session or are dropped entirely from 
study. To obtain durable learning, concepts must 
be scheduled for suf fi cient practice both within 
and across sessions, and to obtain ef fi cient learn-
ing, concepts must be dropped from study as 
soon as possible both within a given session and 
across sessions. 

 Currently, we are implementing the RMF 
technique using a computer program that (1) 
presents the key concepts for initial study, (2) 
prompts students to make retrieval attempts of 
each key concept, (3) provides feedback, (4) 
prompts students to judge their learning of the 
concepts, (5) provides a restudy opportunity, and 
(6) uses the monitoring judgments to schedule 
subsequent practice that is tailored for each stu-
dent and for each concept. Accordingly, the RMF 
technique is sensitive to the differing abilities of 
individual students and to the varying dif fi culty 
of individual concepts. In summary, the key com-
ponents of the RMF technique involve (1) elicit-
ing accurate monitoring judgments, which in turn 
(2) permits tailored scheduling of retrieval prac-
tice for durable and ef fi cient learning. Each of 
these components is described further below, 
along with a brief summary of research involved 
in the development of the RMF technique. 

   Improving Monitoring of Ongoing 
Learning 

 A student who accurately evaluates his or her 
own learning progress will be able to isolate just 
those materials that require further practice (for a 
review, see Dunlosky et al.,  2005  ) . Concerning 
the extent to which students can accurately evaluate 
the quality of their own responses when recalling 
key concepts, college students are often good at 
identifying when a correct answer is correct, but 
they have dif fi culty in accurately evaluating com-
mission errors (i.e., when a response is made but 
it is entirely incorrect). For instance, Rawson and 
Dunlosky  (  2007  )  had college students study key 
concepts and then attempt to recall each one. 
After a given recall attempt, students scored their 
response using a three-point scale, including no 
credit, partial credit, and full credit (for analyses, 
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we assigned values of 0, 50, and 100 to these 
three judgments). Unfortunately, when students 
made commission errors, they rated them as par-
tially correct or fully correct 83% of the time. As 
Fig.  5.2  (open bars) illustrates, college students’ 
mean self-score judgments for commission errors 
were well above 0, the objectively appropriate 
score for these responses. Notably, this situation 
involved no feedback; students were merely 
shown their response and were asked to score it. 
In another group, students received the full 
de fi nition as feedback so that they could compare 
it to their response while they scored it. Although 
providing the full de fi nition as feedback reduced 
overcon fi dence, surprisingly, it did not reduce it 
entirely—students still rated commission errors 
as partially or fully correct 43% of the time 
(Rawson & Dunlosky,  2007  ) , and mean self-
score judgments were still signi fi cantly greater 
than 0 (see Fig.  5.2 ,  fi lled bars).  

 More recently, we have developed a form of 
feedback for the RMF technique that supports 
even better levels of accuracy for judging the 

learning of key concepts (Dunlosky, Hartwig, 
Rawson & Lipko,  2011 ; Lipko et al.,  2009  ) . 
Instead of receiving the entire de fi nition as feed-
back, students are presented with the de fi nition 
broken down into its constituent idea units and 
are asked to evaluate whether each idea from the 
correct de fi nition is contained in their response. 
For instance, as illustrated in the middle panel of 
Fig.  5.1 , the correct de fi nition of  self-serving bias  
is parsed into  fi ve idea units. The student com-
pares his or her response (shown concurrently at 
the bottom of the screen) to each idea unit, mark-
ing those believed to be contained in the response. 
Importantly, college students show high levels of 
monitoring accuracy when making these idea-unit 
judgments, and doing so helps them to evaluate 
the quality of their response. In one study 
(Dunlosky et al.,  2011  ) , we asked students to self-
score their own responses after making idea-unit 
judgments, and students correctly assigned self-
score ratings of “no credit” to their commission 
errors 82% of the time. Although mean self-score 
ratings for commission errors were not quite at 0 
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  Fig. 5.2    Mean self-score judgment made for commission 
errors (with standard errors of the mean), using different 
kinds of feedback; see text for details. For college stu-
dents, the  leftmost  two values are from Rawson and 
Dunlosky  (  2007  ) , and the value for idea-unit feedback is 
from    Dunlosky et al.,  (  2011 , Experiment 1). Note that 

full-de fi nition feedback was also examined in Dunlosky 
et al.,  (  2011  )  and the corresponding value (Mean = 28) is 
nearly identical to the value above from Rawson and 
Dunlosky  (  2007  ) . Outcomes from middle-school stu-
dents are from Lipko et al.  (  2009 , Experiment 2)       
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(Fig.  5.2 , shaded bars), overcon fi dence in these 
errors was dramatically reduced. 

 Improving monitoring accuracy for commission 
errors is of obvious importance, given that 
commission errors rated as completely correct by 
students may be prematurely dropped from further 
practice by the RMF program. The same concern 
holds for student responses that are only partially 
correct, which is a common kind of response 
when students are learning new concepts. 
Fortunately, the improvements in monitoring 
accuracy demonstrated for commission errors 
also obtain for partially correct responses. In one 
study (Dunlosky et al.,  2011 , Experiment 1), 
students who received full-de fi nition feedback 
judged that 46% of their partially correct response 
should receive full credit, whereas students who 
used idea-unit feedback judged that only 13% of 
their partially correct answers should receive full 
credit. These outcomes indicate that making idea-
unit judgments can also help students to judge 
when a response is only partially correct. 

 Given that the aforementioned studies involved 
college students, an important question arises: 
How accurately can younger students assess their 
learning of newly studied key concepts? This 
question pertains to the development of monitor-
ing skills that are central to the RMF technique. 
Perhaps surprisingly, not much is known about 
the age at which monitoring skills involved in 
evaluating one’s learning of complex materials 
reach a level comparable to that of adults (for an 
excellent review of the development of metamem-
ory skills for learning simple materials, see 
Schneider & Lockl,  2008  ) . Recently, we evalu-
ated whether middle-school students would also 
bene fi t from feedback as they evaluated their 
recall responses for science concepts (Lipko et al., 
 2009  ) . Middle-school students studied key concepts 
from course materials. After all of the concepts 
had been studied, students attempted to recall 
each one and then scored the quality of their own 
response as described above. Just like college 
students, grade-school students often scored com-
mission errors as either partially or fully correct 
when no feedback was provided. Most important, 
as shown in the right-hand side of Fig.  5.2 , 
middle-school students’ overcon fi dence was 

reduced when they received full-de fi nition 
feedback and was further reduced with idea-unit 
feedback. Thus, idea-unit feedback may help 
younger learners as well as adult learners better 
evaluate their learning of key concepts, which in 
turn can be used to control schedules of retrieval 
practice.  

   Using Accurate Monitoring to Control 
Schedules of Retrieval Practice 

 The RMF program uses students’ monitoring 
judgments to schedule practice of concepts both 
within and across sessions in a manner that will 
lead to durable retention. In so doing, research 
aimed at developing the RMF technique provides 
important extensions of prior work on retrieval 
practice. For example, the majority of previous 
research on retrieval practice has involved rela-
tively simple verbal materials, such as word lists, 
paired associates, or question prompts that require 
1–2 word responses. Although these materials 
are similar to some kinds of information that 
 students are expected to learn (e.g., the paired 
associates used in past research often included 
foreign language vocabulary words with their 
English translations), much of the information 
students are expected to learn involves material 
that is more linguistically and conceptually com-
plex. Thus, it is important to establish that spaced 
retrieval practice effects generalize to more com-
plex verbal material. 

 In a typical experiment on spaced retrieval 
practice, all items within a condition are treated 
identically. For instance, all items assigned for 
spaced retrieval might be presented for three 
retrieval attempts, regardless of whether each 
item is correctly recalled or not. This experimental 
technique has been valuable for establishing the 
bene fi ts of spaced retrieval practice over various 
control conditions. Nevertheless, this particular 
technique is unlikely to ful fi ll all the requirements 
of an effective learning technology, because (a) it 
does not ensure that all items obtain a durable 
level of learning and (b) it would not be ef fi cient 
(and likely not even possible) for students to 
practice retrieving every concept the same number 
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of times during every study session, given the 
amount of materials that students must learn. 

 Thus, tailored schedules of practice are 
preferable for both durability and ef fi ciency. 
However, for retrieval practice with key concepts, 
tailoring schedules of practice to the learning 
status of individual items for each student depends 
critically on having an accurate means of tracking 
online when items have been correctly recalled. 
Whereas single-word responses (such as those 
involved in the materials used in most prior 
research) can be accurately scored via computer, 
automated technologies are not currently avail-
able for reliably scoring sentence-length responses. 
Fortunately, this end can be met by using students’ 
evaluations of their own learning online, given the 
high levels of judgment accuracy observed when 
students use the idea-unit feedback provided in 
the RMF technique. Thus, accurate monitoring 
affords extension of prior research on retrieval 
practice by allowing investigation of how best to 
tailor schedules of retrieval practice. 

 One outstanding issue concerns which schedule 
of RMF practice (both within a study session and 
across sessions) will yield the most durable learn-
ing while using the least amount of time. The bulk 
of our research to develop the RMF technique for 
key concepts has addressed this issue by answer-
ing three questions. First, how many times does a 
given concept need to be correctly recalled during 
a study session so that the likelihood of recalling it 
during the next session is high? The answer to this 
question will set the parameter for how many cor-
rect RMF trials to schedule for a concept during 
the initial learning session. Second, how many 
times does a concept need to be correctly recalled 
across study sessions so that it will be retained 
across a long retention interval? The answer to this 
question will set the parameter for the number of 
subsequent relearning sessions in which a given 
concept will receive RMF practice. And third, 
which combination of parameter settings (for ini-
tial learning criterion and relearning criterion) will 
not only lead to the highest levels of retention but 
will also involve the fewest number of RMF trials? 
All else equal, the parameter settings that require 
the fewest numbers of RMF trials to obtain a given 
level of retention yield the most ef fi cient learning. 

 We acknowledge that what constitutes an 
acceptable level of retention is somewhat arbitrary 
and may change as a function of student and 
teacher goals. In our research, the criterion test has 
involved gist recall of each concept, and our bench-
mark was to identify parameter values for initial 
learning and relearning criteria that would support 
at least 50% recall (as well as rapid relearning of 
those items not initially recalled correctly) after a 
retention interval of several weeks. To identify 
these parameter values, we have conducted numer-
ous large-scale studies that systematically vary the 
number of RMF trials (both within and across ses-
sions) that occur for each concept. 

 To highlight the importance of exploring crite-
rion-based practice schedules, we provide a brief 
historical account of some of our earlier research. 
Our initial attempts to explore the ef fi cacy of 
retrieval practice for learning key concepts 
occurred prior to discovery of the idea-unit feed-
back technique that supports high levels of moni-
toring accuracy, and thus our early research 
involved  fi xed schedules of practice like those 
used in most prior research. For example, one 
early study was intended to explore the number 
of retrieval practice trials that would be needed to 
obtain adequate retention after a 2-day retention 
interval, which is a typical interval between two 
study sessions in the RMF program. Students 
performed either one or three retrieval attempts 
for each key concept during the initial learning 
session and then completed a  fi nal cued recall test 
2 days later. Much to our surprise, tripling the 
number of retrieval attempts produced only a 
small and nonsigni fi cant improvement in perfor-
mance (24% vs. 19%), and performance overall 
was disappointingly low after such a short retention 
interval. Despite several attempts to improve 
performance in follow-up research, generally by 
having students restudy using strategies that 
would presumably support conceptual processing 
(e.g., paraphrasing, comparing and contrasting), 
none of these processing-based interventions 
boosted recall in a meaningful manner. 

 As hindsight now makes clear, the limitation 
was that we were examining the in fl uence of the 
number of retrieval practice  trials  per concept 
(regardless of whether a concept was correctly 
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recalled during the retrieval phase) and not the 
number of trials that yielded  correct recall  of the 
concept. Our most recent research takes advan-
tage of the idea-unit judgments to systematically 
vary the number of correct RMF trials both within 
and across sessions and has shown substantially 
more impressive levels of retention. Outcomes 
from these studies are reported in detail else-
where (e.g., Rawson & Dunlosky,  2011  ) , but here 
we brie fl y describe some of the key generaliza-
tions and their implications for developing the 
RMF technique. 

 First, as the number of correct RMF trials 
during an initial study session increases, recall 
performance 2 days later increases. However, the 
returns from each additional correct RMF trial 
diminish (cf. Pyc & Rawson,  2009  ) , with four or 
more correct RMF trials yielding relatively 
minimal incremental bene fi t given the additional 
amount of time required to achieve these higher 
initial criterion levels. Second, we have also 
explored the durability and ef fi ciency achieved 
by increasing the number of relearning sessions 
that take place after initial learning. In brief, each 
relearning session involves RMF trials until 
concepts are correctly recalled once. How many 
relearning sessions are needed to obtain long-
term retention? Mimicking the qualitative pattern 
found for initial learning criterion, the effects of 
relearning criterion also show a pattern of dimin-
ishing returns: As the number of relearning ses-
sions increases, so too does performance on 
long-term retention tests 1–4 months later but 
with smaller and smaller incremental gains from 
each next relearning session. Most important, 
combining effective parameter values for initial 
learning criterion and relearning criterion has 
produced impressive levels of retention. For 
example, an initial learning criterion of three cor-
rect RMF trials combined with four subsequent 
relearning sessions produced recall near 60% 1 
month later and near 40% 4 months later. 
Furthermore, after the 4-month recall test, stu-
dents completed RMF trials until they had cor-
rectly recalled each concept once, and the rate of 
this relearning was signi fi cantly faster than initial 
learning. The implication is that even after a sum-
mer break, students can prepare for advanced 

classes on a given topic by quickly relearning 
core concepts using the RMF technique. 

 Unfortunately, few studies have investigated 
the degree to which grade-school students bene fi t 
from spaced retrieval practice and restudy. The 
few studies that have been reported (e.g., 
Metcalfe, Kornell, & Son,  2007 ; Rea & 
Modigliani,  1985  )  demonstrate that grade-school 
students can bene fi t from self-testing and restudy, 
but they also have used simple materials with 
single-word responses. Given these limitations of 
the existing literature, our ongoing research 
exploring the RMF technique with younger learn-
ers is promising. Younger students do bene fi t 
from tailored schedules of retrieval practice with 
key concepts and can achieve relatively high lev-
els of recall performance after a 1-month reten-
tion interval, although we have not yet identi fi ed 
parameter values (for the number of correct RMF 
trials within and between sessions) that yield the 
most ef fi cient and durable learning. However, 
exploration of these parameters for younger stu-
dents—and for any population of learners and 
tasks—is possible using the straightforward 
empirical techniques described for our research 
with college students.   

   Challenges and Implications 

 The implications of the RMF technique are far 
reaching for teachers and students, because the 
technique provides a means to help students 
ef fi ciently master class materials. The RMF 
technique is meant to supplement classroom 
instruction. Our vision is that teachers will be able 
to input key concepts into the program, which can 
then be made available on the Internet, so that 
students can log in and interact with the program 
to learn course content in an ef fi cient manner 
(e.g., logging in for RMF practice two times a 
week). One bene fi t of the RMF technique derives 
from its broad applicability. Any student learning 
any set of materials can use it to their bene fi t as 
long as three goals are met: (1) Students can prac-
tice retrieving the to-be-learned materials, (2) a 
monitoring technique is available that the 
students can use to obtain high levels of monitoring 
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accuracy, and (3) the schedule of RMF trials (both 
within and across sessions) that ef fi ciently yields 
the desired level of retention has been identi fi ed. 
In this chapter, we focused on the application of 
the RMF technique to learning key concepts, 
which provide foundational concepts for many 
content domains. For these concepts, our research 
has begun to meet these goals—we have discov-
ered a monitoring technique that supports accu-
rate monitoring and are beginning to identify 
parameter values to schedule RMF trials in a man-
ner that supports ef fi cient and durable learning. 

 Nevertheless, many challenges remain for 
using the RMF technique for learning key con-
cepts as well as applying this technique to other 
materials. Concerning the former, idea-unit 
judgments do help students to identify when they 
cannot yet correctly recall the gist of a concept 
from memory. That is, these judgments help stu-
dents identify commission errors; students rarely 
mistake them for correctly recalled concepts 
when using idea-unit judgments, and hence, 
these concepts will not be prematurely dropped 
from practice. One dif fi culty arises in that idea-
unit judgments sometimes lead to undercon fi dence 
for correct recalls (but not always, see Lipko 
et al.,  2009  ) . That is, when students correctly 
recall a concept, they do not always realize that 
their response is correct (in terms of the idea-unit 
interface shown in Fig.  5.1 , when a response is 
actually correct, students sometimes do not check 
“yes” for all the idea units). Such undercon fi dence 
can lead to inef fi cient learning, because students 
should not waste time studying concepts that 
have already been learned well enough. 

 However, we believe this limitation is the 
lesser of two evils—namely, students are merely 
at risk for overlearning some concepts (due to 
some undercon fi dence in correct responses), 
which seems better than being at risk for under-
learning (due to overcon fi dence in commission 
errors). Even so, this undercon fi dence in correct 
responses may be easy to minimize, because cur-
rently the RMF program provides very little in 
the way of guidance for how students should 
make the idea-unit judgments. We suspect that 
more detailed instructions and practice with the 

judgments could reduce students’ undercon fi dence 
without producing overcon fi dence. 

 Note that a strength of the RMF technique is 
that it provides students with external support for 
making idea-unit judgments. That is, teachers 
will input the key term concepts and their idea 
units into the RMF program, which then uses this 
input during the monitoring phase of an RMF 
trial. Nevertheless, a potential limitation is that 
students may not be able to use the technique 
without the teacher’s input and the RMF inter-
face. Fortunately, recent research from our labo-
ratory has demonstrated that college students can 
parse concept de fi nitions into idea units and use 
them to accurately judge their recall responses 
(Dunlosky et al.,  2011  ) . The students often do not 
develop the same idea units as do teachers, but 
the student-generated idea units work just as well 
for attaining high levels of monitoring accuracy. 
Thus, idea-unit feedback can be applied by stu-
dents even when the program is not available. Of 
course, the RMF program also keeps track of the 
retrieval history of each concept so that it can 
make appropriate control decisions about whether 
(and when) to schedule concepts for subsequent 
RMF trials. In principle, students could keep 
track of their progress, but even here external 
support may be needed to do so. 

 Finally, although we believe that the RMF 
technique will likely be widely applicable, we 
also admit that advances in metacognitive and 
cognitive technology are still required to apply 
the technique in some domains. For instance, 
researchers still have not discovered how students 
can achieve high levels of accuracy at judging 
their comprehension of lengthier text materials 
(but see Thiede et al.,  2009  ) . We also do not know 
the most ef fi cient and durable schedules of prac-
tice for many kinds of materials and learning goals. 
Discovering these effective schedules is largely an 
empirical challenge that can be met using stan-
dard techniques of cognitive psychology. Thus, 
although the RMF technique currently cannot be 
applied in some domains, applying it more broadly 
can be achieved by conducting investigations to 
better understand students’ metacognitive and 
learning abilities in any target domain.      
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  6      Metacognition:  A Closed-Loop Model 
of Biased Competition–Evidence 
from Neuroscience, Cognition, 
and Instructional Research       

        Neil   H.   Schwartz      ,    Brianna   M.   Scott   , 
and    Doris   Holzberger      

  Abstract 

 In this chapter, we take the position that self-regulation and metacognition 
reveal an undeniable conceptual core that assumes individuals make efforts to 
monitor their thoughts and actions, and try to gain some control over them. In 
the neurosciences, the higher-order processes of monitoring and control are 
referred to as “executive control processes”—processes that should be evi-
dent as neurological activity within known neuroanatomical locations. From 
this vantage point, we closely examine two predominant cognitive models of 
working memory—Cowan’s embedded processing model and Baddeley’s 
model containing a central executive component. We conclude that the for-
mer is the best fi t with research from neuroscience and explains most effi -
ciently the fi ndings of metacognition in instruction.  Thus, we offer a model of 
monitoring and control as a reciprocal function of the same neurologic pro-
cesses that excite and inhibit, in a recursive fashion, the regions of the brain 
responsible for two types of activities involved in learning—the activities 
involved in processing the information itself relative to the goals of a task and 
the activities involved in processing (evaluating and correcting) the original 
activities deployed to seek goal attainment, activities that are metacognitive.      

   Learning without thought is labor lost.  
  ~Confucius   
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  Learning and thinking are synergistic actions of the 
way people develop knowledge to adapt to the 
world. The actions are collateral cognitive opera-
tions that share a unitary outcome of performance. 
And yet, it is not entirely clear how the operations 
actually take place—either at the neurological level 
of the brain, the metaphoric level of the mind, or the 
action-oriented level of behavior. In this chapter, we 
will build a case for metacognition as an integral 
operator in learning and thought. We will put forth a 
position that thinking is best characterized by the 
metacognitive operations learners deploy when they 
attempt to learn—the planning, monitoring, and 
evaluating learners do to regulate their learning pro-
cesses. We will support our case at the level of the 
neuroanatomical structures of the brain, the meta-
phorical architecture of human cognition, and rele-
vant features of instruction. We focus on these three 
levels because of the following: (1) There is a rich 
literature on frontal lobe involvement speci fi cally 
targeted to explain learners’ ability to think and 
learn, (2) decades of research on human cognitive 
architecture has been closely examined in the con-
text of the neurological involvement of frontal lobe 
activation, and (3) learning and thinking are inextri-
cably combined under the auspices of instruction. 
Finally, we will inventory the role of metacognition 
in some of our work and selected works of others. 

   Differentiating Metacognition 
from Self-Regulated Learning 

 Metacognition and self-regulation are not synon-
ymous terms. Individually, the concepts have a 
long, independent history with distinct theoreti-
cal bases (e.g., Bandura,  1977 ; Flavell,  1979  ) ; 
however, over the last few decades, the concepts 
have been blurred by inconsistent use and theo-
retical ambiguity, in addition to the necessary and 
inevitable revisions the concepts require to evolve 
theoretically over time. This led Dinsmore, 
Alexander, and Loughlin  (  2008  )  to review 255 
articles published over the last 5 years, asking the 
question: “Should we expect to hold current gen-
erations to the conceptions  fi rst framed by Flavell, 
Bandura, and others, or is it assumed that alterna-
tive and contemporary conceptions are 
warranted?” 

 Dinsmore et al.  (  2008  )  conclude that 
 metacognition is rooted in the theoretical founda-
tion of Jean Piaget and centers around cognition and 
matters of the mind. Flavell, working from a 
Piagetian theoretical base, was responsible for con-
ceptualizing metacognition as “thinking about 
thinking” (Dinsmore et al.,  2008  ) , a de fi nition that 
still stands 40 years later. Further, metacognition 
is conceptualized as being comprised of two fac-
tors:  knowledge  (what individuals know about their 
own cognition and cognition in general) and  moni-

toring/regulation  (the set of activities that help stu-
dents control their learning) (e.g., Flavell,  1979 ; 
Schraw & Moshman,  1995  ) . Of most importance is 
the focus on endogenous characteristics (Moshman, 
 1982  ) —that is, metacognition is within the realm 
of the mind with much less concern over the 
human–environment interaction. Metacognition 
deals primarily with re fl ective abstraction of new 
or existing cognitive structures. 

 Self-regulation, on the other hand, originates 
from Bandura’s  (  1977  )  writings emphasizing the 
person-environment interaction, the importance of 
emotional and behavioral regulation, and the regu-
lation of motivation. In short, Dinsmore et al. 
 (  2008  )  describe self-regulation as “the reciprocal 
determinism of the environment on the person, 
mediated through behavior. Person variables 
include the distinct self processes that interact with 
the environment through one’s actions” (p.393). 
Thus, self-regulation consists of the “higher order 
control of lower order processes responsible for the 
planning and execution of behavior”—in addition 
to emotional control (Ban fi eld, Wyland, Macrae, 
Munte, & Heatherton,  2004 ; Efklides,  2006  ) . 

 We chose to start from Schraw, Crippen, and 
Hartley’s  (  2006  )  de fi nition of self-regulation as con-
sisting of three main components: cognition, meta-
cognition, and motivation. It is within this framework 
that we examine the overlapping conceptual space 
between self-regulation and metacognition. We are 
most interested in the individual’s ability to monitor 
his or her own thinking, with or without environ-
mental interaction. This monitoring action  fi ts within 
the “multidimensional conceptual space of self- 
regulated action” that Kaplan  (  2008  )  put forward. 
This conceptual space, Kaplan  (  2008  )  contends, is 
the abstract “umbrella” under which metacognition 
and self-regulation stand. The commonalities 
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between self-regulation and metacognition reveal an 
undeniable conceptual core binding the constructs, 
namely, that individuals make efforts to monitor 
their thoughts and actions and to act accordingly to 
gain some control over them. It is, in effect, a mar-
riage between self-awareness and intention to act 
that aligns these bodies of work (Dinsmore et al., 
 2008  ) . In short, metacognition and self-regulation 
are not mutually exclusive; rather, they are “sub-
types of the same general phenomenon of self-
regulated action” (Kaplan,  2008  ) . 

 The question becomes, then, not what is 
different between these concepts but which 
subcomponent one is interested in studying. 
Thus, the distinction between self-regulation and 
metacognition is less important to the conceptual 
center of this chapter; one’s ability to monitor 
and control their thinking, regardless of theoretical 
roots, is of the utmost importance when examin-
ing the connection to cognitive architecture and 
the underlying neurological connections.  

   The Neuroanatomy of Executive 
Control 

 Fernandez-Duque, Baird, and Posner  (  2000  )  
suggested that metacognition could bene fi t from 
a cognitive neuroscience perspective where meta-
cognitive regulation is examined in terms of the 
processes of executive control. The rationale for 
such a position is based on the work of Shimamura 
 (  2000  )  and others (c.f.    Bench, Frith, Grasby, & 
Griston,  1993 ; Rugg, Fletcher, Chua, & Dolan, 
 1999  )  who have successfully mapped the concept 
of executive function onto speci fi c mental opera-
tions, anchoring the operations within speci fi c 
anatomical structures of the brain. Indeed, if 
Kaplan  (  2008  )  is correct that individuals monitor 
their thoughts and actions—exerting some con-
trol over them—then monitoring and control 
should be evident as neurological activity within 
known neuroanatomical locations. Alternatively, 
describing the activity of speci fi c brain locations 
implicated in metacognition helps delineate and 
de fi ne speci fi c metacognitive functions. 

 Nelson and Narens  (  1990  )  suggested that meta-
cognitive regulation is principally a  coordinating  
activity made up of both bottom-up and top-down 

processes—cognitive monitoring and cognitive 
control, respectively. Monitoring is responsible for 
such processes as error detection, attention, and 
source monitoring in memory retrieval; control is 
seen in con fl ict resolution, error correction, inhibi-
tory control, planning, and resource allocation. The 
coordination is accomplished via a reciprocal 
in fl uence at two levels of analysis—an object level 
and a meta-level. Metacognitive  monitoring  
involves the  fl ow of information from the object 
level to the meta-level where judgments of learning 
and feelings of knowing are evaluated by the 
learner; metacognitive  control  refers to the learn-
er’s regulation of information processing where 
attention is monitored and cognitive strategies are 
deployed to manage learning performance. The 
point is that there is a strong relationship between 
metacognition in terms of monitoring and control 
and brain-based executive functions. In fact, there 
is now “incontrovertible evidence suggesting a 
trend toward a cognitive neuroscience perspective 
for many if not all aspects of human cognition” 
(Shimamura,  2000 , p. 320) including metacogni-
tive monitoring and control (Shimamura,  2008  ) . 
That is, the spatial resolution of event-related fMRI 
has become so precise that the ability to identify 
regions of brain activation has become extremely 
impressive, allowing for replicable patterns of acti-
vation to be observed across laboratories. This 
means that it is now possible to observe the meta-
cognitive functions that were originally derived 
from theory, as in vivo brain tissue activation in the 
context of behavioral activity within carefully con-
trolled experiments of thinking and learning. 

  In the neurosciences, the higher-order pro-

cesses of metacognitive monitoring and control 

are referred to as  “executive control processes.” 
We now know that separate, albeit interactive, 
frontal areas of the brain are critically involved in 
these processes (c.f. Cummings,  1994 ; Pannu, 
Kaszniak, & Rapcsak,  2005  ) . In fact, recent evi-
dence from neuroscience has led to the conclu-
sions that (1) there is a strong correlation between 
indices of frontal lobe structural integrity and 
metamemory accuracy and (2) the combination of 
frontal lobe dysfunction and poor memory 
severely restricts metamemory processes. The 
term metamemory is used here to note the 
 synergistic effect of monitoring and control 
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 processes on successful memory functions. 
Speci fi cally, patients with damage to the frontal 
lobe show impairments in metacognitive moni-
toring associated with feelings of knowing an 
answer, before the answer is given, and evalua-
tion—the kind of evaluation in which learners 
must evaluate contextual information such as 
remembering when or where some event occurred 
or who presented the information (Nolde, Johnson, 
& D’Esposito,  1998 ; Rugg et al.,  1999  ) . 

 Other judgments and feelings are also good 
indices of metacognitive monitoring–for example, 
feelings of knowing judgments, ease of learning, 
tip-of-the-tongue feelings and retrospective 
con fi dence judgments, and global predictions and 
   postdictions. Indeed, all these indices have been 
used to provide evidence with neurological 
patients that the prefrontal cortex is an essential 
region for performance and re fl ects the  monitor-

ing  function of metacognition. For example, in 
patients with Korsakoff’s syndrome, Moscovitch 
and Melo  (  1997  )  found that frontal lobe lesions or 
dysfunction results in a common occurrence of 
confabulation, because of a breakdown in search 
mechanisms and poor metacognitive monitoring. 
Schnyer et al.  (  2004  )  had learners with speci fi c 
frontal lobe damage learn sentences and make 
judgments of feelings of knowing and retrospec-
tive con fi dence of the last word in each of several 
sentences. The learners performed poorer than 
normal controls on their feeling of knowing judg-
ments. In fact, lesion analysis revealed an overlap-
ping region of the right medial prefrontal cortex in 
the learners with frontal damage who performed 
the poorest on the task. Finally, Pannu et al.  (  2005  )  
examined differences in performance between 
patients with frontal lobe damage and healthy 
controls during a learning task in which the par-
ticipants were asked to make feeling of knowing 
and retrospective con fi dence judgments in a face-
name retrieval task. The two groups performed 
similarly when the faces were either extremely 
familiar or extremely unfamiliar, but quite differ-
ent when the faces were of intermediate familiar-
ity. Pannu et al.  (  2005  )  explained that the patients 
with damage to the right ventral medial prefrontal 
cortex monitored more poorly, suggesting that the 
“monitoring mechanism is engaged most criti-
cally when decisions are dif fi cult” (p. 112). 

 By the same token, executive functions of the 
frontal cortex are involved in metacognitive  control  
as well. Nagel  (  2009  )  found that high-level reason-
ing is an index of strategic behavior controlled by 
neural activity in the medial prefrontal cortex when 
learners believe they are controlling their cognition 
in the presence of a human rather than a machine. 
McGlynn and Kaszniak  (  1991  )  observed impair-
ment in metacognitive control process associated 
with the allocation of time when learners with 
Huntington’s disease had to search memory for 
answers to general information questions. 
Huntington’s disease is an inherited degenerative 
disorder in which dysfunction exists in the frontal-
subcortical circuits of the brain (Cummings,  1994  ) . 
Finally, metacognitive control has been observed in 
neuroimaging studies of the Stroop effect, where 
learners must resolve the con fl ict between the name 
of a color and the color in which the name is printed 
by  inhibiting  an incorrect response when the word 
and its color are incongruent. The neuroimaging 
data consistently reveal activation of the anterior 
cingulate within the prefrontal cortex (c.f. Carter, 
Mintun, & Cohen,  1995  ) . 

 In gist, Fernandez-Duque et al.  (  2000  )  summed 
up the neurological evidence this way:

  Neuroimaging studies have shown activation of a 
network of frontal areas in tasks of executive control. 
The activated areas usually include the anterior cin-
gulated and supplementary motor area, the orbitof-
rontal cortex, the dorsolateral prefrontal cortex, and 
portions of the basal ganglia and the thalamus. The 
tasks that activate these areas typically require sub-
jects to deal with con fl ict, error, or emotion, there-
fore demanding effortful cognitive processing (Bush 
et al.,  1998 ; Bush, Luu, & Posner,  2000  ) . These 
 mental abilities may be the building blocks that 
metacognitively-sophisticated thinkers use in their 
achievement of complex tasks, such as problem 
solving, strategy selection, and decision making.   

 Based on the evidence above, we believe that 
knowledge of the neurological underpinnings of 
metacognition is important because it leads to 
testable hypotheses of instruction. Consider 
recent work by Fugelsang and Dunbar  (  2005  )  on 
conceptual change. Fugelsang and Dunbar used 
fMRI to investigate the patterns of neurological 
activation when students were acquiring new 
scienti fi c knowledge. The question was whether 
the students would change their relatively naïve 
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understanding of scienti fi c concepts when given 
new information either consistent or inconsistent 
with theory plausible to their previously held 
beliefs; the second question was whether differ-
ent parts of the brain would be activated under 
the two plausibility conditions. What the research-
ers found bears directly on instruction. When 
given data consistent with their previous scienti fi c 
understanding, the students showed activation of 
neural networks in the caudate and parahip-
pocampal gyrus (C and PG)—networks well 
known to be involved in learning. However, when 
presented with data inconsistent with their previ-
ously held beliefs, activation was seen in the 
anterior cingulated cortex and the dorsolateral 
prefrontal cortex, with no activation of the C and 
PG. This suggests that when new information  fi ts 
in well with information students already know, 
learning networks are activated, but when infor-
mation does not make good sense in terms of stu-
dents’ existing knowledge, students activate 
neural networks that actually  inhibit  the develop-
ment of new learning. The  fi nding has implica-
tions for our purposes here because it attests to 
the in fl uence of students’ executive control on the 
ways teachers and instructional designers might 
approach their delivery of instruction.  

   Working Memory: The Link Between 
Metacognition and Executive Control 

 One of the best ways to make sense of neurologi-
cally based executive processes in terms of meta-
cognitive monitoring and control is to examine 
both levels in the context of a single model. After 
all, a single model permits each to be explained 
relative to the other using a framework common 
to both. We chose Baddeley’s model of working 
memory (Baddeley,  2003  )  for such a purpose, 
because the model has had a substantial in fl uence 
in generating research of human cognitive pro-
cessing. Indeed, Jonides et al.  (  2008  )  pointed out 
that “between the years 1980 and 2006, of the 
16,154 papers that cited ‘working memory’ in 
their titles or abstracts, fully 7,339 included cita-
tions to Alan Baddeley” (p. 195). 

 Baddeley’s model of working memory 
(Baddeley,  2003  )  is an extension of the tripartite 

model of human cognitive architecture originally 
proposed by Broadbent  (  1953  )  and later developed 
by Atkinson and Shiffrin  (  1968  ) . Designed to 
explain the dynamic functions of in vivo thinking, 
the model of working memory can be used to 
account for the executive control processes investi-
gated within the neurosciences and the concept of 
metacognition evolving from studies of cognition 
and cognitive performance.  In short, we outline the 

model here because it is an effective framework 

with which to map the overlap of each and explain 

the importance of metacognition in instruction . 
 Working memory, as described by Baddeley 

 (  2000  ) , is a four-component model comprised of 
two slave systems—the visuospatial sketchpad 
and the phonological loop—an episodic buffer 
and a central executive. The sketchpad is assumed 
to hold visuospatial information for further pro-
cessing and is believed to be fractionable into 
separate visual, spatial, and possibly kinesthetic 
components. The phonological loop is assumed 
to hold verbal and acoustic information using a 
temporary store and an articulatory rehearsal system. 
The episodic buffer is postulated to be a limited 
capacity system providing temporary storage of 
information in the form of multimodal codes and 
capable of binding information from the other 
components, and from long-term memory, into a 
unitary episodic representation. Finally, the cen-
tral executive is conceived as the part of the 
model capable of “retrieving information from 
the episodic buffer in the form of conscious 
awareness, re fl ecting on that information and, 
where necessary, manipulating and modifying it” 
(Baddeley,  2000 , p. 420). Baddeley, Allen, and 
Hitch ( 2010 ) contend that executive control is at 
the “heart of working memory” (p. 223).  

   The Role of the Central Executive 
in Working Memory 

 Baddeley’s  (  2000  )  concept of the central executive 
implicates the two hallmark features of metacogni-
tion, namely, monitoring and control. In effect, the 
central executive was postulated to be the compo-
nent responsible for determining whether attention 
is necessary for deployment under conditions when 
a person is required to learn, solve a problem, or 
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act in an unfamiliar way. Routine actions such as 
reciting the alphabet or driving a car are automatic 
and place only a light demand on attention, but 
when routine action is impossible, a  supervisory 

attention system  (SAS) (Shallice,  1988  )  is proba-
bly deployed capable of re fl ecting on alternative 
plans of action and biasing behavior in the direc-
tion of the actions most likely to lead to a goal. 

 However, there was a problem with the central 
executive as originally explained using the SAS. 
The central executive was conceived purely as an 
attentional allocation and deployment system, but 
evidence from a number of investigations suggested 
that this could not entirely be the case. Data from 
studies examining people’s capacity to focus atten-
tion, divide attention between two or more sources, 
switch attention between tasks, and link informa-
tion between working and long-term memory failed 
to entirely support the central executive in this 
capacity (Baddeley et al., 2010). Investigations  did  
support the attentional focus function (c.f. Logie, 
Gilhooly, & Wynn,  1994  ) . Empirical results also 
supported the assumption that the central executive 
was likely responsible for dividing attention 
between two or more sources (Logie, della Sala, 
Wynn, & Baddeley,  2000  ) . But, the other two func-
tions were not unequivocally supported by research. 
Speci fi cally, task switching seemed to be better 
considered a result of a number of different pro-
cesses rather than a single executive process (Saeki 
& Saito,  2004  ) , and the linking function was prob-
ably better conceptualized in terms of a working 
memory component entirely different than the cen-
tral executive. Thus, Baddeley et al. (2010) pro-
posed an episodic buffer, the nature of which they 
described as “a buffer in the sense that it is a limited 
capacity temporary store that forms an interface 
between a range of systems all having different 
basic memory codes; having a multi-dimensional 
coding system; [and] episodic in the sense that it is 
capable of holding episodes, and integrating chunks 
of information that then became accessible to con-
scious awareness” (p. 229). 

 And yet, there are serious questions as to how 
the episodic buffer functions in conjunction with 
the central executive, whether the episodic buffer 
and the central executive are clearly responsible 
for different cognitive functions, whether the two 

can be anchored in different or complementary 
neurological functions of the brain, and whether 
metacognition can be explained in terms of both 
components at both a neurological and cognitive 
level. It is certainly conceivable that the central 
executive may be responsible for metacognitive 
monitoring, and the episodic buffer may be 
responsible for metacognitive control.  If this is 

true, then brain activation associated with the 

central executive might be expected to be princi-

pally attentional, and brain activation associated 

with the episodic buffer might be based on com-

posite operations of speci fi c brain systems acting 

to control the integration of information .  

   Implicating the Episodic Buffer 
in Metacognitive Control 

 Repovs and Baddeley  (  2006  )  postulated that the 
episodic buffer was the working memory compo-
nent responsible for creating and manipulating 
novel representations, creating a mental modeling 
space that enables the consideration of possible 
outcomes, and provides the basis for planning 
future action. Thus, the episodic buffer would seem 
to be the part of working memory responsible for 
more integrative processing during learning. 

 However, if the episodic buffer were the section 
where information is integrated (where “binding” 
takes place), two things would have to be evident. 
One, the central executive and the episodic buffer 
sections should have relatively independent actions 
on information during processing, and two, the 
brain regions activated for the two working mem-
ory sections and their respective actions (e.g., 
attention and binding, respectively) should be dif-
ferent. Unfortunately, neither the  fi rst nor the sec-
ond condition appears to be the case. The two 
components do not appear to have entirely inde-
pendent actions (   Chein & Feiz,  2010  ) , the actions 
are not contained in separate and unrelated regions 
of the brain (c.f. Baddeley, Allen, & Hitch,  2010 ), 
and evidence from functional neuroimaging stud-
ies provides little, if any, support for the buffer’s 
binding function (Allen, Baddeley, & Hitch,  2006 ; 
Rossi-Arnaud, Pieroni, & Baddeley,  2006  ) . 
Instead, there is substantial evidence that the “con-
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cept of specialized buffers do not adequately map 
onto neural architecture at all. Findings appear 
more consistent with a system in which active 
maintenance involves the recruitment of the same 
circuitry that represents the information itself, 
with different  circuits for different types of infor-
mation” (D’Esposito,  2007 , p. 764). 

 In addition, compartmentalization of working 
memory into components consisting of a central 
executive  and  an episodic buffer is based on 
research that is very complex and hotly debated, 
and there is evidence that, as sovereign entities, 
there is no need for a central executive and episodic 
buffer to actually exist. As Rawley and 
Constantinidis  (  2009  )  explained, it is true that 
Baddeley’s working memory components refer to 
functional rather than anatomical units, but there 
should be a functional neurology to the subsystems, 
and there does not appear to be. In fact, with regard 
to the central executive, the prefrontal cortex should 
be most actively involved when the central execu-
tive is activated, if the central executive is respon-
sible for controlling and coordinating information 
through the slave systems and the episodic buffer. 
However, “physiologic evidence indicates that pre-
frontal neurons in area 46 represent spatial and 
object attributes of visual memoranda in corre-
spondence to the visual-spatial sketchpad (Rao, 
Rainer, & Miller,  1997  )  while at the same time pro-
viding neural correlates of executive functions such 
as rule execution and category classi fi cation 
(Freedman, Riesenhuber, Poggio, & Miller,  2001 ; 
Wallis, Anderson, & Miller,  2001  ) ” (Rawley & 
Constantinidis,  2009 , p. 133). The problem is 
apparently the same for the other subsystems. All 
of the subsystems appear to activate multiple brain 
areas, including both the prefrontal and anterior 
cingulate cortices (Smith and Jonides,  1999  ) . 

 Thus, an episodic buffer is not a utilitarian 
concept with which to explain metacognitive 
monitoring or control.  

   Implicating the Central Executive 
in Metacognitive Monitoring 

 According to Repovs and Baddeley  (  2006  ) , the 
central executive has always been the “most 
important but least understood and least empiri-

cally studied component of the multi-component 
working memory model” (p. 12). However, based 
on a careful and exhaustive review of the evi-
dence, Baddeley and his colleagues also con-
tended that “in complex cognitive abilities, the 
central executive seems to be mostly involved as 
a source of attentional control, enabling the 
focusing of attention, the division of attention 
between concurrent tasks, and as one component 
of attentional switching” (Repovs & Baddeley, 
 2006 , pp. 14–15). Thus, the role of the central 
executive seems to be the functional component 
of working memory principally responsible for 
the allocation, deployment, and maintenance of 
attention during learning. 

 There is also evidence that the central execu-
tive is predominantly responsible for attentional 
processes. In the time-based-resource-sharing 
(TBRS) model proposed by Barrouillet and 
Valérie  (  2010  ) , information in working memory 
is maintained by a rapid switching between brief 
processing and storage, allowing for memory 
traces to be constantly refreshed by attention. 
Raye, Johnson, Mitchell, Greene, and Johnson 
 (  2007  )  point out that this recursive refreshing 
involves the left dorsolateral prefrontal cortex. 
The same is true for the embedded processing 
model of working memory (Cowan,  1999  ) . While 
structurally different from Baddeley and col-
leagues’ four-component model and wherein a 
central executive is not postulated per se, the 
embedded processing model nevertheless does 
postulate the operation of a central controller. 
Most importantly, the controller is purported to 
supervise the preservation of information in 
working memory by iteratively subjecting it to a 
recursion of attentional focus (Cowan,  1999  ) —a 
reactivation strategy that Lewandowsky and 
Oberauer ( 2008 ) refer to as “attentional refresh-
ing.” Finally, Chein and Feiz  (  2010  )  provide neu-
roimaging and corroborating behavioral evidence 
to support the central controller. 

 Thus, attention is manipulated by some sort of 
attention controller—a controller that is moder-
ated by the individual, necessary for other cogni-
tive processes to be deployed, and grounded in 
areas of the brain known to be involved in atten-
tional focus. As Barrouillet and Valérie  (  2010  )  
point out: “processing most often requires the 
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selection, activation, and maintenance of goals 
and sub-goals, the selection of relevant informa-
tion, the retrieval from long-term memory of 
related items of knowledge, the planning and 
monitoring of adapted strategies, and response 
selection,  all activities known as requiring atten-

tion ” (italics added) (p. 356). Thus, the evidence 
suggests that the allocation, deployment, and 
maintenance of this attention are executive func-
tions grounded in the neurological activity (prin-
cipally, but not exclusively) of the prefrontal 
cortex. If attention can be assumed to be integral 
to monitoring per se, then the central controller is 
likely responsible for what is postulated to be the 
monitoring function of metacognition. 

 At the same time, most agree that attention 
directed top-down (e.g., internal representation to 
behavioral action) is based on information held in 
working memory (c.f. Bundesen,  1990  ) . Thus, 
from a top-down approach, using visual stimuli 
as an example, Lavie and colleagues (Forster & 
Lavie,  2007 ; Lavie,  2005  )  demonstrated that 
one’s ability to  fi lter out irrelevant stimuli during 
selection of visual stimuli depends on the pro-
cessing load in working memory. As the load 
increases, fewer resources are available to sup-
port the ef fi cient selection of targets relative to 
the rejection of distracters. The net effect is an 
increase of the interference from distracters under 
conditions of high working memory load. On the 
other hand, there is a decrease of the interference 
effect of distracters even when the complexity of 
a visual display is high. This suggests that the 
allocation of attention is selectively deployed-- 
and is based on a biased competition model of 
attention (Desimone & Duncan,  1995  ) .  That is, 
stimuli compete for selection at multiple levels of 
representation, with the winner gaining control of 
both perceptual and response systems. Thus, 
working memory acts to bias the competition for 
attention to favor objects that  fi t the goals of the 
task.    Soto, Hodsoll, Rotshtein, and Humphreys 
 (  2008  )  suggest that prefrontal cells are implicated 
in this attention-biasing effect by being involved 
in prioritizing the relevant goals for tasks.    Thus, 
“attentional refreshing,” “recursion of attentional 
focus,” “biased competition,” and other ways of 
describing the allocation of attention are volun-

tary processes of cognitive engagement learners 
use to  monitor  the deployment of other cognitive 
processes.  

   Implicating the Central Executive 
in Metacognitive Monitoring 
and Control 

 The evidence above suggests that the prefrontal 
cortex is of critical importance in the monitoring 
function of the central executive. However, with-
out an episodic buffer, it must have a controlling 
function as well—to be able to control “when 
behavior must be guided and controlled by inter-
nal states and intentions, when automatic 
responses have to be suppressed, and when tasks 
require the establishment of new or rapidly 
changing mappings between perception and 
action” (Wolters & Raffone,  2008 , p. 2). Indeed, 
the prefrontal cortex is well positioned to coordi-
nate processing in the rest of brain because it is 
strongly interconnected with reciprocal connec-
tions to virtually all other neocortical and subcor-
tical brain regions (Constantinidis & Procyk, 
 2004 ; Rawley & Constantinidis,  2009  ) . 

 The evidence from neuroscience suggests that 
the prefrontal cortex  does  control behavior, but it 
does so by  modulating  rather than simply  trans-

mitting  neural impulses. 
 According to Wolters and Raffone  (  2008  ) , 

“simple adaptive behavior rests on a cycle of 
 perception, action, and perception-of-action 
results,” but the prefrontal cortex allows an “inter-
nalization of this loop, freeing the organism of 
the restrictions of being aware of, or acting upon, 
physically present objects or situations only.” 
This means that the prefrontal cortex can orches-
trate other brain regions in the manipulation of 
internal representations, independent of the pres-
ent environment; it can maintain physically 
absent information in an active state by recurrent 
connections between itself and the rest of the cor-
tex, and it can redirect actions of monitoring, 
attention, and control by activating and or inhibit-
ing particular motor programs. More importantly, 
its capacity for recurrent connections with mem-
ory systems, in addition to its mechanisms for 
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combining information within neural loops, 
allows for the formation and updating of future 
goal states and ways of achieving them. Taken 
together, the functions of the prefrontal cortex are 
clearly involved in cognitive control, relative to 
the regulation and in fl uence of other brain 
regions. 

 But, the prefrontal cortex is responsible for 
cognitive control by virtue of three interdepen-
dent functions—maintenance, attentional con-
trol, and integration (Wolters & Raffone, 
 2008  ) —the same functions erroneously believed 
to be associated with an episodic buffer. 
Maintenance refers to the process of actively 
holding a limited amount of task-relevant infor-
mation supplied by a preceding event; attentional 
control is the top-down selective activation of the 
representations of task-relevant stimuli and their 
corresponding responses; integration is the com-
bination and reorganization of information from 
different sources in the service of controlling the 
execution of a task. Maintenance is the result of 
neurological patterns of activation borne from 
speci fi c external inputs oscillating in a recurrent 
loop between multiple networks of prefrontal and 
other cortical cells in regions of the brain that are 
specialized for the nature of the input (Ranganath 
et al.,  2004  ) . Attentional control seems to operate 
in a biasing and competitive fashion where neu-
ronal responses of the prefrontal cortex bias 
neuronal responses in posterior parts of the brain, 
creating a competition of activation and  suppression 
for the task-relevant and task-irrelevant stimuli, 
respectively, required for task performance (Miller 
& Cohen,  2001  ) . Integration appears to be a hier-
archically arranged deployment of control, cas-
cading down from superordinate prefrontal 
cortical modules specialized for large-scale inte-
gration, to subordinate modules that are relatively 
specialized for processing simple tasks (Koechlin, 
Ody, & Kouneiher,  2003  ) . 

 As D’Esposito  (  2007  )  explained it, there 
appear to be a least two types of these top-down 
signals—one that serves to enhance and another 
that serves to suppress task-relevant information. 
Both are important for our discussion here 
because enhancement and suppression mecha-
nisms may actually exist to control both cogni-

tive  and  metacognitive functions (Knight, 
Staines, Swick, & Chao,  1999  ) . After all, it is 
well  documented that excitatory and inhibitory 
mechanisms are pervasively interleaved through-
out the nervous system, in spinal re fl exes, cere-
bellar outputs, and basal ganglia movement 
control networks, etc.—indeed, at multiple levels 
throughout the entire neuroaxis. That means “by 
generating contrast via both enhancements and 
suppressions… top–down signals bias the likeli-
hood of successful representation of relevant 
information in a competitive system” (D’Esposito, 
 2007 , p. 768). In short, the top-down function 
and the biasing effect within the context of a 
competitive system could be a compelling way to 
think about a neurological explanation of meta-
cognitive monitoring and control.  

   Working Memory and Metacognitive 
Monitoring and Control 

 Based on the evidence above, we conclude that it 
is not necessary to involve a central executive 
and episodic buffer as two distinct components 
of the working memory system to explain meta-
cognition. Rather, it is necessary only to impli-
cate a central executive controller of some kind 
that regulates attention and deploys operations 
of activation and suppression of internally stored 
and externally perceived input to reach a behav-
ioral goal. In short, metacognition is certainly 
“in the brain,” but it is not in the central  executive 
and episodic buffers of Baddeley and his col-
leagues’ working memory model. 

 So, just where would metacognition likely be? 
 We suggest that metacognition is manifest 

within the function of cognitive—and hence neu-
roanatomical—activity of the brain best 
 represented by the model of embedded processes 
(Cowan,  1999  ) , the operations of which we have 
described in the evidence above (see Fig.  6.1 ).  

    To be speci fi c, metacognitive monitoring and 
control are probably reciprocal functions of the 
same neurological processes that excite and 
inhibit, in a recursive fashion, the regions of the 
brain responsible for two types of activities 
involved in learning—the activities involved in 
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processing the information itself relative to the 
goals of a task and the activities involved in pro-
cessing (evaluating and correcting) the original 
activities deployed to seek goal attainment—
activities that are metacognitive. We believe that 
the monitoring function is probably principally 
attentional, and the control function is principally 
strategic. Thus, attention is probably allocated to 
evaluate the degree to which an individual is 
closer to the goal—a matching-to-sample func-
tion; the strategies are activated to change the 
person’s processing approach (and hence the cor-
responding brain activation) in meeting the goal. 
This alternating procedure is probably an inter-
leaved activation of excitatory and inhibitory 
mechanisms based on two sources of information 
and two sources of goals, exchanged in a recur-
sive fashion depending upon the degree to which 
the goal is being met. One source of information 
is composed of the stimuli that comprise the task 
in the context of the original task demands; the 
other is the information composed of the internal 
representation of the assessment of the corre-
spondence between task demand and task success 

and the information about effective strategies for 
obtaining the success. In effect, we suggest that 
there may be no difference in the mechanisms 
operating between cognitive and metacognitive 
processing when one considers activation of 
regions of the brain. Instead, it is the nature of the 
information being processed in the system that 
differentiates the two. 

 We believe the operations of active cognition 
and metacognitive monitoring and control prob-
ably look something like the patterns shown in 
Fig.  6.2 . That is, learners begin the process of 
learning by  fi rst directing their attention to two 
types of external information. One is the to-be-
learned material; the other is the learning goal—
in essence, the instructions with which the 
to-be-learned material is to be processed. This 
directed attention is an operation of the central 
controller where the learner seeks to differentiate 
between task-relevant and task-irrelevant stimuli 
in the external learning environment in order to 
 fi nd the stimuli having the highest probability of 
further processing utility. Once the differentia-
tion is made, the central controller maintains 

  Fig. 6.1    Interdependent top-down function of cognitive control       
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attention on the task-relevant stimuli and the 
learning goal while concomitantly redirecting 
attention to the internally stored stimuli activated 
among the modules and cells distributed in the 
posterior cortex that are germane to the task. At 
the same time, while attention is being switched 
between directing and maintaining the two 
sources of stimuli—external and internal—the 
central controller is also engaged in the integra-
tion of these stimuli into new knowledge models: 
one model of the to-be-learned information and 
the other model representing the learning goal.    In 
short, the direction of attention among relevant 
stimuli inside and out, the maintenance of that 
attention on the stimuli inside and out, and the 
integration of those stimuli inside and out are 
oscillating processes of active cognition which 
lead to the development of the new models of 
knowledge.  

 However, the function of active cognition in 
this oscillating process is improved when learners 
report competence in their general use of meta-
cognitive skills and when metacognitive activities 
are activated and supported within learners dur-
ing the learning process. Thus, the question 
becomes how metacognition can possibly operate 

when active cognition seems to be suf fi cient for 
processing, but metacognition enhances perfor-
mance beyond the outcomes of the tightly inter-
leaved active cognition operations. 

 Our position is that metacognition must be 
comprised of the same processes as active cogni-
tion, but with attention and integration allocated to 
a different source of information. That source is no 
longer exclusively external per se but rather origi-
nates from the internal cognitive environment 
instead—from the new model of the task-relevant 
information borne from the information intended 
to be learned and the personalized model of the 
learning goal that was constructed during active 
cognition. This suggests that active cognition and 
metacognition form a closed loop, where meta-
cognition is comprised of the same operations of 
the central controller in the prefrontal cortex and 
the posterior cortex’s activation of relevant models 
and cells, but at this point, oscillating to construct 
a knowledge model of learning goal attainment. 
That means that the cognitive system must negoti-
ate, by attentional switching, three models of 
knowledge during the learning phase—one model 
that targets the to-be-learned material, one that tar-
gets the learning goal, and the third that monitors 

  Fig. 6.2    Metacognitive monitoring and control: a closed neurocognitive loop       
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and controls whether the  fi rst two models are 
suf fi ciently formed to reach the learning goal. 

 Once the process begins, the system must 
balance attentional direction and maintenance 
between both sources of information along with an 
integration of each. Thus, active cognition and 
metacognition use the same resources, activate the 
same gross neuroanatomical regions, and balance 
the same operations to resolve the learning process 
until the  fi nal metacognitively constructed knowl-
edge model of goal attainment is complete.  

   Metacognition and Learning 

 If we are correct in our appraisal of the way meta-
cognition works, then we should be able to inter-
pret why manipulations of metacognition may, or 
may not, be instructionally successful. After all, 
we stated earlier that students’ executive control 
should exert an in fl uence on the ways teachers 
and instructional designers might approach their 
delivery of instruction. 

 The literature on metacognition in learning 
and instruction is substantial. Thus, we sampled 
28 investigations published between 2002 and 
2009, with the intention of building a corpus of 
work from which to determine if our model is 
heuristically valuable. Half of the investigations 
addressed the degree to which learners actually 
deploy their metacognitive skills during the time 
in which they learn; the other half reported the 
results of conditions in which metacognitive 
operations were instructionally scaffolded. All of 
the investigations were situated in learning envi-
ronments that were delivered on computers via 
arrangements of hypermedia. 

 What we generally discovered is that learners 
learn more when their metacognitive skills are 
well developed. The  fi nding occurs with surpris-
ing regularity and is consistent across multiple 
types of manipulations of learning materials (c.f. 
Azevedo,  2005 ; Graesser, McNamara, & 
VanLehn,  2005 ; Hartley & Bendixen,  2003 ; 
Schwartz, Anderson, Hong, Howard, & McGee, 
 2004 ; Schwartz, Oppy, & Gust,  1999 ; Scott & 
Schwartz,  2007 ; Veenman, Prins, & Elshout, 
 2002  ) . For example, Graesser et al.  (  2005  )  noted 

that there are well-documented dif fi culties among 
learners when they do not possess adequate 
pro fi ciencies in metacognitive skills; poor inquiry 
learning behavior and lower levels of comprehen-
sion characterize the dif fi culties. Azevedo  (  2005  )  
reported that students who lack key metacogni-
tive skills learn very little from hypermedia when 
learning environments are open ended. And, 
Hartley and Bendixen  (  2003  )  found that learners 
make better use of comprehension aids during 
learning within hypermedia environments, but 
only when the learners possess metacognitive 
skills that are high. 

 There are other supporting investigations as 
well. Veenman et al.  (  2002  )  could predict learn-
ers’ acquisition of high-quality conceptual knowl-
edge from the degree to which the learners had 
effective metacognitive skills, and Scott and 
Schwartz  (  2007  )  and Schwartz et al.  (  2004,   1999  )  
found that learners could navigate more effec-
tively within, and learn more from, hypermedia 
environments when the learners’ metacognitive 
skills were high. Thus, learners with better- 
developed metacognitive skills do, in fact, learn 
better, and the evidence is apparent among mul-
tiple indices of performance. 

 And yet, not all learners have suf fi ciently 
well-developed metacognitive skills (c.f. Bannert, 
 2006  ) , nor do all learners actually deploy those 
skills even if the skills are well developed (c.f. 
Azevedo, Guthrie, & Seibert,  2004  ) . Manlove, 
Lazonder, and de Jong  (  2007  ) , for example, found 
that learners typically show very few instances of 
metacognitive regulatory control operations dur-
ing inquiry work in computer-based learning 
environments. Azevedo and Cromley  (  2004  )  and 
Bannert, Hildebrand, and Mengelkamp  (  2009  )  
reported that learners rarely use metacognitive 
monitoring when negotiating complex hyperme-
dia learning environments, in addition to failing 
to plan or activate their prior knowledge or use 
other effective knowledge acquisition strategies 
that would bene fi t their performance. Finally, 
Azevedo and Hadwin  (  2005  )  found that when 
learners learn about complex topics in computer-
based learning environments without external 
metacognitive supports, their use of metacogni-
tive control operations is very poor, and they fail 
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to gain a conceptual understanding of the target 
instructional topics. Thus, the evidence is very 
clear that the failure to use metacognitive skills 
results in poor learning performance. 

 But, the failure to deploy metacognitive skills 
is puzzling when it is clear that metacognition 
works to bene fi t learning performance. Thus, we 
questioned whether metacognitive operations 
scaffolded during instruction actually lead to bet-
ter performance. Scaffolded instruction refers to 
the types of computer-based tools designed to 
detect, trace, monitor, and foster metacognitive 
skills (Azevedo,  2002  ) ; they are the human or 
nonhuman learning agents whose roles are 
designed to lead learners to strategic learning 
activities that result in better performance 
(Azevedo, Cromley, & Seibert,  2004  ) . 

 According to the preponderance of the empiri-
cal evidence, scaffolding does work (c.f. Azevedo 
& Cromley,  2004 ; Azevedo & Hadwin,  2005 ; 
Azevedo & Jacobson,  2008 ; Bannert,  2006,   2009 ; 
Graesser et al.,  2005 ; Manlove et al.,  2007  ) . When 
learners’ metacognitive processes are augmented 
via computer-based training systems and instruc-
tional strategies, metacomprehension accuracy 
and transfer task performance improve (Cuevas, 
Fiore, Bowers, & Salas,  2004  ) . Also, learners 
learning with re fl ection prompts in computer-
based learning environments show better perfor-
mance on transfer tasks and make navigation 
decisions that are more strategic (Bannert,  2006  ) . 
Finally, Rouet and Le Bigot  (  2007  )  found evidence 
that training learners on meta-textual knowledge, 
hypertext navigation strategies, and methods to 
acquire problem-relevant information leads the 
learners to spend more time visiting relevant sec-
tions of the hypertext and write better essays con-
taining more critical and more deeply processed 
information. The point is that teaching, prompting, 
and facilitating learners’ use of metacognitive 
skills result in improved learning performance. 

 So, why is it that some learners do not seem to 
develop metacognitive skills, why do some learn-
ers fail to deploy the skills on their own even when 
the skills have already been developed, and why is 
it that scaffolds work to incur skill deployment? 

 We believe that the resources incurred to 
develop and deploy metacognitive skills are 

demanding. After all, learners must construct two 
knowledge models as we described above. Then, 
they must broker those models with the develop-
ment of a third—the metacognitively constructed 
model built to negotiate learning goal attainment. 
This forces attentional direction and maintenance 
to be split across three large knowledge models 
of separate but related domains. It also forces 
integration within and between the three 
 models—a heavy resource-consuming task of 
 concomitant cognitive and metacognitive opera-
tions. Unless one or more of the models is well 
consolidated among the modules distributed in 
the posterior cortex, it is not at all surprising that 
learners economize their efforts in building any 
one of the three. Since the metacognitive model 
is, by de fi nition, always secondary to the other 
two, it is quite likely that the model either does 
not initially get built or, more likely, is built 
incompletely. In the  fi rst case, it would necessar-
ily fail to be deployed; in the second case, its par-
tial construction would occlude and/or seriously 
compromise the construction of either or both of 
the primary cognitively constructed models. This 
would explain why learners (1) learn very little 
from hypermedia when the environments are 
open ended, (2) navigate within those environ-
ments more inef fi ciently, and (3) fail to plan or 
activate prior knowledge and other effective 
knowledge acquisition strategies that would 
bene fi t their performance. In short, the inadequa-
cies become apparent because the monitoring 
and control processes comprising the learning 
goal attainment model never get adequately con-
structed. If construction is attempted, on the other 
hand, the central controller would be expected to 
be overtaxed and fatigued, accounting in part for 
the failure of learners to gain a conceptual under-
standing of target instructional topics. 

 This is exactly the reason why we believe 
metacognitive scaffolds actually work. When 
metacognitive scaffolds are available, learners 
make use of the scaffolded strategies. These 
scaffolds either incur the construction of a meta-
cognitive model while relieving the central 
controller’s attention allocation and maintenance 
function of the controlling processes themselves, 
or they provide learners the learning control 
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functions during primary knowledge model con-
struction. In either case, both would lead to better 
performance on transfer tasks, better and more 
strategic navigation decisions in hypermedia, and 
more critically and deeply processed information 
following the learning phase.  

   Concluding Remarks 

 We began this chapter by stating that learning and 
thinking are synergistic actions of the way people 
develop knowledge to adapt to the world. We 
suggested that the actions are collateral cognitive 
operations sharing a unitary outcome of perfor-
mance, with metacognition functioning as an 
integral operator. Assuming that metacognition is 
within the realm of the mind with much less con-
cern over the human–environment interaction, 
we sought to  fi nd where metacognition might be 
operating at two levels—one, the metaphorical 
level of cognition and, two, the neuroanatomical 
level of the brain. At the level of cognition, we 
discovered that metacognition does not  fi t well 
within the model of working memory described 
by Baddeley and his colleagues (e.g., Baddeley 
& Hitch,  2000  ) . Instead, it is much better 
explained by the embedded processing model of 
Cowan (Cowan,  1999  ) . At the level of neuroanat-
omy, based on an examination of the neurologi-
cal processes forthcoming from fMRI research, 
we discovered that metacognition seems to be a 
reciprocal function of the same neurological pro-
cesses that reciprocally excite and inhibit the 
regions of the brain responsible for the activities 
involved in processing the to-be-learned material 
relative to the goals of a task and the activities 
involved in evaluating and correcting the original 
activities deployed to seek goal attainment. Taken 
together, both the embedded processing model 
and the neuroanatomical functions underlying it 
lead to the conclusion that processes of metacog-
nition and active cognition form a closed loop of 
operations occurring in the same areas of the 
brain. The construction of cognitive models (and 
hence neural processes) is derived from a biased 
competition of limited resources that lead to new 
learning.      
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  Abstract 

 In this chapter, we will discuss our work to understand why students game 
the system. This work leverages models of student gaming, termed “detec-
tors”, which can infer student gaming in log  fi les of student interaction 
with educational software. These detectors are developed using a combi-
nation of human observation and annotation, and educational data mining. 
We then apply the detectors to large data sets, and analyze the detectors’ 
predictions, using discovery with models methods, to study the factors 
associated with gaming behavior. Within this chapter, we will discuss the 
work to develop these detectors, and what we have discovered through 
these analyses based on these detectors. We will discuss evidence for how 
gaming the system impacts learning and evidence for why students choose 
to game. We will also discuss attempts to address gaming the system 
through adaptive scaffolding.     
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    Introduction 

 In recent years, there has been increasing 
 awareness that students using interactive learning 
technologies often “game the system,” de fi ned as 
attempting to succeed in an educational task by 
systematically taking advantage of properties and 
regularities in the system used to complete that 
task, rather than by thinking through the material 
(Baker, Corbett, Koedinger, et al.,  2006  ) . 
Examples of gaming the system include misusing 
help features of educational software to obtain 
answers (Aleven, McLaren, Roll, & Koedinger, 
 2006  ) , systematic guessing (Baker, Corbett, 
Koedinger, & Wagner,  2004  ) , intentional rapid 
mistakes (Murray & VanLehn,  2005 ), spam post-
ings in graded newsgroups (Cheng & Vassileva, 
 2005  ) , and point cartels in collaborative games 
(Magnussen & Misfeldt,  2004  ) . Analogous behav-
iors also occur within wholly human classrooms, 
where students ask teachers and teachers-aides 
repeatedly for answers (Nelson-Le Gall,  1985  ) . 

 Gaming the system occupies an interesting 
place within self-regulated learning (SRL) and 
metacognition. In some ways, it can be  considered 
as a behavior that requires sophisticated meta-
cognition, involving—to quote Hacker  (  1999  )  
discussing Flavell  (  1976  ) —“active monitoring 
and consequent regulation and orchestration of 
cognitive processes to achieve cognitive goals.” 
Qualitative and quantitative analysis has sug-
gested that students actively choose which prob-
lem steps to game on, with some students 
explicitly gaming speci fi c poorly known material 
and other students gaming well-known material 
(cf. Baker, Corbett, & Koedinger,  2004  ) . To the 
degree that students game the system precisely 
on the material that they do not know, the 
choice to game appears to explicitly involve 
“knowledge of one’s knowledge” (cf. Hacker, 
 1999  ) . Gaming clearly involves a substantial 
degree of self- regulation (Zimmerman,  2000  )  
as well, inasmuch as the student appears to con-
sciously choose to game as opposed to other 
strategies, such as attempting to seek help or 
answer using their knowledge (cf. Aleven 
et al.,  2006  ) . 

 However, while gaming appears to involve 
self-regulation, it is open to question whether 
gaming can be considered a strategy within SRL 
(cf. Butler & Winne,  1995  ) . Many students who 
game the system appear not to be trying to learn 
at all during their gaming behavior (there are 
exceptions, which are discussed in this chapter). 
Hence, gaming the system could potentially be 
viewed as self-regulated behavior with the goal 
of avoiding learning, rather than SRL. There are 
several forms of self-regulation driven towards 
avoiding learning or effort, including self- 
handicapping (Midgley & Urdan,  2002  )  and off-
task behavior (cf. Fisher & Ford,  1998  ) . It is not 
clear that gaming is a form of self-handicapping, 
and gaming and off-task behavior appear to 
emerge from different motivation, at least in part 
(Baker,  2007b  ) . Nonetheless, it may be valuable 
to conceptualize gaming in this fashion—as a 
self-regulated behavior but not as a strategy for 
SRL. Alternatively, gaming the system could be 
viewed as a tactic or a strategy emerging from 
low motivation during self-regulation, a possi-
bility implicit within models of SRL that incor-
porate motivation (e.g., Winne & Hadwin, 
 1998  ) . Interestingly, the one model of metacog-
nition or SRL which explicitly incorporates 
gaming  behaviors is Aleven and colleagues’ 
 (  2006  )  model of help-seeking within tutors. 
Within this model, gaming is conceptualized as 
a “metacognitive bug,” a cognitive rule that rep-
resents an ineffective or maladaptive form of 
help-seeking. 

 However, there is increasing evidence that 
gaming is more than simply an ineffective or 
maladaptive form of help-seeking. First of all, as 
we discuss in this chapter, there are multiple ways 
that students game. For instance, some students 
appear to game on time-consuming steps that 
they already know, potentially to spend more 
time on what they need to learn (Baker, Corbett, 
& Koedinger,  2004  ) . Other students game in 
order to obtain answers more quickly, and then 
self-explain those answers (Shih, Koedinger, & 
Scheines,  2008  ) . Gaming in these fashions may 
therefore be a strategy within sophisticated self-
regulatory behavior (cf. Winne & Hadwin,  1998  ) . 
Secondly, there is recent evidence that the trig-
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gers of gaming the system include features of the 
design of intelligent tutors (discussed in this 
chapter), and the student emotion immediately 
prior to gaming (Baker, D’Mello, Rodrigo, & 
Graesser,  2010  ) . As such, it appears that gaming 
emerges from relatively complex self-regulatory 
processes, involving several factors, including an 
assessment of the current situation and the stu-
dent’s emotion. 

 In this chapter, we discuss our work to 
understand why students game the system. This 
work leverages models of student gaming, 
termed “detectors,” which can infer student 
gaming in log  fi les of student interaction with 
educational software. These detectors are 
developed using a combination of human obser-
vation and annotation, and educational data 
mining (Baker & Yacef,  2009 ; Romero & 
Ventura,  2010  ) . We then apply the detectors to 
large data sets, and analyze the detectors’ pre-
dictions, using discovery with model methods 
(Baker & Yacef,  2009  ) , to study the factors 
associated with gaming behavior. Within this 
chapter, we discuss the work to develop these 
detectors, and what we have discovered through 
these analyses based on these detectors. We 
discuss evidence for how gaming the system 
impacts learning and evidence for why students 
choose to game. We also discuss attempts to 
address gaming the system through adaptive 
scaffolding.  

   Contexts of Detector Development 
and Use 

 Gaming the system has been studied in a variety 
of learning systems (Baker, Corbett, Koedinger, 
& Wagner,  2004 ; Baker, D’Mello, et al.,  2010 ; 
Baker, Mitrovic, & Mathews,  2010 ; Beal, Qu, & 
Lee,  2006 ; Beck,  2005 ; Gobel,  2008 ; Johns & 
Woolf,  2006 ; Muldner, Burleson, Van de Sande, 
& VanLehn,  2011 ; Murray & VanLehn,  2005 ; 
Walonoski & Heffernan,  2006a  ) . In this chapter, 
we focus on the research into gaming the system 
within Cognitive Tutors, though we brie fl y dis-
cuss research in other learning systems as well. 
A key advance that has supported research on 

gaming the system in recent years has been the 
advent of models that assess whether a student is 
gaming, often termed “detectors” (e.g., Aleven 
et al.,  2006 ; Baker, Corbett, & Koedinger,  2004 ; 
Baker, Corbett, Roll, & Koedinger,  2008 ; Baker, 
Mitrovic et al.,  2010 ; Beal et al.,  2006 ; Beck, 
 2005 ; Johns & Woolf,  2006 ; Muldner et al.,  2011 ; 
Walonoski & Heffernan,  2006a  ) . Cognitive 
Tutors were the  fi rst type of learning environment 
for which gaming detector development occurred; 
they are also the environment for which gaming 
detectors have been most thoroughly validated, 
and for which gaming detectors have been used 
in the largest number of “discovery with models” 
analyses. 

 Cognitive Tutors are a popular type of interac-
tive learning environment now used by around 
half a million students a year in the USA, in par-
ticular for high school Algebra and Geometry 
(Koedinger & Corbett,  2006  ) . Cognitive Tutor 
curricula combine conceptual instruction deliv-
ered by a teacher with problem-solving where 
each student works one on one with a cognitive 
tutoring system which chooses exercises and 
feedback based on a running model of which 
skills the student possesses (Koedinger & Corbett, 
 2006  ) . Within this chapter, we focus on students’ 
online problem-solving. We discuss results from 
the Middle School Mathematics Cognitive Tutor, 
shown in Fig.  7.1 , and the Algebra Tutor, shown 
in Fig.  7.2 . In its original version, the Middle 
School Tutor was used by the U.S. middle school 
students, who are typically between approxi-
mately 11 and 14 years old. The Middle School 
Tutor has become Bridge to Algebra, and is now 
in use in high schools and middle schools across 
the USA (we refer to it by its original name, as 
this was the version used in the research pre-
sented in this chapter). The Algebra Tutor is typi-
cally used in the U.S. high schools, where students 
typically range from 14 to 18 years old.   

 Cognitive Tutor learning environments are 
designed to promote learning by doing. Within the 
Cognitive Tutor environments discussed within 
this chapter, each student individually completes 
mathematics problems. The Cognitive Tutor envi-
ronment breaks down each mathematics problem 
into the steps of the process used to solve the 



  Fig. 7.1    A screenshot from the Cognitive Tutor for Middle School Mathematics       

  Fig. 7.2    A screenshot from the Algebra Cognitive Tutor       
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 problem, making the student’s thinking visible. As 
a student works through a problem, a running cog-
nitive model assesses whether the student’s 
answers map to correct understanding or to a 
known misconception (cf. Anderson, Corbett, 
Koedinger, & Pelletier,  1995  ) . If the student’s 
answer is incorrect, the answer turns red; if the stu-
dent’s answers are indicative of a known miscon-
ception, the student is given a “buggy message” 
indicating how their current knowledge differs 
from correct understanding. Cognitive Tutors also 
have multistep hint features; a student who is 
struggling can ask for a hint. He or she  fi rst receives 
a conceptual hint, and can then request further 
hints, which become more and more speci fi c until 
the student is given the answer. The hints are con-
text-sensitive and tailored to the exact problem 
step the student is working on. As the student 
works through the problems in a speci fi c curricu-
lar area, the system uses Bayesian Knowledge-
Tracing (Corbett & Anderson,  1995  )  to determine 
which skills that student is having dif fi culty with, 
calculating the probability that the student knows 
each skill based on that student’s history of 
responses within the tutor. Using these estimates 
of student knowledge, the tutoring system gives 
each student problems which are relevant to the 
skills which he or she is having dif fi culty with. 
Cognitive Tutor material is typically structured 
into independent lessons, each of which covers a 
set of related skills and concepts. Year-long courses 
are composed of sequences of lessons, where the 
knowledge in later lessons generally builds upon 
the knowledge in previous lessons.  

   Detector Development 

 Detectors of gaming the system can be developed 
in several ways. While many researchers have 
utilized knowledge engineering to develop detec-
tors of gaming the system (cf. Aleven et al.,  2006 ; 
Gong, Beck, Heffernan, & Forbes-Summers, 
 2010 ; Johns & Woolf,  2006 ; Muldner et al., 
 2011  ) , our research group has emphasized 
machine learning/data mining approaches, in 
order to support more thorough model validation. 
We believe that comprehensive validation is 

essential when using detectors to support research 
in the complex phenomena found in metacogni-
tion and SRL; without high con fi dence in a detec-
tor’s validity and generalizability, it is dif fi cult to 
have con fi dence in the results obtained from ana-
lyzing a detector’s output. Within this section, we 
present our work to develop and validate detec-
tors of gaming the system. A fuller discussion of 
the trade-offs between machine learning and 
knowledge engineering approaches for modeling 
student behaviors, such as gaming the system, 
can be found in Baker  (  2010  ) . 

 Our approach to developing gaming detectors 
is as follows. We  fi rst use human labeling methods 
to gather “ground truth” labels of students or 
actions judged to be gaming the system. We then 
use data mining methods to distill these labels into 
reusable detectors of gaming. We then validate 
these models at multiple levels, including general-
izability to new students and lessons, and temporal 
precision. We discuss these steps, as well as some 
challenges that need to be met for these detectors 
to be maximally useful for the  fi eld. 

   Human Labeling Methods 

 Within our research, we have used two methods 
for humans to label gaming the system. The  fi rst 
is  quantitative  fi eld observations  (Baker, Corbett, 
Koedinger, & Wagner,  2004 ; Karweit & Slavin, 
 1982  ) . Quantitative  fi eld observations are 
repeated observations of students (in this case, 
whether they are gaming the system or not), con-
ducted according a prede fi ned coding scheme 
and observation method. Within our observa-
tions of gaming the system, each observation 
lasted 20 s, and was conducted using peripheral 
vision. That is, the observers stood diagonally 
behind or in front of the student being observed 
and avoided looking at the student directly (cf. 
Baker, Corbett, Koedinger, & Wagner,  2004  ) , in 
order to make it less clear when an observation 
was occurring. If two distinct behaviors were 
seen during an observation, only the  fi rst behav-
ior observed was coded. Any behavior by a stu-
dent other than the student currently being 
observed was not coded. Observations are in 
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some cases carried out by single observers and 
other times by observational pairs. Inter-rater 
reliability on assessments of gaming using this 
method have been calculated at over 0.7 across 
several studies involving different coders (Baker, 
Corbett, & Wagner,  2006 ; Baker, D’Mello, et al., 
 2010 ; Rodrigo et al.,  2008  ) . Another bene fi t of 
quantitative  fi eld observation is that it can be 
used for a variety of constructs (including affect 
as well as behavior—cf. Baker, D’Mello, et al., 
 2010 ; Rodrigo et al.,  2008  ) . The method’s key 
disadvantages are that it is time-consuming, and 
it has historically been challenging to synchro-
nize exactly between  fi eld observations and log 
 fi les. (Our research group has recently developed 
a handheld observation application which syn-
chronizes to the same time server as the software 
logs; we believe that this will substantially 
reduce challenges to synchronization.) 

 The second method we have used for humans 
to label gaming the system is  text replays  (Baker, 
Corbett, & Wagner,  2006 ; Baker & de Carvalho, 
 2008 ; Baker, Mitrovic, et al.,  2010  ) . Text replays 
represent a segment of student behavior from 
the log  fi les in a textual (“pretty-printed”) form. 
A sequence of actions of a preselected duration 
(in terms of time or length) is shown in a textual 
format that gives information about the actions 
and their context. In the example shown in 
Fig.  7.3 , the coder sees each action’s time (rela-
tive to the  fi rst action in the clip), the problem 
context, the input entered, the relevant skill 
(production), and how the system assessed the 
action (correct, incorrect, a help request, or a 
“bug”/misconception). The coder can then 
choose one of a set of  behavior categories (in 
this study, gaming or not gaming), or indicate 
that something has gone wrong, making it 
impossible to code the clip. Text replays give 
relatively limited information, compared to 
quantitative  fi eld observations; however, text 
replays are very quick to classify, between two 
and ten times faster than quantitative  fi eld obser-
vations (Baker, Corbett, & Wagner,  2006 ; Baker 
& de Carvalho,  2008  ) , and can be generated 
automatically from existing log  fi les, enabling 
retrospective analysis. Inter-rater reliability has 
been found to be comparable to quantitative 

 fi eld observations, ranging between 0.58 and 
0.80 (Baker, Corbett, & Wagner,  2006 ; Baker, 
D’Mello, et al.,  2010  ) , though it typically 
requires multiple rounds of training to get con-
vergent categorization (Baker, D’Mello, et al., 
 2010 ; Sao Pedro, Baker, Montalvo, Nakama, & 
Gobert,  2010  ) .   

   Educational Data Mining Methods Used 

 All of our detectors of gaming are based upon a 
distillation of features of students’ actions within 
the tutoring software. For Cognitive Tutors, for 
each student action recorded in the log  fi les, a set 
of 26 features describing that student action were 
distilled. These features included the following 
(an exhaustive list is given in Baker, Corbett, 
et al.,  2008  ) :

   Details about the action• 
   The tutoring software’s assessment of the  –
action—Was the action correct, incorrect 
and indicating a known bug (procedural 
misconception), incorrect but not indicat-
ing a known bug, or a help request?  
  The type of interface widget involved in  –
the action.  
  Was this the student’s  fi rst attempt to answer  –
or obtain help on this problem step?     

  Knowledge assessment• 
   The tutor’s assessment, after the action, of  –
the probability that the student knows the 
skill involved in this action, derived using 
the Bayesian knowledge tracing algorithm 
in Corbett and Anderson  (  1995  ) .  
  Whether the action involved a skill which  –
students, on the whole, knew before  starting 
the tutor lesson, or failed to learn during 
the tutor lesson.     

  Time• 
   How long the action took, both in absolute  –
time and in standard deviations faster or 
slower than the mean time taken by all stu-
dents on this problem step, across problems 
(e.g., unitized time).  
  Unitized time across the last 3, or 5,  –
actions.     
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  Previous interaction• 
   The total number of times the student has  –
gotten this speci fi c problem step wrong or 
asked for help, across all problems (includes 
multiple attempts within one problem).  

  How many recent actions involved this  –
problem step, help requests, or errors?       

 Our research group has used two primary 
methods to develop detectors of gaming the sys-
tem for Cognitive Tutors: Latent Response 

  Fig. 7.3    A text replay of student 
gaming behavior       
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Models (Maris,  1995  )  and J48 Decision Trees 
(an open-source variant published by Witten and 
Frank,  2005 , of the C4.5 algorithm developed by 
Quinlan,  1993  ) . J48 Decision Trees were  fi rst 
used to detect gaming the system by Walonoski 
and Heffernan  (  2006a  ) . Recent work on detect-
ing gaming the system in SQL-Tutor has also 
used step regression (Baker, Mitrovic, et al., 
 2010  ) , an approach similar to the internal step 
function in our Latent Response Model approach 
discussed below. 

 Latent Response Models have the advantage 
of easily and naturally integrating multiple data 
sources, at different grain-sizes, into a single 
model. They can be used when data is not well 
synchronized. A detector of gaming, in the frame-
work used here, has one observable level and two 
hidden (“latent”) levels. The model’s overall 
structure is shown in Fig.  7.4 . In a gaming detec-
tor’s outermost/observable layer, the gaming 
detector assesses how frequently each of  n  stu-

dents is gaming the system; those assessments 
are labeled G ¢ 0, …, G ¢  n . The gaming detector’s 
assessments for each student can then be 
compared to the observed proportions of time 
each student spent gaming the system, G0, …, 
G n  (the metrics used will be discussed within the 
next section). The proportion of time each stu-
dent spends gaming is assessed as follows: First, 
the detector makes a (binary) assessment as to 
whether each individual student action (denoted 
P ¢  m ) is an instance of gaming. From these assess-
ments, G ¢ 0, …, G ¢  n  are derived by taking the per-
centage of actions which are assessed to be 
instances of gaming, for each student. An action 
is assessed to be gaming or not, by a function on 
parameters composed of the features drawn from 
each action’s characteristics. An assessment H m  
as to whether action  m  is an instance of gaming is 
computed as    H m  = a0·X0 + a1·X1 + a2·X2 + … + a 
n ·X n , where a i  is a parameter value and X i  is the 
data value for the corresponding parameter, for 

  Fig. 7.4    The architecture of a gaming detector based on a Latent Response Model       
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this action, in the log  fi les. The value given by the 
linear combination is the  fi rst hidden level and 
top layer in Fig.  7.4 . Each assessment H m  is then 
thresholded using a step function, such that if H m  
£ 0.5, H ¢  m  = 0; otherwise H ¢  m  = 1. The set of 
thresholded values makes up the second hidden 
level and middle layer in Fig.  7.4 . This gives us a 
set of classi fi cations H ¢  m  for each action within 
the tutor, which are then used to create the 
 assessments of each student’s proportion of gam-
ing, G ¢ 0, …, G ¢  n . These assessments of each stu-
dent’s proportion of gaming, which make up the 
observable level of the model (the bottom layer 
in Fig.  7.2 ), are compared to the observed values 
of gaming during model  fi tting and validation. 
Within the model framework, the best model is 
selected out of the large space of possible mod-
els, using a combination of Fast Correlation-
Based Filtering (Yu & Liu,  2003  )  and Forward 
Selection (Ramsey & Schafer,  1997  ) .  

 J48 decision trees, the second method used to 
detect gaming in Cognitive Tutors, are a standard 
data mining method. As such, J48 has a single 
level of hierarchy and can be used when speci fi c 
actions are known to involve gaming the system 
or to not involve gaming the system, requiring 
text replays or good synchronization of  fi eld 
observations. In the case of text replays, we label 
segments of behavior as gaming or not gaming; if 
a segment is labeled as involving gaming, every 
action in the segment is labeled as gaming. It is 
worth noting that these labels of individual 
actions cannot be considered perfectly accurate, 
since the observer labeled a clip as “gaming” if 
any of the actions in the clip involved gaming. 
Therefore, actions at the beginning or end of clips 
may not in all cases be instances of gaming. This 
suggests that, within text replay data, a 100% 
perfect match between our classi fi er’s labels of 
individual actions and those actions’ labels is not 
necessary (or desirable). This limitation could be 
addressed by having observers explicitly label 
which actions in a clip are gaming, but would 
have the cost of reducing the method’s speed. J48 
decision trees are a good approach for noisy data 
of this nature, as the pruning step of this algo-
rithm addresses noise in the data and reduces 
over- fi tting.  

   Validation Methods and Effectiveness 

 In order to validate the effectiveness of a detector 
of the types discussed here, and its appropriate-
ness for different types of use, it is important to 
analyze its generalizability at multiple levels. 
Four types of generalizability are particularly 
important for a detector that will be used in “dis-
covery with models” analyses. First, a detector 
should be able to accurately determine which stu-
dents game, even for entirely new students. This 
is important, because it enables the detector to be 
used with new students, for instance at run-time, 
or in larger data sets than the original training set. 
In order to do this, it is necessary to train a detec-
tor with one group of students and test it with a 
different group of students. Cross-validation is a 
systematic method for splitting up a data set into 
groups and testing model generalizability across 
groups (   Efron & Gong,  1983  ) . However, one lim-
itation is that many existing tools for data mining, 
such as Weka (Witten & Frank,  2005  ) , do not 
support  student-level cross-validation, only sup-
porting cross-validation at the grain-size of indi-
vidual data points. Another tool, RapidMiner 
(Mierswa, Wurst, Klinkenberg, Scholz, & Euler, 
 2006  ) , does not directly support student-level or 
lesson-level cross-validation, but its “batch cross-
validation” functionality makes it possible to 
conduct student-level or lesson-level cross-vali-
dation through prede fi ning student batches out-
side of the data mining software. Student-level 
cross-validation has been conducted for gaming 
detectors based on Latent Response Models (e.g., 
   Baker, Corbett, et al.,  2008  )  and J48 Decision 
Trees. Latent Response Models appear to achieve 
the goal of detecting which students game more 
successfully than J48 Decision Trees (Baker & 
de Carvalho,  2008  ) . 

 Second, a detector should be able to accurately 
determine exactly when a student games. This is 
important, because it enables inference about the 
context and antecedents and immediate conse-
quences of gaming behavior. Determining exactly 
when each student games is not possible without 
synchronized observations or text replays, since 
exact labels are needed. In Baker and de Carvalho 
 (  2008  ) , Latent Response Models were compared 
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to J48 Decision Trees in terms of ability to deter-
mine this, and J48 Decision Trees performed 
signi fi cantly better. There was evidence that the 
Latent Response Model identi fi ed gaming on the 
correct skills, but identi fi ed gaming the system 
later than it actually occurred. 

 Third, a detector should be able to transfer to 
new classrooms and schools. This is important 
because some behaviors may differ in important 
ways between students across different classroom 
cultures. This type of validation is generally rare 
because of the dif fi culty of collecting and label-
ing data sets that span signi fi cant numbers of 
classrooms. Latent Response Models of gaming 
the system have been validated in this fashion 
(Baker, Corbett, Koedinger, & Roll,  2005  ) . 

 Fourth, a detector should be able to transfer to 
new tutor lessons or related tutors. This is impor-
tant because many modern intelligent tutoring 
systems, including Cognitive Tutors, cover a 
signi fi cant number of topics that necessarily dif-
fer in presentation and user interaction, over the 
course of a semester or a year (cf. Koedinger & 
Corbett,  2006  ) . It is important for analyses span-
ning across these topics to be based on detectors 
validated to be accurate across all of the interac-
tion contexts where the detectors are applied. 
Latent Response Models of gaming the system 
have been validated in this fashion (Baker, 
Corbett, et al.,  2008  ) .  

   “Harmful” Gaming and “Non-harmful” 
Gaming 

 One  fi nding in the development of detectors of 
gaming the system which has not been fully 
explained is the possible split between “harmful” 
and “non-harmful” forms of gaming, de fi ned as 
forms of gaming behavior associated with differ-
ential learning outcomes. In speci fi c, “harmful” 
forms of gaming can be conceptualized as gam-
ing associated with poor performance on the 
posttest (e.g., the failure to learn), whereas “non-
harmful” forms of gaming are not associated 
with poor posttest performance (Baker, Corbett, 
& Koedinger,  2004  ) . Within a Cognitive Tutor 
for middle school mathematics, a replicable split 

(replicable across lessons) has been found 
between gaming students who perform poorly on 
the posttest, and gaming students who nonethe-
less still perform well on the posttest. This split 
is suf fi ciently strong that detectors can be trained 
to detect students in either category, not detect-
ing students in the other category (Baker, Corbett, 
et al.,  2008  ) ; in at least one data set the attempt to 
detect both groups only succeeded in detecting 
gaming students who perform poorly on the 
posttest (Baker, Corbett, & Koedinger,  2004  ) . 
This split appears to be between gaming that 
occurs on poorly known skills (harmful gaming) 
and gaming that occurs on well-known skills 
(non-harmful gaming), thus far, this split has 
failed to replicate within other systems and pop-
ulations, including middle school students using 
Math ASSISTments (Walonoski & Heffernan, 
 2006a  ) , high school students using a Cognitive 
Tutor for Algebra (Baker & de Carvalho,  2008  ) , 
and college students using  SQL-Tutor (Baker, 
Mitrovic, et al.,  2010  ) . It is not clear what aspect 
of the middle school mathematics Cognitive 
Tutor or its population leads to the split in types 
of gaming, but it is an important area of future 
research. 

 A third type of gaming, not explicitly studied 
in our research, is the bene fi cial form of gaming 
discovered by Shih et al.  (  2008  )  in high school 
students using a Cognitive Tutor for Geometry. 
In this behavior, a student clicks through hints in 
order to receive the answer to a problem step, but 
then stops and self-explains the step before pro-
ceeding. This behavior is associated with posi-
tive learning gains, and is likely to be a way of 
turning tutoring into a worked example. We view 
this behavior as a positive metacognitive strategy 
that is only related to gaming the system at a sur-
face level.  

   Challenges 

 One of the key challenges to studying gaming (or 
metacognitive behavior in general) at scale is 
generalizability. Even though the generalizability 
of gaming detectors has been validated across 
students, and across tutor lessons, all validation 
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has been within the context of speci fi c intelligent 
tutors. Gaming detectors have been developed 
through the process discussed here for multiple 
intelligent tutors, including Cognitive Tutors for 
Algebra (Baker & de Carvalho,  2008  )  and middle 
school mathematics (Baker, Corbett, et al.,  2008 ; 
Baker, Walonoski, et al.,  2008  ) , and a constraint-
based tutor for SQL (Baker, Mitrovic, et al., 
 2010  ) . However, the  detectors developed for 
Cognitive Tutors have had relatively little obvi-
ously in common, feature-wise, with the detec-
tors of gaming for SQL-Tutor. The features 
distilled from log data have  themselves had fairly 
little in common between tutors. This lack of 
commonality limits the broader generalization of 
gaming research, as the entire process of labeling 
data, distilling data features, developing a detec-
tor, and validating generalizability must be under-
taken for any new learning system. Our research 
group is currently attempting to address this limi-
tation, by building gaming detectors for multiple 
learning systems for which there exists data in a 
standardized format in the Pittsburgh Science of 
Learning Center DataShop (Koedinger et al., 
 2010  ) . The hope is that by studying generaliz-
ability across learning systems within data col-
lected in the same standardized format, we can 
learn whether gaming the system has common 
features across learning systems that can be used 
as the basis of gaming detection that generalizes 
across learning systems. 

 Another key challenge is balancing between 
detecting exactly when a student is gaming, and 
detecting which students game. Our initial 
investigations (Baker & de Carvalho,  2008  )  
appear to suggest that J48 Decision Trees are 
more successful at detecting the exact moment 
of gaming, while Latent Response Models are 
more successful at detecting exactly which stu-
dents game. Both of these goals are clearly 
important. One immediate takeaway message is 
that the selection of algorithm should be based 
upon which of these goals is more important for 
model usage. For instance, analyzing the differ-
ent rates of gaming across schools depends on 
higher accuracy as to which students game, 
whereas analyzing the antecedents and conse-
quents of gaming behavior depends upon higher 

accuracy as to exactly when students game. 
Interventions, in general, are probably more 
important to target towards the right students 
than towards the right moments. In the long 
term, it will be valuable to develop modeling 
approaches that optimize simultaneously on 
both of these goals, or at least balance between 
accuracy on the two goals.   

   Use in “Discovery with Models” 
Analyses 

 In this section we discuss the utilization of gaming 
detectors in “discovery with models” analyses. 
Discovery with models is de fi ned as taking a 
model of a phenomenon developed via prediction, 
clustering, or knowledge engineering, and then 
using this model as a component in another type of 
analysis (Baker & Yacef,  2009  ) . We will present 
two discovery with models analyses, which estab-
lish the potential of this class of research method 
to support the development of future models and 
theories of SRL and metacognition. 

   Studying Why Gaming Leads 
to Poorer Learning 

 A negative association between gaming the sys-
tem and learning has been seen in most of the 
studies investigating this relationship (Aleven 
et al.,  2006 ; Baker, Corbett, & Koedinger,  2004 ; 
Baker, Corbett, Koedinger, & Wagner,  2004 ; 
Baker, Corbett, Koedinger, et al.,  2006 ; 
Walonoski & Heffernan,  2006a  ) , though excep-
tions exist (e.g., Gobel,  2008  ) . However, up 
until the publication of a discovery with models 
analysis of this relationship (e.g., Cocea, 
Hershkovitz, & Baker,  2009  ) , it was not clear 
what mechanism might be leading to this rela-
tionship. Cocea et al.  (  2009  )  examined whether 
this relationship was the result of gaming lead-
ing to less learning within individual problem 
steps, an immediate harmful impact due to gam-
ing. In order to analyze these possibilities, a 
validated Latent Response Model of gaming 
was applied to data from four tutor lessons 
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(scatterplots, geometry, percents, and proba-
bility), drawn from a middle school Cognitive 
Tutor mathematics curriculum (Koedinger & 
Corbett,  2006  ) . 

 We assessed whether gaming the system was 
associated with immediate poorer learning, by 
setting up a logistic regression model similar to 
the approach in Beck’s  (  2006  )  learning decompo-
sition method, where learning over time is 
assessed in terms of events that occur in the stu-
dent’s learning process. Performance on a given 
skill at a given time was predicted based on the 
number of steps on this skill where the student 
previously engaged in gaming behavior; we dis-
tinguish between “harmful gaming” (HG) steps 
and “non-harmful gaming” (NHG) steps. Within 
the model, harmful gaming was statistically 
signi fi cantly associated with less learning 
( p  < 0.01), at the step-by-step grain-size. 
Surprisingly, NHG was also associated with less 
learning at the step-by-step grain-size, though 
only to about half the degree of harmful gaming, 
and only marginally signi fi cantly ( p  = 0.054). In 
other words, student performance improves less 
over time if the student games the system, as 
compared to the other potential learning strategies 
the student could have used. Off-task behavior, 
by contrast, was not associated with poorer 
immediate performance improvement. Complete 
details on this analysis are given in Cocea and 
colleagues  (  2009  ) .  

   Studying Why Students Game 
the System 

 Discovery with models methods were also used 
to study why students game the system. Broadly, 
two classes of hypothesis have been advanced for 
why students game the system. First, researchers 
have hypothesized that some individual differ-
ence leads students to game the system (Arroyo 
& Woolf,  2005 ; Baker, Walonoski, et al.,  2008 ; 
Beal, Qu, & Lee,  2008 ; Martínez Mirón, du 
Boulay, & Luckin,  2004  ) . Second, researchers 
have hypothesized that aspects of software design 
lead students to game the system (Magnussen & 
Misfeldt,  2004 ; Baker et al.,  2009  ) . Discovery 

with models analyses have been used to study 
both of these possibilities within Cognitive 
Tutors. 

 Baker and colleagues (Baker, Walonoski, 
et al.,  2008  )  applied gaming detectors to two data 
sets of usage of the middle school mathematics 
Cognitive Tutor. The students in these data sets 
had also completed questionnaires measuring a 
range of moti-vational and attitudinal constructs, 
including grit (Duckworth, Peterson, Matthews, 
& Kelly,  2007  ) , performance goals (Dweck, 
 2000  ) , anxiety, negative attitudes towards math-
ematics, and negative attitudes towards comput-
ers. Though some constructs were statistically 
signi fi cantly associated with gaming the system 
(speci fi cally, grit, negative attitudes towards 
mathematics, and negative attitudes towards 
computers), none accounted for more than 5% of 
the variance in how much a student gamed 
( r  2  < 0.05). A similar pattern, with signi fi cant but 
weak correlations between learner characteristics 
and gaming frequency, was found in other learn-
ing systems (Arroyo & Woolf,  2005 ; Baker, 
Walonoski, et al.,  2008  ) . Beal and colleagues 
 (  2008  )  also reported statistically signi fi cant rela-
tionships between learner characteristics and 
gaming frequency, but did not report the magni-
tude of the correlations or other measures of 
effect size. 

 Following on this research, Baker  (  2007a  )  
attempted to determine whether these prior 
results were the result of investigating the wrong 
learner characteristics, by assessing the overall 
 predictive power of knowing which  student was 
gaming the system. In doing so, this analysis 
treated the student as a proxy for the combina-
tion of all explanations stemming from learner 
characteristics. This analysis applied the Latent 
Response Model gaming detector validated to 
transfer across students and tutor lessons (Baker, 
Corbett, et al.,  2008  )  to every action by a set of 
students during the use of the middle school 
mathematics Cognitive Tutor, a data set of 240 
students using 35 Cognitive Tutor lessons during 
the course of a school year. Within this data set, 
the student predicted 16% of the variance in 
gaming whereas the lesson  predicted 55% of the 
variance in gaming. Recent results within the 
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Andes system and ASSISTments attempting to 
predict gaming the system by student and prob-
lem have obtained a strong opposite result, with 
student predicting gaming signi fi cantly better 
than problem (Gong et al.,  2010 ; Muldner et al., 
 2011  ) . It is not yet clear why such contradictory 
results have been obtained; in particular, it is 
possible that the difference stems from the differ-
ence between the learning systems or the differ-
ence in the de fi nition of gaming (the de fi nitions 
of gaming used in the Gong et al.,  2010  and 
Muldner et al.,  2011  analyses were knowledge-
engineered, and to the best of our knowledge 
have not yet been validated against human labels 
of gaming). 

 Following up on the apparent strong relation-
ship between the lesson and the amount of gam-
ing in Cognitive Tutors, Baker and colleagues 
 (  2009  )  investigated which speci fi c differences 
between lessons predicted gaming. In this case, 
automated gaming detection was not used, in 
case speci fi c lessons might be mis-predicted, 
biasing the model. Although overall generaliz-
ability of the gaming detector across lessons has 
been validated (e.g., Baker, Corbett, et al.,  2008  ) , 
it is still possible that generalization might fail 
for a speci fi c lesson. If that lesson exempli fi ed a 
speci fi c set of rare lesson features, those features 
could be spuriously predicted to lead to gaming 
(or to reduce gaming). Hence, instead, text replay 
labels of gaming were used. A set of 79 features 
of tutor lessons were developed and applied to 22 
lessons in a Cognitive Tutor for Algebra. Then, 
Principal Component Analysis was used to group 
the 79 features into six components. One compo-
nent was predictive of gaming, predicting 29% of 
the variance in gaming. Two additional features 
were added through forward selection. The even-
tual best model predicting gaming through lesson 
features predicted 56% of the variance in gaming, 
roughly  fi ve times the degree of variance in 
 gaming predicted by any prior study predicting 
gaming with speci fi c student individual differ-
ences. The lesson features that predicted gaming 
the system, either as part of the component or as 
individual features, included the following:

   The same number is used for multiple con-• 
structs [more gaming].  

  Hints do not lead to better future performance • 
[more gaming].  
  Hints are abstract [more gaming].  • 
  Toolbar icons are unclear [more gaming].  • 
  Lack of interest-increasing text in problem • 
statements [more gaming].  
  Lack of problem statement [less gaming].  • 
  Directional feedback given [less gaming].  • 
  Hints request that student perform some action • 
[more gaming].  
  Location of the  fi rst problem step is not • 
directly indicated and does not follow stan-
dard conventions (e.g., being the top-left cell 
of a worksheet) [more gaming].    
 Overall, many of these lesson features can be 

interpreted in the following fashion: lesson fea-
tures that could be expected to cause boredom or 
confusion are associated with more gaming. This 
 fi nding accords with work studying the affective 
antecedents of gaming behavior (e.g., Baker, 
D’Mello, et al.,  2010  ) . However, many other fea-
tures that also might have been expected to cause 
boredom or confusion were not associated with 
more gaming (a full list of the lesson features can 
be found in Baker et al.,  2009  ) . Hence, the factors 
mediating the relationship between lesson fea-
tures and gaming are still not fully understood. 
However, the relationship between gaming and 
speci fi c lesson features seems established, at least 
within Cognitive Tutors.   

   Potential to Contribute to Future 
Models and Theories of Self-
Regulated Learning 
and Metacognition 

 This work has the potential to contribute to future 
models and theories of SRL and metacognition in 
at least two ways. 

 First, this work establishes key  fi ndings about 
gaming the system, a behavior that appears to 
involve sophisticated metacognition and self- 
regulation (as discussed in the introduction), but 
which appears to have the goal of avoiding learn-
ing rather than being an SRL behavior. Research 
in the last 5 years has indicated that gaming 
behaviors are found in a wide variety of learning 
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systems, and analogues can also be seen even in 
wholly human classrooms as well (e.g., Nelson-Le 
Gall,  1985  ) . Depending on how and when stu-
dents game, the impacts on learning appear to 
differ. Current theories of metacognition and 
SRL do not explicitly incorporate gaming the 
system and similar disengaged behaviors (e.g., 
off-task behavior and carelessness), with the 
exception of Aleven and colleagues’  (  2006  )  help-
seeking model. That model does an excellent job 
of integrating gaming into consideration of com-
plex phenomena. However, that model’s concep-
tualization of gaming as metacognitive bugs does 
not appear to fully represent the complex self-
regulation and metacognition that appear to be 
associated with gaming, including consideration 
of the current learning situation (inferable from 
the relations between tutor design features and 
gaming), and the student’s current    emotions. As 
such, models of SRL and motivation which incor-
porate gaming will need to explicitly model the 
motivation, affective, and situational factors 
which precede gaming behavior, as well as how 
gaming (in its various forms) in fl uences learning. 
This type of linkage is present, at a high level, in 
existing models of SRL (cf. Winne & Hadwin, 
 1998  ) . The work presented here represents a step 
towards making these links concrete and speci fi c, 
towards models of SRL are increasingly    precise. 

 Second, this work serves as an example for 
how educational data mining methods can be 
integrated into future research in SRL and 
 metacognition. Increasingly, research into meta-
cognition and motivation in interactive learning 
environments leverages models of student behav-
ior (examples relevant to gaming behavior include 
Aleven et al.,  2006 ; Beal et al.,  2008 ; Beck,  2005 ; 
Gong et al.,  2010 ; Muldner et al.,  2011 ; Shih 
et al.,  2008  ) . However, the work presented here 
goes to a further degree than most other work in 
attempting to validate construct validity (through 
connecting to a signi fi cant volume of human 
labels of the constructs of interest) and generaliz-
ability (through cross-validating models across 
contexts as well as students). A fuller discussion 
of the bene fi ts of using human labels and gener-
alizability analysis in development of student 

metacognitive models is out of the scope of this 
chapter, but one such discussion can be found in 
Baker  (  2010  ) . In general, the endeavor of using 
student models to computationally study student 
metacognition will be facilitated by improving 
the reliability and validity of our models.  

   Design Implications: How to Reduce 
Gaming 

 As we improve our understanding of why stu-
dents game the system, we can begin to think 
about developing learning environments that 
adapt in a relevant and purposeful way to gaming 
when it occurs. In recent years, there have been a 
number of attempts to develop systems that adapt 
to gaming in a productive and constructive fash-
ion, or to address gaming by preventing it from 
ever occurring. 

 The  fi rst way that developers of educational 
software attempted to address gaming was by 
attempting to eliminate gaming by making it 
more dif fi cult to game. For instance, both 
Cognitive Tutors and AnimalWatch adopted the 
strategy of putting delays between hint messages 
(e.g., Beck,  2005 ; Murray & VanLehn,  2005  ) . 
Each time a student received a hint, the option to 
request the next hint was grayed out for several 
seconds. However, Murray and VanLehn  (  2005  )  
found that students simply found alternate ways 
to game the system. 

 A second approach towards reducing gaming 
was to give students feedback on the metacogni-
tion associated with gaming (according to the 
model in Aleven et al.,  2006  ) , as soon as gaming 
behavior was recognized (Roll, Aleven, McLaren, 
& Koedinger,  2007  ) . This feedback suggested 
that a student who games help should slow down 
and read the hints more carefully, and that a stu-
dent who responds too quickly (a proxy for guess-
ing behaviors) should slow down and either 
request a hint or try to  fi gure out the answer. This 
system was successful at reducing students’ 
degrees of these behaviors as they used the 
tutoring system, and led to long-term positive 
changes in help-seeking behavior (Roll, Aleven, 
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McLaren, & Koedinger,  2011  ) , but had no impact 
on domain learning (Roll et al.,  2007,   2011  ) . 

 Based on the low success of this generation of 
gaming interventions at improving domain learn-
ing (despite the success of both interventions at 
changing student behavior), a second generation 
of gaming interventions attempted to address 
gaming through introducing more complex inter-
actions intended to impact students’ awareness of 
gaming by communicating gaming’s prevalence 
via visualizations or attempting to mitigate its 
effects through cognitive interventions. 

 Within this second generation of gaming inter-
ventions, Walonoski and Heffernan  (  2006b  )  
placed visualizations about gaming behavior over 
the last 20 min on-screen, for viewing by students 
and teachers. These visualizations had a bar trav-
elling from left to right; the visualizations indi-
cated the passage of time from left to right, 
gaming behavior by color (red indicating certain 
gaming, yellow indicating possible gaming, and 
green indicating no gaming), and the correctness 
(at the cognitive level) of the action from top to 
bottom. Placing the mouse pointer over a point 
on the graph gave greater detail about that action. 
This system was successful at reducing students’ 
degrees of gaming behavior as they used the 
tutoring system; domain learning was not 
measured. 

 A second project, Arroyo and colleagues 
 (  2007  ) , gave visualizations of student correctness 
between problems rather than during problems. 
These visualizations showed overall correctness 
rather than directly showing gaming (the two 
constructs are, of course, closely related). Along 
with the visualizations were textual messages 
(when gaming had occurred) about how correct-
ness could be raised by avoiding gaming strategies. 
This system was successful at reducing students’ 
degrees of gaming behavior as they used the 
tutoring system, and was also found to improve 
domain learning. 

 A third project, Baker and colleagues (Baker, 
Corbett, Koedinger, et al.,  2006  ) , combined feed-
back on how to use the software appropriately (as 
in Roll et al.,  2007 , but the feedback was substan-
tially less sophisticated), with an attempt to give 

students another way to learn material missed by 
gaming. This intervention involved a pedagogical 
agent named Scooter the Tutor, shown in    Fig.  7.5 . 
When students did not game, Scooter remained 
in the background, occasionally giving a positive 
message; when the student gamed the system, 
Scooter  fi rst displayed negative emotion and gave 
metacognitive messages similar to those in Roll 
and colleagues  (  2007  ) , and then gave supplemen-
tary exercises which involved using the same 
skills or concepts bypassed via gaming. Scooter 
was successful at reducing students’ degrees of 
gaming behavior as they used the tutoring sys-
tem, and was also found to improve domain 
learning. However, the very students who 
bene fi tted from Scooter’s interventions reported 
strongly disliking Scooter.  

 Each of these interventions was successful in 
reducing gaming, and two were successful in 
improving domain learning. However, none of 
these interventions were successful in a broader 
sense: none were adopted and applied at a wider 
scale by software developers, even within the 
three projects that originally developed them. 
One possible explanation for this puzzling lack of 
uptake is that all three of these interventions 
required signi fi cant development and made the 
interaction between the student and the educa-
tional software substantially more complex. This 
may be a general limitation for interventions 
intended to solve single problems in metacogni-
tion or address single problematic behaviors: the 
intervention cannot be larger in scope and com-
plexity than the problem’s perceived level of 
importance justi fi es to software developers. 

 The recent research on which features of 
intelligent tutoring systems lead to gaming, 
described earlier in this chapter, provides a pos-
sible avenue for addressing gaming the system in 
a more lightweight fashion. Knowing the fea-
tures that predict gaming creates the possibility 
that changing these features will reduce students’ 
propensity to game the system (this is not guar-
anteed, of course, as correlation does not imply 
causation), and perhaps also improve learning. 
Research into this possibility is an important 
area of future works.  
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   Conclusions 

 In this chapter, we have talked about our work to 
model and study gaming the system using educa-
tional data mining methods (Baker & Yacef, 
 2009 ; Romero & Ventura,  2010  ) . Our work has 
leveraged the development of automated detec-
tors of gaming behavior for Cognitive Tutors and 
other interactive learning environments. Our 
detector development has relied upon  fi rst using 
human labeling methods to gather “ground truth” 
labels of students or actions judged to be gaming 
the system, then using data mining methods to 
distill these labels into reusable detectors of gam-
ing, and  fi nally validating these models at multi-
ple levels. 

 We then discuss two “discovery with models” 
analyses where these detectors are leveraged in 
order to analyze research questions of interest. 
Gaming detectors have supported the analysis of 
why students game the system, and how gaming 
the system impacts learning. In speci fi c, these 
analyses show that gaming the system is associ-

ated with less learning, in an immediate 
 fashion—a different pattern than was found for 
off-task behavior, where learning was only 
reduced in the aggregate. In addition, these 
 analyses discover a set of nine features of tutor 
lessons that are associated with differences in the 
prevalence of gaming the system. 

 We also discuss ongoing work, both in our 
research group and other research groups, to 
develop software that remediates gaming the 
 system. Thus far, this work has had only partial 
success. We discuss how the discovery with 
 models analyses presented earlier in the chapter 
may have the potential to in fl uence the design of 
educational software that effectively prevents 
gaming in a nonintrusive fashion. If successful, 
this program of research will form a key example 
of how to design for effective student behavior, 
in a fashion that either stimulates metacognition 
which leads to more effective learning strategies 
or alternatively by addressing the negative 
learning outcomes potentially stemming from 
students’ ineffective or counterproductive self-
regulation during    learning. 

  Fig. 7.5    Scooter the Tutor—looking happy when the stu-
dent has not been gaming harmfully ( top-left ), giving a 
supplementary exercise to a gaming student ( right ), and 

looking angry when the student is believed to have been 
gaming heavily, or attempted to game Scooter during a 
supplementary exercise ( bottom-left )       
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 In the long term, studying gaming and related 
phenomena using discovery with models meth-
ods has the potential to signi fi cantly improve our 
 fi eld’s understanding of the metacognitive and 
motivational processes that occur during learning 
with interactive learning technologies, in turn 
leading to software more effectively tuned to stu-
dents’ educational needs.      
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  Abstract 

 The research shows that the lack of instructional scaffolding and high 
degree of user control inherent to most HLEs make them dif fi cult learning 
environments for learners who lack the ability to appropriately self-
regulate their learning. Therefore, developers of HLEs must construct 
these environments in ways that not only promote knowledge acquisition, 
but also foster and scaffold SRL skills. This chapter introduces a two-
tiered (i.e., the micro- and macro- level) approach to analyzing SRL data 
derived from think aloud protocols, which can be informative in terms of 
the domain-, task-speci fi c self-regulatory processes that should be scaf-
folded in particular HLEs. The two-tiered approach provides a bridge 
between the SRL data and theory by showing how the  micro-level  learning 
processes (e.g., judgments of learning) can be used to indicate the degree 
to which individuals engage in the  macro-level  categories of self-regulation 
discussed in SRL models. Findings from a number of our research studies 
illustrate how analyzing data at both tiers results in a comprehensive 
understanding of how learners self-regulate in HLEs, and how the nature 
and quality of that self-regulation interacts with internal and external 
conditions.      

  8      A Two-Tiered Approach 
to Analyzing Self-Regulated 
Learning Data to Inform the Design 
of Hypermedia Learning 
Environments       

        Jeffrey   A.   Greene      ,    Kristin   R.   Dellinger   , 
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 If the mere introduction of learning technologies 
into classrooms was enough to bolster learning, 
the bene fi ts would have been evident almost 
immediately. Unfortunately, the in fl uence of 
technology on learning has been variable and 
inconsistent (Collins & Halverson,  2010 ; 
Jacobson & Azevedo,  2008  ) . Technologies such 
as the Internet and hypermedia-learning environ-
ments (HLEs) allow learners to access nearly the 
entirety of human knowledge with a few simple 
search commands, but many individuals often 
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fail to translate this knowledge into deep concep-
tual understanding (Ainsworth,  2006 ; Gerjets, 
Scheiter, & Schuh,  2008  ) . Many HLEs lack any 
instructional scaffolding, thus requiring a high 
degree of learner control, making them dif fi cult 
learning environments for individuals who are 
unable to appropriately de fi ne learning tasks, set 
goals, identify gaps in their knowledge, employ 
relevant strategies, and monitor and adapt their 
learning. Individuals’ ability to appropriately 
deploy these self-regulated learning (SRL; Winne 
& Hadwin,  2008 ; Zimmerman,  2000  )  processes 
is an important predictor of the degree to which 
HLEs can foster conceptual understanding. 
Therefore, developers of HLEs must construct 
these environments in ways that not only 
 disseminate knowledge, but also foster and scaf-
fold SRL skills, lest a large segment of their user 
base fail to bene fi t from the technology. 
Determining which SRL processes to scaffold in 
HLEs, and how to scaffold effectively, have 
proven to be dif fi cult challenges (Jacobson & 
Archodidou,  2000 ; Jacobson & Azevedo,  2008  ) . 

 There are a number of reasons why it is such a 
challenge to determine which SRL processes relate 
to learning in HLEs. First, individual  differences in 
learners’ internal conditions, such as prior knowl-
edge, level of motivation, and  self-beliefs, make 
SRL inherently idiosyncratic (Zimmerman,  2000  ) . 
The SRL processes that help a particular individual 
learn may differ greatly from those that are 
bene fi cial for another individual. Second, much of 
SRL processing is domain-, task-, and even HLE-
speci fi c: The control-of-variables strategy that 
might be effective in a  science-based HLE may be 
completely useless in an HLE designed to foster 
historical understanding. The third reason relates to 
the challenges associated with collecting SRL data. 
Effective SRL processing is dynamic and adaptive, 
occurring as a series of events over the entirety of a 
learning task (Azevedo, Moos, Johnson, & 
Chauncey,  2010 ; Greene & Azevedo,  2010  ) . 
Therefore, researchers and HLE developers must 
collect and interpret a large amount of complex 
data to capture all of the decision-making that 
occurs during a learning task. Further complicating 
data collection is the fact that empirical evidence 
has shown that  learners are not accurate reporters 

of their SRL  processing (Winne, Jamieson-Noel, 
& Muis,  2002  ) . Together, these issues have 
prompted a move toward using online measures 
(i.e., measures that capture SRL as it occurs) to 
study how various SRL processes relate to learn-
ing with HLEs. These online measures bring with 
them their own set of challenges, in particular 
regarding how the data they generate can be 
related to models of SRL, and how to use those 
data to inform embedded scaffolds in HLEs. 

 The main goal of this chapter is to elucidate a 
two-tiered approach to analyzing online SRL data. 
This approach involves examining both the speci fi c 
behaviors learners enact (e.g., judgments of learn-
ing) as well as the broader categories of SRL indi-
cated by these speci fi c behaviors (e.g., monitoring). 
We believe that analyzing data from both tiers of 
SRL processing (i.e., speci fi c and broad, or what 
we call the micro- and macro-level) can lead to 
informed and effective recommendations for 
instructional scaffolding within HLEs. To describe 
and justify this approach,  fi rst we present a brief 
review of the advantages and challenges of using 
HLEs to promote conceptual understanding. Then, 
we review a conceptual model of SRL that we feel 
best aligns with how learners monitor and control 
their learning with HLEs. From this model we 
describe a method of capturing SRL processing, 
including the kinds of micro- and macro-level SRL 
data that can be dif fi cult to infer from self-report 
instruments. Then we describe our two-tiered 
approach to analyzing SRL data, including  fi ndings 
from a number of our research studies that illus-
trate how such analyses can result in a comprehen-
sive understanding of how individuals successfully 
self-regulate while using HLEs. Finally, we model 
how this two-tiered approach can be used by 
designers of HLEs to determine which SRL pro-
cesses to scaffold, given the speci fi cs of the 
domain, the task, and the HLE. 

   Advantages and Challenges of 
Hypermedia Learning Environments 

 HLEs connect a network of informational ele-
ments (i.e., nodes) and related topics through 
hyperlinks. Advantages of HLEs include their 
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ability to disseminate information in multiple 
representational formats (e.g., audio, video, 
text, illustration), and their nonlinear, hyper-
linked structure, which allows for a great deal 
of user control. Compared to textbooks and 
other traditional means of knowledge dissemi-
nation, HLEs more effectively foster concep-
tual understanding because individuals are 
afforded opportunities to (a) learn at their own 
pace, (b) freely navigate the network of infor-
mation, and (c) select the representations 
that best build upon their prior knowledge 
(Jacobson & Archodidou,  2000 ; White & 
Frederiksen,  2005  ) . 

 These advantages of HLEs only bene fi t indi-
viduals who have the working memory capacity 
necessary to work with and integrate multiple 
representations of information (Gerjets et al., 
 2008  ) . The working memory subsystem handles 
the temporary encoding and manipulation of 
information (Baddeley,  2001  ) , and can be eas-
ily overwhelmed when learners have little to no 
background knowledge about HLE content or 
how to navigate the many hyperlinks in HLEs. 
The effect of splitting attention between navi-
gation and processing information may cause 
individuals to learn only knowledge fragments 
rather than coherent conceptual understanding 
(Antonenko & Niederhauser,  2010 ; Jacobson & 
Archodidou,  2000  ) . 

 In most HLEs that lack instructional scaffold-
ing, learners must take responsibility for con-
structing coherent knowledge of the topic, as 
opposed to depending upon the conceptually 
ordered points presented in traditional texts 
(Antonenko & Niederhauser,  2010  ) . This high 
degree of user control in HLEs requires learners 
to adapt and regulate their cognitive and meta-
cognitive processes (i.e., self-regulate their learn-
ing) in order to monitor the  fi t of new information 
with current knowledge to construct accurate 
understanding. Learners who fail to self-regulate 
effectively while using an HLE are unlikely to 
acquire conceptual understanding (Azevedo & 
Cromley,  2004 ; Azevedo, Moos, Greene, Winters, 
& Cromley,  2008 ; Greene, Costa, Robertson, 
Pan, & Deekens,  2010 ; Shapiro,  2008 ; White & 
Frederiksen,  2005  ) .  

   Models of Self-Regulated Learning 

 Numerous models of SRL exist (Pintrich,  2000 ; 
Winne & Hadwin,  2008 ; Zimmerman,  2000  ) , but 
each highlights that effective self-regulators are 
active participants in their learning, capable of 
monitoring, controlling, and regulating aspects of 
their cognition, motivation, behavior, and context 
to meet task demands and build upon prior knowl-
edge. Winne and Hadwin  (  2008  )  characterized 
SRL as four  fl exibly sequenced, recursive phases 
of learning. In the  fi rst phase, learners interpret 
task-relevant internal (e.g., prior knowledge) and 
external (e.g., academic domain, context, task 
instructions) conditions to create a de fi nition of 
the task. Based on this de fi nition, in the next 
phase learners set goals and derive a plan to meet 
those goals. The third phase of SRL involves 
enacting learning strategies to meet goals. The 
fourth phase occurs when learners realize that 
signi fi cant changes to their cognitive and meta-
cognitive processing are needed in order to effec-
tively complete a task of a similar nature in the 
future. Within each phase, learners engage in 
metacognitive monitoring to determine if the 
result of phase processing (e.g., a task de fi nition, 
plan, conceptual understanding) is likely to meet 
whatever standards they believe to be relevant 
(e.g., the level of conceptual understanding nec-
essary to pass a test). When monitoring indicates 
a mismatch between the results of phase process-
ing and learners’ standards (e.g., realizing that 
despite having reread a Wikipedia entry numer-
ous times, the learner still does not understand 
quantum physics enough to complete a home-
work assignment), effective self-regulators 
engage in metacognitive control processes to 
alter how they are learning (e.g., rede fi ning the 
task, altering plans, enacting different strategies). 
Thus, skillful self-regulators iterate back and 
forth between phases until they have an adequate 
task de fi nition and plan that has led to a level of 
understanding that they feel matches whatever 
standards they have set for the task. 

 In sum, within each phase of learning, effec-
tive self-regulators make countless decisions 
regarding how relevant internal and external 
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conditions in fl uence cognitive processing, 
whether current cognitive and metacognitive 
processing is likely to result in learning products 
that suf fi ciently meet their standards, and if 
changes need to be made to their task de fi nition, 
plans, goals, or strategy use. Thus, unless prac-
ticed extensively until automatized, SRL pro-
cessing can exhaust much of an individual’s 
working memory, leaving few resources for the 
processing of new information, and subsequent 
learning. Therefore, even the most availing, 
intelligently designed HLE will have little effect 
upon a learner’s conceptual understanding if that 
individual lacks the SRL expertise to select and 
integrate relevant representations of information 
(Azevedo,  2005  ) . Given the richness, complex-
ity, and sheer volume of self-regulatory process-
ing that can occur over the course of a learning 
task, a dif fi cult task awaits the developers who 
wish to create HLEs that foster, and perhaps even 
scaffold, SRL processing. Capturing and model-
ing data regarding how learners do and do not 
enact cognitive and metacognitive processing 
within speci fi c HLEs requires copious and care-
ful measurement methodology that must align 
with SRL models (Azevedo et al.,  2010  ) .  

   Capturing and Modeling 
Self-Regulated Learning Processing 

 Particularly in the early years of SRL research, a 
common way to measure SRL processing was 
with self-report instruments, such as the Motivated 
Strategies for Learning Questionnaire (MSLQ; 
Pintrich, Smith, García, & McKeachie,  1991  ) . 
Although self-report instruments are relatively 
easy to administer and have been used in count-
less studies (see Duncan & McKeachie,  2005  for 
a review), there are several reasons why they are 
often inadequate measures of SRL. Self-report 
instruments rely upon retrospective accounts 
based on individuals’ judgments and memories 
of their previous behavior, often aggregated over 
many learning episodes (Veenman,  2007 ; Winne 
& Perry,  2000  ) . Much like the stock market, prior 
performance is not necessarily an accurate indi-
cator of future SRL processing. It may be dif fi cult 

for learners to make a holistic judgment of their 
typical SRL processing given its domain-speci fi c 
and even task-speci fi c nature. Likewise, SRL 
processing is dynamic, and involves countless 
monitoring and control decisions that are made 
among changing internal and external conditions 
over the course of learning. A single administra-
tion of a self-report instrument before or after a 
learning task would fail to capture any of this 
valuable contextual information. 

 In addition, self-report instruments tend to 
produce data with a restricted range because 
they typically have closed-ended responses 
where the learner is forced to choose an answer 
from a limited number of options (Winne & 
Perry,  2000  ) . Learner behaviors and experiences 
that are not listed among the possible responses 
are therefore missed. Perhaps most concerning, 
   Winne and Jamieson-Noel ( 2002 ) provided 
compelling evidence that learners could be quite 
variable in their calibration between their per-
ceptions and actual behaviors. Overall, learners 
tend to be inaccurate when self-reporting their 
use of study tactics, calling into question the 
validity of the data provided by these instru-
ments. Therefore, it is unlikely that data from 
self-report instruments accurately represent 
learners’ self-regulatory processing (Veenman, 
 2007 ; Winne & Perry,  2000  ) . Given these con-
cerns, recent attempts to measure SRL have 
focused upon online, process measurement 
methodologies, such as think-aloud protocols 
(TAPs; Ericsson,  2006 ; Ericsson & Simon, 
 1993 ; Greene, Robertson, & Costa,  2011  ) . 

   Using Think-Aloud Protocols to Capture 
Self-Regulated Learning 

 Rather than requiring learners to retrospectively 
report on their SRL processing, as self-report 
instruments do, TAPs involve asking learners to 
verbalize their thinking as they engage in a task. 
For example, learners might be working with an 
HLE and verbalize, “I don’t understand the words 
in this paragraph. I think I will click on this 
hyperlink to learn more.” Verbalization allows 
for researchers to capture self-regulation as it 
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occurs, avoiding the concerns related to self-
report instruments, such as when participants 
misremember their SRL processing. TAPs pro-
duce verbalizations that occur as the learner self-
regulates, requiring no aggregations or judgments 
of past performance, and they produce a running 
account of actual processing decisions over the 
course of learning. Therefore, they allow research-
ers to gather data regarding the entire learning 
experience, rather than simply before or after the 
task. In addition, TAPs are open-ended with an 
unlimited response range, thus all verbalized 
aspects of SRL processing can be captured with-
out researchers having to create a priori lists of 
potential behaviors. 

 Numerous researchers (Bannert & 
Mengelkamp,  2008 ; Veenman,  2007 ; Veenman, 
Prins, & Verheij,  2003  )  have provided empirical 
evidence that TAPs are much more accurate mea-
sures of individuals’ self-regulated learning than 
self-report instruments, and in turn are better pre-
dictors of performance. Importantly, empirical 
research has shown that asking learners to simply 
verbalize, but not explain, their thinking does not 
affect their cognitive processing (see Ericsson & 
Simon,  1993 ; Greene et al.,  2011 ; Veenman, 
Elshout, & Groen,  1993  for reviews). Finally, 
TAPs allow for a level of detail beyond what is 
possible with self-report instruments because the 
researcher can determine exactly how frequently 
and when during the task speci fi c verbalizations 
occurred (Azevedo et al.,  2010  ) .  

   Coding Think-Aloud Protocol Data 
to Model Self-Regulated Learning 
Processing 

 TAPs produce a great deal of data, and translating 
those data into a form that can be interpreted 
within a SRL framework requires a speci fi c and 
detailed methodology. For example, during one 
15 s period of time, an individual using an HLE 
to learn about the circulatory system may verbal-
ize the following:

  I want to learn more about the pulmonary arteries, 
and then I want to go back and look at a picture of 
the heart to see how these arteries relate to how the 

blood carries oxygen. So, I will click on this link 
for pulmonary arteries. I see that  pulmonary arter-

ies carry deoxygenated blood to the lungs  but I 
thought that arteries always carried oxygenated 
blood. I don’t understand. (words in italics indicate 
text that was read from the HLE)   

 Clearly, this hypothetical individual is 
engaging in numerous acts of SRL, but research-
ers need a systematic way of identifying those 
processes among the actual words that are ver-
balized. Azevedo and colleagues (Azevedo & 
Cromley,  2004 ; Azevedo, Guthrie, & Seibert, 
 2004 ; Greene & Azevedo,  2009  )  have devel-
oped a coding scheme that enumerates over 35 
speci fi c SRL processes that can be inferred 
from TAP data. 

 Using Azevedo and colleagues’  (  2004  )  
scheme, researchers can divide a participant’s 
verbalizations into segments that can each be 
coded for a speci fi c SRL process. In the above 
example, the  fi rst sentence, “I want to learn more 
about the pulmonary arteries, and then I want to 
go back and look at a picture of the heart” would 
be coded as a  plan , since the participant stated 
multiple goals to be addressed. The next state-
ment, “I will click on this link” indicated a  selec-

tion of a new information source . After reading 
some text, the participant  activated his or her 

prior knowledge  regarding arteries and blood. 
The participant then recognized the incongru-
ence between the text and prior knowledge with 
the statement, “I don’t understand,” which would 
be coded as a  judgment of learning . Overall, 
coding TAP data involves using the scheme to 
determine the best SRL process code for each 
segment, or labeling that segment as not relevant 
to self-regulation (e.g., asking for a drink of 
water). Azevedo and colleagues  (  2004 , Table 2) 
have published a list of SRL process codes and 
examples of how they can be inferred from ver-
balization data. 

 These SRL process codes, inferred from par-
ticipants’ verbalizations, are rich sources of 
information regarding how learners engage with 
HLEs. Coded transcriptions of TAP data not only 
provide accurate descriptions of  what  learners 
do, but also  when  they do it,  what  occurs before 
and after each behavior, and  how often  each 
behavior occurs over the course of a learning task 
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(Azevedo & Witherspoon,  2009 ; Greene & 
Azevedo,  2010  ) . Hypotheses about how these 
data relate to learning outcomes can be generated 
from models of SRL (e.g., Winne & Hadwin, 
 2008 ; Zimmerman,  2000  ) . However, data col-
lected with TAPs and analyzed using Azevedo 
and colleagues’ scheme provide information 
about  speci fi c  SRL processes, whereas models of 
SRL outline predictions about the relations 
among  broad  categories of self-regulation, such 
as “monitoring” or “strategy use” and learning 
outcomes. Therefore, researchers need a means 
of translating speci fi c SRL process codes from 
TAP data (e.g.,  selecting a new information 

source, judgment of learning ) into these broader 
categories.   

   Two-Tiered Approach to Analyzing 
Self-Regulated Learning Processing 

 Azevedo and colleagues (Azevedo et al.,  2008 ; 
Greene & Azevedo,  2009  )  have outlined how the 
speci fi c SRL processes derived from TAPs (e.g., 
 judgments of learning ), which they term micro-
level SRL process data, can be used to indicate 
the degree to which individuals engage in the 
broader categories of self-regulation discussed in 
SRL models (e.g., Winne & Hadwin,  2008  ) . They 
call these broader categories of SRL (i.e., plan-
ning, monitoring, strategy use, interest, and han-
dling task dif fi culty demands) macro-level SRL 
processing. Their research has also shown how 
both micro-level and macro-level SRL process 
data can be helpful when analyzing how individ-
uals learn complex topics with HLEs, and how 
various internal and external characteristics 
in fl uence SRL processing. 

   Micro-Level SRL Processing Data 

 Micro-level SRL data are the speci fi c learning 
processes inferred from TAPs through Azevedo 
and colleagues’  (  2004 ; Greene & Azevedo, 
 2009  )  coding scheme. Given that, in general, the 
quantity of adaptive SRL processing predicts 
learning (Zimmerman,  2000  ) , analyses of how 

frequently learners enact various micro-level 
SRL processes may elucidate which SRL pro-
cesses are particularly helpful in a given HLE 
(Azevedo & Cromley,  2004 ; Greene & Azevedo, 
 2007 ; Greene, Moos, Azevedo, & Winters,  2008 ; 
Greene, Bolick, & Robertson,  2010 ; Greene, 
Costa, & Dellinger,  2011  ) . For example, research 
has shown that within one particular science-
based HLE, frequently  coordinating various 

information sources  is an adaptive strategy, 
whereas excessive  note taking  is not (Greene 
et al.,  2008  ) . Thus, analyses of micro-level SRL 
processing allow researchers to examine domain-, 
task-, and HLE-speci fi c relations between 
speci fi c self-regulatory behaviors (e.g.,  taking 

notes ) and learning. 
 However, it is important to remember that 

SRL is idiosyncratic, and that internal and 
 external conditions may moderate the ef fi cacy of 
particular micro-level processes in terms of learn-
ing. For example, individuals with low prior 
knowledge may need to devote a great deal of 
time to memorizing the declarative knowledge in 
an HLE before attempting to integrate multiple 
knowledge representations into conceptual 
 understanding. For these individuals with low 
prior knowledge, frequent use of strategies, such 
as taking notes may be highly predictive of 
signi fi cant learning gains. On the other hand, for 
learners with ample prior knowledge about the 
content of an HLE, taking notes would be a poor 
use of their time. Instead, these learners might 
deploy other strategies (e.g.,  coordinating infor-

mation sources ) that are more appropriate for 
their level of prior knowledge, and subsequently 
achieve even more substantial learning gains. In a 
sample of users with varying degrees of prior 
knowledge, a statistical analysis using the fre-
quency of deploying various strategies to predict 
learning outcomes may lead to unclear results; 
some participants (i.e., low prior knowledge) may 
take notes often and successfully acquire knowl-
edge, whereas others (i.e., high prior knowledge) 
may take notes rarely but still show signi fi cant 
learning gains. Clearly, the frequency of micro-
level SRL processing alone tells only part of the 
story regarding how self-regulatory behavior 
relates to learning. In certain situations, it may be 
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helpful to examine SRL processing at a different, 
broader level. Greene and Azevedo  (  2009  )  argued 
that in certain situations it may be useful to aggre-
gate frequency data for micro-level SRL process 
codes into macro-level SRL process data.  

   Macro-Level SRL Processing 

 In Azevedo and colleagues’  (  2004  )  scheme, each 
of the micro-level SRL processes can be catego-
rized as an example of one of the  fi ve broader 
categories of macro-level SRL processing (i.e., 
planning, monitoring, strategy use, managing 
task dif fi culty and demands, and interest). 
Therefore, one way to calculate macro-level SRL 
processing would be to sum the frequencies of 
each micro-level SRL process that falls within 
that category. Macro-level analysis can account 
for some of the idiosyncratic differences in the 
ef fi cacy of micro-level SRL processes. As illus-
trated above, various internal and external condi-
tions, such as prior knowledge, can moderate the 
degree to which particular SRL processes are 
availing for individuals. Looking at macro-level 
SRL processing could explain some of the mixed 
 fi ndings that can result from analyzing frequency 
data on taking notes with the hypothetical 
 participants described previously. For some 
 participants, deploying a taking notes strategy 
frequently was an adaptive strategy, whereas for 
others it was not. By aggregating the frequency 
of all micro-level SRL processes that are indica-
tive of strategy processing (e.g., taking notes and 
inferencing) into a single macro-level SRL strat-
egy use score, the analysis could reveal that those 
participants who used more strategies, regard-
less of which speci fi c strategies were best given 
the individuals’ idiosyncratic differences, were 
more likely to acquire conceptual understanding 
(   Greene, Bolick, et al.,  2010 ; Greene, Costa, & 
Dellinger,  2011 ; Greene, Costa, Robertson, 
et al.,  2010  ) . 

 There are other advantages to examining 
macro-level SRL process data besides the  ability 
to account for idiosyncratic interindividual dif-
ferences. First, most models of SRL are concep-
tualized at the macro-level, not the micro-level 

(Pintrich,  2000 ; Winne & Hadwin,  2008 ; 
Zimmerman,  2000  ) . These models do not 
directly address micro-level SRL processes; 
instead they make speci fi c predictions about the 
relations among broad categories of SRL 
 processing (e.g., planning, strategy use, moni-
toring), internal and external conditions (e.g., 
self-beliefs, prior knowledge, task conditions), 
and learning  outcomes. Therefore, to test these 
relations, researchers need a means of translat-
ing TAP data into information about these broad 
categories of SRL processing, such as Greene 
and Azevedo’s  (  2009  )  approach. Second, the 
large number of micro-level SRL processes that 
can be deployed over the course of a learning 
task greatly increase the sample size needed to 
do quantitative analyses with TAP data. 
Aggregating to the macro-level can reduce the 
number of relevant variables, resulting in more 
power and smaller sample size demands. Finally, 
moving beyond analyses of the frequency of 
SRL processing, researchers are beginning to 
examine  when  individuals use macro-level SRL 
processes, such as planning, monitoring, and 
strategy use over the entire course of a learning 
task (Azevedo & Witherspoon,  2009 ; Greene & 
Azevedo,  2010 ; Moos & Azevedo,  2008  ) . These 
analyses can help developers of HLEs determine 
not only what to scaffold, but also which macro-
level SRL processes should be prompted in the 
beginning, middle, and towards the end of a 
learning task. 

 Thus, the work of Azevedo, Greene, and col-
leagues (Azevedo et al.,  2004 ; Greene & Azevedo, 
 2009  )  has provided a bridge between TAP data, 
with its inherent advantages over self-report 
instruments, and models of SRL. Using their cod-
ing scheme, TAPs can be coded for micro-level 
SRL processing, and the frequency with which 
learners deploy these processes can then be 
aggregated to the macro-level, and used to test 
the relations among SRL processing, internal and 
external conditions, and learning. Next we illus-
trate how data and  fi ndings from both tiers of 
analysis (i.e., micro- and macro-level) can be 
integrated to achieve a more complete under-
standing of users’ SRL in HLEs than could be 
achieved by looking at either tier on its own.  
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   Two-Tiered Approach to Analyzing 
Self-Regulated Learning Processing 

 Certainly, micro- and macro-level SRL process 
data, captured using TAPs, can be used sepa-
rately to investigate how individuals self- 
regulate their learning in HLEs. However, we 
believe that a two-tiered approach to analyzing 
SRL processing, moving back and forth between 
the micro- and macro-levels, is necessary to 
truly understand how learners self-regulate 
in domain-, task-, and HLE-speci fi c ways. 
Examining SRL at both tiers also allows for a 
more rigorous investigation of how the ef fi cacy 
of speci fi c processes varies depending upon 
internal and external characteristics. 

 At the  fi rst tier of analysis, researchers can 
investigate TAP data to identify the micro-level 
SRL processes individuals tend to deploy in a 
speci fi c HLE. Then the researchers can determine 
which micro-level processes are associated with 
the acquisition of conceptual knowledge, and 
which ones are not. For instance, depending upon 
the HLE, the content, and the task, certain micro-
level SRL processes may not be a good use of 
participants’ time, regardless of their individual 
characteristics. Using a control-of-variables strat-
egy in a history-based HLE is a good example of 
a context where this speci fi c micro-level SRL 
process is unlikely to be helpful under any cir-
cumstances. These  fi ndings can be triangulated 
with a priori predictions of the important micro-
level SRL processes for the HLE and its content, 
and qualitative analyses of successful learners’ 
self-regulation. Assuming some congruence 
across multiple methodologies, these analyses 
should lead to a clear, HLE- and context-speci fi c 
set of micro-level SRL processes associated with 
learning. Data regarding these micro-level SRL 
processes can then be aggregated into macro-
level SRL process data. 

 At the second tier of analysis, macro-level SRL 
process data can be examined to determine how 
learners’ planning, monitoring, and strategy use 
interact with internal and external conditions to 
in fl uence learning. For example, analyses might 
reveal that individuals with low self-ef fi cacy 
(Bandura,  2001  )  bene fi t greatly from engaging in 

frequent planning and monitoring, perhaps because 
these macro-level SRL processes allow them to 
focus on achieving proximal goals to boost their 
self-ef fi cacy. Participants with high self-ef fi cacy, 
on the other hand, might not bene fi t as much from 
frequent planning, and instead succeed when they 
set one distal goal and then enact multiple strate-
gies to achieve that goal. The ways in which self-
ef fi cacy, an internal condition, in fl uences SRL 
processing may be dif fi cult to discern when look-
ing at micro-level data, due to the large number of 
speci fi c and idiosyncratic self-regulatory pro-
cesses. However, interactions among self ef fi cacy 
beliefs and SRL processing may be apparent at the 
macro-level. Macro-level analyses, in turn, could 
inform more detailed analyses of TAP data. In 
terms of the previous example, researchers and 
HLE developers might discover speci fi c groups of 
micro-level SRL processes that re fl ect the achieve-
ment of proximal goals (e.g.,  setting a goal, coor-

dinating information sources, judging learning to 

be adequate ). Perhaps frequent achievement of 
proximal goals, as indicated by particular sets of 
micro-level SRL processes, are predictive of the 
kinds of adaptations to internal conditions (e.g., 
self-ef fi cacy beliefs) that Winne and Hadwin 
 (  2008  )  posit to occur in phase four of their model. 

 Overall, we believe that an iterative, transac-
tional, mutually informative approach to analyzing 
SRL processing at both tiers (i.e., micro- and mac-
ro-level) affords a tremendous wealth of informa-
tion regarding how learners self-regulate with 
HLEs, and how the nature and quality of that self-
regulation interacts with internal and external con-
ditions. Such analyses allow for the use of TAP 
data to investigate the claims made in SRL models. 
They can also be informative in terms of the 
domain- and task-speci fi c self-regulatory processes 
that should be scaffolded in particular HLEs.   

   Using a Two-Tiered Approach 
to Self-Regulated Learning Research 
to Inform Design Principles 

 Much of our empirical work has been focused 
upon studying how middle-school, high-school, 
and undergraduate learners use the Microsoft 
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Encarta  (  2007  )  HLE to learn about the 
 circulatory system, and we have recently begun 
using the same two-tiered approach in a new 
HLE focused on historical understanding 
(Greene, Bolick, et al.,  2010 ; Greene, Costa, & 
Dellinger,  2011 ; Greene, Costa, Robertson, 
et al.,  2010  ) . In particular, we have been inter-
ested in the role SRL plays as a mediator and a 
moderator of the relationship between prior 
knowledge and learning. Taken as a whole, on 
average participants in our studies do acquire 
both declarative and conceptual knowledge of 
the circulatory system while using the HLEs 
(Greene & Azevedo,  2007,   2009 ; Greene et al., 
 2008 ; Greene, Bolick, et al.,  2010 ; Greene, 
Costa, & Dellinger,  2010 ; Greene, Costa, 
Robertson, et al.,  2011  ) . However, two-tiered 
analyses of micro- and macro-level SRL data 
have revealed what differentiates participants 
who experience practically signi fi cant learning 
gains from those who do not. These  fi ndings 
could potentially be used to redesign the HLEs 
to more actively foster and scaffold SRL 
processes. 

 In terms of the acquisition of conceptual 
understanding, our initial micro-level SRL pro-
cess data analyses revealed that middle-school 
and high-school students who engaged in more 
frequent constructive strategy use (e.g.,  coordi-

nating information sources, making inferences ), 
as opposed to those who deployed more basic 
information-copying strategies (e.g.,  taking 

notes ), learned more from the HLE in terms of 
pretest to posttest improvements in their mental 
model of the circulatory system (Greene & 
Azevedo,  2007 ; Greene et al.,  2008  ) . Findings 
from these studies suggest that there were HLE-
speci fi c micro-level SRL strategies that were 
predictive of learning, making them likely 
 targets for scaffolding interventions either 
embedded within the HLE or provided by an 
instructor. In particular, participants appeared 
to need assistance in deploying strategies that 
force them to reconstruct and integrate what 
they read or see (e.g.,  knowledge elaboration;  
Greene et al.,  2008 ; Greene, Bolick, et al.,  2010 ; 
Greene, Costa, & Dellinger,  2011 ; Greene, 
Costa, Robertson, et al.,  2010  ) . 

 Interestingly, our past work at the micro-level 
tier showed no evidence that the frequency of 
micro-level SRL monitoring processing (e.g., 
 feeling of knowing, judgment of learning ) related 
to the acquisition of conceptual understanding. 
However, when we aggregated micro-level SRL 
process data to the macro-level, we did  fi nd that 
the frequency of monitoring behaviors was pre-
dictive of learning, above and beyond the 
in fl uence of prior knowledge (Greene & Azevedo, 
 2009  ) . These  fi ndings suggested that middle-
school and high-school learners may need a more 
broad-based approach to scaffolding their moni-
toring than they do for scaffolding their strategy 
use. Our data suggest that interventions designed 
to scaffold speci fi c micro-level monitoring behav-
iors (e.g.,  feeling of knowing, content evaluation ) 
may have little effect, but more general prompts 
to monitor in whatever way the learner feels is 
most helpful may be bene fi cial. This  fi nding 
makes particular sense given the domain and 
nature of the task. Complex systems in science, 
like the circulatory system, are often quite abstract 
and require the integration of multiple represen-
tations to fully understand them (Hmelo-Silver & 
Azevedo,  2006  ) . Learners need to monitor fre-
quently to judge whether they are constructing an 
accurate representation, but the speci fi c nature of 
that monitoring (e.g.,  feeling of knowing ,  judg-

ment of learning ) most likely depends upon their 
internal characteristics, such as prior knowledge. 

 Our subsequent work with undergraduate stu-
dents showed that, compared to participants with 
little prior knowledge, students with a great deal 
of prior knowledge were more likely to activate 
that knowledge and engage in integrative 
 strategies, such as knowledge elaboration 
(Greene, Bolick, et al.,  2010 ; Greene, Costa, & 
Dellinger,  2011 ; Greene, Costa, Robertson, et al., 
 2010  ) . These  fi ndings are aligned with other 
research showing that the quality of prior knowl-
edge predicts the types of strategies learners 
deploy (e.g., Moos & Azevedo,  2008  ) . Further, 
the frequency of use of constructive micro-level 
SRL strategies, such as  coordinating information 

sources  and  making inferences  predicted learning 
among undergraduate students, above and beyond 
the effect of prior knowledge. These  fi ndings 



126 J.A. Greene et al.

cohere with our work with middle-school and 
high-school students, and provide further support 
for scaffolding advanced strategies within the 
HLE. In our analyses, we found that successful 
learners engaged in more macro-level planning 
and monitoring, in general, than learners who 
were less successful. Again, looking across both 
tiers of analysis suggested that for this particular 
HLE, speci fi c strategies and general monitoring 
processes should be the focus of scaffolding. 

 In one of our studies (Greene, Costa, 
Robertson, et al.,  2010  )  we gathered data regard-
ing two internal conditions: undergraduates’ 
prior knowledge and their beliefs about intelli-
gence (Dweck & Leggett,  1988  ) . The latter data 
indicated the degree to which the participants 
viewed intelligence as a  fi xed quality that cannot 
be improved, a maladaptive belief, versus believ-
ing intelligence to be malleable, an adaptive 
belief. We found that, on average, the frequency 
of overall SRL processing moderated the 
in fl uence of these internal conditions on learning. 
Frequent use of high-quality SRL macro-level 
processing increased the positive effects of high 
prior knowledge, and ameliorated the negative 
effects of having a maladaptive belief about 
intelligence. This examination of how internal 
characteristics (i.e., prior knowledge, implicit 
theory of intelligence) interacted with SRL pro-
cessing would not have been possible without 
Azevedo and colleagues’  (  2004 ; Greene & 
Azevedo,  2009  )  coding scheme, which allowed 
us the ability to infer micro-level SRL process-
ing from TAP data, aggregate it to the macro-
level, and model its relations with other 
phenomena according to SRL theory (Winne & 
Hadwin,  2008  ) . These  fi ndings suggest that fos-
tering and scaffolding SRL within HLEs may 
not just affect learning, but also the degree to 
which internal characteristics in fl uence the like-
lihood of participants acquiring deep conceptual 
understanding of complex science topics. 

 Finally, we have just begun to apply our two-
tiered approach to a HLE designed to foster his-
torical understanding (Greene, Bolick, et al., 
 2010  ) . This HLE consists of a series of hyper-
linked primary and secondary sources regarding a 
pre-Civil War public uprising in North Carolina. 

Importantly, there was no embedded scaffolding 
in the HLE, and participants had to determine on 
their own how to best select, evaluate, and inte-
grate the numerous sources. Pretest measures 
showed that a majority of the participants had lit-
tle to no knowledge of the historical event. Our 
 fi rst tier analysis of high-school students’ SRL 
processing with the HLE revealed little use of 
sophisticated, constructive micro-level SRL strat-
egies. Rather, most participants took notes or 
summarized what they were reading. This  fi nding, 
coupled with participants’ frequent expressions 
of confusion while learning, highlighted for us 
the importance of basic knowledge when work-
ing with historical content in this HLE. Embedded 
scaffolds for this HLE should target strategies 
that build declarative knowledge. Macro-level 
SRL process analyses indicated that planning was 
a key predictor of the acquisition of declarative 
knowledge, so prompts to make a thoughtful plan 
for navigating the HLE also seem warranted. 

 In sum, we believe that our past research pro-
vides an excellent model of how to transform 
TAPs into micro- and macro-level SRL process 
data that can inform the design of embedded scaf-
folds with HLEs. By triangulating  fi ndings from 
multiple tiers of analysis, developers of HLEs 
can have more con fi dence that the resources they 
devote to particular SRL scaffolds are well spent. 
Given the complexity of SRL models, and the 
idiosyncratic nature of SRL processing, research-
ers and developers of HLEs must adopt methods 
of measurement that accurately capture how 
learners self-regulate within the environments, 
and analyze those data in multiple ways to inform 
the design of scaffolds that make their HLEs 
effective with all learners, even those who lack 
the requisite SRL skills to take advantages of the 
HLEs on their own.  

   Conclusion 

 In this chapter we have argued that even the best-
designed HLEs, given their considerable cognitive 
demands (Gerjets et al.,  2008  ) , will have limited 
effectiveness unless learners possess suf fi  cient 
domain- and task-speci fi c SRL knowledge and 
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abilities. Unfortunately, most learners lack these 
abilities, therefore what should be two strengths of 
HLEs, their ability to present multiple representa-
tions with a high degree of learner control, become 
detriments. Scaffolding SRL from within the HLE 
requires studying how successful and unsuccessful 
individuals deploy SRL processes over the entire 
course of their learning. Self-report instruments 
simply do not capture such data in an accurate or 
comprehensive manner. TAPs are better aligned 
with the assumptions of SRL models and allow for 
rich data that can describe  what  users do,  when  
they do it,  how often , and in what  sequence . From 
these data, coding schemes, such as the one devel-
oped by Azevedo and colleagues  (  2004 ; Greene & 
Azevedo,  2009  )  can provide a bridge from TAP 
data to micro- and macro-level inferences regard-
ing SRL processing. Our two-tiered approach to 
analyzing micro-level and macro-level SRL 
 processing captures the speci fi c activities that pre-
dict learning within a particular HLE, while also 
accounting for the idiosyncratic interindividual 
differences that are inherent to effective SRL. 
These  fi ndings can be triangulated to reveal what 
types of scaffolds are most likely to foster effective 
SRL among users who would otherwise not deploy 
such behaviors. We believe this approach allows 
developers of HLEs the information they need to 
make good decisions regarding how to deploy 
their resources to foster the particular kinds of 
SRL processing that will be most effective given 
their HLE, the content, and the tasks in which 
learners engage.      
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  Abstract 

 Rapid technological developments and growing interest in learning 
approaches other than traditional ones such as ex-cathedra teaching have 
made hypermedia environments an increasingly popular learning device. 
Such environments have several advantages, but place demands on 
learners as well, such as  requiring  substantially more metacognitive and 
self-regulatory skills compared to structured and guided learning environ-
ments. For instance, learners should be able to check whether they learn 
with an appropriate combination of representations and whether their pace 
of information retrieval or navigation speed are appropriate. On the other 
hand, hypermedia environments can also  support  metacognitive and self-
regulatory abilities and skills precisely because of their demands. When 
learners are not only passive recipients of information that is presented to 
them in bite-sized pieces, but have to take decisions regarding their own 
learning process, active and constructive learning can be enhanced. 

 This chapter will  fi rst give an introduction on hypermedia, including its 
bene fi ts and requirements. In a next step, we will go into more detail 
regarding theories and models of self-regulated learning that served as a 
framework for our own research on the effectiveness of hypermedia learn-
ing environment. This will  fi nally be followed by sections discussing the 
“interplay in both directions”, that is, (a) which importance self-regulatory 
skills have for hypermedia learning and (b) how hypermedia environments 
could be designed and used to support self-regulated learning.      
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   Hypermedia Learning Environments: 
What Makes Them So Special? 

 In everyday language use, hypermedia environ-
ments are sometimes mixed with multimedia 
environments. However, while the term  multime-

dia  (e.g., Mayer,  2009  )  can refer to any device 
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that combines verbal (printed or spoken text) 
and pictorial (static or dynamic visualizations) 
instructional material in a rather system-con-
trolled fashion,  hypermedia  environments are 
mainly characterized by their network-like struc-
ture storing information fragments in nodes that 
are connected by hyperlinks, which allows infor-
mation being retrieved and explored in multiple 
ways. In this regard, Rouet and Levonen  (  1996  )  
as well as Jonassen  (  1996  )  view hypermedia as 
an integration of hypertext with multimedia ele-
ments. This  fl exible degree of learner control 
enables adaptive information utilization (Shapiro 
& Niederhauser,  2004  )  and can foster active, 
constructive, and  fl exible learning. 

 The high degree of freedom associated with 
hypermedia environments encompasses various 
potentials as well as dangers, summarized, for 
instance, by Scheiter and Gerjets  (  2007  ) . For 
instance, hypermedia structures  mirror the mind , 
that is, their hyperlink structure might be com-
pared to the way in which humans store and con-
nect information (Jonassen & Grabinger,  1990  ) . 
Second, their high level of learner control may 
lead to  increased interest and motivation , offer-
ing learners the opportunity to exert control over 
their learning and involving them in several deci-
sion-making processes (Alexander & Jetton, 
 2003 ;    Moos & Azevedo,  2008 ). Third, the higher 
the learner control is in such environments, the 
more  learning can be adapted to personal prefer-

ences and cognitive needs . This, in turn, includes 
 affordances for active and constructive informa-

tion processing . This already points to the impor-
tance of self-regulatory skills for hypermedia 
learning and vice versa. That is, successful learn-
ing with hypermedia environments requires such 
skills, but they can also foster them. When learn-
ers are “forced” to continuously evaluate whether 
the information that they just retrieved helps them 
to achieve their learning goals and to decide 
between different information sources, one 
important aspect of successful self-regulated 
learning according to researchers such as Winne 
and Hadwin  (  1998  )  and Azevedo  (  2005  )  has been 
documented. Such skills can thus be seen as both 
prerequisites for and consequences of successful 
learning with hypermedia. 

 In the following section, the SRL models of 
Winne and Hadwin  (  1998  )  as well as the one of 
Azevedo  (  2005  )  will be described shortly. This 
will be followed by a discussion on the roles 
that aspects of self-regulation as well as other 
individual learner characteristics and the 
instructional design of learning environments 
play with regard to the cognitive load learners 
experience and accordingly their performance 
in hypermedia learning environments. This dis-
cussion is based on an augmented model of the 
Cognitive Load Theory (CLT; Chandler & 
Sweller,  1991 ; Sweller, van Merriënboer, & 
Paas,  1998  )  introduced by Gerjets and Hesse 
 (  2004  ) . Especially, the latter two models will 
serve as a framework for our conceptions of 
hypermedia learning and how SRL can be sup-
ported by as well as foster hypermedia 
learning.  

   Self-Regulated Learning: Models 
and Assumptions 

 The importance of self-regulative skills for 
learning with hypermedia and vice versa has 
been debated in a broad range of papers. For 
instance, Gerjets and Hesse  (  2004  )  describe 
hypermedia as an instance of advanced multi-
media technologies which is characterized by 
high computational power that allows for active, 
 fl exible, goal-oriented, and self-controlled 
learning. The question remains, however,  what 

exactly  makes up successful self-regulated 
learning. One model that describes self-regula-
tion in greater detail is the COPES model of 
self-regulated learning (Winne,  2001 ; Winne & 
Hadwin,  1998  ) . According to the model, self-
regulated learning unfolds temporally in at least 
three of four possible phases:
    1.     Task de fi nition,  where learners develop a 

model of the task, which includes perceptions 
about features of the task, for instance, the 
perceived goal—the set of standards by which 
a task can be judged.  

    2.     Goal setting and planning,  where learners set 
their goals for learning and build up plans to 
approach these goals. This also means that 
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learners can reframe the goals that they per-
ceived during the  fi rst stage, for instance, 
when their personal standards differ from 
standards that were perceived for the task.  

    3.     Enacting study tactics and strategies,  which 
means that learners apply the tactics and 
strategies they have been planning in phase 2 
of the model. In other words (Winne,  2001 , 
p. 167), “work on the task itself is done.” 
This in turn updates prior knowledge and 
beliefs, as already during the execution of 
operations, internal feedback is being gener-
ated. That is, the products of current opera-
tions are monitored and evaluated (e.g., 
compared to the standards set up in phase 2), 
and this may result in dynamically sensitive 
modi fi cations of plans and tactics. It should 
be noted in this regard that this can also 
mean that a student quits learning at this 
point, when, for instance, he recognizes that 
there are no study tactics available that are 
suitable to reach the goals set up in the pre-
vious phase.  

    4.     Metacognitively adapting studying  is an 
optional phase of self-regulated learning. The 
adaptations that students carry out here refer 
to more general changes in the (re-)structuring 
of existing schemas and learning strategies. 
That is, they are not adapted with regard to the 
current task, but with regard to future learning 
situations as well.     
 In each of the phases, deliberate changes that 

students make to their own learning mean that 
they engage in metacognition. That is, metacog-
nitive monitoring and control are seen as the two 
events that constitute the focus of interest in the 
model. According to Winne  (  2001 ; Winne & 
Hadwin,  1998  ) , self-regulated learning can be 
improved by either enhancing these processes or 
when learners have access to necessary informa-
tion. Enhancing metacognitive control or meta-
cognitive monitoring can be implemented by 
using more valid standards to monitor learning or 
by improving the ability of learners to recognize 
when comprehension monitoring should occur. 
In this regard, hypermedia environments seem a 
suitable option to both enable access to informa-
tion and enhance metacognitive processes, for 
instance, by providing multiple information 

sources (that can be retrieved in multiple ways 
according to learners’ individual needs) or by 
means of metacognitive prompting or modeling. 

 The importance of such metacognitive sup-
port features for enhancing self-regulated learn-
ing and speci fi cally for learning with hypermedia 
is central in the work of Azevedo and colleagues 
(Azevedo,  2005 ; Azevedo & Cromley,  2004 ; 
Azevedo, Cromley, Winters, Moos, & Greene, 
 2005  ) , which will also be presented and discussed 
in the next section. According to Azevedo  (  2005  ) , 
hypermedia environments, despite their educa-
tional potential, have failed to enhance students’ 
learning per se especially with regard to complex 
science topics. In particular, Azevedo  (  2005  )  
assumes that students who lack key self-regula-
tory and metacognitive skills have trouble with 
the open and in itself complex nature of hyper-
media environments. More speci fi cally, learners 
do not deploy monitoring activities like feeling of 
knowing or judgment of learning, and they do not 
engage in planning activities such as goal cre-
ation or prior knowledge activation (Azevedo, 
Greene, & Moos,  2007  ) . These activities, how-
ever, are seen as central in hypermedia learning. 
Following his own criticism with regard to pre-
ceding hypermedia research which, according to 
Azevedo  (  2005  ) , had not yet addressed how 
exactly a learner regulates his/her learning with 
hypermedia, the author introduces a model which 
is adapted from SRL research and allows a more 
direct view on the interplay between learner char-
acteristics, cognitive processes, and system struc-
ture during hypermedia learning. 

 In line with other SRL researchers, Azevedo 
 (  2005  )  sees self-regulated learning with hyper-
media as a constructive process where recursive 
cycles of (meta-)cognitive activities take place. 
In line with Winne  (  2001  ) , Azevedo also pro-
poses SRL as being a multiphase process where 
learners need to:

   Analyze the learning situation.  • 
  Set meaningful learning goals.  • 
  Determine which strategies to use and assess • 
whether these strategies are effective to meet 
the learning goals.  
  Monitor and evaluate their understanding.  • 
  Modify plans, goals, strategies, and effort in • 
relation to contextual conditions (which 
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includes cognitive, motivational and task 
conditions).    
 The model of Azevedo and colleagues includes 

33 variables summarized under:
       • Planning , e.g., goal setting, prior knowledge 
activation, and goal recycling in working 
memory  
   • Monitoring activities , e.g., feeling of know-
ing, judgment of learning, monitoring prog-
ress towards goals, and self-questioning  
   • Learning strategies , e.g., hypothesizing, coor-
dinating information sources, drawing infer-
ences, and summarizing  
   • Handling task dif fi culties , e.g., help-seeking 
behavior  
   • Interest in the task or the content domain of 

the task     
 In their model, Azevedo et al.  (  2007 ; Azevedo 

 2005  )  do not explicitly label any of these 33 
variables as effective or ineffective aspects of 
self-regulated learning with hypermedia; how-
ever, Azevedo and Cromley  (  2004  )  report that 
successful learners regulate their learning by 
using effective strategies, planning their learn-
ing by  creating  subgoals,  activating  prior knowl-
edge,  monitoring  emerging understanding, and 
 planning  their time and effort. On the other 
hand, less successful learners tend to use effec-
tive as well as ineffective strategies equally 
often, plan their learning by  using  subgoals and 
 recycling  goals in working memory, and handle 
task dif fi culties and demands through engaging 
in help-seeking behavior. In line with this, sev-
eral researchers found that learners who possess 
sophisticated self-regulatory skills are better 
able to cope with the demands imposed by the 
complex and multifaceted structure of hyperme-
dia environments (e.g., Schwartz, Andersen, 
Hong, Howard, & McGee,  2004  ) . 

 This relation between the structure and 
demands of a learning environment, learner 
activities and conceptions, cognitive load experi-
enced by learners, and accordingly performance 
has also been taken up in the above-mentioned 
model by Gerjets and Hesse  (  2004  ) , which can 
be seen as an augmentation of the Cognitive 
Load Theory (Chandler & Sweller,  1991 ; Sweller 
et al.,  1998  ) . This model, preceded by a short 

summary of the original CLT, will be presented 
and discussed next. 

   The Augmented Cognitive Load 
Theory Model 

 The original Cognitive Load Theory (CLT; 
Chandler & Sweller,  1991 ; Sweller et al.,  1998  )  
assumes a direct relation between the instruc-
tional design of a learning environment and 
working memory load, which in turn has an 
impact on learning performance. More 
speci fi cally, working memory load is divided 
into three types that differ with regard to their 
causes and bene fi ts for learning.  Intrinsic cogni-

tive load  refers to the load that is caused by con-
tent- or task-inherent complexity. It depends on 
prior knowledge and the extent of element inter-
activity, that is, the number of elements that have 
to be processed simultaneously during perfor-
mance of a task. Although intrinsic load needs to 
be considered by instructional designers, Sweller 
et al.  (  1998  )  emphasize that it cannot be directly 
modi fi ed by the design of a learning environ-
ment. The in fl uence capabilities of instructional 
designers rather refer to optimizing  germane 

cognitive load  through minimizing  extraneous 

cognitive load . 
 Extraneous cognitive load builds the core of 

the CLT because it can directly be controlled by 
instructional designers. It is the type of working 
memory load imposed by any instructional design 
and is high when this design is inadequate (e.g., 
too much task-irrelevant information). Intrinsic 
cognitive load caused by task complexity and 
element interactivity and extraneous cognitive 
load caused by instructional design are supposed 
to be additive. The less working memory load is 
claimed by the sum of these two load types, the 
more capacity is available for learning-relevant 
processes such as schema construction. Such pro-
cesses relate to germane cognitive load—the 
effort concerned with applying higher-level cog-
nitive processes that aid understanding. 

 Contrary to the assumptions of the original 
CLT, the augmented model of Gerjets and Hesse 
 (  2004  ) , which is depicted in Fig.  9.1 , proposes 
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that the relation between the design of a learning 
environment and learning outcomes such as cog-
nitive load and accordingly performance cannot 
be seen as a direct one-to-one mapping but that it 
is mediated by learner activities, which in turn 
depend on learners’ expertise and prior knowl-
edge as well as on the instructional conceptions. 
These individual prerequisites gain importance 
with increasing levels of learner control, as is the 
case in hypermedia learning environments.  

 In other words, depending on the structure and 
complexity of such environments and depending 
on their own individual prerequisites, learners 
will set goals and make strategic decisions about 
which contents to access at which sequence. 
These decisions will result in learning activities, 
which accordingly lead to speci fi c patterns of 
cognitive load. These cognitive load patterns, in 
turn, are seen as being directly responsible for 
learning outcomes. When, for instance (in line 
with assumptions of the original CLT), extrane-
ous cognitive load can be kept low so that free 
capacities can be used for processes related to 

germane cognitive load (e.g., schema construc-
tion), meaningful learning can take place. 

 To sum up, according to the extended CLT 
model of Gerjets and Hesse  (  2004  ) , learners’ 
activities and thus their performance within a 
hypermedia learning environment are deter-
mined by at least two main factors. These are the 
instructional design of the learning environment 
on the one hand and individual learner character-
istics on the other hand. As for the design side, 
the learning outcome in a concrete learning situ-
ation can be seen as a result of the trade-off 
between the aforementioned advantages and dis-
advantages of hypermedia (Scheiter & Gerjets, 
 2007 ; Shapiro & Niederhauser,  2004  ) . It is there-
fore of pivotal importance to design hypermedia 
environments carefully, which refers to the con-
tents of the environments as well as to the 
identi fi cation of appropriate degrees of learner 
control. An optimally designed hypermedia 
environment should thus support learners in set-
ting meaningful goals and deploying appropriate 
strategies to foster learning. 

  Fig. 9.1    Learner activities and learner conceptions as moderators between instructional design, cognitive load, and 
learning outcomes (Adapted from Gerjets & Hesse,  2004  )        
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 In this regard, a main difference between 
effective and ineffective hypermedia learning 
seems to be that, in the latter case, learners do not 
seem to engage in SRL activities by themselves. 
In this regard, Azevedo  (  2005 , p. 203) notes that 
when learners fail to learn with hypermedia 
 successfully, one might “erroneously conclude 
that the environments are inherently effective, 
when in fact what is needed is to foster students’ 
self-regulation while using these powerful but 
complex learning environments.” Azevedo and 
colleagues (e.g., Azevedo & Cromley,  2004  )  thus 
assume that some kind of scaffolding or training 
might be necessary to help learners display more 
elaborated SRL strategies and accordingly gain 
conceptual understanding during hypermedia 
learning. These studies and other research on 
self-regulation and hypermedia learning will be 
presented next.   

   The Impact of Self-Regulatory Skills 
for Hypermedia Learning 

 In traditional learning settings, the importance of 
self-regulatory skills has been con fi rmed for 
areas such as text comprehension and for prob-
lem-solving strategies. According to Rouet and 
Eme  (  2002  )  such skills, for instance, knowledge 
about metacognitive strategies in text compre-
hension, can also be applied to tasks that are not 
primarily text-based but  require  suf fi cient text 
comprehension. Stadtler  (  2006  )  argues that such 
requirements are met, for instance, by electronic 
knowledge databases or hypermedia environ-
ments, because, in such environments, learners 
are readers and users of metacognitive strategies 
at the same time when approaching a high amount 
of (not only textual) information with differing 
levels of quality in nonlinear ways. In this regard, 
research has also investigated the role of self-
regulation and metacognition (the latter mainly 
as one de fi ning constituent of self-regulatory 
skills) in Web-based or hypermedia learning. 

 In an early discussion, Cates  (  1992  )  states that 
metacognitive skills are one major factor that 
enables learners to make the best use of the 
resources offered by hypermedia. In this regard, 

Cates  (  1992  )  points to a discussion that might be 
of greater relevance for this chapter. From his 
point of view, it is unclear whether providing 
external support features actually stimulates 
metacognition or rather substitutes for it. 
According to Cates  (  1992  ) , there is yet no  solution 
to this discussion;    however, the in fl uence of self-
regulatory skills for hypermedia learning and 
vice versa the potential of hypermedia environ-
ments for fostering self-regulation cannot be 
doubted (e.g., Azevedo,  2005  ) . 

 In a newer study, Bendixen and Hartley  (  2003  ) , 
criticizing the lack of research on the relation 
between self-regulatory skills and hypermedia 
learning, argue that such skills, in particular 
metacognitive awareness, come into play when 
ill-structured problems are presented—and that 
hypermedia environments share several features 
with such ill-structured problems. However, 
using the  Metacognitive Awareness Inventory  
( MAI ; Schraw & Dennison,  1994  ) , Bendixen and 
Hartley found that neither of the relevant dimen-
sions,  knowledge of cognition  and  regulation of 

cognition , contributed signi fi cantly to achieve-
ment in their hypermedia tutorial. This result was 
surprising but the authors assume that the ill-
structured character of the environment, which 
might have been a prerequisite for self-regulatory 
skills to come into play, might not have been 
given. In fact, their hypermedia tutorial on infor-
mation about former Yugoslavia was rather struc-
tured, as was the form of assessment, namely, the 
testing of factual knowledge. Taking also into 
account that learners had only 30 min time to 
work through the environment, Bendixen and 
Hartley  (  2003  )  argue that some students only 
might have been able to read the texts and noth-
ing else so that such learning processes would not 
necessarily have needed to tap into metacognitive 
resources. 

 On the other hand, other studies show a rather 
strong relationship between self-regulatory skills 
and hypermedia learning. For instance, Bannert 
 (  2005a  ) , in an exploratory study, was interested 
in the spontaneous metacognitive strategy use of 
students working with a hypermedia environment 
on psychology and found that such strategies 
correlated signi fi cantly with performance on a 
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transfer task; additionally, metacognitive activi-
ties were related to factual knowledge.    A correla-
tional study by Nesbit et al.  (  2006  ) , investigating 
psychology students’ achievement goal orienta-
tions and learning strategies in a multimedia 
environment, showed that goal orientation as 
assessed with a questionnaire related to study 
tactics and achievement. In particular, mastery 
goal orientation was negatively related to the 
amount of highlighting. The authors see this 
 fi nding as being in line with expectations as high-
lighting is assumed to be a less effective study 
strategy compared to summarizing and other 
forms of elaboration that are useful for assem-
bling and integrating knowledge. 

 In one of our own studies (Opfermann,  2008  ) , 
we aimed at validating the above-mentioned aug-
mented CLT model and investigated whether 
learners, who differed in regard to (a) attitudes 
towards mathematics as a learning domain and 
towards computers as a learning medium, (b) 
epistemological beliefs, and (c) metacognitive 
strategy knowledge (indicated before learning 
took place) and metacognitive activities (reported 
by learners after learning had taken place), show 
different strategies with regard to navigational 
and representational choices and whether they 
differ with regard to performance and knowledge 
gains. A hypermedia environment that aimed at 
conveying knowledge on basic principles of prob-
ability theory by means of worked examples was 
used for high school students (aged about 16 
years on average). It was found that, in line with 
our expectations, attitudes towards mathematics, 
general epistemological beliefs, and mathemat-
ics-related beliefs as well as strategy knowledge 
in fl uenced the performance of learners. However, 
this in fl uence seems to appear mainly when 
learner characteristics are considered as a whole 
“package” rather than in isolation, and their 
impact was also found to be more direct and less 
mediated by learners’ information utilization 
behavior. Contrary to expectations, although 
strategy knowledge was given, learners did not 
implement this knowledge in terms of more 
sophisticated metacognitive activities during 
learning. It was assumed that this might be due to 
the fact that learners might not always be aware 

of or not spontaneously be able to use such strate-
gies during learning. This interpretation would be 
in line with assumptions by Azevedo and Cromley 
 (  2004  ) ; Azevedo, Moos, Johnson, and Chauncey 
 (  2010  ) ; Schnotz, Heiß, and Eckhardt  (  2005  ) ; or 
Bannert  (  2003  ) . 

 Such  fi ndings lead Veenman, Wilhelm, and 
Beishuizen  (  2004  )  to conclude that metacogni-
tive training might be needed to foster metacog-
nitive skills in multiple domains as well as 
transfer or generalizability of such skills. This is 
in line with the above-mentioned suggestions of 
Azevedo and Cromley  (  2004  )  regarding some 
kind of scaffolding or training to enhance hyper-
media learning. The question how different forms 
of such instructional support can be implemented 
in hypermedia environments will thus be focused 
on in the next section.  

   How Can Self-Regulated Learning 
Be Supported in Hypermedia 
Environments? 

 With regard to instructional support in general, 
Bannert  (  2005b  )  points out that extensive, long-
termed metacognitive training as a form of  direct 

metacognitive support  should be distinguished 
from  indirect support  such as metacognitive 
prompts. Most research investigating the impact 
of such instructional support for multimedia and 
hypermedia learning has made use of the latter 
option—mainly because time restrictions of the 
short-termed studies did not allow for extensive 
training. 

 Schmidt and Ford  (  2003  )  investigated the 
in fl uence of metacognitive instruction on stu-
dents’ work with a learner-controlled computer 
program that taught them how to create Web 
pages. Participants in the control group worked 
with the environment freely without major 
instructions and could decide whenever they 
thought they had learned enough to proceed to 
the posttest. Participants in the experimental 
group  fi rst received a 10-min metacognitive 
instruction (e.g., how important it is for one’s 
own learning to monitor the own learning prog-
ress and to re fl ect upon what one is doing), which 
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they also had available as a handout throughout 
the whole learning process. During learning, the 
experimental group furthermore received meta-
cognitive prompting in form of pop-up windows 
that asked them to re fl ect on how well they 
learned the material. Although Schmidt and Ford 
 (  2003  )  did not  fi nd a direct effect of their meta-
cognitive support on any of the learning out-
comes, their results were interesting in that they 
showed that performance avoidance orientation 
moderated the relationship between interven-
tions and retrospectively reported metacognitive 
activities, which in turn had an impact on learn-
ing outcomes. Overall, metacognitive activities 
were signi fi cantly related to self-ef fi cacy (i.e., 
learners who reported higher metacognitive 
activities were also more con fi dent that they 
could create Web pages after the learning phase) 
as well as to declarative knowledge and skill-
based performance. 

 A similar but more extensive study was con-
ducted by Bannert  (  2003  ) , who let two groups of 
students learn with a Web-based hypertext envi-
ronment conveying basic concepts of motiva-
tional psychology. Learners in the experimental 
group were made familiar with the importance 
and usefulness of self-regulation before starting 
to work with the environment. The information 
they received was also available as a schematic 
handout during learning, and students were 
encouraged to make notes and be geared to this 
schema throughout the learning phase. However, 
in contrast to the information given in Schmidt 
and Ford’s study, the information provided here 
did not only include information on the impor-
tance of monitoring one’s own learning progress. 
Rather, students were provided with a model of 
self-regulated learning that comprised metacog-
nitive activities such as goal setting, planning, 
monitoring, evaluation, and, if necessary, adapta-
tion of strategies. Additionally, learners in the 
experimental group received metacognitive 
prompting in that they were repeatedly reminded 
to use the provided SRL model for their own 
learning. Metacognitive activities were assessed 
by means of verbal protocols. Results show that 
students in the experimental group expressed 
signi fi cantly higher metacognitive activities on 

nearly all analyzed dimensions (goal setting, 
planning, information search, and evaluation). 
Additionally, they outperformed the control 
group with regard to transfer tasks. There were, 
however, no signi fi cant differences with regard to 
factual knowledge and free recall. Bannert  (  2003  )  
explains some of her  fi ndings with the observa-
tion that not all learners were able to use the 
metacognitive schema appropriately. More 
speci fi cally, learners with little domain-speci fi c 
prior knowledge struggled with this support fea-
ture—which might have been a result of the addi-
tional cognitive capacity that was stressed by 
processing and applying the schema as well as 
the following metacognitive prompts. This 
assumption is in line with our own  fi ndings, 
which will be described later in this chapter. In 
another study,    Bannert ( 2004 ) left out the instruc-
tion phase and “only” prompted learners to dis-
play metacognitive activities four times during 
learning. The  fi rst prompt aimed at stimulating 
their orientation, speci fi cation of learning goals, 
and planning; the second told them to write down 
relevant links and judge the relevance of the 
information retrieved; the third aimed at fostering 
monitoring activities; and the fourth instructed 
participants to evaluate their learning outcome, 
for instance, by controlling their comprehension 
and making summaries. Similar to her previous 
study, Bannert ( 2004 ) found differences between 
experimental conditions only for transfer tasks. 
However, Bannert also observed that about half 
of the participants in the experimental group did 
not make use of, or better did not comply with, 
the metacognitive prompts they were given dur-
ing learning. She thus divided the experimental 
group into two subgroups: students who com-
plied or did not comply with the prompts. 
Analysis of performance differences between the 
groups showed that students who used prompts in 
a meaningful way outperformed those who did 
not with regard to both factual knowledge and 
transfer. 

 In sum, the results of the above-mentioned 
studies are in line with earlier  fi ndings from 
Lin and Lehman  (  1999  )  who argued that to 
bene fi t from instructional support, learners 
should possess certain prerequisites, because 
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otherwise such support features might lead to 
cognitive overload. 

 At  fi rst sight, it seems counterintuitive that 
metacognitive support is only useful for learners 
who already possess knowledge and self-regula-
tory skills. Isn’t it more logical that learners who 
lack such abilities receive support to optimize 
their learning? And if so, how can it be assured 
that learners with little prior knowledge and little 
self-regulatory skills bene fi t from support fea-
tures such as prompting? According to Schnotz 
et al.  (  2005  ) , an important aspect to be consid-
ered is the  optional use  of such features, that is, 
giving students the freedom to decide if and when 
they retrieve instructional support. In order to 
enable students with low prior knowledge to 
bene fi t from such support, Bannert  (  2005b  )  
emphasizes the need of extensive metacognitive 
training for such learners before they are exposed 
to prompts, which in turn are rather suitable for 
learners already possessing self-regulatory skills, 
which only need to be activated. These latter con-
siderations were taken into account by a number 
of studies conducted by Azevedo and colleagues. 
For instance, Azevedo and Cromley  (  2004  )  found 
that training students how to regulate their learn-
ing according to models of self-regulated learn-
ing (e.g., planning, monitoring, and strategic 
proceeding) led to greater shifts in mental mod-
els, higher posttest performance, and higher 
metacognitive activities such as prior knowledge 
activation, planning, or monitoring progress 
towards goals. In later studies (Azevedo et al., 
 2005,   2007  ) , the effects of several forms of scaf-
folding were compared. The theoretical back-
ground  fi ts well into the discussion about the 
usefulness of instructional support for learners 
with differing prerequisites. In particular, 
Azevedo et al.  (  2005,   2007  )  assume that  fi xed 
scaffolds such as prompting of prede fi ned sub-
goals might not be suitable to meet the individual 
needs of all learners in the same way. In their 
experiments, they compared such  fi xed scaffolds 
with adaptive scaffolding conditions in which 
learners had access to a human tutor who assisted 
learners to plan their learning by activating prior 
knowledge, monitor their emerging understand-
ing and learning progress during learning, and 

use effective learning strategies. Metacognitive 
activities were assessed by means of verbal pro-
tocols, which were analyzed according to a cod-
ing scheme. Results indicate that learners in the 
adaptive scaffolding condition outperformed 
those receiving  fi xed or no scaffolding on several 
performance measures. Looking at different 
developmental levels, however, revealed that this 
effect was especially apparent for middle and 
high school students, whereas college students 
also bene fi ted from  fi xed scaffolding (Azevedo, 
 2005  ) . Additionally, it was found that younger 
students also relied more on their tutor when pro-
vided with adaptive scaffolding. That is, they 
were able to follow the metacognitive instruc-
tions but did not internalize them. Although this 
sounds disadvantageous for the acquisition of 
metacognitive skills, it might well be in line with 
the assumptions discussed earlier on. That is, by 
allocating metacognitive strategies to and using 
them from an external source, younger and more 
unexperienced learners might have reduced their 
cognitive load so that they could direct all of their 
cognitive capacities to learning itself. Once some 
learning progress was made and schemas were 
built, it might well have been that metacognitive 
skills and strategies were internalized. Although 
these assumptions  fi t with the  fi ndings, they are 
still subject to empirical validation. 

 Taken together, research that has aimed at 
optimizing self-regulated for hypermedia learn-
ing by providing metacognitive support has gen-
erated mixed results. Instructional support seems 
to be bene fi cial under certain, but not all, circum-
stances. In this regard, Stadtler  (  2006  )  summa-
rizes several factors that in fl uence the relation 
between instructional support and learning out-
comes. Such factors are the metacognitive aspects 
that are meant to be supported, the duration of 
support (e.g., extensive training versus short-
termed intervention), the source of support (e.g., 
a human tutor or computer), age and prerequisites 
of learners, as well as characteristics of the learn-
ing task and learning environment. 

 One of our own studies thus investigated 
whether self-regulated learning in a hypermedia 
environment can be enhanced by providing learn-
ers with two forms of instructional support: a 
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metacognitive modeling video as well as prompt-
ing of representational awareness. It was assumed 
that both support devices would help learners uti-
lizing bene fi cial SRL strategies that they were 
either not aware of or not able to display. 
Additionally, it was assumed that individual 
learner characteristics would moderate the rela-
tionship between support and learning outcomes 
in that, for instance, learners with less sophisti-
cated self-regulatory skills might bene fi t from 
modeling and prompting, whereas learners with 
sophisticated skills might not need such devices. 

 Again,  fi ndings were partly surprising. 
Although all participants had signi fi cant knowl-
edge gains, these gains were highest for learners 
who received neither modeling nor prompting 
and lowest for learners who received both forms 
of support. An interesting  fi nding was the interac-
tion with knowledge about bene fi cial metacogni-
tive strategies and displayed activities—for less 
sophisticated learners (i.e., those who knew little 
about bene fi cial strategies and/or did displayed 
less activities during learning), instructional sup-
port was indeed slightly helpful or at least did not 
impair learning. For sophisticated learners, how-
ever, instructional support even appeared to be 
highly detrimental. 

 Although initially surprising, the  fi nding that 
learners bene fi ted most from an environment 
without additional support features is in line with 
recent research (e.g., Horz, Winter, & Fries, 
 2006  ) . One interpretation might be that, regard-
less of the support form, hypermedia environ-
ments have a “novelty” effect and foster learners’ 
motivation because this new form of knowledge 
acquisition is exciting for them—an assumption 
that can be supported by  fi ndings of Zumbach 
 (  2007  ) . However, motivation alone might not be 
suf fi cient and can also decrease again, especially 
when learners realize that they do not possess the 
self-regulatory skills and the knowledge neces-
sary to learn from a hypermedia environment. 

 Another explanation refers more directly to 
the interaction of instructional support with 
metacognitive strategies and activities observed 
in our studies. The most plausible explanation 
for these  fi ndings might be that for sophisticated 
learners, these devices were problematic because 

they confronted them with strategies and 
recommendations different from what they had 
successfully used so far, thereby leading to an 
increase in extraneous load, because according 
to the CLT (Sweller et al.,  1998  ) , such instruc-
tional support would be redundant material for 
sophisticated learners, unnecessarily stressing 
working memory resources. Such an interpreta-
tion is in line with suggestions such as the ones 
by Schnotz et al.  (  2005  )  who propose instruc-
tional support features to be implemented for 
 optional  use by learners. In such cases, learners 
themselves could decide whether they need addi-
tional modeling or prompting. On the other hand, 
exactly such decisions could also demand addi-
tional cognitive resources for inexperienced 
learners, leading to disorientation and cognitive 
overload, because in addition to the already high 
intrinsic cognitive load, extraneous cognitive 
load increases due to the instructional demands. 
An option to overcome this dilemma might be to 
 fi rst assess whether learners possess appropriate 
self-regulatory skills and accordingly expose 
them to some self-regulatory training prior to the 
learning phase. 

 Finally, an explanation for why the instruc-
tional support features did not foster learning in 
the desired way is rather simple—they might not 
have been designed optimally. For instance, the 
feature offering prompting of representational 
awareness indeed might have provided learners 
with knowledge about advantages and disadvan-
tages of different representational formats, but 
this information might need to be connected to 
further elaborations on how this knowledge can 
be used. It is also possible that prompting of rep-
resentational awareness was not bene fi cial 
because it was not the kind of prompting that 
learners would have needed to be supported with 
regard to their self-regulatory abilities. Especially 
in addition to the metacognitive modeling video, 
the prompting of metacognitive awareness might 
have been more suitable in this context. That is, 
during watching the modeling video, learners 
received recommendations such as “I think it 
might be useful to retrieve examples in a system-
atic way because this will help me comparing 
between different categories and being able to 
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solve problems across categories more easily 
later on”—in line with this, learners could receive 
metacognitive prompts, for instance, as pop-up 
windows, that repeatedly remind them of apply-
ing such strategies. Instead of being reminders, 
such prompts could also aim at swaying learners 
to re fl ect upon their own learning behavior, for 
instance, by asking them if they have understood 
the solution steps before they click on another 
worked example. Current research shows that 
these kinds of prompts can be highly effective 
and helpful especially in hypermedia contexts 
(e.g.,    Bannert,  2006 ). 

 Furthermore, the design of the modeling video 
should be reconsidered as well. Other than the 
video that was successfully implemented in the 
studies of Stadtler  (  2006  ) , this video confronted 
learners with an exemplary good learner who did 
not speak to learners but rather to herself 
(e.g., “ I  think  I  should do this…”)—a version that 
might not have had enough affordances for learners 
to comply with. Furthermore, the video used in 
Stadtler’s research gave more concrete recommen-
dations with regard to the (metacognitively reason-
able) use of the learning environment, while 
recommendations given by the present model were 
more on a general, abstract level. The video fur-
thermore might have lowered participants’ motiva-
tion because it was the only feature of the learning 
environment that they were forced to use. 

 This latter assumption leads to an important 
aspect of planning and conducting further 
research which has rather been neglected so far. 
Following Scheiter and Gerjets  (  2007  ) , it may be 
assumed that sophisticated self-regulatory skills 
are  necessary but not suf fi cient  for hypermedia 
learning. More speci fi cally, motivation and inter-
est might be prerequisites that strongly in fl uence 
how much effort someone invests in the resource-
demanding activation of sophisticated self- 
regulatory learning strategies.  

   Conclusion 

 In this chapter, we have discussed whether meta-
cognitive and self-regulatory skills can be seen as 
both a necessary prerequisite for and a conse-

quence of successful hypermedia learning. Taken 
together, results are still very mixed and need to 
be addressed in future research. Such research 
should especially take into account:

   That besides instructional design, factors that • 
account for learning behavior and learning 
success, in line with the augmented CLT model 
proposed by Gerjets and Hesse  (  2004  ) , com-
prise individual characteristics on the side of 
learners, including metacognitive and self-reg-
ulation variables, but also aspects such as epis-
temological beliefs, motivation, and interest  
  That giving learners the freedom to decide • 
which contents they want to access and which 
help features they want to make use of might 
be more suitable to foster metacognitive activ-
ities (e.g., monitoring) and thus the engage-
ment into deeper learning activities  
  That nevertheless just freedom might not be • 
enough to guarantee successful self-regulated 
learning (just as it is the other way round) and 
that some kind of guidance or training prior 
might be advisable before learners are exposed 
to the complete complexity of the respective 
hypermedia environment   
  That, depending on the domain to be taught, • 
not only the environment itself but also the 
learning contents will be considered being 
complex and ill structured so that some support 
during learning might be bene fi cial, for instance, 
in forms of re fl ecting prompts to help learners 
organize their (meta-)cognitive processes    
 Nevertheless, of course, still the most impor-

tant part of planning and conducting research with 
hypermedia learning refers to the design of envi-
ronments, the contents of written or spoken text, 
the design of animations, the placement of hyper-
links and navigation options, or the inclusion or 
exclusion of additional help features. These pro-
cesses, however, should never take place without 
the consideration of individual prerequisites of 
learners, so that in the end it can be concluded that 
the interplay between multimedia/hypermedia 
environments, metacognitive and self-regulatory 
skills, instructional support devices, cognitive 
load, and learning outcomes might be too com-
plex to be reduced to a simple formula or “Do it 
just like this” recommendations.      
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  Abstract 

 This chapter discusses the use of eye tracking to assess cognitive and 
metacognitive processes and cognitive load in computer-based learning 
environments. Bene fi ts of eye tracking for studying such processes are 
discussed (e.g., the very detailed information it provides on where a 
participant was looking, in what order, and for how long), but also limita-
tions (e.g., that detailed information does not tell one which processes 
exactly are occurring; this has to be inferred by the researcher). In addi-
tion, this chapter provides examples of how eye tracking can be used to 
improve the design of instruction in computer-based learning environ-
ments, both indirectly and directly. For example, an indirect way would be 
to use the information on experts’ or successful performers’ viewing 
patterns to adapt instructions prior to a task (e.g., emphasizing what should 
be attended to later on) or to adapt the format of the task (e.g., cueing 
attention). A more direct way would be to display experts’ or successful 
performers’ eye movements overlaid onto the instructional materials. 
In the discussion, the opportunities provided by eye tracking, but also 
the technical challenges it poses are addressed.      

  10      Eye Tracking as a Tool to Study 
and Enhance Cognitive 
and Metacognitive Processes 
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    Eye tracking, that is, tracking the movement of 
the eye ball(s) and relating these movements to a 
stimulus, allows researchers to determine to 

what part(s) of the stimulus a person allocated 
visual attention, for how long, and in what order 
(Duchowski,  2003 ; Holmqvist et al.,  2011  ) . 
Depending on the kind of eye-tracking equip-
ment used, the stimulus can be anything ranging 
from naturalistic scenes (e.g., walking through a 
supermarket or driving in a car (see Land & 
Tatler,  2009  ) ) to materials presented on a com-
puter monitor, which is the main focus of this 
chapter. Determining visual attention allocation 
can provide researchers with information about 
the stimulus itself, because salient environmental 
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features will draw attention automatically (e.g., 
Stelmach, Campsall, & Herdman,  1997  ) , as well 
as the viewer’s cognitive processes, because 
attention shifts also occur driven by instructions 
(e.g., Yarbus,  1967  )  or by knowledge of the task 
or the environment (e.g., Jarodzka, Scheiter, 
Gerjets, & Van Gog,  2010 ; Underwood, Chapman, 
Brocklehurst, Underwood, & Crundall,  2003  ) . 
As such, eye tracking may be a useful tool for 
detailed study of attention allocation during 
learning in computer-based environments. In this 
chapter, we will provide a review of research in 
which eye tracking was used to study, as well as 
enhance, (meta)cognitive processes in computer-
based learning environments.  

   A Brief History of Eye Tracking 

 First used in the nineteenth century, eye-tracking 
technology has undergone dramatic changes in 
the last decades, making it more widely avail-
able and more easy to use. We will provide a 
brief overview here based on elaborate reviews 
of the history of eye tracking, for which the 
reader is referred to Richardson and Spivey 
 (  2004  )  and Wade and Tatler  (  2005  ) . The very 
 fi rst studies on eye movements consisted of 
direct observations of the eyes during reading 
(e.g., using mirrors). This allowed Javal to dis-
tinguish two different types of eye movements: 
short rapid movements and stops (so-called sac-
cades and  fi xations). However, this procedure 
did not allow for objective measurements of the 
eye movements. At the end of the nineteenth 
century, Delabarre and Huey addressed this issue 
by developing rather crude and highly intrusive 
eye-tracking devices using ceramic lenses with a 
small hole, to which a wire was attached that 
“drew” the movement of the eye. A major break-
through in eye-tracking technology came early 
in the twentieth century when Dodge started 
using photography to capture the movements of 
the eyes, which was far less intrusive and not 
painful for the participants (people still had to be 
restrained from moving their heads though). 
Later  video-based eye trackers  allowed for more 
freedom of movement and for very precise 

analysis of the allocation of the eye movements 
on the stimulus. Most widely used in applied 
eye- tracking research nowadays is the pupil 
and corneal re fl ection method, in which an infra-
red light source is directed towards the eye, caus-
ing a re fl ection on the cornea captured by an 
infrared-sensitive video camera. This corneal 
re fl ection is the brightest spot on the image, 
while the pupil is the darkest one. When the eye 
moves, the pupil does too, but the corneal 
re fl ection hardly does. So, by calculating the 
distance between the pupil and the corneal 
re fl ection, the direction of the eye can be calcu-
lated, and in combination with parameters of the 
environment, it can be inferred at which part of 
the stimulus the eye was directed at different 
points in time. A wide variety of measures can 
be obtained by means of eye tracking (see 
Duchowski,  2003 ; Holmqvist et al.,  2011  ) ; we 
will shortly discuss only a few main measures 
here that appear in the research discussed in 
this chapter.  

   Measures Obtained via Eye Tracking 

 Two important eye movement measures were 
already mentioned in the previous section: 
 fi xations and saccades. During   fi xations , the 
eye is (almost completely) still and information 
can be extracted from a stimulus. As a conse-
quence, the location and duration of  fi xations 
provide an indication of what information is 
attended to and how intensively that informa-
tion is being  processed (relative to other infor-
mation; cf.  eye-mind assumption by Just & 
Carpenter,  1980  ) . During  saccades , that is, the 
rapid eye movements in between  fi xations, the 
focus of visual attention is moved to another 
location, and we are not able to take in visual 
information— although it seems that under 
speci fi c circumstances, some information, like 
motion, can be very roughly processed (Castet 
& Masson,  2000  ) . Both  fi xations and saccades 
occur for all kinds of stimuli. A type of eye 
movement that occurs only when inspecting 
dynamic stimuli such as videos or animations is 
 smooth pursuit , which occurs when the eye 
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follows moving objects (Dodge,  1903  ) . While 
 fi xations and saccades can be easily detected by 
contemporary eye-tracking software, there are 
no adequate algorithms yet to detect smooth 
pursuit, which therefore requires complex 
calculations on raw gaze data (Holmqvist 
et al.,  2011  ) . 

 Other measures that can be obtained through 
eye tracking and that may be relevant in research 
on computer-based learning are blinks and pupil 
dilation.  Blinks  of the eye are quite easy to iden-
tify, and the frequency of occurrence depends, 
for instance, on tiredness (e.g., Barbato et al., 
 2007  )  or—as will be discussed later—mind 
wandering (e.g., Smilek, Carriere, & Cheyne, 
 2010  ) . The dilation of the pupil can, for exam-
ple, provide information about cognitive load 
as we will discuss below (e.g.,    Hyönä, Tommola, 
& Alaja,  1995 ; Kahneman & Beatty,  1966 ; 
Klingner, Tversky, & Hanrahan,  2010 ; Van 
Gerven, Paas, Van Merriënboer, & Schmidt, 
 2004  ) . It is a dif fi cult measure to use though, as 
pupil dilation is very sensitive to in fl uences of 
other factors which need to be carefully con-
trolled (e.g., light changes and changes in the 
brightness of the stimulus). For more informa-
tion on these different measures, the reader is 
referred to Duchowski  (  2003  )  and Holmqvist 
and colleagues  (  2011  ) .  

   Studying Cognitive 
and Metacognitive Processes 
in Computer-Based Learning 
Environments 

 Written text is still a core component of many 
computer-based learning environments. As men-
tioned above, early eye-tracking studies focused 
on reading, and it probably still is one of the 
most widely studied processes in eye-tracking 
research. A comprehensive review of eye-track-
ing research in reading is beyond the scope of 
this chapter. The reader is referred to Rayner 
 (  1998,   2009  )  for elaborate reviews. Here, we 
will  fi rst discuss some applications of eye track-
ing for studying cognitive processes in multime-
dia and hypermedia learning environments. 

Then, we will address the use of eye tracking to 
assess cognitive load. Last but not least, we will 
discuss what eye-tracking research can reveal 
about metacognitive processes in computer-
based learning environments.  

   Cognitive Processes: Multimedia 
and Hypermedia Learning 

   Presentation of Hypertext 

 Written text in a computer-based learning envi-
ronment is usually hypertext, that is, it contains 
hyperlinks to other information which the 
reader can immediately access (Conklin,  1987  ) . 
   As a consequence, hypertexts have a nonlinear 
structure which not only allows but also requires 
the user to determine their own sequence of 
reading information and therefore carries a risk 
of disorientation and overload. However, even 
though hypertexts are nonlinear, they may be 
preceded by  concept maps  to guide navigation. 
Amadieu, Van Gog, Paas, Tricot, and Mariné 
 (  2009  )  investigated the effects of a network 
concept map structure that provides relational 
links to a hierarchical structure that provides 
organizational links and cues (and can be con-
sidered somewhat more “linear” than network 
structures). The latter was hypothesized to 
guide learners’ attention towards the main con-
cepts and their semantic relationships. In the 
network structure, participants with higher 
prior knowledge spent more time  fi xating cer-
tain key nodes than participants with lower 
prior knowledge, whereas no such difference 
occurred in the hierarchical structure. This sug-
gests that a hierarchical structure, in which 
 attention is guided to main concepts, is espe-
cially helpful for low-prior-knowledge learn-
ers, whereas learners with more prior knowledge 
can apply that knowledge in searching for 
 relevant concepts in a network structure. 

 Next to written or spoken textual information, 
most computer-based learning environments 
contain visualizations associated with those 
texts, such as pictures, drawings, diagrams, ani-
mations, and videos. The use of text combined 



146 T. van Gog and H. Jarodzka

with visualizations, however, places certain 
attentional demands on learners that may or may 
not be helpful for learning depending on the 
design. Therefore, the use of eye tracking may 
have added value in discovering the underlying 
mechanisms of effects on learning (Van Gog, 
Kester, Nievelstein, Giesbers, & Paas,  2009  )  as 
will be shown in the examples that follow.  

   Effects of Split Attention 
or Spatial Contiguity 

 Research has shown that when providing differ-
ent mutually referring information sources, such 
as written text and a graphic, a separate presenta-
tion format hampers learning compared to an 
integrated presentation format. This is known as 
the split-attention effect or spatial contiguity 
effect (for a review, see Ayres & Sweller,  2005  ) . 
However, what exactly causes this effect is 
unclear. For instance, do learners, when presented 
with a separate format, fail to integrate both 
information sources and study them separately 
one after the other? Or do they try to process 
them simultaneously and switch between both 
sources, but lose their last position in the graphic 
or text as a consequence, leading to unnecessary 
search, rereading, or both? 

 Because eye movement data re fl ect attention 
and shifts in attention, eye tracking may be very 
helpful in investigating the underlying mecha-
nisms of the split-attention effect. Hegarty and Just 
 (  1993  )  conducted an eye-tracking study on com-
prehension of text and diagrams in separated for-
mat. They found that readers often switched 
attention from the text to the diagrams, mostly at 
the end of sentences or clauses, suggesting that 
integrations of both representations were made at 
the level of individual components or groups of 
components. Using illustrated science textbook 
passages, Hannus and Hÿonä  (  1999  )  found that 
learners spent by far the most time on the text: 
Only 6% did they spend on illustrations, and this 
did not differ between high- and low-ability learn-
ers. However, although switching attention 
between text and pictures was also relatively low 
in general, high-ability learners did switch more 

often than low-ability learners. Studying effects of 
animations with written text, Schmidt-Weigand, 
Kohert, and Glowalla  (  2010  )  also found that learn-
ers spent more time reading the text than inspect-
ing the animation and consistently started reading 
before alternating between text and animation. 

 Jarodzka, Janssen, Kirschner, and Erkens 
 (  submitted  )  studied this effect in computer-based 
 testing.  For an authentic arts exam, students com-
pleted an electronic version with half of the ques-
tions presented in the original separated format 
and the other half in an integrated format (i.e., 
within-subject design). Eye tracking was used to 
estimate the amount of visual search required. 
Results showed that, in the integrated format, stu-
dents attended more (indicated by total  fi xation 
durations) to additional information provided next 
to the question text, like pictures and historical 
background information, and processed this addi-
tional information more intensively (indicated by 
more  fi xations) than they did when the information 
was presented in a separated format. By changing 
the design of such testing environments, students’ 
attention was guided so that they intensively pro-
cessed  all  given information. Interestingly, how-
ever, the integrated format did in this case not lead 
to higher but to lower test scores. These results 
suggest that (part of) the additional information 
given in the tests was redundant, which was useful 
information for the organization that developed 
these tests to further improve them. 

 Under experimental conditions, learners are 
often “forced” to study material for a certain 
amount of time. In computer-based learning 
environments, however, there is usually a large 
amount of information available (often more 
than can be studied during the experimental ses-
sion), and students can decide for themselves 
which information to consult and for how 
long. Research on authentic reading behavior 
suggests that under such circumstances, separate 
 presentation of text and pictures may have even 
more deleterious effects in that the text may be 
skipped altogether: In a naturalistic newspaper-
reading study, Holsanova, Holmberg, and 
Holmqvist  (  2009  )  found that when text and 
graphic were presented separately, readers typi-
cally read the headline and then switched to the 
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graphic while mostly ignoring the text, whereas 
when the graphic was integrated with the text, 
both were processed together. 

 In sum, it seems that under experimental 
(learning) conditions people seem to focus on the 
main text in a separated format (Hannus & Hÿonä, 
 1999 ; Jarodzka et al.,  submitted ; Schmidt-
Weigand et al.,  2010  ) , while under naturalistic 
(leisure) conditions they mostly focus on pictures 
(Holsanova et al.,  2009  ) . When information is 
presented in an integrated format, however, all 
information seems to be processed (Holsanova 
et al.,  2009 ; Jarodzka et al.,  submitted  ) .  

   Effects of Cueing or Signaling 

 Another well-known effect established by 
research on multimedia learning is the cueing or 
signaling effect (for reviews, see De Koning, 
Tabbers, Rikers, & Paas,  2009 ; Mayer,  2005  )  in 
which the visual saliency of parts of the stimulus 
material is manipulated to draw the learner’s 
attention. Ozcelik and colleagues used eye track-
ing to investigate the effect of cueing by means of 
temporarily changing the color of labels in an 
otherwise  static  illustration (Ozcelik, Arslan-
Arib, & Cagiltay,  2010  )  or cueing corresponding 
information in the text and illustration by giving 
it the same color (Ozcelik, Karakus, Kursun, & 
Cagiltay,  2009 ; see also Folker, Sichelschmidt, 
& Ritter,  2005  ) . They established that such cues 
indeed successfully guided visual attention and 
led to more ef fi cient information processing and 
better learning outcomes. 

 Increasingly, visual materials provided in com-
puter-based learning environments are  dynamic , 
like videos or animations. Cueing that is effective 
for static presentation formats is not necessarily 
effective for dynamic formats, and cueing may be 
even more necessary in dynamic visualizations 
because (part of) the information may be transient 
and hence no longer available for processing if it 
is not attended to at the right moment. 

 Using dynamic visualizations, De Koning, 
Tabbers, Rikers, and Paas  (  2010  )  showed that spot-
light cues in which the important information is 
made more salient by reducing the saliency of sur-
rounding information (e.g., through darkening) 

were effective for guiding attention to the cued 
parts. Boucheix and Lowe  (  2010  )  established that 
continuous cues in which a colored “ribbon” was 
spreading were more effective than arrow cues for 
attention guidance in dynamic visualizations. They 
also showed the importance of temporal aspects of 
cueing (i.e., guiding attention to the right place at 
the right time) for attention guidance and learning. 

 In sum, by using eye tracking, it can be estab-
lished whether cues in multimedia learning mate-
rials indeed are successful at guiding learners’ 
attention.  

   Effects of Pedagogical Agents 

 Animated pedagogical agents are often used in 
multimedia materials in computer-based learning 
environments (for a review, see Moreno,  2005  ) . 
Louwerse, Graesser, McNamara, and Lu  (  2009  )  
applied eye tracking to investigate how learners 
interact with embodied conversational agents 
(ECAs), that is, animated humanoid characters 
that communicate with the learner. They found 
that learners interact with those agents much as 
they would with a real human conversational part-
ner,  fi xating mostly on the agent, or, when multiple 
agents were present,  fi xating on the agent that was 
speaking. This could perhaps explain why the 
presence of such agents does not always foster 
learning; when the learner is attending to the agent, 
she/he may not be attending to the learning content 
on the screen that the agent is referring to.   

   Cognitive Load 

 Eye-tracking data can provide information not 
only about the processes evoked by different 
types of materials but also about the  demands  on 
working memory imposed by those processes 
(i.e., cognitive load; e.g., Hyönä, Tommola, & 
Alaja,  1995 ; Kahneman & Beatty,  1966 ; Klingner 
et al.,  2010 ; Van Gerven et al.,  2004  ) . For exam-
ple, Kahneman and Beatty  (  1966  )  showed that 
pupil dilation is associated with working memory 
load. Participants had to memorize a string of 
digits or a list of words and report those back 
(immediate recall) or had to transform a string of 
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digits (add one to each digit). Their data on the 
digit strings showed that with the presentation of 
each additional digit, pupil dilation increased, 
while with reporting back each digit, it decreased. 
Moreover, pupil dilation increased more steeply 
with the more demanding tasks of learning word 
lists or transforming digits than with learning digit 
strings. Hyönä and colleagues  (  1995  )  used pupil 
dilation to investigate variations in cognitive load 
during translation tasks. They showed that varia-
tions in cognitive load during a translation task 
were re fl ected in pupil size: More dif fi cult words 
to translate resulted in higher levels of pupil dila-
tion than words that were easy to translate. 
Klingner and colleagues  (  2010  )  investigated the 
effect of auditory versus visual task presentation 
on pupil dilation with three different tasks and 
found that while patterns of dilation were similar 
for auditory and visual presentation for all three 
tasks, the magnitudes of pupil response were 
greater for auditory presentation than for visual 
presentation, suggesting the latter is less cogni-
tively demanding. Van Gerven and colleagues 
 (  2004  )  investigated the usefulness of the pupil 
response as an indicator of cognitive load in young 
and aging adults. They used a memory-search 
task, consisting of two phases. In the encoding 
phase, participants had to memorize strings of one 
to six digits (none occurred more than once). 
In the search phase, participants had to judge 
whether single-digit probes belonged to the mem-
ory set. For both young adults and elderly partici-
pants, pupil dilation systematically increased with 
the length of the string of digits in the encoding 
phase (i.e., with task dif fi culty), but in the search 
phase, pupil dilation was only sensitive to task 
load variations for the young adults, which sug-
gests this measure may not always be suitable in 
studies with elderly participants.  

   Metacognitive Processes 

   Monitoring Learning 
and Comprehension 

 Metacognitive judgments play an important role 
in self-regulated learning, because such judg-
ments, for example, of whether information has 

been suf fi ciently learned or not, affect the alloca-
tion of study time and choices about items to 
select for further studying (Metcalfe,  2009  ) . 

 Kinnunen and Vauras  (  1995  )  assessed chil-
dren’s monitoring of  comprehension  during read-
ing by means of eye tracking. The need for 
comprehension monitoring was enhanced by 
causing dif fi culties in text processing in certain 
sentences, for example, by adding a nonsense 
word or a word that made the sentence inconsis-
tent with general knowledge or with a prior sentence. 
They assumed that comprehension monitoring 
would be associated with higher reading time and 
a higher number of regressions (i.e., looking back) 
to dif fi cult passages in the text. Comprehension 
was assessed by a text summary provided by the 
students after reading. Results indeed showed that 
reading complex sentences lead to higher reading 
times and more regressions compared to regular 
sentences. Moreover, this effect was stronger for 
high-achieving students. Graesser, Lu, Olde, 
Cooper-Pye, and Whitten  (  2005  )  also created a 
cognitive disequilibrium in participants who read 
illustrated texts about devices by presenting a 
breakdown scenario that was assumed to result in 
question asking, and investigated the relationship 
between question asking and eye movements. 
They showed that deep comprehenders tended to 
formulate better questions and  fi xate on fault-
related components just before or during question 
formulation. In sum, eye-tracking data can pro-
vide detailed insight into the metacognitive pro-
cess of comprehension monitoring when studying 
texts. 

 Roderer and Roebers  (  2010  )  conducted an 
eye-tracking study of con fi dence judgments. 
Children were shown easy and dif fi cult Kanji 
symbols of which they had previously learned 
the meaning or new ones that they could not 
recognize. The children were asked to select the 
correct meaning from four alternatives. 
Subsequently, a  con fi dence  rating followed and 
they were asked to indicate how con fi dent they 
were of their answer by pointing at one of  fi ve 
smileys (ranging from a very sad looking one to 
a very happy looking one). In addition to this 
explicit con fi dence judgment provided by point-
ing, the authors measured implicit judgments 
based on the eye movement data from the phase 
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before the explicit judgment was provided (i.e., 
looking at the con fi dence judgment “category” 
that attracted a maximum of  fi xation time 
 during con fi dence scale presentation). They 
found a high correlation between explicit and 
implicit con fi dence judgments, suggesting that 
eye tracking can be used as a measure of 
con fi dence judgments.  

   Monitoring Information About 
Other Students’ Knowledge 
in Collaborative Learning 

 Sangin, Molinari, Nüssli, and Dillenbourg 
 (  2008  )  used eye tracking to investigate how stu-
dents’ monitored and used information about 
 other students’  knowledge in collaborative 
learning in a computer-based environment. 
Participants created concept maps in dyads. One 
group of participants had an awareness tool 
available that provided information on the other 
person’s knowledge. Results showed that look-
ing at this knowledge awareness tool (KAT) was 
positively related to learning. When combined 
with verbal data from the episodes in which 
 participants looked at the KAT, it was found 
they looked at the KAT for three reasons: when 
they were seeking for speci fi c knowledge, when 
their peers provided information, or when their 
peers provided cues regarding their existing or 
nonexisting knowledge.  

   Self-Explaining 

 Conati, Merten, Muldner, and Ternes  (  2005  )  used 
eye-tracking data to estimate metacognitive 
behavior (more speci fi cally, self-explanation), 
while students performed a task in a computer-
based mathematics learning environment. They 
also asked participants to think aloud. Afterwards, 
the verbal data were coded in terms of whether or 
not they contained self-explanations. Then, time 
on task data (obtained from log  fi les) and eye-
tracking data (gaze shifts) were related to each of 
these episodes that did and did not contain 
 self-explanations. The assumption was that self-

explanations would take more time and would be 
accompanied by gaze shifts between graphs and 
formulas. Results show that time on task had the 
highest sensitivity, while eye-tracking data had 
the highest speci fi city for predicting self-expla-
nations. In this study, an algorithm was used for 
analyzing eye-tracking data, which has the bene fi t 
over verbal data that it can be analyzed and used 
 online  (i.e., during learning). Provided eye-track-
ing data can be coupled to cognitive or metacog-
nitive processes with great sensitivity and 
speci fi city, such algorithms could be used to 
adapt a computer-based learning environment in 
real time to the learner’s cognitive or metacogni-
tive state (e.g., by providing self-explanation 
prompts when learners do not spontaneously 
self-explain).  

   Registering Off-Task Behavior 

 Mind wandering, that is, a focus of attention on 
internal processes rather than on processing the 
external environment, seems to be associated with 
an increase in eye blinks (Smilek et al.,  2010  ) . 
Smilek and colleagues  (  2010  )  had participants 
read a text during which they were randomly 
probed ten times by an auditory stimulus to report 
whether they were on task (i.e., reading) or mind 
wandering, which could be task related (e.g., 
thoughts relevant to the text) or unrelated (e.g., 
thoughts about room temperature or meals). In the 
5 s before the probes, participants blinked more 
when they were mind wandering than when they 
were on task, and participants made less  fi xations 
on the text (even when corrected for blink time). 
Using a comparable self-report and prompting 
procedure,    Reichle, Reineberg, and Schooler 
 (  2010  )  investigated mindless reading, in which 
the eyes keep moving across the page but the indi-
vidual is mind wandering. They found that, com-
pared to normal reading,  fi xations were longer 
during mindless reading and were also less 
affected by characteristics of the text,  presumably 
due to the absence of cognitive  processes that 
normally direct eye movements during reading. 

 These  fi ndings suggest that eye-tracking data 
may provide interesting information on whether 



150 T. van Gog and H. Jarodzka

or not participants are on task in computer-based 
learning environments. A problem of course is 
that mind wandering may concern task-related 
thoughts, which are probably highly relevant for 
learning (e.g., for making inferences beyond the 
literal text) and that there is (as yet) no way to 
distinguish such task-relevant episodes of mind 
wandering from task-unrelated episodes solely 
based on the eye movement data.   

   Limitations of Eye Tracking 
in Studying Cognitive and 
Metacognitive Processes: 
Adding Verbal Reports 

 The studies discussed above show that eye 
 fi xation data can provide interesting information 
about participants’ (visual) attention allocation: 
They tell us where a participant was looking, in 
what order, and for how long, and how much they 
were blinking. However, these data require a sub-
stantial amount of inferences about underlying 
cognitive processes, as they do not explain  why  a 
participant was looking somewhere for a certain 
amount of time or in a certain order. To reduce 
the amount of inferences required by the 
researcher, eye movement data can be comple-
mented with concurrent verbal reports (i.e., think-
ing aloud; Ericsson & Simon,  1993 ; for a 
combination with eye tracking, see, e.g.,    Van 
Gog, Paas, & Van Merriënboer,  2005a  ) . The cen-
tral assumption behind the use of thinking aloud 
data is “that it is possible to instruct subjects to 
verbalize their thoughts in a manner that does not 
alter the sequence and content of thoughts medi-
ating the completion of a task and therefore 
should re fl ect immediately available information 
during thinking” (Ericsson,  2006 , p. 227). 

 However, even if verbalizing thoughts does 
not alter those thoughts, a potential drawback of 
asking participants to think aloud during task 
performance in combination with eye tracking is 
that this has been suggested to affect their eye 
movements. For instance, in complex tasks the 
speech planning process has been shown to alter 
the allocations of eye movements (e.g., Holsanova, 
 2008  ) , and, on average, oral reading increases 

 fi xation duration and reduces saccade length 
compared to silent reading for skilled English 
readers (Rayner,  2009  ) , and concurrent reporting 
is suspected to slow down task performance 
(Karpf,  1973  )  and might therefore lead to more 
eye movements. 

 As an alternative to concurrent reports, retro-
spective verbal reports could be used. However, 
compared to concurrent reports, retrospective 
reports tend to suffer from omission of informa-
tion due to forgetting and from fabulations (e.g., 
Kuusela & Paul,  2000  ) . Cueing a retrospective 
report with information from the task perfor-
mance process might prevent forgetting and 
 fabulation (   Van Someren, Barnard, & Sandberg,  
 1994  ) . Most eye-tracking software allows not 
only for recording but also for replaying the 
records of eye movements as an overlay on the 
stimulus or computer screen recording, and such 
replays of eye movement records may provide an 
excellent cue for retrospective reports (   Van Gog, 
Paas, Van Merriënboer, & Witte,  2005b ; see also 
Hansen,  1991 ; Russo, Johnson, & Stephens, 
 1989  ) . Van Gog and colleagues found that both 
concurrent and cued retrospective reporting 
resulted in quantitatively more information 
than retrospective reporting without a cue. 
Interestingly, cued retrospective reporting also 
resulted in a higher number of metacognitive 
statements in the protocols than concurrent and 
retrospective reporting. 

 Cued retrospective reporting might provide a 
valuable alternative to concurrent reporting, not 
just because it cannot affect eye movements as 
concurrent reporting has been suggested to do but 
especially for research with novice participants 
or with instructional materials that make concur-
rent reporting impossible. For novices, because 
they have little prior knowledge, tasks often 
impose a high cognitive load, and as a result, they 
may stop verbalizing their thoughts during con-
current reporting (Ericsson & Simon,  1993  ) . 
Indeed, in the study by Van Gog and colleagues 
    (  2005b  ) , participants who had lower performance 
and experienced higher cognitive load on the 
tasks (i.e., who had lower expertise) also indi-
cated that they preferred cued retrospective 
reporting over concurrent reporting (reported in 
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Van Gog,  2006 ). Not only learners’ expertise 
level but also the type of learning material pro-
vided can have consequences for which verbal 
reporting technique to choose. For instance, 
instructional materials that are widely used in 
computer-based learning environments with 
which concurrent reporting is not possible are 
animations or videos that contain spoken text. 

 Cued retrospective reporting has been used, 
for instance, in problem-solving or information-
search tasks in which mouse and keyboard opera-
tions were also recorded (Brand-Gruwel, Van 
Meeuwen, & Van Gog,  2008 ; Schwonke, 
Berthold, & Renkl,  2009 ;    Van Gog et al.,  2005b  ) , 
and the replays could therefore cue memory of 
both overt actions (i.e., via mouse clicks that 
occurred on the screen) and covert processes 
(i.e., via the display of eye movements) that 
occurred during task performance. However, it 
has also been used with animations or videos in 
which no overt actions such as mouse clicks were 
required and the eye movements constituted the 
sole cue (De Koning et al.,  2010 ; Jarodzka, 
Scheiter et al.,  2010  ) .  

   Enhancing Cognitive 
and Metacognitive Processes 
in Computer-Based Learning 
Environments 

 Eye tracking can also be applied to improve the 
design of components of computer-based learn-
ing environments. For example, Buscher, Cutrell, 
and Morris  (  2009  )  recorded the eye movements 
of participants sur fi ng on several hundreds of 
Web pages. Based on these data, they developed 
a model that successfully predicts the saliency of 
single Web page elements, which can inform 
designers of (instructional) Web pages. Kammerer 
and Gerjets  (  2010  )  found that the design of a Web 
search engine in fl uenced the thoroughness of 
information search. The authors recorded partici-
pants’ eye movements while they searched infor-
mation using either a traditional list search engine 
or a novel search engine, in which search results 
were presented in a tabular format. Participants 
searching the tabular format were found to look 

at more search results, that is, they evaluated the 
information resulting from the search more 
thoroughly. 

 In addition, eye tracking may be used to reveal 
what the differences are in successful and unsuc-
cessful problem solvers’ attention allocation, and 
this information may then be used to develop 
cues or instructions to support learners in com-
puter-based environments. For example, Grant 
and Spivey  (  2003  )  showed that participants who 
were successful at solving Duncker’s radiation 
problem (an insight problem) attended relatively 
more to a certain area in the picture than unsuc-
cessful problem solvers. In a second experiment, 
they showed that incorporating a perceptual cue 
to draw attention to this area led to an increase in 
successful problem solving. A similar approach 
was taken by Schwonke and colleagues  (  2009  ) , 
using worked examples on probability calcula-
tion that consisted of multiple representations 
(text, tree diagram, and mathematical equation). 
They showed that conceptual understanding after 
example study was positively associated with 
more extensive processing of the tree diagrams 
and negatively with transitions from text to equa-
tions (skipping the diagrams). This suggested 
that the diagrams played an important role in 
learning from the worked examples. In a second 
study, Schwonke and collaborators  (  2009  )  pro-
vided half of the participants with instruction on 
how the representations were functionally related, 
which had a strong effect on learning that was 
partially mediated by allocation of visual atten-
tion to the diagrams. 

 Next to this indirect route of informing the 
design of components of computer-based learn-
ing environments, eye tracking may also be 
applied in more direct ways, for instance, in the 
design of examples. Modelling examples in com-
puter-based learning environments often consist 
of screen captures of a human model performing 
a task, and depending on the type of task, the 
model may also provide a verbal explanation of 
why she/he is doing what she/he is doing (e.g., 
McLaren, Lim, & Koedinger,  2008 ; for a review 
of research on modelling examples, see Van Gog 
& Rummel,  2010  ) . Often, the model is an expert 
on the particular task she/he is demonstrating. 
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In this case, a problem might arise, especially in 
examples in which information is transient: Eye-
tracking research has shown that with increasing 
knowledge or expertise on a task, individuals 
 fi xate faster and relatively more on relevant infor-
mation (e.g., Charness, Reingold, Pomplun, & 
Stampe,  2001 ; Haider & Frensch,  1999 ; Jarodzka, 
Scheiter et al.,  2010 ; Van Gog et al.,  2005a  ) . 
In other words, there might be a discrepancy in 
attention allocation between the learner and the 
model, and if the learner does not attend to the 
right information at the right time, understanding 
might be compromised, for example, because the 
information is no longer available for further 
processing (in case of transience) or because the 
explanation by the model is more dif fi cult to 
follow when the learner is not attending to the 
same information as the model. 

 Therefore, Van Gog, Jarodzka, Scheiter, 
Gerjets, and Paas  (  2009  )  investigated whether 
incorporating a display of the eye movements 
made by the expert model in screen-capture mod-
elling examples with or without spoken explana-
tions could guide students’ attention and enhance 
their learning of a procedural problem-solving 
task. In contrast to their expectation, they did not 
 fi nd a positive effect of displaying eye move-
ments, although results suggested there might be 
bene fi ts on transfer. They even found a negative 
effect when the modelling examples contained 
both eye movements and spoken explanations, 
presumably because the verbal explanations were 
suf fi cient to guide learners’ attention in this task. 
Using examples of a more perceptual task (learn-
ing to classify  fi sh locomotion patterns) with a 
spoken verbal explanation, in which the verbal 
explanation was less likely to be suf fi cient to 
guide learners’ attention, Jarodzka, Van Gog, 
Dorr, Scheiter, and Gerjets  (  2013  )  did  fi nd posi-
tive effects of displaying the expert model’s eye 
movements in modelling examples on learning. 

 Not looking at  learning , but at a direct 
in fl uence on  performance , Litch fi eld, Ball, 
Donovan, Manning, and Crawford  (  2010  )  inves-
tigated the effects of seeing another person’s eye 
movements on a visual diagnosis task in medi-
cine: identifying pulmonary nodules (i.e., a lesion 
in the lung smaller than 3 cm in diameter) in chest 

X-rays. The “models” in their study did not 
behave didactically (i.e., their viewing behavior 
was natural) and did not provide any additional 
verbal explanation. They found that novices per-
formed better after seeing the “models” search-
ing for nodules. 

 Such eye movement modelling examples can 
be constructed and implemented in computer-
based learning environments relatively easily, 
because eye-tracking software nowadays usually 
allows exporting a screen capture with a display 
of eye movements as a digital video  fi le. If eye 
trackers would become cheaper and would 
become available in classrooms, other direct uses 
of eye tracking could be conceived of, for 
instance, in collaborative learning or problem 
solving. For example, Velichkovsky  (  1995  )  con-
ducted a study on real-time cooperative puzzle 
problem solving by expert-novice pairs, in which 
the novice controlled the mouse and could 
observe the expert’s eye movements, so the expert 
could indicate with his gaze what the novice 
should do. 

 Another possible application when eye track-
ers would be more ubiquitous would be to use 
eye movement records to stimulate re fl ection. 
As mentioned above, the  fi ndings by Van Gog 
and colleagues  (  2005b  )  showed that reviewing a 
record of one’s own actions and eye movements 
(during cued retrospective reporting) resulted in 
a higher number of metacognitive comments 
(e.g., statements about the adequacy of the 
learner’s own knowledge, actions, or strategies) 
than concurrent and retrospective reporting. 
This occurred rather spontaneously, because the 
instructions for reporting in each condition (con-
current, retrospective, or cued retrospective) were 
neutral. It also did not occur frequently; even 
though the difference was signi fi cant, the actual 
number of metacognitive statements in cued ret-
rospective reporting was not very high. However, 
these  fi ndings do suggest that reviewing a record 
of one’s own actions and eye movements may 
trigger re fl ective processes, and therefore it has 
been suggested that such records might be used 
as explicit tools for re fl ection (Van Gog, Jarodzka 
et al.,  2009 , Van Gog, Kester et al.,  2009  )  or could 
be implemented to aid self- assessment (Kostons, 
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Van Gog, & Paas,  2009  ) . Especially combined 
with additional metacognitive prompts or scaf-
folds, this might be an effective tool for fostering 
re fl ection. 

 Finally, as mentioned previously,  real-time  
analysis of eye movement data could be applied 
in intelligent tutoring systems or other adaptive 
learning environments to monitor students 
engagement in metacognitive behaviors such as 
self-explaining and to use that information to 
dynamically adapt the content offered to stu-
dents (Conati et al.,  2005 ; see also Merten & 
Conati,  2006 ; for a discussion of other potential 
uses of real-time eye movement analysis in 
tutoring  systems, such as error prediction, 
 detection of undesirable solution processes, and 
identifying when messages are ignored, see 
Gluck, Anderson, & Douglass,  2000  ) .  

   Discussion 

 In sum, eye tracking is not only a useful tool to 
study (meta)cognitive processes and cognitive 
load in computer-based learning environments 
but can also be used indirectly or directly in the 
design of components of such environments to 
enhance (meta)cognitive processes and foster 
learning. Even though eye movement data are 
still challenging to collect and analyze and often 
need to be triangulated with another data source 
such as verbal data to make inferences about 
associated cognitive processes, they do provide a 
unique opportunity to study certain kinds of pro-
cesses in a level of detail that no other data source 
provides. For example, screen recordings with-
out eye movement data would only provide 
information on how long the page in its entirety 
was attended to, not which speci fi c parts of the 
page received attention. Or in hypermedia envi-
ronments, screen recordings would only show 
what hyperlinks are being clicked on, but not 
which other links have been previously consid-
ered but were not opened. 

 The use of eye tracking to study cognitive 
processes in computer-based learning environ-
ments is increasing rapidly, but there has been 
much less eye-tracking research on metacogni-

tive processes. The studies discussed in this 
chapter do highlight some promising areas in 
which eye tracking may provide useful informa-
tion on metacognitive processes, such as moni-
toring one’s own comprehension, monitoring 
information about other people’s knowledge in 
collaborative learning environments, and pre-
dicting when students are or are not making 
 self-explanations (thereby providing options for, 
for instance, adaptive prompting). 

 The fact that eye-tracking technology is still 
advancing rapidly will probably stimulate further 
research on (meta)cognitive processes in com-
puter-based learning environments. In the last 
decade or so, eye-tracking equipment has become 
more affordable and much easier to operate. With 
further technological advances, analysis of eye 
movement data may become less cumbersome. 
For example, a major problem when analyzing 
data on areas of interest (AOI) in videos is that 
these AOIs often move about, requiring segmen-
tation of the video into very small segments and 
then computing AOI data and aggregating them 
over the whole video (see, e.g., Jarodzka, Van 
Gog et al.,  2013  ) , but software solutions are being 
developed to enable dynamic AOIs (see, e.g., 
Papenmeier & Huff,  2010  ) . Software features for 
displaying eye movement data have already come 
a long way, such as the option to make integrated 
digital videos of screen recordings and eye move-
ments, and further developments may open up 
new avenues for the design of learning tasks in 
computer-based environments.      
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  Abstract 

 In this chapter, metacognitive skills are considered to be an organized set 
of metacognitive self-instructions for the monitoring of and control over 
cognitive activity. These self-instructions can be represented as a produc-
tion system of condition-action rules. For the assessment of metacognitive 
skills, however, these covert rules have to be inferred from overt learner 
behavior during task performance. In computerized learning tasks, on-line 
traces of learner activities can be unobtrusively stored in log fi les. 
Prerequisite to log fi le assessment is the selection of relevant indicators of 
metacognitive learning activities on the basis of a rational task analysis, 
which indicators have to be validated against other on-line measures 
obtained with, for instance, thinking-aloud protocols. Such analyses of 
log fi les will allow for the assessment of metacognitive skills as an apti-
tude, that is, as a relatively stable repertoire of self-instructions. In order 
to further capture the dynamic change in metacognitive processes over 
time, progressive patterns of metacognitive activity can be identi fi ed in 
logged traces through time-series analysis. It is argued that the aptitude 
and dynamic approaches to assessing metacognitive skills are complemen-
tary to one another, rather than excluding each other.  

  11      Assessing Metacognitive Skills 
in Computerized Learning 
Environments       

     Marcel   V.J.   Veenman         

       Introduction 

 Metacognition is a relevant predictor of learning 
outcomes in traditional learning settings (Wang, 
Haertel, & Walberg,  1990  )  as well as in com-

puter-based learning environments (Veenman, 
 2008 ; Winters, Greene, & Costich,  2008  ) . In con-
ceptions of metacognition, a distinction is often 
made between knowledge of cognition and regu-
lation of cognition (Brown,  1987 ; Schraw & 
Dennison,  1994  ) . Metacognitive knowledge is 
declarative knowledge about the interplay 
between person characteristics, task characteris-
tics, and strategy characteristics (Flavell,  1979  ) . 
Having declarative metacognitive knowledge at 
one’s disposal, however, does not guarantee that 
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this knowledge is actually used for the regulation 
of learning behavior (Veenman, Van Hout-
Wolters, & Af fl erbach,  2006 ; Winne,  1996  ) . 
Metacognitive knowledge may be incorrect or 
incomplete; the learner may fail to see the useful-
ness or applicability of that knowledge in a par-
ticular situation, or the learner may lack the skills 
for doing so. 

 Metacognitive skills refer to procedural 
knowledge that is required for the regulation of 
and control over one’s learning behavior. 
Orientation, goal setting, planning, monitoring, 
checking, evaluation, and recapitulation are 
manifestations of those skills (Veenman,  2011  ) . 
These skills directly affect learning behavior 
and, consequently, learning outcomes. Veenman 
 (  2008  )  estimated that metacognitive skillfulness 
account for about 40% of variance in learning 
outcomes for a broad range of tasks. 
Metacognitive skillfulness is regarded here as 
an aptitude, which is a relatively stable disposi-
tion for how the individual interacts with learn-
ing environments (Snow,  1989  ) . This is not to 
say that metacognitive skills are entirely  fi xed. 
Learning experiences, instruction, and training 
may affect those skills (Pressley & Gaskins, 
 2006 ; Veenman,  2011  ) . This chapter addresses 
issues related to the assessment of metacogni-
tive skills in computer-based learning environ-
ments and, in particular, the necessity of 
validating these assessments through a multi-
method approach.  

   Theoretical Framework 

    In an attempt to formulate a unifying theory of 
metacognition, Nelson  (  1996 ; Nelson & Narens, 
 1990  )  distinguished an “object level” from a 
“meta-level” in the cognitive system. At the cog-
nitive level, lower-order cognitive activity takes 
place, usually referred to as  execution  processes. 
For instance, when solving a math problem, basic 
reading processes are needed for assessing the 
problem statement, and calculation processes are 
needed for producing the outcome. Higher-order 
 executive  processes of evaluation and planning at 
the meta-level govern the object level. Two  fl ows 

of information between both levels are postulated. 
Information about the state of the object level is 
conveyed to the meta-level through monitoring 
processes, while instructions from the meta-level 
are transmitted to the object level through control 
processes. Thus, if an error occurs on the object 
level, a metacognitive monitoring process will 
give notice of it to the meta-level, and control 
processes will be activated to resolve the 
problem. 

 Nelson’s model essentially is a bottom-up pro-
cess model. Anomalies in task performance trig-
ger monitoring activities, which in turn activate 
control processes on the meta-level in order to 
restore cognitive processing at the object level. 
This model, however, does not clarify how 
monitoring processes themselves are activated 
(Dunlosky,  1998  ) . Moreover, Nelson’s model 
ignores the goal-directedness of human problem-
solving and learning behavior as it does not allow 
for spontaneous activation of control processes 
without prior monitoring activity (Veenman, 
 2011  ) . Koriath, Ma’ayan, and Nussinson  (  2006  )  
have shown that causality in the relation between 
monitoring and control processes is bidirectional. 
Monitoring processes may elicit control processes, 
like Nelson emphasized, but control processes can 
also be activated without prior monitoring and, 
subsequently, elicit monitoring processes. The 
question, then, is how these control processes are 
activated if not by sheer coincidence. 

 Veenman  (  2011  )  extended Nelson’s bottom-up 
model with a top-down approach. Metacognitive 
skills are perceived as an acquired program of 
self-instructions for the control over and the regu-
lation of task performance. This program of self-
instructions is activated whenever the learner is 
faced with a task that is familiar to the learner to a 
certain extent. Either the task has been practiced 
before or the task resembles another familiar task. 
These self-instructions can be represented as a 
production system of condition-action rules 
(Anderson,  1996 ; Winne,  2010  ) . For instance, 
activating prior knowledge can be represented as: 
If you have read the task assignment, then retrieve 
all that you know about the topic from memory. 
Planning could be triggered by the rule: If you 
have set your goal, then design an action plan for 
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attaining that goal. Even self-induced, intentional 
monitoring is part of this production system: If 
you have executed a step from your action plan, 
then look out for errors in the executed step. This 
system of self-instructions is acquired through 
experience and training, much in the same way as 
the acquisition of cognitive skills (for more 
details, see Veenman,  2011  ) . The more experi-
enced a learner becomes, the more  fi ne grained 
the condition-action rules will be with regard to, 
for instance, the selection of retrieval cues for 
memory search, the conversion from goal states to 
action plans, and the recognition of potential errors. 
In line with Nelson’s model, self-instructions from 
the meta-level evoke various cognitive activities 
on the object level. However, self-instructions are 
self-induced, that is, they need not necessarily be 
triggered by a monitoring process of  anomalies  
in task performance. In fact, the monitoring infor-
mation  fl ow in Nelson’s model should be extended 
with the monitoring of conditions for activating 
self-instructions at the meta-level, although the 
latter is not necessarily a conscious process. 
Recognition of applicable conditions may also be 
automated to a certain extent in case self-instruc-
tions have become pro fi cient metacognitive hab-
its (Veenman et al.,  2006  ) . With reading, for 
instance, many monitoring processes run in 
the “background” of cognitive processes that are 
being executed. Pro fi cient readers may not notice 
them, not even when thinking aloud. In this 
notion of self-instructions, the monitoring infor-
mation  fl ow represents the input to the produc-
tion rule system at the meta-level. In the same 
vein, the control information  fl ow represents the 
output of production rules. 

 What does this notion of self-instructions 
imply for the assessment of metacognitive skills? 
The aim of metacognitive assessment is to cap-
ture the learner’s program of self-instructions at 
the meta-level. However, metacognitive skills 
that operate at the meta-level are not directly 
available for inspection (Veenman,  2011  ) . The 
production system of self-instructions itself is 
covert and cannot be assessed, like the program 
lines of a compiled computer program that cannot 
be read. Verbalizations of the learner, however, 
can disclose the input and output of the production 

system. Thus, the thinking-aloud method gives 
access to the monitoring and control information 
 fl ow, and a production rule may be inferred from 
the relation between input and output informa-
tion. For instance, we may hear a math learner 
say that the outcome of a calculation is odd. Yet, 
we  infer  from its cooccurrence with subsequent 
recalculation of the problem that a self-instruc-
tion for checking the outcomes must have been 
activated. Such inferences may be  fl awed, either 
because the input information is incomplete or 
because the output information is generated for 
another reason. When the math learner says 
“Let’s do this again,” this output information 
does not necessarily refer to recalculating the 
problem. Careful inspection of contingencies 
between monitoring and control information is 
warranted. 

 Most of the control information is gathered 
from overt operations on the object level. A task 
assignment is read, a sketch of the problem is 
drawn, a goal is written down, actions are taken 
step by step according to a plan, a dictionary is 
consulted for an unknown word, the  fl ow of cog-
nitive activity is interrupted for checking results, a 
recalculation is done, and conclusions are formu-
lated. In fact, the execution of metacognitive skills 
draws heavily on lower-order cognitive processes 
(Veenman,  2011  ) . From the perspective of the 
object level, one has to consider the context in 
which these cognitive processes occur in order to 
appraise their metacognitive origin. For instance, 
rereading is not a metacognitive activity as such, 
but it becomes a metacognitive activity if effort-
less reading is interrupted by the presence of a 
dif fi cult word or a complex phrase. Thus, an infer-
ence process is required to identify speci fi c cogni-
tive activities at the object level and to tag them as 
“metacognitive activities.” Unfortunately, this 
inference process is also prone to misinterpreta-
tion. Recalculation may be due to the metacogni-
tive self-instruction of checking outcomes, but it 
may equally result from a learner’s sloppiness in 
note taking. Observation techniques without con-
current thinking aloud or computer registrations 
of learner activities are more vulnerable to misin-
terpretations because they only have access to 
(metacognitive) activities at the object level.  
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   Off-Line vs. Online Assessments 

 Generally, off-line methods for assessment of 
metacognitive skills are distinguished from online 
methods (Veenman,  2005  ) . Off-line assessments 
concern the learners’ self-reports that are gathered 
 prior to  or  after  task performance. Questionnaires 
(e.g., MSLQ, Pintrich & De Groot,  1990 ; MAI, 
Schraw & Dennison,  1994  )  and interviews 
(Zimmerman & Martinez-Pons,  1990  )  are off-
line assessment methods that are frequently being 
used because they are relatively easy to adminis-
ter. Off-line self-reports of metacognitive skills, 
however, suffer from validity problems. A  fi rst, 
fundamental problem concerns the off-line nature 
of self-reports, which requires learners to recon-
struct their earlier performance. This reconstruc-
tion process might suffer from memory failure 
and distortions, especially if experiences from 
the past have to be retrieved (Veenman,  2011  ) . 
The second validity problem is embedded in 
common questions about the relative frequency 
of certain activities (“How often do/did you…?”). 
In order to answer these questions, learners have 
to compare themselves to others (peers, parents, 
or teachers). The individual reference point cho-
sen, however, may vary from one learner to 
another or even within a learner from one ques-
tion to another (Veenman, Prins, & Verheij, 
 2003  ) . Variation in reference points chosen by 
learners may yield disparate data. It is much like 
measuring the temperature with differently scaled 
thermometers, however, without being able to 
rescale measurements. Moreover, some learners 
may produce socially desirable answers. 

 Online assessments are obtained  during  task 
performance, that is, they are based on actual per-
formance of the learner. Typical online assessments 
include observational methods (Whitebread et al., 
 2009  ) , the analysis of thinking-aloud protocols 
(Azevedo, Greene, & Moos,  2007 ; Pressley & 
Af fl erbach,  1995 ; Veenman, Elshout, & Meijer, 
 1997  ) , and eye-movement registration (   Kinnunen 
& Vauras,  1995 ). The essential difference between 
off-line and online methods is that off-line mea-
sures merely rely on learner self-reports, whereas 
online measures pertain to the coding of actual 

learner behavior on externally de fi ned criteria by 
external agencies, such as “blind” judges and 
observers (Veenman,  2011  ) . The use of a standard-
ized coding system circumvents the validity prob-
lems mentioned before. Online assessments also 
have their limitations. Thinking aloud may not 
always yield complete protocols, for instance, 
when processes are highly automated or, con-
versely, when the task is extremely dif fi cult 
(Ericsson & Simon,  1993  ) . Observed behavior 
needs to be interpreted by observers whenever the 
learner fails to express the reasons for his/her con-
duct (Veenman,  2011  ) . Similarly, the registration 
of eye movements only captures the motor activi-
ties of the eyes. The meaning of these overt activi-
ties is subject to interpretation for which the coding 
system should provide perspicuous standards. 

 Research with multi-method designs has 
shown that off-line measures hardly correspond 
to online measures. Correlations between off-
line and online measures are invariably low 
( r  = 0.15 on the average; Bannert & Mengelkamp, 
 2008 ; Cromley & Azevedo,  2006 ; Veenman, 
 2005,   2011 ; Veenman et al.,  2003  ) , and qualita-
tive analyses show that off-line self-reports do 
not converge with speci fi c online behaviors 
(Hadwin, Nesbit, Jamieson-Noel, Code, & 
Winne,  2007 ; Winne & Jamieson-Noel,  2002  ) . 
Apparently, learners do not do what they pro-
spectively say they will do nor do they accu-
rately recollect what they have recently done. 
Moreover, correlations among off-line measures 
are often low to moderate, whereas correlations 
among online measures are moderate to high 
(Cromley & Azevedo,  2006 ; Veenman,  2005  ) . 
Obviously, off-line methods yield rather diverg-
ing results, while online methods converge in 
their assessments of metacognitive skills. Finally, 
the external validity of assessment methods 
should be considered (Veenman,  2007  ) . Online 
assessments are strong predictors of learning 
outcomes, contrary to off-line assessments. In a 
review study, Veenman  (  2005  )  found that cor-
relations with learning performance range from 
slightly negative to 0.36 for off-line measures 
and from 0.45 to 0.90 for online measures. In 
conclusion, off-line measures suffer from low 
convergent validity and low external validity, 
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which makes an argument for resorting to online 
assessment of metacognitive skills (Veenman, 
 2007  ) . Yet, a majority of studies rely on off-line 
self-reports for the assessment of metacognition 
(Dinsmore, Alexander, & Loughlin,  2008 ; 
Veenman,  2005  ) , including studies with com-
puter-based learning environments (Gress, Fior, 
Hadwin, & Winne,  2010 ; Winters et al.,  2008  ) .  

   Log fi le Assessments 

 Thinking aloud and observation are time-consuming 
methods because they have to be administered on 
an individual basis. With the emergence of 
computer-based learning environments, the online 
method of tracing metacognitive behaviors of 
learners in computer log fi les has become available 
(Greene, & Azevedo,  2010 ; Hadwin et al.,  2007 ; 
Kunz, Drewniak, & Schott,  1992 ; Veenman, 
Elshout, & Groen,  1993 ; Veenman, Wilhelm, & 
Beishuizen,  2004 ; Winne,  2010  ) . Obviously, the 
nature of the task should allow for a computerized 
version, or otherwise it would impair the ecologi-
cal validity of assessments. The advantage of 
log fi le assessment is that the method is minimally 
intrusive and that it can be administered to large 
groups at the same time (Aleven, Roll, McLaren, 
& Koedinger,  2010 ; Azevedo, Moos, Johnson, & 
Chauncey,  2010 ; Veenman et al.,  2006 ; Winne, 
 2010  ) . Typically, a log fi le contains traces of the 
learner’s overt cognitive activities during task 
performance on the computer. The frequencies of 
certain key presses, button pushes, object manipula-
tions, link and screen selections, scrolling, and 
menu clicks are registered along with time indications. 
Log fi les do not contain the learner’s metacogni-
tive deliberations for enacting those activities, 
since prompting learners to type in their thoughts 
would interfere with spontaneous metacognitive 
processing. Basically, the concrete activities regis-
tered in a log fi le represent rather raw materials on 
a low cognitive level, also referred to as “events” 
(Azevedo et al.,  2010 ; Winne,  2010  ) . In order to 
lift log fi le analysis to a metacognitive level, two 
steps need to be taken in order to select and vali-
date relevant indicators of metacognition 
(Veenman,  2007  ) . 

 A  fi rst step in log fi le analysis concerns the 
selection of which cognitive activity may be con-
sequential to metacognitive regulation. This 
selection of potential indicators of metacognitive 
skills should be based on a rational analysis of 
the task at hand, knowledge of the metacognition 
literature, and common sense. For instance, push-
ing a particular button at a critical moment in the 
course of task performance may be such an indi-
cator. The outcome of this selection process, 
however, is not always entirely successful. Some 
activities that initially appear to be metacognitive 
by nature may turn out to be non-metacognitive 
after all. Hence, a second step is to validate these 
potential log fi le measures with concurrent online 
assessments, such as think-aloud protocols or 
systematical observation. This multi-method 
approach is prerequisite for establishing a  fi rm 
set of adequate log fi le indicators of metacogni-
tive skillfulness (Veenman,  2007 ; Winters et al., 
 2008  ) . Selection and validation of indicators need 
to be done prior to log fi le assessments if the cod-
ing of learner activities in log fi les is automated. 
Otherwise, log fi les have to be coded by hand 
afterwards. Three empirical studies may eluci-
date the necessity of this two-step procedure. 

 Veenman and colleagues  (  1993  )  assessed the 
metacognitive skills from log fi les of 40 partici-
pants who were either thinking aloud or working 
silently in a computer-simulated    Heat Lab. 
Participants, novices in the domain of physics, 
were required to discover principles of calorime-
try by designing their own experiments. Several 
objects of different weights (100 g, 200 g, 1 kg) 
and materials (gold, copper, glass) could be 
heated on a burner. The amount of heat trans-
ferred to an object was regulated with a time 
switch and could be read off    a joules-meter. 
Temperature was measured by attaching a ther-
mometer to an object. Thus, the virtual labora-
tory contained the required means for examining 
the relationship between heat and temperature 
depending on weight and material. All activities 
in Heat Lab were logged. In order to determine 
which of these activities could be labeled as 
representing metacognitive skillfulness, a refer-
ence group with a similar background was 
included from an earlier study with Heat Lab 
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(Veenman et al.,  1993  ) . Thinking-aloud protocols 
of this reference group had been analyzed on the 
quality of metacognitive skillfulness (i.e., on 
indications of task orientation, goal setting, plan-
ning, monitoring, evaluation, recapitulation, and 
re fl ection). Their log fi les were coded on potential 
positive indicators of metacognitive orientation 
(frequency of rereading the task assignment and 
frequency of asking for help with lab operations), 
positive indicators of planning (frequency of 
switching on the burner for starting a new experi-
ment, frequency of object manipulations, and the 
number of unique objects used), as well as nega-
tive indicators of planning and monitoring (fre-
quency of  not  measuring either the initial 
temperature or the  fi nal temperature). Although 
the selection of these indicators was based on a 
rational task analysis, only three log fi le measures 
appeared to be substantially related to thinking-
aloud measures. Frequency of switching the 
burner on, frequency of  not  measuring the initial 
temperature, and frequency of  not  measuring the 
 fi nal temperature correlated 0.40, −0.40, and 
−0.37 with the thinking-aloud measures, while 
correlations for the other log fi le measures were 
low. Regression analysis con fi rmed that these 
three log fi le measures each contributed to the 
prediction of the thinking-aloud measure, whereas 
the others did not. A composite score of these 
three log fi le measures correlated 0.62 with the 
thinking-aloud measures. Using the same proce-
dure for obtaining a composite score from log fi les 
in the main experiment, Veenman and colleagues 
 (  1993  )  showed that participants who were thinking 
aloud did not differ in metacognitive skillfulness 
from those who worked silently,  F (1,38) = 0.02. 
Thinking aloud did not affect metacognitive 
processes, although it slowed down those 
processes a bit (cf. Ericsson & Simon,  1993  ) . 

 In another study, Veenman and colleagues 
 (  2004  )  assessed metacognitive skillfulness from 
the log fi les of 113 children and adolescents in 
the age of 9–22 years, who performed four 
computer-simulated, inductive-learning tasks. 
Participants completed two biology tasks (a plant-
growing task and a food task) as well as two 
geography tasks (one about the conservation of 
otter habitats, the other about ageing). In each 

task,  fi ve independent variables with discrete 
levels (either two or three levels) could be varied, 
and their effects on the dependent variable could 
be inspected. The model underlying the relations 
between the independent and the dependent 
variables was identical in each task; two indepen-
dent variables interacted with one another; one 
variable had a nonlinear effect, and two variables 
were irrelevant. Each task model corresponded to 
plausible real-life phenomena. Figure  11.1  shows 
the interface of the plant-growing task as an 
example. The task was to  fi nd out how different 
independent variables affected plant growth. 
Independent variables were (1) giving water, 
either once or twice a week; (2) using an insecti-
cide or not; (3) putting dead plant leaves in the 
 fl owerpot or not; (4) placing the plant either 
indoors, on a balcony, or in a greenhouse; and (5) 
size of the  fl ower pot, either large or small. 
Distinct levels of plant growth as a dependent 
variable were 5, 10, 15, 20, and 25 cm. Variable 4 
had a nonlinear effect, meaning that growing the 
plant indoors resulted in 5 cm less growth, rela-
tive to a balcony or greenhouse. Variable 2 and 3 
did not affect plant growth at all. Variable 1 and 5 
interacted, as giving water once or twice a week 
did not matter for a large pot, but it did matter 
when a small  fl owerpot was used. In that case, 
giving water twice a week would reduce plant 
growth, while giving water once a week would 
increase growth, relative to growth in the large 
 fl owerpot. Within each task, participants per-
formed a series of “experiments.” Such an experi-
ment consisted of choosing a value for each of 
the independent variables, predicting the plant 
growth as a result of these values, and asking the 
computer for the actual plant growth. Results of 
earlier experiments could be inspected by scroll-
ing through the result window at the right side 
in Fig.  11.1 .  

 During the food task, participants had to  fi nd 
out how eating and drinking habits affected the 
health status of an imaginary person, called Hans. 
Independent variables were the consumption of 
fat, carbohydrates, alcohol, albumen, and supple-
mentary vitamins. In the otter task, the relevance 
of factors affecting the extinction of otters had to 
be investigated. Independent variables were extra 
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food provision or not, environmental pollution, 
natural habitat, media exposure, and closing otter 
areas to the public or not. In the population-age-
ing task, independent variables that could affect 
the ageing rate of a population were state of the 
economy, quality of the educational system, 
means of living, climate, and general safety. In all 
cases, two variables interacted, one variable had a 
nonlinear effect, and two variables were irrele-
vant to the dependent variable. 

 The computer program automatically recoded 
learner activities in the log fi les of each task into 
several potential indicators of metacognitive 
skillfulness. Log fi le measures included the num-
ber of (unique) experiments conducted, the mean 
number of variables changed per experiment, fre-
quency of scrolling activities, frequency of vari-
able selection activities, the prediction-error rate 
(mean distance between predicted and actual out-
come), and time on task, among others (see 
   Wilhelm, Beishuizen, & Van Rijn,  2005  ) . As par-
ticipants were required to think aloud during all 
tasks, log fi le measures could be validated against 

thinking-aloud data. Two judges separately rated 
10% of the plant-growing-task protocols and 5% 
of the otter-task protocols on the quality of meta-
cognitive skillfulness. Protocols were judged on 
the quality of orientation activities (elaborateness 
of hypotheses generated before each experiment), 
systematical behavior (planning a sequence of 
experiments and avoiding unsystematic varia-
tions between subsequent experiments), evalua-
tion (detection and correction of mistakes), and 
elaboration (drawing conclusions, relating out-
comes of experiments, generating explanations, 
and recapitulating). From the log fi le measures, 
only the mean number of variables changed per 
experiment, and the frequency of scrolling 
appeared to be substantially correlated to the 
thinking-aloud scores. The mean number of vari-
ables changed per experiment (VOTAT; Chen & 
Klahr,  1999  )  was a negative indicator of think-
aloud metacognition. Varying more than one 
variable at a time represents poor planning behavior 
(Veenman et al.,  1997  )  and lack of experimental 
control (Glaser, Schauble, Raghavan, & Zeitz, 

  Fig. 11.1    Interface of the plant-growing task (Veenman et al.,  2004  )        
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 1992  ) . Frequency of scrolling back to earlier 
experiments, on the other hand, was a positive 
indicator of think-aloud metacognition. 
Participants use scrolling to check earlier experi-
mental con fi gurations or to relate outcomes of 
experiments. Scores on both measures were stan-
dardized and the sign of the negative indicator 
was inverted. Composite scores of these two 
log fi le measures correlated 0.85 and 0.84 with 
the thinking-aloud data of the plant-growing task 
and the otter task, respectively. Veenman and col-
leagues  (  2004  )  used the composite scores of 
log fi le measures to show that the metacognitive 
skills of learners develop with age. The mean 
composite scores of the four age groups (9, 12, 
14, and 22 year) revealed a steep linear increment 
with age,  F (3,109) = 38.60,  p  < 0.001. Moreover, 
composite scores correlated 0.74 with an overall 
measure of learning performance. 

 In a recent, unpublished study, Veenman, Van 
Haaren, and Rens used an adapted version of the 
plant-growing task to assess the metacognitive 
skills of gifted secondary-school students. Task 
complexity was increased to meet the intellec-
tual level of the target group of gifted students. 
Numerical relations between the variables were 
made more complex, and a second interaction 
effect was included: Using insecticides with 
dead leaves in the pot reduced the growth of the 
plant, while leaving out any of the two did not 
affect plant growth. Due to changes in both task 
settings and target group compared to the origi-
nal study, a pilot study with  fi ve gifted learners 
needed be carried out to validate log fi le mea-
sures once more. Think-aloud and log fi le data 
were gathered according to the procedures of 
Veenman and colleagues  (  2004  ) . A new posttest 
with multiple-choice and open-ended questions 
about the effects of the  fi ve independent vari-
ables on plant growth was also administered. As 
expected, VOTAT (converted to positive scores) 
and the frequency of scrolling activities corre-
lated respectively 0.68 and 0.58 with think-
aloud metacognition. However, this time the 
number of unique experiments, corrected for the 
total number of experiments, correlated 0.56 
with think-aloud metacognition. The number of 
unique experiments represents coverage of the 

problem space, consisting of maximal 48 
possible experiments. Composite scores of these 
three log fi le measures correlated 0.96 ( p  < 0.01) 
with think-aloud metacognition and 0.90 
( p  < 0.05) with posttest learning outcomes. 

 The  fi rst two studies show that a selection of 
log fi le indicators based on a rational task analysis 
is fallible. Validation of potential indicators is 
necessary to sift out irrelevant, non-metacogni-
tive activities. Moreover, the third study reveals 
that additional validation is required when task 
conditions or participant samples are altered. 
These studies further show that a limited set of 
log fi le measures may adequately represent a 
broader range of metacognitive skills assessed 
from thinking-aloud protocols. Veenman and col-
leagues  (  2004  )  asserted that metacognitive skills 
during various phases of task performance are 
highly interdependent. Good orientation leads to 
good planning and systematical behavior, which 
in turn allows for more monitoring and evaluative 
control. This interdependency of metacognitive 
skills (with intercorrelations of about 0.90; 
Veenman,  1993  )  accounts for why a limited set of 
indicators may adequately represent broad 
metacognition.  

   Patterns of Activity in Log fi le 
Assessments 

 Log fi les assessments often merely capture the 
quantity of metacognitive activities and not the 
quality of those activities (Winters et al.,  2008  ) . 
Plain rereading of task assignments, for instance, 
is not the same as rereading the task assignment 
consequential to monitoring the understanding of 
the task. The latter is more goal oriented. One 
way to access quality is to detect meaningful pat-
terns in the sequence of activities or events. 
Transition analysis is used to analyze trace data 
on the sequence and transitions of events 
(Azevedo et al.,  2010 ; Hadwin et al.,  2007  ) . All 
frequencies of transitions from one event to 
another are entered in a matrix of all possible 
events. Inspection of this matrix yields informa-
tion about the regularity of certain transitions 
(density) and about the exclusivity of transition 
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starting points (centrality). Transition analysis 
may be done on group level as well as on the indi-
vidual level. In the same vein, Biswas, Hogyeong, 
Kinnebrew, Sulcer, and Roscoe  (  2010  )  used a 
technique of hidden Markov models to detect 
probability patterns of transitions between (meta-
cognitive) activities over time. Such techniques 
allow us to detect patterns of contingent events, 
rather than registering single, isolated ones 
(Winne,  2010  ) . The metacognitive nature of these 
patterns, however, remains to be inferred by the 
researcher. 

 Researchers in self-regulated learning stress 
the dynamic nature of metacognitive processes 
(Azevedo et al.,  2010 ; Greene & Azevedo,  2010 ; 
Winne,  2010  ) . Strategy choices and frequency of 
activities may change over time in interaction 
with the learning environment. Time-series anal-
ysis is a technique for assessing changes in meta-
cognitive functioning. For time-series analyses, 
either the task is subdivided in distinguishable 
learning episodes, or a series of highly similar 
tasks is presented. Repeated assessments over 
time are analyzed. In the unpublished study of 
Veenman, Van Haaren,    and Rens, eventually 153 
students from preuniversity secondary education 
performed both the plant-growing task and the 
ageing task in randomized order. Log fi le mea-
sures were analyzed by means of repeated-mea-
sures ANOVA with task order as between-subjects 
factor. Results show that the total number of 
experiments,  F (1,151) = 36.84,  p  < 0.001, con-
verted VOTAT,  F (1,151) = 54.09,  p  < 0.001, and 
the number of unique experiment,  F (1,151) = 26.57, 
 p  < 0.001, increased between task 1 and task 2, 
while the scrolling frequency,  F (1,151) = 22.80, 
 p  < 0.001, decreased. Participants became more 
active and showed more experimental control 
over time, at the cost of scrolling activities. 
Perhaps, referring back to previous experiments 
became less compulsory due to the enhanced 
experimental control. 

 Elshout, Veenman, and Van Hell  (  1993  )  used 
time-series analysis to study help-seeking behavior 
in a computerized learning-by-doing environment. 
Novice and advanced learners in physics learned 
to solve a series of 20 complex thermodynamics 
problems about the relation between volume, 

pressure, and temperature with the option of 
asking for help from the computer program. The 
help facility offered a sequence of steps that 
would lead the learner through an orientation 
phase, an execution phase, and an evaluation 
phase of the problem-solving process.    Participants 
were free to choose a type of help: clue (hint 
about one speci fi c step), one step (working out of 
one speci fi c step), student performed (all subse-
quent steps, but learner executed), or computer 
demonstrated (working out of all steps, demon-
strated by the program). Traces of help requests 
were logged, while metacognitive skillfulness 
was assessed from think-aloud protocols. 
Analysis over the series of 20 problems revealed 
that metacognitively poor novices preferred the 
quick and dirty way out by choosing    one-step 
formula with direct access to a working out of the 
appropriate formula (cf. Aleven et al.,  2010  ) . 
Help requests of metacognitively skilled novices, 
on the other hand, shifted from merely execution 
help to orientation help over the 20 problems, 
thereby matching the help-seeking behavior of 
advanced learners in the end. These two studies 
show that time-series analysis of logged traces 
may capture patterns of change in metacognitive 
functioning.  

   Discussion 

 In the introduction of this chapter, metacogni-
tive skillfulness was de fi ned as an aptitude. 
Recently, Winne  (  2010  )  argued against such an 
aptitude approach because self-regulation is a 
dynamic process that unfolds in the course of 
learning. Self-regulatory processes change in 
nature and frequency as learning progresses. 
According to Winne, aptitude measures do not 
capture the dynamic nature of self-regulation, 
contrary to computer traces of events that allow 
for a  fi ne-grained analysis of processes over 
time. The construct of metacognitive skillful-
ness is an aptitude indeed, because it represents 
the availability of self-instructions in learning 
situations. Assessments of metacognitive skills 
as an aptitude would provide a static measure of 
the amount and quality of available skills 
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(Winne,  2010  ) . Yet, both positions of metacog-
nitive skills as aptitude and as dynamic pro-
cesses are equally tenable, provided that 
metacognitive skills are assessed with behavior 
measures. Studies have shown that learners 
bring along a rather stable, general repertoire of 
metacognitive skills when entering various new 
learning situations (Veenman,  2011  ) . The 
deployment of this general repertoire, however, 
must be adapted to task demands and other con-
textual factors during the learning process, as 
shown by the studies with time-series analysis. 
Metacognitive skills are gradually tailored to 
the task at hand because production rules 
become more specialized and sensitive to task 
constraints. Thus, any learning experience may 
alter the repertoire of production rules for meta-
cognitive self-instruction. Veenman  (  1993  )  pos-
tulated that a separate set of task- or 
domain-speci fi c production rules is generated 
during the acquisition of expertise, alongside 
the general production rules that serve as default 
repertoire for novel learning situations. Even 
general production rules are subject to change 
due to experience and training, yet at a slow 
pace (Veenman et al.,  2006  ) . Therefore, the 
notion of metacognitive skills as self- instructions 
does not preclude a peaceful coexistence of 
aptitude and dynamic change in learning. 

 There is ample evidence that online assessments 
are more valid than off-line assessments of 
metacognitive skills. Nevertheless, all online assess-
ments make inferences about metacognitive 
self-instructions, albeit to a different extent. The 
think-aloud method is a powerful tool for assess-
ing monitoring and control information  fl ows. 
Yet, protocols may be incomplete and research-
ers have to  fi ll in the gaps by making inferences 
about relations between both information  fl ows. 
The same is true for observations that include the 
learner’s verbalizations. More far-reaching infer-
ences need to be made for observations without 
verbalization, eye-movement registration, and 
log fi le analysis as these methods only access 
information about concrete, overt behaviors on 
the object level of Nelson’s model. For two 
contingent events, the researcher has to infer the 

causal relation between the two events and their 
metacognitive nature. First, one needs to infer 
that the  fi rst event represents the condition part of 
a production rule. Next, one needs to infer that 
the second event corresponds to the action part of 
the  same  production rule. Finally, the metacogni-
tive function of the entire production rule has to 
be inferred. Contingencies in time may offer a 
plausible but not suf fi cient reason for making 
these inferences (cf. Winne,  2010  ) . A further 
complication is that the conditions for evoking a 
control event may not become manifest in trace 
logs, either because the conditions of a production 
rule are activated by mental operations that are 
not accessible with trace data or because the trac-
ing system is not sensitive to a particular event. 
Here is a major challenge that researchers of trace 
data in computer-based learning environments are 
facing: extracting an appropriately contextualized 
(i.e., neither overly general nor overly speci fi c) 
set of conditions from multiple data points. 

 Log fi le assessment is an unobtrusive method 
for gaining access to events in detail on the object 
level, which assessments can be done on a large 
scale and over extended periods of time. Log fi le 
analysis allows for different levels of granularity 
in assessment, ranging from tracing the occur-
rence of separate events to detecting patterns of 
contingent events. Although scarcely out of the 
egg, tracing events can be used for attuning feed-
back and scaffolding of metacognitive function-
ing to individual needs (Aleven et al.,  2010 ; 
Azevedo et al.,  2010 ; Gress et al.,  2010  )  and for 
verifying that these interventions have been suc-
cessful (Veenman,  2007  ) . However, validation of 
log fi le events with other online assessments is 
prerequisite to making justi fi ed inferences about 
the metacognitive nature of those events. Ultimate 
assessments would include different online meth-
ods rendering data that are aligned in time and 
produce converging results.    Like a converging 
lens that directs rays of light to a focal point, even 
the focal distance may change due to learning 
experiences. Unfortunately, multi-method research 
in metacognition is scarce so far (Veenman,  2011 ; 
Veenman et al.,  2006  ) . Metacognition researchers 
should sharpen their lenses.      
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  Abstract 

 The aim of this chapter is to discuss appropriate scaffolding for meta-
cognitive re fl ection when learning with modern computer-based learning 
environments. Many researchers assume that prompting students for 
metacognitive re fl ection will affect the learning process by engaging 
students in more metacognitive behaviour leading to better learning 
performance. After de fi ning basic constructs and assumptions, an over-
view of research on prompting metacognitive and self-regulated learning 
skills during hypermedia learning is presented. On the basis of this 
overview the design and effects of three kinds of metacognitive support 
(re fl ection prompts, metacognitive prompts, training & metacognitive 
prompts) are presented and discussed. In three experiments with university 
students, the experimental groups are supported by one of the types of 
metacognitive prompts, whereas the control groups are not supported. 
Analysis of learning processes and learning outcomes con fi rms the 
positive effects of all three types of metacognitive prompts; however their 
speci fi c in fl uence varies to a signi fi cant degree. The results and their 
explanations are in line with recent theories of metacognition and self-
regulated learning. At the end of the chapter implications for the design of 
metacognitive support to improve hypermedia learning are discussed. 
Furthermore, implications for investigating metacognitive skills during 
hypermedia learning will be derived.  
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     Introduction 

 Recent research in the  fi eld of self-regulated 
learning points out the crucial role of learners’ 
strategic and metacognitive behaviour (e.g. 
Boekaerts, Pintrich, & Zeidner,  2000 ; Schunk & 
Zimmerman,  1998 ; Winne,  1996,   2001  ) . Thus, 
successful learning is not a matter of trial and 
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error but rather a set and speci fi c sequence of 
metacognitive activities that has to be performed 
(e.g. Schnotz,  1998  ) . Ideally, successful students 
perform different metacognitive activities during 
learning. First, they analyse the situation before 
they start processing the information. They will 
orient themselves by skimming the task descrip-
tion, instruction and resources, will specify the 
learning goals or even break them down into sub-
goals, and will plan the ongoing procedure. Based 
on this analysis the student has to search for 
relevant information and— especially crucial 
for self-regulated hypermedia learning—judge 
whether the information found is really relevant 
to reach the learning goals. The student then 
has to extract the information and elaborate it. 
At the end of the learning activity, the student has 
to evaluate the learning product, again with 
respect to the learning goals. These activities are 
constantly monitored and controlled. 

 Research of self-regulated learning reveals that 
many learners have dif fi culty performing these 
metacognitive activities spontaneously, which most 
probably results in lower learning outcomes 
(Bannert,  2007 ;    Zumbach & Bannert,  2006 ). So, 
the key issue of the research project is to develop 
effective metacognitive instructions, also suggested 
by other researchers (e.g. Azevedo & Hadwin, 
 2005 ; Kramarski & Feldman,  2000  ) . One promis-
ing form of instructional support seems to be the use 
of metacognitive prompts, since they should focus 
learners’ attention on their own thoughts and on 
understanding the activities in which they are 
engaged during the course of learning (Lin,  2001 ; 
Lin & Lehman,  1999  ) . Hence it is assumed that 
prompting students to re fl ect upon their own way of 
learning will allow them to activate their repertoire 
of metacognitive knowledge and skills, which will 
further enhance hypermedia learning and transfer.  

   Approaches of Metacognition 
and Metacognitive Instruction 

 The obvious de fi nition of  metacognition  is that 
of cognition about cognition, and the function 
of metacognition is to regulate one’s own cog-
nition (Flavell,  1979  ) . More precisely Nelson 

and Narens  (1992)  divided cognition into an 
object level and a meta level. On the meta level 
a learner builds a mental model of the object 
level. In multimedia research we use the term 
mental model to describe analogous mental 
representations of external representations such 
as a mental model about a machine (Schnotz & 
Bannert,  2003  ) . In case of metacognition the 
mental model is built from the object level, that 
is, the cognition of the person her/himself. The 
processes leading to such a mental model of 
one’s own cognition are named  monitoring,  
whereas processes that alter the cognition at the 
object level are named  control.  To sum up, 
metacognition is de fi ned recursively as cogni-
tion about cognition. This implies a mental 
model of one’s own cognition (the meta level) 
that is acquired and altered during monitoring 
processes whereas control processes alter the 
cognition. 

 In research about metacognition a distinction 
has been made between metacognitive knowl-
edge and metacognitive skills (e.g. Ertmer & 
Newby,  1996 ; Schraw,  2001  ) . On the one hand, 
 metacognitive knowledge  refers to the individu-
al’s declarative knowledge about learning strat-
egies as well as person and task characteristics 
that are relevant in order to master a speci fi c 
situation (Flavell & Wellman,  1977  ) . On the 
other hand,  metacognitive skills  refer to the self-
regulation activities taken place in learning and 
problem solving (Brown,  1978 ; Veenman, 
 2005  ) . Some researchers add a third category 
named  metacognitive experiences  (Efklides, 
 2008 ; Flavell,  1979  )  or  metacognitive judgments 

and monitoring  (Pintrich, Wolters, & Baxter, 
 2000  ) . Metacognitive feelings and  judgments 
belong to this category: feelings of knowing, 
feelings of dif fi culty, judgments of knowing, 
judgments of learning, con fi dence judgments, 
etc. According to Efklides these feelings and 
judgments trigger the metacognitive skills, that 
is, a person feels or judges that there are 
 problems in the learning process and thus begins 
to use their metacognitive skills. In this research 
the focus lies on these metacognitive skills of 
students. There are different processes sub-
sumed to metacognitive skills like goal setting, 
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orientation, planning, strategy selection and use, 
monitoring the execution of strategies, check-
ing, and re fl ection (e.g. Pintrich et al.,  2000 ; 
Veenman,  2005  ) . In this chapter we present 
results concerning the support of orientation, 
planning, re fl ection, and evaluation, and moni-
toring of strategies using prompts. 

 In general,  metacognitive support  aims to 
increase students’ learning competence by means 
of systematic instruction in order to improve 
signi fi cantly his or her learning performance. 
Reviewing current metacognitive training 
research (e.g. Schunk & Zimmerman,  1998 ; 
   Veenman, Van-Hout-Wolters, Af fl erbach,  2006 ; 
Weinstein, Husman, & Dierking,  2000  ) , there are 
some general principles for effective metacogni-
tive instruction:

   First of all, metacognitive instruction should • 
be  integrated  in the domain-speci fi c instruc-
tion. Thus, metacognitive activities should not 
be taught separately as an end of itself but 
embedded in the subject matter.  
  Secondly, the application and usefulness of • 
instructed metacognitive strategies have to be 
 explained ; otherwise students will not use 
them spontaneously.  
  And, last but not least, it is important that • 
 suf fi cient training time  is allotted in order to 
implement and automate the metacognitive 
activities just learned.    
 Another distinction is made by Friedrich and 

Mandl  (  1992  )  with respect to the level of direct-
ness of instructional measures:

    • Direct support  teaches learning strategies 
explicitly to the students, that is, the strategies 
are explained and students practice the use of 
the strategies. Direct metacognitive support is 
realised by metacognitive training, which 
focuses explicitly on teaching metacognitive 
skills and metacognitive knowledge (e.g.   
 Hasselhorn,  1995 ).  
  In contrast  • indirect support  measures are 
embedded into the learning environment, that 
is, the learning environment is designed in 
order to promote the use of certain strategies 
without explaining them explicitly. 
Metacognitive indirect support offers adequate 
learning heuristics to the students embedded 

into the learning environment, which are not 
explicitly taught. Student’s focus lies on 
knowledge acquisition on a learning domain 
and not on metacognitive knowledge and 
skills per se. The integrated learning heuris-
tics, e.g. metacognitive prompts (Bannert, 
 2009  ) , stimulate students to apply their meta-
cognitive skills adequately.    
 The decision whether to design direct or indi-

rect metacognitive instruction strongly depends 
on the student’s metacognitive competence. 
Whereas extensive training is necessary for stu-
dents lacking metacognitive competence, the 
 so-called  mediation de fi cit  (e.g. Hasselhorn, 
 1995  ) , metacognitive prompts seem to be an ade-
quate measure for students already possessing 
these skills, but who do not perform them sponta-
neously, the so-called  production de fi cit . The tar-
get group of this research project are university 
students who should already possess the meta-
cognitive skills outlined above due to their wide 
learning experiences (Paris & Newman,  1990 ;    
Veenman et al.,  2006 ). Hence, we assume that 
unsuccessful hypermedia learning of this target 
group is more a matter of a production de fi cit 
than a mediation de fi cit. Nevertheless, this is ours 
and the cited author’s assumption and not an 
empirical fact. But if we can show that indirect 
support fosters learning without teaching the 
required skills explicitly this would give some 
support for our assumption. Under this assump-
tion it is reasonable that indirect support com-
bined with a short-term intervention should foster 
learning effectively without more time- demanding 
direct support. 

 The aim of this research approach is to pro-
vide metacognitive support to improve self-
regulated learning, especially when learning 
with hypermedia. Although metacognitive 
knowledge and skills are needed when learning 
without new learning technology, such tech-
nology makes the students’ re fl ective behav-
iour about their own way of learning more 
salient (Azevedo,  2005 ,  2009 ; Lin,  2001 ; Lin, 
Hmelo, Kinzer, & Secules,  1999  ) . For example, 
in a hypermedia learning  environment a suc-
cessful learner continuously has to decide 
where to go next and constantly has to evaluate 
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how the information retrieved is related to his/
her actual learning goal (Schnotz,  1998  ) . 
Considering that many students have dif fi culties 
in strategic and metacognitive learning behav-
iour (e.g. Simons & De Jong,  1992  ) , the aim of 
our research is to provide appropriate scaffold-
ing for  metacognitive re fl ection when learning 
with hypermedia. 

   Scaffolding Metacognitive Skills 
Through Prompts 

 We de fi ne  prompts  as recall and/or performance 
aids, which vary from general questions (e.g. 
“what is your plan?”) to explicit execution 
instructions (e.g. “calculate  fi rst 2 + 2”; Bannert, 
 2009  ) . They are all based on the central assump-
tion that students already possess the concept 
and/or processes, but do not recall or execute 
them spontaneously.  Instructional prompts  and 
 instructional prompting  are measures to induce 
and stimulate cognitive, metacognitive, motiva-
tional, volitional, and/or cooperative activities 
during learning (Bannert,  2009  ) . They may stim-
ulate the recall of concepts and procedures (e.g. 
by presenting the cognitive prompt: “What are 
the basic concepts of Skinner’s operant learning 
theory?”), or induce the execution of procedures, 
tactics, and techniques during learning (e.g. by 
offering a cognitive prompt: “First, calculate the 
percentage of different countries, then com-
pare.”), or even induce the use of cognitive and 
metacognitive learning strategies (e.g. by presenting 
a metacognitive prompt: “Is this in line with my 
learning goal?”) as well as strategies of resource 
management (e.g. with motivational prompts: 
“What are the bene fi ts?” or by presenting group 
coordination prompts, “Decide  fi rst who is the 
editor, the writer, the reviewer”). 

 Instructional prompts differ from prototypi-
cal instructional approaches since they do not 
teach new information, but rather support the 
recall and execution of student’s knowledge 
and skills. They are often included as support 
measures in instruction, which is aimed at 
knowledge acquisition. As illustrated in the few 
examples presented above instructional prompts 

include explicit statements that students have to 
consider during learning and thus differ from 
worksheets (without such statements) or worked 
examples. 

 Paralleling the classi fi cation of learning strate-
gies as cognitive learning strategies, metacogni-
tive learning strategies, and resource management 
strategies (e.g. Weinstein & Mayer,  1986  ) , 
instructional prompts are classi fi ed in this chap-
ter as  cognitive prompts  if they directly support a 
student’s processing of information, for example 
by stimulating memorising/rehearsal, elabora-
tion, organisation, and/or reduction of learning 
material (e.g. Nückles, Hübner, & Renkl,  2009  ) . 
 Metacognitive prompts  are generally intended to 
support a student’s monitoring and control of 
their information processing by inducing meta-
cognitive and regulative activities, such as orien-
tation, goal speci fi cation, planning, monitoring, 
and control as well as evaluation strategies 
(Bannert,  2007 ; Veenman,  1993  ) .  Prompts for 

resource management  ask the learner to ensure 
optimal learning conditions, such as to have all 
necessary learning resources at one’s disposal or 
to organise a well-performing learning group. As 
our research does not contribute to this issue 
prompts for resource management are not con-
sidered in the following. 

 To sum up, metacognitive prompts are instruc-
tional measures integrated in the learning context 
that ask students to carry out speci fi c metacogni-
tive activities. In the study of Lin and Lehman 
 (  1999  )  students were prompted at certain times 
by a pop-up window in a computer simulation, to 
give reasons for their actions when carrying out 
experiments in biology. For example, before they 
started the experiment they  fi rst had to answer the 
question “What is your plan?”, “How did you 
decide that …?”, etc. stimulating students to per-
form planning and monitoring activities, which 
are major metacognitive skills as introduced 
above. All metacognitive prompts were explained 
and their usage was trained several weeks before 
the experiment was conducted. Lin and Lehman 
obtained signi fi cantly higher far-transfer perfor-
mance for students learning with those prompts 
compared to the students of the control group 
learning without prompts. 
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 In the experiments of Veenman  (  1993  ) , stu-
dents were also prompted in a simulation envi-
ronment to perform several metacognitive 
regulation activities, e.g. to re fl ect on the results 
based on the predictions made before the experi-
ment was conducted. These experiments also 
showed positive signi fi cant learning effects for 
high-ability learners. 

 Simons and De Jong  (  1992  )  carried out sev-
eral studies in which students had to practice with 
certain learning questions, “Do I understand this 
part?” and “Is this in line with the learning goal?”, 
and learning techniques, e.g. re fl ection and self-
testing. To sum up, they found these learning 
heuristics effective, especially for older and high-
ability students with prior knowledge. 

 Stark and Krause  (  2009  )  investigated the 
impact of re fl ective prompts on learning in the 
domain of statistics using learning material with 
worked examples. Participants were allowed to 
decide for each learning task if they wanted to see 
the worked examples right away or after solving 
the learning task. Participants in the experimental 
group were prompted to justify each of their 
decisions whereas the controls were not prompted. 
Participants from the prompted group outper-
formed participants in the control group in solving 
complex tasks immediately after learning and in 
a follow-up test but they were not more successful 
in simple tasks. 

 Kauffman, Ge, Xie, and Chen  (  2008  )  com-
bined cognitive prompts for problem solving 
with metacognitive prompts for re fl ection in a 
Web-based learning environment. Novice students 
were asked to solve two case studies about class-
room management and to present their solution in 
an e-mail message to a  fi ctive teacher of the 
class. Problem-solving prompts had an effect on 
the quality of the solutions and on the quality of 
writing, whereas prompts for re fl ection had an 
effect only for those participants who had 
received the problem-solving prompts before. 
Thus, re fl ection prompts were effective if there 
was a clear understanding of what participants 
were asked to re fl ect on, namely, the problem-
solving process that was prompted before. 

 Stadtler and Bromme  (  2008  )  used metacogni-
tive prompts during a search task about medical 

information in preselected Websites. Laypersons 
were prompted either to monitor their compre-
hension or to evaluate the source of the informa-
tion or both. There were positive effects of 
monitoring prompts on knowledge about facts 
and small effects on comprehension. The moni-
toring prompts may have fostered the detection 
of comprehension failures and inconsistencies 
and thus enabled the laypersons to control and 
optimise their information processing. Evaluation 
prompts had an effect on the recalled informa-
tion concerning the sources of the information, 
that is, participants were more aware of the qual-
ity of the information they collected during the 
task. The results support the conclusion that dif-
ferent metacognitive prompts trigger different 
learning behaviour. 

 The effect of prompting over the course of 
time was investigated in a study by Sitzmann, 
Bell, Kraiger, and Kanar  (  2009  )  in which par-
ticipants learned about a learning platform over 
ten sessions in an online learning environment. 
Participants were randomly assigned to three 
groups: continuous prompting, prompting in the 
last  fi ve sessions, and no prompting. Participants 
were prompted concerning their monitoring and 
evaluation using short questions, which had to 
be answered on a 5-point-scale (e.g. “Are the 
study tactics I have been using effective for 
learning the training material?”). For the con-
tinuous prompting group learning performance 
increased during the  fi rst four sessions and then 
levelled off, whereas for the prompting in the 
last  fi ve sessions group learning performance 
increased after the prompts were introduced. By 
contrast, the learning performance of the con-
trols declined over the ten sessions. Results 
were replicated in a second experiment with dif-
ferent learning material. Additionally, cognitive 
ability and speci fi c self-ef fi cacy moderated the 
prompting effects, that is, participants with high 
cognitive abilities and high speci fi c self-ef fi cacy 
bene fi tted more from the prompts than partici-
pants with lower cognitive abilities or self-
ef fi cacy. 

 Sitzmann and Ely  (  2010  )  prompted their par-
ticipants while learning about Excel in an online 
course using metacognitive and motivational/
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volitional prompts, e.g. “Do I understand all of 
the key points of the training material?” or “Am 
I focusing my mental effort on the training mate-
rial?” Participants had to answer these questions 
on a 5-point scale. There were  fi ve experimental 
groups: prompts prior to the training, prompts in 
all four modules of the training, prompts in the 
 fi rst two modules, prompts in the second two 
modules, and no prompts. Results showed that 
participants who were prompted continuously 
had higher learning outcome and less attrition. 
This effect was mediated by learning time but 
surprisingly not by strategy use as measured by a 
questionnaire. Instead, continuous prompting 
moderated the effect of learning performance on 
subsequent strategy use and attrition. That is, 
continuous prompts prevented learners with low 
learning performance from dropping out and 
from reducing their strategy use. Therefore, con-
tinuously prompting learners may give them the 
feeling that they can control their learning, lead-
ing to less attrition and more strategy use in sub-
sequent learning phases. 

 As illustrated by these prompting studies, 
metacognitive prompts require students to explic-
itly re fl ect, monitor, and revise the learning pro-
cess. They focus students’ attention on their own 
thoughts and on understanding the activities in 
which they are engaged during the course of 
learning. Hence it is assumed that prompting stu-
dents to plan, monitor, and evaluate their own 
way of learning will allow them to activate their 
repertoire of metacognitive knowledge and strat-
egies which will as a consequence enhance self-
regulated learning and transfer.   

   Experimental Studies 
on Metacognitive Prompts 

 The aim of this research approach is to provide 
metacognitive support to improve self-regulated 
learning, especially when learning with hyper-
media. The prompting studies outlined above 
mainly investigate the effects of metacognitive 
prompts on learning performance by comparing 
experimentally the effects of metacognitive 
prompts vs. no prompts (e.g. Veenman,  1993  ) , 

metacognitive vs. cognitive prompts (Kauffman 
et al.,  2008 ; Nückles et al.,  2009  ) , or metacogni-
tive vs. motivational prompts (e.g. Lin & Lehman, 
 1999 ; Sitzmann & Ely,  2010  ) . So far there is little 
research investigating the effects of different 
types of metacognitive prompts. Thus, the ques-
tion of our research is whether different kinds of 
metacognitive support would lead to different 
effects in hypermedia learning environments. In 
particular we asked whether different kinds of 
metacognitive support will in fl uence the  learning 

process  by engaging students in different meta-
cognitive behaviour and if they will increase 
 learning performance.  

   Design and Effects of Different Types 
of Metacognitive Prompts 

 In this research project effects of a range of 
related types of metacognitive prompts were 
analysed experimentally using similar design, 
procedure, and material. In general, the metacog-
nitive support provides prompts stimulating or 
even suggesting appropriate activities that must 
be followed by students before, during, and at the 
end of the learning session. No metacognitive 
help is offered in the control groups. Three exper-
imental studies (outlined in Table  12.1 ) were con-
ducted. In this chapter only the main idea, 
procedures, and results of the different studies 
will be sketched in order to discuss the main 
 fi ndings with regard to the design and evaluation 
of effective metacognitive tools supporting self-
regulated learning in computer-based leaning 
environments (CBLEs).  

   Table 12.1    Overview of the three experiments   

 Experiment  Experimental manipulation 

 Study 1: Re fl ection 
prompts (see Bannert, 
 2006  )  

 EG = Re fl ection prompts 
( n  = 24) CG = without ( n  = 22) 

 Study 2: Metacognitive 
prompts (see Bannert, 
 2005a  )  

 EG = Metacognitive prompts 
( n  = 20) CG = without ( n  = 20) 

 Study 3: Training and 
metacognitive prompts 
(see Bannert,  2003  )  

 EG = Training + metacogni-
tive prompts ( n  = 20) 
CG = without ( n  = 20) 
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   Description of Speci fi c Context, Sample, 

System, and Methods Used 

     Study 1: Re fl ection Prompts . 46 undergraduate 
university students majoring in Psychology and 
Education participated (mean age = 24.3; 
 SD  = 5.23; female: 84.8%). Participants were 
matched according to prior knowledge, metacog-
nitive knowledge, and verbal intelligence and 
afterwards randomly assigned to one of the two 
treatments. Students in the experimental group, 
the so-called  re fl ection prompting group  ( n  = 24), 
were prompted by the experimenter to say out 
loud the reasons why they chose this speci fi c 
information node. At each navigation step they 
had to complete the prompted statement “I am 
choosing this page because …”. Students’ rea-
sons for node selection were for example “because 
to get an overview”, “because to make a plan”, or 
“because to monitor learning”, but also “because 
I just want to go back” or “because I don’t know 
where I am”. Students were completely free in 
completing the prompted statements. Students in 
the  control group  ( n  = 22) learned silently, i.e. 
without such re fl ection prompting.  

   Study 2: Metacognitive Prompts . 40 undergradu-
ate university students majoring in Psychology 
and Education (mean age = 22.13,  SD  = 3.31; 
female: 67.5%) were randomly assigned to the 
treatments according to the same learner charac-
teristics as obtained in Study 1. Students in the 
experimental group, the so-called  metacognitive 

prompting group  ( n  = 20), were prompted by a 
pop-up window for metacognitive activities that 
have to be followed during learning. The meta-
cognitive help was designed to initiate and sup-
port orientation, planning, and goal speci fi cation 

activities at the beginning of the learning phase, 
monitoring and regulation activities during learn-
ing, and evaluation activities at the end of learn-
ing. Before students started learning, the  fi rst 
prompt requested students to orientate themselves, 
to specify the learning goals, and to make a plan. 
During learning (15 min afterwards) they were 
prompted to judge whether the information they 
processed was really relevant. They were then 
prompted to monitor and regulate their learning, 
e.g. to respond to the prompt “Do I understand the 
section? Am I still on time?” About 7 min before 
the end of the learning phase, students were 
prompted to evaluate their learning outcome, for 
instance by prompting them to check whether the 
learning goals were reached. No metacognitive 
support was offered in the control group ( n  = 20).  

   Study 3: Training and Metacognitive Prompts . 40 
undergraduate university students majoring in 
different  fi elds (mean age = 22.98,  SD  = 3.63; 
female: 72.5%) were randomly assigned to the 
treatments according to the same learner charac-
teristics as obtained in Study 1. Students in the 
experimental group, the so-called  training and 

metacognitive prompts group  ( n  = 20), were 
prompted by pop-up windows for metacognitive 
activities that had to be followed during learning. 
In contrast to Study 2, these metacognitive activi-
ties were explained in detail, demonstrated, and 
practiced during a short training period right 
before the learning session. No metacognitive 
support was offered to the control group ( n  = 20).     

   Procedure, Material, and Instruments 

 Figure  12.1  visualises the general procedure of 
all three experiments. About 1 week before the 

  Fig. 12.1    Design and procedure of the experimental studies       
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experiment started learner characteristics were 
obtained by questionnaires. Prior knowledge was 
measured by a self-developed multiple-choice 
test, metacognitive knowledge by a modi fi ed 
 version of the LIST-questionnaire (Wild, 
Schiefele, & Winteler,  1992 —similar to MSQL, 
Pintrich, Smith, Garcia, & McKeachi,  1993  ) , ver-
bal intelligence by IST 2000 (Amthauer, Brocke, 
Liepmann, & Beauducel,  1999  ) , and motivation 
for achievement and fear of failure by LMT 
(Hermans, Petermann, & Zielinski,  1978  ) .  

 All experiments began with an  introduction 

phase  during which students learned how to 
navigate the hypermedia program (see Fig.  12.2 ). 
Afterwards students in the experimental group 
of Study 1 were introduced to the method of 
re fl ection prompts in a short training period last-
ing a total of 10 min. All students of Study 2 and 

Study 3 were introduced to the method of 
reading and thinking aloud (   Ericsson & Simon, 
 1993 ). To students of the experimental group of 
Study 3 metacognitive activities were explained 
in detail, demonstrated, and practiced in a short 
training period right before the learning session 
lasting a total of 20 min. To practice with the 
different kinds of metacognitive support stu-
dents in all studies had to carry out several 
search tasks within another topic of the learning 
environment.  

 Following this, the  learning session  began. 
Students had to learn basic concepts of Learning 
Theories (Study 1 and 2) or Motivational 
Psychology (Study 3) within a  fi xed time interval 
(30, 35, or 45 min). The experimental groups 
received metacognitive support as sketched 
above. Students of all treatment groups were 

  Fig. 12.2    Screen capture of the hypermedia system. The 
learning content was arranged hierarchically, and partici-
pants had three possibilities to navigate throughout the 
program: ( a ) a hierarchical table of contents placed at the 

left part of the screen, ( b ) a guided tour with buttons for 
the next and the previous page, ( c ) associatively via hot-
words that were placed in the text       
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completely free in navigating the hypermedia 
program during their learning sessions, which 
were videotaped. In Study 2 and 3 they had to 
read and think aloud during the whole learning 
sessions. 

 Immediately after the learning session, learn-
ing outcomes were measured by questionnaires. 
 Free recall  was measured by counting the basic 
terms and concepts students wrote down on a 
blank paper sheet.  Knowledge  attained was mea-
sured by a multiple-choice test including 19 or 22 
items, each with 1 correct and 3 false alternatives. 
 Transfer  was measured by asking students to 
apply the basic concepts and principles just 
learned to solve prototypical problems in educa-
tional settings. Answers of 8 items were rated 
based on a self-developed rating scheme (inter-
rater agreement—Kappa = 0.74). The experi-
ments were conducted in individual learning 
sessions, which took about 1.5–2 h.   

   Comparisons of Different Types 
of Prompts 

   Metacognitive Activities During Learning 

 To test whether metacognitive support increased 
metacognitive behaviour during learning, for 
Study 1 the LIST metacognition scale was 
analysed, which was used retrospectively (see 
Table  12.2 ). For Study 2 and 3 the video-protocols 
were analysed to determine the quality with 
which the students actually performed different 
activities (listed in Table  12.2 ). Here  analysis  
subsumes orientation, planning, and goal setting 
activities, which mainly take place at the begin-
ning of learning.  Searching and judgement  
includes strategic searching behaviour and judg-
ing information’s relevance in respect to the 
learning goals,  evaluation  refers to activities that 
are conducted in order to check whether the 
learning goals are reached, and  regulation  refers 
to monitoring and controlling activities that took 
place during learning. Zero points were given 
when the activity was not performed at all during 
the learning session, and 2 points were given 
when it was performed in optimal quality. For 
instance, with regard to the category “analysis: 

goal setting activities”, a  student would receive 2 
points if she re fl ected on learning goals, broke 
them down into adequate subgoals, and wrote 
them down. A score of 1 point was given when 
the activity was performed in a wrong way. For 
example, a student would be given a score of 1 if 
she/he re fl ected on the learning goals very 
super fi cially by just repeating the instruction, did 
not articulate subgoals, and did not write down 
any learning goals. Interrater agreement of two 
independent raters was Kappa = 0.83 (due to 
economical reasons, the Kappa statistic was 
obtained for a subset of 27 subjects).  

 As one can see in Table  12.2 , the experimental 
treatments differ only with respect to the online 
measures obtained in Study 2 and 3, but not for 
the metacognition scale used in Study 1. In Study 
2 and 3 students learning with metacognitive sup-
port performed the metacognitive activities 
signi fi cantly better. The biggest effect is obtained 
for analysis activities (i.e. orientation, goal 
speci fi cation, planning), i.e. students in the 
 experimental prompting groups showed more 
planning activities, whereas students of the con-
trol groups often failed to do so. All differences 
are signi fi cant ( t -tests for independent groups), 
except the activities search and judgement in 
Study 2 and regulation in Study 3. Thus, students 
of the experimental groups had higher scores on 
those measures that they were explicitly instructed 
to ful fi l. With respect to metacognitive training 
research, this result is far from trivial. Often stu-
dents in the experimental group fail to carry out 
the instructed metacognitive activities (see also 
the section about compliance below). Moreover, 
students in the (non-instructed) control groups 
could also show these metacognitive activities 
spontaneously (Bannert,  2005b  ) .  

   Learning Performance 

 Table  12.2  also presents the mean performance 
scores of recall, knowledge, and transfer tasks for 
each study. As hypothesised,  t -test for indepen-
dent groups revealed a signi fi cant effect for the 
transfer tasks in Study 1 and 3; however no effects 
were obtained for recall and knowledge test per-
formance in all studies. A similar result was 
found in the study of Lin and Lehman  (  1999  ) , 
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discussed above. They only found a signi fi cant 
effect for far-transfer, and not for near-transfer, 
tasks. Similarly, Stark and Krause  (  2009  )  obtained 
effects for complex but not for simple tasks. Lin 
and Lehman’s explanation is that solving far-
transfer tasks and complex tasks requires deeper 
understanding and therefore these kinds of tasks 
are affected the most by metacognitive activities. 
There was no signi fi cant transfer performance 
effect obtained in Study 2. This unexpected result 

will be considered in more detail with regard to 
compliance below.  

   Compliance and Learning Performance 

in the Experimental Prompting Groups 

 Since there is empirical evidence that students 
often do not use support tools offered in CBLEs as 
intended (e.g. Clarebout & Elen,  2006  )  we con-
ducted the following analyses. Video-protocols of 
three experimental groups were analysed with 

   Table 12.2    Main results of experiments   

  Study 1: Re fl ection prompts  

 EG ( n  = 24) 
 M ( SD ) 

 CG ( n  = 24) 
 M ( SD ) 

  t  
(38)

    d  

 Metacognitive activities obtained by questionnaire 

 Metacognition scale  25.83 (5.85)  25.36 (4.37)  0.306  0.09 

 Learning performance 

 Recall  12.14 (5.39)  11.54 (4.23)  −0.418  −0.13 

 Knowledge  13.96 (3.19)  14.17 (4.05)  0.196  0.06 

 Transfer  17.77 (3.84)  20.21 (4.73)   3.640 *   0.55  

  Study 2: Metacognitive prompts  

 EG ( n  = 20) 
 M ( SD ) 

 CG ( n  = 20) 
 M ( SD ) 

  t  
(38)

    d  

 Metacognitive activities obtained by process analysis 

 Analysis  1.55 (0.50)  0.79 (0.57)   4.445 ***   1.17  

 Search and Judgement  1.53 (0.70)  1.24 (0.83)  1.142  0.39 

 Evaluation  1.70 (0.57)  1.05 (0.97)   2.522 **   0.76  

 Regulation  1.40 (0.60)  0.72 (0.83)   2.917 **   0.87  

 Learning performance 

 Recall  15.45 (6.27)  13.90 (7.30)  0.720  0.20 

 Knowledge  15.65 (3.79)  15.55 (4.62)  0.075  0.00 

 Transfer  2,323 (5.45)  20.73 (6.17)  1.358  0.43 

  Study 3: Training and metacognitive prompts  

 EG ( n  = 20) 
 M ( SD ) 

 CG ( n  = 20) 
 M ( SD ) 

  t  
(38)

    d  

 Metacognitive activities obtained by process analysis 

 Analysis  1.43 (0.60)  1.02 (0.44)   2.498 **   0.73  

 Search and Judgement  1.80 (0.52)  1.35 (0.75)   2.210 *   0.66  

 Evaluation  1.65 (0.49)  1.25 (0.85)   1.823 *   0.56  

 Regulation  1.55 (0.69)  1.30 (0.73)  1.114  0.35 

 Learning performance 

 Recall  11.00 (2.85)  11.65 (3.03)  −0.699  0.02 

 Knowledge  13.00 (2.64)  13.60 (2.50)  −0,739  0.02 

 Transfer  23.25 (5.28)  20.05 (5.40)   1.894 *   0.58  

  EG = Learning with metacognitive support; CG = Learning without metacognitive support. 
Metacognitive activities Study 1 obtained by questionnaire. Metacognitive activities Study 2 and 
3 obtained by thinking aloud: max = 2, optimal performance; min = 0, no performance 
 * p  < 0.05, ** p  < 0.01, *** p  < 0.001, one-tailed  
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respect to how well the learners complied with the 
metacognitive support and how well they 
 performed the activity suggested by each prompt. 
According to this analysis two groups were 
distinguished within each experimental group, 
one containing the students who optimally 
complied with the metacognitive support and one 
containing the other students who did not comply 
or complied but not in the intended way. For each 
group transfer performance was calculated sepa-
rately. As one can see in Table  12.3 , the groups 
differed signi fi cantly with respect to their compli-
ance. Thus, offering metacognitive support is not 
suf fi cient; speci fi c care has to be taken that these 
instructional prompts are performed in the intended 
manner in order to increase learning outcomes.  

 But what are the reasons that only half of the 
experimental groups, or even less than half, com-
plied fully with the prompts? Surely this is due to 
the rather short introduction, and an extension of 
the training time would have improved compliance 
with metacognitive support, as the general prin-
ciples for effective metacognitive instruction 
mentioned above suggest. Looking for speci fi c 
learner characteristics we found that in all studies 
there were no signi fi cant differences in intelli-
gence and motivation between the compliant and 
the non-compliant students. In Study 2 prior 
knowledge corresponds with compliance, that is, 
students who complied optimally had signi fi cantly 
higher prior knowledge. However, this prior 
knowledge effect did not occur in Study 1, and 
much more interestingly, because of the similar 
metacognitive prompting, also did not occur in 
Study 3. Thus, it seems that the metacognitive 
support realised in Study 2 requires a certain 

amount of prior knowledge in order to achieve 
better learning outcomes. We assume that these 
metacognitive prompts cause additional cogni-
tive load, which could be partly compensated by 
suf fi cient prior knowledge, i.e. a  fl exible knowl-
edge base (see Valcke,  2002 , for a discussion of 
metacognitive load and prior knowledge). The 
more direct support in Study 3 (training + meta-
cognitive prompting), however, seems to com-
pensate for low prior knowledge. We assume that 
the short training based on Cognitive 
Apprenticeship principles dealing with the meta-
cognitive prompts in advance reduced students’ 
speci fi c cognitive load during learning.    

   Discussion and Implications 
for Further Research 

 Results of our three experimental prompting 
studies are in accordance with the assumptions 
derived from the recent research on metacogni-
tion sketched above. Participants of the experi-
mental groups supported by metacognitive 
prompts performed more metacognitive activities 
during learning. They also showed better transfer 
performance, especially if they complied with the 
offered support in the intended way. 

 But why are the effects found in transfer per-
formance only? We suggest that the processes 
in metacognition stimulated deep elaboration 
(cf. Craik & Lockhart,  1972  ) , and that deep 
elaboration is a prerequisite for solving transfer 
problems. Firstly, let us de fi ne transfer as the 
solution of a problem in a new situation that 
was not part of the learning material (cf. 

   Table 12.3    Learning transfer performance by compliance (only experimental groups)   

 Complied 
 M ( SD ) 

 Not complied 
 M ( SD ) 

  t  
(18)

    d  

 Study 1:  ( n  = 12)  ( n  = 12) 

 Re fl ection prompts  23.08 (4.44)  17.33 (2.99)   3.719    ***   1.92  

 Study 2:  ( n  = 8)  ( n  = 12) 

 Metacognitive prompts  26.81 (5.58)  20.83 (3.99)   2.803 *   1.10  

 Study 3:  ( n  = 9)  ( n  = 11) 

 Training and metacognitive prompts  27.00 (3.24)  20.18 (4.64)   3.718 **   1.29  

  Complied = metacognitive support complied; not complied = metacognitive support not complied 
 * p  < 0.05, ** p  < 0.01, *** p  < 0.001, one-tailed  
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Detterman,  1993  ) . For example, one of our 
transfer tasks described a situation in which the 
behaviour of children is reinforced by their par-
ents. As there was no such situation in the learn-
ing material (rather, experiments with rats were 
mentioned), the subjects “behaviour of chil-
dren” and “parents” were new to the learners. 
According to the theory of structure mapping 
and analogies (Gentner,  1983,   1998  )  transfer 
requires that relations between elements have 
to be applied to new elements. In our example 
the relation between the behaviour of rats and 
the food, that is, the principle of reinforcement, 
has to be applied to the behaviour of children 
and the reinforcers given by the  parents. One 
prerequisite for transfer is a deep understanding 
of relations between elements mentioned in the 
learning material rather than encoding the ele-
ments in an unrelated manner or associating 
them loosely to each other. According to our 
data about the learning process in experiments 
2 and 3, analysis and evaluation of the learning 
content were stimulated by the prompts (see 
Table  12.2 ). Therefore the prompts stimulated 
the processing of the learning content in more 
depth, that is, more relations were encoded in 
long-term memory and transfer is more likely. 

   Design of Metacognitive Prompting 
Intervention 

 By means of a comprehensive video analysis it 
was shown that only half of the supported sample 
has dealt with the metacognitive support in an 
optimal manner. Consequently, it has to be inves-
tigated why students do not comply with the 
metacognitive support. Recent research is begin-
ning to address the question why support devices 
are often ignored or inadequately used by stu-
dents (e.g. Bannert, Hildebrand, & Mengelkamp, 
 2009 ; Clarebout & Elen,  2006  ) . 

 To prove the basic assumption of students’ 
production de fi cit as mentioned above (Veenman, 
van Hout-Wolters, & Af fl erbach,  2006 ; Winne, 
 1996  )  further investigation into whether the 
prompts really affect the assumed quantitative 
and also qualitative improvements in strategy 

use are necessary. In this context, researchers in 
this  fi eld need to incorporate more in-depth pro-
cess analysis procedures in their studies to deter-
mine how students are really dealing with the 
presented prompts (   Bannert,  2007b ; Greene & 
Azevedo,  2010 ; Veenman,  2007  ) . For future 
research, we suggest that descriptive studies 
based on multi-method assessment methods (e.g. 
log- fi le, eye-movement, thinking aloud, and 
error analysis) need to be conducted more often. 
By increasing the sample size of the treatment 
group more statistical power is available for post 
hoc analyses that compare students with optimal 
compliance with prompts—if they are present—
with students who fail. This comparison would 
provide richer insights than experimental studies 
in which nothing is done to assess the actual 
strategies that are used during the learning pro-
cesses. Experiments that focus on outcomes and 
fail to include process analysis seldom directly 
answer questions such as whether, why, and in 
what quality and quantity the manipulated 
prompts are being utilised by the students that 
are dealing with them. Missing effects in the 
learning outcome may also be explained by the 
students’ spontaneous use of strategies in the 
control group or by undesired or unanticipated 
effects of the prompting conditions. In brief, we 
have to further investigate if and how prompts 
are actually intervening in a student’s learning 
process (Bannert,  2009  ) . 

 In this study some students reported after 
learning that they felt restricted in their own way 
of learning when they had to consider the 
demanded activities asked by metacognitive sup-
port. Most probably these interventions require 
additional cognitive capacities, which may also 
be true for tool use in general (e.g.    Calvi & deBra, 
 1997 ). We assume that metacognitive prompts 
cause additional cognitive load, which could be 
partly compensated by suf fi cient prior knowl-
edge, i.e. a  fl exible knowledge base (Sweller, van 
Merrienboer, & Paas,  1998 ; Valcke,  2002  ) . 

 Lack of appropriate responses to prompts can 
possibly be explained by students’ individual 
characteristics. Perhaps students’ prior knowl-
edge was too low and, hence, they may be over-
loaded by additional prompts. Or maybe students’ 
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prior knowledge was quite high, so they did not 
require any strategy support at all. Also students’ 
metacognitive knowledge and skills could have 
affected the adequate use of prompts. The moti-
vational aspects of learning when paired with 
meta/cognitive variables is another important 
consideration on the impact of prompts. In this 
context, care needs to be taken to ascertain 
whether students are really convinced that com-
plying with the prompts will improve their learn-
ing; otherwise they will not use them (Bannert, 
 2007b ; Veenman et al.,  2006  ) . Moreover, although 
there is usually suf fi cient training with regard to 
strategy use in advance, feedback on adequate 
strategy use is rarely provided for students, which 
may decrease the quantity of prompt usage and 
may, moreover, impede the quality of their 
prompted strategy use. This assumption is partly 
supplied by the work of Roll, Aleven, McLaren, 
and Koedinger  (  2007  )  who provided immediate 
feedback on students’ help-seeking behaviour 
with an intelligent tutoring system. There was a 
lasting improvement on students’ help-seeking 
behaviour and transfer of the behaviour across 
different learning domains (Roll, Aleven, 
McLaren, & Koedinger,  2011  ) , though no 
improvement in domain learning. 

 This research focused on instructional mea-
sures with very short intervention. In further 
studies we will investigate whether an extension 
of the training time will improve compliance 
with the metacognitive support (e.g. Bannert 
et al.,  2009  ) . In addition, other kinds of metacog-
nitive support, such as adaptive metacognitive 
prompting by means of pedagogical agents (e.g. 
Azevedo & Witherspoon,  2009  ) , will be devel-
oped and evaluated experimentally. 

 Moreover, one has to point out that the structure 
of the hypermedia system was well designed. It 
included a guided tour, a hierarchical navigation 
menu, an advanced organiser, a summary, and a 
glossary. Additionally, it was the so-called closed 
environment, that is, it did not contain links to exter-
nal nodes. Furthermore, the learning tasks already 
included speci fi c learning goals so that generally 
the learning scenarios were not very complex. We 
assume that greater effects will be obtained for more 
complex, open-ended environments.  

   Analytical Techniques and 
Methodological Approaches 

 Metacognitive support such as prompts during 
hypermedia learning can lead to better learning 
outcomes (in particular, transfer), but there is a 
signi fi cant amount of non-compliance, suggest-
ing that this kind of support might be even more 
successful if care is taken that these instructional 
prompts are performed in the intended manner. 
Maybe this is one major reason why metacogni-
tive instruction often has no positive effects on 
learning outcome (e.g. Graesser, Wiley, Goldman, 
O’Reilly, Jeon, & McDaniel,  2007 ; Manlove, 
Lazonder, & De Jong,  2007  ) . In future research 
one has to control whether students who were 
instructed and trained to apply metacognitive 
strategies will really apply them in the transfer 
session. 

 Finally, it has to be pointed out that without 
process analysis (by using thinking-aloud meth-
ods) a different picture would have emerged. In 
Study 2 and 3 we asked students to judge their 
strategic learning activities retrospectively by 
means of a questionnaire. In accordance with 
Veenman’s review (Veenman,  2005  ) , there was 
no signi fi cant correlation between the scales of 
questionnaires and the activities obtained by the 
video analysis. Moreover, no signi fi cant corre-
lation was obtained between the questionnaire 
and learning performance. Even though it is 
rather time consuming, it is necessary to include 
process analysis in further research on metacog-
nitive support and self-regulated learning 
(Bannert & Mengelkamp,  2007 ; Hofer,  2004 ; 
Veenman,  2007  ) . 

 Recent prompting research is progressing rap-
idly. Overall, we argue that future research has to 
conduct more in-depth process analysis that 
incorporates multi-method assessments and, 
besides cognitive and metacognitive aspects, to 
account for individual learner characteristics 
such as motivation and volition. Prompting 
research, at present, needs more insight into how 
students actually deal with learning prompts in 
order to design more individual support and with 
that to offer more effective types of prompts to 
the learners.       
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  Abstract 

 In this chapter the relationship between metacognition and the use of tools 
is addressed. Being able to determine when the use of a tool would be 
bene fi cial for one’s learning is seen as a metacognitive skill. Different 
assumptions are made with respect to this relationship between metacog-
nitive knowledge (including instructional conceptions) and tool usage. 
A series of studies are addressed in which different instruments were used 
to measure metacognitive knowledge and metacognitive skills to provide 
empirical underpinning for these assumptions.    

  13      Metacognition and the Use of Tools       

     Geraldine   Clarebout      ,    Jan   Elen   , 
   Norma   A.   Juarez   Collazo   ,    Griet   Lust   , and    Lai   Jiang      

 Metacognition is a learner characteristic that 
enables learners to regulate and make optimal 
choices with respect to their learning process 
(Dörner & Wearing,  1995 ; Frensh & Funke, 
 1995  ) . Flavell  (  1976  )  de fi nes it as:

  metacognition refers to one’s knowledge concerning 
one’s own cognitive processes and products or any-
thing related to them (….). It refers to the active 

monitoring and the consequent regulation and 
orchestration of these processes in relation to cogni-
tive objects or data on which they bear, usually in the 
service of some concrete goal or objective. (p. 232)   

 Flavell  (  1979  )  makes a distinction between 
metacognitive knowledge, metacognitive expe-
riences, and metacognitive strategies (i.e., reg-
ulatory skills). Metacognitive knowledge refers 
to knowledge of cognition. It includes knowl-
edge of what and how factors act and interact 
to affect learning processes, knowledge of 
how to use available information to achieve a 
goal, knowledge of what strategies to use for 
particular purposes, and knowledge of when 
and where particular cognitive strategies 
should be used. The aforementioned knowl-
edge can be declarative, procedural, or condi-
tional knowledge (Schraw,  2001 ; Schraw & 
Dennison,  1994 ; Paris, Lipson, & Wixson, 
 1983  ) . Metacognitive experiences have to do 
with the conscious awareness of where one 
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stands in a certain cognitive process and what 
progress one is making to achieving learning 
goals. These experiences may induce metacog-
nitive strategies that control one’s cognitive 
processes. Metacognitive strategies are “execu-
tive” activities—such as planning, monitoring, 
and evaluation—that one uses to control and 
regulate one’s cognitive processes (Gourgey, 
 2001 ; Livingston,  2003  ) . 

 This chapter focuses on the relationship 
between metacognitive knowledge and strategies 
and the use of support devices in computer-based 
learning environments (CBLEs). Learning envi-
ronments, and more speci fi cally CLBEs, consist 
of content, tasks, and different supportive elements 
(Jonassen,  1999  ) . The supportive elements refer to 
the devices that foster learning; they support learn-
ers to deal with the content and the tasks of the 
learning environment. These devices can be 
embedded, meaning that the use is mandatory and 
out of control of the user, or non-embedded which 
leaves the use under the learners’ control. These 
non-embedded support devices are referred to as 
tools (Clarebout & Elen,  2006  )  and are the focus 
of this chapter. Depending on the kind of support 
offered, a distinction is made between informa-
tion, cognitive, and scaffold tools. Information 
tools provide the content in a different way, for 
instance, in a structured or elaborated way. 
Cognitive tools allow learners to interact with the 
content and scaffold tools guide the learning 
efforts. Being able to strategically use tools to 
learn more ef fi ciently can be considered as a 
metacognitive strategy (e.g., Greene & Azevedo, 
 2007 ; Horz, Winters, & Fries,  2009 ; Winne & 
Jamieson-Noel,  2002  ) . 

   Learner Control, Tools, 
and Metacognition 

 In numerous CBLEs, learners have control over 
the use of tools. When giving learners control 
over supportive elements, support can be said to 
be adapted to their needs. Learners receive as 
much support as they need. This means that pos-
sible detrimental effects for learning of either too 
much or too less support can be avoided. However, 

giving learners control over the supportive 
elements assumes that they are good judges of 
their own learning process and they possess the 
necessary metacognitive knowledge and skills to 
determine when and how to use the support. This 
seems not so evident: Learners often lack the 
knowledge and skills to regulate their own learn-
ing (Butler & Winne,  1995 ; Clark,  1990 ; Greene, 
& Azevedo,  2007 ; Horz et al.,  2009 ; Winne & 
Jamieson-Noel,  2002  ) . Indeed, recent reviews 
and studies indicate that learners often do not 
use the support offered to them (Aleven, Stahl, 
Schworm, Fischer, & Wallace,  2003 ; Azevedo, 
 2005 ; Clarebout & Elen,  2006 ; Narciss, Proske, & 
Koerndle,  2007 ; Winne,  2006  ) . Additionally, a 
number of studies report overuse in an attempt 
of learners to “game the system” (Aleven & 
Koedinger,  2000 ;    Bartholomé, Stahl, Pieschl, & 
Bromme,  2006 ; Wood & Wood,  1999  ) . Different 
studies hypothesized that students may not seek 
adequate support because they lack the necessary 
metacognitive knowledge and skills. In these 
studies metacognition has often been the object of 
support (Jonassen, Beissner, & Yacci,  1993 ; 
Narciss et al.,  2007 ; Winters, Greene, & Costich, 
 2008  ) , but the relationship between metacogni-
tion and the use of tools has seldom been the 
focus of research. 

 In the studies presented in this chapter, speci fi c 
attention was given to one aspect of metacogni-
tive knowledge, namely, learners’ instructional 
conceptions about the different support devices 
(Elen & Lowyck,  1999  ) . Learners’ instructional 
conceptions are a kind of metacognitive knowl-
edge referring to “all ideas and theories that an 
individual learner holds about (the components 
of) the learning environment” (Lowyck, Elen, & 
Clarebout,  2005  ) . Winne  (  2006  )  states that the 
functionality students ascribe to a tool will deter-
mine whether and how they use this tool. 

 The assumption is that in order to be able to 
make adequate decisions, learners need to know 
the functionality of tools in general and more 
speci fi cally how or when the use of these tools 
may be helpful for their own learning. This also 
relates to one of the conditions put forwards by 
Perkins  (  1985  )  with respect to grasping learning 
opportunities, in this case, using support devices. 
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Perkins indicates that  fi rst the opportunity has to 
be there and second that learners need to know 
the functionality of the tools at hand. In line 
with the above reasoning, some studies also 
suggest that interventions promoting metacog-
nitive strategies and skills need to include 
aspects that increase metacognitive knowledge 
(e.g., Schraw & Dennison,  1994 ; Schwonke, 
Berthold, & Renkl,  2009  ) . 

 Based on this theoretical framework, the fol-
lowing assumptions were made:

     – Learners’ instructional conceptions in fl uence 

tool use : The better learners know the function-
ality of a tool and how it can contribute to their 
learning, the more optimal they will use it 
(including not using it when not needed). The 
more knowledgeable learners are about the 
(functionality of the) tools, the more knowl-
edgeable decisions they can make. The more 
students perceive a tool as functional, the more 
they will be inclined to adequately use it.  
    – Learners’ metacognitive skills in fl uence tool 

usage : The extent to which learners are able to 
detect their own learning problems and are 
capable of regulating their own learning will 
determine the extent to which they will be 
inclined to use support devices to solve these 
problems (Mercier & Frederiksen,  2007  ) . 
The more they are capable to do this, the more 
adequate they will use tools. Given that either 
too much or too less support can be detrimental 
for learning (Clark,  1990  ) , a third assumption is 
that for the learners with limited metacognitive 
skills, the mandatory use of supportive elements, 
and hence inducing the learners to use the 
supportive elements, will be bene fi cial for their 
learning. While for learners who possess the 
necessary metacognitive skills, learner control 
over the supportive elements will be more 
bene fi cial than supplanting this decision for 
them by obliging them to use these elements.    
 These assumptions were tested in different 

studies that will be discussed in the next section 
of this chapter. First the learning environments 
used in these studies will be described includ-
ing the participants they aimed at. Next, the dif-
ferent instruments to measure metacognition 

will be discussed and the results of their use in 
different studies on the use of tools. Finally, the 
assumptions are discussed in relation to the 
results of the studies.  

   Overview of Empirical Evidence on 
Metacognition and the Use of Tools 

   Context 

 Different studies were carried out in CBLE’s. 
Three of the four studies were a text-based CBLE. 
Students were asked to read a text on a computer 
(on obesities/airplanes) and got access to differ-
ent tools. In the  fi rst obesities study (Clarebout & 
Elen,  2009  ) , students got access to cognitive and 
scaffold tools, namely, a dictionary, instructional 
goals, and example questions, and help with 
interpreting graphics and text. In one version of 
the environment, additional explanation was 
offered on the functionality of the support devices 
before seeing the actual text (e.g.,  By clicking on 

this tool you receive an explanation of the goals 

that you should achieve by reading this text. By 

reading these goals, you will be able to gain more 

insight into what is expected from you ). This 
intervention aimed at in fl uencing learners’ 
instructional conceptions and hence to make 
them more knowledgeable about the functional-
ity of the support devices. In the second obesities 
study (   Clarebout, Horz, Elen, & Schnotz,  2010  ) , 
a German translation was used of the text in the 
 fi rst obesities study and one cognitive tool. This 
tool gave additional explanation on a graph, 
where after, students were asked to give an inter-
pretation of this graph in their own words. Two 
versions were made of the environment, one in 
which the use of supportive elements was manda-
tory and hence where the program took over 
some metacognitive activity. In the other version, 
students had themselves control of the use of the 
supportive elements. 

 A third study with a text-based CBLE was a 
text on airplanes. Two versions were created, 
both with a cognitive tool: one with an advanced 
organizer and one containing three questions. 
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 A  fi nal learning environment that was used 
was an ill-structured CBLE (Clarebout & Elen, 
 2004  )  where students were confronted with an 
ecological problem. Participants were asked to 
come up with the most environmental-friendly 
drinking cup for a music festival by considering 
ecological,  fi nancial, and safety aspects. 
Different tools were available to the learners: 
information tools (information list containing 
of fi cial documents, videos with opinions of 
stakeholders), cognitive tools (calculator), and 
scaffold tools (problem-solving script, reporting 
script). Additionally, two conditions received 
advice on the use of these tools. In one condi-
tion this advice was given at  fi xed moments; in 
the other condition, the advice was given based 
on the learner’s process. 

 All the CBLEs discussed here were directed 
towards higher education students and aimed at 
gaining insight into learners’ tool use and factors 
in fl uencing this tool use. 

 In order to grasp learner’s support device 
usage, log  fi les were kept and analyzed. These 
log  fi les allowed to gain insight into the number 
of times learners consulted a tool and the dura-
tion of their consultation. In the problem-solv-
ing environment, it was also possible to gain 
insight into when students consult a tool in their 
problem-solving process. Next to quantitative 
data, the log  fi les also registered some more 
qualitative data. For instance, when students 
consulted additional explanations on the graph 
and were asked to give their own interpretation, 
these interpretations were logged and gave 
insight into the depth with which learners used 
the tool and hence formed a measurement of 
qualitative tool use.  

   Measurement of Metacognition 

 Throughout the different studies, different instru-
ments to measure metacognition were used, and 
they will be addressed in the following, including 
some empirical results of their use: 

  ICON questionnaire.  In the problem-solving 
study, students’ metacognitive knowledge, more 

speci fi cally their instructional conceptions, were 
measured using the ICON questionnaire (   Sarfo, 
Elen, Clarebout, & Louw,  2010  ) . This question-
naire confronts learners with eight statements for 
each tool. Learners have to indicate the extent to 
which they agree (from totally disagree to totally 
agree) that a speci fi c tool can be functional for 
their problem-solving process [e.g.,  According 

to me, a problem solving script helps students 

to better understand the content  (Cronbach’s 
alpha = 0.91)]. Strangely enough, the higher 
students scored on the ICON questionnaire, 
meaning the more functional they found a tool 
prior to being confronted with it, the less they 
used the tool. In the second obesities study, the 
ICON questionnaire was also used (Cronbach’s 
alpha = 0.93). In this study, no signi fi cant rela-
tionship was found between learners’ instruc-
tional conceptions and their tool usage. 
Interestingly though, a signi fi cant correlation was 
found between learners’ instructional concep-
tions and their internal regulation (see scale 
below). The more learners were internally 
 regulating their learning process, the more they 
conceived the tools as being functional for their 
learning and vice versa. 

  Perceived usefulness.  Based on the question-
naire from Davis and colleagues (   Davis,  1989 ; 
Davis, Bagozzi, & Warshaw,  1989  ) , perceived 
usefulness was measured as an indicator of 
metacognitive knowledge. In contrast to instruc-
tional conceptions, learners were already con-
fronted with the learning environment and its 
tools. Perceived usefulness refers to the extent 
to which students believe that using a particular 
tool will enable ef fi cient learning processes 
and/or increase performance of present learn-
ing tasks. Six statements were used to measure 
this concept (e.g.,  studying an available 

advance organizer/answering questions will 

enable me to accomplish this learning task 

more quickly;  Cronbach’s alpha = 0.92). This 
questionnaire was used in the airplane study 
and revealed a signi fi cant effect of perceived 
usefulness on tool usage. Students who perceive 
the tools as less useful spent less time on the 
tools. Students who perceived the usefulness of 
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a tool at medium level spent the most time on 
the tools. 

  Regulation scales of   Vermunt  (  1992  )  .  To mea-
sure learners’ metacognitive skills, part of the 
learning style inventory of Vermunt  (  1992  )  was 
used, namely, the three regulation scales. These 
scales are internal regulation (e.g.,  After each 

paragraph I try to formulate the learning content 

in my own words to test my learning process ), 
external regulation (e.g.,  I study according to the 

instructions given in the study material or pro-

vided by the  teacher), and no regulation (e.g.,  
I notice that it is dif fi cult for me to determine 

whether I master the subject matter suf fi ciently ). 
This questionnaire has been used in a variety of 
settings and found to be a valid and reliable 
instrument (Boyle, Duffy, & Duleavy,  2003 ; 
Veenman, Prins, & Verheij,  2003 ; Schouwenburg, 
 1996  ) . In the problem-solving study, reliabilities 
for the internal regulation scale were good 
(Cronbach’s alpha = 0.80) but not for the external 
regulation (Cronbach’s alpha = 0.62) or for the no 
regulation scale (Cronbach’s alpha = 0.68). This 
was the reason why in the  fi rst obesities study, 
only the internal regulation scale was used 
 (resulting in that study in a Cronbach’s alpha = 0.77). 
The studies could not retrieve a signi fi cant rela-
tionship between internal regulation and the fre-
quency of tool usage; but it was found that the less 
learners are inclined to engage in regulation activi-
ties, the more time they spent on tools. 

  Help - seeking behavior measurement.  Learners’ 
help-seeking behavior was measured as an indi-
cator of metacognitive skills. Help seeking 
includes the ability to identify one’s own prob-
lem and act upon it (Schunk & Zimmerman, 
 1994  ) . The instrument of Pajares, Cheong, and 
Oberman  (  2004  )  was used. Nine statements 
measured students’ help avoidance behavior 
(e.g.,  I would write down any answer rather 

than ask for help in class ; Cronbach’s 
alpha = 0.90) and six items measuring students’ 
perceived bene fi ts of help seeking (e.g.,  I think 

asking questions in this class helps me learn;  
Cronbach’s alpha = 0.86). Results reveal that the 
more learners avoid help-seeking behavior, the 

more time they spent on tools. This can be 
explained by the different nature of help seeking 
referred to in the instrument of Pajares et al. 
 (  2004  ) , and the support learners could request in 
a CBLE. In the instrument, the help-seeking 
behaviors are all directed towards humans. One 
could argue that the less inclined learners are to 
request help from a teacher, the more they will 
use the tools in a CBLE. 

  LIST questionnaire . One of the studies took place 
in Germany (the second obesities study), which 
led to the use of a German instrument to measure 
metacognition to avoid translation issues. The 
LIST questionnaire (Wild & Schiefele,  1994 ; 
Wild,  2000  )  consists of 48 items that relate to 
studying learning materials individually (e.g., 
 I make a list of subject speci fi c expressions and 

dif fi cult words; the materials I just read are the 

starting point for my own thoughts. ). Items that 
were not included related to discussing study 
materials with others and referring to different 
contexts (e.g.,  I order to study, I remain in the 

same place ) .  These statements were not applica-
ble to the task at hand. The scales included in 
the instruments that were administered were 
 organization, elaboration, critical thinking, mem-
orizing, metacognitive strategies, and effort. 
These different subscales all showed a good reli-
ability (Cronbach’s alphas between 0.73 and 
0.84). No relationship was found between meta-
cognitive strategies and the frequency or propor-
tional times spent on tools. However, an 
interaction effect was found between metacogni-
tion and condition on the quality of tool usage. 
The high metacognitive skilled learners used the 
tools in signi fi cantly less depth in the condition 
were usage of supportive elements was manda-
tory as compared to the high metacognitive 
skilled that had learner control. This difference 
was not found for the low metacognitive skilled.  

   Underpinning of the Assumptions 

 In this part we start with looking at the assumptions 
that were made and how the different studies can 
provide empirical evidence for these assumptions.  
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 In both the problem-solving study and the 
 fi rst obesities study, learners’ instructional con-
ceptions were measured. The results are noncon-
clusive. While in the problem-solving study, the 
more students conceived of tools as being func-
tional, the less they actually used them; in the 
 fi rst obesities study, no relation was found in 
terms of tool usage. A possible explanation for 
these results may be that in the obesities study, 
the statements did not refer to the speci fi c respon-
dent of the items but to “students” or “learners” 
in general. Participants may have indicated that 
indeed tools may be helpful for some learners, 
but not necessary to themselves. Every item in 
the questionnaire started with a general explana-
tion on the tool. But it may also be that this 
explanation was not suf fi cient for them to imag-
ine the actual tool. Given that in the problem-
solving study, the negative effect of instructional 
conceptions disappeared in the conditions that 
received  fi xed advice. The advice provided may 
have con fl icted with students’ own conceptions 
about why they would think the tool would be 
functional for their own problem-solving pro-
cess. However, in the  fi rst obesities study, this 
effect was not found, while in one condition, an 
explanation was given on the functionality of the 
support devices. It may be that learners need to 
experience a support device functionality before 
they can actually express instructional concep-
tions. In other words, learners may not be able to 
think about the functionality of a tool before they 
have actually encountered it. Another argument 
could be that these instructional conceptions 
should be measured on a level that connects 
more to an individual’s learning rather than 
learning in general. This was done in the airplane 
study. The results of this study revealed that per-
ceived usefulness is related to time spent on 
tools. However, the relationship is nonlinear. 

A quadratic trend indicates that students with a 
medium score on perceived usefulness spent 
most time on tools. Perceived usefulness was 
also found to motivate students to optimally use 
questions. The more students thought questions 
were useful, the more knowledge students called 
upon (i.e., activation) and the deeper their under-
standing (i.e., students were able to give more 
correct information in their answers). 
 

 Assumption 2 

 Learners’ metacognitive skills in fl uence sup-
port usage: the extent to which learners are 
capable of regulating their own learning and 
are able to detect their own learning prob-
lems will determine the extent to which they 
will be inclined to use tools to solve these 
problems (Mercier & Frederiksen,  2007  ) . 

 In the problem-solving study, metacognitive 
skills were part of a model explaining the variance 
in frequency of tool use for the  fi xed advice group. 
Although this variable did not yield a signi fi cant 
result, removing it from the model reduced the  fi t of 
the model signi fi cantly. This effect was not found 
for the time spent on tools. It almost seems that stu-
dents’ metacognitive skills allowed them to com-
pensate for the  fi xed advice provided in the learning 
environment. In the  fi rst obesities study, no effects 
were found of metacognitive skills on tool usage. 
The results of the second obesities study are more in 
line with the assumptions;  learners that possess 
suf fi cient metacognitive skills do not use the tools 
more but use them more in depth if they are given 
the choice. If the decision when to use a supportive 
element is taken for them, support provided through 
these elements is processed in a more super fi cial 
way, compared to when learners can decide them-
selves to use the supportive elements.  

 Assumption 3 

 Given that either too much or too less sup-
port can be detrimental for learning, a third 
assumption is that the embeddedness of the 
supportive elements and the amount of 
metacognitive skills will interact. 

 Assumption 1 

 Learners’ instructional conceptions in fl uence 
tool usage: the better learners know the 
functionality of a tool and how it can con-
tribute to their learning, the more optimal 
they will use it (including not using it when 
not needed). 
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 This assumption was mainly tested in the sec-
ond obesities study, and as already discussed in 
relation to assumption 2, we could see that 
embeddedness of supportive elements does mat-
ter, especially with respect to the quality of usage. 
Depending on the presence and kind of advice on 
tool usage, metacognitive skills seem to play a 
different role. This was shown in the problem-
solving and the  fi rst obesities studies. It should be 
noted though that in these studies, quality of tool 
usage was not measured. 

 This third assumption leads to the question 
whether supportive elements should be mandatory 
or whether learners should have control. The latter 
includes the risk that the supportive elements may 
be less used but to a larger quality if students pos-
sess the necessary metacognitive skills.   

   Conclusion 

 From a theoretical perspective, it is self-evident 
that metacognition plays a role in the use of tools. 
The studies presented here provide some evidence 
but do also suggest that especially the quality of 
tool usage seems to be in fl uenced by metacogni-
tion, while the quantity expressed by frequency of 
tool consultation and time spent on the support 
device have no clear relationship with metacogni-
tion. In order to gain more insight into the relation-
ship between metacognition and the quality of tool 
usage, a clear conceptualization is needed. In these 
studies, Flavell’s de fi nition was used as a starting 
point. However, when looking at the instruments, 
it can be questioned whether we actually measured 
learners’ metacognitive knowledge and skills. 
Metacognitive knowledge was operationalized as 
students’ instructional conceptions or perceived 
usefulness of the support devices. An extension 
towards epistemological beliefs and self-ef fi cacy 
(Bandura,  1997 ; Moo & Azevedo,  2008  )  may lead 
to a more complete pro fi le of a learner’s metacog-
nitive knowledge. Additionally, metacognitive 
skills were measured with self-report question-
naire. It is most likely that learners’ answers to 
these questionnaires provide just an intention of 
what they will do or measure students’ metacogni-

tive knowledge rather than their metacognitive 
strategies (Winne,  2006  ) . In order to test the rela-
tionship between metacognitive skills and support 
usage, more behavioral data should be collected 
and examined. For instance, when the learning 
task is studying a hypertext for which different 
support devices are available, one could do a pre-
test in which learners are asked to read a text pro-
viding them the normal accessible tools such as 
highlighting, making notes, taking a summary, and 
access to a number of links. Using these tools can 
be seen as an indicator of metacognitive strategies 
for reading a text (Palincsar & Brown,  1984,   1987  ) . 
In a next step, the relationship between learners’ 
score on this pretest and their actual tool usage 
behavior for the learning task could be examined.  

 In this chapter we focused on the aspect of 
metacognition, but it may be that not only 
knowledge about the self, the learning environ-
ment, and the relationship between self and 
learning environments should be considered, 
but also more motivational “self-related” beliefs 
should be included. This would refer to Perkins’ 
third condition, namely, that a learner should be 
motivated to use a learning opportunity. 
Including motivational variables and consider-
ing the interaction with metacognition could 
probably explain more accurately support usage 
behavior. Consequently, the term self-regula-
tion may be a more adequate theoretical con-
struct that encompasses more than only 
metacognitive knowledge and skills to study 
tool usage (e.g.,    Pintrich & De Groot,  1990  ) .      
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  Abstract 

 The purpose of this chapter is to review research that examined whether 
tools and features of course or learning management systems, referred to 
in this research as web-based pedagogical tools (WBPT), can be used to 
support and promote speci fi c processes of student self-regulated learning 
such as goal setting, help seeking, and self-monitoring, in online and 
distributed learning contexts. Five categories of WBPT are described 
including administrative tools, content creation and delivery tools, collab-
orative and communication tools, learning tools, and assessment tools. 
In addition, research designs and data collection instruments of three 
studies are described. Research  fi ndings are summarized showing that 
WBPT can be used to support a number of self-regulatory processes and 
that college instructors and faculty can use WBPT to design effective 
learning tasks that promote student self-regulated learning. Educational 
implications, limitations, and future directions are also discussed.      

  14      Using Learning Management 
Systems as Metacognitive Tools to 
Support Self-Regulation in Higher 
Education Contexts       

        Nada   Dabbagh       and    Anastasia   Kitsantas         

   Research Context 

   Technology and Distributed Learning 

 The growth rate for online enrollments in higher 
education contexts continues to outpace overall 
enrollment with more than one in four higher 

education students taking at least one online 
course in an academic year (Allen & Seaman, 
 2010  ) . This is resulting in increased demand for 
online courses and in a long overdue realization 
by higher education institutions that online 
learning is critical and strategic for their contin-
ued growth and competitiveness. However, 
online learning entails much more than deliver-
ing a course or academic program online espe-
cially if the goal is to support meaningful and 
effective learning. Research suggests that 
advances in Internet and Web-based technolo-
gies have rede fi ned the boundaries and peda-
gogies of traditional distance learning and 
that online learning involves the deliberate 
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organization and coordination of distributed 
forms of interaction and learning activities 
(Dabbagh,  2004 ; Dede,  2002  ) . More speci fi cally, 
online learning has been reconceptualized as 
learning that is distributed over time and place 
using various technologies, engaging students 
in multiple forms of interaction such as learner-
learner, learner-group, learner-content, and 
learner-instructor (Dabbagh & Bannan-Ritland, 
 2005  ) . This model or framework is referred to 
in the literature as  distributed learning  and 
has been the focus of our research for the past 
6 years. 

 Distributed learning is an instructional 
model that allows instruction and learning to 
occur independent of time and place as a result 
of the convergence of technology and educa-
tion (Oblinger, Barone, & Hawkins,  2001  ) . 
For example, learning can occur at the same 
time while learners are in different places 
through videoconferencing (i.e., synchro-
nously) or at different times in different places 
through communication technologies such as 
email or discussion forums (i.e., asynchro-
nously). Hence, the relationship between time, 
space, and media is an important dynamic in 
distributed learning. Distributed learning can 
also be perceived as blended or hybrid learn-
ing which has been de fi ned as learning that 
combines instructional media (e.g., synchro-
nous and asynchronous technologies), instruc-
tional methods (e.g., collaborative and 
individual or didactic and open ended), and 
instructional delivery modes (e.g., face-to-face 
and online) (see Graham, Allen, & Ure,  2003 ; 
Graham,  2006 ; Bonk & Graham,  2006  ) . 

 Research suggests that overall, distributed 
learning increases students’ interest and motiva-
tion to learn because it provides more engaging 
and meaningful learning opportunities than tra-
ditional classroom contexts and is adaptive to 
rapidly changing educational needs (Dabbagh & 
Bannan-Ritland,  2005 ; Kitsantas & Dabbagh, 
 2010 ;    Lovett, Meyer, & Thille,  2008 ; Maslowski, 
Visscher, Collis, & Bloemen,  2000 ; Moore & 
Head,  2003  ) . For example, Lovett et al. ( 2008 ) 
showed that learning gains of students who par-
ticipated in an online stand-alone statistics course 

designed to provide a high-quality learning 
experience to those who do not have access to 
an institution or an instructor were at least as 
good as learning gains of students who partici-
pated in the traditional instructor-led statistics 
course. Additionally, students who participated 
in the hybrid (blended) statistics course (a com-
bination of online and face-to-face delivery) 
performed as well or better compared to students 
in the traditional course and experienced a much 
more effective and ef fi cient learning experience 
overall. However, research also indicates that 
online or distributed learning often requires a 
large degree of student self-discipline and that 
the level and type of guidance that should be pro-
vided to learners in such contexts is an open 
instructional design question that needs further 
research (Collis,  2003 ; Graham,  2006 ; Huang & 
Zhou,  2006  ) . Furthermore, research has shown 
that college instructors who use learning man-
agement systems (LMS) such as Blackboard or 
Moodle to facilitate online and distributed learn-
ing are primarily using LMS features for infor-
mation dissemination rather than in ways that 
engage students in meaningful and strategic or 
self-regulated learning (Apedoe,  2005 ; Dabbagh, 
 2005 ; Morgan,  2003 ; Oliver,  2001  ) . 

 Hence, the focus of our research has been to 
examine the pedagogical potential of LMS partic-
ularly as this relates to how LMS features can be 
used as metacognitive tools to support student self-
regulated learning in distributed and online learn-
ing contexts. Speci fi cally, we wanted to test 
whether the different features of LMS such as dis-
cussion forum, chat, calendar, and group tools sup-
ported speci fi c processes of self-regulated learning 
such as goal setting, help seeking, self-monitoring, 
and time management by examining whether stu-
dents’ ratings on these self-regulatory processes 
varied signi fi cantly with their use of different LMS 
features. We also wanted to examine whether 
speci fi c processes of self-regulated learning were 
evoked while students used LMS features to com-
plete complex learning tasks that involve collab-
orative activities, problem solving, and re fl ection. 
Finally, we wanted to  fi nd out whether experienced 
online instructors were deliberately using LMS 
features to support student self-regulation in 
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distributed and online courses. Finding answers 
to these questions would enhance students’ aca-
demic self-regulation and consequently academic 
achievement and would guide college instructors 
who use LMS in designing effective learning tasks 
that promote self-regulated learning. In order to 
proceed with this research, we developed a con-
ceptual de fi nition of LMS and a pedagogically ori-
ented classi fi cation of LMS features and tools 
which we describe next.  

   Learning Management Systems 

 LMS, also known as an “enterprise technology” 
(Carmean & Brown,  2005  )  or course management 
systems (CMS), are de fi ned in this research con-
text as “a collection of Web applications that inte-
grate technological and pedagogical features of 
the Internet and the Web into a single, template-
based authoring and presentation system that 
facilitates the design, development, delivery, and 
management of Web-based courses and online 
[distributed] learning environments” (Dabbagh & 
Bannan-Ritland,  2005 , p. 298). The goal of LMS 
is to provide a central location or platform for 
delivery of course content, related information or 
links, provision of models for assignments, com-
munication between instructors and students, and 
support for group processes such as the develop-
ment of shared projects in the form of Web-based 
products (Dabbagh & Kitsantas,  2004  ) . These 
instructional and learning activities are supported 
through the use of speci fi c LMS features or tools, 
which we referred to in our earlier research as 
Web-based pedagogical tools (WBPT). 

 WBPT can be used to facilitate distributed 
learning interactions in a variety of Web-based 
formats and pedagogical constructs and can help 
situate such interactions in authentic contexts sup-
porting meaningful and engaging learning (Berge, 
 1999 ; Dede,  1996 ; Hartley & Bendixen,  2001 ; 
Reil & Harasim,  1994  ) . Additionally, several 
researchers have argued that WBPT can scaffold 
the acquisition of metacognitive skills and can 
support students’ development of self-regulatory 
skills that are essential for success in online and 
distributed learning environments (Dabbagh, 

 2003 ; Kitsantas & Chow,  2007 ; Hollingworth & 
McLoughlin,  2001  ) . For example, Hollingworth 
and McLoughlin  (  2001  )  argued that while fresh-
men science students demonstrated many prob-
lem-solving skills, they lacked metacognitive 
skills such as checking, planning, and revising 
problem solutions. To address this need, they 
developed an online tutorial using the WebCT 
LMS to engage students in self-monitoring their 
own problem-solving approaches in science learn-
ing. Preliminary results indicated that the online 
tutorial which provided access to alternative prob-
lem solutions and the ability for students to com-
ment on each others’ solutions facilitated the 
planning and analysis of problems, supported stu-
dent re fl ection on many aspects of problem solv-
ing, and promoted motivation and self-ef fi cacy 
beliefs (Hollingworth & McLoughlin,  2005  ) . 
Additionally, Kitsantas and Chow  (  2007  )  found 
that students enrolled in online and hybrid courses 
reported higher levels of help-seeking behavior 
via the use of synchronous and asynchronous 
technologies and felt less threatened to seek help 
than those in traditional courses. Research also 
suggests that WBPT can be used to customize 
learning content in order to meet individual learner 
needs, abilities, and goals and to integrate learn-
ing and motivational strategies to help students 
become more self-directed learners (Hartley & 
Bendixen,  2001 ; McCombs,  2002  ) . Armed with 
these preliminary research  fi ndings, we initially 
classi fi ed WBPT into four categories: Web-based 
hypermedia tools, Web-based multimedia tools, 
content creation and delivery tools, and collabora-
tive and communication tools (Dabbagh & 
Kitsantas,  2004  ) . However, as LMS features 
evolved, this classi fi cation also evolved to include 
administrative tools (Kitsantas & Dabbagh,  2004  ) , 
assessment tools (Dabbagh & Kitsantas,  2005  ) , 
and learning tools (Dabbagh & Kitsantas,  2009 ; 
Kitsantas & Dabbagh,  2010  ) , resulting in  fi ve cat-
egories of WBPT described next. 

   Collaborative and Communication Tools 

 This category of WBPT included asynchronous 
and synchronous communication tools and group 
tools. Asynchronous and synchronous communi-
cation tools enable one-to-one, one-to-many, and 
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many-to-many learning interactions through a 
different time-different place mode, whereas syn-
chronous communication tools enable communi-
cation in real time (same time-different place). 
Examples of LMS-embedded asynchronous col-
laborative and communication tools included 
email and discussion forums. Examples of LMS-
embedded synchronous collaborative and com-
munication tools included chat, electronic 
whiteboards, and audio and videoconferencing. 

 Group tools support both asynchronous and 
synchronous communication to enable groups of 
students to work and learn as a team. LMS have 
the capability to support group areas where stu-
dent teams can share and collaboratively edit 
course documents to complete group assignments 
and tasks. Group tools can support formal (e.g., 
representing the  fi nal product of collaborative 
work) and informal (e.g., work in progress) types 
of activities. Examples of group tools include 
group discussion forums, group chat areas,  fi le 
exchange tools, group posting areas, breakout 
sessions, and group email.  

   Content Creation and Delivery Tools 

 This category of WBPT included tools for instruc-
tors that enable them to deliver course content 
and resources and tools for students that enable 
them to contribute course content, submit assign-
ments, and interact with course resources. 
Examples of instructor content creation and 
delivery tools included a “syllabus” feature, an 
“assignments” or “activities” feature that allows 
instructors to develop and post an assignment 
or class activity, and a “resources” feature that 
allows instructors to provide Web links for 
students to explore. Examples of student content 
creation and delivery tools included a student or 
group “presentation area” or a “digital dropbox” 
feature that allows students to post assignments 
or upload re fl ection journals and receive feed-
back from the instructor and peers.  

   Administrative Tools 

 This category of WBPT included tools to manage 
students and student information such as import-
ing the class roster from the institution’s registra-
tion system, assigning userids and passwords, 

posting grades, and administering quizzes/tests; 
tools to add or manage teaching assistants, grad-
ers, and course designers and provide guest 
access; and tools to manage administrative course 
components such as setting the availability and 
duration of the course, populating the course cal-
endar, and generating areas for communication 
and collaboration as described under the collab-
orative and communication WBPT category.  

   Learning Tools 

 This category of WBPT was initially labeled 
hypermedia tools (Kitsantas & Dabbagh,  2004  )  
and included tools that allow students to explore 
Web-based resources and create personalized 
learning experiences. In addition to the use of 
Web links and search engines to explore and 
locate information, learning tools enable students 
to perform tasks such as online bookmarking, 
note taking, compiling and aggregating content, 
and using community and social networking tools 
to create networks based on their learning needs 
(Kitsantas & Dabbagh,  2010  ) . Examples of learn-
ing tools embedded in LMS included a course 
glossary, course index, a search feature, book-
marking feature, and digital libraries or image 
databases.  

   Assessment Tools 

 This category of WBPT included a variety of 
tools ranging from supporting the creation of tra-
ditional tests to the development of more authen-
tic performance-based assessments such as 
e-portfolios. LMS-speci fi c assessment tools 
included test-type tools that support multiple-
choice, matching,  fi ll-in-the-blank, and short-
answer questions as well as essay tests. In 
addition, LMS support the development of test 
questions that include media such as images, 
video, and audio. Examples of LMS-authentic 
assessment tools included the capability to create 
self-assessments, peer assessments, and perfor-
mance-based assessments using a variety of 
rubric scales and customized grading schemes. 

 These  fi ve categories of WBPT (see Fig.  14.1 ) 
have not been intentionally designed or informed 
by theories of self-regulation, but they can be used 
to help learners engage in self-regulated learning 
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in a variety of ways. For example, content cre-
ation and delivery tools can facilitate the applica-
tion of task strategies including rehearsing, 
elaborating, organizing, structuring, and trans-
forming learning content to support meaningful 
understanding and retention (Dabbagh & 
Kitsantas,  2004  ) . Content creation and delivery 
tools can also support meaningful interaction with 
course content by providing learners with multi-
ple options to view or access the course content 
resulting in higher intrinsic interest in the material 
(Dabbagh,  2002  ) . Alternatively, collaborative and 
communication tools can assist learners in seek-
ing help from social and nonsocial sources when 
they encounter task dif fi culties and engage in an 
active and re fl ective dialog with peers (Berge, 
 1999  ) . Collaborative and communication tools 
can also facilitate the establishment and re fi nement 
of individual and group learning goals and pro-
mote the development of effective time manage-
ment to ef fi ciently carry out the responsibilities 

associated with being an active and accountable 
member of a group (Dabbagh,  2002  ) .  

 Given the growth rate in online learning enroll-
ments over the last decade, the ubiquitous use of 
LMS in higher education to support teaching and 
learning interactions, and the perceived 
signi fi cance of student self-regulation in distrib-
uted and online learning contexts, we wanted to 
examine whether WBPT can help college stu-
dents become self-regulated learners and what 
processes of self-regulation can be supported by 
WBPT and how. Speci fi cally, we wanted to dem-
onstrate how instructional designers, college fac-
ulty, and educators can provide opportunities for 
student self-regulation using WBPT in order to 
ensure academic success in these increasingly 
technology-driven and LMS-supported learning 
contexts. Hence, our sample population included 
primarily college students and college faculty. 
We describe this sample population and associ-
ated learning domains next.   

  Fig. 14.1    Pedagogical classi fi cation of LMS       
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   Learning Domains and Participants 

 In the  fi rst study (Kitsantas & Dabbagh,  2004  ) , 
participants were 80 undergraduate and graduate 
college students (26 male, 54 female) enrolled in 
 fi ve courses taught by  fi ve instructors who uti-
lized an LMS to support distributed course 
events. Participants’ ages ranged from 21 to 34 
years. The courses were selected because the 
instructors were utilizing WBPT, namely, admin-
istrative tools, collaborative and communication 
tools, content creation and delivery tools, and 
hypermedia tools (i.e., learning tools), to support 
distributed learning. Disciplines or learning 
domains included instructional technology and 
advanced instructional design for the graduate 
courses and advanced composition (business 
writing) and government (political analysis) for 
the undergraduate courses. In the second study 
(Dabbagh & Kitsantas,  2005  ) , participants con-
sisted of 65 graduate college students (22 male, 
43 female) enrolled in three courses that sup-
ported distributed learning using WBPT. 
Participants’ ages ranged from 22 to 45 years. 
Learning domains included instructional tech-
nology and advanced instructional design. The 
course instructors utilized primarily collaborative 
and communication tools, content creation and 
delivery tools, administrative tools, and assess-
ment tools. In the third study (Dabbagh & 
Kitsantas,  2009  ) , participants were 12 experi-
enced online course instructors (6 male, 6 female) 
who utilized an LMS to facilitate undergraduate 
or graduate online or blended course delivery. 
Learning domains included operations manage-
ment, information technology, mathematics 
education, educational leadership, communities, 
and management.  

   Research Questions 

 Overall, our research examined whether the use 
of WBPT in online and distributed higher educa-
tion learning contexts can help support speci fi c 
self-regulatory processes such as goal setting, 
help seeking, self-monitoring, self-evaluation, 

and time management (described later in this 
chapter). Speci fi cally, we wanted to know 
whether different categories of WBPT supported 
different processes of self-regulation. We began 
with the following question for the  fi rst study: 

 Do students’ means on the self-regulatory pro-
cesses ratings (e.g., goal setting and self-monitor-
ing) vary signi fi cantly with their use of the 
different WBPT (administrative, collaborative 
and communication, content creation and deliv-
ery, and hypermedia tools)? 

 In the second study, we examined the same 
variables as in the  fi rst study in order to con fi rm 
the results, and we added the following question: 

 Did students perceive WBPT useful in scaf-
folding strategic learning while completing 
course assignments? 

 We wanted to examine student perceptions 
of the usefulness of WBPT in supporting the 
completion of course assignments involving 
speci fi c learning tasks and, more speci fi cally, 
which self-regulated learning processes were 
enacted or activated while completing these 
tasks. For example, we wanted to know which 
self-regulation processes were activated or 
supported when students used WBPT to com-
plete course assignments involving (a) collab-
orative learning tasks such as group projects or 
activities, (b) exploratory learning tasks such 
as problem solving (e.g., providing solutions to 
case studies), or (c) dialogic learning tasks such 
as articulation and re fl ection (e.g., engaging in 
online discourse or writing). In the third study, 
we shifted our focus to college faculty and 
examined how experienced online instructors 
used WBPT to support student self-regulation 
in distributed and online courses and whether 
these instructors deliberately used WBPT to 
facilitate student self-regulation. The overall 
goal of our research was to better understand 
the pedagogical potential of WBPT in order to 
enhance students’ academic self-regulation and 
consequently academic achievement in online 
and distributed learning contexts and to inform 
college instructors who use WBPT how to 
design effective learning tasks that promote 
student self-regulation.   
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   Theoretical Framework 

   Self-Regulation: A Social Cognitive 
Perspective 

 Self-regulation refers to the degree to which 
students are able to become metacognitively, 
motivationally, and behaviorally active partici-
pants of their own learning process (Zimmerman, 
 1989  ) . Speci fi cally, self-regulation involves self-
direction and self-motivation, in that the student 
is able to strategically engage in several different 
processes that increase the likelihood of accom-
plishing a goal. However, self-regulation is not an 
inherent skill that students have; instead, the abil-
ity to self-regulate is learned and developed, 
where instructors must train students how to be 
self-directed and self-motivated (Zimmerman, 
 2008  ) . In the context of today’s technological 
world, availability of information, and increasing 
use of technology in the classroom, it is critical 
that students learn how to self-regulate their 
learning to use the online or Web-based material 
effectively and ef fi ciently (Kitsantas & Dabbagh, 
 2004  ) . The idea of self-regulation is especially 
important in distributed, blended, or online 
learning, because such learning contexts require 
the student to self-direct their own learning and 
be self-motivated to engage in those self-directed 
learning behaviors. 

 According to Zimmerman  (  2008  ) , the ability 
to effectively self-regulate requires the student to 
be actively engaged in self-regulatory processes 
including setting goals, using effective strate-
gies, self-monitoring, and self-evaluating during 
their learning. For example, a student whose goal 
is to obtain an A on his or her next physics exam 
will  plan  what steps he or she needs to take in 
order to obtain the A, select appropriate strate-
gies to attain this goal, self-monitor the effec-
tiveness of these strategies, and self-evaluate to 
determine the next course of action. Goal setting 
which refers to a process through which students 
decide on speci fi c outcomes for learning and 
identify appropriate strategies to be undertaken 
in order to accomplish desired goals (Zimmerman, 
 2000  )  is one of the key processes of self-regula-

tion. Research indicates that students who set 
speci fi c as opposed to general goals, and process 
goals (focus on methods and strategies that can 
help one master a task) rather than outcome goals 
(outcomes of learning efforts), show high skill 
achievement and report positive motivational 
beliefs for their assigned work (Zimmerman & 
Kitsantas,  1999 ; Zimmerman,  2000  ) . 

 Task strategies are strategies that learners use 
to accomplish their goals. These strategies are 
domain speci fi c and may include deep processing 
elaborative and organizational strategies, such as 
rewriting notes, selecting main ideas, and/or out-
lining the text to be learned, and rehearsal strate-
gies for basic memory tasks, such as using 
mnemonics to remember the key phases of a 
learning theory. An important strategy for college 
students is time management, which refers to 
budgeting time effectively and has been shown to 
be highly correlated with academic achievement. 
Research suggests that students who keep careful 
records of time spent on assigned learning tasks 
begin to recognize patterns in their own use of 
study time and develop an appreciation for the 
value of effective time management and its impact 
on academic achievement (Zimmerman,  2000 ; 
Kitsantas, Winsler, & Huie,  2008  ) . 

 Self-monitoring, which is de fi ned as one’s 
deliberate attention to an aspect of behavior, is 
also an important metacognitive process of self-
regulated learning because it directs the learners’ 
attention to the task and assists them in evaluat-
ing the outcomes of their efforts. For instance, 
keeping daily records assists the learner in deter-
mining how to make appropriate learning adjust-
ments in order to attain his/her goals (Zimmerman 
& Kitsantas,  1999  ) . Self-evaluation refers to 
comparing outcomes of performance with a stan-
dard or goal (Zimmerman,  2000  ) . As learners 
monitor their progress towards goal attainment, 
they make evaluative judgments about their per-
formance and about their self-ef fi cacy for reach-
ing the goal (Zimmerman,  2008  ) . Self-evaluation 
signi fi cantly in fl uences strategic planning for 
future learning activities. Research studies 
show that students who self-evaluate their prog-
ress display higher skill acquisition and report 
higher self-ef fi cacy beliefs, intrinsic interest, and 
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self-satisfaction about their performance than 
students who do not self-evaluate (Zimmerman, 
 2008  ) . Overall, students who can successfully 
engage in these self-regulatory processes are 
more aware of and make a stronger effort to 
improve the ef fi cacy of their studying. However, 
how effectively the student is able to control these 
processes depends on other factors as well, such 
as motivational beliefs (Zimmerman,  1989 ;  2008  ) . 

 Motivational beliefs allow students to persist 
through dif fi cult tasks and empower them to 
learn. Speci fi cally, a powerful motivational pro-
cess is self-ef fi cacy, which is de fi ned as the extent 
to which students feel con fi dent and equipped 
enough to accomplish a certain task or goal. A 
student who is self-regulated would experience 
more adaptive senses of motivation such as high 
self-ef fi cacy, expect positive outcomes, adopt a 
learning goal orientation, and express interest at 
the particular task at hand (Zimmerman & 
Kitsantas,  2005  ) . These motivational beliefs form 
a strong foundation for self-regulated learning 
and metacognitive monitoring. If a student is not 
compelled to achieve a dif fi cult task, he or she 
will most likely not be able to persist through and 
attain the goals that were set. 

 In summary, extensive research evidence indi-
cates that high-achieving students (Zimmerman, 
 2000 ; Kitsantas,  2002  )  and experts (Ericsson & 
Charness,  1994  )  judiciously use all these self-
regulatory processes to enhance their perfor-
mance. However, without the proper training, 
students can potentially maladaptively react to 
their outcomes by engaging in maladaptive strat-
egies such as memorization and rehearsal. Self-
regulatory processes can be taught to avoid 
maladaptive behavior and enhance students’ aca-
demic study skills (Zimmerman & Kitsantas, 
 2005 ; Zimmerman,  2008  ) . For example, with the 
assistance and guidance of an instructor, students 
can learn how to evaluate and monitor their own 
study methods. Once de fi ciencies are identi fi ed, 
the learner sets speci fi c goals and selects appro-
priate strategies to attain them. Next, the learner 
executes the strategy (ies) and monitors its effec-
tiveness. Finally, in order to achieve optimal 
results, the learner monitors and evaluates out-

comes in a reoccurring cycle. However, in dis-
tributed and online learning contexts, the physical 
absence of the instructor coupled with the 
increased responsibility demanded of learners to 
achieve learning tasks presents additional 
dif fi culties for learners, particularly those with 
low self-regulatory skills. Consequently, the need 
to promote effective use of WBPT to support 
self-regulation processes is paramount. Hence, 
the goal of this research was to examine whether 
WBPT can be used to support self-regulated 
learning and if so, how.   

   Research Methods 

   Research Designs 

 As mentioned earlier, a series of three studies 
were conducted to examine whether WBPT can 
be sued to support student self-regulated learning 
and how. These studies used both quantitative 
and qualitative methodological approaches. 
Speci fi cally, in the Kitsantas and Dabbagh  (  2004  )  
study, an online questionnaire (Web-Supported 
Self-Regulation Questionnaire, WSSRQ) was 
administered to 80 college students to examine 
whether WBPT supported the use of six pro-
cesses of self-regulation: goal setting, task strate-
gies, self-monitoring, self-evaluation, time 
planning and management, and help seeking. In 
the Dabbagh and Kitsantas  (  2005  )  study, the 
WSSRQ was administered to 65 college students 
in order to con fi rm the results of the  fi rst study. 
Additionally, qualitative data were collected 
using a questionnaire (SPU-WBPT) to determine 
student perceptions of the usefulness of WBPT in 
scaffolding self-regulated learning while com-
pleting courses assignments. 

 In the third study (Dabbagh & Kitsantas, 
 2009  ) , an open-ended questionnaire (Evaluating 
the Instructional Utility of Integrative Learning 
Technologies) was administered to experienced 
instructors of online and distributed courses to 
examine how they utilized WBPT to support stu-
dent self-regulation. These measures are described 
in more detail next.  
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   Measurement Tools 

   Web-Supported Self-Regulation 

Questionnaire (Kitsantas & Dabbagh, 

 2004  )  

 This online questionnaire was developed in con-
sultation with experts in the areas of self-regula-
tion and Web-based technologies. The 
self-regulatory processes used in the scale were 
adapted from Zimmerman and colleagues 
research (see Zimmerman, & Martinez-Pons, 
 1986  ) . Students were asked to rate each of six 
processes of self-regulation (described above) on 
a scale from 1 (Strongly Disagree) to 5 (Strongly 
Agree) in terms of the degree to which WBPT 
supported the process. The scale included 12 
questions addressing the 12 tools or features 
(grouped in categories) of WBPT utilized in the 
courses selected for each study. Sample items 
included “The Discussion Area Helped Me with 
the Following Processes of Self-regulation” and 
“The Assignments Feature Helped Me with the 
Following Processes of Self-regulation.” 
Acceptable reliability coef fi cients were obtained 
for each of the questions ranging from  a  = 0.73 to 
0.93 in the  fi rst study (Kitsantas & Dabbagh, 
 2004  )  and  a  = 0.82 to 0.98 in the second study 
(Dabbagh & Kitsantas,  2005  ) .  

   Student Perceptions of the Usefulness of 

WBPT in Supporting Completion of 

Course Assignments Questionnaire 

(SPU-WBPT) (Dabbagh & Kitsantas,  2005  )  

 The purpose of this questionnaire was to elicit 
student perceptions about the usefulness of 
WBPT in supporting the completion of course 
assignments in the courses selected for qualita-
tive analysis and the self-regulation processes 
that WBPT evoked while completing these 
assignments. Students were asked to rate the use-
fulness of WBPT in supporting the completion of 
each course assignment on a scale from 1 (not 
useful) to 5 (very useful) and to provide a written 
explanation for their ratings. Students were also 
asked to respond to the following two questions: 
(1) Overall, which [LMS] WebCT tools or fea-
tures were most useful to you in supporting your 
learning in this course? Why? and (2) In this class 

you were exposed to a blended learning environ-
ment with both face-to-face and online interac-
tions with the course content and activities. 
Which interactions overall were more bene fi cial 
to your learning? Please explain why.  

   Evaluating the Instructional Utility of 

Integrative Learning Technologies 

Questionnaire (Dabbagh & Kitsantas, 

 2009  )  

 This questionnaire originally consisted of 34 
short-answer items but was condensed to 22 
items after pilot testing with a sample of experi-
enced online instructors. The 22 items queried 
faculty about their use of WBPT (referred to as 
Integrative Learning Technologies or ILT) to sup-
port the six processes of self-regulation used in 
the WSSRQ. Example items included, “As an 
instructor what ILT or LMS tools do you use to 
help your students keep track of their progress on 
assignments? (Provide a speci fi c example)” and 
“As an instructor what ILT or LMS tools do you 
use to help your students set speci fi c goals for 
what they need to achieve for each course assign-
ment? (Provide a speci fi c example).” The ques-
tionnaire also included items that addressed 
demographics.   

   Signi fi cance of Findings 

 The results of the  fi rst study (Kitsantas & 
Dabbagh,  2004  )  revealed signi fi cant differences 
among the self-regulatory processes supported 
through the use of the four categories of WBPT 
(administrative tools, collaborative and commu-
nication tools, content creation and delivery 
tools, and hypermedia tools) investigated. 
Speci fi cally, students reported that collaborative 
and communication tools were more useful in 
supporting goal setting, help seeking, and time 
planning and management; content creation and 
delivery tools were more useful in supporting  
self-evaluation, task strategies, and goal setting; 
hypermedia tools (learning tools) were more 
useful in supporting task strategies; and admin-
istrative tools were more useful in supporting 
self-monitoring, and help seeking. The results 
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of the second study (Dabbagh & Kitsantas, 
 2005  ) , as expected, con fi rmed the results of the 
 fi rst study, namely, that different categories of 
WBPT supported different processes of self-
regulation. More speci fi cally, collaborative and 
communication tools also supported goal set-
ting; content creation and delivery tools also 
supported task strategies; and administrative 
tools also supported self-monitoring which 
shows consistency across these studies in terms 
of what WBPT were useful in supporting what 
self-regulatory processes. Additionally, the 
qualitative analysis revealed that WBPT were 
perceived to be highly effective in activating the 
use of self-regulated learning processes neces-
sary to support speci fi c types of learning tasks 
required for completion of course assignments. 
For example, students perceived content cre-
ation and delivery tools particularly useful in 
scaffolding help seeking, task strategies, self-
evaluation, and goal setting, while completing 
course assignments that involve exploratory 
learning tasks such as problem solving. 

 These  fi ndings have signi fi cant implications 
on the design of distributed learning environ-
ments particularly when LMS are used. 
Implications include the provision of speci fi c 
WBPT that are more effective than others in sup-
porting certain processes of self-regulated learn-
ing. In the absence of face-to-face instructor 
guidance, these implications are very important. 
Given that self-regulation has been highly corre-
lated with student academic achievement and 
motivation, the  fi ndings of these studies suggest 
that learners feel that certain WBPT embedded in 
LMS assist them to set goals, engage in strategic 
planning and management, search for effective 
strategies, self-monitor, and seek needed help. 
Additionally, strategic learning can greatly impact 
students’ successful engagement in the types of 
learning tasks required in distributed and online 
learning contexts (Hartley & Bendixen,  2001  ) . 

 The results of the third study revealed that 
overall college instructors reported using speci fi c 
WBPT to support speci fi c processes of self-reg-
ulation. For example, 25 % of participants 
reported using content creation and delivery 

tools (e.g., creating and uploading a syllabus 
checklist or rubric) to support student goal set-
ting and 84 % of participants reported using 
administrative tools (e.g., the calendar) to sup-
port time planning and management. Speci fi -
cally, instructors used checklists that required 
students to set speci fi c dates for completion of 
each online module and each assignment within 
a course module, thereby encouraging goal-
setting behavior. Instructors also used the LMS 
calendar to assign dates to online activities and 
assignments so that students can look up these 
dates for time planning and management. These 
results con fi rmed previous  fi ndings that different 
categories of WBPT can be used to support dif-
ferent processes of self-regulation. The results 
also revealed consistency regarding which cate-
gories of WBPT supported which self-regulation 
processes (see Table  14.1 ). However, the results 
of this study also revealed that experienced 
online instructors did not report deliberately 
using WBPT to support student self-regulation. 
In other words, these instructors were not aware 
that technology can be used to support student 
self-regulation. These  fi ndings underscore the 
need to train instructors on how to speci fi cally 
use technology to support student self-regulation 
in distributed and online learning contexts.  

 Clearly, instructors who use WBPT based on 
principles of self-regulated learning can com-
municate the value of self-regulation and assist 
students in setting goals, selecting appropriate 
strategies to achieve these goals, and collecting 
and analyzing data about their own learning 
progress. Additionally, instructors who use 

   Table 14.1    WBPT-supported self-regulatory processes   

 WBPT category  Self-regulatory process 

 Administrative tools  Self-monitoring, help 
seeking 

 Collaborative and 
communication tools 

 Goal setting, help seeking, 
time management 

 Content creation and 
delivery tools 

 Self-evaluation, task 
strategies, goal setting 

 Learning tools  Task strategies 

 Assessment tools  Task strategies, self-moni-
toring, self-evaluation 
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WBPT to help students develop self-regulation 
skills can instill interest in and motivate students 
to learn the subject matter which is critical to 
academic success.  

   Challenges and Limitations 

 Several limitations impacting the generalizability 
of the  fi ndings of these studies are noted. First, 
the classes selected in the  fi rst two studies 
(Kitsantas & Dabbagh,  2004 ; Dabbagh & 
Kitsantas,  2005  )  were blended versus totally 
online; thus, it is dif fi cult to determine the extent 
to which students relied on the instructor or the 
WBPT to scaffold self-regulation. For example, 
face-to-face interactions may have prevented stu-
dents from using WBPT exclusively. Second, the 
results of the  fi rst two studies can only be applied 
to courses that utilize an LMS. Third, since no 
records were kept regarding students’ frequency 
of using WBPT in these studies, it was not pos-
sible to triangulate students’ self-reports in the 
second study with such data. Limitations for the 
third study (Dabbagh & Kitsantas,  2009  )  include 
the small sample size of instructors, subject mat-
ter being taught, and the self-report nature of the 
study. Clearly more research is needed to further 
verify these  fi ndings, particularly using experi-
mental designs, and additional data collection 
methods such as observation and face-to-face 
interviews with the target populations. It may 
be also interesting to determine whether students 
are self-regulating their learning with or without 
support from WBPT.   

   Design Implications and Future 
Directions 

 Research has shown that overall, college instruc-
tors acknowledge the teaching potential of tech-
nology particularly as this relates to promoting 
student interest in learning and actively engag-
ing students in their learning; however, these 
instructors generally do not integrate sophisti-
cated technologies into their teaching practice 

(Brill & Galloway,  2007  ) . Some of the reasons 
cited include resistance to technology adoption, 
but more importantly, lack of knowledge of the 
pedagogical potential of technology and motiva-
tion to change traditional teaching practices 
stand out as critical barriers (Blin & Munro, 
 2008  ) . Moreover, LMS are increasingly integrat-
ing Web 2.0 and social software tools (e.g., 
weblogs and wikis) and more authentic assess-
ment features (e.g., peer review capabilities, 
electronic portfolios, and grading rubrics) pro-
viding faculty with an even wider and more 
 fl exible array of tools to design effective and 
meaningful learning activities. Additionally, the 
continual emergence of new learning technolo-
gies is constantly challenging the way we teach 
and learn. For example, students are demanding 
more engaging learning experiences and instant 
access to information due to work and life 
demands (The Horizon Report,  2007  ) . Students 
are also generating their own content using social 
media and collaborating through social and pro-
fessional networking sites such as Facebook and 
LinkedIn to establish networks of friends and 
resources (Alexander,  2006  ) . Hence, if faculty 
wish to gain students’ attention, enable strategic 
learning, and sustain student motivation to learn, 
they must not only keep up with new technolo-
gies but also learn how to deliberately use them 
to support student self-regulated learning. 

 Several researchers have developed subject 
matter-speci fi c technology tutorials or software 
systems based on self-regulation principles and 
theories (e.g., Aviram, Ronen, Somekh, Winer, & 
Sarid,  2008 ; Hadwin & Winne,  2001 ; Kramarski & 
Gutman,  2006 ; Van den Boom, Paas, van 
Merrienboer, & van Gog,  2004 ; Winne, Hadwin, 
Nesbit, Kumar, & Beaudoin,  2005  ) ; however, such 
tools or systems have not been widely adopted in 
higher education contexts nor integrated into main-
stream LMS despite encouraging research results 
regarding their effectiveness in promoting student 
self-regulated learning. Hence, more research is 
needed to further examine how existing learning 
technologies can be leveraged to enhance student 
self-regulation. Speci fi cally, future research should 
adopt a more encompassing de fi nition of WBPT 
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and a viable training model that demonstrates 
to faculty how to use learning technologies to 
train students to become self-regulated learners. 
Towards this effort, Kitsantas and Dabbagh  (  2010  )  
developed a broader de fi nition of WBPT referred 
to as Integrative Learning Technologies (ILT). ILT 
is de fi ned as a dynamic collection or aggregation of 
Web tools, software applications, and mobile tech-
nologies that integrate technological and pedagogi-
cal features and affordances of the Internet and the 
Web to facilitate the design, development, delivery, 
and management of online and distributed learning 
(Kitsantas & Dabbagh,  2010  ) . This de fi nition is 
broad enough to include traditional learning tech-
nologies such as LMS as well as emerging learning 
technologies such as social media and mobile 
technologies. 

 Kitsantas and Dabbagh  (  2010  )  also devel-
oped a model (see Table  14.2 ) to assist faculty 
in deliberately applying ILT to train students to 
become self-regulated learners. This model is 
based on Zimmerman and colleagues’ research 
(see Zimmerman & Kitsantas,  1999 ; 
Zimmerman & Kitsantas,  2005  )  and consists of 
four sequential phases: observation, emulation, 
self-control, and self-regulation. The  fi rst two 
phases focus on social learning experiences 
that prepare learners to attain higher levels of 
skill on their own. For example, faculty can 
model task processes to students and elicit 
 students’ enactment of these processes while 
providing coaching and feedback. In the self-
control phase, students learn from self-directed 
practice to achieve automaticity of task pro-
cesses, and in the self-regulation phase, 
students learn to adapt their performance 
proactively and become independent learners 
focusing primarily on outcomes. This model of 
self-regulation has been tested with various 
learning tasks, and the  fi ndings show that it is a 
powerful tool in helping students become self-
regulated learners (Zimmerman & Kitsantas, 
 1999 ;  2005  ) . However, can this model be 
implemented in distributed and online learning 
contexts? Future research using experimental 
studies should examine the validity of this 
model in training students to become self-reg-
ulated learners using ILT.       
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  Abstract 

 This chapter explicates an empirically grounded and detailed theoretical 
framework for understanding the various components of self-regulated 
learning. A key distinction is articulated between metacognitive  knowledge 
and metacognitive monitoring. It is argued that it is the accurate monitor-
ing of learning experiences that is critical for effective self-regulation 
 during learning, and that various accuracy measures for judgments of 
learning differ in how well they assess this construct of monitoring accu-
racy. Particular emphasis is placed on the importance of improving the 
relative accuracy of metacognitive monitoring skills, and that typical 
instruction in study strategies may not be suf fi cient to improve monitor-
ing.  The results of studies and manipulations that have resulted in superior 
monitoring accuracy are reviewed, and the implications for the develop-
ment of learning technologies are discussed. A key observation is that in 
order to provide the opportunity for the development of effective regula-
tory skills, learning environments need to be careful not to deprive stu-
dents of the opportunity to engage in self-regulation or monitoring of their 
own understanding.      
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  15      Designing Learning Technologies 
to Support Self-Regulation During 
Ill-Structured Problem-Solving 
Processes       

     Xun   Ge         

 It has been widely recognized that students have 
dif fi culty applying knowledge acquired from a 
classroom setting to a novel situation in a real-
world problem-solving context (Feltovich, Spiro, 
Coulson, & Feltovich,  1996  ) . For this reason, 
educational researchers have been increasingly 

emphasizing the importance of creating an open-
ended learning environment to engage students in 
complex, ill-structured problem-solving activi-
ties, with the following assumptions: (1) the 
problem drives the learning; students will learn 
domain knowledge in the process of solving a 
problem, which is their learning goal, rather than 
solving a problem as an application of learning; 
(2) students will see the meaningfulness and rel-
evance of school knowledge in their day-to-day 
life; and (3) ill-structured problem-solving 
 activities facilitate knowledge transfer by 
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 contextualizing knowledge in authentic situations 
(e.g., Bransford, Brown, & Cocking,  2000 ; 
Brown, Collins, & Duguid,  1989 ;    Greeno, Collins, 
& Resnick,  1996 ; Jonassen,  1997,   1999  ) . 

 However, effective learning in an open-ended 
environment requiring students to solve ill-
de fi ned problems demands metacognitive aware-
ness of what is known and what needs to be 
known about a given topic. Yet, metacognitive 
strategy use is often dependent on prior domain 
knowledge. This metacognitive knowledge 
dilemma presents a challenge to learners (Land, 
 2000  ) . Azevedo  (  2005  )  noted that in some major 
research on open-ended learning environments, 
students who had very little metacognitive and 
self-regulatory skills bene fi ted very little from 
the environment. It follows that some kind of 
scaffolding is necessary to scaffold students in 
ill-structured problem-solving tasks. Without 
metacognition, students can become over-
whelmed in determining what information is 
important to their needs and what they need to do 
to re fi ne their knowledge (Land,  2000  ) . 

 Various instructional design frameworks have 
been proposed and interactive learning technolo-
gies have been developed to address students’ 
learning needs in both cognition and metacogni-
tion as a way to scaffold their learning in open-
ended learning environments. For example, Ge 
and Land  (  2003,   2004  )  proposed a framework to 
scaffold ill-structured problem solving using 
question prompts and peer interactions mediated 
with technology. Consistently, other researchers 
(e.g., Lajoie & Azevedo,  2000,   2006  )  proposed 
creating technology-rich environments to  promote 
active knowledge transfer and self-monitoring 
through expert prompting, modeling, and 
feedback. 

 The goal of this chapter is to examine how learn-
ing technologies can be designed to facilitate self-
regulatory activities, which serve as mediators 
between personal characteristics (e.g., prior knowl-
edge, metacognition, problem-solving competence, 
and con fi dence) and contextual characteristics 
(e.g., open-ended environment, ill-de fi ned prob-
lems, etc.) and problem-solving performance in ill-
structured tasks (Pintrich,  2000  ) . This chapter  fi rst 
presents a cognitive support system,  aiming at scaf-

folding students’ ill-structured  problem-solving pro-
cesses through facilitating their self-monitoring 
and self- regulation activities. Next, it provides an 
overview of the theoretical conceptual frameworks 
underlying the design of the cognitive support sys-
tem, including sociocultural theory for scaffolding, 
cognitive theory for ill-structured problem solving, 
and self-regulated learning theory, followed by an 
examination of the cognitive and metacognitive 
functions of the support mechanisms and tools 
embedded in the cognitive support system. Then, 
this chapter offers some empirical evidence on the 
effects of the cognitive support system in support-
ing self-regulation during ill-structured problem-
solving processes. Lastly, this chapter discusses the 
design implications for learning technologies and 
future research. 

   Overview of a Web-Based Cognitive 
Support System 

 Based on a critical literature review and empiri-
cal  fi ndings, a database-driven, Web-based cog-
nitive support system was developed to scaffold 
complex, ill-structured problem-solving pro-
cesses through facilitating the development of 
metacognitive awareness and self-regulatory 
skills (Ge & Er,  2005 ; Ge, Planas, & Er,  2010  ) . 
It is a carefully structured and sequenced scaf-
folding system, consisting of a case library, the 
scaffolding mechanisms, and a database. The 
case library provides students with access to real-
world cases related to a content domain under 
study and requires them to solve complex, ill-
structured problems presented by the cases. The 
scaffolds are mainly characterized by a set of 
question prompts elicited from content domain 
experts and representing the mental models of 
experts for the problem under study. The ques-
tion prompts are domain-speci fi c, but they can 
generally be categorized into procedural prompts, 
elaboration prompts, and re fl ection prompts, 
which are discussed speci fi cally in the question 
prompt section below. The question prompt 
mechanism is supported with additional social 
scaffolding mechanisms, including peer review 
and expert view. The main features, functions 
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and their design rationales of the cognitive sup-
port system are detailed below. 

   Case Library 

 All the cases in the library are indexed, grouped, 
and searchable with keywords, topics, and levels 
of dif fi culty. The database-driven case library is 
an important component of the cognitive support 
system because the real-world cases contained in 
the library serve as anchors (CTGV,  1990  ) , or 
enabling contexts (Hanna fi n, Land, & Oliver, 
 1999  ) , to engage students in an open-ended learn-
ing environment to solve ill-structured problems. 
From the perspective of self-regulated learning, 
the cases motivate students to set a learning goal 
to keep them focused. When students perceive 
the value and relevance of a task, they can attempt 
to regulate and control those value beliefs 
(Pintrich,  2000  ) . 

 Beginning with a description of a speci fi c 
problem scenario, each of the cases presents a 
problem-solving task, which invites students to 
analyze the problem situation and suggest solu-
tions to the problem. A case sets up a context for 
problem solving and challenges students to seek 
or generate a solution through manipulating prob-

lem space, articulating their reasoning to the 
problem solutions, and developing a cogent and 
valid argument to support their proposed 
solution(s). For example, in a study investigating 
pharmacy students’ problem-solving skills 
(Ge, Planas, & Er,  2010  ) , the students were pro-
vided with a problem scenario, including the pre-
scription pro fi le of a patient who was experiencing 
a medication problem related to controlling her 
asthma (see Fig.  15.1 ). The students were placed 
in a dilemma here. They were asked to go through 
the problem-solving steps guided by the question 
prompts in order to propose an appropriate 
 solution that would both satisfy the patient’s 
needs without compromising their professional 
standards of practice.  

 In another study involving preservice teachers 
(Kauffman, Ge, Xie, & Chen,  2008  ) , the chosen 
topic for the problem-solving tasks was class-
room management, particularly focusing on the 
issues of  fl exibility, classroom climate, and effort 
to limit behaviors. The cases asked the preservice 
teachers to play the role of an expert in classroom 
management and to “observe” a teacher’s inter-
action with his students (presented in a dialogue 
format between the teacher and several student 
characters). In their simulated roles, the  preservice 
teachers were asked to provide feedback to the 

  Fig. 15.1    A sample case involving a pharmacy patient, which invited the pharmacy students to propose an appropriate 
solution during their ill-structured problem-solving task       
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classroom teacher via email about the teacher’s 
classroom management skills based on their 
observations, help the teacher to analyze the 
problem classroom situation, and suggest ways to 
improve his classroom management. 

 All the cases meet the criteria for ill-struc-
tured, or ill-de fi ned, problems, which have been 
identi fi ed by researchers (Jonassen,  1997,   1999 ; 
Lynch, Ashley, Pinkwart, & Aleven,  2009 ; Voss 
& Post,  1988  ) : (a) have vaguely stated goals and 
constraints, some problem elements missing or 
unclear; (b) do not have unambiguous right or 
wrong answers but fall on a range of acceptabil-
ity; (c) possess multiple solutions, solution paths, 
or no solutions at all; (d) require learners to jus-
tify and defend their solutions by means of argu-
ment; (e) possess multiple criteria for evaluating 
solutions. Given the ill-de fi nedness of these 
cases, learners are required to reframe or  rechar-

acterize  the problems; and the recharacterization 
and the resulting solutions are subject to debate 
(Lynch et al.,  2009  ) .  

   Question Prompts 

 Question prompts are generated based on subject 
matter expert reasoning, mental model and pro-
cesses to model and guide learners through com-
plex, ill-structured problem-solving processes by 
engaging learners in re fl ective thinking, monitor-
ing, and evaluation processes. These prompts can 
be categorized into (a) procedural prompts, 
(b) elaboration prompts, and (c) re fl ective 
prompts, each of which serves different cognitive 
and metacognitive purposes (Ge & Land,  2004  ) . 

 Procedural prompts are a set of question 
prompts, which are designed to guide learners 
step by step through the entire processes of a 
speci fi c problem-solving task (e.g., problem rep-
resentation, developing solutions, constructing 
arguments, and monitoring and evaluation) while 
engaging learners in self-monitoring and self-
regulation process. Examples of procedural 
prompts provides an overview of problem- solving 
steps, for example:  Step 1—identify the problem-

atic situation ,  Step 2—de fi ne the problem ,  Step 

3—list and evaluate alternative solutions ,  Step 

4—choose, justify, and implement a plan ,  Step 

5—evaluate the plan . Each of these steps is fol-
lowed by elaborative or re fl ective prompts (Ge, 
Planas, & Er,  2010  ) . For example, in the case 
involving the pharmacy patient, the following 
elaboration prompts were provided for  Step 

1—identify the problematic  situation: What  facts  
from this case suggest a problem? Is there a stan-
dard for comparing these facts? If so, what is 
(are) the standard(s)? Are the facts out of line? 
Why or why not? It is assumed that procedural 
prompts also model an expert’s problem-solving 
approach so that learners will gradually acquire 
the expert’s mental model in their future prob-
lem-solving tasks. 

 Elaborative prompts (e.g.,  What is the example 

of …? Why is it important? How does it affect…? ) 
are designed to prompt students to articulate their 
thoughts and elicit explanations (King,  1991  ) . In 
the case of classroom management for preservice 
teachers, the students were prompted to think 
about the following question: “What do you see 
as the primary problems in Mr. Harrison’s tenth 
grade science class? Why are they occurring? Can 
there be some other problem(s)? Why or why not? 
What are they?” It is found that students often 
propose a solution without solid theoretical sup-
port or evidence. This kind of prompt will “force” 
them to elaborate their thinking and formulate 
explanations. Elaboration prompts have been 
proved to direct students’ attention to understand-
ing  when  and  why  with college students in a 
science-related content domain, which facilitated 
learners’ self-monitoring and self-regulation 
processes (Lin & Lehman,  1999  ) . 

 Re fl ection prompts (e.g.,  What is our plan? 

Have our goals changed? To do a good job on 

this project, we need to … ) are designed to 
encourage re fl ection on a meta-level that students 
do not generally consider (Davis & Linn,  2000  ) . 
In the pharmacy case, the students were prompted 
to re fl ect on the solution, for instance, “How and 
when will you monitor the implementation of the 
plan? How will you know if the problem is solved, 
alleviated, or is getting worse?” Davis and Linn 
 (  2000  )  found that re fl ection prompts helped stu-
dents to become autonomous in their knowledge 
integration. King  (  1991  )  found that re fl ective 
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prompts encouraged student to engage in self-
monitoring process during problem solving, such 
as planning, monitoring, and evaluation. In addi-
tion, it is found that re fl ection prompts serve as a 
self-evaluation checklist for students to self-
assess their learning (Lin,  2001 ; Rosenshine, 
Meister, & Chapman,  1996  ) .  

   Database 

 Database is used with text boxes that allow stu-
dents to type, save and retrieve their responses to 
each of the question prompts. The prompts are a 
 fi xed sequence of questions presented to students 
after they  fi nished reading a case. They are 
designed to be case-dependent because each case 
has a different problem context with speci fi c 
situations and constraints. However, in all the 
cases the prompts follow the same underlying 

problem-solving processes by directing students 
to represent problems, articulate and elaborate 
their reasoning, develop their solutions, justify 
and defend their solutions, and monitor and eval-
uate their solutions. In the earlier version of the 
system, individual students’ initial responses to 
question prompts, which have been previously 
saved to the database, are retrieved and made 
available to them by displaying their responses 
on the Web page later when students are ready to 
write their solutions, construct arguments, and 
evaluate their solutions. In the later version of 
the system, students can also revise or edit their 
initial responses that have been saved to the data-
base (see Fig.  15.2  for student’s initial and 
revised responses and peers’ responses). In this 
case, the database system not only serves to store 
and retrieve data, but also makes students’ think-
ing visible for self-re fl ection (Davis & Linn, 
 2000  ) , which scaffolds learners to evaluate and 

  Fig. 15.2    Question prompts for “Step 1—Identifying the 
problematic situation” and its associated elaboration 
prompts, an individual student’s initial responses, her peer 

responses (clicking the name to open or close the peer’s 
response), and her revised responses after reviewing the 
peers’ responses       
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revise their responses, thus facilitating students’ 
self-monitoring and self-regulation. These data 
can also be made available for peer evaluation in 
a collaborative problem-solving context and 
allow students to compare their reasoning with 
that of an expert regarding a problem-solving 
task. The affordances of the database have made 
it possible to develop the peer review and expert 
view mechanisms (see Ge & Er,  2005 ; Ge, 
Planas, & Er,  2010  ) .   

   Peer Review 

 The peer review mechanism was designed to 
enable students to see multiple perspectives from 
peers’ responses to the problem solutions and help 
them notice things they might not have thought 
about. By reviewing their peers’ thinking, students 
are supposedly compelled not only to attend more 
closely to their peers’, but also their own ideas, 
rationales, plans, and solutions for self-re fl ection. 
Every student was preassigned by the researchers 
to a group of three members, who logged into the 
same group space. Once a student has submitted 
his/her responses to the question prompts regard-
ing the solutions, he/she will be able to see the 
other members’ responses if the peers have sub-
mitted their responses. Figure  15.2  above illus-
trates the screen of the peer review where an 
individual student’s initial responses, her peers’ 
responses, and her revised responses that have 
been submitted after viewing the peers’ responses. 
Every student was prompted to revise his/her 
responses after viewing the peers’ responses.  

   Expert View 

 Expert modeling is provided by presenting stu-
dents with an expert’s solution to a complex 
problem. This support mechanism offers students 
an opportunity to observe an expert’s reasoning 
and compare it with their own reasoning, which 
may result in disequilibrium (Piaget,  1985  ) . 

Mediated additionally by re fl ection prompts, the 
result of disequilibrium should lead to self- 
regulation, which will enable students to contem-
plate and articulate the observable gaps at a 
deeper level. In addition, the visual display of an 
expert’s problem-solving responses appearing on 
the same screen as a student’s responses (see 
Fig.  15.3 ) further fosters students’ self-monitor-
ing and self-re fl ection through identifying gaps 
between their thinking and an expert’s thinking.  

 The cognitive support system was designed to 
accommodate various content domains through 
the system features of categorizing, adding, edit-
ing cases by a panel of experts and/or practitio-
ners, who are interested in participating and 
mentoring students. In addition, the question 
prompt generator allows instructors, experts, facil-
itators, or anyone who has the authority, to gener-
ate question prompts or make prompt entries by 
adding, editing or deleting questions that are 
designed to guide problem solving for a given 
case. Besides, content domain experts can also 
enter or edit expert problem solutions into the 
database for expert view. Therefore, this cognitive 
support system is easily adaptable by providing an 
administrative access to instructors or facilitators 
and to be used for various content domains and 
allows for generating question prompts that are 
relevant to the chosen case (see Ge & Er,  2005  ) . 

 According to Land and Hanna fi n  (  2000  ) , a 
favorable open-ended learning environment 
should follow the principles of “grounded design” 
(p. 3), that is, the systematic implementation of 
processes and procedures for designing technol-
ogy or a learning environment that are rooted in 
established theory and research in human learn-
ing. The design of this Web-based cognitive sup-
port system has followed the principles of 
grounded design in that it is built upon the foun-
dations and assumptions of socio-cultural theory, 
cognitive theory for problem solving and self-
regulation theory, supported with empirically 
based and validated strategies and methods from 
past research, and has continually been tested and 
re fi ned over time.   
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   Theoretical Frameworks 
and Assumptions 

 Central to the design of the cognitive support 
system is Vygotsky’s  (  1978  )  socio-cultural the-
ory on social interactions and scaffolding. 
Traditionally, scaffolding is provided through 
mentoring, modeling and social interactions pro-
vided by an adult, a teacher, a domain expert, or 
a more capable peer. However, with the advance-
ment of technologies, it has become possible that 
technologies can also be used or designed to 

 provide external support to scaffold learners’ 
problem-solving performance, re fl ection, and 
metacognition (Salomon, Globerson, & 
Guterman,  1989  ) . Pea  (  1985  )  argued that tools 
provide opportunities for learners to amplify and 
extend their cognitive capabilities, as well as 
reorganize their thinking process by altering the 
tasks available to them. However, to harness the 
power of tools technologies should be designed 
to provide models, opportunities for higher level 
thinking, and metacognitive guidance in a learn-
er’s zone of proximal development (Lajoie, 

  Fig. 15.3    An expert’s view indicated by Dr. Planas’s 
responses for “Step 4—Choose, justify and implement 
a plan of action to solve the problem” and “Step 
5—Evaluate the plan.” The individual student’s initial 

and revised responses as well as three peers’ responses 
also appear on the same screen (by clicking on a peer’s 
name, the peer’s response will be displayed on the 
screen)       
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 1993,   2000 ; Lajoie & Azevedo,  2006 ; Land & 
Hanna fi n,  2000 ; Pea,  1985 ; Salomon,  1993  ) . 

 In a technology-rich environment, scaffolds 
can take the form of inexplicit humanlike guid-
ance, such as tools (e.g., cue cards, hints, 
or prompts) (   Scardamalia & Bereiter,  1985 ; 
   Scardamalia, Bereiter, & Steinbach,  1984 ) or 
strategies (e.g., reciprocal teaching and guided 
peer questioning) (King,  1991 ;  1992 ;    King & 
Rosenshine,  1993 ; Palincsar & Brown,  1984  ) . 
For the cognitive support system discussed in 
this chapter, scaffolding is particularly 
achieved through question prompts, peer 
review, expert’s thinking, and self-re fl ections. 

 In addition, the assumption of cognitive 
apprenticeship further accounts for design of the 
support mechanisms embedded in the system. 
According to this assumption, a mentor makes 
his thinking visible to novices through social dia-
logues, during which the mentor and a novice 
engage in the same problem-solving experience 
(Brown et al.,  1989 ; Collins, Brown, & Newman, 
 1989  ) , which scaffolds the novice’s problem-
solving processes. Therefore, an expert’s view 
and students’ self-re fl ection are integrated into 
the system as parts of the scaffolding mecha-
nisms. However, this support system only models 
and scaffolds learners’ problem-solving pro-
cesses while it does not address the fading pro-
cess, which is a limitation discussed at the end. 
Overall, the social constructivist perspective sets 
up a theoretical framework for scaffolding ill-
structured problem solving, which has guided the 
design and development of the cognitive support 
system under discussion. 

   Ill-Structured Problem Solving, 
Metacognition, and Self-Regulation 

 In order to understand how technologies can be 
designed to scaffold self-regulation and problem 
solving, we need to  fi rst understand the cognitive 
and metacognitive requirements involved in 
problem-solving processes (Land,  2000  )  and how 
self-monitoring and self-regulation activities can 
facilitate ill-structured problem-solving  processes. 
Then effective instructional strategies can be 

selected or developed to scaffold self-regulation 
activities, which subsequently mediate ill- structured 
problem-solving processes and performance. 

 Ill-structured problem solving can be identi fi ed 
as involving four processes (see Ge & Land, 
 2003 ;  2004  for a detailed review): (a) problem 
representation, (b) developing solutions, (c) mak-
ing justi fi cations and constructing arguments, (d) 
monitoring and evaluation. The process of mak-
ing justi fi cation and generating arguments and 
the process of monitoring and evaluation can 
happen concurrently during the processes of 
problem representation and developing solutions. 
In the problem representation process, problem 
solvers try to de fi ne the problem and set the goal 
for problem solving. This is the initial state of 
problem solving, which involves examining the 
interrelationships among different concepts of a 
problem, isolating major factors causing the 
problem, identifying constraints, understanding 
known facts, determining needed information for 
solving the problem, and recognizing divergent 
perspectives (Voss & Post,  1988  ) . Problem repre-
sentation helps problem solvers to generate pos-
sible solutions in the later process (Chi & Glaser, 
 1985  ) . Solution process follows after problem 
representation when problem solver generates or 
selects solutions by eliminating the causes of the 
problem and developing corresponding proce-
dures for implementing them. Since an ill-struc-
tured problem often involves multiple solutions 
and multiple paths to solutions, a problem solver 
must select the most viable solution and support 
it with defensible, and cogent argument (Jonassen, 
 1997 ; Voss & Post,  1988  ) . Because of the deci-
sion-making process involved, making 
justi fi cations and constructing argument is an 
essential process and skill in ill-structured prob-
lem solving (Jonassen,  1997 ; Kitchener & King, 
 1981  ) . This process also compels the problem 
solver to evaluate his or her solution by examin-
ing the selected solution and defending his/her 
decision against other alternative solutions. 
Therefore, the monitoring and evaluation process 
is required in the entire ill-structured problem-
solving  processes, from problem representation 
to selecting solutions and defending for the 
selected solution (Sinnott,  1989  ) . 
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 As indicated from the discussion above, ill-
structured problem-solving challenges problem 
solvers with cognitive and metacognitive demands 
(Jonassen,  1997  ) . The cognitive demand for solv-
ing ill-structured problems involves both domain-
speci fi c knowledge (Chi & Glaser,  1985 ; Voss & 
Post,  1988 ; Voss, Wolfe, Lawrence, & Engle, 
 1991  )  and structural knowledge (Chi & Glaser, 
 1985  ) . Problem solvers have to rely on their 
domain speci fi c knowledge and structural knowl-
edge to understand a problem situation. 
Metacognition involves both knowledge of cog-
nition and regulation of cognition (   Brown,  1987 ; 
Pressley & McCormick,  1987  ) . Metacognitive 
skill is essential in helping problem solvers to 
relate various problem aspects to their prior 
knowledge, set goals, select solutions, monitor 
problem-solving process and evaluate solutions, 
and re fl ect on their problem-solving processes. 
It plays an equally or more important role in 
successfully solving an ill-structured problem, 
particularly when domain-speci fi c knowledge is 
limited or absent (Wineburg,  1998  ) . In this 
chapter, the discussion focuses more on the 
regulation of cognition within metacognition 
because self-regulation plays an important role in 
experts’ problem-solving processes (Pressley & 
McCormick,  1987  ) . Comparing problem solving 
by experts and novices, researchers found that 
experts had learned to keep themselves on task 
and guide their thinking through regulation of 
complex sequences of procedures that are com-
bined and coordinated with prior knowledge 
(Zimmerman & Campillo,  2003  ) . When prior 
knowledge does not  fi t the new situation, an 
expert would make self-regulatory adjustments 
leading to new knowledge, which will then made 
available for future problem-solving purposes 
(Zimmerman & Campillo,  2003  ) . 

 According to Pintrich  (  2000  ) , self-regulation 
“is an active, constructive process whereby learn-
ers set goals for their learning and then attempt to 
monitor, regulate, and control their cognition, 
motivation, and behavior, guided and constrained 
by their goals and the contextual features in the 
environment.” (p. 453) Pintrich  (  2000  )  summa-
rized the shared components of different regula-
tion models into different phases and areas of 

regulation, which have become a valuable con-
ceptual framework for regulation. The four phases 
include  forethought ,  planning and activation ; 
 monitoring; control; reaction and re fl ection , each 
of which concerns with cognition, motivation/
affect, behavior, and context. Pintrich’s  (  2000  )  
framework is similar with Zimmerman and 
Campillo’s  (  2003  )  three cyclical self-regulated 
model underlying problem-solving processes: 
 forethought phase  (task-analysis and self- 
motivating beliefs),  performance phase  
( self-control, and self-observation),  self-re fl ection 

phase  (self-judgment and self-reaction). 
 Both Pintrich’s  (  2000  )  and Zimmerman and 

Campillo’s  (  2003  )  self-regulated models imply 
that scaffolding should be provided to direct stu-
dents to analyze the problem-solving task, set 
goals, focus on relevant information, activate 
their prior knowledge, plan for strategy use, and 
engage in self-monitoring and self-evaluation 
judgments, all of which are aligned with ill-struc-
tured problem-solving processes. Planning and 
goal setting are essential processes during prob-
lem representation (Jonassen,  1997  ) . Further, 
when ill-structured problems represent states of 
uncertainty, monitoring one’s own cognitive 
efforts is required in search of solutions, and 
evaluation is also required to determine the extent 
to which obtained information may be effective 
for the solution process and which selected goals 
may be important in a given situation (Kluwe & 
Friedrichsen,  1985  ) . This is the time of re fl ection 
and reaction, when problem solvers re fl ect on 
things like, how the proposed solution would 
solve the problem, what should be done about 
any dif fi culty the selected solution might pose, 
and evaluate various perspectives and values of 
the selected solution (Voss et al.,  1991  ) . Therefore, 
it is argued that regulation phases in fl uence prob-
lem-solving processes and outcomes. According 
to the recent work by Lynch et al.,  (  2009  ) , fram-
ing/recharacterization is an essential part of the 
problem-solving process for ill-de fi ned problems. 
The recharacterization “may include rede fi ning 
aspects of the problem to relate it to relevant 
domain rules and concepts; identifying clear 
solution criteria; reinterpreting essential rules 
and concepts according to the present goal; and 
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analogizing or distinguishing the current problem 
from prior cases.” (Lynch et al.,  2009 , p. 259). 
This process of recharacterization requires prob-
lem solvers to constantly monitor, evaluate, and 
regulate their problem-solving processes until a 
feasible, viable, and defensible solution is arrived 
at. Lynch and his colleagues’ work  (  2009  )  further 
highlights the importance of the role of the self-
regulation in solving ill-de fi ned problems.  

   Role of Question Prompts in Scaffolding 
Problem-Solving Through Self-
Regulation 

 When explaining the forethought and planning 
phase, Pintrich  (  2000  )  indicated that activation of 
prior knowledge of the content area can happen 
automatically, but it can also be done in a more 
planful and regulatory manner through various 
prompts or self-questioning activities. Past 
research shows that question prompts are an 
effective instructional strategy for directing stu-
dents to the most important aspects of a problem, 
as well as encouraging self-explanation, elabora-
tion, planning, monitoring, and self-re fl ection, 
and evaluation (Bransford & Stein,  1993 ;    Chi, 
Bassok, Lewis, Reimann, & Glaser,  1989 ; 
Chi, Leeuw, Chiu, & Lavancher,  1994 ; King, 
 1991,   1992 ; Lin & Lehman,  1999 ; Palincsar & 
Brown,  1984 ; Scardamalia & Bereiter,  1989  ) . 
Researchers  (Chi, Bassok, Lewis, Reimann, & 
Glaser,  1989 ; Chi, Leeuw, Chiu, & Lavancher, 
 1994 ) found that successful learners tend to 
generate more working explanations, particu-
larly in response to an awareness of limited 
understanding. Recent studies reveal that 
prompting students with questions scaffold 
their ill-structured problem-solving processes, 
particularly in problem representation, making 
justi fi  cations, developing solutions, and monitoring 
and evaluating problem solving (e.g., Ge, Chen, 
& Davis,  2005 ; Ge & Land,  2003,   2004  ) . Above 
all, question prompts proved to be bene fi cial 
in developing learners’ metacognitive awareness 
and self-regulatory abilities. Students who were 
provided with question prompts used them as a 
checklist to monitor their problem-solving 

 processes, to con fi rm if they were on the right 
track, and to check their courses of action (Ge, 
Chen, & Davis,  2005 ; Ge & Land,  2003  ) . 

 In summary, according to a critical review of 
literature, question prompts play four main func-
tions in facilitating self-monitoring and self-
regulation during ill-structured problem solving. 
First, question prompts direct students to some 
important information they might have missed. 
This function is not only particularly important 
during problem representation when learners’ 
attention is directed to important features of a 
problem, identifying goals and analyzing factors 
and constraints, but also important in focusing 
their attention on particular important informa-
tion in the other problem-solving processes. 
Second, questions prompt students to elaborate 
their thoughts, activate prior knowledge, and 
elicit relevant explanations, which help students 
to elaborate the initial state of the problem, make 
justi fi cations, and generate arguments. Third, 
question prompts encourage re fl ection and meta-
cognition that students do not generally consider, 
which facilitate knowledge integration as well as 
planning, monitoring and evaluation. Fourth, 
question prompts guide students’ self-monitoring 
explicitly during their problem-solving processes, 
such as planning, monitoring and evaluation.  

   Role of Social Support in Scaffolding 
Problem-Solving Through Self-
Regulation 

  Peer review : Peer review is an important compo-
nent of the peer interaction process. In the peer 
review process, students are compelled to exam-
ine their own thinking after reviewing the peers’ 
responses, such as their implicit, unarticulated 
assumptions, misconceptions, This process also 
allows students to learn from multiple perspec-
tives and solutions (Ge & Land,  2003 ; Linn, Bell, 
& Hsi,  1998  ) . Peer review mechanism supports 
the performance phase of self-regulation during 
problem solving (Zimmerman & Campillo,  2003  ) . 
  Expert view : Modeling, coaching, and scaffolding 
are the major characteristics of a cognitive appren-
ticeship approach (Jonassen,  1999  ) . Research on 
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expert-novice comparison has shown that experts 
and novices demonstrate different patterns in prob-
lem solving (e.g., Anderson,  2000 ; Bereiter & 
Scardamalia,  1993 ; Bransford, Brown, & Cocking, 
 2000 ; Dreyfus & Dreyfus,  1986  ) . Expert modeling 
mechanism supports the performance phase of 
self-regulation (Zimmerman & Campillo,  2003  ) .   

   Empirical Studies on the Web-Based 
Cognitive Modeling System 

 Different components and versions of the cogni-
tive support system, particularly the mechanism 
of question prompts, have been tested and studied 
in the past years in various contexts, content 
domains, and with different target audiences, 
including undergraduate students in information 
science and technology (IST), education, and 
pharmacy, as well as graduate students in instruc-
tional design and technology. Both quantitative 
and qualitative research methods have been 
employed to investigate the effects of the cogni-
tive support system on students’ ill-structured 
problem-solving performance in the past years. 
In all the research contexts, students were pro-
vided with one or two cases representing com-
plex, ill-structured problems related to the content 
domain of the target audience (see Fig.  15.1 ), and 
they were asked to analyze the problem, develop 
solutions, making justi fi cations, and evaluate 
their solution plan related to the participants’ 
subject domain (see Fig.  15.3  for example). 

   Experimental Studies 

 In four experimental studies (i.e., Ge & Land, 
 2003 ; Ge, Du, Chen, & Huang,    2005   ; Ge, Planas, 
& Er,  2010 ; Kauffman, Ge, Xie, & Chen,  2008  ) , 
the participants were assigned to either an exper-
imental group or a control group, and their task 
was to work on a case in a Web-based learning 
environment and generate solutions to the 
 ill-structured problem presented by the case, 
with or without scaffolds depending on the con-
dition they were assigned to (control vs. treat-
ment). Despite the differences in domain and 

target audiences, these studies shared some com-
monalities in research method and analytical 
techniques. All four studies involved the com-
parisons of a treatment group(s) with a control 
group in solving one or two ill-structured prob-
lem-solving tasks, focusing on the effect of ques-
tion prompts (independent variable) and 
measuring problem-solving outcomes in four or 
 fi ve processes (dependent variables): problem 
representation, generating solutions, construct-
ing argument, and monitoring and evaluation (or 
variants of these processes depending on a 
speci fi c domain). At the same time, the variable 
of monitoring and evaluation was also investi-
gated as the outcome of self-monitoring and 
self-evaluation. Scoring rubrics were developed 
to rate each of the students’ problem-solving 
processes. Inferential statistical analysis, such as 
multivariate analysis of variance and univariate 
tests were performed in those studies to deter-
mine if the use of the cognitive support system 
led to statistically signi fi cant differences between 
the experimental group and the control group. 

 In addition, some studies also measured 
additional dependent variables or investigated 
the effect of additional independent variables. 
For example, in Ge and Land’s  (  2003  )  study 
question prompts were compared with peer 
interactions (another independent variable). In 
Ge, Planas, and Er’s  (  2010  )  study, the effect of 
peer review was measured as an additional 
independent variable. On the other hand, the 
quality of students’ written problem-solving 
reports was measured as a dependent variable 
for preservice teachers in the study by Kauffman, 
Ge, Xie, and Chen  (  2008  ) . Furthermore, stu-
dents’ perceived competence and con fi dence 
were also measured by Ge, Du, Chen, and 
Huang  (  2005  )  when investigating the effect of 
question prompts on novice instructional 
designers’ problem-solving performance. In all 
these studies, we only measured the students’ 
problem-solving performance with scaffolding 
in comparison with the students’ problem- 
solving performance without scaffolding. However, 
we did not assess the transfer effect of scaffolding 
on students’ subsequent problem-solving perfor-
mance when scaffolding was withdrawn. 
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 In all these experimental studies, the results 
invariably showed positive effects of question 
prompts in scaffolding ill-structured problem-
solving processes in problem representation, 
selecting solutions, making justi fi cations, and 
evaluating solutions. Kauffman, Ge, Xie, and 
Chen’s  (  2008  )  study found that students who 
received problem-solving prompts (designed to 
procedurally guide learners through the problem-
solving processes) not only showed better prob-
lem-solving performance but also wrote with 
more clarity than the students who did not receive 
problem-solving prompts. Additionally, the study 
by Ge, Planas, and Er  (  2010  )  showed that simply 
engaging pharmacy students in revising their 
problem-solving solution reports improved their 
performance over time. It suggests that providing 
learners an opportunity to evaluate and revise 
their solutions seemed to have offered them time 
and space to engage in self-re fl ection and self-
regulation activities, which in turn bene fi ted their 
problem-solving experience. In the same study, 
however, the peer review mechanism did not 
show any advantage for the treatment group over 
the control group. This could be due to the fact 
that this experiment did not offer peers the oppor-
tunity to make comments or suggestions to each 
other, but only to view each others’ solutions. 
The feedback from this  fi nding had been incorpo-
rated to improve the system, the current version 
of which allows peers to type notes, comments, 
and suggestions.  

   Qualitative Studies 

 Qualitative studies were either carried out inde-
pendently (Ge, Chen, & Davis,  2005  ) , or as sup-
plemental methods to some of the experimental 
studies (i.e., Ge & Land,  2003 ; Ge, Planas, & Er, 
 2010  )  presented above. Various methods and 
techniques, including think-aloud protocols, 
observations, follow-up interviews, multiple 
case studies, and content analysis, were carried 
out to investigate the in fl uence of the system 
(i.e., Ge, Chen, & Davis,  2005 ; Ge & Land,  2003 ; 
Ge, Planas, & Er,  2010  ) . In the same study involv-
ing IST undergraduate students that is described 

above (Ge & Land,  2003  ) , some individuals were 
invited to participate in think-aloud protocols 
when performing an ill-structured problem-
solving task by following question prompts while 
some groups of students were videotaped for 
their peer interactions. In another study (Ge, 
Chen, & Davis,  2005  ) , eight graduate students in 
instructional design and technology received 
either elaborative prompts or procedural prompts, 
and they were asked to perform think-aloud 
protocols, which was followed by interviews. 
In a recent study of pharmacy students (Ge, 
Planas, & Er,  2010  ) , both individual responses 
and re fl ection notes were analyzed to examine 
the in fl uence of displaying the expert’s thought 
processes in solving a real-world problem. 

 It was commonly observed from the qualita-
tive studies that the students who received ques-
tion prompts were able to: (a) make an intentional 
effort to identify factors, seek needed informa-
tion, and analyze constraints during the problem 
representation process; (b) organize and plan a 
solution process; (c) make an effort to articulate 
justi fi cations or arguments during solution 
process; (d) intentionally evaluate solutions 
selected, comparing alternatives and justifying 
the most viable solutions. These  fi ndings indi-
cated how question prompts supported reasoning 
and self-regulation, which in turn in fl uenced 
problem-solving outcomes. On the other hand, 
the qualitative  fi ndings also revealed the condi-
tions under which question prompts could be 
either effective, limited, or impeding. For exam-
ple, in the absence of speci fi c-domain knowledge 
question prompts were futile in activating a 
learner’ prior knowledge or relevant schema 
(Ge, Chen, & Davis,  2005  ) ; for students who 
perceived themselves as more competent and 
con fi dent, question prompts were not only expe-
rienced as redundant but also as interfering with 
their thought  fl ow during their problem-solving 
 processes (Ge, Chen, & Davis,  2005  ) . 

 The content analysis in Ge, Planas and Er’s 
 (  2010  )  study (an experimental study mentioned 
earlier) showed that students’ responses to the 
 fi rst set of question prompts (e.g., “Step 
1 — Identify the problematic situation”) seemed to 
form a foundation that led to better performance 
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in their responses (i.e., more elaborated, detailed, 
and speci fi c) to the second set of question prompts 
(e.g., “Step 2 — De fi ne the problem”). In addition, 
the students in the treatment condition indicated 
that the peer review process allowed them to see 
multiple perspectives, different ideas, and differ-
ent approaches. It is also found that the expert 
view mechanism served as expert modeling and a 
standard for the students to compare with their 
own problem-solving approaches and con fi rm 
whether they were on the right track or not. This 
kind of comparison allowed the students to see 
where the discrepancies were, and thus helped 
them to re fl ect on what must be improved in the 
future. Most importantly, seeing how an expert 
solved an ill-structured problem increased the 
students’ con fi dence in solving similar problems 
themselves. These  fi ndings showed how provid-
ing expert modeling may help students engage in 
self-regulation activities. 

 Overall, the results from a series of studies 
(quantitative, qualitative, or mixed) con fi rmed 
the positive effects of the cognitive support sys-
tem in scaffolding problem-solving processes 
in each of the problem-solving processes 
(dependent variables):  problem representation , 
 generating solutions ,  constructing argument , 
and  monitoring and evaluating . Although some 
of the experimental studies did not directly 
measure self-monitoring and self-regulation 
skills during problem-solving processes, the 
qualitative data obtained from think-aloud pro-
tocols and observations revealed that learners’ 
problem-solving performance was in fl uenced by 
their execution of self-awareness, self-monitoring, 
and regulation skills mediated by the scaffolds 
of question prompts (Ge, Chen, & Davis,  2005 ; 
Ge & Land,  2003  ) .   

   Discussion 

 A comprehensive review of the work completed 
in the past years has enabled us to understand 
what has been achieved and what remains to be 
resolved in the area of scaffolding ill-structured 
problem solving through facilitating self- 

regulation in a technology-rich environment. A 
number of gaps and challenges have been 
identi fi ed in using the cognitive support system, 
particularly question prompts, to facilitate self-
regulation processes and problem-solving pro-
cesses and outcomes. For example, one of the 
research goals that has not been ful fi lled is to 
investigate the transfer effects of self-regulatory 
and problem-solving skills at different points of 
intervention as scaffolding is gradually with-
drawn over an extended period of time. 

 One of the challenges is the direct measurement 
of self-regulation skills. Although empirical 
 fi ndings have con fi rmed that question prompts 
embedded in the cognitive support system scaffold 
problem-solving processes through supporting 
self-regulation, there have not been direct quanti-
tative indicators to demonstrate the extent or level 
of self-regulation mediated by question prompts 
and the mutual in fl uences between self-regulation 
and ill-structured problem-solving skills. 

 The second challenge is to examine how to 
map self-regulatory processes with ill- structured 
problem-solving processes to generate an inte-
grated conceptual framework that  illustrates 
(a) the interrelationships between  self-regulation 
processes and ill-structured problem-solving 
processes, and (b) how different areas for regu-
lation (cognition, motivation, behavior, and 
context) (Pintrich,  2000  )  interact to support 
each of the ill-structured problem-solving pro-
cesses. This kind of conceptual framework will 
guide instructional design aiming at develop-
ing students’ self-regulation and ill-structured 
problem-solving skills. 

 The third challenge is the measurement of 
optimal amount or level of scaffolding needed 
for each individual learner based on one’s prior 
knowledge and metacognition so that proper 
scaffolding can be provided accordingly within 
an individual’s zone of proximal development. 
It is expected that the  fi ndings of this research 
will inform instructional design regarding 
automated scaffolding as to when and how 
much scaffolding should be provided for dif-
ferent individuals, as well as when scaffolding 
should be withdrawn.  
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   Design Implications 

 The empirical studies on the effects of the cogni-
tive support system have led to the evolvement 
and re fi nement of the system in a number of 
ways. For example, the question-prompt genera-
tor has been developed for the system, which 
allows a user, such as an instructor or a subject 
matter expert, to create protocols for modeling 
problem solving through writing question 
prompts for each of the problem-solving pro-
cesses. Each of these processes is considered a 
top-level prompt, under which the expert or 
instructor can generate several sublevel question 
prompts for elaboration or re fl ection. This feature 
allows a teacher or some other authorized user to 
input prompts according to different problem 
scenarios and different content domains. 

 In the future, it is desirable for the system to be 
capable of adaptively adjusting the level of scaf-
folding according to (a) learners’ prior knowledge 
and metacognition and (b) learners’ progress over 
time through providing problem-solving tasks of 
different dif fi culty levels, based on the results of 
some kind of automated assessments. Since feed-
back is an important technique in fostering self-
regulation, efforts must be made to enhance the 
cognitive support system with feedback mechanism, 
which can be achieved through  fi xed programmed 
feedback, expert feedback, and community feed-
back, even though it is understood that adding this 
feature might present technical, methodological, 
and practical challenges for development. In addi-
tion, it is hoped that a greater variety of strategies 
can be incorporated into the design framework of 
the system to promote self-regulation in all areas 
(i.e., cognition, motivation/affect, behavior, and 
context), as proposed by Pintrich  (  2000  ) .      
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  Abstract 

 Medical students’ metacognitive and self-regulatory behaviors are exam-
ined as they diagnose patient cases using BioWorld, a technology rich 
learning environment. BioWorld offers an authentic problem-based envi-
ronment where students solve clinical cases and receive expert feedback. 
We evaluate the effectiveness of key features in BioWorld (the evidence 
table and visualization maps) to see whether they promote metacognitive 
monitoring and evaluation. Learning outcomes were assessed through 
novice/expert comparisons in relation to diagnostic accuracy, con fi dence, 
and case summaries. More speci fi cally we examined how diagnostic pro-
cesses and learning outcomes were re fi ned or improved through practice at 
solving a series of patient cases. The results suggest that, with practice, 
medical students became more expert-like in the processes involved in 
making crucial clinical decisions. The implications of these  fi ndings for 
the design of features embedded within BioWorld that foster key metacog-
nitive and self-regulatory processes are discussed.      
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 This chapter explores how metacognition and 
self-regulated learning (SRL) are supported in 
the context of BioWorld (Lajoie,  2009  ) , a 

 technology-rich learning environment for pro-
moting clinical reasoning in medical students. 
BioWorld was designed using a cognitive appren-
ticeship framework (Collins, Brown, & Newman, 
 1987  ) , whereby instruction is based on modeling 
expert knowledge, coaching skills in the context 
of practice, and fading assistance when no longer 
needed. The  fi rst section of the chapter presents 
the theoretical perspectives, followed by a 
description that drives the design of BioWorld 
features that support metacognition and SRL. We 
then describe these speci fi c features followed by 
a series of empirical studies that support the claim 
that BioWorld supports medical students to 
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 self-regulate their cognition, motivation, and 
behavior. More speci fi cally, we look at how meta-
cognitive monitoring and evaluation of knowl-
edge is supported in BioWorld as students use the 
evidence table and visualization maps. 

   Theoretical Framework    

 The term metacognition originates from Flavell 
 (  1979  )  who described the concept from a devel-
opmental perspective as thinking about one’s 
own thinking (Lajoie,  2008  ) . According to 
Flavell, one’s metacognitive skills include estab-
lishing goals to attain understanding, the employ-
ment of strategies to achieve such goals, and the 
assessment of one’s progress in accomplishing 
them. In a general sense, the basis of metacogni-
tion rests within the individual, as it deals with 
the individual’s ability to re fl ect on new or exist-
ing cognitive structures (Dinsmore et al.,  2008  ) . 
One must also consider the interaction between 
the person, behavior, and environment where one 
component in fl uences the other. Bandura stresses 
this reciprocal determinism in describing the 
relationship between behavioral, emotional, and 
cognitive regulation (Bandura,  1986  ) . He empha-
sized that an individual’s will to learn, or motiva-
tion to learn, was key to maintaining effortful 
learning (Bandura,  1997  ) . 

 Self-regulated learning (SRL) was seen at the 
outset as an integrated theory of learning (Corno 
& Mandinach,  1983  )  that examined the interac-
tion of cognitive, motivational, and contextual 
factors. Whereas metacognition stresses the 
development of the learner’s ability, knowledge, 
and accomplishments, self-regulation stresses the 
reciprocal determinism of the environment on the 
individual, mediated through behavior. Dinsmore 
et al.  (  2008  )  distinguish between those studying 
SRL and metacognition, suggesting that the for-
mer focus on how the environment stimulates the 
individual’s awareness and regulatory response, 
whereas the latter researchers emphasize that the 
mind of the individual is the trigger for subse-
quent judgments. 

   Models of SRL 

 Various SRL models exist (e.g., Azevedo, Moos, 
Greene, Winters, & Cromley,  2008 ; Boekaerts, 
 1997 ; Corno & Mandinach,  1983 ; Pintrich,  2000 ; 
Winne,  2001 ; Winne & Hadwin,  1998 ; 
Zimmerman,  2000  )  that describe the relationship 
between various components and elements of 
learning. Most models integrate elements of both 
metacognition and self-regulation, though each 
emphasizes a different aspect of the complex 
interrelationship between the individual and con-
textual characteristics of self-regulatory skills 
(Pintrich & De Groot,  1990 ; Winne,  2001 ; 
Zimmerman,  2000  ) . Corno and Mandinach, for 
instance, stress the volitional aspects of SRL, 
while Winne and Hadwin focus on its cognitive 
dimension, and    McCaslin and Hickey  (  2001  )  
stress the sociocultural aspects of SRL. Azevedo 
and colleagues examine SRL as an event, captur-
ing the deployment of SRL processes at different 
levels of granularity (e.g., macro- and microlevel) 
and distinguishing between their positive and 
negative valence (e.g., appropriate vs. inappropri-
ate) as they occur through time (Azevedo,  2009 ; 
Azevedo, Moos, Witherspoon, & Chauncey,  2010 ; 
Greene & Azevedo,  2010  ) . Alternatively, Winne 
and colleagues (Butler & Winne,  1995 ; Winne, 
 2001 ; Winne & Hadwin,  1998 ; Winne & Perry, 
 2000  )  describe how self-regulated learning pivots 
on metacognitive monitoring and metacognitive 
control and emphasize that SRL is progressive. 

 Despite these differences, SRL researchers 
share Pintrich’s  (  2000  )  four basic assumptions: 
that learners actively construct their own mean-
ings, goals, and strategies from the information 
available in the  external  environment along with 
information in their own minds (the  internal  
environment); that learners can monitor, control, 
and regulate speci fi c aspects of their own cogni-
tion, motivation, and behavior along with certain 
environmental features; that there is a standard 
with which comparisons are made to reach, mon-
itor their progress, and then adapt and regulate 
their cognition, motivation, and behavior to attain 
these goals; and that SRL activities mediate 
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between personal and contextual traits and actual 
achievement or performance. 

 Furthermore, Pintrich et al. (Pintrich,  2000 ; 
Pintrich & De Groot,  1990 ; Pintrich, Wolters, 
& Baxter,  2000  )  describe four phases and areas 
of regulation. Signi fi cantly, the planning, mon-
itoring, control, and re fl ection phases can be 
applied to four areas of regulation: cognition, 
motivation, behavior, and context. It follows 
that context, which encompasses physical envi-
ronment, social interactions, and task charac-
teristics, can either facilitate or hinder students’ 
ability to self-regulate. 

 SRL skills such as self-monitoring follow a 
developmental trajectory, from novice to expert 
(Chi, Glaser, & Farr,  1988 ; Lajoie,  2003  ) . 
Fundamentally, experts are able to identify rele-
vant information, monitor and select appropriate 
problem-solving strategies, recognize what they 
understand, and identify when they have made 
mistakes. In contrast, there is an absence of self-
monitoring skills among novices (Zimmerman & 
Schunk,  2001  ) . We investigate the SRL trajectory 
in medicine by exploring how BioWorld supports 
the development of professional pro fi ciency in 
diagnostic reasoning (Lajoie,  2009  ) . Although 
BioWorld was not designed exclusively for the 
purpose of fostering metacognition and SRL, 
decisions were taken to support metacognition 
and SRL in the context of developing expertise in 
diagnostic reasoning. We describe these deci-
sions below and de fi ne metacognition and SRL 
pertaining to diagnostic reasoning in the context 
of the BioWorld experience.  

   Metacognition and Self-Regulated 
Learning in Medical Problem Solving 
with BioWorld 

   The Context 

 Problem-based learning approaches that are 
incorporated early on in the medical curriculum 
provide students with opportunities to apply their 
basic science knowledge to clinical practice prob-
lems. Experiential learning through clinical clerk-
ships is accepted as an effective way of gaining 

clinical reasoning skills and integrating newly 
acquired competencies into managing cases 
(Maudsley & Strivens,  2000  ) . However, it tends 
to be inef fi cient when students only see a few 
clinical problems. Furthermore the effectiveness 
of this approach depends on the availability of 
experienced medical supervisors who are avail-
able to provide effective teaching and feedback 
during clinical practice. 

 Computer-based learning environments afford 
the opportunity for medical students to gain addi-
tional experiential-style learning opportunities in 
a condensed time frame in a supported environ-
ment. BioWorld was designed with speci fi c cog-
nitive tools to support learning through practicing 
and re fi ning skills in relation to medical diagno-
sis (Lajoie,  2009  ) . Here we explore the effective-
ness of speci fi c tools designed to support 
metacognition and self-regulated learning within 
BioWorld, in particular the intersection between 
how the environment can stimulate individual 
awareness and how the mind serves as an initiator 
for judgments and evaluations. 

 Figure  16.1  provides an overview of the 
BioWorld interface. Each problem starts with a 
patient case history where students formulate 
their differential diagnoses. Once students select 
their primary diagnosis, they report their 
con fi dence in this hypothesis by using the  belief 

meter  (%certainty). Students gather evidence 
from the case history in support of a particular 
hypothesis using the  evidence table  that remains 
visible throughout the problem-solving activity. 
There is an online  library  where students access 
declarative knowledge about the disease they are 
researching. Information in the library represents 
the symptoms, diagnostic tests, and transmission 
routes of a speci fi c disease, as well as a glossary 
of medical terminology. In order to solve prob-
lems, students must conduct diagnostic tests to 
con fi rm or discon fi rm their diagnoses. They do 
so by ordering tests on the  patient chart , where 
the outcomes of their tests are recorded. This 
chart is a procedural knowledge tool since it pro-
vides a way for actions to be conducted in the 
context of problem solving. A simulated  consul-

tation tool  is present and learners can obtain 
feedback during the data collection process as 
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well as from the  expert summary  provided after 
they post their  fi nal diagnosis.  

 BioWorld includes several features that serve 
as metacognitive tools (Lajoie & Azevedo,  2006  )  
that promote metacognitive monitoring and con-
trol strategies critical to medical diagnostic 
 reasoning. Below, we describe the role that the 
evidence table, the expert summaries, and the 
expert solution visualization maps play in foster-
ing metacognition both during problem solving 
and after reaching a  fi nal diagnosis for a particu-
lar case. These features are described below.  

   Evidence Table 

 As students solve cases, they select and post the 
evidence they see as relevant to solving the case 
using the evidence table (see Fig.  16.1 ). Once the 
evidence is posted to the table, it remains visible 
throughout the problem-solving activity. In doing 
so, the evidence table serves as an external 

reminder to students of the data they considered 
relevant to the case. Students are encouraged to 
engage in metacognitive control processes through 
assessing the relevance and implications of the 
evidence they gather – from the case description 
and lab tests – in relation to their diagnosis. In 
doing so, students decide whether the test they 
ordered helped verify or eliminate a diagnosis and 
whether they need to order a new test, reconsult 
the case description, or revise/submit their 
hypothesis.  

   Visualization Map 

 Students’ retrospective re fl ection about their 
diagnostic reasoning processes after each case is 
solved is supported in two ways:  fi rst as a simple 
comparison with the evidence that an expert used 
to solve the problem and, second, through a visu-
alization map that documents expert diagnostic 
reasoning processes. The visualization maps 

  Fig. 16.1    Overview of BioWorld       
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 represent expert physicians’ solution processes 
and explanations (Gauthier,  2009 ; Gauthier, 
Naismith, Lajoie, & Wiseman,  2008  ) . These 
maps are constructed by capturing expert physi-
cians’ problem-solving processes through the use 
of a concurrent think aloud protocol (Ericsson & 
Simon,  1993  )  augmented with the screen capture 
and log  fi le data recorded while using BioWorld. 
The expert physicians’ solution paths for each 
case were merged together to provide evidence of 
commonalities and differences in their diagnostic 
reasoning towards a particular case. The visual 
representations help pinpoint such differences 
with regard to the sequence of events that charac-
terize the medical diagnostic process. 

 These expert models can be used as scaffolds 
where learners can compare their own processing 
actions with pro fi cient problem solvers. It allows 
medical students to re fl ect on their own reasoning 
by comparing when and how their solution paths 
differed from expert physicians’ as well as con-
sider different reasoning paths that lead to the 
same diagnosis.    Schoenfeld  (  1983  )  referred to 
this type of activity as an abstracted replay where 
students can replay or rethink their own actions 
by focusing students’ attention on the critical 
decisions or actions taken by experts. In the case 
of BioWorld, the student had to chose, or control, 
these metacognitive skills to compare their diag-
nostic reasoning strategies with that of an expert’s. 
Simply demonstrating a model does not mean 
that learners are actively engaged with it.   

   Overview of Empirical Evidence 
of BioWorld’s Role in Fostering 
Metacognition 

 In this section, we describe three empirical 
studies that examine the role of BioWorld in 
fostering metacognitive processes that are crucial 
in performing medical diagnoses. First, we 
investigate the impact of the expert solution 
visualization maps on students’ medical diag-
nostic process (Gauthier et al.,  2008  ) . Second, 
we investigate the effects of the evidence table on 
students’ ability to monitor and assess the 
medical diagnostic process (McCurdy et al., 

 2010  ) . Third, we replicate the  fi ndings obtained 
from the second study and expand this design to 
determine whether the evidence table assists 
students in writing case summaries  (Lajoie 
et al.,   in prep.  ) . In the following sections, we 
provide an overview of each study in terms of its 
research question, methods, experimental 
design, results, and conclusions. We then discuss 
the implications of our  fi ndings for learning 
about medical diagnosis in BioWorld.  

   Study 1: Do Visual Representations 
of Experts’ Solutions Scaffold 
Self-Regulation? 

 In this study, we investigate the effects of provid-
ing expert solution visualization maps to medical 
students after they submit their  fi nal diagnoses in 
BioWorld (Gauthier et al.,  2008  ) . We expected 
that the expert solution visualization maps would 
serve as a metacognitive tool (Lajoie & Azevedo, 
 2006  )  in terms of assisting medical students to 
re fl ect on the diagnostic process, thereby improv-
ing their accuracy and con fi dence in performing 
medical diagnoses. 

   Methods 

 Eighteen second-year medical students partici-
pated in this study. Students were randomly 
assigned to either the treatment or control 
 condition. The eight participants assigned to the 
treatment condition were shown the visualization 
map after they solved each case using BioWorld, 
while the ten participants assigned to the control 
condition used BioWorld without the visualiza-
tion maps. The study took place over a 2-day 
period in a computer laboratory. On day 1, stu-
dents were given a guided tour of how to use 
BioWorld and then solved the  fi rst case. On day 
2, students solved the remaining 2 cases.  

   Experimental Design 

 Students were examined as they learned to solve 
patient cases using BioWorld. The study follows a 
mixed factorial design with group as a between-
subjects factor (treatment and control groups), case 
as a within-subjects factor ( pheochromocytoma, 
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type 1 diabetes, and hyperthyroidism), and the accu-
racy of the  fi nal diagnosis and self-reported 
con fi dence levels as the dependent variables.  

   Results 

 There was no signi fi cant difference in average 
diagnostic accuracy of medical students across 
conditions,  t (16) = −1.43,  p  > 0.05. The medical 
students who had the bene fi t of the expert solu-
tion visualization maps were only slightly more 
accurate, on average, than those who did not have 
the maps ( M  = 0.79,  SD  = 0.25, vs.  M  = 0.60, 
 SD  = 0.31). Likewise there was no signi fi cant dif-
ference in average diagnostic con fi dence for the 
two groups ( t (16) = 0.30,  p  > 0.05). The medical 
students who saw the expert solution visualiza-
tion maps were on average as con fi dent as those 
who did not ( M  = 78.58,  SD  = 13.35, vs.  M  = 80.40, 
 SD  = 12.33). 

 Accuracy and con fi dence levels seemed to 
vary based on the type of case. For example, 
diagnosing pheochromocytoma was more 
dif fi cult than the other cases as indicated by 
incorrect diagnosis (see Table  16.1 ). Students in 
the control condition who made an incorrect 
diagnosis of the pheochromocytoma case were 
more con fi dent at the time they submitted their 
 fi nal diagnosis ( M  = 73.63) than those who had 
the correct diagnosis ( M  = 57.50). A similar pat-
tern emerged for students assigned to the treat-
ment condition, although the difference between 
the means was less pronounced ( M  = 67.50 vs. 
 M  = 62.00). In contrast to these  fi ndings, diagnos-
ing cases of type 1 diabetes and hyperthyroidism 

were less dif fi cult. Furthermore, those who 
obtained a correct diagnosis were more con fi dent 
in their  fi nal diagnosis (range = 85.00–91.44).   

   Conclusion 

 Our hypothesis was that the expert solution visu-
alization maps would foster self-re fl ection in rela-
tion to the diagnostic process and that, consequently, 
medical students would be more  accurate and 
con fi dent in reaching their  fi nal diagnoses. Our 
 fi ndings suggest that both groups who used 
BioWorld improved with respect to their accu-
racy and self-con fi dence in solving cases and that 
the effects of the visualization maps were small. 
More research on the effectiveness of these maps 
as scaffolds are needed. Students may need more 
guidance interpreting the expert visualization 
maps. For example, they may need a debrie fi ng 
with a human tutor to point out how and why an 
expert selected strategies different from their 
own. It is also possible that self-regulation during 
problem solving is more effective than re fl ection 
tasks after problem solving. In the next section, 
we use a mixed methods approach to delve more 
deeply into this data to establish how the evidence 
table assists medical students to monitor and 
assess the evidence they collect.   

   Study 2: The Effect of the Evidence 
Table on the Medical Diagnosis Process 

 In this study, we compare how medical students 
and expert physicians use the evidence table to 

   Table 16.1    Proportion of frequencies for accuracy and average con fi dence ratings for  fi nal diagnoses   

 Cases 

 Accuracy of  fi nal diagnoses 

 Control  Treatment 

 Correct  Incorrect  Correct  Incorrect 

 Case 1 (pheochromocytoma)  0.20  0.80  0.50  0.50 

 Case 2 (type 1 diabetes)  0.90  0.10  1.00  0.00 

 Case 3 (hyperthyroidism)  0.70  0.30  0.87  0.13 

 Cases 

 Con fi dence in  fi nal diagnoses 

 Control  Treatment 

 Correct  Incorrect  Correct  Incorrect 

 Case 1 (pheochromocytoma)  57.50  73.63  62.00  67.50 

 Case 2 (type 1 diabetes)  91.44  75.00  86.75  – 

 Case 3 (hyperthyroidism)  85.00  71.67  90.57  40.00 
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regulate the medical diagnostic process during 
learning with BioWorld (McCurdy et al.,  2010  ) . 
The research questions explored are the follow-
ing: do expert physicians differ from medical stu-
dents in the use of the evidence table while 
making medical diagnoses in BioWorld, and do 
they bene fi t differently from the evidence table? 
We expected that all participants would use the 
evidence table as a metacognitive tool (Lajoie & 
Azevedo,  2006  )  to monitor and assess their own 
medical diagnostic processing, through the post-
ing and review of their own evidence selection 
pertaining to their  fi nal diagnosis. We anticipated 
that experts would bene fi t more than novices 
since they have more established metacognitive 
resources. 

   Methods 

 The data used to answer this set of questions 
were gathered from past studies with medical 
students (see study 1, Gauthier et al.,  2008  )  and 
expert physicians (see Gauthier,  2009  )  diagnos-
ing the same three cases using BioWorld. Data 
from a total of 18 second-year medical students 
and 5 physicians from the same university sys-
tem were examined. We focused our investiga-
tion on how medical students and expert 
physicians selected speci fi c evidence items that 
supported their  fi nal diagnosis for each case. We 
examined the proportion of the total number of 
evidence items entered into the evidence table 
that was prioritized as being relevant to their 
medical diagnoses (i.e., # evidence items priori-
tized/# evidence items selected). We also exam-
ined the proportion of evidence items that 
medical students prioritized that matched with 
the expert physician’s prioritized list (i.e., # 
expert-like evidence items prioritized/# total evi-
dence items selected by students). For example, 
a student that had six expert-like evidence items 
prioritized out of a total number of 8 item selec-
tions would have more relevant expert-like 
moves than a student that had six expert-like evi-
dence items prioritized over 16 item selections. 
This metric identi fi es those  students who are 
more or less focused on the key elements needed 
to make an accurate diagnosis.  

   Experimental Design 

 The study follows a mixed factorial design with 
group as a between-subjects factor (student and 
physician groups), case as a within-subjects factor 
(pheochromocytoma, type 1 diabetes, and hyper-
thyroidism), and three dependent variables (the 
proportion of the total amount of evidence items 
that were prioritized as relevant to making the  fi nal 
diagnosis, the proportion of evidence that was 
taken from the problem statement, and the propor-
tion of evidence taken from the diagnostic tests).  

   Results 

 The results of the repeated measures ANOVA 
show that the proportion of the total amount of 
evidence items that were prioritized differs across 
cases and groups,  F (2, 32) = 7.54,  p  < 0.05, and 
 F (1, 16) = 7.96,  p  < 0.05, respectively. More evi-
dence was prioritized for the hyperthyroidism 
case, followed by type 1 diabetes and the pheo-
chromocytoma. In other words, both novices and 
experts were more selective in relation to the evi-
dence that they prioritized to reach a diagnosis of 
pheochromocytoma ( M  = 0.65,  SD  = 0.32) as 
opposed to type 1 diabetes and hyperthyroidism 
( M  = 0.79,  SD  = 0.23, and  M  = 0.84,  SD  = 0.23). 
However, experts were more selective in priori-
tizing their evidence across all of the cases, since 
they selected less evidence to support their  fi nal 
arguments ( M  = 0.52,  SD  = 0.20), respectively, 
than medical students ( M  = 0.83,  SD  = 0.25). The 
interaction between group and case was not sta-
tistically signi fi cant ( F (2, 32) = 1.38,  p  > 0.05). 

 In regard to differences in prioritization of 
problem statement items, there was a between-
group difference ( F (1, 16) = 5.91,  p  < 0.05) but no 
case effect ( F (2, 32) = 1.33,  p  > 0.05) and no inter-
action between cases and groups ( F (2, 32) = 1.25, 
 p  > 0.05). Experts were more selective ( M  = 0.59, 
 SD  = 0.17) than novices ( M  = 0.83,  SD  = 0.28) in 
their prioritization of evidence found in the 
 problem statement. The proportion of diagnos-
tic tests prioritized did not differ across cases 
( F (2, 32) = 2.03,  p  > 0.05) nor across groups 
( F (1,16) = 0.99,  p  > 0.05). However, there was 
an interaction between group and cases 
( F (2, 32) = 6.82,  p  < 0.05). The novices were less 
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selective in regard to the evidence selected for 
the type 1 diabetes case ( M  = 0.91,  SD  = 0.21) as 
opposed to the pheochromocytoma and hyper-
thyroidism cases ( M  = 0.65,  SD  = 0.39, and 
 M  = 0.84,  SD  = 0.36, respectively). In contrast, 
the experts were more selective in regard to the 
evidence selected for the type 1 diabetes case 
( M  = 0.37,  SD  = 0.28) as opposed to the pheochro-
mocytoma and hyperthyroidism cases ( M  = 0.79, 
 SD  = 0.25, and  M  = 0.82,  SD  = 0.27, respectively). 

 Given the group and case differences, a more 
detailed analysis was conducted to compare 
medical students with experts. Table  16.2  pres-
ents the repeated measures ANOVA on the pro-
portion of expert-like matches for total evidence 
selected as well as speci fi c evidence matches 
with expert-like problem statement items and 
diagnostic tests. Case effects were found for all 
three variables. Fisher’s least signi fi cant differ-
ence multiple comparisons test was conducted 
to determine which cases were solved in a man-
ner that matched the expert physician’s solution 
(see Table  16.3 ). Medical students differed 
most from the experts when diagnosing pheo-
chromocytoma. In diagnosing pheochromocy-
toma, only a small proportion of medical 

students’ evidence items matched with the ones 
the expert prioritized, as opposed to diagnosing 
type 1 diabetes and hyperthyroidism ( M  = 0.19 
vs.  M  = 0.59 and  M  = 0.60). We further analyzed 
the type of evidence prioritized, in terms of 
diagnostic tests and items found in the problem 
statement. Group differences across cases were 
found in regard to the proportion of expert-like 
diagnostic tests that were prioritized by medi-
cal students,  F (2, 26) = 10.67,  p  < 0.001. Once 
again case differences were examined using 
LSD comparisons test, which showed that there 
was a smaller proportion of matches between 
medical students and experts on the diagnostic 
tests ordered and prioritized while diagnosing 
pheochromocytoma ( M  = 0.16). The proportion 
of problem statement items that were priori-
tized and that matched the experts solution was 
also found to differ across cases,  F (2, 
26) = 14.24,  p  < 0.001. The Fisher’s LSD results 
show that all of the pairwise comparisons were 
signi fi cant. Students differed most from the 
experts when diagnosing pheochromocytoma 
( M  = 0.36); however closer matches were found 
for hyperthyroidism ( M  = 0.63) and type 1 dia-
betes ( M  = 0.80).    

   Table 16.2    ANOVAs performed on the proportion of expert-like total amount of evidence 
items, problem statement items, and diagnostic test items   

 Variables  Source   df    MS    F    p  

 Expert-like proportion of total evidence items  Cases  2  0.77  21.34  0.001* 

 Error  26  0.04 

 Expert-like proportion of problem statement items  Cases  2  0.69  14.24  0.001* 

 Error  26  0.05 

 Expert-like proportion of diagnostic tests  Cases  2  0.70  10.67  0.001* 

 Error  26  0.07 

     * p  < 0. 001  

   Table 16.3    Fisher’s least signi fi cant difference multiple comparison tests on the proportion of expert-like total amount 
of evidence items, problem statement items, and diagnostic test items   

 Variables  Case 1 pheochromocytoma  Case 2 type 1 diabetes  Case 3 hyperthyroidism 

 Expert-like proportion of total 
evidence items 

 0.19  0.59  0.60 

 Expert-like proportion of 
problem statement items 

 0.36  0.80  0.63 

 Expert-like proportion of 
diagnostic tests 

 0.16  0.47  0.60 

  Note: all pairwise comparisons signi fi cant at  p  < 0.05  
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   Conclusion 

 We compared the evidence that was prioritized 
by the medical students and expert physicians 
based on the assumption that overlapping pat-
terns of behaviors are indicative of better diag-
nostic reasoning processes by the students. The 
results suggest that expert physicians engage in 
more metacognitive processes than novice 
medical students while using the evidence table 
to reach a  fi nal diagnosis. In contrast to novices, 
experts prioritize less evidence from the prob-
lem statement and clinical tests. Expert physi-
cians are also relatively selective and consistent 
in regard to the evidence items that they priori-
tize. In contrast, novices were less selective in 
regard to the evidence that they prioritize. 
However, novices become more expert-like in 
the manner in which they solved the cases with 
experience using BioWorld. This  fi nding 
 supports the belief that there is a developmental 
trajectory for self-regulated monitoring and 
control processes. Case analyses revealed that 
the greatest expert-novice differences were for 
the pheochromocytoma case, with less overlap 
between experts and novices on this case in 
terms of how evidence was selected and priori-
tized. Given this was the most dif fi cult case, 
some discrepancy is to be expected. 

 These  fi ndings show promise, but further 
research was needed to verify whether the pos-
itive impact of solving cases with BioWorld 
can be attributed to case complexity or to prac-
ticing and re fi ning skills in relation to diagnos-
tic reasoning with BioWorld. The evaluation of 
the effectiveness of the evidence table as a 
metacognitive tool must take into account the 
skill level of the participant, the order of the cases, 
as well as the level of complexity of the cases. 
These factors impact students’ ability to monitor 
and assess their efforts to prioritize the evidence 
and solve the cases. Novices may need more 
scaffolding in terms of using the evidence table 
more ef fi ciently. In the next section, we present 
a follow-up study which replicated and elabo-
rated these  fi ndings with a different sample. 
The order and complexity of the cases were 
further examined.   

   Study 3: The Effects of the Evidence 
Table on Prioritizing Evidence 
and Writing Case Summaries 

 We build on the McCurdy et al.  (  2010  )  study with 
regard to the in fl uence of the evidence table on the 
diagnostic reasoning processes in BioWorld 
 (Lajoie et al.,   in prep.  ) . In this study, we used a pre- 
and posttest evaluation of learning outcomes as 
well as a medical student/physician comparison in 
terms of the evidence that was prioritized and 
summarized. The primary research questions 
addressed in this study are the following: does 
having the bene fi t of the evidence table assist 
medical students in performing medical diagno-
ses in BioWorld, and does the evidence table assist 
participants while writing case summaries? We 
compare how medical students and physicians use 
the evidence table to regulate the medical diag-
nostic process and write case summaries. 

 Given that the evidence table provides a means 
to monitor and assess one’s thinking with respect 
to the diagnostic process, we anticipated that it 
would serve as a metacognitive tool that would 
also help learners when they were writing their 
case summaries where they document how and 
why they reached a particular diagnosis. We 
anticipated that the evidence that was prioritized 
and summarized by the medical students would 
become more expert-like (overlapping more with 
physician responses) as they used BioWorld. We 
also expected that accuracy and con fi dence in 
their  fi nal diagnoses should increase after prac-
ticing and re fi ning their skills using BioWorld. 

   Methods 

 Twelve second-year medical students participated 
in the study. The study took place over a 2-day 
period in a computer laboratory. The methodol-
ogy used in this study was similar to the one used 
in study 2 above (McCurdy et al.,  2010  ) , with sev-
eral exceptions. First, we added a pre- and posttest 
evaluation of learning outcomes, each one con-
sisting of a case that had to be solved by the stu-
dents in BioWorld. Second, we compared the 
medical students’ prioritized evidence and case 
summaries to the expert physicians’ solutions by 
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counting the number of matching idea units (see 
Lajoie et al.,  in prep.  ) . Third, we included two 
questionnaires that were administered during the 
posttest. The  fi rst questionnaire, based on the 
On-line Motivation Questionnaire (OLM) 
(Boekaerts,  2002  ) , measures students’ perception 
of the usefulness of BioWorld as well as their 
motivation to solve cases. The second measure 
assessed students’ perceived dif fi culty of each 
case. On day 1 students were given a guided tour 
of the software and administered questionnaires. 
They then solved the type 1 diabetes case. The 
more dif fi cult cases, hyperthyroidism and pheo-
chromocytoma, were presented in random order 
on day 2 to rule out the effects of case complexity 
(one case being more dif fi cult than another) in 
evaluating practice effects with BioWorld.  

   Experimental Design 

 The study follows a mixed factorial design with 
cases as a within-subjects factor (pretest case, 
pheochromocytoma, type 1 diabetes, hyperthy-
roidism, and posttest case), and the dependent 
variables were the proportion of expert-like evi-
dence items that were prioritized and summa-
rized, the accuracy of the  fi nal diagnosis, 
self-reported con fi dence levels, as well as their 
reactions and motivation towards using 
BioWorld. A repeated measures analysis was 
performed in which the data from all  participants 
was compared to those of the expert physi-
cians, in accordance to the methodology fol-
lowed by McCurdy et al.  (  2010  ) .  

   Results 

 The results obtained from the repeated measures 
analysis of variance show a statistically signi fi cant 
difference between cases in terms of the propor-
tion of expert-like evidence items that were pri-
oritized,  F (2, 20) = 7.40,  p  < 0.01. We examined 
this case effect further by performing post hoc 
comparisons using the Fisher’s LSD that indi-
cated a higher overlap between medical students 
and experts on prioritizing evidence items on 
cases provided on day 2. The proportion of 
expert-like prioritized evidence was signi fi cantly 
lower on day 1 (type 1 diabetes case) than for the 
hyperthyroidism and  pheochromocytoma cases 
solved on day 2 ( M  = 0.62 vs.  M  = 0.82, and 

 M  = 0.72). However, the results of the RM-ANOVA 
showed no signi fi cant differences between the 
cases in terms of the proportion of evidence items 
that were expert-like that appear in the case sum-
maries,  F (2, 12) = 0.76,  p  = 0.49. We calculated 
the proportion of expert-like idea units in the stu-
dents’ case summaries by dividing the number of 
idea units that matched an idea unit mentioned in 
an expert case summary by the total number of 
idea units mentioned. We compared across cases, 
excluding the  fi ve students who did not write a 
summary for each case. The observed power for 
this analysis, calculated at   a   = 0.05, was low 
(0.15) due to the missing data. 

 To assess students’ overall performance in 
BioWorld, we examined the accuracy of their 
 fi nal diagnoses, anticipating an increase in 
accuracy from pre- to posttest. Accuracy was 
measured with a value of 1 indicating correct 
and 0 indicating incorrect. Given the small 
sample size ( N  = 12), we used the Wilcoxon’s 
Matched-Pairs Signed-Ranks Test to assess the 
signi fi cance of these differences. Though stu-
dents increased in accuracy from pretest to 
posttest, this difference was not signi fi cant, 
 Z  = −1.00,  p  = 0.32. We also looked at whether 
students’ con fi dence in their  fi nal diagnoses 
increased from pre- to posttest, again using a 
Wilcoxon’s Matched-Pairs Signed-Ranks Test. 
Con fi dence was interpreted as the belief meter 
value at the time a student submitted his or her 
 fi nal diagnosis. We expected a statistically 
signi fi cant increase in con fi dence levels from 
pre- to posttest, and this hypothesis was sup-
ported,  Z  = −2.98,  p  < 0.01. Table  16.4  displays 

   Table 16.4    Means and standard deviations of accuracy 
and con fi dence in regard to the  fi nal diagnosis at pre- and 
posttest   

 Means (standard deviations) 

 Variables  Pretest  Posttest 

 Accuracy  0.75 (0.45)  0.92 (0.29) 

 Con fi dence  0.79 (0.11)  0.95 (0.06) 

  On the post-questionnaire, students were asked to rate the 
helpfulness of BioWorld on a  fi ve-point Likert scale 
(1 = not helpful; 5 = very helpful). The mean response was 
3.83 ( SD  = 0.72), suggesting that students perceived 
BioWorld to be a useful learning tool. From the OLM, 
students also reported that they put in a lot of effort in 
solving each patient case ( M  = 2.97,  SD  = 0.51)  
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the means and standard deviations for the two 
overall performance variables.   

   Conclusion 

 We evaluated the effectiveness of the evidence 
table in terms of assisting medical students to 
monitor and assess the medical diagnosis pro-
cess and write case summaries. We compared 
the evidence that was prioritized and summa-
rized by the medical students and expert physi-
cians based on the assumption that overlapping 
patterns of behaviors are indicative of better per-
formance on the part of the students. Overall, 
medical students obtained an average of 60–80% 
overlap in the amount of evidence that was pri-
oritized and summarized by the expert physi-
cians. The results demonstrate that practicing 
medical diagnosis with BioWorld had a positive 
effect on students in that they increased from day 
1 to day 2 in the proportion of expert-like evi-
dence that was prioritized. Given that students 
were given the most complex and challenging 
cases on day 2 makes this practice effect more 
important. However, there was no increase in the 
amount of expert evidence reported in case sum-
maries over time. This  fi nding may be due to the 
fact that students were not experienced with 
writing case summaries and that fewer students 
completed the case summaries. 

 We expected that medical students would 
become more con fi dent in their medical diagno-
ses after practicing with BioWorld. Accordingly, 
the con fi dence in performing medical diagnoses 
increased from pre- to posttest cases. On the one 
hand, this provides preliminary evidence in favor 
of the bene fi t of practicing medical diagnosis 
with BioWorld. On the other hand, the increase in 
levels of accuracy showed more variability across 
students and was not statistically signi fi cant, 
which suggests that medical students may some-
times be overcon fi dent in submitting their  fi nal 
diagnoses. 

 Finally, the pre-/post-questionnaire data revealed 
that learners put in a lot of effort solving cases and 
found BioWorld to be a useful learning tool.    

   Discussion 

 The competitive entry requirements for medical 
school generally result in cohorts of students that 
are of high ability and motivated to succeed. Such 
students are likely to be receptive to the introduc-
tion of computer-based tools that provide prac-
tice problems and insight into expert clinical 
reasoning. In fact, we found this to be true in 
study 3 where we used a modi fi ed version of 
Boekaert’s  (  2002  )  motivation questionnaire as a 
premeasure that demonstrated that students were 
motivated to use BioWorld. BioWorld provides 
an authentic experience of clinical reasoning, 
complementing the time-constrained learning 
within a hospital setting. 

 For students to bene fi t from the learning 
opportunities provided, they must develop appro-
priate domain-speci fi c self-regulated learning 
skills. BioWorld is designed to make learners’ 
medical diagnostic processes more visible, thus 
fostering metacognitive skills that are critical to 
reaching a  fi nal diagnosis. In the following sec-
tion, we summarize the ways in which BioWorld 
served as an external regulator of medical stu-
dents’ diagnostic reasoning and how the BioWorld 
context played an important role in stimulating 
engagement and motivation to learn. 

   Empirical Support for SRL 
with BioWorld 

 In the  fi rst study, expert solution visualization 
maps were presented to medical students after 
they submitted their  fi nal diagnosis for each case. 
Our assumption was that the maps would promote 
metacognitive processes in that students would 
re fl ect on their diagnostic reasoning skills by 
monitoring and comparing their own learning 
processes with that of an expert. We examined 
whether students who had the bene fi t of such 
maps would outperform students in terms of diag-
nostic accuracy and also achieve higher levels of 
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con fi dence. Group differences were nonsigni fi cant 
in that both groups improved their performance 
accuracy and con fi dence  levels as a function of 
working with BioWorld cases. The effects of the 
maps appear to be small. Further analyses will be 
conducted on the think aloud protocol data in 
order to determine whether students pinpoint dis-
crepancies between their own performance and 
that of experts. Future directions may include 
more directed animations of how individuals dif-
fered from the experts or incorporating human 
instructors in abstracted replay sessions that 
debrief the diagnostic reasoning process. 

 Our assumption was that the evidence table 
would foster self-regulatory processes that are 
critical to diagnostic reasoning. In particular, the 
table should help learners monitor their reason-
ing and help them be more aware of the implica-
tions of their evidence in relation to the accuracy 
of their diagnosis. If using the table correctly, 
learners should engage in remedial strategies, 
i.e., readjusting their hypotheses when diagnos-
tic test results did not con fi rm their diagnosis. 
These self-regulatory processes should result in 
medical students eventually prioritizing their 
evidence in a more expert-like manner. As such, 
we examined both medical students and physi-
cians to see whether they collected and used evi-
dence differently. Not surprisingly, our  fi ndings 
support the expertise literature (Chi et al.,  1988  ) , 
in that the physicians (experts) engaged in more 
metacognitive processing than medical students 
(relative novices). The experts in this study were 
relatively selective in the type of evidence they 
used and prioritized as compared to the novices. 
Case dif fi culty was considered a possible con-
founding effect in the learning process, and 
hence, study 2 counterbalanced this variable and 
found a developmental trajectory in that students 
became more expert-like as they practiced medi-
cal diagnosis with BioWorld. 

 Study 3 expanded on the results from study 2 
in that we explored the relationship between the 
evidence medical students collected and priori-
tized and used in their case summaries. Once 
again, we anticipated improved performance as a 
result of practice with BioWorld, as shown in an 
increase in the amount of expert-like evidence 

items over time. The results con fi rmed this train-
ing effect since there was a signi fi cant increase 
from the  fi rst to the second day in the overlap 
between medical students and experts in terms of 
proportion of evidence prioritized. This  fi nding 
provides support to our hypothesis that the evi-
dence table served effectively as a metacognitive 
tool. Students were more likely to exhibit SRL 
monitoring and control behaviors for the later 
cases, suggesting that BioWorld stimulated meta-
cognitive awareness in a progressive or develop-
mental manner, which supports Winne and 
colleagues’ model of SRL following a develop-
mental trajectory. A similar trend is suggested by 
the case summary data, but we were unable to 
detect statistically signi fi cant relationships, likely 
due to missing data and the resulting low power 
of the analysis. Future studies will need to con-
sider longer treatments to promote stronger 
effects. Furthermore, we will need to overcome 
the small sample size issues. We may need to  fi nd 
alternative method of recruiting participants in 
this specialized area who already have a full med-
ical curriculum that competes for their time. 

    The third study also revealed that students put 
in a great deal of effort solving cases in BioWorld 
and that BioWorld successfully engaged student 
interest and motivation to learn. Students reported 
that BioWorld met their initial expectations, sug-
gesting that they are able to employ metacogni-
tive judgment in terms of assessing the prospective 
helpfulness of learning tools. These  fi ndings sup-
port Bandura’s notion that an individual’s will to 
learn is necessary to maintain effortful learning 
and suggests that BioWorld is effective in provid-
ing a context that facilitates students’ ability to 
self-regulate (Pintrich,  2000  ) . 

 Overall, the three studies reveal that medical 
students generally increased from pre- to post-
test, in terms of accuracy of their  fi nal diagnosis, 
although not signi fi cantly. The sample of students 
demonstrated relatively high ability in solving 
cases.    In analyzing the accuracy differences, we 
noted that it was possible for students to obtain 
the correct diagnosis, but they miss important 
aspects of the case, i.e., a possible life-threaten-
ing complication. Evaluating accuracy as an iso-
lated variable may thus be an inappropriate 
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measure of students’ clinical reasoning ability. 
Measures such as the proportion of prioritized 
evidence items that were expert-like provide a 
more nuanced measurement of students’ ability 
to discriminate between expert-like and non-
expert-like evidence. 

 Students who used BioWorld demonstrated a 
statistically signi fi cant increase in con fi dence 
level from pre- to posttest. We anticipated that 
con fi dence would increase with better problem-
solving ability. However, we also observed inci-
dents of overcon fi dence, in which students 
selected a high value for the belief meter, but did 
not document appropriate evidence to support 
their diagnoses. The literature suggests that nov-
ice physicians  fi nd it particularly dif fi cult to 
accurately assess their level of competence when 
they are “unskilled and unaware of it” (Hodges, 
Regehr, & Martin,  2001  ) . To address this situa-
tion, it may be necessary for BioWorld to incor-
porate additional metacognitive scaffolds to 
prompt students to re fl ect on how they arrived at 
a particular diagnosis and how often they have 
encountered such a disease in their previous stud-
ies and clinical experience. 

   Implications and Future Research 

 We have provided evidence that advanced learning 
technologies can be designed to support self-regu-
lated learning. Our goal in designing BioWorld was 
to help novice medical students become more 
expert-like in the processes they take to make clini-
cal decisions. The expertise literature demonstrates 
that one dimension of expertise is higher metacog-
nitive skills. Tools in BioWorld such as the evidence 
table support participants in their metacognitive 
monitoring of the choices they make while trying to 
solve a patient case as well as support for decisions 
and control of what they see as relevant or irrelevant 
to the overall decision-making process. In this 
regard, the evidence table was found to be effective 
in promoting more expert-like behavior, as a func-
tion of supporting metacognitive skills. However, 
the expert solution visualization maps were also 
designed to support self-regulation by providing a 
post-re fl ection tool to compare one’s own decisions 

with that of an expert. However, we did not  fi nd 
support that this feature was used appropriately. 
Future research is needed to determine if further 
scaffolding is needed in how to use these maps. 
Future studies are needed that are of longer dura-
tion, with more patient cases to solve and with more 
students to validate the current research.        
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  Abstract 

 This chapter summarizes the rationale and  fi ndings of several studies using 
rich open-ended web-based learning environments (Web-LEs) as learning 
technology in higher education. The purpose of the studies was to examine 
self-regulated learning activities by tracing university students’ learning 
activities within a rich open-ended Web-LE by log  fi le data. Hence, the 
Web-LEs used in these studies provided non-embedded as well as embed-
ded tools supporting cognitive as well as metacognitive learning activities. 
Students in all studies were free to decide when and how to use these tools. 
To use them, they had to activate the selected tool explicitly by clicking on 
the respective button on the Web-LEs’ interface. The rationale for the 
design of the Web-LEs and for analyzing and interpreting the log  fi le data 
was derived from psychological task analyses which were based on a mul-
tidimensional view of self-regulated learning within Web-LEs  (e.g., 
Narciss et al., 2007; Winter, 2008). This chapter outlines this rationale, 
describes the resources and tools of the rich Web-LE called  Study Desk , 
and summarizes several studies investigating how students used the tools 
of the  Study Desks . Finally, limitations, challenges and implications of 
using log  fi le data for investigating self-regulated learning with rich Web-
LEs are discussed.      
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   Web-Based Learning in Higher 
Education 

 Web-based learning environments are increas-
ingly used as components of learning scenarios 
in higher education.  Web-based learning environ-

ments  (Web-LEs) are characterized as (e.g., 
Narciss, Proske, & Körndle,  2007  )  (a) providing 
nonlinear access to multiple information resources 
(e.g., electronic textbooks, online-libraries, 
 databases, electronic archives, electronic ency-
clopedias), (b) coding and storing various content 
in multiple representations (e.g., text,  fi gures, 
symbolic notations, audiovisual formats, simula-
tions), (c) presenting information for auditive, 
visual, or audiovisual information processing 
(e.g., written or spoken text, static or animated 
 fi gures, simulations or animations), and (d) pro-
viding different types of interactivity (e.g., tech-
nical manipulation of resources, social interaction 
and mental engagement). 

 With the rapid progression of the capacities 
of modern information technologies, a large 
variety of Web-LEs has been developed and 
implemented in different types of instructional 
scenarios in higher education (e.g., Azevedo & 
Jacobson,  2008  ) . Web-LEs used in higher edu-
cation span from Web-LEs which merely deliver 
course material the like texts, lecture slides, 
and lists of helpful references, to more sophisti-
cated rich Web-LEs. Rich Web-LEs do not only 
provide access to course-related materials, 
media, and resources, but they also provide 
tools and resources for supporting students in 
self-regulating their learning processes. 
Furthermore, due to the diversity and richness 
of the information materials, resources and 
tools accessible through a rich Web-LE are to a 
certain degree open-ended (Hanna fi n, Land, & 
Oliver,  1999  ) . 

 This chapter summarizes the rationale and 
 fi ndings of several studies using rich open-ended 
Web-LEs as learning technology for supporting 
undergraduate psychology and teacher education 
students in acquiring and deepening their knowl-
edge of psychological learning theories (e.g., 

classical conditioning, operant conditioning, 
social-cognitive theory of learning). These Web-
LEs on learning theories have been developed to 
complement lectures and seminars in Educational 
Psychology and General Psychology. 

 The main purpose of the studies was to gain 
insights in  self-initiated  self-regulated learning 
activities by tracing students’ learning activities 
within a rich open-ended Web-LE by log  fi le 
data. Hence, the Web-LEs used in these studies 
provided non-embedded as well as embedded 
tools (Clarebout & Elen,  2006,   2008  ) , which 
could be used as a support for self-regulated 
learning activities such as: (a) orientation by 
 getting an overview on the material, resources, 
structure and size of the Web-LE, (b) active, elab-
orative processing tactics (e.g., highlighting 
important concepts; making notes; summarizing) 
or strategies (i.e., using con fi gurations of tactics 
in a purposeful way, Wade, Trathen, & Schraw, 
 1990  ) , (c) monitoring and evaluating understand-
ing, and (d) monitoring learning progress as well 
as outcomes. To render students’ self-initiated 
access to the non-embedded tools visible in the 
log  fi le data, students in all studies were free to 
decide when and how to use the tools. If they 
decided to use them, they had to activate the 
selected tool explicitly by clicking on the respec-
tive button on the Web-LEs’ interface (see Sect. 
“  Study Desk : A Rich Web-LE with Metacognitive 
Tools ” for more details). 

 The rationale for analyzing and interpreting 
the log  fi le data, traced based on students’ use of 
the resources and tools of these Web-LEs, was 
derived from cognitive and metacognitive task 
analyses which were based on a multidimen-
sional view of self-regulated learning activities 
within Web-LEs (e.g., Narciss et al.,  2007 ; 
   Winters, Greene, & Costich,  2008  ) . In the fol-
lowing sections we  fi rst outline this rationale, 
before we present in more detail the resources 
and tools of a Web-LE called  Study Desk . Then 
we summarize several studies conducted with 
several rich open-ended  Study Desks . Finally, 
limitations, challenges, and implications of using 
log  fi le data for investigating self-regulated learn-
ing with rich Web-LEs are discussed.  
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   Self-Regulation and Metacognition 
in Web-Based Learning 

 When studying with a rich open-ended Web-LE 
students have to cope with (a) technical and oper-
ational challenges (i.e., accessing electronic 
resources; handling technical tools), (b) cognitive 
challenges (i.e., decoding, comprehending and 
integrating information represented in various 
codes and presented through various modalities), 
and (c) metacognitive or self-regulated learning 
challenges (i.e., planning, monitoring, regulating, 
evaluating the process and products of learning, 
see for example Azevedo,  2007 ; Zimmerman, 
 2000  ) . 

 Recent reviews reveal that the concepts of 
 self-regulation ,  self-regulated learning,  and 
 metacognition  have been conceptualized and 
used in various ways (Alexander,  2008 ; 
Dinsmore, Alexander, & Loughlin,  2008 ; Kaplan, 
 2008  ) . Some researchers view the concepts of 
self-regulation, self-regulated learning, and 
metacognition as distinct constructs, others as 
constructs which share core assumptions and are 
nested within each other (e.g., Azevedo,  2005, 
  2007  ) . Our work is based on the latter conceptu-
alization: More speci fi cally, we adopted a multi-
dimensional view on self-regulated learning 
(SRL) which integrates common assumptions of 
SRL-models (e.g., Boekaerts,  1997 ; Butler & 
Winne,  1995 ; Zimmerman,  2000  )  and metacog-
nition frameworks (e.g., Flavell,  1979,   1985 ; 
Winne,  2001 ; Winne & Hadwin,  1998  ) . 

 The basic assumption of this multidimen-
sional view is that SRL-activities serve to adapt 
students’ goal-directed learning activities to the 
individual and situational conditions and chal-
lenges of the learning process. Inspired by meta-
cognition frameworks (Flavell,  1979 ; Winne & 
Hadwin,  1998  )  we distinguish between several 
“objects” which might be addressed by SRL-
activities, including (a) the learning person, (b) 
the learning task, or more generally spoken the 
conditions of the learning environment, (c) the 
learning behavior, namely, study tactics or strat-
egies, as well as (d) the learning outcomes or 

products. Figure  17.1  provides an overview on 
the large variety of aspects which might be 
addressed by SRL-activities when studying with 
a Web-LE.  

 Drawing from information processing models 
of SRL and metacognition (i.e., Pressley, 
Borkwski, & Schneider,  1989 ; Winne & Hadwin, 
 1998,   2008  ) , we assume that SRL-activities may 
occur in various stages or phases of learning and 
along various levels of regulation (see also 
Azevedo,  2007  ) . In line with Winne and Hadwin’s 
 (  1998  )  COPES framework we assume that the 
learning process starts with an orientation or task 
analysis phase in which students analyze the indi-
vidual and situational conditions of the task and 
learning environment at hand. In doing so they 
may generate a subjective representation of these 
conditions. This subjective representation serves 
as a basis for the second phase, the planning 
phase. In the planning phase learners have to 
select and specify goals and subgoals, conduct 
means-end analysis in order to select study tactics 
and strategies they might apply to achieve these 
goals, outline a learning plan; that is make deci-
sions when, why and how to use which study tac-
tics and strategies. In a third stage, the processing 
phase (referred to as performance by Zimmerman, 
 2000  ) , students have to activate and control the 
selected study tactics and strategies. Furthermore, 
they have to monitor and if necessary adapt, adjust 
or even alter either their tactics and strategies, or 
their plans and goals, or even their subjective rep-
resentation of the conditions of the learning tasks 
and environment. In studying with a rich open-
ended Web-LE this means that students may for 
example apply the activity of monitoring with 
regard to (a) a concrete local cognitive learning 
activity the like decoding the meaning of data in a 
graphic, or (b) metacognitive activities the like 
assessing progress towards goal achievement. In 
the  fi nal phase, the evaluation or re fl ection phase, 
students have to assess the products and outcomes 
of learning as well as the process of learning. This 
includes evaluating (a) the artifacts produced dur-
ing studying, and (b) the  fi nal state of knowledge 
and skills in comparison to the learning goals set 
in the planning phase. 
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 Table  17.1  provides an overview on the vari-
ety of SRL-activities which may occur in the four 
phases of self-regulated learning with a Web-LE.   

    Study Desk : A Rich Web-LE with 
Metacognitive Tools 

 The Web-LEs we used for the investigation of 
students self-regulated learning activities consist 
of (a) various electronic resources (i.e., textbook-
like web-site chapters, learning tasks, elaboration 
resources such as www-links, slides, references, 
and glossaries), (b) learning or processing tools 
such as a highlighting tool, a note-taking tool, as 
well as an integrator tool, and (c) tools providing 
support for metacognitive activities (hereafter 
referred to as  metacognitive tools ) ,  including an 
overview on all available resources, materials, 
and tools (material table), as well as a progress 
report providing access to a learning activity pro-
tocol and a learning task protocol (for more 
details see Narciss et al.,  2007 ,   http://studier-
platz2000.tu-dresden.de    ). 

 For the integration of all materials we used the 
 s2w-compiler  (Study-to-Web Compiler), a generic 
authoring tool which supports instructors in com-
bining and integrating multiple learning materials 
and media into an integrated interface (  http://studi-

erplatz2000.tu-dresden.de/s2w    ). We call a Web-
based learning environment designed with the 
 s2w-compiler Studierplatz  (in English:  Study Desk ), 
that is, a working space for learning and studying. 

 The textbook-like Web-site chapters, their 
subchapters and all other learning materials 
related to these chapters are organized in a hier-
archical content structure. All the textbook 
chapters and resources of the  Study Desks  used 
for the present studies were developed and/or 
selected on the basis of several comparative 
analyses of traditional and online instructional 
resources (e.g., textbooks, Web-Sites; elec-
tronic media archives). They addressed histori-
cal aspects of psychological learning theories, 
basic and applied concepts, experimental meth-
ods and applications of empirical  fi ndings, as 
well as a discussion of the potential and limita-
tions of these learning theories and their empir-
ical  fi ndings. Table  17.2  presents an overview 
about the topics, text pages, and resources that 
have been integrated into the  Study Desks  used 
for the present studies.  

    Study Desk -Interface 

 As illustrated in Table  17.2 , a  Study Desk  offers 
access to a large variety of electronic resources 

Study tactics & strategies

• accessing  

• searching  

• scanning 

• selecting

• exploring

• organizing

• connecting

• documenting

• note-taking

• highlighting

• extracting

• elaborating

• exploring

• integrating

• summarizing

• key-wording

• understanding

• synthesizing

• feedback seeking

• etc.

Characteristics of the learner

Cognitive Literacy

• knowledge

• study tactics and strategies

Self-regulation Literacy

• metacognitive knowledge (task-related, learner-related)

• knowledge on metacognitive strategies

• procedural skills for applying metacognitive strategies

Media Literacy

• operational knowledge and skills for using technology

• critical knowledge and skills for assessing reliability of resources

• cultural knowledge and skills for comprehending information

Motivation

Web-based Learning Environment

access to multiple resources of information 

representation of information in multiple codes

multimodal forms of information presentation

interactivity allows active manipulation of material

non-linear structure offers individualization of learning

Products & outcomes

• Artifacts

• Notes

• Summaries

• Key-words

• Mind-maps

• Knowledge

• Factual

• Conceptual

• Procedural

• Metacognitive

• Technical 

• Skills

• Operational

• Critical

• Cultural

• Procedural

• Cognitive

• Metacognitive

  Fig. 17.1    Learner-related, task-related, behavior-related, and outcome-related aspects of studying with Web-LEs 
which might be addressed through self-regulatory activities       

 

http://studierplatz2000.tu-dresden.de
http://studierplatz2000.tu-dresden.de
http://studierplatz2000.tu-dresden.de/s2w
http://studierplatz2000.tu-dresden.de/s2w
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and tools. To support students in their cognitive 
and metacognitive activities, all resources and 
tools of a  Study Desk,  its content-related struc-
ture, as well as the history of learner activities are 
elicited through the  Study Desk- interface. To this 
end, the  Study Desk- interface is subdivided in 
several frames. More speci fi cally, the  Study Desk-

 interface offers the following information (see 
Fig.  17.2 ): 
    1.    Information on the content structure is offered 

by a hierarchically structured table of con-
tents. As scienti fi c topics tend to be complex, 
this table of contents is presented in such a 
way that at  fi rst only the main chapters are 
indicated, thus offering a general overview. 
A mouse click on one of the entries gives a 
detailed view of its respective subchapters.  

    2.    Running-titles in the top frame provide infor-
mation on the current (sub-)chapter.  

    3.    Labeled user buttons in the bottom frame of 
the screen provide information on the avail-
ability of multiple multimedia resources (e.g., 
references, links to relevant Web-pages, vid-
eos, learning tasks and exercises). The button 
is blue if a resource is available in the current 
chapter and grey if unavailable.  

    4.    The availability of learning or processing tools 
(i.e., highlighting, note-taking, and integrator) 
is  fl agged through the green buttons in the bot-
tom frame.  

    5.    The activity history is signalized through chang-
ing colors of the symbols in the table of con-
tents. If a chapter has been accessed the color of 
the symbol changes from blue to turquoise.  

    6.    The availability of monitoring tools (i.e., prog-
ress report; learning task report; glossary; 
material overview) is indicated through a list 
in the bottom part of the content-structure 
frame.      

   Learning or Processing Tools 

 A  Study Desk  provides tools for the active pro-
cessing of the learning material. These tools 
enable learners to highlight certain sections, 
make notes and integrate material they consider 
of interest or importance into an individual dos-
sier (the integrator). These tools permit the appli-
cation of widely-used conventional study methods 
with which the students are familiar. If students 
want to use these tools, they have to activate them 
by clicking on the related buttons in the bottom 
frame of the screen. For example, to highlight 
interesting or important words, sentences, para-
graphs or pictures, the learner activates the mark-
ing tool, chooses a color, clicks on the  fi rst word 
or element of interest, and then clicks on its last 
word or element. Consequently, the space 
between these words or elements is highlighted 
in the selected color. When taking notes, the 
learner activates the note-taking tool, clicks on 
the word or element of the working space refer-
ring to the intended note and writes the note into 
the note-taking window. These notes are saved 
and  fl agged in the working window by a small 
yellow tag (see Fig.  17.2 ). By clicking on this 
tag, the content of the note appears like a tooltip. 
To document and organize material, learners acti-
vate the integrator tool and save all materials they 
consider important (e.g., slides, web sites, pic-
tures, etc.) with their individual notes to an indi-
vidual dossier. It allows that the collected material 
can be played in a slide-show.  

   Elaboration Resources 

 A  Study Desk  provides access to various 
 elaboration resources, which offer students the 

   Table 17.2    Number of textbook chapters and related multimedia materials of several  Study Desks    

 Topic of the  Study Desk   Main chapters  Text pages  Learning tasks  Elaboration resources 

 Introduction to learning theories  3  17  21  61 

 Classical conditioning  5  28  42  30 

 Operant conditioning  9  136  75  128 

 Purposive behaviorism  4  26  16  9 

 Socio-cognitive theory of learning  4  15  26  27 

 Behaviorist learning theories  4  118  146  175 
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 opportunity of processing the content from vari-
ous perspectives. For the present studies students 
had access to lecture slides, videos, simulations 
of experiments, a list of various commented 
Internet resources as well as references, sug-
gested readings and original research papers. 
Furthermore, the learning tasks integrated into 
the  Study Desk  may serve as a resource for elabo-
rating the knowledge acquired through studying 
the various materials.  

   Metacognitive Tools 

 As detailed in Sect. “ Self-Regulation and 
Metacognition in Web-Based Learning ”, ori-
entation, planning, monitoring and evaluating 
are core metacognitive activities within self-
regulated learning. Thus, the  Study Desk  
offers access to several metacognitive tools, 
including tools supporting (a) orientation and 

monitoring progress, and (b) monitoring 
understanding. 

  Orientation and progress monitoring tools.  
Students can for example access a material table 
providing an overview on the amount, structure 
and types of resources and materials which can 
be accessed in this  Study Desk.  They can further-
more access the protocol of all learning activities, 
including a progress and task report. Accessing 
these reports, learners may check which chapters 
they have already completed, the amount of mate-
rial and media still at their disposal as well as the 
number of accomplished and unaccomplished 
learning tasks. 

  Interactive learning tasks as tools supporting the 

monitoring of understanding.  In order to monitor 
not only progress towards learning goals but also 
understanding, students can also access and work 
on the learning tasks integrated into the  Study 

  Fig. 17.2    Interface of the Web-LE “ Study Desk”        
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Desk . These learning tasks permit multiple-try 
solution possibilities and include informative 
tutoring feedback enabling learners to correct 
mistakes, to evaluate their learning progress, and 
to decide how they will proceed further in their 
learning process. The learning tasks were devel-
oped and designed on the basis of our interactive 
learning tasks approach (Körndle, Narciss, & 
Proske,  2004 ; Narciss, Proske, & Körndle,  2004  ) . 
For the technical implementation of these tasks 
the EF-Editor was used (Proske, Körndle, & 
Narciss,  2004a,   2004b,   2005  ) . The development 
of the interface for the EF-learning tasks is, on 
the one hand, based on the psychological knowl-
edge on systematic task construction (Anderson 
& Krathwohl,  2001 ; Jonassen, Tessmer, & 
Hannum,  1999 ; Klauer,  1987  ) . On the other hand, 
it is based on Narciss’s conceptual framework for 
the design of informative tutoring feedback 
(Narciss,  2006,   2008 ; Narciss & Huth,  2004  ) . 
Figure  17.3  illustrates an interactive learning task 
on operant conditioning.  

 The interface of an EF-learning task contains 
(a) the item stem in the top frame, (b) response 
 fi elds in the working frame, (c) multiple-try solu-
tion possibilities including informative tutoring 
feedback messages, and (d) buttons providing 
access to hints and/or to the correct solution. For 
example, by clicking on the Hint-button general 
tutoring information is given to the learner in a 
 fi rst step (see Fig.  17.3 ). For complex learning 
tasks several increasingly speci fi c hints can be 
delivered successively. These hints are presented 
so as to tutor students in detecting errors, over-
coming obstacles and applying more ef fi cient 
strategies towards solving learning tasks. After 
learners fail on the  fi rst response, the program 
delivers immediate feedback indicating a mistake 
has been made. They then receive a prompt to use 
available hint information (program control). To 
receive this information, the learners have to take 
action, that is, they click on the “Hint” button. 
After the next incorrect attempt the system (a) 
gives an evaluation of the overall performance 

  Fig. 17.3    Sample of an interactive learning task on the topic of operant conditioning       
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(e.g., your response is 80% correct) and (b) marks 
correctly answered parts of the question green, 
while incorrectly answered question parts are 
labeled red. Again, the learner is prompted to use 
the hint information. Hence, working on interac-
tive learning tasks should support students in mon-
itoring their understanding within the Web-LE.   

   Studying Overt Cognitive 
and Metacognitive Activities 
and Their Relationships to 
Performance with  Study Desks  

 The  Study Desks  on learning theories were used 
in several studies aiming at investigating overt 
cognitive and metacognitive learner activities 
through tracing students’ access and use of tools 
and resources. In a  fi rst study, the tool-use study, 
the type and frequency of metacognitive tool use 
was investigated (Narciss et al.,  2007  ) . A second 
study, the learning-activity study, studied the 
in fl uence of tool use on subsequent performance 
(Proske, Narciss, & Körndle,  2007  ) . While in 
these two studies a quasi-experimental design in 
a blended learning situation at the university was 
employed, the third study examined learners’ 
activities and performance in a controlled labora-
tory setting. In the latter setting students worked 
two sessions of 90 min each with a  Study Desk . 
This third study aimed also at investigating rela-
tionships among students’ activities, self- 
evaluated competencies and performance 
(Narciss, Peters, Körndle, Dupeyrat, & Huet, 
 2009 ; Peters,  2010  ) . These studies report on the 
use of metacognitive tools and resources in rich 
open-ended Web-LEs, with non-embedded sup-
port devices. In each case, learners were free to 
decide when to use the embedded tools. The 
methods and results of these studies are summa-
rized in the following sections. 

   Study 1: How Do Students Access and 
Use the  Study Desk  Resources and Tools 
in a Natural University Setting? 

 The tool-use study focuses on the question 
whether university students use the  Study Desks,  

and if so, whether they use the resources and 
tools provided by a  Study Desk  in a natural 
university setting (Narciss et al.,  2007  ) . Research 
shows that providing tools is a necessary, but not 
a suf fi cient condition for ef fi cient self-regulated 
learning with open-ended learning environments 
(Clarebout & Elen,  2006,   2008  ) . Thus, the main 
purpose of this study was to investigate to what 
extent the interface of a  Study Desk  initiates task 
and content-related learning activities (marking, 
note-taking and elaboration), as well as metacog-
nitive activities (monitoring and evaluating the 
learning process and outcomes). 

  Design and participants.  Seventy-two university 
students of an introductory lecture to general 
psychology participated in the study (48 women, 
24 men;  M  age = 22.0). Most students were in the 
second year of their studies. Over a university 
semester (3 months) students could access  fi ve 
 Study Desks  which complemented the learning 
theories curriculum of the introductory lecture to 
general psychology. While one  Study Desk  pro-
vided an introduction to psychological learning 
theories, the other  Study Desks  each addressed a 
particular learning theory: (a) Classical 
Conditioning, (b) Operant Conditioning, (c) 
Purposive Behaviorism, and (d) Socio-cognitive 
theory of learning (see also Table  17.2 ). The suc-
cessful completion of the lecture required students 
to pass a test at the end of the semester. Students 
were free to work on the  fi ve  Study Desks  as many 
times and as long as desired. Furthermore, there 
were no restrictions regarding learning objectives 
and topics. 

  Measures.  All students’ activities were recorded 
in log- fi les in which frequency and time of each 
learning activity were automatically recorded 
and summarized. The measure of  total working 

time  represents the sum of time on all learning 
activities. Yet, there was a high variability in the 
amount of available material in the  fi ve  Study 

Desks , the number of selected  Study Desks  and 
the time spent on the selected  Study Desks  (see 
Narciss et al.,  2007  ) . In order to account for this 
variability, the measure of  time on a particular 

learning activity  was standardized using percent-
ages. As such, the time on a particular learning 
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tool, elaboration resource or monitoring tool was 
expressed as percentage of total  working time. 
The same was true for the learning tasks. As the 
interactive learning tasks of the  Study Desks  offer 
students the possibility to complete tasks in sev-
eral attempts and provide them with informative 
tutoring feedback (Narciss,  2006,   2008  ) , the per-
centage of correctly solved learning tasks in a 
 fi rst attempt was used to assess students’  online 

performance  during working with the  fi ve  Study 

Desks . Again, this measure was standardized, 
i.e., it represented the number of correctly solved 
learning tasks related to the number of learning 
tasks students had at their disposal within their 
selected  Study Desks . 

  Statistical analyses.  An exploratory analysis of 
total working time revealed a huge variability in 
the time students spent with the  Study Desks  
( M  = 194.5 min,  SD  = 229.9). Due to this, the sam-
ple was divided into three percentiles by means of 
total working time for analysis of students’ learn-
ing activities: (a) <40 group: students working 
less than 40 min, (b) 40–180 group:  students 
working between 40 and 180 min, and (c) >180 
group: students working more than 180 min. 
Nonparametric methods (e.g., Kruskal–Wallis 
test) were used for further statistical analyses. 

  Selected results and conclusions.  Students of all 
groups spent more than two thirds of their total 
working time processing texts (65.3–72.4%). 
Relative time on learning tasks ranged from 
7.2 to 15.1% of total working time. The learning 
tools were used during 6.1–10% of total work-
ing time. The percentage of time on elaboration 
resources ranged from 2.7 to 5.8%, whereas the 
monitoring tools were hardly used (0.3–1.7%, 
for detailed information see Narciss et al.,  2007  ) . 
Furthermore, it was found that the >180 group 
worked on 25% of the learning tasks, whereas 
the students of the other groups only processed 
ca. 5% of the available tasks. In addition, the 
online performance of the >180 group was sta-
tistically signi fi cant better than the online per-
formance of the other two groups. 

 The results of the tool-use study show that there 
is a huge variability in total working time. Whereas 

some students studied for only a few minutes, 
others spent more than 7 h with the  Study Desks . 
Furthermore, the results indicate that students 
employ relatively the same study tactics in web-
based learning environments as they do with 
printed textbooks. Students spent most of their 
total working time studying texts, whereas sub-
stantially less time was invested in processing 
learning tasks and using the learning and elabora-
tion tools. Moreover, only a very small number of 
students used the monitoring tools. It was also 
found that students who worked longer with the 
 Study Desks  (>180 group) also used more learning 
tasks and solved more of them correctly without 
informative tutoring feedback. This is worth not-
ing, because one might expect that working on 
more tasks makes it more likely to make errors.  

   Study 2: How Are Learner Activities 
Related to Performance in a Natural 
Setting? 

 The tool-use study revealed a large variability in 
frequencies and durations of the various study 
activities traced through the log  fi les. Furthermore, 
it revealed that students who worked for at least 
3 h with the  Study Desks  accessed and processed 
more learning tasks and achieved a higher level 
of performance in answering these tasks. Due to 
organizational constraints of this study it was 
however not possible to examine the relation-
ships among study activities and performance 
measured in a controlled posttest. Thus, the pur-
pose of the learning-activity study was to investi-
gate the relationship between learning activities, 
online performance, and posttest performance 
(Proske et al.,  2007  ) . 

  Design and participants.  As the tool-use study, the 
learning-activity study took place in a blended 
learning setting in higher education. The partici-
pants were 105 students (73 women, 32 men,  M  
age = 23 years) attending a Psychology lecture, 
“Introduction to Psychology”, at TU Dresden, 
Germany. Most participants were in the second 
year of study, with Psychology as a minor  fi eld of 
study. Students were provided with the same  fi ve 
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 Study Desks  as in the tool-use study over a period 
of 3 months. There were no restrictions regarding 
the learning objectives and selected topics. Out of 
the 105 students attending the lecture, a total of 84 
students used at least one of the  Study Desks . At the 
end of the term students had the possibility to com-
plete an electronic posttest to receive certi fi cation 
for the lecture. This test was made available online 
over a period of 1 month. Seventy-seven students 
participated in it. Most ( n  = 50) had worked with 
the provided  Study Desks  beforehand, whereas 27 
students wrote the test without having used them 
(for detailed information see Proske et al.,  2007  ) . 

  Measures and statistical analyses.  The measures of 
total working time, time on a particular learning 
activity, as well as online performance were equal 
to the tool-use study. In addition to these time mea-
sures, the  quantity of processed texts and learning 

tasks  was recorded. These raw data were trans-
formed into individualized percentage measures. 
They represent the conditional percentage of pro-
cessed texts and learning tasks given the amount of 
material students had at their disposal within the 
number of  Study Desks  they had selected. 

 The posttest was passed if at least 70% of the 
exercises from each topic had been correctly 
solved in no more than two attempts. After a stu-
dent failed on his  fi rst solution attempt, he 
received immediate feedback indicating a mis-
take had been made. Therefore,  posttest perfor-

mance  was represented by the percentage of 
correctly answered test exercises in the  fi rst solu-
tion attempt. Due to high standard deviations in 
the distributions of learning activity variables and 
achievement measures, we used nonparametric 
methods (e.g., Chi-Square Test; Spearman’s Rho 
Correlational Coef fi cient). 

  Selected results and conclusions . The results 
regarding learning activities were similar to 
the results of the tool-use study. With respect 
to posttest performance it was found that stu-
dents who had worked with a Study Desk 
achieved a signi fi cantly higher level of posttest 
performance than students who did not work 

with a Study Desk (for detailed information 
see Proske et al.,  2007  ) . 

 Spearman’s Rho Correlations Coef fi cients 
were computed to examine relations between 
learning activities, online performance, and post-
test performance. The results showed that the 
longer a student worked with the  Study Desks , the 
more the tools were used and the better the online 
and posttest performance. The correlational anal-
ysis showed further that the better the online per-
formance the longer students used the monitoring 
tools. Longer text reading was associated to lower 
online performance. Posttest performance was 
positively associated to amount of processed 
learning texts, learning tasks, and total working 
time. Furthermore, it was found that the more 
texts and learning tasks were processed within 
the  Study Desks , the better the posttest perfor-
mance. Apart from the learning tools no relation-
ship was found between time-on-tools and 
posttest performance. 

 Students’ access and use of the  Study Desk  
resources and tools, especially interactive learn-
ing tasks and the learning tools for marking and 
note-taking was not only signi fi cantly correlated 
with online performance, but also with posttest 
performance. These  fi ndings are in line with 
   Wagner ( 1997 ), who regards interactivity in web-
based learning environments as a means of per-
formance improvement. Time-on-text was 
signi fi cantly negatively correlated with online 
performance. This implies that overuse of the 
learning medium text may be considered an inef-
fective study strategy (Berge,  1999  ) . However, 
this study con fi rmed the results of the tool-use 
study. Whereas 85% of the students used the 
interactive learning tasks, much less used the 
learning tools, elaboration resources and moni-
toring tools. This  fi nding is in line with prior 
studies, which have found that learners do not 
always use resources and tools of a Web-LE 
ef fi ciently (Chen & Rada,  1996 ; Scheiter & 
Gerjets,  2007  ) . In addition, following Kaplan’s 
re fl ections on the variety of students’ individual 
study objectives (Kaplan,  2008  ) , one has to con-
sider that accessing and using the resources of a 
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rich Web-LE may depend also on the students’ 
aims when working with the  Study Desks  (see 
also Niederhauser,  2008  ) . Finally, students in this 
university setting also had the possibility to 
 prepare themselves for the electronic posttest 
with traditional learning materials.  

   Study 3: How Do Self-Evaluations Relate 
to Learner Activities and Performance? 

 Analyzing the data from the  fi rst two studies was 
very dif fi cult because of the huge variability in 
frequency and time of students’ access and use of 
the  Study Desks  and their resources and tools. 
Thus, the purpose of the third study was to inves-
tigate overt cognitive and metacognitive student 
activities in a controlled setting. Furthermore, 
this study aimed at investigating the role of self-
evaluations of competences in self-regulated 
learning with a rich Web-LE. 

  Participants and Design.  Participants were 190 
teacher education students attending a lecture on 
“Introduction to Psychology” at the TU Dresden, 
Germany (147 women, 43 men,  M  age = 22 years). 
Participants had to study two sessions of about 
90 min (study sessions) each with one Web-LE 
 Study Desk – Behaviorist Learning Theories  (see 
Table  17.2 ). Within these sessions they were free 
to study on their own pace and with the material 
and tools they considered relevant. Hence, they 
had to self-regulate their activities. All learners’ 
activities were tracked by log  fi les. One week 
before and after these study sessions, students had 
to complete a test assessing their level of knowl-
edge and to answer several questionnaires, includ-
ing items addressing self-evaluation of competences 
regarding their media literacy skills, their SRL-
skills, and their cognitive capabilities in acquiring 
knowledge on learning theories (pretest and post-
test sessions). Furthermore, at the beginning and 
the end of each study session the self-evaluation 
measures addressing cognitive and media literacy 
skills were collected. 

  Measures and statistical analyses.  As in the pre-
vious studies, all learning activities were tracked 

by log  fi les. As in the previous studies, each indi-
vidual log  fi le recorded the frequency and the 
amount of time spent with (a) accessing and study-
ing textbook chapters, (b) accessing and working 
on learning tasks, (c) accessing elaboration 
resources (i.e., slides, www-links, videos, glos-
sary), (d) activating and using active learning 
tools (i.e., highlighting tool, note taking tool, 
integrator tool), and (e) accessing and attending 
to metacognitive resources (i.e., progress and 
task report, material table). 

  Pretest and posttest performance  was assessed 
1 week before and after the study sessions. 
Participants completed a test assessing their 
knowledge. This test consisted of 22 computer-
based items which were constructed with the 
EF-editor and provided through the  Study Desk -
interface. These items addressed core concepts of 
behaviorist learning theories and their application. 
As in the previous studies,  online performance  
was measured by the percentage of correctly 
solved learning tasks during the study sessions. 

  Self-evaluation measures.  At the beginning of the 
pretest and posttest sessions, participants answered 
several questionnaires addressing various mea-
sures of self-evaluation of competences. These 
questionnaires included items addressing self-
evaluation of competences regarding students’ 
media literacy skills, their SRL-skills, and their 
cognitive capabilities in acquiring knowledge on 
learning theories. As mentioned above, the self-
evaluation measures addressing cognitive and 
media literacy skills were also collected at the 
beginning and the end of each study session. 

  Selected results and conclusions.  The log  fi le 
analyses of frequencies and time-on-learning 
activities revealed that on average students spent 
58% of their total working time with the textbook 
chapters, 24% with the interactive learning tasks, 
11% with the elaboration resources, 6% with the 
learning or processing tools and 0.4% with the 
metacognitive tools. Yet, as in the previous stud-
ies there was a huge variability in these measures. 
Some students spent almost all their time during 
the study sessions with studying textbook 
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 chapters, whereas others spent their time with a 
variety of learning activities. Furthermore, despite 
the controlled time-frame (90 min for one session 
including responding online to self-evaluation 
questionnaires at the beginning and the end of the 
session, as well as studying instructions) students’ 
total working time over two sessions ranged from 
90 min to 162 min (mean 124 min.; SD 9 min,). 

 Comparing students’ activities during the two 
sessions elicited several statistically signi fi cant 
differences. Students’ total working time was 
signi fi cantly higher (63.5 min.) in the second 
than in the  fi rst sessions (60.5 min.). Mean time 
spent on textbook chapters was signi fi cantly 
higher in the  fi rst (62.5% of total working time) 
than in the second session (52.7% of total work-
ing time). The same is true for time spent with 
elaboration resources (13.6% vs. 7.7%) and 
learning tools (8.9% vs. 4.2%), whereas mean 
time spent on learning tasks was signi fi cantly 
higher in the second (31.7%) than in the  fi rst ses-
sion (15.6%). These differences indicate that dur-
ing the  fi rst session students spent more time with 
mere information processing, whereas during the 
second session they spent more time with learn-
ing task processing. This learning task processing 
may have served to some extent to monitor or 
evaluate the progress in knowledge acquisition. 

 Furthermore, analyses of changes in perfor-
mance and self-evaluation measures revealed that 
performance and self-evaluation accuracy 
increased over the four sessions of this study. It is 
worth emphasizing here that self-evaluation 
strength did not increase from pretest to posttest, 
whereas there was an increase in self-evaluation 
accuracy from pretest to posttest. Hence, further 
research on the role of self-evaluations in self-
regulated Web-based learning should include not 
only measures of self-evaluation strength but also 
measures of self-evaluation accuracy. 

 Finally, we found that self-evaluation accu-
racy was signi fi cantly correlated to several learn-
ing activities. Most importantly, to the time spent 
on studying textbook chapters vs. the time spent 
on working with the learning tasks of the 
Web-LE. The higher self-evaluation accuracy 
the less time students spent with the textbook 
chapters, but the more time they spent with the 

learning tasks in both study sessions. This result 
con fi rms assumptions about the role of learning 
tasks in self-regulated learning contexts. A core 
function of learning tasks is to provide students 
with occasions for applying and self-evaluating 
their acquired know ledge (Körndle et al.,  2004 ; 
   Narciss, Proske, & Körndle,  2004  ) . 

 Furthermore, small but signi fi cant positive 
correlations among self-evaluation accuracy and 
the time spent on attending to metacognitive sup-
port of the Web-LE are worth noting. The higher 
self-evaluation accuracy, the more time students 
spent with attending to the overview of the 
Web-LE and the progress reports on study and 
task activities. Yet, this result has to be consid-
ered with caution,  fi rst because the correlations 
are rather small, second because several students 
did not attend to the metacognitive tools at all.  

   Comparative Summary of Methods 
and Results 

 In summary, the presented studies are method-
ologically equivalent regarding the following 
aspects: In all studies  Study Desks,  i.e., rich open-
ended Web-LEs with embedded and non-embed-
ded resources and tools, were provided to 
university students as a complement to main lec-
tures and seminars. Furthermore, in all studies 
students’ activities were recorded in log  fi les and 
these log  fi les were used to analyze frequencies 
and durations of accessing and/or using the 
resources and tools of the  Study Desks.  Moreover, 
in all studies the focus of interest was on investi-
gating  self-initiated  study activities. Thus, in the 
 fi rst two studies data were collected in a natural 
context over 3 months. Within these natural con-
texts the  Study Desks  were provided as comple-
ments to main lectures in Educational and General 
Psychology. More speci fi cally, during one univer-
sity semester (3 months) students could (a) attend 
to a weekly lecture session (90 min), and (b) study 
on their own with the  Study Desks  and/or other 
study materials (e.g., textbooks, scripts). The 
availability of the  Study Desks  was regularly 
prompted by the lecturers. However, students 
were free to access and work with the  Study Desks  
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whenever they decided to do so. In the third study 
data were gathered in a more controlled context 
with pretest and posttest sessions as well as two 
treatment sessions. Yet, in order to keep the set-
ting as natural as possible, there were no restric-
tions regarding when and how students accessed 
and worked with the resources and tools of the 
 Study Desk  within the two treatment sessions .  

 Given these methodological similarities of the 
three studies it may be no surprise that their 
results are also rather similar: The  fi eld studies 
revealed a high variability in total working time. 
This variability in total working time was reduced 
in the third study, yet, it was still apparent. All 
studies elicited similar patterns of study activi-
ties: Students accessed the text-book like Web-
pages of the  Study Desks  most frequently and 
spent most of their total working time on these 
pages. Accessing and processing learning tasks 
was the second most frequently observed study 
activity. The elaboration resources and the learn-
ing tools were signi fi cantly less used than the 
learning tasks. Finally, metacognitive tools were 
only hardly used. 

 Regarding relationships among study activi-
ties and performance measures all studies 
revealed that total working time in Web-LEs is 
positively related to better achievement during 
learning. Furthermore, learners’ posttest perfor-
mance was positively related to the amount of 
tool use, in particular to the use of learning tasks. 
Finally, frequency of learning task use was posi-
tively related to an increase in learning outcomes 
(Peters,  2010 ; Proske et al.,  2007  ) .   

   Methodological and Analytical 
Challenges 

 As revealed by our studies with the  Study Desks , 
researchers investigating overt cognitive and 
metacognitive student activities in self-regulated 
learning with a rich Web-LE have to face several 
methodological and analytical challenges in ana-
lyzing the log  fi le data traced through the learn-
ing process. These challenges include the 
variability of learner activities when studying 

with a rich Web-LE as well as the problem of 
identifying and interpreting events and activities 
in the log  fi le data, by relating them to concrete 
SRL-activities. 

   Variability of Learner Activities 
in Rich Web-LE 

 Researchers in the  fi eld of self-regulated learning 
are confronted with the trade-off between con-
trolling conditions of data collection and keeping 
the instructional setting as natural as possible in 
order to allow SRL-activities. In many studies on 
self-regulated learning with a variety of com-
puter-based learning environments, the researcher 
decided in favor of controlling conditions of data 
collection, and thus used closed learning environ-
ments. As a consequence, it is questionable if the 
data gathered in these studies really re fl ect  self-

initiated  SRL-activities (Winters, Greene, & 
Costich,  2008  ) . As we wanted to capture and 
investigate  self-initiated  cognitive and metacog-
nitive study activities we used a rich open-ended 
Web-LE and gathered data in natural university 
settings. This resulted in a tremendous variability 
of the frequencies and durations students worked 
with the Web-LE. In the more controlled experi-
mental setting of the third study, this variability 
was reduced but still apparent. To account—at 
least partly for this variability—we used several 
strategies. For example, in the tool-use study we 
assigned post hoc the students to user subgroups 
de fi ned by differences in their total working time. 
Moreover, in all studies we used relative mea-
sures of  time on a particular learning activity  by 
computing percentages of total working time for 
each study activity traced in the log  fi les.  

   Analyze and Interpret Log File Data 

 Using log  fi le data to determine access frequen-
cies and times in Web-LEs accessible through 
standard browser is not a trivial task, because for 
example standard browsers offer back and for-
ward buttons which allow movements between 
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already visited pages. In general, these back and 
forward moves are not traced in the log  fi les 
because the already visited pages are retrieved 
from the local browser cache. Yet, the back and 
forward buttons are one of the most frequently 
tools used (Scheuer, Mühlenbrock, & Melis, 
 2007  ) . 

 The  Study Desk -interface does not offer back 
and forward buttons which allow movements 
between already visited pages. In contrast, 
 students have to access next pages of a chapter, or 
other resources and tools explicitly by clicking 
on the respective chapter title in the table of con-
tents or on the resource or tool button displayed 
in the bottom or the navigation frame. Thus, the 
log  fi les produced with a  Study Desk  may be more 
reliable as log  fi les from standard browsers with 
back and forward buttons. 

 Despite this advantage of a  Study Desk  ana-
lyzing and interpreting the log  fi le data with 
regard to cognitive or metacognitive activities is 
challenging, because several resources and tools 
of a  Study Desk— and of many other Web-LEs—
are multifunctional. Consequently, they can be 
accessed and used for task-related cognitive 
activities or for metacognitive activities. For 
example, the glossary can be accessed whether a 
student wants to look up the meaning of an unfa-
miliar concept or if she wants to monitor the 
accuracy of her understanding of the concept. 
The access and processing of learning tasks may 
also occur for various purposes: Students may for 
example access and process learning tasks (a) 
before accessing other course material, in order 
to assess their prior level of knowledge and skills, 
(b) during Web-based learning, for example after 
having studied a chapter, in order to monitor their 
understanding or progress toward learning goals, 
as well as in order to elaborate the acquired 
knowledge, and (c) in the evaluation stage of 
Web-based learning in order to assess their  fi nal 
level of knowledge and skills. Given this multi-
functionality of resources and tools, tracing fre-
quencies and durations of their access and use 
without taking into account the context or action 
history, may be not enough for identifying when 
and how students are involved in cognitive or 
metacognitive activities.   

   Implications for Future Research 

   Methodological and Analytical 
Implications 

 To interpret students’ behavior from log  fi le data 
meaningfully, it seems to be necessary to analyze 
in meaningful patterns or sequences of activities 
the students perform during Web-based learning. 
A promising tool, the Weblog Analysis Tool, in 
this direction has been for example presented by 
Ceddia, Sheard, and Tibbey  (  2007  ) . Based on the 
present data and experiences from explorative 
studies (e.g., Kapp, Narciss, Körndle, & Proske, 
 2011 ; Narciss, Körndle, Reimann, & Müller, 
 2004  )  it seems to be particularly fruitful to inves-
tigate in more detail when and how students 
access the interactive learning tasks. In doing so 
researchers should apply an event-related meth-
odology of analyzing the log  fi le data (see for 
example Mühlenbrock,  2005 ; Scheuer et al., 
 2007  ) . More speci fi cally, future studies should 
aim at identifying events that precede and follow 
successful or unsuccessful steps in the process of 
task completion. Preceding events may be for 
example the end of another activity (i.e., reading 
a text, watching a video, exploring a simulation). 
Subsequent events may be the return to the 
resource or tool used before learning task pro-
cessing, the access to learning protocols, or the 
access to other instructional resources, which in 
case of unsuccessful task completion may pro-
vide assistance (e.g., a glossary). Using such an 
event-related methodology would contribute at 
least partly to overcome the problem of misinter-
preting the access to multifunctional resources 
and tools. Furthermore, it could be used to inves-
tigate how patterns or sequences of activities 
relate to performance, in order to gain insights in 
their effectiveness. 

 Additionally, mixed-method approaches com-
bining analyses of log  fi le data with think-aloud 
protocols, eye-tracking data, or video-monitoring 
of student activities are recommended for further 
studies. Yet, including these methods is only pos-
sible in laboratory settings and more intrusive 
than mere activity tracing through log  fi les (see 
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for example Azevedo, Moos, Johnson, & 
Chauncey,  2010 ; Bannert & Mengelkamp,  2008 ; 
Greene & Azevedo,  2010 ; Winne,  2010  ) .  

   Implications for Tool Design 

 Many Web-LEs provide students with embedded 
and non-embedded tools, in order to support stu-
dents in a variety of ways during their study activ-
ities. Yet, for research purposes this  combination 
of embedded and non-embedded tools may be 
critical, because study activities such as for exam-
ple monitoring by using an embedded tool which 
is always visible cannot be traced in the log  fi les. 
Our  fi ndings indicate that students hardly accessed 
the non-embedded monitoring tools (i.e., progress 
reports, and material overview), might be to some 
extent explained by this problem. To monitor 
progress when studying with a  Study Desk  stu-
dents need not access the monitoring tools, 
because their content-related activities are traced 
and visualized through changing colors in the 
table of contents. Thus, for future studies, the 
Web-LE should be designed in such a way that 
covert student activities (i.e., monitoring progress 
through changes in the tables of contents) are 
transformed into overt student activities. This 
involves rendering embedded tools if possible 
into non-embedded resources and tools.       
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  Abstract 

 One of the affordances of hypertext environments is the freedom to choose 
the order of information presentation. However, learners may have 
dif fi culty self-regulating their learning in order to make navigation deci-
sions that align with their goals. This chapter presents our work in helping 
students learn from hypertext using the CoMPASS hypertext system in 
middle school science classes. The CoMPASS system design includes 
navigable concept maps that re fl ect connections among concepts in the 
domain of physics and are used to help students understand the relation-
ships between science ideas. In CoMPASS, students’ self-regulated behav-
ior is detected through the use of computer-generated log  fi les that allow 
us analyze student navigation behavior post hoc and create clusters of 
navigation patterns. We are then able to examine these clusters of naviga-
tion patterns to determine differences in students’ SRL processes and the 
types of scaffolding that they may need. This chapter presents  fi ve differ-
ent navigation pattern clusters that have been identi fi ed as typical of stu-
dents’ navigation behavior in CoMPASS. We further discuss how these 
clusters will be matched to the navigation behaviors of future students and 
used to inform an algorithm that will provide adaptive real-time navigation 
prompts in order to scaffold metacognition and self-regulated learning.  
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       Introduction 

 As the use of hypertexts and other digital media 
environments is becoming increasingly ubiqui-
tous in education, a new form of literacy will 
become more important. Digital technology 
changes the way in which we write and think 
about writing (Bolter,  2001  ) . In traditional text, 
there is a clear sequencing of ideas into sections 
and subsections, although expert readers are 
known to traverse the text in a nonlinear way. In 
a printed text, associative relationships de fi ne 
organization that lies beneath the order of the 
pages and chapters, as in an index (Bolter,  1991  ) . 
But writers of hypertext often connect the asso-
ciative and semantic links in multiple ways. 
Therefore, the navigational choices that readers 
make when using hypertext lead to multiple ways 
in which meaning from the text may be structured 
(Bolter,  1998  ) . Hypertext connects sections (i.e., 
nodes) of text in a nonlinear way through seman-
tic links (Rouet,  2006  ) . These nodes can vary in 
size and complexity and can potentially be cre-
ated from a range of different representations, 
such as a paragraph of text, an entire web page, or 
graphics (Bolter,  2001  ) . Hypertext and hyperme-
dia environments, because of their nonlinearity, 
lend themselves well to helping students under-
stand how science ideas and principles are inter-
connected and can make  unseen  connections 
visible. The real strength of educational hyper-
text systems lies in the presentation of conceptual 
content in ways that  show the numerous and mul-

tiple interrelationships  between and among con-
cepts, even across (what are typically taught as) 
disparate subject areas. 

 In a printed text, associative relationships 
de fi ne the organization that underlies the order of 
pages and chapters (Bolter,  1991  ) , yet making 
explicit these associative lines of thought is 
dif fi cult in linear text. In contrast to linear text, 
hypertext allows the author to use more explicit 
visual cues, such as hyperlinks or interactive 
graphical representations, to provide guidance to 
the reader as to the relationships among units of 
information. However, this means that the reader 
must decide how to navigate through the text and 

devote cognitive resources to understanding these 
relationships (Bolter,  2001 ; Sharples,  1999  ) . 
Readers must develop an understanding of con-
nections between closely related nodes of infor-
mation, or intertextual relations, and must also 
understand where a unit of information  fi ts with 
respect to multiple other information nodes in the 
global structure of the system (Bolter,  2001 ; 
Puntambekar & Stylianou,  2005 ; Rouet,  2006  ) . 

 Although one of the affordances of hypertext 
is the freedom to choose the order of information 
presentation, the ability to choose one’s own 
 navigational path may cause confusion for read-
ers who are trying to establish the global struc-
ture of the text (Rouet,  2006  ) . Especially for 
adolescent learners, the employment of adaptive 
self-regulation strategies to take advantage of the 
 fl exible access to information in hypertext and 
hypermedia environments has often been found 
to be lacking (e.g., Azevedo, Moos, Greene, 
Winters, & Cromley,  2008  ) . Therefore, the ways 
in which learners actively engage with multiple 
nodes of information in a hypertext environment 
are an important component of study to under-
stand learning from hypertext. Other individual 
learner characteristics have also been identi fi ed 
as important factors that in fl uence navigation in 
hypertext environments, including prior knowl-
edge (e.g., Alexander, Kulikowich, & Jetton, 
 1994  ) , system structure (e.g., Puntambekar, 
Stylianou, & Hübscher,  2003  ) , and beliefs about 
learning and the task (Braten, Britt, Stromso, & 
Rouet,  2011 ; Rouet & Coutelet,  2008  ) . However, 
learners’ metacognitive abilities, which are fun-
damental to self-regulated learning (SRL), have 
also been shown to signi fi cantly impact naviga-
tion behaviors (Schwartz, Anderson, Hong, 
Howard, & McGee,  2004  ) . 

 Self-regulated learners are metacognitively 
and motivationally engaged in the processes of 
their learning (   Green & Azevedo,  2007  ) . 
Metacognition can be thought of as being aware 
of one’s processes of working toward a learning 
goal, monitoring progress toward the goal, and 
detecting and correcting errors (Azevedo, 
 2005a  ) . The ability to self-regulate one’s learn-
ing processes is an essential component of suc-
cessful metacognition (e.g., Azevedo,  2005a ; 
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Azevedo, Guthrie, & Seibert,  2004  ) . Engaging in 
self-regulation is an active, constructive process 
in which learners set goals for their learning and 
then monitor and regulate their cognition and 
behavior to reach those goals (Azevedo et al., 
 2004  ) . This may include things, such as using 
 fi x-up strategies when there is a breakdown in 
comprehension or evaluation of whether naviga-
tion choices are helpful to reach the learning 
goal (Coiro & Dobler,  2007  ) . To regulate their 
learning, students must adapt their processing 
operations based on their success with the 
 learning task. However, research indicates that 
students often have dif fi culty with self-regulat-
ing their learning, particularly in conceptually 
rich domains, such as science (Azevedo,  2005b  ) . 
This chapter presents our work in helping stu-
dents learn from hypertext using the CoMPASS 
 hypertext system (Puntambekar et al.,  2003 ; 
Puntambekar, Stylianou, & Goldstein,  2007  )  in 
middle school science classes. 

 Our main research questions were the fol-
lowing: (1) What are the navigation patterns that 
students typically follow? (2) How can students’ 
navigation patterns be grouped into a few clus-
ters to provide adaptive support for navigation 
and learning?  

   Background and Context 

   Understanding Connections in Science 

 A key aspect of science understanding is the inte-
gration of knowledge (Linn,  2006  )  into a frame-
work consisting of relationships among concepts 
and principles (Hiebert & Carpenter,  1992 ; 
Newton & Newton,  2000 ; Ruiz-Primo & 
Shavelson,  1996  ) . Glynn, Yeany, and Britton 
 (  1991  )  state that “without the construction of 
relations, students have no foundation and frame-
work on which to build meaningful conceptual 
networks” (p. 6). Research on experts and nov-
ices indicates that experts represent their knowl-
edge differently (Chi, Hutchinson, & Robin, 
 1989 ; Chi & Koeske,  1983  ) . Speci fi cally, expert 
learners’ knowledge is represented in ways that 
show richer organization, often organized around 

the central principles of the domain that can be 
generalized (Cheng,  1999 ; Hmelo-Silver, 
Marathe, & Liu,  2007 ; Kozma,  2000 ; Pearsall, 
Skipper, & Mintzes,  1997  ) . Studies examining 
science learning have emphasized a need for stu-
dents to learn science as a connected body of 
knowledge rather than a set of discrete facts (e.g., 
Hmelo-Silver et al.,  2007 ; Kozma,  2000 ; Ruiz-
Primo & Shavelson,  1996  ) . One way for students 
to develop a rich conceptual understanding of a 
domain is to engage in activities that require them 
to actively organize and synthesize information 
from many sources (Rouet,  2006 ;    Spitulnik, 
Zembal-Saul, & Krajcik,  1998  ) . 

 The use of hypertext environments to present 
information has been proposed as a means to get 
learners more actively engaged in thinking about 
connections among concepts (Shapiro & 
Niederhauser,  2004  ) . Hypertext and hypermedia 
environments composed of multiple linked docu-
ments offer a unique opportunity to help students 
understand the connections between science 
ideas that are often covered as disparate topics in 
traditional science texts and curricula. As 
described by Sasot and Suau  (  2000  ) , one of the 
most interesting aspects of hypertext systems is 
that they can express, in a particularly forceful 
way, the often implicit relationships that exist 
between science concepts. Furthermore, multiple 
passes through the same material can build richer 
knowledge representations (Spiro, Feltovich, 
Jacobson, & Coulson,  1991  ) . Hypertext has been 
described as multilinear because each reading 
could constitute a different path through the 
material, and as a result, different concepts and 
connections will be emphasized in each reading 
(Bolter,  1998,   2001  ) . Active readers of hypertext 
may form an understanding of connections and 
conceptual relationships as they make their own 
decisions about how to proceed through the text.  

   Representing Connections in CoMPASS 
Using Concept Maps 

 In the CoMPASS system, concept maps that 
re fl ect the connections in the domain are used to 
help students understand the relationships 
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between science ideas. The system is designed to 
help students learn physics in middle schools, 
and the two major topics in the system are  work 

and energy  and  forces and motion . Students use 
the system as they engage in design-based curri-
cula that span 6–8 weeks of science content. As 
they engage in science investigations related to 
their design challenge, students use the CoMPASS 
system to  fi nd out more information about the 
science topics they need to plan their investiga-
tions, make sense of their data, and complete 
their designs. Visual representations (Glinert, 
 1990  ) , such as concept maps, accentuate relevant 
characteristics of a representation (Hübscher, 
 1997 ; Narayanan & Hübscher,  1998  )  and make 
higher-order relations more accessible (Tufte, 
 1990  ) . Concept maps can represent meaningful 
relationships between concepts and structure or 
organize knowledge in an integrated manner 
(Edmondson,  2000 ; Novak & Gowin,  1984  ) . 
Ideas in a concept map are presented in the form 
of nodes connected with labeled links. Novak and 
Gowin  (  1984  )  hold that these representations are 
visual maps of pathways that connect concepts 
with their meanings and can offer  a schematic 

summary  of ideas. 
 Since their emergence in education research, 

concept maps have been used to facilitate student 
learning and engagement (Novak & Cañas,  2004  ) . 
Of particular interest is their application in scaf-
folding student learning from text and in shaping 
student comfort with writing. Nesbit and Adesope 
 (  2006  )  have argued that because concept maps 
eliminate redundant information and colocate 
similar concepts, their use in the classroom can 
facilitate student understanding of text. They 
noted that students who learn to create and read 
concept maps appear more capable of extracting 
meaning and identifying concepts and their rela-
tions both within a text and within other sources 
of information. These authors also reviewed sev-
eral research studies that suggested students with 
lower verbal ability might better comprehend 
concept maps. Map syntax is comparatively stan-
dard and less complicated than the often dense 
language in textbooks or scholarly texts. In addi-
tion, concept maps can also serve as useful meta-
cognitive aids and scaffolds for integrating and 

fostering student learning more broadly (Novak & 
Cañas,  2008 ; Trowbridge & Wandersee,  1998  ) . 

 Bransford, Brown, and Cocking  (  2000  )  
emphasized that for meaningful learning to occur, 
students must concentrate on central ideas and 
conceptual relationships. Such elements re fl ect 
the domain structure or expert understanding of 
the discipline and foster the development of back-
ground knowledge. Current research by Novak 
and Cañas  (  2008  )  focuses on the use of  expert 

skeleton  maps as guides or scaffolds to facilitate 
learning, especially when students have dif fi culty 
or are unfamiliar with the domain of study. They 
posit that maps constructed by an expert in the 
 fi eld can provide a strong base from which stu-
dents can construct meaning. Tergan, Engelmann, 
and Hesse  (  2008  )  compared the effectiveness of 
digital concept maps with digital concept lists on 
search time, number of correct decisions, and 
reported cognitive load of participants in an infor-
mation search task. They found that participants 
using concept maps generally outperformed those 
using concept lists in learning and assessment of 
functional relationships between topics. (For cat-
egory relationships alone, no signi fi cant differ-
ences were found.) Concept maps also have 
potential as information search tools that make 
visible the functional semantic links and struc-
tural links that explicitly indicate the relevance of 
topics to the search task (Tergan et al.,  2008  ) .  

   Supporting Navigation and Learning 

 Each page in CoMPASS is a description of a 
 science concept within a topic. When students 
choose a concept, CoMPASS presents them with 
a description of that concept along with a navi-
gable map that shows them the related concepts. 
For example, in the  work and energy  unit, stu-
dents may navigate to the concept of  work  within 
the topic of  pulley , which has related concepts, 
such as  force  and  distance . A concept map of the 
science concept the learner is focused on and 
the related concepts takes up the left half of the 
CoMPASS screen, and a textual description takes 
up the right half (see Fig.  18.1 ). The maps are 
 dynamically constructed  and displayed with the 
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 fi sheye technique (Bedersen & Hollan,  1995 ; 
Furnas,  1986  )  every time the student selects a 
concept. The selected (focal) concept is at the 
center of the map, with the most closely related 
concepts at the  fi rst level of magni fi cation and 
those less closely related at the outer level of the 
map. The  fi sheye view is organized such that the 
concepts that are  most related conceptually  to the 
focal concept are displayed close to each other 
 spatially . The maps were designed in consulta-
tion with physics experts to represent relation-
ships using conceptual  relationship strength , 
which determines the spatial proximity of the 
concepts. Further, the connections on the map are 
labeled with arrows and a description to help stu-
dents identify the direction and type of relation-
ships among concepts. The maps in CoMPASS 
mirror the structure of the domain to aid deep 
learning and  are designed to help students make 

connections , giving students alternative paths to 
pursue for any particular activity, so that they can 
see how different phenomena are related to each 

other. The dynamic changes in the concept maps 
based on the concepts selected by students, 
together with the text in the CoMPASS system, 
help students to see these relationships.  

 In CoMPASS, students can easily switch 
views using a navigation bar at the top of the 
screen to go to a topic related to the one they are 
currently learning about (see Fig.  18.2 ). This pro-
vides global coherence because students can see 
what other related topics they can go to. In addi-
tion, they can also view a particular concept from 
multiple perspectives as described below.  

 CoMPASS also supports alternative views of 
concepts. For example, a student might be inter-
ested in learning about  force  in the context of a 
lever. She can change  views  anytime (top right of 
screen in Fig.  18.2 ) so that she can study the same 
phenomenon (force) in other contexts, such as 
inclined planes or pulleys. Science tends to be a 
complex domain in which learning involves 
understanding multiple relationships among 
important concepts and topics, which can be 

  Fig. 18.1    Screen shot from CoMPASS       

 



266 S. Puntambekar et al.

 represented by a web or a network. As described 
by Spiro et al.  (  1991  )  in the cognitive  fl exibility 
theory, revisiting the same material at different 
times, in rearranged contexts, for different 
purposes, and from different conceptual 
 perspectives is essential for attaining the goals of 
advanced knowledge acquisition. The alternative 
views that CoMPASS offers can help students to 
study science concepts and phenomena in depth 
by visiting them in multiple contexts. 

 The CoMPASS hypertext system both 
 supports and is able to detect SRL. The expert-
designed concept maps make explicit the seman-
tic relationships among concepts and provide 
students with a  visual scaffold  that they can use 
to select concepts appropriate to their goals, aid-
ing them in making navigation decisions and 
regulating their learning. Students’ navigation 
choices are saved in the database, and a history 
of navigation choices is presented to students so 
that they see what concepts they visited. Later in 
this chapter, we discuss how the information in 
the database is being used to provide adaptive 
support to students.  

   CoMPASS in Science Classes 

 The CoMPASS hypertext is used in conjunction 
with design challenges that provide students 
with a context for their science investigations. 
The challenges were developed speci fi cally as 
experiences that enable the students to see the 
interconnections between concepts. For exam-
ple, in the work and energy unit, students design 
the best pulley system to lift a bottle of water. 
Hands-on activities provide concrete experience 
collecting data to look for patterns that highlight 
relationships among concepts. As students try 
out different pulleys (double, triple) and put 
them together, they learn about science content, 
such as force, work, distance, and mechanical 
advantage. Information about conceptual rela-
tionships that students learn from CoMPASS can 
help them connect their experiential activities to 
broader scienti fi c patterns and relationships. 

 In the study described here, 74 sixth-grade 
students used the Simple Machines module in 
CoMPASS as a resource in a design-based cur-
riculum that we developed in collaboration with 

  Fig. 18.2    Changing topic for the same concept  work        
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the teachers. Elsewhere, we have reported that 
students who used CoMPASS did signi fi cantly 
better in posttest measures of factual knowledge 
as well as in a concept mapping test (e.g., 
Puntambekar et al.,  2003  ) . In this chapter, we 
focus on an analysis of students’ navigation paths 
based on the path fi nder algorithm and the k-means 
clustering algorithm (explained in the next sec-
tion) and how we are using what we learned 
through this analysis to build adaptive, scaffolded 
navigation. 

 Students were presented with the problem of 
building a device using pulleys that got the most 
work done with the least effort in lifting a 16-oz 
can. The task was fairly complex and open-ended, 
and students used CoMPASS on two consecutive 
days to help gather information to solve the prob-
lem. Students used CoMPASS for a total of 
30 min on each of the 2 days, and log  fi les were 
collected for each session.   

   Navigation and Log Files 

 Researchers have used analyses of log  fi le data to 
distinguish patterns in problem solving (Barab, 
Fagan, Kulikowich, & Young,  1996  ) , to identify 
differences in students’ navigational styles by 
clustering them into groups (Lawless & 
Kulikowich,  1996 ; Puntambekar et al.,  2003  ) , 
and to investigate meaningful navigation paths 
chosen by students (Rowe, Cooke, Hall, & 
Halgren,  1996  ) . Learning in a hypermedia envi-
ronment involves the cognitive reconstruction of 
a domain space through repeated traversals of 
that space (Jacobson & Spiro,  1995  ) . Further, to 
fully understand information presented in a 
hypertext environment, a reader needs to compre-
hend the text in the individual nodes as well as 
the relationships presented in the overall struc-
ture of the hypertext. Therefore, the paths that 
users choose have a powerful in fl uence on learn-
ing outcomes. A comprehensive analysis of navi-
gational patterns can provide useful insights into 
how students process the information and can be 
used to provide support for SRL in nonlinear 
learning environments (Niegemann,  2001  ) . 

 In CoMPASS, students’ self-regulated behavior 
is detected through the use of computer-generated 
log  fi les that allow us to record the nodes of 
 information students went to, the order that they 
visited them, and the amount of time spent on each. 
Log  fi le data allows us to analyze student naviga-
tion behavior post hoc and create clusters of navi-
gation patterns. We can then examine these clusters 
of navigation patterns to determine differences in 
students’ SRL processes and the types of scaffold-
ing that they may need. 

   Identi fi cation of Navigation Patterns 

 We have used the path fi nder algorithm to study 
students’ navigational paths based on log  fi les of 
navigation behavior, which are often used to 
assess student learning in computer-based envi-
ronments. Path fi nder, a graph theoretic technique, 
allows one to represent and compare  dynamic  
properties of navigational paths (Schvaneveldt, 
 1990  ) . Path fi nder yields a network representation 
of navigation patterns that consists of nodes and 
links. The path fi nder analysis will enable us to 
look into the ways in which representations 
change as students use CoMPASS and to analyze 
the richness of students’ navigational paths (based 
on the concepts visited and the relationships 
between them). 

 The path fi nder algorithm attempts to remove 
extraneous navigation paths to reveal the under-
lying structure of the navigation behavior. The 
original path fi nder procedure is applied to graphs 
with proximity data. It was adapted to work with 
link weights representing the number of travers-
als between two nodes and runs in  O(n ̂ 3) where  n  
is the number of nodes (Quirin, Cordón, Santamaría, 
Vargas-Quesada, & Moya-Anegón,  2008  ) . As a 
result, the links which had a more frequently 
traveled path available between the two end 
nodes were removed. 

 The path fi nder networks were then clustered 
using the k-means algorithm, which assigns each 
network repeatedly to the  closest  cluster until no 
further reassignments are necessary. The distance 
measure used captures the structural similarity of 
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graphs and is based on how many links each node 
has in common between the two graphs to be 
compared (Hübscher & Puntambekar,  2004  ) . 
Although this algorithm does not necessarily 
return an optimal result, it has enabled us in 
 fi nding a set of characterizing navigation patterns 
representative of most students.  

   Identi fi cation of Clusters 

 The analysis revealed  fi ve different clusters based 
on the similarity of navigation patterns. The pat-
terns are distinguished based on the richness of 
navigation within a topic, across topics, and 
across multiple views for a concept. The clusters 
do not suggest the desirable ways to navigate; 
they helped us understand the different ways in 
which students navigated, and we used a bottom-
up approach to examine the clusters and provide 
support so that students could expand their navi-

gation choices while at the same time working 
within the parameters of their goals. The clusters 
of navigation patterns show the number of times 
students  navigated to  a concept and the number 
of times students  navigated from  a concept and 
from which concepts students navigated to oth-
ers. For example, [3:2] means that students  went 

to  a concept three times and  went from  that con-
cept to another concept two times. Further, the 
label of each node also indicates in which topic 
students were reading about a concept. For exam-
ple, “force_p” means that students navigated to 
the concept of force within the topic of pulleys 
and “force_ip” means that they navigated to this 
concept within the topic of inclined planes. 

 Cluster 1 (Fig.  18.3 ) shows that students visited 
all of the relevant concepts within a topic. The topic 
overview (pulley) is the hub from where most of 
the transitions started. Although the topic overview 
is the center, there are many transitions between 
related concepts. For instance, there are transitions 

  Fig. 18.3    Cluster 1 with rich within topic but sparse global level navigation       
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between power and force, work and power, 
mechanical advantage (ma) and distance. This 
indicates that students used the maps for navigation 
and used the related concepts shown in the maps as 
a way to guide their navigation. Not only were 
these concepts related to one another, but they were 
also goal relevant and would help students with 
completing their design challenges. This cluster 
illustrates multiple  circular paths  that students fol-
lowed, i.e., pulley → ma → distance → pulley, 
 pulley → power → force → pulley. It also shows 
several double-sided arrows indicating that  students 
were not linear in their navigation. However, stu-
dents in this cluster stayed predominantly in one 
topic (pulleys) and failed to navigate to the related 
topic of levers, which was a closely related topic. 
Students whose navigation paths belong to this 
cluster also failed to visit concepts in alternative 
views, i.e., ma in levers as compared to ma in pul-
leys. At a local level, i.e., within a topic, cluster 1 is 
indicative of navigation that is rich in terms of the 
visits to related concepts within a particular topic. 
However,  students did not really explore the rela-
tionship of this topic with other topics, so the navi-
gation was sparse at the global (topical) level.  

 Cluster 2 (Fig.  18.4 ) also has the topic over-
view as the center, but the navigation pattern is 
very different. There is a single circular path 
with the most frequent transitions, showing that 
students visited three concepts—ma, power, and 
force—more often than other concepts. The 
 network also shows that students sought 
 additional details about the concept  energy  by 
visiting the forms of energy, while students in 
cluster 1 stayed mostly at the  fi rst level of detail 
and did not go deeper into the links that further 
described the types of energy. Another interest-
ing feature of cluster 2 is that students also navi-
gated to a related topic, i.e., levers. Classroom 
observations support this in that students who 
visited related topics (at the global level) also 
asked the teacher questions about the similarities 
between the pulley and the lever. The navigation 
pattern in cluster 2 better indicates navigation at 
the global level, i.e., navigation to other related 
topics and concepts, than cluster 1, but is not as 
rich in terms of navigation at the local level.  

 Clusters 3 and 4 (Figs.  18.5  and  18.6 ) show navi-
gation patterns that are completely different from 
clusters 1 and 2. These clusters do not have a clear 

  Fig. 18.4    Cluster 2 with sparse local level but rich global level navigation       
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  Fig. 18.6    Cluster 4 with primarily random navigation       

  Fig. 18.5    Cluster 3 with rich  views  level but sparse local and global level navigation       

center, and students have visited numerous concepts 
within the topic of pulley and in other  topics. 
Cluster 3 shows that students visited numerous 
concepts, in many of the topics, making an exten-

sive use of the alternative views (e.g., force_WaA, 
force_p, force_ip, as indicated in Fig.  18.5 ) 
 presented in CoMPASS, making this pattern rich 
at the  views  level. However, this cluster is pretty 
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sparse at both the local and the global levels 
because students did not have many transitions 
between the related concepts in any of the topics. 
Cluster 4 shows a more or less random pattern in 
which students visited topics as well as concepts 
that were not related to their goal. Students in this 
cluster visited several topics that were unrelated, 
such as rotational motion. Clearly, these students 
needed more support to understand the structure of 
the system for them to navigate and learn more 
effectively.   

 Cluster 5 (Fig.  18.7 ) has navigation patterns 
that can be described as being between clusters 1 
and 3 because the students in this cluster show 
breadth in navigation in that they visited many 
concepts. Students visited several concepts within 
the topic of pulley, but they primarily focused on 
two nodes of information: pulley and force.   

   Using Clusters as Basis for Scaffolding 

 In previous studies, we found that students could 
be supported on the basis of their navigation pat-
terns. We used their navigation to provide prompts 
in a paper-and-pencil format, mainly designed to 

help students regulate their navigation (e.g., the 
maps show related concepts; be sure to check what 
concepts are related to your current node before 
clicking on the next concept). We found that stu-
dents who received support performed signi fi cantly 
better in their physics knowledge tests than those 
who did not (e.g., Puntambekar & Stylianou,  2005  ) . 
In our current work, we are building scaffolding in 
the CoMPASS system to make it more adaptive to 
students with a range of navigation and learning 
needs. All the navigation behaviors have been 
assigned to one of  fi ve typical navigation patterns 
as found in the cluster analysis. This suggests that 
it is sensible to associate a new navigation behavior 
with one or more of these  fi ve patterns. This allows 
us to classify the learners based on their use of 
CoMPASS and scaffold them with adaptive 
prompts based on this classi fi cation. We approach 
this with a simple three-phase approach based on 
heuristic classi fi cation scheme (Clancey,  1985 ; 
Hübscher & Puntambekar,  2008  )  as follows. 

 This heuristic classi fi cation scheme describes a 
process that the scaffolding algorithm of CoMPASS 
goes through each time it computes what kind of 
text prompt should be shown to the learner. This 
process consists of an abstraction phase, a heuristic 

  Fig. 18.7    Cluster 5 with focused within topic navigation       
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match, and a re fi nement phase. In the abstraction 
phase, the learner’s real-time navigation behavior 
is associated, to some degree, with the various 
characteristic patterns found in the cluster analysis. 
This is based on our observation that most students 
can be assigned reasonably well to one or more of 
the clusters that we have found earlier (Puntambekar 
et al.,  2003  ) , even if relatively little real-time navi-
gation data is available. Then, the heuristic match 
suggests an appropriate type of text prompt based 
on this categorization and other information about 
the learner like reading skills, satis fi ed prerequi-
sites, or age. Finally, in the re fi nement phase, a 
speci fi c prompt is selected which is not just depen-
dent on the heuristic match phase but may also take 
into consideration what type of prompts has been 
shown to the  students earlier in the same session. 

 The three phases are implemented in Jess 
(Friedman-Hill,  2003  )  using forward chaining 
rules and certainty factors. This enables a clear and 
explicit representation of the different types of 
knowledge we are using, including navigation 
classi fi cation, pedagogical, and linguistic knowl-
edge. Certainty factors allow us to associate the 
learners to more than one typical pattern and to 
suggest more than one appropriate prompt. 
Whichever prompt will have the most support 
based on all three reasoning phases will be selected. 
The following is a simple example for classifying 
navigation behavior for a pattern where the navi-
gation stays within the goal topic without moving 
to a related topic. In the example rules below, sym-
bols starting with a “?” are variables. 

  RULE student-within-goal-topic  

   IF current-phase (categoriza-

tion) AND  

  navigate-to (?topic, 

?concept) AND  

   is-goal-topic(?topic)  

   THEN  

   ASSERT cluster(within-

goal-topic,+0.8)  

 Rule  student-within-goal-topic  can be read 
as follows: If the current phase is categorization 
and there is a navigation move to a concept 
?concept in topic ?topic, and topic ?topic is the 

goal topic, then we have found some evidence 
that the navigation behavior is indeed within-
goal-topic. The ASSERT statement states that 
the certainty factor for the  conclusion is +0.8. 
Certainty factors range from +1.0 (total belief) 
to −1.0 (total disbelief) and are useful to capture 
uncertain knowledge, yet not without fault. 

 Based on the clusters, we have a set of rules to 
provide prompts to help students with their navi-
gation. For example, below are two conditions 
for the basis of prompts. The scaffolding mecha-
nism uses three levels of prompts from less direc-
tive to most directive as illustrated in the following 
rules. Note that more directive prompts are 
asserted with lower certainty factors and thus will 
be used after less directive ones have been used 
assuming we add a rule stating not to say the 
same sentence twice. 

  RULE few-topics-in-goal-topic  

   IF current-phase( fi nd-treatment-

type) AND  

   cluster(within-goal-topic,?cf)  

   THEN  

   ASSERT treatment-type

(encourage-goal-related-

concepts,?cf)  

  RULE goal-related-topics  

   IF current-phase(re fi nement) 

AND  

   treatment-type(encourage-goal-

related-concepts,?cf)  

   concepts(?topic,?concepts)  

   THEN  

   ASSERT prompt(“Can you 

think of some concepts that are 

related to the one you are 

reading?”, 1.0 * ?cf)  

   ASSERT prompt(“What are 

some concepts relevant to your 

goal for today?”, 0.8 * ?cf)  

   ASSERT prompt(“Read 

concepts ?concepts.”, 0.5 * ?cf)  

 The goal of these rules, and thus, the 
prompts, is not to direct the learners toward 
some optimal behavior. Clusters are catego-
rized as effective or ineffective. Being in a 
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 certain cluster may imply certain de fi ciencies 
that will then be addressed by a prompt. For 
instance, a learner who focuses on just one 
concept may have too narrow a perspective, 
and the goal of a prompt may be to broaden the 
student’s exploration. As a result, a student 
may be associated with different clusters which 
may be simply a result of a prompt but also 
other contextual factors, like the domain of the 
problem or the kind of task to solve.   

   Conclusion 

 Although useful, using clusters representing 
typical navigation patterns does have some limi-
tations. By addressing these limitations, we may 
 fi nd even more suitable ways of characterizing 
the students’ typical navigation behavior. One 
limitation is the preprocessing of the log  fi le 
data. For instance, we ignore visits of less than 
10 s since we assume that students are not able 
to do any reasonable processing of a page in 
such short time. By doing this, we get rid of 
some  noise  in navigation in which students do 
not spend enough time in a topic or concept to 
actually read anything about it. Nevertheless, 
we also may be eliminating intermediate com-
ponents of navigation behavior that help stu-
dents to maintain orientation but are now not 
showing up in their navigation patterns. We also 
ignore the temporal character of the navigation 
behavior and only analyze the number of link 
traversals independent of their order. In future 
iterations, we plan on taking into account tem-
poral characteristics of students’ navigation pat-
terns by using navigation across multiple 
sessions and changes therein. Finally, the stu-
dents get to see only a part of the concept map 
limited to the current focus and concepts no fur-
ther than two links away. So, only concepts that 
are reasonably closely related to the current 
focus are displayed, thus limiting the possible 
paths that students can take. Of course, this  limi-

tation  is by design to keep students from wan-
dering off too far. 

 The work described in this chapter is a  fi rst step 
toward supporting SRL in hypertext environments. 

We have strived to achieve a balance between pro-
viding support and allowing students to explore 
the hypertext systems, which is a key strength of 
hypertext and hypermedia environments   .      
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  Abstract 

 The empirical research reported in this chapter explores learner metacog-
nition and self-regulation in information retrieval environments equipped 
with a powerful indexing technology called Topic Maps. The theoretical 
foundation for our work lies in the nexus of theories of self-regulation and 
those of cognitive information retrieval. Through a series of mixed-method 
studies conducted at the Topic Maps laboratory at Concordia University, 
we describe academic self-regulatory processes associated with graduate 
learners’ understandings of ill-structured academic writing tasks and 
attempt to relate them to learners’ metacognitive ability to judge their own 
performance on iterations of these writing tasks. The thirty-eight partici-
pants in the studies described in this chapter used the Topic Maps 
 technology throughout a semester to navigate a repository of instructor-
annotated essays. The repository was designed not only to help learners 
complete their own writing assignments, but also to improve their task 
understanding and better calibrate their performance from one instantia-
tion of the writing assignment to the next. Results are discussed in light of 
the novel intra-sample statistical analyses used to uncover relationships 
between academic performance, metacognition and task understanding.  
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       Introduction    

 This chapter provides a theoretical overview and 
empirical review of research conducted at  Topic 
Maps laboratory at the Learning for Life Centre 
at Concordia University. The research reported 
herein uncovers a heretofore unexplored intersec-
tion between theories of self-regulation and those 
of cognitive information retrieval (CIR). Through 
a series of mixed-method studies, we describe 
academic self-regulatory processes associated 
with graduate learners’ understandings of ill-
structured academic writing tasks and attempt to 
relate them to learners’ metacognitive ability to 
judge their own performance on iterations of 
these writing tasks. Our work explores learner 
metacognition and self-regulation in information 
retrieval environments equipped with a powerful 
indexing technology called Topic Maps (Inter-
national Organization for Standardization [ISO] 
13250,  2002  ) . Participants in the studies described 
in this chapter used topic maps technology 
throughout a semester to navigate a repository of 
instructor-annotated essays. The repository was 
designed not only to help learners complete their 
own writing assignments but also to improve 
their task understanding and better calibrate their 
performance from one instantiation of the writing 
assignment to the next. Topic Maps and its related 
components have been developed by a group of 
computer scientists, educational technologists 
and indexing specialists into an international 
industry standard, ISO 13250, through collabora-
tion in the ISO Joint Technical Committee 1/
Subcommittee 34/Working Group 3—Document 
Description and Processing Languages—
Information Association. Venkatesh, the research 
team leader and creator of Topic Maps laboratory 
at Concordia University, has represented the 
Canadian delegation in the development of 
ISO13250 since 2004.  

   Overview of Technological 
Framework 

 The creation and deployment of indexes to aid 
search-and-retrieval operations in online learning 
environments has been well researched in the past 
decade (e.g. see Bourdeau, Mizoguchi, Hayashi, 
Psyche, & Nkambou,  2007 ; and Gasevic & Hatala, 
 2006  for examples of indexing mechanisms in 
web-based learning contexts). While seen as a 
worthwhile successor to keyword-based searches, 
we are only beginning to scratch the surface on 
how to implement a variety of indexes in online 
learning environments to better exploit their ability 
to represent the semantic relationships within a 
content domain (e.g. see research reported in 
Aleven,  2006 ; Baeza-Yates,  2003 ; Crampes & 
Bourdeau,  2004 ; Henri et al.,  2006 ; Magnan & 
Paquette,  2006  ) . Research by members of our 
team using Topic Maps indexing technologies has 
begun to provide empirical evidence of how the 
manual design of indexes can in fl uence learners’ 
cognitions and academic performance during an 
online or blended learning experience (Shaikh, 
Zuberi, & Venkatesh,  in press ; Venkatesh et al., 
 2007 ; Venkatesh,  2008 ; Venkatesh & Shaikh, 
 2008,   2011 ; Venkatesh, Shaikh, & Zuberi,  2010  ) . 

   Topic Maps 

 Topic Maps are a form of indexing that describe 
an ontology, i.e. the relationships between con-
cepts within a domain of knowledge and link ele-
ments of this ontology to descriptive resources. 
Topic Maps are malleable—the concept and rela-
tionship creation process is dynamic and user-
driven. In addition, Topic Maps are scalable and 
can hence be conjoined and merged. Perhaps, 
most impressively, Topic Maps provide a distinct 
separation between resources and concepts, 1  

   1   In the interest of avoiding confusion with nomencla-
tures, we would like to point out the difference between 
concept maps and Topic Maps. Concept maps refer to the 
organization of information using a visual language 
through the de fi nition of concepts, the linking of two or 
more concepts and the labeling of these aforementioned 
links. Topic Maps are an indexing technology that allows 
the subjects in a speci fi ed domain to be identi fi ed and 

related using strict ontological procedures while subse-
quently being linked to resources that help describe them. 
Concept maps are rooted in educational methods and 
related instructional interventions; Topic Maps were born 
from the notion of ontologies and related knowledge 
engineering procedures. Hence, in this chapter we do not 
explicitly discuss the use of concept maps in relation to 
Topic Maps.  
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thereby facilitating migration of the data models 
therein. Topic Maps separate the interrelated top-
ics in a given body of knowledge from the actual 
resources that describe these topics. They provide 
context-based searches that can match context-
speci fi c search criteria entered by users (Garshol, 
 2004 ; Pepper,  2002  ) . 

 As a search-and-retrieval technology, Topic 
Maps provide a method to code content in terms 
of topics, the relationships between these topics 
and any additional informational resources asso-
ciated with the target subject matter. This allows 
for greater  fl exibility in searching because users 
not only gain access to information directly asso-
ciated to a topic but also retrieve information 
regarding related topics. Users’ queries may be 
expressed as keywords, which will trigger a 
search in Topic Maps for matching terms. Results 
are returned not by keyword “hits” but rather by 
the concepts or ideas present in a corpus. A search 
will return fewer, more relevant “hits” matching 
the keyword with the appropriate semantic con-
text. Given their advanced capability of repre-
senting information, Topic Maps can support 
learning within an online learning environment in 
that content across functions can be integrated 
through search functionality triggered by a learn-
er’s query. Topic Maps can help to provide learn-
ers with a uniquely individualised tool that 
customises how content is accessed and poten-
tially organised. 

 Topic Maps technologies are extensively 
employed to navigate databases of information in 
the  fi elds of medicine, military and corporations. 
Many of these proprietary Topic Maps are 
machine-generated through the use of context-
speci fi c algorithms which read a corpus of text 
and automatically produce a set of topics along 
with the relationships among them. However, as 
Venkatesh et al.  (  2010  )  note, apart from the 
empirical work produced in Topic Maps labora-
tory at Concordia University, there has been little, 
if any, research on how to use cognitive notions 
of mental models, knowledge representation and 
decision-making processes employed in prob-
lem-solving situations as a basis for the design of 
ontologies for Topic Maps.   

   Overview of Educational Context 

   Navigation of Information in Online 
Learning Environments 

 Research on educational applications of indexes 
such as Topic Maps has come into focus as a result 
of the ubiquitous adoption of course management 
systems like WebCT ®  and Moodle ®  across postsec-
ondary educational institutions, both in North 
America and in Europe. The adoption of these sys-
tems within the framework of higher education has 
not been complemented by a theoretically sound 
design of the instructional experiences therein 
(McGee, Carmean, & Jafari,  2005 ; Shaw & 
Venkatesh,  2005  ) . In fact, it has become rather clear 
that one of the pitfalls in these course management 
systems is their pitiful and often nonexistent 
approach to the navigation of the complex webs of 
information posted therein. Students are therefore at 
a distinct disadvantage when it comes to completing 
their academic assignments if they involve having 
to conduct search-and-retrieval operations.  

   Development of Writing Skills 
in Graduate Learners 

 Essay writing is considered to be the “default 
genre” for measurement of understanding and, 
dare we say, higher-order cognitive processing in 
higher education in developed nations (Andrews, 
 2003  ) . It would be to our distinct advantage to 
continue to develop higher-order cognitive skills 
in postsecondary learners, given that the Canadian 
Council on Learning  (  2007  )  has advocated that 
our graduates not only learn to adapt to the shift-
ing landscape of the job market in an increasingly 
international context but also to innovate, create 
and transfer knowledge on their jobs. Such a tall 
order would necessitate that our future workforce 
learn to be creative as well as self-regulated and 
thereby transfer their postsecondary skills to their 
jobs (Simard et al.,  2007  ) . Ill-structured essay 
writing has been empirically demonstrated as an 
activity that stimulates advanced cognitive 
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 processing (Andrews,  2003 ; Lindblom-Ylänne & 
Pihlajamäki,  2003  )  and self-regulation (Tynjälä, 
 2001 ; Venkatesh & Shaikh,  2008,   2011  )  in post-
secondary learners. It follows, then, that web-
based instructional systems implemented in our 
universities should provide learners with appro-
priate software tools to manipulate materials 
while engaging in ill-structured tasks. 

 The research evidence presented in this chap-
ter demonstrates how a new generation of indexes 
might improve the manner in which learners tra-
verse content in a repository, thereby positively 
affecting both their academic performance and 
individual self-regulatory abilities. Our research 
explores how to improve the design of online 
indexes for repositories used to improve ill-struc-
tured essay writing, thereby creating graduates 
who better meet organizations’ human resource 
needs for the “knowledge worker”.  

   Choice of Domain for Implementation 
of Topic Maps 

 In an initial experiment, Venkatesh et al.  (  2007  )  
studied the difference between the undergraduate 
learners’ use of Topic Maps ( n  = 18) versus the 
use of search engines ( n  = 16) in retrieving infor-
mation from an online learning repository. Topic 
Maps were represented by a manually created 
ontology of how an expert would organize and 
browse the information contained in six articles 
contained within the repository. The articles 
addressed operational issues surrounding the 
development of course management systems and 
were targeted at graduate learners. Learners were 
required to browse the repository, for a maximum 
of 30 min (so as to replicate an examination set-
ting) to answer two ill-structured questions 
related to the content of these six articles. The 
 fi rst question addressed the role of information 
technology in the selection and purchase of a 
learning content management system. The sec-
ond question addressed the importance of the 
concept of interoperability in selecting and pur-
chasing a learning content management system. 
One of the subject matter experts recruited for the 
study proposed model answers to the two ques-

tions, each consisting of four themes. Themes 
were derived from statements made across the six 
articles and required participants to synthesise 
and relate material contained in multiple sources 
(i.e. articles). After controlling for prior knowl-
edge, it was found that participants who used 
Topic Maps had a signi fi cantly larger number of 
correct themes for their answers to both questions 
(effect sizes calculated by Cohen’s  d  were 1.17 
for question 1 and 2.44 for question 2). Exit inter-
views conducted with the learners in both Topic 
Maps and search engine conditions indicated that 
the usage of an index which represented how an 
expert might organize the myriad topics helped 
those who were using Topic Maps to locate 
themes and prepare answers with far more 
con fi dence than those who used the search engine. 
In addition, learners in Topic Maps condition also 
reported lesser misalignment with the criteria for 
the assessment of the two ill-structured questions 
that they were supposed to answer. Speci fi cally, 
participants mentioned the ease with which Topic 
Maps allowed them to look for relational ele-
ments across multiple sources of information. 

 To further explore the relationships between 
academic performance, metacognitive and self-
regulatory processes in postsecondary learners 
navigating information in online environments, 
Venkatesh  (  2008  )  built a customized repository 
indexes through Topic Maps for a “theories of 
e-learning” course he offers in the Department of 
Education at Concordia University. This setting 
serves as the context for the empirical work car-
ried out thus far by members of the Topic Maps 
laboratory. When described in technical terms, the 
repository consists of a web-based, specialized 
(i.e. context-speci fi c), learner neo-corpus (i.e. a 
collection of artefacts created by learners them-
selves) which employs Topic Maps technology as 
a front-end navigational and information retrieval 
tool. The artefacts used for the repository are 132 
essays written by 33 learners who have taken 
the “theories of e-learning” course, along with 
Venkatesh’s comments on the essays. The ontol-
ogies used to create Topic Maps are grounded in 
(a) the knowledge representations of instructor 
and/or learner, (b) the assessment criteria being 
applied in grading the essay, namely, Biggs’ and 
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Collis’  (  1982  )  and Biggs’  (  1991,   1996  )  Structure 
of Observed Learning Outcome (SOLO) taxon-
omy and (c) the content of the essays. The SOLO 
taxonomy describes how learners analyse, syn-
thesise and represent subject matter in a given 
domain and refers to  fi ve levels (in order of 
increasing complexity): prestructural, unistruc-
tural, multistructural, relational and extended 
abstract (detailed de fi nitions of these levels are 
available in Biggs & Collis,  1982  )  Topic Maps 
enables access to speci fi c portions of the essays 
to view instructor annotations on how a particu-
lar student’s writing conforms to or digresses 
from the SOLO assessment criteria. In develop-
ing the indexes for our Topic Maps, we adopted 
a combination of Hersh, Pentecost and Wickam’s 
 (  1996  )  approach to task-based information 
retrieval indexes and Kabel, de Hoog, Wielinga 
and Anjewierden’s  (  2004  )  procedure of develop-
ing task-based ontologies. By focusing on the 
assessment criteria for the essay-writing task, we 
allowed for the explicit representation of the 
various facets of the SOLO taxonomy assess-
ment criteria for the writing task as well as its 

relationship to other indexes such as author of 
essays, grade received and content covered in the 
essays. In order to represent the resultant ontol-
ogy through the use of Topic Maps, we created a 
set of topics, associations (i.e. relationships 
between topics) and occurrences (i.e. resources 
to describe topics) as per Pepper’s  (  2002  )  and 
Garshol’s  (  2004  )  guidelines (see Fig.  19.1  for a 
screenshot of a page describing content of essays 
in Topic Maps).   

   Software Used and Modi fi cations 
to Con fi guration 

 In keeping with the spirit of developing and 
sharing Topic Maps standards by the ISO com-
mittee to which Venkatesh belongs, we decided 
to use Ontopia Knowledge Suite (OKS,   www.
ontopia.net    ) open-source  software to build and 
display the online repository of annotated stu-
dent essays for the “theories of e-learning 
course”. OKS includes three applications: 
Ontopoly, Omnigator and Apache Tomcat. 

  Fig. 19.1    Screenshot of Topic Maps page describing content of essay in repository       

 

http://www.ontopia.net
http://www.ontopia.net
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Ontopoly, Topic Maps editor, effectively 
allows Topic Maps architect to de fi ne and pop-
ulate subject areas, relationships between sub-
ject areas and links to artefacts that are related 
to those subject areas. Omnigator, Topic Maps 
browser, is a rudimentary application that 
allows end users to view and navigate Topic 
Maps. Finally, Apache Tomcat is a con fi gurable 
webserver that enables Internet access to the 
editing and browsing applications. In order to 
trace how users navigated our repository, we 
con fi gured the webserver to enable both 
account authentication (so that users must log 
in to the application before browsing) and 
access logging (to keep track of which parts of 
the repository were accessed by each user). To 
summarize the trace data for each user’s 
account, we wrote a Perl script that parses the 
webserver access logs.   

   Incorporating Theoretical 
Frameworks of Self-Regulation 
and Cognitive Information Retrieval 
in Ontology Construction 
for Topic Maps 

 We subscribe to the notion that cognitive 
information processing and its related theo-
ries should be instrumental in providing a 
framework for the design of ontologies that 
describe Topic Maps for ef fi cient navigation 
of online learning material. We contend, how-
ever, that ontology construction for indexes 
should also take into account how learners 
regulate cognitions and metacognitions with 
respect to academic tasks, as well as how 
information retrieval is closely tied to ele-
ments of academic self-regulation (Venkatesh, 
 2008 ; Venkatesh et al.,  2010  ) . 

 Self-regulated learners apply both cognitive 
and metacognitive strategies to complete aca-
demic tasks, taking into account contextual and 
task-speci fi c conditions. While much is known 
about how to build self-regulatory competencies 
using sound instructional design principles, 
educational psychologists still struggle to under-
stand and describe the interactions between the 

individual components of self-regulated learning. 
Perhaps this is an artefact of classic conceptions 
of self-regulated learning as a complex, process-
oriented theoretical construct. This epistemologi-
cal assumption makes it dif fi cult to tease apart 
how learners view the rationale for completing an 
academic task and how well they monitor their 
performance in terms of the instructor’s assess-
ment criteria. 

   De fi ning Task Understanding for 
Information Retrieval Environments 

 Task understanding, a critical phase in SRL when 
viewed from an educational psychology perspec-
tive, draws on two distinct but interacting ele-
ments, namely, individuals’ perceptions of the 
academic task and of themselves as learners 
within a particular academic context. Learners’ 
perceptions of the academic task include both the 
nature of the task and the associated assessment 
criteria. Learners recursively re fi ne and re fl ect on 
their perceptions of the nature of the task, includ-
ing (a) the rationale for performing the task (e.g. 
mastery/performance orientation and intrinsic/
extrinsic motivation for undertaking the task), (b) 
the procedures to be undertaken to perform the 
task and the required outputs, (c) the materials 
that are available to perform the task and (d) the 
conditions under which the task must be per-
formed (Venkatesh & Shaikh,  2011  ) . Learners 
also need to grapple with the assessment criteria 
that the instructor uses to judge their task perfor-
mance. It therefore appears that task understand-
ing involves a close interaction between learners’ 
and the instructor’s perceptions of the academic 
task. In addition to task-associated elements, task 
understanding is in fl uenced by the learners’ 
knowledge of self-as-learner, including preferred 
learning styles and learning needs, prior content 
and task-speci fi c knowledge and context-speci fi c 
motivational and emotional anxiety and ef fi cacy. 

 Ingwersen’s  (  2000  )  theory of CIR provides 
some interesting overlaps with the concept of 
task understanding as a self-regulatory process. 
CIR theory describes how learners’ cognitions 
adapt to the task-speci fi c and contextual conditions 
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encountered in information retrieval environ-
ments. A typical information retrieval task would 
include searching a repository using keywords, 
collating information across different sources or 
populating repositories with validated informa-
tion. Essentially, CIR acknowledges that infor-
mation-seeking behaviours affect the way 
individuals perceive how knowledge can be orga-
nized. From a social constructivist standpoint, 
the collective cognitive structures that are repre-
sented in an information retrieval system are a 
result of the social interactions that lead to knowl-
edge creation, the information represented within 
the subject domains, as well as science and learn-
ing paradigms that underlie the design of the 
information retrieval environment. 

 Two factors in Ingwersen’s model, namely, 
the  users’ cognitive space  and the  contextual 

environment  surrounding the task, are very impor-
tant subcomponents of the task-understanding 
component of SRL and the instructional design 
perspectives that stem thereof. According to CIR 
theory, the task and the user’s perception of it are 
considered just as valuable as the information 
need. In fact, Ingwersen also points out that the 
perception of the work task (e.g. creating an entry 
for an online encyclopaedia) leads to perceived 
information need (e.g. looking for synonyms for 
a scienti fi c term, comparing de fi nitions of a 
scienti fi c term across different contexts). In a 
cognitive sense, user perception of a work task is 
more likely to be stable over the information 
retrieval session than the corresponding dynamic 
information need. However, from a cognitive 
psychology standpoint, research has demon-
strated that perceptions of the work task have 
been empirically shown to evolve continuously 
as learners tackle academic tasks (e.g. Shaikh 
et al.,  in press ; Venkatesh,  2008 ; Venkatesh & 
Shaikh,  2008,   2011 ; Winne & Hadwin,  1998  ) . 
Given these diverging perspectives, there is 
suf fi cient reason to re fi ne conceptions of task 
understanding by taking into account empirical 
evidence from the  fi elds of both information retrieval 
and cognitive psychology. This  interdisciplinary 
lens on task understanding might illuminate how 
instructional designers can achieve the often 
con fl icting objectives of satisfying online learn-

ers’ information needs and improving their 
 performance on a given academic task. When 
information need is misconstrued, performance 
on a dependent task is more liable to deteriorate. 
Logically, therefore, the design of indexes for 
online repositories that purport to improve self-
regulatory processes, such as Topic Maps envi-
ronment described in this chapter, should be 
informed not only by well-known principles for 
instructional design but also by guidelines ema-
nating from Ingwersen’s theory of CIR.  

   Metacognitive Monitoring 
of Performance During Writing 
Activities 

 Another critical component of academic self-
regulation being explored in our programme of 
research is metacognitive monitoring or learners’ 
abilities to evaluate their performance and learn-
ing while engaging in an academic task (Winne, 
 2004  ) . While monitoring has been described as 
an eccentric phenomenon, with variations from 
one individual to the next (Nietfeld, Enders, & 
Schraw,  2006 ; Schraw, Dunkle, Bendixen, & 
Roedel,  1995  ) , research on monitoring or calibra-
tion pro fi ciencies in college students taking mul-
tiple-choice tests has revealed both domain-speci fi c 
and domain-general-monitoring abilities in stu-
dents (Nietfeld, Cao, & Osborne,  2006 ; Schraw 
& Nietfeld,  1998  ) . There is, however, a paucity of 
research on the development of monitoring skills 
in graduate learners in the context of writing tasks 
requiring higher-order thinking, as well as 
whether adults use their monitoring skills in sim-
ilar ways when tackling different types of aca-
demic activities (Nietfeld, Cao, & Osborne,  2005 ; 
Nietfeld & Schraw,  2002  ) . 

 There is a paucity of empirical evidence 
describing the relationship between learners’ 
accuracy in monitoring and their performance;  
studies supporting the relationships between pre-
diction (monitoring) accuracy and performance 
are few and far between (Nietfeld et al.,  2005 , 
Nietfeld, Cao et al.,  2006 , Nietfeld, Enders et al., 
 2006 ; Pressley & Schneider,  1997  ) . In fact, there 
are instances of studies that point out the  contrary, 
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i.e. that improved performance in test-taking situ-
ations is related to less accurate monitoring (e.g. 
Begg, Martin, & Needham,  1992  )  or that 
improved performance cannot be attributed to 
improved monitoring (e.g. Dunlosky & Connor, 
 1997  ) . While purely experimental designs (as 
suggested by Thiede, Dunlosky, Grif fi n, & Wiley, 
 2005  )  allow researchers to compare performances 
among students with variable monitoring 
pro fi ciencies in well-structured tasks, the ques-
tion still remains as to how one can better design 
instructional tools to help learners, both at sec-
ondary and postsecondary levels, regulate their 
performance on more complex and consequential 
academic tasks (see Mevarech & Fridkin,  2006 ; 
White & Frederiksen,  1998 ; and Zimmerman & 
Moylan,  2009 , for examples of instructional 
interventions focused on improvement of meta-
cognitive processes). In the context of our pro-
gramme of research, preparing graduate learners 
for the educational technology-related work-
forces includes helping these knowledge workers 
to become better judges of their own performance 
on ill-structured written tasks, thereby increasing 
the ef fi ciency with which such tasks can be 
accomplished. Through the sustained implemen-
tation and use of a Topic Maps indexing tool, we 
present empirical evidence of how learners’ mon-
itoring, task understanding and academic perfor-
mance in fl uence one another and help describe, 
in more complete terms, how self-regulatory pro-
cesses unfold as learners engage in online infor-
mation retrieval activities.   

   Empirical Findings on Task 
Understanding, Monitoring 
and Academic Performance 

   Educational Context 

 Thirty-eight volunteers, 15 of whom were male, 
were recruited from a total of four sessions of a 
graduate, classroom- and laboratory-based “theo-
ries of e-learning” course given by Venkatesh. 
Pretests of content knowledge and essay-writing 
ability were conducted during the  fi rst class of 
each session. A total of six essays were written by 

each of the 38 participants over the duration of the 
course. As mentioned earlier in the chapter in the 
section “Overview of Educational Context”, 
assessment criteria used to grade the essays were 
developed using Biggs’ and Collis’  (  1982  )  and 
Biggs’  (  1991,   1996  )  SOLO taxonomy; criteria 
were made explicit to all learners before the writ-
ing of the  fi rst essay. This writing assignment was 
classi fi ed as ill-structured because (a) the goals of 
the essay were not well de fi ned, (b) the constraints 
imposed by contextual factors were not readily 
apparent, (c) the solution to the essay-writing 
problem was not easily known and (d) there were 
multiple perspectives on both the solution and the 
solution path. Each essay was accompanied by a 
self-assessment tool, the Task Analyzer and 
Performance Evaluator (TAPE, Venkatesh,  2008 ; 
Venkatesh & Shaikh,  2011  ) , designed to help 
learners articulate their justi fi cations for meeting 
the assessment criteria. The TAPE self-assessment 
enabled learners to predict their performance and 
state their con fi dence in their predictions. In addi-
tion the TAPE asked learners to justify how they 
felt they had met the assessment criteria for their 
writing assignment. Students were asked to ensure 
that the topic of their essay was related to the 
course content on development of theories for 
e-learning; students chose to write essays on sub-
jects as diverse as “practitioner-oriented knowl-
edge management principles for e-learning 
assignments” and “healthcare industry and 
e-learning courses” to “development of learner 
motivation in online learning environments”. 
Essays were submitted and graded online, feed-
back from the instructor was embedded and the 
assignments were returned to the learner within 
72 hours of submission along with comments on 
the portion of the TAPE that dealt with learners’ 
justi fi cations of having met the criteria. All 38 
learners had access to the repository of 132 
instructor-annotated essays which was indexed by 
a Topic Maps. Students were free to use these 
annotated essays as sources for their own writing 
assignments or as examples of how the instructor 
would be grading their essays. 

 Due to scheduling-related constraints, 15 
learners enrolled in the regular, 13-week long fall 
and winter semester courses were given access to 
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the repository 4 weeks into the term (after having 
written three essays), whereas 23 others who 
were registered for intensive 6-week long sum-
mer courses received access to the repository 
after writing their  fi rst essay. Semi-structured 
timeline interviews (Schamber,  2000  )  were con-
ducted with each of the 38 learners, at least once, 
to discuss their use of Topic Maps. Consent forms 
were signed and all data were collected in accor-
dance with principles outlined by the American 
Psychological Association; ethical approval was 
obtained from Concordia University’s Human 
Research Ethics Committee. While all partici-
pants were aware of Venkatesh’s research pro-
gramme, consent forms were only made available 
to the research team after  fi nal grades for the 
courses were submitted to the university.  

   Data Collection 

 Data were collected longitudinally over the 
course of multiple semesters and included the 
following:

   Demographic information and pretests of  –
knowledge and essay-writing experience.  
  Written essays.   –
  Written responses to the TAPE self-assess- –
ment for each essay.  
  Performance predictions and con fi dence in  –
performance predictions for each essay via the 
TAPE self-assessment.  
  Instructor’s performance assessment for each  –
essay (grades and written feedback).  
  Instructor’s feedback regarding TAPE self- –
assessment questions related to assessment 
criteria.  
  Semi-structured interviews with learners  –
related to perceptions of task understanding, 
monitoring capabilities and academic 
performance.  
  Computer-generated trace  fi les related to use  –
of the repository indexed by a Topic Maps; 
data collected included information time 
stamps and locations within Topic Maps that 
students browsed.  
  Timeline interviews with learners related to  –
decisions taken while browsing the 
repository.     

   Salient Quantitative Findings 

 In an initial quantitative exploration, Venkatesh 
and Shaikh  (  2011  )  used a novel approach called 
intra-sample statistical analysis (ISSA) (Shaffer 
& Serlin,  2004  )  to reveal the complex relation-
ships between task understanding, metacognitive 
monitoring and academic performance. Shifting 
from learner to work task as unit of analysis pro-
vides a unique lens to describe how learners stra-
tegically adapt their self-regulatory processes 
while navigating the repository using 
Topic Maps. Furthermore, the analyses in 
Venkatesh and Shaikh  (  2011  )  propose the re-
theorization of classic monitoring measures such 
as discrimination (i.e. learner’s ability to assign 
an appropriate level of con fi dence to a perfor-
mance prediction) and bias (i.e. degree to which 
learners are over- or under-con fi dent in their pre-
dictions) in light of learners’ performance predic-
tion capabilities. 

 When considering essays as unit of analysis, a 
multiple-regression procedure reveals that essay-
speci fi c performance can be signi fi cantly pre-
dicted by a positive relationship with four 
combined measures of task understanding and 
monitoring (the variance accounted for by the 
four measures was 39%). The four measures 
included feedback on self-assessment, absolute 
accuracy in prediction, discrimination, and per-
formance prediction. This relationship holds true 
even in the face of using individual learners and 
time as  fi xed factors; in fact, these  fi xed factors 
accounted for no more than 12% of the variance 
in performance. In addition, the models resulting 
from the follow-up non-parametric regressions 
reveal precisely how the measures of task under-
standing and monitoring engage in a complex 
battle to in fl uence how essay-speci fi c perfor-
mance might  fl uctuate in the context of the ill-
structured writing assignment assigned for the 
four sections of the “theories of e-learning” 
course described. Speci fi cally, the models pro-
posed by the multinomial regression procedures 
indicate that, over time, increased con fi dence and 
inaccurate predictions reduce the likelihood of 
improved performance. However, an increase in 
essay-speci fi c bias (as de fi ned by the ISSA 
 procedure) and the ability to improve task 
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 understanding in fl uence performance positively. 
In light of these results, it seems necessary to 
reconceptualise the seemingly con fl icting direc-
tions that seem to pull apart the self-regulatory 
mechanisms that guide how learners perceive 
their comprehensions of tasks and how they cali-
brate their performance. On the one hand, patterns 
in certain monitoring pro fi ciencies, such as accu-
racy and con fi dence, tend to reduce the probabil-
ity of performing well on the writing task, whereas 
other monitoring measures such as bias (in com-
bination with task understanding) lead to improved 
performance. These results led to Venkatesh and 
Shaikh  (  2008  )  conducting qualitatively oriented 
inductive content analysis on the interview and 
trace data collected to uncover how learners’ task 
understanding and monitoring might in fl uence 
performance on the essay-writing task.  

   Salient Qualitative Findings 

 Venkatesh and Shaikh  (  2008  )  show how learners’ 
metacognitive monitoring abilities are dependent 
on speci fi c navigation experiences in the reposi-
tory. Of the 38 participants, 12 were selected as a 
theoretical sample based upon iterations required 
for performance improvement. Learners were  fi rst 
selected based on their performance being in a B 
range or lower (i.e. B+, B, B− and C) for their  fi rst 
essay. Subsequently, these learners were placed 
within two categories—improving to an A range 
grade after two versus three or more attempts at 
the essay-writing task. This categorization placed 
seven individuals, three of whom were females, in 
the two-essay improvement group (2IG) and  fi ve 
females in the three-essay improvement group 
(3IG). Our sampling strategy allows us to observe 
how task understanding might have  fl uctuated 
across a number of its psychological dimensions, 
as well as the role that time on task might have 
played in the relationship between performance 
improvement and task understanding. 

 We compared learners from the 2IG and 3IG 
groups on their perceptions of the assessment cri-
teria, knowledge of self-as-learner (as determined 
in learners’ responses to their TAPE self-assess-
ments as well as in their interviews), perceptions 
of the instructor as well as their information need. 

Learners cycled through various stages of devel-
opment of their perceptions of the assessment 
 criteria, as was evidenced in their TAPE self-
assessment responses as well as in the interviews. 
In accordance with Ingwersen’s theory of CIR, 
perceptions of the assessment criteria and ratio-
nale did, in fact, stabilise over time, regardless of 
learners’ information need. 

 It became clear, at the outset of the analysis, 
that knowledge of self-as-learner played the most 
crucial role in instigating navigation strategies in 
the repository. In fact, some clear distinctions 
were seen in the two groups of theoretically sam-
pled learners. Learners from the 3IG preferred to 
use class discussions (an operationalization of 
knowledge of self-as-learner) in choosing subjects 
to search for while navigating Topic Maps-enabled 
repository, whereas those in the 2IG overwhelm-
ingly initiated search activities based on percep-
tions of the instructor and instructor feedback on 
their own essays. Eventually, learners in the 3IG 
did shift their search strategies to better re fl ect the 
need to align with assessment criteria. 

 Learners’ perceptions of their instructor as 
well as of the feedback provided by the instructor 
were instrumental to the development of their 
task understanding, in all of the 12 cases across 
the two groups. Learners repeatedly emphasized 
the importance of having open and accessible 
instructor feedback on the essays of their peers. 
Most learners had speci fi c information needs 
while exploring the repository. In stark contrast 
to Ingwersen’s  (  2000  )  hypothesis, but in concor-
dance with conjectures made in Venkatesh  (  2008  ) , 
learners’ information needs  fl uctuated (e.g. from 
searching using the grade index to subject index 
to author index, not necessarily in that order) as 
their task understanding improved.   

   Methodological Implications and 
Their In fl uence on Self-Regulation 
Theory Building Exercises 

   Work Task as Unit of Analysis 

 In an attempt to better explicate the relationship 
between a single facet of task understanding, 
namely, learners’ perceptions of the ill-structured 
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writing assignment’s assessment criteria and their 
variable monitoring pro fi ciencies, Venkatesh and 
Shaikh  (  2011  )  propose that the work task be 
treated as a unit of analysis as opposed to the 
individual learner. The theoretical basis for con-
ducting this procedure is detailed in Shaffer and 
Serlin’s  (  2004  )  landmark piece on ISSA. When 
confronted with data organized and analysed by 
learner as unit of analysis, it is not uncommon to 
notice that the lack of a large sample combined 
with the repeated measure procedures leaves very 
little room for powerful statistical results. Treating 
the work task, or in our case, the essay, as unit of 
analysis enables us to employ powerful, multi-
variate statistical procedures, with a relatively 
larger sample, so as to con fi rm some of the quali-
tative observations made in Venkatesh and Shaikh 
 (  2008  )  and provide fodder for future theoretical 
and research considerations in the area of explor-
ing the development of monitoring pro fi ciencies. 

 Two major issues taken into consideration 
before commencing the essay-based analyses in 
Venkatesh and Shaikh  (  2011  )  were those of gener-
alizability and exchangeability/interchangeability 
(Shaffer & Serlin,  2004  ) . All essay-based analyses 
are generalized to all essays that could possibly 
have been written by the set of 38 learners regis-
tered in the four session of the “theories of e-learn-
ing” course. In addition, while treating an individual 
essay as unit of analysis, after taking into account 
all possible measured factors, including the writer 
of the essay, session in which it was written, and 
the numerical sequence in which the essay was 
written, essays can be considered exchangeable or 
interchangeable with one another. The notion of 
exchangeability demands that one treats individual 
learners as  fi xed effects in any multivariate model 
so as to contextualize the results to the sample of 
individuals from which the essays were drawn.  

   Factoring Performance Predictions 
in Calculating Monitoring Pro fi ciencies 

 An important aspect of our programme of 
research is introducing the concept of perfor-
mance prediction capability and its relation to 
the performance assessments and students’ pre-

diction con fi dence scores. Prior statistical inves-
tigations of monitoring (e.g. Nietfeld et al., 
 2005 , Nietfeld, Cao et al.,  2006 , Nietfeld, Enders 
et al.,  2006 ; Schraw et al.,  1995 ; Schraw & 
Nietfeld,  1998  )  do not deal with the notion of 
students’ performance prediction capabilities 
and how these predictions might be related to 
their actual performance and con fi dence. Schraw 
and his colleagues investigated monitoring in 
the context of multiple-choice questions, and 
hence, students did not predict  how  correct their 
responses were; rather, they stated their 
con fi dence that their answers were correct. In 
fact, in most prior studies reviewed, students 
implicitly predicted perfect performance. To 
further exacerbate the problem, monitoring 
pro fi ciencies have traditionally been calculated 
using performance and con fi dence scores alone. 
Venkatesh and Shaikh  (  2011  )  propose that the 
concept of performance prediction capabilities 
adds a new dimension to measuring monitoring 
pro fi ciencies. Measures of monitoring 
pro fi ciencies like discrimination and bias should 
take into account performance predictions, per-
formance assessments and prediction con fi dence 
when being derived. When performance is not 
gauged simply in terms of “right” and “wrong” 
answers but is instead mostly graded on a scale, 
then students’ monitoring abilities need to 
account for any over- or underestimation of per-
formance before considering the effect of their 
prediction con fi dence.  

   Selection of Theoretical Samples 
for Qualitative Analyses 

 Our research has found that learners’ task 
understanding with respect to ill-structured 
writing assignments is dependent on myriad 
factors, especially when these learners are con-
fronted with the overhead of an information 
retrieval activity. These include the usual sus-
pects, namely, the traditional cognitive psy-
chology-related constructs of perceptions about 
the rationale for completing the task as well as 
its assessment criteria and knowledge of self-
as-learner (Venkatesh,  2008 ; Venkatesh & 
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Shaikh,  2008,   2011  ) . When describing how 
people think in information retrieval contexts, 
Ingwersen  (  2000  )  contends that when learners 
navigate a search-and-retrieval system, their 
cognitive notion of task understanding remains 
more stable than their perceptions of informa-
tion need. On the other hand, while learners’ 
navigation strategies (which are dependent on 
their information need) should ideally be 
grounded in their task understanding, it is gen-
erally accepted that this understanding evolves, 
for better or for worse, as they attempt comple-
tion of an academic task. In addition, Shaikh 
et al.  (  2012  )  illustrate the temporal effects of 
instructor feedback on learners’ self-regulation 
while engaging in an academic task. Essentially, 
Shaikh et al.  (  2012  )  contend that learners pri-
oritise a triad of perceptions in a hierarchical 
scheme, namely, the instructor, self-as-learner 
and task. Over time and experience in a learn-
ing environment, learners choose which of 
these three perceptions take precedence, 
thereby in fl uencing to varying degrees, how 
cognitions are employed to successfully meet 
the criteria for completion of a task. The diver-
gence of opinions and  fi ndings in the literature 
raises the question as to whether the CIR 
model, as conceived by Ingwersen, is incom-
patible with theoretical constructs associated 
with self-regulatory processes. If this is the 
case, could some of these differences be par-
tially explained by the shifting hierarchy of 
perceptions outlined in Shaikh et al.  (  2012  ) ? 
Our rationale for conducting qualitative con-
tent analyses on trace data and timeline inter-
views is rooted in this conundrum. 

 In treating the group of learners as a whole 
unit in a case study (e.g. Venkatesh,  2008 ; 
Venkatesh & Shaikh,  2011  ) , we are unable to 
tease apart the facets of task understanding that 
might in fl uence learners’ performance improve-
ment, information needs and navigation strate-
gies over time. By shifting the unit of analysis to 
a theoretically sampled group of learners, we 
respond to both Shaikh et al.  (  2012  )  and Venkatesh 
and Shaikh’s  (  2011  )  calls to better illuminate 
which aspects of task understanding might be 
affected by, and in turn, in fl uence performance. 

In addition, we might also be better able to 
unravel the enigma behind whether task under-
standing remains stable across an information 
retrieval task or whether it responds to higher-
level self-regulatory mechanisms and is continu-
ously re fi ned and, hence, unstable.   

   Signi fi cance for Design Promoting 
Metacognition and Self-Regulation 

 Results from our Topic Maps laboratory’s empir-
ical studies carry implications for instructional 
design to promote self-regulation. While it has 
been established in cognitive psychological terms 
that learner task understanding is a crucial com-
ponent of academic self-regulation, the data and 
analyses we report offer speci fi c suggestions as 
to how individual components of task under-
standing can be ameliorated when learners are 
tackling ill-structured writing tasks using online 
information repositories. For example, learners 
adjusted their perceptions of the rationale for 
completing the essay task and the assessment cri-
teria using various resources, including the 
instructor’s feedback on their essays, class dis-
cussions, the course outline and the instructor’s 
annotations to other learners’ writings. In the 
case of graduate learners accessing information 
online, there seems to be an academic self-regu-
latory mechanism that enables learners to employ 
distinct strategies to ensure that they have under-
stood the criteria in the same ways as the instructor. 
In short, we recommend providing opportunities 
for learners to view assessment criteria through 
multiple perspectives and various interactions 
(e.g. learner–learner, learner–instructor, learner–
content; see Cho, Chung, King, & Schunn,  2008  
for examples of peer assessment in essay 
writing). 

 Our results also point to the singular facet of 
knowledge of self-as-learner as a fundamental 
theoretical construct that in fl uenced how the 
graduate learners in our studies chose to navigate 
the repository. It would not be too much of a 
stretch to suggest that learners should be allowed 
to control their navigation through such online 
repositories by harnessing the associative powers 
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of indexing technologies like Topic Maps. 
Individual preferences, such as browsing by 
 subject, author, essay or grade, could be better 
facilitated to allow users to create their own 
topic-centric associations, thereby personalizing 
their route through the complex webs of informa-
tion in online repositories. Note, however, that 
Venkatesh et al.  (  2007  )  as well as Shaw and 
Venkatesh  (  2005  )  warn that user-generated 
indexes should undergo strict content validation, 
without which the domains represented by tech-
nologies such as Topic Maps are rendered useless 
due to specious content. 

 A pressing question that arises from the results 
of our research is to what extent is information 
need, as experienced by graduate learners 
attempting to improve their performance on an 
ill-structured essay-writing task, context- and/or 
learner-dependent? We can partially answer this 
question by taking the easy route and pointing to 
individual differences and preferences. However, 
that would belie the complex dance that task 
understanding and information need engage in 
when learners employ cognition to retrieve online 
information. While we are aware that informa-
tion needs morph as learners attempt to improve 
their task understanding, our results indicate the 
need to explore speci fi c conditions that might 
govern how, when and why changes in learner 
cognition would in fl uence these needs. 

   Designing Indexes for Online 
Information Retrieval 

 Our research shows that Topic Maps build 
enriched representations of academic work tasks, 
which can be viewed both from the perspective of 
the content covered in the task as well as from the 
perspective of the criteria used by the instructor in 
grading the academic task. While the context for 
the research reported limits the scope of our work 
to graduate learners engaged in writing assign-
ments, our laboratory is preparing to roll out two 
environments indexed by Topic Maps. In the  fi rst 
instance, we have built a Topic Maps-enabled sys-
tem to help undergraduate pre-service teachers 

navigate science-related concept maps, and sec-
ond, we have designed a website indexed by Topic 
Maps to help international students learn rhetori-
cal strategies for tackling writing assignments in 
the subject area of English as a second language. 
In the foreseeable future, our research in these 
two contexts will help us to paint a more complete 
portrait of the effect of using Topic Maps indexes 
in online learning environments. 

 In conclusion, convincing designers of online 
learning to adopt Topic Maps as an indexing 
scheme is not an easy task, but we reproduce the 
following arguments, offered by an anonymous 
Topic Maps expert on a draft of the Venkatesh 
 (  2008  )  paper, that might help tilt the scale in 
favour of designing the next generation of digital 
repositories with the help of Topic Maps:
    1.    The subject-centric nature of Topic Maps 

(topics as the core building block, constitut-
ing points of collocation) both helps learners 
to identify the core concepts within some new 
piece of knowledge that they are seeking to 
acquire and substantially aids 
“ fi ndability”/“searchability”, thus reducing 
the time spent searching and increasing the 
time available for knowledge acquisition.  

    2.    The associative nature of Topic Maps (asso-
ciations as the device that links topics into a 
meaningful structure) provides for ease of 
navigation and even more importantly, per-
haps, re fl ects the way in which learners 
acquire new knowledge, i.e. by associatively 
 fi tting it into pre-existing knowledge struc-
tures that have already been acquired. The 
notion of schema reconstruction, popular 
within both the CIR and information process-
ing theories, would easily explain this power-
ful feature of Topic Maps-based indexes.  

    3.    The classi fi catory nature of Topic Maps (i.e. 
the way in which Topic Maps encourage the 
classi fi cation of topics and associations into 
types) might conceivably help learners to 
acquire an overall understanding of the key 
concepts within a domain before having to 
bother about the details of the individuals, 
thus providing a more step-by-step approach 
to acquiring knowledge.           
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  Abstract 

 We set the stage for this chapter by recapitulating Winne and Hadwin’s 
(1998) model of self-regulated learning and identifying three obstacles 
learners face when they strive to effectively self-regulate learning autono-
mously. In this context, we provide an overview of the nStudy software 
system, a web application that offers learners a wide array of tools for 
identifying and operating on information they study. We designed nStudy 
to be a laboratory for learners and researchers alike to explore learning 
skills, metacognition and self-regulated learning. As learners use nStudy’s 
tools to study information in the Internet or researchers’ specially pre-
pared HTML material, nStudy logs  fi ne-grained, time-stamped trace data 
that re fl ect the cognitive and metacognitive events in self-regulated learn-
ing. Next steps in work on the nStudy system are to add tools learners that 
provide feedback they can use to advance personal programs of research 

on improving learning skills and gainfully self-regulating learning.      
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  20      nStudy: Tracing and Supporting 
Self-Regulated Learning in the 
Internet       

        Philip   H.   Winne       and    Allyson   F.   Hadwin         

   Context 

 Today’s learners are making extensive use of 
information resources in the Internet to do home-
work assignments, mine information for term 
papers, and pursue curiosity-driven  investigations. 

Easy and inexpensive means for online self-pub-
lication—e.g., blogs and free server space—cou-
pled with the exploding popularity of ebooks and 
ebook readers leads us to conjecture that the 
Internet is quickly becoming learners’ chief 
information resource. 

 The Internet’s extensive scope, accessibility, 
and openness has drawbacks. In our experience, 
very few online authors, Web site designers, and 
other information providers con fi gure online 
information in ways that promote or, at least, 
don’t interfere with learning processes. (see 
Mayer,  2005 , for a compendium of these 
 principles.) Our informal survey of Internet 
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 information sources shows that the accuracy and 
reliability of information varies wildly, and that 
empirically validated guidelines for promoting 
learning are rarely evident with respect to the 
organization and layout of information, adjuncts 
(summaries, tables,  fi gures, etc.), cues (e.g., font 
styles), and other widely researched features of 
instructional design. Compounding these  fl aws, 
some information sources overuse features that 
spike super fi cial appeal at likely cost to promot-
ing deep understanding. As well, the sheer scope 
of information and its unsystematic cataloguing 
substantially increases the challenge learners face 
to select, coordinate, and synthesize information 
from hundreds of thousands of potential sources. 
In this context, learners face an intimidating task. 
They must simultaneously be skilled librarians, 
content appraisers, curriculum organizers, self-
teachers, and learning skills specialists. Skills 
they need to succeed are underdeveloped (Nist & 
Holschuh,  2000 ; Pressley, Yokoi, van Meter, Van 
Etten, & Freebern,  1997  ) . Thus, in an already 
cognitively demanding situation, learners also 
should work on improving learning skills. In 
short, learners seeking to learn from information 
resources in the Internet  must  excel at produc-
tively self- regulating learning. 

 Unfortunately, learners have a high probability 
of failing at this task. Tens of thousands of exper-
iments over more than a century of research in 
educational psychology validate at least one 
clear, generalizable, and powerful  fi nding: 
Learners who participate in unstructured control 
groups or “business as usual” comparison groups 
studying information sources that are not care-
fully instructionally designed and who have only 
accumulated experience to guide learning fare 
poorly compared to learners who participate in 
treatments designed by researchers. This disad-
vantage for “learning as usual” is particularly dis-
concerting because most of these less successful 
participants in research have been undergradu-
ates with the “bene fi t” of 12–16 years of formal 
education! 

 We foresee two fundamentally different ways 
to address this challenge for learners foraging for 
knowledge in the Internet. One is to develop soft-
ware technologies that can intelligently intervene 

to help learners compensate for de fi cits in the 
instructional design of information they locate 
and in underdeveloped skills for learning. Other 
chapters in this Handbook report advances on 
this front. A second approach is to provide learn-
ers with tools they can use to carry out a progres-
sive program of personal research that helps them 
productively self-regulate learning so they 
become more effective at learning. To set the 
stage for this second approach, we  fi rst sketch a 
model of self-regulated learning (SRL) and its 
empirical support for self-improving learning.  

   Theory 

 SRL is a cognitively and motivationally active 
approach to learning. We posit learners engage in 
four weakly sequenced and recursive phases of 
cognitive and behavioral activity (Winne,  2011 ; 
Winne & Hadwin,  1998 ; see Fig.  20.1 ).  

 In phase 1, a learner surveys features of an 
assigned (or self-chosen) task as well as the 
environment surrounding it. The environment 
includes external conditions—e.g., standards a 
teacher will use to grade a project, resources 
such as lexicons and search engines—and inter-
nal conditions—e.g., interest in the topic, self-
ef fi cacy, and tactics the learner for studying 
information. The result of this survey is raw 
materials from which the learner constructs an 
understanding of the task as it is  fi rst presented 
and a string of updated states of that task as work 
progresses. Without accurate perceptions of 
tasks, academic performance suffers (Miller 
& Hadwin,  2010  ) . 

 In phase 2, the learner sets goals and, 
 conditional on them, selects and organizes learn-
ing tactics to forge a provisional plan for reaching 
goals. Setting goals with enough speci fi city to 
guide frequent metacognitive monitoring and 
control is a challenging task. It requires learners 
to have accurate perceptions about a task’s fea-
tures plus skill to break distal goals into speci fi c, 
measurable, achieivable, proximial and action-
oriented standards that can be monitored and 
potentially revised on an ongoing basis (Webster, 
Helm, Hadwin, Gendron, & Miller,  2010  ) . 
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  Fig. 20.1    Winne and Hadwin’s 4-phase model of self-
regulated learning. Reprinted with permission from 
Winne, P. H., & Hadwin, A. F. ( 1998 ). Studying as self-
regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. 

Graesser (Ed.),  Metacognition in educational theory and 

practice  (pp. 277–304). Mahwah, NJ: Lawrence Erlbaum 
Associates       
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Choosing how to approach goals is cognitively 
demanding. Theoretically, it involves (a) forecast-
ing products that tactics can create (outcome 
expectations), (b) estimating the value of each 
outcome (its incentive), (c) assessing ef fi cacy for 
carrying out each tactic and the overall plan (self-
ef fi cacy), (d) considering attributions for results 
and the affect(s) linked to attributions (e.g., attrib-
uting success to ability is rewarding but attribut-
ing failure to ability is punishing), and (e) judging 
the marginal utility of choosing one versus another 
plan (see Winne,  1997 ; Winne & Marx,  1989  ) . 

 In phase 3, the learner initiates work on the 
task. As work unfolds, the learner metacogni-
tively monitors progress relative to (a) subgoals 
and (b) the plan generated in phase 2. 
Metacognitive control may be exercised to make 
minor adjustments on the  fl y. Learners are not 
particularly adept at choosing and adapting tac-
tics to adress speci fi c challenges they encounter 
(Hadwin, Webster, Helm, McCardle, & Gendron, 
 2010 ; McCardle et al.,  2010 )   . 

 In phase 4, the learner takes a wide view of 
phases 1 through 3 to consider large-scale changes 
in the de fi nition of the task, the goals and plans for 
reaching them, and the nature of interactions with 
resources to get the task done. This is perhaps the 
most challenging phase in the self-regulatory cycle. 
It requires synthesizing information within as well 
as across studying events, then systematically 
investigating the root source of learning problems. 
Students are challenged to systematically analyze 
their learning even within one academic task that 
spans multiple studying events (Hadwin,  2000 ). 
Furthermore, when  learners neglect to recognize 
patterns in  the match of  tactics to challenges in 
studying, maladaptive  regulation patterns can 
emerge and motivation may be undermined 
(Hadwin, Webster et al.,  2010 ). 

 Throughout each phase and not just in phase 3, 
the active learner metacognitively monitors pro-
cesses and results, and may exercise metacognitive 
control to make changes. Because the learner can 
“jump” to any phase from any other phase, or 
choose to revise the same phase, we theorize that 
work on a task need not unfold serially—phases of 
SRL are weakly sequenced and can generate infor-
mation for any other phase. SRL is recursive. 

   Research on the Model of SRL 

 Work on SRL in academic contexts emerged in 
the 1980s growing mainly from studies investi-
gating learning strategies. Two important  fi ndings 
were established in that seminal research. First, 
learners could be taught learning tactics 1 —methods 
that built comprehension of text, self-questioning 
techniques, and so forth—and, as a result, they 
learned more than peers not taught these cogni-
tive tools (cf. Hadwin & Winne,  1996 ; Hattie, 
Biggs, & Purdie,  1996  ) . Second, after learners 
had acquired tactics and experienced success 
using those tactics, they infrequently transferred 
or generalized use beyond the training context or 
when encouragements to use the tactics were 
withdrawn (see Zimmerman,  2008  ) . This invited 
theorizing to explain why learners did not persist 
in using tactics they could use and had personally 
experienced to bene fi t learning. 

 The second of these  fi ndings makes clear an 
obvious but previously slippery fact: learners are 
agents. They choose how they will learn. Beyond 
recognizing agency, however, the question of how 
and why learners choose tactics for learning—how 
they self-regulate learning—became a critical issue. 

 Greene and Azevedo  (  2007  )  examined a broad 
sample of empirical work in an incisive theoreti-
cal review of research related to our 4-phase 
model of SRL. Their analysis provides warrants 
for our model overall as well as many of its 
speci fi cs. Greene and Azevedo also identi fi ed a 
few key points where more research is needed to 
clarify and test our model.  

   Three Obstacles to Improving 
Learningon One’s Own 

 For reasons not yet clear, learners are unreli-
able observers of (a) features of tasks that 

   1   Researchers far more commonly use the term strategies 
in this regard but we perceive these cognitive scripts typi-
cally provide meager opportunity for strategic judgment; 
see Winne  (  2011  ) . Hence, we use a term that re fl ects a 
more straightforward  If–Then  architecture with less 
complexity, namely, tactics.  
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should guide planning about how to accom-
plish tasks (Hadwin, Oshige, Miller, & Wild, 
 2009 ; Miller,  2009 ; Oshige,  2009  )  and (b) tac-
tics they use in learning (see Winne & Jamieson-
Noel,  2002 ; Winne, Jamieson-Noel, & Muis, 
 2002 ; Winne & Perry,  2000  ) . Except in social 
settings where a peer or teacher can supple-
ment data that learners themselves collect, 
having unreliable data inhibits productive SRL 
because decisions about how to adapt learning 
are based on inaccurate output from metacog-
nitive monitoring. 

 Second, when learners try to use learning tac-
tics that were only recently introduced or tactics 
they have not practiced extensively—that is, 
when tactics are not automated—learners are 
likely to experience a utilization de fi ciency 
(Bjorklund, Miller, Coyle, & Slawinski,  1997  ) . 
A utilization de fi ciency is a situation where a 
learning tactic would be effective if the learner 
chose to use it under appropriate conditions and 
applied it skillfully. But, when conditions are not 
appropriate or the learner’s skill with the tactic is 
not well developed, achievement suffers and 
learners understandably are less motivated to 
continue using the tactic. As a result, they may 
abandon a tactic that, under less demanding cir-
cumstances or with practice, could become an 
effective tool for learning. 

 Third, earlier studies in which learners (a) were 
taught learning tactics and (b) had opportunity to 
observe that the tactics improved their achieve-
ment also document that learners faltered in trans-
ferring tactics (see Zimmerman,  2008  ) . Perhaps 
learners perceived insuf fi cient incentive to apply 
the extra effort to use these tactics outside the 
focused context of research. Perhaps they judged 
the tactics were too complicated or they were 
unsure whether tactics were appropriate in new 
situations that differed from the context in which 
they were learned and practiced. Or, perhaps learn-
ers were able to use the tactics in the research con-
text mainly because, unlike the unrestrained 
Internet, researchers carefully structured materials 
and managed other factors in the external environ-
ment so extraneous cognitive load was limited 
because this enhances the experiment’s sensitivity 
to detect what the researchers were investigating.  

   Implications of the Model and Related 
Research 

 In each phase of SRL, learners seek out and pro-
cess data that are input to metacognitive monitor-
ing. Topics monitored are factors they believe 
affect learning—e.g., effort applied, complexity 
of the task, familiarity with content, perceptions 
of ability, etc. (e.g., see Koriat, Ma’ayan, & 
Nussinson,  2006  ) —along with attributes they 
perceive about the state of their work—degree of 
completion, quality of products, consequences 
likely to be experienced, etc. In phase 1, data that 
describe conditions in the external environment 
and data each learner perceives about her or his 
internal cognitive, motivational and affective fac-
tors are raw materials for developing an under-
standing of tasks at hand. In the other phases of 
SRL, learners gather data about qualities of pro-
cesses and products that metacognitive monitor-
ing compares to goals for processes and products. 
In cases where a learner’s current toolkit of learn-
ing tactics is not suf fi cient, the learner may seek 
out information about new tactics that might help 
to make minor adjustments on-the- fl y in phase 3 
of SRL or, if necessary, to reformulate how they 
approach learning in a major way in phase 4. 

 In short, without reliable, revealing and relevant 
data that support making valid inferences about all 
four phases of SRL, learners will be handicapped. 
But data can be hard to come by. Fine-grained 
records that describe how learning unfolds are not 
a natural byproduct of “getting the work done.” 
Moreover, learners often overlook data. They are 
not clear that data are available. For example, we 
have never encountered a student who explicitly 
kept track of whether information they highlighted 
as they studied was more memorable than material 
they did not highlight. While some recognized the 
possibility to record and analyze these data, effort 
estimated to carry out this “personal research proj-
ect” (   Winne,  2010b ) was too great. 

 In this context, we suggest learners could pro fi t 
if software tools helped them identify, access and 
process data about the environment and how a 
learning task is situated within it, their goals, how 
they study, and what happens when they make 
minor or occasionally major  adjustments to 



298 P.H. Winne and A.F. Hadwin

 learning tactics. Next we describe a software envi-
ronment, nStudy, that we and colleagues designed 
and implemented to help learners at the same time 
it gathers extensive data that researchers want for 
their work on learning and SRL.   

   nStudy 

 nStudy (Winne, Hadwin, & Beaudoin,  2010  )  is a 
Web application that runs in the Firefox Web 
browser. It was designed primarily as a tool for 
gathering  fi ne-grained, time-stamped data about 
operations learners apply to information as they 
study online materials. Several features of 
nStudy’s toolkit also were designed to leverage 
well-established principles that research shows 
can improve learning. 

   The Browser and Linking Tools 

 nStudy displays HTML content that an instructor 
or researcher designs, or that is available in the 
Internet. Once learners access a Web page using 
its universal resource locator (URL), they can 
operate on information they  fi nd there. Each 
operation builds a link between speci fi c informa-
tion a learner selects on the Web page and other 
nStudy tools. As the learner constructs links, 
nStudy accumulates titles for each linked tool in 
a table that is organized by the kind of tool to 
which each information selection is linked.  

   Tags 

 To tag information in a Web page, the learner 
selects target text, mod-clicks 2  to expose a con-
textual popup menu and chooses a tagging option. 
In Fig.  20.2 , in addition to a universally available 
generic tag titled  Highlight , the contextual menu 
shows the  fi ve tags the learner has most recently 
used. In Fig.  20.2 , these are as follows: Can do, 
Can’t do, Fallacy, funny, and is this a learning 

objective. A  Tags…  option allows the learner to 
review all tags that have been  constructed before 
assigning a particular tag, and to create new tags. 
Tagging the selected text formats it to have a col-
ored background, per the learner’s preferences, 
and posts the selection, called a quote, to a panel 
at left. The panel shows quotes for all the kinds of 
links the learner has forged to (a) quotes in this 
Web page or to (b) the bookmark that addresses 
the Web page as a whole, as well as terms appear-
ing in the window (discussed later). Double click-
ing on an item in the panel opens the window 
containing its information.   

   Notes and Terms 

 Learners can annotate quotes and bookmarks 
to Web pages by creating notes and terms. 
Figure  20.3  shows a note. nStudy assigns new 
notes a default title of  untitled , which invites 
learners to change it to a meaningful description. 
Characterizing information by classifying it is a 
form of generative processing that promotes 
learning (Wittrock,  2010  ) .  

 For every note, nStudy automatically 
records the quote the learner selected in the 
browser, if there is one, and provides a link to 
the source using the bookmark’s title. On mak-
ing a new note, the learner chooses a schema 
for organizing information in the annotation 
by selecting an option from the dropdown 
 Select Form . A basic note form is provided 
with a single text  fi eld:  Description . As 
Fig.  20.4  shows, researchers and learners can 
customize any note’s form to adapt a schema 
for an annotation that satis fi es particular stan-
dards. Forms can be a one off for use in only 
one particular note or saved for future use. A 
variety of  fi elds are available to create forms 
using a drag-and-drop operation. In the prop-
erties tab (not shown), properties of the  fi eld 
can be de fi ned such as end points for a slider 
and text describing options in a combobox.  

 The researcher or learner can create terms to 
build a lexicon of foundational concepts in the 
domain of study. Terms use a single form includ-
ing three  fi elds: title, quotes, and description (see 
Fig.  20.5 ).   

   2   A mod-click is a right-click in the Windows operat-
ing systems and a control-click in the Apple operating 
system.  
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   Terms and Termnet 

 Whenever the learner opens a browser, note, or 
term window, nStudy surveys its contents to iden-
tify terms appearing in any  fi eld and lists each 
term in the left panel under  Terms Used . This list 
displays the subset of all key concepts in the 
larger domain of study that appear in the window 
in which the learner is currently working. 

 Learners often work nearly simultaneously 
with several windows. To help conceptualize how 
key concepts form bundles of information, any 
term that appears in any window the learner has 
open is shown in the Termnet window (see 
Fig.  20.6 ). The Termnet structures its node-link 
display using a simple semantic relation: if the 
description of one term used another term, a link 
is built between two terms. Literally, the link rep-

resents an “in terms of …” relation. For example, 
suppose “working memory” is a term. If another 
term titled “cognitive load” is described as “the 
degree to which working memory is challenged 
by factors that are intrinsic, germane and extrane-
ous to mastering a learning task” nStudy will link 
the term “cognitive load” to the term “working 
memory.”   

   Other nStudy Tools 

 Each learner has a private workspace. Several 
learners can collaborate in a shared workspace 
where each has full privileges to introduce, link, 
edit and delete information. Information items 
can be easily exchanged across workspaces if 
learners have a peer’s user name. This creates 

  Fig. 20.2    nStudy browser, table of quotes, and linking tools       
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  Fig. 20.4    An nStudy note showing a form and the editor for modifying and creating new forms that operationalize new 
schemas for notes       

  Fig. 20.3    A basic note in nStudy       
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  Fig. 20.5    An nStudy term       

  Fig. 20.6    An nStudy Termnet showing terms used in all windows currently open          
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opportunities for three forms of computer- 
supported collaborative learning: (a) sequential 
collaboration where work is circulated to and 
augmented by team members; (b) convergent 
collaboration where each members’ work is 
exported from individual workspaces into a 
shared workspace where it is compiled and orga-
nized by the team; and (c) emergent collaboration 
in a shared workspace where all collaborative 
planning and work occurs. 

 A Chat tool allows learners to discuss content 
synchronously online. It affords opportunities for 
collaborators (and researchers) to experiment with 
varying architectures for synchronous collabora-
tion by providing two dropdown lists con fi gured 
by a researcher or instructor where learners can 
choose (a) a role and (b) view and enter into the 
chat any of several prompts that align to each role. 
For example, a learner may choose among a set of 
cogntive roles (e.g., forecaster, summarizer), a set 
of metacognitive roles (e.g., monitor, planner, 
evaluator), or a set of functional roles (e.g., 
recorder, leader). Corresponding prompts help 
collaborators take on a role in the chat. For exam-
ple, a planner might have prompts, such as: What 
steps should we follow? What is our goal for this 
part? Roles and prompts can alert students to co-
regulate one another (“Do you have a plan?” “I 
think you might be a little off track.”) or jointly 
share regulation (“What is our main goal?” “Are 
we meeting our goal?”) Chats are saved and can 
be annotated like a Web page. Thus, they become 
recoverable information resources for future tasks, 
including serving as models for collaboration 
upon which to improve. 

 Shared workspaces, the ability to exchange 
objects across workspaces and chats that can be 
structured by roles and prompts create opportuni-
ties for students to self-regulate, to co-regulate each 
other’s work, and to share regulation (Hadwin, 
Oshige, Gress, & Winne,  2010  ) . nStudy does not 
dictate features of regulation but supports and 
implicitly guides those events. Trace data about 
learners’ activities advance research on collabora-
tion and regulation by revealing: (a) products cre-
ated by solo and collaborative work that are 
metacognitively monitored, (b) standards used in 
metacognitive monitoring, (c) operations controlled 

or regulated and (d) conditions under which regula-
tion occurs (see Winne, Hadwin, & Perry,  2013  ) . 

 In nStudy’s Concept Map window, learners 
can build maps from scratch by creating notes, 
terms, bookmarks and other nStudy items, then 
linking, grouping and spatially arranging them. 
From within any of nStudy’s information items, 
e.g., a note, a concept map of that item and other 
items linked to it can be constructed by clicking a 
button in the toolbar,  Map . 

 In nStudy’s Document window, learners can 
compose essays, poetry, lab reports and other text 
documents using rich text (HTML) formatting tools. 
Selections within a document can be annotated like 
a browser. Also, a basic difference tool is available 
to track changes across versions of a document. 

 The Library is a table that lists every informa-
tion item within a workspace (see Fig.  20.7 ). The 
table can be  fi ltered by (a) type of information item, 
(b) folders into which items are organized, (c) tags 
applied to items, as well as various metadata, such 
as: creator, last editor, date modi fi ed, and so on. 
A search tool is available to identify items that have 
particular information in titles, content, or both. 
The learner can operate on one or a set of several 
items by selecting, mod-clicking to expose a con-
textual menu and choosing a desired operator.   

   Data Logs 

 As the learner operates on information using 
nStudy’s tools, the software unobtrusively logs  fi ne-
grained data: which window has focus (is active), 
what its title is, what information was selected, 
when the contextual menu was exposed, which 
operator is selected from the menu, and so forth. 
Each low-level entry in the log is time stamped to 
the millisecond (as accurately as the computer 
chip’s cycle permits) to represent every observable 
operation the learner applied to information in a 
study session plus the information on which each 
operation was applied. In nStudy’s data analysis 
module, patterns of these very low level events are 
organized into “human-level” events like: make 
new note, review term, modify concept map and so 
forth. In effect, these organized data instantiate a 
time-sequenced script that describes which tactics a 
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learner applied to which information and, by look-
ing backward along the timeline for a chosen num-
ber of events, the context for any particular event.   

   Measurements 

 Trace data are performance-based data learners 
generate unobtrusively as they apply cognitive 
and metacognitive operations to information a 
learner selects (   Winne,  1982 ; Winne,  2010a  ) . 
nStudy was designed to record extensive,  fi ne-
grained, time-stamped traces without intruding 
on learners’ tasks other than by affording them 
choices among nStudy’s tools. In contrast to think 
aloud and self-report data, trace data are not 
degraded by learners’ unknown sampling of 
experience, biases in their verbal expression, 
temporal distance from actual events and other 
factors that may degrade the accuracy and com-
pleteness of learners’ recall, perceptions and 
interpretations about how they learn. 

 Trace data can be analyzed in multiple ways and 
articulated with other data to paint a fuller picture of 
how learners study and learn (see Winne, Zhou, & 

Egan,  2010  ) . For example, nStudy notes that offer 
learners a form for describing goals and a slider for 
recording an estimate of success can record whether 
learners explicitly set goals and what goals they set. 
A simple count of goal notes can index a learner’s 
propensity to set goals. Because a trace log is a full 
record of a learner’s observable tool-supported 
interactions with content, it can be analyzed to iden-
tify contexts that (a) precede a learner’s creation of 
goals and (b) prompt the learner to revisit goals to 
adjust estimate of success. 

 Trace data also afford opportunities to measure 
the presence and qualities of learning strategies by 
constructing a transition matrix across traces and 
then a graph of transitions (see Fig.  20.8 ). Brie fl y, 
the transition matrix records tallies that signify a 
row event is followed by a column event (e.g., A is 
followed by B) and, after recording a tally, B is the 
event to be followed by another event (e.g., B is 
followed by D). Patterns of traces can then be 
quanti fi ed for properties, such as degree of regu-
larity of the pattern, the congruence of one pattern 
to another, and whether speci fi c neighborhoods of 
the graph play the same role relative to the graph 
as a whole (see Winne et al.,  2002  ) . This approach 

  Fig. 20.7    nStudy’s Library and Operators       

 



304 P.H. Winne and A.F. Hadwin

to analyzing trace data allows researchers to char-
acterize qualities of a learner’s activity in terms 
such as the “shape” of learning strategies (linear, 
cyclical, branching, etc.), levels of activity, and 
novelty or repetitiveness of responses to interven-
tions or unexpected events. Hadwin, Nesbit, 
Jamieson-Noel, Code, and Winne  (  2007  )  applied 
this form of analysis to describe learners’ levels 
and forms of cognitive and metacognitive activity 
in studying, such as the variability in a learner’s 
use of tactics and the emphasis a learner placed on 
metacognitive monitoring.   

   Interventions 

 nStudy’s browser, terms, notes, and documents 
are a vehicles for instructional designers and 
researchers to provide learners with HTML and 
rich text content that operationalize various kinds 
of interventions. For example, hyperlinks in 
HTML Web pages can de fi ne a structure of navi-
gation. Forms designed for notes can provide 
learners with schemas for arguments or self- 
generated explanations. Semantic and syntactic 
properties can be varied in descriptions for pro-
vided terms. Questions, designs for headings, 
advance organizers and typography (e.g., bullet 
versus number lists; bolding) can be implemented 
in several of nStudy’s tools. 

 On the horizon are tools that will extend nStudy 
into the arenas of (a) learner-driven interactions that 
directly express SRL and (b) adaptive tutoring. 

   SRL as a Program of Personal Research 

 When learners exercise metacognitive control, 
theory speci fi es they choose a particular tactic 
because, in part, they predict it will generate a par-
ticular result. For example, learners may believe 
that highlighting is a form of rehearsal that 
increases recall of material they highlight. These 
expectations are hypotheses about relations 
between learning events and outcomes. Each 
instantiation of metacognitive control to highlight 
information generates data to test the hypothesis. 
Over the span of a school term or an undergraduate 
course, learners could generate expansive data in a 
longitudinal  fi eld trial to discover “What works?” 

 We conjecture that SRL is often less productive 
than it might be because learners are neither trained 
to research their learning nor do they have easy 
access to data and tools for analyzing data. Learners 
could pro fi t from tools that support a program of 
personal research on learning. For example, sup-
pose a learner is interested to research whether 
learning is better supported by taking basic notes 
or notes that use forms for recording information 
according to particular schemas. Suppose in a 
review exercise, the learner links each test item to 
all the notes relevant to that item. Coupled with the 
log of studying events, it would be possible to ana-
lyze achievement as a function of annotations 
made using the basic form versus tailored forms. 
While this is a very simple example, the principle 
has broad scope. Supplemented with tools for ana-
lyzing trace data that nStudy records, a learner 

Sequence of traces: A B D B C E D B C E D A C E D A B C F …

Transition Matrix

A B C D E F

A // /

B /// /

C /// /

D // //

E ///

F

  Fig. 20.8    A trace sequence, its transition matrix, and a graph of the pattern of traces       
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could examine the complete population of learn-
ing activities bearing on how learning events relate 
to achievement, as well as other dimensions, such 
as ef fi ciency, interest in content, and so forth.  

   Just-in-Time Interventions 

 Suppose the learner has already investigated sev-
eral research questions about how different study 
tactics affect learning. Each expression of kinds of 
traces that the learner researches can be trans-
formed into a rule to identify those traces in future. 
When the learner records the results of self-focused 
research on learning—e.g., using notes with forms 
tailored to tasks promotes learning more than using 
basic notes—nStudy could be extended to monitor 
how the student uses basic notes and notes with 
tailored forms. Should the learner study using only 
basic notes that exceed some count (e.g., four suc-
cessive basic notes), nStudy could offer a hint 
about studying: “Would it be appropriate to 
develop a note form for this content?” Such just-
in-time hints are a subtle form of feedback about 
how the learner is studying that may elevate and 
focus metacognitive monitoring, as well as remind 
the learner of tactics for learning that, in the learn-
er’s personal history, may have a better chance to 
help reach goals. Importantly, these hints create 
opportunities for learners to regulate their learning 
by deciding whether (and how) to adapt learning 
after the co-regulatory prompt. Leaving decisions 
in the hands of learners is essential for learning to 
be self-regulated or co-regulated where learners 
productively exchange information about adapting 
their reciprocal and interdependent activities in 
collaborative tasks (Winne et al.,  2013  ) .   

   Challenges 

 Our design goal for nStudy was, on the one hand, 
to collect extensive,  fi ne-grained, time-stamped 
data that trace cognitive, metacognitive, and 
motivated actions learners apply to speci fi c infor-
mation as they study; and, on the other hand, to 
afford learners a wide range of choices for 
expressing these learning-related events by 

 offering tools they might want to use and that did 
not require extensive instruction or necessitate 
major changes in common studying activities. As 
one example, consider highlighting. A highlight 
is a nonspeci fi c tag that is nearly ubiquitous 
among learners. nStudy extended this affordance 
by providing a tool with which learners could 
create and apply any number of speci fi c tags. We 
reasoned that applying more speci fi c tags traces 
metacognitive engagement in the form of using 
multiple standards—the tags—to monitor infor-
mation’s meaning (e.g., “general law” or “main 
point”) and possible uses (e.g., “review for test” 
or “evidence for hypothesis”). As well, when 
learners create new tags, this is strong evidence 
for metacognitive monitoring that a current set of 
tags is insuf fi cient to achieve goals. Moreover, 
because learners do not naturally highlight very 
effectively (e.g., Bell & Limber,  2010  )  and, as 
might occur in a workspace shared among group 
members, preexisting highlighting can impair 
metacognition (   Gier, Kreiner, & Natz-Gonzalez, 
 2009  ) . Thus, nStudy’s design ampli fi es opportu-
nities for learners to engage in SRL by providing 
a desirable dif fi culty that potentially enriches 
encoding (Thomas & McDaniel,  2007  ) . 

 A challenge in this regard arises because desir-
able dif fi culties require more effort of learners 
and, in a rational sense, learners strive to balance 
effort against returns—as we described earlier, 
we hypothesize they seek to optimize utility. 
Thus, nStudy affords opportunities for learners to 
explore the relative utilities of a wide variety of 
study tactics. But we conjecture we conjecture 
affordance alone is insuf fi cient. This challenge 
leads to a major focus for future work, which we 
describe next. 

 Early usability testing revealed that learners 
commonly avoided these cognitively effortful 
judgments about tags—they just wanted to high-
light. For some, marking/highlighting was a  fi rst 
step in a more complex strategy in which they 
would later return to highlighted material and 
engage more generative processing. Other learn-
ers perceived the effort of classifying marked text 
outweighed its potential utility. As designers we 
were confronted with a challenge. If we created 
the opportunity to simply mark text, we might not 
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see the list of potential ways to classify informa-
tion they were highlighting; but, if we forced them 
to classify, they might abandon the tool because it 
was effortful or ill-matched to their strategic plan. 
We settled on a middle ground, where learners 
could simply select “highlight” from the top of a 
list of recent tags and repeat that “fast mark” 
throughout their studying. In this way, students 
were invited to review the list of possible ways of 
tagging their selections but not forced to do that.  

   Future 

 Space constraints prevent fully addressing how 
nStudy and research can evolve. Here, we high-
light a particular issue arising from the preceding 
section and brie fl y introduce several avenues for 
future work. 

   Feedback About Operations 
That Generate Achievements 

 Feedback is a powerful in fl uence on learning 
(Butler & Winne,  1995 ; Hattie & Timperley, 
 2007  ) . Many of today’s state-of-the-art software 
systems provide feedback about achievements in 
the domain learners study, such as physics or ecol-
ogy. However, to our knowledge, no software 
learning system offer learners feedback about  how  
they learn using any of the formats for knowledge 
that can represent study tactics and learning strat-
egies: conditional, declarative and procedural 
(Winne,  2010b  ) . nStudy is poised to accomplish 
this using the extensive,  fi ne-grained, time-
stamped traces it logs about how a learner oper-
ates on information in nStudy’s environment. 

 We are planning supplements to nStudy’s 
tools that would allow learners to use a con-
trolled vocabulary to ask and receive answers 
to questions, such as: “How did I study differ-
ently for concepts A, B, and C that I know well 
compared to concepts D, E, and F that I know 
less well?” nStudy’s response might be a 
graphical display of traces like that displayed 
in Fig.  20.8  that shows not merely the uncon-
ditional frequency of various operations but 

conditional (contextual) relations among 
binary pairs of operations, as well as an over-
all “strategy.” This sort of question could be 
elaborated include a time dimension—“… and 
how did I change my strategy in November 
compared to September?”    A response would 
show different graphs that depict strategy in a 
visual way plus an index, ranging from 0 to 1, 
that quanti fi es the degree of change. We 
believe this kind of process feedback is a key 
to scaffolding productive SRL.  

   A Grander Vision: The Research Co-Op 

 nStudy is a shell—any content that can be repre-
sented in an HTML format is content that learn-
ers can use nStudy to study. All learners need to 
use nStudy is the Firefox Web browser and an 
account on nStudy’s server. The data that nStudy 
gathers about how learners study, regardless of 
the subject they study or their age, is in a single 
format. These features afford the research com-
munity expansive latitude to pursue research 
across disciplines and many levels of education 
yet meld their research in ways not heretofore 
possible. We echo Winne’s  (     2006  )  argument that 
widespread adoption of systems like nStudy 
could signi fi cantly accelerate research’s produc-
tion of authentic, useful results. A simple and 
proven model might be to form a “research co-op” 
bearing modest resemblance to retail co-op enter-
prises. Users and researchers, for modest fees 
that support infrastructure, could avail themselves 
of massive data warehouses that would support 
data mining for principles about how to promote 
learning. Modi fi cations to nStudy that might be 
suggested from this work can be distributed by 
upgrading the nStudy software once, on the 
server, which makes them immediately available 
at no additional cost. 

 Supplementing nStudy’s data warehouse with 
other forms of data, such as measures of achieve-
ment and measures of what learners describe 
about themselves and their approaches to learn-
ing (self-reports of motivational constructs, self-
reports about studying temporally removed from 
actual studying, surveys and inventories, and 
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self-reports gathered as studying unfolds as punc-
tuated narrative, i.e., think aloud) would create a 
resource that we predict would immediately and 
importantly accelerate harvesting fruit of research 
on learning.       
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  Abstract 

 Help seeking is a strategy highlighted in a number of theories of self- 
regulated learning (SRL). We focus on the help-seeking behavior of stu-
dents during tutored problem solving with an intelligent tutoring system 
(ITS), speci fi cally, the Geometry Cognitive Tutor. ITSs are an advanced 
type of computer-based learning environment (CBLE) and are in wide-
spread use.  These systems typically provide step-by-step guidance with 
complex problems, including on-demand help.  A number of theories shed 
light on how on-demand help focused on problem-solving principles can 
help students acquire robust knowledge (i.e., knowledge that transfers to 
novel situations, lasts over time, and may facilitate future learning), but 
they also highlight challenges students face in doing so. These theories 
include the ACTR theory of cognition and learning, the Knowledge-
Learning-Instruction theoretical framework focused on learning from 
instruction, SRL theories, and educational psychology theories of help 
seeking. Given the variety of perspectives, we see a strong need for theo-
retical integration. As a modest  fi rst step, we review our own work on 
rule-based modeling of help seeking, which integrates cognitive and meta-
cognitive aspects within a single modeling framework.    
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 Help seeking is a key self-regulatory skill, 
 highlighted in a number of theoretical models of 
self-regulated learning (e.g., Pintrich,  2004 ; 
Zimmerman,  2011  ) . In the educational  psychology 
literature, help seeking is often viewed as an 
important strategy that helps learners progress on 

their path to independent competence in a domain 
(e.g., Karabenick & Newman,  2006 ; Newman, 
 2008 ; Zusho, Karabenick, Bonney, & Sims,  2007  ) . 
In this chapter, we focus on help seeking with a 
particular type of advanced learning technologies, 
namely, intelligent tutoring systems (ITSs) 
(Nkambou, Bourdeau, & Mizoguchi,  2010 ; 
VanLehn,  2006 ; Woolf,  2009 ).    These systems are 
starting to be widely used in the US, especially, 
Cognitive Tutors, a type of ITS grounded in cogni-
tive theory and cognitive  modeling (e.g., Aleven, 
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 2010 ; Anderson, Corbett, Koedinger, & Pelletier, 
 1995 ; Corbett, Kauffman, MacLaren, Wagner, & 
Jones,  2010 ; Koedinger & Aleven,  2007 ; Koedinger 
& Corbett,  2006 ; Ritter, Kulikowich, Lei, McGuire, 
& Morgan,  2007  ) . They support learners in acquir-
ing complex cognitive skills and understanding. 
Typically, ITSs provide step-by-step help and 
feedback during problem-solving practice. Our 
focus is on  learner’s use of  on - demand help  offered 
by these systems, explanatory help messages pro-
vided at the learner’s request. These messages 
state how to proceed with the problem at hand and 
typically explain that advice with reference to key 
problem-solving principles of the domain (e.g., 
geometry theorems). There is evidence that this 
form of help can be an important in fl uence on 
learning from tutored problem solving, but there is 
also substantial evidence that this promise is often 
not met (e.g., Aleven, Stahl, Schworm, Fischer, & 
Wallace,  2003  ) . In particular, using on-demand 
help effectively is challenging for low prior knowl-
edge students (i.e., those who, objectively speak-
ing, would appear to need help the most) (Wood & 
Wood,  1999  ) . 

 We de fi ne help seeking as episodes in which a 
learner, in the context of a speci fi c learning activity 
(e.g., studying a worked example, solving a prob-
lem, or learning a complex concept in a hyperme-
dia environment) takes the initiative to seek 
assistance from a source within or outside of the 
learning environment, as opposed to persisting at 
trying to make progress independently. The exter-
nal source may be a human being (e.g., a peer 
learner, teacher, or tutor), it may be a source on a 
computer or on the Internet, or it may be a book, 
manual, or reference work. For example, a student 
may request a context-speci fi c help message from 
an ITS or pedagogical agent, may use Google or 
Wikipedia to gather information they need to learn, 
or may post a question or request for help to an 
online forum, web-based group, or web-based 
tutoring service. Our notion of help seeking 
includes searching online for instructional explana-
tions or instructional materials (e.g., short instruc-
tional videos such as those found on YouTube or 
the Khan Academy website 1 ). As discussed further 

below, help seeking, when done judiciously, can be 
an adaptive strategy. Not only can it help learners 
in completing a learning task, more importantly, it 
can also help them learn more from a task than 
would they have without help. Not all forms of 
seeking help are adaptive, however. For instance, 
seeking help aimed too strongly at getting through 
problems without regard for understanding, often 
dubbed “executive” help seeking (e.g., Nelson-Le 
Gall,  1985  ) , can be detrimental to learning. Below 
we discuss different forms of maladaptive help 
seeking, for which we prefer to use the term help 
abuse (Aleven, McLaren, Roll, & Koedinger, 
 2006  ) . Not seeking help can be maladaptive as well 
under certain circumstances (help avoidance). 

 Often, the impetus to seek help is that the 
learner realizes that they are not succeeding in or 
not likely to succeed in a given learning task or in 
speci fi c aspects of a given learning task (e.g., a 
particular step within a practice problem they are 
attempting to solve). This realization may be the 
result of the learner’s monitoring of whether they 
have the requisite knowledge or skills, either as 
they size up task demands at the beginning of the 
task or as they progress through the task. The 
impetus can also be feedback from the learning 
environment. For example, an ITS may give feed-
back that the learner’s attempt at solving a step in 
a problem is not correct. As a result, the learner 
may be aware that she does not have the requisite 
understanding to successfully complete the step, 
especially if they have repeatedly attempted it 
and not been able to get it right. Additionally, 
some help-seeking episodes are preplanned, such 
as planning to make a certain amount of progress 
on a homework assignment and then go to an 
instructor’s of fi ce hours. Even though these epi-
sodes are preplanned, the speci fi c content  targeted 
in these preplanned help-seeking episodes can be 
based on self-monitoring (e.g., if the learner kept 
a list of questions to ask). 

 Help seeking involves metacognition for a 
number of reasons. It involves both metacogni-
tive monitoring and control, key components of 
metacognition (e.g., Brown,  1987 ; Flavell, 
 1979  ) . First, as discussed, help-seeking episodes 
are often (though not always) triggered by meta-
cognitive monitoring. Learners often seek help 
because they realize they lack the knowledge to    1     http://www.khanacademy.org/      

http://www.khanacademy.org/


31321 Help Seeking and Intelligent Tutoring Systems: Theory

succeed on their own. As they size up the task 
demands prior to actually executing a learning 
task, they may realize that the task is unfamiliar 
or that they do not know how to solve it. In addi-
tion, they may monitor their cognitive activity in 
the process of solving the task and realize that 
they are not on track or may not have the knowl-
edge to succeed. The metacognitive judgment 
that triggers help seeking may or may not be 
accurate—a student may underestimate her abil-
ity to solve the task independently and seek help 
even though—objectively—the help is unneces-
sary (see e.g., Nelson-Le Gall, Kratzer, Jones, & 
DeCooke,  1990  ) . Conversely, a student may 
underestimate their need for help. Second, when 
the decision to seek help is based on metacogni-
tive judgment, we view the act of seeking help as 
an exercise of metacognitive control: The learner 
changes course within a learning task (e.g., 
switches from solving a problem to reading rel-
evant background material or hints), in order to 
increase its effectiveness or ef fi ciency. A third 
reason is that learners, as they process the help 
received, need to make further metacognitive 
judgments. Depending on their goals, they need 
to decide whether the help received  fi lls their 
perceived knowledge gap or helps them become 
“unstuck” in the learning activity. This judgment 
is often a judgment of learning (JOL) (e.g., 
Dunlosky & Metcalfe,  2008  ) , as the learner 
judges her understanding of new information. 
One way in which they may do so is by self-
explaining the help received (Aleven & 
Koedinger,  2002 ; Chi,  2000 ; McNamara & 
Magliano,  2009  ) . When used to monitor one’s 
understanding, self-explanation is often viewed 
as metacognitive in nature (Renkl, Berthold, 
Grosse, & Schwonke,  2013  ) . 

 ITSs are an attractive platform to study rela-
tions between help seeking and learning and 
more generally between metacognition and learn-
ing (e.g., Aleven & Koedinger,  2000 ; Wood & 
Wood,  1999  ) . First, understanding how help and 
help seeking in fl uence learning with ITSs is of 
substantial practical importance, because these 
types of systems are used widely. For example, at 
the time of this writing, Cognitive Tutors 
(Anderson et al.,  1995 ; Koedinger & Aleven, 

 2007 ; Koedinger & Corbett,  2006  )  are being used 
in approximately 2,750 US schools as part of 
mathematics curricula. A welcome “side effect” 
of this widespread use is that research in this area 
can often be carried out in real educational set-
tings, as part of the regular instruction. Second, 
ITSs support a common kind of learning activity 
(problem solving) and provide a common kind of 
help, namely, principle-based hints, a form of 
instructional explanations (Wittwer & Renkl, 
 2008  ) . Thus, help seeking with ITSs is represen-
tative of a wide class of learning behaviors, even 
if it has some unique properties. For example, in 
ITSs, the help content is tailored to the speci fi c 
problem step and problem-solving strategy taken 
so far, which is not so for many forms of help 
(e.g., Wikipedia). Further, the process of seeking 
and receiving help from an ITS is characterized 
by an intermediate level of interactivity, com-
pared to alternatives (e.g., less back-and-forth 
between the help giver and the help receiver than 
in human face-to-face dialogue but as much or 
more back-and-forth than when posing questions 
in an online forum or looking up information in 
reference works such as Wikipedia). A    third rea-
son that ITSs are an appropriate platform for 
investigating help seeking and SRL more gener-
ally is that while ITSs are designed to make 
learning as ef fi cient and effective as possible and 
provide a considerable amount of external regu-
lation, they leave important self-regulatory 
choices to learners. Evidence is mounting that 
the way learners regulate their learning activities 
with these systems strongly in fl uences the learn-
ing outcomes they attain, including the way they 
use a system’s help facilities (e.g., Koedinger, 
Aleven, Roll, & Baker,  2009  ) . In other words, it 
is becoming increasingly clear that self- 
regulation, including help seeking, is an impor-
tant in fl uence on students’ learning results with 
these systems. Fourth, a methodological advan-
tage of using ITSs is that they produce log data, 
detailing the interactions that learners have with 
these systems. These data can be mined to yield 
insight into the effective and ineffective help-
seeking behaviors that learners exhibit, as well 
as their relation with learning. We use an open 
access facility called  DataShop  (Koedinger 
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et al.,  2011 ; Koedinger, Cunningham, 
Skogsholm, & Leber,  2008 ; Stamper, Koedinger, 
et al.,  2011  )  that greatly facilitates this kind of 
analysis. Use of log data has long been a staple 
of both ITSs research (e.g., Anderson, Conrad, 
& Corbett,  1989  )  and SRL research (Hadwin, 
Nesbit, Jamieson-Noel, Code, & Winne,  2007 ; 
Winne,  2010 ; Zimmerman,  2008  )  and is com-
patible with recent emphasis on event-based 
approaches to studying SRL (e.g., Azevedo, 
Moos, Johnson, & Chauncey,  2010  ) . For 
instance, Aleven and Koedinger  (  2000  )  and 
Shih, Koedinger, and Scheines  (  2008  )  con-
ducted analyses of students’ help-seeking 
behavior based on log data from an ITS. 

 The line of work discussed in this chapter dif-
fers from most other work on metacognition in 
computer-based learning environments (CBLEs) 
with respect both to the type of learning activities 
and the nature of the support that the learning 
environment provides. In ITSs, the main student 
activity is problem-solving practice. Much other 
work focuses on conceptual learning in ill- 
structured domains with open-ended CBLEs such 
as multimedia, hypertext, hypermedia, or textual 
materials. Further, in ITSs, the tutor provides 
step-by-step guidance, such as detailed feedback 
and, upon the student’s request, advice on what to 
do next. In most hypermedia systems (e.g., 
Azevedo & Jacobson,  2008 ; Chen,  2002 ; 
Jacobson,  2008 ; Jacobson & Archodidou,  2000  ) , 
by contrast, there is no tutor that provides guid-
ance and there is no feedback on learning activi-
ties. It may be that hypermedia environments 
provide greater scope for student self-regulation 
to occur and in fl uence learning than ITSs do and 
may involve many metacognitive monitoring and 
control strategies that are not prevalent in learn-
ing with ITSs (e.g., Azevedo & Witherspoon, 
 2009  ) . However, even in ITSs, there is signi fi cant 
scope for self-regulation to impact students’ 
robust learning outcomes (i.e., knowledge that 
transfers to novel situations, lasts over time, and 
may facilitate future learning; Koedinger, Corbett, 
& Perfetti,  2012  ) . Help seeking is one way. 
Interestingly, recent work on adding tutoring to 
hypermedia environments (Azevedo et al.,  2013 ; 
Azevedo, Johnson, Chauncey, & Graesser,  2011  )  

aims to combine the strengths of the two types of 
learning environments. 

 In this chapter, we focus on theory. Research 
on help seeking with ITSs is grounded in a num-
ber of different theoretical frameworks. First, 
from their earliest beginnings, Cognitive Tutors 
have been grounded in the ACT-R theory of cog-
nition and learning (Anderson,  1993 ; Anderson 
& Lebière,  1998  ) . Anderson  (  1993  )  discussed 
help seeking from the perspective of ACT-R. 
Second, we look at help seeking from the per-
spective of the KLI framework (knowledge, 
learning, instruction), a recent theoretical frame-
work focused on how instruction in academic 
domains can bring about robust learning 
(Koedinger et al.,  2012  ) . While ACT-R and KLI 
are primarily cognitive theories, it is important 
also to look at help seeking from the perspective 
of metacognition and SRL theoretical frame-
works (e.g., Pintrich,  2004 ; Zimmerman,  2000  ) ; 
these cyclical frameworks tend to view help seek-
ing as one of a large set of strategies learners use 
to regulate their own learning. Third, researchers 
in developmental and educational psychology 
have looked at the role of help seeking in child 
development and academic learning (e.g., 
Nelson-Le Gall,  1985 ; Karabenick & Newman, 
 2006  ) . These three theoretical perspectives on 
help seeking each have complementary strengths 
but have largely been separate. One of our key 
points in this chapter is that this separation is an 
undesirable state of affairs and that much is to be 
won by greater theoretical integration. 

 We start the chapter with a very brief overview 
of ITSs, illustrating the kind of principle-based 
on-demand help they provide to learners, as well 
as the other ways in which they guide learners 
during complex problem solving. Next, we look 
at help seeking within ITSs from the perspective 
of the three research traditions mentioned above, 
cognitive, SRL, and educational psychology. We 
discuss how these theories provide complemen-
tary perspectives on the use of principle-based 
help during problem solving. We believe much 
would be won by moving towards theoretical 
integration and brie fl y discuss advantages of 
doing so. Finally, we present a modest  fi rst step 
towards integration of the theoretical frameworks: 
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We look at our own work in modeling help seek-
ing using a production rule formalism from the 
viewpoint of theoretical integration. 

   Intelligent Tutoring Systems 
and Help Seeking 

 ITSs are systems that support learners as they 
learn a complex cognitive skill through problem-
solving practice. ITSs have effectively supported 
learners in a variety of domains such as mathe-
matics (Aleven & Koedinger,  2002 ; Anderson 
et al.,  1995 ; Beal, Walles, Arroyo, & Woolf, 
 2007  ) , chemistry (McLaren, DeLeeuw, & Mayer, 
 2011  ) , physics (VanLehn et al.,  2005  ) , basic com-
puter programming (Anderson et al.,  1989 ; 
Mitrovic, Martin, & Mayo,  2002  ) , and logic 
(Scheines & Sieg,  1994 ; Stamper, Barnes, & 
Croy,  2012 ; Stamper, Eagle, Barnes, & Croy, 
 2011  ) . ITSs started out in research labs but have 
successfully made the transition into regular, 
real-world use (Koedinger, Anderson, Hadley, & 
Mark,  1997 ; Mitrovic, Martin, & Mayo,  2002  ) . A 
wide range of evaluation studies indicate that 
curricula that include ITSs enhance student learn-
ing, compared to more typical forms of school 
instruction (e.g., Koedinger & Aleven,  2007 ; 
Koedinger et al.,  1997 ; Ritter et al.,  2007 ; 
VanLehn,  2011 ; but see Campuzano, Dynarski, 
Agodini, & Rall,  2009  ) . 

 Typically, ITSs provide a user interface in 
which the problem is broken down into steps and 
provide guidance with respect to these steps, not 
just with respect to  fi nal problem solutions (e.g., 
VanLehn,  2006  ) . This step-by-step guidance 
includes feedback on whether each step is correct 
as well as on-demand hints. The step-by-step 
nature of the guidance is a key reason for the effec-
tiveness of ITSs, compared to simpler systems 
(often called CAI or CBT systems) that provide 
guidance only at the end of problems, but do not 
provide guidance with respect to solution steps. 
VanLehn’s  (  2011  )  meta-review indicates that the 
effectiveness of ITSs (de fi ned as systems that pro-
vide guidance at the step level) over classroom 
instruction is greater than that of systems that pro-
vide guidance at the end of each problem only 

(effect size of  d  = 0.76 and  d  = 0.3, respectively, in 
VanLehn’s analysis). Step-level feedback, a key 
aspect of the step-by-step guidance that ITSs offer, 
has been shown to be very effective (e.g., Corbett 
& Anderson,  2001  ) , but may not—by itself—fully 
account for the effectiveness of ITSs. In VanLehn’s 
 (  2006  )  words, “A tutoring system that gives mini-
mal feedback [i.e., feedback on the correctness of 
steps, without further explanation] should also 
have the ability to hint next steps. … With minimal 
feedback but no next-step hints, students often 
guess repeatedly then give up in frustration.” 

 We focus on Cognitive Tutors, a particular 
type of ITSs illustrated in Fig.  21.1 . In the unit 
illustrated in Fig.  21.1 , the student learns to 
employ various theorems related to triangles to 
solve geometry problems. Given a diagram, her 
task is to  fi nd an unknown angle measure in the 
diagram, which often requires multiple steps, 
each involving application of one or more theo-
rems. As the student works through the problem 
step-by-step, the tutor provides guidance in the 
form of feedback and hints.  

 Cognitive Tutors share all the characteristics 
of ITSs described above and are characterized 
additionally by a strong grounding in cognitive 
theory, cognitive task analysis, and cognitive 
modeling. Cognitive Tutors interpret student 
problem-solving behavior with respect to a rule-
based cognitive model that captures the targeted 
cognitive skill. In essence, the model is capable 
of solving the tasks in the various ways that it 
would be reasonable for students to solve them. 
Further, Cognitive Tutors track individual learn-
ers’ knowledge growth over time, using a 
Bayesian knowledge-tracing algorithm to calcu-
late probabilities that each individual learner 
masters each of the targeted skills captured in the 
cognitive model (Corbett & Anderson,  1995  ) . 
Based on this assessment of a learner’s skill, they 
select problems that address each learner’s 
speci fi c dif fi culties. This method for individual 
problem selection has been shown to have a sub-
stantial positive in fl uence on student learning, 
compared to  fi xed problem sets (e.g., Corbett, 
McLaughlin, & Scarpinatto,  2000  ) . 

 In this chapter, we focus on one form of step-
level guidance that many ITSs offer, namely, 
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on-demand, context-sensitive hints. As mentioned, 
ITSs provide a substantial amount of external reg-
ulation, but on-demand help is one area in which 
they leave substantial room for self-regulation. 
Students can typically request hints at any time as 
they are working through a problem. Therefore, as 
they work with the tutor, they continuously face 
the (metacognitive) decision whether to seek help 
from the tutor or whether to continue to try to solve 
the problem independently. In the Geometry 
Cognitive Tutor, for example, they can click the 
button marked “Hint” at the top right (see 
Fig.  21.1 ). The tutor’s hints provide advice with 
respect to the next step, in a manner that is sensi-
tive to the particular solution path taken so far by 
the student. Typically, multiple hint levels are 
available, with more general hints preceding more 
speci fi c ones. In the Geometry Cognitive Tutor, 
hints may provide advice as to what angle to work 
on next. For example, the hints for the next angle 
to work on in Fig.  21.1  are:

    1.    Given the information you currently have, 
which angle should you select next?  

    2.    You know  m � DJU . Which angle does that 
help you calculate?  

    3.    Given that you know  m � DJU , you can calcu-
late � UDJ  due to  Isosceles Triangle Base 

Angles . Select � UDJ .     
 Once the student has selected an angle to work 
on, the tutor (upon the student’s request) gives 
hints for calculating the measure of the selected 
angle, for example (for the angle worked on in 
Fig.  21.1 ):
    1.    Enter the measure of � UDJ .  
    2.    The base angles � UDJ  and � DJU  of isosce-

les triangle  D  DUJ  are congruent.  
    3.    Enter 55.     
 As illustrated in these hint sequences, hints often 
justify the next step in terms of one or more 
domain-speci fi c problem-solving principles (e.g., 
geometry theorems). In doing so, they may map 
the principle to the step (i.e., explain  how  it applies). 

  Fig. 21.1    The Geometry Cognitive Tutor served as platform for our research on help seeking in ITSs (e.g., Aleven & 
Koedinger,  2000  ) . This  fi gure shows the current version       
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The last hint, often referred to as the “ bottom-out 
hint,” often gives the solution to the step. In many 
ITSs, the student has full control over which hint 
levels they see, although there are some notable 
exceptions (e.g., Wood & Wood,  1999  ) . 

 We emphasize that our conception of next-
step hints pertains exclusively to messages about 
what is to be done next and does not encompass 
feedback on what the student has done so far. 
Further, we focus on hints requested by the stu-
dent, not on hints volunteered by the system. 
Thus, from a metacognitive perspective, we focus 
on situations where students are likely to exercise 
metacognitive monitoring and metacognitive 
control as they are aided by an ITS. Where we go 
outside of this focus, we say so explicitly.  

   Empirical Research on Help Seeking 
with ITSs 

 Researchers in the  fi eld of ITS have studied rela-
tions between students’ help-seeking behavior 
and their learning outcomes. Overall, this litera-
ture paints a complicated picture. It indicates that 
deliberate use of on-demand help tends to be 
associated with better learning outcomes, but 
much depends on how students use hints, and stu-
dents often do not use hints effectively. Some 
recent educational data mining studies even sug-
gest that students are generally better off trying to 
solve the steps in tutor problems rather than ask-
ing for help. (This  fi nding is likely to be speci fi c 
to problem-solving activities with immediate 
feedback.) Although a number of experimental 
studies showed or suggested that on-demand help 
can have a positive effect on student learning, a 
rigorous, de fi nitive demonstration that on-
demand principle-based hints offered by an ITS 
help students learn better is still lacking. Overall, 
a fair interpretation of this literature is that on-
demand principle-based help, when used prop-
erly, does help students obtain better learning 
outcomes, but learning from principle-based 
explanations is harder for students than com-
monly thought (see also Wittwer & Renkl,  2008  ) . 
The literature suggests further that providing 
answers in bottom-out hints, as many Cognitive 

Tutors and other ITSs do, may not just help stu-
dents get through problems without being stuck 
for prolonged periods of time but may also help 
them learn, as the bottom-out hints essentially turn 
the open problem step into a worked example for 
the student to study and, ideally, to self-explain. 

 To expand slightly on this brief summary, a 
number of studies have established positive corre-
lations between students’ use of help and their 
learning outcomes. In what was likely the earliest 
reported study on help seeking and tutoring sys-
tems, Wood and Wood  (  1999  ) , found a positive 
correlation between students’ tendency to seek 
help (frequency of help use, relative to the number 
of errors they make) and their learning outcomes. 
This correlation was signi fi cant for students with 
lower prior knowledge, suggesting that help seek-
ing is especially important for those coming in with 
low prior knowledge. Beck, Chang, Mostow, and 
Corbett ( 2008 ),    using a variety of educational data 
mining techniques, also found positive relations 
between help seeking and learning with an ITS for 
reading for elementary school students, although 
these relations were signi fi cant for only one of 
three methods used. The help provided by their ITS 
pertained to the pronunciation of written words and 
was therefore different from the principle-based 
help that many ITSs provide. Luckin and 
Hammerton ( 2002 )    conducted a study with an ITS 
based on Vygotskian principles and found that stu-
dents with above-average learning gains tended to 
seek more and deeper help than students with 
below-average learning gains. As discussed further 
below, in our own work with the Geometry 
Cognitive Tutor (e.g., Aleven, McLaren, & 
Koedinger,  2006  ) , we found negative correlations 
between the  raw  frequency of help use and  students’ 
learning gains, but we found positive relations 
when we used a model of effective help seeking to 
distinguish between forms of help seeking expected 
to be productive versus not productive. 

 This latter result suggests that much depends 
on how students use the on-demand help facili-
ties of an ITS. Other studies have had similar 
 fi ndings. Recent educational data mining research 
with tutor log data from the Geometry Cognitive 
Tutor found that the amount of time students 
spend with bottom-out hints (as mentioned, the 
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bottom-out hint is the last hint level in the 
sequence for any given step and basically gives 
the answer) is associated with greater learning 
gains (Shih, Koedinger, & Scheines,  2008  ) . One 
interpretation of this  fi nding is that some students 
spontaneously self-explain bottom-out hints as if 
they were a step in a worked-out example prob-
lem, and those who do come away with better 
learning results. The Shih et al. study leaves 
unaddressed the question of whether self-explain-
ing earlier hint levels, which as mentioned pro-
vide principle-based explanations of problem 
steps, can be effective over and above self-
explaining bottom-out hints. Other recent 
research with the Geometry Cognitive Tutor 
found that deliberate hint use may mediate the 
effect on learning of an intervention aimed at 
supporting periodic self-assessment of problem-
solving skill, especially for lower prior knowl-
edge students (Long & Aleven,  2012  ) . In this 
study, students who periodically  fi lled out off-
line paper “skill diaries” used the tutor’s hints 
more deliberately and had better learning results. 
The more deliberate hint use was manifested in 
fewer hint requests, but more time per hint, sug-
gesting that students got more out of the hints 
that they studied, perhaps due to more deliberate 
use. More generally, these studies demonstrate an 
association between how students use hints and 
their learning outcomes, suggesting that self- 
regulation in fl uences how students learn with 
ITSs. Perhaps the deliberateness of student help 
seeking will emerge as an interesting behavioral 
indicator of student self-regulation with ITSs. 

 On the other hand, our research with the 
Geometry Cognitive Tutor has found that 
 students’ help use is often less than ideal. Students 
often “abuse” hints to  fi nd answers without 
understanding and at other times, avoid request-
ing help even after they have made multiple errors 
on a step (Aleven & Koedinger,  2000 ; Aleven 
et al.,  2006 ; see also Aleven et al.,  2003  ) . Perhaps 
it should come as no surprise then that some stud-
ies are  fi nding that trying steps (with feedback 
from the ITS) may help students’ learn more than 
providing hints (e.g., Roll, Baker, Aleven, & 
Koedinger, under review; Shih, Koedinger, & 

Scheines,  2010  ) , suggesting that students need 
better support in learning from hints. 

 We know of no study that rigorously estab-
lished that the provision of principle-based on-
demand hints  causes  students working with an 
ITS to learn better. Establishing such a conclu-
sion would require an experimental study com-
paring two (or more) versions of an ITS, one with 
principle-based on-demand hints and one with-
out, in which the condition with hints had more 
robust learning outcomes (or greater learning 
ef fi ciency). A few studies came very close to pro-
viding such a demonstration. First, a study by 
Anderson, Conrad, and Corbett  (  1989  )  with the 
Lisp Cognitive Tutor demonstrated that explana-
tory messages from an ITS, both hints and feed-
back, can lead to more ef fi cient learning compared 
to “minimal messages.” However, the study falls 
short of de fi nitively establishing a causal connec-
tion between  on - demand  principle-based hints 
and learning because, between the two condi-
tions, the study varied not only the hint content 
but also the content of system-initiated feedback 
messages. Thus, it is possible that the greater 
learning ef fi ciency is due solely to the system’s 
feedback messages; system-initiated feedback 
messages however may involve different meta-
cognitive monitoring and control strategies than 
the use on-demand help. Second, a study by 
Stamper et al.  (  2011  )  with an ITS for logic proof 
found that when on-demand hints were available, 
students attempted and completed more problems 
and had improved learning outcomes than when 
on-demand hints were not available (and the sys-
tem provided correctness feedback only). Thus, 
the study suggests a causal relation between the 
availability of hints and learning, but it falls short 
of being a de fi nitive con fi rmation, as it was not a 
true experimental study. 

 Overall, the empirical record provides some 
tantalizing evidence to suggest that the provision 
of help on demand, and students’ help seeking, 
can in fl uence learning in a positive way but also 
underlines that learning from on-demand, princi-
ple-based help, as currently supported in ITSs, is 
challenging for students. With that background, 
let us now turn to theoretical perspectives.  
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   Theoretical Perspectives on Help 
Seeking 

 As mentioned, research on help seeking in ITSs 
relates to a number of theoretical perspectives, so 
many in fact that it is dif fi cult to review all of 
them in suf fi cient depth in a single chapter. We 
look at three relevant strands of theory: cognitive 
theories, theories of self-regulated learning 
(SRL), and models of help seeking put forward 
by educational psychology researchers. In the 
current section, we highlight the complementary 
perspectives that these theories provide.  

   Cognitive Perspective 

 We start with a cognitive perspective, by review-
ing the ACT-R perspective on the role of next-
step hints in the context of tutored problem 
solving (e.g., Anderson,  1993  ) . As we will see, 
this theory addresses cognitive aspects without 
much (if any) reference to metacognition. The 
ACT-R theory of cognition and learning has long 
been a theoretical foundation for Cognitive 
Tutors, which as mentioned are a widely used 
type of ITS. We believe, however, that the same 
theoretical underpinnings also pertain to other 
types of ITSs. ACT-R stipulates that expertise 
within a particular task domain requires the 
acquisition of two different types of interrelated 
knowledge, with different psychological proper-
ties, namely, declarative and procedural knowl-
edge. Under ACT-R, declarative knowledge is 
knowing  that  and procedural knowledge is know-
ing  how . Declarative knowledge can be encoded 
“more or less directly” from instruction (Anderson 
et al.,  1995  ) . It is verbalizable (typically) and is 
 fl exible: A given declarative knowledge “chunk” 
can be applied in different ways towards speci fi c 
goals (e.g., goals or subgoals in problem-solving 
tasks), provided that appropriate interpretive pro-
cedures are available. In many domains (e.g., 
geometry), a key form of declarative knowledge 
is knowledge of the relevant problem-solving 
principles. This kind of knowledge enables a 
learner to state a given principle and to  consciously 

reason about various aspects of it, such as its 
rationale, whether it applies in a given problem 
situation, what additional information may need 
to be calculated  fi rst in order for it to be applica-
ble, and so on. 

 Procedural knowledge, by contrast, is ef fi cient 
and goal speci fi c. This kind of knowledge is evi-
dent in the  fl uent execution of a well-practiced 
skill. For example, in the domain of geometry, 
procedural knowledge enables experts to quickly 
recognize how to solve the next step in a geome-
try problem, without having to search through 
their declarative knowledge of problem-solving 
principles. Procedural knowledge is not verbaliz-
able 2  and not open to conscious introspection. It 
is acquired through practice. 

 Prior theory about ITSs based on ACT-R has 
emphasized procedural learning through 
 problem-solving practice. Under ACT-R, proce-
dural knowledge is viewed as being composed of 
small units called production rules. The (many) 
production rules that make up a complex cogni-
tive skill can be learned independently and 
strengthened through practice. Steps in Cognitive 
Tutor problems are viewed as opportunities to 
acquire or strengthen speci fi c production rules. 
Using its cognitive model, a Cognitive Tutor 
interprets students’ performance and tracks each 
individual student’s knowledge growth in terms 
of production rules. The production rules in the 
model are presumed to be an accurate representa-
tion of the knowledge acquired by students. That 
is, the model is assumed to have psychological 
 fi delity (e.g., Aleven,  2010  ) . 

 Despite the emphasis on procedural knowl-
edge, it is important not to lose sight of the role of 

   2   If procedural knowledge cannot be verbalized, how it is 
that people can explain procedures? When people explain 
a procedure, they either draw on declarative knowledge 
of the procedure rather than the actual procedural knowl-
edge itself, or, if they explain the procedure while actu-
ally carrying it out, they may be verbalizing the  products  
of the procedure (i.e., goals and intermediate results pro-
duced in working memory) rather than their procedural 
knowledge. If in the latter context they explicate the con-
ditions under which speci fi c steps in the procedure are 
appropriate, it is likely that they are reconstructing these 
conditions on the  fl y, for example, by generalizing from 
the task that they are demonstrating.  
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declarative knowledge in expertise and skill 
acquisition. First, acquiring declarative knowl-
edge is often an important instructional goal in 
itself. The most  fl exible forms of expertise in a 
given domain usually consist of a mix of proce-
dural and declarative knowledge, given the com-
plementary strengths of each type of knowledge 
(e.g., Aleven & Koedinger,  2002 ; Anderson et al., 
 1995 ; Bransford, Brown, & Cocking,  2000 ; 
Hatano & Inagaki,  1986 ; Kilpatrick, Swafford, & 
Findell,  2001 ; Ma,  1999  ) . Second, under ACT-R, 
declarative knowledge can help in the develop-
ment of robust procedural knowledge. Procedural 
knowledge components are sometimes (but by no 
means exclusively) derived from application, to 
speci fi c problem-solving goals, of declarative 
knowledge, such as declarative encodings of 
examples or instructional explanations of prob-
lem-solving principles. For example, in the 
absence of speci fi c procedural knowledge related 
to a particular problem-solving (sub)goal, declar-
atively encoded examples may be applied in an 
analogical manner during problem solving. 

 Help seeking and metacognition are not 
addressed in ACT-R proper, but (to a degree) help 
seeking is addressed in a set of eight “Cognitive 
Tutor principles” that have been distilled from 
the experience of applying ACT-R to the design 
of ITSs (Anderson et al.,  1995 ; Koedinger & 
Corbett,  2006  ) . These principles provide practi-
cal guidelines for the design of ITSs, compatible 
with ACT-R. The principle most relevant to help 
seeking is principle #4:  Promote an abstract 

understanding of the problem - solving knowledge . 
Anderson et al.  (  1995 , p. 180) note that students 
often encode problem-solving examples in an 
overly speci fi c manner, without suitably  abstracting 
them, leading to the acquisition of overly speci fi c 
procedural knowledge (and failure to achieve 
even near transfer). They suggest that the use of 
(suitably) abstract language in hint and error 
messages can aid in the acquisition of appropri-
ately contextualized procedural knowledge (i.e., 
procedural knowledge that is appropriately gen-
eral but not overgeneral), although they do not 
provide further information about how to con-
struct effective help messages. 

 Under ACT-R, then, the main function of prin-
ciple-based hints in ITSs is to help students 
acquire relevant declarative knowledge, both 
because this knowledge is a useful component of 
expertise in the given domain and because it can 
guide the acquisition of robust (appropriately 
contextualized) procedural knowledge. In partic-
ular, it may help avoid acquisition of overly nar-
row/speci fi c procedural knowledge. We do not 
mean to imply that declarative knowledge should 
always be acquired  fi rst (e.g., Rittle-Johnson, 
Siegler, & Alibali,  2001  ) , nor that it is always 
necessary. A further role for hints is to reduce 
 fl oundering during problem solving (i.e., search-
ing for a solution step without having suf fi cient 
knowledge to  fi nd it). ACT-R predicts no advan-
tage for searching unsuccessfully for problem 
steps (Anderson,  1993  ) . Avoiding  fl oundering 
may make learning more ef fi cient, and it may 
help to prevent frustration on the part of students 
(cf. VanLehn,  2006 , quoted above). 3  

 A second theoretical framework, the knowl-
edge-learning-instruction (KLI) framework 
(Koedinger et al.,  2012  ) , highlights an aspect of 
learning from tutor hints that has not received 
much attention in theorizing about ITSs based on 
ACT-R. Under KLI, it becomes clear that under-
standing problem-solving principles, conveyed 
through instructional explanations or tutor hints, 
requires sense-making processes (de fi ned below) 
that pose a signi fi cant challenge to students. 

 The KLI framework, like ACT-R, is primarily 
cognitive in nature and does not (currently) 
address metacognition explicitly. It addresses 
robust learning in academic domains but, unlike 
ACT-R proper, is concerned with how  instruction  
can support robust learning. As mentioned, in the 
KLI framework, robust learning is de fi ned as 

   3   From a metacognitive perspective, this stance may be too 
extreme. Allowing students to explore  some  suboptimal 
solution paths to limited depth may help them develop 
metacognitive awareness and skill, such as skill at answer 
checking, error detection, and error correction (e.g., 
Koedinger et al.,  2009 ; Mathan & Koedinger,  2005  ) . 
However, the conditions under which allowing such lim-
ited exploration is more productive than providing imme-
diate feedback are very poorly understood. This issue is 
beyond the scope of this chapter.  
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learning that lasts, transfers to new situations, 
and facilitates future learning, typical desired 
outcomes of instruction. In addition, KLI makes 
a distinction between verbal and nonverbal 
knowledge, somewhat akin to ACT-R’s distinc-
tion between declarative and procedural knowl-
edge. KLI recognizes three main categories of 
learning mechanisms:
    1.     Sense making  (verbal processes in which stu-

dents reason, make inferences, construct 
explanations and arguments, and so on)  

    2.     Induction and re fi nement  (nonverbal processes 
in which students re fi ne the applicability con-
ditions of knowledge; KLI assumes a wide 
variety of induction/re fi nement mechanisms, 
many of them well known from the cognitive 
science literature, such as perceptual chunk-
ing, rule or schema induction, and analogy)  

    3.     Fluency and memory building  (nonverbal pro-
cesses such as memory strengthening and 
knowledge compilation, by which knowledge, 
as it is used repeatedly, is proceduralized and 
its execution becomes fast and effortless)     

 The KLI framers stipulate that a single mecha-
nism by itself will rarely support fully robust 
learning in a domain (such as geometry) with 
complex knowledge components. KLI also pro-
vides a taxonomy of instructional principles that 
links principles and the three categories of learn-
ing mechanisms presented above. This set is much 
broader than the set of Cognitive Tutor principles 
grounded in ACT-R, and discussed above 
(Anderson et al.,  1995  )  and is not focused on ITSs 
per se. It does not currently include any principles 
related speci fi cally to help seeking however, so let 
us now consider how the KLI framework helps us 
understand the use of on-demand help in the con-
text of tutored problem solving. 

 In the KLI framework, problem-solving  practice 
(such as that supported by ITSs) primarily involves 
two of the three KLI learning mechanisms: 
re fi nement/induction of nonverbal knowledge as 
well as  fl uency and memory-building processes. 
During the initial phase of practice in a novel 
domain, a student is likely to make errors, forcing 
him or her to re fi ne/induce the applicability condi-
tions of the relevant nonverbal knowledge compo-
nents (the KLI de fi nition of induction/re fi nement). 

Through the use of these mechanisms, the learner 
may eventually reach a phase in which her perfor-
mance is highly accurate, and the main effect of 
further practice is faster, more accurate perfor-
mance (the KLI de fi nition of  fl uency building). 
Under KLI, re fi nement/induction processes and 
 fl uency-building processes primarily affect nonver-
bal (procedural) knowledge and have little or no 
in fl uence on the acquisition of verbal knowledge. 
In many domains, however, learners also need to 
acquire verbal conceptual knowledge of key prob-
lem-solving principles. This type of knowledge has 
two key roles: It is an important component of 
expertise in its own right in many domains (e.g., 
those in which learners are required to state princi-
ples such as Newton’s laws and explain solutions), 
and it facilitates the creation and re fi nement of non-
verbal knowledge through induction, re fi nement, 
and  fl uency-building processes. That is, verbal 
knowledge may help ensure a properly abstracted 
encoding of (nonverbal) problem-solving knowl-
edge. Acquiring such knowledge may best be done 
through the third class of KLI learning mecha-
nisms, namely, sense making. 

 On-demand hints provide some grist for sense-
making processes and perhaps implicitly prompt 
students to engage in such processes, just by the fact 
that they are being presented in the tutor interface. 
When studying hints, a student may try, verbally, to 
understand or reason about the information that is 
provided (the KLI de fi nition of sense making). 
A key mechanism for doing so is self-explanation 
(Aleven & Koedinger,  2002 ; Chi,  2000 ; Chi, 
Bassok, Lewis, Reimann, & Glaser,  1989 ; 
Hausmann & VanLehn,  2007 ; see also Koedinger 
et al.,  2012 , pp. 783–784). For example, as they 
interpret tutor hints, students may explain to them-
selves how key conditions of the problem-solving 
principles relate to concepts they have learned or to 
other principles. Alternatively, a student may explain 
how the principle maps onto the problem at hand 
(e.g., Butcher & Aleven,  2010 ;  in press  ) . Students 
may even reason about why the principle holds in 
general or about the fundamental role that principles 
play in problem solving in the domain they are 
studying. These self-explanations may lead to an 
enhanced understanding of the principles and their 
relations with other domain-speci fi c knowledge and 
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thus to more robust, integrated knowledge. Whether 
effective sense-making processes occur, however, 
depends largely on the learner, in particular, on 
whether learners will decide to self-explain tutor 
hints and if they do, whether they will generate use-
ful self-explanations. This issue is not addressed in 
KLI, as discussed further below. 

 In sum, both ACT-R and KLI stipulate that in 
many domains, including mathematics and sci-
ence, robust learning requires that learners acquire 
both declarative, verbal knowledge and proce-
dural, nonverbal knowledge. The verbal knowl-
edge may help learners reason about principles in 
various important ways and may guide induction/
re fi nement and  fl uency-building processes. 
Principle-based hints such as those offered by 
ITSs are one way of accomplishing these goals, 
although ideally not the only way. The KLI 
account enriches the ACT-R account by highlight-
ing the sense-making processes that must occur if 
such hints are to contribute to robust learning. It 
may be clear, however, that ACT-R and KLI pro-
vide a  cognitive  perspective on help seeking and 
that neither of these theories addresses metacog-
nitive aspects of learning from tutor hints.  

   Implicit Connections Between 
Cognitive Perspective 
and Metacognition 

 As mentioned, viewed from a metacognitive per-
spective (e.g., Brown,  1987 ; Flavell,  1979  ) , help 
seeking involves metacognitive monitoring and 
control. Although ACT-R and KLI have not made 
explicit connections to metacognitive theory, they 
do touch on issues of metacognitive monitoring 
and control as they relate to learners seeking help 
with problem-solving activities. First, as  mentioned, 
Cognitive Tutors and other types of ITSs typically 
make hints available  at the student ’ s request , as 
opposed to having the system decide when hints 
are likely to be bene fi cial. However, nothing in 
ACT-R or KLI compels us to create systems that 
hold back hints until students request them. It 
would not be dif fi cult to create systems that, for 
example, volunteer hints at appropriate times, in 
addition to providing them at the student’s request. 

(Indeed, simple strategies for doing so have been 
pursued in Cognitive Tutors.) Anderson et al.’s 
 (  1995 , p. 199) rationale for giving hints at the stu-
dent’s request is that learners have better memory 
for materials that they generate themselves, com-
pared to materials presented to them. The optimis-
tic vision is that students will request hint levels 
exactly insofar as these hint levels communicate 
(or help them construct) knowledge that they could 
not generate for themselves. Anderson  (  1993  )  
argues further that students know better than ITSs 
when they need help. For example, they may be 
better able to judge than the ITS when an error is a 
result of a fundamental lack of understanding ver-
sus a slip that is easily spotted and can be  fi xed 
without further help. An implicit assumption in this 
theorizing is that students are capable of assessing 
their own knowledge in relation to the problem at 
hand, a form of metacognitive monitoring. 
However, as research on metacognition has shown, 
this assumption is not necessarily accurate, as 
 people tend to be poor in assessing their own 
knowledge and understanding (Boekaerts & 
Rozendaal,  2010 ; Dunlosky & Lipko,  2007 ; Feyzi-
Behnagh, Khezri, & Azevedo,  2011 ; Glenberg & 
Epstein,  1985 ; Koriat & Bjork,  2005 ; Nelson,  1996 ; 
Simons & Chabris,  2011 ; Tousignant & 
DesMarchais,  2002 ; Winne,  1995  ) , potentially 
reducing the effectiveness of on-demand help. 

 A second implicit connection between cogni-
tive and metacognitive theory is that some of the 
sense-making processes in the KLI framework 
can be viewed as metacognitive in nature, even if 
the KLI framers do not explicitly describe them 
as such. For instance, self-explanation (a key 
sense-making strategy in KLI) is often viewed as 
a metacognitive monitoring strategy, especially 
when it is used for purposes of assessing one’s 
knowledge (e.g., Aleven & Koedinger,  2002 ; 
McNamara & Magliano,  2009 ; Renkl et al., 
 2013  ) . Self-explanation can help not only in 
monitoring but also in repairing knowledge gaps 
(Chi,  2000 ; VanLehn, Jones, & Chi,  1992  ) . 
However, not all learners spontaneously self-
explain instructional materials, and when they 
do, not all generate accurate self-explanations 
(Renkl,  1997  ) , which may limit the effectiveness 
of on-demand hints. Prompts for self-explanation 
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have been shown to be helpful in a variety of 
domains and with a variety of different learning 
materials (Aleven & Koedinger,  2002 ; Chi, de 
Leeuw, Chiu, & LaVancher,  1994 ; Renkl, Stark, 
Gruber, & Mandl,  1998  ) . One of the KLI instruc-
tional principles (“Prompted self- explanation”) 
therefore recommends including such prompts in 
instructional materials. We know of no ITS, how-
ever, in which on-demand hints are accompanied 
by prompts to self-explain the hints. A number of 
ITSs incorporate self-explanation prompts, but 
they ask students to explain steps in worked 
examples or problems, not hints (e.g., Aleven & 
Koedinger,  2002 ; Conati,  2013 ; Conati & 
VanLehn,  2000 ; Otieno, Schwonke, Renkl, 
Aleven, & Salden,  2011 ; Salden, Aleven, 
Schwonke, & Renkl,  2010  )    . 

 In short, accounts of help seeking and help use 
in terms of cognitive theories have touched on 
concerns relevant to metacognitive theory but have 
not made explicit connections. In addition, they do 
not provide a perspective on how help seeking is 
part of a broader set of self-regulation strategies 
that students use as they approach a complex learn-
ing task with varying goals and ambitions.  

   Self-Regulated Learning Perspective 

 These issues bring us to theories of self-regulated 
learning (e.g., Pintrich,  2004 ; Winne & Hadwin, 
 1998 ; Zimmerman,  2008  ) . Such theories often 
take a comprehensive view of the ways in which 
learners, faced with a challenging learning task 
(e.g., learning a complex procedure or learning 
about a complex set of interrelated concepts), 
regulate their learning in a cyclical manner, 
potentially calling upon many different learning 
strategies. After deciding on a learning task, 
learners size up task demands, select standards 
by which they will judge their progress, plan 
learning strategies to tackle the task, execute their 
plan, monitor progress against the selected stan-
dards, and adjust their learning strategies and/or 
the standards. They may also re fl ect on the expe-
rience, possibly updating metacognitive or moti-
vational beliefs and attributions. They do so in an 
opportunistic, iterative, cyclical fashion. Different 

theories distinguish different task phases, realms, 
and strategies, but cyclical monitoring and adjust-
ing the plan of action and learning strategies is 
characteristic of many theoretical models. 

 Help seeking  fi ts this cyclical framework very 
well. The decision to seek help typically repre-
sents a change of learning strategy, namely, from 
trying to complete the given learning task inde-
pendently to seeking our and utilizing additional 
resources. Often the strategy change is triggered 
by the learner’s monitoring of her task progress 
in light of the active standards. At other times, it 
is informed by feedback from the learning envi-
ronment, and occasionally, it is preplanned. 
Often, the decision to seek help is an adaptive, 
opportunistic response for when things do not go 
according to plan. Many theories of self-regulated 
learning regard help seeking as one of many strat-
egies that students use to attain their academic 
goals. For example, help seeking is a key behav-
ioral strategy (among many) in Pintrich’s  (  2004  )  
model of self-regulated learning. According to 
this model, good students actively monitor their 
need for help and know when, why, and from 
whom to seek help. Likewise, Zimmerman  (  2011  )  
views help seeking in individual and social as a 
key behavioral manifestation of self-regulation. 
In Zimmerman’s  (  2000,   2008  )  social-cognitive 
three-phase cyclical model of self-regulated 
learning, help seeking is a self-control mecha-
nism that can be operative in the performance 
phase of the SRL cycle (the second of three 
phases in his cycle), in which the learner acts, in 
an adaptive manner, based on a plan made during 
the earlier forethought phase of the cycle. 

 Early empirical research based on these theo-
retical frameworks produced mixed  fi ndings about 
the relation between students’ use of help-seeking 
strategies and learning. An interview study by 
Zimmerman and Martinez-Pons  (  1986  )  with 80 
high-school sophomores found that higher-
achieving students, compared to their lower-
achieving peers, reported that they sought help 
more frequently from peers, teachers, and parents. 
They also reported higher overall use of self- 
regulation strategies than the lower-achieving 
group. By contrast, a study with 380 college stu-
dents by Pintrich, Smith, Garcia, and McKeachie 
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 (  1993  )  found no signi fi cant correlation between 
seeking help from instructors or peers and course 
grades. (It also did not  fi nd a relation between peer 
learning and course grades.) This study employed 
the Motivated Strategies for Learning Questionnaire 
(MSLQ), which includes, in a section entitled 
“Resource Management,” items addressing help 
seeking together with behaviors such as managing 
time and study environment, effort management, 
and peer learning. Thus, these studies provide only 
mixed support for the importance of help seeking 
as a self-regulatory strategy. A limitation of this 
early work is that it is based on self-report rather 
than behavioral measures of help seeking. 

 In more recent work on SRL with hyperme-
dia by Azevedo and colleagues (Azevedo, 
Cromley, & Seibert,  2004 ; Azevedo, Cromley, 
Winters, Moos, & Greene,  2005  ) , help seeking 
is viewed as a way in which a student adapts to 
task dif fi culty. SRL processes were analyzed 
based on extensive coding of think-aloud proto-
cols, thus providing a behavioral measure of 
help seeking (and avoiding the limitation of the 
work mentioned above). In two studies, help 
seeking was one of many SRL processes that 
correlated with learning gains. Further, students 
working with a hypermedia system sought help 
more frequently when a human tutor provided 
adaptive scaffolding of SRL processes, a condi-
tion that also had the highest learning gains. (In 
the control condition, no human tutor was avail-
able.) Although this type of help seeking is 
somewhat different from on-demand next-step 
help provided by ITSs—the participants in the 
Azevedo et al. studies typically sought feedback 
on what they had just done, whereas in ITSs we 
have focused on next-step help—these results 
provide further evidence that help seeking can 
be a useful SRL strategy. 

 Not all theories of SRL include help seeking. 
For instance, Winne and Hadwin  (  1998,   2008  )  do 
not mention help seeking as a component of their 
COPES model of self-regulated learning. 
Nonetheless, it seems that help-seeking strategies 
could readily be accounted for in this model, for 
instance as a way in which learners enact a meta-
cognitive control action (strategy change) when 
their monitoring indicates that the products of the 

current strategy do not meet current standards. 
Similarly, help seeking is not included in 
Boekaert’s  (  2007  )  model, but it would be a sur-
prise if affective dimensions of help seeking were 
somehow found to be incompatible with this 
model. 

 Given the comprehensive perspective on stu-
dent learning that many SRL theories take, one 
would expect them not just to indicate in which 
broad phases of the SRL cycle particular strate-
gies are effective but also to specify in detail the 
speci fi c context and circumstances in which each 
strategy (e.g., help seeking) is likely to be more 
effective than other possible strategy choices. To 
the best of our knowledge, however, SRL theo-
ries have not, with considerable speci fi city, 
identi fi ed and described the  conditions  under 
which particular strategies, such as help seeking, 
should be chosen, nor do these theories relate 
help seeking to speci fi c metacognitive monitor-
ing processes, such as Feeling of Knowing (FOK) 
and Judgments of Learning (JOL) (e.g., Azevedo 
et al.,  2004 ; Dunlosky & Metcalfe,  2008  ) , which 
presumably inform the decision to seek help from 
an external source. (In this chapter, we use the 
terms self-assessment and self-monitoring inter-
changeably.) For example, persistence in the face 
of a problem-solving impasse (i.e., trying to solve 
the step independently, as opposed to seeking 
help) should be viewed as an adaptive response 
when the learner, according to his or her own 
self-assessment or metacognitive monitoring, has 
suf fi cient knowledge to recover from the impasse 
and learn from doing so. In other instances, how-
ever, such persistence may best be viewed as 
maladaptive, for instance, as help avoidance. A 
further limitation is that SRL theories do not typi-
cally refer to cognitive mechanisms or learning 
mechanism identi fi ed by cognitive theories. 
Ultimately, one expects that learners’ self- 
regulated strategy choices marshal learning 
mechanisms (in the KLI or ACT-R sense) that 
produce desirable learning outcomes. However, 
connections between SRL strategies and cogni-
tive learning mechanisms have received little 
attention from SRL theorists, although notable 
exceptions exist (e.g., Rawson & Dunlosky,  2013 ; 
Thiede, Grif fi n, Wiley, & Redford,  2009  ) .  
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   Educational Psychology Perspective 

 As our third theoretical perspective, we brie fl y look 
at a substantial line of work in educational psychol-
ogy focused on help seeking. This research area also 
attracted developmental and social psychologists. 
This work did not examine help seeking in the con-
text of larger theories of SRL but typically has looked 
at help seeking in greater detail than the SRL work 
reviewed previously. The work also did not tend to 
study help-seeking in the context of CBLEs, which 
is one reason we only treat it brie fl y here. While the 
work highlights many social factors affecting peo-
ple’s willingness or reluctance to seek help (e.g., 
Newman & Goldin,  1990  ) , we focus on work that 
highlights the central role of self-assessment in help 
seeking, such as a model of help seeking originally 
presented by Nelson-Le Gall  (  1981  )  and later elabo-
rated by Newman  (  1994 ; see also Ryan, Pintrich, & 
Midgley,  2001  ) . According to this model, self-
assessment is a crucial  fi rst step of any help-seeking 
episode, in which one becomes aware of one’s need 
for help. The ability to assess task dif fi culty, monitor 
task progress, and evaluate one’s own comprehen-
sion and knowledge are major metacognitive func-
tions (Nelson-Le Gall,  1981 ; Newman,  1998 ; Winne 
& Jamieson-Noel,  2002  ) . There is evidence that 
individuals who are better at detecting gaps in their 
understanding or are better at self-assessment have 
better learning results (Chi et al.,  1989 ; Paris & Paris, 
 2001 ; White & Frederiksen,  1998  ) , although there is 
also much evidence that humans are quite poor at 
making accurate metacognitive judgments, as dis-
cussed above. The relation between self-assessment 
and help seeking was highlighted by a study by 
Nelson-Le Gall et al.  (  1990  ) , who found that help 
seeking is related more strongly to children’s subjec-
tive assessment of their performance than to objec-
tive measures of correctness. 

 To sum up, it may have become clear that not 
all aspects of on-demand help in ITSs have a 
strong grounding in theory, although this situa-
tion may be rather typical of instructional design, 
generally. From a theoretical perspective, on-
demand hints are an imperfect, although perhaps 
hard to improve-upon, partial solution to a 
dif fi cult instructional design problem, namely, to 

help students acquire appropriately contextual-
ized problem-solving knowledge. 

 This section highlights the richness of theoreti-
cal perspectives on help seeking but also highlights 
a lack of integration of prior theorizing. Accounts 
of help seeking in terms of cognitive theories have 
touched on concerns relevant to metacognitive 
theory but left them implicit and did not discuss 
implications of a metacognitive view on help seek-
ing. On the other hand, SRL theories have identi fi ed 
help seeking as an important strategy but have not 
discussed speci fi c relations to other strategies, or 
contexts in which help seeking is appropriate, or 
the cognitive learning mechanisms marshaled 
through help seeking. It seems, therefore, that 
there is much to be gained from efforts aimed at 
unifying cognitive and SRL theoretical perspec-
tives on help seeking. The same can be said of 
 cognitive theory and SRL theory more generally. 
Without taking into account SRL theories, cogni-
tive perspectives may have a dif fi cult time account-
ing for variability among learners. Conversely, 
without a cognitive perspective, it is likely that 
SRL theories will have a dif fi cult time accounting 
for how different strategy choices lead to different 
learning outcomes. Perhaps pointing out the “con-
nects and disconnects” between cognitive theories 
and theories of self-regulated learning, as we have 
started to do in this chapter, is a useful  fi rst (albeit 
modest) step towards theory integration.  

   A Model of Help Seeking as 
Facilitating Theoretical Integration 

 In this section, we look at an approach we have 
taken in our own prior work on help seeking that, 
we believe, represents a  fi rst step towards theoreti-
cal integration. Speci fi cally, we have used rule-
based modeling as a tool to study  metacognition by 
creating a model of help seeking during tutored 
problem solving (e.g., Aleven & Koedinger,  2000 ; 
Aleven et al.,  2006 ; Aleven, Roll, McLaren, & 
Koedinger,  2010  ) . The use of production rules to 
model aspects of SRL had previously been advo-
cated by Winne and colleagues (Winne,  2010 ; 
 2011 ; Winne & Hadwin,  1998 ; Winne, Zhou, & 
Egan,  2011  ) , but our work takes a critical next step 
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by explicating a model that details the conditions 
under which metacognitive strategy choices are 
appropriate. The model is executable on a computer 
and can be run against data of student-tutor interac-
tions in order to assess students’ help- seeking 
behavior. In the current section, we give a brief 
overview of the model. In the next section, we dis-
cuss this work from the perspective of theoretical 
integration: The model unites cognitive and meta-
cognitive aspects into the same modeling frame. 

 The model captures a recurrent metacognitive 
cycle in tutored problem solving in which a learner, 
faced with a step in a tutor problem, must decide 
between trying the step or seeking help. As men-
tioned, this strategy choice is a key way in which a 
learner engaged in problem-solving practice exer-
cises metacognitive control. The model is based 
on theoretical and empirical cognitive task analy-
sis (Aleven et al.,  2006  ) . Further, it is meant to be 
compatible both with models of SRL (i.e., an 
observed SRL event) and the models of help seek-
ing put forward in the educational psychology 
 literature (i.e., a strategic response to self- 
assessment). We do not mean to claim that the 
model comprehensively covers all SRL processes 
used during tutored problem solving, only that it 
captures some important processes. Other SRL 
models are more comprehensive, but the current 
model is more speci fi c. It is implemented as a set 
of production rules that capture, in IF-THEN for-
mat, the conditions under which a learner working 
with an ITS does well to independently attempt a 
problem step versus requesting a context-sensitive 
hint from the system. Ideally, a student seeks help 
(i.e., requests a hint from the system) when not 
having suf fi cient knowledge to understand the step 
or learn much from the step and attempts the step 
otherwise. Self-assessment is therefore a key ele-
ment of the model; including self-assessment is 
one way in which the model integrates cognitive 
and metacognitive aspects. The model is summa-
rized in Tables  21.1  and  21.2 . These tables present 
a more concise and accessible overview than the 
production rules themselves would, although we 
do give examples of production rules below.   

 As indicated in the tables, the model speci fi es, 
for each of the two main strategy choices (seek help 
or attempt the step) the conditions under which that 

   Table 21.1    Conditions for seeking help speci fi ed by the 
production rule model of help seeking   

 Requesting help is  preferred  when: 
 • The step is unfamiliar to the student (as indicated 

by self-assessment) 
 • Or when the student made an error (as indicated by 

feedback from the geometry tutor) and it is not clear 
how to  fi x the error (as indicated by self-
assessment) 

 • Or the student just read a hint and it was found not 
to be helpful (as indicated by self-assessment) 

 • Provided that the student has not yet seen all hint 
levels for the given step and the hint request is 
deliberate (i.e., the student spent a reasonable 
amount of time before the request) 

 Requesting help is  acceptable  when: 
 • The step is familiar, but the student does not have a 

clear sense of what to do (as indicated by self-
assessment) 

 • Or the previous action was also a hint request (in 
other words, requesting the next hint level is always 
acceptable) 

 • Provided that the hint request is deliberate (meaning 
adequate time was spent) 

 Requesting help is  not acceptable:  
 • In all other situations (e.g., when on a familiar step, 

the student requests a hint right away, without  fi rst 
trying the step, or when the student did not spend 
an adequate amount of time reading or rereading a 
hint level before requesting the next hint level) 

   Table 21.2    Conditions for trying a step speci fi ed by the 
production rule model of help seeking   

 Trying a step is  preferred  when: 
 • The step is familiar to the student (as indicated by 

self-assessment), and the student did not just make 
an error on the step that he or she does not know 
how to  fi x (as indicated by self-assessment) 

 • Or the student has just read a hint that was helpful 
(as indicated by self-assessment) 

 • Or if the student has seen all the hints for the step, unless 
they have also made an error that they do not know how 
to  fi x (in which case asking the teacher is preferred) 

 • Provided that the attempt was deliberate (meaning 
adequate time was spent) 

 Trying a step is  acceptable  when: 
 • The attempt is correct (even if according to other 

criteria, the student should have sought help, or the 
step was not done in deliberate fashion—i.e., was 
hasty) 

 Trying a step is  not acceptable : 
 • In all other situations (e.g., when the student has 

read a hint and it is not helpful) 
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choice is preferred, acceptable, or deemed not a 
good choice. 4  At the outset of working on a step in 
a tutor problem, the decision to seek help or attempt 
the step will be based on the student’s assessment of 
the familiarity of the step, essentially, a FOK judg-
ment (Azevedo et al.,  2004 ; Dunlosky & Metcalfe, 
 2008  ) , that is, a judgment learners make with respect 
to their own knowledge based on prior exposure or 
practice (or lack thereof). If the step is unfamiliar, 
seeking help is the preferred strategy. Attempting an 
unfamiliar step is the preferred strategy only after a 
suf fi cient number of hints have been read so that the 
student has a sense of what to do. Attempting a step 
without requesting help is acceptable if the student 
has a sense of what to do, a higher bar than mere 
familiarity. After an initial unsuccessful attempt at 
solving the step, the decision whether to seek help 
or not is informed by tutor feedback, but tutor feed-
back does not do away with the need for metacogni-
tive monitoring. The preferred approach is for the 
student to (deliberately) try to make sense of the 
error and reattempt the step only when it is clear 
how to  fi x the error. As before, the key judgment to 
be made is whether or not the student has a clear 
sense of what to do. Finally, after requesting a hint 
level, the student must make a judgment as to 
whether they have understood the hint suf fi ciently 
well in order to succeed with the step at hand, argu-
ably, a judgment of learning (JOL). JOLs are judg-
ments by learners of their own understanding of 
materials just studied (Azevedo et al.,  2004 ; 
Dunlosky & Metcalfe,  2008  ) . The model thus expli-
cates how help seeking depends on self-assessment 
processes such as FOK and JOL and how it relates 
to learning by problem solving. 

 To illustrate how production rules are used to 
capture the basic metacognitive cycle described 
above and model the detailed conditions under 
which a strategy choice is preferred, acceptable, 

or not acceptable, we show three rules that model 
the situation where the student has requested a 
hint, evaluates whether it is helpful through care-
ful reading, and upon deciding that it is not, 
requests to see the next hint level: 

  IF  
   There is a subgoal to evaluate a hint (meaning 
that the student’s previous action was to request 
a hint, and the system presented a hint)  

  THEN  
   Set a subgoal to deliberately read and think 
about the hint  
   And set a subgoal to decide whether to request 
the next hint,  
  And remove the subgoal to evaluate the hint  

  IF  
   There is a subgoal to deliberately read and 
think about a hint  
   And the current hint level is a new hint level (as 
opposed to rereading a hint level seen before)  

  THEN  
   Spend a reasonable amount of time processing 
the new hint  
  And remove the subgoal  

  IF  
   There is a subgoal to decide whether to request 
the next hint  
  And the current hint is not helpful  
   And the student has not yet seen all the hints 
for the current step  

  THEN  
  Request the next hint  
  And set a subgoal to evaluate the hint  

 To illustrate how the production rules capture 
alternative choices under different conditions, the 
following rule captures a different strategy choice 
when in the same situation as above, the student’s 
assessment of a hint’s helpfulness is different: 
  IF  

   There is a subgoal to decide whether to request 
the next hint  
   And the current hint has been evaluated as 
being helpful  

   4   These categories stem from the use of the model in the 
context of automated tutoring. A tutor will recommend 
and accept steps that are preferred, accept steps that are 
acceptable (but not recommend them if they are not also 
preferred), and reject steps that are neither (i.e., are not 
acceptable). In off-line analyses of students’ help-seeking 
behavior, we distinguished between acceptable and not 
acceptable steps, without further subdividing acceptable 
steps into preferred and non-preferred steps.  



328 V. Aleven

  THEN  
  Try the step  
   And set a subgoal to evaluate the result of try-
ing the step  

 More than half of the rules in the model capture 
help-seeking errors, the various ways in which stu-
dents’ strategy choices can fall in the “not accept-
able” category of Tables  21.1  and  21.2 . We grouped 
them and organized them in hierarchical fashion to 
create what we call a metacognitive error taxon-
omy (Aleven et al.,  2006  ) . The taxonomy includes 
major categories such as help avoidance, help 
abuse, and try-step abuse, subdivided into  fi ner-
grained categories. The model therefore provides 
much  fi ner grain in capturing maladaptive help-
seeking behaviors than prior work in educational 
or developmental psychology, which has focused 
on broad categories such as instrumental versus 
executive help seeking (e.g., Nelson-Le Gall, 
 1985  ) . Executive help seeking has been de fi ned as 
focused on supporting performance or completing 
a task, whereas instrumental help-seeking episodes 
are de fi ned by their aim to support the acquisition 
of new skills or knowledge. 

 In implementing the model, we were forced to 
be speci fi c about what it means to “spend a rea-
sonable amount of time” processing one of the 
tutor’s hint messages and what it means for a hint 
to be “helpful.” In other rules, we needed to give 
a precise speci fi cation of what it means for a step 
to be “familiar” and what it means for a student to 
have “a sense of what to do.” As can be seen in 
Tables  21.1  and  21.2 , as well as the rule examples 
given above, these notions are part of the condi-
tions under which the different strategies are 
appropriate. To de fi ne what it means for a step to 
be familiar or for a student to have a sense of 
what to do on a step (essentially, outcomes of stu-
dents’ self-assessment of their mastery of the 
domain-speci fi c knowledge components involved 
in each problem step), we made use of the prob-
abilities of skill mastery computed by the 
Geometry Cognitive Tutor. As mentioned, the 
tutor computes these probabilities in the course 
of its regular operation using its Bayesian knowl-
edge-tracing algorithm, based on students’ per-
formance on the tutored problems. Speci fi cally, 

we de fi ned context-sensitive thresholds on the 
probability of knowing or not knowing skills tar-
geted in the instruction. The thresholds were 
based on educational data mining of log data 
from the Geometry Cognitive Tutor (Aleven 
et al., 2006). We de fi ne familiar steps as steps for 
which the skill mastery probability is above 0.4 
but below 0.6 (meaning that the probability that 
the student has fully learned the requisite domain-
speci fi c knowledge components is between 0.4 
and 0.6, according to the Geometry Cognitive 
Tutor’s determination). We de fi ne steps for which 
the student has a sense of what to do as steps for 
which the estimated probability of skill mastery 
is 0.6 or higher. By contrast, for a skill to be 
deemed  mastered  by the tutoring software, the 
probability of mastery needs to be 0.95 or higher 
(Corbett & Anderson,  1995  ) . To de fi ne the notion 
of “working deliberately” in a context-sensitive 
manner, we set context-sensitive thresholds for 
the minimum amount of time spent when starting 
to work on a step, when reading hints, or when 
following up on an incorrect attempt at solving a 
step. In doing so, we assumed that a student read-
ing the tutor’s hints will not exceed 600 words/
min, a level that is well above average reading 
rates reported in the literature (e.g., Card, Moran, 
& Newell,  1983  ) . 

 The model has been used for two main pur-
poses: It has been used for off-line analysis of stu-
dents’ help-seeking behavior (Aleven et al.,  2006  ) , 
and it has been used as the “smarts” in a tutor agent 
that provides feedback on students’ help-seeking 
behavior (Aleven et al.,  2010 ; Roll, Aleven, 
McLaren, & Koedinger,  2011  ) . In the  fi rst line of 
work, we started out by distilling from tutor log 
data, simple frequency measures of students’ help-
seeking behavior (e.g., on what percentage of steps 
in tutor problems they requested tutor hints). We 
then computed correlations between these aspects 
of students’ help-seeking behavior and students’ 
learning gains, measured by a paper geometry pre- 
and posttest. Our  analyses yielded negative corre-
lations between the frequency of help use and 
learning gains from pretest to posttest (Aleven 
et al.,  2006  ) . Students who requested help from the 
tutor more often had lower learning gains than stu-
dents who used help less often. However, this 
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analysis has a number of limitations that make it 
dif fi cult to interpret these correlations. First, this 
analysis assumes that seeking help more often is 
better (i.e., leads to more robust learning). 
However, there is no reason to assume that seeking 
help more frequently (i.e., a larger number of help 
request per problem step) should lead to higher 
learning gains. In particular, when hints are used to 
obtain answers without trying to understand the 
reason why the answer is correct, students may not 
learn much from the hints. Further, sometimes  not  
seeking help is more appropriate; seeking help in 
such situations may be detrimental to learning. 
Such differences are hidden in frequency counts. 
A  second fundamental limitation is that the analy-
sis is subject to selection effects. That is, the stu-
dents who needed help more often were likely to 
be the less-prepared students or lower-aptitude 
students. The negative correlation might indicate 
simply that students who are in trouble more often 
during the learning process tend to have lower 
learning gains. This selection effect may obscure 
any possible positive in fl uence that help use may 
have on student learning (but see Goldin, 
Koedinger, & Aleven,  2012  ) . 

 Off-line use of the model enabled us to address 
the  fi rst limitation. That is, by running the model 
against log data, we were to classify students’ 
actions captured in the log data into effective and 
ineffective help-seeking behaviors, corresponding 
to the categories of acceptable and non-acceptable 
behaviors de fi ned in Tables  21.1  and  21.2 . We fur-
ther divided the ineffective help-seeking behaviors 
according to the taxonomy of ineffective help 
seeking described above. With this subdivision, a 
more nuanced picture of the relations between 
help seeking and learning emerged (Aleven et al., 
2006). Ineffective help-seeking behaviors (in par-
ticular help abuse) were frequent and correlated 
negatively with learning ( r  = −0.66). Effective help 
use therefore correlated positively with learning. 
Some of the less frequent ineffective help-seeking 
behaviors did not strongly correlate with learning, 
namely, those we called “try-step abuse,” which 
included frequent guesses at answers. Further, help 
avoidance correlated negatively with learning in 
some analyses but not others, suggesting that 
this form of ineffective help seeking may not be 

detrimental to learning in an environment with 
immediate feedback on problem solving. 

 In the second line of work, the model was used 
to provide feedback on students’ help-seeking 
behavior in the context of geometry learning. This 
line of work helped us address the second limita-
tion of the correlational analysis described above, 
namely, that selection effects obscure the relation 
between help seeking and learning. We conducted 
an experimental study to investigate whether 
improved help seeking (due to feedback on help 
seeking) leads to improved learning, so as to test a 
causal relation between help seeking and learning 
during tutored problem solving. Speci fi cally, we 
created a tutor agent based on the help-seeking 
model. We integrated this tutor agent within the 
Geometry    Cognitive Tutor, enabling this tutor to 
provide tutoring on help seeking in addition to 
tutoring with respect to geometry. 5  This tutor 
agent assessed students’ help-seeking behavior 
online, as students were using the Geometry 
Cognitive Tutor to solve geometry problems, by 
comparing the student’s actual actions against 
those deemed acceptable by the model (see 
Tables  21.1  and  21.2 ). The model’s  fi ne-grained 
error taxonomy for help-seeking errors was again 
helpful, because it allowed the tutor agent to pro-
vide speci fi c feedback on instances of maladap-
tive help-seeking behavior. 

 In an extensive classroom study (Aleven et al., 
 2010 ; Roll et al.,  2011  ) , we found that feedback 
on help seeking, in the context of tutored problem 
solving, led to a lasting improvement in students’ 
help-seeking behavior. Students who had received 
feedback from the help-seeking tutor agent used 
help more deliberately even after the  intervention. 
When they used help, they spent more time per 
hint level accessed and progressed less deeply 
into each hint sequence (i.e., accessed fewer lev-
els). These  fi ndings suggest that they got more 
out of the hint levels that they did access, due to 
more deliberate processing. The greater reliance 
on earlier hint levels that was found would seem 

   5   The work relates to recent work on integrating metacog-
nitive tutoring into hypermedia environments (Azevedo 
et al.,  2011 ; Azevedo et al.,  2013  )  or environments with 
teachable agents (Leelawong & Biswas,  2008  ) .  
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to be bene fi cial to students especially given that 
the earlier hints are more conceptual (i.e., discuss 
which problem-solving principle applies and 
how). Unfortunately, the hypothesis that students’ 
domain-level learning (as measured by learning 
gains from pretest to posttest) would improve as 
a result of improved help seeking was not 
con fi rmed. One way of interpreting these results 
is that even with more deliberate help requests 
and more deliberate processing of help messages, 
the sense-making processes needed for learning 
from principle-based explanations (discussed in 
detail in the section on the KLI framework) 
remain challenging for students. A more com-
plete help-seeking tutor may need to support 
these processes more explicitly, or ideally, help 
students learn to support them for themselves. It 
is possible also that the pretest and posttest used 
were not sensitive enough to measure improve-
ment in students’ conceptual knowledge, due to 
help seeking.  

   Discussion 

 Although the production rule model of help seek-
ing is far from a comprehensive model of self- 
regulation during tutored problem solving, it does 
relate help seeking and learning from principle-
based help messages to other learning strategies 
(problem solving) and metacognitive processes 
(self-assessment processes, deliberate work hab-
its). A further advance is that it articulates speci fi c 
conditions under which seeking help is deemed 
the better choice, compared to an alternative strat-
egy choice, namely, to persist in problem-solving 
attempts. Detailing conditions of strategy choice is 
a key challenge for SRL theories and is of critical 
importance for furthering the research agenda that 
views SRL as a process (or event). (This research 
agenda has in recent years been embraced by a 
considerable number of SRL researchers.) 
Normative models that specify when strategies are 
appropriate make it possible to distinguish effects 
of effective and ineffective use of strategies. They 
also make it possible to do intervention studies that 
test causal relations between SRL strategies and 
learning, as illustrated above. The model of help 

seeking is not without limitations. As mentioned, 
it is not as comprehensive as other models of self-
regulated learning. For instance, it does not cap-
ture any in fl uence of aspects of student motivation, 
nor does it capture all phases of self-regulation or 
all strategies that students are likely to bring to 
bear in the context of tutored problem solving. An 
interesting research agenda is to expand this model 
with additional aspects of self-regulation (e.g., 
planning, reviewing the problem statement, spon-
taneous self-explanation without being prompted 
by the software, spontaneous, unprompted end-of-
problem re fl ection, whether to be on-task or 
engage in off-task behavior). Each of these choices 
may in fl uence student learning, at minimum for 
certain subsets of students. 

 We believe the model of help seeking repre-
sents a step towards theoretical integration. As 
argued above, it brings together both cognitive 
and metacognitive aspects in a more detailed and 
speci fi c way than SRL theories typically do. By 
capturing both cognitive and metacognitive strat-
egies in a shared format, namely, IF-THEN rules, 
it highlights a fundamental similarity between 
cognition and metacognition. In the parlance of 
the KLI theoretical framework (Koedinger et al., 
 2012  ) , the model’s production rules are examples 
of  metacognitive knowledge components . Under 
KLI, a complex cognitive skill is assumed to be 
made up of small, interrelated knowledge com-
ponents, expressed in IF-THEN format, similar 
to production rules in ACT-R. An essential dis-
tinction between cognitive and metacognitive 
knowledge components may be that metacogni-
tive knowledge components have, in their IF-part, 
conditions that involve the learner’s assessment 
of their own knowledge or skills relative to the 
task at hand. As a speci fi c type of knowledge 
components, metacognitive knowledge compo-
nents should be subject to the same constraints as 
knowledge components more generally, such as 
constraints on their acquisition. Fundamentally, 
all metacognition is  also  cognition. A shared 
modeling formalism helps highlight properties 
and constraints that are shared, and will facilitate 
further empirical work, for example, on the acqui-
sition of metacognitive skill, a topic not addressed 
in the current chapter. 
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 Much is left to be done. Greater theoretical 
integration looms as an interesting grand chal-
lenge for researchers working in the intersection 
of cognitive theories, self-regulated learning, and 
computer-based learning environments.      
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  Abstract 

 The AnimalWatch tutoring system provides students with instruction in 
algebra readiness problem solving, including basic computation, fractions, 
variables and expressions, basic statistics and simple geometry. Students 
solve word problems that include authentic environmental science con-
tent, and can access a range of multimedia resources that provide instruc-
tional scaffolding, such as video lessons and worked examples.  Because 
providing learners with choices is associated with enhanced motivation, 
AnimalWatch is designed to allow students to decide what science topic 
they would like to learn about, and when they would like to navigate 
between different modules in the system.  Several evaluation studies in 
classroom settings have found positive effects of AnimalWatch on study-
speci fi c measures of problem solving.  Bene fi ts have been strongest for 
students who are struggling in math, suggesting that technology-based 
learning can be especially effective for this population.    
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 AnimalWatch is an intelligent tutoring system 
(ITS) that provides middle school students with 
adaptive instruction in math word problem solv-
ing. The ability to solve word problems is consid-
ered to be a critically important component of 
mathematics pro fi ciency (Kintsch & Greeno, 
 1985 ; National Council of Teachers of Mathematics, 
 2000  ) . Solving such problems goes beyond the 
direct application of a procedure to a set of pro-
vided numbers; rather, to solve a word problem, 

students must  fi nd and relate the  relevant informa-
tion while overlooking other  information, and 
identify what the problem is actually asking 
(Koedinger & Nathan,  2004  ) . In general, word 
problems are thought to be more challenging than 
de- contextualized problems, due to the need to 
“translate” the story information into a numerical 
representation (LeBlanc & Weber-Russell,  1996 ; 
Nathan & Koedinger,  2000  ) .  AnimalWatch 
addresses the need for instructional resources that 
target word problem solving through interactive 
online resources that provide students with guid-
ance about the appropriate solution strategies. 

 The word problems in the AnimalWatch ITS 
have a unique focus on environmental science. 
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The problems involve authentic science content 
and numerical information about various endan-
gered species, including the Snow Leopard, the 
North Atlantic Right Whale, the Mongolian Takhi 
Wild Horse, the Giant Panda, and others. The 
unit about a particular species might include 
problems about its characteristics, habitat, cur-
rent threats due to environmental issues (e.g., 
habitat loss) and history. Much of the science 
content in the word problems comes from part-
nerships with science education organizations 
and research units such as the San Diego Zoo 
Conservation Research Center, the New England 
Aquarium, and others (Beal & Arroyo,  2002  ) . 

 Each word problem in the AnimalWatch ITS 
includes a graphic, such as an image of the 
endangered species or its habitat. In addition, 
each word problem includes a set of help 
resources designed to assist the student with the 
math  operation required for the problem. There 
are several types of help resources, including 
worked examples showing the steps involved in 
a similar problem (e.g., same operation but with 
slightly different numbers), interactive examples 
(e.g., the student enters numbers and is guided 
through the solution), virtual manipulatives (e.g., 
the student divides a bar into sections as part of 
a fractions problem), and video lessons (e.g., 
short video clip of a teacher working through a 
problem at a whiteboard with narration). All of 
the word problems include at least one help 
resource, and most of the problems include mul-
tiple resources. 

 The AnimalWatch word problems involve 
algebra readiness math topics that are aligned 
with the California Mathematics Content 
Standards for Grade 6, including the following:

   Number sense: basic computation operations, • 
and fraction problems with like and unlike 
denominators.  
  Algebra and Functions: Students learn to solve • 
one variable equations, as well as problems 
involving unit conversion, interest calcula-
tions, and rates.  
  Statistics and Probability: Students learn about • 
measures of average (mean, median, mode).  
  Geometry and Measurement: Students learn • 
about geometric shapes,  fi gures, and angles.    

 Although the primary target user group is Grade 
6 students, AnimalWatch has also been used by 
older students who need to review this algebra 
readiness material. As one discouraged high school 
math teacher commented when she asked if her 
failing Grade 9 students could use AnimalWatch 
to review basic math facts, “If you can’t do divi-
sion, you aren’t going to pass Algebra 1.” 

 AnimalWatch was initially developed as a stand-
alone application that had to be installed on stu-
dents’ computers. As powerful Web technologies 
emerged that could support interactive instruction, 
AnimalWatch was subsequently re-implemented as 
a Web-based system. Students now log in to the 
AnimalWatch application from the project Web site 
(  http://www.animalwatch.org    ). As they solve the 
AnimalWatch math  problems, their actions are 
automatically recorded by the server computer run-
ning the AnimalWatch software. The data sets 
include records of students’ solutions to the word 
problems, including the number of incorrect answer 
attempts per problem, latencies, and whether stu-
dents viewed any of the multimedia resources on 
each problem, such as videos and worked examples. 
These data can be extracted for analysis of students’ 
performance and estimates of their learning strate-
gies (Cohen & Beal,  2009  ) . 

   Theoretical Framework    

 The design of the AnimalWatch ITS re fl ects the 
theoretical framework that has guided most 
intelligent tutoring systems, that is, that students 
will learn best when provided with moderately 
challenging problems that are accompanied by 
“scaffolding” meaning hints, worked examples, 
and integrated instruction that will help the 
student  fi nd the solution (Brown, Ellery, & 
Campione,  1998 ; Murray & Arroyo,  2002 ; 
Woolf,  2009  ) . Intelligent tutoring systems 
are designed with the goal of matching the 
instruction provided by human tutors, generally 
considered to be the “gold standard” for instruc-
tional effectiveness (Bloom,  1984  ) . Studies of 
experienced human math tutors reveal that they 
use a range of strategies to support students’ 
learning while sustaining motivation (Lepper, 

http://www.animalwatch.org
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Woolverton, Mumme, & Gurtner,  1993  ) . Tutors 
often alternate between choosing problems that 
the student can solve with some guidance, and 
selecting problems that the student can solve 
easily on his or her own. The balance of chal-
lenge and success is especially encouraging for 
students with low math self-ef fi cacy (Beal, Qu, 
& Lee,  2008  ) . 

 The instructional behavior of the AnimalWatch 
ITS is determined by the interaction between the 
pedagogical model and the student model (Beck, 
Woolf, & Beal,  2000  ) . The pedagogical model 
includes the curriculum of math topics included 
in the ITS, along with a network linking the top-
ics in prerequisite relationships. For example, 
students will work on basic arithmetic topics 
before moving on to fractions; within fractions, 
students will work on operations with like 
denominators before operations with unlike 
denominator fractions. Each word problem in the 
AnimalWatch database is indexed by math topic 
and dif fi culty within the topic (e.g., problems 
involving single digits are assumed to be easier 
than those involving multiple digits). 

 In addition to the pedagogical model, 
AnimalWatch maintains a model of the student’s 
estimated pro fi ciency with the target math topics 
(Beck et al.,  2000  ) . The pro fi ciency estimate is 
continually revised as the student works on prob-
lems involving that topic. The pedagogical model 
utilizes an adaptive problem selector to search 
through the database of word problems to select 
an appropriate problem for presentation to the 
student. If the student makes several errors on a 
problem, the problem selector will attempt to 
locate another similar problem. For example, if 
the student makes errors on two word problems 
involving multi-digit division, the pro fi ciency 
estimate will be relatively low, but if the student 
solves the next two division problems correctly, 
the pro fi ciency estimate will be increased. As the 
student demonstrates success with problems 
involving one topic, the pedagogical model will 
move on to the next topic in the math curriculum. 
The problem selector will also periodically 
choose a problem involving an easier skill, to 
verify that the student has retained mastery of 
those earlier skills. 

   Learner Choice 

 The self-regulation theoretical framework holds 
that learners need to identify good strategies and 
to  fi gure out how to allocate their time and atten-
tion to accomplish their goals (Azevedo & 
Cromley,  2004 ; Boekaerts & Corno,  2005 ; 
Zimmerman,  1990 ; Zimmerman & Schunk, 
 2011  ) . This view is supported by research 
 indicating that learners’ motivation in technol-
ogy-based learning environments is enhanced 
by opportunities to make choices (Cordova & 
Lepper,  1996  ) . However, students in classroom 
situations typically have very little choice about 
what to learn about or how to go about learning 
the information. Similarly, traditional tutoring 
systems do not provide students with many 
opportunities to choose what they want to learn 
and how to proceed. For example, in 
AnimalWatch, the problem selector chooses the 
sequence of problems that the student will see; 
he or she does not get to decide on the problems 
that he or she would like to solve. Therefore, as 
AnimalWatch was being designed, we explicitly 
searched for ways to balance the directive 
aspects of the pedagogical model with opportu-
nities for students to make decisions about their 
own learning. This approach led to the inclusion 
of several features. 

   Options for Choosing Content 

 One student choice offered in AnimalWatch 
involves the science content that the student 
would like to learn about. More speci fi cally, stu-
dents are provided with a choice of several endan-
gered species themes, with sets of word problems 
organized into “adventures” or virtual narratives. 
Students can start with the Giant Panda and then 
move to problems about the Takhi Wild Horse 
whenever they want, or choose the White Shark 
and then switch to the California Condor unit. 
When students move from one endangered spe-
cies topic to another, the student model maintains 
its estimate of their pro fi ciency and their current 
point in the curriculum, and selects similar prob-
lems about the new species. 

 One challenge faced in the project was how 
to ensure that all students make similar progress 
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through the narrative when they do not all make 
equivalent progress through the math curricu-
lum. When students choose a particular endan-
gered species, they work through several 
(usually four) distinct modules with problems 
that form a coherent story line. For example, the 
student who selects the Takhi Wild Horse  fi rst 
completes a level with problems about the wild 
horse, its evolutionary history, and how it differs 
from domestic horses. Then, the student moves 
on to a level with content about Mongolia and 
its deserts, representing the native habitat of the 
wild horse. We adopted the structured narrative 
format early in the system’s design, because 
 students indicated that facing a seemingly 
unending sequence of math problems was daunt-
ing, and that they needed some indication that 
they were making progress as the result of their 
problem solving. 

 The interface was updated to show the levels 
available for each endangered species adventure, 
with those currently available in full color 
whereas those that the student had not yet 
achieved shown in a faded mode. This is quite 
similar to the concept of levels in a computer 
game design. However, in a game design, the stu-
dent would have to achieve some criterion level 
of performance in math to “unlock” the subse-
quent level. The challenge is that students vary in 
math pro fi ciency and it is not necessarily possible 
to ensure that everyone can achieve the required 
criterion within a classroom context. We cannot 
assume that a student user can simply try again to 
perform to criterion within a level; there may not 
be more time available (e.g., if the class has one 
session in the computer lab that week). At the 
same time, we want students to feel successful—
if they do not succeed in a context where many of 
their peers are doing well, motivation is likely to 
decline. This is particularly important for special 
education students—perhaps a student works 
more slowly than his or her classmates and would 
not be expected to complete as many problems in 
a class period. Even so, the student should still 
have a feeling of success through having a fair 
opportunity to “pass” a level. This philosophy is 
directly linked to the theoretical framework of 
ITS research—students should be challenged but 

also be able to succeed—with “success” being 
de fi ned for the individual. 

 The initial solution adopted in the AnimalWatch 
project was to ensure that all the ITS topics were 
available for all levels. Thus, a student who 
wanted to work on the Giant Panda adventure 
could make progress through four segments of 
the adventure narrative even if the problem selec-
tor estimated that the student still needed to work 
on computation. Other students could make prog-
ress through the Panda adventure while working 
on fractions and other more challenging material. 
It required a signi fi cant development effort to 
generate suf fi cient content for all endangered 
species and all math topics but the investment in 
content development was determined to be war-
ranted based on the theoretical principle that 
students needed to be challenged but also to 
experience success and a sense of progress. 

 Upon re fl ection, the strategy made sense from 
the pedagogical perspective but presented con-
siderable challenges from the development point 
of view. More speci fi cally, considerable content 
was created but not all of it was utilized—a chal-
lenge faced by other leveled application such as 
computer games, where much of the cost goes to 
creating levels that relatively few players access 
(Beal & Beck,  2002  ) . In addition, a post-hoc 
analysis indicated that there were unintended 
effects on the pedagogical behavior of the prob-
lem selector, which was set to move on to the 
next level of dif fi culty or the next curriculum 
topic at the point where no quali fi ed problems 
could be located (Arroyo, Murray, Beck, Woolf, 
& Beal,  2003  ) . For example, if the student made 
errors on three double-digit multiplication prob-
lems about the Right Whale in sequence and then 
solved the next one correctly without errors, one 
would ideally want to present another similar 
problem to check that the student really under-
stood the solution procedure. However, when no 
such problem was available, the problem selector 
would fall back on easier problems. In effect, the 
problem selective was constrained by the inabil-
ity to  fi nd enough qualifying problems to sustain 
the pedagogical strategy, even though 
AnimalWatch had over 800 word problems avail-
able. The lesson learned was that content was the 
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bottleneck when it came to providing students 
with choice, which was important in the self- 
regulation framework, and also a sense of prog-
ress, which was important to sustain their 
engagement.  

   Problem Solving Options 

 In addition to providing students with a choice of 
science content, AnimalWatch was also designed 
so that students would have choices about their 
strategies for approaching a problem. In the word 
problem solving modules, the student has several 
options when he or she is working on a problem. 
One option is to try to answer the problem. In the 
current design, the student has up to three tries to 
solve each problem. In early studies with proto-
type versions of AnimalWatch, data indicated 
that students could self-correct about 40% of 
their own errors, suggesting that many errors 
re fl ected minor computation problems or misun-
derstanding of what the problem was asking 
(Arroyo et al.,  2003  ) . Allowing students the 
opportunity to review and diagnose where they 
might have gone wrong on their own was deter-
mined to be more consistent with self-regulation 
theories than forcing them to follow a prescribed 
solution path. 

 AnimalWatch is also designed to provide 
students with some form of scaffolding to 
help them solve the problem, without provid-
ing the solution directly. When the student 
enters an incorrect answer, he or she receives 
feedback in the form of a simple text message. 
A second incorrect answer elicits a different 
feedback message. About two-thirds of the 
feedbacks are speci fi c to the problem, for 
example, “Convert both fractions so that they 
have a common denominator,” followed by 
“Did you express both fractions with a denom-
inator of 12?” Other feedback messages are 
more generic, including suggesting that the 
student view one of the help resources (e.g., 
watch the video about how to  fi nd a common 
denominator), read the problem again or ask 
the teacher for help. 

 Notice that AnimalWatch is designed to allow 
the student to decide when to utilize the help 
resources; the system does not force the student 

into the help area. This is in contrast to the “model 
tracing” design in ITS research in which the stu-
dent is explicitly guided to perform the steps 
required to solve the problem in the appropriate 
sequence. Model tracing has many advantages in 
terms of ensuring that the student learns the solu-
tion path and providing diagnostic information 
about possible misconceptions. However, model 
tracing can be overly prescriptive; students may 
not have the opportunity to re fl ect on where they 
went wrong and to correct their own errors. 
Therefore, AnimalWatch allows students to 
decide whether or not to activate the help 
resources; they are not required to do so. Students 
are also offered a choice about different formats, 
including worked examples that are much like 
PowerPoint presentations, interactive widgets 
that illustrate a speci fi c concept or procedure, and 
brief video lessons. 

 Students also have the option to indicate that a 
particular word problem is too hard for him or 
her at that point. When the student clicks the “too 
hard” icon, he or she is asked to con fi rm the 
choice, and has the option to return to the prob-
lem at that point or to move on to the next prob-
lem. Students who are skilled self-regulated 
learners continually assess how well they are 
doing and make choices about the most effective 
use of their study time. If a particular problem is 
simply too hard or confusing, even with the 
resources available, it makes strategic sense to 
move on to another problem. Interestingly, 
although “help abuse” (behaviors in which the 
student deliberately walks through the help 
resources to  fi nd the correct answer) can be a 
concern with traditional model-tracing tutors, 
abuse of the “too hard” option has been relatively 
rare in AnimalWatch.   

   Alternate Activities 

 To provide students with additional opportunities 
to direct their own learning, we added multiple 
modules to AnimalWatch, and allowed students to 
decide how to allocate their time between different 
modules. Thus, in addition to the core word prob-
lem solving modules about endangered species, 
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AnimalWatch now includes “SkillBuilder” units 
that are designed to build pro fi ciency with basic 
math facts. The SkillBuilders are based on research 
by Royer and his colleagues who found a relation 
between students’ knowledge of basic math facts 
and their performance on tests of math problem 
solving (Royer, Tronsky, Chan, Jackson, & 
Merchant  1999  ) . If the student’s limited cognitive 
resources are absorbed by the need to  perform 
minor computations then the student will have less 
cognitive capacity to form the appropriate prob-
lem representation, identify the necessary opera-
tion, and track progress to the solution. Royer and 
colleagues have shown that when students practice 
basic math facts their performance on test-type 
math problems improves (Arroyo, Woolf, Royer, 
Tai, & English,  2010 ; Royer et al.,  1999  ) . 

 Based on this research, the SkillBuilders in 
the AnimalWatch ITS include ten true–false 
trials involving simple math facts in which the 
 student’s goal is to respond as accurately and 
as quickly as possible. For example, one 
SkillBuilder presents the student with trials in 
which he or she must determine if a fraction 
and a percent are equivalent, such as 
“1/4 = 25%” (true) or “1/2 = 75%” (false). 
Dif fi culty is intentionally set to be relatively 
low so that students can do well with practice, 
which encourages repetition and builds  fl uency 
with the target facts and operations. 

 Each word problem solving module in 
AnimalWatch now includes one or more 
SkillBuilders that target math facts and vocabu-
lary items that will support the math topics in the 
module. Many students appear to enjoy the fast 
pace as an alternative to the more demanding 
word problem modules. Students also appear 
motivated by the fact that with practice they can 
achieve high scores on a SkillBuilder. We have 
even observed students pair up and start the same 
SkillBuilder together in a competition to see who 
can get the fastest time and a perfect score. Of 
course, providing students with choices about 
where to allocate their studying time leaves open 
the possibility that students may not make good 
decisions. In some cases, students spend most of 
their time on SkillBuilders and will attempt to 
avoid the word problem module unless their 

teacher directs them to work on word problems. 
We are currently investigating the relation 
between student characteristics, such as gender, 
prior math achievement, mathematics motivation, 
and status as an English Learner or English 
Primary student, and the proportion of time that 
the student spends in the SkilllBuilders relative to 
the core word problem solving modules.   

   Summary of Empirical Findings 

 The AnimalWatch ITS has gone through several 
“waves” of evaluations. In the early days of the 
project, the primary focus was on supporting stu-
dents’ feelings of self-ef fi cacy as they solved 
challenging math problems. The hypothesis was 
that when students receive instruction that blends 
challenge with scaffolding to ensure problem 
solving success, their con fi dence should be 
 sustained. We evaluated the impact of 
AnimalWatch on students’ self-concept in math-
ematics, as indicated by self-report survey 
responses, yielding positive results (Arroyo et al., 
 2003 ; Beck, Arroyo, Woolf, & Beal,  1999  ) . 

 In subsequent work, the initial evaluation was 
extended include a consideration of how stu-
dents’ math problem solving evolved as they 
worked with AnimalWatch. More speci fi cally, 
we compared students’ error rates for word prob-
lems presented early in a problem sequence (e.g., 
a series of  fi ve multi-digit division problems) 
with error rates on subsequent problems in the 
sequence. Results indicated that students were 
less likely to make errors on problems presented 
later in the sequence, suggesting that students 
were learning from the ITS (Arroyo,  2003 ; 
Arroyo et al.,  2003  ) . 

 As the AnimalWatch ITS was expanded to 
include a broader range of math topics and addi-
tional help resources, the focus of the research 
effort shifted more towards evaluation of its 
impact on students’ math pro fi ciency using pre–
post test designs with comparison groups. In one 
study, the impact of AnimalWatch was compared 
to the impact of working with a human math tutor 
in a small group setting (Beal, Shaw, & Birch, 
 2007  ) . The participants attended a 6 week aca-
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demic summer program in which they spent 2 h 
per week on literacy activities, and 2 h per week 
on math. One group of participants was assigned 
to work for 1 h per week with AnimalWatch and 
the additional hour with a math tutor. The second 
group worked for 2 h per week with a math tutor. 
The summer program math tutors were experi-
enced math teachers who worked with groups of 
4–6 students. Students completed a pre test of 
math problem solving at the start of the program, 
and a post test at the program’s conclusion. There 
was no difference in performance between the 
two groups at the beginning; both groups showed 
signi fi cant improvement by the end of the pro-
gram. This result indicates that students who 
worked with AnimalWatch for half of their 
instructional time showed as much improvement 
as those who received all their math instruction 
from a human tutor. 

 Results in another study demonstrated that 
students who had more sessions with AnimalWatch 
improved more than those with less access to the 
software (Beal, Adams, & Cohen,  2010  ) . 
Although the original intention was to have all 
the study participants complete at least six ses-
sions with the ITS, the realities of research in 
urban schools impeded the original design. The 
research schedule was frequently interrupted by 
unexpected teacher transfers, technical issues 
(e.g., laptop carts not charged overnight as 
planned), and classroom lockdowns due to police 
activity. In addition, there was a high level of stu-
dent turnover, with absences, transfers and new 
enrollments occurring on a daily basis. In effect, 
the design evolved in a comparison of students 
who had the chance to work with the ITS for 
more versus fewer sessions. 

 Results indicated that although there was 
overall improvement from pre to post-test, the 
improvement was stronger for students who had 
multiple sessions with AnimalWatch. Although 
not particularly surprising, this  fi nding provided 
some support for the interpretation that students’ 
improved performance from pre to post test was 
not due to the novelty of learning math with a 
computer. Additionally, improvement was greater 
for students whose pre test scores were relatively 
low and these students were most likely to use the 

multimedia help resources that are integrated into 
AnimalWatch. Thus, this study linked pre to post 
test change with opportunity to use the ITS, and 
with students’ actual use of the help resources in 
the system. 

 In another study, we compared pre to post 
test change for students who worked with 
AnimalWatch for three class sessions, and 
those who continued with class instruction 
(   Beal, Arroyo, Cohen, & Woolf  2010  ) . The 
results showed no overall improvement for 
either comparison group students or 
AnimalWatch users, perhaps due to the rela-
tively limited number of sessions with the ITS. 
However, an exploratory analysis focusing on 
scores for low achieving students in the 
AnimalWatch group showed that they did 
improve from pre to post test, whereas low 
achieving comparison group students did not 
improve. In addition, we found a signi fi cant 
 relation between using the multimedia help 
resources in AnimalWatch and signi fi cant 
improvement from pre to post test. After the 
post test had been administered, the students in 
the control group had the opportunity to use 
the ITS. The results indicated that the original 
control group students who had performed 
poorly on the pre test were most likely to use 
the help resources in the ITS. 

 Additional research has focused on the impact 
of AnimalWatch on math problem solving for 
students with different levels of pro fi ciency with 
English. The student population in the USA is 
increasingly diverse, but the language of instruc-
tion in all states is English (August & Shanahan, 
 2006  ) . Because AnimalWatch focuses directly on 
word problem solving, it is reasonable to predict 
that students’ pro fi ciency with English might 
affect their ability to comprehend a math word 
problem, identify the appropriate math operation, 
and evaluate whether the answer makes sense in 
the context of the problem. Interestingly, the 
research base on the potential impact of reading 
pro fi ciency on math word problem solving is sur-
prisingly limited. Some studies indicate that 
English Learners perform worse than English 
Primary students on math test items that involve 
unfamiliar vocabulary (Martiniello,  2008  ) . 
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However, other studies show no real bene fi ts 
from accommodations such as simpli fi ed English 
or extra time on tests, which presumably would 
help if the student needed more time to read the 
English text (for a review see ref. Kieffer, Lesaux, 
Rivera, & Francis,  2009  ) . 

 In one study of English Learners and English 
Primary students who worked with AnimalWatch, 
results showed that the English Learners per-
formed less well on the pre test and post test, but 
that both groups showed signi fi cant improvement 
after working with the ITS (Beal, Adams, & 
Cohen,  2010  ) . Data regarding the English 
Learners’ pro fi ciency with English was obtained, 
including measures of listening comprehension, 
conversational pro fi ciency, and reading 
pro fi ciency. Only reading pro fi ciency was related 
to math problem solving in AnimalWatch. 

 In a subsequent analysis, we investigated 
students’ problem solving on math problems 
varying in the readability of the English text. 
AnimalWatch problems involve a good deal of 
scienti fi c content, and may also contain unusual 
vocabulary related to the environmental science 
content and themes of the virtual adventures, 
which might presumably impede the problem 
solving of English Learners. The word problems 
were processed by the REAP algorithm devel-
oped by the Language Technologies Institute at 
Carnegie Mellon University, which assigns a 
grade level readability metric for each problem. 
REAP considers both vocabulary frequency and 
grammatical structure and has been validated 
with relatively short texts (such as math word 
problems), in contrast to other algorithms for 
assessing text readability (Heilman, Collins-
Thompson, Callan, & Eskenazi  2007  ) . 

 After obtaining a readability metric for each 
word problem, we then searched through the 
AnimalWatch student record database to locate 
records for word problems that had been solved 
by at least 20 English Learners and 20 English 
Primary students. These records consisted of 
time-stamped  fl at  fi les representing the sequence 
of actions on each problem (e.g., problem is pre-
sented, student enters answer after some latency, 
answer is evaluated as correct or incorrect, stu-
dent clicks “help” icon, answer is entered, answer 

is evaluated as correct, student clicks “next prob-
lem” icon, etc.). The primary metrics of problem 
solving for the present analyses were the total 
time on each problem (number of seconds), the 
number of incorrect answer attempts on the prob-
lem, if the correct answer was ever entered, and 
whether the multimedia hints were accessed dur-
ing the problem. 

 Initial comparisons indicated that the English 
Primary students performed better overall than 
the English Learners, who took longer on each 
problem, made more incorrect answer attempts 
on the problems, and were less likely to enter the 
correct answer than English Primary students 
(Cirett & Beal,  2010  ) . One might assume that 
students who had trouble reading the word prob-
lem text would simply give up but if anything, 
several aspects of the data suggested that the 
English Learners tried harder. For one thing, 
the English Learners were more likely than the 
English Primary students to activate the multimedia 
help resources, which included video lessons that 
might have been especially accessible. In addi-
tion, an estimate of “gaming” behavior (e.g., the 
student rapidly enters wrong answers until the 
correct answer is shown) indicated that although 
gaming levels were low overall, this behavior 
was more likely to be observed for English 
Primary students. Finally, analyses now being 
conducted appear to suggest that the English 
Learners allocate more of their instructional time 
to the SkillBuilders than is the case for the English 
Primary students, who do not have the same chal-
lenges in reading the problems in the word prob-
lem module. From the perspective of self-regulated 
learning theory, the English Learners appeared to 
be behaving quite strategically given the con-
straints presented by the dif fi culty that they expe-
rience with reading the word problems.  

   Current Challenges 

   Ef fi cacy 

 One challenge is to learn if AnimalWatch instruc-
tion can help students improve standardized math 
test scores. Although results with study-speci fi c 
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tests have been encouraging, transfer to test 
 performance is often quite dif fi cult to demon-
strate, and the qualities that make AnimalWatch 
appealing to students, such as the contextualized 
problems, availability of learner choice and nar-
rative organization of problem sequences, may 
actually undermine transfer to more traditional 
math problems. An ef fi cacy evaluation of 
AnimalWatch is now being conducted by an 
independent research institute.  

   Personalized Feedback 

 A second challenge is to establish the optimal level 
of customized and individualized feedback pro-
vided to students about their problem solving per-
formance while also preserving students’ sense of 
autonomy and agency while using AnimalWatch. 
In research with another math tutoring system for 
geometry (Wayang Outpost), we found that stu-
dents found that individualized messages about 
their performance were believable and accurate 
(e.g., diagnosing guessing behavior) but at the 
same time, students expressed dislike for the 
notion that the computer was “tracking” and ana-
lyzing their behavior (Beal & Lee,  2005  ) . Also, 
increasing the level of customized feedback pro-
vided when students enter the wrong answer would 
require diagnosing the errors, which currently is 
not done by AnimalWatch (i.e., the ITS recognizes 
that the answer is not correct but does not relate the 
error to possible misconceptions). We are now 
investigating how students can be provided with 
increased individualized feedback in AnimalWatch 
while still allowing them to feel that they have 
control over their own learning while using the 
ITS. One option is to allow teachers to enter prob-
lem speci fi c suggestions for individual students, 
based on teachers’ knowledge of the types of errors 
that the student is likely to make.  

   Accessibility 

 A third challenge is to ensure that the 
AnimalWatch tutoring system is fully accessi-
ble to all students, including those with special 

needs. In particular, the AnimalWatch interface 
relies on graphical icons for navigation, and is 
not accessible to students with visual impair-
ments. With the growth of interest in Universal 
Design for Learning, it is becoming increas-
ingly important to provide students with alter-
nate ways to access instruction in 
technology-based learning systems (CAST, 
 2007  ) . In the AnimalWatch project, we have 
investigated the potential of text-to-speech 
 technology to make the word problems and 
instruction available to students who are educa-
tionally blind, meaning that they have no usable 
vision. The “AnimalWatch-VI” prototype for 
blind students includes word problems in audio 
format. The audio problems are generated with 
text-to-speech software and stored in the 
AnimalWatch database. The student accesses 
and navigates the system using simple keyboard 
commands (e.g., “Press p to listen to the prob-
lem”) learned in a brief tutorial. 

 We conducted one  fi eld study with 14 blind 
students in California who solved up to 32 word 
problems in the AnimalWatch-VI prototype (Beal 
& Shaw,  2009  ) . The results indicated that the 
blind students could use the system successfully. 
However, relative to typically sighted students 
who had solved the same word problems, the 
blind students made more incorrect answer 
attempts per problem and had to listen to the 
problems multiple times because the prototype 
did not include any scaffolding to help students 
solve the problem. Therefore, in a subsequent 
version of the prototype, we added two audio 
hints for each word problem. The  fi rst hint indi-
cated the math operation needed for the problem 
(e.g., “This is a division problem”) and the sec-
ond hint provided more speci fi c guidance about 
what to do (e.g., “Divide 54 by 9”). A second 
 fi eld test with 12 blind students in Arizona indi-
cated that the availability of hints reduced the 
number of times that students had to listen to the 
problem. There was also a relation between stu-
dents’ math pro fi ciency (based on reports pro-
vided by their teacher of students with visual 
impairments) and their use of hints, with students 
who were struggling in math being most likely to 
listen to the hints during problem solving. 
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 Although blind students’ reactions to the 
AnimalWatch-VI program were not formally 
assessed in the  fi eld studies, their spontaneous 
remarks and comments were highly enthusiastic. 
In particular, students indicated that they appreci-
ated the fact that they could control their interac-
tion with the software without having to rely on 
their TVI. Giving blind students responsibility 
for their own learning is consistent with the prin-
ciples of self-determination, which have been 
identi fi ed as important for students with visual 
impairments. Although there has not yet been an 
explicit connection between self-determination 
principles and theories of self-regulated learning, 
it is not a major leap to suggest that designing 
software that can allow students with disabilities 
the opportunity to work independently would be 
consistent with the vision of the self-regulated 
learner as one who sets his or her own goals, 
chooses learning strategies, and monitors his or 
her own progress. The AnimalWatch-VI system 
is still quite limited; in particular, it does not yet 
provide any support for students with low vision 
(who make up 90% of students with visual 
impairments). However, the project illustrates the 
challenges and the potential rewards of ensuring 
that technology-based systems are fully accessi-
ble to students who need alternate forms of access 
to instruction.   

   Conclusions 

 The AnimalWatch project has been in progress 
for more than a decade, and its design has evolved 
considerably during that time. The changes have 
resulted from the emergence of new technolo-
gies, including opportunities to include multime-
dia and other interactive materials, as well as 
technologies for capturing and analyzing stu-
dents’ problem solving data in real time. In addi-
tion, the design of AnimalWatch has been 
adjusted over the years in response to evaluations 
conducted in authentic classroom contexts in 
which students have used the ITS as part of their 
math instruction. Although moving from the 
research lab into the classroom is not without 
challenges, the feedback provided by students 

and the opportunity to observe how students 
interact with instructional technology is invalu-
able for shaping ITS design. More speci fi cally, 
AnimalWatch began as a fairly traditional intel-
ligent tutoring system with a problem selector 
that directed what the student should learn and 
determined the instructional sequence. In its cur-
rent form, the AnimalWatch system re fl ects a 
design philosophy that allows students to make 
decisions about what they want to work on and 
the strategies that they want to adopt. The evolu-
tion of the system re fl ects research from the 
framework of self-regulated learning and the 
vision of the self-regulated learner as one that 
sets his or her own goals, chooses appropriate 
strategies, and evaluates his or her own progress. 
Consistent with this framework, there are indica-
tions in some of our research that technology-
based learning environments may actually be 
most helpful for students who are not doing well 
in the traditional classroom: Students who start 
out doing poorly or who face additional chal-
lenges related to English pro fi ciency or visual 
impairments tend to show signi fi cant improve-
ment after working with the ITS. In the context of 
educational research, this is an unusual  fi nding; 
most often, educational interventions have the 
greatest bene fi t for those students who were 
doing well to begin with (Ceci & Papierno,  2005  ) . 
Technology-based environments may be espe-
cially effective in helping struggling students 
make the connection between their learning 
behaviors and their performance outcomes, and 
demonstrating to them that they can succeed by 
using appropriate strategies, such as using the 
help resources that are readily available in the 
ITS to master new skills.      
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  Abstract 

 Maintaining a model of the learner’s understanding as they interact with 
an e-learning environment allows adaptation to the learner’s educational 
needs. An Open Learner Model makes this machine’s representation of 
the learner available to them. Typically, the state of the learner’s knowl-
edge is presented in some form, ranging from a simple overall mastery 
score, to a detailed display of how much and what the learner appears to 
know, their misconceptions and their progress through a course.  This 
means that an Open Learner Model provides a suitable interface onto the 
learner model for use by the learner, and in some cases for others who 
support their learning, including peers, parents and teachers. This chapter 
considers some of the similarities between the goals of supporting and 
encouraging metacognition in intelligent tutoring systems and learning in 
general, and the bene fi ts of opening the learner model to the user. We 
provide examples of two important classes of open learner models: those 
within a particular teaching system and those that are  fi rst-class citizens 
with value independently of a teaching system. The chapter provides a 
foundation for understanding the range of ways that Open Learner Models 
have already been used to support learning as well as directions yet to be 
explored, with reference to encouraging metacognitive activity and self-
directed learning.     
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    Introduction 

 The type of learning technology addressed in this 
chapter is adaptive learning environments, or 
intelligent tutoring systems (ITS). This technol-
ogy typically has three main components: a 
model of the domain or subject of study (e.g. a 
model of topics, concepts and interrelationships 
between concepts); a learner model, capturing 
the individual user’s understanding of the domain, 
as inferred during their interaction (e.g. from 
navigation choices, answers to questions, prob-
lem-solving attempts, time on task); and a peda-
gogical model to allow personalisation of the 
teaching or guidance, for the learner. In this chap-
ter we focus on the learner model and promoting 
metacognitive activity by providing the learner 
with access to the model of their knowledge. 

 Metacognition has been de fi ned in many 
ways, but it is generally considered to involve 
higher-order thinking  about  cognition, for 
example, involving knowledge about cognition. 
Importantly, it relates to regulation or  monitoring 
of cognition, with the associated aspects of 
learner control over their own learning pro-
cesses. (See, e.g. Georghiades,  2004 ; Schraw, 
 1998 ; Veenman, Van Hout-Wolters, & 
Afferbach,  2006 .) Much of the work refers back 
to Flavell’s introduction of “metacognition and 
cognitive monitoring”, presented through dis-
cussion of metacognitive knowledge (compris-
ing knowledge of person, task and strategy 
variables) and metacognitive experiences 
(Flavell,  1979  ) . The importance of enhancing 
metacognitive awareness in learners has often 
been argued (e.g. Schoenfeld,  1987 ; Schraw, 
 1998  ) , including the use of computer-based 
metacognitive support, such as for training gen-
eral learning ability (Derry & Murphy,  1986  ) ; 
tutoring help-seeking strategies (Roll, Aleven, 
McLaren, & Koedinger,  2007  ) ; developing self-
awareness through learning by teaching 
(Wagster, Tan, Biswas, & Schwartz,  2007  ) ; a 
re fl ection assistant for problem-solving (Gama, 
 2004  ) ; and encouraging learners to develop 
greater awareness of cognitive and metacogni-
tive learning strategies (Bull,  1997  ) . 

 Although metacognition is often described 
as requiring conscious processing and applica-
tion, it has also been suggested that some 
lower levels of consciousness in processing 
may still be metacognitive, for example, 
through habitual regulatory behaviour 
(Veenman et al.,  2006  ) . It is this latter view 
that we adopt in this chapter: we acknowledge 
both the bene fi ts of explicit metacognitive 
instruction or support and the potential to sup-
port metacognitive activity in a less explicit 
manner. We discuss these issues with refer-
ence to open learner models. 

 As stated above, modelling a learner’s under-
standing (e.g. from questioning, tasks, help or 
hints requested) allows an ITS to adapt the 
interaction to suit the student. Open learner 
models (OLM) are learner models that are 
accessible, or “open” to the learner they repre-
sent. (See Bull & Kay,  2007 ; Dimitrova, 
McCalla, & Bull,  2007  for recent overviews of 
open learner modelling.) There are many rea-
sons for making a learner model open to the 
learner, and we discuss these in the next sec-
tion, noting the links and the relevance of many 
of these goals for metacognition. In the follow-
ing section, we explore metacognition in rela-
tion to two types of open learner model: those 
embedded in a tutoring system and those used 
independently of the larger tutoring environ-
ment. We explain these ideas with carefully 
chosen examples which illustrate some of the 
breadth of possibilities explored in research 
into open learner modelling. We conclude with 
a discussion of the links between learner con-
trol of their learning and open learner model-
ling and the essential role that OLMs can play 
in supporting metacognition and metacognitive 
development.  

   Metacognition in Open Learner 
Modelling 

 The SMILI:)    (Student Models that Invite the 
Learner In) Open Learner Modelling 
Framework (Bull & Kay,  2007  )  provides a 
method of describing and analysing existing 
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OLMs, and it offers a set of guidelines for the 
designer of an OLM to consider. The frame-
work aims to improve understanding of the 
nature of OLMs and their potential roles. Its 
elements can facilitate comparisons between 
OLMs and systems that use OLMs. 

 SMILI:) identi fi es various purposes for opening 
the model. We now summarise these, italicising those 
that are particularly relevant for metacognition:

   Improving learner model accuracy by allowing • 
the learner to make contributions to their 
learner model  
   • Promoting learner re fl ection through con-

fronting students with representations of their 

understanding   
   • Facilitating planning and / or monitoring of 

learning   
   • Facilitating collaboration amongst learners   
  Facilitating competition amongst learners  • 
  Supporting navigation  • 
  The right of access to information stored about • 
oneself  
   • Learner control over and responsibility for 

their learning   
  Trust in the learner model content  • 
   • Formative assessment   
  Summative assessment    • 
 While some of the above points have not been 

speci fi cally identi fi ed as means to support meta-
cognition, it is clear that this might also apply in 
such cases. For example, allowing learners to 
provide information directly for their learner 
model, to help increase its accuracy, can have the 
effect of prompting learners to think about their 
knowledge and understanding more precisely. 
Similarly, an OLM that facilitates navigation to 
other parts of a system through some kind of 
highlighting of links may also help learners to 
more deeply consider the structure and prerequi-
sites within a domain. 

 Most OLMs are embedded in an ITS, and so 
designing the open learner model involves design 
decisions and compromises. It is necessary to ensure 
that the OLM does not compromise the effective-
ness of the main teaching interface. So, design for 
externalisation of the learner model requires deci-
sions about integrating viewing of the model into 
the larger interaction. We provide examples of 

OLMs in ITSs in Sect.  2.1 , with a focus on how the 
OLMs aim to support metacognition. 

 Independent OLMs exist independently of any 
single system or ITS (Bull et al.,  2008  ) . Learner 
modelling occurs in the usual manner, but the pri-
mary purpose of the independent OLM is to help 
learners to recognise any problematic issues 
themselves, through inspection of their learner 
model, and then independently carry out 
 appropriate work to overcome dif fi culties 
identi fi ed. This approach has links with the goals 
of enhancing metacognitive behaviours, with a 
focus on encouraging learner independence. We 
consider independent OLMs in Sect.  2.2 . 

   Supporting Metacognition with Open 
Learner Models in Intelligent Tutoring 
Systems 

 Learner models are the core drivers of personali-
sation in an ITS. They may well be the de fi ning 
component of an ITS, since there is such diver-
sity in the other elements that may be needed for 
any particular tutoring system. Learner models 
can take many forms. The most appropriate 
depends on many factors, including pragmatics, 
such as the system’s knowledge representation 
and reasoning approach for the domain knowl-
edge and the teaching expertise. Others relate to 
the needs of the particular user, for example, their 
age and goals. 

 The dominant form of learner model reported 
in the ITS literature appears to be an overlay of the 
domain expertise. This means that the ease with 
which a model may be made available and under-
standable to a learner depends upon the represen-
tation of the domain. When that domain expertise 
is large or complex, it may be very dif fi cult to 
make it usefully open to the learner. A natural 
approach to this problem is to de fi ne a part of the 
learner model that summarises the key elements 
that are meaningful and helpful for a learner. 

 One excellent example of this is in the SQL-
Tutor (Mitrovic & Martin,  2002  ) . This is a con-
straint-based tutor which makes use of a hundreds 
of constraints. It would be quite dif fi cult to create 
a meaningful interface onto these. Instead, it 
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 presents a summary of the aspects that make sense 
from a student’s perspective as illustrated in 
Fig.  23.1 . It shows just six aspects of the learning 
domain, each a key element of SQL. For each of 
these, the learner can see their progress in terms of 
the demonstrated correct understanding (the left-
most green part of each bar), incorrect understand-
ing (the central red part) and the remaining white 
part indicating course content the student has yet 
to cover. In the  fi gure, we can see that this student 
is only about halfway through the content but has 
mainly demonstrated correct understanding so far. 
A comprehensive evaluation of this approach 
showed signi fi cant learning bene fi ts, especially for 
weaker students, and positive attitudes to this high-
level progress indicator (Mitrovic & Martin,  2007  ) . 
Notably, the open learner model assisted students 
in making better choices about problems they 
should tackle, a metacognitive skill for managing 
their learning. This form of open learner model 
has also been used in cognitive tutors (Corbett & 
Anderson,  1994  )  which also have a large complex 
underlying learner model but present the learner 
with a simple interface that has a readily under-
stood skill metre.  

 A similar role for an OLM, as a starting point 
for the student to decide what to learn next, is 
found in the QuizGuide (Brusilovsky & 
Sosnovsky,  2005  )  adaptive educational hyperme-
dia system (illustrated in Fig.  23.2  by the targets 

and arrows). Although this is for the same broad 
domain (SQL), the underlying system represen-
tation is quite different, being based on a coding 
of each available task with the concepts or learn-
ing objectives. In both cases, the key issue is that 
the information made available to learners facili-
tates their ability to determine how well they are 
progressing in different aspects of the domain, 
providing a support for re fl ection (e.g. encourag-
ing them to think about their understanding, skills 
or level and think about their learning process). 
From this, the OLM facilitates learners’ control 
of their learning as it helps them decide what to 
learn and how to plan their learning, important 
metacognitive skills. Indeed, these interfaces also 
help learners monitor their progress, because they 
can monitor the effectiveness of their plan, in 
terms of the changes in the open learner model.  

 A rather different approach to open learner 
modelling is illustrated in Simprac (Chesher, 
 2005 ; Chesher, Kay, & King,  2005  ) , a tutor for 
medical students learning about the long-term 
management of chronic illness (Fig.  23.3 ). At the 
top left is one of the consultation interfaces; 
in this example, the interface enables the learner 
to examine parts of the simulated patient. The 
middle-right screen is presented to the learner at 
the end of each consultation with the simulated 
patient. It shows the learner each of their actions 
in the last consultation, and they are asked to 

  Fig. 23.1    Skill metres of the SQL-Tutor (Mitrovic & Martin,  2007  )        
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re fl ect on these by assessing the importance of 
each question they asked the patient, as well as 
each aspect of the examination and tests ordered. 
The lower histogram shows the learner’s perfor-
mance in terms of the issues they explored, com-
pared against their cohort.  

 One of the challenges of this domain is that 
learners can easily become entrenched in one 
perspective of the problem and its management: 
in spite of evidence that a management plan is 
ineffective, doctors may fail to recognise that this 
is the case. Accordingly, this tutor was created 
with a  re fl ective layer , a set of interface elements 
that were designed to encourage the learner to 
re fl ect on their actions in the last consultation. To 
do this, the interface calls on the learner to re fl ect 
on  all  elements of the series of simulated consul-
tations with patients. Following Schön  (  1987  ) , 
the tutor supports re fl ection at two levels. First, it 
supports  re fl ection - on - action  meaning that the 
learner pauses at the end of a consultation to 
re fl ect on the step in that consultation. It also sup-
ports  re fl ection - on - re fl ection , as the learner is 
encouraged to re fl ect on the way that they did the 
re fl ection phase. These are all metacognitive 

actions. For the core goals of supporting 
 metacognition, an important aspect of the design 
of this OLM is that it shows learners their own 
performance in relative terms at two levels. First, 
it shows their performance compared with the 
expectations of the author of the tutor, an approach 
that can ensure that the tutor  fi ts in with the teach-
ing approach of a course and programme. Second, 
it shows their skill compared with a relevant, 
matched group of learners. In Simprac, there are 
three groups: medical students, general practitio-
ners and experts in the particular domain of the 
tutorial. This tutor deals with a very different 
class of task from the SQL of the systems above: 
notably, there is some disagreement between 
experts about the best practice. It may be unreal-
istic and discouraging to show a medical student 
their performance against an expert, especially as 
an expert may be able to use quite different strat-
egies from those that are best for a medical stu-
dent. There are open questions about how to 
design and present a learner model that can best 
support re fl ection and particularly how to do it in 
ways that facilitate learning of the domain and of 
metacognitive skills. However, one important 

  Fig. 23.2    Arrows in targets in QuizGuide (Brusilovsky & Sosnovsky,  2005  )        
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issue involves ensuring that the learner can com-
pare their own progress and performance against 
meaningful standards that  fi t into any broader 
learning context. 

 While the above examples make available a 
quite small (part of a) model, there may be cases 
where there is value in enabling a learner to gain 
an overview of a large model. This issue has been 

explored in SIV (Kay & Lum,  2005  ) . The SIV 
visualisation enables a learner to see their prog-
ress over the hundreds of elements in a course in 
user interface design. The left part of the screen 
in Fig.  23.4  shows the learner’s knowledge of 
concepts by the size, colour and positioning of 
the concept labels. The ontology underlying SIV 
was critical for enabling learners to move up and 

  Fig. 23.3    Simprac OLM (Chesher,  2005 ; Chesher et al.,  2005  )        
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down granularity levels, and it also enables learn-
ers to focus on sets of related concepts within the 
domain. Students use this to plan their study for 
 fi nal examinations, with the OLM showing areas 
where they have weakness. Notably, the evidence 
available for this OLM comes from sources of 
varying reliability (shown to the user as illus-
trated in the right of the screen in Fig.  23.4 ), and 
different learners interpreted that evidence 
 differently, some valuing one source highly while 
other students did not. This raises the question of 
providing learners with control over the system’s 
interpretation of evidence that informs their 
learner model: without this, the individual learner 
will  fi nd the OLM less useful. This raises some 
additional issues for metacognition and learner 
control, particularly whether the learner is enti-
tled to decide how to value the different sources 
of learner modelling evidence.  

 SIV also provides a summary view of learn-
ing progress of the class, which is also invalu-
able for the teacher. To this point, we have 
focused on metacognition in relation to the 
learner. However, any ITS, learning management 
system (LMS) or similar tool that is used in the 
context of a course, with lectures, labs and other 
activities, has the potential to support metacog-
nitive skills of the  teacher . A suitable OLM can 
enable the teacher to assess the effectiveness of 

their own teaching or a particular innovation: the 
OLM can show the progress of the class and 
potentially this class compared with other rele-
vant cohorts. Essentially, the teacher is a learner 
who is continuously learning how to teach. This 
metacognitive role for the OLM has broad 
signi fi cance. It has been shown to be effective in 
the context of a Logic Tutor (Merceron & Yacef, 
 2003  )  and has been explored in the context of a 
widely used LMS: CourseVis showed a high-
level representation of a class activity on the 
LMS (Mazza & Dimitrova,  2004  ) . While the 
classroom teacher has a different relationship to 
an ITS than that of a student, there is potential 
for important learning gains if the teacher’s 
metacognition is scaffolded by an OLM.  

   Independent Open Learner Models 
to Facilitate Metacognitive Activity 

 Unlike the examples in the previous section, we 
here consider OLMs as  fi rst-class citizens that 
have value on their own, independently of any 
particular teaching system and potentially mak-
ing use of learning data from multiple teaching 
systems. We consider this class of OLM likely to 
become of increasing importance, as there are 
growing numbers of electronic learning support 

  Fig. 23.4    The SIV overview (Kay & Lum,  2005  )        
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tools of various sort, including the ubiquitous 
LMS, conventional software tools that are used 
as part of the learning as well as the many online 
e-learning tools and ITSs. 

 These independent OLMs are designed for 
use independently of individualised teaching or 
guidance as is typically provided by an ITS. Such 
independent OLMs usually have, as their primary 
aim, the promotion of metacognitive activities, 
such as self-assessment, self-monitoring, 
re fl ection and planning (as in some of the above 
examples), but within an overall context of 
encouraging autonomous or independent learn-
ing outside the system. Students can use these 
OLMs to help them identify their knowledge and 
dif fi culties and plan where they need to invest 
effort to overcome any problems. The responsi-
bility for determining and undertaking appropri-
ate activities lies with the learner. Therefore, an 

independent OLM may or may not have a domain 
model: the domain may be as simple as an 
unstructured list of topics (we would not consider 
this to be a “model”) or may comprise complex 
relationships of some kind to support diagnosis 
for the learner model contents. Either way, the 
role of the independent OLM is  not  to teach 
domain content, rather to promote and support 
independent learning and decisions by the user. 

 Two independent OLMs displaying learner 
models at different levels of detail/structure have 
demonstrated the possibility to support students 
alongside lecture courses—that is, in real-use set-
tings (Bull et al.,  2008  ) . Figure  23.5  illustrates the 
simple skill metre and a similar graphical over-
view of knowledge level in OLMlets (Bull, 
Quigley, & Mabbott,  2006  ) , and the structure of 
map and tree views of the Flexi-OLM learner 
model (Mabbott & Bull,  2006  ) . In each case, 

  Fig. 23.5    Independent OLMs with simple displays ( top  OLMlets Bull et al.,  2006  )  and structured displays ( lower  
Flexi-OLM Mabbott & Bull,  2006  )        
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colour is used to represent the level of knowledge 
of a topic or concept, and short text statements of 
misconceptions can be viewed, designed to prompt 
learners into investigating their speci fi c problems. 
For example, from OLMlets used in an adaptive 
learning environments course: “You may believe 
that whether students like a system is more impor-
tant than whether they learn from it”; “You may 
believe that a system does not have to understand 
the learner model.” From an introductory mathe-
matics course: “You may believe that denomina-
tors are added when adding fractions”; “You may 
believe that, when adding matrices, the individual 
terms within a matrix are added together.”  

 OLMlets was designed speci fi cally to promote 
formative assessment (i.e. assessment designed 
to provide feedback to support the learning pro-
cess—rather than summative assessment that 
produces a grade or mark) and learner autonomy 
for independent use alongside a range of courses 
(Bull et al.,  2006  ) . Learners answer questions 
relating to the key concepts of a course and view 
a simple overview of their knowledge levels and 
statements of their misconceptions (top of 
Fig.  23.5 ), as a starting point for their indepen-
dent work. The simplicity of the model presenta-
tion re fl ects the simplicity of the underlying 
learner model, as it is intended for easy introduc-
tion by instructors, into a variety of courses. 
Deployment of OLMlets throughout several 
 university electronic, electrical and computer 
engineering modules showed that students will 
use an OLM such as this to support their learning 
and are able to do so in a manner that suits their 
learning preferences, and the structured tree and 
map views of Flexi-OLM (bottom of Fig.  23.5 ) 
were also used by many students taking the 
Cprogramming module for which it was designed 
(Bull et al.,  2008  ) . As no additional computer 
tutoring or metacognitive support was provided 
in either case, any usage of the OLMs suggests 
that learners were gaining some bene fi t simply 
from the availability of an independent OLM. 
Thus, although we do not have speci fi c informa-
tion about how students were using these OLMs 
(e.g. to recognise their knowledge state, to plan 
their learning, to re fl ect on their dif fi culties), the 
fact that they were using them suggests that some 

kind of metacognitive activity was taking place 
that students perceived as helpful. 

 A clear example of an independent OLM to 
prompt metacognition is the Notice OLM 
(Shahrour & Bull,  2008  ) . Notice is based on the 
second-language acquisition literature on aware-
ness and “noticing” language features in language 
learning (Rutherford & Sharwood Smith,  1985 ; 
Schmidt,  1990  )  and “noticing the gap” between 
one’s own language rules and the (correct) target 
language forms (Schmidt & Frota,  1986  ) : issues 
that have much in common with the general 
metacognition literature. Notice uses salience/
highlighting techniques    [recommended for 
 computer-assisted language learning (e.g. 
Chapelle,  1998  ) ], to draw the learner’s attention 
to grammatical elements. Figure  23.6  shows the 
“comparison view”: coloured highlighting in the 
learner model (left) indicates the correctness of 
the student’s use of irregular plural nouns based 
on the learner model representations, next to 
native speaker or expert use (the system model: 
right). This is one method of encouraging learn-
ers to “notice the gap” between their language 
and the language to which they have been exposed 
(Schmidt & Frota,  1986  ) , as mentioned above.  

 Notice was found to facilitate immediate 
noticing of language elements (irregular plural 
nouns and irregular simple past verbs) by adult 
second-language learners, and much of this 
knowledge was retained at a signi fi cant level, as 
demonstrated in a delayed post-test 1 week after 
the experimental session (where no teaching of 
the target features had taken place in the mean-
time) (Shahrour & Bull,  2008  ) . While we do not 
know whether learners remembered the forms 
based on their interaction with the OLM or 
whether they subsequently actively tried to notice 
or  fi nd out about the forms (as is one of the key 
aims of an independent OLM), it does appear that 
this kind of approach can be useful to prompt 
noticing in language learning. It will be interest-
ing to explore the extent to which this may also 
apply in other subjects. 

 Negotiated learner models are interactive 
OLMs that allow the student to negotiate the 
learner model contents with the system (Bull & 
Pain,  1995 ; Dimitrova,  2003 ; Kerly & Bull,  2008  ) . 
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If the student disagrees with any of the system-
inferred learner model data, they can challenge the 
system in an attempt to change the model, with 
each party required to justify their beliefs about 
the student’s knowledge, through discussion. For 
example, the system may offer the learner the 
opportunity to compromise (i.e. agree on an 
 intermediate representation of knowledge, if the 
system’s and the student’s con fi dence in the learn-
er’s knowledge are suf fi ciently close to allow a 
compromise to be a reasonable action); the student 
may provide the information that they have forgot-
ten certain concepts since their last interaction, 
indicating that the learner model has “slipped 
backwards” or that their understanding has 

increased due to a lecture or from reading under-
taken between sessions with the system; and the 
system may require the student to convince it to 
change its model by taking a short test to demon-
strate their knowledge (or lack of knowledge). The 
top of Fig.  23.7  shows an excerpt of the display of 
learner con fi dence in their knowledge placed 
alongside the system’s con fi dence in their knowl-
edge, in order to highlight any differences to the 
learner; below is an excerpt from a student attempt 
to challenge the learner model in menu-based 
model negotiation in Mr. Collins (Bull & Pain, 
 1995  ) . Such negotiation of the learner model is 
designed (1) to help improve the accuracy of the 
model by allowing the student to contribute infor-

  Fig. 23.7    Negotiating the learner model in Mr. Collins (Bull & Pain,  1995  )        

  Fig. 23.6    The Notice OLM for language learning (Shahrour & Bull,  2008  )        
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mation for consideration in the modelling process 
and (2) through the process of discussion of the 
learner’s knowledge, to prompt learners to re fl ect 
on their understanding and develop a greater 
awareness of their learning needs. This also places 
some of the responsibility for the learning interac-
tion, with the learner. The latter point is particu-
larly relevant for promoting metacognition.  

 In CALMsystem (Kerly & Bull,  2008  ) , the 
learner’s level of knowledge of topics is displayed 
for comparison to the system’s inferences about 
their knowledge (left of Fig.  23.8 ). However, the 
model negotiation process is more  fl exible than in 
Mr. Collins, using natural language in discussion 
with a chatbot (right of Fig.  23.8 ). Statements 
such as the following to the chatbot (by 10–11-year-
olds) are indicative of self-monitoring: “but I need 
more work on it”, “I am getting better”, “I have 
changed my mind about my beliefs”, and “can I 
change a belief [in the model] about separating 
solids and liquids please”. A study over two ses-
sions with children aged 10–11 in a science class 
demonstrated signi fi cant improvements in self-
assessment accuracy both in an inspectable-only 
condition (left of Fig.  23.8 ) and a full negotiated 
learner modelling approach (both parts of 
Fig.  23.8 ) and with signi fi cant improvements in 
the negotiated condition over the inspectable con-

dition (Kerly & Bull,  2008  ) . It appears, therefore, 
that use of a simple inspectable model for this age 
group can help learners, but the process of discus-
sion of their knowledge can bring further bene fi ts 
and so could be recommended where such an 
approach would integrate well with the aims and 
interactions with a system.  

 As with Simprac (Chesher,  2005 ; Chesher 
et al.,  2005  )  in the previous ITS section and 
Notice (Shahrour & Bull,  2008  )  in this indepen-
dent OLMs section, OLMlets (top of Fig.  23.5 ) 
allows students to compare their knowledge 
against a standard. Here instructors input the 
expected level of knowledge for each stage of the 
course (de fi ned by week, day or lecture number, 
as appropriate), and students can view their own 
skill metres (or other representations) alongside 
the expected knowledge for the current stage of 
the course, displayed in the same form, to support 
their self-evaluations and planning in the context 
of present expectations (Bull et al.,  2006  ) . This 
allows students to, for example, note that although 
their current level of understanding of a concept 
may be quite low, it is nevertheless in line with 
expectations for that stage of the course. OLMlets 
also allows students to release their model data to 
their instructors, thus offering the bene fi ts to 
teachers suggested above in ITS contexts, in the 

  Fig. 23.8    Negotiating the learner model in CALMsystem (Kerly & Bull,  2008  )        
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use of independent OLMs, and has been shown 
able to promote spontaneous (face-to-face) peer 
discussion and help-seeking amongst students 
when they choose to release their learner models 
to each other (Bull & Britland,  2007  ) . This is 
therefore another common goal of metacognition 
researchers and open learner modelling research-
ers. Furthermore, an OLM designed to help par-
ents help their children with fractions was found 
also to highlight to parents misconceptions that 
they themselves held about calculating fractions 
(Lee & Bull,  2008  ) . 

 This section suggests that independent OLMs 
can in themselves enhance metacognitive behav-
iours related to the identi fi cation of knowledge, 
regulation of learning or planning of learning 
activities, and they can be used to prompt actions 
to facilitate learner independence.  

   Long-Term Open Learner Models 

 The examples above have all been associated with 
a rather limited context. In the life of the learner, 
we might build a quite comprehensive learner 
model that draws on the full range of evidence 
about the learner’s progress. This learner model 
could then support re fl ection on long-term learn-
ing, such as reading progress over the whole of 
primary school education or mathematics prog-
ress through the whole of school. A key value of 
such a model would be as an OLM for re fl ection 
by learners, perhaps in conjunction with their 
teachers and parents, to monitor progress; identify 
serious, long-term problems; and plan learning. 

 In Fig.  23.4 , at the left of the SIV display, the 
user model visualisation tool is a generic learner 
model display for large user models (Apted, Kay, 
Lum, & Uther,  2003  ) . We have used it in several 
contexts. For example, it was initially designed 
for use in a Graduate Medical Programme where 
it aimed to show students their progress on around 
600 learning topics that span 2 years of study. In 
this case, the evidence for learning came from a 
system that students could use to do multiple-
choice self-tests. Even the example of Fig.  23.4  

involved a semester long course with two main 
sources of evidence about learning:

   Student grades, extracted from an LMS, where • 
this provided marks from the weekly lab ses-
sions and the marks on each of the questions 
of the  fi nal exam  
  Evidence based on interaction with an online • 
lecture delivery system where students  listened 
to online audio that was associated with 
“slides” with the amount of time students 
spent on each slide matched against the known 
audio length, to infer which lecture slides the 
student appeared to have “attended”    
 This is an interesting example since it involves 

multiple sources of evidence and each is of quite 
different grain size (Kay & Lum,  2005  ) . 
Importantly, the visualisation display can be used 
independently of any application, taking an arbi-
trary learner model in the required format and 
making it available to the learner for re fl ection on 
their progress. It enables a learner to identify 
areas that the learner model indicates they are 
weakest in. The display can be con fi gured to 
allow the learner to de fi ne their own standard; for 
example, one learner may only want concepts 
treated as known if they have a current knowl-
edge level of at least 80% while another learner 
may set this threshold at 60%. 

 Another example of a long-term learner model 
is shown in Fig.  23.9 . This is one of several OLM 
created for use in conjunction with a project man-
agement tool used for educational purposes (Kay, 
Maisonneuve, Yacef, & Reimann,  2006  ; Reimann 
& Kay,  2010 ) . It was used over a semester in a 
software engineering capstone project subject 
where students worked in teams to create soft-
ware. The project management tool is widely 
used by programmers. One of the goals of this 
subject is that students develop their group work 
skills and this learner model assists them and 
their facilitators to see aspects of the team opera-
tion. The display in the  fi gure shows the interac-
tion between team members on the wiki, where 
an interaction was judged to occur when two peo-
ple edited the same wiki page. The heavier the 
line, the more the interaction. In the actual inter-
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face, each coloured dot is labelled with the learn-
er’s login ID (removed here to anonymise the 
display).  

 We can easily see that all team members are 
interacting with the exception of the person 
 represented by the (green) dot near 6 o’clock. We 
can also see that some people interact more than 
others. We include this example to illustrate 
important possibilities offered by OLMs to sup-
port long-term learning:

   They can display some of the many sources of • 
long-term data that is available as digital traces 
of activity.  
  They can be integrated into arbitrary online • 
tools, including those that were  not  explicitly 
designed for learning.  
  The addition of an OLM creates new possi-• 
bilities for people to learn, based upon 
re fl ecting on the OLM, potentially realising 
that they have strengths and weaknesses they 
were not previously aware of.  
  It can support the learner in monitoring their • 
progress as they aim to change those 
behaviours.  
  It is particularly valuable when the individual • 
learner can see themselves in relation to rele-
vant peer groups so that they can assess the 
signi fi cance of their personal performance.    

 While this representation does not show the 
quality of contributions, it does provide other 
important information that may prompt metacog-
nitive behaviours. Returning to the OLMlets inde-
pendent OLM (top of Fig.  23.5 ), based on use 
across courses in a degree, students can follow 
their progress towards the range of more general 
learning outcomes required for a professional-
accredited engineering degree (Bull & Gardner, 
 2010  ) . Each learning outcome is listed with the 
courses contributing to this learning outcome 
included and level of understanding indicated by 
colour (two learning outcomes are given as exam-
ples in Fig.  23.10 ). Each course may contribute to 
several or many learning outcomes. The aim is to 
help students identify the general engineering 
skills required of a professional engineer and how 
their courses combine to help them achieve these 
skills, and their own progress is indicated as a 
focus for their attention.  

 OLMs have the potential to support such 
metacognitive, long-term learning outcomes as 
they can be readily applied to arbitrary data col-
lections by the learner as part of their long-term 
lifelong learning. Within more formal learning 
contexts, we need to make it easy for teachers to 
integrate arbitrary data sources into OLMs for 
use by their students, making use of suitable 
information that enables the individual to better 
assess their own achievements in relation to the 
standards that are relevant for their context.   

   Discussion: Links Between Research 
Directions in Metacognition 
and Open Learner Modelling 

 We have described a range of approaches to open 
learning modelling, in terms of the relationship to 
an ITS and some of the forms that OLMs have 
taken. We have also identi fi ed several issues that 
are important for an OLM to provide effective 
support for metacognitive activities of re fl ection, 
self-monitoring as well as planning and control of 
learning processes. If metacognitive skills were 
explicitly modelled by an ITS, an interactive OLM 
for these, too, could be the basis for a  metacognitive 

  Fig. 23.9    Example of an interaction diagram       
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activity and could provide an additional source of 
evidence about these skills in the learner’s self-
perceptions. An interactive OLM, which allows 
the learner to provide evidence about their knowl-
edge directly to the OLM, is in line with a phi-
losophy that encourages the learner to take  control  
over and  responsibility  for their learning. 

 There are many issues that we have touched on 
and which are important for future roles for OLMs 
to support metacognition. One of these relates to 
 capturing ,  recording or extracting metacognitive 

aspects of students ’  learning processes . The log 
of student actions and interactions with their OLM 
could provide a key source of evidence about 
metacognition. This suggests a role for OLMs 
that show these inferred models of metacognition. 

This may help learners become more aware of 
their own metacognitive processes. This leads to 
the issue of  evaluating the effect of metacognitive 

feedback and interventions  and poses a rather 
interesting new interface challenge for OLMs 
since it seems likely that a learner (and their 
human supporters, such as parents and teachers) 
may need new forms of interface that make it easy 
to see changes in the learner model in terms of 
such interventions. Designing tasks for metacog-
nitive assessment is a potential role for OLMs. 
For example, a student can be asked to rate their 
own expertise and then be provided with the sys-
tem’s corresponding assessment in the OLM. 

 Another key aspect relates to  interpreting and 

assessing metacognitive behaviour , which is 

  Fig. 23.10    An example of an independent OLM linking elements across a degree       
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 precisely what a teacher or facilitator does when 
discussing an OLM with students. There is poten-
tial for exploring support for explicit recording of 
these processes so that they can be revisited as 
part of long-term re fl ection on progress. The 
automation of this process is becoming increas-
ingly feasible by exploiting educational data 
mining techniques (EDM). 

 Another important potential use for OLMs 
could be supported by better understanding how 
to design tasks for metacognitive assessment. 
This is completely congruous with OLM since 
the learner’s interaction with their OLM is often 
just such a task. Although there has not been 
much work on the explicit use of OLMs for dis-
playing the parts of the learner model that repre-
sent metacognitive skills, this seems a promising 
direction to explore. It should lead to more 
generic OLM interfaces that might be available 
as an additional layer of support for re fl ection, 
beyond the domain-speci fi c aspects that each 
demand different interfaces. We can even envis-
age that learners may expect every tool to provide 
them with such a metacognitive OLM interface 
or that data for it is stored in a way that enables 
the learner to explore it independently. We can 
envisage that this will support new OLMs and 
associated techniques for measuring and display-
ing metacognition over time or in changing con-
texts. Such generic tools create new possibilities 
for assessing metacognition in educational tech-
nologies compared to the classroom or the lab. 

 There is considerable potential for exploit-
ing research on metacognition to inform work 
on OLMs as well as in the improved under-
standing of the ways that OLMs can support 
metacognitive processes and help develop 
metacognitive skills. We have distinguished 
two contexts for OLMs. When they are  within  
an ITS, there is potential for careful design of 
the ITS and OLM, in terms of the interface and 
the underlying learning experiences so that 
there are immediate links between learning 
activities and the OLM. We have much to learn 
about the best ways to do this and how it may 
interact with many aspects, such as trust, gam-
ing, exploration and toying with the ITS. We 
have also indicated some of the different possi-

bilities and issues for a learner model that exists 
 outside  a particular ITS and the ways that its 
OLM interfaces might support and encourage 
metacognitive activities. In both of these roles, 
OLMs can serve several purposes, most being 
strongly linked to metacognitive activities of 
re fl ection, monitoring progress, planning both 
in the short and long term and aiding the learner 
in taking responsibility and control of their own 
learning and progress.      
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    Introduction 

 In this chapter, we provide an overview of research 
we have conducted over the years to devise 
computer-based intelligent support to the meta-
cognitive skill known as self-explanation. Extensive 
cognitive science research has shown that self-
explanation is a meta-cognitive skill that plays a 
major role in students’ ability to self-regulate their 
learning, by allowing the student to both monitor 

her understanding during the learning activity, and 
to improve it by initiating targeted reasoning 
(Chi,  2000  ) . A large part of the existing results 
from cognitive science relate to self-explanation 
during problem solving or example studying in 
procedural domains, although there has also been 
work on how self-explanation affects the learning 
of complex concepts from explanatory text. In the 
 fi rst part of the chapter, we describe the work we 
have done, based on these results, to devise an ILE 
(the SE-Coach) that can help college students self-
explain worked-out solutions of physics problems. 

 Our main research assumption is that support 
to self-explanation should be  user-adaptive , i.e., 
tailored to take into account individual differences 
both at the cognitive and meta- cognitive level. 
Thus, we brie fl y describe the student modeling 
techniques that we have devised in the SE-Coach 
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  24      Modeling and Scaffolding 
Self-Explanation Across Domains 
and Activities       

     Cristina   Conati           

  Abstract 

 In this chapter, we describe our research on providing computer-based 
support for the meta-cognitive skill of self-explanation. The distinguishing 
element of our work is that we aim at providing support for self-explana-
tion that is student-adaptive, i.e., tailored to the speci fi c needs and traits of 
each individual, e.g., relevant knowledge and tendency to self-explain 
spontaneously. Adapting to these elements requires building models that 
can measure them in real-time during interaction. In this chapter, we illus-
trate how we built such models for two different intelligent learning envi-
ronments (ILEs): one that helps college students self-explain worked-out 
solutions of physics problems, and one that supports self-explanation dur-
ing interaction with an interactive simulation for mathematical functions.     
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project, the user-adaptive interventions we have 
built based on the model, and a formal evaluation 
of their effectiveness. The evaluation is a con-
trolled study that compares the pedagogical 
effectiveness of the SE-Coach with that of a non-
adaptive version, measured in terms of improve-
ment in student problem solving performance. 

 In the second part of the chapter, we illustrate 
how we have progressed toward modeling and 
supporting self-explanation during a radically 
different learning activity: learning via explora-
tion of an interactive simulation for mathematical 
functions. We describe the adaptive interventions 
that we have been designing for this activity, as 
well as the student modeling techniques that sup-
port them, including the addition of eye-tracking 
data to improve the model’s ability to capture stu-
dent’s behaviors related to self-explanation. 
Finally, we report results on a formal evaluation 
of the student model’s accuracy in assessing stu-
dent self-explanation and related learning.  

   Related Work 

 Recent years have seen an increasing interest in 
designing ILEs that can explicitly support student 
meta-cognitive development. The majority of the 
work has targeted self-explanation in a variety of 
instructional activities, including studying textual 
example solutions (e.g., Conati & Vanlehn,  2000 ; 
Crippen & Boyd,  2007  ) , viewing examples as 
Flash videos, (McLaren, Lim, & Koedinger, 
 2008  ) , engaging in pure problem solving (e.g., 
Aleven & Koedinger,  2002 ; Mitrovic,  2003  ) , and 
problem solving with multiple representations 
(Rau, Aleven, & Rummel,  2009  ) . 

 Researchers have also started investigating 
support for other meta-cognitive skills, ranging 
from the ability to seek help effectively (Roll, 
Aleven, McLaren, & Koedinger,  2007  ) , using 
examples during analogical problem solving 
(Muldner & Conati,  2007  )  and successfully 
engaging in self-regulated learning (SRL), a 
comprehensive process by which students set 
their own learning goals, plan actions to 
achieve them and then self-monitor their 
progress towards these goals as they engage in 

the target activities (Azevedo, Witherspoon, 
Chauncey, Burkett, & Fike,  2009 ; Tan, Biswas, 
& Schwartz,  2006  ) . 

 One component of devising environments that 
can support meta-cognition is to design interface 
affordances that can scaffold the desired meta-
cognitive processes (e.g., Azevedo et al.,  2009 ; 
Chi & VanLehn,  2007 ; Luckin & Hammerton, 
 2002 ; van Joolingen,  2000  ) . A second, equally 
important element is providing proactive support 
during interaction to complement interface scaf-
folding for those students who need more meta-
cognitive guidance. Since providing proactive 
support is the focus of our research on self- 
explanation, here we discuss in more detail a few 
examples of other work that has targeted this type 
of intervention. Normit-SE (Mitrovic  2003  ) , an 
ITS that provides scaffolding for self-explanation 
during problem solving on database data normal-
ization, asks students to explain every new or 
incorrect problem solving step they generate. The 
Geometry tutor is an ITS designed to support 
self-explanation during geometry problem solv-
ing by allowing students to type free-form self-
explanations and providing feedback on their 
correctness. Roll et al.  (  2007  )  have devised a 
model that enables an ITS to track and scaffold a 
student’s tendency to effectively use the available 
help facilities. Tan et al., Betty’s Brain is an envi-
ronment that uses teachable agents to help 
students learn both domain and self-regulatory 
skills. To support the latter, the environment can 
recognize a number of interaction patters indicat-
ing poor SRL (e.g., teaching the agent new con-
cepts but no relationships between them), and 
provides feedback accordingly. In our work, we 
focus on providing both interface scaffolding and 
adaptive feedback for self-explanation during 
example studying and exploration of interactive 
simulation. However, the distinguishing feature 
of our research on self-explanation during exam-
ple studying is that we investigate how to provide 
adaptive support only to those students who do 
not self-explain spontaneously, as opposed to 
asking students to self-explain every time they 
look at a relevant piece of instructional material 
(as done, for instance in Crippen & Boyd,  2007 ; 
McLaren et al.,  2008 ; Rau et al.,  2009  ) . Our 
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research on supporting exploratory learning with 
interactive simulations is the  fi rst attempt to look 
at self-explanation in the context of this educa-
tional activity.  

   SE-Coach: Adaptive Scaffolding 
for Self-Explanation During Example 
Studying 

 The SE-Coach is an Intelligent Learning 
Environment (ILE from now on), designed to help 
students self-explain worked-out example solu-
tions in introductory physics. The rationale under-
lying the design of the SE-Coach is founded in 
Cognitive Science  fi ndings showing that students 
can greatly bene fi t from studying examples after 
receiving theoretical instruction on a domain and 
before starting to solve problems in that domain. 
The effectiveness of this example-studying activ-
ity, however, is mediated by how well students 
process the available example solutions. Students 
who consistently engage in self- explanation to 
better understand the examples show the greatest 
bene fi t during problem solving, while students 
who study the examples more super fi cially don’t 
necessarily learn from this activity. Cognitive sci-
ence studies have further shown that prompting 
for self-explanation can help those students who 
tend to not self-explain spontaneously (see Chi, 
 2000  for an overview). The goal of the SE-Coach 
is to automate the provision of this prompting by 
monitoring students as they study examples, and 
by providing adaptive interventions to help stu-
dents self-explain when they don’t do so sponta-
neously. The notion that the SE-Coach’s prompts 
should be tailored to those students who do not 
otherwise self-explain is one of the key points of 
this research. Other researchers have investigated 
prompting for self-explanation in a less individu-
alized fashion (see previous section). 

 We argue, however, that having tailored 
prompts is important to reduce intrusiveness and 
increase ef fi cacy. If a student is asked to self-
explain when s/he has already done it on her own, 
or when she does not need the extra information 
processing, the system may lose credibility and 
the student may end up ignoring prompts when 

they are justi fi ed. Generating tailored prompts is 
especially important in the presence of complex 
examples, like the physics example shown in 
Fig.  24.1  (left), because in this context there are 
many pieces of self-explanation that can be gen-
erated (several for each element of the worked-
out solution) and prompting for all of them 
indiscriminately would greatly disrupt the stu-
dent’s study process. To facilitate self- explanation 
for those students who need guidance, the 
SE-Coach provides a menu-based interface that 
support the generation of self-explanation rele-
vant to understand physics problem solutions. 
To determine when to intervene in the student’s 
example study process with more proactive 
prompts, the SE-Coach relies on a  probabilistic 

student model . A student model is a representa-
tion of a set of relevant student traits that is 
updated automatically during interaction with the 
target educational software based on related stu-
dent’s behaviors. The SE-Coach student model 
uses a formalism for reasoning under uncertainty 
known as Bayesian networks to assess how well 
students understand the instructional material by 
capturing self-explanations that the students gen-
erate via the interface ( explicit self-explanations  
from now on), as well as self-explanations that 
students generate in their head ( implicit self-

explanation ). Having a probabilistic student 
model is important because, as we see in a later 
section, there is a high degree of uncertainty in 
capturing student self-explanation and related 
learning from observable student behaviors. In 
the next two subsections, we  fi rst brie fl y describe 
the SE-Coach interface to support self-explana-
tion, and then we illustrate the SE-Coach student 
model as well as the mechanisms that allow it to 
assess the student’s self-explanation behavior.  

   SE Interface to Support 
Self-Explanation 

 The SE-Coach’s interface allows students to read 
and self-explain example solutions like the one in 
Fig.  24.1  under the coach’s supervision. To moni-
tor these tasks, the SE-Coach interface includes 
two mechanisms: a masking interface to track 
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students’ attention and a set of menu based tools 
that allow students to constructively generate 
self-explanations. 

 Figure  24.1  (right) shows how the Newtonian 
physics example in Fig.  24.1  (left) is presented 
with the masking interface. Relevant example 
parts (e.g., sentences in the problem statement, 
the problem’s free body diagram and individual 
steps in the worked-out solution) are covered by 
masking boxes. To view an example part, the stu-
dent needs to move the mouse over the box that 
covers it. When the student uncovers an example 
part, a “self-explain” button appears next to it, as 
a reminder to self-explain. Clicking on this but-
ton activates more speci fi c prompts that suggest 
two kinds of self-explanations known to be 
highly effective for learning. These are as fol-
lows: (1) explain an example solution step in 
terms of domain principles ( step correctness ); 
(2) explain the role of a solution step in the 
underlying solution plan ( step utility ). The inter-
face provides tools to help students generate 
these two kinds of explanations. For instance, to 

explain  step correctness , the student can browse 
a hierarchy of physics rules (known as the Rule 
Browser, see Fig.  24.2 ), select one that she thinks 
justi fi es the current solution step, and  fi ll-out a 
partial de fi nition of the rule by selecting relevant 
options in a pull-down menu (Rule template in 
Fig.  24.2 , right).  

 The SE-Coach provides feedback on the 
 correctness of the student selection, based on its 
internal representation of how each problem solu-
tion derives from physics principles. A similar 
mechanism, based on a menu-based tool known 
as the Plan Browser, is available to explain  step 

utility . It should be noted that a student can termi-
nate a self-explanation attempt at any point, even 
if the correct explanation has not been generated. 

 The student’s reading and self-explanation 
actions are used to dynamically update the student 
model Bayesian network that, at any time during 
interaction, assesses the student’s understanding of 
the different example parts. If a student tries to 
close the example when the student model indi-
cates that there are still some parts that are prob-

  Fig. 24.1    Sample physics example solution (partial,  left ) and masking interfaces ( right )       
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lematic for him, the interface generates a warning 
and highlights the corresponding masking boxes. It 
also changes the “self-explain” button for each 
highlighted line, to indicate what the student should 
do to better self-explain the line. The revised 
prompt for a step will include “use the Rule 
Browser” and/or “use the Plan Browser” items if 
the student model indicates that the student has 
problems using the related physics and planning 
rule to explain it; it will say “read more carefully” 
(as in Fig.  24.1 , right), if the student model indi-
cates that the student understands the relevant rules 
but is not giving enough attention to the step. As 
the student performs new reading and self-explana-
tion actions to follow the SE-Coach’s suggestions, 
the boxes’ color and the related prompts change 
dynamically to re fl ect the updates in the student 
model probabilities, as we describe later.  

   The SE-Coach’s Student Model 
to Capture Self-Explanation 

 As we mentioned at the beginning of this section, 
one of the key principles underlying the SE-Coach 
design is that self-explanation support should be 
given only to those students who need it; the 

SE-Coach should not ask spontaneous self-
explainers to always make their self-explanations 
explicit through the SE-Coach interface tools. 
Thus, the student model must be able to recognize 
 implicit self-explanation , i.e., when a student 
self-explains spontaneously without using the 
SE-tools. The only information available to the 
model to assess implicit self-explanation is 
latency data on student’s attention and estimates 
of student’s domain knowledge. This adds uncer-
tainty to the assessment, because both student’s 
attention and student’s knowledge cannot be 
unambiguously determined. Additional uncer-
tainty comes from the fact that little research 
exists on how people learn from explanations 
generated via menu selections and template 
 fi lling. Thus, even when students generate correct 
self-explanations through the interface tools 
described in the previous section, there is uncer-
tainty about how these self-explanations re fl ect 
learning and understanding. The SE-Coach’s stu-
dent model formally handles this uncertainty by 
using Bayesian networks. Following the approach 
proposed in (Conati, Gertner, & VanLehn,  2002  ) , 
the student model Bayesian network is built 
 automatically for each example, as illustrated in 
the next section. 

  Fig. 24.2       Rule browser and a sample rule template ( left )       
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   The SE-Coach Model of Correct 

Self-Explanation 

 For each example available in the SE-Coach, an 
automatic problem solver builds a model of cor-
rect self-explanation (SE model), starting from a 
knowledge base of rules describing physics prin-
ciples and abstract planning steps. The resulting 
SE model (see    Fig.  24.3 ) is a dependency network 
that encodes how the intermediate facts and goals 
in a solution ( F - and  G - nodes in Fig.  24.3 ) derive 
from domain rules ( R - nodes in Fig.  24.3 ) and 
from facts and goals matching the rules’ precon-
ditions. These derivations are explicitly repre-
sented in the SE model by rule-application nodes 
( RA - nodes in Fig.  24.3 ) and correspond exactly 
to the self-explanations for  step correctness  and 
 step utility  that the SE-Coach targets. The self-
explanations speci fi c to the RA nodes in Fig.  24.3  
are listed in the corresponding bubbles to the 
right of the  fi gure. For instance, the node  RA-body-

by-force  in, encodes the explanation that the 

Wagon in the example is chosen as the body 
because a physics rule (represented by the rule 
node  R-body-by force  in Fig.  24.3 ) says that if we 
want to  fi nd a force on an object, that object 
should be selected as the body to which to apply 
Newton’s 2nd law. The node  RA-goal-choose-

body  encodes the explanation that choosing the 
wagon as the body ful fi ls the  fi rst subgoal of 
applying Newton’s 2nd law, i.e., selecting a body 
to which to apply the law (represented by the rule 
node  R-goal-chose-body  in Fig.  24.3 ).  

 When a student opens an example, the actual 
student model Bayesian network for the current 
session is automatically created from the SE 
model for that example and from a student’s long 
term model. The structure of the Bayesian net-
work derives directly from the SE model. All 
nodes in the initial network have binary values 
representing the probability that the student 
knows rules, goals and facts in the example solu-
tion and that she has explained the related deriva-

  Fig. 24.3    Segment of the student model for the example in Fig.  24.1 . The  bubbles to the right  represent the self-
explanations corresponding to the related RA nodes in the graph       
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tions. As a student performs reading and 
self-explanation (SE) actions, the initial Bayesian 
network is dynamically updated with nodes rep-
resenting these actions (see Fig.  24.3 ).  

   Modeling Implicit and Explicit 

Self-Explanation 

 Read nodes (nodes with pre fi x  Read  in, Fig.  24.3 ) 
represent viewing items in the masking interface. 
The values of read nodes re fl ect the duration of 
viewing time and can be LOW (time insuf fi cient 
for reading), OK (time suf fi cient for reading 
only) or LONG (time suf fi cient for self-explana-
tion).  1   Each read node connects to the SE model 
node re fl ecting the semantic content of the viewed 
item. For instance, the links from Read nodes to 
F_ and G_ nodes represent the student’s reading 
the lines “Find the force N exerted on the wagon 
by the ground” and “We choose the wagon as the 
body,” respectively. These links indicate that 
viewing time in fl uences the probability of know-
ing the related content. 

 The fact that the student viewed an example 
item does not necessarily mean that the student 
self-explained it. However, the longer the student 
viewed an example item, the higher the probabil-
ity that he self-explained it. This relationship 
between viewing time and self-explanation is 
encoded in the student model by linking a read 
node that represents viewing an example item 
with the rule-application nodes that represent 
self-explanation for correctness and utility for 
that item (see, for instance, links from Read_ 
nodes to RA_ nodes in Fig.  24.3 ). The condi-
tional probability tables (CPT) that encode the 
probabilistic dependencies between these rule-
application nodes and its parents is de fi ned to 
represent the following relationships: a student 
cannot self-explain a derivation correctly if he 
does not have the necessary knowledge (i.e., the 
rule and its preconditions), no matter for how 
long the student attended to the derivation. If the 
student has all the necessary knowledge, the 

probability that proper self-explanation occurred 
increases with viewing time. 

 Nodes representing the student’s explicit self-
explanation actions (SE nodes) are dynamically 
added to the Bayesian network as these actions 
occur. The CPT modeling the in fl uence of a cor-
rect SE action on the probability that a student 
understands the corresponding rule is mediated 
by the current student knowledge of that rules 
and by how many incorrect attempts the student 
generates before reaching the correct self-
explanation.  

   Assessment 

 At any time during the student’s interaction with 
the SE-Coach, the probabilities in the Bayesian 
network assess how the student’s domain knowl-
edge and example understanding change with the 
student’s interface actions. In particular, the prob-
abilities associated with rule-application nodes 
represent the probability that the student self-
explained the corresponding derivations. Rule-
application nodes with probability below a given 
threshold become the target of the SE-Coach 
interventions. 

 Shows the probabilities in the student model 
after a student viewed the line “Find the force N 
exerted on the wagon by the ground” long enough 
for reading it, viewed the line “We choose the 
wagon as the body” quite longer and self-
explained the planning rule behind this line. 
After these actions are processed by the model, 
there is only one Rule-Application node that still 
has a low probability, the non-shaded node 
 RA-body-by-force . From this node’s descendant, 
 F-wagon-is-the-body , the SE-Coach infers that 
the missing explanation relates to the  fi rst line in 
the example solution. From the fact that the only 
input node with low probability for  RA-body-by-

force  is the rule  R-body-by-force , the SE Coach 
detects that the missing explanation relates to 
this rule. Hence, it adds the  fi rst solution line 
among the lines to highlight in the masking inter-
face and modi fi es its self-explain button to sug-
gest self-explaining the physics rule related to 
this line. When low probability of a rule-applica-
tion node is caused only by too short reading 
time, the “self-explain” button for the related 

    1    The values are based on thresholds that assume a reading 
speed of 3.4 words per second, i.e., an average-speed 
reader (see Conati et al.,  2002  for more details).  
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solution line is turned into a hint suggesting to 
read more carefully. 

 The student is not obligated to follow the 
SE-Coach’s suggestions. When the student 
decides to close an example, the student model 
Bayesian network is discarded, but the new rule 
nodes’ probabilities are saved in the so-called 
long-term student model. They will become the 
new priors in the student model for the next 
example study task and will in fl uence the sys-
tem’s interventions accordingly.   

   Evaluation of the SE-Coach 

 The SE-Coach was evaluated in a controlled 
study with 56 college students who had been 
studying Newton’s Laws as part of an introduc-
tory physics course. The students came from four 
different colleges. During the one-session study, 
students  fi rst took a pretest on Newton’s Laws, 
then studied related examples with the SE-Coach 
and  fi nally took a posttest equivalent to the pretest. 
The study had two conditions. In the  experimental  
( SE ) condition, 29 students studied examples with 
the complete SE-Coach. In the  control  condition, 
27 students studied examples with the masking 
interface including the   self-explain  prompts that 
appear when a line is uncovered. However, these 
students had no access to the subsequent levels of 
scaffolding (i.e., the browsers and templates 
described in Sect.  3.1 ), nor to the adaptive coach-
ing described in Sect.  3.2.3 . The purpose of these 
two conditions is to compare the effectiveness of 
complex, user-adaptive scaffolding for self-
explanation against simple, nonadaptive prompts 
that simply remind students to self-explain at 
every example line that they uncover. 

 As we reported in (Conati & VanLehn,  2000  ) , 
the analysis of the students’ learning gains show 
that the SE-Coach’s multiple and adaptive levels 
of scaffolding for self-explanation improve stu-
dents’ problem solving when students are in the 
early stage of cognitive skill acquisition. In par-
ticular, students who had just started covering 
Newton’s laws ( late-start  students from now on) 
learned signi fi cantly better with the adaptive ver-
sion of the tutor than with the control version, 

while there was no difference between the two 
conditions for students who had started covering 
Newton’s laws earlier in the term ( early-start  stu-
dents). These students didn’t know more physics 
than the late-start student (as shown by the two 
groups’ similar performance in the pretest). 
However, their different exposure to the example 
topics did seem to impact how they interacted 
with examples. For instance, we have indications 
that the milder form of scaffolding provided by 
the SE-Coach in the control condition (i.e., the 
masking interface and untailored reminders) was 
suf fi cient to trigger effective self-explanation in 
early start students, but not in late-start students. 
In the experimental condition, although there was 
no difference in how frequently late and early-
start students accessed the SE tools, early-start 
students engaged in signi fi cantly fewer attempts 
to correct self-explanations that had been  fl agged 
as incorrect by the SE-Coach. We take this differ-
ence as an indication that, in the experimental 
condition, early-start students put less effort in 
learning from the SE-Coach tools than late-start 
students, perhaps because they overestimated 
their understanding of the subject matter, and 
thus they learned less. 

 In summary, our results provide encouraging 
evidence that it is possible and useful, if done at 
the right time, to provide students with 
 individualized guidance to studying examples 
before moving to problem solving. This guidance, 
delivered through adaptive prompts and a set of 
menu-based tools designed to scaffold the self-
explanation process, seems to be bene fi cial for 
students who have just started learning a topic. 
Simpler scaffolding based on untailored remind-
ers to self-explain appears to be more effective 
for students who have already had substantial 
exposure to the topic.  

   Discussion 

 In this section, we have illustrated how the 
SE-Coach includes an interface and a student 
model that allow it to monitor a student reading 
and self-explanation behavior while they study 
physics examples. This monitoring allows The 
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SE-Coach to prompt students to explicitly gener-
ate self-explanations using its ad-hoc interface 
tools  only  when the student model assesses that 
this can be bene fi cial for the student. In particular, 
the interface helps those students who do not self-
explain by drawing the students’ attention to 
example parts that may be problematic for them 
and by providing speci fi c scaffolding on what 
knowledge these explanations should tap. Asking 
students to always make their explanations 
explicit through the interface tools would of 
course enable more accurate assessment of their 
understanding, but would also burden the students 
who are natural self-explainers with unnecessary 
work, possibly compromising the constructive, 
spontaneous nature of their self-explanations and 
their motivation to use the system. 

 It should be noted that the SE-Coach model 
represents self-explanation operationally, but not 
explicitly. That is, model structure allows the 
SE-Coach to generate probabilistic predictions of 
if and how a student self-explains based on the 
semantics of rule application nodes. There are, 
however, no variables in the model that  directly  
represent implicit self-explanation behavior. This 
choice makes the model hard to extend with new 
sources of information to detect implicit self-
explanation, such as more precise ways to track 
student’s attention, speech etc. It also makes it 
hard to give the system the ability to  explain  its 
assessment to the student, because the system 
does not have access to the semantic information 
that identi fi es self-explanation in the current struc-
ture. In the next part of the chapter, we describe a 
research project that addresses this limitation of 
the SE-Coach in the context of scaffolding self-
explanation during a different study activity: 
learning via exploration interactive simulations   

   ACE: Adaptive Scaffolding of Self-
Explanation During Exploration-
Based Learning 

 The Adaptive Coach for Exploration (ACE) proj-
ect investigates how to provide individualized 
support to students as they learn from free explo-
ration of interactive simulations (Bunt, Conati, 

Hugget, & Muldner,  2001  ) . The need for support 
is justi fi ed by studies showing that free explora-
tion is a very effective way of learning for stu-
dents with the adequate abilities (e.g., adequate 
background knowledge and self-regulatory 
skills), but it may not work as well for students 
who need more structure and guidance (e.g., 
Shute & Glaser,  1990  ) ; The goal of the ACE proj-
ect is to  fi nd ways to capture students’ ineffective 
exploratory behaviors, and provide adaptive scaf-
folding to improve them. Modeling exploratory 
behaviors is hard because what constitutes effec-
tive exploration is not as well de fi ned as, for 
instance, what constitutes effective problem solv-
ing. There is no clear de fi nition of correctness; 
 how  or  how much  a student needs to explore in 
order to grasp the target concepts depends on a 
variety of factors including the student back-
ground knowledge and how the student uses this 
knowledge to make sense of the outcome of her 
exploration. The latter is a form of self- 
explanation, which distinguishes students who 
may be performing many exploratory actions but 
don’t learn because they fail to reason about their 
outcomes, from students who try to explain what 
they observe in terms of the target domain. 

 One of the main challenges of the ACE project 
has been to de fi ne a student model that captures 
at least some of the elements that de fi ne effective 
exploration, i.e., exploration that helps students 
understand the target domain. We have addressed 
the challenge by using, once again, a probabilis-
tic approach that combines in a Bayesian network 
information on what is relevant to explore in the 
target domain, what the student already knows 
about it and if/how the student self-explain dur-
ing exploration. 

 While the general approach is conceptually 
similar to the one we used for the SE-Coach, 
there are two main differences. First, the ACE 
student model has a much more explicit represen-
tation of self-explanation. Second, ACE uses 
eye-tracking to get more precise information on 
student’s behaviors related to self-explanation. 

 As a testbed for this research, we have devised 
an exploratory learning environment that targets 
the understanding of mathematical functions. 
In the next subsections, we  fi rst describe the 
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 environment and then we illustrate the student 
model we have implemented to track and support 
student exploration, self-explanation and learn-
ing in the environment. 

   The ACE Exploratory Environment 

 The ACE environment provides a series of activi-
ties to help students understand function-related 
concepts through exploration. These activities 
are divided into units and exercises. Units are 
collections of exercises whose material is pre-
sented with a common theme and mode of inter-
action. Exercises within the units differ in 
function type and equation. Figure  24.2  shows 
the main interaction window for two of ACE’s 
units: the  Machine Unit  and the  Plot Unit . ACE 
also has a third unit, the  Arrow Unit , not displayed 
for brevity. 

 The Machine and the Arrow Unit each provide 
a different activity designed to allow a learner to 
explore the relationship between input and output 
of a given function. In the Machine Unit, the 
learner can drag any of the inputs displayed at 
the top of the screen to the tail of the “machine” 
(the large arrow shown in Fig.  24.4 , left), 
which then computes the corresponding output. 
The Arrow Unit allows the learner to map, given 
a function, a selection of function’s inputs to a 
selection of given outputs, and is the only unit 

within ACE that has a clear de fi nition of correct 
behavior (i.e., the student must map the chosen 
input values to the correct output values). The 
Plot Unit (Fig.  24.4 , right) allows the learner to 
explore the relationship between a function’s 
graph and its equation by manipulating either one 
of the entities, and then observing the correspond-
ing changes in the other.  

 While performing a variety of exploratory 
actions is a fundamental component of effective 
exploration, the reasoning that goes with these 
actions is crucial to de fi ne the outcome of the 
exploration process. Ideally, the student should 
engage in a form of discovery process by which 
the target domain is explored in search of possi-
ble regularities, hypotheses on these regularities 
are formulated, and further domain exploration is 
used for hypothesis testing (e.g., Shute & Glaser, 
 1990  ) . We currently do not explicitly support this 
discovery process in ACE, but we support one of 
its building blocks, self-explanation of explor-
atory actions. To understand how self-explanation 
plays a key role in effective exploration, consider 
a learner who, in the ACE Plot Unit, moves a 
function graph around the screen, and rarely stops 
to consider how the movements change the func-
tion equation. Although this learner is perform-
ing many exploratory actions, she can hardly 
learn from them because she is not re fl ecting on 
(self-explaining) their outcomes. We observed 
this phenomenon in several learners during pre-

  Fig. 24.4    ACE’s machine and Plot Unit       
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liminary evaluations of ACE, and thus decided to 
add to the environment tools to scaffold the self-
explanation process, similar to the tools available 
with the SE-Coach (Bunt, Conati, & Muldner, 
 2004  ) . These tools include menu-based dialogue 
boxes that allow students to de fi ne various prin-
ciples that can be discovered by playing with the 
ACE simulations. Figure  24.5 , for instance, 
shows the dialogue box that allows the student to 
explain the relation between the negative 
coef fi cient of a line function and its intercept. 
The student can access these dialogue boxes at 
will during interaction, but they can also be 
suggested to the student by the ACE’s Coach.  

 The Coach is a component designed to support 
the exploration process by providing the student 
with tailored hints when ACE’s student model 
predicts that a student has dif fi culties exploring 
effectively. If the learner tries to move on to a 
new exercise before the student model assesses 
that the learner has explored the current exercise 
suf fi ciently, the Coach will generate a warning, 
suggesting that the learner stay with the current 
exercise a bit longer. These warnings also remind 
the learner of the availability of more speci fi c 
hints, accessible by clicking on a  Get Hint  button 
(not shown). Hints are supplied to the learner at 
increasing levels of detail, ranging from a generic 
suggestion to explore the current exercise more 
thoroughly, to exactly what things to explore 
(e.g., “You should see what the line function 

graph looks like when its equation has a negative 
 b  coef fi cient”). 

 The Coach uses the Student Model’s assess-
ment to decide which concept the hint should tar-
get. The student model also allows the Coach to 
identify students who likely are not self-explaining 
during exploration. As soon as the Coach detects 
lack of self-explanation, it generates a prompt to 
trigger the process. The prompt can be, as in the 
case of the hints, a generic reminder to self-
explain (see Fig.  24.6 ) or a more direct sugges-
tion that the Coach implements by opening for 
the student the menu-based SE tool relevant to 
generate the target self-explanation. Since the 
system is designed to maintain as much as possi-
ble the learner’s freedom and control in the 
exploratory process, it is up to the learner to 
decide which of the Coach’s suggestions to fol-
low and which to disregard.   

   ACE Student Model 

   Modeling Domain Exploration 

 ACE student’s model is the result of an iterative 
design-and-evaluation process that helped us 
de fi ne what constitutes effective exploration of 
the interactive simulations provided by the ACE 
interface. The model uses Bayesian networks to 
capture the probabilistic dependencies between 
the various exploration levels available in ACE, 

  Fig. 24.5    Example of ACE 
self-explanation tools       
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and how student exploration and learning changes 
overtime during interaction. To model explora-
tion at the various levels of granularity afforded 
by the interface, the SE-Coach includes the fol-
lowing types of nodes:  Relevant Exploration 

Cases , representing exploration of individual 
exploration cases in an exercise (e.g., changing 
the slope of a line to three, a positive number, in 
the Plot Unit);  Exploration of Exercises  and 
 Exploration of Units,  representing adequate 
exploration for the various ACE exercises and 
units, respectively; and  Exploration of Categories,  
representing the exploration of groups of relevant 
exploration cases that appear across multiple 
exercises (e.g., all of the exploration cases involv-
ing a positive slope in the Plot Unit). The links 
among the different types of exploration nodes 
represent how they interact to de fi ne effective 
exploration. Exploration nodes have binary val-
ues representing the probability that the learner 
has suf fi ciently explored the associated items. 
Figure  24.7  (left) shows a high-level representa-

tion of the various types of exploration nodes and 
their relationships; Fig.  24.7  (right) shows a snap-
shot of the actual nodes in the model after the 
student opens an exercise in the Plot Unit (node 
e 

0
  in the  fi gure) and changes the intercept param-

eters of the corresponding function  fi rst to a 
positive and then to a negative number (nodes e 

0
  

case 
0
  and e 

0
  case 

1
  in the  fi gure). The links here 

re fl ect how exploration of a speci fi c exercise (e 
0
  

in Fig.  24.7 ) is in fl uenced by speci fi c simulation 
cases explored within that exercise (nodes e 

0
  

case 
0
  and e 

0
  case 

1
  in the  fi gure). These cases also 

in fl uence exploration of relevant categories 
(represented by nodes  Negative Intercept  and 
 Positive Intercept  in Fig.  24.7 , right), while exer-
cise exploration in turns in fl uences exploration of 
the corresponding using (represented by the  Plot 

Unit  node in this case). The student model also 
includes binary nodes representing the probabil-
ity that the learner understands the relevant pieces 
of knowledge. The links between knowledge and 
exploration nodes represent the fact that the 

  Fig. 24.6    Initial prompt to self-explain in ACE       

 



37924 Modeling and Scaffolding Self-Explanation Across Domains and Activities

degree of exploration needed to understand a con-
cept depends on how much knowledge a learner 
already has. Knowledge nodes are updated only 
through actions for which there is a clear de fi nition 
of correctness. Thus, these nodes are never 
updated within the Machine and Plot Unit, since 
they consist of purely exploratory activities.  

 While existing knowledge plays an important 
role in assessing how well a student is exploring, 
as we discussed in the previous section another 
key element is whether the student self-explains 
her exploratory actions. Thus the ACE’s student 
model also includes nodes and links that allow it 
to model the student self-explanation behavior. 
As for the SE-Coach, this self-explanation behav-
ior includes both self-explanations built via the 
ACE’s tools ( explicit  self-explanation) as well as 
self-explanations that a student generates sponta-
neously in her head ( implicit  self-explanation). In 
this section we focus on the latter because it is the 
most interesting from a modeling perspective. In 
particular, we illustrate the improvements we 
made to the approach used in the SE-Coach to 
make tracking of student self-explanation more 
thorough and accurate.  

   Modeling Self-Explanation During 

Exploration 

 The reader should recall from Sect.  3.2  that, in 
the SE-Coach student model, assessment of self-
explanation is based solely on latency of student 
attention on a given example line and student 

knowledge of the relevant domain principles. 
However, there are at least two other factors that 
can provide an indirect indication of a student’s 
self-explanation behavior in ACE: whether or not 
the learner is observing the results of her explora-
tion actions, and the learner’s known tendency 
to spontaneously self-explain. Consider, for 
instance, the case of the learner who is continu-
ally altering a graph in the Plot Unit. ACE’s stu-
dent model could be more con fi dent that this is a 
sign of good exploration if the learner looks at 
both the graph and the equation as they change. 
Knowing a priori that the learner has a tendency 
to self-explain could further increase the model’s 
con fi dence that the learner is engaging in the 
relevant reasoning as she is experimenting with 
the simulation. 

 The ACE’s student model takes all these 
factors into account by using the structure in 
Fig.  24.7 , right. The probability that a learner’s 
action re fl ects effective exploration of a given 
case depends on both the probability that the stu-
dent self-explained the action and the probability 
that she knows the corresponding concept. 
Factors in fl uencing the probability that implicit 
self-explanation occurred include: (1) the  ten-

dency  that the learner has to self-explain (SE ten-
dency node in the  fi gure); (2) the  time  spent on 
the case (i.e., between performing the related 
exploratory action and a subsequent action); 
(3) whether the student actually looked at the 

  Fig. 24.7    ACE model. Different exploration levels ( left ); Snapshot of model details ( right )       
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changes her action generated ( gaze shift  node in 
the  fi gure). The directions of the links between 
the  implicit SE  node and these factors show how 
this model enforces a clear separation between 
the causes of implicit self-explanation (e.g., stu-
dent SE tendency) and its observable effects, 
(e.g., gaze shifts and time on action). These 
effects are encoded as independent predictors, as 
in a naïve Bayesian classi fi er. 

 The main advantage of this approach is that it 
is highly modular, facilitating the addition of new 
factors as causes of implicit self-explain (e.g., 
ACE’s self-explanation prompts) or additional 
observable effects (e.g., student speech) become 
available. Adding additional effects is especially 
straightforward, because it only requires de fi ning 
the probabilistic relation between implicit self-
explanation and each new effect. 

 For the version of the model in Fig.  24.7 , all 
relevant probabilities related to the Implicit SE 
node were learned from data from an ad-hoc user 
study. This data currently focus on interaction 
with the Plot Unit. In this study, 36 participants 
had their gaze monitored via an eye-tracker while 
interacting with ACE (Conati & Merten,  2007  ) . 
The students were asked to verbalize all of their 
thoughts during interaction, and their interface 
actions were logged and synchronized with data 
from the eye tracker. This data captured gaze 
shifts between the plot and equation area after a 
plot move or equation change in the Plot Unit. 
While other attention patterns may be relevant, we 
decided to focus on this particular attention pattern 
as a proof-of-concept to show the value of atten-
tion data to detect self-explanation because it pro-
vides intuitive evidence that the student is at least 
attending to the effect of a speci fi c action in the 
Plot Unit. During the study, participants also took a 
pretest and a posttest on mathematical functions. 

 Two researchers (to assure coding reliability) 
categorized student verbalizations after equation 
and plot changes as instances of self-explanation 
versus speech not conducive to learning. Then, 
they mapped these verbalizations onto presence/
absence of gaze shifts and latency until the next 
action, to obtain frequency data that we used to 
set the conditional probability of gaze shift and 
time of action given implicit self-explanation. 
Data from the study was also used to de fi ne the 

CPT for implicit self-explanation given tendency 
to self-explain. Study participants were divided 
into  self-explainers —those who self-explained at 
least 20% of the time—and  non-self- explainers —
those who did not. We found that self-explainers 
and non-self-explainers generated implicit self-
explanations on average 79.8% and 13.3% of the 
time, respectively. These frequencies were then 
used to set the conditional probability for the 
Implicit SE node given tendency to self-explain. 
Incidentally, we found that the group of students 
that were categorized as self-explainers obtained 
a mean 24% learning gain, signi fi cantly higher (at 
the 0.05 level) than the 5.7% gain achieved by non-
self-explainers, con fi rming that self- explanation 
has a signi fi cant effect on overall learning during 
exploration of an interactive simulation. 

 In the next section, we describe an evaluation 
of the ACE student model showing that it effec-
tively tracks not only self-explanation, but also 
consequent learning, thanks especially to the 
input from eye-tracking data.   

   Evaluations of ACE 

 The Coach’s prompts to continue exploring an 
exercise, and the corresponding hints were evalu-
ated with a version of the student model that did 
not capture self-explanation (Bunt et al.,  2001  ) . 
The study showed these prompts to be effective 
in directing student exploration when they 
appeared, although that version of the ACE model 
underestimated student exploration and thus 
some learners did not receive as many prompts as 
they could have used. 

 The full version of ACE including the student 
model described in the previous section and hints 
for both exploration and self-explanation has yet 
to be evaluated. We have, however, evaluated the 
complete student model using the data from the 
study described in the previous section. We com-
pared the complete model against (1) a model 
using only time as predictor of self-explanation 
and (2) an earlier version of the model that ignores 
self-explanation and uses only the number of 
interface actions as a predictor of effective explo-
ration. We ran a leave-one-out cross-validation 
over the 36 study participants (see Conati & 
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Merten,  2007  for additional data analysis). This 
procedure involved isolating each of the 36 par-
ticipants in turn, setting model parameters using 
the data from all remaining 35 participants, and 
then using the resulting model to assess self-
explanation and learning for the test participants. 
Model performance on assessing self-explanation 
was evaluated against the self-explanation labels 
generated by the human judges as part of the 
study. Performance on assessing learning was 
evaluated by comparing the posterior probabili-
ties of nodes representing successful exploration 
of speci fi c concepts and student performance on 
posttest questions targeting these concepts. We 
report the average accuracy over all 36 partici-
pants, as the average of the model’s sensitivity 
(or true positive rate) and speci fi city (or true neg-
ative rate). We found the following:

   The model including both gaze and time data • 
reached an accuracy of 76.4% and provides 
better assessment of student self-explanation 
than the model using only time (67.2%). The 
difference is statistically signi fi cant ( p  < 0.05).  
  Assessing self-explanation improves the assess-• 
ment of student exploratory behavior, and the 
accuracy of the latter increases with increased 
accuracy of self-explanation assessment. Thus, 
the complete model reaches the highest accu-
racy on learning (77.5%), followed by the 
model based on time only (70.4%). All improve-
ments are statistically signi fi cant.     

   Discussion 

 The results presented in the previous sections 
show that capturing implicit student self-expla-
nation during interaction with ACE is possible 
and important not only to enable tailored support 
to this meta-cognitive skill, but also to improve 
model’s ability to assess and support effective-
ness of student exploratory behavior. The next 
step of this research is to evaluate adaptive inter-
ventions based on the model we presented in the 
previous section, especially the prompts to scaf-
fold self-explanation. These prompts currently 
appear near the area of the Plot Unit that requires 
self-explanation (e.g., the plot of a line function 
in Fig.  24.6 ), as soon as the student model 

assesses that the student is not self-explaining. 
We have chosen this approach, rather than wait-
ing until the student tries to close the current 
exercise as ACE does for exploration prompts, 
because it is important that self-explanation of 
each action happens in context. Given the open-
ended nature of the interaction with the SE-Coach, 
it would be hard to recreate the relevant context if 
students were asked to self-explain individual 
actions at the end of an exercise’s exploration. 
Presenting the prompts in the middle of the 
exploration process, however, runs the danger of 
being intrusive, especially if the prompts are not 
justi fi ed. An alternative is to make the prompts 
appear on the side of the main interaction win-
dow, so that the student can more easily ignore 
them if they are not useful. We are planning to 
evaluate these two alternative designs to investi-
gate how to strike the right balance between 
prompt unobtrusiveness and ef fi cacy. We also 
want to extend the student model to cover the 
other ACE units, after collecting the necessary 
self-explanation data.   

   Conclusions 

 In this chapter, we discussed our research on pro-
viding student-adaptive support for the meta-
cognitive skill of self-explanation. One 
contribution of our research is the design and 
development of student models that assess a stu-
dent’s self-explanation behavior, so that adaptive 
support can be tailored to it. Other researchers 
have investigated generating prompts for self-
explanation. However, these prompts are either 
not tailored (e.g., the student is asked to self-
explain every piece of relevant instructional 
material or each of her problem solving actions) 
or are tailored to more indirect evidence of need 
for self-explanation (e.g., whether a problem 
solving action has been taken for the  fi rst time or 
is incorrect). While some of these non-tailored 
approaches have generated encouraging results 
(e.g., Aleven & Koedinger,  2002 ; Crippen & 
Boyd,  2007 ; McLaren et al.,  2008  )  there is still 
large room for improvement. We argue that 
prompts more adaptive to the students’ actual 
self-explanation needs may be more salient, less 
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intrusive and thus more effective to improve stu-
dent learning and long-term self-explanation 
ability. In the  fi rst part of this chapter, we showed 
support for this claim in relation to the SE-Coach, 
an ILE that generates adaptive support for self-
explanation while students study physics exam-
ples. In particular, we showed that the adaptive 
support makes a difference for students who have 
just started learning the examples’ topic, while 
untailored prompts worked as well as the adap-
tive support for more advanced students. 

 Assessing student self-explanation behavior 
unobtrusively requires recognizing when stu-
dents self-explain spontaneously in their head. 
This requirement is hard to ful fi ll for a software 
system that has no direct access to students’ 
thoughts or verbalizations. In the second part of 
the chapter, we described our investigation of 
eye-tracking information on student attention as 
a way to improve recognition of student sponta-
neous self-explanation in the context of learning 
by exploration of interactive simulations. The 
contributions of this work are twofold:  fi rst, we 
showed the relevance of self-explanation in 
exploration-based learning, an activity in which 
this meta-cognitive skill was yet to be studied. 
Second, we showed that information on user 
attention patterns collected via an eye-tracking 
signi fi cantly increases a model’s ability to cap-
ture self-explanation, compared to a lower-level 
time-based predictor. 

 Based on latency on interface actions, we 
now need to demonstrate that having this more 
sophisticated model improves support for self-
explanation during exploration-based learning, 
compared to nonadaptive forms of scaffolding. 
We also need to show that our adaptive scaffolding 
improves not only learning of the target domain/
skills but also the student’s long-term self-explana-
tion ability. Finally, we want to generalize this 
research to computer-based educational games. 
Edu-games are another educational activity that, 
like interactive simulations, relies on unstructured, 
open interaction with a rich but possibly distracting 
or confusing environment and thus may bene fi t 
from interventions that trigger student deep reason-
ing via self-explanation at the appropriate times.      
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   Introduction 

 Speech and language researchers have shown that 
speaker uncertainty is associated with linguistic 
signals (Dijkstra, Krahmer, & Swerts,  2006 , 
Liscombe, Venditti, & Hirschberg,  2005 , Nicholas, 
Rotaru, & Litman,  2006 , Pon-Barry,  2008  ) , while 
tutoring researchers have    hypothesized that tutors 
use such signals to detect and address student 
uncertainty in order to improve performance met-
rics including student learning, persistence, and 

system usability (Aist, Kort, Reilly, Mostow, & 
Picard,  2002 , Litman, Moore, Dzikovska, & 
Farrow,  2009 , Tsukahara & Ward,  2001  ) . For 
example, VanLehn et al.  (  2003  )  propose that both 
student uncertainty and incorrectness signal “learn-
ing impasses,” i.e., student learning opportunities. 
While correlational studies have shown a link 
between learning and student uncertainty as well 
as the related notion of confusion in tutorial dia-
logue (Craig, Graesser, Sullins, & Gholson,  2004 , 
Forbes-Riley, Rotaru, & Litman,  2008b  ) , few con-
trolled    experiments have investigated whether 
responding to student impasses involving uncer-
tainty improves learning, and those that did yielded 
overall null results (e.g., (Pon-Barry et al.,  2006  ) ). 
To date, most computer dialogue tutors respond 
based only on student correctness. 

    D.   Litman   (*) •     K.   Forbes-Riley  
     Learning Research and Development Center , 
 University of Pittsburgh ,   Pittsburgh ,  PA   15260 ,  USA    
e-mail:  litman@cs.pitt.edu   
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  Abstract 

 We hypothesize that enhancing computer tutors to respond to student uncer-
tainty over and above correctness is one method for increasing both student 
learning and self-monitoring abilities. We test this hypothesis using spoken 
data from both wizarded and fully-automated versions of a spoken tutorial 
dialogue system, where tutor responses to uncertain and/or incorrect stu-
dent answers were manipulated. Although we fi nd no signifi cant improve-
ment in metacognitive metrics (computed using speech and language 
information) when responding to uncertainty and incorrectness as com-
pared to when responding only to incorrectness, we fi nd that some meta-
cognitive metrics signifi cantly correlate with student learning. Our results 
suggest that monitoring and responding to student uncertainty has the 
potential to improve both cognitive and metacognitive student abilities.      

      Towards Improving (Meta)cognition 
by Adapting to Student Uncertainty 
in Tutorial Dialogue       

     Diane   Litman       and    Kate   Forbes-Riley      
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 In prior work, we experimentally compared 
learning gains across versions of a spoken  tutorial 
dialogue system that differed in whether and how 
they adapted to student uncertainty. In our experi-
mental conditions, the system provided additional 
knowledge at places of uncertainty; in the control 
conditions, the system either did not provide this 
knowledge, or provided such knowledge ran-
domly. In a  fi rst experiment we used a wizarded 
form of our system, where uncertainty and cor-
rectness were manually annotated in real time by 
a human “wizard” (Forbes-Riley & 
Litman,  2009a ,  2011b  ) . Our results demonstrated 
that responding to student uncertainty, over and 
above correctness, did indeed lead to performance 
improvements along cognitive dimensions. In a 
subsequent experiment we used a fully automated 
version of our system, where uncertainty in each 
student turn was (noisily) detected using acous-
tic-prosodic and lexical features extracted from 
the speech signal, as well as dialogue features. 
Our results were again that enhancing our system 
to respond to uncertainty yielded higher student 
learning gains than non-adaptive control systems, 
but here the difference was only signi fi cant for a 
subset of students after we controlled for the pro-
portion of additional tutoring content received 
during the tutoring interaction. In particular, stu-
dents who received the adaptation learned 
signi fi cantly more than students in a control con-
dition who randomly received an equal propor-
tion of additional tutoring content. Based on 
system error analyses we concluded that the 
uncertainty adaptation had only a small effect on 
learning in the fully automated system because 
the system did not automatically recognize stu-
dent uncertainty often enough and thus did not 
give the adaptation often enough (see  Forbes-
Riley & Litman  (  2011a  )  for further details). 

 In this chapter we turn our attention to student 
metacognition. First, we show how to construct 
measures of student metacognitive performance 
(e.g., monitoring accuracy, bias, discrimination) 
using the manually and automatically created tutor 
annotations of student uncertainty and correctness 
available from our prior wizarded and fully auto-
mated experiments, respectively. Next, we exam-
ine whether our prior tutor adaptations to student 

uncertainty—which have already been shown to 
improve cognition—can also improve metacogni-
tion. Finally, we examine whether our measures of 
metacognitive performance are correlated with our 
measures of cognitive performance (i.e., learning 
gain), and whether such correlations are robust to 
the noise introduced by speech and language pro-
cessing techniques. Analyses of the data from both 
our wizarded and fully automated experiments 
demonstrate that by responding to student uncer-
tainty in new ways, tutorial dialogue systems have 
the potential to further improve both cognitive and 
metacognitive performance.  

   Systems and Data 

 This research uses corpora of dialogues (see 
Figs. 25.2–25.3 for examples) between students 
and both ITSPOKE-WOZ and ITSPOKE-AUTO, 
wizarded and fully automated versions of 
ITSPOKE ( I ntelligent  T utoring  SPOKE n dia-
logue system), respectively. ITSPOKE in turn is a 
speech-enabled version of the Why2-Atlas quali-
tative physics tutor (VanLehn et al.,  2002  ) , which 
asks “why-type” questions relating to Newtonian 
physics. 1  The corpora were collected in our prior 
experiments evaluating the utility of enhancing 
ITSPOKE to respond to impasses involving student 
uncertainty over and above correctness, in wiz-
arded (Forbes-Riley & Litman,  2009a ,  2011b  )  and 
fully automated (Forbes-Riley & Litman,  2011a  )  
conditions. The target audience for ITSPOKE are 
novices, i.e., college students who have never 
taken college-level physics. 

 The conceptual framework of our work is based 
on the theory of learning impasses. Motivated 
by research that views uncertainty as well as 

   1   The version of ITSPOKE used here differs from the orig-
inal ITSPOKE and Why2-Atlas in that the system has 
been reimplemented using the TuTalk tools for authoring 
tutorial dialogue systems (Jordan, Hall, Ringenberg, Cui, 
& Rosé,  2007  )  and does not include the essay writing 
component of Why2-Atlas. As will be discussed, several 
versions of ITSPOKE used in the experiments reported 
here (in particular, in the experimental but not in the 
control conditions) have in addition been enhanced to 
detect and adapt to student uncertainty.  



38725 Student Uncertainty in Tutorial Dialogue

incorrectness as signals of “learning impasses” 
(VanLehn et al.,  2003  ) , i.e., opportunities for the 
student to learn the material that he/she is incor-
rect or uncertain about, the original version of 
ITSPOKE was modi fi ed to associate one of four 
impasse states with every student answer. The four 
impasse states correspond to all possible combina-
tions of binary student  uncertainty  (uncertain ( U ), 
nonuncertain ( nonU ) 2 ) and  correctness  (incorrect 
( I ), correct ( C )), as shown in Fig.  25.1 . 3  

 The incorrectness component of each state 
re fl ects the actual accuracy of the student’s answer, 
while the uncertainty component re fl ects the 
tutor’s perception of the student’s awareness of 
this accuracy. The scalar ranking of impasse states 
in terms of severity combines these two compo-
nents and will be discussed below. While the orig-
inal ITSPOKE only remediated incorrectness 
impasses (InonU and IU states), our uncertainty-
adaptive ITSPOKE also remediates all uncertainty 
impasses (CU states – note that IU impasses were 
already remediated in the original non-adaptive 
system). Impasse theory is similar to cognitive 
disequilibrium theory (Craig, Graesser, Sullins, 
& Gholson,  2004  ) , which predicts that confusion 
is likely to occur during cognitive disequilibrium, 
and that trying to restore equilibrium will lead to 
learning gains.  

   ITSPOKE-WOZ 

 The ITSPOKE-WOZ corpus consists of 405 dia-
logues between 81 students and ITSPOKE-WOZ, 
a semi-automatic version of ITSPOKE where a 
human “wizard” performed speech recognition 

as well as correctness and uncertainty annotation. 
That is, each student turn was annotated in real 
time by the wizard during the experiment, pro-
ducing the binary student uncertainty and cor-
rectness tags. 4

 
 Using a wizard allowed us to 

examine the impact of adapting to uncertainty 
impasses in upper-bound tutorial dialogue condi-
tions, that is, without the errors introduced by 
using automated speech and language processing 
components. In both human and automatic detec-
tion of uncertainty, common indicators of student 
uncertainty include lexical hedges (e.g.,“I think”), 
pitch features (e.g., rising intonation), temporal 
features (e.g., pausing), and energy features (e.g,. 
soft-spokeness). Such features have been vali-
dated both through interannotator agreement 
studies and automatic detection studies 
(c.f., Forbes-Riley & Litman  2011a  ) . 

 The experimental procedure for collecting the 
corpus was as follows: subjects who had never 
taken college physics read a short physics text, took 
a multiple-choice pretest, worked  fi ve problems 5  
(i.e., engaged in  fi ve dialogues) with ITSPOKE, 
took a survey 6 , and took an isomorphic posttest. 

 The experiment had two control and two 
experimental conditions. Complete details about 
these conditions are provided elsewhere (Forbes-
Riley & Litman,  2011b  ) ; here we brie fl y outline 
the differences between them.   

   2   A ‘nonuncertain’ answer may be certain or neutral.  

   3   For example, the 6,561 student turns in    the ITSPOKE-
WOZ corpus are distributed among these states as fol-
lows: 650 InonU (10%), 764 IU (12%), 727 CU (11%), 
and 4,420 CnonU (67%).  

  Fig. 25.1    Different Impasse 
State Severities       

   4   This wizard displayed interannotator agreement of 0.85 
and 0.62 Kappa on post-experimental labeling of correct-
ness and uncertainty, respectively, in prior studies (Forbes-
Riley & Litman,  2008  ) .  

   5   For example, the problem referred to in the dialogue 
excerpts in Figs. 25.2–25.3 is: “Suppose a man is running 
in a horizontal line at a constant velocity. He tosses a 
pumpkin vertically up while he is running. Where will the 
pumpkin land relative to the man? Assume that air resis-
tance is negligible.”  

   6   The survey is not used    in this paper; see (Forbes-Riley & 
Litman,  2009a  )  for the survey usage.  
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 The  nonAdapt  control condition remediated 
only incorrectness impasses ( InonU, IU ), as in 
the original ITSPOKE. An example dialogue 
excerpt from this condition is shown in Fig.  25.2  . 
As shown,  ITSPOKE2  provides feedback indi-
cating the    correctness of the  CU  answer and 
ignores the uncertainty. 

 In contrast, the two experimental conditions 
remediated both uncertainty and incorrectness 
impasses ( InonU, IU, CU ), but each used a differ-
ent approach. The  Simple  experimental condition 
used the same remediation for all impasse types, 
with only feedback phrases varying based on answer 
correctness (e.g., “That’s right” versus “That’s 
wrong”). An example dialogue excerpt is shown in 
Fig.  25.3  . As shown,  ITSPOKE2  provides feed-
back indicating the correctness of the  CU  answer 
and then responds to the uncertainty by providing 
the same remediation subdialogue (i.e., a series of 
additional questions) that would have been provided 
if the student answer were incorrect. Only the  fi rst 

question in this remediation subdialogue is shown. 
Note that  IU and InonU  answers already receive 
this remediation subdialogue (because they are 
incorrect). Therefore, the  Simple  uncertainty adap-
tation impacts only  CU  answers. 

 In contrast to the  Simple  experimental condi-
tion, the  Complex  experimental condition used 
different dialogue act presentations of the incor-
rect answer content (e.g., remediation subdia-
logue questions versus “bottom out” statements) 
 and  different feedback phrases (e.g., “That’s 
exactly right, but you seem unsure” for  CU  ver-
sus “Great try, but I think you know there is a 
mistake in your answer” for  IU ) to respond to 
each impasse type ( CU, IU, InonU ). Example 
dialogue excerpts for each impasse type are 
shown in Fig.  25.4  . As shown, in each case, 
 ITSPOKE2  provides feedback responding to the 
speci fi c impasse type of the answer and then pro-
vides the same additional content responding to 
the impasse, but the dialogue act used to present 

  Fig. 25.2    Example of  nonAdapt  ITSPOKE Response to  CU  Answers       

  Fig. 25.3    Example of  Simple  Uncertainty Adaptation (for  CU  Answers only)       
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this additional content depends on the speci fi c 
impasse type of the answer. 7  

 Finally, the  Random  control condition treated 
a percentage of random correct answers as incor-
rect, to control for the additional content in the 
experimental conditions. The motivation for and 
further details of each experimental condition are 
discussed in detail elsewhere (Forbes-Riley & 
Litman,  2009a ,  2011b  ) .   

   ITSPOKE-AUTO 

 The ITSPOKE-AUTO corpus consists of 360 dia-
logues between 72 students and ITSPOKE-AUTO, 
a fully automated version of ITSPOKE in which 
speech recognition as well as correctness and 
uncertainty annotation were automatically per-
formed by speech and language processing com-
ponents. Student speech was digitized from 
microphone input and sent to the Sphinx2 speech 
recognizer (Huang et al.,  1993  ) , whose stochastic 
language models were trained on the ITSPOKE-
WOZ corpus and prior ITSPOKE corpora. 
Correctness was automatically labeled on the 

  Fig. 25.4    Example of  Complex  Uncertainty Adaptation for  CU, IU, and InonU  Answers       

   7   The dialogue act variations were developed based on 
analysis of human tutor responses to uncertainty in a 
human tutoring corpus (see (Forbes-Riley & 
Litman,  2009a  )  for further details).  
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speech recognition output using the TuTalk seman-
tic analyzer (Jordan et al.,  2007  ) , which was trained 
on the ITSPOKE-WOZ corpus. Uncertainty was 
automatically labeled on the speech recognition 
output using an uncertainty model built with 
WEKA software (Witten & Frank,  1999  )  from 
features of the student speech and dialogue con-
text, including lexical, pitch, temporal, and energy 
features as well as tutor question and gender. The 
uncertainty model is a logistic regression equation 
that was trained on the ITSPOKE-WOZ corpus, 
where the wizard’s labels were the ground truth 
labels. The most important predictors of student 
uncertainty in the model were pitch and lexical 
features of the student’s current turn, as well as the 
type of tutor question in the preceding turn. 

 The ITSPOKE-AUTO corpus was collected 
using the procedure from the ITSPOKE-WOZ 
experiment, although the experimental condi-
tions were changed in two ways. First, the 
 Complex  experimental condition was removed. 
We removed this condition as only  Simple  yielded 
learning improvements for ITSPOKE-
WOZ (Forbes-Riley & Litman,  2009a ,  2011b  ) . 
Second,  Random  was changed so that ITSPOKE-
AUTO randomly remediated after only CnonU 
answers (non-impasse states). We changed this 
condition because in ITSPOKE-WOZ neither 
wizarded experimental condition outperformed 
 Random  (Forbes-Riley & Litman,  2009a ,  2011b  ) ; 
we hypothesized this was because CU impasses 
were sometimes adapted to in  Random . Full 
details of the ITSPOKE-AUTO system, includ-
ing a performance analysis of the speech and lan-
guage processing components and their impact 
on the learning results, are presented else-
where (Forbes-Riley & Litman,  2010 ,  2011a  ) .   

   Metacognitive Measures 

 In this section we introduce several ways of com-
bining the corpus uncertainty and correctness 
annotations into single quantitative performance 
measures. Note that all measures are computed 
on a per student basis (over all  fi ve dialogues). 

 Our  fi rst measure is based on a ranking of 
impasses by severity. In particular, we  fi rst  associate 

a scalar  impasse severity  value with each student 
answer in our corpus, based on either our wizard’s 
or automatically computed correctness and uncer-
tainty annotations. We then compute an average 
impasse severity per student, according to whether 
the impasses were due to uncertainty, incorrect-
ness, or both. Our severity values were proposed in 
our earlier work (Forbes-Riley, Litman, & Rotaru, 
 2008a  )  and are shown in Fig.  25.1 . According to 
our ranking, the most severe type of impasse (sever-
ity 3) occurs when a student is incorrect but not 
aware of it. States of severity 2 and 1 are of increas-
ingly lesser severity: the student is incorrect but 
aware that he/she might be, and the student is cor-
rect but uncertain about it, respectively. Finally, no 
impasse exists when a student is correct and not 
uncertain about it (severity 0). These severity rank-
ings re fl ect our belief that to resolve an impasse, a 
student must  fi rst perceive that it exists. Incorrectness 
simply indicates that the student has reached an 
impasse, while uncertainty—in a correct or incor-
rect answer—indicates that the student perceives 
he/she has reached an impasse. 

 From the standpoint of measuring metacogni-
tion, average impasse severity represents the sim-
plest of our measures. Each impasse state re fl ects 
a current state of “self-monitoring”: states 1 and 
3 are currently inaccurate self-monitoring, while 
states 0/2 are currently perfect self-monitoring. 
However, the ranking of states adds a further cog-
nitive component to the metric, by indicating how 
far the current self-monitoring state is from objec-
tive correctness. 

 The rest of our measures are taken from the 
metacognitive performance literature. The knowl-
edge monitoring accuracy measure that we use is 
the Hamann coef fi cient  (HC)  (Nietfeld, Enders, & 
Schraw,  2006  ) . 8  This measure has previously been 
used to measure the monitoring accuracy of one’s 
own knowledge (“feeling of knowing” (FOK)), 
which is closely related to uncertainty. 
Psycholinguistics research has shown that speakers 

   8   While the Gamma measure is often also used, there is a 
lack of consensus regarding the relative bene fi ts of Gamma 
versus HC (Nietfeld et al.,  2006  ) , and we have found HC 
to be more predictive for our corpus (Litman & Forbes-
Riley,  2009b  ) .  
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display FOK in conversation using linguistic 
cues (Smith & Clark,  1993  )  and that listeners can 
use the same cues to monitor the FOK of some-
one else (“feeling of another’s knowing” 
(FOAK)) (Brennan & Williams,  1995  ) . High and 
low FOK/FOAK judgments have also been asso-
ciated with speaker certainty and uncertainty, 
respectively (Dijkstra et al.,  2006  ) . 

 HC measures absolute knowledge monitoring 
accuracy, or the accuracy with which certainty 
re fl ects correctness. HC ranges in value from -1 (no 
knowledge monitoring accuracy) to 1 (perfect accu-
racy). We compute HC from our correctness and 
uncertainty annotations as shown below; the numer-
ator subtracts cases where (un)certainty is at odds 
with (in)correctness from cases where they corre-
spond, while the denominator sums over all cases.  

         

 To illustrate the reasoning behind HC and the 
other metacognitive performance measures used 
in this paper, consider an FOK-type experimental 
paradigm (Smith & Clark,  1993  ) , where subjects 
(1) respond to a set of general knowledge ques-
tions, (2) take a survey, judging whether or not 9  
they think they would be uncertain about the 
answer to each question in a multiple choice test, 
and (3) take such a multiple-choice test. In 
FOAK-type paradigms such as ours, the  tutor  
annotates the correctness and uncertainty for each 
student answer. As shown in Fig.  25.5  , such FOK 
or FOAK data can be summarized in an array 
where each cell represents a mutually exclusive 
option: the row labels represent the possible uncer-

tainty judgments (nonuncertain or uncertain), 
while the columns represent the possible correct-
ness results of the multiple-choice test (correct or 
incorrect). Given such an array, various relation-
ships between the correctness of answers, and the 
judged uncertainty of the answers, can then be 
computed. 

 Following Saadawi et al.  (  2009  ) , who investi-
gate the role of immediate feedback and other 
metacognitive scaffolds in a medical tutoring 
system, we additionally measure metacognitive 
performance in terms of  bias  and  discrimina-

tion  (Kelemen, Frost, & Weaver,  2000  ) . As with 
HC, we compute these measures using our tutor’s 
correctness and uncertainty annotations.  

 Bias measures the overall degree to which 
con fi dence matches correctness. Bias scores 
greater than and less than zero indicate 
overcon fi dence and undercon fi dence, respec-
tively, with zero indicating best metacognitive 
performance. We compute bias as shown below. 
The  fi rst term represents the relative proportion 
of con fi dent answers (certain cases/all cases); the 
second represents the relative proportion of cor-
rect answers. 

         

 Discrimination measures the ability to dis-
criminate performance in terms of (in)correct-
ness. Discrimination scores greater than zero 
indicate higher metacognitive performance. As 
shown below, the  fi rst term represents the propor-
tion of correct answers judged as certain, and the 
second term represents the proportion of incor-
rect answers judged as certain.  

         

 To illustrate the computation of our metacog-
nitive performance metrics, suppose the anno-
tated dialogue excerpt in Fig.  25.4   represented 
our entire dataset (from a single student). Then 
we would have the following values for our met-
rics for that student: 

(CnonU IU) (InonU CU)
HC

(CnonU IU) (InonU CU)

+ − +
=

+ + +

CnonU InonU
bias

CnonU InonU CU IU

CnonU CU

CnonU InonU CU IU

+
=

+ + +

+
−

+ + +

CnonU InonU
discrimination

CnonU CU InonU IU
= −

+ +

  Fig.  25.5    Measuring Student Metacognitive Performance       

   9   Likert scale rating schemes are also possible.  
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   Results 

 In this section we investigate whether the mea-
sures introduced in the previous section differ 
across our experimental conditions, and/or predict 
student learning gains, using the corpora from 
both the ITSPOKE-WOZ and ITSPOKE-AUTO 
experiments. We  fi rst run a one-way ANOVA with 
condition as the between-subject factor, along 
with a planned comparison for each pair of condi-
tions, hypothesizing the following performance 
ranking:  Complex > Simple > Random > non-

Adapt . Even though our experiment was designed 
to only impact learning gain, we hypothesized 
that the experimental conditions might still reduce 
impasse severity: by responding contingently to 
uncertainty the tutor responded to, and thus per-
haps resolved, more impasse types. For similar 
reasons, we hypothesized that the experimental 
conditions might also improve student accuracy 
in monitoring their own uncertainty (i.e., FOK), 
particularly in  Complex  where the tutor’s feeling 
of the student’s uncertainty (i.e., FOAK) was 
explicitly stated. Our HC metric measures inferred 
(rather than actual) student self-monitoring accu-
racy (because it was derived from our tutor’s 
uncertainty labels, rather than student judgments 

of their own uncertainty). We had similar hypoth-
eses for bias and discrimination.   

 Second, we compute a partial Pearson’s corre-
lation over all students between each metacogni-
tive measure and posttest score, controlled for 
pretest score to measure learning gain. We hypoth-
esized that even if we did not  fi nd any metacogni-
tive differences between conditions, lower impasse 
severities, higher self-monitoring accuracies, less 
bias, and better discrimination would still be bet-
ter for students overall, from a cognitive perspec-
tive. Our rational for this hypothesis was, simply 
put, that students who are more accurate in their 
self-monitoring know when their answers are 
incorrect, and thus know when to take steps to 
correct their errors after the system provides the 
correct answer and the reasoning behind it. 

   ITSPOKE-WOZ 

 The “Means” columns in Table 25.1 show the 
means per condition in the ITSPOKE-WOZ 
experiment, where each metacognitive measure 
was computed using the wizard’s uncertainty and 
correctness annotations. As predicted, both exper-
imental conditions had lower average impasse 
severity than  Random , and  Random  was lower 
than  nonAdapt . While a one-way ANOVA with 
post hoc Tukey showed no statistically signi fi cant 
differences or trends among these means ( p  = 
0.19), paired contrasts showed trends for individ-
ual differences between  Random  and  nonAdapt  
( p  = 0.10),  Simple  and  nonAdapt  ( p  = 0.06), and 
between  Complex  and  nonAdapt  ( p  = 0.08). With 
respect to both inferred self-monitoring accu-
racy (HC) and bias, the ANOVAs showed no 

(1 2 3)
impasse severity 2

3
(0 1) (1 1) 1

HC
(0 1) (1 1) 3

0 1 0 1 1 1
bias 0

0 1 1 1 0 1 1 1 3 3

0 1 0 1 1
discrimination

0 1 1 1 1 2

 

2

 

 

+ +
= =

+ − +
= =−

+ + +

+ +
= − = − =
+ + + + + +

= − = − =−
+ +

   Table 25.1    Means across ITSPOKE-WOZ experimental conditions and partial Correlations with posttest, for impasse 
severity, monitoring accuracy, bias, and discrimination   

 Means  Correlation 
 Measure  nonAdapt  Random  Simple  Complex   R    p  

 ( n =21)  ( n =20)  ( n =20)  ( n =20)  ( n =81) 

 Impasse severity  0.73  0.60  0.59  0.59   − 0.56  0.00 
 Monitoring accuracy  0.52  0.62  0.62  0.58  0.42  0.00 
 Bias   − 0.02   − 0.01   − 0.03   − 0.01   − 0.21  0.06 
 Discrimination  0.41  0.48  0.46  0.34  0.32  0.00 
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statistically signi fi cant differences or trends 
across conditions. However, for HC, the paired 
contrasts showed a trend for differences between 
 Simple  and  nonAdapt  ( p  = 0.06), and  Random  
and  nonAdapt  ( p  = 0.06) in the predicted direc-
tions. With respect to discrimination, the 
ANOVA indicated a trend for a difference among 
the means ( p  = 0.09), with paired contrasts 
showing signi fi cant differences between  Simple  
and  Complex  ( p  = 0.04), and between  Random  
and  Complex  ( p  = 0.02); note, however, that 
   contrary to our predictions, discrimination was 
lowest in  Complex . 

 Although we only  fi nd weak support for dif-
ferences in metacognitive performance between 
conditions, we still hypothesize that better meta-
cognitive performance is better for students from 
a learning perspective. The last two columns in 
Table 25.1 show the Pearson’s Correlation 
Coef fi cient (R) between each metacognitive mea-
sure and posttest after controlling for pretest, and 
the signi fi cance of the correlation (p), over all 81 
students. As predicted, average impasse severity 
is signi fi cantly negatively correlated with learn-
ing, 10  while inferred self-monitoring accuracy 
(HC) and discrimination are signi fi cantly posi-
tively correlated with learning. There is also a 
trend for bias to be negatively correlated with 
learning, suggesting that undercon fi dence is bet-
ter than overcon fi dence.  

   ITSPOKE-AUTO 

 The “Means” columns in Table 25.2 show the 
means per condition in the ITSPOKE-AUTO 
experiment, where each metacognitive measure 
was computed using the automatic uncertainty 
and correctness annotations. The table shows that 
the differences were typically not in the predicted 
directions, although nothing was statistically 
signi fi cant. 11  These results thus suggest that once 
noise is introduced after automating speech and 
language processing, we no longer see even weak 
support for improvements in metacognitive per-
formance for our experimental condition. 

 Nonetheless, we still hypothesize that even 
under noisy conditions, lower impasse severities, 
higher self-monitoring accuracies, less bias, and 
better discrimination will be predictive of better 
cognitive performance. Thus we again computed 
partial correlations with posttest over all students, 
as originally reported in Forbes-Riley and 
Litman  (  2010  ) . With the exception of discrimina-
tion, the ITSPOKE-AUTO correlations shown in 
the last two columns of Table 25.2 replicate the 
ITSPOKE-WOZ correlations of Table 25.1. 
Other comparisons between our wizarded and 
automated results (e.g., learning correlations with 
additional independent measures and regressions 
with multiple independent measures) can be 
found in Forbes-Riley and Litman  (  2010  ) .   

   10   In contrast, a measure of impasse  resolution  might posi-
tively correlate with learning, as resolving an impasse 
could reduce the severity of future impasse opportunities. 
In a prior ITSPOKE experiment, we in fact improved stu-
dent learning by detecting and re-remediating one particu-
lar type of unresolved incorrectness impasse (Rotaru & 
Litman,  2009  ) .  

   Table 25.2    Means across ITSPOKE-AUTO experimental conditions, and partial correlations with posttest, for impasse 
severity, monitoring accuracy, bias, and discrimination   

 Means  Correlation 

 Measure  nonAdapt  Random  Simple   R    p  

 ( n =25)  ( n =23)  ( n =24)  ( n =72) 

 Impasse severity  0.94  0.98  0.98   − 0.40  0.001 

 Monitoring accuracy  0.44  0.41  0.42  0.35  0.003 

 Bias  0.21  0.20  0.22   − 0.36  0.002 

 Discrimination  0.19  0.20  0.19   − 0.04  0.768 

   11   The p-values for the 4 ANOVAs comparing the meta-
cognitive metrics were respectively 0.83, 0.75, 0.72, 0.91. 
Due to both these extremely high p-values, and the fact 
that the means were not as predicted, we did not run the 
paired comparisons.  
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   Discussion 

 We presented an analysis of student metacogni-
tive performance using data from both wizarded 
and fully automated dialogue tutors that adapt to 
student uncertainty. The performance measures 
examined include several measures of metacog-
nitive performance taken from various literatures 
but have been adapted for our tutorial dialogue 
context by computing them from tutor annota-
tions of student uncertainty and correctness. We 
also introduce a new learning impasse severity 
measure derived from a theory of uncertainty and 
incorrectness as learning impasses. While in prior 
work we demonstrated that remediating after 
uncertainty impasses improves learning in both 
wizarded and fully automated conditions (Forbes-
Riley & Litman  2011a,   2011b  ) , our results here 
suggest that further investigation into better ways 
of remediating student uncertainty holds promise 
for further improving student cognitive as well as 
metacognitive performance. 

 With respect to improving cognitive perfor-
mance, our correlation results suggest that if we 
can enhance our tutor to improve metacognitive 
performance, we may also further improve cog-
nitive performance. Our correlations show that 
(tutor perception of)  impasse severity ,  self-

monitoring accuracy , and  bias  signi fi cantly or 
as a trend predict student learning (negatively, 
positively, and negatively, respectively) in both 
our wizarded and fully automated corpora. 
Although correlation does not imply causality, 
our  fi ndings motivate future modi fi cations of our 
system to increase student learning. For example, 
we plan to develop remediations that are better 
optimized for each impasse type, particularly for 
impasses with the highest severity. We also plan 
to enhance our tutor to not only remediate domain 
content after impasses (as in the current experi-
ment), but to also remediate inferred student 
knowledge monitoring abilities. 

 With respect to improving metacognition, our 
ANOVA results suggest that under upper-bound 
wizarded conditions, remediating student uncer-
tainty holds promise for improving student meta-
cognitive abilities (in our study, impasse severity 

and self-monitoring accuracy). However, the 
results with ITSPOKE-AUTO suggest that 
achieving this potential will require very high 
performing speech and language components. 

 In particular, while our ANOVAs for 
ITSPOKE-WOZ show that  impasse severity  
doesn’t differ signi fi cantly across conditions, the 
means are consistent with our predictions, and 
there are statistical pairwise trends suggesting 
improvement between all conditions and  non-

Adapt  (the original system). We also see similar 
results for  Simple  and  Random  compared to  non-

Adapt  with respect to inferred self-monitoring 
accuracy ( HC ). These are promising  fi ndings, as 
our current interventions were designed to 
improve only student correctness on the posttest, 
not to reduce impasse severity or increase moni-
toring accuracy. In the future we would like to 
enhance our interventions to directly target stu-
dent knowledge monitoring, and to better mea-
sure such improvements by incorporating FOK 
ratings into our testing. There is increasing inter-
est in using intelligent tutoring systems to teach 
metacognition and we plan to build on this litera-
ture (e.g., Aleven & Roll  2007 , Roll & 
Aleven  2008 , Saadawi et al.  2009  ) . 

 We found it surprising that neither experimen-
tal condition outperformed  Random , even after 
we changed  Random  in ITSPOKE-AUTO to only 
adapt after CnonU answers (non-impasse states). 
Since a “nonuncertain” (nonU) answer may actu-
ally be certain or neutral, we hypothesize that 
adapting to CnonUs might still be effective at 
increasing certainty. 

 Finally, we recently found interactions 
between learning and user classes based on user 
domain expertise and gender in the wizarded cor-
pus (Forbes-Riley & Litman,  2009b  ) ; we will 
investigate whether the interactions with these 
classes extend to the student metacognitive met-
rics discussed in this paper. 

 In conclusion, our work shows that the student 
speech signal holds important information about 
metacognition that most intelligent tutoring 
s ystems researchers have not yet mined. In par-
ticular, uncertainty is conveyed at least partially 
and sometimes most strongly through speech and 
tells us something about the student’s accuracy of 
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self-monitoring, which itself relates to learning. 
Although we have not yet attempted to dynami-
cally adapt to metacognitive performance in our 
dialogue tutor to help students learn better at the 
cognitive level, or even improve metacognitive 
abilities, our results suggest that this is a plausi-
ble approach for future directions.      
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 Modern learning technology (e.g., hypermedia 
systems, intelligent tutoring systems, micro-
worlds) usually provides information in various 
forms such as text, “realistic” pictures, formal 
graphs, or algebraic equations. In other words, 
information is presented by multiple external 
representations (MER). Although these MER can 
support learning processes in various ways, the 
integration function is most important (see 
Ainsworth,  2006  ) . This function refers to the fact 
that internally representing and integrating dif-

ferent external representations on an abstract 
level can lead to deeper understanding. Actually, 
it is typical of experts to have multiple internal 
representations (de Jong et al.,  1998  ) . Consider 
the example of linear regression: In order to 
approach expert-like understanding, a learner has 
to encode and integrate verbal-conceptual infor-
mation about the meaning and interpretation of 
regression analyses, the corresponding equation 
(e.g.,  y  =  a  +  bx ), and typical scatter plots with 
regression lines. 

 An instructional problem arises from the fact 
that students very often do not spontaneously 
integrate different MER and they may not be 
successful even when trying to do so (e.g., 
Ainsworth,  2006  ) . As a consequence, although 
MER presented by learning technology are 
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Metacognition Can Help       
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  Abstract 

 Modern learning technology (e.g., hypermedia systems) usually provides 
information in various forms such as text, “realistic” pictures, formal 
graphs, or algebraic equations in order to foster learning. However, it is 
well known that learners usually make sub-optimal use of such multiple 
external representations. In this chapter, we present a series of experiments 
with older students (senior high-school and up) that analyzed the effects of 
two metacognitive intervention procedures: self-explanation prompts and 
“instruction for use” (information on how to use multiple representations). 
Basically, both interventions foster conceptual understanding and proce-
dural skills. However, there are important boundary conditions. For exam-
ple, if learners have little prior knowledge they cannot react productively 
to self-explanation prompts.      
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expected to foster learning, they frequently do 
not enhance and sometimes even impede learn-
ing (e.g., Ainsworth, Bibby, & Wood,  2002  ) . 
Against this background, learners must be sup-
ported to productively use MER. 

 Typical instructional procedures to support 
the integration of MER include measures that 
make the particular elements in one representa-
tion that correspond to particular elements in 
another representation salient. For example, text 
and pictures are often presented in an integrated 
format, meaning that both information sources 
are not provided in separate information boxes; 
instead the text parts are located in close proxim-
ity to the corresponding parts of the picture (e.g., 
Chandler & Sweller,  1991  ) . Another possibility 
is color coding (e.g., Kalyuga, Chandler, & 
Sweller,  1999  )  in which the same colors are used 
for corresponding information elements in differ-
ent presentations. Although such instructional 
procedures can foster learning, they have the 
 disadvantage of just supporting the mapping of 
different presentations on the surface level (e.g., 
Berthold & Renkl,  2009 ; Seufert & Brünken, 
 2006  ) . They do not directly support the integra-
tion of different representations at an abstracted 

and deep (i.e., semantic) level. For example, 
Fig.  26.1  provides a multi-representational 
worked example. By integrating the tree diagram 
and the equation, it becomes clear why the fractions 
have to be multiplied. Ideally, the learners would 
integrate the multiplication sign of the equation 
and the “points of branching” in the tree diagram. 
This is done in order to understand the underly-
ing structure, that is, that the multiplication sign 
stands for the inclusion of all possible combina-
tions represented by the 20 branches in the picto-
rial tree diagram. The employed color coding, 
however, just hints at “which belongs to what” 
but it does not convey conceptual information; 
the latter has to be inferred by integrating the 
MER on an abstract, semantic level.  

 In a series of studies, we investigated two 
measures tightly related to metacognition in order 
to foster the integration of MER provided in 
computer-based learning environments at the 
semantic level: (a) self-explanation prompts and 
(b) informing the learners about the function of 
MER. We employed learning environments about 
mathematics, typically but not exclusively about 
probability (see Fig.  26.1 ). The learners could 
gain conceptual understanding of the domain as 

  Fig. 26.1    Screenshot from a learning environment with worked examples from the domain of probability       
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well as domain-speci fi c problem-solving skills 
(i.e., procedural knowledge). The participating 
learners were typically senior high-school stu-
dents or university freshmen. 

   Self-Explanation Prompts 

   The Self-Explanation Effect 

 Chi, Bassok, Lewis, Reimann, and Glaser  (  1989  )  
introduced the “self-explanation effect” by show-
ing that students who engage in actively explain-
ing the solution procedures of worked examples to 
themselves achieve better learning outcomes; the 
 self  in self-explanation, thus, refers both to the 
agent who provides the explanation and, even 
more importantly, to the addressee of the explana-
tion. Different concrete learning activities are sub-
sumed under the umbrella of self-explanation 
depending on the speci fi c authors and, in part, on 
the speci fi c study (for a recent overview, see 
Fonseca & Chi,  2011  ) . In any case, self-explanations 
go beyond the information given. Four very typi-
cal types of self-explanations are principle-based 
self-explanations (i.e., relating solution or problem 
features to underlying domain principles), goal-
operator elaborations (i.e., the subgoals that were 
achieved by certain operators are explicated), 
elaborations on preconditions to apply certain 
operators, and identifying communalities and 
differences between examples or problems (see 
Chi et al.,  1989 ; Reimann & Neubert,  2000 ; Renkl, 
 1997,   2011  ) . 

 Meanwhile, it has been shown that self-expla-
nations foster knowledge acquisition in a variety 
of learning methods such as text learning (Chi, de 
Leeuw, Chiu, & LaVancher,  1994    ; Ozuru, Briner, 
Best, & McNamara,  2010  )  or problem solving 
(e.g., Aleven & Koedinger,  2002  ) . Roy and Chi 
 (  2005  )  also argued that self-explanations are 
especially helpful when learning from MER 
(called multimedia in their chapter); however, 
they mainly relied on indirect evidence. 

 An instructional problem is that many learners 
do not spontaneously engage in effective self-
explanation activities (Renkl,  1997  ) . A well-
established approach of assistance is the use of 

self-explanation prompts (see Koedinger & 
Aleven,  2007  ) . Prompts are questions or hints that 
induce productive learning processes. They are 
designed to overcome passive or super fi cial pro-
cessing by inducing activities that the learners are, 
in principle, capable of but do not spontaneously 
demonstrate or demonstrate to an unsatisfactory 
degree (production de fi ciency; e.g., Pressley et al., 
 1992  ) . For example, Atkinson, Renkl, and Merrill 
 (  2003  )  showed that prompting principle-based 
self-explanations in a computer-based learning 
environment that provided worked examples on 
probability led to favorable learning outcomes 
(for similar  fi ndings on self-explanation prompts 
in computer-based learning environments see, 
e.g., Aleven & Koedinger,  2002 ; Conati & 
VanLehn,  2000 ; Schworm & Renkl,  2007  ) .  

   Is Self-Explanation Metacognition? 

 Self-explanation is often considered to be a 
metacognitive learning strategy (e.g., Aleven & 
Koedinger,  2002 ; Conati & VanLehn,  2000  ) . 
Against the background of the classical notion of 
metacognition as “cognition about cognition” 
(e.g., Efklides,  2008 ; Flavell,  1979 ; Nelson, 
 1996  ) , one might argue that self-explanation is 
“just” a cognitive learning strategy because 
activities such as justifying solution steps by 
underlying principles or subgoals to be achieved 
are not related to cognition but to the learning 
domain. So, is self-explanation really a metacog-
nitive activity? The answer provided in this 
chapter is very clear: yes and no. How can such 
an answer be clear? 

 Recently, Renkl  (  2008,   2009  )  has argued that 
categorizing certain learning activities into the 
usual strategy categories is rarely convincing. For 
example, Weinstein and Mayer’s  (  1986  )  classic 
taxonomy “generating an example” would be 
classi fi ed as a cognitive strategy or, more 
speci fi cally, as an elaboration (i.e., relating new 
contents to prior knowledge or experiences), but 
not as a metacognitive strategy. However, learn-
ing activities such as “generating an example” 
can, of course, ful fi ll several functions. The effort 
of “generating an own example” has not only an 
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elaborative function but also it can tell the learn-
ers whether or not they have understood a con-
cept or principle (i.e., usually it requires 
understanding to generate an own example). 
Against the background that certain learning 
activities can very often ful fi ll different functions, 
Renkl  (  2008,   2009  )  argues that the analysis of 
learning activities should mainly consider the 
function of activities, being aware (a) that 
“super fi cially” different learning activities can 
ful fi ll the same function (e.g., generating an 
example and self-questioning can both have the 
function of comprehension monitoring) and (b) 
that one activity can ful fi ll different functions 
(e.g., generating an example can have both the 
functions of comprehension monitoring and of 
elaboration). 

 Under such a functional perspective, a “clear 
answer” might be to say yes and no when consid-
ering self-explanation as metacognition. The typi-
cal self-explanation activity of principle-based 
explanation (i.e., relating a solution or problems 
feature to a domain principle) elaborates on the 
learning contents on the one hand. On the other 
hand, it can lead to metacognitive knowledge 
about task types and solution strategies (Flavell, 
 1979  ) . In particular, self-explanations should lead 
to conditional knowledge (Paris, Lipson, & 
Wixson,  1983 ; Schraw,  1998  ) , that is, knowledge 
about the “when and why” of knowledge, in par-
ticular about solution strategies.  

   Experiments on Prompting Self-
Explanation for Processing Multiple 
Representations 

 In three experiments, we employed learning 
environments in the domains of combinatorics 
and probability. When teaching these closely 
related domains, it is common to use multiple 
representations. In addition to text (e.g., prob-
lem formulations), there are two types of typical 
solution methods: arithmetic solution (relying 
on an equation) and pictorial solution (relying 
on a tree diagram). In all experiments, we tested 
self-explanation prompts as an instructional 
support procedure. As the main dependent vari-

ables, we assessed conceptual understanding 
and problem-solving performance (procedural 
knowledge). 

 Grosse and Renkl  (  2006 , Exp. 1) analyzed the 
effects of self-explanation prompts in comparison 
to instructional explanations or no such support 
when students learned combinatorics from worked 
examples with multi-representational solutions 
(i.e., arithmetic equation  and  pictorial tree dia-
gram). We tested 170 student teachers of an edu-
cational university (mean age approximately 22 
years) in a 2 × 3-factorial experiment: (a) type of 
solutions (multi-representational solutions vs. 
mono-representational solutions) and (b) instruc-
tional support (self-explanation prompts vs. 
instructional explanations vs. no support). 

 The learning materials included two pairs of 
examples (four examples in total). Each example 
could be solved by two different methods (arith-
metic equation or pictorial tree diagram). Each 
pair contained two structurally identical problems 
that also shared a number of surface features in 
order to make the correspondence salient to the 
learners. The  fi rst factor,  solutions , referred to the 
number of different presented solutions (multi-
representational solutions vs. mono-representa-
tional solutions). In the “multi-representational 
solution” conditions, the two almost identical 
examples of a pair were solved using different 
solution methods (i.e., a pictorial tree diagram in 
one example and an arithmetic equation in the 
other example). Thus, the participants could learn 
that more or less the same problem can be solved 
by two different solutions procedures. In the 
“mono-representational solution” conditions, 
both examples of a pair were solved with the same 
solution method; the two examples of one pair 
included a pictorial tree diagram, and the two 
examples of the other pair included an arithmetic 
equation. Thus, two different solution methods 
were demonstrated in the “mono-representational” 
conditions as well. However, they were not 
presented as being interchangeable. The second 
factor,  instructional support , referred to the help 
the learners received: open self-explanation 
prompts vs. instructional explanations vs. no sup-
port. For the multi-representational solutions con-
ditions, self-explanation prompts and instructional 
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explanations concentrated on commonalities 
between the pictorial and arithmetic solutions and 
on advantages and disadvantages of these meth-
ods dependent on the given problem type. The 
learners in the “self-explanation prompts” condi-
tion were asked to answer in written form, for 
example, the following question for an example 
pair: “Where do you see commonalities and dif-
ferences between the two solution methods?” The 
instructional explanations could be regarded as 
the answers to the self-explanation prompts. The 
self-explanation prompts and instructional expla-
nations for the “mono-representational solution” 
conditions focused on a single solution but were 
roughly equivalent to those used for the multi-
representational solution groups with respect to 
the number of covered aspects and time necessary 
to process them (as determined by pilot studies). 

 We found that multi-representational solutions 
fostered conceptual knowledge and procedural 
knowledge. However, no positive effect was 
found for instructional support in the form of self-
 explanation prompts or instructional explanations. 
Self-explanation prompts actually even led to 
inferior conceptual understanding when learning 
with MER compared to having no support at all 
(no negative prompt effect when learning with 
mono-representational solutions). This  fi nding 
con fi rmed recent assumptions that the demand to 
self-explain complex material (i.e., including 
MER) may take cognitive load over the limits 
(Kalyuga,  2010 ; Sweller,  2006  ) . Thus, even when 
self-explanations are prompted, they can be inef-
fective or can even have a detrimental effect with 
respect to conceptual understanding. 

 In line with this conclusion, we also found in 
a pilot study in the domain of probability that 
learners have dif fi culties with self-explanation 
prompts added to complex multi-representational 
materials (see Berthold, Eysink, & Renkl,  2009  ) . 
When we used open self-explanation prompts 
(i.e., open questions inducing self-explanations 
such as “Why do you calculate the total accept-
able outcomes by multiplying?”), the learners 
had severe dif fi culties in adequately answering 
such prompts. Often the learners could not pro-
vide the correct explanation. Thus, we assumed 
that the learners might bene fi t from stronger 

instructional support than open self-explanation 
prompts (cf. Roy & Chi,  2005  ) . We chose to also 
include a condition with some form of instruc-
tional assistance (Koedinger & Aleven,  2007  ) . 
Hence, in the main study of Berthold et al.  (  2009  ) , 
we tested the effects of three conditions: “assist-
ing self-explanation prompts” that directed the 
learners to integrate the MER on a conceptual 
level, open self-explanation prompts, and no self-
explanation prompts. We presented eight worked 
examples with multi-representational solutions 
from the domain of probability in a computer-
based learning environment. Participants were 62 
psychology students with a mean age of about 25 
years. In all conditions, a relating aid consisting 
of color coding and  fl ashing was included to help 
learners see which elements in different represen-
tations corresponded to each other on a surface 
level (see Fig.  26.1 ). By supporting the learners 
in  fi nding the corresponding parts in different 
representations, cognitive capacity for self-expla-
nation and learning should have been increased. 

 The experimental variation was realized as 
follows. Participants in the condition assisting 
self-explanation prompts received six questions 
such as “Why do you calculate the total accept-
able outcomes by multiplying?” in each worked-
out example. In the  fi rst worked-out example of 
each pair of isomorphic examples, the answers 
were supported in the form of  fi ll-in-the-blank 
self-explanations (e.g., “There are ___ times ___ 
branches. Thereby, all possible combinations are 
included,” see Fig.  26.1 ). In the isomorphic 
examples that followed, this support was faded 
out, and the participants received six open self-
explanation prompts. The answers had to be 
typed into corresponding text boxes. In the con-
dition open self-explanation prompts, the learn-
ers were provided with six open self-explanation 
prompts only (e.g., open answer to “Why do you 
calculate the total acceptable outcomes by multi-
plying?”) in each worked-out example. The 
assisting self-explanation prompts and the open 
prompts put an emphasis on integrating the picto-
rial and arithmetic representations to each other 
on a structural level. For example, the prompt, 
“Why is there a 4 in the denominator of the sec-
ond single experiment, even though there are 
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20 branches in the tree diagram?” referred to the 
arithmetic representations (“the 4 in the denomi-
nator”)  and  to the pictorial representations (“20 
branches in the tree diagram”). To answer this 
question, the learners had to relate the denomina-
tor of the arithmetic equation to the correspond-
ing branches of the pictorial tree diagram. 
Thereby, they could understand that the 4 stands 
for the number of remaining events of one initial 
branch. Due to the fact that there are  fi ve initial 
branches in the  fi rst single experiment,  fi ve times 
four branches, that is, 20, are included. 

 In the condition without self-explanation 
prompts (control condition), the learners studied 
the same worked examples as presented in the 
other two conditions. The only difference was 
that the learners of the condition without self-
explanation prompts were merely provided with 
a text box in order to take notes. They did not 
receive any prompts. 

 Both types of self-explanation prompts fos-
tered conceptual knowledge. Furthermore, assist-
ing self-explanation prompts had additional 
effects on conceptual understanding in compari-
son to open self-explanation prompts. The effect 
on conceptual understanding was mediated by 
self-explanations that not only relate a solution 
step to an underlying principle but also explicate 
the rationale of the principle (e.g., “For the 
denominator, there are  fi ve  times  four branches. 
Thus, each of the  fi ve  fi rst branches of the tree 
diagram forks out in four further branches as each 
of the  fi ve  fi rst events can occur in combination 
with one of the four remaining events,” Berthold 
& Renkl,  2009  ) . With respect to procedural 
knowledge, the pattern of results shows that either 
type of prompts was effective; the two prompt 
types did not differ. 

 To conclude, both prompt types fostered pro-
cedural knowledge. For conceptual knowledge 
assisting self-explanation prompts, interleaved 
with open self-explanation prompts, worked best 
because they supported the learners in generating 
self-explanations about the rationale of a princi-
ple. The overall pattern of performance indicated 
that assisting self-explanation prompts best fos-
tered the integration of MER. In particular for 
enhancing high-quality self-explanations and con-

ceptual understanding, assisting self- explanation 
prompts should be provided. 

 In a further experiment, Berthold and Renkl 
 (  2009  )  took up the  fi ndings on the effects of self-
explanation prompts. We used a relating aid and 
assisting self-explanation prompts that were more 
or less identical to the ones used in Berthold et al. 
 (  2009  ) . In a computer-based learning environ-
ment which was also almost identical to Berthold 
et al., 170 high-school students (mean age approx. 
16 years) learned about probability theory. We 
varied the type and number of representations 
(multi-representational solutions vs. mono- 
representational solutions) and the availability of 
two support procedures: (a) a relating aid and (b) 
assisting self-explanation prompts (for details of 
the complex experimental design of this study, 
see Berthold & Renkl). In the multi-representa-
tional conditions, the solution steps were pro-
vided in the form of both a pictorial tree diagram 
and an arithmetic equation in each example. In 
the mono-representational conditions, which we 
included to have a baseline for evaluating the 
effects of multiple solutions, the solution steps 
were presented in the form of a pictorial tree dia-
gram  or  an arithmetic equation. 

 We found that MER per se did not foster con-
ceptual understanding. In contrast, both support 
instructional procedures enhanced it: The relat-
ing aid and assisting self-explanation prompts 
had additive effects on conceptual understand-
ing. Similar to Berthold et al.  (  2009  ) , the effects 
of self-explanation prompts on conceptual 
knowledge were mediated by self-explanations 
that not only relate a solution step to an underlying 
principle but also explicate the rationale of the 
principle. 

 Interestingly, there was a relatively small but 
statistically signi fi cant negative effect of self-
explanation prompts on procedural knowledge. 
This detrimental effect was mediated by prompt-
induced incorrect self-explanations in terms of 
mixing up different probability principles. Hence, 
the assisting prompts had double-edged effects: 
positive effects on conceptual knowledge, via the 
elicitation of productive self-explanations, and 
simultaneously negative effects on procedural 
knowledge, via the elicitation of incorrect self-
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explanations (for analogous double-edged effects 
of self-explanation prompts, see also Berthold, 
Röder, Knörzer, Kessler, & Renkl,  2011  ) . Note, 
however, that Berthold et al.  (  2009  )  found posi-
tive effects for the same type of prompts and the 
same learning contents on both conceptual and 
procedural knowledge. The main difference 
between these experiments was how advanced 
the participating learners were. Whereas gener-
ally positive effects were found for university 
students in a (selective) psychology program, the 
double-edged effects were found for high-school 
students. For the latter learners, the learning 
materials were more complex in relation to their 
prior knowledge. Hence, a tentative conclusion is 
that prompts lose their general effectiveness if 
learners are heavily loaded by the complexity of 
the learning materials (Kalyuga,  2010 ; Sweller, 
 2006  ) . Prompts added to the learning material 
may overload them or “enforce” that they con-
centrate on selected aspects (i.e., conceptual 
aspects) in order to prevent overload. 

 In summary, prompting self-explanation can 
help learning from MER. However, there are 
boundary conditions to be considered. Prompts 
can lead to negative effects if the learners are 
confronted with learning materials that are very 
complex in relation to their prior knowledge. In 
addition, it may depend on the desired learning 
outcomes whether prompts are effective and 
whether it is sensible to employ assisting prompts. 
Assisting prompts are particularly helpful when 
conceptual understanding should be fostered.   

   “Instructions for Use” of Multiple 
Representations 

 The rationale of employing prompts is to more or 
less directly activate self-explanations. As previ-
ously shown, such an “intrusive” method can have 
detrimental side effects, presumably by posing 
overwhelming demands to the learners. Another, 
more indirect option to induce effective process-
ing of MER might be to inform the learners about 
what to do with MER. Note, however, that such an 
intervention also presupposes that the learners 
just have a production de fi ciency, that is, they can 

“produce” the appropriate strategy if they are  fi rst 
informed how to use the MER. 

   Metacognitive Knowledge on How 
to Use the Affordances of Learning 
Environments 

 A typical metacognitive instructional procedure 
is to inform learners about “what to do with strat-
egies.” In other words, the learners are provided 
with conditional knowledge about when and why 
to use certain knowledge such as strategies (Paris, 
Lipson, & Wixson,  1983  ) . In recent studies, we 
expanded this idea and informed learners about 
“what to do” with the instructional affordances of 
a learning environment (e.g., multiple representa-
tions). Although this knowledge is not about 
strategies or about tasks (i.e., the learning tasks; 
see Flavell,  1979  ) , it can be considered metacog-
nitive knowledge about the instructional context, 
that is, about how to use the instructional features 
of a learning environment. 

 When instructional designers include certain 
elements into learning environments, they may 
rely on certain models, empirical  fi ndings, and—
in many cases—on their intuitive knowledge 
about what can help learning. For example, when 
they present information in MER, they have 
some ideas on how these instructional features 
should be used. In the case of MER, it is typi-
cally expected that the learners relate the differ-
ent representations to each other in order to gain 
deeper understanding (e.g., Ainsworth,  2006 ; 
Berthold et al.,  2009  ) . Often, however, the learners 
ignore some representations and concentrate on 
only one type of representation that seems to be 
most useful to them (Ainsworth,  2006  ) . Such 
behavior can be seen as a strategy de fi cit on the 
learner’s side (e.g., a production de fi ciency); 
accordingly prompts that activate effective strat-
egies seem to be a sensible remedy (see Berthold 
et al.,  2009 ; Berthold & Renkl,  2009  ) . However, 
one can also ask: How should learners know 
what the ideas of the instructional designer on 
how to use the learning environment were? 
Maybe the de fi cit of suboptimal use of instruc-
tional affordances such as MER is, at least in 
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part, a “de fi cit” of the instructional designer who 
has not provided “instructions for use.” Actually, 
Schwonke, Berthold, and Renkl  (  2009  )  found 
that learners are hardly aware of any helpful 
function that MER can have.  

   Experiments on “Instructions for Use” 

 Schwonke, Renkl et al., ( 2009 ) used a slightly 
modi fi ed version of the learning environment of 
Berthold and Renkl  (  2009 ; version without relat-
ing aid and prompts). We tested the effects of 
informing learners about how to use MER on 
learning outcomes. More speci fi cally, we brie fl y 
explained to the learners that there are two solu-
tions procedures—tree diagram and arithmetic 
equation—and that the tree diagram should be 
used to gain an understanding on how the arith-
metic equation is related to the problem formula-
tion. For this purpose, we used the metaphor of a 
bridge (“… the tree diagrams ‘build’ a bridge 
between the problem texts and the equations…”). 
This instruction consisted just of an enrichment 
of one introductory screen that oriented the learn-
ers about the upcoming type of learning tasks in 
the form of worked examples. In addition, a line 
drawing of a bridge shortly popped up between 
the single worked examples as a reminder. 

 In this experiment, 30 students of psychology 
were randomly assigned to the “informed” condi-
tion and a control condition (introductory screen 
without instructions for the use of MER and 
 without “reminding” line drawings). In addition, 
we collected eye-tracking data in order to gain 
some insight into learning processes. 

 The instructions for use led to higher learning 
outcomes (as assessed by a posttest that included 
problems tapping conceptual and procedural 
knowledge) without leading to increased learning 
time. In addition, this effect was mediated by 
altering the patterns of attention of students with 
different levels of prior knowledge, as assessed 
by eye-tracking (e.g., preventing learners with 
high prior knowledge to neglect the tree diagrams 
and leading the low-prior-knowledge learners to 
study the presented examples more ef fi ciently; 
for details see Schwonke, Renkl et al.,  2009 ). 

 In a nutshell, a lean intervention that provides 
metacognitive knowledge about the use of MER 
can lead to substantial learning gains. A restric-
tion of this study might be seen in the fact that 
our instructions for use concentrated on just one 
aspect of certain MER. However, complex learn-
ing environments pose many problems to the 
learners when they try to optimally use its multi-
ple information sources and representations. In 
other words, when learning environments are 
suboptimally constructed in the sense that they 
require manifold integration demands, “instruc-
tion for use” as employed by Schwonke, Renkl 
et al., ( 2009 ) might not work. 

 Schwonke, Ertelt, Otieno, Renkl, Aleven, &  
Salden   (  2013  )  employed a rather complex learn-
ing environment that is widely used in the  fi eld: 
Cognitive Tutor (Koedinger & Aleven,  2007 ; 
Koedinger & Corbett,  2006 ; see also 
Carnegielearning.com,  2011  ) . This learning envi-
ronment is an intelligent tutor system, primarily 
for mathematics learning. We used a Cognitive 
Tutor lesson on geometry that included worked 
solution steps that were gradually faded and 
replaced by steps to be solved by the learners; 
this version proved to be particularly effective in 
prior studies (e.g., Schwonke, Renkl et al.,  2009  ) . 
Nevertheless, informal observations showed 
that many learners had dif fi culties in handling 
this in the generally effective environment. These 
dif fi culties are not really surprising given that the 
geometry lesson involved MER (e.g., problem 
text, diagrams, and computations) and a number 
of support facilities such as hints for performance 
demands, a glossary including the relevant geom-
etry principles, and areas providing an overview 
of the single subgoals to be achieved when solv-
ing the geometry problems at hand; these help 
devices also included multiple representations. 
We tested the effects of a cue card providing meta-
cognitive knowledge about what to do with all 
these elements (Fig.  26.2 ). The design of the cue 
card was partly inspired by a help-seeking model 
developed by Aleven and Koedinger  (  2000  ) .  

 In this experiment, 60 high-school students 
with a mean age of about 14 years were randomly 
assigned to one of two conditions. Half of the par-
ticipants worked on a Cognitive Tutor geometry 



40526 Multiple Representations and Metacognition

lesson while having metacognitive support in the 
form of the cue card available; the other half of 
the participants worked without a cue card. The 
length of the lesson was about 1 h. As learning 
outcomes, we used measures of conceptual and 
procedural knowledge. Again, eye-tracking 
should help to get insight into learning processes. 

 We found that the provision of the cue card 
reduced learning time by about 20% in compari-
son to the control condition. With respect to con-
ceptual knowledge, learners with low prior 
knowledge pro fi ted from the cue card; no such 
positive effect was found for learners with high 
prior knowledge. With respect to procedural 
knowledge, we also found that the learners with 
clearly below-average prior knowledge (lower 
third) pro fi ted from the cue card. Mediation anal-
yses with the eye-tracking data suggested that the 
cue card effects on conceptual knowledge were 
in particular due to a more focused use of the 
Cognitive Tutor’s different elements. Low-prior-
knowledge students spend less time on inspect-
ing available help facilities, while they 
simultaneously achieved better learning out-
comes. Obviously, unfocussed and overextended 
use of the help facilities was prevented by the cue 

card. In a nutshell, the cue card had positive 
effects for all learners in terms of reducing learn-
ing time. However, only learners with low prior 
knowledge also gained more knowledge within 
this reduced learning time. 

 In summary, the studies by Schwonke, 
Berthold et al.  (  2009  )  and Schwonke et al.  (  2013  )  
showed that providing learners with metacogni-
tive knowledge about the affordances of the 
learning environments can be sensible. It is 
important to note that these interventions were 
very parsimonious. Such interventions did not 
increase learning time in Schwonke, Berthold et 
al. ( 2009 ) and even saved time in Schwonke 
et al.  (  2013  ) . Nevertheless, we have to admit that 
the positive effects were different in both stud-
ies: Schwonke, Berthold et al.  (  2009  )  found 
“generally” enhanced learning outcomes, 
whereas Schwonke et al.  (  2013  )  found “gener-
ally” reduced learning times and enhanced out-
comes for low-prior-knowledge learners. In 
addition, the cue card of Schwonke et al.  (  2013  )  
included a number of elements that were not 
related to MER. Hence, it might be that other 
aspects and not primarily the information about 
MER were effective. Substantial further research 

1. How do I solve the problem?

a. Which are the known values in the problem text? Can you locate the known values in

the line drawing?

b. Which are the unknown values in the problem text? Can you locate the unknown

values in the line drawing?

c. How are the known values and unknown values related mathematically?

2. What can I do when I get stuck?

a. If you want to find out which value to calculate next then take a look at the overview

tool.

b. If you want to find out about the relevant mathematical principle then take a look at

the glossary tool.

c. If you want to find out how to proceed in the present problem then take a look at the

hints tool.

  Fig. 26.2    Cue card providing metacognitive knowledge about the use of different elements of a Cognitive 
Tutor lesson (translated from German)       
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is needed in order to determine the  speci fi c  
effects and their particular boundary conditions 
(e.g., prior knowledge level of the learners) that 
the  different  metacognitive information about 
learning environments’ affordances has.   

   Conclusions and Outlook 

 In this  fi nal section, we outline the most impor-
tant points that we have learned from our studies 
and the issues that have to be addressed in further 
studies. In doing so, we touch on theoretical, 
methodological, and instructional issues.
    (a)    One important issue relates to the  generaliz-

ability  of our  fi ndings. We have gained some 
knowledge about how to foster mathematics 
learning of senior high-school students and 
university students by self-explanation 
prompts and by “instruction for use.” 
Obviously, it is not straightforward to gener-
alize our  fi nding to other learning domains 
and to younger learners. With respect to the 
generalizability to other age groups, it is 
important to note that we found striking dif-
ferences even between university students 
(Berthold et al.,  2009  )  and senior high-school 
students (Berthold & Renkl,  2009  ) . Although 
this difference in educational level does not 
seem to be so large at a  fi rst glance, it seems 
all the more implausible that the present 
 fi ndings can be generalized to younger learn-
ers. Also developmental research on meta-
cognition and strategies (for an overview, see 
Schneider & Bjorklund,  1998  )  shows that 
substantial development can be found up until 
the age of 16 (i.e., the average age of the par-
ticipants in Berthold & Renkl). Hence, 
younger students might have not only produc-
tion de fi ciencies that can be remedied by 
prompts or “instructions for use” but also 
more profound de fi cits (e.g., mediation 
de fi ciencies, meaning that the learners are not 
able to execute the relevant strategies appro-
priately). Successful interventions with 
younger students might need additional 
instructional components by which strategies 
are explicitly taught (e.g., via modeling or 

worked examples; see Hübner, Nückles, & 
Renkl,  2010  ) .  

    (b)    Although we have shown that  self - explana-
tion prompts  can be helpful when learning 
from multiple representations, the pattern of 
results clearly shows that there are boundary 
conditions, even for a given educational level. 
If these conditions are not met, even negative 
effects can result. As discussed, one important 
boundary condition seems to be the complex-
ity of the learning materials in relation to the 
learners’ prior knowledge. Prompts can be 
useless or even detrimental when necessary 
prior knowledge prerequisites are missing. A 
theoretical as well as instructional problem is 
that we presently lack ways to specify, a priori 
and in a precise manner, what prior knowl-
edge is “necessary.” It might not be too 
dif fi cult to determine whether a learner just 
has a production de fi ciency so that s/he is 
actually able to provide adequate self-expla-
nations when prompted. However, it might be 
much more dif fi cult to determine when a 
learner gets overloaded by prompts. Perhaps 
recent developments in online measures of 
cognitive load (Park & Brünken,  2010 : devia-
tions in foot tapping rhythm; Walter, Cierniak, 
Bogdan, Rosenstiel, & Gerjets,  2010 : EEG 
measures) can help to solve this challenge in 
the future, at least for research purposes (such 
measures are still too intrusive for practical 
use in the  fi eld). Prompts can be automati-
cally omitted if learners show (too) high cog-
nitive load. Nevertheless, it would be desirable 
to  fi rst re fi ne our theoretical models of self-
explanation so that precise assumptions can 
be made about prior knowledge prerequisites 
necessary for prompts to be effective.  

    (c)    The idea to provide  instructions for use  with 
respect to the central affordances of learning 
environments is relatively new (for similar 
approaches see Roll, Aleven, McLaren, & 
Koedinger,  2007,   2011  ) . This instructional 
procedure seems to be promising because it 
is parsimonious and can even save learning 
time (i.e., greater learning ef fi ciency). It has 
to be noted, however, that so far, all we have 
are initial promising studies, and these stud-
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ies used instructions for use that were rather 
speci fi c to the respective learning environ-
ments. What is presently missing is a general 
rationale or a set of principles to guide the 
construction of instructions for use that  fi t 
other learning environments. A sound basis 
for the construction of instructions for use 
might come from usability studies (Nielsen, 
 1994  )  or learning process data (e.g., thinking 
aloud protocols) showing suboptimal use of 
the learning environment. Such evidence 
might reveal that learners lack speci fi c knowl-
edge about how to best use the affordances of 
a given learning environment. However, in 
practical settings such data are often not 
available, rather informal observations and 
“intuition” have to be used in order to deter-
mine what information might best help the 
learners to work in a learning environment. 
On the other hand, we assume that future 
learning technologies will more easily pro-
duce usable log data of student activities so 
that information about how learners use these 
environments will be increasingly available.     

 In addition, it is also open as to when it is best 
to provide instructions for use: in advance 
(Schwonke, Berthold et al.,  2009  )  or concurrently 
with the learning environment (Schwonke et al., 
 2013  ) ? Both options have advantages and disad-
vantages. For example, providing a “concurrent” 
cue card as in Schwonke et al.  (  2013  )  might be 
suboptimal because it creates a type of split-
attention problem (i.e., problems in relating the 
contents of the cue card with the learning envi-
ronment and distraction from the learning con-
tents). On the other hand, instructions for use 
provided in advance might be forgotten when 
working in the learning environments. Further 
research has to compare different options to present 
such instructions.      
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   Context 

 We have been developing reporting systems for 
problem solving which are helping to measure 
how strategically students are thinking about 
scienti fi c problems and whether interventions to 
improve this learning are having the desired 
effect. The system is termed IMMEX (Interactive 
MultiMedia Exercises), and is an online library 
of problem solving science simulations coupled 
with layers of probabilistic tools for assessing 
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  Abstract 

 Learning trajectories have been developed for 1650 students who solved a 
series of online chemistry problem solving simulations using quantitative 
measures of the ef fi ciency and the effectiveness of their problem solving 
approaches. These analyses showed that the poorer problem solvers, as 
determined by item response theory analysis, were modifying their strate-
gic ef fi ciency as rapidly as the better students, but did not converge on 
effective outcomes. This trend was also observed at the classroom level 
with the more successful classes simultaneously improving both their 
problem solving ef fi ciency and effectiveness. A strong teacher effect was 
observed, with multiple classes of the same teacher showing consistently 
high or low problem solving performance. 

 The analytic approach was then used to better understand how interven-
tions designed to improve problem solving exerted their effects. Placing 
students in collaborative groups increased both the ef fi ciency and effec-
tiveness of the problem solving process, while providing pedagogical text 
messages increased problem solving effectiveness, but at the expense of 
problem solving ef fi ciency.      
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students’ problem solving performance, progress, 
and retention (Soller & Stevens,  2007 ; Stevens & 
Palacio-Cayetano,  2003 ; Stevens, Soller, Cooper, 
& Sprang,  2004 ; Stevens, Wang, & Lopo,  1996 ; 
Cooper, Cox, Nammouz, Case, & Stevens,  2008 ; 
Thadani, Stevens, & Tao,  2009  ) . 

 IMMEX problems are what Frederiksen  (  1984  )  
referred to as “structured problems requiring produc-
tive thinking,” meaning they can be solved through 
multiple approaches, and students cannot rely on 
known algorithms to decide which resources are 
relevant and how the resources should be used. 
IMMEX problems are rich in cognitive experi-
ences with over 90% of the utterances of students 
when solving a series of cases being cognitive or 
metacognitive in nature (Chung et al.,  2002 ), and 
is an environment where instruction can be varied 
and the effects of different interventions tested. 

 IMMEX supports detailed assessments of stu-
dents’ overall problem solving effectiveness and 
ef fi ciency by combining solution frequencies (or 
IRT estimates) which are outcome measures and 
arti fi cial neural network (ANN) and hidden Markov 
modeling (HMM) performance classi fi cations 
which provide a strategic dimension (Stevens, 
 2007 ; Stevens & Thadani,  2007 ; Stevens & 
Casillas,  2006  )  To simplify reporting and to make 
the models more accessible for teachers, these lay-
ers of data can be combined into an economics-
derived approach which considers students’ 
problem solving decisions in terms of the resources 
available (what information can be gained) and the 
costs of obtaining the information. 

 Extensive prior research has shown that stu-
dents vary widely in how systematically and 
effectively they approach IMMEX problems 
(Stevens et al.,  2004 ; Soller & Stevens,  2007 ). 
Some students carefully and systematically look 
for information sources that are appropriate for 
the current case, keep track of the information 
that they are accessing, and answer when the 
information they have reviewed is suf fi cient to 
support the answer, whereas other students are 
less systematic, often reinspecting information 
they have already viewed (Stevens & Thadani, 
 2007 ; Soller & Stevens,  2007  ) . In this regard, 
IMMEX performances are re fl ections of stu-
dents’ ability (i.e., effectiveness) as well as their 
regulation of cognition (i.e., ef fi ciency). 

 Students who review all available problem 
resources are not being very ef fi cient, although 
they might eventually  fi nd enough information to 
arrive at the right answer. Other students might not 
look at enough resources to  fi nd the information 
required to solve the problem, i.e., they are being 
ef fi cient but at the cost of being ineffective. Students 
demonstrating high strategic ef fi ciency should 
make the most effective problem solving decisions 
using the fewest number of the resources available. 
As problem solving skills are gained this should be 
re fl ected as a process of resource reduction (i.e., 
higher ef fi ciency) and improved outcomes (greater 
effectiveness) (Haider & Frensch,  1996  ) . 

 Dissecting problem solving along these two 
dimensions provides an opportunity to detail how 
classroom practices like collaborative learning or 
the provision of pedagogical or metacognitive 
prompts can in fl uence problem solving outcomes. 
Do they equally affect the ef fi ciency and effec-
tiveness of the problem solving process or are 
there differential effects? This is the framing 
question for this study.  

   Theoretical Background 

 Most theoretical frameworks for metacognition 
identify two major components: knowledge of 
cognition (declarative and procedural knowledge) 
and regulation of cognition (or executive compo-
nent) (Schraw,  2001 ; Schraw, Brooks, & Crippen, 
 2005 ; Schraw, Crippen, & Hartley,  2006  ) . The for-
mer is often understood as metacognitive aware-
ness and has received considerably more attention 
than the regulation of cognition, which comprises 
the repertoire of actions in which an individual 
engages while performing a task. Consistent with 
this framework, metacognition occurs when indi-
viduals plan, monitor, and evaluate their own 
cognitive behavior in a learning environment or 
problem space (Ayersman,  1995  ) . 

 Despite its importance, the study of metacog-
nition has been slowed by the lack of simple, 
rapid, and automated assessment tools. Technology-
based learning environments  provide the founda-
tion for a new era of integrated, learning-centered 
assessment systems (Quellmalz & Pellegrino, 
 2009  ) . It is now becoming possible to rapidly 
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acquire data about students’ changing knowledge, 
skill and understanding as they engage in real-
world complex problem solving, and to create 
predictive models of their performance both 
within problems (   Murray & VanLehn,  2000  )  as 
well as across problems and domains (Stevens 
et al.,  2004  ) . A range of analytic tools are being 
applied in these analyses including Bayesian Nets 
(Mislevy, Almond, Yan, & Steinberg,  1999  ) , 
computer adaptive testing based on item response 
theory (IRT) (Linacre,  2004  ) , and regression 
models and arti fi cial neural networks (ANN) 
(Beal, Mitra, & Cohen,  2007 ; Soller & Stevens, 
 2007  ) , each of which possesses particular 
strengths and limitations (Williamson, Mislevy, 
& Bejar,  2006  ) . 

 How can this data be best put to use? A pro-
posed model for improving problem solving 
approaches is shown in Fig.  27.1  and is based 
along two dimensions: (1) Teacher professional 
development and classroom practice and (2) 
direct student feedback.  

 Recent analyses of traditional assessment 
approaches and professional development mod-
els indicate that interventions often fail because 
teachers either do not fully understand how to 
implement them, or are not adequately supported 
in their efforts to implement them (Desimone, 
 2002 ; Lawless & Pellegrino,  2007 ; Spillane, 
Reiser, & Reimer,  2002  ) . Simply increasing 
teachers’ access to assessment data, however, 
may only exacerbate the challenges that they face 
in crowded classrooms when adapting instruc-
tion. Thus, new approaches are needed to provide 
teachers with accurate, predictive, and useful data 
about their students’ learning in ways that are 
easily and rapidly understood. Data available in 
real time that speak to process as well as outcomes 
and that are intuitively easy to understand would 
seem to be minimum requirements. 

 Finding the optimum granular and temporal 
resolutions for reporting this assessment data will 
be a fundamental challenge for making the data 
accessible, understandable and useful for a 

  Fig. 27.1    Proposed approaches for improving student’s problem solving skills       
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diverse audience (e.g., teachers, policy makers 
and students) as each may have different needs 
across these dimensions (Alberts,  2009 ; Loehle, 
 2009 ). If the model resolution is general and/or 
delayed then important dynamics of learning may 
be lost or disguised for teachers. If the resolution 
is too complex or the reporting too frequent the 
analysis will become intrusive and cumbersome. 

 Teachers however are only one side of the 
learning equation; we need to consider students 
as well. Overall, prior research suggests that stu-
dents’ undirected problem solving in science 
domains tends to be relatively unsystematic, and 
that students are often unselective with regard to 
the evidence that is collected and considered. 
Students’ dif fi culties with problem solving can be 
especially evident in technology-based learning 
environments, which often require careful plan-
ning and progress monitoring to use effectively 
(Schauble,  1990 ; Stark, Mandl, Gruber, & Renkl, 
 1999  ) . When students can readily explore multi-
ple sources of information and experiment with 
different combinations of factors, they can easily 
become distracted from the primary objective of 
using the information to solve the problem. 

 One approach to improving students’ problem 
solving is to link the technology-based activity with 
classroom activities designed to help students adopt 
good problem solving strategies and help monitor 
their progress. Such activities would remind stu-
dents to make sure that the goal of the problem is 
clearly understood, identify the information that 
will be most helpful in solving the problem, and 
monitor their progress towards the solution. 
Adapting this approach, Schwarz and White ( 2005 ) 
found that students improved in their understand-
ing of the role of models in scienti fi c problem solv-
ing when the computer-based activity of designing 
models was enhanced with a classroom-based 
 curriculum. Although the results were encourag-
ing, one limitation was that the program was quite 
intensive, involving 10 weeks of classroom activi-
ties and support from university researchers. Thus, 
the curriculum-embedded approach might be 
dif fi cult for many science teachers to implement on 
their own, given limited resources and constraints 
on classroom science activities.  

   Task and Analytic Approaches 

 The architecture of IMMEX contains a series of 
tasks, a student management and organization 
system, a data warehouse and an analytic model-
ing and reporting module. One IMMEX task is 
called  Hazmat , which provides evidence of a stu-
dent’s ability to conduct qualitative chemical 
analyses. The problem begins with a multimedia 
presentation, explaining that an earthquake caused 
a chemical spill in the stockroom and the student’s 
challenge is to identify the chemical. The problem 
space contains 22 menu items for accessing a 
Library of terms, the Stockroom Inventory, or for 
performing Physical or Chemical Testing. When 
the student selects a menu item, she veri fi es the 
test requested and is then shown a presentation of 
the test results (e.g., a precipitate forms in the liq-
uid). Students continue to gather the information 
they need to identify the unknown chemical so 
they can solve the problem (Fig.  27.2 ).  

  Hazmat  contains 38 problem cases which 
involve the same basic scenario but vary in 
dif fi culty due to the properties of the different 
unknown compounds being studied. These mul-
tiple instances provide many opportunities for 
students to practice their problem solving and 
also provide data for Item Response Theory (IRT) 
estimates of problem solving ability which can 
be useful for comparing outcomes with more tra-
ditional ability measures such as grades. 

 IMMEX also supports detailed analyses of 
students’ overall problem solving effectiveness 
and ef fi ciency by combining outcome measures 
like IRT (as a measure of overall problem solving 
ability), and ANN (as a measure of problem solv-
ing strategy) and hidden Markov modeling 
(HMM) classi fi cations (which provide a predic-
tive measure of problem solving progress). 
Sample visualizations of these formats are shown 
in Fig.  27.3 . This layered analytical approach has 
been very useful from a research perspective for 
distinguishing gender differences in problem 
solving approaches (Soller & Stevens,  2007 ) and 
documenting the effects of collaborative groups 
during problem solving (Cooper et al.,  2008  ) .  
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  Fig. 27.2     HAZMAT.  This screen shot of  Hazmat  shows the test items available (Library, Physical Tests, Chemical 
Tests) on the  left side  of the screen and a sample test result of a conductivity reaction in the  center        

 We have combined the measures shown in 
Fig.  27.3  to simplify reporting using an econom-
ics-inspired approach which considers students’ 
problem solving decisions in terms of the 
resources available (what information can be 
gained) and the costs of obtaining the informa-
tion (Stevens & Thadani,  2007  ) . 

 The strategy used (or the ef fi ciency of the 
approach) is described by arti fi cial neural network 
analysis which is a classi fi cation system. In this 
system, the arti fi cial neural network’s observation 
(input) vectors describe sequences of individual 
student actions during problem solving (e.g., 
Run_Red_Litmus_Test, Study_Periodic_Table, 
Reaction_with_Silver_Nitrate). The neural network 
then orders its nodes according to the structure of 

the data. The distance between the nodes after the 
reordering describes the degree of similarity 
between students’ problem solving strategies. For 
example, the neural networks identi fi ed situations 
in which students applied ineffective strategies, 
such as running a large number of chemical and 
physical tests, or not consulting the glossaries and 
background information. 

 The neural networks also identi fi ed effective 
problem solving strategies such as selecting a 
variety of applicable tests while also consulting 
background information. This method is able to 
identify other domain-speci fi c problem-speci fi c 
strategies such as repeatedly selecting speci fi c 
tests (e.g.,  fl ame or litmus tests) when presented 
with compounds involving hydroxides (Stevens 

 



414 R. Stevens et al.

  F
ig

. 2
7

.3
  

  S
am

pl
e 

re
pr

es
en

ta
ti

on
s 

of
 it

em
 r

es
po

ns
e 

th
eo

ry
 a

bi
li

ty
 e

st
im

at
es

 (
 le

ft
 ),

 A
rt

i fi
 ci

al
 n

eu
ra

l n
et

w
or

k 
pe

rf
or

m
an

ce
 c

la
ss

i fi
 ca

ti
on

s 
( m

id
d
le

 ),
 a

nd
 H

id
de

n 
M

ar
ko

v 
m

od
el

in
g 

pr
ed

ic
ti

on
 m

od
el

s 
( r

ig
h
t )

       

 



41527 Assessing Students’ Problem Solving Ability and Cognitive Regulation…

et al.,  2004  ) . Figure  27.4  (left) shows one ANN 
node in a 36-node network that was constructed 
from 5,284 performances of university and high 
school chemistry students. Figure  27.4  (right) 
shows the entire 36-node network representing 
the 36 different problem solving strategies used 
by the students. Each node of the network is rep-
resented by a histogram showing the frequency 
of items selected by students. For example, there 
were 22 tests related to Background Information 
(items 2–9), Flame Tests, Solubility and 
Conductivity (items 9–13), Litmus tests (items 
14, 15), Acid and Base Reactivity (items 16, 17), 
and Precipitation Reactions (items 18–22).  

 Student performances that were grouped 
together at a particular node represented problem 
solving strategies adopted by students who 
always selected the same tests (i.e., those with a 
frequency of 1). For instance, all Node 15 perfor-
mances shown in the left-hand side of Fig.  27.5  
contain the items 1 (Prologue) and 11 (Flame 
Test). Items 5, 6, 10, 13, 14, 15, and 18 have a 
selection frequency of 60–80%, meaning that any 
individual student performance that falls within 
that node would most likely contain some of 
those items. Items with a selection frequency of 
10–30% were regarded more as background noise 
than signi fi cant contributors to the strategy repre-
sented by that node.  

 The topology of the trained neural network 
provides information about the variety of differ-
ent strategic approaches that students apply in 
solving IMMEX problems. First, it is not surpris-
ing that a topology is developed based on the 
quantity of items that students select. The upper 
right hand of the map (nodes 6, 12) represents 
strategies where a large number of tests are being 
ordered, whereas the lower left contains clusters 
of strategies where few tests are being ordered. 
There are also differences that reveal the quality 
of information that students use to solve the prob-
lems. Nodes situated in the lower right hand cor-
ner of Fig.  27.4  (nodes 29, 30, 34, 35, 36) 
represent strategies in which students selected a 
large number of items, but no longer needed to 
reference the Background Information (items 2–9). 
The classi fi cations developed by ANN therefore 
re fl ect how students perceive the problem space, 

and are regulating their test selections in response 
to these perceptions. 

 While ANN nodal classi fi cations provide a 
snapshot of what a student did on a particular 
performance, it would be instructionally more 
helpful if it were possible to automatically track 
and report changes in strategy over time. In order 
to generate a time series that could potentially be 
predictive of future work, a series of these per-
formances must be grouped together and 
classi fi ed by another type a classi fi er, in our case, 
a hidden Markov modeling technique. Similar to 
the training of the arti fi cial neural network 
classi fi er a training set of hundreds/thousands of 
sequences of student performances are used for 
training where students performed 4–10  Hazmat  
cases. This training results in HMM model 
classi fi ers which can categorize future sequences 
of performances. 

 Figure  27.5  shows the results of such training 
and illustrates a fundamental component of 
IMMEX problem solving: individuals who per-
form a series of these simulations stabilize with 
preferred strategies after 2–4 problem instances. 
This data shows hidden Markov models of the 
problem solving strategies of 1,790 students who 
performed seven of the  Hazmat  simulations. 
Many students began their problem solving with 
a limited (these are termed State 1 strategies) or 
extensive search (State 3) of the problem space. 
These designations arise from the association of 
certain ANN nodal classi fi cations with different 
HMM States. With practice, these strategies 
decreased and they became more ef fi cient and 
effective (States 4 and 5). 

 These characterizations help in determining 
which students may be guessing, failing to evalu-
ate their processes, or randomly selecting items, 
i.e., issues with metacognition. Several advantages 
of this concurrent assessment include high auto-
mation and time ef fi ciency, minimal susceptibility 
to researcher’s bias, and a more naturalistic problem 
solving setting. As described below, this type of 
analysis can be further collapsed into three descrip-
tors to identify metacognitive levels: high, inter-
mediate, and low metacognition use for 
comparisons with other metacognitive metrics 
(Cooper et al.,  2008  ) . 
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  Fig. 27.4    Neural network performance patterns. The 36 
Neural network nodes are represented by a 6 × 6 grid of 36 
graphs. The nodes are numbered 1 through 36 left-to-right 
and top-to-bottom; for example,  the top row  is comprised 
of nodes 1 through 6. As the neural network is iteratively 
trained, the performances are automatically grouped into 

these 36 nodes so that each node represents a different gen-
eralized problem solving strategy. These 36 classi fi cations 
are observable descriptive classes that can serve as input to 
a test-level scoring process or linked to other measures of 
student achievement or cognition. They may also be used 
to construct immediate or delayed feedback to the student       

  Fig. 27.5    Modeling individual and group learning trajec-
tories. This  fi gure illustrates the strategic changes as indi-
vidual students or groups of students gain experience in 
 Hazmat  problem solving. Each  stacked bar  shows the dis-
tribution of HMM states for the students ( N  = 1,790) after 
a series (1–7) of performances. These states are also 
mapped back to the 6 × 6 matrices which represent 36 dif-
ferent strategy groups identi fi ed by self-organizing ANN. 

The  highlighted boxes  in each neural network map indi-
cate which strategies are most frequently associated with 
each State. From the values showing high cyclic probabilities 
along the diagonal of the HMM transition matrix ( upper 

right ), States 1, 4, and 5 appear stable, suggesting once 
adopted, they are continually used. In contrast, students 
adopting State 2 and 3 strategies are more likely to adopt 
other strategies ( gray boxes )       
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 Figure  27.5  also illustrates how modi fi cations 
to instruction can shift the dynamics of repetitive 
problem solving. The series of histograms in the 
right of this  fi gure show that students in collab-
orative groups stabilize their strategies more rap-
idly than individuals and there are fewer 
performances where extensive searching occurs 
(i.e., State 3 strategies).  

   Learning Trajectories and Effects of 
Metacognition-Linked Interventions 

 The data gathered as students work with IMMEX 
provide rich, real-time assessment information 
along the ef fi ciency and effectiveness dimen-
sions. Figure  27.6  shows a modeling across 
schools and teachers/classrooms (66 classrooms, 
62,774 performances) where an index of strategic 
ef fi ciency is plotted against an effectiveness 
(i.e., solution frequency) rate. The quadrants 
generated by intersections of the averages of 
these measures re fl ect (1) mostly guessing (upper 
left corner), (2) performances where students 
view many resources, but miss the solution (lower 
left), (3) performances where many resources are 

being viewed and the problem is being solved 
(lower right) and (4) the performances where few 
resources are used and the problem is solved 
(upper right). As expected by the visualization 
format, schools are distributed across the quad-
rants (Fig.  27.6 , left). A second level of analysis 
showing problem solving performance across 
 fi ve teachers as well as their classrooms where 
the different classes of the same teacher are 
shown by the symbols, and the different teachers 
identi fi ed by numbers (Fig.  27.6 , right). The clus-
tering of the different classrooms of the teachers 
(for instance, the +’s in the lover left hand corner 
and the squares in the upper right corner), illus-
trates a signi fi cant teacher effect perhaps 
re fl ecting different instructional methods 
(Zimmerman,  2007  ) . Follow-up classroom obser-
vation studies by Thadani et al.,  (  2009  )  suggest 
that the teacher’s mental model of the problem 
space, and approach for solving the problem, can 
have a major effect on the approach adopted by 
the students.  

 Tracking problem solving ef fi ciency and 
effectiveness as multiple  Hazmat  problems are 
performed creates a learning trajectory (Fig.  27.7 ) 
which is an important formative assessment tool 

  Fig. 27.6    Aggregated ef fi ciency and effectiveness mea-
sures of schools and classrooms that performed  Hazmat . The 
dataset was aggregated by schools ( left ) and then by teachers 
( symbols and text ) and classrooms ( right ) and the ef fi ciency 
(on a scale of 0–6) and effectiveness (on a scale of 0–2) mea-

sures calculated as described earlier. The symbol sizes are 
proportional to the number of performances. Each axis in ( a ) 
is bisected by  dotted lines  indicating the average ef fi ciency 
and effectiveness measures of the dataset creating quadrant 
combinations of high and low ef fi ciency and effectiveness       
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showing how students improve with practice 
(Lajoie,  2003  ) . Learning trajectories show that 
the poorer problem solvers, as determined by IRT 
analysis, are modifying their strategic ef fi ciency 
as rapidly as the better students, as shown by the 
position changes along the Ef fi ciency axis, but 
they are not converging on effective outcomes 
(Fig.  27.7a ). Figure  27.7b  shows that this trend 
can be observed in classrooms as well, (e.g., 
Class 1). While the more successful classes (e.g., 
Class 4) simultaneously improved both their 
problem solving ef fi ciency and effectiveness, the 
lower performing classes showed gains only in 
ef fi ciency The learning trajectories are also 
important as changes in problem solving progress 
can be detected after as few as two to four student 
performances providing an opportunity for inter-
vention before poor approaches have been 
learned. For instance, a teacher could initiate an 
intervention with a smaller group of students and 
after they have performed part of their assign-
ment the teacher can observe online whether this 
was having a positive, negative or neutral effect 
and either continue or modify the intervention.  

 A similar analysis was conducted for 80 
 students in three Advanced Placement Chemistry 
classes who were separated into the upper and 
lower halves based on their  fi nal course grades. 
Again, the learning trajectories of the lower half 
of the students showed similar increases in strate-
gic ef fi ciency as the upper half of the students, 
but remained lower in effectiveness. (The corre-
lations between the  fi nal grades and the ef fi ciency 
index, ability estimates by IRT, and the solved 
rates (i.e., effectiveness) were R2 = 0.06,  p  = 0.02, 
R2 = 0.006,  p  = 0.49, R2 = 0.02,  p  = 0.23)   . 

 Thus from the perspectives of problem solving 
abilities, course grades, and perhaps the instruc-
tional environment it would appear that some stu-
dents are differentially struggling with the 
ef fi ciency versus effectiveness aspects of problem 
solving a that interventions designed to improve 
these skills may be useful; the question is, which 
intervention will work with which ef fi ciency/
effectiveness dimension? From a formative 
assessment perspective learning trajectories can 
provide evidence as to whether interventions 
adopted to improve learning are working. 

  Fig. 27.7    Learning trajectories of classes and students of 
different abilities. ( a ) The dataset ( n  = 62,774) was divided 
into lower (IRT scores = 3.4–49.3) and higher (IRT 
scores = 49.4–60.3)  Hazmat  problem solving ability stu-
dents and the learning trajectories plotted. ( b ) The 
Ef fi ciency/Effectiveness measures are stepwise plotted 

for seven  Hazmat  performances for four representative 
classes. ( c ) A dataset (82 students, 780  Hazmat  perfor-
mances) for three Advanced Placement Chemistry classes 
was divided into high and low categories based on the 
 fi nal course grade and the learning trajectories calculated       
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 One such approach is to integrate guidance 
about problem solving directly into the technol-
ogy-based learning environment. Such guidance 
may include the types of suggestions and prompts 
about the metacognitive aspects of good prob-
lem solving that have been associated with effec-
tive teacher implementation and skilled 
instruction from expert human tutors. More 
speci fi cally, good problem solvers do more than 
apply known procedures to familiar problems. 
Rather, they consider carefully the nature of the 
problem before starting to work, plan an appro-
priate approach, implement the plan, and con-
tinually evaluate progress towards the solution 
(Cooper & Sandi-Urena,  2009 ; Swanson,  1990 ). 
Good problem solvers also recognize that 
dif fi cult problems may require time and effort to 
solve, and that some “moments in the dark” are 
to be expected during the problem solving pro-
cess. If the kinds of metacognitive guidance pro-
vided by skilled teachers could be integrated 
directly into simulation learning environments, 
then we might expect to  fi nd students adopting 
better strategies. 

 The bene fi ts of individualized instruction 
have been well documented in studies of expert 
human tutors, in terms of enhanced learning out-
comes for novices (Lepper, Woolverton, Mumme, 
& Gurtner,  1993  ) . The bene fi ts of individualized 
instruction have also been documented in the 
context of Intelligent Tutoring Systems (ITS) 
software for mathematics instruction (Anderson, 
Carter, & Koedinger,  2000 ; Heffernan & 
Koedinger,  2002 ; Koedinger, Corbett, Ritter, & 
Shapiro,  2000  ) . Moreno and Duran ( 2004 ) found 
that students who received guidance while work-
ing in a discovery-based simulation showed 
stronger posttest performance and higher trans-
fer rates than students who did not receive guid-
ance. Studies of ITS have also indicated that 
students who seek out and use multimedia 
resources show stronger learning outcomes than 
students who do not use the instructional 
resources (Walles, Beal, Arroyo, & Woolf,  2005  ) . 
While in the past ITS have primarily targeted the 
cognitive aspects of the student, they are increas-
ingly being expanded to contribute to the learn-
ers’ intrinsic motivation (   Conati & Zhao,  2004  ) . 

Within the development and study of student 
feedback, we wanted to  fi nd empirical evidence 
of how students use direct feedback from 
IMMEX to help them improve the way they 
problem solve. 

 The opposite pole to individual learning is 
collaborative learning. As tasks have become 
more complex and distributed, organizations have 
increasingly turned to the use of teams to share 
the effort and most have largely become team 
based. It is not surprising therefore that mastering 
teamwork is regarded as a cornerstone of twenty-
 fi rst century learning and  fi nding ways to improve 
communication and collaboration is an important 
area of research (Partnership for 21st Century 
Skills,  2013 ). Researchers have collected evi-
dence of metacognition development during 
 collaborative work and through the practice of 
collective metacognitive activities (Case, 
Gunstone, & Lewis,  2001 ; Georghiades,  2006 ). 
Hausmann, Chi, and Roy ( 2004 ) have extensively 
studied the bene fi ts that are associated with col-
laboration. Learning in dyads therefore would 
also seem like a useful potential intervention for 
measuring its’ effects on problem solving 
ef fi ciency and effectiveness. 

 The learning trajectory for students ( N  = 50,062 
performances, dotted line with open circle) who 
improved at their own pace is characterized by 
progressive improvement across both the 
ef fi ciency and effectiveness dimensions which 
begins to plateau after around four performances 
(Fig.  27.8 ). This plateau mirrors the stabilization 
of strategies and abilities we have previously 
documented using HMM and IRT (Stevens & 
Casillas,  2006 ; Stevens & Thadani,  2007  ) .  

 A second learning trajectory is from students 
who received text messages that were integrated 
into the prologue of each problem, i.e., before the 
student began actually working on the problem. 
( n  = 11,497 performances, dotted line with open 
square). They were speci fi cally designed to 
encourage students to re fl ect on their problem 
solving. The messages appeared during the 
Prologue of each  Hazmat  problem (i.e., during 
problem framing) and were randomly selected 
for each case from the message bank, with the 
restriction that a particular message would only 
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be shown once to an individual student. The mes-
sages suggested for example are as follows: 
“When you read the IMMEX problem, don’t let 
yourself rush into trying different things. Stop 
and think for a minute  fi rst.” What have you 
learned in science class that could help you iden-
tify the right place to start? 

 It is important to note that the scaffolding 
messages did not provide information about the 
science content that would help the student solve 
the problem. In fact, all the relevant science con-
tent information is already available in the case; 
the student’s task is to think about which infor-
mation might be most useful, that is, to be 
focused and selective. The scaffolding messages 
were designed to address problem solving as a 
process and to encourage students to focus on 
their actions and the goal of solving the problem 
(i.e., regulation), rather than to explore the sim-

ulation. Students who received the metacogni-
tive—directed hints became less ef fi cient, 
meaning that they looked at more problem mate-
rials, but they also became more effective prob-
lem solvers. 

 A control group of students ( n  = 1,215 per-
formances, dotted line with  fi lled circle) also 
received messages during the Prologue, but here 
the messages were designed to be generic aca-
demic advice (e.g., “It’s a good idea to keep up 
with the reading for your science class.”). These 
students became less ef fi cient as well as less 
effective. Thus, the message content was critical 
to improving students’ problem solving; the 
presence of text messages alone was not help-
ful. Finally, grouping students into pairs ( n  = 5,577 
performances, dotted line with  fi lled square), 
improved both the ef fi ciency as well as the 
effectiveness of the problem solving strategies.  

  Fig. 27.8     Hazmat  learning trajectories. The vertices of effectiveness and ef fi ciency were calculated for students in 
different intervention groups after each of eight ( sequentially numbered )  Hazmat  problem performances       
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   Discussion 

 The studies described have traced the changes in 
students’ problem solving ability (i.e., effective-
ness) as well as their regulation of their cognition 
(i.e., ef fi ciency) as they gained problem solving 
experience. They also showed the differential 
effects of interventions targeted to groups or indi-
viduals on these two problem solving dimen-
sions. The greatest positive effect on both 
ef fi ciency and effectiveness was gained by hav-
ing students perform simulations in groups. In a 
separate study, Case et al.  (  2007  )  have shown that 
these positive bene fi ts persisted when students 
were subsequently asked to solve additional 
problems on their own. 

 More recently Sandi-Urena et al. ( 2010 ) have 
shown that a non-related form of collaborative 
learning was suf fi cient to promote improved 
problem solving ability. Their intervention used a 
pretest/posttest experimental design. The inter-
vention was a three phase “problem solving” 
activity that involved neither a chemistry prob-
lem nor was it directly associated with the 
IMMEX assessment system or problem solving 
activities. The intervention took place over 
3 weeks. Phase one involved a small group col-
laborative problem solving activity and was 
designed to promote metacognition by the use of 
prompts and social interaction. The problems 
required students to sort through extraneous 
information and could not be solved by rote 
methods or without monitoring and evaluating 
their progress (core components of metacogni-
tive skillfulness). Phase two, where students 
solved another problem for homework, was 
designed to promote individual re fl ection, and 
phase three provided students with feedback and 
summaries of their activities. Students were asked 
to re fl ect on what they had learned during the 
process and what it meant for their approach to 
future problem solving activities. 

 A comparison of student performances before 
and after this intervention indicated that they 
used more ef fi cient strategies, and had higher 
problem solving ability after the intervention. 
Even thought there was no explicit link between 

the metacognitive intervention and the IMMEX 
problems, the intervention made students more 
likely to monitor and evaluate their progress 
though the problem, leading to increased prob-
lem solving ability. 

 The interventions targeted to individuals also 
shifted the shapes of learning trajectories. The 
inclusion of pedagogical messages or hints while 
the students were framing the problem showed 
different effects depending on the content of the 
messages. The messages that were designed with 
metacognition in mind improved the ability of 
the student to solve problems, but decreased the 
ef fi ciency of the process, e.g., they seemed to 
make the students more re fl ective or cautious. 
This was, in fact the goal of these messages, to 
foster improved cognitive regulation. The mes-
sages that were general study aids also had an 
effect on the students’ problem solving in that 
they decreased both the ef fi ciency and the effec-
tiveness of the problem solving, i.e., they were 
deleterious along both dimensions. While the 
possibility exists that they may have been a prob-
lem solving distraction for the students, given the 
magnitude of the effects we chose not include 
such messages in subsequent studies. 

 Recently these studies have been extended to 
middle school classrooms using an IMMEX prob-
lem set called  Duck Run  (   Beal & Stevens,  2011  ) . 
This is also a chemistry problem set where the 
prologue describes that an unknown substance has 
been illegally dumped into a local duck pond, pos-
sibly putting the local wildlife at risk. The stu-
dent’s task is to identify the substance so that it 
can be properly removed. Students who worked 
with the message-enhanced version were more 
likely to solve the problems and to use more effec-
tive problem solving strategies than students who 
worked with the original version. Bene fi ts of the 
messages were observed for students with rela-
tively poor problem solving skills, and for students 
who used exhaustive strategies. It would seem 
therefore that the bene fi cial effects of well-con-
structed messages immediately prior to problem 
solving are generalizable to multiple grade levels. 

 Combined these studies show that technology 
can provide dynamic models of what students 
are doing as they learn problem solving without 
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creating a burden on educational systems. While 
illustrated for chemistry, such models are appli-
cable to other problem solving systems where 
learning progress is tracked longitudinally. When 
shared with teachers and students in real time 
they can provide a roadmap for better instruction 
by highlighting problem solving processes and 
progress and documenting the effects of class-
room interventions and instructional modi fi cations. 
The differences observed across schools, teach-
ers, and student abilities shifts the focus to the 
classroom and may provide a means for matching 
students and instruction or matching teachers 
with professional development activities.      
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 The widespread use of advanced learning 
 technologies (ALTs) poses numerous challenges 
for learners of all ages. Learning with these non-
linear, multi-representational, open-ended learn-
ing environments typically involves the use of 
numerous self-regulatory processes, such as plan-
ning, cognitive strategies, metacognitive moni-
toring and regulation, emotions, and motivation. 
Unfortunately, learners do not always monitor 
and regulate these processes during learning 
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  28      Using Trace Data to Examine 
the Complex Roles of Cognitive, 
Metacognitive, and Emotional 
Self-Regulatory Processes During 
Learning with Multi-agent Systems       
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  Abstract 

 This chapter emphasizes the importance of using multi-channel trace data 
to examine the complex roles of cognitive, affective, and metacognitive 
(CAM) self-regulatory processes deployed by students during learning with 
multi-agent systems. We argue that tracing these processes as they unfold 
in real-time is key to understanding how they contribute both individually 
and together to learning and problem solving. In this chapter we describe 
MetaTutor (a multi-agent, intelligent hypermedia system) and how it can be 
used to facilitate learning of complex biological topics and as a research 
tool to examine the role of CAM processes used by learners. Following a 
description of the theoretical perspective and underlying assumptions of 
self-regulated learning (SRL) as an event, we provide empirical evidence 
from  fi ve different trace data, including concurrent think-alouds, eye-track-
ing, note taking and drawing, log- fi les, and facial recognition, to exemplify 
how these diverse sources of data help understand the complexity of CAM 
processes and their relation to learning. Lastly, we provide implications for 
future research of advanced leaning technologies (ALTs) that focus on 
examining the role of CAM processes during SRL with these powerful, yet 
challenging, technological environments.      
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with ALTs, which limits their effectiveness as 
 educational tools for enhancing learning about 
complex and challenging topics. Metacognition 
and self-regulation comprise a set of key pro-
cesses that are critical for learning about concep-
tually rich domains with ALTs, such as 
hypermedia, intelligent tutoring systems, simula-
tions, multi-agent tutoring systems, serious 
games, and other hybrid systems. We argue that 
learning with ALTs involves a complex set of 
interactions between cognitive, affective, meta-
cognitive, and motivational processes. Although 
we acknowledge the importance of motivation in 
learning, it is not a process that we will be dis-
cussing in this chapter given our current measure-
ment of it, and we will therefore focus on 
cognitive, affective, and metacognitive (CAM) 
processes. 

 Recent interdisciplinary research provides 
evidence that learners of all ages struggle when 
learning about conceptually rich domains with 
ALTs (Aleven, Roll, McLaren, & Koedinger,  2010 ; 
Azevedo, Johnson, Chauncey, & Graesser,  2011 ; 
Biswas, Jeong, Kinnebrew, Sulcer, & Roscoe,  2010 ; 
Greene, Moos, & Azevedo,  2011  ) . In brief, this 
research indicates that learning about conceptually 
rich domains with ALTs is particularly dif fi cult 
because it requires students to continuously mon-
itor and regulate several key aspects of their 
learning. For example, regulating one’s learning 
involves the following: analyzing the learning 
context, setting and managing meaningful learn-
ing subgoals, determining which learning and 
problem-solving strategies to use, assessing 
whether selected learning strategies are effective 
in meeting the learning subgoals, monitoring and 
making accurate judgments regarding one’s 
emerging understanding of the topic and contex-
tual factors, and determining whether there are 
aspects of the learning context that could be used 
to facilitate learning. During self-regulated learn-
ing (SRL), students need to deploy several meta-
cognitive processes to determine whether they 
understand the material. Students must also con-
sider whether it is necessary for them to modify 
their plans, goals, strategies, and efforts in relation 
to dynamically changing contextual conditions. 
Further, students must monitor, modify, and adapt 

to  fl uctuations in their motivational and affective 
states, and determine how much social support (if 
any) they may need to perform a task. Depending 
on the learning context, instructional goals, per-
ceived task performance, and progress made 
toward achieving the learning goal(s), students 
may also need to modify certain aspects of their 
cognition, affect, metacognition, and motivation. 
As such, we argue that self-regulation plays a 
critical role in learning with ALTs. 

 In this chapter, we provide an overview of the 
theoretical SRL model that serves as the founda-
tion of our research and fundamental assump-
tions. We then describe how features of a 
multi-agent, intelligent hypermedia system (i.e., 
MetaTutor) support learners in regulating several 
aspects of their learning. We also provide speci fi c 
examples of key monitoring and regulatory pro-
cesses used prior to, during, and following learn-
ing with MetaTutor. In addition, we provide 
extensive evidence from  fi ve different types of 
trace data (i.e., concurrent think-alouds, eye-
tracking, note-taking and drawing, log  fi les, and 
facial recognition) and indicate how they contrib-
ute to our understanding of SRL. Finally, we 
present several implications for future research of 
ALTs that focus on metacognition and SRL. 

   Self-Regulated Learning as an Event: 
Theoretical Framework 

 SRL frameworks, models, and theories attempt to 
explain how cognitive, affective, metacognitive, 
and motivational processes and contextual factors 
in fl uence the learning process (Boekaerts,  2011 ; 
Pintrich,  2000 ; Winne,  2001 ; Winne & Hadwin, 
 1998,   2008 ; Zimmerman,  2000,   2008 ; Zimmerman 
& Schunk,  2011  ) . Although there are important 
differences between various theoretical de fi nitions, 
self-regulated learners are generally character-
ized as active and ef fi cient at managing their own 
learning through monitoring and strategy use 
(Boekaerts, Pintrich, & Zeidner,  2000 ; Butler & 
Winne,  1995 ; Efklides,  2011 ; Greene & Azevedo, 
 2007,   2009 ; Pintrich,  2000 ; Winne,  2001 ; Winne 
& Hadwin,  1998,   2008 ; Zimmerman & Schunk, 
 2001,   2011  ) . Students are self-regulated to the 
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degree that they are metacognitively, motivation-
ally, and behaviorally active participants in their 
learning (Zimmerman,  1989  ) . The goal of this 
section is to brie fl y describe the theoretical basis 
underlying our research on MetaTutor to under-
stand the temporal dynamics of SRL processes 
deployed during learning with the system. 

 SRL involves actively constructing an under-
standing of a topic or domain, such as human 
biology (e.g., body systems), by creating sub-
goals; using learning strategies; monitoring and 
regulating certain aspects of cognition, behavior, 
emotions, and motivation; and modifying behav-
ior to achieve the desired goal(s)    (see Boekaerts 
et al.,  2000 ; Pintrich,  2000 ; Zimmerman & 
Schunk,  2001  ) . Though this is a common 
de fi nition of SRL, the literature includes multiple 
theoretical perspectives that make different 
assumptions and focus on different constructs, 
processes, and phases (see Azevedo et al.,  2010 ; 
Dunlosky & Lipko,  2007 ; Metcalfe & Dunlosky, 
 2008 ; Pintrich,  2000 ; Schunk,  2008 ; Winne & 
Hadwin,  2008 ; Zimmerman & Schunk,  2011  ) . 
For present purposes, we further specify SRL as 
a concept superordinate to metacognition that 
incorporates both metacognitive monitoring 
(i.e., knowledge of cognition or metacognitive 
knowledge) and metacognitive control (i.e., 
involving the skills associated with the regulation 
of metacognition), as well as processes related to 
manipulating contextual conditions and planning 
for future activities within a learning episode. 
Ultimately, SRL is based on the assumption that 
learners exercise agency by consciously monitoring 
and intervening in their learning. 

 Our research is theoretically in fl uenced by 
contemporary models of SRL that emphasize the 
temporal deployment of these processes during 
learning (Azevedo, Moos et al.,  2010 ). As such, 
multiple measures must be used to detect, track, 
and model learners’ use of cognitive, affective, 
and metacognitive (CAM) processes during 
learning. Underlying our approach is Winne and 
Hadwin’s SRL model  (  1998,   2008  ) , which pro-
poses that learning occurs in four basic phases: 
(1) task de fi nition, (2) goal setting and planning, 
(3) studying tactics, and (4) adaptations to meta-
cognition. The Winne and Hadwin model empha-

sizes the role of metacognitive monitoring and 
control as the central aspects of learners’ ability 
to acquire complex material across different 
instructional contexts (e.g., using a multi-agent 
system to track and foster SRL) in that informa-
tion is processed and analyzed within each phase 
of the model. Recently, Azevedo and colleagues 
(Azevedo, Feyzi-Behnagh, Duffy, Harley, & 
Trevors,  2012a , Azevedo, Landis et al.,  2012b , 
Azevedo, Bouchet et al.,  2012c ; Azevedo & 
Feyzi-Behnagh,  2011 ; Azevedo, Cromley, Moos, 
Greene, & Winters,  2011 ; Azevedo & 
Witherspoon,  2009  )  extended this model and pro-
vided extensive evidence regarding the role and 
function of several dozen CAM processes during 
learning with ALTs (e.g., using an intelligent, 
hypermedia multi-agent system). 

 In brief, the following assumptions are associ-
ated with the current model. First, successful 
learning involves individuals monitoring and con-
trolling (i.e., regulating) key CAM processes. 
Second, SRL is context-speci fi c and successful 
learning may require a learner to increase/decrease 
the use of certain key SRL processes at different 
points in time. Third, a learner’s ability to monitor 
and control both internal (e.g., prior knowledge) 
and external factors (e.g., changing dynamics of 
the learning environment, relative utility of an 
agent’s prompt) is crucial. Fourth, a learner’s abil-
ity to make adaptive, real-time adjustments to 
internal and external conditions, based on accu-
rate judgments of their use of CAM processes, is 
fundamental to successful learning. Finally, cer-
tain CAM processes (e.g., interest, self-ef fi cacy, 
task value) are necessary to motivate a learner to 
engage and deploy appropriate CAM processes 
during learning and problem solving. 

 An important strength of this model is that it 
deals speci fi cally with the person-in-context per-
spective and postulates that CAM processes occur 
throughout learning with a multi-agent system, 
which is useful in examining when and how 
learners regulate learning. The focal macro-level 
processes discussed in this chapter are reading, 
metacognitive monitoring, and learning strategies. 
Reading behavior is critical since it is the most 
important activity related to acquiring, compre-
hending, and using content knowledge related to a 
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particular topic. During reading, learners need to 
monitor and regulate several key processes, such 
as the following: (1) selecting relevant content 
(i.e., text and diagrams) based on their current 
subgoal; (2) spending appropriate amounts of 
time on each page, depending on their relevance 
regarding their current subgoal; (3) deciding when 
to switch or create a new subgoal; (4) making 
accurate assessments of their emerging under-
standing; (5) conceptually connecting content 
with prior knowledge; (6) adaptively selecting, 
using, and assessing the effectiveness of several 
learning strategies (e.g., rereading, coordinating 
informational sources, summarizing, making 
inferences); and (7) making adaptive changes to 
behavior based on a variety of external (e.g., quiz 
scores, quality and timing of agents’ prompts and 
feedback) and internal sources (e.g., affective 
experiences, including both positive and negative 
emotions, perception of task dif fi culty). In sum, 
SRL involves the continuous monitoring and reg-
ulation of CAM processes during learning with 
multi-agent, intelligent hypermedia systems (e.g., 
MetaTutor).  

   MetaTutor: An Adaptive, Multi-agent 
Hypermedia Learning System 
for Biology 

 MetaTutor is a multi-agent, adaptive hypermedia 
learning environment, which presents challenging 
human biology science content. The primary goal 
underlying this environment is to investigate how 
ALTs can adaptively scaffold SRL and metacog-
nition within the context of learning about com-
plex biological content (Azevedo, Feyzi-Behnagh 
et al.,  2012  ) . MetaTutor is grounded in a theory of 
SRL that views learning as an active, constructive 
process whereby learners set goals for their learn-
ing and then attempt to monitor, regulate, and 
control their cognitive and metacognitive pro-
cesses in the service of those goals (Winne & 
Hadwin,  2008  ) . More speci fi cally, MetaTutor is 
based on several theoretical assumptions of SRL 
that emphasize the role of cognitive, metacognitive 
(where metacognition is conceptualized as being 
subsumed under SRL), motivational, and affec-

tive processes (Pekrun,  2006 ; Pintrich,  2000 ; 
Winne & Hadwin,  2008 ; Zimmerman & Schunk, 
 2011  ) . Moreover, learners must regulate their 
cognitive and metacognitive processes in order to 
integrate multiple informational representations 
available from the system. Although all students 
have the potential to regulate, few students do so 
effectively, possibly due to inef fi cient or 
insuf fi cient cognitive or metacognitive strategies, 
knowledge, or control. 

 MetaTutor is both (1) a learning tool designed 
to teach and train students to self-regulate (e.g., 
by modeling and scaffolding metacognitive 
monitoring, facilitating the use of effective learn-
ing strategies, and setting and coordinating rele-
vant learning goals), and (2) a research tool used 
to collect trace data on students’ CAM processes 
deployed during learning. 

 As a learning tool, MetaTutor has a host of fea-
tures that embody and foster SRL (see Fig.  28.1 ). 
These include four pedagogical agents (PAs), 
which guide students through the learning session 
and prompt students to engage in planning, 
monitoring, and strategic learning behaviors. In 
addition, the agents can provide feedback and 
engage in a tutorial dialogue in order to scaffold 
students’ selection of appropriate subgoals, accu-
racy of metacognitive judgments, and use of par-
ticular learning strategies. The system also offers 
the possibility for the learners to express meta-
cognitive monitoring and control processes 
through the use of a palette of actions (see in 
Fig.  28.1 ). For example, learners can click on a 
button to indicate that they want to make a state-
ment about their understanding of a page and then 
indicate on a scale that their understanding is 
poor. They can also indicate that they want to 
summarize the content of that page and then type 
freely their summary in a text box.  

 Additionally, MetaTutor collects information 
from user interactions to provide adaptive feed-
back on the deployment of students’ SRL behav-
iors. For example, students can be prompted to 
self-assess their understanding (i.e., system-initi-
ated judgment of learning [JOL]) and are then 
administered a brief quiz. Results from the self-
assessment and quiz allow PAs to provide adaptive 
feedback according to the calibration between 
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 students’ con fi dence of comprehension and their 
actual quiz performance. 

 The system’s interface layout also supports 
SRL processes. As depicted in Fig.  28.1 , an 
embedded palette provides students with the 
opportunity for initiating an interaction with the 
system according to the SRL process selected 
(e.g., take notes). Overall, in line with its theo-
retical foundations, MetaTutor supports and fos-
ters a variety of SRL behaviors, including prior 
knowledge activation, goal setting, evaluation of 
learning strategies, integrating information across 
representations, content evaluation, summariza-
tion, note-taking, and drawing. Importantly, it 
also scaffolds speci fi c metacognitive processes, 
such as judgments of learning, feelings of know-
ing, and monitoring progress toward goals (Feyzi-
Behnagh, Khezri, & Azevedo,  2011  ) . 

 There are some aspects of the espoused theo-
retical models of SRL yet to be implemented. 
Initially, the theoretical and empirical foci have 
been on cognitive, metacognitive, and behavioral 
learning processes. Thus, this ALT does not exten-
sively incorporate the motivational and affective 

dimensions of SRL into its design. Affective-
related elements are currently collected by the sys-
tem and analyzed following learners’  interaction 
with MetaTutor. Moving forward, the varieties 
and regulation of learners’ affective processes, the 
affective qualities of human-agent interaction, and 
how the system and learners’ self-regulation 
in fl uence the activation, awareness, and motiva-
tion will be areas of interest with important impli-
cations for SRL theory and instructional design.  

   Self-Regulated Learning with 
MetaTutor: Understanding the 
Nature of CAM Processes Prior to, 
During, and Following Learning 

 When interacting with the current version of 
MetaTutor, during a 2-h session, a student is asked 
to learn about the human circulatory system. 
The environment contains 41 static diagrams and 
hundreds of paragraphs containing 7,545 words. 
Each of these representations of information is 
organized similarly to sections and subsections of 

  Fig. 28.1    Annotated screenshot of the MetaTutor interface       
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book chapters, thus allowing students to navigate 
freely throughout the environment (see table of 
contents on the left of Fig.  28.1 ). In addition to 
CAM processes, motivational and emotional pro-
cesses may also be assessed during the MetaTutor 
session. In this section, we describe the nature and 
role of CAM processes experienced by learners 
prior to, during, and following their learning ses-
sion with MetaTutor. 

   CAM Processes Prior to Using 
MetaTutor 

 Once a student is given the overall learning goal 
for the session and prior to using MetaTutor, she 
or he analyzes the learning situation, sets mean-
ingful learning goals, and determines which strat-
egies to use based on the task conditions. The 
student may also generate motivational goals and 
beliefs based on prior experience with the topic 
and learning environment, success with similar 
tasks, contextual constraints (e.g., perception of 
scaffolding and feedback provided by a PA), and 
contextual demands (e.g., a time limit for com-
pletion of the task). 

 For example, a student may espouse different 
achievement goals and beliefs about knowledge 
prior to engaging with the learning environment. 
According to achievement goal theory (see Ames, 
 1992 ; Ames & Archer,  1988 ; Hulleman, Schrager, 
Bodmann, & Harackiewicz,  2010  ) , some students 
may espouse a more dominant mastery goal for 
learning if their prior experiences in classroom 
environments encouraged them to increase com-
petencies by focusing on personal progress. In 
contrast, other students may enter the learning 
environment with a tendency to strive for compe-
tition and outperform other students, particularly 
if their learning experiences typically emphasized 
the importance of performance through peer 
comparisons. 

 Further, students’ beliefs about the nature of 
knowledge and what it means to know—their 
epistemic beliefs—are another active component 
during the task de fi nition phase (Muis,  2007  ) . 
Students adapt their cognitive processing during 
the preparatory planning phases of learning in 

response to task complexity, a relationship that is 
mediated by their epistemic beliefs. That is, stu-
dents who espouse beliefs in unstructured and 
variable knowledge report using a greater pro-
portion of deep cognitive processing across all 
tasks (Bromme, Pieschl, & Stahl,  2010  ) . These 
constructivist beliefs about knowledge and 
knowing allow for a greater perception of task 
complexity and  fl exibility in selecting strategies 
best suited to accomplish the task. Such beliefs 
and motivational approaches can be shaped by 
previous academic experiences, perceptions, and 
attitudes, as well as by the instructions provided 
at the beginning of the MetaTutor learning ses-
sion. Importantly, differences in goal orienta-
tions and epistemic beliefs will likely in fl uence 
the strategies deployed during learning, as well 
as the criteria learners use to evaluate success or 
failure. 

 Additionally, students may have particular 
emotional responses prior to interacting with 
MetaTutor. These may be based on either an 
existing trait emotion (e.g., more habitual, reoc-
curring emotions, such as trait test anxiety) that 
would be aroused by the learning environment 
or prospective emotional responses that relate to 
potential outcomes of the particular academic 
achievement activity (e.g., hope to learn as much 
as possible about the circulatory system) 
(Pekrun,  2006  ) .  

   CAM Processes Deployed During 
Learning with MetaTutor 

 During the course of learning, a student may 
assess whether particular strategies are effective 
in meeting learning subgoals, evaluate their 
emerging understanding of the topic, and make 
the necessary adjustments regarding knowledge, 
behavior, effort, and other aspects of the learning 
context. Ideally, the self-regulated learner will 
make adaptive adjustments, based on continuous 
metacognitive monitoring and control related to 
the standards of the particular learning task and 
that these adjustments will facilitate decisions 
regarding when, how, and what to regulate 
(Pintrich,  2000 ; Schunk,  2001 ; Winne,  2005 ; 
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Winne & Hadwin,  1998,   2008 ; Winne & Nesbit, 
 2009 ; Zimmerman,  2008 ; Zimmerman & Schunk, 
 2011  ) . These monitoring and control processes 
may interact with motivational facets of learning, 
such as self-ef fi cacy and epistemic beliefs. Self-
ef fi cacy represents an individual’s perceived 
capacity to successfully complete a learning task 
(Schunk & Usher,  2011  ) , such as completing a 
subgoal created within MetaTutor. During the 
learning session, a student’s con fi dence about his 
or her capability to master a certain concept or 
complete a subgoal may in fl uence his or her deci-
sions about which pages to read in MetaTutor, 
how long to persist on challenging material, and 
resilience to adverse outcomes, such as poor per-
formance on quizzes. 

 Another factor that in fl uences online meta-
cognitive behaviors is students’ epistemic beliefs, 
which are related to the standards that are set for 
subsequent learning (Muis,  2007  ) . Standards for 
learning are used to compare an emerging learn-
ing product (e.g., comprehension of a text) with 
the initial goal that was set (e.g., studying in order 
to be prepared for the posttest). If, for example, a 
student holds a belief in simple knowledge, he or 
she may judge that memorization of key terms is 
an adequate standard for learning, without being 
motivated to consider their interconnectedness 
across multiple representations and pages in 
MetaTutor (Dahl, Bals, & Turi,  2005 ; Schommer, 
 1998  ) . In contrast, a belief in complex knowledge 
motivates a greater effort at understanding its 
interconnectedness (Muis,  2007 ; Muis & Franco, 
 2009  ) . Both self-ef fi cacy and epistemic beliefs 
can potentially change during learning depending 
on a host of variables, such as performance on 
quizzes, self-evaluations about the effectiveness 
of learning strategies deployed, and emotions 
experienced during the learning process (e.g., 
learning-centered emotions). 

 Activity emotions are also subject to change 
based on learners’ evolving appraisals, such as 
control and task value, regarding progress toward 
achieving learning goals (Pekrun,  2006  ) . These 
emotions are also in fl uenced by learners’ ability 
to adaptively regulate their emotions (Gross, 
Sheppes, & Urry,  2011  ) . Therefore, a learner may 
approach MetaTutor feeling hopeful (prospective 

emotion) that he or she will be able to learn about 
a particular topic of importance (i.e., an appraisal 
of positive value and medium control), such as 
the relationship between the circulatory and 
 nervous system, but become frustrated (activity 
emotion) after learning that this goal cannot be 
set because MetaTutor does not cover the nervous 
system (i.e., appraisal of low control). The learner 
may then question whether the learning session 
will hold anything of interest (i.e., an appraisal of 
negative value). The learner, however, may be 
effective in dampening their frustration and rather 
than giving up and disengaging with the task (i.e., 
becoming bored), instead be able to set a subgoal 
more focused on the circulatory system that is 
still of personal interest. After having proposed a 
new subgoal (e.g., to learn about malfunctions of 
the circulatory system), the learner may then 
experience enjoyment. In this type of positively 
valenced emotional state, the learner is better 
poised to approach and succeed in the achieve-
ment task (Pekrun,  2006 ; Pekrun, Goetz, Frenzel, 
Petra, & Perry,  2011  ) .  

   CAM Processes Following Learning 
with MetaTutor 

 Following the learning session with MetaTutor, 
the learner may make several cognitive, motiva-
tional, and behavioral attributions that affect sub-
sequent learning (Pintrich,  2000 ; Schunk,  2001  ) . 
Learners’ retrospective emotions may be aroused 
based on their success or failure regarding goal 
achievement, as well as motivational factors, 
such as appraisals of control and value (Pekrun, 
 2006 ; Weiner,  1985  ) . For example, if learners 
were successful in achieving their goal, the con-
trol-value theory of achievement emotions pre-
dicts that they would experience pride if they 
cared about the goal (positive value) and felt that 
they were responsible for their success. 
Conversely, they would be expected to experi-
ence shame if they were unsuccessful, cared 
about the goal, and felt responsible for their fail-
ure. The experience of pride or shame may have 
motivational consequences. That is, learners may 
either be more eager to learn about content and 
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do so using the intelligent tutoring system or 
become less interested in learning and/or inter-
acting with intelligent PAs. In other words, a 
combination of emotions, perceived task value, 
and personal explanations for success or failure 
may in fl uence students’ response to the learning 
environment, feelings about performance, and 
attitudes toward similar learning situations. 

 The preceding scenarios represent an idealistic 
approach to self-regulating one’s learning with 
an ALT, such as MetaTutor. Unfortunately, the 
typical learner does not engage in all of these 
adaptive CAM processes during learning with 
ALTs (see Azevedo & Witherspoon,  2009 ; Biswas 
et al.,  2010  ) .   

   Multi-level Processes of SRL During 
Learning with MetaTutor: Converging 
Evidence 

 As a research tool, MetaTutor is capable of mea-
suring the deployment of self-regulatory pro-
cesses through the collection of rich, multi-stream 
data, including self-report measures of SRL, 
online measures of cognitive and metacognitive 
processes (e.g., concurrent think-alouds), dia-
logue of agent-student interactions, physiologi-
cal measures of motivation and emotions, 
emerging patterns of effective problem-solving 
behaviors and strategies, facial data on both 
basic (e.g., anger) and learning-centered emo-
tions (e.g., boredom), and eye-tracking data 
regarding the selection, organization, and inte-
gration of multiple representations of informa-
tion (e.g., text, diagrams). The collection of these 
various data streams is critical to enhancing our 
understanding of when, how, and why students 
regulate or not their learning and adapt their reg-
ulatory behaviors. These data are then used to 
develop computational models designed to 
detect, track, model, and foster students’ SRL 
processes during learning (for a review see 
Azevedo, Moos et al.,  2010 ). In this section, we 
present data from  fi ve different sources that 
exemplify the complex nature of trace data in 
terms of frequency of use, level of granularity, 
temporal sequencing, ease of inference making 

regarding speci fi c macro-level SRL processes, 
and the role of context needed, in order to under-
stand how the trace data can augment under-
standing of conceptual, measurement, and 
analytical issues. As such, we present data asso-
ciated with concurrent think-alouds, eye-track-
ing, note-taking and drawing, log  fi les, and facial 
detection of emotions. 

   Concurrent Think-Aloud Protocols: SRL 
Events Based on Microlevel Processes 

 Azevedo and colleagues have provided detailed 
analyses of the dozens of cognitive and meta-
cognitive processes used by learners of all ages 
(e.g., middle-school, high-school, and college 
students) when using several ALTs (see Azevedo, 
 2007 ; Azevedo, Cromley, Winters, Moos, & 
Greene,  2005 , Azevedo, Moos, Greene, Winters, 
& Cromley,  2008 , Azevedo, Moos et al.,  2010 ; 
Azevedo et al.,  2012a ; Azevedo & Witherspoon, 
 2009 ; Greene & Azevedo,  2007,   2009  ) . Their 
analyses of SRL processes during learning with 
ALTs are of particular relevance since SRL is 
treated as an event. Their analyses of hundreds 
of concurrent think-aloud protocols and other 
process data (e.g., log- fi le and video analyses) 
provide detailed evidence of the macro-level 
(e.g., metacognitive monitoring) and microlevel 
processes (e.g., JOL) and valence that augments 
Winne and Hadwin’s  (  1998,   2008  )  model. In 
general, these processes include planning, mon-
itoring, strategy use, and handling of task 
dif fi culty and demands (see Azevedo, Moos 
et al.,  2010  for details). The conceptual, theo-
retical, methodological, and analytical assump-
tions and issues regarding the use of concurrent 
think-alouds to examine SRL processes are well 
documented by Azevedo and colleagues (see 
Azevedo et al.,  2005,   2007 ,  2010 ; Azevedo & 
Witherspoon,  2009 ; Greene & Azevedo,  2007, 
  2010  for details). In this section, we contextual-
ize our de fi nitions with examples of metacogni-
tive processes typically used with MetaTutor 
and then present how learners’ monitoring pro-
cesses and corresponding judgments are 
addressed by regulatory processes.   
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   Monitoring Processes During 
Learning with MetaTutor 

 As previously mentioned, Winne and colleagues’ 
model provides a macro-level framework for the 
cyclical and iterative phases of SRL. The data pre-
sented in this section exemplify the microlevel 
processes that can augment Winne’s model. In par-
ticular, we present six metacognitive monitoring pro-
cesses we have identi fi ed as essential to  promoting 
students’ SRL with MetaTutor. Some of these 
monitoring processes include valence, positive (+) 
or negative (−), which indicates the learners’ evalua-
tion of the content, their understanding, progress, or 
familiarity with the material. For example, a learner 
might state that the current content is either appro-
priate (positive content evaluation) or inappropri-
ate (negative content evaluation) given their 
current learning subgoal and valence associated 
with the evaluation (and accuracy of the metacog-
nitive judgment). They may also make choices 
about how and which metacognitive regulatory 
process to choose in order to address the result of 
the metacognitive judgment (e.g., set a new sub-
goal, summarize content). 

 JOL is when a learner becomes aware that he 
or she does (+) or does not (−) know or understand 
something just read or inspected (e.g., diagram). 
Feeling of knowing (FOK) is when the learner is 
aware of having (+) or having not (−) read, heard, 
or inspected something in the past (e.g., prior to 
the learning session) and having (+) or not having 
(−) some familiarity with the material (e.g., never 
presented in a previous biology class). Self-test 
(ST) is when a learner poses a question to himself 
or herself to assess understanding of the content 
and determine whether to proceed with additional 
content or to readjust strategy use. In monitoring 
progress toward goals (MPTG), learners assess 
whether previously set goals have been met (+) or 
not met (−) given particular time constraints. This 
monitoring process includes a learner comparing 
the goals set for the learning task (i.e., set during 
the subgoal phase) with those already accom-
plished and those that still need to be addressed. 
A related metacognitive process, time monitoring 
(TM), involves the learner becoming aware of the 

remaining time allotted for the learning task. 
Content evaluation (CE) occurs when a learner 
monitors the appropriateness (+) or inappropri-
ateness (−) of the current learning content (e.g., 
text, diagram, or other type of static and dynamic 
external representation of information) given the 
overall learning goal and subgoals. In sum, these 
are just a few of the relevant metacognitive moni-
toring processes used by students during learning 
with MetaTutor. Based on our previous discussions 
of SRL models, these processes play important 
roles in facilitating and supporting students’ SRL 
with ALTs. 

   Self-Regulation of Learning Based on 
Metacognitive Monitoring Processes 

 In this section, we describe the learner’s applica-
tion of these six monitoring processes within the 
context of self-regulation with MetaTutor. The pro-
cesses described in this section are based on empir-
ical  fi ndings (e.g., Azevedo et al.,  2010 ,  2012a ; 
Johnson, Azevedo, & D’Mello,  2011  ) . For each 
monitoring process, we provide the aspects of the 
learning environment (i.e., MetaTutor) that are 
evaluated by learners and illustrate them using 
examples of task and cognitive conditions. 

 FOK is used when the learner is monitoring 
the correspondence between his or her own 
preexisting domain knowledge and the current 
content. The learner’s domain knowledge and the 
learning resources are the aspects of the learning 
situation being monitored when a learner 
engages in FOK. If a learner recognizes a mis-
match between preexisting domain knowledge 
and learning resources (negative valence), more 
effort should be expended in order to align the 
knowledge and resources. Following more effortful 
use of the learning material, a learner is more likely 
to experience more positive FOKs. However, if a 
learner experiences familiarity with some piece 
of material (positive valence), a good self-regulator 
will attempt to integrate the new information with 
existing knowledge by summarizing or taking 
notes. Often, a learner will erroneously make a 
positive FOK toward material and quickly move 
on to other material with several misconceptions 
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still intact. These occurrences can be prevented 
through feedback from the agent based on the 
results of the quiz administered after FOK (and 
JOL) to check content understanding. 

 In contrast to FOK, JOL is used when a learner 
is monitoring the correspondence between his or 
her own emerging understanding of the domain 
and the learning resources. Similar to feelings of 
knowing, when engaging in JOL, a learner is mon-
itoring domain knowledge and learning resources. 
If a learner recognizes that his or her emerging 
understanding of the material is not congruent 
with the material (i.e., the learner is confused), 
more effort should be applied to understanding 
the material. A common strategy employed after 
a negative JOL is rereading previously encoun-
tered material. In order to capitalize on rereading, 
a good self-regulator should pay particular atten-
tion to confusing elements in a textual passage or 
diagram. When a learner expresses a positive 
JOL, he or she might self-test to con fi rm that the 
knowledge is as accurate as the evaluation sug-
gests. As with FOK, learners often overestimate 
their emerging understanding and progress too 
quickly to other material. 

 Learners apply self-testing (ST) as a way to 
monitor their emerging understanding of content. 
When tackling dif fi cult material, learners should 
occasionally assess their level of understanding of 
the material by engaging in ST. If the results of 
this self-test are positive, the learner can progress to 
new material. If, however, the learner recognizes 
that emergent understanding is not congruent with 
what is stated in the material, he or she should 
revisit the content. Learners can engage in FOK, 
JOL, and ST using a palette of self-regulating pro-
cesses available in MetaTutor. When doing so, a 
learner is provided with a 6-point Likert scale to 
evaluate knowledge (FOK) or learning (JOL) 
about the material just read on the current page. 
Such assessment is then systematically followed 
by a quiz (ST). The feedback provided by the 
agent can, therefore, not only be associated with 
a learner’s actual knowledge but also related to 
the validity of the individual’s self-monitoring. 
Speci fi cally, the agent can indicate situations in 
which an individual expressed con fi dence with 
the material, yet obtained a poor quiz score. 

 When monitoring progress toward goals 
(MPTG), a learner is monitoring the  fi t between 
learning results and previously set learning goals 
for the session. Aspects of the learning situation 
monitored during MPTG are the learner’s domain 
knowledge, expectations of results, and the learn-
ing goals. Closely related to time monitoring, 
MPTG is an essential monitoring activity that 
learners should use to stay “on track” for the 
completion of the learning task. A learner may be 
able to generate several critical subgoals, but if 
he or she does not monitor their completion or 
incompletion, the subgoal generation SRL strat-
egy will be inadequate. When a learner monitors 
goal progress and realizes that only one of three 
has been accomplished in 75% of the time 
devoted to the learning task, a good self-regulator 
will revisit the remaining subgoals and decide 
which is most important to pursue next. In time 
monitoring (TM), a learner is monitoring the 
available time with respect to learning goals. 
These learning goals can be either the global 
learning goal de fi ned before engaging in the 
learning task or subgoals created by the learner 
during the learning episode. If the learner recog-
nizes that very little time remains and few of the 
learning goals have been accomplished, adapta-
tions should be made. For example, if a learner 
has been reading a very long passage for several 
minutes and realizes that learning goals have not 
been accomplished, a good self-regulator will 
begin scanning remaining material for informa-
tion related to the goals not yet reached. In 
MetaTutor, learners can use the system interface 
to prioritize subgoals (e.g., to revisit a current 
subgoal if there is still time left) or con fi rm that 
they have  fi nished learning about a particular 
subgoal (see Fig.  28.1  for the list of self-set sub-
goals that are always present). In the latter case, 
the learner is prompted with a long quiz to help 
them self-test their understanding of all the mate-
rials related to this subgoal. The learner can also 
monitor progress by referring to a progress bar 
that indicates the percentage of relevant material 
reviewed for the current subgoal. Moreover, 
pages already visited are marked in the table of 
contents, which can facilitate the scanning strat-
egy if they want to apply it. 
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 When learners engage in content evaluation 
(CE), they are monitoring the appropriateness of 
the learning material they are currently reading or 
viewing with regard to their current subgoal(s). 
In contrast to CE, evaluation of adequacy of con-
tent relates to the learner’s assessment of the 
appropriateness of available learning content, 
rather than content currently being inspected. 
The aspects of the learning situations monitored 
in both of these processes are the learning 
resources and the learning goals. The learner 
should remain aware of whether learning goals 
and learning resources are complementary. If a 
learner evaluates a particular piece of material as 
particularly appropriate given their learning goal 
(positive valence), more cognitive resources 
should be directed toward this material. 
Conversely, if particular content is evaluated as 
inappropriate with respect to a learning goal, a 
good self-regulator will navigate away from (or 
simply avoid) this content to seek more appropri-
ate material. A learner can perform CE using the 
SRL palette, in which case he or she has to state 
if a particular page and/or image is relevant to the 
current subgoal. The agent can provide feedback 
related to the accuracy of this assessment. 

 In sum, these monitoring processes and cor-
responding regulatory processes are based on 
studies examining the role of self-regulatory pro-
cesses deployed by learners during learning with 
open-ended hypermedia learning environments. 
They also play a critical role during learning with 
other ALTs described in the next section.   

   Using Eye-Tracking Data to Trace 
and Infer Self-Regulatory Processes 

 Eye-tracking has been used extensively in read-
ing research (see Just & Carpenter,  1980 ; Rayner, 
 1998  ) , and its use has extended to ALTs, such as 
multi-agent systems (e.g., Conati & Merten, 
 2007  ) . Eye-tracking provides  fi ne-grain infor-
mation about the allocation of a learner’s visual 
attention in terms of what, for how long, and in 
what order an object is attended to (Scheiter & 
Van Gog,  2009  ) . The information obtained from 
this channel is important since the objects, text, 

or images being  fi xated on by the eyes indicate 
that they are being processed in the mind 
 (eye-mind assumption; Just & Carpenter,  1980  ) . 
Eye-tracking provides us with data that is time-
stamped to the millisecond and includes the 
location and duration of gaze  fi xation, saccades, 
pupil diameter, blinks, and gaze behavior pat-
terns. Within MetaTutor, we use the time-
stamped data stream and align it with other data 
sources and channels, including concurrent 
think-alouds, video footage of a learner’s face, 
and reading behavior. Aligning these data 
 channels allows us to understand how learners 
perceptually attend and process multimedia 
materials (e.g., text, diagrams, images, and vid-
eos) presented and accessible both linearly and 
nonlinearly in MetaTutor. 

 In MetaTutor, where learning material about 
the human circulatory system is presented in text 
and diagram format, data from eye-tracking pro-
vides valuable information about how learners 
navigate between the text and diagram(s) (i.e., 
coordinate informational sources, COIS), how 
long and how many times they  fi xate on relevant 
and irrelevant parts of the text and diagram 
(e.g., relevant and irrelevant Areas of Interest, 
AOIs), and how they integrate information pre-
sented in multiple representations. These data 
are critical because they reveal processes often 
not verbalized by learners in think-aloud proto-
cols (Azevedo, Moos et al.,  2010 ). For example, 
repeat and prolonged  fi xations on irrelevant 
AOIs (e.g., septum) may indicate that the learner 
does not recognize or understand that the speci fi c 
part of the diagram is irrelevant. Ideally, PAs in 
the learning environment should scaffold learn-
ers by guiding their attention to relevant material 
or parts of the interface, which are conducive to 
the successful completion of the learners’ cur-
rent subgoal. In another example, prolonged 
 fi xation on a speci fi c portion of text for which a 
negative JOL had been made may indicate that 
the learner is spending time rereading that sec-
tion to gain a better understanding of the text on 
that page. This inference needs to be corrobo-
rated by examining subsequent behaviors (e.g., 
clicking the SRL palette to indicate that they 
understand the textual content or verbalizing a 



438 R. Azevedo et al.

positive JOL). In a similar way, a prolonged 
 fi xation after a negative FOK may indicate that 
the learner has recognized that the material is 
unfamiliar to them and is spending time to read 
and learn it more carefully. These metacognitive 
judgments can be made by learners either by ver-
balizing in their think-aloud protocol or by click-
ing on a button in the SRL palette embedded in 
MetaTutor’s interface to indicate that they want 
to make a judgment. When several channels of 
data are collected (e.g., think-aloud protocol and 
eye-tracking) in an experiment, eye-movement 
traces can be triangulated with think-aloud pro-
tocols to investigate different planning, monitor-
ing (e.g., metacognitive judgments), and strategy 
deployment processes (e.g., rereading, COIS). 
Analysis of  fi xation location and duration on dif-
ferent parts of a learning environment’s interface 
can assist in improving the design of the inter-
face and the presentation of the learning material 
in order to further scaffold learners’ SRL. 

 One of the important channels of data obtained 
from eye-tracking is pupil diameter. The pupil-
lary response has been associated with increased 
mental processing activity and task dif fi culty. 
Many studies have provided evidence that cogni-
tive processing load is associated with pupil 
dilation (see reviews by Beatty,  1982,   1988    ; 
Hyönä,  1995 ). According to the working mem-
ory model by Just and Carpenter (1992), there is 
a trade-off between processing demands and 
cognitive resources, such that when more 
resources are allocated to one process, less 
remains for the other. In other words, when pro-
cessing dif fi cult and complex learning material, 
there will be a higher processing load on the 
working memory, which will allow only limited 
resources to be free for attending to higher-order 
processes like metacognition. Investigating pupil 
dilation data obtained from eye-tracking can be 
helpful in identifying the instances during the 
learning task requiring high cognitive process-
ing, which will assist in developing metacogni-
tive scaffolds that can help learners manage their 
available cognitive resources, direct their actions 
(e.g., rereading dif fi cult or misunderstood mate-
rial), and off-load their working memory by using 
effective learning strategies (e.g., taking notes).  

   Note-Taking and Drawing: Integrating 
Knowledge During Learning 

 Although there are many SRL processes that stu-
dents may deploy to facilitate learning, note-taking 
and drawing provide important opportunities for 
learners to synthesize information and build 
coherent mental representations of the material. 
Within an SRL framework, note-taking and draw-
ing represent instantiations of SRL strategies that 
may vary in quantity (e.g., frequency and duration) 
and quality (e.g., depth of cognitive processing). 
As such, not all learners engage in these pro-
cesses in the same way. For instance, different 
note-taking patterns or drawing behaviors may 
emerge according to the degree of metacognitive 
monitoring, instructional support, and learners’ 
level of prior knowledge (Moos & Azevedo, 
 2008  ) . To better understand the relations between 
these types of strategies and learning outcomes 
within MetaTutor, note-taking and drawing 
events are collected as trace data while students 
interact with the learning environment. The fol-
lowing section describes how these data are col-
lected within MetaTutor, the analytical approaches 
employed by our research team, and the potential 
of these data sources to improve scaffolding and 
advance our understanding of SRL within ALTs. 

 An instructional video is displayed at the 
beginning of the learning session with MetaTutor 
to advise students about the note-taking and draw-
ing features available throughout the session. 
Learners can take notes in two ways: (1) by select-
ing the note-taking feature from the SRL palette 
embedded within MetaTutor and (2) by pen and 
paper using a digital notepad located on the desk 
beside the computer. Learners can also use this 
notepad to draw diagrams. Each time the learner 
selects the take notes (TN) button on the palette, a 
new window appears for learners to type notes. 
There are three tabs associated with this feature. 
The tab that automatically displays is page notes. 
Notes under this tab are associated with the page 
the learner is currently viewing. Under the page 
note overview tab, learners can view a list of pages 
associated with their notes. There is also a general 
notes tab available for learners to take notes that 
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are not directly associated with a particular page. 
Learners can select save and close to exit this win-
dow and return to it at a later time. 

 The note-taking feature is entirely learner-ini-
tiated (i.e., agents do not prompt activation of this 
learning strategy). In contrast, learners receive 
prompts from a PA to draw at various points 
throughout the session. Speci fi cally, when a 
learner has viewed a relevant page, but has not 
opened the image associated with the page, he or 
she is prompted within 45 s to draw. Students are 
also prompted to draw after they have had an 
image open for 96 s. These prompts are referred 
to as coordinating informational sources as they 
encourage students to integrate multiple sources 
of information, such as text and images, by draw-
ing visual representations. 

 Time-stamped log  fi les capture learners’ note-
taking and drawing events for subsequent analy-
ses. For example, if a learner draws a diagram on 
the notepad, a record is created in the log  fi le to 
indicate the time of occurrence and duration of 
the event. Thus, the frequency and duration can be 
captured to provide process data in relation to 
other SRL events and materials that the learner 
viewed before and after the drawing was created. 
Furthermore, the hard copy of a learner’s diagram 
can be analyzed for quality and potential miscon-
ceptions related to the topic. Similarly, notes typed 
in the note-taking viewer are also time-stamped 
and stored in the log  fi les. These types of data can 
also be analyzed in relation to other SRL process 
and learning outcomes, including posttest scores. 

 There are several approaches to analyzing 
note-taking and drawing within an SRL frame-
work. In previous research (e.g., Trevors, Duffy, 
& Azevedo,  2011  ) , we have extracted log- fi le 
data to obtain frequencies of note-taking episodes 
(measured by the number of times participants 
selected TN from the SRL palette), as well as 
experimental conditions, learning ef fi ciency 
scores, prior knowledge, and note-taking text. 
Notes can be segmented into idea units or natu-
ralist segments (Chi,  1997  )  and subsequently 
coded for quality using theoretically grounded 
coding schemes. For example, we have used 
depth of cognitive processing frameworks (see 
Entwistle & Peterson,  2004  )  to determine whether 

a segment of notes represents either content 
reproduction (i.e., verbatim copying of the text) 
or elaboration (i.e., text-based or prior knowl-
edge-based inferences). Video and screen record-
ings can also be used during coding to determine 
whether notes represent a deep or shallow level 
of strategy use. For example, while evaluating a 
participant’s notes, these recordings can be played 
to determine which section of text the participant 
viewed and what types of verbalizations were 
made during note-taking. This allows coders to 
verify whether the participant integrated ideas 
from multiple sections or copied the text verba-
tim. Based on these analyses, we have found that 
students frequently engage in content reproduc-
tion (i.e., shallow processing), which is nega-
tively related to achievement. Furthermore, 
although the presence of agents resulted in 
decreased note-taking behaviors among low prior 
knowledge learners, the agents did not effectively 
promote more adaptive note-taking strategies, 
such as elaboration. As a result, we have modi fi ed 
the architecture of MetaTutor to scaffold deeper 
level note-taking strategies through modeling and 
prompts from PAs. Moving forward with this 
research, future analyses may also involve exam-
ining learners’ drawing behaviors in relation to 
note-taking strategies and learning outcomes. 
Moreover, triangulating these events with eye-
tracking and think-aloud data could help to pro-
vide a more detailed analysis of the role of 
note-taking and drawing for SRL. For instance, 
eye-tracking data would allow us to systemati-
cally analyze exactly which sentences or images 
were viewed before, during, and after note-taking 
and drawing. Additionally, analyses of think-
aloud data may allow us to determine whether 
there were speci fi c types of metacognitive pro-
cesses that prompted these learning strategies.  

   Log Files: Event-Based Traces During 
System Interaction 

 Within ALTs, log  fi les provide a time-stamped 
record of every key stroke and mouse click on 
system features made by the learner. From this 
unobtrusive source of data, a great many  inferences 
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can be made into learners’ real-time cognitive 
and metacognitive processes (e.g., Aleven et al., 
 2010 ; Malmberg, Jarvenoja, & Jarvela,  2010 ; 
Schoor & Bannert,  2012  ) . MetaTutor log  fi les 
collect hundreds of user- and system-initiated 
actions every millisecond during a learning ses-
sion. Computerized log  fi les provide an automatic 
record of learners’ interactions with the system, 
which includes, but is not limited to, natural lan-
guage input by the learner, questionnaire, quiz, 
and test responses; mouse clicks on any system 
feature (e.g., concept maps); the frequency and 
duration of all seven of MetaTutor’s interface 
layouts viewed by the learner; metacognitive 
judgments; time spent on individual content 
pages; time spent with individual diagrams visi-
ble; and the use of any external equipment con-
nected to the system (e.g., digital writing pad). 
Additionally, log  fi les also record all events per-
formed by the system. In MetaTutor, this includes 
learner-agent dialogue moves, text of verbal 
instructions, feedback, and scaffolding by the 
four PAs or any system-initiated event, such as 
the onset of testing, summarizing, or comprehen-
sion monitoring activities. In addition, the exact 
learner- and system-initiated rules triggered by 
several conditions (e.g., time thresholds) are also 
logged in the  fi le. 

 Given the broad scope of information con-
tained in log  fi les, researchers are able to know, 
for example, how long a learner spent viewing an 
instructional text, how often he or she went back 
and forth between the text and related diagram or 
video, and the frequency and content of summari-
zations (or other learning products). Furthermore, 
log  fi les provide a transcription of a PA’s instruc-
tions to the learner to evaluate understanding of 
the current content, the administration and results 
of a quiz, and the feedback based on the accuracy 
of the learner’s subjective self-evaluations of 
comprehension vis-à-vis objective quiz results. 

 Careful tailoring of system design and fea-
tures, as described in the example above, can pro-
vide evidence of learners’ cognitive and 
metacognitive processes while minimizing infer-
ences made by researchers. At the cognitive level, 
the duration of viewing instructional text can be 
inferred as time spent reading. Likewise, all 

things being equal, a longer reading time is evi-
dence of increased cognitive processing of tex-
tual content (Lorch & van den Broek,  1997 ; 
O’Brien,  1995 ; Zwann & Singer,  2003  ) . Reading 
times can be affected by the inclusion of multiple 
representations of information (van Someren, 
Reimann, Boshuizen, & de Jong,  1998  )  or 
con fl icting information (Albrecht & O’Brien, 
 1993 ; Cook, Halleran, & O’Brien,  1998  ) . 
Navigating to and viewing related multimedia 
can be considered as an attempt to integrate 
multiple representations of informational sources. 
At the metacognitive level, features or sequences 
of events can be designed to promote and record 
self-monitoring and self-regulation of cognition. 
For example, Table  28.1  depicts the interactions 
between a learner and MetaTutor during a 
sequence of scaffolded monitoring. In this table, 
the  fi rst and second columns represent numbered 
events with associated time stamps during the 
session (in milliseconds), respectively. The third 
and fourth columns depict the layout number and 
title (e.g., Student Input). Lastly (or  fi nally), the 
fourth and  fi fth columns are a record of activities 
as well as the student input and agent output. In 
this example, a PA prompts the learner to re fl ect 
on his or her comprehension of the current con-
tent after navigating away from the page too 
quickly to read (e.g., < 7 s). At entry 619, the 
learner rates her understanding as 5 (on the 
6-point Likert scale described earlier) or higher. 
She obtains a high quiz score, for which he or she 
receives positive feedback and encouragement 
from the agent to move onto new content at entry 
632. For researchers, this episode is evidence of a 
calibrated metacognitive judgment, onto which 
various analytical procedures can be applied.  

 Speci fi cally, educational data mining tech-
niques provide new opportunities for researchers 
to represent internal cognitive and metacognitive 
states and their interactions. Biswas et al.  (  2010  )  
describe hidden Markov modeling (HMM) as an 
analytical method to discern mental states and 
probabilistic transitions between these states, 
such as transitioning from the creation of a learn-
ing product to a monitoring state. Although these 
states cannot be directly recorded in log  fi les, 
they are ascertained on the basis of learner’s 
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   Table 28.1    A 1-min excerpt of a log  fi le depicting a learner’s judgment of learning, quiz results, and positive feedback 
from a pedagogical agent, Mary   

 614  5310156  2  0  AdaptiveRules  [JOL] (rule: Prompt JOL when page is 
changing sooner than enough) Starting 
action: MonitoringFlow (JOLHowWell) 

 615  5310171  3  Mary  MaryJOLRating  How well do you feel that you understand 
the content you have read on this page? 

 616  5310187  8  Mary  MaryJOLRating  Start 

 617  5310203  7  Input with content  907 

 618  5316031  8  Mary  MaryJOLRating  Stop 

 619  5317453  3  StudentInput  NA  5 

 620  5317468  2  0  MonitoringFlow  Begin quiz for page 11 

 621  5317468  7  InputEnlarged  172 

 622  5317484  3  Mary  QuizStarted  Let’s take a short quiz on this content to see 
how well you understood 

 623  5317484  8  Mary  QuizStarted  Start 

 624  5322031  8  Mary  QuizStarted  Stop 

 625  5335843  3  StudentInput  NA  1 

 626  5335859  4  Page12_5  NearMiss  Inference—no 

 627  5344734  3  StudentInput  NA  3 

 628  5344750  4  Page12_6  Target  Inference—yes 

 629  5351546  3  StudentInput  NA  3 

 630  5351546  4  Page12_2  Target  Text-based—yes 

 631  5351562  7  InputWith Content  266 

 632  5351562  3  Mary  MaryJOLHighCorrect
Con fi denceFeedback 

 Very good. You got a high score on the quiz. 
Since you seem to understand this stuff pretty 
well, should we move on to another page? 

 633  5351593  8  Mary  MaryJOLHighCorrect
Con fi denceFeedback 

 Start 

 634  5360031  8  Mary  MaryJOLHighCorrect
Con fi denceFeedback 

 Stop 

recordable interactions within ALTs; multiple 
monitoring activities, such as the JOL in 
Table  28.1 , can be grouped together to form the 
basis for one state, thus providing a higher-level 
perspective on log- fi le data (Biswas et al.,  2010  ) . 
Similarly, cluster analysis can group learners 
across a large number of variables (i.e., multivari-
ate differences), discerning what similar patterns 
of learner interactions are more and less effective 
within MetaTutor (Bouchet, Harley, Trevors, & 
Azevedo,  2012 ; Bouchet, Kinnebrew, Biswas, & 
Azevedo,  2012  ) . Latent pro fi le analysis (LPA), 
latent class analysis (LCA), and latent growth 
modeling (LGM) are additional analytic tech-
niques that hold great promise for using log- fi le 
data to model intraindividual changes during 
the learning session. These techniques permit the 

identi fi cation of individual growth curves (trajec-
tories) with the opportunity of identifying partic-
ular groups/classes of similar curves. Employing 
these analytical techniques with log- fi le data pro-
vides insight into dynamic cognitive and meta-
cognitive processes not gained with traditional 
analysis, such as simple frequency counts or pre-
post scores alone. 

 The use of any single data source to under-
stand phenomena as complex as learning has 
inherent limitations. First, the strength of log- fi le 
data rests on the degree to which the system’s fea-
tures and analytic techniques are grounded in a 
theory of learning. Data from Table  28.1  are 
meaningful because an explicit decision was 
made to design a system feature to measure cali-
bration of metacognitive judgment, which can 
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then be analyzed with other monitoring behavior 
as a re fl ection of an underlying mental state. 
Weaker empirical conclusions result from a lack 
of theoretical explicitness in system design and 
data analysis. Second, log  fi les are only one limited 
perspective of the events that occur in a learning 
session. What information was the learner attending 
to when making an initial JOL? What in fl uence, 
if any, would positive or negative feedback have 
on the learner’s subsequent cognitive, metacogni-
tive, affective, or motivational processes? To 
answer these relevant questions, researchers need 
greater context than log  fi les can provide. These 
issues speak to the need to integrate multiple 
streams of data to generate defensible inferences 
about relevant learning processes. In sum, we 
address these issues by triangulating multiple 
streams of data (i.e., concurrent think-alouds, 
eye-tracking, note-taking behavior) during learning 
with MetaTutor.  

   Emotional Attribution Through Facial 
Expression Analyses 

 In addition to the emerging use and convergence 
of data streams to understand and measure cogni-
tive and metacognitive processes, we have also 
begun to collect and examine video data of stu-
dents’ facial expressions during learning with 
MetaTutor. This data stream is vital, in that it pro-
vides a new data source necessary to understand 
the  fl uctuations in students’ emotions during 
learning. Facial expressions are con fi gurations of 
different micro-motor (small muscle) movements 
in the face, which are used to infer a person’s dis-
crete emotional state. Facial expressions have 
been a popular and well-researched method for 
analyzing participants’ emotional states for 
decades (Ekman & Friesen,  1978,   2003  ) , and to 
this day they remain one of the most widely used, 
as well as one of the most theoretically and 
empirically grounded emotional measurement 
channels (Arroyo et al.,  2009 ; Calvo & D’Mello, 
 2010,   2011 ; D’Mello & Graesser,  2010 ; Ekman, 
 1992 ; Zeng, Pantic, Roisman, & Huang,  2009  ) . 
Accordingly, facial expression analysis has been 
the primary method through which we have 

detected and traced learners’ experience of emo-
tions throughout their learning session with 
MetaTutor (Azevedo & Chauncey-Strain,  2011 ; 
Harley, Bouchet, & Azevedo,  2011 ; Harley, 
Bouchet, & Azevedo,  2011,   2012a,   2012b  ) . 

 Our work analyzing emotions has utilized 
Noldus FaceReader TM  3.0 and 4.0, a software 
program that analyzes learners’ facial expressions 
and provides a classi fi cation of their emotional 
states. The program uses an active appearance 
model to match and track learners’ faces and then 
relies on an arti fi cial neural network trained on a 
database of high-quality facial images from 70 
individuals (Lundqvist, Flykt, & Öhman,  1998  )  
acting out Ekman and Friesen’s six basic emo-
tions (Ekman,  1992  )  in addition to a neutral 
emotion. FaceReader has been validated through 
comparison with human coders’ ratings of basic 
emotions (Terzis, Moridis, & Economides,  2010  )  
and speci fi ed acted emotions (Van Kuilenburg, 
Wiering, & Den Uyl  2005 ). 

 Additionally, using an automatic facial recog-
nition software program confers us the advantage 
of analyzing learners’ facial expressions much 
faster than if we were to use Ekman and Friesen’s 
Facial Action Coding System (FACS; Ekman & 
Friesen,  1978,   2003  ) , which is highly human-
resource intensive to use, train, and certify coders. 
In short, FaceReader is able to code more data than 
would be possible with human coders. For example, 
in a recent analysis we examined a sample of 50 
learners engaging with one of MetaTutor’s PAs 
during the subgoal setting phase of the learning 
episode ( M  = 2m22s,  SD  = 1m10s). During this 
short portion of the learning session, FaceReader 
was able to make 224,582 emotional state 
classi fi cations, each corresponding to a different 
video frame of footage of a learner engaging with 
MetaTutor (Harley, Bouchet, & Azevedo,  2012b  ) . 

 The preceding example highlights another 
FaceReader asset: the ability to act as a macro- 
and micro-measurement tool. In other words, 
FaceReader can be used to examine incremental 
transitions in emotional states that occur less than 
a second apart while also being able to summa-
rize the prominence of different emotional states 
occurring over a time span that ranges for 2 h 
(in our application) without comprising its 
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 validity or reliability. Being able to examine emo-
tions data continuously at multiple levels is cru-
cial to examining emotions as a dynamic, rapidly 
changing psychological process (Ekman,  1992  ) . 

 The primary disadvantage of using FaceReader 
is that its analyses of facial expressions is limited 
to basic, universal emotions (Ekman & Friesen 
 1978,   2003  ) , which do not represent the whole 
scope of emotions relevant to learning with 
MetaTutor. Most notably, basic emotions exclude 
learning-centered emotions, such as boredom and 
confusion (D’Mello, Craig, & Graesser,  2009 ; 
Pekrun,  2006 ; McQuiggan, Robinson, & Lester, 
 2008  ) . To capture these emotions, one would 
need to either develop a new coding scheme, add 
to an existing coding scheme (e.g., Craig, 
D’Mello, Witherspoon, & Graesser,  2007  ) ,    or 
make use of additional emotional channels (Calvo 
& D’Mello,  2010,   2011 ; Mauss & Robinson, 
 2009 ; Zeng, Pantic, Roisman, & Huang,  2009  ) , 
as we are doing. A potential additional disadvan-
tage to FaceReader is the fact that the database is 
formed from acted, as opposed to naturally occur-
ring, emotions. Given that humans are not able to 
control all their facial muscles ef fi ciently (Ekman, 
 2003  ) , it is possible that some subtle differences, 
such as arti fi cially limited micro-motor muscle 
variance, may exist between posed and naturally 
embodied facial expressions. It should be noted, 
however, that capturing high-quality images of 
natural, unfolding emotions from multiple angles 
would be technically challenging without dis-
tracting participants and interfering with the 
emotions one is trying to measure. It should also 
be noted that these limitations might be more 
problematic for more subtle emotional states, 
such as boredom and curiosity, than higher inten-
sity expressions, such as anger and sadness. 

 We conclude this section by identifying some 
of the speci fi c features and opportunities regard-
ing FaceReader through a guided tour of several 
components of FaceReader’s online interface 
presented in Fig.  28.2 . In the top left-hand corner 
of Fig.  28.2 , the analysis visualization window, 
we can see the active appearance model 
FaceReader uses to model participants’ faces, as 
well as the video quality bar, which is at an 
acceptable threshold. The top right-hand corner 

displays the emotional valence (experience of 
positive or negative emotions). One can see from 
this window that the learner has spent, from the 
duration of time shown, most of her visible learn-
ing session experiencing negatively valenced 
emotions (e.g., sadness, anger). The bottom right 
window illustrates the proportions of the different 
discrete emotions the learner has experienced, 
which tell us that she has embodied, during the 
time her video has been analyzed, a fairly equal 
proportion of surprise, anger, sadness, and neu-
trality. The bottom left expression window shows 
the onset and offset of the different discrete emo-
tions, transitions between different emotional 
states, and that at times, different discrete emo-
tional states that are co-occurring together (occur-
ring simultaneously) (Harley et al.,  2012a  ) . The 
latter half of this window provides an example in 
which the learner suddenly embodies an intense 
surprised expression, which degrades slightly 
and is accompanied by a short accompanying 
peak of anger. We can interpret from these data 
that something in the learning environment (e.g., 
PA feedback) surprised the learner and also made 
   her feel angry, though the experience of anger 
was  fl eeting (possibly because the learner suc-
cessfully downregulated this negative emotion). 
FaceReader is a rich source of data, especially 
when combined with other data channels (e.g., 
log  fi les), which allows us to identify the context in 
which learners are experiencing their emotions.   

   Summary and Conclusions 

 Early in this chapter we noted that MetaTutor is 
both a research tool and a learning tool. One of 
the objectives of this chapter has been to demon-
strate the interconnectedness of these functions 
and the capacity for enhancing learning with 
MetaTutor. One of the chief strengths of MetaTutor 
is the multitude of different channels available 
for collecting and analyzing learners’ interactions 
with the system. Going forward, we are exploring 
the addition of new channels as well as exploring 
new features of existing channels and how they 
can be aligned to provide an ever deeper and 
more contextualized understanding of students’ 
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learning and co-regulation with MetaTutor. We 
conclude this chapter by outlining some of the 
future directions we are currently pursuing and 
have planned for MetaTutor. 

 Developments regarding measuring and under-
standing learners’ experiences of affect and moti-
vation represent one of the primary and broadest 
future directions for MetaTutor. Our analyses, 
which have focused on basic emotion facial expres-
sion analyses, are being expanded to include phys-
iological measures of emotions (e.g., galvanic skin 
response and pupil dilation) as well as human-rater 
and self-report measures. These new methods for 
measuring emotion will provide us with the means 
to investigate convergent evidence for emotional 
states across a variety of different affective dimen-

sions, including arousal, valence, discrete, and co-
occurring emotions (Conati & Maclaren,  2009 ; 
Harley et al.,  2012a ; Hess & Polt,  1960 ; Lang, 
Greenwald, Bradley, & Hamm,  1993 ; Portala & 
Surakka,  2003  ) . Some of these methods, including 
self-report and human-rater (based on a coding 
scheme that we are developing), will allow us to 
expand our analyses from basic emotions to include 
learner-centered ones. In addition, by having 
access to emotional data that are prospective, state 
(including trace), retrospective, and trait in nature, 
we will be able to explore dynamic  fl uctuations in 
emotions with a contextualized understanding of 
antecedents (e.g., co-regulation between PA and 
learner, trait emotions, motivations). Another com-
ponent of our research that investigates the nature of 

  Fig. 28.2    FaceReader™ 4.0 interface       
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 emotions is analyzing (including pioneering ways 
to do so) learners’ experience of co-occurring (i.e., 
simultaneous experience of) different discrete emo-
tions (Harley et al.,  2012a  ) . These developments 
will be used to enhance learners’ experience with 
MetaTutor by providing recommendations for 
adapting the system, such as PA’s dialogue and 
behavior (e.g., facial expression) changes, as well 
as contributing to the development of a more com-
prehensive theory of SRL in terms of the role of 
affect and emotions. 

 Finally, as more channels of information 
become available, it will be even more crucial 
to align and merge them together in order to 
obtain an accurate overview of students’ expe-
rience when learning with MetaTutor. 
Considering the richness of the collected data, 
educational data mining approaches will be 
particularly useful in order to (a) group stu-
dents into different categories according to 
similarities in their browsing behavior and use 
of SRL processes; (b) extract from trace logs 
of the different data channels some patterns of 
browsing action, emotions, and/or eye move-
ments that are characteristics of these catego-
ries of students; and (c) identify in which of 
those categories future students belong to in 
real time in order to provide them with the 
most relevant agents’ feedback and scaffolding 
strategies (Bouchet, Harley et al.,  2012 ). 

 In summary, we emphasized the importance 
of using multichannel trace data to examine the 
complex roles of CAM self-regulatory processes 
deployed by students during learning with multi-
agent systems. We also argued that tracing these 
processes as they unfold in real time is key to 
understanding how they contribute both individu-
ally and together to learning. In addition, we 
described MetaTutor (a multi-agent, intelligent 
hypermedia system) and how it can be used to 
facilitate learning of complex biological topics 
and as a research tool to examine the role of CAM 
processes used by learners. We also provided a 
theoretical perspective and underlying assump-
tions of SRL as an event; we provided empirical 
evidence from  fi ve different trace data to exem-
plify how these diverse data sources can be used 
to understand the complexity of CAM processes 

and their relation to learning. Lastly, we provided 
implications for future research of ALTs that 
focus on examining the role of CAM processes 
during SRL with these powerful technological 
environments.      
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  Abstract 

 We have developed a computer-based learning environment that helps 
students learn science by constructing causal concept map models. The sys-
tem builds upon research in learning-by-teaching (LBT) and has students 
take on the role and responsibilities of being the teacher to a virtual student 
named Betty. The environment is structured so that successfully instructing 
their teachable agents requires the students to learn and understand the sci-
ence topic for themselves. This learning process is supported through the 
use of adaptive scaffolding provided by feedback from the two agents in the 
system: the teachable agent, Betty, and a mentor agent, Mr. Davis. For 
example, if Betty performs poorly on a quiz, she may tell the student that 
she needs to learn more about the topics on which she is performing poorly. 
In addition, Mr. Davis may suggest that students ask Betty questions and 
get her to explain her answers to help them trace the causal reasoning chains 
in their map and  fi nd out where she may be making mistakes. Thus the 
system is designed to help students develop and re fi ne their own knowledge 
construction and monitoring strategies as they teach their agent. 

 This chapter provides an overview of two studies that were conducted 
in  fi fth-grade science classrooms. A description of the analysis techniques 
that we have developed for interpreting students’ activities in this learning 
environment is also provided. More speci fi cally, we discuss the generation 
of hidden Markov models (HMMs) that capture students’ aggregated 
behavior patterns, which form the basis for analyzing students’ metacog-
nitive strategies in the system. Our study results show that students who 
utilized LBT versions of our system performed better than students who 
used a non-teaching version of the system. Further, students’ performances 
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were strongest when the system explicitly provided support to help them 
develop self-regulated learning strategies. To gain further insight into the 
students’ reactions to feedback from the two agents, we present results 
from a second study that employed a think-aloud protocol. Overall, the 
results from this study illustrated that students were more receptive to the 
explicit strategy-oriented feedback from the mentor agent. Interestingly, 
this study also suggested that students had dif fi culty in correctly applying 
Betty’s feedback related to metacognitive monitoring activities.      

   Introduction 

 Cognitive scientists have established that metacog-
nition and self-regulation are important compo-
nents for developing effective learning in the 
classroom and beyond (Bransford, Brown, & 
Cocking,  2000 ; Zimmerman,  2001  ) . The frame-
work for self-regulated learning (SRL) originated 
from the social cognitive theory of learning pro-
posed by Bandura  (  1997  ) , who postulated 
that learning is governed by three interacting fac-
tors: (1)  personal  (e.g., learners attitudes and 
beliefs); (2)  behavioral  (e.g., the ability to invoke 
relevant prior knowledge, the ability to employ 
appropriate strategies to support learning); and (3) 
 environmental  (e.g., type of instruction, quality of 
feedback, nature of interactions with parents and 
peers). A number of researchers (e.g., Pintrich,  2000 ; 
Zimmerman,  2001 ; Zimmerman, Bandura, & 
Martinez-Pons,  1992  )  have demonstrated that stu-
dents’ SRL capabilities can play a signi fi cant role 
in high school academic achievement. In addition, 
studies by Brown and Palincsar  [  1989  ]  have dem-
onstrated that through instruction younger students 
can acquire and apply metacognitive skills, such as 
planning and monitoring. However, students in 
typical classrooms are rarely provided opportuni-
ties to learn and exercise these strategies (Paris & 
Paris,  2001 ; Zimmerman,  1990  ) . 

 For about 8 years, our research team, the 
Teachable Agents Group, has been developing 
computer-based-learning environments that uti-
lize the learning-by-teaching (LBT) approach to 
instruction in order to foster students’ acquisition 
of knowledge and development of sophisticated 
metacognitive strategies. The system embodies 
the social cognitive learning framework and 

 provides students with opportunities for self-
directed, open-ended learning in the domains of 
science and mathematics (Biswas, Leelawong, 
Schwartz, Vye, & Vanderbilt,  2005 ; Blair, 
Schwartz, Biswas, & Leelawong,  2007 ; 
Leelawong & Biswas,  2008  ) . In the system, stu-
dents are given a  knowledge construction  task in 
which they engage in the iterative process of 
reading and building causal concept maps for a 
range of instructional topics (e.g., climate 
change, ecology, and thermoregulation). This 
process is enhanced through the  social interac-

tion  component of the system in which students 
assume the role and responsibilities of being 
their agent’s teacher. The environment is struc-
tured so that successfully instructing their teach-
able agent (“Betty”) requires the students to 
learn and understand the topic for themselves. 
Our previous work has shown that students  fi nd 
the task of teaching and interacting with Betty to 
be motivating, and it also helps them enhance 
their own learning (Chase, Chin, Oppezzo, & 
Schwartz,  2009 ; Schwartz, Blair, Biswas, 
Leelawong, & Davis,  2007 ; Schwartz 
et al.,  2009  ) . The teachable agent’s performance 
is a function of how well it has been taught by 
the student, which provides the student with a 
non-threatening way of assessing their own 
understanding and areas of confusion (e.g., 
“Ugh, Betty is so stupid, now I’ve got to  fi gure 
out another way to help her learn this stuff,” as 
opposed to “Why am I not able to get the correct 
answer?”). Based upon the student’s level of 
progress and pattern of activities, the system 
triggers responses at appropriate times from 
Betty or Mr. Davis, the mentor agent, who pro-
vides guidance on problem-solving and meta-
cognitive strategies. As a result, the students are 
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more likely to increase their knowledge of the 
speci fi c domain content and develop more 
sophisticated problem-solving and metacogni-
tive strategies, which in turn helps their prepara-
tion for future learning (Biswas et al.,  2005 ; 
Bransford & Schwartz,  1999 ; Schwartz & 
Martin,  2004 ; Schwartz et al.,  2007  ) . 

 This chapter presents analyses from several 
studies that were conducted in middle school 
science classrooms, in which students taught 
their agent about complex science topics, such 
as river ecosystems and global climate change. 
One of our goals was to determine the degree to 
which the agents’ metacognitive and SRL 
prompts could help improve students’ learning. 
Within this framework, we have developed ana-
lytical methods to identify and interpret stu-
dents’ learning strategies based on their activity 
traces in the system. Such analyses can shed 
light on students’ underlying learning processes 
and the strategies they employ in achieving their 
learning tasks (Roscoe & Chi,  2007  ) . To date 
there has been very little work on deriving stu-
dents’ SRL strategies from their activity 
sequences in computer-based learning environ-
ments (some exceptions are Hadwin, Nesbit, 
Jamieson-Noel, Code, and Winne  (  2007  ) , Roll, 
Aleven, Mclaren, and Koedinger  (  2007  ) , and 
Azevedo, Witherspoon, Chauncey, Burkett, and 
Fike  (  2009  ) ). In this chapter, we present a 
novel methodology that derives HMMs (Li & 
Biswas,  2002 ; Rabiner,  1989  )  from student 
activity sequences to quantify and assess stu-
dent learning and metacognition. In addition, 
we report the results of a second study, where 
we performed verbal protocol analyses to deter-
mine students’ acceptance of the strategies dis-
cussed by the two agents, and how the feedback 
provided by the agents in fl uenced their subsequent 
learning activities.  

   Measuring Self-Regulated Learning 

 To effectively design, test, and re fi ne a system pro-
moting SRL skills, it requires the ability to identify 
and measure metacognitive processes. The tradi-
tional approach to measuring students’ SRL has 
been through the use of self-report  questionnaires 

(e.g., Pintrich, Smith, Garcia, & McKeachie,  1993 ; 
Weinstein, Schulte, & Palmer,  1987 ; Zimmerman 
& Martinez-Pons,  1986  ) . The underlying assump-
tion in these questionnaires is that self-regulation 
is an aptitude that students possess. For example, 
the questionnaire items might attempt to assess 
students’ inclination to elaborate as they read a 
passage or to determine their approach to manag-
ing available time resources (Perry & Winne,  2006 ; 
Zimmerman,  2008  ) . This approach has been use-
ful, as the self-report questionnaires have been 
shown to be good predictors of students’ standard 
achievement test scores and they correlate well 
with achievement levels (Pintrich, Marx, & 
Boyle,  1993 ; Zimmerman & Martinez-Pons, 
 1986  ) . However, Hadwin and others (Azevedo & 
Witherspoon,  2009 ; Hadwin, Winne, Stockley, 
Nesbit, & Woszczyna,  2001 ; Hadwin et al.,  2007 ; 
Perry & Winne,  2006  )  have argued that while the 
questionnaires provide valuable information about 
the learners’ self-perceptions, they fail to capture 
the dynamic and adaptive nature of SRL as stu-
dents are involved in learning, knowledge-build-
ing, and problem-solving tasks. 

 Increasingly, researchers have begun to utilize 
trace methodologies in order to examine the 
 complex temporal patterns of SRL (Aleven, 
McLaren, Roll, & Koedinger,  2006 ; Azevedo & 
Witherspoon,  2009 ; Azevedo et al.,  2009 ; Biswas, 
Jeong, Kinnebrew, Sulcer, & Roscoe,  2010 ; 
Hadwin et al.,  2007 ; Jeong & Biswas,  2008 ; 
Zimmerman,  2008  ) . Perhaps the most common 
type of data collected, and the focus of this chap-
ter, is computer logs, which can record every 
action that the student performs in a computer-
based learning environment. An example of com-
puter trace log analysis is presented in Hadwin 
et al.  (  2007  ) . They performed a study that col-
lected activity traces of 8 students using the gStudy 
system (Perry & Winne,  2006  ) . The activity traces 
were analyzed in four different ways: (1) fre-
quency of studying events, (2) patterns of studying 
activity, (3) timing and sequencing of events, and 
(4) content analyses of students’ notes and sum-
maries. The results of this analysis were compared 
against students’ self-reports on their SRL. One of 
the important  fi ndings was that many participants’ 
self-reports of studying tactics, as determined by 
the MSLQ items, were not well calibrated with 
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studying events traced in the gStudy system. The 
researchers found that the best matched item 
showed a 40% agreement, and the average agree-
ment was 27%. The authors concluded from this 
study that trace data of student activity in e-learn-
ing environments are important for furthering our 
understanding of SRL. 

 More recently, trace data is being supple-
mented with other sources of data, such as con-
current verbal think-alouds (e.g., Azevedo & 
Witherspoon,  2009  )  and measures of effect 
(e.g., automatic recording of facial expression 
and posture) (Burleson, Picard, Perlin, & 
Lippincott,  2004 ; D’Mello, Craig, Witherspoon, 
Mcdaniel, & Graesser,  2008 ; D’Mello, Picard, 
& Graesser,  2007 ; Lester et al.,  1997  ) . Azevedo 
et al.  (  2009  )  have developed a hypermedia envi-
ronment called MetaTutor to help students learn 
about complex and challenging science topics, 
such as the circulatory processes in human 
body systems. The system is also designed to 
train students in key SRL processes that relate 
to planning, metacognitive monitoring, learn-
ing strategies, and methods for handling task 
dif fi culties and demands. The authors used a 
combination of student trace data and think-
aloud protocols to understand the nature of stu-
dents’ learning outcomes and their deployment 
of SRL processes. For example, one of their 
studies showed that students predominantly 
used strategies that pertained to acquiring 
knowledge from the multimedia resources, and 
they only occasionally employ monitoring 
strategies to check what they have learned 
(Azevedo & Witherspoon,  2009  ) . Combining 
trace and think-aloud protocols provides more 
insight into the students’ thought processes that 
govern the use of strategies. Furthermore, they 
can be used to validate the results of the trace 
data analysis.  

   Betty’s Brain and Self-Regulated 
Learning 

 The Betty’s Brain system, illustrated in Fig.  29.1 , 
implements the LBT paradigm to help middle school 
students develop cognitive and metacognitive 

skills in science and mathematics domains 
(Biswas et al.,  2005 ; Blair et al.,  2007 ; Leelawong 
& Biswas,  2008 ; Schwartz et al.,  2007  ) . The sys-
tem supports  fi ve primary types of activities: 

    • Read : The system contains a set of indexed, 
hypermedia resources that students can access 
and read at any time while working on the sys-
tem. These resources contain all of the science 
information (and more) that students need to 
build their concept maps.  
   • Edit : Students explicitly teach Betty using a 
causal concept map representation (Jonassen & 
Ionas,  2008  ) , where the relevant science con-
cepts are nodes, and causal relations between 
the concepts are modeled as links. For exam-
ple,  fi sh eat (decrease) macroinvertebrates and 
this representation allows students to reason 
that an increase in  fi sh causes a decrease in 
macroinvertebrates. Students teach Betty new 
concepts and links using a visual interface that 
includes menu selections and templates for 
adding and modifying information (e.g., the 
interface contains these four buttons: Teach 
Concept, Teach Link, Delete, and Edit).  
   • Query : Students use a template, illustrated in 
Fig.  29.1 , to check their teaching by asking 
Betty questions, which she answers using 
causal reasoning through chains of links 
(Forbus,  1984 ; Leelawong & Biswas,  2008  ) .  
   • Explain : Students can probe Betty’s reason-
ing, by asking her to explain her answer to 
a query. She demonstrates the use of causal 
reasoning processes to derive her answer, 
and verbalizes her reasoning process using 
speech and simultaneous animation on the 
concept map.  
   • Quiz : Students can assess how much Betty has 
learned by having her take a quiz, which is 
made up of a set of questions chosen by the 
Mentor agent. Betty’s inability to answer some 
of the questions correctly usually motivates 
the students to learn more so that they can 
make improvements to the concept map and 
help Betty do better on her quizzes.     
 Since our middle school students are novices in 

the science topics and the teaching tasks, we pro-
vide them with a variety of scaffolds to help them 
overcome obstacles they may face in learning and 
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teaching the domain material. In addition to 
answering queries and taking/administering quiz-
zes, the agents also provide spontaneous feedback 
to the student on the relative effectiveness of their 
teaching performance. This feedback is designed 
to help students develop and employ more meta-
cognitive learning strategies (Schwartz et al.,  2007 ; 
Tan, Biswas, & Schwartz,  2006 ; Wagster, Tan, 
Wu, Biswas, & Schwartz,  2007  ) . 

 Schunk and Zimmerman  (  1997  )  point out that 
the self-regulation pro fi les of novice learners are 
quite distinct from those of experienced learners. 
Novices are often poor at forethought, and their 
self-judgment abilities are not well developed. 
These strategies can be taught, but students in typ-
ical classrooms are rarely provided opportunities 
needed to learn and master them. Our system 
addresses this problem by adopting a SRL frame-
work that promotes a set of comprehensive skills, 
such as setting goals for learning new materials 

and applying them to map building tasks; 
 deliberating about strategies to enable this learn-
ing; monitoring one’s learning progress; and revis-
ing one’s knowledge, beliefs, and strategies as new 
material and strategies are learned (Azevedo,  2005 ; 
Schraw, Kauffman, & Lehman,  2002 ; Winne & 
Hadwin,   2008 ; Zimmerman,  2001  ) . 

 Figure  29.2  illustrates our conceptual cogni-
tive/metacognitive model that we have employed 
in designing the Betty’s Brain system. Pintrich 
 (  2002  )  differentiates between two major aspects of 
metacognition for learners: (1)  metacognitive 

knowledge  that includes knowledge of general 
strategies and when they apply, as well as aware-
ness of one’s own abilities, and (2)  metacognitive 

control  and self-regulatory processes that learners 
use to monitor and regulate their cognition and 
learning. In our model, metacognitive control is 
illustrated in the monitoring and knowledge con-
struction strategies in Fig.  29.2 . In more detail, 

  Fig. 29.1    Betty’s Brain system with query window       
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Pintrich discusses a goal orientation framework 
for characterizing SRL that covers mastery and 
performance orientations to achieving goals 
(Pintrich,  2000  ) . In our approach, feedback from 
the mentor promotes mastery orientation, e.g., 
focus on learning with understanding, and setting 
standards for checking and probing the map (asking 
queries and re fl ecting on the explanations gener-
ated by Betty) to make sure it has no errors. Betty’s 
interactions with the student focus more on the 
avoidance aspect of mastery orientation, i.e., mak-
ing sure students strive for self-improvement and 
work toward producing an error-free map.  

 For knowledge construction in the Betty’s 
Brain system (i.e., building causal concept maps), 
we identify two key types of mastery-oriented 
self-regulation strategies: (1)  information seek-

ing , in which students study and search available 
resources in order to gain missing domain infor-
mation or remediate existing knowledge, and (2) 
 information structuring , in which students struc-
ture the information gained into causal and taxo-
nomic relationships to build and revise their 
concept maps. Information seeking strategies are 

directed toward effective use of the resources in 
the system, whereas information structuring 
focuses on strategies for construction and revi-
sion of the concept map. 

 The model also posits two types of monitoring 
strategies: (1)  checking , where students use the 
query or the quiz features to test the correctness 
of their concept map and (2)  probing , a stronger 
monitoring strategy, where students systemati-
cally analyze their map in greater detail, by ask-
ing for explanations and following the causal 
reasoning steps generated by the agent to locate 
potential errors. Effective guidance (i.e., relevant 
and timely feedback) based on this SRL model 
makes students aware of their learning strategies 
and helps them develop better strategies, such as 
rereading the resources to check if there are errors 
in their concept maps (combining information 
seeking and checking strategies), and asking que-
ries and checking explanations to  fi nd the source 
of an error (a probing strategy). 

 Table  29.1  provides examples of the agent 
feedback, which is triggered by students’ activity 
patterns (see column 2) and linked to strategies for 

Monitoring StrategiesKnowledge Construction Strategies

Information

Seeking

Information

Structuring
Checking Probing

Metacognitive

Knowledge

Domain Knowledge

(Concept Map)

Reading Editing Querying Quizzing
Requesting

Explanations

Metacognitive

Cognitive

  Fig. 29.2    Our model of self-regulated learning strategies and activities in the Betty’s brain system linked to these 
strategies       
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   Table 29.1    Examples of agent responses to observed student behavior patterns   

 SRL strategy  Triggering activities  Betty response  Mr. Davis response 

 Knowledge 
construction: 
information 
seeking 

 Student taught Betty several 
concepts, but has added only 
a few links. 

  What do the resources 

say about that concept? 

Could we search the 

resources to learn more?  

  Reading is a very important part of 

learning. You should read the resources 

often to help you understand and double-

check what you are teaching. Here are 

some strategies that you can use to improve 

your reading skills.  

 Knowledge 
construction: 
information 
structuring 

 Student has just added a 
number of concepts but no 
links to the concept map. 

  Can we read the 

resources to make sure 

we understand the 

relations between these 

concepts?  

  A good teacher explains to her students 

how concepts affect each other. Add links to 

the map to teach Betty how the concepts 

cause other concepts to change.  

 Monitoring: 
checking 

 Betty has incorrect answers 
on the quiz she just took. 

  Could you ask me 

some review questions 

to see how good my 

answers are?  

  Questions are the best way to test Betty’s 

knowledge. When you teach Betty new 

links, make sure you ask her questions to 

 fi nd out how her answers have changed.  

 Monitoring: 
probing 

 Betty has got some of her 
quiz answers wrong. 

  These quizzes can be 

tough. Can we go over 

my explanations to see 

how well I understand?  

  After each quiz, try to review a few of 

Betty’s answers and explanations. Follow 

each step in her explanations carefully to 

be sure that they make sense.  

 Monitoring: 
pointing out a 
suboptimal 
strategy 

 Student asks Betty to take 
repeated quizzes without 
reading or asking questions. 

  I want to do well on the 

quizzes. It would help if 

I learned more between 

each quiz instead of 

taking so many.  

  You have been asking Betty to take a lot of 

quizzes recently. Try asking her questions 

to see where she is making mistakes, and 

teach her more in between quizzes.  

knowledge construction and monitoring implied 
by our model. 1  The agents have different roles 
(and relationships with the student) in the system, 
which affects the wording and the content of the 
feedback they provide. Betty’s persona and role as 
an engaged student “interested in learning and 
performing well,” is in fl uenced by the social cog-
nitive framework. Betty’s feedback incorporates 
metacognitive awareness that she conveys to the 
students at appropriate times to help them develop 
and apply monitoring and self-regulation strate-
gies (Schwartz et al.,  2009 ; Wagster et al.,  2007  ) . 
Mr. Davis, the mentor, and, therefore, the more 
knowledgeable persona in the system, provides 
help in the form of suggested activities linked to 

effective SRL strategies (e.g., “if you are not sure, 
check the resources to see if Betty is answering 
her questions correctly.”).   

   Experimental Studies 

 We have conducted several classroom studies 
where students use the teachable agents system to 
learn and gain a better understanding of a variety 
of science topics, such as river ecosystems, ther-
moregulation, and climate change. In these stud-
ies, the topics and speci fi c science content provided 
by the system are closely linked to the middle 
school science curriculum. At the beginning of 
each study, the science teacher introduces students 
to the topic during regular classroom instruction. 
The intervention phase starts with an overview of 
causal relations and causal mapping during a 
45-min class period. This is followed by a hands-
on training session with the system the next day. 
Over the next 4 or 5 days, the students teach Betty 
by building a causal concept map for the science 
topic, which represents what Betty knows. 

   1   In the system, the same triggering conditions are used to 
generate Betty’s and Mr. Davis’ feedback. The system is 
designed so that the feedback is provided only after the 
triggering pattern is activated a certain number of times. 
This number is chosen randomly from a prede fi ned range 
of values (e.g., [2, 5]) and recomputed after every instance 
of feedback. The numbers for Betty and Mr. Davis are 
chosen independently.  
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 To assess students’ acquisition of science 
domain knowledge and causal reasoning skills, 
we employ two measures. The  fi rst is a pretest to 
posttest gain score. These tests contain a mix of 
content-related multiple choice and free response 
items (Biswas et al.,  2010 ; Leelawong & Biswas, 
 2008  )  that are administered before the students 
are introduced to causal reasoning, and at the 
end of the intervention. The second measure 
examines students’  fi nal maps, in terms of 
 completeness and accuracy. 

 In this chapter, we analyze the results from two 
classroom studies. The  fi rst study compared the 
students’ use of SRL strategies in three different 
conditions described below. We had two ques-
tions: (1) Would students who taught an agent use 
more SRL strategies in their learning and teach-
ing tasks than students learning entirely for them-
selves? and (2) Would students who received SRL 
feedback from the agents use more sophisticated 
SRL strategies than students who did not? The 
second study used verbal protocol analysis to 
assess the effectiveness of different kinds of SRL 
strategies, and also checked whether the feedback 
provided by one agent was more effective than the 
feedback provided by the other agent. The results, 
and a discussion of these results, are presented in 
the remainder of this section. 

   Study 1: Modeling Students’ SRL 
Strategies 

 In this study, our goal was to determine if teach-
ing the Betty agent and providing metacognitive 
feedback would help students become better 
learners than those who did not teach or receive 
the feedback. Our participants were 56 students 
in 2  fi fth-grade science classrooms taught by the 
same teacher. Students were assigned to one of 
three conditions using strati fi ed random assign-
ment based on standardized test scores. All stu-
dents created river ecosystem concept maps over 
 fi ve 45-min sessions. Two of the conditions (1) 
the LBT group and (2) the self-regulated learn-
ing-by-teaching (SRL) group created their map 
to teach Betty so that she could pass a test on her 
own. In addition to the teachable agent, both 
groups had access to Mr. Davis, the mentor agent. 

As students taught Betty, they could ask her 
questions, get her to explain her answers to the 
questions, and take quizzes, which were sets of 
questions created by Mr. Davis. After Betty took 
a quiz, the mentor graded the quiz and displayed 
the results to the students. Both systems also pro-
vided feedback to students after a quiz. 

 The differences between the LBT and SRL 
groups were in the feedback provided. In the LBT 
version of the system, Mr. Davis provided  cor-

rective  feedback after the quiz results were dis-
played. The corrective feedback was linked to a 
quiz question that produced an incorrect answer, 
and it included information about one of the fol-
lowing: (1) a missing concept that would be 
required to generate the correct answer; (2) a 
missing link that would be required to generate 
the correct answer, or (3) a link that was incor-
rectly represented in the map (e.g., one of the link 
effects was incorrect, or the direction of a link 
was reversed). The mentor’s feedback would  fi rst 
pick on missing concepts, then missing links (i.e., 
if the student’s map contained the relevant con-
cepts to answer the question), and last, incorrect 
links (i.e., if all necessary concepts and links 
were on the map, but one or more links were 
incorrectly speci fi ed or extraneous). 

 In contrast, the SRL version of the system pro-
vided the SRL strategy feedback presented in 
Sect.  29 . After seeing Betty’s quiz results, the 
students could ask the mentor for suggestions. In 
response, Mr. Davis would suggest relevant SRL 
strategies, such as an information seeking strat-
egy: he would point to keywords for  fi nding rel-
evant sections of the resources to learn more 
about concepts and relations that were missing/
incorrect in the map. In addition to feedback after 
a quiz, Betty and Mr. Davis also generated spon-
taneous responses triggered by the activity pat-
terns, such as the ones described in Table  29.1 . 

 Our control condition for the study, the intel-
ligent coaching system (ICS) group was told to 
create the map to learn for themselves. The Betty 
agent was removed from this version of the sys-
tem, and the students interacted only with the 
mentor, Mr. Davis. Otherwise, the activities avail-
able in the ICS interface were identical to the two 
LBT systems. For example, students in the ICS 
group could also query their map and ask for 



45929 Investigating Self-Regulated Learning in Teachable Agent Environments

explanations, but in this case, it was Mr. Davis, 
and not Betty, who responded to them. Similarly, 
ICS students took the quiz for themselves rather 
than having Betty take the quiz. The content and 
form of quizzes and explanations were identical 
for the ICS, LBT, and SRL groups. In the ICS 
group, Mr. Davis provided the same corrective 
feedback as in the LBT version of the system. 

 All student activities in the system were cap-
tured in log  fi les. Each activity was assigned to 
one of  fi ve primary categories: (1) EDIT—add, 
edit, or delete concepts and links in the concept 
map; (2) QUER(y)—query Betty on a portion 
of the map; (3) QUIZ—ask Betty to take a 
quiz; (4) READ—read the resources; and (5) 
EXPL(anation)—ask Betty to explain her answer 
to a query. For each activity, the program cap-
tured additional information related to the activity. 
For example, when the student asked a question, 
the question and Betty’s response to the question 
were also stored in the log  fi le. 

 Analyses that do not take into account the 
sequential nature of student interactions with the 
system, such as counting the frequency of student 
activities, can provide only limited information 
for learning strategy models of student behavior 
(Biswas et al.,  2010  ) . We believe that a state-
based representation that captures the sequential 
characteristics of students’ activities provides a 
more powerful narrative of the student learning 
behaviors. HMMs (Rabiner,  1989  ) , which con-
tain a set of states and probabilistic transitions 
between those states (more likely transitions are 
assigned higher probabilities), provide such a 
representational scheme. The states in a HMM 
are hidden, meaning that they cannot be directly 
observed in the environment/system. Instead, 
they produce output (e.g., student activities in the 
Betty’s Brain system) that can be observed. 
Deriving a HMM from activity traces requires 
simultaneous estimation of (1) the number of 
states; (2) the probabilities associated with transi-
tions between states; (3) the probabilities associ-
ated with observing certain outputs (i.e., particular 
student activities, such as reading or querying 
activities); and (4) the probability of a state being 
the initial state in an activity sequence. 

 By providing a concise representation of stu-
dent learning strategies and behaviors, HMMs 

have the potential for providing a high-level view 
of how students approach their learning tasks 
(e.g., what strategies they use and how they 
switch between strategies) (Biswas et al.,  2010 ; 
Jeong & Biswas,  2008  ) . Algorithms for learning 
an HMM from output sequences are well known 
but require appropriate con fi guration/initializa-
tion parameters for effective use (Rabiner,  1989  ) . 
Speci fi cally, HMM learning algorithms require 
an initial HMM description, whose parameters 
are then modi fi ed to maximize the likelihood of 
producing observed output sequences. In particu-
lar, the number of states in the HMM and their 
initial output probabilities can have a signi fi cant 
effect on the resulting, learned HMM. 

 We have developed an algorithm designed to 
generate HMMs from a set of student activity 
sequences (Jeong & Biswas,  2008 ; Li & 
Biswas,  2000 ,  2002  ) . The  fi rst step in the analysis 
is to extract each students’ activity sequences 
over the period of the study from the log  fi les. 
Although all students had access to the full set of 
actions, not all of them used them effectively. 
Using queries to check whether recent revisions 
to the map were correct, or to locate errors in the 
concept map, is an example of effective use of 
queries.   On the other hand, asking questions 
simply to make Betty speak, so that the student 
could make fun of her mechanical, computer-
generated voice is clearly an ineffective use of 
queries for the learning task. When students gen-
erated questions that were not related to parts of 
the map they had worked on recently, it was 
unclear whether these queries were related to 
effective learning. We addressed this issue by 
developing a  relevance score  that took into 
account how much the current action could be 
linked to other recent actions. 

 Each student action was assigned a relevance 
score that depended on the number of relevant 
previous actions within a pre-speci fi ed window. 
This score provides a measure of  informedness  
for knowledge construction activities and, simi-
larly, a measure of  diagnosticity  for monitoring 
activities. Overall, the relevance score provides a 
rough measure of strategy consistency or coher-
ence over a sequence of actions. For this analysis, 
a prior action was considered relevant to the cur-
rent action if it was related to, or operated on, one 
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of the same map concepts or links. For example, 
if a student edited a link that was used to generate 
an answer in a recent query, the query action was 
counted in the edit’s relevance score. The 
increased relevance score suggested a more 
informed edit action because it was related to a 
recent query. 

 The relevance score is employed in HMM gen-
eration by re fi ning the classi fi cation of student 
activities. Each of the actions in an activity 
sequence is assigned a label, H (high) or L (low), 
based on its relevance score, in order to maintain 
the context and relevance information of the 
actions in the sequence. For example, a QUER-H 
activity implies that the query the student asked is 
related to other activities recently performed, 
while a QUER-L implies that the query activity is 
largely unrelated to the students’ recent activities. 

 The HMM models derived for the ICS, LBT, 
and SRL groups are shown in Figs.  29.3  and  29.4 . 
States in the models are named based on an inter-
pretation of their outputs (activities) illustrated in 

Figs.  29.5  and  29.6 . The possible transitions 
between states are shown as arrows, and the tran-
sition probabilities are expressed as percentages. 
For example, the ICS behavior model indicates 
an 84% likelihood that a student who just per-
formed an applied reading action (i.e., one of the 
observable actions associated with the Applied 
Reading state described below) will next perform 
another applied reading action, but there is a 13% 
chance that the student will perform an informed 
editing action (i.e., an action produced by the 
Informed Editing state) next. The models for the 
ICS and LBT groups each have three states, but 
the activities associated with some of those states 
differ signi fi cantly. Therefore, the states are inter-
preted, and named, differently for those groups. 
Further, the derived model for the SRL group has 
 fi ve states instead of three and shows some inter-
esting differences in the set of actions associated 
with those states.     

 We used the activities associated with a state 
to categorize the states of the three derived HMM 

  Fig. 29.3    ICS and LBT group HMMs derived from activity sequences       
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models. This analysis produced seven different 
types of states that are described below.
    1.     Applied reading —students are primarily 

engaged in reading the resources and applying 
the knowledge gained from reading by editing 
their maps. This state combines information-
seeking strategies with informed information 
structuring.  

    2.     Uninformed editing —students are primarily 
making uninformed changes to their map, 
indicating the use of trial-and-error or guessing 
strategies for information structuring. Students 
may generate queries, but the queries gener-
ally do not relate directly to the editing activi-
ties. This represents a suboptimal information 
structuring strategy.  

    3.     Informed editing —students are primarily 
making informed changes to their map (infor-
mation structuring) based on relevant queries 
or quiz questions. As opposed to uninformed 
editing, the students are using queries and 
quizzes to guide their map editing actions.  

    4.     Uninformed and informed editing —students 
are primarily making changes to their map, 
some of which are based on relevant queries 
or quizzes. This state combines the activities 
of the uninformed editing and informed edit-
ing states, including situations where students 
are making edits relevant to recent queries and 
quizzes, as well as situations in which students 
are making edits without focusing on a single 
area of the map.  

  Fig. 29.4    SRL group HMM derived from activity sequences       
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  Fig. 29.5    Activities in knowledge construction states       

  Fig. 29.6    Activities in monitoring states       
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    5.     Checking —students are querying and quizzing 
Betty to check the correctness of their concept 
maps. However, the use of queries and quizzes 
may be unfocused. For example, queries may 
not be related to recently edited areas of the 
map, and it is not clear that students are using 
the quiz results to focus on areas on the map 
where there are errors. Therefore, this state 
corresponds to a weak monitoring strategy.  

    6.     Probing —students combine querying and 
quizzing with the explanation feature, which 
illustrates the chain of links that were followed 
to generate an answer to a question. Further, 
the queries, explanations, and quizzes are 
focused on a particular area of the map, and 
the results inform map editing. This combina-
tion implies a deeper, more focused monitor-
ing strategy than the checking state and may 
be evidence of metacognitive re fl ection on the 
quality of the student’s map/knowledge.  

    7.     Transitional probing —students perform activ-
ities similar to the probing state, but generally 
with lower relevance scores, suggesting that 
they may be transitioning to probing a differ-
ent area of the concept map.     
 As discussed above, each of the interpreted 

states can be mapped onto one or more knowl-
edge construction and monitoring strategies out-
lined in our conceptual SRL model that was 
illustrated in Fig.  29.2 . The HMMs provide evi-
dence that the SRL condition uses more effective 
monitoring strategies (i.e., probing strategies in 
addition to checking strategies) than the LBT and 
ICS conditions. 

 We probed further to determine the prevalence 
of individual states suggested by a generated 
HMM. To do this, we calculated the proportion 

of  expected state occurrences  by condition in 
Table  29.2 . This calculation uses the HMM to 
provide an  expected value  for the average fre-
quency with which a state would occur when pro-
ducing sequences of a given length. Speci fi cally, 
the expected state occurrences measure employs 
state transition probabilities in the derived HMM 
and average activity sequence lengths from the 
trace data to calculate an expected value for the 
proportion of individual state occurrences 
(Biswas et al.,  2010  ) . Although states correspond-
ing to knowledge construction behaviors account 
for a signi fi cant percentage of behaviors in all 
groups, the HMMs for the LBT and SRL groups 
also show use of monitoring strategies (10% for 
LBT and 49% for SRL). The SRL HMM also 
includes more states suggesting a greater number 
(and possibly greater complexity) in the types of 
strategies employed. Further, the activities 
involved in these additional states suggest use of 
 probing , a more advanced monitoring behavior, 
which is absent from the ICS and LBT HMMs.  

 The results of the HMM analysis identify 
 differences in strategies employed by the differ-
ent groups of students, but do not directly indi-
cate the effect of these behaviors on student 
learning. Therefore, Table  29.3  2  shows the learning 
gains measured by tests and map scores for each 

   2   All statistical comparisons of means among conditions 
were made with ANOVA post-hoc (Tukey HSD) tests, and 
effect sizes are computed as Cohen’s     d̂   . Further, since 
some of the differences falling outside of the signi fi cance 
cutoff of  p  < 0. 05 still had moderately large effect sizes, 
we report the results for multiple signi fi cance cutoff val-
ues ( p  < 0. 1 and  p  < 0. 05), allowing the reader to make 
their own determinations based on the reported results.  

   Table 29.2    Proportion of expected state occurrences by condition   

 Behaviors 

 ICS  LBT  SRL 

 Proportion (%)  Proportion (%)  Proportion (%) 

 Applied reading  33  30  17 

 Uninformed editing  36  –  – 

 Uninformed and informed editing  –  60  34 

 Informed editing  31  –  – 

 Checking  –  10  13 

 Transitional probing  –  –  7 

 Probing  –  –  29 
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condition in the study. Results indicate that the 
two groups that taught Betty (LBT and SRL) out-
performed the ICS group on gains in both test 
and map scores, although not all of these differ-
ences were statistically signi fi cant. In particular, 
differences on multiple choice test score gain 
were not statistically signi fi cant between any of 
the conditions. However, for the free response 
test questions, the SRL group showed greater 
gains than the ICS group ( p  < 0. 1 and a moder-
ately large effect size of     ̂d 0.72=   ). For the gain in 
correct map concepts, the SRL group outper-
formed both the ICS group ( p  < 0.05,     ̂d   = 0.81) 
and the LBT group ( p  < 0.01,     ̂d   = 1.05). Similarly, 
for the gain in correct map links, the SRL group 
outperformed the ICS and LBT groups ( p  < 0. 05, 
    ̂d 0.97=    and  p  < 0. 1,     ̂d 0.72=   , respectively).  

 Overall, these results indicate that the students 
who taught Betty (i.e., LBT and SRL groups) out-
performed the other students (i.e., the ICS group), 
both in learning gains and the use of monitoring 
strategies. Although the SRL group received dif-
ferent feedback (SRL rather than corrective) from 
the mentor, the only difference between the LBT 
and ICS groups was whether students taught 
Betty or learned for themselves. The ICS students 
use of less effective learning strategies, as appar-
ent in the HMMs, may explain their smaller 
learning gains. Further, the SRL group had higher 
free response and map score gains than the LBT 
group (although not all of the differences were 
statistically signi fi cant for the number of students 
in this study), suggesting that the SRL feedback 
promoted more effective learning and concept 
mapping performance. Moreover, while 60% of 
SRL students completed their concept maps dur-
ing the  fi ve sessions, only 44% of LBT students 
and 31% of ICS students were able to complete 

their concept maps. The results of the HMM 
analysis, combined with the results on learning 
gains, suggest that the metacognitive feedback 
helped students implement SRL strategies, which 
allowed them to more effectively learn the sci-
ence content. Although the HMM analysis illus-
trates the effectiveness of providing metacognitive 
feedback in Betty’s Brain, it does not indicate 
which agent or types of feedback were most 
effective. This was the focus of the second study, 
which we describe next.  

   Study 2: Comparing the Mentor 
and Teachable Agent Feedback 

 In order to assess the effectiveness of different 
forms of feedback in our system (i.e., differences 
by (1) agent and (2) content of feedback: knowl-
edge construction versus monitoring), we con-
ducted a study, which included a think-aloud 
protocol to determine students’ reactions to the 
agent feedback. The study was conducted in 3 
 fi fth-grade science classrooms in the same school 
as study 1. 3  Two of the classrooms had the same 
science teacher as in study 1. The third classroom 
had a different teacher, but teacher 2 worked 
closely with teacher 1 for the unit taught in this 
study. All students worked on a newer version of 
the SRL system from study 1. In this version of 
the system, the feedback from the two agents was 
better organized into the categories described in 
Table  29.1 . 

 Students worked in a total of 40 pairs chosen 
by the teachers to ensure that the paired students 
were at similar academic levels and had compat-
ible personalities. Before the study began, the 
teachers instructed students on how to collabo-
rate on the system. The students had to discuss 
with one another and come to a consensus before 
they performed an action on the system. Control 
of the keyboard and mouse alternated between 
the students (e.g., if one student had control of 
the input devices on day 1, then the partner was 
given control on day 2). The science teachers 

   Table 29.3    Mean pre-to-post test and concept map score 
gains   

 Gain score 

 Conditions 

 ICS  LBT  SRL 

 Multiple choice  0.4 (2.4)  1.1 (3.1)  0.4 (1.5) 

 Free response  1.9 (3.0)  4.3 (3.2)  4.8 (4.7) 

 Map concepts  8.1 (2.4)  7.3 (2.7)  10.4 (3.1) 

 Map links  12.2 (3.8)  12.7 (5.3)  16.2 (4.4) 

   3  Study 1 and study 2 were conducted in different years.  
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ran a brief practice session on working with the 
system before the students started this phase of 
the study. All students had worked individually 
with the Teachable Agent system on another sci-
ence unit (ecosystems), so they were familiar 
with the system. 

 Students worked on the topic of pollution in 
river ecosystems for three 45-min periods. We 
recorded student conversations and interactions 
using webcams. After the study was concluded, 
two coders reviewed all of the video data and 
recorded students’ responses to the feedback. For 
every instance in which the TA or the mentor pro-
vided feedback, the coders noted whether the stu-
dents’ subsequent discussion  af fi rmed, dismissed , 
or  deferred  the agent’s feedback. Inter-rater 
reliability for each category was over 85% with 
Cohen’s kappa values over 0.6, and the results are 
summarized in Table  29.4 .  

 Students explicitly referenced the feedback 
from the agents about a third of the time (34% for 
Betty and 30% for Mr. Davis). Even when stu-
dents did not explicitly reference the feedback, 
they sometimes responded to the feedback by 
talking directly to the agent in response or sug-
gesting a course of action directly indicated (or 
contra-indicated) by the feedback. All student 
discussions following feedback were coded in 
three categories of possible response to the feed-
back 4 : (1) af fi rm (e.g., “We should do that” or 
“We need to read more” responding to feedback 
suggesting the students read the resources), (2) 
dismiss (e.g., “No, I don’t want to read” or “Let’s 
just keep giving her quizzes” responding to feed-
back suggesting students teach Betty more 
between giving her quizzes), and (3) defer 
(e.g., “Hold on, we will get to that in a second”). 

 As illustrated in Table  29.4 , there were 
 differences between how frequently the students 
af fi rmed or dismissed feedback from the two 
agents. Students were more likely to af fi rm feed-
back from Mr. Davis, and were more likely to 
dismiss feedback from Betty. This suggests that 
students paid less attention to the self-re fl ective 
feedback from Betty than to the more explicit, 
strategy-oriented feedback from Mr. Davis. 
Although one possible explanation for this dif-
ference is that Mr. Davis provided better feed-
back and advice, the tenor of student discussions 
indicated that they treated Betty like a less-
knowledgeable peer, while according Mr. Davis 
the status of a knowledgeable authority  fi gure 
and considering his advice more carefully. 

 To understand how students’ verbal responses 
related to learning, we analyzed the study results 
for the two metacognitive categories of feedback 
from each agent: (1) knowledge construction 
strategies, and (2) monitoring strategies. Table  29.5  
summarizes the percentages of each type of ver-
bal reaction to the different forms of feedback, as 
well as their correlation with the student pair’s 
 fi nal map score. Students who more frequently 
af fi rmed the knowledge construction strategy 
feedback from either the TA or the mentor had 
higher map scores, but the correlations were not 
statistically signi fi cant. Students who dismissed 
either the knowledge construction or the monitor-
ing feedback from either agent had lower map 
scores (negative correlations). However, when the 
students af fi rmed the monitoring feedback, the 
results were surprising. Af fi rming Mr. Davis’s 
monitoring feedback showed a positive correla-
tion with map score (not statistically signi fi cant), 
but af fi rming Betty’s monitoring feedback was 
negatively correlated with map score ( p  < 0. 05). 
We discuss this result in greater detail later, but 
overall the students seemed to af fi rm the knowl-
edge construction feedback more, and af fi rming 
this feedback implied higher map scores.  

   Table 29.4    Student verbal response to agent feedback   

 Agent  →    N   Referenced (%)  Af fi rmed (%)  Dismissed (%)  Deferred (%) 

 Betty  649  34  6  16  2 

 Mr. Davis  275  30  18  10  2 

   4   Many student discussions, including some that explicitly 
referenced the feedback, neither af fi rmed, dismissed, nor 
deferred the feedback.  
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 The verbal responses to feedback listed in 
Table  29.4  suggest a difference in the way stu-
dents react to the feedback from the two agents, 
and these reactions affect their concept map 
building performance. 5  For example, those who 
af fi rmed Mr. Davis’s knowledge construction and 
monitoring feedback seemed to do better in their 
map building task. 

 To determine whether the students’ verbal 
responses to feedback matched their expected 
actions in the system, we analyzed student actions 
immediately following each agent feedback state-
ment. For example, if Betty said “Can we go over 
my explanations to see if I am missing anything,” 
we checked to see if the subsequent student 
actions included asking Betty to explain an 
answer. Table  29.6  reports for both Betty and Mr. 
Davis (1) the average number of feedback events 
by category per student, (2) the average propor-
tion, 6  of subsequent activities that matched the 
actions advised by the feedback (using a window 
size of 3 actions) 7  and (3) the correlation between 
the percentage of matched actions and the stu-
dents’  fi nal map scores.  

 Overall, the correlation between percentage of 
matching actions (out of the three student actions 
subsequent to the feedback) and the students’ 
 fi nal map scores was positive (0.34 for Betty and 
0.36 for the Mentor), but the correlations were 
not statistically signi fi cant. More detailed analy-
sis by category of metacognitive feedback, 
showed a positive correlation between students’ 
 fi nal map scores and their following Betty’s and 
Mr. Davis’s advice on knowledge construction 
feedback. Students were more likely to follow 
Betty’s feedback suggestions than those of the 
Mentor, but the differences were small (28–24%). 
The more students’ subsequent actions matched 
the feedback, the higher their map scores, as 
measured by the correlations: 0.52 for matching 
Betty’s knowledge construction advice ( p  < 0. 1) 
and 0.11 for matching the Mentor’s knowledge 
construction advice. These results differ from the 
verbal responses to feedback, where students 
af fi rmed Mr. Davis’s knowledge construction 
feedback more than they did Betty’s, and the cor-
responding correlations with map scores were 
also higher for the mentor (0.37 versus 0.2). 

 On the other hand, for monitoring feedback, 
Mr. Davis appears to have been more effective 
than Betty. Though the relative number of Betty 
monitoring feedback events was high compared 
to Mr. Davis’s (13.1–5.5), student actions after 
Betty’s feedback showed a poor match to the 
feedback content (only 0.5%). For the mentor 
feedback the match was 33%. Combining this 
information with the verbal response results indi-
cates that the students were more dismissive of 
Betty’s monitoring feedback, and at the same 
time they rarely followed up with activities that 
matched the feedback content. In addition, the 
correlation between the activity match percentage 
and students’ map scores was negative, implying 

   Table 29.5    Verbal responses to feedback and corresponding map score correlations (b  p  < 0. 05)   

 Agent →  

 Betty  Mentor 

 Percent verbal response  Percent verbal response 

 (Correlation with map score)  (Correlation with map score) 

 Category  ↓   Af fi rm  Dismiss  Defer  Af fi rm  Dismiss  Defer 

 Knowledge construction  9%  27%  2%  20%  22%  2% 

 (0.20)  ( − 0.45b)  ( − 0.16)  (0.37)  ( − 0.31)  (0.24) 

 Monitoring  4%  11%  2%  17%  6%  2% 

 ( − 0.46b)  ( − 0.35)  (0.04)  (0.28)  ( − 0.44b)  ( − 0.16) 

   5   Agent role (and consequently relationship with the stu-
dent) and the content of agent feedback are inextricably 
linked in this study, making it impossible to attribute stu-
dent responses to one factor or the other. However, the 
correlation between students’ responses to agent feedback 
has useful implications for future system design and 
experimental study opportunities discussed in this section 
and the next.  

   6  We employed a proportion in a window of subsequent 
actions because agent feedback often suggested a course 
of action that could involve repeated actions (e.g., edits or 
reads), and it is not possible to determine precisely 
whether a student’s action was an attempt to follow agent 
advice or not.  

   7   We tested a variety of different window sizes, and all of 
them produced similar results.  
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those who af fi rmed Betty’s monitoring feedback 
or tried to apply it ended up with lower map 
scores. On the other hand, Mr. Davis’s monitor-
ing feedback had more af fi rmations and there 
were more attempts to follow his suggestion, and 
these correlated with higher map scores (though 
the correlations were not statistically signi fi cant). 

 Together the verbal and action response results 
show clear differences in the way students 
responded to the two agents. Overall, the students 
af fi rmed the mentor’s feedback more than they 
did the teachable agent’s, and in general, higher 
af fi rmation levels implied better  fi nal map scores. 
These results also indicate that the monitoring 
feedback was less effective than knowledge con-
struction feedback. With the exception of Betty’s 
monitoring feedback, the results showed positive 
correlations with map scores for both verbal and 
action response measures. Although there are 
many potential explanations for the negative cor-
relation between Betty’s monitoring feedback 
and map scores, the results suggest that her mon-
itoring feedback was generally ineffective in 
helping students improve their concept maps. 
This could imply that students could not under-
stand Betty’s feedback and, therefore, they did 
not apply her suggestions during their learning 
and teaching tasks. The few who did, may have 
applied them inappropriately, and, therefore, 
used up time that could have been more produc-
tively spent in other activities. Alternatively, this 
could have been the result of self-selection, in 
which lower-performing students attempted to 
apply Betty’s monitoring advice even though 
they did not understand it. However, those who 
followed similar feedback from Mr. Davis did 
better on their map. Overall, the results indicate 
that the metacognitive feedback had a generally 
positive effect on students’ learning, but the more 

explicit strategy feedback from the Mentor agent 
was more effective than Betty’s self-evaluative 
statements and suggestions.   

   Discussion and Conclusions 

 The Betty’s Brain system is designed to leverage 
the bene fi ts of learning by teaching and causal rea-
soning to help students learn science. The teaching 
interactions and agent feedback support students’ 
engagement and promote the development and use 
of educationally productive cognitive and meta-
cognitive processes. In study 1, students who uti-
lized learning by teaching versions of our system 
(i.e., the LBT and SRL groups) constructed better 
concept maps than students who used the non-
teaching ICS version of the system. Moreover, stu-
dents’ performances were strongest when the 
system explicitly supported their use of SRL strat-
egies by having Betty model and prompt for such 
behaviors, and having the mentor provide addi-
tional strategy-oriented advice. 

 Our approach to analyzing students’ activity 
sequences using HMMs produced good results. 
We were able to characterize students’ activity 
patterns into a number of (good and bad) knowl-
edge construction and monitoring strategies. The 
interpretation of SRL group behavior with the 
HMMs also matched the SRL feedback model 
we implemented in the Betty’s Brain system, while 
the LBT group HMM showed only one of the two 
types of monitoring strategies (i.e., checking 
behaviors) and the ICS group HMM did not show 
either of the monitoring strategies. 

 Although the HMM analysis illustrated the 
effectiveness of providing metacognitive feed-
back in the Betty’s Brain system, it did not indi-
cate which agent or types of feedback were most 

   Table 29.6    Action response to feedback and corresponding map score correlations (*  p  < 0. 1)   

 Feedback category →  
 Agent  ↓   Measures 

 Knowledge 
construction  Monitoring 

 Betty  Feedback events  5.77  13.08 

 Action (proportional) Match  28.2%  0.5% 

 Map score correlation  0.52*   − 0.41 

 Mr. Davis  Feedback events  2.46  5.54 

 Action (proportional) Match  24.02%  33.0% 

 Map score correlation  0.11  0.26 
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effective in promoting SRL behaviors. Our  second 
study included a think-aloud protocol to deter-
mine students’ reactions to the agent feedback. 
We combined the think-aloud protocols with 
analysis of student activity traces to develop a 
more complete picture of how well students 
employed the feedback to their map building 
tasks. Overall, students’ verbal responses to agent 
feedback  suggested that they were more receptive 
to the explicit, strategy-oriented advice from the 
mentor agent, as opposed to the self-re fl ective, but 
less explicit, feedback from the teachable agent. 
Further, students were more likely to af fi rm the 
knowledge construction feedback from each agent 
than the monitoring feedback. This analysis also 
showed a positive correlation between af fi rming 
feedback and students’ map scores, except in the 
case of Betty’s monitoring feedback. 

 Additional analysis of student responses to 
feedback, in terms of actions taken following 
feedback events, showed a similar differentiation 
between knowledge construction and monitoring 
feedback. Students taking more actions consis-
tent with an attempt to apply the knowledge con-
struction feedback tended to have better map 
scores. However, students taking more actions 
advised by Betty’s monitoring feedback tended 
to have lower map scores, suggesting they were 
unable to apply the strategies suggested by that 
feedback. This brings up a number of issues. It 
suggests that students  fi nd it easier to understand 
and apply knowledge construction strategies 
(e.g., read the resources to  fi nd the correct rela-
tion between two concepts or check the resources 
to see if all of the required concepts appear on the 
map) than monitoring strategies (e.g., ask a query 
to check if the map is correct or ask for an expla-
nation to check an answer step-by-step to iden-
tify errors). Other studies, such as Azevedo 
et al.  (  2009  )  also suggest that students rarely 
employ monitoring strategies during learning and 
knowledge construction tasks, but frequently 
apply a variety of other metacognitive strategies. 

 It may also be true that students understand a 
monitoring strategy but do not know when to 
apply it, since the feedback only implicitly 
addressed this issue by advising strategies at 
appropriate times. For example, when constructing 

their concept map, students may not know when 
to switch from map building to map checking and 
back in an effective way. Moreover, they may 
have dif fi culty in formulating “good” queries that 
help them check a relevant part of their map. 
Therefore, monitoring strategy feedback may 
need to be presented in more elaborate detail with 
justi fi cation of its importance in the learning task 
and identi fi cation of applicable situations. For 
example, analysis of the context and details of 
advised actions (e.g., Betty’s feedback “Can we 
go over my explanation step by step and check it 
with the resources?”) suggests the use of explain-
and-read actions, but effective application of the 
feedback involves reading sections of the 
resources related to the map concepts and links in 
the current query and explanation. Some of these 
details may need to be built into the feedback 
mechanisms, especially in the early stages, to 
help students learn  when  and  how  to apply strate-
gies in an effective way. 

 Since students appeared to be more receptive 
to the explicitly strategy-oriented feedback from 
the more authoritative agent, i.e., the mentor, it 
may be especially fruitful to improve the mentor 
agent’s feedback. We intend to continue analyz-
ing the data from this and future studies in order 
to better understand how speci fi c phrasing and 
different forms of metacognitive feedback affect 
student behavior. We have also been conducting 
studies to determine how to make the timing and 
content of strategy feedback more relevant to the 
student’s current activities on the system. 

 In addition to analyzing and enhancing the 
agent feedback to promote metacognitive strate-
gies and prepare students for future learning, we 
also plan to re fi ne our HMM analysis technique. 
Enhanced HMM analysis could provide a better 
understanding of the different strategies employed 
by students when learning complex science topics 
and allow for more adaptive feedback suited to 
the current context of the students’ activities. In 
particular, we intend to employ clustering of indi-
vidual student HMMs to improve the accuracy of 
our HMM analysis and use sequence mining to 
pre-process the trace data in the HMM analysis to 
maintain more of the temporal information in the 
aggregated behaviors of HMM states. 



46929 Investigating Self-Regulated Learning in Teachable Agent Environments

  Acknowledgments    This work has been supported by 
Dept. of ED IES grant #R305H060089, NSF REESE 
Award #0633856, and NSF IIS Award #0904387.      

   References 

    Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2006). 
Toward meta-cognitive tutoring: A model of help seek-
ing with a Cognitive Tutor.  International Journal of 

Arti fi cial Intelligence in Education ,  16 (2), 101–128.  
    Azevedo, R. (2005). Using hypermedia as a metacognitive 

tool for enhancing student learning? The role of self-
regulated learning.  Educational Psychologist ,  40 (4), 
199–209.  

    Azevedo, R., & Witherspoon, A. M. (2009). Self-regulated 
use of hypermedia. In A. Graesser, J. Dunlosky, & D. 
Hacker (Eds.),  Handbook of metacognition in educa-

tion . Mahwah, NJ: Erlbaum.  
   Azevedo, R., Witherspoon, A., Chauncey, A., Burkett, C., 

& Fike, A. (2009). MetaTutor: A metacognitive tool 
for enhancing self-regulated learning.  Annual Meeting 

of the American Association for Arti fi cial Intelligence, 

Symposium on Metacognitive and Cognitive 

Educational Systems  (pp. 4–19).    
    Bandura, A. (1997).  Self-ef fi cacy: The exercise of control . 

New York, NY: Freeman.  
    Biswas, G., Jeong, H., Kinnebrew, J. S., Sulcer, B., & 

Roscoe, R. (2010). Measuring self-regulated learning 
skills through social interactions in a teachable agent 
environment.  Research and Practice in Technology-

Enhanced Learning (RPTEL) ,  5 (2), 123–152.  
    Biswas, G., Leelawong, K., Schwartz, D., Vye, N., & 

Vanderbilt, T. T. A. G. (2005). Learning by teaching: 
A new agent paradigm for educational software. 
 Applied Arti fi cial Intelligence ,  19 (3), 363–392.  

   Blair, K., Schwartz, D. L., Biswas, G., & Leelawong, K. 
(2007). Pedagogical agents for learning by teaching: 
teachable agents.  Educational Technology & Society: 

Special Issue on Pedagogical Agents ,  47 (1).    
    Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) 

(2000).  How people learn . Washington, DC: National 
Academy Press.  

    Bransford, J. D., & Schwartz, D. L. (1999). Rethinking 
transfer: A simple proposal with multiple implica-
tions.  Review of Research in Education ,  24 (1), 61.  

    Brown, A. L., & Palincsar, A. S. (1989). Guided, coopera-
tive learning and individual knowledge acquisition. In 
L. B. Resnick (Ed.),  Knowing, learning, and instruc-

tion: Essays in honor of Robert Glaser  (pp. 393–451). 
Hillsdale, NJ: Lawrence Erlbaum Associates.  

   Burleson, W., Picard, R. W., Perlin, K., & Lippincott, J. 
(2004) A platform for affective agent research. 
 Workshop on Empathetic Agents, International 

Conference on Autonomous Agents and Multiagent 

Systems, New York, NY  .  
    Chase, C. C., Chin, D. B., Oppezzo, M. A., & Schwartz, 

D. L. (2009). Teachable agents and the protégé effect: 
Increasing the effort towards learning.  Journal of 

Science Education and Technology ,  18 (4), 334–352.  

    D’Mello, S. K., Craig, S. D., Witherspoon, A., Mcdaniel, 
B., & Graesser, A. (2008). Automatic detection of 
learners affect from conversational cues.  User 

Modeling and User-Adapted Interaction ,  18 (1), 
45–80.  

    D’Mello, S., Picard, R. W., & Graesser, A. (2007) Toward 
an affect-sensitive AutoTutor.  IEEE Intelligent 

Systems ,  22 (4), 53–61.  
    Forbus, K. D. (1984) Qualitative process theory.  Arti fi cial 

intelligence ,  24 (1–3), 85–168.  
    Hadwin, A. F., Nesbit, J. C., Jamieson-Noel, D., Code, J., 

& Winne, P. H. (2007). Examining trace data to explore 
self-regulated learning.  Metacognition and Learning , 
 2 (2), 107–124.  

    Hadwin, A. F., Winne, P. H., Stockley, D. B., Nesbit, J. C., 
& Woszczyna, C. (2001) Context moderates students’ 
self-reports about how they study.  Journal of 

Educational Psychology ,  93 (3), 477–487.  
   Jeong, H., & Biswas, G. (2008). Mining student behavior 

models in learning-by-teaching environments. 
 Proceedings of the First International Conference on 

Educational Data Mining, Montreal, Quebec, Canada  
(pp. 127–136).  

    Jonassen, D. H., & Ionas, I. G. (2008). Designing effective 
supports for causal reasoning.  Educational Technology 

Research and Development ,  56 (3), 287–308  
    Leelawong, K., & Biswas, G. (2008). Designing learning 

by teaching agents: The Betty’s Brain system. 
 International Journal of Arti fi cial Intelligence in 

Education ,  18 (3), 181–208.  
   Lester, J. C., Converse, S. A., Kahler, S. E., Barlow, S. T., 

Stone, B. A., & Bhogal, R. S. (1997). The persona 
effect: affective impact of animated pedagogical 
agents.  Proceedings of the SIGCHI conference on 

Human Factors in Computing Systems (CHI ’97), 

Atlanta, GA  (pp. 359–366).  
   Li, C., & Biswas, G. (2000). A Bayesian approach to tem-

poral data clustering using hidden Markov models. 
 Proceedings of the Seventeenth International 

Conference on Machine Learning  (pp. 543–550).  
    Li, C., & Biswas, G. (2002). A Bayesian approach for 

learning hidden Markov models from data.  Scienti fi c 

Programming: Special Issue on Markov Chain and 

Hidden Markov Models ,  10 (3), 201–219.  
    Paris, S. G., & Paris, A. H. (2001). Classroom applica-

tions of research on self-regulated learning. 
 Educational Psychologist ,  36 (2), 89–101.  

    Perry, N. E., & Winne, P. H. (2006). Learning from learn-
ing kits: gStudy traces of students? Self-regulated 
engagements with computerized content.  Educational 

Psychology Review ,  18 (3), 211–228.  
    Pintrich, P. R. (2000). An achievement goal theory per-

spective on issues in motivation terminology, theory, 
and research.  Contemporary Educational Psychology , 
 25 (1), 92–104.  

    Pintrich, P. R. (2002). The role of metacognitive knowl-
edge in learning, teaching, and assessing.  Theory into 

Practice ,  41 (4), 219–225.  
    Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). 

Beyond cold conceptual change: The role of motiva-
tional beliefs and classroom contextual factors in the 



470 J.S. Kinnebrew et al.

process of conceptual change.  Review of Educational 

Research ,  63 (2), 167–199.  
    Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, 

W. J. (1993). Reliability and predictive validity of the 
Motivated Strategies for Learning Questionnaire 
(MSLQ).  Educational and psychological measure-

ment ,  53 (3), 801-813.  
    Rabiner, L. R. (1989). A tutorial on hidden Markov mod-

els and selected applications in speech recognition. 
 Proceedings of the IEEE ,  77 (2), 257–286.  

    Roll, I., Aleven, V., Mclaren, B. M., & Koedinger, K. R. 
(2007). Designing for metacognition: Applying cogni-
tive tutor principles to the tutoring of help seeking. 
 Metacognition and Learning ,  2 , 125–140.  

    Roscoe, R. D., & Chi, M. T. H. (2007). Understanding 
tutor learning: knowledge-building and knowledge-
telling in peer tutors’ explanations and questions. 
 Review of Educational Research ,  77 (4), 534–574.  

    Schraw, G., Kauffman, D. F., & Lehman, S. (2002). Self-
regulated learning theory. In L. Nadel (Ed.),  The ency-

clopedia of cognitive science  (pp. 1063–1073), 
London: Nature Publishing Company.  

    Schunk, D. H., & Zimmerman, B. J. (1997). Social origins 
of self-regulatory competence.  Educational 

Psychologist ,  32 (4), 195–208.  
    Schwartz, D. L., Blair, K. P., Biswas, G., Leelawong, K., 

& Davis, J. (2007). Animations of thought: Interactivity 
in the teachable agent paradigm. In R. Lowe & W. 
Schnotz (Eds.),  Learning with animation: Research 

and implications for design  (pp. 114–140). Cambridge: 
Cambridge University Press.  

    Schwartz, D. L., Chase, C., Chin, D. B., Oppezzo, M., 
Kwong, H., Okita, S. et al. (2009) Interactive meta-
cognition: Monitoring and regulating a teachable 
agent. In D. J. Hacker, J. Dunlosky, & A. C. Graesser 
(Eds.),  Handbook of metacognition in education  (pp. 
340–358). New York: Routledge Press.  

    Schwartz, D. L., & Martin, T. (2004). Inventing to prepare 
for future learning: The hidden ef fi ciency of encourag-
ing original student production in statistics instruction. 
 Cognition and Instruction ,  22 (2), 129–184.  

   Tan, J., Biswas, G., & Schwartz, D. (2006). Feedback for 
metacognitive support in learning by teaching envi-
ronments.  Proceedings of the 28th Annual Meeting of 

the Cognitive Science Society, Vancouver, Canada  (pp. 
828–833).  

   Wagster, J., Tan, J., Wu, Y., Biswas, G., & Schwartz, D. 
(2007). Do learning by teaching environments with 
metacognitive support help students develop better 
learning behaviors.  Proceedings of the 29th Annual 

Meeting of the Cognitive Science Society, Nashville, 

TN  (pp. 695–700).  
    Weinstein, C. E., Schulte, A. C., and Palmer, D. R. (1987). 

 The learning and study strategies inventory . 
Clearwater, FL: H & H Publishing.  

    Winne, P., & Hadwin, A. (2008). The weave of motivation 
and self-regulated learning. In D. H. Schunk & B. J. 
Zimmerman (Eds.),  Motivation and self-regulated 

learning: Theory, research, and applications  (pp. 
297–314). New York, NY: Taylor & Francis.  

    Zimmerman, B. J. (1990). Self-regulating academic learn-
ing and achievement: The emergence of a social cog-
nitive perspective.  Educational Psychology Review , 
 2 (2), 173–201.  

    Zimmerman, B. J. (2001). Theories of self-regulated 
learning and academic achievement: An overview and 
analysis. In B. J. Zimmerman & D. H. Schunk (Eds.), 
 Self-regulated learning and academic achievement: 

Theoretical perspectives  (pp. 1–37). Mahwah, NJ: 
Erlbaum.  

    Zimmerman, B. J. (2008). Investigating self-regulation 
and motivation: Historical background, methodologi-
cal developments, and future prospects.  American 

Educational Research Journal ,  45 (1), 166–183.  
    Zimmerman, B. J., Bandura, A., & Martinez-Pons, M. (1992). 

Self-motivation for academic attainment: The role of self-
ef fi cacy beliefs and personal goal setting.  American 

Educational Research Journal ,  29 (3), 663–676.  
    Zimmerman, B. J., & Martinez-Pons, M. (1986). 

Development of a structured interview for assessing stu-
dent use of self-regulated learning strategies.  American 

Educational Research Journal ,  23 (4), 614–628.     



471R. Azevedo and V. Aleven (eds.), International Handbook of Metacognition and Learning Technologies, 
Springer International Handbooks of Education 26, DOI 10.1007/978-1-4419-5546-3_30, 
© Springer Science+Business Media New York 2013

 Narrative-centered learning environments have 
become the subject of increasing attention in the 
intelligent tutoring systems community (Aylett, 
Louchart, Dias, Paiva, & Vala,  2005 ; Johnson & 
Valente,  2008 ; McQuiggan, Rowe, Lee, & 
Lester,  2008  ) . Narrative-centered learning envi-
ronments are a class of educational games that 

contextualize educational content and problem 
solving with interactive story scenarios. By 
combining salient features of stories (rich set-
tings, believable characters, and compelling 
plots) with key elements of digital game envi-
ronments (agency, rewards, and multimedia 
feedback), narrative-centered learning environ-
ments show signi fi cant promise for increasing 
student motivation, supporting meaning making, 
and guiding complex problem solving. Narrative-
centered learning environments tap into stu-
dents’ innate facilities for crafting and 
understanding stories (Bruner,  1990  ) , and they 
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  Abstract 

 Narrative-centered learning environments provide engaging, story-centric 
virtual spaces that afford opportunities for discreetly embedding pedagog-
ical guidance for content knowledge and problem-solving skill acquisi-
tion. Students’ abilities to self-regulate learning signi fi cantly impact 
performance in these environments and are critical for academic achieve-
ment and lifelong learning. This chapter explores the relationship between 
narrative-centered learning environments and self-regulation for science 
learning. Connections are drawn between the salient characteristics of 
narrative-centered learning environments and principles for promoting 
self-regulation in science education. These relationships are further 
explored through an examination of the Crystal Island learning environ-
ment. The chapter investigates the hypothesis that narrative-centered 
learning environments are particularly well suited for simultaneously pro-
moting learning, engagement, and self-regulation. Empirical support is 
provided by a summary of  fi ndings from a series of studies conducted with 
over 300 middle school students.      
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encourage students to become active participants 
in ongoing narratives. By integrating technolo-
gies from intelligent tutoring systems, embodied 
conversational agents, and serious games into 
story-centric virtual environments, narrative-
centered learning environments offer the prom-
ise of adaptive, situated learning experiences 
that are highly interactive and engaging for stu-
dents. Narrative-centered learning environments 
have been studied in a range of domains, includ-
ing anti-bullying education (Aylett et al.,  2005  ) , 
language learning (Johnson & Valente,  2008  ) , 
and science education (Ketelhut, Dede, & 
Clarke,  2010 ; McQuiggan, Rowe et al.,  2008  ) . 

 Narrative-centered learning environments offer 
the potential to not only enhance students’ content 
knowledge but also aid in problem solving and 
self-regulation. Self-regulated learning refers to 
students’ ability to generate, monitor and control 
their cognitive, metacognitive, and motivational 
processes (Zimmerman,  1990  ) . Self-regulation is 
particularly important in scienti fi c inquiry where 
learning is guided by students’ curiosity and moti-
vation for acquiring knowledge through the appli-
cation of ef fi cient strategies (Graesser, McNamara, 
& VanLehn,  2005  ) . Although narrative-centered 
learning environments can be designed for a broad 
range of subject matters, this chapter focuses on 
speci fi c approaches to self-regulated learning in 
science education. Schraw, Crippen, and Hartley 
 (  2006  )  identify six pedagogical strategies that have 
been empirically shown to increase student self-
regulation in science, including inquiry-based 
learning, collaboration, strategy instruction, con-
struction of mental models, technology use, and 
the role of epistemological beliefs. Each of these 
strategies can be implemented within the motivat-
ing contexts of narrative-centered learning 
environments. 

 This chapter explores the bene fi ts of 
 narrative-centered learning environments for 
student self-regulated learning in science. 
Connections between pedagogical strategies for 
self-regulated learning in science and interactive 
narrative environments are drawn through an 
examination of  Crystal Island , a narrative-
centered learning environment for middle-school 
microbiology. Empirical support is provided by 

a summary of results drawn from several studies 
with  Crystal Island  investigating learning 
 outcomes, engagement, and problem-solving 
activities. 

   Self-Regulation in Narrative-Centered 
Learning Environments 

 Narrative-centered learning environments offer 
signi fi cant promise for promoting guided dis-
covery learning by leveraging the motivational 
characteristics of narrative and interactive game 
environments and providing a compelling con-
text for developing and applying problem-solving 
skills. However, students’ ability to pursue 
pedagogical and narrative goals is central to 
narrative-centered learning environments’ 
ef fi cacy, particularly in open-ended environ-
ments that feature inquiry-based scenarios and 
multiple problem-solving paths. As a conse-
quence, self-regulation is often critical for stu-
dents interacting with narrative-centered learning 
environments. 

   Self-Regulated Learning    

 Research suggests that individuals who are able 
to self-regulate their learning processes in 
intentional and re fl ective ways are more likely 
to achieve academic success (Butler, Cartier, 
Schnellert, & Gagnon,  2006  ) . The term  self-

regulated learning  can be used to describe 
learning that is guided by metacognition, strate-
gic action, and motivated behavior (Zimmerman, 
 1990  ) . Pintrich  (  2000  )  notes that although mul-
tiple models of self-regulated learning exist, 
most share four main assumptions: (1) learners 
actively construct knowledge during the learning 
process, (2) learners actively control, monitor, 
and regulate aspects of their learning environ-
ment, as well as facets of their own cognition, 
behavior, and motivation, (3) learning is goal-
driven, and (4) goals are compared to standards 
or criteria in order to monitor progress and 
adapt facets of cognition, behavior, and 
motivation. 
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 Self-regulation is particularly important in 
domains that emphasize inquiry. Inquiry activi-
ties typically permit multiple lines of investiga-
tion, feature both implicit and explicit goals, and 
require knowledge construction and critical 
thinking skills (Anderson,  2002  ) . In order to 
effectively navigate inquiry scenarios, students 
must be able to identify and synthesize relevant 
background knowledge, iteratively formulate 
hypotheses and hypothesis-testing plans, and 
critically assess and augment their investigation 
strategies based on prior  fi ndings and current 
problem-solving contexts. Self-ef fi cacy and 
motivation is important for students to sustain 
effort across hypothesis-testing-revision cycles 
and to adjust problem-solving strategies when 
necessary. Students who are self-regulated learn-
ers are likely to have many of the same skills 
needed to optimally bene fi t from inquiry-based 
learning methods. 

 Unfortunately, students often require explicit 
instruction in order to effectively self-regulate 
their learning, and may not develop these skills 
on their own. Boekaerts and Niemvirta  (  2000  )  
note that teachers, and not students themselves, 
tend to have the responsibility of conveying infor-
mation and procedures, monitor performance, 
provide feedback, and motivate learning. This 
assignment of responsibilities hinders the devel-
opment of self-regulation by making learning the 
responsibility of the teacher rather than the stu-
dent. It has been shown that although most teach-
ers agree that one of the primary goals of 
education is to develop intrinsically motivated, 
self-regulated learners (Paris, Lipson, & Wixon, 
 1994  ) , few students receive instruction in self-
regulated learning in school and few have oppor-
tunities to regulate their own learning (Randi & 
Corno,  2000  ) .  

   Scaffolding Self-Regulated Learning 
in Intelligent Tutoring Systems 

 Over the past several years, the education com-
munity has begun to investigate the role that 
learning technologies can play in detecting, scaf-
folding, and teaching effective self-regulatory 

processes. These attempts differ widely in the 
types of metacognitive phenomena with which 
they are concerned, the complexity of the envi-
ronments used to support self-regulation, and the 
amount of support given to students to develop 
these skills. For example, work on the MetaTutor 
intelligent tutoring system has examined the role 
of self-regulatory strategies in hypertext science 
learning environments (Witherspoon, Azevedo, 
& D’Mello,  2008  ) . This work has shown that pro-
viding students with prompts from a human tutor 
on appropriate types of self-regulatory strategies, 
such as goal setting, plan development, and sum-
marizing learned materials can improve students’ 
use of these strategies. In particular, their  fi ndings 
indicate that students who are able to of fl oad their 
self-regulatory processes use more diverse sets of 
strategies than students who have not been given 
the same instruction. Alternatively, the Betty’s 
Brain system implements  teachable agents , 
where students instruct a virtual character from 
their own knowledge (Leelawong & Biswas, 
 2008  ) . Students are then able to run queries on 
the knowledge of their virtual pupil and uncover 
errors in their own concepts and problem-solving 
approaches. This type of system encourages self-
regulatory processes without providing explicit 
instruction about them, although providing addi-
tional scaffolding can lead to further bene fi ts. 

 Other work has focused on speci fi c student 
behaviors related to self-regulatory processes. 
Aleven, McLaren, Roll, and Koedinger  (  2004  )  
examined how students use help-giving features 
of tutorial learning environments. They argue 
that there are appropriate uses of help-seeking 
behavior (e.g., during a problem-solving impasse) 
and also a variety of poor strategies of help seek-
ing (e.g., using help instead of trying themselves, 
or never seeking help even when it is needed). 
With the emergence of help-providing systems, 
understanding the types of “help-seeking” bugs 
that students engage in is important for designing 
educational technologies that not only teach con-
tent but also teach effective learning strategies. In 
similar work, Litman and Forbes-Riley  (  2009  )  
examined how well students are able to monitor 
their own learning and judge their own correct-
ness during natural-language tutorial sessions. 
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They used measures of uncertainty and correct-
ness to develop a uni fi ed concept of accuracy, and 
showed that the more accurate students are in 
their judgments of knowing, the more likely they 
are to learn.  

   Narrative-Centered Learning 
Environments 

 Narrative-centered learning environments offer 
several natural affordances for enhancing stu-
dents’ learning experiences and promoting self-
regulatory processes. Stories draw audiences into 
plots and settings, thereby introducing engaging 
opportunities for situated learning. Fantasy con-
texts in educational games have also been shown 
to provide motivational bene fi ts (Parker & 
Lepper,  1992  ) . Although it is important to remain 
mindful of potential disadvantages, such as 
seductive details (Harp & Mayer,  1998  ) , a care-
fully targeted narrative experience has the poten-
tial to be pedagogically compelling. 

 Recent work on narrative-centered learning 
environments has leveraged a range of techniques 
for providing effective, engaging learning experi-
ences. Multiuser virtual environments, such as 
Quest Atlantis (Barab et al.,  2009  )  and River City 
(Ketelhut et al.,  2010  )  use rich narrative settings 
to contextualize inquiry-based science learning 
scenarios with prominent social and ethical 
dimensions. BiLAT (Kim et al.,  2009  )  and the 
Tactical Language and Culture Training System 
(TLCTS) (Johnson & Valente,  2008  )  emphasize 
story-driven interactions with virtual characters 
to provide instruction on cross-cultural negotia-
tion and foreign language learning, respectively. 

 Empirical studies have begun to yield promis-
ing results that support the potential of narrative-
centered learning environments in the classroom. 
For example, Ketelhut and colleagues  (  2010  )  
compared several large-scale implementations of 
River City to a  paper-based control  condition 
that taught equivalent content and skills. The 
study found that students who used River City 
experienced improved content learning gains, 
increased evidence of thoughtful scienti fi c 
inquiry, and increased interest in science careers, 

although the  fi ndings failed to be reproduced 
across all implementations and assessment strate-
gies. Students’ diversity and quantity of data 
gathering behaviors also increased as they used 
River City over multiple sessions. Barab and col-
leagues  (  2009  )  compared the Taiga Park module 
of Quest Atlantis to an  expository text  equivalent 
(i.e., an electronic textbook), as well as a  simple 

framing  condition (i.e., the scenario was situated 
with a third person storyline, but the story was 
not interactive). Students who used Taiga Park 
outperformed the expository text condition on 
proximal post-test items. Students who used 
Taiga Park in dyads were also observed to outper-
form the expository text condition on distal post-
test items. However, comparisons with the simple 
framing condition were equivocal; the dyad Taiga 
Park group outperformed the simple framing 
group on an open-ended transfer task, but there 
were no differences between groups on standard-
ized post-test items. While evaluation methodol-
ogies are still the subject of ongoing research, 
River City and Quest Atlantis have yielded prom-
ising initial benchmarks for the expected ef fi cacy 
of narrative-centered learning environments. 

 Related work has examined how arti fi cial 
intelligence can be used to generate engaging 
interactive story experiences that are pedagogi-
cally effective and tailored to individual students’ 
interactions. FearNot! uses affectively driven 
autonomous agents to generate dramatic, educa-
tional vignettes about bullying (Aylett et al.,  2005  ) . 
TLCTS uses a range of arti fi cial intelligence 
techniques for speech recognition, dialogue mod-
eling, and virtual human behavior across a suite 
of story-centric, serious games designed for lan-
guage and culture learning (Johnson & Valente, 
 2008  ) . BiLAT uses rule-based intelligent tutoring 
facilities that deliver individualized guidance in 
the form of hints and feedback, as well as struc-
tured after-action reviews (Kim et al.,  2009  ) . 
Extending intelligent tutoring systems to support 
self-regulated learning during narrative-centered 
learning experiences is a promising direction for 
this line of research. However, systematic investi-
gation of narrative-centered learning environment 
features that best promote self-regulated learning 
processes is still in its infancy.   



47530 Supporting Self-Regulated Science

   Leveraging Narrative Environments 
for Self-Regulated Learning 

 As noted above, Schraw and colleagues  (  2006  )  
identify six areas of focus for improving self-
regulated learning in science education: inquiry-
based learning, collaboration, strategy instruction, 
construction of mental models, technology use, 
and epistemological beliefs. Narrative-centered 
learning environments present opportunities for 
discreetly implementing each of these strategies 
in motivating and effective ways. Incorporating 
these strategies may also provide students with 
important problem-solving guidance that simul-
taneously enhances student self-ef fi cacy and 
engagement in the sciences. 

   Inquiry-Based Learning 

 Interactive narratives naturally support several 
key aspects of inquiry-based learning. For exam-
ple, audiences interact with narrative in a way 
that resembles the steps of inquiry-based learn-
ing. Generally, narratives contain sequences of 
causally related events that contribute to an over-
arching plot, and most individuals appear to have 
inherent schemata for these structures (Bruner, 
 1990  ) . Audiences naturally draw inferences about 
the narratives they encounter (Gerrig,  1993  ) . As 
the plot of a narrative develops, audiences instinc-
tively form hypotheses about possible future 
events. These hypotheses are actively tested as 
the story continues, and they are either supported 
or contradicted as the plot is revealed. Thus, each 
situation must be reevaluated in light of new 
information, and alternate hypotheses must be 
formulated. 

 The continuous cycle of forming and evaluat-
ing expectations has the bene fi t of keeping read-
ers motivated and engaged. Furthermore, events, 
such as unexpected twists, humorous or empa-
thetic characters, and fantasy are generally intro-
duced to encourage reader engagement. This 
narrative inference process aligns well with the 
hypothesis generation-testing-revision cycles of 
inquiry-based learning, creating opportunities for 

the two processes to complement one another in 
effective and engaging manners. Of course, the 
alignment between narrative inference and 
inquiry-based learning depends upon tight inte-
gration between narrative content and science 
content. Tight integration between narrative and 
curriculum is one of the key features of narrative-
centered learning environments. This integration 
is one of the primary characteristics distinguish-
ing narrative-centered learning environments 
from other types of educational games with sto-
ries that are tangential to their primary instruc-
tional objectives. In the case of science learning, 
tight integration means that the inferences neces-
sary for reasoning about the narrative are the same 
inferences necessary for scienti fi c thinking. 

 Narrative-centered learning environments also 
support active participation in stories as students 
adopt the roles of characters. Students in narra-
tive-centered learning environments carry out 
problem-solving actions in a manner similar to 
that of authentic inquiry. In authentic inquiry, stu-
dents generate research questions and guide 
themselves through the problem-solving process 
(Anderson,  2002  ) ; however, in the case of narra-
tive-centered learning environments, students’ 
problem-solving activities can also be guided 
within the structure of the narrative. For example, 
in a medical mystery scenario, by establishing 
which actions serve as the narrative’s desired 
resolution (e.g., determining the identity of a 
mysterious disease), the student is implicitly 
scaffolded to set an overall goal: it is the student 
with guidance from the narrative, rather than 
guidance from the instructor, who determines 
what actions to take in order to accomplish the 
task at hand (the desired plot resolution). 
Narrative-centered learning environments also 
offer means for supporting hypothesis formation 
and testing. Each action taken by a student (e.g., 
running a virtual lab experiment, gathering back-
ground information) is taken because the student 
believes it will bring her closer to the solution, 
based on her current understanding or hypothesis. 
Evidence that an action does not lead to the goal 
solution may indicate a  fl awed hypothesis, forc-
ing the student to reconsider her hypotheses and 
problem-solving plans.  
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   Collaboration 

 Given the importance of characters for engaging 
narratives, collaboration within narrative-cen-
tered learning environments is a natural technique 
for supporting self-regulated learning. Schraw 
and colleagues  (  2006  )  identify four distinct ways 
in which collaboration directly enhances SRL 
instruction: modeling partner behaviors, planning 
and evaluating discussion, utilizing the academic 
strengths of each student, and promoting class-
room equity (Schraw et al.,  2006  ) . 

 A promising feature of narrative-centered 
learning environments is introducing a compan-
ion agent, a character that works closely with 
the student and can prompt discussion, 
re fl ection, and assistance in natural and subtle 
ways. Companion agents can assume the role of 
an apprentice, peer, or mentor to the student 
character. As an apprentice, the companion 
agent can ask the student to interpret and explain 
data gathered in the course of problem solving 
and to convey to the agent how this new infor-
mation contributes to achieving the narrative’s 
resolution. This method of forming explana-
tions and teaching material to others has been 
shown to have bene fi cial effects on understand-
ing and self-regulated learning (Chi, de Leeuw, 
Chiu, & LaVancher,  1994 ; Leelawong & 
Biswas,  2008  ) . 

 A companion agent can serve as a peer by ask-
ing questions, such as “What should we do next?” 
in order to prompt student planning, monitoring, 
and self-re fl ection, which are three key metacog-
nitive strategies. Companion agents subtly inform 
the student of oversights or discourage concep-
tual overcon fi dence while maintaining the stu-
dent’s sense of agency and responsibility. A 
companion agent that serves as a mentor to the 
student interacts in a similar fashion by modeling 
important behaviors and guiding the student 
through the environment. Because companion 
agents are personi fi ed as characters within a story, 
their presence yields a noninvasive mechanism 
for metacognitive prompting, which can also be 
used to collect metacognitive data about the stu-
dent. Techniques for devising companion agents 
capable of delivering metacognitive prompts that 

are appropriate for a given narrative context and 
SRL phase is an open research question.  

   Strategy Instruction 

 A growing body of research suggests that explicit 
instruction in self-regulated learning strategies 
promotes academic achievement (Schunk & 
Zimmerman,  1998  ) . Speci fi cally, these skills 
include effective problem-solving and critical-
thinking skills (Schraw et al.,  2006  ) . Utilizing 
engaging features of narratives, such as character 
interactions, can transition strategy instruction 
from explicit procedural steps provided by an 
instructor to an integral component of a compel-
ling narrative. 

 Within the context of a narrative, a student can 
be assigned a speci fi c role in conjunction with a 
target task. Particular skills appropriate for that 
role can be practiced in ways motivated by the 
narrative, rather than through direct instruction. 
For example, a student could be assigned the role 
of a scientist or examiner whose occupational 
requirements discreetly scaffold problem-solving 
processes, such as recording notes for reporting 
back to an authority  fi gure, representing informa-
tion in a physical model, or evaluating the rele-
vance of information for a particular a task. 
Rather than providing explicit instruction to stu-
dents to perform speci fi c steps, the student’s 
learning is scaffolded in a manner that has been 
engagingly incorporated into the story 
environment. 

 Additionally, critical thinking skills can be 
incorporated into narrative plots. As Schraw and 
colleagues  (  2006  )  observe, essential critical 
thinking skills are “identifying relevant informa-
tion, constructing arguments, testing the credibil-
ity of information and hypotheses, and forming 
plausible conclusions” while consistently 
monitoring these activities (p. 124). Identifying 
relevant information and testing the credibility of 
information and hypotheses can be achieved 
through prompted re fl ection, which encourages 
students to formulate questions about a given task 
and extract the most important information. 
Characters can explicitly ask students questions 
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throughout the learning interaction that encour-
ages re fl ection on how information was attained 
and why it is vital for accomplishing the task at 
hand. Moreover, expert characters, as well as vir-
tual posters and books in the environment, can be 
utilized to help the student practice how to decide 
what information is the most important when an 
abundance of information sources are available. 

 With respect to constructing arguments and 
forming plausible conclusions, students can 
bene fi t from interactions with other virtual char-
acters in the narrative. These characters can be 
designed to probe students and suggest other sub-
goals to pursue. If a student  fi nds these sugges-
tions inadequate, he or she can be prompted to 
explain to the character why the advice will not 
be followed. As the student provides this expla-
nation, a narrative-centered learning environment 
can dynamically probe the student until an ade-
quate argument has been formulated. After the 
student provides an explanation for a desired 
learning goal, the system has an opportunity to 
detect what information the student understands, 
and what information the student should elabo-
rate or further investigate.  

   Mental Models and Conceptual Change 

 Mental models are cognitive aids that enable stu-
dents to mentally represent and reason about 
complex processes. Narrative-centered learning 
environments and virtual environments in gen-
eral, can contribute to novel mental model con-
struction and conceptual change. The graphical 
technology of narrative-centered learning envi-
ronments allows animated, 3D representations of 
scienti fi c processes to aid in student conceptual 
understanding. Moreover, since the structure of 
narrative builds upon sequences of events, mod-
els can be continuously created and re fi ned as 
more information is gathered and events occur.  

   Student Personal Beliefs 

 Student epistemological beliefs and self-ef fi cacy 
play an important role in self-regulation because 

of their effect on students’ perceived personal 
abilities and motivation (Schraw et al.,  2006  ) . 
Students with high levels of science self-ef fi cacy 
have been shown to be more motivated and more 
likely to undertake and persist on dif fi cult tasks. 
It is plausible that virtual characters could be 
designed to provide appropriate feedback on stu-
dent performance and enhance student self-
ef fi cacy during narrative-centered learning 
experiences. Further, as peer modeling has been 
shown to increase self-ef fi cacy (Schunk & 
Hanson,  1985  ) , virtual characters can be used to 
model desirable behaviors. 

 Students who hold the epistemological belief 
that academic ability is not static, and can be 
improved with effort, are more likely to be moti-
vated when working on intellectually challenging 
tasks (Schommer,  1990  ) . Virtual characters can 
be utilized to model and discuss desired episte-
mological beliefs. For instance,  fi ndings contra-
dicting the student’s initial beliefs can occur as 
the plot progresses; an agent in the environment 
can help the student to understand that these con-
tradictions are natural and common. Character 
interactions are a natural element of narrative, and 
leveraging multimodal conversations with virtual 
characters is a promising vehicle for impacting 
student self-ef fi cacy and epistemological beliefs.   

   An Implemented Narrative-Centered 
Learning Environment 

 Now in its fourth major iteration,  Crystal 

Island  is a narrative-centered learning environ-
ment built on Valve Software’s Source™ engine, 
the 3D game platform developed for the popular 
Half-Life 2 series of games. The curriculum 
underlying  Crystal Island ’s mystery narrative 
is derived from the North Carolina state standard 
course of study for eighth-grade microbiology. 
Students play the role of the protagonist, Alex, 
who is attempting to discover the identity and 
source of an infectious disease plaguing a research 
station. Figure  30.1  displays a screenshot from 
 Crystal Island , in which the student learns 
about the infectious disease through a conversa-
tion with a virtual character.  
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  Crystal Island ’s narrative takes place in a 
small research camp situated on a recently dis-
covered tropical island. As students explore the 
camp, they investigate the island’s spreading ill-
ness by forming questions, generating hypothe-
ses, collecting data, and testing hypotheses. 
Throughout their investigations, students interact 
with non-player characters offering clues and rel-
evant microbiology facts via multimodal “dia-
logues” delivered by characters through student 
menu choices and characters’ spoken language. 
The dialogues’ content is supplemented with vir-
tual books, posters, and other resources encoun-
tered in several of the camp’s locations. As 
students gather information about the spreading 
illness, they have access to a personal digital 
assistant to take and review notes, consult a 
microbiology  fi eld manual, communicate with 
characters, and report progress in solving the 
mystery. To solve the mystery, students complete 
a  diagnosis worksheet  to manage their working 
hypotheses and record  fi ndings about patients’ 
symptoms and medical history, as well as any 
 fi ndings from tests conducted in the camp’s labo-
ratory. Once a student enters a hypothesized 

diagnosis, cause of illness, and treatment plan 
into the diagnosis worksheet, the  fi ndings are 
submitted to the camp nurse for review and pos-
sible revision. 

 To illustrate how  Crystal Island  imple-
ments instructional strategies for self-regulated 
science learning, consider the following sce-
nario. The student has been exploring the 
 Crystal Island  virtual environment and has 
been tasked by the camp nurse with researching 
the island’s mysterious spreading illness. The 
student begins by consulting with the island’s 
residents, as well as by reading nearby posters 
and books that discuss various microbiology 
concepts. Some of the island’s characters help 
to identify objects and symptoms that are rele-
vant to the scenario, while others provide perti-
nent microbiology information. However, not 
all of the camp’s team members provide rele-
vant information, so the student must critically 
evaluate the information she obtains. As the 
student gathers clues and progresses through 
the narrative, she begins to develop, test, and 
revise hypotheses about possible explanations 
for the disease ( inquiry-based learning ). This 

  Fig. 30.1     Crystal Island  narrative-centered learning environments       
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inquiry process emerges naturally in the course 
of solving the science mystery, and to organize 
her thoughts the student records her inferences 
about the symptoms and candidate causes of 
the outbreak in a diagnosis worksheet. The 
worksheet enables her to encode a simpli fi ed 
version of her mental model of the disease’s 
spread ( mental models ). The student shares her 
diagnosis worksheet with the camp nurse, and 
they collaboratively review evidence that the 
student has collected, as well as the worksheet’s 
proposed diagnosis, but discover a  fl aw ( col-

laboration ). The nurse, who serves as a virtual 
mentor to guide the student through the inquiry 
process, encourages the student to re fl ect on 
her current  fi ndings. The student and the nurse 
then discuss possible directions for establishing 
a revised hypothesis ( strategy instruction ). The 
student decides to test several partially con-
sumed food items that the sick members 
recently ate, and after conducting a battery of 
tests in the laboratory, she discovers that a con-
tainer of unpasteurized milk in the dining hall 
is contaminated with bacteria. By combining 
this discovery with information about the sick 
characters’ symptoms, the student concludes 
that the team members’ illness stems from an 
 Escherichia coli  infection. The student reports 
her  fi ndings back to the camp nurse, and 
together they discuss a plan for treatment of the 
sick team members.  

   Findings 

 Over the past few years,  Crystal Island  has 
been the subject of several studies conducted 
with North Carolina middle school students to 
investigate factors related to self-regulated learn-
ing, including learning gains, problem-solving, 
engagement, and off-task behavior (McQuiggan, 
Goth, Ha, Rowe, & Lester,  2008 ; McQuiggan, 
Rowe et al.,  2008 ; Rowe, Shores, Mott, & Lester, 
 2010a,   2010b  ) . Three categories of instruments 
have been used to collect data about student 
learning processes during interactions with 
 Crystal Island : (1) direct prompts and self-report 
requests embedded within the virtual environment, 

(2) pre-intervention and post-intervention tests 
and subjective surveys, and (3) trace data logs of 
students’ in-game actions. Embedded prompts 
and self-reports have asked students to report on 
their current goals, goal-achievement progress, 
con fi dence in their content knowledge, and 
re fl ections about the problem-solving strategies 
employed. Pre- and post-intervention measures 
have assessed students’ content knowledge, 
knowledge transfer, goal achievement orienta-
tion, self-ef fi cacy, game-playing experience, 
personality, situational interest, and presence. 
Student trace data logs have recorded students’ 
problem-solving actions, on-task and off-task 
behaviors, goals, affective states, and help-seek-
ing behaviors. These investigations have yielded 
several areas of empirical support for the promise 
of narrative-centered learning environments to 
promote engaging science learning and self-regu-
latory processes. 

 An experiment involving an early version of 
 Crystal Island  investigated the impact of story 
content on student learning in narrative-centered 
learning environments (McQuiggan, Rowe et al., 
 2008  ) . The study compared two versions of 
 Crystal Island —a full-narrative version fea-
turing a poisoning scenario and rich character 
inter-relationships, and a minimal narrative-ver-
sion featuring only story details necessary to sup-
port the problem-solving scenario—against a 
more traditional instructional approach, a nar-
rated slideshow that conveyed the same curricu-
lar material. The results showed that students in 
the  Crystal Island  conditions exhibited learn-
ing gains, but that those gains were less than 
those produced by traditional instructional 
approaches. However, the motivational bene fi ts 
of narrative-centered learning, particularly with 
regard to self-ef fi cacy, presence, and interest, 
were substantial. Students reported the highest 
levels of presence in the full-narrative condition, 
a  fi nding that bears important implications for 
motivation. 

 A follow-up study using an updated version 
of  Crystal Island  found improved learning 
gains compared to the prior study (Rowe et al., 
 2010a  ) . Furthermore, it was found that several 
factors hypothesized to be related to student 
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engagement (e.g., presence, in-game perfor-
mance, and situational interest) were signi fi cantly 
associated with improved learning outcomes, 
independent of students’ background knowledge 
and game-playing experience. These results con-
trast with the initial study’s  fi ndings that placed 
learning and engagement variables at odds with 
one another. The updated version of  Crystal 

Island  incorporated a number of changes 
believed to contribute to the improved learning 
outcomes. The changes included the following: 
multimodal spoken character dialogues, an 
expanded diagnosis worksheet, a streamlined 
narrative (lacking the poisoning scenario and 
non-essential character relationships), tighter 
coupling between the narrative and microbiol-
ogy curriculum, simpli fi ed controls, a revised 
laboratory testing device, a new sub-activity in 
which students labeled parts of cells, and an 
updated look-and-feel of the island. The  fi ndings 
indicate that story and gameplay features can be 
crafted such that engagement in the interactive 
narrative scenario can contribute to learning out-
comes, rather than detract from learning. 

 Several analyses have been conducted to 
investigate students’ problem-solving processes 
during interactions with  Crystal Island . One 
version of  Crystal Island  maintained an in-
game score to assess students’ progress and 
ef fi ciency in completing the science mystery. 
Score incorporated time taken to accomplish 
important narrative goals, students’ ability to 
demonstrate microbiology content knowledge, 
and evidence of careful hypothesis formulation. 
Scores were decreased after any attempt to “game 
the system” by repeatedly submitting incorrect 
diagnoses to the camp nurse or guessing on con-
tent knowledge quizzes. A comparison of stu-
dents who achieved high scores during gameplay 
versus low-scoring students found striking differ-
ences in their learning outcomes, self-ef fi cacy for 
science, and gameplay pro fi les (Rowe et al., 
 2010b  ) . High-scoring students scored signi fi cantly 
higher on a post-experiment content test, were 
signi fi cantly more self-ef fi cacious for science, 
and performed more information gathering and 
of fl oading behaviors during gameplay, such as 
reading virtual books and accurately completing 

their diagnosis worksheets. Low-scoring students 
tended to spend more time engaged in dialogues 
with non-player characters and conducted more 
tests in the laboratory, including unnecessary 
tests. These  fi ndings may be symptomatic of low-
scoring students being less effective at devising 
and following successful problem-solving and 
self-regulatory strategies in  Crystal Island , as 
evidenced by inef fi cient inquiry behaviors and 
decreased diagnosis worksheet performance. 
Examples of inef fi cient inquiry behaviors include 
randomly guessing the mystery’s solution, con-
ducting an excessive number of redundant or 
irrelevant laboratory tests, and taking excessive 
amounts of time to complete the narrative’s 
 sub-goals. 

 An examination of students’ note-taking 
behaviors during interactions with  Crystal 

Island  revealed that students who took notes 
about their hypotheses performed better on a 
post-experiment content test (McQuiggan, Goth 
et al.,  2008  ) . This observation reinforces inquiry-
based learning  fi ndings suggesting the impor-
tance of scaffolding students’ hypothesis 
generation activities. The study also found 
signi fi cant gender effects on note-taking, with 
females taking signi fi cantly more notes than 
males. Goal orientation and ef fi cacy for self-reg-
ulated learning were also signi fi cantly correlated 
with note-taking behavior. 

 Findings from a study with  Crystal Island  
indicated that gender and game-playing experi-
ence signi fi cantly impact variables related to student 
engagement, such as presence (Rowe et al.,  2010b  ) . 
It was found that male students reported being 
more present than female students during interac-
tions with  Crystal Island , and that experienced 
gamers tended to be more present than less-expe-
rienced gamers. An analysis of student off-task 
behavior within the virtual environment (i.e., stu-
dents’ attendance to non-essential environmental 
features) also found negative associations with 
science achievement; students with lower scores 
on pre-experiment and post-experiment content 
tests tended to perform more off-task behaviors 
than their higher-scoring counterparts (Rowe, 
McQuiggan, Robison, & Lester,  2009  ) . Male 
students were also found to perform signi fi cantly 
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more off-task behaviors. It was unclear to what 
extent these off-task behaviors consisted of stu-
dents’ disengaging from the learning activity ver-
sus engaging in behaviors that were inconsistent 
with effective problem-solving tactics. It may be 
that these off-task behaviors are symptomatic of 
inadequate self-regulatory processes, but addi-
tional investigation is necessary to con fi rm this 
hypothesis. While the rich details of virtual envi-
ronments may draw some students away from 
learning-focused activities, they play a critical 
role in establishing a compelling narrative and 
virtual environment. Rather than remove such 
elements in the hope of avoiding off-task behav-
iors, a more promising approach is to devise 
adaptive scaffolding techniques that help students 
regulate their learning and return to productive 
problem-solving behaviors. Despite these open 
questions, the  fi nding that students’ gender and 
game-playing experience impact factors associ-
ated with student engagement is important for 
informing future research about the design of 
narrative-centered learning environments that 
seek to promote engagement as part of support-
ing self-regulated learning.  

   Discussion and Challenges 

 Findings indicate that narrative-centered learning 
environments can be effective platforms for 
inquiry-based learning that synergistically inte-
grate learning and engagement in problem-solv-
ing scenarios. Although the potential for 
introducing seductive details is an important 
issue, the potential for narrative-centered learn-
ing environments to create engaging practice 
opportunities for self-regulatory skills and dis-
creetly embed scaffolding for self-regulatory 
processes is a compelling potential bene fi t. 
Analyses of students’ problem-solving perfor-
mances in an implemented narrative-centered 
learning environment have revealed signi fi cant 
variations in self-regulatory skills, as evidenced 
by variations in problem-solving tactics, note-
taking behaviors, learning and engagement out-
comes, and off-task behaviors. Continued 
development of an empirical account of students’ 

self-regulation in narrative-centered learning 
environments, and the ef fi cacy of different tech-
niques for subtly scaffolding self-regulatory pro-
cesses, is an important direction for further 
investigation and will inform the design of future 
narrative environments. 

 Despite the considerable potential of narrative-
centered learning environments to provide engag-
ing inquiry support facilities for students, designing 
effective narrative-centered learning environments 
to enhance students’ self-regulatory skills poses 
several challenges. First, narrative-centered learning 
environments’ ability to deliver individualized and 
adaptive scaffolding for self-regulated behaviors is 
strongly dependent upon accurate assessments of 
the student’s current knowledge and abilities. 
However, it can prove dif fi cult to access informa-
tion about students’ self-regulatory processes due 
to their internal nature. While detailed records of 
students’ behaviors during interactions with narra-
tive-centered learning environments offer a win-
dow into students’ self-regulatory skills, further 
investigation is needed to develop automated 
methods for dynamically diagnosing self-regula-
tion skills in a manner that is not disruptive to 
learning. 

 Second, developing effective narrative-cen-
tered learning environments is currently highly 
resource-intensive. New authoring systems are 
needed to accelerate the development of narra-
tive-centered learning environments, and profes-
sional development materials need to be created 
so that teachers can effectively integrate these 
new technologies into their classrooms.  

   Conclusions 

 Narrative-centered learning environments pro-
vide inquiry-based learning interactions through 
rich, immersive story worlds that charge students 
with effectively utilizing content knowledge and 
problem-solving skills to achieve plot resolu-
tions. Success during interactions with narrative-
centered learning environments is often dependent 
upon the degree to which students are self-regu-
lated; it is the students, not instructors, that ulti-
mately guide instruction by setting learning goals, 



482 J.C. Lester et al.

monitoring goal progression, implementing strat-
egies, and maintaining motivation. Narrative-
centered learning environments offer the potential 
to supplement self-regulated learning processes 
by discreetly embedding such instruction within 
narrative structures. Self-regulatory instruction 
can then be provided through the narrative itself 
rather than through explicit prompts. While there 
are challenges to subtly integrating self-regula-
tory support, advances in intelligent tutoring sys-
tems and intelligent interactive narrative 
technologies hold signi fi cant promise for adaptive, 
real-time self-regulated learning scaffolding and 
assessment.      
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 Producing lasting changes to metacognition, or 
the more encompassing construct of self- regulated 
learning (SRL), has strong parallels to producing 
behavior change. In SRL, through experience and 
maturation, children develop ways to manage 
their problem solving and learning. In behavior 
change, people develop ways to manage health-

related behaviors that can range from safe sex to 
treatment compliance for diabetes and alcohol-
ism. In the former case, the goal is to develop 
new “habits of mind,” and in the latter, the goal is 
to develop new “habits of behavior.” Behavior 
change is notoriously dif fi cult and important, and 
the problem has spawned a vast literature that 
may be unknown to metacognitive researchers. 
For example, here is a small subset of the jour-
nals that include articles on behavior change: 
 Addictive Behaviors, American Journal of Health 

Promotion, Behaviour Change, Behavior 
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  31      A Behavior Change Perspective 
on Self-Regulated Learning 
with Teachable Agents       

        Marily   Oppezzo       and    Daniel   L.   Schwartz        

  Abstract 

 Producing lasting changes to metacognition, or the more encompassing 
construct of self-regulated learning (SRL), has strong parallels to produc-
ing behavior change.  In the former case, the goal is to develop new “habits 
of mind,” and in the latter, the goal is to develop new “habits of behavior.” 
The techniques and theories of behavior change can inform the design of 
instruction intended to support the development and transfer of SRL. For 
example, we describe a set of studies in which teaching adolescents behav-
ior change techniques improves their motivational control for both diet 
and homework goals. Behavior change theories often emphasize the stages 
of behavior change. We abstract from the various theories to present a 
four-stage model of behavior change. We then use the model to critique 
our own work on Teachable Agents. Teachable Agents are a software pro-
gram where students learn by teaching a computerized pupil. We discuss 
the successes of the Teachable Agents in achieving SRL goals and improv-
ing learning for each stage of the model, but we also describe how 
Teachable Agents has missed possible opportunities to improve SRL out-
comes based on the behavior change literature.      
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Therapy, Drug and Alcohol Dependence, Health 

Psychology, and Journal of Obesity . 
 The behavior change literature comprises many 

theoretical approaches, some of which are famil-
iar to SRL. One approach falls under the broad 
umbrella of utility theory. People weigh chances 
and costs of success against likely payoffs. When 
put into action, this approach can variously 
emphasize people’s estimation of  self-ef fi cacy 
(Bandura,  2005  ) , their perceptions of bene fi ts and 
barriers to success (Janz & Becker,  1984  ) , and 
their expectancy of the social and personal value 
of the outcomes (Ajzen & Fishbein,  1980  ) . A com-
pletely different approach resides under the 
equally broad umbrella of capacity limits, which 
highlights that being worn down makes it harder 
for people to maintain motivation for dif fi cult 
goals. People have limited psychological and 
material resources, rooted not just in motivation 
but also in physical energy stores (Gailliot et al., 
 2007  ) . When these are depleted, people are more 
likely to fail at goals that require effort (Baumeister 
& Vohs,  2007  ) , even if they do not feel depleted 
(Finkel et al.,  2006  ) . When put into action, this 
approach emphasizes how to help people conserve 
their motivational energy (Twenge & Baumeister, 
 2002  ) , conserve their ego (Webb & Sheeran, 
 2003  ) , reevaluate their resources (Dweck,  1996  ) , 
amplify what resources they have by building up 
willpower (Corno,  2001  ) , and enlist environmen-
tal and social support (Cohen,  1988  ) . Yet a third 
approach to behavior change falls within the 
behaviorist tradition, where the goal is to arrange 
external conditions that shape people into new 
habits. When this approach is put into action, 
treatments range from desensitization of phobias 
(Bandura, Blanchard, & Ritter,  1969  )  to schedul-
ing incentives and disincentives (Rowan-Szai, 
Joe, Chatham, & Simpson,  1994  ) . There are other 
approaches as well. 

 To introduce the behavior change literature 
and show its possible relevance to SRL, we take 
an unusual approach. First, we do not review the 
SRL and metacognitive literature, which has 
many  fi ne summaries within this volume. The 
second unusual move is that we critique our own 
work from the vantage of the behavior change lit-
erature. We show how this literature highlights 

the limitations of our own work on teachable 
agents. Teachable agents reside in a computer 
program where students teach virtual characters 
to help them learn science (see below for more 
details). While the software has been successful 
at teaching biology and causal reasoning, the 
behavior change literature points out missed 
opportunities and hopeful assumptions. 

   An Example of Where Behavior 
Change and SRL Meet    

 Before beginning our review of behavior change 
and relating it to teachable agents, we provide a 
brief example that shows how the line between 
behavior change and SRL is readily blurred. In 
a pair of studies, we taught adolescents pro-
cesses for “maintaining motivation” that could 
then be applied to subsequent outcome goals, 
such as doing more homework or maintaining a 
healthful diet. 

 Several behavior change theories, including 
self-ef fi cacy theories, assume that in dire straits 
people will use their heightened willpower and 
practiced self-management strategies (e.g., in 
weight-loss therapy, Foreyt & Goodrick,  1990  ) . 
Weinstein  (  2007  ) , for example, found that if peo-
ple believe they can change a behavior,  fi nd it 
easy to do, worth it, and leading to desirable out-
comes, they are more successful at changing their 
behavior. Our leading assumption coming into 
the studies was that adolescents also hold a simi-
lar set of beliefs that willpower and self-ef fi cacy 
are the best ways to reenergize fading motiva-
tions. Unfortunately, it is exactly at those times 
when temptation is strongest that rationality is at 
its weakest. A number of behavior change theo-
ries (Cohen,  1988 ; Rowan-Szai et al.,  1994  )  rec-
ognize this problem, and they provide guidance 
for what we will term “distributing motivation” 
to the environment. Therefore, we thought it 
might be useful to teach students strategies that 
involve manipulating the environment to support 
their abilities to stay motivated. In essence, we 
taught them to outsource their motivation. 

 In one study, 143 adolescents were assigned to 
one of two treatments. In the  self-control  
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 treatment, students were taught how to improve 
their motivation by energizing themselves from 
within using techniques drawn from the behavior 
change literatures, including pep talks, attacking 
excuses, choosing proximal goals, and reframing 
failures. In the  context-control  treatment, students 
were taught techniques for outsourcing motiva-
tional supports to the environment; for example, 
prepare the environment ahead of time (“ask my 
parents to buy healthy foods instead of junk 
food”), change the context to facilitate success 
(“work in library” away from distractions), and 
create contextual triggers for goals (“put a post-it 
note of my goal on the mirror”). Both groups of 
students learned through a combination of brief 
lectures and short application activities. 

 At pre- and posttest, students were tested on 
their cognitive application of “internal” (self-
control) and “distributed” (context-control) strat-
egies. Students received Fig.  31.1  and were 
presented with Edna’s motivational problem, 
“Edna just got a bad grade on her last history 

paper. She has another history paper due in 4 days 
and is not motivated. What can you tell her to do 
to motivate herself?” Figure  31.1  was designed to 
include equal numbers of cues for internal and 
distributed strategies. Figure  31.2  shows that at 
pretest, both treatments exhibited relatively high 
applications of internal strategies and relatively 
low applications of distributed strategies. At post-
test, students in the context-control condition 
showed strong increases in distributed strategies, 
and the students in the self-control condition 
showed relatively little change. Thus, students 
already knew many strategies for self-control, but 
strategies of context-control were new to them. 
Multiple choice and open-ended questions exhib-
ited similar results.   

 In a second study, 115 adolescents were 
assigned to the same two treatments. The pre- and 
posttest measures showed the same pattern as 
before. In this study, we further asked the students 
to pursue a challenging goal of personal interest 
after they completed the posttest. Their goals were 

  Fig. 31.1    “Edna” motivation item       
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nearly all academic (e.g., improving homework 
performance), which makes their behavior 
change goals synonymous with SRL. The stu-
dents self-reported their progress over 2 weeks 
by recording their successful strategies and 
their perceived success at achieving their goals. 
Figure  31.3  shows that when asked to report 
successful strategies they used to motivate them-
selves, the context-control condition reported 
more distributed strategies. Moreover, those stu-

dents who used distributed strategies exhibited 
more perceived success at achieving their goals, 
regardless of condition (not shown in Fig.  31.3 ).  

 Finally, a third study on 138 adolescents fol-
lowed the same format, but we switched the  fi nal 
goal for the students from an SRL goal (increase 
homework completion) to a classic behavior 
change goal (increase the intake of fruits and 
vegetables). The results replicated the prior two 
studies. However, we went a step further in the 

  Fig. 31.3    Average number of self-reported successful strategies, broken out by condition, for a 2-week behavior 
change period where students pursued self-selected goals       

  Fig. 31.2    Average number of strategies students listed to motivate Edna at pre- and posttest, broken out by condition 
(Error bars are the standard error of the mean)       
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data collection.    We asked students to recall their 
previous day fruit and vegetable consumption 
for the 24-h just prior to receiving the goal of 
improving their diet and then again 3 weeks 
after receiving the behavior change goal (e.g. 
Buzzard et al.,   1996  ) . The context-control condi-
tion showed signi  fi  cant improvement (mean 
serving increase = 1.92, SD = 0.53) compared 
to the self-control condition (mean serving 
increase = 0.17, SD = 0.45). Moreover, the 
reported use of distributed strategies was 
signi fi cantly correlated with increased serving 
intake, ( r  = 0.20,  p  < 0.05), but internal strategies 
were not ( r  = −0.044,  p  = 0.634). 

 Collectively, these studies demonstrate that 
adolescents already know several internal 
motivation strategies, whereas distributed strate-
gies are new to them, can be learned, and lead to 
greater changes. The studies also show that the 
same strategy training works for both classic 
behavior change goals (healthy living) and SRL 
goals (academic improvement). The barrier 
between behavior change and SRL interventions 
has points of permeability. Teaching students to 
use the environment to shape their own behavior 
appears to yield an effective SRL strategy, which 
may be seen as one possible contribution of the 
behavior change literature to SRL.  

   Stages of Behavior Change 

 One useful contribution of the behavior change 
literature is its emphasis on stages of change. For 
example, The Transtheoretical Model (TTM) of 
Behavior Change (Prochaska, DiClemente, & 
Norcross,  1992  )  is a popular approach that sug-
gests matching the intervention strategy to an 
individual’s stage and readiness to change. For 
example, interventions that support maintenance 
of a behavior will be ineffective when people do 
not yet know a change is possible for them to 
achieve. A focus on stages is relevant to SRL, 
because it suggests that different “treatments” 
may be better suited to different stages of SRL 
development. It provides more nuance than an 
overly uniform prescription that SRL should 
begin with scaffolds that are eventually faded. 

 The time course of change is an active area of 
research, so there are disagreements over the num-
ber of stages, whether they are discrete or continu-
ous and whether they are best described as mutually 
exclusive or more or less active at any given time. 
TTM alone has 16 key constructs and  fi ve stages 
(Ferrer et al.,  2009  ) . Another stage model by 
   Rothman, Baldwin, Hertel, and Fuglestad  (  2011  )  
breaks behavior change into two distinct phases of 
initiation and maintenance and delineates two 
stages within each. We have abstracted from these 
debates into the model shown in Fig.  31.4  (see 
Horn,  1976  ) . The  fi gure shows that there are four 
primary stages, and people can move forward 
(good) and backward (bad) among the stages.  

   Pre-intend Stage 

  People are unsure if they should make an effort to 

change a behavior.  The goal of a speci fi c behav-
ior change may be unknown or unmotivated. 
A simple example is a person who smokes and 
does not particularly want to quit, or in earlier 
times, the person did not know it was a good idea 
to quit. One solution comes from Protection 
Motivation Theory (Maddux & Rogers,  1983  ) . It 
emphasizes the need for people to fully under-
stand the deleterious consequences of poor 
behavior so they will protect themselves. This led 
to interventions that scared people about the con-
sequences of risky behavior, for example, by 
showing the effects of sexually transmitted dis-
eases in health class, or more recently, FDA leg-
islation that requires cigarette packages to have 
graphic images of cancer and death after 
September 2012. Teachers and parents intuitively 
use Protection Motivation Theory to motivate 
learning goals, for example, by warning that 
such-and-such behaviors will not get students 
into college. 

-

  Fig. 31.4    Abstraction of behavior change stages       
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 While Protection Motivation emphasizes 
“avoidance,” other theories further incorporate 
“approach,” for example, by showing the bene fi ts 
of eating healthy and not just the risks of eating 
poorly. Instances include the theory of reasoned 
action (Ajzen & Fishbein,  1980  ) , the theory of 
planned behavior (Ajzen,  1991  ) , and the health 
belief model (Janz & Becker,  1984  ) .  

   Intend Stage 

  People want to change or initiate a behavior, but 

they have not taken action.  The intend stage exists 
between the pre-intend and implement stages as 
an acknowledgment that people often have good 
intentions, which they have learned, but which 
they have not yet turned into action. For instance, 
a review of health behaviors, including condom 
use, exercise, and cancer screening, found that 
people translate “good” intentions into action 
only 53% of the time (Sheeran,  2002  ) . Thus, it is 
important to understand the characteristics of this 
stage and what it takes to move people along. 
There are multiple reasons people have good 
intents, but fail to take action. On the cognitive 
side, implementation intention theory proposes 
that people do not recognize opportunities for 
action (Gollwitzer & Sheeran,  2006  ) . People may 
also lack knowledge for how to execute a behav-
ior. On the motivation side, people may not 
believe they can achieve the behavior, and 
enhancing self-ef fi cacy becomes an important 
goal of interventions (e.g., the Health Action 
Process Approach, Schwarzer,  2008  ) .  

   Implement Stage 

  People take actions dedicated to behavior change.  
For example, smoking cessation programs pro-
vide social supports, clear metrics of progress, 
and alternative behaviors to supplant smoking. In 
the SRL literature, these may be interpreted as 
different types of scaffolds for new behaviors. 
A major goal is the prevention of relapse during 
implementation. Marlatt and Gordon  (  1985  )  pro-
posed the relapse prevention model. They parti-

tioned the main causes of relapse into (a) 
immediate determinants (e.g., high-risk situa-
tions, coping skills, outcome expectancies) and 
(b) covert antecedents (e.g., lifestyle factors, 
cravings). More relevant to SRL, problem-solving 
therapy (Perri et al.,  2001  )  teaches people basic 
cognitive problem-solving skills to facilitate 
behavior maintenance.  

   Inhabit Stage 

  People maintain a new behavior, which no longer 

has to be motivated consciously.  The inhabit 
stage is not necessarily the end of the behavior 
change process. In many instances of behavior 
change, there is always a risk of “falling off the 
wagon,” despite having inhabited a new behavior 
for years. The long-term judicious application of 
new behaviors requires ongoing environmental 
support. It is often insuf fi cient to simply tell peo-
ple what they can do to maintain their new behav-
iors once the intervention or training is over. For 
instance, the Cochrane Review 1  conducted a 
meta-analysis on smoking cessation programs 
and found that training people on “necessary” 
skills for avoiding later relapse had no effects 
(Hajek, Stead, West, Jarvis, & Lancaster,  2009  ) . 
One successful approach is to help people 
change their environments to support stability 
and repetition (Wood, Tam, & Witt,  2005  ) . 

 In the following sections, we treat SRL as 
comprised of these stages. We apply the behavior 
change perspective to our work with teachable 
agents. Therefore, we  fi rst need to take a brief 
detour to explain the software and typical student 
activities.   

   Teachable Agents 

 With a teachable agent (TA), students learn by 
teaching a computer character. The students cre-
ate the concept map that is the character’s “brain,” 

    1    Cochrane Reviews are systematic summaries of evidence 
of the effects of healthcare interventions intended to help 
people make practical decisions about therapy choices.  
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and they receive feedback based on how well 
their computerized pupil can answer questions. 

 Figure  31.5a  shows the main teaching inter-
face. Students teach their agent by adding nodes 
and links using the “Teach” buttons. When stu-
dents add a link, the palette in Fig.  31.5b  appears. 
It requires students to name the link and specify 
the type of relationship the link represents, which 
can be “causal,” “type-of,” or “descriptive.” If 
students choose a “causal” link, they must further 
specify whether an increase to the  fi rst node 
causes an increase or decrease to the second node 
(e.g., land fi lls increase methane).  

 To provide feedback and enhance the teaching 
metaphor, TA comes with a qualitative reasoning 
engine. The engine uses path traversal algorithms 
to reason through causal and hierarchical chains 
in the concept map (Biswas, Schwartz, Leelawong, 
Vye, & TAG-V,  2005  ) . Figure  31.5c  shows the 
palette that students can use to ask their agent a 
question. In this example, the student has asked 
the agent, “If ‘methane’ increases, what happens 
to ‘heat radiation’?”. Figure  31.5a  shows how the 

agent highlighted successive nodes and links in 
the concept map to illuminate the chain of infer-
ence it used to answer the question. The agent 
also described the chain of inference in the lower 
text panel of Fig.  31.5a . In this manner, students 
can trace their agent’s thinking, both as a model 
of causal reasoning and also as a way to see if the 
agent has learned what they think they taught it. 

 A second source of feedback compares an 
agent’s answers against a hidden expert map 
entered by the teacher or curriculum developer. 
Students can submit their agent for testing by 
clicking on a “Quiz” button, and the students 
receive feedback on how their agent did. If the 
instructor desires, the feedback can further 
include tips on doing better, for example, “A link 
or more is missing from your map. The Resources 
is a good place for more information.” Because 
TA is a server-side technology, a teacher can also 
project all the maps at the front of the class simul-
taneously and give the agents a simultaneous 
question that anchors classroom discussion and 
formative assessment. 

  Fig. 31.5    The teachable agent interface. ( a ) The student 
has named her agent “Dee,” customized Dee’s look, and 
taught her about global warming. Dee has answered the 
question, “If ‘methane’ increases, what happens to ‘heat 
radiation’?” both graphically and in text. ( b ) The “Teach 

Link” window where the student has taught Dee the causal 
proposition: “insulation” decreases “heat radiation.” 
( c ) The “Ask” window where the student can query Dee to 
test her understanding       
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 Figure  31.6  provides screenshots of an Internet 
homework system called the Triple-A Challenge. 
Students can log on from home or school to teach 
their agents, customize their look, chat with other 
students online, and have their agents participate 
in an online game with other students’ agents. 
During a game, a host asks agents to answer ques-
tions on the material. Students “wager” on their 
agent, before it gives an answer. Further details 
about these features and others may be found in 
Kinnebrew et al.  2013 , Chin et al.  (  2010  ) , and at 
  http://workingexamples.org/frontend/project/18    , 
which includes a video tutorial and guest login. 
The teachable agents software, in varying forms, 
has been shown to motivate students to persevere 
after failure, increase student effort toward learn-
ing including reading more to learn, provide 
added value without adversely affecting the basic 
value of regular curriculum, increase students’ 
causal understanding and reasoning, and better 
prepare students to transfer so they can better 
learn new science content even after the software 
has been removed (see Chase, Chin, Oppezzo, & 
Schwartz,  2009  and Chin et al.,  2010 , which also 
include further evidence on the active ingredients 
of the software).   

   From Pre-intention to Intention 

 To move people into the intend stage, behavior 
change interventions try to convince people that 
it is worth adopting the goal of achieving a cer-

tain outcome. The assumption is that understand-
ing and intending a change is necessary, if not 
suf fi cient for behavior change. Therefore, 
researchers examine whether behavior change 
programs at least achieve the proximal goal of 
increasing intention (e.g., after an evening of 
instruction), if not the distal goal of actual change 
(e.g., when people go home). In general, the tran-
sition depends on developing (a) goal knowledge 
and (b) goal adoption. For example, one study 
employed ten 75-min sessions on safe sex (Gong 
et al.,  2009  ) . By using a set of questionnaires, the 
researchers found that the instruction (a) increased 
students’ knowledge of HIV/AIDS and their 
knowledge of condom effectiveness. The instruc-
tion also (b) lowered their perceived costs to 
remaining abstinent and increased condom use 
intention, thus demonstrating successful pre-
intend to intend transition. (Whether the students 
actually changed their behavior involves the 
implement stage not the intend stage.) 

 If we view metacognitive strategies as a 
behavioral goal to adopt, Pintrich  (  1999  )  sum-
marizes the high-level issue, “The use of vari-
ous cognitive and self-regulatory strategies 
involves a level of engagement that is often 
more demanding in terms of time and effort for 
students than their normal level of engagement. 
In order for them to invest the extra time and 
effort in self-regulated learning, they must be 
motivated to use these various strategies” (p. 
467). The goal of instruction that targets the 
transition from pre-intend to intend is to provide 

  Fig. 31.6    Larger environment for TA.    ( a ) Students can chat and have their agents compete in an online game show for 
homework. ( b ) Lobby: student portal to mapping, agent customization, chat, and game show       
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this extra motivation by clarifying the intended 
goal and its effects. 

 The challenge then is to convince students of 
the merit of metacognitive goals, or at least pro-
vide a separate goal that will simultaneously 
reveal the merit of metacognition during the pur-
suit of the primary goal. The TA software does 
the latter. The TA software provides students with 
an understandable and readily adopted goal, 
namely, to teach a virtual agent. This moves them 
from the pre-intend to intend stage when working 
with the agent. For example, we have found a 
protégé effect, where students adopt the goal of 
reading on behalf of their agent more than when 
learning for themselves (Chase et al.,  2009  ) . We 
say more about this in the next section. 

 However, one of the limitations of the TA soft-
ware is there are some possible goal misalign-
ments that stem from the fact that the goal is to 
help the agent learn rather than help oneself learn. 
While this has worked to improve student learn-
ing as a side effect of teaching the agent, it also 
runs into some problems. For example, the out-
come goal associated with the narrative of teach-
ing the agent is to help the agent pass a test or do 
well in a quiz show. Health behavior change the-
ories call this a “stealth intervention,” where the 
outcome goal may not be ideal, but the path to get 
there reinforces the ideal behavior. In the TA sys-
tem, the students’ goal is for their agents to give 
correct answers rather than develop their own 
understanding. As an analogy, it is like having the 
goal to date somebody, which leads one to lose 
weight. But if it is possible to date the person 
without losing weight, then the adoption of the 
weight-loss goal disappears. In the TA software, 
this effect of this goal misalignment shows up in 
the form of shortcut links. 

 Consider an agent that has been taught about 
global warming, and the agent receives the ques-
tion of how cars affect global warming. The cor-
rect answer is that an increase in cars causes an 
increase in global warming. If children see their 
agent give the wrong answer, a simple  fi x is to 
insert a direct link between cars and global warm-
ing. This is a shortcut link, because it skips 
important steps in the causal chain, for example, 
that cars produce carbon dioxide, which is a 

greenhouse gas, and greenhouse gasses are a type 
of insulation. Ideally, students would try to under-
stand why cars increase global warming, but 
many students do not, because their agent can 
still answer some questions correctly with the 
shortcut link. 

 We have tried a number of ways to overcome 
this problem. We have included feedback mecha-
nisms that indicate which questions the agent 
gets right for the wrong reasons (by using a short-
cut link). We have also included feedback indi-
cating how many steps should be in the causal 
chain for a given question. And we have also 
designed the game show and quizzes so they help 
students establish the intermediate links (by ask-
ing about them directly), before asking longer-
chain questions that tempt students into 
introducing shortcut links. But, these  fi xes have 
not worked extremely well, in part, because many 
students simply maintain the more obvious 
goal—make the agent give the right answer. 
Moreover, once students have introduced multi-
ple errors into their agent’s brain, it becomes 
dif fi cult to track them down, so students simply 
add in more and more shortcut links to get 
answers right rather than debug their agent. 

 One behavior change solution would be to 
instill disincentives. Students, for example, might 
lose points every time there is a shortcut link. 
However, even if students’ started to avoid short-
cut links, they would only develop deeper under-
standing of science content as a side effect, rather 
than an adopted goal of learning for themselves. 

 One might suggest changing the narrative of 
TA so it targets goals of understanding rather than 
agent performance goals. However, younger stu-
dents may not know what it means to adopt a 
learning goal of understanding. For example, they 
may not know how to recognize consequences of 
understanding besides successful performance. In 
this case, performance rather than understanding 
will remain the primary goal. Moreover, younger 
students may not know what subgoals to adopt to 
achieve understanding. In this case, it takes a 
heavier hand than assuming that students will 
adopt the appropriate goals on their own. 

 Kinnebrew et al.  2013  have used shortcut 
links as an opportunity to directly teach SRL 
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process goals to students. Sometimes a  fl aw in an 
instructional design can be a strength for teach-
ing metacognition. For example, when the soft-
ware detects a student making shortcut links, a 
mentor agent suggests the student should read 
more about the scienti fi c concepts in a related 
resource. Conceivably, the software could be fur-
ther modi fi ed to help students understand that 
the proper set of concepts (nodes) with just the 
right set of associations among them (links) is a 
model of understanding that they can take as an 
explicit goal for themselves rather than just 
focusing on performance. 

 To further enhance the effectiveness of provid-
ing students with metacognitive tips, the behavior 
change literature has some suggestions. The the-
ory of planned behavior (Ajzen,  1991  )  proposes 
educating people about the costs and bene fi ts of 
the behavior, as well as strengthening people’s 
perception of the causal link between the behav-
ior and the outcome expectancies. The TA system 
should provide children with simple-to-interpret 
evidence that helps them make the connection 
between achievable behaviors (reading a resource) 
and desirable goals (agent performance). For 
example, the system might include markers of 
incremental progress that show how adopting 
SRL process goals improves the larger outcome 
goal of their agent succeeding. For example, there 
could be “points” for process goal adoption, as 
well as points for outcomes, and the relation 
between the two could be made clear over time. 
Figuring out how to do this without undermining 
the fun aspects of the environment is nontrivial 
but worthwhile. Also, the system should show the 
disconnection between maladaptive behaviors 
(shortcut links) and outcome goals. For example, 
it should be possible to set up the quiz and game 
show so that getting the right answer by follow-
ing a shortcut links makes the agents lose even 
more points than just giving the wrong answer.  

   From Intention to Implementation 

 To turn good intentions into action, people need 
to recognize situations where those intentions are 
relevant. For example, people need to learn to 

recognize situations that are likely to cause them 
to smoke. Implementation intentions are detailed 
“if-then” plans that specify the when, where, and 
how of goal implementation (Gollwitzer & 
Sheeran,  2006  ) . For example, “if situation Y is 
encountered, then I will initiate my goal behavior 
‘x.’” Encouraging explicit development of imple-
mentation intentions enhances rates of goal 
attainment compared to just forming a goal inten-
tion. The performance enhancement occurs even 
when the participants are already highly moti-
vated (Sheeran & Orbell,  2000  )  and when their 
self-control has been diminished by ego-deplet-
ing tasks (Webb & Sheeran,  2003  ) . The effective-
ness of implementation intentions is dissociable 
from self-ef fi cacy changes (Milne, Orbell, & 
Sheeran,  2002  ) . The bene fi t of implementation 
intentions is building a cognitive association 
between conditions and actions. 

 With respect to SRL, the move from intend to 
implement is not about helping students develop 
appropriate outcome and process goals for learn-
ing. This occurs in the pre-intend to intend stage. 
Instead, this transition focuses on getting students 
to recognize when it is useful to pursue those 
goals. Students often know the appropriate strate-
gies, but they simply do not take action on them. 
They may not recognize their applicability, or 
students may not think they are worth the effort. 
In SRL, the if-then rules can be quite subtle, 
because they also include some estimate of effort 
and value. Students may know a particular strat-
egy, and they may even know that it is applicable, 
but the cost of the strategy may not be worth the 
perceived value of the outcome. For example, 
most adults know that making a list simpli fi es 
shopping and reduces errors, but for many adults, 
it is simply not worth the effort to make a shop-
ping list, because they can “get by” following a 
suboptimal process. 

 Appropriate experiences can help people reca-
librate their estimates of effort to value for a par-
ticular SRL implementation. For example, Martin 
and Schwartz  (  2009  )  compared graduate and 
undergraduate students completing a diagnosis 
task. Both groups knew how to organize the rel-
evant information, but only the graduate students 
chose to do so. The undergraduates were content 
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to “get by” on this task, rather than spend the 
extra time. They did not recognize that the diag-
nosis task could bene fi t from up-front organiza-
tion. In contrast, the graduate students, who had 
many experiences with the value of pre- organizing 
data for analysis and decision making, had 
learned that investing a little time up-front can 
yield great bene fi ts later. 

 The TA software does well in moving students 
from intention to action. The teaching narrative 
triggers SRL behaviors to the extent the children 
know them. A pair of studies by Chase and col-
leagues  (  2009  )  demonstrated a protégé effect. In 
both studies, students interacted with identical 
software. The difference was whether they 
thought the graphical character on the screen was 
their virtual pupil ( teach  condition), or whether 
the character represented them ( self  condition). 
(Students in the self condition just thought they 
were using a new kind of software program 
intended to help them learn.) In a classroom 
study, 80 eighth graders learned the biological 
mechanisms of fever. A posttest indicated that 
students in the teach condition learned more, and 
the effect was especially pronounced for the 
hardest questions and the lower-achieving stu-
dents. Students in the teach condition spent nearly 
twice as much time reading the relevant resources, 
and they spent more time revising their map 
instead of engaging in off-task activities like 
chatting online. 

 The second study took the same format, except 
it was conducted in a think-aloud protocol with 
 fi fth graders. It helped to reveal how the teaching 
narrative triggered productive behaviors. One 
reason is that it created an “ego-protective buf-
fer.” When a student’s agent failed on a question, 
the students were very attentive to the failure and 
they showed high affect. For example, “Poor 
Diokki, I’m sorry” (Diokki is the name the stu-
dent gave to her agent). Or “Whoa, I need to teach 
better.” In contrast, in the self condition, the chil-
dren tended to bury negative outcomes by not 
acknowledging them and showing minimal affect. 
The TA provided an ego-protective buffer so stu-
dents could acknowledge their agents’ failures 
without feeling themselves stupid. A second rea-
son is that the TA provides clear ways to improve 

their TA through visual feedback and modifying 
the links. Children in the teach condition were 
much more likely to revise their agent upon the 
feedback from the system. The self students were 
less inclined to revise when the software indi-
cated an error in the map. One hypothesis is that 
the self students did not have an obvious way to 
improve their own understanding. To their under-
standing,  fi xing the map was not equivalent to 
 fi xing their own thoughts. In contrast, the teach 
students could readily appreciate that  fi xing and 
testing the map was a direct path to improving 
their TA’s performance, which had the side effect 
of helping them learn. 

 Given that the students already had some SRL 
knowledge for how to improve their understand-
ing (read more, pay attention to mistakes, revise), 
the effect of the teaching narrative was to moti-
vate the use of these goals, moving them into the 
implementation phase. So, in this regard the TA 
was successful in supporting implementation and 
improving learning. At the same time, one won-
ders whether students who use TA develop 
explicit implementation intentions that work 
beyond the space of the TA metaphor. The ques-
tion of transfer is the topic of the next section.  

   From Implementation to Inhabitation 

 Implementing a behavior change is considered 
different from inhabiting a changed behavior. For 
example, behaviors involved in quitting smoking 
are different from those involved in being an ex-
smoker. In SRL, the parallel would be developing 
SRL behaviors with scaffolds and then maintain-
ing those behaviors once the scaffolds have faded. 
A difference between behavior change and SRL, 
however, is that recidivism is a major concern in 
behavior change. Regardless of whether an indi-
vidual is stopping or starting a behavior, there is a 
high risk of relapse when put in novel or high-
stress situations (Marlatt & Gordon,  1985  ) . SRL 
theories do not normally view a failure to use SRL 
as regressing to bad habits, though it could be 
conceptualized that way. For example, students 
may slip back to the familiar routine of using  fl ash 
cards to memorize, despite having been taught 
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and experienced that making elaborative associa-
tions is a better route to improved memory. 

 Both behavior change and SRL theories need 
to confront the risk of regressing to a prior stage. 
This risk exists, in part, because the goal of 
behavior and SRL change is to produce adaptable 
habits rather than rigid behaviors. Adaptability 
makes it possible for people to  fl ex with changing 
circumstances rather than being rigid and brittle, 
for example, when they go to a foreign country 
without their usual healthy foods. The adaptive 
aspect is also important for metacognition, 
because metacognition can sometimes interfere 
with performance and learning, and it should be 
avoided in those cases. For example, in sports 
people can overthink and overregulate procedur-
alized motor skills, such as shooting a free throw 
in a basketball game, which interferes with well-
practiced motor patterns (i.e., choking, Beilock 
& Carr,  2001  ) . In learning, it is sometimes better 
to allow implicit processes to guide induction 
rather than explicitly generating and checking 
hypotheses (Reber,  1989  ) , a standard metacogni-
tive tenet. 

 The challenge for the inhabit stage is that 
 fl exibility also increases the possibility of relapse. 
Therefore, behavior change interventions often 
follow people past implementation into the 
inhabit stage. For example, Baum, Clark, and 
Sandler  (  1991  )  examined a 12-week treatment 
for weight loss that included follow-up contacts 
that emphasized relapse prevention. This pro-
gram led to a greater degree of maintenance or 
continued weight loss compared to control sub-
jects who did not receive follow-up. 

 With TA, we have some evidence that the 
bene fi ts of TA transfer beyond the time students 
spend in the environment—students spontane-
ously adapt their thinking when learning new con-
tent. We review this evidence, before returning to 
the question of what else we might do to ensure 
that these gains would not be lost in the future. 

 With technology-based instruction, there is 
always a concern that students will become too 
reliant on technological scaffolds. For example, 
there were many debates on whether calculators 
in school would hinder students’ abilities to do 
math on their own. If calculators did hinder math 

performance when the calculators were not avail-
able, then the technology was not supporting 
adaptive habits of mind. Therefore, we wanted to 
know if this was the case with TA. In a pair of 
studies, Chin and colleagues  (  2010  )  examined 
the effects of TA on learning causal relations 
among elementary school students. The  fi rst 
study demonstrated that TA led to a superior 
causal understanding of global warming com-
pared to using a commercial concept mapping 
tool (Inspiration). In the second study, six classes 
of  fi fth graders and their teachers participated in 
a several-month implementation. The school dis-
trict had adopted the FOSS science kit as their 
primary method of instruction (Full Option 
Science System). In the  fi rst half of the study, 
three classes used the Living Systems science kit 
as usual. The other three classes used the science 
kit plus the TA software. The total time available 
for instruction was the same for both conditions, 
and the teachers using the TA software were asked 
to use it once a week for the 2-month unit. At the 
end of the unit, students took the test that came 
with the science kit. The students from both con-
ditions did the same on most questions. Thus, the 
technology did not detract from the basic value of 
the curriculum. Notably, the TA condition did 
signi fi cantly better on the causal questions that 
came with curricular test, so it also provided 
added value. We also evaluated student learning 
with researcher-designed measures of casual 
understanding. The TA condition did better on 
these as well as shown on the left of Fig.  31.7 .  

 Relevant to the question of transfer and main-
tenance of SRL, the study included a second 
phase. After completing the  fi rst kit on Living 
Systems (e.g., circulation in animals and plants), 
the classes crossed over for the very different unit 
on Water Planet (e.g., water cycle). The classes 
that had been using the TA returned to using just 
the kits. And the classes that had only been using 
the kits added in the TA software. Figure  31.7  
shows the results from before and after the cross-
over. As may be seen, the classes that had not 
initially used TA improved in their causal under-
standing once they did use TA. This replicates the 
prior  fi ndings that TA supports a causal under-
standing of science content. More importantly, 
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the classes that stopped using the TA software for 
the second kit did not drop in performance on the 
causal questions about the Water Planet unit. 
These classes did not receive any special instruc-
tion on making causal models of the content, and 
the teachers did not bring it up. 

 It appears that using the TA earlier had pre-
pared the students to transfer for future learning 
(Bransford & Schwartz,  1999  ) . Their experiences 
with the TA had taught them to connect up sci-
ence ideas with causal relations (something not 
covered in the kits for this age group), and they 
spontaneously continued to do so for new science 
content without further scaffolding. In this sense, 
the students had learned to inhabit causal ways of 
understanding. So, rather than the students 
becoming dependent on the learning technology, 
the learning technology better prepared students 
to learn once it was removed. 

 What transferred that led to the improved 
causal learning even after TA was removed? Our 
current interpretation is that the students had 
learned to think about causal relations. They 
learned a powerful and natural schema for inter-
preting and organizing information in science 
class. We doubt that they had learned to think 

about their thinking in a general way, or that they 
had changes to their self-ef fi cacy or motivational 
states once they left the TA environment. In other 
work, Kinnebrew et al.  2013  have developed 
ways to support transfer of metacognitive strate-
gies within the environment. For example, a men-
tor agent provides tips to the students for how to 
study to be a more effective teacher. They have 
found that when the mentor agent is turned off in 
the software, the students persist in the strategies 
the mentor agent suggested. However, this fea-
ture was not “turned on” in the FOSS kit study, 
and we were looking at transfer beyond the 
software. 

 Considering the wisdom of behavior change 
during the inhabit stage, the TA environment does 
very little to support transfer or maintenance of 
behavior change beyond implementation within 
the TA environment. And the environment beyond 
TA rarely includes explicit supports to prevent 
“relapse.” What changes might help improve the 
transition of SRL strategies to “everyday” life? 

 One obvious omission in the preceding study 
is that the teachers did not check in with the stu-
dents to help them maintain the SRL behaviors 
they had done with TA, such as checking answers, 
seeking feedback, and revising understanding. 
Given the demands of the experimental design, 
we could not encourage this type of explicit main-
tenance. Nevertheless, it would be easy to do. 

 A second addition would help students develop 
implementation intentions that reach beyond the 
TA environment. For example, students might be 
taught that the SRL processes they use in TA are 
transferable and explicit goals. This would 
involve helping them understand which of their 
behaviors were and were not responsible for the 
gains in their agent, as mentioned earlier. Then, 
students could be helped to develop “if-then” 
associations to other formal or informal learning 
settings. The “if” conditions could refer to exter-
nal conditions (e.g., “when learning science”), or 
the “if” triggers could refer to mental conditions 
(e.g., “when unsure of a causal chain”). The 
“then” side of the associations might include 
“draw and trace causal maps.” Of course, these 
would need to be more precise and would need 
some narrative changes to  fi t within TA. 
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  Fig. 31.7    Test of whether TA prepares students for future 
learning once the technology is no longer there       
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 Simultaneously, it would be useful to develop 
avoidance implementation intentions as well. 
Adding “shortcut” links would be a behavior to 
avoid, but this situation is rather unique to TA. 
Therefore, it would be important to target more 
recurrent conditions that create high risk for 
relapse. For example, in conditions of low moti-
vation and tight deadlines, students may just want 
to get it done and abandon SRL behaviors. One 
might take the approach described in the  fi rst 
study presented in this chapter. Teach children 
general behavior change strategies for maintain-
ing their motivation toward goals they value, and 
then let them practice these goals in the context of 
teaching their agent, which we know they value. 
In this model, TA becomes a chance to practice or 
inhabit SRL goals taught by other means.  

   Conclusion 

 A common mistake many people make is that 
they do not consider behavior change to be an 
instance of learning, but rather see good learning 
outcomes as synonymous with deep understand-
ing. If we remember that learning is adaptation, 
behavior change is a very powerful demonstra-
tion of learning. Approaching metacognition as 
an enduring bene fi cial behavior to instill, rather 
than merely knowledge we teach, allows for new 
ideas of how to approach metacognitive educa-
tion, based in a literature that is not often applied 
to academic learning. We evaluated our own 
technology against the recommendations the 
behavior change research supports and high-
lighted the room for improvement found in our 
educational tool. 

 We found that TA has a goal misalignment for 
developing SRL because the goal of the TA nar-
rative is to have the agent perform well, rather 
than have the students learn for themselves. 
Nevertheless, the goal of teaching does have 
bene fi cial side effects in that students do adopt 
better SRL behaviors and they learn for them-
selves. Thus, one possible move to improve SRL 
with teachable agents is to recon fi gure the soft-
ware so that students have to teach their agent 
SRL strategies and goals. For instance, an agent 

might complain that trying hard is not worth it, 
and the agent could introduce its own shortcut 
links. Students would have to teach their agent 
why it is important to try hard and how to go 
about it. This should help students develop more 
SRL knowledge and the conditions when it is 
most important. Perhaps, students would transfer 
these types of knowledge and strategies beyond 
the technology, much like they transferred causal 
reasoning schemas based on their interactions 
with the agents. This approach would neatly  fi t 
the premise behind the teachable agents, which is 
that learning by teaching is an effective and 
engaging approach to learning—in this case, 
learning behavior change and SRL strategies. 

 We suspect that many of the improvements we 
considered could be derived from pockets of the 
SRL literature. Therefore, one might grumble 
that behavior change has nothing new to offer to 
SRL. A better response is to recognize that these 
two  fi elds of research overlap a great deal, despite 
differences in the speci fi c problems they try to 
solve. Sharing research and ideas across the 
divide could be highly informative.      
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  Abstract 

 At the Centre for the Study of Learning and Performance we have devel-
oped, tested, and disseminated to schools without charge, an Electronic 
Portfolio Encouraging Active and Re fl ective Learning (ePEARL). 
ePEARL is designed to be faithful to predominant models of self-regula-
tion, scaffolding and supporting learners and their educators from grade 
one (level one) through grade twelve and beyond (level four). ePEARL 
encourages learners to engage in the cyclical phases and sub-phases of 
forethought, performance, and self-re fl ection. In a series of studies, includ-
ing two longitudinal quasi-experiments, we have explored the positive 
impacts of ePEARL on the enhancement of students’ self-regulated learn-
ing skills, their literacy skills and changes in teaching, while simultane-
ously researching classroom implementation  fi delity and teacher 
professional development. This chapter brie fl y explains the development 
of ePEARL, our research program, and issues in the scalability and sus-
tainability of knowledge tools.     
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 An electronic portfolio (EP) is a digital container 
capable of storing and organizing visual and audi-
tory content, including text, images, video, and 
sound. EPs may also be learning tools when they 
are designed to support a variety of learning pro-
cesses and assessment purposes (Abrami & Barrett, 
 2005  ) . Since they are web-based, they provide 
remote access that encourages anywhere, anytime 
learning and make it easier for peers, parents, and 
educators to provide input and feedback. EPs have 
three broad purposes: process, showcase, and 
assessment. They can be multipurposed, for exam-
ple, supporting students’ development of skills and 
their achievement. Our emphasis is on EPs used as 
 process portfolios  to support how users learn 
through embedded structures and strategies. A 
process EP is a purposeful collection of student 
work that tells the story of a student’s effort, prog-
ress, and/or achievement in one or more subject 
areas. Process portfolios are personal learning 
management tools meant to encourage academic 
improvement, personal growth and development, 
and a commitment to lifelong learning. 

 Process EPs are gaining in popularity for mul-
tiple reasons. They provide multimedia display 
and assessment possibilities for school and work 
contexts allowing the use of a variety of means to 
develop, demonstrate, and assess understanding. 
They may also be advantageous for at-risk chil-
dren whose competencies may be better re fl ected 
through more authentic tasks; EPs can serve as a 
form of differentiated instruction. At the same 
time, by engaging learners, their de fi ciencies in 
core competencies may be overcome. EPs are 
superior to print-based portfolios for cataloguing 
and organizing learning materials, and better at 
illustrating the process of learner development. 
Process EPs may scaffold attempts at knowledge 
construction by supporting re fl ection, re fi nement, 
conferencing, and other processes of self-regulation 
that are important skills for lifelong learning 
and learning how to learn. Students who are 
self-regulated are cognitively, motivationally, 
and behaviorally active participants in their 
own learning process (Zimmerman,  1989,   2000  )  
and thus may demonstrate better academic 
 performance (Rogers & Swan,  2004  ) . These are 
the reasons we developed our EP tool, ePEARL. 

   Overview of the SRL Framework 
and the Design of ePEARL    

 The three cyclical phases of self-regulation 
(e.g., Zimmerman,  2000  )  include both meta-
cognitive and motivational components, pro-
viding the foundation for better sustainability 
of learning and skill development. The  fore-

thought phase  includes task analysis (goal set-
ting and strategic planning) and self-motivation 
beliefs (self-ef fi cacy, outcome expectations, 
intrinsic interest/value, and goal orientation). 
Tasks involved in the forethought phase are set-
ting outcome goals, setting process goals, doc-
umenting goal values, planning strategies, and 
setting up a learning log. The next phase, the 
 performance phase , includes self-control (self-
instruction, imagery, attention focusing, and 
task strategies) and self-observation (self-
recording and self-experimentation). Tasks 
involved in the performance phase are creating 
work and entering learning log entries. Finally, 
the  self-re fl ection phase  includes self-judgment 
(self-evaluation and casual attribution) and self-
reaction (self-satisfaction/affect and adaptive-
defensive responses). Tasks involved in the 
self-re fl ection phase are re fl ecting on work, 
re fl ecting on process, and thinking of new goal 
opportunities. ePEARL has been carefully 
designed to support each of these phases in age-
appropriate ways, encouraging students and 
teachers to set goals, produce work, and re fl ect 
upon it with feedback from others. 

 ePEARL was developed at the Centre for the 
Study of Learning and Performance (CSLP) in col-
laboration with our partner LEARN and is pro-
grammed in PHP using a MySQL database. 
ePEARL is a bilingual (English–French), web-
based, student-centered EP software that is designed 
to support the phases of self-regulation. ePEARL 
contains four developmentally appropriate levels 
for use in early elementary (Level 1), late elementary 
(Level 2), and secondary schools (Level 3), as well 
as for teachers and adult learners, especially preser-
vice teachers (Level 4). To view a sample ePEARL 
environment, log on to   http://grover.concordia.ca/
ePEARL/promo/en/index.php    . 

http://grover.concordia.ca/ePEARL/promo/en/index.php
http://grover.concordia.ca/ePEARL/promo/en/index.php
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 ePEARL features include personalizing the 
portfolio; setting general or task-speci fi c goals; 
creating new work via a text editor and/or audio 
recorder or linking to work created elsewhere; 
re fl ecting on work; sharing work; obtaining feed-
back from teachers, peers, and parents; evaluat-
ing personal motivation; editing work and saving 
revisions as a new version; and sending work to a 
presentation portfolio for archiving and export-
ing. ePEARL also contains a rich collection of 
video vignettes to assist students and teachers to 
understand and use both the tool and the self-
regulated learning (SRL) processes it is designed 
to strengthen. ePEARL is intended for use in all 
school subjects; we are currently trialing a ver-
sion for use by the Royal Conservatory of Music, 
called iSCORE, as part of piano studio teaching 
(Upitis, Abrami, Brook, Troop, & Varela,  2010  ) .  

   ePEARL Level 4 Objectives 
and Audience 

 ePEARL Level 4 is a new project undertaken by the 
CSLP in 2009 as a way to support preservice and 
in-service teachers, as well as other postsecondary 
students in becoming self-regulated learners. Rather 
than make super fi cial modi fi cations to the “look-
and-feel” of Level 3, we chose to recreate the envi-
ronment in a way that would tackle the particular 
opportunities and challenges presented by older 
students and the tasks they face. This allowed us to 
investigate the more complex and nuanced aspects 
of Zimmerman’s  (  2000  )  self-regulation model. 

 For example, adult users should be more 
aware than children of the variety of elements 
in fl uencing their learning experience and can 
more easily grasp them once they are made aware 
and are therefore more equipped to correctly 
assess their in fl uence. Furthermore, adult stu-
dents face topics and learning tasks that may 
greatly in fl uence their intrinsic interest and per-
formance (Pintrich,  2003  ) . Tasks may also differ 
at this level; postsecondary students are often 
required to carry out tasks that are more com-
plex,  fl exibly structured, and lengthier than those 
assigned to younger students. Tasks like these 
require  fi ner planning and more precise monitor-

ing, as well as more sophisticated re fl ection and 
adaptive inferences. They also demand that moti-
vation be sustained for a longer period of time, as 
the  fi nal reward of achieving the goal may be 
substantially delayed. A critical aspect of self-
regulation is the cyclical nature of learning and 
improvement, and adult learners should be more 
competent at adjusting their activities based on 
their continual self-monitoring and evaluation. 
These are some of the reasons we incorporated 
visual representations, sidebar design, and drill-
down features into Level 4. 

   Visual Representations 

 Zimmerman  (  2000  )  stresses the importance of 
having an organized hierarchical system of goals 
“…such that process goals operate as proximal 
regulators of more distal outcome goals” (p. 17). 
ePEARL Level 4 supports this idea by allowing 
the breakdown of work into tasks and supporting 
tasks that are linked to each other and to distal 
goals in a hierarchical manner. This system of 
goals is shown as a graphic “map” that presents 
the learner with an overview of the self-planned 
forethought phase. The resulting visual hierarchy 
allows learners both to easily identify where in 
the system of goals s/he is currently working, as 
well as to understand the importance of complet-
ing the proximal goal as a step to achieving the 
 fi nal goal. 

 ePEARL Level 4 also displays certain infor-
mation from individual work as a visual graph to 
provide a novel cross section of learning behav-
iors and to inspire new insight into one’s own 
learning practice; for example, learners use, and 
subsequently rate, strategies during their contin-
ued use of ePEARL. One of the graphs presents 
the strategies based on how successful the learner 
has judged them to be. Another graph presents 
the number of works that the learner has associ-
ated with each distal goal, allowing him/her to 
realize which goals are being neglected. 
Presenting visual representations of accumulated 
data this way will help learners see patterns in 
their behaviors in a timely manner and take steps 
to correct unsuccessful practices.  
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   Sidebar Design 

 In ePEARL Level 4 we have tried to reinforce the 
cyclical nature of learning and improvement, 
especially the need to adjust one’s activity based 
on one’s monitoring and evaluation, through our 
interface design. While the main area of the 
screen is dedicated to working on the current 
task, a right-hand column constantly displays 
pertinent supporting information. Whether 
through textual instructions, pedagogical expla-
nations, or other parts of the work, the sidebar 
promotes consideration of elements that may 
have otherwise been overlooked. 

 In ePEARL Level 4 we encourage simultaneous 
performance, monitoring, and modi fi cation in the 
sidebar, while the main area focuses on the perfor-
mance phase. We know that the temporal proximity 
of feedback makes an observation more effective 
(Zimmerman,  2000  ) , and the sidebar allows learn-
ers to immediately record their impressions with-
out interrupting their progress. In the sidebar, 
learners are constantly encouraged to monitor the 
effectiveness of the plan (through self-reporting, 
checklist completion, and rating scales) and to 
modify those aspects that are not effective (by 
removing unsuccessful strategies and selecting new 
ones if necessary). Viewing different aspects of the 
work simultaneously can help draw learners’ 
attention to links that can inspire novel conclusions 
about their own learning habits.  

   Drill Down 

 As mentioned earlier, tasks at the postsecondary 
level are expected to be more complex and take 
longer to complete. They often include more 
procedures and components to be completed. 
ePEARL Level 4 is a tool that supports learners 
as they go through the process of creating work 
in a self-regulated manner. However, too much 
support delivered in an intrusive way may be dis-
tracting rather than helpful. Forcing learners 
through a lengthy and repetitive procedure does 
not allow for personal choice or a customized 
experience and thus fails to conform to the phi-
losophy of SRL as the self-directive processes of 

a learner-driven practice (Zimmerman,  2008  ) . 
Moreover, forcing learners to complete every 
part of an online interface, without regard for the 
task or the level of support needed by the learner 
and without giving the learner any sense of 
agency or choice, will most likely result in frus-
tration and a loss of motivation (Pintrich,  2003  ) . 

 For these reasons, the interface we developed 
for ePEARL Level 4 allows for  fl exible interaction 
with the tool. It allows learners to focus on the 
aspects in which they feel that they need most 
assistance by choosing to drill down for more 
support at that point in the process. For example, 
the self-re fl ection phase in ePEARL Level 4 is 
comprised of a single general re fl ection question. 
However, there are also additional “focused ques-
tions” that may be accessed if a learner wishes to 
tackle re fl ecting more deeply. The additional 
questions prompt the learner to relate speci fi cally 
to a feature of self-regulation (such as task analysis 
or self-observation) or to examine his/her works 
in ePEARL (such as rating which professional 
skills were reinforced during the task). 

 In this manner, we not only avoid fatigue and 
avoidance of the tool but also support learners’ 
evolving understanding and use of both the tool 
and SRL practice. While learners are familiariz-
ing themselves with the process, a teacher might 
encourage students to focus on one phase and 
complete all tasks associated with that phase, 
completing only the basic questions for others. 
Learners might use only the general re fl ection 
question to initiate re fl ective thinking at the 
beginning of the year and eventually feel com-
fortable and secure enough to answer one or more 
of the focused questions.  

   Challenges 

 The main instructional design challenge is the bal-
ance of addressing the SRL components without cre-
ating frustration and apathy in the users, which would 
invariably lead to abandoning ePEARL altogether. 
We have put tremendous effort in designing a tool 
that will successfully support learners in self-regu-
lating their learning. However, because the social 
and environmental in fl uences are so great, there 
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must be a simultaneous effort to support teachers 
and other stakeholders in creating the necessary 
environment and attitude that foster SRL. 
“Modeling and instruction serve as a primary vehi-
cle through which parents, teachers, and commu-
nities socially convey self-regulatory skills, such 
as persistence, self-praise, and adaptive self-
reactions…” (Zimmerman,  2000 , pp. 25–26). 
Working collaboratively does not only mean shar-
ing drafts of work and providing constructive com-
ments on the work of peers but also mean creating 
a community that values, models, and rewards 
self-regulatory practices. Predetermined prompts 
from a computer, for example, may not effectively 
implement the motivational aspect of self-regulation. 
Regardless, one can solicit self-reported data about 
the motivational state of the learner and support 
the teacher in properly addressing the motivational 
issues. For this reason, work with teachers is essen-
tial, and, in addition to our work on the EP, much 
of our efforts are directed towards supporting 
teachers in fostering self-regulation in their class-
rooms. The online support the learner gains 
through ePEARL is only part of the self-regulation 
process. The social aspect of the model must also 
be experienced in the classroom or community, 
where learning is truly valued, errors are honestly 
examined, and progress is understood as personal 
success. We return to the larger challenges of the 
educational uses of ePEARL later in this chapter.   

   Effectiveness of ePEARL 

 Until recently, evidence on the impacts of EPs on 
educational outcomes was sparse (Barrett,  2007 ; 
Carney,  2005 ; Zeichner & Wray,  2001  ) . In sepa-
rate quasi-experiments we have established the 
positive impact of ePEARL on students’ SRL 
and literacy skills using a standardized measure 
of achievement (e.g., Canadian Achievement 
Test, 4th edition). 

 The  fi rst yearlong nonequivalent pretest–post-
test quasi-experiment conducted by Meyer, 
Abrami, Wade, Aslan, and Deault  (  2010  )  provides 
exciting evidence that EPs, speci fi cally ePEARL, 
can be used in ways to promote signi fi cant gains 
in children’s literacy skills. Participants in this 

study were from elementary schools (grades 4–6) 
in Quebec, Manitoba, and Alberta. The con-
structed response subtest of the Canadian 
Achievement Test (CAT-4) was administered 
along with a self-regulation questionnaire in both 
the fall and the spring. The student questionnaire 
data showed that students who used ePEARL 
reported higher levels of some SRL processes, 
including setting process goals, listing strategies, 
using comments from their teacher to improve, 
and understanding how they were being evaluated, 
than students who did not use ePEARL. Analyses 
of the CAT-4 data also showed that students using 
ePEARL made signi fi cant gains in writing skills. 
Students showed signi fi cant improvements in con-
tent management, which refers to the word choice, 
sentence structure, and conventions of print. 

 The 2008–2009 study (Abrami, Venkatesh, 
Meyer, & Wade,  in press  )  included nine experi-
mental classrooms, coded as medium or high 
implementation ( n  = 154 students), and 12 control 
classrooms ( n  = 165 students) in a second, year-
long nonequivalent pretest–posttest control group 
quasi-experiment. Students using ePEARL made 
signi fi cantly greater gains compared to controls 
in writing skills as assessed by the constructed 
response subtest of the CAT-4. Multivariate anal-
yses also revealed that, over time, students who 
used ePEARL reported higher levels of SRL pro-
cesses than those in the control group. 

 We further investigated how student enthusi-
asm for using ePEARL affected student perfor-
mance as well as self-regulatory processes. 
Multivariate analyses of SRL and CAT-4 achieve-
ment scores were signi fi cantly different among 
high- and low-enthusiasm students suggesting 
that student enthusiasm may explain whether and 
to what extent using EPs in classrooms will have 
a positive impact. 

 This  fi nding reinforces the instructional design 
concerns expressed about ePEARL Level 4 and is 
a topic we will return to later in this chapter. 
Not all students accept the use of EPs similarly, 
and this has a noticeable impact on classroom 
applications of EPs and other knowledge tools. As 
discussed later, the acceptance of EPs by teachers, 
and the pedagogical approach that underlies them, 
provides a similar set of challenges.  



508 P.C. Abrami et al.

   ePEARL Scoring Rubrics and Authentic 
Assessment 

 The use of EPs provides opportunities for learners 
to present multimedia learning artifacts related to 
both learning processes as well as their  fi nal prod-
ucts. EPs, therefore, present unique opportunities 
for authentic assessment of learning (Abrami & 
Barrett,  2005  ) . Consequently, as part of the research 
and development of ePEARL, we attempted to 
score and analyze the content of students’ EPs. 

 We developed scoring rubrics linked to out-
comes for both SRL and literacy. We assigned a 
holistic score for both literacy and SRL, and we 
assigned an analytical score for each based on 
several measurable subskills. Our rubrics can be 
used to measure the processes and levels of 
engagement demonstrated within the portfolio 
when applied to the entire portfolio contents, or 
to measure the achievement and/or growth of stu-
dents when applied to artifacts they chose. 

   Summary of Rubric Design 
and Links to Other Measures 

 Herman, Gearhart, and Baker  (  1993  )  and 
Herrington, Reeves, Oliver, and Woo  (  2004  )  
argued that portfolios allow more authentic assess-
ment than traditional paper-and-pen tests, which 
may not re fl ect the student’s real abilities. Others 
(e.g., Frey & Schmitt,  2007 ; Stiggins,  2002  )  
argued that portfolios allow learners to substanti-
ate their abilities by selecting evidence, re fl ecting 
real-life practices. EPs additionally allow learners 
to represent their understandings in multiple ways, 
including through audio recordings, photographs, 
video, and drawings,  fi tting with evolving concep-
tions of literacy (Carbonara,  2005  ) . 

 Numerous rubrics have been developed but 
inter-rater and validity are rarely explored. We 
explored whether we can develop assessment 
tools which provide consistent and valid results, 
both to help further triangulate our  fi ndings con-
cerning whether ePEARL helps improve stu-
dents’ self-regulatory and literacy skills and also 
to explore whether EPs could be used as a form 

of alternative standardized assessment. We exam-
ined the inter-rater reliability of our tools and 
their validity, looking at whether our assessment 
measures correlated with other measures of liter-
acy and self-regulatory skills.  

   Design of Assessment Approaches 

 The literacy rubric design and criteria were inspired 
by the literacy competencies from the Quebec 
Education Program (Gouvernement du Québec, 
 2001  )  and the criteria used to assess the constructed 
response subtest of the CAT-4. The SRL compo-
nent was largely based on Zimmermann’s  (  2000  )  
model of SRL and others that emerged during 
design. After several revisions, two complemen-
tary approaches were developed, applying  fi rst a 
holistic rubric and then an analytical rubric to 
assess SRL and literacy. See Table  32.1 .  

 First, the coder assigns a mark ranging from 1 
(“experimenting”) to 5 (“extending”), following 
a holistic rubric that describes each level. 
Table  32.2  shows the holistic rubric to assess lit-
eracy. It has  fi ve levels.  

 Then, the coder applies an analytical rubric 
measuring subskills. Table  32.3  shows the 
seven subskills measured by the analytical 
rubric for writing and the descriptors for Level 
5 (“extending”).  

   Table 32.1    Assessment approaches to assess literacy 
and SRL through EPs   

 Assessment approach  Criteria 

 Analytic rubric assessing 
literacy 

 Ideas and details 

 Sentences and organization 

 Voice 

 Conventions 

 Purpose 

 Creativity 

 Perceptions 

 Holistic rubric assessing 
literacy 

 Draw on criteria above; 
comments 

 Analytic rubric assessing 
SRL 

 Goals 

 Strategies 

 Re fl ection 

 Holistic rubric assessing 
SRL 

 Draw on criteria above; 
comments 
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   Table 32.2       Holistic rubric for assessing writing in EPs   

 Writing: holistic judgment 

 Evaluate the writing skills students demonstrate through the pieces in their portfolio using these criteria: ideas and 
details, voice, organization and sentences, conventions, purpose and meaning, creativity and imagination, and 
perceptions 

 Please circle a holistic mark of 1, 2, 3, 4, or 5, evaluating the category as a whole where: 

 Category  Description 

 5 is extending     Writing supports ideas that show evidence of thoughtful understanding of producing, 
extending, and enhancing meaning and information with thorough explanations, 
details, and re fl ection 

 4 is achieving  Writing and ideas are focused understandings that explain and demonstrate meaning 
and information achieving some good explanations, details, and re fl ection 

 3 is developing  Writing and ideas are developing and in progress with meanings and information that is 
in the process of gaining a more complete understanding and accurate method of self-
expression 

 2 is beginning  Writing and ideas demonstrate some vague meanings and information that shows a 
super fi cial or vague understanding of information 

 1 is experimenting  Writing is inconsistent, incomplete, or very confused demonstrating the need for much 
more attention to details, explanations, ideas, and accuracy 

 Comments: 

   Table 32.3    Analytical rubric for writing in the EPs   

 Writing  Indicators for extending 5 

 Ideas and details  The details show evidence of careful attention with elements selected to enhance 
the communication of central ideas that thoughtfully and thoroughly explore 
meaning and content by producing and extending the information to the reader 

 Voice  The writer’s voice is consistent, compelling, and engaging while respecting the 
intended purpose and audience 

 Organization and sentences  Written messages and ideas are thoroughly and thoughtfully crafted with close 
attention to the intended purpose and audience illustrated through very well-written 
sentences and organized, effective paragraphing that conveys a very clear message 
to the reader 

 Conventions  Capitalization, punctuation, and spelling are thorough with excellent attention and 
adherence to editing and revision that enhances and extends communication with 
the reader 

 Purpose and meaning  Use of language, dialogue, and descriptive word choice is very appropriate for the 
intended purpose and/or audience with careful attention paid to crafting writing 
and an understanding of purpose and meaning is clearly conveyed to the reader 

 Creativity and imagination  Explanations and interpretations demonstrate original ideas with value that 
enhances and extends the writer’s imaginative ideas painting a clear image for the 
reader 

 Perceptions  Writing shows a carefully crafted, thoughtful, and meaningful point of view that 
clearly and consistently expresses personal understanding, thoughts, feelings, and 
perceptions of the task, subject content, and world beyond 

 Comments: total score:/35 

 Although only portfolios from classrooms 
labeled medium or high from the 2007–2008 
study were included in the analyses, we found 
that effective integration was in its infancy—
some teachers developed task goals and put time 
aside for re fl ection; others used the portfolios 

mostly as a place to store important activities 
(Bures, Abrami, & Bentley,  2007  ) . In applying 
the tools this turned out to be problematic, and 
our  fi nal analyses drew only on the subset of 
three classes where we found both SRL and lit-
eracy to be assessable ( n  = 66). During the second 
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year of research, implementation was more suc-
cessful, and we included all experimental classes 
in the analysis excluding some individual portfo-
lios, leaving  n  = 188 portfolios in the analyses. 
The improved implementation was evident in the 
portfolios, which demonstrated much better inte-
gration of SRL and literacy. 

 Even in coding amongst these subsets, chal-
lenges existed. In particular, students posted a 
range of quality work, from very polished pieces 
to very “rough” work. How does one assign a 
consistent mark? Does one weigh the most 
thoughtful piece or the most edited? The arrange-
ment of work and the order in which the artifacts 
were viewed by coders caused inherent issues in 
the scoring of the collection of work. In addition, 
some portfolio content was judged differently by 
assessors with different teaching perspectives. 
For example, coders trained as English teachers 
tended to be harsher with criteria, such as con-
ventions, sentences, and organization. Another 
challenge was dealing with speci fi c cases that 
were hard to agree on. For example, where one 
coder valued a creative writer and assigned a 5, 
another valued organization more and assigned a 
4. For this reason, discussion of discrepant cases 
seems necessary and productive (Bures, Barclay, 
Abrami, Meyer, & Venkatesh,  2012  ) .  

   Inter-rater Reliability of EP Assessment 

 We found a range of Cronbach alpha scores in the 
high 1970s for literacy and SRL in both years, 
with some improvement in the second year. In the 
 fi rst year the holistic assessment of literacy was 
the weakest, whereas the analytic rubric assess-
ment of literacy was the strongest. In the second 
year, both the holistic and analytic approaches to 
literacy were the strongest.  

   Validity of EP Assessment of Literacy 

 How did our assessment tools relate to other 
measures of literacy? We double-coded the 
CAT-4s of our study’s participants. Following 
the same assessment approaches as we do for the 

EPs, the coders assigned both a holistic literacy 
and a rubric literacy score to the CAT-4s. The 
experience of coding the CAT-4s where the task 
demands and time constraints were held constant 
was in sharp contrast to the experience of coding 
EPs. The time restraints and speci fi c tasks cre-
ated consistency within a group of students mak-
ing coding more consistent for the CAT-4s. This 
was signi fi cantly different from our experiences 
coding EPs, which were typically a mixed bag of 
artifacts ranging from very weak to very strong. 

 For the  fi rst year, the holistic scores and rubric 
scores we gave to literacy in the portfolios corre-
lated well with one another ( r  = 0.84). The holistic 
scores we gave to literacy in the portfolios corre-
lated moderately with the holistic scores we gave 
to the CAT-4s ( r  = 0.48) but not to the rubric scores 
we gave to the CAT-4s. The holistic literacy scores 
also correlated moderately with the of fi cial scores 
(as a total) given to the pretest CAT-4s ( r  = 0.38). 
The rubric scores we gave to literacy in the portfo-
lios correlated reasonably well with the holistic 
and rubric scores we gave to the CAT-4s ( r  = 0.60 
and 0.48, respectively). The holistic and rubric 
scores we gave to the portfolios also correlated 
moderately well with the of fi cial scores given to 
the pretest CAT-4s ( r  = 0.55), but not with the post-
test CAT-4s. Except for this later  fi nding, which 
surprised us, we are reasonably satis fi ed that we 
have the foundation of usable, reliable, and valid 
scoring rubrics. With more and better quality data 
from year two, we hope to extend these  fi ndings.   

   Teacher Interviews and Qualitative 
Data 

 In our year one 2007–2008 longitudinal study, in 
7 out of 16 classrooms (43%), ePEARL was 
barely implemented. These classrooms were 
labeled as “low” implementers. The portfolios in 
most of these classrooms had never been used, or 
were used quite minimally during the school 
year. Of the remaining nine classrooms, four 
were “medium” implementers (25%) and  fi ve 
were “high” (31%). The medium- and high-im-
plementation classrooms were then combined for 
all analyses. In order to better understand the 
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 reasons for teachers’ varying degrees of imple-
mentation, we designed a Teacher Exit Interview 
Protocol (TEIP). This 40–60 min semi-structured 
interview guide was written with the intent of 
better understanding the factors that facilitate or 
inhibit the teachers’ ability to integrate ePEARL 
into their classroom teaching. The interview 
addressed teachers’ general impressions of the 
tool as well as the external and internal factors 
that shaped their use of it, such as administrative 
and technical support, access to computers, time 
management and scheduling issues, knowledge 
of portfolios and SRL, familiarity with ePEARL, 
and reasons for participating in the research. 
Questions addressed the teachers’ expectations 
surrounding their use of ePEARL, what they 
found valuable, and what they saw as obstacles to 
using ePEARL with their students. 

   Cost: Barriers to Implementation 

 In order to identify why so many teachers were 
low implementers, we examined the “cost” items 
coded in teacher interviews. These items were 
de fi ned as “the perceived physical and psychologi-
cal demands of implementation operating as a dis-
incentive to applying the innovation (preparation 
time, effort, etc.)” (Wozney, Venkatesh, & Abrami, 
 2006 , p. 178). The most common factors that 
teachers mentioned as impeding their ability to 
work with ePEARL were as follows: it was time 
consuming; it con fl icted with other demands for 
their time; they had limited access to computers; 
and there were problems with the school’s server.  

   Value: Motivators in Implementation 

 All teachers in this study experienced some barri-
ers to their implementation of ePEARL. However, 
it is clear that some of the teachers were able to 
overcome these perceived obstacles and persist in 
their teaching with this tool. Value items were 
de fi ned as “the degree to which the teacher per-
ceived the innovation or its associated outcomes 
as worthwhile. These include bene fi ts to the 
teacher (congruency with teaching philosophy, 

career advancement) and to the students (increased 
achievement, enhanced interpersonal skills)” 
(Wozney et al.,  2006 , p. 178). The most common 
factors that teachers identi fi ed as valuable and 
may have been motivators for their use were high 
level of student engagement/motivation/interest, 
teachers’ personal enthusiasm for ePEARL, good 
pedagogical support to integrate the tool, the 
structure of the software that helped students plan 
and organize their work, accessibility of ePEARL 
from home or any Internet-connected computer, 
and the customize feature which allowed students 
to take ownership over their portfolio.  

   Impacts on Teaching 

 High-implementation teachers also reported that 
ePEARL provided good pedagogical support 
(9/9) through the embedded help feature, instruc-
tional videos, sample lessons, and training pro-
vided. It also had a positive impact on transforming 
their teaching practice (7/9). Only two low imple-
mentation teachers mentioned the pedagogical 
supports they received through working with 
ePEARL, and only one mentioned any positive 
impact on his/her teaching practice. It is possible 
that low implementers were not able to experi-
ence this level of engagement with the tool if the 
other issues in their schools limited their use of 
and familiarity with ePEARL. 

 On the other hand, the medium and high 
implementers described how certain features in 
ePEARL, such as the place to provide a descrip-
tion of an assignment and the criteria, helped 
them make their expectations for their students 
more explicit and gave them a better awareness 
of the students’ level of understanding of a task 
or an assignment. They integrated the SRL-based 
language of planning, doing, and re fl ecting 
throughout classroom activities, and students in 
these classrooms showed increased levels of goal 
setting and re fl ecting on their work as compared 
to students in control classrooms (Meyer, Wade, 
Pillay, Idan, & Abrami,  2010  ) . One teacher noted, 
“I’ve used it as a guiding tool for my teaching this 
year. I love the learning cycle and it’s helped me 
to become a better teacher because I’ve used the 
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prompts to make sure I’m setting the criteria, 
making sure they know what makes a good job, 
and so we use it often, just out of context, not 
necessarily going online. But the language and 
the whole process” (Teacher 9). 

 The fact that ePEARL provided clear step-by-
step guidance that made explicit the steps of SRL 
was something that several teachers noted as 
bene fi cial. A second teacher who also appreciated 
the structure of ePEARL echoed this perspective: 
“I found that the way the template was set up, as 
far as getting the students to share what the crite-
ria was for their work and to get them to re fl ect on 
their work; that really channeled me in my teach-
ing. I found you really had to force yourself in 
every lesson to think about ‘Okay, we really need 
to think about the end in mind’” (Teacher 10). 

 This teacher’s statement indicates how the 
design of the software supports him/her in being 
more conscious of how they are designing and 
presenting lessons and activities. Although it was 
clear that they understand the value of having 
clear objectives in mind, this statement indicates 
that s/he did not always make it explicit for the 
students and ePEARL helped him/her to realize 
this and improve in this area. A third teacher 
mentioned how working with ePEARL has 
changed his/her approach to teaching and helped 
him/her to be more deliberate in how s/he intro-
duces new projects in class. “That whole deliber-
ate ‘here are the steps of learning’—I was never 
that deliberate. I made way too many assump-
tions of what they understood in that process. So 
that has very much changed the way I approach 
all of our things now. Like setting the goals, strat-
egies, and criteria—Yeah, you talk about it, but it 
was never that deliberate and that’s where the 
changes are coming. So yes, very much it’s 
changed my approach” (Teacher 11). 

 A fourth teacher had a similar experience in 
being more conscious of how s/he taught and pro-
vided instructional support for students’ develop-
ment of SRL skills: “I like that because I think it 
helped me also focus a bit more on their setting 
goals. It really made me focus on that and verbal-
ize it more. Like I said, sometimes I have a ten-
dency to take things for granted, whereas here, I 
realize that we have to talk about certain aspects 

a little bit more if we really want to be ensured 
that the kids know exactly what direction they 
should be taking. And for them to be able to think 
about what the  fi nal result should look like, it 
gives them a good idea of what are they gonna do 
to get there? That part I thought was good for me. 
De fi nitely” (Teacher 15). 

 These excerpts illustrate that the design and 
features of ePEARL provided added value to 
teachers’ instructional practice which resulted in 
positive impacts on student learning (   Meyer, 
Abrami, Wade, & Scherzer,  2011  ) . These quota-
tions also demonstrate how the structure of the 
ePEARL software and the pedagogical support 
tools embedded in it helped teachers be more 
conscious of how they are presenting information 
and how their students understand what is being 
taught. It also helped more experienced educators 
re fl ect on how they taught language arts and 
offered a new perspective to instruction that 
inspired them and allowed them to be more cre-
ative. The teachers talked about the power of the 
portfolio and the ability to see evidence that a stu-
dent has understood an assignment or a class 
activity. It also helped teachers to recognize when 
a student was lost or confused because s/he was 
not able to enter a description of the task or 
explain the criteria in his/her own words.   

   Challenges 

 Our greatest challenges remain primarily imple-
mentation  fi delity linked to teacher professional 
development and secondarily the orientation and 
engagement of some learners towards actively 
using ePEARL. To increase the ef fi cacy of using 
ePEARL to enhance literacy and SRL strategies 
requires that the tool be used effectively and 
appropriately with engaged teachers who can 
support students through the multiple processes 
of SRL. Many teachers struggle to help students 
set goals, post their work and re fl ect upon it, and 
sustain the SRL cycle over time. We have explored 
expectancy theory (e.g., expectancy of success, 
value, and cost) as one means to explain differ-
ences among teachers in adoption and also con-
sidered the effects of contextual barriers (e.g., 
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technical support and administrative encourage-
ment) to implementation  fi delity. 

 Especially for older students and adults, we 
are attempting to balance usability challenges 
with scaffolding more re fi ned and in-depth SRL 
processes. We are paying particular attention to 
student and teacher motivational dispositions; 
realizing that tools like ePEARL, however pow-
erful and  fl exible, may be poorly used, and we are 
trying to  fi nd ways to prevent that. 

 Abrami  (  2010  )  and Abrami, Bernard, Bures, 
Borokhovski, and Tamim  (  2011  )  considered sev-
eral reasons why learners do not better utilize 
some knowledge tools. The  fi rst reason is based 
on the principle of least effort. Even the best stra-
tegic learners need to balance ef fi ciency concerns 
with effectiveness concerns, as well as balance 
proximal goals with distal ones. Strategic learn-
ers need to  fi nd the middle ground between how 
much they can learn and how well they can learn, 
or between the quantity of learning and the qual-
ity of learning. 

 Second, strategic learners often have to  fi nd the 
balance between intrinsic interests and extrinsic 
requirements. Frankly, the educational system 
imposes its own restrictions on students that may 
not make effortful strategies uniformly appropriate. 

 Third, decades ago, McClelland and Atkinson 
illustrated the impact not only of individual dif-
ferences in achievement strivings but the impor-
tance of perceived outcome to learners’ task 
choices and persistence. Years later, Weiner 
showed how causal attributions for task outcomes 
varied among learners that these attributions 
affected thinking, behavior, and feelings and that 
attributions varied depending on subjective esti-
mates of the likelihood of future success and 
later, perceived outcome. 

 When we ask students to take personal respon-
sibility for their own learning, we may create an 
internal con fl ict for students. First, does a student 
believe s/he can succeed at this learning task? 
Second, does a student believe that this tool will 
help him/her succeed? Third, does a student want 
to take responsibility for his/her own learning? 
While McClelland and Atkinson (e.g., 
McClelland, Atkinson, Clark, & Lowell,  1953  )  
showed that high-need achievers are drawn to 

moderately challenging tasks, we know that high-
need achievers tend to avoid tasks which are low 
in the probability of success. Weiner and others 
(e.g., Weiner,  1980  )  showed that there are marked 
differences in causal attributions when learners 
perceive they have succeeded versus failed. 
Attributional bias means learners attribute suc-
cess to internal causes and failure to external 
ones. Defensive attributions for failure (e.g., 
I failed because the exam was too hard or my 
teacher did not help) help protect a learner’s sense 
of self-ef fi cacy (i.e., keep a learner from conclud-
ing s/he failed because of lack of ability). 

 Therefore, there may be situations where 
increased personal responsibility for learning is 
not always bene fi cial to a learner’s achievement 
strivings, causal attributions, and self-ef fi cacy. 
These situations have mostly to do with the learn-
er’s perception of the likelihood of future success 
and/or perceived outcome. For example, in novel 
or very demanding situations, especially ones 
that are high in importance, learners may want to 
avoid taking responsibility for their learning (and 
the learning of others) until such time as they are 
con fi dent of a positive outcome. In other words, it 
is likely that some learners will return the respon-
sibility for learning to the instructor or, more gen-
erally, the instructional delivery system, rather 
than accept it themselves. 

 Fourth, related to the above is the importance of 
effort–outcome covariation. Productive learners 
come to believe that their efforts at learning lead to 
successful learning outcomes. These learners 
come to believe that “the harder and more that I 
try, the more likely I am to achieve a positive learn-
ing outcome.” The opposite belief is when a learner 
believes that his/her efforts bear little, if any, rela-
tionship to learning outcomes. In behavioral terms, 
this is learning that outcomes are noncontingent 
on actions, called learned helplessness by Seligman 
 (  1975  ) . Seligman demonstrated that after experi-
encing these noncontingencies learners made 
almost no effort to act even when the contingen-
cies were changed. This passivity, even in the face 
of aversive stimuli, is dif fi cult to reverse. 

 To summarize, the following factors may be at 
work in preventing more pervasive and persistent 
use of knowledge tools:
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    1.    Teachers and students do not value the 
outcome(s) of tool use suf fi ciently to increase 
their efforts to use it for learn—it is not so 
important to do well.  

    2.    Teachers and students believe that gains in 
learning from increased effort from tool use 
are inef fi cient—it takes too much effort to do 
a little bit better.  

    3.    Learners do not want to become more respon-
sible for their own learning—it is too risky 
unless the perceived chances of a positive out-
come are increased.  

    4.    Teachers and students believe that novel 
approaches to learning (use of unfamiliar 
knowledge tools) increase the likelihood of 
poor outcomes, not increase them—it is not of 
interest or too risky because they do not 
believe the tool will help students learn.     
 There are ways to overcome these chal-

lenges. First, knowledge tools must be struc-
tured so they increase the ef fi ciency of learning 
as well as the effectiveness of learning. As such, 
instructional designers should pay more atten-
tion to  ease of use  as an overall design objec-
tive, where learners need even more guidance 
as to which features to use, how, and when. 
Time is one critical factor, and it may be dealt 
with in numerous ways, including structuring 
how tool activities are carried out (e.g., weekly) 
or making them part of the evaluation scheme. 
Simplicity of use may be important, avoiding 
the addition of time to learn how to use technol-
ogy at the expense of time needed to learn the 
content. It would be interesting to know not 
only whether use of each tool resulted in 
increased achievement but also whether the 
quality and quantity of use related to learning 
gains—a form of cost/bene fi t ratio. 

 Second, students and teachers may need more 
guidance about  when to use  the tool and not only 
whether to use it. That is, the tool should be used 
when a learning task is both dif fi cult and impor-
tant. Advice and feedback from instructors and 
consultants may help, as well as queries and sug-
gestions embedded in the tool. Not every learning 
task requires the use of a knowledge tool, and its 
use probably varies according to the skills and 
interests of each learner. Furthermore, even when 

a task warrants the use of a tool, not all features of 
the tool may need to be used. Some explanation, 
embedded within the tool, regarding when to use 
which feature would also be useful. As such, addi-
tional features should be designed to be used 
 fl exibly when appropriate to the learning task. 

 Third, like any tool, physical or cognitive, users 
need  practice  to use the tool well and wisely. You 
don’t license a driver after one day’s practice or ask 
a carpenter apprentice to build a cabinet after a single 
time using a band saw. Asking teachers and students 
to use a tool voluntarily, when performance matters, 
is stacking the deck against enthusiastic use. 
Requiring use may ameliorate the problem because 
it is fair to everyone. Nevertheless, learners may now 
face the dual challenge of not only learning complex 
and challenging material but doing so in a novel and 
effortful way. Therefore, the tool should be “well 
learned” before it becomes a required part of a course 
or program of study or course time allocated to 
learning how to use it. And teachers and students 
must be convinced that the tool helps students learn. 
In the latter regard, careful attention should be paid 
to feedback from students and instructors on success 
and failures stories, including the former as testimo-
nials embedded in the tool. 

 Fourth, cognitive tools and learning strategies 
may work best when they are an integral feature 
of a course or program of study and not an add-
on. This is the true meaning of  technology inte-

gration  or when the use of technology is not 
separate from the content to be learned but 
embedded in it. This integration may require 
forethought, performance, and self-re fl ection on 
the part of instructors to insure effective and 
ef fi cient class use. In addition, instructors need 
training and experience with the use of tools to 
encourage scalability and sustainability.      
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    Introduction 

 In our research we view metacognition and 
cognition as interacting processes that together 
promote coherent understanding. We propose 
that the use of the knowledge integration pattern 
to design instructional scaffolding encourages 
the interplay between these two processes. In this 
chapter, we present and discuss  fi ndings that indi-
cate that instructional activities designed using 

the knowledge integration pattern promote stu-
dent learning from dynamic visualizations by 
helping to overcome deceptive clarity. 

 Typical instruction encourages learners to 
focus primarily on the cognitive aspects of learn-
ing, such as adding new ideas or comprehending 
explanations of phenomena. However, we believe 
that designing curriculum that also supports stu-
dents in being metacognitive by, for example, dis-
tinguishing among ideas using generated criteria 
or re fl ecting on potential alternatives as they 
engage in these and other cognitive activities 
results in overall greater bene fi ts for student learn-
ing and understanding. In fact, much research 
points to the bene fi ts of incorporating metacogni-
tive activities to promote coherent understanding 
(e.g., Aleven & Koedinger,  2002 ; Azevedo,  2005 ; 
Graesser, McNamara, & VanLehn,  2005 ; Quintana, 
Zhang, & Krajcik,  2005 ; White & Frederiksen, 
 1998  ) , especially with dynamic visualizations. 
We  fi nd that activities that promote metacognitive 
skills such as prompting self-monitoring and 
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  Abstract 

 In our research we view metacognition and cognition as interacting pro-
cesses that together promote coherent understanding. We propose that the 
use of the knowledge integration pattern to design instructional scaffolding 
encourages the interplay between these two processes. In this chapter, we 
present and discuss  fi ndings that indicate that instructional activities 
designed using the knowledge integration pattern promote student learning 
from dynamic visualizations by helping to overcome deceptive clarity.     
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 supporting critique of one’s understanding can 
help students to interpret and learn from visualiza-
tions more successfully. By incorporating meta-
cognitive activities into curricula featuring 
visualizations, we can help learners develop coher-
ent, normative understanding that builds upon 
their prior knowledge. This emphasis can also 
help students develop important metacognitive 
skills such as evaluating, distinguishing, and 
re fl ecting upon their understanding (Aleven & 
Koedinger,  2002 ; Azevedo, Moos, Greene, 
Winters, & Cromley,  2008 ; White & Frederiksen, 
 2005 ). Our perspective is consistent with research 
that advocates for less extraneous and more ger-
mane cognitive processing with dynamic visual-
izations (Wouters, Paas, & van Merrienboer, 
 2008  ) . Although research points to the need for 
use of metacognitive skills and knowledge inte-
gration when learning from visualizations, few 
studies have focused on promoting or capturing 
students’ use of metacognition when interacting 
with dynamic visualizations. 

 This chapter describes research conducted 
by the Technology-Enhanced Learning in 
Science (TELS) Center using the Web-based 
Inquiry Science Environment (WISE). Our 
work focuses on supporting student learning 
from dynamic visualizations using instructional 
scaffolding developed according to the knowl-
edge integration pattern (Linn & Eylon,  2006  ) . 
Research reports varied levels of effectiveness 

for instruction with visualizations (Hof fl er & 
Leutner,  2007  ) . We present evidence that the 
use of dynamic visualizations often results in 
 deceptive clarity —students’ overestimation of 
their understanding of the visualization after 
rote completion of the instructed steps or only a 
brief inspection (Tinker,  2009  ) . The deceptive 
clarity of visualizations is highly problematic, 
in that it can short-circuit students’ consider-
ation of alternative ideas and limit more detailed 
interrogation with the visualization, producing 
the kinds of mixed results found in the litera-
ture. In this chapter we argue that instruction 
developed with the knowledge integration pat-
tern that encourages both metacognitive  and  
cognitive processes can help to overcome decep-
tive clarity and support student learning. We 
discuss how a variety of WISE instructional 
supports, such as prompting students to make 
predictions or asking them to explain their 
understanding, can help students develop skills 
to monitor their learning of complex science 
from dynamic visualizations. 

   WISE and Dynamic Visualizations 

 The Web-based Inquiry Science Environment 
(WISE;   http://www.wise.berkeley.edu/    ) is a 
free online environment supported by the 
National Science Foundation (Fig.  33.1 ). 

  Fig. 33.1    WISE guides students’ inquiry investigations 
through the use of a map of activities and various step types 
and tools, such as explanation prompts and dynamic visu-

alizations. The WISE environment also offers tools for 
teachers and researchers to monitor student work and give 
feedback, as well as to author and customize instruction       

 

http://www.wise.berkeley.edu/
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Projects created in WISE support effective 
inquiry learning and use interactive, research-
based instruction in conjunction with engaging, 
dynamic visualizations (Slotta & Linn,  2009  ) . 
Other instructional tools used in WISE projects 
in addition to dynamic visualizations include 
re fl ection notes, predict and revise prompts, 
student journals, drawing tools, online discussion 
forums, and concept maps. Projects present 
students with compelling inquiry questions 
embedded within relevant topics such as global 
climate change, airbag safety, and genetic 
inheritance. By making science accessible, and 
by providing instruction that encourages stu-
dents to make their thinking visible to them-
selves and others, WISE projects promote the 
development of both integrated understanding 
as well as skills for autonomous, lifelong learn-
ing (Linn, Eylon, & Davis,  2004  ) .  

 Dynamic visualizations refer to external 
representations used for learning that display 
processes of scienti fi c phenomena that change 
over time. Basic forms of dynamic visualizations 
include animations, which consist of sets of 
frames that alter properties such as shape or size, 
depict motion, or make objects appear and disap-
pear (Lowe,  2004 ; Moreno & Mayer,  2007  ) . 
More sophisticated instructional simulations and 
computational models enable students to interact 
and experiment with phenomena on scales that 
are not directly observable such as molecular 
dynamics (Linn & Eylon,  2006  )  or with visual-
ized concepts such as force (White & Frederiksen, 
 1998  ) . These dynamic visualizations enable stu-
dents to alter variables or settings to see different 
outcomes. Students can generate and test hypoth-
eses by experimenting and interacting with the 
visualization, as well as synthesize and re fi ne 
their hypotheses by re fl ecting upon observed out-
comes as well as the effectiveness of their experi-
mentation strategies for learning (Ertmer & 
Newby,  1996  ) . 

 By incorporating dynamic visualizations, 
WISE projects offer students the opportunity to 
interact with complex scienti fi c phenomena in 
ways that are dif fi cult or impossible with tradi-
tional forms of instruction, such as lecture or 
text-based teaching. For instance, text-based 

instruction of chemical reactions typically 
focuses on rules or classi fi cation of chemical 
reactions, such as single-replacement or com-
bustion reactions. With typical instruction, stu-
dents might read that increasing the temperature 
of reactant molecules will increase the reaction 
rate because of increased collisions. In order to 
understand this concept more fully, however, 
students must visualize atoms and molecules 
interacting on a molecular scale. Thus a limita-
tion of text-based instruction is that it requires 
students to rely solely on their own mental repre-
sentations, which may be  fl awed or incomplete. 
Instruction featuring dynamic visualizations 
enables students not only to compare their exist-
ing mental representations with scienti fi cally 
normative dynamic visualizations, but also to 
consider new ideas gleaned from interacting 
with the visualizations.  Chemical Reactions , a 
weeklong WISE project for high school chemis-
try students, uses dynamic molecular visualiza-
tions of chemical reactions. Students can change 
parameters and variables and immediately 
observe what happens on an atomic level. For 
instance, students can add energy to reactants 
and watch product molecules form on the screen 
(Fig.  33.2 ). Similarly, the WISE  Static Electricity  
project (Shen & Linn,  2010  )  incorporates 
dynamic visualizations of protons and electrons 
that students can use to investigate how the 
movement of electrons relates to the phenome-
non of receiving an electric shock. In the WISE 
 Birds of a Feather Evolve Together  project, stu-
dents explore how different traits and environ-
ments impact the survival of species with a 
dynamic visualization that models natural selec-
tion. The visualization enables students to exper-
iment with various species over multiple 
generations.   

   Dynamic Visualizations and Deceptive 
Clarity 

 Research demonstrates that while dynamic visu-
alizations have signi fi cant overall impact on 
learning (Hof fl er & Leutner,  2007  ) , students face 
dif fi culties when using them (Tversky, Morrison, 
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& Betrancourt,  2002  ) . For example, students 
tend to overestimate their own understanding of 
visualized systems (Rozenblit & Keil,  2002  ) . 
This kind of deceptive clarity can be particularly 
detrimental for learning. For instance, Lowe 
 (  2004  )  investigated learning with animated 
weather maps. Subjects tended to focus on per-
ceptually salient aspects of the visualization, 
such as isolated spatial or temporal features. 
Subjects had trouble building more coherent pre-
dictions of weather that integrated features across 
the visualization. Videos of subjects during the 
learning task revealed that learners did not know 
they should be looking at other important fea-
tures of the visualization (i.e.,  “Do I have to do 

all these lines as well?” , p. 268). Other research 
reports similar illusions of understanding with 
other visualizations (Lewalter,  2003 ; Schnotz & 
Rasch,  2005  ) . 

 Interactivity can encourage students to engage 
and revisit with visualizations, and can have a 
large impact on learning effectiveness (Moreno 
& Mayer,  2007  ) . Interactive features allow stu-

dents to pause, slow down, speed up or replay a 
visualization, or to change variables and inputs 
to observe different outcomes. Learners can 
revisit visualizations and focus upon concepts or 
aspects they may have missed upon initial inter-
rogations. However, even with interactive fea-
tures learners can fail to build integrated 
understanding from visualizations (Kalyuga, 
 2007  ) . Students need to be aware of the impor-
tant concepts upon which to focus, and they also 
need to know how to monitor their understand-
ing to appropriately manipulate the visualization 
to address any gaps in knowledge (Lowe,  2004  ) . 
For example, students using a chemical reaction 
visualization can focus on the impact of heat on 
molecular motion, manipulate settings to under-
stand that relationship, think they understand it 
and move on to the next step. If students are not 
aware of other important aspects (such as bond-
ing), or have a false sense of understanding, stu-
dents will not fully utilize the functionalities of 
the visualization, such as replaying it or experi-
menting with other variables (Linn & Eylon, 

  Fig. 33.2     Chemical Reactions  uses dynamic molecular visualizations and pedagogical tools such as embedded prompts 
within WISE       

 



52133 Metacognition and Wise

 2011  ) . This kind of self-monitoring can have a 
large impact on how students interact with and 
how much students learn from dynamic visual-
izations (Azevedo, Guthrie, & Seibert,  2004  ) . 

 Research into self-regulatory learning (SRL) 
in multimedia environments lends insight into 
deceptive clarity and visualizations (Azevedo, 
 2005  ) . Self-regulated learning involves setting 
goals, determining and using learning strategies 
to meet those goals, monitoring one’s learning, 
evaluating how well one is reaching those goals 
and responding by changing strategies 
(Zimmerman,  2008 ). Students interacting with 
visualizations may set different goals than stu-
dents working with text. For example, visualiza-
tions may trigger students to set procedural goals 
to complete steps or run the visualization instead 
of setting learning goals to seek conceptual 
understanding of the underlying concepts. 
Students may then select strategies, monitor 
effectiveness and evaluate outcomes based on 
these different goals (Reiber, Tzeng, & Tribble, 
 2004 ). In this way, differences in how students 
perceive the task of learning with visualizations 
can result in students believing that they have 
understood the targeted concepts.  

   Overcoming Deceptive Clarity Through 
Knowledge Integration 

 The knowledge integration pattern builds upon 
research that learners have rich, diverse, and often 
con fl icting ideas about scienti fi c phenomena 
from various contexts and experiences (Davis & 
Linn,  2000 ; diSessa,  2000 ; Linn, Clark, & Slotta, 
 2003 ; Songer & Linn,  2006  ) . Students’ existing 
ideas are viewed as fruitful starting points for 
developing deep understanding. 

 The knowledge integration instructional pat-
tern consists of four interleaved processes: 
Eliciting current ideas, adding new ideas, devel-
oping criteria for evaluating ideas, and sorting 
out ideas (Linn & Eylon,  2006  ) . First, eliciting 
current ideas recognizes the diverse backgrounds 
and experiences that individual students bring 
with them into the classroom and acknowledges 
these experiences and ideas as rich starting points 

for learning (Davis & Linn,  2000 ; diSessa,  2000 ; 
Linn et al.,  2003 ; Songer & Linn,  2006  ) . 
Prompting learners to become aware of their pre-
existing ideas prepares them to form connections 
between these ideas and new ones. Second, add-
ing new ideas involves introducing normative 
ideas for students to consider against their exist-
ing ones. The careful design of effective visual-
izations can serve as a fertile source of useful and 
relevant ideas for students to evaluate and incor-
porate into their thinking. Third, supporting stu-
dents in developing criteria for evaluating ideas 
helps them to readily distinguish between their 
own ideas and new ones. Fourth, in sorting out 
their ideas, learners are encouraged to re fl ect 
upon their ideas by using their developed criteria 
to evaluate, sort and consolidate their ideas into a 
revised and more coherent understanding. Using 
generated criteria to evaluate the connections 
among their ideas can help students to re fi ne their 
knowledge based on these evaluations. The pro-
cess of knowledge integration thus encourages 
students to consider their current networks of 
ideas, make judgments about their understand-
ing, and seek ways to improve their understand-
ing by going back and adding, sorting, or re fi ning 
ideas. When learners sort out their ideas and use 
evidence to support their thinking, they strengthen 
their understanding. The knowledge integration 
instructional pattern thus helps students to gain a 
coherent, integrated understanding of a scienti fi c 
topic. 

 Instruction that focuses on knowledge integra-
tion helps students overcome the deceptive clar-
ity of visualizations because students engage in 
both cognitive and metacognitive processes that 
help them to more productively engage in moni-
toring their learning with the visualizations. The 
knowledge integration pattern encompasses a 
spectrum of activities that can be considered as 
more cognitive in nature (such as adding norma-
tive ideas) to processes that are more metacogni-
tive in nature (such as distinguishing and 
re fl ecting upon ideas). Ideally, learners monitor 
and re fl ect upon their knowledge,  fi nd gaps or 
discrepancies in their understanding, and act to 
remedy these situations by building coherent net-
works of ideas. 



522 J.L. Chiu et al.

 Since traditional classroom instruction does 
not typically focus upon metacognitive skill 
development (Linn & Eylon,  2011  ) , we focus on 
scaffolding to help students engage in the entire 
knowledge integration pattern, with a special 
focus on distinguishing, evaluating, and 
re fl ecting upon ideas and connections. 
Instructional prompting or scaffolds help learn-
ers develop more sophisticated skills and engage 
in more complicated activities than they could 
on their own (Bransford, Brown, & Cocking, 
 1999  ) . Appropriate scaffolding in classroom 
environments can be especially challenging, 
with many students starting at varying levels of 
skills and knowledge. In order for scaffolding to 
be most effective, it needs to fall in the target 
zone of not giving too much or too little support 
(Vygotsky,  1978  ) . 

 Prior research suggests that scaffolding in 
computer-enhanced environments can help learn-
ers engage in metacognitive activities with 
curriculum featuring visualizations (Azevedo 
et al.,  2008  ) . For instance, White and Frederiksen 
 (  1998 ,  2000 ) used re fl ective prompts in their 
ThinkerTools curriculum to encourage student 
self-evaluation at the end of each inquiry cycle 
during the project. Students were either prompted 
to engage in re fl ective self-assessment or not 
prompted to self-assess. Students with monitoring 
support who self-assessed understood scienti fi c 
inquiry better than those who did not self-assess, 
and the support especially bene fi tted students 
with lower prior knowledge. 

 Davis and Linn  (  2000  )  investigated the effect 
of two different types of prompts—sentence 
starters that were either activity-focused or self-
monitoring—on middle school students’ inte-
gration of heat and light energy knowledge while 
working with the WISE  Aliens on Tour  and  All 

the News  projects. These projects required stu-
dents to design houses and clothing for cold-
blooded aliens with different climate 
requirements and critique news articles about 
energy and thermodynamics. Students responded 
to activity-focused prompts and self-monitoring 
prompts. The activity-focused prompts were 
aimed to help students think about the justi fi cation 
required to demonstrate the quality of their 

designs (e.g.,  “Our design will work well 

because…” ) while the self-monitoring prompts 
encouraged students to re fl ect on the quality of 
their designs (e.g.,  “Our design could be better 

if we…” ). Findings indicate that while the activ-
ity-focused prompts were effective for helping 
students to  fi nish their project activities, students 
did not develop integrative knowledge. Self-
monitoring prompts, however, encouraged 
knowledge integration by helping students to 
plan their activities, reminding them to re fl ect on 
their understandings, and encouraging them to 
explain and justify their design decisions. 
Additionally, students who used the self-moni-
toring prompts to evaluate their understanding 
and identify places of confusion had greater 
project scores (Davis & Linn,  2000  ) . 

 In addition, prompting students to predict, 
distinguish, draw, or critique ideas also engages 
them in the process of knowledge integration 
(Linn, Chang, Chiu, Zhang, & McElhaney, 
 2010  ) . These generative activities can be espe-
cially bene fi cial for learning with visualizations 
because learners can compare new ideas to their 
prior knowledge or existing mental models of 
phenomena (Chi, De Leew, Chiu, & Lavancher, 
 1994 ; Lombrozo,  2006  ) . This gives students the 
opportunity to identify what they do not understand 
(Rozenblit & Keil,  2002  )  or to revise their views 
(Chi,  2000  ) . Engaging students in the process of 
knowledge integration helps students refocus 
their learning goals on conceptual understanding 
and employ both cognitive and metacognitive 
strategies to reach those goals (e.g., Zimmerman, 
 2008 ). 

 Students may fail to revise their initial ideas 
and proceed with isolated views of the visualiza-
tion if not prompted to distinguish ideas. For 
example, Chi  (  2000  )  describes how generating 
self-explanations while reading text helped a sub-
ject revise her mental model of the circulatory 
system. The student  fi rst used self-explanations 
to generate her existing network of ideas. During 
a later segment, the student distinguishes ideas 
when she comes across a piece of information 
that con fl icts with her existing model of how the 
circulatory system works (that blood  fl ows into 
the lungs). The student reveals her efforts to dis-
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tinguish ideas by making many monitoring state-
ments such as “I don’t understand.” Subsequently 
she revised her understanding of the circulatory 
system to include a loop from the heart to the 
lungs. This example demonstrates how prompt-
ing to distinguish ideas can help students over-
come deceptive clarity. The prompts can help 
students realize what they do not understand, rec-
ognize con fl icting ideas, and remedy these 
con fl icts or gaps in their understanding. 

 Research suggests that distinguishing ideas 
also bene fi ts those learning with visualizations. 
For instance, Cromley, Azevedo, and Olson 
 (  2005  )  investigated how people self-regulate 
when learning from a multimedia environment 
that included animations of the circulatory 
system. Learners engaged in relatively less self-
regulation with the animation than other forms of 
instruction, supporting the notion of deceptive 
clarity. However, if the learners summarized their 
understanding as they watched the animation, the 
participants learned more. Similarly, in the WISE 
 Orbital Motion  project, students interact with a 
set of three dynamic visualizations to help them 
connect from their everyday ideas about projec-
tiles to a more sophisticated understanding of 
orbital motion. In one visualization, students 
experiment with launching a cannonball using 
different initial horizontal speeds. Without the 
proper instructional scaffolding, students may 
interact with the visualization only brie fl y (such 
as launching the cannonball using just a few arbi-
trarily selected speeds) and believe their under-
standing to be sound or unproblematic. However, 
the use of predict and revise prompts before and 
after the visualization encourages students to 
re fl ect more carefully about their interactions 
with the visualization in order to achieve impor-
tant key outcomes—such as determining appro-
priate launch speeds for getting the cannonball to 
hit the ground, achieve orbit, or escape into space. 
(King Chen, Tinker, & McElhaney,  2011  ) . 

 Distinguishing ideas can also help students 
overcome deceptive clarity with visualizations 
because they encourage students to identify gaps 
in their understanding (Renkl & Atkinson,  2002 ; 
Rozenblit & Keil,  2002  ) . For instance, Rozenblit 
and Keil  (  2002  )  conducted a number of experi-

ments where subjects judged their understanding 
of certain concepts, explained their ideas about 
the concepts, and then re-rated their understand-
ing. Rozenblit and Keil  (  2002  )  found that prompt-
ing students to generate their own ideas about 
concepts consistently helped subjects to recog-
nize what they did not understand, especially for 
visualized phenomena. This approach was not as 
helpful for recognizing gaps in understanding of 
procedures, narratives, or facts. These  fi ndings 
suggest that if students fail to monitor their under-
standing while interacting with a visualization, 
having them generate their own ideas can help 
them to become aware of and identify what they 
may have missed in the visualization. 

 Generating predictions can also help students 
overcome deceptive clarity by identifying gaps in 
understanding. In one study, subjects asked to 
predict behavior of animated and static visualiza-
tions of devices had a better understanding than 
those who did not predict (Hegarty, Kriz, & Cate, 
 2003  ) . The researchers suggest that predicting 
behavior helped the subjects recognize what they 
did and did not know about the mechanical 
device. This aligns with other studies that  fi nd 
that predicting answers bene fi ts learning, even if 
these predictions are incorrect (Kornell, Hays, & 
Bjork,  2009  ) . 

 Similarly, other activities that encourage 
students to articulate causal chains of events or 
sequences of states can help learners to identify 
and  fi ll in gaps in their understanding. Examples 
of these kinds of activities include generating 
representations, drawing, or categorizing and 
sequencing. Chang, Quintana, and Krajcik 
 (  2010  )  studied students creating animations 
using  Chemation , a program that enables stu-
dents to make  fl ipbook-style dynamic visualiza-
tions of chemical phenomena. They found that 
students had a better understanding of atom 
rearrangement than students using static visual-
izations and media because the students had to 
pay attention to the dynamic aspects of bonds 
breaking and bonds forming when creating their 
animations. 

 We report next on a collection of  fi ndings that 
point to the bene fi t of using the knowledge 
 integration pattern for learning with dynamic 
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 visualizations. We present our results regarding 
deceptive clarity in more detail to demonstrate 
how generation activities can help students elicit, 
add, distinguish, sort out, re fl ect, and re fi ne their 
ideas with visualizations. These results describe 
how the knowledge integration pattern encour-
ages both cognitive and metacognitive processes 
and how this combination bene fi ts learning with 
visualizations.   

   Empirical Findings 

 WISE provides a rich environment to research 
how instruction focused on knowledge integra-
tion can support students’ development of self-
knowledge and self-monitoring skills while 
interacting with dynamic visualizations. WISE 
logs students’ work as they progress through the 
unit. These data logs capture exactly when and 
what students write, details about students’ nav-
igation through the project, and how students 
interact with the visualizations. We use these 
data logs combined with self-assessments, 
embedded explanations, and pre- and post-test 
measures to both research and promote stu-
dents’ self-monitoring in authentic classroom 
environments. 

   Addressing Deceptive Clarity 
with Explanations 

 The WISE  Chemical Reactions  project 
exempli fi es how designing for and prompting 
knowledge integration processes can help stu-
dents mindfully build, assess, critique and sort 
out their ideas with dynamic visualizations. 
 Chemical Reactions  guides students through an 
investigation of how chemical reactions relate to 
climate change. The project focuses on making 
connections among symbolic, molecular and 
observable levels of chemical reactions, as well 
as balanced equations, stoichiometric ratios, and 
limiting reagents. Students interact with visual-
izations of common hydrocarbon combustion 
reactions that contribute carbon dioxide to the 
atmosphere, use dynamic visualizations of 

hydrogen combustion to investigate hydrogen as 
an alternative fuel, and explore greenhouse visu-
alizations to learn how greenhouse gases trap 
infrared radiation. Students re fl ect upon and 
synthesize the information they learn through-
out the project in an electronic letter to their 
congressperson. 

 In  Chemical Reactions  students are asked to 
distinguish between two visualizations. One that 
shows the addition of energy and the resulting 
explosion and one that does not involve adding 
energy. While distinguishing among the two 
visualizations, the students’ connections among 
existing ideas and ideas added from the visualiza-
tion become visible. Many students initially 
notice that the atoms and molecules bounced 
around the container faster after the spark is 
added, but when asked to distinguish they real-
ized they did not know  how  the spark caused the 
reaction to occur (i.e.,  “I think the spark caused 

the molecules to move around faster, but I’m not 

sure” ). Using the interactive dynamic visualiza-
tion, students can go back and test their current 
ideas to  fi ll in gaps in understanding or see if their 
predictions or ideas are correct. They can inspect 
the visualization in greater detail to see that the 
spark caused the reaction to occur by adding 
energy that breaks bonds, creating free radicals 
that then form intermediate and product 
molecules. 

 To explore how students judged their 
 understanding of concepts with these visualiza-
tions, we prompted for judgments of learning 
(Chiu & Linn,  2008  ) . We asked one group of stu-
dents to rate their understanding immediately 
after the visualizations, and another group to rate 
their understanding after writing an explanation 
of their understanding. We found that students 
judged themselves as more knowledgeable imme-
diately after working with the visualizations. 
Students rated themselves as less knowledgeable 
after writing an explanation of their understand-
ing. These results have replicated across later 
groups of students. Analysis and observations of 
students using the project revealed that when stu-
dents initially interacted with the visualizations, 
they tended to focus on following the instructions 
or making the visualization “blow up.” These 
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kinds of interactions seemed to convince students 
that they understood the concepts underlying the 
visualizations simply by completing the visual-
ization steps without deeper interrogation. 

 Prompting students to explain helped students 
realize gaps in their understanding. Analysis of 
log  fi les revealed that students were likely to 
revisit the visualization after the explanation 
prompt. For instance, students would “blow up” 
the visualization, or make carbon dioxide and 
water product molecules and then judge their 
understanding of balanced equations as very 
good. After being prompted to explain how the 
balanced equation relates to the visualization, 
student pairs often asked one another, “I don’t 
know, how did it relate?” Students would subse-
quently revisit the visualization before writing 
anything, in the middle of generating their expla-
nation. Students would also revisit the visualiza-
tions after they had  fi nished writing their 
explanation to check their work. 

 Prompting for explanations helped students 
engage with the full knowledge integration pat-
tern, interacting with the visualizations in both 
cognitive and metacognitive ways. Not only did 
students successfully connect their existing ideas 
of balancing equations to new ideas from the 
visualizations, but they also developed more 
accurate self-knowledge and criteria for their 
ideas (as demonstrated by their realizations that 
their understanding was not as good as they  fi rst 
thought). Explaining also supported students’ 
development of self-regulatory skills, such as 
sorting out and re fi ning ideas and connections. 
Students acted upon their judgments of learning 
and revisited the visualization to repair gaps in 
their knowledge or to resolve con fl icts with their 
understanding of the concepts.  

   Addressing Deceptive Clarity 
with Drawing 

 In addition to explanation, other generative activ-
ities such as drawing can promote knowledge 
integration with dynamic visualizations. Drawing 
can help students elicit and build upon their prior 
ideas, as well as sort and re fi ne their existing 

ideas and the new ones conveyed by the visual-
ization. In a progression of classroom studies, 
Zhang (Linn et al.,  2010 ; Zhang & Linn,  2008  )  
investigated how generating drawings can help 
students overcome the deceptive clarity of visual-
izations. In these studies, middle school students 
used a similar chemical visualization to the one 
in  Chemical Reactions . Pilot testing indicated 
that students failed to understand bonds breaking 
and forming as part of the chemical reaction pro-
cess. To investigate how drawing can help stu-
dents learn from visualizations, Zhang compared 
students who drew sequences of chemical reac-
tions to students prompted to spend more time 
with the visualization. The students in the draw-
ing condition were asked to draw the reacting 
molecules before the reaction began, right after 
the reaction began, after the chemicals had 
reacted for some time, and after the chemicals 
had reacted for a very long time. 

 Zhang found that students in the drawing con-
dition learned more overall than the students who 
only explored the visualization, as generating 
drawings helped students distinguish their ideas 
from the visualization. Prompting students to 
draw stages of the reaction helped focus the stu-
dents on the chemical reaction in terms of bonds 
breaking and forming. Students could revisit the 
visualization and compare their drawings to the 
visualization. Similar to generating explanations, 
generating drawings helped students realize gaps 
in their understanding, or concepts they may have 
missed in their initial investigation of the visual-
ization. Having students create representations of 
chemical reactions helped students become aware 
of their limited understanding and spurred them 
to sort out and re fi ne their thinking by revising 
the visualization. These results resonate with 
other research studies demonstrating the bene fi t 
of having students create representations of 
chemical reactions (Chang, Quintana, & Krajcik, 
 2010 ; Schank & Kozma,  2002  ) . 

 To further investigate the effect of generating 
drawings, Zhang compared students that drew 
pictures to students who selected screenshots of 
the model to represent four stages during the pro-
cess of a chemical reaction (Linn et al.,  2010  ) . 
Zhang found that the students who generated 
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their own drawings outperformed students who 
selected screenshots on posttest assessments, 
controlling for prior knowledge. The drawing 
group outperformed the selection group on 
assessment items that called for selecting and 
sequencing static pictures of chemical reactions, 
as well as items that called for the students to use 
their understanding in different contexts (i.e., dif-
ferent reactions). Zhang suggested that generat-
ing drawings helped students re fl ect and sort out 
their ideas, whereas the selection activity failed 
to encourage students to stop and re fi ne their 
understanding. This suggests that activities such 
as generating drawings and explanations can help 
students overcome the deceptive clarity of visual-
izations and promote knowledge integration, 
whereas other activities such as selection may not 
be as bene fi cial because they do not encourage 
learners to revisit and re fi ne their understanding 
of the visualization.   

   Discussion 

 The  fi ndings we presented point to the effective-
ness of various instructional scaffolding tech-
niques that can promote student self-monitoring 
and self-assessment. Engaging students in mak-
ing predictions, generating explanations, or cre-
ating drawings or representations provides 
opportunities for them to identify weaknesses in 
their thinking, to evaluate, sort, connect and re fi ne 
new and old ideas, or to verify their understand-
ings. We view these types of scaffolding as exam-
ples of  desirable dif fi culties —that is, instruction 
that enhances learning by introducing bene fi cial 
cognitive dif fi culties for the student to address 
(Bjork & Linn,  2006  ) . 

 We believe the knowledge integration pattern 
helps learners succeed using visualizations 
because it promotes this blend of cognitive and 
metacognitive interaction with the learning envi-
ronment. Indeed, recent research from various 
sources points to the bene fi t of combining cogni-
tive and metacognitive support for instruction 
with visualizations (Ainsworth,  2008 ; Aleven & 
Koedinger,  2002 ; Azevedo, Winters, & Moos, 

 2004 ; Moos & Azevedo,  2008 ; Reiber et al., 
 2004 ). If learners are not aware of gaps in their 
understanding or aware of critical information to 
focus upon within the visualization, students can 
continue without further thought. Engaging stu-
dents in the knowledge integration pattern thus 
helps students to interact with the visualizations 
both cognitively and metacognitively—they not 
only add ideas to their thinking but also revisit 
the visualizations to re fi ne and sort out their 
understanding. 

 Other current research points to the impor-
tance of combining dynamic visualizations with 
the full knowledge integration pattern. 
Kombartzky, Ploetzner, Schlag, and Metz  (  2010  )  
investigated how prompting learners to engage in 
strategies to elicit, distinguish, and re fl ect upon 
ideas could in fl uence learning with a dynamic 
visualization about honeybees. Kombartzky et al. 
 (  2010  )  compared students in two groups: The 
essay group interacted with visualizations and 
then wrote an essay about what they learned; the 
strategy group made predictions about the visual-
ization, explained the visualization, revisited the 
visualization, drew their understanding, and 
re fl ected upon their work. Students in the strat-
egy condition outperformed the students in the 
essay condition. Similarly, recent work with 
self-regulatory learning in hypermedia environ-
ments found that learners who make large con-
ceptual gains tend to engage in monitoring 
strategies such as  summarizing and making 
inferences, and making judgments of under-
standing (Azevedo,  2005 ; Azevedo et al.,  2004 ; 
Greene & Azevedo,  2007  ) . 

 Design principles based on recent research 
from various perspectives also indicate the bene fi t 
of including knowledge integration activities 
(Plass, Homer, & Hayward,  2009  ) . For instance, 
design principles based on the cognitive-affective 
theory of multimedia learning (CATLM) calls for 
activating prior knowledge and providing oppor-
tunities for students to examine and repair their 
understanding (Moreno & Mayer,  2007  ) . Plass 
et al.  (  2009  )  highlight the importance of aligning 
interaction within visualizations with cognitive 
as well as metacognitive goals. 
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   Current Challenges 

 For students to use visualizations most effectively, 
careful design of instruction that supports the use 
of metacognition is essential. However, there are 
still several challenges for moving this area of 
work forward. Examples of some outstanding 
issues include: Conducting research in authentic 
classroom settings, assessing students’ use of 
metacognition, and investigating the role of col-
laboration in developing self-monitoring skills. 

  Conducting research in authentic classrooms:  
Conducting design experiments in authentic 
classrooms poses challenges for research on 
metacognition. Although we can implement par-
ticular types of instructional support and measure 
the impacts of those interventions on students, it 
is very dif fi cult to identify, distinguish and assess 
the use of metacognitive processes by students. 
Research conducted within the real-life con-
straints of classrooms necessitates the careful 
design of studies that not only focus on what is 
best for the learner, but also will allow research-
ers to obtain useful and appropriate data that 
addresses the research questions of interest. 
Results from laboratory settings may or may not 
transfer to classroom environments where the 
concepts to be learned are integrated with the 
overall course instead of presented as an unre-
lated experiment (Richland, Linn, & Bjork,  2007  ) . 
Conducting classroom re fi nement studies will 
help researchers  fi nd what kinds of metacognitive 
interventions work in classrooms, as well as con-
tribute to learning theory (i.e., Brown,  1992  ) . In 
general, more design experiments using visual-
izations in classrooms will help test and re fi ne 
design principles and recommendations from 
experimental settings. 

 For instance, recent studies show bene fi t for 
iterative re fi nement of classroom instruction 
with visualizations to support both cognitive 
and metacognitive processes using the knowl-
edge integration pattern (Chiu,  2010 ; Linn et al., 
 2010 ; Tate,  2009  ) . In  Airbags: Too Fast, Too 

Furious? , a WISE high school physics project 
investigating motion and airbag safety, students 

use a visualization that enables them to conduct 
car collision experiments and explore relations 
among speed, distance, and driver safety. Pilot 
testing revealed that students needed support to 
set goals and plan experimental trials before 
interacting with the visualization. In a revised 
version of the project, the visualization was 
accordingly modi fi ed so that students could 
select experimentation goals from a drop-down 
menu with options such as “driver height,” “col-
lision speed,” “crumpling,” or “just exploring” 
before proceeding to investigate the selected 
goal with the dynamic visualization. As a result, 
students could interact with and revisit the visu-
alization by focusing on different research goals, 
helping students to elicit, integrate and re fi ne 
their ideas in a more targeted manner 
(McElhaney,  2010  ) . 

 Knowledge Community and Inquiry (KCI) 
instruction builds upon inquiry-based learning 
and knowledge communities approaches to 
encourage inquiry-based knowledge construc-
tion within classrooms (Slotta & Peters,  2008  ) . 
KCI studies have also found that the knowledge 
integration pattern helps to re fi ne instruction 
with visualizations. As part of an inquiry sci-
ence lesson, students created and annotated their 
own wikipages using WISE visualizations of 
climate change (Naja fi  & Slotta,  2010  ) . As a 
result of pilot testing, the researchers found that 
students needed help making and re fl ecting upon 
links from their co-constructed curriculum to 
the visualizations. Subsequent revisions will 
incorporate re fl ective self-assessments and 
self-monitoring guidance to enhance learning 
with the visualizations. 

  Assessing students’ metacognitive activities:  
Students’ use of metacognition can only be indi-
rectly inferred by analyzing what the student 
does. Consequently, it is extremely dif fi cult to 
know with any degree of certainty if certain 
actions are, from the student’s perspective, truly 
cognitive or metacognitive. Research that can 
make these kinds of delineations more accurately 
usually occurs in lab settings with relatively small 
numbers of learners (i.e., Hegarty et al.,  2003 ; 



528 J.L. Chiu et al.

Lowe,  2004 ; Moos & Azevedo,  2008 ; Reiber 
et al.,  2004 ). These studies provide valuable, 
 fi ne-grained information about strategies and 
self-regulatory techniques used with visualiza-
tions. Future research needs to  fi nd ways to cap-
ture metacognitive processes accurately and 
reliably in classroom settings. 

 Using the knowledge integration instructional 
pattern provides particular utility in classroom 
settings to promote and assess both cognitive and 
metacognitive goals. In our studies with explana-
tion and drawing we use self-ratings and prompts 
for explanation measures of learning and self-
assessment as well as scaffolds for self-monitor-
ing. We use the logging technologies of WISE to 
determine how students navigate through the 
environment. Although these measures may not 
distinguish strictly metacognitive from strictly 
cognitive activities, there are great learning 
bene fi ts from using these tools in the classroom. 
Supplemented by data log  fi les, we have insight 
into the actions that student pairs take during the 
inquiry units. More tools that work ef fi ciently 
and effectively in classrooms would greatly 
bene fi t the  fi eld. 

  Investigating the role of collaboration in prompt-

ing self-monitoring : The complexity of the class-
room limits the nuances that can be determined, 
since students working with WISE projects typi-
cally work in pairs. The decision to have students 
work in pairs is dictated by several factors, 
including: (1) Evidence that students learn from 
each other, (2) the limitations of classroom space 
and computers for students (class sizes are 
approaching 40 in the schools where we work), 
and (3) the availability of computers for all stu-
dents. With students’ varying levels of prior 
knowledge and skills, student work in pairs 
makes it challenging to accurately determine and 
distinguish cognitive and metacognitive actions 
for individual students. There is relatively little 
research that investigates collaborative learning 
with scienti fi c visualizations, and the existing 
research provides mixed results (Ainsworth, 
 2008  ) . More research is needed to explore how 
students learn from each other when working 
with visualizations.   

   Conclusion 

 These results support the importance of combin-
ing cognitive and metacognitive activities to pro-
mote knowledge integration. This is particularly 
evident in studies of student interactions with 
visualizations. Cognitive activities such as adding 
ideas are not suf fi cient to ensure that those ideas 
are coherently understood. Interactive dynamic 
visualizations can provide unique opportunities 
for learners to deeply engage in thinking about 
challenging scienti fi c phenomena when instruc-
tion emphasizes metacognition. Students’ inter-
actions with visualizations need to be carefully 
scaffolded in order to support metacognitive 
activities such as distinguishing ideas and 
re fl ecting on alternative interpretations. Because 
students often do not monitor their understanding, 
they tend to incorrectly accept inaccurate inter-
pretations of visualizations. These results suggest 
that metacognitive activities can strengthen the 
educative impact of visualizations. 

 Instruction designed according to the knowl-
edge integration pattern can help learners to 
overcome the deceptive clarity of visualizations. 
This involves  fi rst eliciting student ideas, a com-
mon outcome of prompts for self-explanations or 
predictions. When students generate their own 
ideas they are prepared to look for con fi rmatory 
evidence and are often surprised when their 
expectations are not met. The second element of 
the pattern, adding ideas, is supported by interactive 
visualizations. The third element, distinguishing 
ideas, is often achieved by speci fi c activities such 
as critique of alternatives, drawing ideas, select-
ing among alternatives, contrasting cases (such 
as comparing the case of using a spark or no 
spark in a chemical reaction visualization), or 
conducting experiments. The  fi nal element of the 
pattern, re fl ecting and sorting out ideas, is essen-
tial for success of the instruction. This is often 
accomplished by asking students to prepare a 
presentation, report, or poster and to pay atten-
tion to the way their ideas communicate to 
others. 

 The knowledge integration pattern emphasizes 
incorporating both cognitive and metacognitive 
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activities into instructional scaffolding. When 
combined, students’ learning from the cognitive 
activities is enhanced by the self-monitoring 
emphasized in the metacognitive activities. 
Consequently, students are guided to think more 
deeply about their interactions with a visualiza-
tion, to evaluate their thinking and identify gaps 
in understanding, and to critique and revise their 
explanations.      
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 Out-of-school, students’ primary interaction with 
text is digital, multimodal, nonlinear, and interac-
tive. The popularity of etext readers such 
Amazon’s Kindle and the Apple iPad is fueled by 
crowd-innovation that drives the design and 
application potential of etext for learning, enter-

tainment, and social networking. In contrast, 
etexts that are designed and supported for K-12 
academic literacy and learning lags woefully 
behind its promise, especially in relation to the 
goals of access and equity for the substantial 
numbers of students who have dif fi culty under-
standing academic text required in high school 
(Kamil,  2003  )  and college (ACT,  2010  ) . 

 There are numerous potential explanations for 
the lack of progress in this arena. From our per-
spective, there are two particularly compelling 
constraints. First, theoretical models of etext 
comprehension and design frameworks for creat-
ing supported etext are relatively underdeveloped, 
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  Abstract 

 We describe the empirical and theoretical roots of the  Reading to Learn  
program of research, which was designed to investigate the metacognition 
and learning of upper elementary students in supportive etext environ-
ments. The results of study one, a think-aloud study in which children 
responded to narrative and informational texts, were used to inform the 
design of supports that were investigated in study two. Study two was an 
intervention study in which children read and responded to one of three 
etext versions: A  static  version, an  interactive diagram  version in which 
students could animate the graphic that corresponded with information 
presented in the prose and could manipulate the diagrams to explore ideas 
that were presented in the prose, or an  interactive diagram/coaching  ver-
sion, which included two animated pedagogical agents, who provided 
both procedural and conceptual support. We critique the methods used in 
the intervention study and propose further research suggested by its 
 fi ndings.      
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especially in relation to students’ understanding 
of domain-speci fi c, multimodal etext. Second, 
there is limited practical knowledge about how 
teachers might effectively integrate etext into 
classroom curriculum and instruction in service 
of literacy and academic achievement. 

 The  Reading to Learn  (RTL) research program, 
which we feature in this chapter, was funded by an 
Institute of Educational Sciences Program of 
Research on Reading Comprehension develop-
ment grant (awarded to Dalton and Palincsar). 
The ultimate goal of this grant was to develop and 
investigate a digital environment that would sup-
port students, especially those who struggle to 
read and comprehend text, to interpret and learn 
from challenging informational science text that 
was presented in an etext digital environment 
(Palincsar & Dalton,  2005 ). The ambitious agenda 
of this research program was designed in response 
to several important  fi ndings in the literature 
speci fi c to children and youth learning with infor-
mational text. Furthermore, the research built 
upon earlier research conducted independently by 
the investigators. 

 In this chapter, we set the stage for the RTL 
program of research by describing the empirical 
and theoretical foundations for this work. We 
then turn to descriptions of how we designed the 
research to study the etext digital environment 
that we constructed, and conclude by identifying 
future research that is suggested by our work to 
date and that would be particularly informative to 
the issue of understanding the strengths and limi-
tations of etext environments in promoting meta-
cognition and learning. 

   Setting the Stage for the  RTL  Research 
Program: Empirical and Theoretical 
Roots 

 The “fourth-grade slump” was one source of 
impetus for this work. This term is used to char-
acterize the phenomenon whereby children who 
are making adequate progress on reading mea-
sures before grade four demonstrate signi fi cant 
declines on reading achievement measures that 

are used in grade four and beyond. Literacy 
scholars have long speculated that one possible 
explanation for this phenomenon is the imbal-
ance in the text types to which young children 
are exposed (Chall & Jacobs,  2003  ) . While 
children are principally exposed to narrative 
text in the primary grades, they are assessed 
with the use of informational texts in the upper 
grades; texts with which they have had little 
support to learn to read. Duke’s  (  2000  )  land-
mark study in which she investigated the genre 
of text used in 20  fi rst-grade classrooms selected 
from very low- and very high-SES communities 
revealed that  fi rst-graders were typically being 
exposed to informational text for only 3.6 min a 
day if they were in high-SES communities and 
even less if they were in low-SES communities. 
This research suggested the importance of 
introducing informational text to young stu-
dents and also the importance of identifying 
ways to support young children to learn from 
informational text. 

 In addition, we were aware that the preponder-
ance of basic research that has been conducted to 
understand the processing in which young read-
ers engage has been conducted using narrative 
text. One of our goals was to understand the 
resources young readers bring to the reading of 
informational text when compared with the pro-
cesses in which they engage with narrative text. 
Furthermore, we were curious to understand how 
the affordances of etext (e.g., text-to-speech func-
tionality) would enable us to get a more complete 
sense of these processes; if children were unen-
cumbered by the demands of decoding words, 
what could we learn about how they interpret 
text, integrate ideas, and build new knowledge 
with text? 

 A  fi nal—and the most signi fi cant—goal of 
our work was to determine what role etext could 
play in “leveling the playing  fi eld” for children 
who struggle with the various demands of learn-
ing from text; we wanted to exploit the multiple 
affordances of digital text so that students who 
struggle with decoding, vocabulary, and/or 
comprehension might still have access to the 
ideas in text.  
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   Empirical Roots 

 The RTL research built upon the long history of 
reading research in which both investigators had 
been independently involved. Palincsar and her 
colleagues had been studying ways of supporting 
students to be engaged in self-regulating activity 
as they read text. Dalton and colleagues shared 
this interest in improving students’ comprehen-
sion, developing and studying universally 
designed etexts with embedded representational, 
strategic, and affective supports (Dalton & 
Proctor,  2007 ; Dalton, Proctor, Uccelli, Mo, & 
Snow,  2011  ) . In the following sections, we 
describe how the results of our respective lines of 
inquiry led to the development and testing of the 
RTL etext enhanced with interactive diagrams 
and pedagogical agents to support students’ read-
ing of challenging science text. 

 Reciprocal teaching (Palincsar & Brown, 
 1984 ;     1988 ;  1989  )  was conducted as generic 
strategy instruction with little regard for domain-
speci fi c ways of using text; students read assorted 
texts derived principally from children’s periodi-
cals. Teachers modeled and supported students to 
learn how to self-question, summarize, clarify, 
and predict while reading through discussions in 
which these strategies were used to extract and 
co-construct the information in text (RRSG,  2002    ). 
While reciprocal teaching was effective at 
enhancing students’ ability to read with compre-
hension, as assessed by both criterion-referenced 
and norm-referenced measures (Rosenshine & 
Meister,  1994  ) , it was not designed to support the 
teaching of disciplinary learning, which builds 
understanding of how knowledge is produced 
in the disciplines (Moje,  2008 ; Shanahan & 
Shanahan,  2008  ) . 

 With her colleague, science educator Shirley 
Magnusson, Palincsar began studying learning 
with science text. Their work began with descrip-
tive studies of teachers enacting inquiry-based 
science teaching in grades K-5. One of the strik-
ing  fi ndings in these initial studies was that teach-
ers avoided the use of text. This is problematic 
because NAEP data, measuring science achieve-
ment with nationally representative samples, indi-

cate that 59 % of eighth-graders scored only at or 
above the  basic  level, while 29 % performed at or 
above the  pro fi cient  level, and only 3 % scored 
at or above the  advanced  level 1  (Braun, Coley, 
Jia, & Trapani,  2009  ) . Using multilevel analyses, 
ETS determined which instructional strategies 
explained student performance on the NAEP, after 
adjusting for both student and teacher characteris-
tics. They found one of the distinguishing instruc-
tional features was that students whose teachers 
taught with the effective use of text attained higher 
performance on the NAEP assessment. 

 There were several explanations that teachers in 
Magnusson and Palincsar’s research offered for 
not using text in their instruction. The  fi rst explana-
tion was their concern that the text would usurp the 
students’ own sense-making; the second was that 
the texts they were able to  fi nd were either vacuous 
(offering little in the way of explanation for phe-
nomena) or too dense and, hence, impenetrable for 
the average reader in their classrooms. In response 
to these concerns, Palincsar, Magnusson, and 
their colleagues (Magnusson & Palincsar,  2005 ; 
Palincsar & Magnusson,  2001 ; Palincsar, Hapgood, 
& Magnusson,  2007  )  developed texts that were 
loosely modeled on a scientist’s notebook. 

 The notebooks included the scientist’s narra-
tive descriptions of her investigations, as well as 
her developing arguments based on representa-
tions of data in the form of graphs and  fi gures. 
The researchers argued that as students “follow 
and critique the path of reasoning of the scientist 
whose notebook they are reading, they are also 
learning how to construct scienti fi c arguments 
from the data they collect in their own  fi rst-hand 
investigations” (Palincsar et al.,  2007 , p. 119). 
The skillful scaffolding of the teacher, through 
prompts and cues during discussions about the 
text, supported elementary students in gaining 
not only important scienti fi c information, but also 

   1   Below  Basic  (130 and below).    Basic  denotes partial mas-
tery of prerequisite knowledge and skills that are funda-
mental for pro fi cient work at each grade (131–166).  
  Pro fi cient  represents solid academic performance. Students 
reaching this level have demonstrated competency over 
challenging subject matter (167–223).    Advanced  represents 
superior performance (224 and above).  
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knowledge of the practices in which scientists 
engage in order to develop that knowledge. 

 A number of the commitments that we made 
in the design work that was integral to the RTL 
research were informed by the research Palincsar 
and Magnusson  (  2001  )  conducted with the note-
book texts. For example, we learned that it was 
possible to write the prose so that it encouraged 
an inquiry stance in the reading of text; we did 
this by identifying the phenomenon under study 
and raising questions that would elicit explana-
tions (e.g., why objects sink and  fl oat; the 
scienti fi c explanation for motion on an inclined 
Vs. horizontal plane; the explanation for the  fl ow 
of electricity in series and parallel circuits). In the 
 Reading to Learn  project, we designed a text that 
explained the behavior of light interacting with 
solid objects. 

 We learned that our most effective teachers 
positioned their students to use the text in an 
inquiry fashion; the students were encouraged to 
think about how the information in the text was 
advancing their understanding of the phenome-
non under study. The students were encouraged 
to identify the claims that the scientist was mak-
ing in her notebook and to evaluate the warrant 
for those claims, based upon the evidence that the 
scientist had provided. In the  Reading to Learn  
project, in one version of the environment, we 
animated the graphics so that readers could, in 
fact, manipulate the graphics and engage in their 
own investigation of the claims that were made in 
the prose. In a second version of the environment, 
an agent modeled and then guided the reader to 
use the graphics in an inquiry fashion; that is, to 
manipulate them and document what happened 
as a consequence. 

 Scholars have long argued that graphics are 
integral to communicating scienti fi c information 
(e.g., Lemke,  2004  ) . Magnusson and Palincsar 
 (  2005  )  included an array of graphics in their 
notebook texts, including data tables, diagrams, 
and illustrations. What they learned, however, 
was that readers needed support to interpret and 
use the information in those graphics. In the 
 Reading to Learn  project, graphics were integral 
to communicating information to the reader. To 
scaffold students’ sense-making with those 

graphics, we designed several features. The  fi rst 
feature promoted the integration of the prose and 
graphic; by choosing a particular icon, the prose 
that was associated with a particular graphic 
would become highlighted; the reader could then 
look closely at the relationship between the infor-
mation in the prose and how that information was 
communicated in the graphic. A second feature, 
as mentioned above, was the capacity to animate 
the graphic so that the graphic would illustrate 
the ideas in the prose and students could also 
check out their understanding by further manipu-
lation of the graphic. For example, to communi-
cate that what we see is a function of light 
re fl ected from an object to our eyes, the user 
could manipulate both the source of light, as well 
as the location of the object in relation to an eye. 

 We designed our RTL etexts in accordance 
with these key  fi ndings from the work of Palincsar 
and colleagues. At the same time, we were guided 
by Dalton and Proctor’s  (  2008  )  research on the 
design of enhanced etexts for students with 
diverse learning needs. Integrating universal 
design for learning principles (Rose & Meyer, 
 2002  )  with Palincsar and Brown’s  (  1984  )  research 
on reciprocal teaching, they created etext ver-
sions of chapter books that supported readers’ 
access to the content through text-to-speech read 
aloud functionality, while focusing on their stra-
tegic reading of the text through embedded cog-
nitive and metacognitive strategies support 
(Dalton, Pisha, Eagleton, Coyne, & Deysher, 
 2002  ) . As students read, or listened, to the etext, 
they were prompted to “stop and think,” applying 
reciprocal teaching strategies, as well as visual-
ization, feeling, and metacognitive re fl ection 
strategies. They typed or audio-recorded their 
responses into an electronic work log that was 
available online to students and teachers, guided 
by pedagogical agents who provided think alouds, 
hints, and model strategy responses. The goal 
was to provide just-in-time support for students 
that would enhance their understanding of a par-
ticular etext, while also helping them develop a 
strategic approach to text that would transfer to 
other contexts. Providing affective support was 
another core aspect of the design, and was 
addressed primarily by offering students multiple 
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options for choice of learning supports and modes 
of expression within the digital environment. 
This initial study showed the promise of this 
design approach for improving struggling read-
ers’ comprehension (Dalton et al.,  2002  ) . 

 Over the course of several studies, Dalton and 
colleagues continued to develop an etext design 
framework, expanding the role of pedagogical 
agents and multimedia support to develop com-
prehension and oral reading of young children 
with cognitive disabilities (Coyne, Pisha, Dalton, 
Zeph, & Cook Smith,  2010  ) , and comprehension 
and vocabulary learning of  fi fth-grade monolin-
gual and bilingual students (Dalton et al.,  2011 ; 
Proctor et al.,  2011  ) . 

 Multiple modes of representation took on a 
more prominent role in Coyne and colleagues’ 
 (  2010  )  study of universally designed picture 
books. Characters in the illustrations voiced 
thoughts and feelings that were often implicit in 
the text and students were able to view “real-life” 
videos and photos to build background knowl-
edge and connect the imaginary world of the pic-
ture book with children’s contemporary lives. 
These multiple representations were comple-
mented by strategic support in the form of peda-
gogical agents who went beyond voicing think 
alouds and models to physically interacting with 
one another and the text to demonstrate how to 
echo read, partner read, and read independently 
with the audio-recording tool. These young chil-
dren with signi fi cant learning dif fi culties were 
quite purposeful in their interactions with the 
various etext affordances. They engaged in a 
social relationship with the pedagogical agents, 
closely watching their actions and conversing 
with them as they tried out the read aloud option 
and responded to the strategy prompts. Across 
several studies, Dalton and colleagues explored 
how students used varied response options 
within the etexts, including visual  multiple 
choice, written multiple choice, audio-recording, 
typing, interactive word webs, and American 
Sign Language video. While they did not test the 
differential effect of multiple modes of expres-
sion on student learning, data from observations 
and student interviews suggested that choice 
and variety were important to students, especially 

when they needed to persist with challenging 
text. Arguing that the whole is more than the 
parts, Dalton et al.  (  2011  )  suggest that students 
are able to engage productively with etexts 
enhanced to support text access, strategic read-
ing, and vocabulary learning. In designing the 
RTL etexts, we integrated Dalton and colleagues’ 
etext research with Palincsar and colleagues    
research on students’ learning from science note-
books and hands-on science investigation to 
investigate the role of interactive graphics and 
pedagogical agents in supporting children’s 
understanding of science etext. We predicted that 
children would bene fi t from reading etext with 
pedagogical agents that served as learning com-
panions, modeling both thinking and actions as 
they interacted with animated diagrams. We also 
predicted that diagram animations explicitly con-
nected to the prose and opportunities to manipu-
late the diagram to pursue questions would be 
helpful to students’ learning and engagement 
with challenging science text.  

   Theoretical Framework for Supported 
etext Design 

 There is a growing research base demonstrating 
the positive learning effects of supported etext and 
multimedia learning (for reviews, see Dalton & 
Proctor,  2008 ; Mayer,  2005  ) . With regard to etext, 
McKenna and Zucker  (  2009  )  suggest that 
Stanovich’s  (  1980  )  interactive compensatory 
model of reading provides a theoretical founda-
tion for the design of ebook features. The interac-
tive compensatory model of reading emerged from 
Stanovich’s close studies of how children with 
varying degrees of competence—speci fi c to word 
recognition—made use of context in interpreting 
text. Prior to the studies by Stanovich and his 
 colleagues (e.g., Stanovich, West, & Feeman, 
 1981  ) , it was hypothesized that better readers 
(de fi ned as readers who were more  fl uent with 
word recognition) paid more attention to context 
(i.e., the words surrounding challenging words or 
the topic of the text) to support their reading. 
However, Stanovich and his colleagues found 
just the opposite; the word recognition of more 
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successful readers was, in fact, less in fl uenced by 
context. The interactive compensatory model that 
arose from their empirical studies argued that 
how contextual variables interacted with reading 
skill depended on the level in the processing sys-
tem that context was affecting. While other schol-
ars (e.g., Rummelhart,  1977  )  were already 
propounding an interactive model of reading 
 suggesting that readers draw on multiple levels 
of text processing (e.g., using prior knowledge 
of the topic, using semantic—or vocabulary—
knowledge, using knowledge of syntax) to con-
struct the meaning of text, Stanovich elaborated 
on this model by suggesting that limitations at 
any level of text processing could be compen-
sated for by reliance on other levels of text 
processing. 

 A second theoretical perspective that under-
girds our work is Kintsch’s construction–integra-
tion model (Kintsch,  1988  ) . This model draws a 
distinction between the  textbase  and the  situation 

model . The textbase refers to the written words 
that are typically organized into sentences, para-
graphs, and higher-order discourse units. The 
situation model, in contrast, refers to the meaning 
of the text that arises from the integration of the 
textbase with the reader’s prior knowledge and 
goals. For most readers, constructing the textbase 
is much less a problem than is the process of con-
structing a good situation model. While the text is 
typically rich with resources to support the con-
struction of the textbase (e.g., the organization of 
the words into sentence, text structure, graphic 
aids), the construction of the situation model is 
dependent upon a broader array of factors, includ-
ing each individual’s background knowledge, 
personal experiences, interests and purposes for 
reading. Furthermore, a “good” situation model 
must re fl ect the textbase.  

   The RTL Program of Research: 
Summary of Study One 

 These theoretical models set the stage well for 
thinking about the role of technology in support-
ing reading comprehension to the extent that etext 
offers multiple affordances that readers can draw 

upon depending upon their reading pro fi les; if 
students struggle with word recognition, they can 
use text-to-speech features to support their read-
ing; if they struggle with the semantic demands 
of text, they can use synonym  fi nders or linked 
glossaries to support their reading; and, if they 
are challenged by impoverished prior knowledge 
regarding a topic, the etext environment can be 
constructed in such a fashion that the reader can 
engage in activity that will support knowledge 
building as they read. 

 In our program of research, we were interested 
in how children would make sense of the etexts 
and monitor their comprehension if we of fl oaded 
some of the cognitive processing associated with 
text-based features that typically function as 
gatekeepers in reading. For example, many strug-
gling readers lack the word recognition and 
 fl uency levels required to read academic texts 
with deep understanding. Therefore, we included 
a text-to-speech tool (TTS) that allows students 
to have words, sentences or passages read aloud 
with synchronized highlighting, and which 
offered them the option to customize their etext 
by choosing the font size, the voice of the narra-
tor, and the rate of narration. We hypothesized 
that struggling readers would bene fi t from TTS if 
it—in fact—partially of fl oaded word recognition 
demands, thereby increasing cognitive capacity 
for developing understanding. 

 While we predicted that TTS would not be 
particularly useful to typically achieving readers, 
we anticipated that a second type of text-based 
processing support—multimedia vocabulary 
hyperlinks—would support both typically achiev-
ing and struggling readers’ comprehension of 
these vocabulary intensive texts. Several words 
per screen of etext were hyperlinked to a multi-
media glossary item that students could access by 
clicking on the link. Again, we predicted that this 
text-based scaffold would have a direct effect on 
students’ vocabulary learning and an indirect 
effect on their overall understanding of the text. 

 Study one was designed as a think-aloud study. 
The participants were 43 ethnically diverse  fi fth-
graders, including 21 typically achieving readers 
and 22 struggling readers (i.e., students who 
scored one-standard deviation below the mean on 
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the Gates MacGinitie Reading Achievement 
Test). Students read both a narrative and two 
informational etexts. The narrative was a Native 
American “pourquoi” tale, “How Coyote Stole 
Fire” written by L. Poniatowski (CAST, Inc). The 
tale had a strong plot with a clear problem–solu-
tion, characters with explicit traits, and a richly 
detailed setting. Each screen of text included an 
illustration that communicated content that was 
important to the story. The two informational 
texts were written by our colleague, Shirley 
Magnusson, who is a science educator. Given the 
prominent role that prior knowledge plays in text 
comprehension, we chose to feature one science 
topic—light—across the two texts. One text 
focused on the refraction of light in creating rain-
bows and the second focused on how light enables 
us to see. Both etexts included features character-
istic of science text: (a) The texts began by intro-
ducing a phenomenon (the presence of rainbows 
and the need for light to see), (b) the texts pro-
ceeded to explain these phenomena, accompa-
nied by evidence in support of the explanation, 
and (c) the prose was accompanied by graphics 
that were integral to coming to a complete under-
standing of the ideas in the text. Icons signaled to 
the students when they were to stop and share 
their thinking with the researcher who sat beside 
them; there were at least three stopping places on 
each screen. 

 While both the struggling and typical readers 
showed evidence of conceptual learning from the 
informational texts, the struggling readers derived 
less from their interactions with the texts than did 
the typical readers. To investigate possible expla-
nations for this difference, and to develop a pro fi le 
of the text–reader interactions of these two groups 
of readers, the think-aloud data were coded 
guided by the following question:  How  did 
 children comprehend the texts? That is,  what 

resources did they bring and what processes did 

they employ ? Through an iterative process of 
working with transcripts of struggling and typical 
readers for the two informational and one narra-
tive etexts, we developed a coding scheme that—
at the broadest level—included three categories:
    1.     General codes  (such as no response, response 

not interpretable).  

    2.     Comprehension Monitoring  codes indicating 
that the reader attends to their comprehension 
of the text (e.g., rereads, makes a statement 
indicating general lack of understanding, or 
makes a statement regarding a speci fi c point 
in the text that is not understood).  

    3.     Comprehension Fostering  codes re fl ecting 
attempts on the part of the reader to construct 
the meaning of the text, by, for example, para-
phrasing the text or describing some feature in 
the text. Not all comprehension fostering 
moves were productive however; there were 
moves, such as inaccurate paraphrases that 
were not productive means of comprehension 
fostering. Given our interest not only in the 
students’ sense making of continuous text, 
(“horizontal” integration), but also their 
engagement in “vertical” integration of the 
text, we also coded each comprehension fos-
tering move to identify: (a) Intratextual moves 
(when the reader indicated that he or she was 
processing information across the larger text), 
and (b) moves that indicated the use of infor-
mation outside the text. These moves were, in 
turn, coded to re fl ect whether the reader was 
working to construct the meaning of key ideas 
in the text, or of ideas that were not central to 
the text.     
 To summarize key  fi ndings, both struggling 

and typical readers engaged in many more 
 comprehension monitoring and comprehension 
fostering moves when reading the narrative text 
than when reading the informational text. 
Furthermore, typical readers engaged in a 
signi fi cantly higher percentage of comprehension 
fostering and monitoring moves when reading 
the informational texts than did the struggling 
readers; speci fi c examples included: evaluating 
ideas, making connections within and outside the 
text, and integrating text information. In general, 
students, regardless of reading achievement, 
tended not to connect or integrate graphics with 
other sources of information, suggesting this may 
be an unfamiliar skill for fourth-grade students. 
While it is less important for narrative, where the 
graphic seldom carries critical information that is 
not conveyed in prose, this is not the case for 
informational text, where graphics often carry 
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unique information that is integral to knowledge 
building and comprehension (Lemke,  2004  ) . This 
 fi nding, in particular, in fl uenced the design of the 
etext versions that we investigated in Study two 
(reported below). In addition, identifying and 
using a through-way in the interpretation of the 
text, even if the child did not have an accurate 
interpretation of the text, was more apparent in 
the reading of the narrative than expository text. 
That is, students who pursued ideas in their read-
ing of the narrative (e.g., a character’s motivation, 
or the unfolding of a series of events), were not 
observed to pursue ideas (e.g., how scientists 
have studied light, how ideas about the causes of 
color have changed over time), in their reading of 
the informational texts. This  fi nding shaped our 
thinking about we could design etexts to support 
students to manipulate the text to enhance their 
sense-making with the text.  

   The RTL Program of Research: Critique 
and Summary of Study Two 

 The results of Study One informed the design of 
Study Two, which was an experimental study to 
investigate the effects of learning in one of three 
versions of the digital environment that culmi-
nated from the descriptive work described above. 
The three versions featured the same prose and 
graphics and addressed the topic of how our eyes 
use light to see (including: the re fl ection of light, 
the functioning of the eye, and how we see color). 
Version 1, which we labeled, the  static  version, 
offered text-to-speech and embedded vocabulary 
support. Version 2, the  interactive diagram  ver-
sion, contained the same supports as the static 
version; in addition, students could access a 
 prose–diagram interaction feature  (PDI) that 
would animate the graphic that corresponded 
with information presented in the prose; further-
more, students in this condition were directed to 
use a  diagram manipulation feature  (DM) to 
explore ideas that were presented in the prose. 
Version 3, the  interactive diagram/coaching  ver-
sion, contained the same features present in 
Version 2 and was further enhanced with the 
addition of two animated pedagogical agents, 

who provided both procedural and conceptual 
support. The procedural support was directed at 
using the features optimally, while the conceptual 
support was designed to provide metacognitive 
information as the agent shared his    or her think-
ing about the information that was presented in 
the environment. (See Fig.  34.1  for a sample 
screen shot from the etext used in this study).  

 There were three questions guiding the experi-
mental study: (1) What are the effects of using 
digital science text with interactive diagrams and 
pedagogical agents on students’ vocabulary and 
concept knowledge?; (2) How do the effects vary 
for struggling readers versus their typically 
achieving peers?; and (3) How do student learning 
outcomes relate to their use of support features? 

 A total of 70  fi fth-grade participants were 
assigned to one of three versions of the environ-
ment. One advantage of our method is that we 
yoked students based on a norm-referenced mea-
sure of reading comprehension and a researcher-
designed assessment of subject-matter knowledge, 
and then randomly assigned them to one of the 
three conditions. This resulted in equivalent 
groups, at least as established by two indicators 
that are known to predict text comprehension 
(vocabulary knowledge and prior knowledge). 
A weakness of this approach is that we knew 
nothing about the participants’ facility with—or 
interest in—learning in a digital environment, 
which might also be predictive of one’s perfor-
mance in this environment. 

 We conducted the experimental study as a 
researcher-implemented intervention; that is, 
a researcher sat with each child and—following 
a prescribed protocol—monitored the child’s 
activity in the environment. The strength of 
this approach is that the investigators were able 
to gather extensive information regarding the 
 students’ engagement and activity in the environ-
ment; in addition, the researchers were able to 
scaffold the child’s efforts to use the environment 
productively (were it necessary to provide sup-
port). Furthermore, one of the tasks that we asked 
the students to engage in was to respond to a writ-
ing prompt on most screen pages; children could 
elect to have the investigator enter their responses 
if they were concerned about the writing demands. 
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None of this would have been possible if we had 
conducted this as a classroom-based intervention. 
On the other hand, the trade-off is that this was 
not a study of students’ spontaneous use of the 
environment and we were not able to learn how 
the environment would lend itself to classroom 
use by large numbers of students. The  fi rst trade-
off is relevant because one of the dilemmas that 
designers confront is the extent to which they 
extend an invitation to the user versus require the 
user to interact with the environment in particular 
ways. Given the phase of the development work, 
we believed it was important to learn what was 
possible if the user deployed the system in opti-
mal ways. 

 Another methodological decision we made, 
again in the interest of optimizing the use of the 
environment, was to include an initial training 
session in which students learned how to use the 
various support features in a sample tutorial mul-
timedia text on optical illusions that we designed 

speci fi cally for this purpose. At the end of the 
training session, and prior to beginning the ses-
sions in which the students used the environment, 
they were provided iconic representations of each 
feature and were asked to describe the feature. If 
a student was unsure or inaccurate in his or her 
recall of the feature’s purpose and functionality, 
we reviewed this information. We regard this as a 
productive aspect of our design. This step pro-
vided us with information about the ease with 
which children acquired an understanding of the 
environment and its supports; it also ensured that 
our ability to assess the usefulness of the environ-
ment was not impeded by children’s challenges 
with the tools. 

 All researchers are confronted with decisions 
about what to measure. This is both a theoretical 
and pragmatic challenge. It is a theoretical chal-
lenge to the extent that the researcher hypothe-
sizes the relationship between the activity of the 
learner and the potential outcome of that activity; 

  Fig. 34.1    This screenshot illustrates the investigate 
view.  First, the student clicked on the paint tubes to color 
one block dark grey, and the other block light grey. Then, 

she clicked on the light source and observed the anima-
tion to learn how light interacts with differently colored 
objects.       
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this hypothesis guides the choice of what to mea-
sure. Measurement is a pragmatic challenge 
because time demands call for economical 
choices. We believe that our approach to mea-
surement was a strength in our method, although 
there are revisions we would make in subsequent 
research. One advantage of our approach is that 
we designed an array of proximal and distal mea-
sures. The most proximal measure, intended to 
inform our understanding of the use of the envi-
ronment, was an  event usage tracker ; features 
tracked included: accessing the glossary, syn-
onyms, highlighting, and prose-diagram integra-
tion. This measure also documented the time that 
the student spent with each page (screen) of the 
environment. This measure enabled us to then 
analyze changes in vocabulary and content-
knowledge scores in relationship to the use of the 
features. 

 Another measure on the proximal end of the 
continuum of measures were the responses that 
students made to the writing prompts that were 
embedded within the system; these prompts were 
designed to assess the children’s understanding 
of the key ideas on each screen; we designed 
these prompts to require the students to apply the 
information that they had been introduced to on 
that screen. 

 Moving along the continuum to more distal 
measures, we included a pre- and post-assess-
ment of  content-based subject-matter knowledge  
and  content-based vocabulary knowledge.  Both 
of these were multiple-choice, researcher-
designed, criterion-referenced measures. The 
strength of the design of these measures is that 
they could be scored easily and reliably; the limi-
tation, of course, is that this format allows little 
access to children’s thinking. One way to 
strengthen the use of these items would have 
been to include a think-aloud component, asking 
children to share with the researcher what they 
were thinking about as they considered each 
choice. 

 Finally, once students had completed the post-
assessments, we included a  post-reading inter-

view . This interview was designed in the spirit of 
a “survey of consumer satisfaction.” We were 

eager to learn what value the children ascribed to 
the various features; in fact, we asked the children 
to rate the features in terms of their helpfulness 
and to recommend revisions or additions to the 
environment. We regard this step as an advantage 
in our method; the students enjoyed taking on this 
role as informants and—in hand with their actual 
use of the environment—we gathered additional 
information useful to redesign efforts. 

 The  fi ndings from Study Two can be summa-
rized in the following manner. The students in 
the interactive conditions (interactive diagram 
and interactive diagrams + pedagogical 
agents) signi fi cantly outperformed their peers 
in the static condition, demonstrating the bene fi t 
of going beyond providing typical hypertext 
access supports, such as read aloud functional-
ity and glossary hyperlinks, to providing sup-
ports that make explicit linkages between prose 
and diagram information and which can be 
manipulated to reveal relationships and pro-
cesses conveyed in diagrams. Further, the posi-
tive results were consistent for struggling and 
typically achieving readers, suggesting that 
 fl exible supports can bene fi t students across a 
range of reading skills. The fact that struggling 
readers in the interactive conditions did not 
close the gap with their typically achieving peers 
highlights the need for additional research. To 
close the gap, struggling readers may require 
additional  support, different types of support, 
and/or more time working within supported dig-
ital environments. 

 While we did not  fi nd expected differences in 
favor of the pedagogical agent condition, this 
may have been due to our relatively small sample 
size, or may have been due to the design approach 
we employed, where we varied the type and level 
of pedagogical agent support across the screens 
so that we could explore how students responded 
to different kinds of agent support. Our observa-
tions revealed many instances where students, 
and especially those who were stronger readers, 
used the coaches productively. Clearly, more 
research is needed in this area, given the potential 
of agents to take on helpful peer learning or 
expert teaching roles.  
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   Future Research 

 In fl uenced by di Sessa’s  (  2004  )  notion of meta-
representational competence, and curious about 
the challenges upper elementary students had 
productively using graphical information, we are 
interested in developing an assessment of meta-
representational competence; such an assessment 
would aid us in determining what role metacog-
nition versus skill might be playing in children’s 
sense-making with graphics; that is, are the chal-
lenges students seem to demonstrate using and 
integrating information from the graphics a func-
tion of awareness or a function of their naivety 
regarding how to interpret graphics? 

 Spurred by the  fi nding that including agents did 
not serve to enhance the activity or learning of our 
participants, we are keenly interested in conduct-
ing further research on the productive role of agents 
and determining how those roles can be tailored to 
the pro fi les of learners; for example, in relationship 
to their prior knowledge, metacognitive awareness, 
interest in the topic, and/or graphic literacy. 

 We believe that we would learn more about 
the students’ metacognitive activity in this envi-
ronment were they to work collaboratively in the 
environment. For example, recall that the dynamic 
versions of the etext encourage the students to 
investigate by manipulating the graphics to test 
out their understanding of the ideas in the prose. 
If students were to plan these simple investiga-
tions together and recap the results of their 
inquiry, we would have a richer sense of how they 
were making sense of the ideas in the text and 
drawing upon the multiple sources of informa-
tion to construct meaning from the text. 

 Finally, a study conducted by DeFrance  (  2008  )  
encourages us to conduct more systematic analy-
ses of the use and outcome of the various features 
in this environment. DeFrance compared the 
effects of the  highlight and animate  feature in the 
RTL etexts with the use of the  manipulating 

graphics  feature, and found that, while there 
were no signi fi cant differences by condition in 
the amount of knowledge gained, there were 
signi fi cant differences in the quality of knowledge 
expressed. Transcripts revealed that understand-

ings about light and vision, expressed by those 
who used the Highlight & Animate Feature, were 
more often conceptually and linguistically “com-
plete.” That is, their understandings included both 
a description of phenomena as well as an explana-
tion of underlying scienti fi c principles, which 
participants articulated using the vocabulary of 
the text. This kind of careful, systematic, and 
close study of children’s use of these environ-
ments will support future development of etext 
environments and will also re fi ne theory regard-
ing knowledge building in these environments.      
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  Abstract 

 The ACT project is an ongoing collaboration among learning, cognitive, 
computing and biological scientists at Georgia Institute of Technology and 
Rutgers University, focusing on learning functional models of ecosystems 
in middle school science. In particular, ACT (for Aquarium Construction 
Toolkit) is an interactive learning environment for stimulating and scaf-
folding construction of Structure-Behavior-Function (SBF) models to rea-
son about classroom aquaria. Initial results from deployment of ACT in 
several classrooms with a few hundred middle school children indicate 
statistically signi fi cant improvement in identi fi cation of the structure, 
behaviors and functions of classroom aquaria as well as appropriation of 
SBF modeling by some middle school teachers for modeling other natural 
systems. In this article, we summarize and review the main results from 
ACT on learning about SBF models of ecosystems in middle school sci-
ence and describe self-regulated learning in ACT, while also looking ahead 
and outlining the design of a metacognitive ACT toolkit.      
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   Background, Motivations, and Goals    

 Modeling complex systems supports the develop-
ment of important cognitive strategies and skills 
such as monitoring, measurement, sensemaking, 
troubleshooting, explanation, prediction, diagnosis, 
redesign, and design. Thus, learning about models 
of complex systems has been recognized as a key 
idea in science education in national science stan-
dards (National Research Council,  1996  )  as well 
as local standards (e.g., New Jersey Department 
of Education,  2006  ) . 

 However, modeling complex systems is cog-
nitively challenging because such systems are 
dynamical and cyclic. Further, although some 
components of a complex system may be visible, 
many components, relations and processes are 
typically invisible. Thus, modeling complex sys-
tems challenges cognitive resources such as 
attention, memory and perception. The juxtaposi-
tion of modeling complex systems as an educa-
tional goal and the cognitive dif fi culty of 
modeling complex systems in turn poses a practi-
cal challenge for cognitive and learning sciences. 
From a cognitive perspective, major questions in 
modeling complex systems include what is a use-
ful classi fi cation of components, relations, and 
processes in complex systems; how can various 
entities in a complex system be identi fi ed in the 
vocabulary of this classi fi cation; how can the 
complex system be decomposed into subsystems 
and then recomposed from the subsystems; and 
how can all this knowledge be organized for easy 
access and use? 

 A common class of models of complex sys-
tems uses functions as abstractions for organiz-
ing knowledge of structural components and 
causal processes (e.g.,    Chandrasekaran,  1994 ; 
Kitamura, Sano, Namba, & Mizoguchi,  2002 ; 
Rasmussen,  1986  ) . In structure–behavior–function 
(SBF) models (Bhatta & Goel,  1997 ; Goel et al., 
 1996 ; Goel, Rugaber, & Vattam,  2009  )  for example, 
 Structure  refers to components of a complex 
system as well as connections among the compo-
nents;  Behaviors  describe mechanistic processes 
in the complex system; and  Functions  refer to 
abstractions that connect various structural com-

ponents and causal behaviors Representations of 
structural components and causal processes refer 
to the functions they accomplish; representations 
of functions in turn act as indices into the compo-
nents and processes that combine to accomplish 
them. 

 The ACT project is an ongoing collaboration 
among learning, cognitive, biological, computing, 
and arti fi cial intelligence scientists at Georgia 
Institute of Technology and Rutgers University, 
focusing on learning about SBF models of eco-
systems in middle school science (Goel et al., 
 2010 ; Hmelo-Silver et al.,  2011 ; Honwad et al., 
 2010 ; Sinha et al.,  2010  ) . The ACT system (for 
Aquarium Construction Toolkit) is an interactive 
learning environment for stimulating, scaffolding 
and supporting construction and use of SBF mod-
els for reasoning about classroom aquaria (Vattam 
et al.,  2011  ) . Initial results from deployment of 
ACT in many classrooms with several hundred 
middle school children indicate statistically 
signi fi cant improvement in their understanding 
of SBF models of classroom aquaria (Goel et al., 
 2010  )  as well as appropriation of the SBF meta-
models by some middle school teachers for mod-
eling other natural systems (Sinha et al.,  2010  ) . 

 In particular, we (1) summarize and review 
some of the main results on learning SBF models 
of ecosystems in middle school science, situating 
ACT in the context of learning about models of 
complex systems in science education in general, 
and (2) describe self-regulated learning in ACT, 
while also looking ahead and outlining the design 
of a metacognitive ACT tool. Although metacog-
nition and self-regulation were not major con-
cepts in our thinking when we started on the ACT 
project, they gradually permeated our analysis 
and by now have become key ideas in our plans 
for future research.  

   Supporting Learning of Functional 
Models of Complex Systems 

 Since complex systems are all around us, in 
nature as well as society, supporting student 
learning about complex systems has been recog-
nized as a key goal in science education (Sabelli, 



54735 Learning Functional Models of Aquaria…

 2006  ) . One common class of complex systems 
exhibits hierarchically organized structure 
(Simon,  1962,   1999  ) . Systems that manifest hier-
archically organized complexity typically are 
 nearly decomposable:  although causal processes 
at one abstraction level in these systems emerge 
out of interactions among components and pro-
cesses at lower levels, the interactions among 
subsystems at any level are contained and can be 
organized hierarchically. Functions are abstrac-
tions of subsystems that enable such a hierarchi-
cal decomposition. This is an important cognitive 
feature because it implies that analyzing such 
systems entails decomposing them into the appro-
priate subsystems at different levels of functional 
abstraction and understanding interactions among 
the subsystems at a given level of functional 
abstraction. 

 For the ACT project, we selected  fi sh-aquarium 
systems as the context in which middle-school 
students would learn about complex systems. 
This context was motivated in part by a growing 
focus on environmental education that necessi-
tates an understanding of coupled earth and eco-
logical systems (National Research Council, 
 1996  ) . Given recent environmental stresses across 
the globe, ecosystem understanding is fast becom-
ing a requisite for informed decision-making as 
citizens (Jordan, Singer, Vaughan, & Berkowitz, 
 2008  ) , but students often have many misconcep-
tions about ecological systems (Jordan, Gray, 
Demeter, Liu, & Hmelo-Silver,  2009  ) . 

 Working with classroom aquaria engages 
students in its design, i.e., its establishment and 
maintenance. The notions of functions of systems 
and causal mechanisms that accomplish them are 
central to the act of designing. From the perspec-
tive of designing a classroom aquarium, students 
must decompose the tank into the relevant struc-
tures and their functions. For example, students 
identify the  fi lter in an aquarium with respect to 
its role in maintaining healthy water quality. This 
may pave the way for discussion of mechanisms 
of the  fi lter in the aquarium and perhaps facilitate 
analogical reasoning about the function of 
 fi ltration in natural systems. Thus, the task of 
establishment and maintenance of a classroom 
aquarium has the potential to support deep under-

standing of causality and functionality at many 
levels of abstraction. 

 An aquarium, however, is not simply an engi-
neered system; many complex ecological pro-
cesses comprise the aquarium ecosystem. In fact, 
establishing and maintaining an aquarium system 
requires an understanding of biological, chemi-
cal, and physical properties and processes 
(Dawes,  2000 ; Stadelmann & Finley,  2003 ; 
Stansbury,  1999  ) . Once the aquarium is set up in 
a classroom, complex patterns will begin to 
emerge as nutrients and energy  fl ow, and organ-
isms compete, reproduce, and self-organize into 
complex webs of interaction. Making sense of 
these patterns requires students to make connec-
tions between functions and mechanisms. Since 
students are particularly susceptible to misrepre-
senting causality in such systems (Jordan et al., 
 2009  ) , cognitive scaffolding is particularly impor-
tant for these systems. 

 There is a growing consensus in the science 
education community that engaging students in 
authentic science means introducing them to the 
central role of models in science (Duschl & 
Grandy,  2008 ; Gilbert,  2004 ; Lehrer & Schauble, 
 2006 ; Stewart, Cartier, & Passmore,  2005  ) . 
While the word model has been applied to vari-
ety of simpli fi ed representations such as physical 
replicas, summative representations of datasets 
and “model organisms,” we use the term model 
here as shorthand for  scienti fi c  model. A scienti fi c 
model is a scientist’s interpretation of a target 
system, process or phenomenon that proposes or 
elaborates on the mechanisms that underlie it 
(   Nersessian,  2008  ) . 

 Depending on the discipline and the questions 
of interest, modeling can take a variety of exter-
nal forms: words, equations, graphs, diagrams, or 
computer code. Each of these different forms of 
modeling has its own affordances and constraints, 
and a detailed review of different modeling forms 
is beyond our scope here. The power of func-
tional modeling approaches such as SBF lies in 
the centrality of function in organizing knowl-
edge of hierarchically organized complex sys-
tems. Decomposing a system in terms of function 
can direct the modeler’s attention at the relevant 
structures and underlying mechanisms (called 
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behaviors in the SBF language) that drive the 
function. That is, this approach provides a way to 
begin to analyze a complex system into meaning-
ful subsystems each linked by their placement in 
a functional hierarchy. 

 The origin of SBF models lies in Chandra-
sekaran  (  1994  )  Functional Representation (FR) 
scheme. Goel et al.  (  2009  )  describe the evolution 
of SBF from FR. Brie fl y, (1) the structure por-
tion of an SBF model of a complex system 
speci fi es the  what  of the system, namely, the 
components of the system as well as the connec-
tions among them. (2) Behaviors specify the  how  
of the complex system, namely, the causal pro-
cesses occurring in the system. A behavior typi-
cally comprises of multiple states and transitions 
among them. The transitions are annotated by 
causal explanations for them. (3) Functions 
specify understanding of the  why  of the system. 
A function is a teleological interpretation of the 
components and processes in the system. (4) A 
component of a complex system can itself com-
prise a system and thus have its own SBF model. 
(5) The behavior of a system speci fi es the com-
position of the functional abstractions of its sub-
systems into the system functions. Kitamura 
et al.  (  2002  ) , among others, have described simi-
lar functional models of complex systems. Erden 
et al.  (  2008  )  provide a recent survey of func-
tional models of complex systems and their use 
in design. 

 Since SBF models explicitly represent func-
tions, they also differ from causal models of 
complex systems. The interactive tool called 
Betty’s Brain (Biswas, Leelawong, Schwartz, & 
Vye,  2005  )  is a good representative of the use 
of causal models in interactive learning because 
it too works in the same general domain (ecol-
ogy) and targets the same general audience 
(middle school students). The innovation in the 
system lies in transforming the role of students 
into teachers of problem-solving software 
agents (Betty). This role transformation is moti-
vational and engaging to middle school stu-
dents. The models that students help Betty 
build, however, are causal graphs, with no men-
tion of function and only implicit speci fi cation 
of structure. Although SBF models also repre-

sent behaviors in the form of causal graphs, the 
behavioral representations are grounded in the 
structure and indexed by their functional 
abstractions.  

   ACT: Interactive Construction 
of SBF Models 

 Socio-cultural theories of learning suggest engag-
ing learners in the knowledge building practices 
of scientists (e.g.,    Edelson,  1997 ). Clement 
( 2008 ) has argued that learning in science is fun-
damentally a process of model construction, cri-
tiquing and revision. The ACT project has focused 
on supporting and scaffolding interactive and 
collaborative construction of SBF models of 
aquaria. The ACT toolkit supports four tools: 
SBFAuthor, RepTools, NetLogo, and Electronic 
Notebook. (In this chapter, we describe only the 
most recent version of ACT called ACT3.) 

   Software Architecture 

 The ACT architecture is decomposed into the 
data model, which holds the current model in 
active memory, and the model view, which dis-
plays the current SBF model to the user. The 
data model is itself split into two parts: the SBF 
model and the visual model. An SBF model 
exists separately from any kind of visualization. 
It is comprised solely of nodes and connections 
between nodes. In order to preserve the simplic-
ity of the model on its own, the visual informa-
tion needed to present the model to the user is 
stored separately, linked to the SBF model by the 
names of nodes and edges. When a model is 
manipulated, the pertinent information of the 
manipulation is passed along to the appropriate 
portion of the data model: modi fi cations to lit-
eral relationships are saved in the SBF model, 
while modi fi cations to the visual layout are saved 
to the visual model. 

 The model view is broken into three primary 
parts: the Model Graph view, the Model Table 
view, and the Electronic Notebook. The Model 
Graph and Model Table will be described more in 
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the following sections. The Notebook tab pro-
vides students with a time log where they can 
write notes about model construction, observa-
tions or other pertinent information that should 
be saved along with the model. The model view 
also supports a Create Report function, which 
prints the model to a PDF  fi le for transportation 
to computers without the ACT software.  

   Model Table 

 The Model Table and Model Graph are dual 
views of an SBF model in that entering informa-
tion in one view automatically enters the appro-
priate information in the other view. Figure  35.1  
illustrates the Model Table view. The Model 
Table features three columns for Structure, 
Behavior, and Function, respectively. A structural 
component may be linked to many Behaviors 
(a one-to-many association), but a speci fi c 

Behavior is linked to a speci fi c Functions (a one-
to-one association). Adding structures to the 
Model Table automatically result in their creation 
as nodes on the Model Graph. Similarly, adding 
Functions of a component in the Model Table 
results in entries in the Model Graph through the 
component’s pop-up dialog menu. The control 
works both ways: new structures, behaviors, and 
functions added on the Model Graph automati-
cally appear on the Model Table.   

   Model Graph 

 The Model Graph is a dual view of the Model 
Table. Figure  35.2  illustrates the Model Graph 
view including the palette on the left. Model 
Graph enables students to create a portion of an 
SBF model represented as a graph. The nodes in 
the graph represent biotic and abiotic components 
in the structural part of the mode. The links in the 

  Fig. 35.1    Model table view       
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graph represent relations among the components. 
Although the annotations on the links were 
intended to capture behaviors, in practice we 

found that students annotated the links with sev-
eral kinds of relations. Dialog boxes associated 
with the nodes (illustrated in Fig.  35.3 ) enable a 
student to enter information about the functions 
of the structural components represented by the 
nodes. Figure  35.4  illustrates a Model Graph of 
an SBF model actually constructed by a student 
in a seventh grade classroom.     

   RepTools 

 ACT also incorporates the RepTools. RepTools 
was designed to accompany a physical aquarium 
installed in each classroom. It provides digital tools 
that feature function-centered hypermedia from 
which students can read about the structures, 
behaviors, and functions occurring within an aquar-
ium system (Liu & Hmelo-Silver,  2009  ) . 
Figure  35.5  illustrates a screen shot from the 
hypermedia in RepTools. RepTools also includes a 
micro and macro-level NetLogo-based simulations 
(Wilensky,  1999 ; Wilensky & Resnick,  1999  )  

  Fig. 35.3    Dialog for adding details to the structure in the 
model graph       

  Fig. 35.2    Model graph view       
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developed by experts. The macro-level simulation 
enables students to test ideas about  fi sh spawning 
and water quality, and the micro-level simulates 
the nitri fi cation process that occurs within an 
aquarium as part of its biological  fi ltration (Hmelo-
Silver, Liu, Gray, Finkelstein, & Schwartz,  2007  ) . 
Figure  35.6  illustrates the screenshot of a NetLogo 
simulation in ACT3.   

 Finally, ACT3 contains an Electronic 
Notebook for recording notes. In combination, 
this suite of tools enable students to not only test 

ideas about the aquarium system but also gain 
insight into the processes and outcomes that 
occur at multiple levels within the aquarium.   

   Learning SBF Models in the Classroom 

 Since 2008, ACT has been used by several hun-
dred middle school students in central New 
Jersey. In this chapter, we describe pre- and post-
test results in four classrooms obtained in 2009. 

  Fig. 35.4    Model graph of the nitri fi cation process designed by a seventh grade student using ACT3       

 



  Fig. 35.5    A screen shot of function-oriented hypermedia in RepTools       

  Fig. 35.6    A screen shot from a NetLogo simulation in ACT       
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   Learning Context 

 Overall two hundred and seventy three (273) stu-
dents participated in this 2009 study from four 
middle schools classrooms in central New 
Jersey—three from seventh grade and one from 
the eighth grade. In each case, the curriculum unit 
pertained to learning about ecosystems and lasted 
from 1–2 weeks. Their science teachers integrated 
the unit on ecosystems as a part of their regular 
science instruction. Prior to beginning the study, 
none of the students were familiar with SBF as a 
modeling tool for complex systems. All four 
teachers attended an evening workshop where they 
were introduced to these digital tools prior to 
implementation in the classroom. To prepare for 
the unit, the research team worked with the coop-
erating teachers to set up aquariums in the class-
rooms. Students used ACT on laptops while 
working in small groups, which varied from 2 to 6 
students per computer, to generate SBF models.  

   Classroom Instruction 

 The four science teachers appropriated the cur-
riculum and implemented it based on their indi-
vidual scienti fi c knowledge and teaching styles. 
While all the teachers used SBF modeling to 
organize their thinking about complex systems, 
there were variations within actual implementa-
tions of the curriculum. 

   SBF Introduction 

 Two teachers decided to begin the instruction 
with a discussion on the aquarium and focus on 
SBF as an initial activity using the ACT Model 
Table. The other teachers adopted the reverse 
strategy. Their introduction of the unit began with 
description of SBF while illustrating it in terms 
of the students’ immediate environment (for e.g., 
the classroom as a complex system). This top-down 
effect was intended for the students to think about 
the SBF from a micro to macro level.  

   Modeling Aquatic Ecosystem 

 While some teachers emphasized the importance 
of the models as a means to represent ideas in 

summative fashion, other teachers chose to use 
the modeling task throughout implementation of 
the curriculum as a means to continually formu-
late and re fi ne ideas. Additionally, some teachers 
chose to have students model the entire system, 
while other teachers had students generate a 
model based on a portion of the system that cor-
responded quite closely to one of the NetLogo 
simulations. 

 Again, Fig.  35.4  illustrates a model graph cre-
ated in ACT by a seventh grade student as part of 
an SBF model-construction activity. This  fi gure 
shows one of the systems frequently modeled in 
the classrooms: the nitri fi cation process described 
previously. Structures are shown as nodes (purple 
for biotic structures, blue for abiotic structures), 
while relations link together structures that 
directly and relevantly in fl uence one another. 
Although not depicted in the  fi gure, inside the 
structure boxes are statements about a compo-
nent’s function as indicated in the dialog box of 
Fig.  35.3 ; these functions can also be seen in the 
Model Table in Fig.  35.1 . In this way, students 
are encouraged to recognize and explicitly state 
the functions of the system.   

   Pre- and Posttest Results 

 To assess the effectiveness of the SBF-driven cur-
riculum and technology, identical tests were 
administered before and after engagement in the 
aquarium unit. These tests asked about the 
structures, behaviors, and functions of the aquaria, 
and students were also given problems to solve 
regarding aquarium processes. To examine learn-
ing with respect to SBF, we coded the pre- and 
posttests using an SBF coding scheme (Hmelo, 
Holton, & Kolodner,  2000  ) . Structural compo-
nents, such as  fi sh, plants,  fi lter, were coded as 
structure. A reference to the mechanisms of how 
the components worked was coded as behavior. 
Example behaviors include absorbing carbon 
dioxide and producing oxygen through photosyn-
thesis. Reference to the outcome of a behavior 
was coded as function. For example, a function of 
the  fi lter could be to clean and circulate water. All 
tests were coded blind to condition by one rater. 
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 In this preliminary study, the objective was to 
ensure that SBF modeling in the ecosystem unit 
described here is successfully increasing under-
standing of functions and behaviors of classroom 
aquaria. Since students already are generally 
familiar with the structure of aquaria, increases 
in understanding of structure are considered a 
baseline for comparison of how the curriculum 
enhances understanding of functions and behav-
iors. Table  35.1  shows initial results from the 
pre- and posttests collapsed across the four mid-
dle school classrooms consisting of 273 students. 
The  fi rst number in the  fi rst two rows refers to 
the Mean and the second number in parentheses 
to the Standard Deviation. As indicated by the 
effect sizes, gains in structural understanding 
were small, while we saw moderate effect sizes 
for increase in understanding behaviors and 
functions. These tests suggest that the ecosystem 
curriculum unit and SBF modeling scaffolded by 
the ACT tool effectively increased understand-
ing in terms of the deeper understanding of func-
tions and behaviors of aquaria. Thus, these 
results replicate the  fi ndings from our initial 
study using ACT2.   

   Summary of Other Results 

 In addition to pre- and posttests, we have collected 
and analyzed several other kinds of data. For 
example, we have used an SBF coding scheme to 
analyze written answers by students to speci fi c 
questions. We have found (Hmelo-Silver et al., 
 2011  )  that partly as a result of SBF modeling in the 
class (scaffolded in part by the ACT system) stu-
dents are able to draw connections between differ-
ent levels of abstraction in the aquaria ecosystem. 

 We have also examined (Honwad et al.,  2010  )  
drawings generated by middle school students as 
part of their SBF modeling (scaffolded in part by 
the ACT software). Building from several years 
of data, there is preliminary evidence that the 
ecosystem curriculum, SBF modeling and the 
ACT tool helps draw students away from focus-
ing on linear relationships and visible compo-
nents, and toward identifying invisible components 
and nonlinear relationships. 

 In addition, we have examined (Sinha et al., 
 2010  )  increase in understanding of SBF model-
ing in some of the middle school teachers with 
whom we work. One of the teachers in the initial 
study took the initiative to appropriate SBF mod-
eling for teaching an entirely different domain: 
the human digestive system. In this analysis, we 
examined the growth of the teacher’s understand-
ing of SBF modeling over a few years, culminat-
ing in her eventual transfer of the SBF meta-model 
to an entirely new domain, without any prompt-
ing from us as researchers.   

   Metacognition and Self-Regulated 
Learning in ACT 

 Over the last several years, there have been sev-
eral efforts at using interactive learning environ-
ments to support self-regulated learning. For 
example, Azevedo and colleagues have examined 
the cognitive strategies students use to learn about 
complex systems from hypermedia and how 
hypermedia can be designed to facilitate self-
regulated learning (Azevedo, Guthrie, & Seibert, 
 2004 ; Azevedo & Hadwin,  2005  ) . Similarly, 
Aleven and colleagues have studied how students 
seek help in interactive tutoring systems and how 
help systems can be designed to enable better 
self-regulated help-seeking behavior (Aleven, 
McLaren, Roll, & Koedinger,  2004 ; Aleven, 
Stalh, Schworm, Ficher, & Wallace,  2003  ) . 

 According to Azevedo  (  2005  ) , an interactive 
learning environment as a metacognitive tool 
should require students to make decisions about 
cognitive strategies, support students’ cognitive 
and metacognitive processes, support task-, 
domain-, or activity-driven inquiry, and reside in 

   Table 35.1    Pre- and posttest results   

 Structure  Behavior  Function 

 Pretest mean 
(SD) 

 8.08 
(2.624) 

 3.80 
(2.107) 

 4.78 
(2.924) 

 Posttest mean 
(SD) 

 9.33 
(2.347) 

 6.20 
(2.766) 

 8.12 
(3.241) 

  t (273)  5.60 a   11.65 a   12.55 a  

 Effect size  0.24  0.44  0.47 

   a All  p  < 0.05  
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a context in which tutors and peers can serve as 
external regulating agents. ACT clearly meets 
several of these requirements. For example, stu-
dents’ interaction with ACT typically is inquiry-
driven, often starting with a question that a 
teacher may pose. During the course of learning, 
students may additional questions that drive parts 
of their subsequent reasoning. Further, students 
using ACT are confronted with the need to select, 
organize and combine several cognitive strategies 
to learn many different concepts and skills. They 
must learn how to use the variety of tools com-
prising ACT (SBFAuthor, RepTools, NetLogo, 
Electronic Notebook); they must learn about SBF 
modeling; they must learn about aquaria, and, 
more generally, about complex systems;  fi nally, 
they must learn about the scienti fi c method and 
how to apply it to understanding a complex situ-
ation. Furthermore, students using ACT receive 
feedback from their teachers as well as from the 
other members of their collaborative teams. 

 Nevertheless, questions arise as to what sorts 
of metacognitive reinforcement ACT could itself 
provide and how? ACT, like any other software 
tool, provides, usually negative, feedback to users 
if they misuse it: such feedback takes the form of 
error messages. Could ACT also provide positive 
feedback? In fact, ACT already provides several 
forms. Most simply, ACT comes supplied with a 
small library of SBF models. This library pro-
vides several examples from which the students 
can begin construction of their own models, 
should a teacher chose to make them available. 
Furthermore, learning about aquaria is supported 
by the hypermedia content available via ACT’s 
built-in Web browser and RepTools functionally 
indexed hypermedia content. 

 At a much higher level, a NetLogo simula-
tion of an SBF model in ACT2 (Vattam et al., 
 2011  ) , when compared against student expecta-
tions or existing data, can serve a normative 
role in student learning. While seeing that their 
SBF model fails to perform up to their expecta-
tions can serve as negative reinforcement to 
some students, trying to modify the model to 
match expectations, can act as an incentive. 
Finally, learning about how science is typically 
done is indirectly supported by the complemen-

tary roles played by the theoretical and experi-
mental parts of ACT2. Empirically, students 
can use ACT to record data from a physical 
aquarium, if one is available, and they can run 
experiments using NetLogo.Student theories 
take the form of SBF models. Falsi fi ability is 
provided when a model is auto-matically turned 
into a simulation and then run. Thus, ACT2 
clearly affords self-regulated learning. 

 Unfortunately, as we discussed in Sect.  4 , our 
middle school students did not use ACT2 the 
way we had intended. Apparently they found it 
too dif fi cult to construct the detailed SBF models 
in a 1- or 2-week curriculum unit on ecosystems 
that are needed for purposes of simulation. The 
simpler SBF models in ACT3 do not permit 
simulation. Nevertheless, ACT3 too affords self-
regulated learning as students must make 
decisions about how to classify objects that they 
are creating. This kind of collaborative decision 
making is another manifestation of self-regulated 
learning (Roschelle,  1996  ) . From the early use of 
ACT in classrooms, our observations have indi-
cated that the tool has forced teachers and stu-
dents alike to grapple with their understanding of 
structures, behaviors, and functions of complex 
systems. Use of ACT3 leads to discussions about 
how to classify an object or which column in the 
Model Table the object goes into, as the students 
work in a joint space to collaboratively construct, 
revise, and re fi ne their models. 

   Towards a Metacognitive ACT 

 In the next version of ACT, tentatively named 
EMT for Ecological Modeling Toolkit, we intend 
to provide more active metacognitive reinforce-
ment in the form of guides and critics. A  guide , 
sometimes also called a  wizard , is a user-interface 
mechanism to provide the ability to describe a 
complex activity in the form of a series of steps. 
Individual steps enable the user to answer speci fi c 
questions, enter parameters, or select options. 
Usually, only meaningful interactions are allowed, 
so reinforcement takes the form of a successfully 
speci fi ed activity. Examples of guides are easily 
found in commercial software, such as the  process 



556 A.K. Goel et al.

of importing data from a text  fi le into Microsoft 
Excel. 

 While guides are proactive, critics are reactive. 
A  critic  is a software device that spontaneously 
provides feedback to the user when some user 
action fails to conform with one of a con fi gurable 
set of rules. An example of critics can be found in 
the Argo/UML software modeling tool (Robbins 
& Redmiles,  1999  ) . In Argo/UML, a subset of 30 
rules can be selected for critiquing as users build 
UML models. Criticisms take the form of alert 
messages at the time that a rule is violated. 
However, in other systems, interactions can also 
take the form of questions, which, while indicating 
that a problem exists, encourages users to  fi gure 
out the nature of a problem themselves. 

 We plan to add guides and critiques to EMT. 
To do this requires that EMT have a metacogni-
tive architecture. By metacognitive, we mean that 
EMT itself is aware of what a user is trying to 
accomplish, can notice any deviations and pro-
vide appropriate feedback. We will build on the 
REM metacognitive architecture that is capable 
of diagnosing and repairing faults in software 
agents (Murdock & Goel,  2008 ,  2001 ,  2003 ). 

 The major element of EMT’s metacognitive 
architecture will be an SBF model of SBF model-
ing; that is, a meta-model. With respect to sup-
porting critics, the SBFAuthor tool will be 
intended to report on all user changes to a model 
being constructed. The changes will be compared 
with EMT’s expectations of the form such a 
model should take, and any deviation will be 
reported. Like Argo/UML, the exact rules to be 
enforced will be con fi gurable, as will the form 
that the feedback messages take. 

 The SBF meta-model can also support guides. 
That is, by its very nature, the meta-model 
speci fi es the form of any constructed model. 
A guide can then traverse the meta-model sug-
gesting to the user appropriate next steps. Note 
that different traversal strategies (e.g., top-down 
and bottom-up modeling) and allowed deviations 
are possible, and EMT’s guides will be 
con fi gurable to take advantage of this freedom. In 
this architecture, the user initiates a request. The 
guide recognizes the request and initiates a dia-
log with the user. The dialog structure is based on 

the SBF meta-model. The dialog consists of a 
series of steps, each of which may communicate 
with the user and the editor. 

 Note that several interesting research questions 
arise from the metacognitive approach. While 
experience with Argo/UML was positive, apply-
ing critics to more abstract subject matter, such as 
the scienti fi c method, will be challenging. Also, 
the degree of speci fi city in student feedback 
needs to be tunable to support different teaching 
styles and students’ backgrounds. Finally, there 
will no doubt be technical challenges in applying 
the metacognitive approach across a suite of sep-
arately built tools. We should think that the work 
of Aleven et al.  (  2004,   2003  )  should provide a 
basis for addressing some of these questions. In 
particular, their analysis of how students use (and 
abuse) helps in interactive learning systems 
should inform our design of the guides and critics 
in metacognitive EMT.   

   Summary and Conclusions 

 In this chapter, we have presented a brief review 
of the ACT project. Our conclusions are corre-
spondingly large-grained; our technical papers 
describe more  fi ne-grained analysis of the results 
from the ACT project. Here, we summarize our 
main conclusions in the form of answers to ques-
tions that our colleagues in the learning and cog-
nitive sciences often have asked us:
    1.     What do you mean by a complex system?  The 

term “complex system” is ambiguous and 
open to multiple interpretations. We use the 
term to refer to hierarchically organized com-
plex systems that nearly decomposable. In 
such systems, while causal processes at one 
abstraction level in these systems emerge out 
of interactions among components and pro-
cesses at lower levels, the interactions among 
subsystems at any level of abstraction are con-
tained and can be organized hierarchically.  

    2.     What do you mean by a model?  Like the term 
complex system, the term “model” too is 
ambiguous and can have multiple interpreta-
tions. We use the term model to signify a 
scienti fi c model, i.e., a scienti fi c interpretation 
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of a target system that proposes mechanisms 
underlying the system. Since a model provides 
a mechanistic explanation of the system, a 
model is fundamentally an explanatory 
construct.  

    3.     What is a function and a behavior in an SBF 

model? How does an SBF model differ from 

other mechanistic causal models?  The term 
behavior in an SBF model refers to a mecha-
nism. The term function refers to an interpre-
tation of a mechanism (or behavior). Functions 
provide a scheme for decomposing a hierar-
chically organized system into subsystems. 
SBF models represent functions explicitly, 
and use them as indices into causal mecha-
nisms to organize knowledge of hierarchically 
organized systems.  

    4.     How may a science curriculum teach about 

complex systems?  Our experience with the 
ACT project suggests four dimensions of 
learning about complex systems (the 4Cs): 
 cognition, concepts, connections,  and  content . 
First, learning about complex systems pro-
vides opportunities for learning about cogni-
tive strategies such as decomposing a system 
into subsystems at various level of abstraction 
and then composing them into a functional 
model. Second, learning about complex sys-
tems foregrounds important concepts such as 
mechanism, abstraction, hierarchy, feedback, 
cycles, and emergence. Third, learning about 
complex systems enables understanding of 
connections among different elements such as 
structural components and causal mecha-
nisms, making connections among mecha-
nisms at different scales, and noticing 
similarities between complex systems in 
different domains. Finally, we believe that 
signi fi cant portions of science curriculum can 
be recast as learning about complex systems.  

    5.     What are some opportunities for metacogni-

tion and self-regulation in learning about 

functional models of complex systems?  The 
 fi rst three of our 4C’s— cognition, concepts , 
and  connections —not only provide ample 
opportunities for metacognition and self-
regulation in learning about functional models 
of complex systems, but also provide some 

challenges that appear unique to functional 
models of complex systems. For example, on 
the one hand, learning about functional mod-
els provides opportunities for learning about 
the cognitive strategies of model construction, 
model use, model evaluation, and model revi-
sion. On the other, it also provides the cogni-
tive challenge of learning about decomposing 
a complex system into subsystems, and about 
recognizing connections among structural 
components, causal mechanisms, and func-
tional abstractions.  

    6.     In what ways does the ACT tool support self-

regulated learning?  Although metacognition 
and self-regulation were not major concerns 
in our initial design of the ACT system, on 
re fl ection it appears that ACT supports self-
regulated learning in several ways, some of 
which worked well in practice and others 
that we need to rethink. For example, stu-
dents must learn how to match the variety of 
tools comprising ACT to different tasks; they 
must learn about SBF modeling; they must 
learn about aquaria, and, more generally, 
about complex systems;  fi nally, they must 
learn about the scienti fi c method and how to 
apply it to understanding a complex situa-
tion. ACT presently provides help in the form 
of a video tutorial, a library of already built 
SBF models, and hypermedia content through 
RepTools.          
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    Introduction 

 In the Netherlands, as in other countries, students in 
elementary education often learn in small groups in 
computer-based learning environments (CBLEs), 
such as the Internet, e-learning, and CSCL envi-
ronments and games. This is important because 
students will be learning in small groups with 
computers throughout their life (Simons, van der 
Linden, & Duffy,  2000  ) . Moreover, students need 
to be able to control and monitor their learning in 
multiple settings to become successful lifelong 
learners in the global knowledge society. Learners 
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  Abstract 

 This chapter describes a new method for the computerized scaffolding of 
self-regulated learning in computer-based learning environments. The sys-
tem works with an attention management system that registers the atten-
tional focus of learners with the intention to adjust scaffolding to students’ 
current activities. As the support is related to students’ current activities, 
structuring scaffolds that support students’ activities and problematizing 
scaffolds that elicit students’ activities can both be used. We found evi-
dence that this scaffolding system enhances group performance and stu-
dents’ metacognitive knowledge. Moreover, different forms of scaffold 
had differential effects on learning. Problematizing scaffolds resulted in 
higher group performance, transfer of domain knowledge and metacogni-
tive knowledge than structuring scaffolds. These differential effects are 
most likely explained by a combination of quantitative and qualitative dif-
ferences in the metacognitive activities triggered by problematizing scaf-
folds compared with structuring scaffolds.     
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in computer-based learning environments are asked 
to set learning goals, apply strategies, and select 
activities to pursue these goals and monitor and 
control their progress towards achieving these goals 
(Azevedo & Hadwin,  2005 ; Kalyuga, Chandler, & 
Sweller,  2001 ; Kirschner, Sweller, & Clark,  2006  ) . 
Research has abundantly shown that students are 
unable to self-regulate their learning without addi-
tional help (Azevedo & Cromley,  2004 ; Azevedo, 
Moos, Johnson, & Chauncey,  2010 ; Bannert,  2006 ; 
Bannert, Hildebrand, & Mengelkamp,  2009  ) . 

 Scaffolding supports learners to perform tasks 
they are unable to ful fi ll successfully themselves 
(Hmelo-Silver & Azevedo,  2006 ; Sharma & 
Hanna fi n,  2007 ; Wood, Bruner, & Ross,  1976  ) . 
Scaffolding is de fi ned as providing assistance to 
students when it is needed and fading the support 
as the learner competences increase (Wood et al., 
 1976  ) . Scaffolding by human tutors supporting 
self-regulated learning in computer-based learning 
environments improves learning and motivation 
(Azevedo & Cromley,  2004 ; Azevedo et al.,  2010  
Bannert,  2006 ; Land & Greene,  2000 ; Veenman, 
Kok, & Blote,  2005  ) . However, most scaffolding 
research has, to date, been directed at individual 
learners supported by human tutors in college and 
high school. There is some evidence that scaffold-
ing is also helpful for small groups (Azevedo, 
Cromley, Winters, Moos, & Greene,  2005 ; Winters 
& Alexander,  2011  ) , but it has never been explored 
among young learners in elementary school. 

 Furthermore, until now few computerized 
scaffolding systems have been designed for ill-
structured domains, due to the dif fi culty of auto-
matically interpreting students’ activities and 
adjusting scaffolding accordingly (Woolf,  2009  ) . 
In the AtGentive project, 1  a computerized 
scaffolding system entitled AtGentSchool was 
developed to support self-regulated learning in an 
e-learning environment (Ontdeknet) used in 
ill-structured domains. The aim of the project 
was to investigate the effect of 3D embodied 
agents supporting young learners to manage 
their attention in CBLEs. The appropriate alloca-

tion of attention is key to successful learning in 
CBLEs and is explained in more detail in this 
chapter; it is closely related to students’ self-
regulated learning (Molenaar & Roda,  2008 ; 
Roda,  2011  ) . Attention management systems are 
used to monitor student focus of attention, i.e., 
what is the student attention directed at (Roda, 
 2011 ; Roda & Thomas,  2006  ) . The  fi rst question 
addressed is: How can an attention management 
system facilitate the scaffolding of self-regulated 
learning? Additionally, scaffolding that adjusts to 
students’ current focus of attention can take on 
different forms (structuring or problematizing) 
as they are attuned to the students’ activities. 
There is, to date, little knowledge about the 
effects of different forms of scaffolds on the 
learning outcomes of collaborating students. 
Research has shown that problematizing scaf-
folds elicit more explanations from individual 
students, which support the articulation of their 
thinking and thereby leading to increased knowl-
edge development (Chi, Siler, Jeong, Yamuachi, 
& Hausmann,  2001 ; Davis & Linn,  2000 ; King, 
 1998,   2002  ) . Therefore, the second question 
addressed is: What are the effects of computerized 
scaffolding and of different forms of scaffold on 
the learning outcomes of collaborating students? 

 We contribute to this handbook by expanding 
on the existing work on scaffolding for self-reg-
ulated learning by describing the design of a 
computerized scaffolding system with an atten-
tion management system and its effects on the 
learning of collaborating students in elementary 
education. We  fi rst brie fl y describe the con-
structs of self-regulated learning, metacogni-
tion, and collaborative learning that informed 
our design and research. We then describe how 
the attention management system detects, traces, 
and models students’ focus of attention and 
selects the appropriate scaffolds. The distinction 
between the two different forms of scaffolds is 
also described. Thirdly, we discuss the effects of 
our scaffolding system on the group’s learning 
and activities. And  fi nally, we discuss how elab-
orated process analysis can enhance our limited 
ability to trace self-regulated learning to support 
the design of future computerized scaffolding 
systems. 

   1   The AtGentive project was a European under the sixth 
Framework program. AtGentive stands for “Attentive 
Agents for Collaborative Learners.”  
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   Theoretical Framework 

 As described above, learners in CBLEs need 
scaffolding to support their self-regulated learn-
ing and their metacognitive activities in particu-
lar in order to control and monitor their learning 
(Azevedo & Green,  2010 ; Azevedo & Hadwin, 
 2005 ; Zimmerman,  2002  ) . However, the bound-
aries between the constructs of self-regulated 
learning and metacognition are unclear 
(Dinsmore, Alexander, & Loughlin,  2008  ) . We 
therefore brie fl y introduce the theoretical 
de fi nitions and models used in our research. Self-
regulated learning was originally de fi ned as an 
integrated theory of learning (Corno & 
Mandinach,  1983 ; Dinsmore et al.,  2008  ) , focus-
ing on the interaction of cognitive, motivational, 
and contextual factors to explain learning. Today, 
we picture self-regulating learners as those who 
successfully use cognitive activities (read, pro-
cess, elaborate) to study a topic and control and 
monitor their learning with metacognitive activi-
ties (orientate, plan, monitor, and evaluate their 
actions) and who are able to motivate themselves 
(Azevedo, Moos, Greenee, Winters, & Cromley, 
 2008 ; Zimmerman,  2002  ) . We have used 
Zimmerman’s model  (  2002  )  as the basis for 
designing our scaffolding system. What is impor-
tant in this model is the cyclical clari fi cation of 
the interaction between cognitive, metacognitive, 
and motivational activities. As we are to design 
and evaluate computerized scaffolding that sup-
ports students to control and monitor their learn-
ing, we focus on the interaction between the 
cognitive and metacognitive activities. 

 The construct of metacognition originates 
from cognitive information processing theory. 
It was originally de fi ned as “cognition over cog-
nition” or “knowledge about knowing,” which 
learners need to control and monitor their learn-
ing. A distinction is made between metacognitive 
knowledge, i.e., the knowledge students have 
about the interaction between person, task, and 
strategy characteristics (Flavell,  1979  ) , and meta-
cognitive skills, i.e., the skills students have to 
apply metacognitive activities to control and 
monitor cognitive activities (Veenman,  2005  ) . In 
order to make a clear distinction between cogni-

tive and metacognitive activities, Nelson  (  1996  )  
de fi ned the object-level and the meta-level of 
learning. Cognitive activities are those activities 
that deal with the content of the task (the object-
level), and metacognitive activities are those 
activities that control and monitor cognitive 
activities (the meta-level), such as orientation, 
planning, monitoring, evaluation, and re fl ection 
activities (Meijer, Veenman, & van Hout-Wolters, 
 2006  ) . We therefore follow Veenman  (  2011  )  in 
viewing self-regulated learning as the major the-
oretical construct and metacognition as one of its 
components. We assume that metacognitive 
activities are a manifestation of students’ meta-
cognitive knowledge and skills. 

 As discussed above, we investigate the role of 
metacognitive activities in the context of a com-
puter-based learning environment in which stu-
dents learn collaboratively. To date, few 
researchers have applied the constructs of self-
regulated learning and speci fi cally metacognitive 
activities in collaborative learning research 
(Dillenbourg, Järvelä, & Fischer,  2009 ;    Iiskalla, 
Vauras, Lehtinen, & Salonen,  2011 ). Evidently, 
learners in small groups need to regulate their 
own and the group learning (Hadwin & Oshige, 
 2007  ) . This means that the groups need to use the 
appropriate cognitive activities to achieve their 
goals and apply metacognitive activities to con-
trol and monitor their learning (Hadwin & Oshige, 
 2007 ;    Iiskalla et al., 2011; Volet, Vauras, & 
Salonen,  2009  ) . To understand how students learn 
from scaffolding in a small group, we draw on 
the socio-cognitive perspective on collaborative 
learning. This perspective offers a framework to 
analyze how individuals learn in interaction with 
others emphasizing the individual development 
of the students and of the group as a whole as a 
result of the interaction (Hadwin & Oshige,  2007 ; 
Iiskala, Vauras, & Lehtinen,  2004 ; Vauras, Iiskala, 
Kajamies, Kinnunen, & Lehtinen,  2003 ; Volet 
et al.,  2009  ) . Learning is considered to take place 
through reciprocal activities among students. 
Consequently, peers are expected to play a medi-
ating role in the learning of others (Salomon, 
 1993 ; Volet et al.,  2009 ; Vygotsky,  1978  ) . 
Elaboration on each others’ contributions, such 
as giving feedback, asking questions and  receiving 
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answers, and discussing and exhanging ideas, is 
expected to enhance student learning (Chi,  2009 ; 
Webb,  2009  ) . Learners contribute knowledge and 
skills to the social system, which elicits new 
activities from other group members. As a result, 
group members in fl uence each other in a spiral-
like fashion. This gives individual students the 
opportunity to practice skills and appropriate 
knowledge and consequently develop group and 
individual skills and knowledge (Salomon,  1993 ; 
Volet et al.,  2009  ) . This means that scaffolding 
collaborative learners can affect both group and 
individual learning.  

   Dynamic Scaffolding with an Attention 
Management System 

 The essential elements in the process of scaffold-
ing are diagnosis, calibration, and fading 
(Puntambekar & Hubscher,  2005  ) . Effective 
human tutors select their scaffolds by carefully 
diagnosing student behavior and reducing their 
support when student competences increase (Chi, 
 2009 ; Wood et al.,  1976  ) . However, as brie fl y 
mentioned above, the automatic diagnosis of stu-
dent behavior is problematic. Therefore, in con-
trast to human tutors, most computerized 
scaffolding systems use  static  scaffolding. Static 
scaffolding is the same for all students and does 
not adjust to student activities, for example, a 
preset list of instructions that helps learners per-
form a learning assignment.  Dynamic  scaffold-
ing, on the other hand, analyzes the student 
behavior in order to select the appropriate scaf-
fold to support current student activities, for 
example, how to plan a learning task when the 
learner starts working on this particular task. 

 As indicated in Zimmerman’s model  (  2002  )  
of self-regulated learning, it is important to sup-
port cognitive, metacognitive, and motivational 
activities at the appropriate time during learning. 
Students need to learn not only  how  to regulate 
their learning but also  when  to regulate their 
learning. Consequently, a computer system that 
enables the dynamic scaffolding of self-regulated 
learning needs to diagnose current behavior and 

select the appropriate scaffolds to foster cogni-
tive, metacognitive, and motivational activities 
when appropriate. Attention management 
research aims to determine the bene fi t of given 
information for a learner in a speci fi c context and 
the cost associated with presenting information 
in a certain way (Roda & Nabeth,  2007 ; Roda & 
Thomas,  2006  ) . The utility of attention manage-
ment systems for educational sciences is to detect 
the students’ attentional focus and interpret this 
information to select scaffolds that can support 
student learning (Molenaar & Roda,  2008  ) . 
Below we describe how the attention manage-
ment system supports scaffolding in the diagno-
sis, calibration, and fading phases. 

 In the diagnosis phase, the attentional focus is 
assessed based on the students’ activities and 
progress. The system tracks the students’ current 
activities based on the location, actions in the 
e-learning system, keystrokes, and mouse move-
ments. For example, when a student browses 
through a text, AtGentSchool registers both the 
viewing of the particular text as well as the brows-
ing behavior. This provides a real-time descrip-
tion of the students’ current activities. The current 
and past activities combined indicate the stu-
dents’ progress on the learning assignment 
(Molenaar & Roda,  2008  ) . For example, when 
students have not read any text before it indicates 
that the learners started to search for new infor-
mation. Additionally, keyboard strokes and 
mouse movements also provide information. For 
example, no keyboard strokes or mouse move-
ment registration in a certain timeframe indicates 
that the student is idle. This traced and tracked 
information is used to determine the students’ 
attentional focus. 

 This information is used in real time by the 
system in the calibration phase to determine the 
appropriate scaffold. This scaffold can either 
support the students’ current attentional focus 
or provide suggestions to change the focus 
when the current focus is inappropriate for the 
learning assignment. We use Zimmerman’s 
model of self-regulated learning as a theoretical 
model to determine when cognitive, metacogni-
tive, and motivational activities should be sup-
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ported during learning (Zimmerman,  2002  ) . 
There are three phases in this model: forethought, 
performance, and self-re fl ection. In the fore-
thought phase, preparatory activities are done at 
the start of a new learning task; in the perfor-
mance phase, executive activities are performed; 
and in the self-re fl ection phase, closing activities 
to  fi nish the task are performed. In test runs with 
AtGentSchool, we found that when students’ 
focus of attention changes in our e-learning envi-
ronment, it is almost always also linked to a tran-
sition to a new phase (Molenaar & Roda,  2008 ; 
Molenaar, van Boxtel, Sleegers, & Roda,  2011  ) . 
For example, when a group changes its focus 
from reading text to writing a summary, it moves 
from the performance to the forethought phase. 
This  fi nding is particularly interesting for scaffold-
ing metacognitive activities as the students’ focus 
and progress provide enough information to deter-
mine useful metacognitive scaffolds. For example, 
when the students start to write a summary, it can 
be useful to scaffold them to plan how to write 
their summary. Below we discuss the relationship 
between changes in attentional focus, the phases, 
and metacognitive scaffolding. 

 The preparatory activities include task analy-
sis which involves processes, such as orientation 
and planning. Therefore, when the learner is 
selecting a new task, it is useful to perform an 
orientation activity to determine the alignment 
of the overall learning goal and the new task. 
A scaffold supporting the orientation process 
can therefore be helpful here. For example, a 
scaffold supports the orientation activity for the 
concept map task: “ We advise you to make a 

mind map to sum up topics you want to learn 

more about when studying a foreign country.”  
The second preparatory activity is to plan the 
task-setting goals and ensure there is alignment 
between the task execution and the overall learn-
ing assignment. Accordingly, a metacognitive 
planning scaffold at the start of a new task can 
help the learner to make a plan. For example, 
“ In a concept map you sum up all the topics you 

 fi nd important for studying another country. ” 
The execution activities entail self-control and 
self-observation. Self-observation supports the 

monitoring of the planned methods and strate-
gies. Self-control ensures that students, based on 
the observation of their task advancement, align 
their activities with their plan. Consequently, 
metacognitive monitoring scaffolds appear dur-
ing execution of a task. An example of a moni-
toring scaffold while working on the mind map 
is: “ Did you proceed on the concept map as you 

planned in advance? ” Finally, the closing activi-
ties entail self-judgment, which is done by eval-
uating against some standard or causal attribution. 
In the re fl ection phase, students determine 
whether their activities were performed in the 
most effective and ef fi cient manner. They re fl ect 
on their activities to determine whether, in future 
instances, the same line of activities would be 
appropriate. Students can be supported in this by 
asking them to re fl ect on their actions after task 
completion, for example, “ Will you proceed to 

make the concept map in the same way in the 

future? ” These examples help us understand 
how, in the calibration phase, the diagnosed 
changes in the attentional focus of the student 
determine the metacognitive scaffolds. 

 The  fi nal element of scaffolding is fading, 
which is the gradual reduction of scaffolds lead-
ing to full transfer of control to the learner (Wood 
et al.,  1976  ) . The system determines whether the 
selected scaffold is actually needed for the stu-
dents’ progress. For example, if the group has 
successfully  fi nished the concept map task 
before, the system will not send a planning scaf-
fold until it traces information that indicates that 
the students are having problems proceeding 
with this task. 

 To summarize, AtGentSchool supports stu-
dents with metacognitive scaffolds when the stu-
dents’ attentional focus changes. This is done 
through the continuous assessment of the focus 
(diagnosis) followed by selection of the appropri-
ate metacognitive scaffold (calibration), which is 
only sent when the student needs support (fading). 
An additional bene fi t of dynamic scaffolding is 
that different forms of scaffold can be used, in 
other words, scaffolding is attuned to the learners’ 
activities. In the next section, we introduce the 
different forms of scaffolds used in our system.  
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   Mechanism of Scaffolding: The Form 
of the Scaffolds 

 There are different forms of scaffolds that can 
simply show context suitable examples of meta-
cognitive activities (i.e., examples that are appro-
priate for the group’s current activity) that directly 
help the group control and monitor their learning. 
Alternatively, scaffolds can problematize the 
metacognitive aspects of the task, posing ques-
tions that elicit metacognitive activities from the 
group members. This difference is based on a 
distinction made by Reiser  (  2004  )  between struc-
turing and problematizing mechanisms of scaf-
folding. Structuring simpli fi es the learning 
assignment by reducing its complexity, clarifying 
the underlying components, and supporting plan-
ning and performance (i.e., providing the students 
with an example of a plan for the assignment). 
Problematizing increases the complexity of the 
learning assignment by emphasizing certain 
aspects of the assignment and asking learners to 
clarify the underlying components and perform 
activities to plan and construct their own strate-
gies (i.e., asking students to make their own plan 
for the assignment). 

 Figure  36.1  shows an example of each form of 
scaffold used for an introduction task in which 
students must introduce themselves. Structuring 
scaffolds support metacognitive activities and 
stimulate students to elaborate on this example. 
For example, a structuring scaffold shows stu-
dents an example plan of a task: “ Here you intro-

duce yourself, for example, I am David, 15 years 

old and I like playing games and listening to 

music. ” Students can then elaborate and reformu-
late the speci fi cations of the plan. Problematizing 
scaffolds, on the other hand, stimulate students’ 
metacognitive activities, i.e., their verbal 
responses to the questions asked which address 
issues on the meta-level. An example of a prob-
lematizing scaffold is as follows: “ How are you 

going to introduce yourself ?” This scaffold asks 
students to verbalize and plan how to approach 
the introduction task. Research showed that prob-
lematizing scaffolds, such as question prompts, 
elicit individual students’ explanations and sup-
port the articulation of their thinking (Chi et al., 
 2001 ; Davis & Linn,  2000 ; King,  1998,   2002  ) . 
Therefore, different forms of scaffolds foster 
metacognitive activities differently, possibly 
leading to differential effects on learning.    

   The Effects of Scaffolding 

 The goal of scaffolding is twofold: (1) to  support  
learners in activities they are unable to accomplish 
successfully by themselves and (2) to  develop  
knowledge and skills needed to perform future 
learning (Hmelo-Silver & Azevedo,  2006 ; Pea, 
 2004 ; Sharma & Hanna fi n,  2007  ) . The goal of 
scaffolding metacognitive activities of collabo-
rating students is to stimulate metacognitive 
activities to improve group performance and stu-
dents’ domain and metacognitive knowledge. 
The rationale behind the  fi rst goal is that meta-
cognitive activities monitor and control the 

  Fig. 36.1    An example of structuring and problematizing scaffolds       
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cognitive activities (Nelson,  1996  ) . This improves 
the cognitive activities through planning, prior 
knowledge activation and monitoring, and evalu-
ation (Veenman,  2011  ) . We therefore expect to 
 fi nd improved group performance. The socio-
cognitive perspective on collaborative learning 
emphasizes that group performance also affects 
individual knowledge, which supports our expec-
tation with respect to improved individual domain 
knowledge. With respect to the second goal, scaf-
folds develop metacognitive knowledge and skills 
through modeling and stimulating metacognitive 
activities. Consequently, we expect students to 
gain more metacognitive knowledge, i.e., the 
knowledge students have about the interaction 
between person, task, and strategy characteristics 
(Flavell,  1979  ) . 

   The Studies 

 We conducted two experiments in elementary 
schools in order to assess the effects of dynamic 
scaffolding on the learning of collaborating stu-
dents. The small groups worked on one computer 
in the e-learning environment Ontdeknet on an 
assignment “ where do I want to live? ” for six les-
sons. In Ontdeknet students had access to an 
inhabitant of their country of choice, their expert. 
Students could consult the expert by asking ques-
tions and reading information about the country 
written by the expert. In both studies, the teachers 
formed heterogenic groups, i.e., different gender, 
reading, and computer abilities. These groups 
were randomly assigned to the experimental or a 
control condition in school classes. The  fi rst study 
was conducted in the Czech Republic (67 dyads) 
and focused on the effects of scaffolding on self-
regulated learning (also including metacognitive, 
cognitive, and motivational scaffolds) on group 
performance and students’ domain knowledge. 
The second study was done in the Netherlands 
(52 triads) and focused on the effects of metacog-
nitive scaffolding on group performance, the 
groups’ metacognitive activities, and students’ 
domain and metacognitive knowledge. In the  fi rst 
study, the dyads received scaffolding throughout 
the entire experiment, whereas in the second study, 

the triads only received scaffolding in the  fi rst two 
lessons. Moreover, in the second study, two differ-
ent forms of scaffolds were used, i.e., structuring 
and problematizing scaffolds. We summarize the 
most important  fi ndings from these two studies 
below. For more detailed descriptions of the 
method and the results, see Molenaar, van Boxtel, 
and Sleegers  (  2010,   2011  ) .  

   Design and Instruments 

 In both studies, we measured group performance 
analyzing the quality of the group paper and 
individual student’s domain knowledge with 
scores on knowledge tests (Molenaar et al., 
 2010  ) . In the second study, the transfer of 
domain knowledge, metacognitive knowledge, 
and metacognitive activities during learning was 
also assessed. The transfer of domain knowl-
edge was determined by asking students to sum 
up all the important topics needed when consid-
ering moving to a new country. We measured 
metacognitive knowledge with a contextual 
reproduction test; students were asked to imag-
ine that they were going to do the same assign-
ment again and write down all the activities they 
would perform to control and monitor their 
learning in this assignment. The answers were 
scored against a full list of the metacognitive 
activities ideally performed to control and mon-
itor working on this assignment drawn up by the 
researchers. The groups’ metacognitive activi-
ties were analyzed using discourse analysis. All 
utterances of the small group were coded exclu-
sively with one main code and one subcode. The 
analysis instrument was based on different 
think-aloud and discourse instruments (Azevedo 
& Cromley,  2004 ; Meijer et al.,  2006 ; Veldhuis-
Diermanse,  2002  ) . The main categories were 
metacognitive, cognitive, relational, procedural, 
and off-task activities; see Table  36.1  for an 
overview (Molenaar et al.,  2010  ) . The following 
metacognitive sub-activities were coded: orien-
tation, planning, monitoring, evaluation, and 
re fl ection; see Table  36.2  (   Lu & Lajoie,  2008 ; 
Molenaar et al.,  2010 ; Veenman, Van Hout-
Wolters, & Af fl erbach,  2006  ) .    
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   Effects of Scaffolding on Performance 
and Learning Achievements 

 As mentioned above, we measured group perfor-
mance and student’ domain knowledge in both 
studies. In the  fi rst study, we found a positive 
effect of scaffolding on group performance, but 
no effect on the domain knowledge students 
acquired. In the second study, the groups receiv-
ing scaffolds scored, on average, higher than the 
control groups, but there was no signi fi cant effect 
on group performance. Again no signi fi cant effect 
on the students’ domain knowledge was found. 
The absence of effects of metacognitive scaffold-
ing on the students’ domain knowledge is in line 
with other scaffolding studies, which also failed 
to  fi nd an effect of scaffolding on the quantity of 
domain knowledge (Bannert,  2006 ; Bannert 
et al.,  2009 ; Lin & Lehman,  1999  ) . One argument 
given for these  fi ndings is that metacognitive 

scaffolding does not affect the quantity, but does 
enhance the quality of domain knowledge 
(Bannert,  2006 ; Bannert et al.,  2009  ) . Therefore, 
in our second study, we included a measurement 
of transfer of domain knowledge. However, we 
did not  fi nd a signi fi cant effect of scaffolding on 
the transfer of domain knowledge. 

 The second study also investigated the effects 
of different forms of scaffolds on learning. We 
found a signi fi cant positive effect of problematiz-
ing scaffolds compared with structuring scaffolds 
on group performance and transfer of domain 
knowledge. Different forms of scaffolds have a 
differential effect on learning, the problematizing 
scaffolds are more effective at enhancing the 
group product and the transfer of individual 
domain knowledge. So, even though students did 
not acquire more knowledge, they could apply it 
better in their paper and transfer it to new 
situations.  

   Table 36.1       Main categories of our coding scheme   

 Main category  Description 

 Metacognitive activities  Turns that deal with the regulation of the cognitive activities in the learning process 

 Cognitive activities  Turns about the content of the task and the elaboration of this content 

 Relational activities  Turns that deal with the social interaction between the students in the triad 

 Procedural activities  Turns that deal with the procedures to use the learning environment 

 Teacher/researcher  Turns that are made by the teacher or the researcher 

 Off-task  Turns that are not relevant to the task 

 Not codable  Turns that are too short or unclear to interpret 

   Table 36.2    Subcategories of metacognitive activities   

 Subcategory  Description  Examples 

 Orientation  Orientation on prior knowledge, task demands, 
and feelings about the task 

 What do we need to do? 

 Do you know what a learning goal is? 

 Planning  Planning the learning process, for instance, 
sequencing activities or choice of strategies 

 How are we going to do this? 

 Now we are going to ask questions 

 Monitoring  Monitoring the learning process: checking progress 
and comprehension of the task 

 I do not understand 

 You are doing it wrong 

 Wait, please just leave it like that 

 Evaluation  Evaluation of the learning process; checking the 
content of the learning activities 

 We posed a good question 

 These are the most important issues 

 Re fl ection  Re fl ection on the learning process and strategies 
through elaboration of the learning process 

 Let me think, this is more dif fi cult than 
I thought 

 Why do we have the most dif fi cult 
task? 
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   Effects of Scaffolding on Groups' 
Metacognitive Activities and Students' 
Metacognitive Knowledge 

 The second purpose of scaffolding is to develop 
knowledge for future learning, in this case meta-
cognitive knowledge. Moreover, many scaffolding 
studies assume that scaffolding stimulates learning 
activities and leads to lasting changes in student 
behavior (Pea,  2004  ) . We therefore analyzed the 
effects on metacognitive knowledge and on group 
metacognitive activities during learning in the sec-
ond study. We found a slight, but signi fi cant, posi-
tive effect of scaffolding on the metacognitive 
knowledge students acquired. The results of the 
discourse analysis that looked at the stimulation of 
metacognitive activities during scaffolding showed 
a signi fi cant positive effect of scaffolding on the 
number of metacognitive activities performed. The 
analysis of different metacognitive activities 
speci fi ed that orientation and monitoring activities 
were signi fi cantly more frequent in triads receiv-
ing scaffolding, and a trend in the expected direc-
tion was found for planning and evaluation. Finally, 
we found that triads receiving scaffolds (experi-
mental groups) continued to perform signi fi cantly 
more metacognitive activities once the scaffolding 
had stopped compared with the triads in the con-
trol group. This provides empirical evidence for 
the assumptions of scaffolding research that scaf-
folding indeed stimulates metacognitive activities 
and contributes to lasting changes in the groups’ 
metacognitive activities. 

 With respect to the effect of different forms of 
scaffolds on the metacognitive activities, there 
was also a signi fi cant positive effect on the meta-
cognitive knowledge acquired. Students in the 
problematizing condition acquired signi fi cantly 
more metacognitive knowledge compared with 
students in the structuring condition. Furthermore, 
we found no signi fi cant difference in the number 
of metacognitive activities performed by the tri-
ads receiving different forms of scaffolds (prob-
lematizing structuring). Again the trend was as 
expected. Finally, the form of scaffolds (structur-
ing vs. problematizing) did not affect the quantity 
of metacognitive activities after scaffolding 
ceased, but again the trend was as anticipated.  

   Link Between Learning Activities 
and The Individual Knowledge 

 These results indicate that scaffolding stimu-
lates group metacognitive activities, has a last-
ing effect on group behavior, and increases 
students’ metacognitive knowledge. However, 
we did not  fi nd an explanation for the differen-
tial effects on learning of different forms of 
scaffolds. There was no signi fi cant difference in 
the number of metacognitive activities fostered 
by the structuring and problematizing condition. 
However, we did  fi nd enhanced group perfor-
mance, more transfer of domain knowledge, and 
more metacognitive knowledge in the problem-
atizing condition. This raises the following 
question: How do problematizing scaffolds sup-
port better learning achievements than structur-
ing scaffolds, even though they do not stimulate 
more metacognitive activities? In our view, the 
following reasons may explain these unexpected 
results. Firstly, the qualitative differences in 
metacognitive activities might possibly be an 
explanation indicating that some metacognitive 
activities are better than others and consequently 
have more effect on the learning achievements 
of students. Secondly, differences in students’ 
collaborative discourse around metacognitive 
activities caused by the different forms of scaf-
folds might lead to different learning results. 
Successful collaborative discourse in which stu-
dents exchange, share, and co-construct knowl-
edge enhances learning (Chi,  2009 ; Teasley, 
 1997 ; Webb,  2009 ; Weinberger & Fischer, 
 2006  ) . Problematizing scaffolds may possibly 
have improved the collaborative discourse. 
Thirdly, in line with the interdependence 
between metacognitive activities, the answer 
could be sought in differences in the sequential 
relations between the different metacognitive 
sub-activities (the optimal mix) or the position-
ing of the metacognitive activities over time. 
These directions will be explored in future 
research. In the last section, we discuss the chal-
lenges we face in building more effective 
dynamic systems that support metacognitive 
scaffolding in complex open learning 
environments.   
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   Challenges for New Developments 

 The main limitation for the development of 
dynamic computerized scaffolding systems is the 
limited ability to measure metacognitive activi-
ties during learning (Azevedo et al.,  2010 ;    Greene 
& Azevedo, 2010; Schraw,  2010 ; Winne,  2010  ) . 
In order to enhance the diagnostic, calibrating, 
and fading functions of computerized scaffolding 
systems, we need to be able to measure metacog-
nitive activities concurrently during learning. The 
measurement of metacognitive activities with 
think-aloud and discourse protocols are per-
formed retrospectively (Azevedo et al.,  2010 ; 
Veenman,  2011  ) . They are time consuming and 
can therefore only be applied to a limited dataset. 
Trace methods based on the log- fi le information 
of student’s activities, eye tracking, or linguistic 
analysis are not yet suf fi ciently well developed to 
replace think-aloud analysis or discourse analysis 
concurrently during learning activities. A possi-
ble way to proceed is to develop our under-
standing of the temporal and sequential 
characteristics of self and social regulation. 
A better understanding of these aspects would 
support recognition of patterns as opposed to 
individual activities. 

 To date most researchers have analyzed the 
effect of scaffolding on student activities on a 
holistic level (Reimann,  2009  ) . Holistic analyses 
consider the learning process as one whole unit, 
which restricts our understanding of temporal or 
sequential aspects within the process (Azevedo 
et al.,  2010 ; Reimann,  2009 ; Wampold,  1992  ) . 
Attention for temporal aspects can help us under-
stand the positioning of metacognitive activities 
over time, e.g., is more planning at the beginning 
of a task more useful for learning (Kapur,  2011  ) ? 
Concentration on sequential aspects supports 
more insights into the relationship between learn-
ing activities, e.g., are planning activities followed 
by monitoring activities? Accordingly, process 
analysis that looks at the temporal and sequential 
aspects would further support our understanding 
of how metacognitive activities in fl uence learn-
ing. Moreover, these analyses provide evidence 
for theoretical assumptions in models of self-

regulated learning in empirical data. We will 
illustrate this with an example taken from a 
sequential analysis. We were looking at the rela-
tionship between the different metacognitive 
activities to assess the assumption that metacog-
nitive activities are cyclical. 

 We start by brie fl y introducing sequential 
analysis (Wampold,  1992  ) . The relationship 
between metacognitive activities was analyzed as 
follows:  fi rstly, the number of transitions between 
the different activities is counted, for example, an 
orientation activity is followed 300 times by a 
planning activity. Secondly, the expected transi-
tional frequency is calculated. This is the number 
of times orientation activities would be followed 
by planning activities based on chance, for exam-
ple, 150 times. This means that the likelihood of 
transition from orientation to planning is greater 
than expected by chance. Based on a  Z -test, it is 
possible to determine whether this transition is 
signi fi cantly more or less likely to occur than 
expected by chance. Finally, the transaction fre-
quencies indicate the likelihood of an orientation 
activity to be followed by a planning activity. For 
example, as shown in Fig.  36.2 , 33% of the orien-
tation activities are followed by a planning activ-
ity. Note that the percentages in the  fi gure cannot 
be compared with each other as they are relative 
to the number of activities that occur.  

 Figure  36.2  is based on the discourse analysis 
of metacognitive activities in our second study. It 
includes over 50,000 activities analyzed and dis-
plays all signi fi cant transactions that have a trans-
action likelihood greater than 10% between the 
different metacognitive activities. Signi fi cant 

Orientation

25%

Planning

48%

monitoring

55%

Evaluation

34%
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37%

29%

28%

40%

33%

  Fig. 36.2    Sequential diagram of sub-metacognitive 
activities       
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positive transaction probabilities indicate that a 
transition occurs signi fi cantly more than chance. 
In this case, we found that all activities are more 
likely to follow themselves as shown by the 
Greene blocks. Signi fi cant negative transaction 
probabilities indicate that a transition occurs 
signi fi cantly less than chance. In this case, all 
transactions between metacognitive activities 
occur less than chance as indicated by the red 
arrows. The percentages shown in the picture are 
the transaction likelihood; as explained above, an 
orientation activity has a 33% probability of 
being followed by a planning activity. 

 This analysis provided evidence that the meta-
cognitive activities indeed follow each other in a 
cyclical manner. The transaction likelihood 
between orientation and planning activities is 
33%, and between planning and monitoring 
activities, it is 40%. Yet the transaction likelihood 
between monitoring and evaluation activities is 
rather small—12%. Evaluation activities are 
unlikely to be followed by orientation activities 
but do lead to monitoring activities (36%) and 
planning activities (28%). We can therefore 
observe the cyclical process between orientation, 
planning, and monitoring activities, but evalua-
tion activities are more isolated. The unexpected 
position of evaluation activities could possibly be 
explained by the development of metacognitive 
knowledge. The students who participated in our 
studies were between 10 and 12 years of age. 
Moreover, we did not scaffold evaluation activi-
ties, which might also explain their rather isolated 
position. These  fi ndings support the assumptions 
made for the design of our scaffolding system 
and indicate that for learners of this age the scaf-
folding of evaluation activities is important. 
Moreover, these analyses partially con fi rm the 
assumptions about the cyclical nature of meta-
cognitive activities in the Zimmerman model 
 (  2002  ) . This can be helpful for developing new 
methods to measure metacognitive activities 
during learning as it shows that we do not 
 necessarily need to focus on single metacognitive 
activities, but can also look at metacognitive pat-
terns. We used this example to illustrate that new 
insights can be arrived at with process analysis 
that focuses on the sequential aspects.    Finally, as 

learning technologies move forward, they face a 
number of challenges that are not related to the 
core development of these systems: privacy-re-
lated challenges which raise questions about the 
ethics of registering and interpreting student 
behavior,  fi nancial challenges dealing with cost-
effectiveness, and implementation challenges 
involving integration in the educational system.  

   Conclusion 

 In sum, our studies suggest that the dynamic 
computerized scaffolding of metacognitive activ-
ities in small groups can be successfully performed 
with an attention management system. The 
AtGentSchool system succeeded in stimulating 
metacognitive activities of small groups both 
during and after scaffolding ended. Students who 
received scaffolds had more metacognitive 
knowledge compared with students in the control 
group. With respect to different forms of scaf-
folds, we found that problematizing scaffolds 
support group performance and the transfer of 
domain knowledge more than structuring scaf-
folds. This indicates that scaffolding in small 
groups is most effective for learning when prob-
lematizing scaffolds are used. We expect that 
these differential effects of problematizing scaf-
folds can be explained by qualitative differences 
in group metacognitive activities. 

 Furthermore, we expect that metacognitive 
activities in a group setting seem to contribute to 
more metacognitive knowledge. However, our 
current theoretical understanding of metacogni-
tive activities in social settings is derived from 
theories of individual learning. It is important 
that we develop our understanding how metacog-
nitive activities are embedded in the groups’ 
interaction. There is a strong emphasis in collab-
orative learning research on the quality of the 
interaction between the group members as it has 
high-quality interaction that positively contributes 
to learning (Chi,  2009 ; Webb,  2009 ; Weinberger 
& Fischer,  2006  ) . It is therefore important in 
future research to examine how metacognitive 
activities embedded in different types of interac-
tion facilitate group learning. Additionally, 
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 attention should also be given to the question 
how scaffolding in fl uences the quality of the 
interaction and if different forms of scaffolds 
in fl uence the collaboration between students dif-
ferently, which can possibly explain differential 
learning results. 

 Overall our computerized scaffolding system 
supports the metacognitive activities of small 
groups in computer-based learning environments 
and equips learners with metacognitive knowl-
edge and possibly skills for future learning. 
Although our system has a positive effect on 
metacognitive activities and knowledge, there is 
ample room for improvement. To enhance our 
computerized scaffolding, it is of great impor-
tance to develop concurrent measurement meth-
ods to track and trace metacognitive activities 
during learning. Process analysis with a sequen-
tial and temporal focus can increase our under-
standing of the positioning of metacognitive 
activities over time and in relation to other learn-
ing activities. This would help  fi nd new ways to 
measure metacognitive activities during learning.      
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  Abstract 

 The aim of this chapter is to present new assessment methods for different 
aspects of metacognition that are relevant for self-regulated learning 
(SRL). In the theoretical part, two assumptions on the assessment of dif-
ferent aspects of metacognition are presented. Firstly, we argue that meta-
cognitive knowledge about strategies and metacognitive regulation of 
strategies are two distinct components of metacognition that make differ-
ent demands on their respective assessment method. Secondly, we argue 
that metacognitive knowledge about and metacognitive regulation of strat-
egy use should be assessed with regard to the same strategies, in order to 
be able to relate both measures and to localize speci fi c de fi ciencies. In the 
methods part, the theoretically driven development of two computer-based 
learning environments (CBLEs) for scienti fi c discovery learning is pre-
sented. Based on these, two kinds of assessment methods are presented, a 
test format that intends to assess metacognitive knowledge about scienti fi c 
discovery strategies and log fi le-based measures that intend to assess meta-
cognitive regulation of the use of these strategies during SRL with the 
CBLEs. In the empirical part, three studies are presented that investigated 
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   SRL and Metacognition    

 Models of self-regulated learning (SRL) agree 
that self-regulated learners need to have meta-
cognitive knowledge about strategies (Flavell, 
 1979  )  and need to metacognitively regulate 
the use of these strategies (Brown,  1987  )  (e.g., 
   Boekaerts,  1997 ; Pressley, Borkowski, & 
Schneider,  1987 ; Winne & Hadwin,  1998 ; 
Zimmerman,  2000  ) . Like in Boekaerts’ ( 1997 ) 
six-component model of SRL, most models of 
SRL implicitly assume that what learners know, 
i.e., their metacognitive knowledge about strate-
gies, should in fl uence what they do, i.e., their 
metacognitive regulation of strategy use, which 
in turn should in fl uence learning outcome. Only 
few models make explicit assumptions about the 
relationship between learners’ metacognitive 
knowledge about and their metacognitive regu-
lation of strategy use. For example, Pressley and 
colleagues (e.g., Pressley,  1995 ; Pressley et al., 
 1987  )  assume that there is no direct relationship 
but that there are rather several variables, such 
as prior knowledge and motivation that moder-
ate the relationship between what learners know 
about strategies and what they actually do. 
Except metamemory research that focuses on 
the metacognitive knowledge about and meta-
cognitive regulation of memory strategies (e.g., 
Körkel & Schneider,  1992 ; Schneider, Körkel, 
& Weinert,  1987  ) , still little is known about the 
relationship between these two components of 
metacognition. We assume that this research 
de fi cit is due to a lack of assessment methods 
that differentially assess what self-regulated 

learners know about strategies and what they 
actually do. Thus, in order to empirically inves-
tigate this relationship, there is a need to develop 
objective, reliable, and valid measures for these 
components of metacognition in SRL. For 
developing appropriate  measures, we assume 
that the following methodological demands 
need to be clari fi ed: First, the methodological 
demands of assessing different components of 
metacognition, namely, metacognitive knowl-
edge about strategies and metacognitive regula-
tion of strategy use, should be taken into account. 
Second, also the objectives of metacognition, 
namely, the speci fi c kinds of strategies that have 
to be known and regulated in the speci fi c learn-
ing situation, should be taken into account. The 
latter demand might seem to be somehow trivial, 
but a look at the literature shows it is not. For 
example, in the German extension of PISA 
2000, both metacognitive knowledge about 
reading strategies and the use of reading strate-
gies were assessed with separate tests. However, 
the strategies assessed by each test were not the 
same. Consequently, results of this study seemed 
to be somehow unintuitive, as metacognitive 
knowledge about and the use of reading strate-
gies were only weakly correlated and metacog-
nitive knowledge about reading strategies turned 
out to better predict reading competency as 
compared to reading strategy use (cf. Artelt, 
Demmrich, & Baumert,  2001  ) . This unintuitive 
result might be due to the fact that the metacog-
nitive knowledge about reading strategies and 
the use of reading strategies was measured with 
different tests, but these tests did not focus the 
same strategies. 

the test quality of these new assessment methods as well as the relation-
ship between metacognitive knowledge about and metacognitive regula-
tion of the same strategy. In sum, results speak in favor of a good test 
quality of the new assessment methods. Based on this, results revealed that 
the relationship between metacognitive knowledge about and metacogni-
tive regulation of the actual use of the same strategy is moderated by cur-
rent motivation. Finally, results are discussed with respect to the 
development of further instruments as well as with respect to approaches 
of SRL support.      
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   Components of Metacognition in SRL 

 According to the  fi rst point, we suggest that meta-
cognitive knowledge needs different methods of 
assessment from metacognitive regulation. 
Following Flavell  (  1979  ) , metacognitive knowl-
edge can be divided into metacognitive knowl-
edge about the task, about the person, and about 
strategies. He further assumed that a learner 
needs the interaction of these three kinds of 
knowledge in order to decide which kind of avail-
able strategies are appropriate in order to solve 
the speci fi c task. Paris, Lipson, and Wixson 
 (  1983  )  further divided metacognitive knowledge 
about strategies into declarative knowledge about 
what the strategy is, procedural knowledge about 
how the strategy is performed, and conditional 
knowledge about when and why the strategy 
should be effective in a certain situation. Referring 
to cognitive models about knowledge acquisition 
(e.g., Anderson,  1983  ) , they assumed that  learners 
can only verbalize their declarative  knowledge 
explicitly, while their procedural and conditional 
knowledge about strategies is stored in implicit 
memory. Based on this assumption, that can be 
regarded as a constraint for assessing metacogni-
tive knowledge about strategies. Schlagmüller 
and Schneider  (  2007  )  developed a new test for-
mat for assessing learners’ explicit as well as 
implicit metacognitive knowledge about strate-
gies. The Würzburger Lesestrategie wissenstest 
(Würzburger reading strategy knowledge test, 
WLST 7-12; Schlagmüller & Schneider,  2007 ; 
see also Schneider, Schlagmüller, & Visé,  1998  )  
is the  fi rst test with this speci fi c test format. It 
presents typical learning situations with reading 
tasks combined with a list of strategies that are 
more or less appropriate in order to effectively 
solve the speci fi c task. Learners have to rate the 
situation-speci fi c appropriateness of each given 
strategy by giving school grades. Their strategy 
knowledge score is calculated as the degree of 
agreement between the learner’s individual rating 
and an aggregated expert rating. Due to the closed 
answering format, the test is objective. 
Furthermore, it showed good reliability and hints 
of validity (Ramm et al.,  2006 ; Schlagmüller & 
Schneider,  2007  ) . Beyond that, the test has 

already been successfully adapted for assessing 
metacognitive knowledge about mathematical 
strategies in the German extension of PISA 2003 
(see Ramm et al.,  2006  ) . 

 Following Brown  (  1987  ) , metacognitive regu-
lation can be divided into three subprocesses, 
namely, metacognitive planning, monitoring, and 
evaluating one’s own cognitive processes. 
According to Winne ( 1996 ), “… [metacognitive] 
monitoring is the fulcrum upon which SRL piv-
ots” (p. 331). If learners do not monitor at all or 
incorrectly monitor their use of learning strate-
gies, they will not notice if their strategy use does 
not lead them towards their learning goals. 
Because metacognitive    monitoring of strategy use 
like strategy use itself is a behavioral process, 
Winne and Perry  (  2000  )  as well as Veenman 
 (  2005  )  and Wirth  (  2008  )  argue that concurrent or 
online measures are needed to assess the ongoing 
process. Compared to of fl ine measures, like retro-
spective questionnaires or interviews, online mea-
sures like think-aloud protocols or log fi le measures 
should be more appropriate to assess SRL as an 
event (cf. Winne & Perry,  2000  ) . Consequently, 
only under speci fi c circumstances, namely, when 
the measures for metacognitive regulation of 
strategy use as well as for learning outcome are 
directly related to a speci fi c learning situation 
(regarding time and content), positive correlations 
can be found between metacognitive regulation of 
strategy use and learning outcome (cf. Spörer & 
Brunstein,  2006  ) . Thus, we want to put the focus 
on online measures of metacognitive regulation. 
The most common online measures for assessing 
metacognitive regulation of strategy use are think-
aloud protocols and log fi le-based measures (cf. 
Veenman,  2005  ) . On the one hand, think-aloud 
protocols have a good reliability and validity, but 
they are a relatively time-consuming assessment 
method (e.g., Azevedo, Moos, Johnson, & 
Chauncey,  2010 ; Bannert & Mengelkamp,  2008 ; 
Cromley & Azevedo,  2006 ; Greene, Muis, & 
Pieschl,  2010 ; Veenman,  2005 ; Veenman, van 
Hout-Wolters, & Af fl erbach,  2006 ; Vollmeyer & 
Rheinberg,  2000 ; Winne & Perry,  2000 ; Wirth, 
 2008  ) . First, they require single-person testing 
because the learner has to speak out everything 
that comes to his or her mind. Second, the recorded 
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verbalizations have to be transcribed into proto-
cols which then can be analyzed by coding 
schemes. On the other hand, log fi le-based mea-
sures of metacognitive regulation are based on the 
use of CBLEs. Within these CBLEs, learners’ 
actions are automatically recorded into log fi les, 
which can then be analyzed with respect to action 
patterns that indicate metacognitive regulation. 
Log fi le-based measures of metacognitive regula-
tion of strategy use also show hints of validity 
(e.g., Hadwin, Nesbit, Code, Jamieson-Noel, & 
Winne,  2007 ; Perry & Winne,  2006 ; Thillmann, 
Künsting, Wirth, & Leutner,  2009 ; Veenman,  2005 ; 
Winne & Jamieson-Noel,  2002  ) . Furthermore, 
they are less time consuming due to two features. 
First, log fi le-based measures can be assessed in 
group testing. Second, the recording as well as the 
coding is automated because the algorithms are 
implemented once and can be applied unlimitedly. 

 Thus, in order to investigate different compo-
nents of metacognition in SRL, we argue for 
using different assessment methods for assessing 
metacognitive knowledge about strategies and 
metacognitive regulation of strategies. In more 
detail, we suggest to use a test format analogous 
to the WLST 7-12 (Schlagmüller & Schneider, 
 2007  )  in order to assess metacognitive knowl-
edge about strategies and to use log fi le-based 
measures in order to assess metacognitive regula-
tion of actual strategy use (e.g., Winne & Perry, 
 2000 ; Wirth,  2008  ) .  

   Objectives of Metacognition in SRL 

 According to the second point, we suggest that it 
is necessary to assess metacognitive knowledge 
and metacognitive regulation concerning the 
same strategies, in order to be able to relate learn-
ers’ knowledge about and their actual use of the 
same strategies to another. Based on the assump-
tion that the kinds of learning strategies that have 
to be metacognitively known and regulated 
depend on the speci fi c kind of learning task in the 
speci fi c learning situation (e.g., Flavell,  1979 ; 
Winne & Hadwin,  1998  ) , a detailed task analysis 
is needed in order to identify relevant strategies 
that have to be metacognitively known and regu-

lated.    As in the following studies, the focus will 
be on SRL within scienti fi c discovery learning 
environments; the strategic demands of this kind 
of SRL will be analyzed in the following: 
Scienti fi c discovery learning environments or 
inquiry learning environments enable learners to 
actively construct their knowledge by systemati-
cally experimenting within a domain and infer-
ring the underlying relationships and rules from 
the results of the experiments (de Jong & van 
Joolingen,  1998 ; Klahr & Dunbar,  1988 ; Kuhn, 
Black, Keselman, & Kaplan,  2000 ; Njoo & de 
Jong,  1993 ; van Joolingen & de Jong,  1993  ) . The 
Scienti fi c Discovery as Dual Search (SDDS) 
model by Klahr and Dunbar  (  1988  )  describes 
scienti fi c discovery learning as a systematic 
search in two representational “spaces.” In the 
hypothesis space, learners have to choose between 
all possible hypotheses that can be stated about 
the learning environment at hand. In the experi-
ment space, learners have to choose between all 
possible experiments that can be run in the given 
learning environment. The core assumption of 
the SDDS model is that successful scienti fi c dis-
covery learning can be described as the synchro-
nized search in both representational spaces by 
relating the content of one’s stated hypotheses to 
one’s own experiments and vice versa. Translating 
the assumptions of the SDDS model into terms of 
SRL, scienti fi c discovery learning environments 
enable learners to strategically generate and pro-
cess information by interacting with the learning 
environment in order to understand the domain 
presented by the learning environment (e.g., 
Thillmann et al.,  2009 ; Wirth & Leutner,  2006 ). 
Within this theoretical frame, the learning pro-
cess can be described as self-regulating the use of 
strategies for stating and re fi ning hypotheses and 
for running systematic experiments. A prominent 
strategy for running systematic experiments is 
the control-of-variables strategy (CVS; e.g., 
Klahr & Dunbar,  1988  ) . The CVS can be de fi ned 
as testing the effect of an independent variable on 
a dependent variable by varying only this inde-
pendent variable and keeping all other indepen-
dent variables constant. Stating and re fi ning 
hypotheses can be realized by different strategies, 
for example, by writing a verbal protocol about 
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one’s ideas (Klahr & Dunbar,  1988  )  or by using a 
more structured hypothesis scratch pad (van 
Joolingen & de Jong,  1993  ) . 

 Thus, in order to investigate the relationship 
between different components of metacognition 
in SRL with scienti fi c discovery learning envi-
ronments, we argue for developing different 
assessment methods for learners’ metacognitive 
knowledge about and metacognitive regulation of 
two kinds of the same cognitive strategies, 
namely, for running systematic experiments as 
well as for stating and re fi ning hypotheses.   

   Research Questions 

 We want to investigate whether (1) metacognitive 
knowledge about cognitive strategies for SRL 
with scienti fi c discovery learning environments 
can be assessed in an objective, reliable, and valid 
manner by a strategy knowledge test with an anal-
ogous test format to the Würzburger reading strat-
egy knowledge test (WLST 7-12; Schlagmüller & 
Schneider,  2007  ) . Additionally, we want to 
 investigate whether (2) metacognitive regulation 
of cognitive strategies for SRL with scienti fi c dis-
covery learning environments can be assessed in 
an objective, reliable, and valid manner by log fi le-
based measures. Beyond that, we want to investi-
gate (3) the relationship between metacognitive 
knowledge about and metacognitive regulation of 
cognitive strategies in SRL with scienti fi c learn-
ing environments.  

   Methods 

   Computer-Based Scienti fi c Discovery 
Learning Environments 

 In order to investigate SRL with scienti fi c discov-
ery learning environments, two computer-based 
scienti fi c discovery learning environments were 
developed (Fig.  37.1 ). The theoretically driven 
conception of these CBLEs was based on the 
SDDS model (Klahr & Dunbar,  1988  ) .  

 Therefore, both CBLEs have an analogous for-
mal structure comprising an external representa-

tion of the experiment space which is called the 
“lab” (on the left side of the computer screen) and 
of the hypothesis space which is called the “note-
pad” (on the right side of the computer screen). 
The lab consists of an interactive tool for running 
simulated experiments. Therefore, it offers the 
opportunity to choose values for the independent 
variables for running experiments and to observe 
the effects on the values of the dependent vari-
ables. These effects are produced by the underly-
ing algorithm of the simulation, which is 
determined by the relationships and regularities of 
the respective content of the CBLE. The notepad 
consists of an interactive graphical tool for stating 
and re fi ning hypotheses. It offers the opportunity 
to draw concept maps by choosing between all 
concepts that are presented in the lab, independent 
and dependent variables, as well as between 
 different arrows and labels that can be used for 
connecting the concepts. All actions within the 
CBLEs can be conducted by drag and drop with 
the computer mouse and are  automatically 
recorded into log fi les. For every action that is 
recorded, the log fi le contains a time stamp, the 
kind of action that was conducted as well as the 
variables and variable values that were used. Thus, 
the log fi les build the basis for analyzing individual 
learning behavior or more speci fi cally metacogni-
tive regulation of strategy use. 

 With respect to the content structure, the two 
CBLEs are located within two science domains, 
namely, physics and chemistry, and were devel-
oped in collaboration with physics and chemistry 
educationalists. As Fig.  37.1  shows, one CBLE 
presents “buoyancy in liquids” and the other 
CBLE presents “acids and bases.” Referring to 
the German school curriculum, these learning 
topics are intended for the 9th to 10th grade of 
science education in secondary school. Thus, in 
order to have learners to discover the topics of the 
CBLEs, they should have no systematic prior 
knowledge due to school education. Thus, the 
samples of our studies consisted of students from 
8th to 10th grades of secondary school who are 
about 15 years old. Both CBLEs are introduced 
by short interactive tutorials that explain all func-
tions and train all actions that are later needed for 
SRL with the CBLE.   
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   Log fi le-Based Measures 
of Metacognitive Regulation 
of Strategies 

 Based on the automatically recorded log fi les, dif-
ferent behavioral indicators of metacognitive 
regulation of strategy use were calculated. First, 
metacognitive regulation of the use of the CVS 
was detected in a log fi le when learners had run 
two successive experiments in the experiment 
space and when all independent variables except 
one were kept constant across both experiments. 
The score for metacognitive regulation of the use 
of the CVS is based on the frequency of run 
experiments with CVS during SRL. Second, 
metacognitive regulation of stating or re fi ning 
hypotheses was detected in a log fi le when learn-
ers had stated or re fi ned a hypothesis in the 
hypotheses space by connecting at least two con-
cepts by a labeled link. The score for metacogni-
tive regulation of stating or re fi ning hypotheses is 
based on the frequency of stated or re fi ned 
hypothesis during SRL.  

   Test on Metacognitive Knowledge 
About Strategies 

 In order to assess learners’ metacognitive knowl-
edge about strategies for SRL with scienti fi c dis-
covery learning environments, two versions of a 
new strategy knowledge test were developed. 

 The content of the Essener experimenting 
strategy knowledge test (EEST) focuses on 
metacognitive knowledge about the CVS. The 
test format is analogous to the WLST 7-12 
(Schlagmüller & Schneider,  2007  ) . As Fig.  37.2  
shows, it consists of drafted scienti fi c discovery 
learning situations each combined with a list of 
given action alternatives which describe the more 
or less elaborated use of the CVS. Learners 
have to rate the situation-speci fi c utility of these 
action alternatives. The score on metacognitive 
knowledge about the CVS is based on quasi-pair 
comparisons between action alternatives. For 
example, if the experts agree that alternative (c) is 
better than alternative (b), learners get one point 
if their rating is in the same direction. Furthermore, 
learners get a half point when they rated (b) 
equally good as (c), and they get no point when 
they rated (b) better than (c). Thus, the score on 
metacognitive knowledge about the CVS is cal-
culated as the amount of congruence between the 
learners’ rating and an aggregated expert rating.  

 The EEST-2 includes three variations com-
pared to the EEST. First, in order to better inte-
grate the test administration into a computer-based 
testing, we switched from a paper-pencil-based 
test format to a computer-based test format. 
Second, in order to directly assess what will be 
analyzed afterwards, namely, paired comparisons 
of action alternatives, we changed from a rating 
answer format to a forced-choice answer format. 
Third, we extended the test from metacognitive 

  Fig. 37.1    Screenshots of the CBLEs “buoyancy in liquids” and “acids and bases”       
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knowledge about the CVS to metacognitive 
knowledge about stating and re fi ning hypotheses. 
Thus, the EEST-2 also presents short sketches of 
scienti fi c discovery learning situations each 
 combined with three pairs of action alternatives 
that differ in their situational appropriateness. 
For each pair of action alternatives, learners had 
to decide which is the more appropriate one. 
A metacognitive strategy knowledge score is cal-
culated as the number of correct answers.  

   Further Instruments 

 For validation of the new measures of metacogni-
tive knowledge about and metacognitive regula-
tion of strategies, further variables were assessed 
within the empirical studies. First, learners’ 
content-speci fi c knowledge about the learning 
contents of the CBLEs was assessed by two mul-
tiple-choice tests, one on “buoyancy in liquids” 
and one on “acids and bases.” Both tests were 
administered computer based. Furthermore, both 
tests were administered twice, before and after 
SRL with the respective CBLE. The score on 

learning outcome was calculated as the standard-
ized residual of a linear regression analysis pre-
dicting content-speci fi c knowledge after learning 
(post) by content-speci fi c knowledge before 
learning (pre). Second, learners’ current motivation 
right before SRL was assessed by the subscales 
“challenge” and “interest” from the Questionnaire 
on Current Motivation (QCM; Rheinberg, 
Vollmeyer, & Burns,  2001 ). This motivation 
questionnaire was also administered computer-
based. The motivation score was calculated as 
the mean of agreement. Third, learners’ demo-
graphic data, like age, gender, and school grades, 
were assessed by a short demographic question-
naire that was administered paper-pencil-based.  

   Empirical Findings 

   Study 1 

 In order to investigate the  fi rst and the second 
research question on the test quality of the newly 
developed measures on metacognitive knowledge 
about and metacognitive regulation of scienti fi c 

School grades 

You want to find out, whether the room temperature changes when the

fridge is opened.

The following approaches for testing your idea come to your mind. Please

score them with school grades (1=very good to 6=insufficient):

(A)

1

(B)

2

(C)

3

(D)

4

(E)

5

(F)

6

a) I compare the temperature within the fridge with the temperature

outside the fridge.

b) I measure the room temperature when the fridge is opened.

c) I measure the room temperature before and after the fridge is opened.

d) I measure the room temperature repeatedly before and after the fridge

is opened.

e)  I measure the room temperature not until window and door are closed.

  Fig. 37.2    Example item of the EEST on metacognitive knowledge about the CVS       
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discovery strategies, we conducted a correlation 
study. In this  fi rst study, we investigated meta-
cognitive knowledge about scienti fi c discovery 
strategies and metacognitive regulation of the use 
of these strategies during SRL with the CBLEs 
on “buoyancy in liquids” and on “acids and 
bases.”  

   Methods 

 Two hundred sixty-nine 8th- and 9th-grade stu-
dents from upper secondary schools took part in 
this study. Their mean age was 14.2 years 
(SD = 0.80) with 40.2% female. The study took 
place on two sessions during regular school les-
sons, each lasting about 90 min. In the  fi rst ses-
sion, students  fi lled in the demographic 
questionnaire, the pretest on content-speci fi c 
knowledge according to the  fi rst CBLE (either 
“buoyancy in liquids” or “acids and bases”) and 
the EEST-2 (day 1-pre). After the tutorial for the 
 fi rst CBLE and the instruction to learn, students 
answered the motivation questionnaire (day 1). 
During 15 min of SRL with the CBLE, all actions 
were recorded automatically into a log fi le. After 
learning, students  fi lled in the  posttest on content-
speci fi c knowledge according to the  fi rst CBLE. 
The second session began with the pretest on 
content-speci fi c knowledge according to the sec-
ond CBLE. After the tutorial for the second 
CBLE and the instruction for SRL, students 
answered the motivation questionnaire (day 2). 
During 15 min of SRL with the CBLE, all actions 
were recorded automatically into a log fi le. After 
learning, students  fi lled in the posttest on content-
speci fi c knowledge according to the second 
CBLE.  

   Results 

 Because the CBLE on “acids and bases” turned 
out to put too high demands on learners, the fol-
lowing results will concentrate on the CBLE on 
“buoyancy in liquids.” With regard to the  fi rst 
research question, results of the test on meta-
cognitive knowledge about scienti fi c discovery 

strategies showed acceptable reliability at least 
for the post-version, with Cronbach’s 
alpha = 0.57 (pre) and Cronbach’s alpha = 0.74 
(post). Positive correlations were found between 
metacognitive knowledge about scienti fi c dis-
covery strategies and learning outcome (meta-
cognitive knowledge pre:  r  = 0.11; n.s.; 
metacognitive knowledge post:  r  = 0.31; 
 p  < 0.01). Finding only a signi fi cant correlation 
between metacognitive strategy knowledge-
assessed post and learning outcome is in line 
with theoretical assumptions on the activation 
of metacognitive strategy knowledge in the 
learning phase and can be interpreted as a hint 
of construct validity of the EEST-2. Furthermore, 
positive correlations between metacognitive 
knowledge about scienti fi c discovery strategies 
and the school grades (0.16  £   r   £  0.27;  p  < 0.05), 
especially in the science courses physics, chem-
istry, and biology gave further hints of validity. 
With regard to the second research question, 
Fig.  37.3  shows a path model with different 
log fi le-based measures of metacognitive regula-
tion of strategy use predicting learning outcome. 
As can be seen from the path model, metacogni-
tive regulation of CVS use (  b   = 0.15;  p  < 0.05) as 
well as of stating or re fi ning hypotheses 
(  b   = 0.12;  p  < 0.05, one-tailed) and current moti-
vation (  b   = 0.20;  p  < 0.05) show a small but 
signi fi cant effect on learning outcome, whereas 
running unsystematic experiments without CVS 
(  b   = 0.00; n.s.) did not. This model has an 
acceptable  fi t (( X  2  3) = 0.83;  p  = 0.842; 
CFI = 1.00; FMIN = 0.003; RMSEA = 0.00). 
This result can be regarded as a  fi rst hint of 
validity of the log fi le-based measures of meta-
cognitive regulation of strategy use.  

 In sum, results of the  fi rst study show that the 
newly developed test on metacognitive knowl-
edge about the scienti fi c discovery strategies, 
especially when administered after learning, has 
an acceptable reliability and shows the expected 
positive correlations with learning outcome and 
school grades. Regarding the log fi le-based mea-
sures on the use of these strategies, results show 
the expected pattern of correlations with learning 
outcome that can be interpreted as  fi rst hints of 
validity.  
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   Study 2 

 In order to further investigate the test quality of 
the log fi le-based measures on metacognitive 
regulation of scienti fi c discovery strategies, we 
conducted a second correlation study. We used 
a multi-method approach in order to validate 
our log fi le-based measures for stating and 
re fi ning hypotheses as well as for using CVS. 
Both strategies were assessed computer-based 
using the CBLE on “buoyancy in liquids.” The 
resulting log fi le data were analyzed afterwards 
by the computer using the same algorithms 
described above. Additionally, learners were 
asked to think aloud while learning with the 
CBLE, and protocols of these think-aloud pro-
cesses were analyzed and coded afterwards by 
a trained human coder. Furthermore, we 
recorded every event on the computer screen 
into video streams. We used these videos as a 
separate source of data. These video data, of 
course, should highly correlate with the log fi le 
data since both kinds of data result from the 
same learner-computer interaction. However, it 
includes all data available, whereas log fi le data 
only include data the computer was told to log. 
Thus, it could happen that the log fi les miss sys-
tematically speci fi c information because they 
were systematically not logged. Comparing 
video data with log fi le data can help in 
 identifying such systematic missing data. 
Furthermore, the video data were analyzed by a 

human coder using high inferential ratings 
which could not be implemented into a com-
puter algorithm.  

   Methods 

 Sixteen 9th-grade students from an upper sec-
ondary school took part in this correlation study. 
Their mean age was 14.4 years (SD = 0.62) with 
44% male. Each of them was tested separately 
during their regular school time. After the tutorial 
for the CBLE, students were trained to think 
aloud for about 10 min. Afterwards, students 
learned for 15 min with the CBLE. During this 
time, their mouse clicks were written into log fi les, 
and every event was video-recorded. Furthermore, 
students were asked to think aloud.  

   Results 

 Results reveal that log fi le measures are highly 
suitable for assessing the use of CVS. The corre-
lation between think-aloud and log fi le data is, 
in fact, quite low (Spearman’s rho = 0.385). 
However, the respective correlation with video 
data is quite high (Spearman’s rho = 0.846). The 
low correlation with think-aloud data results from 
the fact that students verbalized what they did 
only at the beginning of the learning process. 
But they ceased verbalizing their experimental 

  Fig. 37.3    Path model of Study 1        
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behavior very soon, although they were continu-
ously instructed to talk out loud what they thought. 
Thus, think-aloud data underestimated the num-
ber of experiments and the use of CVS leading to 
low variance and low covariances, respectively. 

 Concerning stating and re fi ning hypotheses, it 
turns out that, on the one hand, hypotheses can be 
identi fi ed in log fi le data and that the hypotheses 
found in the log fi le data were validated by think-
aloud data and video data. On the other hand, 
log fi le data contained much less indicators of 
hypotheses than think-aloud or video data. That 
means that log fi le data underestimated the fre-
quency of stating and re fi ning hypotheses result-
ing in zero correlations with think-aloud and 
video data. This is probably due to the speci fi c 
way students had to state hypotheses in the com-
puter-based notepad. Although they were trained 
to use the notepad in advance, it was obviously 
much easier for the students to verbalize their 
hypotheses than expressing them in the notepad. 

 In sum, results of the second study show that 
log fi le-based measures can be valid indicators for 
the use of the CVS and that they identify con-
trolled experiments even more reliable than indi-
cators based on think-aloud data. However, 
concerning stating and re fi ning hypotheses, 
log fi le-based measures often fail to identify 
hypotheses. It seems that log fi le data are espe-
cially suitable for measures that indicate the use 
and the regulation of strategies that usually result 
in overt behavior. But if students are forced to 
express cognitive strategies in some kind of overt 
behavior they are not suf fi ciently familiar with, 
then log fi le data tend to underestimate the occur-
rence of these strategies.  

   Study 3 

 In order to investigate the relationship between 
metacognitive knowledge about and metacogni-
tive regulation of the one and the same strategy, 
we conducted a third correlation study in which 
we put the focus on metacognitive knowledge 
about the CVS and metacognitive regulation of 
the use of the CVS during SRL with the CBLE on 
“buoyancy in liquids.”  

   Methods 

 Two hundred eighty-six 8th- to 10th-grade stu-
dents from all types of German secondary schools 
took part in this correlation study. Their mean age 
was 15.1 years (SD = 0.90) with 51% female. The 
study took about 90 min during regular school 
lessons. Students began with answering the ques-
tionnaire on demographic data. Next, students 
 fi lled in the test on metacognitive knowledge 
about the CVS and the pretest on content-speci fi c 
knowledge about buoyancy. After the CBLE tuto-
rial and the instruction for SRL, students had to 
answer questions on their motivation. During the 
20 min of SRL with the CBLE, all actions were 
recorded automatically into a log fi le. After learn-
ing, students  fi lled in the posttest on content-
speci fi c knowledge about buoyancy.  

   Results 

 Again, with regard to the  fi rst research question, 
results revealed an acceptable reliability of the 
test on metacognitive knowledge about the CVS 
with Cronbach   ’s alpha = 0.75. A positive correla-
tion between metacognitive knowledge about the 
CVS and learning outcome ( r  = 0.19;  p  < 0.01) 
revealed a hint of construct validity. Regarding 
the second research question, again results 
revealed a positive correlation between metacog-
nitive regulation of the use of the CVS and learn-
ing outcome ( r  = 0.20;  p  < 0.01) as a hint of 
construct validity. 

 With regard to the third research question, a 
correlation analysis revealed a positive correlation 
of  r  = 0.21 ( p  < 0.01) between metacognitive 
knowledge about the CVS and metacognitive reg-
ulation of its actual use. At a  fi rst glance, this cor-
relation seems to be signi fi cant but small. 
Therefore, we tested the assumption stated by 
Pressley and colleagues (Pressley,  1995 ; Pressley 
et al.,  1987  )  who assumed motivation to be one 
potential moderator on this relationship. An 
ANCOVA with current motivation and metacog-
nitive knowledge about the CVS predicting meta-
cognitive regulation of CVS use revealed an 
interaction effect,  F (1,279) = 2.91;  p  < 0.05; partial 
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eta 2  = 0.01. Thus, at a second glance, current moti-
vation turned out to moderate the relationship 
between metacognitive knowledge about the CVS 
and metacognitive regulation of its actual use. In 
order to illustrate this moderation effect, we cal-
culated two linear structural equation models on 
the basis of splitting the sample by the median of 
current motivation. A chi 2 -difference test showed 
that it is worth to allow for two different path 
coef fi cients instead of restricting to one ( D  X  2  = 7.68; 
 D df = 1;  p  = 0.006). As can be seen in Fig.  37.4 , 
while highly motivated students made use of their 
metacognitive knowledge about the CVS, less 
motivated students did not make use of it.  

 In sum, results of the third study con fi rmed the 
good test quality of the test on metacognitive 
knowledge about the CVS and of the log fi le-
based measure on metacognitive regulation of the 
same strategy. Furthermore, results show that it is 
worthwhile to measure metacognitive knowledge 
about and metacognitive regulation of the same 
strategy because this makes it possible to observe 
the relationship between those two. Lastly, results 
emphasize the role of motivation during SRL 
with scienti fi c discovery learning environments, 
revealing a moderating role of current motivation 
on the relationship between metacognitive strat-
egy knowledge and metacognitive regulation of 
the CVS.   

   Overall Discussion and Implications 

 To sum up, with respect to the  fi rst and the sec-
ond research question, our results speak in 
favor of a good test quality of the newly devel-

oped test on metacognitive knowledge about 
scienti fi c discovery strategies and the log fi le-
based measures of metacognitive regulation of 
these strategies. Thus, in order to develop 
assessment methods for investigating further 
kinds of SRL, we suggest the following steps: 
(1) to draft a theoretical model of the strategic 
demands of the speci fi c kind of SRL, (2) to 
develop a CBLE that operationalizes the strate-
gic demands of this speci fi c kind of SRL, and 
(3) to develop a test on metacognitive knowl-
edge about appropriate strategies and log fi le-
based measures for the metacognitive regul
ation of strategy use. With respect to the third 
research question, our results empirically 
con fi rm the assumptions by Pressley and col-
leagues (Pressley,  1995 ; Pressley et al.,  1987  ) , 
revealing a moderating role of current motiva-
tion on the relationship between metacognitive 
knowledge about and metacognitive regulation 
of strategies in SRL. 

 With respect to limitations of the presented 
results, there are three points to highlight. First, 
we could not report any data about the CBLE on 
“acids and bases” because demands were too 
high for learners. We assume that this is due to 
the formal complexity of the chemical content 
of the CBLE that does not only include linear 
relationships between variables like the physics 
CBLE. Thus, we assume that exploring these 
nonlinear relationships was too dif fi cult for our 
sample. Second, we could neither report any 
data on the reliability of the log fi le-based mea-
sures because until now there are no adequate 
reliability coef fi cients available. Because the 
values of the log fi le-based measures are assumed 

  Fig. 37.4    Structural equation models of Study 3       
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to vary across time, it does not make sense to 
generate scales based on time segments and to 
calculate their split-half reliability or their inter-
nal consistency. Thus, as reliability is a precon-
dition for validity, so far we have to rely on the 
results on validity. Third, although results on the 
validity of our new measures are always consis-
tent with our hypotheses and statistically 
signi fi cant, correlation coef fi cients are small. 
We assume that this is mainly due to the speci fi c 
focus on the CVS. As successful self-regulated 
learners should choose from a repertoire of 
scienti fi c discovery strategies, the CVS should 
only be one strategy in their repertoire. Thus, 
assessing metacognitive knowledge about and 
metacognitive regulation of the CVS is expected 
to explain only a small amount of variance of 
learning outcome. In sum, we conclude that the 
results of the presented studies should be repli-
cated in further studies. Additionally, the rela-
tionship that was found between metacognitive 
knowledge about and metacognitive regulation 
of strategies should be tested for further strate-
gies and in further learning environments in 
order to test its generalizability. 

 Finally, our results have implications for 
developing support for metacognition in SRL. 
Referring to Flavell  (  1979  ) , the  fi rst challenge 
would be to have a comprehensive diagnostic 
assessment of learners’ competencies  fi rst in 
order to design adequate, effective, and ef fi cient 
support for SRL afterwards. Thus, according to 
Veenman et al.  (  2006  ) , strategy trainings would 
be indicated only in case of a mediation de fi ciency. 
Accordingly, support methods like prompting 
(e.g., Azevedo, Cromley, & Seibert,  2004 ; Chi, 
De Leeuw, Chiu, & LaVancher,  1994 ; Davis, 
 2003 ; Thillmann et al.,  2009 ; Wichmann & 
Leutner,  2009  )  would be indicated in case of a 
production de fi ciency. Referring to Azevedo and 
colleagues  (  2004  ) , the second challenge lies in 
the development of individually adaptive online 
support during SRL. Based on the presented 
log fi le-based measures for metacognitive regula-
tion of strategy use, we argue for going one step 
further by assessing and analyzing log fi les not 
only after SRL but also concurrently during SRL. 
This should be the prerequisite for designing 

individually adaptive online support that is 
aligned to learners’ actual needs. Referring to 
Wolters  (  2003  ) , a  fi nal challenge for future SRL 
research lies in investigating motivation not only 
as a precondition or product of SRL but also as a 
subject of regulation within SRL.      
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        Introduction 

 The learning and teaching of Science has a dual 
nature. On the one hand science teaching and 
learning needs to address the main insights that 
the sciences have produced, such as Newton’s 
laws, the periodic system of the elements, and the 
way these insights can be applied to solve scienti fi c 
and technical problems. On the other hand, an 
important goal of science learning is to induce an 
image of the processes of scienti fi c work and 

research, as well as basic scienti fi c skills, such as 
the framing of research questions and the scienti fi c 
methods for pursuing their answers. In other, more 
compact wording, learners should learn both 
scienti fi c knowledge and scienti fi c skills. 

 In the last two decades scienti fi c inquiry learn-
ing has been studied as an attempt to address both 
goals of science teaching. In inquiry learning learn-
ers work on a scienti fi c task in which they need to 
answer a research question. In most cases the ques-
tion concerns the relations that govern a given 
domain, such as the relation between height and 
energy of a falling body or the dependency of 
chemical reaction speed on temperature. By stating 
hypotheses and testing those by designing and per-
forming experiments learners are expected to learn 
about the domain through the things they discover 
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 Abstract 

 We discuss the use of models of inquiry processes, such as SDDS and the 
inquiry cycle for the generation of support on the regulation of these 
processes. It is argued that such scaffolding must be adaptive as too much 
scaffolding can actually hinder learning. A major problem encountered is 
the “paradox of adaptive scaffolding”. In order to make scaffolding adap-
tive, the system needs to gather information about the learners’ progress. 
In order to collect this information, often many learner actions are made 
explicit in the environment, a measure that is a scaffold itself. We discuss 
a few means of minimizing this unintended scaffolding, using less obtru-
sive methods for obtaining learner information, and present an example 
of how such information can be used to support learners in monitoring 
their progress. 
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and about the scienti fi c skills by  practicing them in 
their pursuit for answers on the research questions. 

 The main argument for introducing inquiry 
learning, apart from reaching both main learn-
ing goals in one activity, is that the resulting 
scienti fi c knowledge is assumed to be better 
structured and better rooted in learners’ exist-
ing knowledge. This argument stems from con-
structivism (Jonassen,  1991  ) , which sees 
learners as active agents who construct their 
own knowledge. Learning by performing 
scienti fi c activities  fi ts perfectly in this para-
digm. The catch is of course that in this way 
learning scienti fi c knowledge becomes depen-
dent on the success of learning scienti fi c skills. 
If learners fail to perform the scienti fi c inquiry 
processes well, students may acquire little or 
no scienti fi c knowledge, or worse, may acquire 
incorrect knowledge. For instance, learners 
may bring naïve conceptions to the learning 
experience, and by using experimentation strat-
egies aimed at con fi rming their ideas, these 
conceptions, however wrong, may be strength-
ened. Alternatively, by using unproductive 
inquiry strategies, learners may not be able to 
distill the right variables and relations from the 
available data. 

 These considerations have lead to the idea 
that learners need support in inquiry learning 
(e.g., Al fi eri, Brooks, Aldrich, & Tenenbaum, 
 2011 ; de Jong & van Joolingen,  1998  ) . By offer-
ing support they will receive scaffolds for the 
inquiry processes. This should ensure that they 
perform the inquiry processes at a level at which 
they will be able to acquire scienti fi c knowledge 
about the domain, and at the same time can prac-
tice inquiry processes themselves. Support can 
be directed at providing relevant information 
about the domain, on the performance of the 
inquiry processes, and on the  regulation  of these 
processes, in other words on the planning, moni-
toring, and evaluation of the inquiry endeavor 
(Manlove, Lazonder, & de Jong,  2006,   2009  ) . In 
this chapter we will focus on the latter, but in 
order to be able to do so, we  fi rst introduce envi-
ronments for inquiry learning, as well as models 
of the inquiry process.  

   Inquiry Learning Environments 

 Inquiry learning environments aim at enabling 
and supporting inquiry learning by offering a 
research question, one or more resources that 
can be explored to answer the question and tools 
to assist the learner in carrying out the right pro-
cesses for doing so (van Joolingen & Zacharia, 
 2009  ) . A resource for obtaining data can have 
multiple forms, ranging from  fi eld observations 
or experimental equipment to computer simula-
tions, online databases, and video measure-
ments. Theoretically, these different kinds of 
resources are similar in the sense that they all 
allow for measurement and/or observation and 
in many cases also manipulation of variables. 
Zacharia  (  2007  )  found in a comparison that stu-
dents using virtual labs can perform equally well 
or even better on a conceptual knowledge post-
test than students using real labs. In practice dif-
ferent resources have different affordances 
creating qualitative differences in experimentation 
behavior. For instance, changing a variable in a 
simulation may be done with a click on a button, 
whereas it may require advanced physical oper-
ations or physical labor in a real experiment. 
Also simulations can manipulate the time scale, 
allowing for a large number of simulated experi-
ments to be done within the time of a single real 
life run. Moreover, simulations can provide a 
modi fi ed reality, for example, a simpli fi cation of 
a real system or some kind of alternative reality, 
such as a world without friction. In such a way 
inquiry processes can be focused on a domain 
that is completely known by the designer, which 
has the advantage that all possible actions and 
outcomes are known in advance. A disadvantage 
is the resulting closed nature of the environment, 
taking away the possibility of outcomes that are 
unexpected, even for the designer of the envi-
ronment, such as outcomes stemming from 
faulty equipment. The recognition of such unex-
pected events may be an important skill in itself. 
Building them into a simulation may be hard 
and appear arti fi cial for the students.  
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   Models of Inquiry Learning 

 To de fi ne the nature of learning processes 
involved in inquiry learning, the process of 
inquiry needs to be modeled. Models of inquiry 
learning are often based on the  inquiry cycle  that 
has been described by many authors in varying 
forms, and was summarized by Löhner, van 
Joolingen, Savelsbergh, and van Hout-Wolters 
 (  2005  )  in terms of the processes  orientation , 
 hypotheses generation ,  experimentation , and 
 evaluation . Although other authors use varying 
terminology and sometimes make re fi nements, 
the basic shape of the cycle remains intact, 
although the place for performing experiments 
requires special attention. An in fl uential model 
into the use of experiments in scienti fi c reason-
ing has been that of Klahr and Dunbar  (  1988  ) , 
who approached inquiry as a problem solving 
process in their Scienti fi c Discovery as Dual 
Search (SDDS) theory. They de fi ned two search 
spaces, called  hypothesis space  and  experiment 

space . The  fi rst of these spaces consist of all pos-
sible rules that could describe the domain, 
whereas the second contains all possible experi-
ments that can be performed within the domain. 
Important in the SDDS theory is that it models 
when hypotheses and experiment space searches 
are needed. Experiment space search can take 
place to inspire new hypotheses, to  fi ll in values 
for a prediction and to test hypotheses. Hypothesis 
space searches are triggered when prior knowl-
edge is inadequate to explain observed phenom-
ena. Although Klahr and Dunbar themselves 
found that learners do not always behave accord-
ing to the model (e.g., hypotheses can be rejected 
without con fl icting evidence or retained in spite 
of such evidence), SDDS provides a useful 
descriptive framework for the processes of 
inquiry learning, especially with respect to the 
role of experimentation, which occurs not only 
for the purpose of testing hypotheses but also 
helps in shaping them. For instance, when linear 
relation is hypothesized to exist between two 
variables, an experiment can be used to deter-
mine the proportionality factor (i.e., further spec-
ify the hypothesis). Further experiments can be 
used to test the hypothesis (e.g., by comparing 

experimental outcomes to the predictions 
 generated by the hypothesis). 

 Van Joolingen and de Jong  (  1997  )  extended 
Klahr and Dunbar’s model with a detailed analy-
sis of the hypothesis space for the case of simula-
tion-based learning in which the domain can be 
described in terms of variables and relations 
between them. As a result their model can handle 
moves in the hypothesis space, such as general-
ization, speci fi cation, and precision. Also, their 
model can be used to model learners’ prior 
knowledge, by means of identifying subspaces in 
the hypothesis space that model whether the 
learner knows them and to what extent the learner 
considers them relevant for the current inquiry 
problem. It makes a difference whether learners 
do not  fi nd a hypothesis because they do not 
know a relation or because they do know it, but 
do not think it is appropriate. Different kinds of 
support would be appropriate for either case. 

 Hakkarainen and colleagues take a different 
stance towards inquiry and acknowledge the 
importance of discussion and argumentation in 
inquiry (Hakkarainen, Lipponen, & Järvelä,  2001 ; 
Hakkarainen & Sintonen,  2002  ) . In their  inter-

rogative model of inquiry  they focus on the devel-
opment of research questions and their subdivision 
into sub questions by means of dialog and argu-
mentation. Similar approaches are found in work 
by Scardamelia and colleagues on knowledge 
building environments (Hewitt & Scardamalia, 
 1998 ; Scardamalia & Bereiter,  1993  )  

 The processes that compose the inquiry cycle, 
including the search for the most appropriate 
hypothesis and evidence to support it are what 
Njoo and De Jong  (  1993  )  call  transformative 

learning processes . In addition to these processes, 
 regulative  learning processes are relevant in the 
process of inquiry and hence in constructing and 
executing the inquiry cycle. Regulative learning 
processes represent the learners’ metacognitive 
strategies, and are used to exert control over the 
transformative processes. In other words, using 
regulative processes, the learner decides whether 
it is time to state a new hypothesis, to collect 
more data for the current one, or for something 
else. Regulative processes combine domain inde-
pendent and domain dependent aspects. In most 
descriptions they include  planning ,  monitoring , 
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and  evaluation . For planning, some general, 
domain independent notions of what a good plan 
is do exist. The plan itself will be formulated in 
terms of the domain investigated (e.g., “ fi rst 
check whether X relates to Z, then check Y”). 
This stresses that regulative skills are partly 
domain dependent. Relevant domain knowledge 
is needed to formulate and check the learning 
activities at the level of transformative processes.  

   Scaffolding Metacognitive Inquiry 
Processes 

 It has been recognized for a long time that inquiry 
without support for the learner, also referred to as 
 discovery learning  is not effective (de Jong & van 
Joolingen,  1998 ; Klahr & Nigam,  2004 ; Mayer, 
 2004  ) . Hence there is a need for providing the 
learner with support in order to perform the learn-
ing processes in a productive manner. 

 Tools to assist the inquiry process range from 
general purpose tools, such as spreadsheets, word 
processors, and the like, to dedicated tools, such as 
experiment design tools or hypothesis scratchpads 
(van Joolingen & de Jong,  1991,   1993  ) . Such tools 
can be integrated in the learning environment; oth-
ers may be available as an add-on. In essence tools 
allow and assist learners in acquiring and expressing 
knowledge, a property that coined the term  cogni-

tive tools  (Lajoie & Derry,  1993 ; van Joolingen, 
 1999  ) . Tools can be directed at the transformative 
processes that deal with the generation of knowl-
edge or with regulative processes for planning and 
controlling inquiry activities. 

 Any of the tools that help learners in material-
izing the inquiry process can offer several kinds 
of scaffolding (e.g., see Lajoie & Derry,  1993  ) :

   Providing just-in-time information needed for • 
a speci fi c learning process. For instance, the 
tool can provide learners with names of vari-
ables to consider for investigation, or provide 
how-to information on performing an 
experiment.  
  Providing templates to support learning pro-• 
cesses. For instance, a template could be a 
partially stated hypothesis for which only a 
value or a relation needs to be  fi lled in. Or a 

partial plan for the inquiry process can be 
provided.  
  Automating learning processes. Tools can • 
automate parts of the processes allowing 
learners to focus on other parts. For instance, 
tools can provide a step-by-step walkthrough 
of the transformative processes, relieving 
learners of the necessity to provide their own 
plans.  
  Constraining behavior. By reducing the number • 
of possible actions in the learning environment, 
e.g., by limiting the number of variables that a 
learner can manipulate, learners’ transforma-
tive and regulative processes are simpli fi ed.  
  Providing feedback. Tools (or agents in the learn-• 
ing environment) can provide feedback on learn-
er’s performance. For instance, by providing 
comments on the set of experiments as to what 
extent they are adequate to test a hypothesis.  
  Increasing awareness of own behavior. A • 
speci fi c kind of feedback that can be provided 
is echoing learners’ own behavior by present-
ing a visual representation of that behavior, 
such as a image showing the proportions of 
different kind of behavior (Anjewierden, 
Kolloffel, & Hulshof,  2007  ) .    
 Often more than one kind of scaffolding is 

combined in one learning environment. Scaffolds 
can take over cognitively demanding parts of a 
complex task, freeing up cognitive resources, 
allowing learners to focus on other parts the of 
the task (van Merriënboer, Kirschner, & Kester, 
 2003  ) . For inquiry learning several environments 
have been developed that provide such scaffold-
ing for regulation. WISE (Slotta,  2004  )  provides 
learners with a menu structure that can be tra-
versed from top to bottom, taking the planning of 
the inquiry out of the hands of the learners, so 
they can focus on other processes, such as col-
lecting data to test a hypothesis. 

 Manlove et al.  (  2006  )  used a  process coordina-

tor , a tool that helped learners to plan by offering a 
default plan that could be  fi ne-tuned by the learner. 
The tool also supported monitoring by requiring 
students to link the plan to products in the learning 
environment (such as empirical data) as evidence 
for completion of plan elements. In such away, 
monitoring was made an explicit activity. 
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 In earlier work, Veermans, van Joolingen, and 
de Jong (Veermans, de Jong, & van Joolingen, 
 2000 ;    Veermans, van Joolingen, & de Jong,  2006  )  
introduced a tool that supports monitoring by allow-
ing students to record the results of experiments. 
These results were subsequently used in generating 
feedback to learners’ experimental behavior. 

 SimQuest (van Joolingen & de Jong,  2003  )  is 
an authoring system that allows to develop mul-
tiple kinds of scaffolding that include regulative 
support for planning. Its “assignments” provide 
small micro-plans for inquiry subtasks, such as 
investigating the in fl uence of a variable or pre-
dicting the outcome of an experiment. 
Assignments can be chained and branched to cre-
ate plans at a more global level. Assignments can 
be offered in a completely  fi xed sequence, offered 
all at once for the learner to choose from, or 
offered in a manner in between these extremes. 
Offering assignments in this way wholly or partly 
automates the planning process for the learner. 
Moreover, SimQuest offers model progression in 
a similar vein as devised by (White et al.,  2002 ; 
White & Frederiksen,  1990  ) . In model progression, 
models of increasing complexity are offered to 
the student, supporting planning by constraining 
the learners’ freedom.  

   Adaptive Support for Regulating 
Inquiry Processes 

 The examples of regulative support for inquiry 
learning provided above have in common that 
they are not adaptive or at best they are partly 
adaptive to learners’ behavior. For instance, the 
menu structure in WISE is  fi xed and all learners 
need to go through the same sequence. In other 
environments, the results of assignments (e.g., 
SimQuest) or answers to quizzes sometimes can 
be used to provide some adaptivity, for instance 
by varying the collection of assignments offered 
to learners based on the answers given. However, 
the main questions, whether learners need sup-
port or not and, if so, what is the right level of 
support, is usually answered in a  fi xed way for all 
students targeted with the learning environment. 

 This would not be a problem if offering regula-
tive support would never have negative effects. But 
as a matter of fact such negative effects can occur. 
There is such a thing as too much scaffolding 
(Koedinger & Aleven,  2007  ) . First of all, the pur-
pose of scaffolding is that it can  fade  at the time the 
learners are capable of performing the scaffolded 
task on their own. As this moment will vary for 
individual learners, adaptive fading is necessary. 

 Moreover, one may expect that learners who 
receive support that they do not need will not 
achieve at a level that they would be able to reach 
otherwise. A hint of this effect can be found in a 
study by Wecker and colleagues  (  2007  ) , who 
found that more computer literate learners learned 
less from a WISE course than less computer liter-
ate learners. A possible explanation is that 
advanced learners are more successful in bypass-
ing the WISE menu structure, changing the focus 
from learning about the topic to getting to the end 
of the menu through the shortest route. Of course, 
computer literacy cannot be equated to the pos-
session of inquiry skills, but one may expect that 
learners with more advanced regulative skills will 
also try to manage their way around the scaffolds, 
rather than focusing on the content. 

 Finally, scaffolds can be misused, even by less-
advanced students. Especially when scaffolds ulti-
mately lead to automating the process or providing 
answers to questions, learners may be tempted to 
 game  the system (Baker et al.,  2006 ; Baker, 
Corbett, Koedinger, & Wagner,  2004  ) , meaning 
that they will exploit all support options until the 
system does the task for them. In order to prevent 
this, the maximum level of scaffolding should be 
adapted to what a learner can and should do him- 
or herself within the learning environment. 

 Another danger of nonadaptive support is that 
learners and also teachers may confuse means 
and goals. Environments that offer a  fi xed sup-
port structure may reinforce the notion that the 
goal is to “go through” that structure or  fi ll in all 
the blanks of the templates, instead of performing 
the processes that are supposed to be supported 
and learn from them. Support that changes and 
that adapts to learners’ ability would less likely to 
reinforce that notion. 
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 Providing adaptive support requires several 
levels of processing: diagnosis, intervention selec-
tion, and intervention. Diagnosis is necessary to 
identify the parts of the learning processes that 
need to be scaffolded and potentially how this 
scaffolding should be shaped. Intervention is 
actually providing the scaffold. In order to create 
truly adaptive support, it is necessary that these 
two parts are separated, that is, the scaffold should 
not do its own diagnosis. This is necessary because 
there is no one-to-one relation between problem 
and support. For a given problem, for instance 
lack of monitoring experiments and their result-
ing data, several ways of scaffolding may exist in 
the different scaffolding categories (e.g., auto-
matic recording of experiments, or a  fi ll-in table 
as template). The choice of action may depend 
not only on the problem detected but also on other 
factors, such as learner characteristics, previously 
used scaffolds, as well as whether a certain pro-
cess is the focus of learning. If there is more than 
one process that requires support, it may be useful 
to automate one and scaffold the other in order to 
allow the learner to focus on one process at a time. 
Consequently, it is necessary to have a stage in 
between diagnosis and intervention. 

 As a result, providing adaptive support requires 
three kinds of processing:  diagnosis  to detect 
problems with regulative learning processes,  inter-

vention selection  to choose between available 
interventions and  intervention implementation , to 
actually provide the scaffolds to the learner. These 
processes need to be managed in the learning envi-
ronment at a technical and conceptual level. 

 On a technical level, a good solution is to use 
 agents  that work in the background of the learn-
ing environment. Bollen, Giemza, and Hoppe 
 (  2008  )  present an agent architecture based on a 
blackboard architecture, based on  Tuple Spaces  
(Weinbrenner, Giemza, & Hoppe,  2007  ) . Three 
types of agents are introduced that correspond to 
the three processes mentioned above: analyzing 
agents, processing agents, and notifying agents. 
The analyzing agents analyze the stream of 
learner actions and convert these actions into 
meaningful units representing the processes that 
learners perform. For instance, Anjewierden and 
colleagues (Anjewierden et al.,  2007 ; 

Anjewierden & Gijlers,  2008  )  created a tool that, 
after a human-assisted learning period, can auto-
matically distinguish between regulative and 
transformative processes, based on chat utter-
ances between two collaborating learners. An 
agent based on such an algorithm can write its 
results to the common memory (the tuple space). 
Processing agents can use such information, for 
several purposes, such as computing the way the 
learner distributes time between processes, or 
relate the information of one agent to that of 
another. This results in more information written 
to the tuple space. Notifying agents can be trig-
gered by speci fi c states in the tuple space, set by 
processing agents. For instance, the processing 
agent can note that the level of regulative pro-
cesses is low and decide that the learner needs to 
be stimulated in regulating the work. The notify-
ing agent can then activate one or more scaffolds 
that provide such stimulation. The implementa-
tion of the scaffold will be stored in the tuple 
space, and any resulting interaction with the 
learner will be logged and processed by analyz-
ing agents. As a result, analyzing agents, pro-
cessing agents, and noti fi cation agents can work 
together, but are loosely coupled. 

 Although the technical architecture for scaf-
folding inquiry learning can be provided this way, 
conceptual issues are still abundant. Questions 
such as “How to extract relevant information 
from a stream of log actions” and “How to deter-
mine the right level of scaffolding” are still open 
and largely unanswered. In the remainder of this 
chapter, we will focus on the  fi rst of these ques-
tions, corresponding to the diagnosis stage. As 
the options we will discuss are based on having a 
model of the inquiry process, they are labeled 
“Model-based regulative support.”  

   Model-Based Diagnosis and the 
Paradox of Adaptive Scaffolding 

 As mentioned above, existing models of inquiry 
learning honor the inquiry cycle. Some of them 
add more, such as modeling a hypothesis space 
and an experiment space (Klahr & Dunbar,  1988 ; 
van Joolingen & de Jong,  1997  )  or heuristics for 



59538 Model-Based Diagnosis for Regulative Support in Inquiry Learning

experimentation and data interpretation. Such 
models can help both in analyzing the logs of 
learners’ actions, as well as in deciding whether 
intervention is necessary. For instance, Veermans 
(Veermans et al.,  2000,   2006  )  used a model 
based on the inquiry cycle and a set of heuristics 
for experimentation, such as “vary one thing at a 
time” and “use easy values in varying input vari-
ables.” In these studies, learners record the 
experimental data that they collect on their 
“monitoring tool,” a scaffold that is offered to 
monitor experimentation. The experiments are 
interpreted using the heuristics from the model, 
e.g., for data points it is checked whether one or 
more variables are changed from one point to 
the other, and how the values of the input vari-
ables are changed. For instance, in order to test 
for linearity of a relation a good heuristic is to 
choose round numbers for variable values, 
choose equal intervals for the various values 
chosen, and use at least three, but preferably 
more data points. Moreover, learners had chosen 
a SimQuest assignment to investigate a given 
hypothesis before experimenting, meaning that 
the system could check whether their data was 
relevant to test that hypothesis. This results in a 
segmentation of the set of experiments accord-
ing to these heuristics. A segment could be a 
series of data points in which just one variable 
was varied, or a set of points in which the data 
points are ordered according to regular intervals 
for the changing input variable. A second scaf-
fold was then constructed echoing back the rel-
evant segments allowing learners to draw 
conclusions from the data that was presented in 
that way, or reconsidering their experimental 
strategy if no relevant data segments could be 
found. Figure  38.1  presents an example of the 
resulting feedback that lists the experiments 
performed and suggests a conclusion that may 
be drawn based on these experiments.  

 This example illustrates the principle of 
model-based regulative support. Each action (a 
manipulation of the simulation), is interpreted 
(as a new data point) and abstracted (into data 
segments representing experiments). The seg-
ments are processed, meaning that they are 
matched to a current hypothesis, resulting in one 

or more segments that could be fed back to the 
learner. Finally, the feedback is actually imple-
mented, in Veermans’ case as a commented 
table. Although Veermans did not implement an 
agent architecture, the elements of the three 
agent types (analysis, processing, and notifying) 
are clearly present. The same heuristics have 
later been implemented, using such an architec-
ture in the context of the SCY project (de Jong 
et al.,  2010  )  by Weinbrenner and colleagues 
 (  2010  )  albeit with a different kind of feedback. 

 In order to generalize this way of providing 
support, a  fi rm basis is needed in diagnosing 
learners’ behavior. The basic source for such 
diagnosis is the logs of learners’ actions with the 
learning environments. The approach to diagno-
sis presented here uses a two-stage process: 
detection and analysis. In order to detect learning 
processes from the learners’ action, process 
de fi nitions need to be given in terms of the 
detailed actions themselves. For instance, follow-
ing Anjewierden (Anjewierden et al.,  2007  )  
an < experimental manipulation > can be de fi ned 
as a sequence, such as < set value > [<set value>], 
<run simulation>, and <record data point>. 
Hierarchical constructs are possible, such 
as < experiment > = < experimental manipula-
tion > <experiment>. Wildcards, recursion, and 
parameterized actions (such as the names and 
values of the manipulated variables) allow for a 
 fl exible way of parsing the log  fi les and extract 
relevant processes. 

 In order to be successful, it is important that 
processes have an explicit representation in the 
learning environment. It must be possible to map 
learners’ actions to learning processes. For some 
actions this is unproblematic, as in the case of 
manipulations of a simulation, where changes in 
variable values and running the simulation are 
straightforwardly interpreted in terms of experi-
mental manipulations. 

 Whereas processes that have direct effect on 
the state of the learning environment, such as 
experimentation, are relatively easy to detect, 
other processes, such as hypothesis generation 
and drawing conclusions, may not be directly 
 visible in terms of actions in the learning environ-
ment. For instance, a hypothesis may be  formulated 
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in the learner’s minds, written down on paper, or 
discussed face to face with a peer. The system will 
not have access those kinds of information. In 
such cases, other means of extracting the learning 
processes from the learner’s action logs need to be 
used. We see the following possibilities:

   Analyzing learner generated text, if the • 
environment requires or stimulates learners to 
enter textual information. This can be done 
when learners collaborate via chat, but also 
when they are stimulated to make notes or 
answer questions in textual format. Current 
text mining techniques are powerful enough to 
extract meaning in terms of keywords and 
syntax. For instance, Anjewierden succeeded 

in extracting process information from chat 
messages (Anjewierden & Gijlers,  2008  )  as 
well as weblogs (Anjewierden & E fi mova, 
 2006  ) . Syntactical analysis can yield informa-
tion whether a certain text fragment can be 
classi fi ed as hypothesis, plan, monitoring 
action, etc. Entering text is a natural part of 
approaches that focus on knowledge building 
(Hewitt & Scardamalia,  1998  )  or center around 
argumentation and discussion (Hakkarainen 
& Sintonen,  2002  ) .  
  Building processes into the loop of learners’ • 
work with the environment. By shaping the 
environment in such a way that learners need 
to perform explicit actions representing the 

  Fig. 38.1    Example of feedback generated on the basis of 
a learner’s experiments, from the study by Veermans and 
colleagues  (  2000  ) . The set of data points is divided into 

two groups, based on the values of the variables chosen. 
A conclusion is suggested       
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main processes, they can be recognized and 
used for analysis, an idea that goes back to the 
work on cognitive tutors (Anderson, Corbett, 
Koedinger, & Pelletier,  1995  ) . For instance, 
Veermans’  (  2000  )  monitoring tool in a sense 
serves three functions: a prompt and template 
for the learner to record and monitor experi-
ments, a way of externalizing the monitoring 
process itself as well as a source of informa-
tion for the learning environment. By creating 
a loop of actions that learners will go though, 
the system can always “know” in which pro-
cess the learner is engaged.  
  Analyzing learners’ products. In many inquiry • 
learning environments, learners explicitly or 
implicitly create products, such as sets of data, 
reports, and concept maps. By analyzing the 
creation history of such objects as well as their 
contents, the performance of processes may 
be detected. This approach is taken in the SCY 
project (de Jong et al.,  2010  ) , where the whole 
learning process is represented as the creation 
of artifacts, so-called Emerging Learning 
Objects. Examples are agents that analyze 
texts collected by a learner and match them to 
a concept map that the learner is constructing. 
If one or more concepts are underrepresented, 
the learner receives a suggestion with some 
concepts that can or should be included.    
 All three ways of detecting require that the 

learning environment provides an explicit repre-
sentation of processes in one form or another. 
Here we encounter a paradox; as such measures 
in a sense are scaffolds as well. It seems that in 
order to provide adaptive scaffolds, we need to 
provide some level of static scaffolding to gather 
the information for the detecting processes. For 
instance, if we ask learners to create a plan, so as 
to detect whether planning support is needed, 
merely asking is already providing some support. 
If we offer some kind of planning tool for this 
purpose, the support is even at a higher level. It 
seems we need to provide support in order to 
determine if support is necessary. This paradox 
cannot completely be avoided, but, depending on 
the detection goal, the intervention to collect data 
may be kept to a minimum level. 

 For the second stage of diagnosis,  analysis , 
we need a model of inquiry as a reference. Two 

kinds of models can be distinguished labeled  pro-

cess models  and  state space models . The  fi rst is 
oriented towards the learning process itself, 
whereas the second focuses on changes of learn-
ers’ and system’s state as a result of applying 
these processes. 

 In process models, a notion exists of an 
“ideal process” for inquiry, such as the inquiry 
cycle at large, or a more detailed division into 
subprocesses. The processes detected can be 
matched to such a model, by counting the pro-
cesses as they occur, and by matching the order 
in which the processes occur. In doing so it can 
be detected whether processes are under- or 
over-represented in the learners’ activities, and 
regulative support can be activated. Van den 
Broek and Van Joolingen  (  2008  )  studied a mod-
eling task in the domain of human resource 
management and compared experts with novices 
and collected think aloud protocols. The task 
was to create a model that explains why highly 
quali fi ed personnel in the research department 
leave a company. They plotted the way experts 
and novices divided their processes over time, 
and found that experts stayed longer in the 
process of “orientation,” which encompasses 
collecting information and identifying the 
main variables. This is similar to what Chi 
found in expert-novice comparisons in problem 
solving (Chi, Glaser, & Farr,  1988  ) . Whereas 
novices moved to “implementing the model,” 
meaning drawing the model’s variables and 
relations, after a short orientation phase, experts 
kept orienting and adding new information 
throughout the whole task. Using such data, 
typical expert and novice behavior can be char-
acterized and detected—not only post-hoc from 
think aloud data but also online using log  fi le 
data. Processes, such as orientation and imple-
mentation, can be characterized by actions in 
the learning environment, such as searching for 
information and note taking (orientation) and 
modeling actions such as adding variables and 
relations (implementation). 

 In state space models, the focus is not on the 
processes themselves but on the results of their 
application. For instance, whenever the value of a 
variable is changed on a simulation, this can be 
recorded yielding a map overlay of the space of all 
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possible variable value assignments. This can be 
used to assess whether the learner has seen rele-
vant events in the simulation. If not, as before, 
action can be taken. In effect the problem spaces 
of SDDS (Klahr & Dunbar,  1988  )  and its exten-
sion (van Joolingen & de Jong,  1997  )  can be used 
as state models. The extended model captures how 
the hypothesis space and the experiment space can 
be constructed from domain descriptions (vari-
ables, relations, value spaces), which in fact form 
domain  ontologies , and captures how the various 
actions can be mapped to the space. In this it is 
essential that processes, such as hypothesis gen-
eration and experimentation, can be detected and, 
even more importantly, that their parameters 
(which hypotheses, which values are manipulated) 
are known. Each action can then be added to one 
of the maps that overlay both search spaces. It 
should be noted that the result is not a traditional 
overlay learner model, as it is not a knowledge 
model that is overlaid but a search space. 

 In this SDDS mapping procedure we can thus 
detect what the learners’ search spaces are: 
hypothesis spaces are based on relations and vari-
ables they mention and hence are aware of, and 
their experiment spaces are determined by vari-
able manipulations. Of necessity, the detected 
spaces are always smaller than what a learner 
really knows, which also makes clear that the 
resulting model is not a model of knowledge but 
of activities. 

 In the SDDS case with two search spaces, the 
two maps can even be combined to yield further 
results. Each hypothesis actually splits the experi-
ment space into two or three parts: (1) experiments 
that contradict the hypothesis, (2) experiments 
that could contradict the hypothesis but do not, 
e.g., because a relevant variable has been changed 
in the experiment, and the result is not contradict-
ing the hypothesis, and (3) experiments that do not 
provide information about the hypothesis, because 
no relevant variable has been changed. The result-
ing overlay over experiment space can be matched 
with a learner’s actual behavior. If there is a mis-
match, supportive measures can be taken. This 
approach was used in the study by Veermans 
 (  2006  ) , described above. For each experiment that 
learners performed it was determined in which 

part of experiment space it could be located 
according to the division above. The feedback that 
was given to students was determined based on 
this location in experiment space.  

   Discussion 

 We discussed ways to adaptively support inquiry 
learning, with a focus on the detection of prob-
lems in the regulation of learning processes. The 
detection process was subdivided into two parts: 
the detection of basic processes from log  fi les and 
the automatic interpretation of these basic pro-
cesses in terms of their regulation. With respect to 
the detection of basic processes we discussed the 
paradox of adaptive support. In order to detect 
basic processes in some cases we need to insert 
measures in the environment that help make pro-
cesses explicit. This in itself is a form of support. 

 With respect to the interpretation of basic 
processes in terms of regulation, we introduced 
two kinds of model-based interpretive models: 
process models and state space models. Whereas 
in process models, a sequence of processes is 
matched to an ideal sequence or to ideal propor-
tions of time spent on the various processes, in a 
state space model the focus is on the result of the 
processes in terms of mappings on search spaces. 
The  fi rst have as advantage that they stay close to 
models of inquiry that are commonly used and 
mostly based on the inquiry cycle. Potential feed-
back and support cane directly matched to such 
models. For instance, the support system could 
notify the learner of a lack of hypotheses while 
doing experiments. A drawback is that the model 
is heavily dependent on the accurate detection of 
basic log actions. For instance, if learners’ 
hypotheses are missed, the result may be that the 
learner is diagnosed as performing undirected 
experiments, and the resulting support may be 
out of place. Especially if the model hinges 
around a precise order in which processes must 
be performed, errors are likely. 

 In the case of state space models, such a draw-
back is less apparent, as the focus is not on count-
ing the processes, but on keeping track of their 
results. Of course this is also dependent of the 
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information that can be retrieved from learners’ 
activities, but it is less error prone as there is no 
sequence dependency and as the results of missing 
an action may be a state space overlay that is too 
small. This could lead to learners being asked to 
investigate parts that were already visited, but this 
may be not too severe. As a result, state space mod-
els can be more robust and may need less informa-
tion to maintain. A great advantage of state space 
models is that support for regulation may be more 
directed towards the contents of learning. Support 
can then be tailored not only to the fact  that  learn-
ers need to regulate and plan but also on  what  they 
need to plan. And, if indeed state space models can 
be built using less information, the adaptive sup-
port paradox can be avoided. State space models 
do not detect the sequence in which the state space 
has been covered. This does not prevent the system 
to advise learners what to do next, namely address 
a part of state space that has remained undisclosed 
and may be of interest. However, detailed feedback 
based on the exact sequence of actions is not pos-
sible based on a state space model. 

 For this all to work, more research is needed to 
investigate the main parts of the approach. Although 
we did not discuss it discusses into detail in this 
chapter, the approach clearly depends on the detec-
tion of basic processes from raw data. In order to 
 fi ne-tune the interpretive models for model-based 
analysis, agents need to be developed that match a 
stream of log  fi le data onto a mapping on a process 
or state space model. Another level of mapping is 
that from the model-based maps to the choice of 
intervention: which interventions can be used to 
support problems that are detected in the models. 
And  fi nally, the proof of the pudding will be in the 
eating, as the resulting environments need to be 
tested as to whether they lead to better learning.      
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    Introduction 

 Digital technologies have entered almost all 
spheres of our lives and they are believed to be 
the motor of innovation in our societies. While 
these technologies offer an almost unlimited 
access to information and a wide variety of tools 
for information processing and communication, 
it has also become clear that managing these 
resources requires a new kind of literacy, digital 
literacy, and that part of this digital literacy is the 
capacity to regulate one’s own learning. 

 In the present contribution, we have a short 
look at recent theoretical approaches to self-regu-
lated learning with digital technologies. We then 
focus on research and implementation policies for 
technology enhanced learning in Europe. Finally, 
we present two examples of research on self-reg-
ulated learning in technology enhanced learning 
environments: Taconet, a community of European 
researchers that grew out of a project on this topic, 
and the New Opportunities Initiative (NOI), a 
large scale programme implemented by the 
Portuguese government to empower low skilled 
workers in which the use of digital technologies 
and self-regulated learning play a vital role.  

   Self-Regulated Learning and Digital 
Technologies    

 Self-regulated learning refers to learners’ ability to 
plan, monitor and evaluate their learning processes. 
While a number of models for self-regulated 
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 learning were proposed in the past, the model that 
is probably best-known is the one developed by 
Zimmerman  (  1998a,   1998b,   2000  ) . According to 
this model, self-regulation is achieved in cycles 
consisting of (1) forethought, (2) performance or 
volitional control, and (3) self-re fl ection. 

 There is a close relationship between self-regu-
lated learning and metacognition. “Students can be 
described as self-regulated to the degree that they 
are metacognitively, motivationally, and behav-
iourally active participants in their own learning 
process” (Zimmerman,  1998a , p. 4). Azevedo 
 (  2009  ) , in discussing theoretical, conceptual, meth-
odological, and instructional issues in research on 
metacognition and self-regulated learning, states 
“Learning typically involves the use of numerous 
self-regulatory processes, such as planning, knowl-
edge activation, metacognitive monitoring and 
regulation, and re fl ection” (Azevedo,  2009 , p. 87) 
suggesting that self-regulated learning is a concept 
which embraces metacognitive monitoring and 
regulation. Beishuizen & Steffens  (  2011  )     have 
compared the concept of self-regulated learning 
with related concepts like self-directed learning, 
personalised learning, and self-directed person-
alised learning. 

 The idea that computers may be considered as 
tools which facilitate metacognitive skills and 
self-regulated learning has been explored in a 
number of studies. Azevedo  (  2005a,   2005b  )  sug-
gested that computer-based learning environ-
ments may be viewed as metacognitive tools to 
enhance SRL.    Zimmerman and Tsikalis  (  2005 , 
p. 270) reviewed the contributions to a special 
issue of Educational Psychologist on the effect 
of computer-based learning environments 
(CBLE) on SRL and learning outcome and con-
cluded: “CBLEs that support self-regulatory 
processes in all three phases [i.e. forethought, 
performance, and self-re fl ection] are more likely 
to produce positive, self-sustaining cycles of 
learning”. They point out, however, that most of 
the TELEs studied in the special issue only sup-
port students during one or two of the three 
phases and that most of them did not address 
motivational aspects of self-regulation. Winters, 
Green, and Costich  (  2008  )  reviewed 33 empiri-
cal studies on SRL in CBLEs. They conclude 

that the studies in their review “provided evi-
dence that different learner and task characteris-
tics (e.g. prior knowledge, goal orientation, 
learner control) and types of learner support are 
related to students’ SRL when using CBLEs. 
However, the studies reviewed do not constitute 
a large body of evidence from which to draw 
set conclusions about these relationships. 
Consequently, future research is needed to bol-
ster the trends and relations we have identi fi ed in 
this review” (Winters et al.,  2008 , p. 440).  

   Technology Enhanced Learning: 
Research and Implementation Policies 
in Europe 

 During the last two decades, the use of the digital 
media in educational institutions as well as in 
industry has markedly increased in many parts of 
the world, supported by policy measures of 
national governments and by transnational politi-
cal bodies. In Europe, the European Council and 
the European Commission have played an impor-
tant role. In 1996, the European Council issued a 
resolution on educational multimedia software in 
the  fi elds of education and training which was “to 
help improve the quality and effectiveness of edu-
cation and training systems and provide access to 
the information society for teachers, students and 
apprentices by giving them an insight into the use 
of these new tools and into training in the sub-
ject”. (European Council,  1996  ) . Based on this 
resolution, a programme on “Learning in the 
information society, action plan for a European 
education initiative” was developed. 

 Following the Lisbon European Council meet-
ing in March 2000, the European Commission 
issued a paper on “eLearning—Designing tomor-
row’s education” (European Commission,  2000  ) . 
In the paper, the Commission argued that globali-
sation and the new knowledge-driven economy 
confronted the European Union with grave prob-
lems which they had to tackle. The Commission 
therefore proposed an eLearning programme 
with four main lines of action. (1) Equipment, (2) 
Training at all levels, (3) Development of good 
quality multimedia services and contents, and (4) 
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Development and networking of centres for 
acquiring knowledge. The proposal was imple-
mented as the eLearning Initiative from 2001 to 
2003  (  elearningeuropa, n.d.  )  and the eLearning 
Action Plan for the years 2001–2004 (European 
Commission,  2001  ) . 

 In 2002, the European Commission proposed 
to adopt for the time period of 2004–2006 a 
multi-annual programme for the effective inte-
gration of Information and Communication 
Technologies (ICT) in education and training 
systems in Europe (European Commission, 
 2002a  ) . In 2006, the Education, Audiovisual and 
Culture Executive Agency (EACEA) was founded 
as an institution of the European Commission. It 
was the EACEA’s task to implement and pursue 
the Commission’s Lifelong Learning Programme 
(LLP). The LLP with a budget of nearly seven 
billion Euros for 2007–2013 was a successor to a 
number of programmes the Commission had 
implemented before: (1) Comenius for schools, 
(2) Erasmus for higher education, (3) Leonardo 
da Vinci for vocational education and training, 
and (4) Grundtvig for adult education. 

 The main goal of the Lifelong Learning 
Programme is to enable “individuals at all stages 
of their lives to pursue stimulating learning 
opportunities across Europe. It is an umbrella 
programme integrating various educational and 
training initiatives”.  (  EACEA, n.d.  ) . The 
European Commission is, however, also funding 
European research on the use of ICT in education 
and training through various sub-programmes of 
its Lifelong Learning Programme. At the same 
time, it regularly issues calls for proposals for 
projects in its transversal programme. These are 
projects that cut across two or more of the LLP 
sub-programmes. The transversal programme 
includes four Key Activities: KA1 (Studies and 
Comparative Research), KA2 (Languages), KA3 
(ICT), and KA4 (Valorisation). 

 In parallel to eLearning activities, the European 
Commission also implemented framework pro-
grammes (FPs) to cover activities of the European 
Community in the  fi eld of research, technological 
development, and demonstrations (RTD). 
Techno logy-enhanced learning has been a 
 fl agship priority in all FPs to date. (FP 6 from 

2002 to 2006, European Commission,  2002b ; FP 
7 from 2007 to 2013,  European Commission 
Research, n.d.  ) .  

   SRL in TELEs: Two Examples 
from Europe 

 In this section, we present two large-scale 
European projects which focused on SRL in 
TELEs. 

   TACONET: From a Research Project 
to a Community of Researchers 

 In Europe, learning in the information society has 
become an important topic. It was in the context 
of the Sixth Framework Programme that the pres-
ent authors collaborated in a European project on 
self-regulated learning in technology enhanced 
learning environments (TELEPEERS) from 2004 
to 2006. 1  Altogether, 12 TELEs were evaluated 
(Table  39.1 ). In order to evaluate the TELEs, we 
developed two instruments, one to be used by 
experts (teachers and researchers: TELE-SRL) 
and one to be used by students who actually 
worked in these TELEs (TELESTUDENTS-
SRL). Item construction was based on the three-
phase cyclic model of self-regulated learning 
proposed by Zimmerman  (  1998a,   1998b,   2000  ) : 
(1) forethought, (2) performance or volitional 
control, and (3) self-re fl ection. Across these 
phases, we distinguished between four dimen-
sions of SRL: cognitive, motivational, emotional, 
and social.  

 Looking at the results of the evaluation, a very 
interesting pattern emerged. While the TELEs in 
category one (container systems with tutor) were 
evaluated quite well in total as well as with 
respect to all the different dimensions, the TELEs 
of the second group (content systems with tutors) 

   1   “Self-regulated Learning in Technology Enhanced 
Learning Environments at University Level: a Peer 
Review” (TELEPEERS)”.The project was being carried 
out with the support of the European Commission (Grant 
agreement 2003-4710-/001-001 EDU-ELEARN).  
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also did quite well in total, but the evaluation of 
their potential to foster SRL was high only on the 
emotional and social dimensions, while the 
TELEs in the third group (content systems with-
out tutor) seemed to support SRL more with 
respect to its cognitive and motivational dimen-
sion. In interpreting these results, it might be 
helpful to remind ourselves that a TELE is the 
whole of the technology enhanced learning envi-
ronment, not just the digital tool which is being 
used. Bearing this is mind, it does not come too 
much of a surprise that TELES which are pro-
vided with a tutor or teacher seem to support the 
emotional and social dimension to a greater 
extent than TELEs without tutors. Where tutors 
are absent, the cognitive and motivational dimen-
sions seem to play a more important role. 

 More detailed analyses and results and further 
studies were  fi rst published by each of the 

TELEPEERS partners, either individually or in 
collaboration with other partners in a special 
issue of the European Journal of Education in 
2006 (Carneiro & Steffens,  2006 ; Steffens,  2006  ) . 
Beishuizen and his team from Vrije Universiteit 
Amsterdam, together with colleagues from 
Nottingham Trent University, compared the intro-
duction of portfolios in higher education in the 
UK and the Netherlands (Beishuizen et al.,  2006  ) . 
Carneiro  (  2006  )  explored the question whether 
ICT would help to motivate teachers in a teacher 
training programme at the Universidade Católica 
Portuguesa. Christiansen and Nyvang analysed 
why a speci fi c TELE was not adopted by students 
at Aalborg University on the basis of Bateson’s 
ecological epistemology of mind according to 
which learners, tools, and environment constitute 
a thinking system (Christiansen & Nyvang, 
 2006  ) . Dettori, Giannetti, and Persico  (  2006  )  at 

   Table 39.1    TELES which were evaluated in the TELEPEERS project   

 TELE/home  Description 

  Container systems with tutor  

 Digital Portfolio/Vrije Universiteit 
Amsterdam 

 A Web-based collection of student’s work to demonstrate his/her efforts, 
progress and achievements in one ore more areas 

 DiViDU/Vrije Universiteit Amsterdam  A Web-based digital video used in teacher training to help student re fl ect 
on professional skills and attitudes 

 ILIAS/Universität zu Köln  An Internet-based authoring environment for course designers as well 
as an Internet-based learning environment for students at university level 

 Weblogs/Universitetet i Bergen  A personal, but public Web space for self-expression 

  Content systems with tutor  

 ICT-based teacher training/Universidade 
Católica Portuguesa 

 An ICT-based teacher training master course to improve ICT knowledge 
and skills 

 Cognitive psychology course/
Nottingham Trent University 

 A Web-based support for an undergraduate course on cognitive 
psychology 

 Digital video course/Universidad 
de Barcelona 

 A blended learning course aimed at helping students acquire appropriate 
skills to use digital video and increase awareness of the media 

 Teacher training course on ET/CNR 
Istituto per le Tecnologie Didattiche 
Genoa 

 A computer mediated communication systems (CMCS) used in teacher 
training to improve knowledge and skills in Educational Technology 

  Content systems without tutor  

 Sunpower/Universität zu Köln  A CD-ROM programme to improve communication strategies in English 
for business purposes targeted at adults with an intermediate level of 
English 

 Databases/Université de Technologie 
de Compiègne 

 An online tutorial on databases with topics ranging from design issues 
to practical aspects 

 Programming Tutorial/Université 
de Technologie de Compiègne 

 An online tutorial algorithms and programming based on Pascal 

 SWIM/Aalborg Universitet  A streaming Web-based information module which serves as an online 
tutorial to help students acquire adequate strategies for information seeking 
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CNR Istituto per le Tecnologie Didattiche studied 
the role of SRL in online cooperative learning 
and its implications for pre-service teacher 
training. Underwood and her colleagues from 
Nottingham Trent University explored the impor-
tant question whether the new ICTs inhibit or 
facilitate SRL (Banyard, Underwood, & Twiner, 
 2006  ) . Bartolomé and his colleagues (Willem, 
Aiello, & Bartolomé,  2006 ) from Universitat de 
Barcelona report on a blended learning course 
they ran on the image of ethnic minorities and 
immigrants in the Spanish media, focusing on 
the question of whether the acquisition of SRL 
skills in a TELE would promote media literacy. 
Trigano  (  2006  )  from Université de Technologie 
de Compiègne had different versions of an ICT-
supported course on algorithms and program-
ming evaluated by experts and students where 
results showed that both groups of evaluators felt 
that the TELEs did seem to foster SRL. 
Baggetun and Wasson  (  2006  )  from Universitetet 
i Bergen studied Weblogs of their students with 
respect to their potential to foster SRL. 

 Soon after having started to work together in 
2004, the participating researchers decided to 
initiate a Targeted Cooperative Network on Self-
Regulated Learning in Technology Enhanced 
Learning Environments (TACONET). 2  Since 
then, the network has organised four interna-
tional conferences on the topic of SRL in TELEs, 
the  fi rst one at the Universitat de Barcelona in 
2004, the second at Universidade Católica 
Portuguesa in 2005 (Carneiro, Steffens, & 
Underwood,  2005  ) , the third at Vrije Universiteit 
Amsterdam in 2007 3  (Beishuizen et al.,  2007  ) , 
and most recently at Universitat de Barcelona in 
2010 4   ( Bartolomé et al.,  2011  )    . While members 

of the TACONET network have contributed to 
other international conferences and workshops 
individually or in collaboration, they also have 
published their research results jointly 
(Bartolomé et al.,  2007 ;    Carneiro, Lefrere, 
Steffens, & Underwood,  2011  ) . At the same 
time, they have initiated important projects in 
their countries. As a concrete example currently 
under implementation, we would like to report 
on the NOI in Portugal in which the  fi rst author 
had a leading role.  

   SRL and the NOI in Portugal 

 In this section we shall process empirical results 
of an extensive evaluative research conducted 
during the years 2008–2010 5  on NOI, a  fl agship 
programme implemented by the Portuguese 
government to accredit prior learning (APL) and 
to upgrade low-skilled adults to secondary lev-
els of quali fi cations.    NOI 6 —New Opportunities 
Initiative—is an innovative approach to motivate 
low-skilled adults to embark in a system of infor-
mal and non-formal skills recognition, accredita-
tion and certi fi cation, with complements of formal 
learning, to achieve 4th, 6th, 9th and 12th grades 
education diplomas or/and a vocational certi fi cation. 
These complements of formal learning can be 
achieved through one of two paths: (1) enrolling in 
a school adult education programme, or (2) under-
going  fl exible modular training often offered 
through the New Opportunity Centre (NOC) itself. 
In one or another format of additional training, ICT 
occupies a signi fi cant place both as a subject of 
learning and most importantly as a means to col-
lect information and to access knowledge. 

 NOI is a public sponsored programme which 
is generously funded by POPH (Programa 
Operacional de Potencial Humano) one of the 
three key nation-wide operational programmes 
co- fi nanced by the structural funds under the 

   2   See   http://www.lmi.ub.es/taconet/     and   http://www.taco-
net.org    .  

   3   As part of a seed project on SRL in TELEs with the 
 fi nancial support from the KALEIDOSCOPE Network of 
Excellence “Concepts and methods for exploring the future 
of learning with digital technologies” (2004–2006). 

   http://www.noe-kaleidoscope.org/telearc/    .  

   4   As part of a Theme Team project on SRL in TELEs with 
the  fi nancial support from the STELLAR Network of 
Excellence “ S ustaining  T echnology  E nhanced  L earning at 
a  LAR ge scale” (2009–2012).   http://www.stellarnet.eu/    .  

   5   The text of this introduction is based on Carneiro 
 (  2010  ) .  

   6   Iniciativa Novas Oportunidades,   http://www.en.anq.gov.
pt/     and   http://www.novasoportunidades.gov.pt/    , Accessed 
December 31, 2010  

http://www.lmi.ub.es/taconet/
http://www.taconet.org
http://www.taconet.org
http://www.noe-kaleidoscope.org/telearc/
http://www.stellarnet.eu/
http://www.en.anq.gov.pt/
http://www.en.anq.gov.pt/
http://www.novasoportunidades.gov.pt/
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Community Supported Framework 2007–2013. 
NOI targets the entire Portuguese adult popula-
tion of low-skilled (estimated at around 72% of 
the labour force below secondary studies, or circa 
3.5 million adults according to the 2001 Population 
Census). Its strategic objective is to reverse centu-
ries of disinvestment in human capital and to 
endow the population with a minimum thresh-
old of upper secondary quali fi cations. Barely  fi ve 
years after its announcement, about 450 New 
Opportunity Centres (NOCs) were put in place 
to operationalise the Initiative at  fi eld level. These 
NOCs hired over 10,000 adult education 
experts, register a record 1.6 million enrolments 
and have topped the impressive  fi gure of 500,000 
certi fi cations (9th and 12th grades, equivalent to 
lower and upper secondary, respectively). 7  The 
Initiative addresses, by design, two distinct areas 
of intervention:

   The quali fi cation of youth, curbing the high • 
rates of failure and dropout from initial educa-
tion and training systems.  
  The quali fi cation of adults, improving access • 
and encouraging participation of the labour 
force into training programmes and vocational 
education.    
 Our research question addresses the adult 

quali fi cation challenge. The quest consists in 
 fi nding out to what extent NOI graduates have 
developed SRL skills epitomised along three key 
dimensions: metacognitive, metasocial, and 
metamotivation skills. The answer to this ques-
tion may provide relevant clues to address effec-
tively a window of strategic issues, burdened with 
heavy social consequences, which is lacking 
empirically supported policies: Is it possible to 
develop SRL competences in the low-skilled 
groups, those who constitute, as a rule, the popu-
lation segments that present the greatest resil-
ience to learning? Would it be feasible to design 
a quality lifelong learning system attractive to 
early school dropouts, capable of equipping the 
least quali fi ed with metalearning motivations and 
competences? Could we dream of and realise an 
all-inclusive lifelong learning model that 

addresses the century old utopia of overcoming a 
persistent dichotomy between  haves and have 

nots ? (Carneiro,  2010  ) .   

   NOI Metalearning Outcomes 

 Mapping learning outcomes and gains in compe-
tences constituted one of the priorities pursued in 
the comprehensive evaluative research undertaken 
on NOI. The overt aim was to support an evidence-
based policy that would remain open to continuous 
improvement based on a comprehensive evaluative 
research. The empirical evidence gathered this far 
(two full years of  fi eld work and case studies, 
focus-groups and in-depth interviews, quantitative 
telephone surveys, and online surveys) allows us 
to focus in this section on meta-learning or learn-
ing to learn outcomes. Enhanced metalearning 
acquisitions are translated into augmented SRL 
capacities. One overall consequence of increased 
SRL competences is measured by the individual’s 
propensity to undertake lifelong learning activities 
and strategies. Thus, a  fi rst integrated birds eye 
view provides evidence on accrued foundation 
skills for lifelong learning acquired by the average 
NOI graduate, with particular reference to:

    (a)      Literacy and eSkills (reading, writing, speak-
ing, computer use, and Internet use) and 
evidence of changing daily habits after 
certi fi cation especially among the low skilled.  

    (b)      Learning to learn skills (self-image and self-
esteem, critical thinking, motivation for 
learning, learning strategies and participa-
tion in education and training): especially 
improved self-esteem and motivation for 
learning among the low skilled.  

    (c)      Improved soft skills—personal and social 
skills, civic competences, and cultural 
awareness and expression.  

    (d)      Less progress in basic skills: science and 
technology and foreign languages.     

 The methodology followed to evaluate NOI out-
comes resorted to the European key competences 
framework which was for this purpose broken 
down into speci fi c skills narratives and descrip-
tors (Table  39.2 ). In the following sections we    7   Latest  fi gures available for 30 April 2011.  
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shall probe into the broad database that was col-
lected and organised as a result of the evaluative 
research undertaken. The purpose will be to dig 
out a further understanding on how low-skilled 
adults are able to consolidate a consistent set of 
self-regulated learning aptitudes and skills as a 
by-product of a APL/RPL type of certi fi cation. In 
particular, we shall interpret existing data address-
ing the three domains that were previously 
referred: metacognitive skills, metasocial skills, 
and metamotivation skills.  

   Metacognitive Skills 

   Learning to Learn 

 The generality of  fi eld observations leads us to 
conclude that the autonomy of the learning adult 
bene fi ts from NOI processes. As an illustration, 
most adults are led to  fi nd their own solutions and 
to construct their self-re fl ections from the very 
 fi rst phase of producing a personal portfolio. 
Persons involved in NOI are required to develop 
a personal skills scorecard that leads adults into a 
better awareness of their strengths and weak-
nesses: what one knows, what one does not know, 
and also what one needs to learn to achieve 
a certain target in personal development. 
Concurrently, introduction to and familiarisation 
with the Internet ignites research skills that are 
potent levers of continuing learning and training. 

   Skills for Lifelong Learning 

 Anecdotal descriptions bear witness on NOI 
graduates’ quantum improvements in task plan-
ning and management, including sustainable 
commitments to learning events (Valente,  2010  ) :

  The person before me (juror of  fi nal appraisal 
session) is not the one I knew at the beginning. 
 Ladies would come in (at NOC) low spirited, 
insecure; a few months later we notice an abyss of 
differences in these persons.   

 Learning to learn skills were among the 
highly ranked key competences and a path 
toward personal transformation. Effective learn-
ing to learn abilities include self-image and 
self-esteem, critical thinking, motivation for 

learning, learning strategies and participation in 
education and training. Although all of them 
appear to have progressed, the most signi fi cant 
gains were registered on self-esteem and moti-
vation for learning among adults at lower sec-
ondary education. 

 It is most telling to observe the skills summary 
in the form of radar plotting that brings together 
in one same representation three sets of skills: 
before certi fi cation, after certi fi cation, and skills 
in use (actual job environment). This is done sep-
arately for lower secondary and for secondary 
education NOI graduates (Figs.  39.1  and  39.2 ). 
While lower secondary individuals reported a 
higher progress in almost all key competences 
particularly in hard skills—an expected outcome 
considering their lower levels of departure—
those in upper secondary still reported consider-
able gains around the entire spectrum of appraised 
skills. Soft skills, such as personal and social 
skills, civic competences, and cultural awareness 
and expression undergo improvement but in a 
smaller and less consistent scale.   

 Curiously, when zooming into the job place 
one understands that hard skills are much less 
used in work contexts than soft and meta skills. 
Workers, regardless of their educational attain-
ment, seldom use writing skills or basic skills in 
science and technology, and foreign languages 
and, when they get to use them, they do so at 
rather low complexity levels.   

   Enhanced ICT Skills 

 ICT is a domain that merits a special focus, 
grounded on the fact that research ascertains a 
maximum gain in competences by NOI gradu-
ates, including the former info-excluded. 
Indeed, over 80% of graduates regard them-
selves regular Internet users, a number that is at 
least 30% over the national average (Lopes, 
 2010  ) . Our data show that there is a profound 
difference (sig   c    2   = 0.000) in Internet use by 
educational level. Controlling for variables 
concerning NOI itineraries, while upper sec-
ondary achievers are close to 100% digital per-
sons, those who have not gone beyond grade 6 
(basic education) are handicapped at below 
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average utilisation rates. Two thirds of those 
interviewed declared to be non-Internet users 
before NOI. In other words, the successful 
completion of NOI, having experienced its 

unique processes, enhances regular individual 
Internet use in the order of threefold. The scope 
of this gain runs inversely to the initial level of 
education. While 80% of lower secondary persons 
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report having access to the Internet for the  fi rst 
time, only 40% of those with upper secondary 
education did so.   

   Metasocial Skills 

 Above average social participation rates touch 
upon  fi ve categories. Albeit minimal in all  fi ve 
items one witnesses gains attributable to a suc-
cessful conclusion of NOI. The biggest improve-
ment is in category “talking about the world”, a 
category covering topics as politics, society and 
economy. When analysing the polarity of 
responses the NPI (Negative Polarity Index) 
barely touches 6% while the PPI (Positive 
Polarity Index) increases to 47.8%. Likewise, 
when interrogated on attention devoted to poli-
tics on TV, radio or newspapers, while NPI is 
15.4% PPI reaches 31.6%. 

 Two of these categories—“participation in 
environmental groups” and “social work 
volunteering”—struck a much more balanced 
polarisation: NPI 33.1% and 27.8%; PPI 23.7% 
and 25.9%, respectively. On the negative side one 
registers a high polarisation coupled with dimin-
ishing interests in unionisation (PPI 9.7% and NPI 
49%) and to a lesser extent in political af fi liation 
(PPI 8.4% and NPI 57%). These extreme polari-
sation values hint at the prevalence of strong emo-
tional feelings whose main effect would be to hide 
social self-regulatory acquisitions. It is worth add-
ing that statistical indicators of intergroup segre-
gation are modest (sig   c    2   = 0.051 to 0.730). 
Moreover, our survey shows a neat increase of 
social skills that are instrumental to the exercise 
of active citizenship and good parenting. 

 In summary, numerous participants under-
scored the “group spirit”, ranking this item high 
in the list of NOI achievements. Collaboration, 
team work, intergenerational shared learning, 
participatory debate sessions, open discussions 
on contemporary issues and study visits were 
highlighted as strong points in the NOI method-
ology. These NOI learning styles were deemed 
extremely bene fi cial in support of awareness 
building and in providing con fi dent routes to 
knowledge construction and co-construction. 

Social learning became prevalent at all moments, 
in the testimonies of NOI graduates, who praised 
the extended relational experiences reaching out 
to local communities, local authorities, teachers, 
and employers. Regardless of the respect owed to 
personal itineraries the NOI experiences are 
invariably seen as rich and rewarding social inter-
actions by the heavy majority of participants.  

   Metamotivation Skills 

   Trust, Con fi dence, and Security: 

Self-Ef fi cacy and Social Roles 

 Generally speaking the impacts on the self stand 
out as a primal acquisition by NOI graduates. 
The most salient aspect is the notion of mastering 
augmented levels of “general culture”, a bene fi t 
mentioned by 55.5% of the surveyed. Signi fi cantly 
above the 25% bar, respondents single out the 
increase in knowledge concerning informatics, 
enhanced technical knowledge and the will to 
continue studying. Self-improvement scores 
worth underlining are: “I have a greater capacity 
to seek information” (21.4%), “My will to carry 
out further studies” (24.6%), “I realised that I 
have to know more” (36.3%). A most interesting 
fact is that 0.5% of NOI graduates with an upper 
secondary education certi fi cate have enrolled in 
higher education while 3.5% intend to do so in 
the near future. Those who report little or no 
objective impacts on their formative self were 
18%. Once again, following the already men-
tioned trend, upper secondary graduates reach 
higher levels of knowledge acquisition (sig 
  c    2   = 0.001 to 0.055 differentiation indicators) 
while the lower skilled exhibit major gains in the 
area of informatics (sig   c    2   = 0.016 to 0.052 dif-
ferentiation indicators). 

 We observed extremely strong advancements 
regarding a number of important personality 
traits that feed into self-esteem namely (on a 
1–10 scale): pride (8.13–8.86), capacity to share 
and discuss ideas (7.23–8.51), better social skills 
(7.10–8.32), happier and ful fi lled (7.48–8.59 and 
7.76–8.57, respectively). The evolution in “per-
ceived self-security” before and after NOI 
con fi rms these  fi ndings. 
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 An identical pattern is found when comparing 
levels of extroversion/introversion. Notwith-
standing a more thorough analysis, this particular 
piece of data brings us to another interesting dis-
covery. At the outset one sees clear intergroupal 
differences, with secondary graders scoring 
higher extroversion than the lower skilled (sig 
  c    2   = 0.025). However, this situation is reversed 
(sig   c    2   = 0.308) after NOI because the latter 
achieve much higher increases in extroversion 
than the former in relative terms, demonstrating a 
remarkable catching-up trajectory. Furthermore, 
our survey shows a notorious mastery and use of 
core social skills as a consequence of personal 
gains (developing a robust self). This mix of per-
sonal and social competences is instrumental to 
the exercise of both active citizenship and good 
parenting. 

 To summarise the main  fi ndings, we can say 
that NOI adults seem to bene fi t from an enhanced 
motivation to learn and from an increased aware-
ness toward the relevance of lifelong learning. 
They remain attentive to the available opportuni-
ties for advanced learning and embark frequently 
in further training. Moreover, they report accrued 
self and informal learning outcomes and tend to 
keep strong links (alumni-type) with their NOC 
felt as a precious door to enable access to a whole 
new world of learning. It is now commonplace to 
ascertain that successful lower secondary gradu-
ates move forward enrolling in higher secondary 
processes combining APL and formal education 
requirements. A similar trend is observable con-
cerning instrumental skills that explain higher 
demands in short technical or career oriented 
training courses: foreign language, ICT, account-
ing, job speci fi c skills. 

 Grounded on observable behaviours, we can 
ascertain that NOI adults have gained a “thirst” 
for learning and are now prepared to de fi ne future 
ambitions, dreams and goals (FTP—future time 
perspective). FTP goals are an essential founda-
tion of personal motivation to engage in effort 
learning insofar as they enable delaying short-
term grati fi cation stemming from a determination 
to arrive at longer term objectives.  

   Changing Perceptions of Learning 

 This section deals with transformative learning 
outcomes, those that enable access to a second 
loop of generative learning and knowledge acqui-
sition strategies. There is ample evidence that 
NOI processes may produce profound changes in 
the entire perception of adults vis-à-vis education 
institutions, “reconciling them with the school” 
(Valente,  2010  ) . Most of the participants were 
early school dropouts who carried a prejudiced 
view towards a school that they disliked and aban-
doned in their youth days and shared negative 
memories of the educational establishment. 
Having completed NOI provides them with both a 
feeling of atonement and a fresh inward look that 
reveals and releases a learning ambition to move 
life upward (Liz, Machado, & Portugal,  2010  ) . 

 One relevant aspect that enables this transfor-
mation is the unique learning environment 
offered by NOI which is often alluded to as its 
major strength. It is like “discovering” the other 
side of the school where learning is practical, 
experiential, even magically enjoying, while 
intertwined with the formal recognition and 
certi fi cation of prior informal learning, a proud 
personal asset that was previously regarded use-
less and grossly valueless before NOI came into 
practice. Perceiving the value of one’s learning 
experience and the resulting increase in self-
esteem creates a sense of personal responsibility 
which equips the person to face the future and to 
engage in lifelong learning which in turn allows 
her/him to settle “un fi nished business” and to get 
closure on the past which in turn will result in 
investing real effort directed at the transforma-
tion of daily routines (see Fig.  39.3 ). Thus, it is 
relevant to speak of transformational cycles of 
the self with distinct achievements at lower sec-
ondary and upper secondary certi fi cations 
through NOI procedures.     

   Outlook 

 During the last decade, lifelong learning has 
become an important issue in many countries 
around the globe, and digital literacy, as well as 
learning to learn or self-regulated learning are 



612 R. Carneiro and K. Steffens

being considered essential competencies (Delors 
et al.,  1996 ; European Council,  2006 ; Steffens, 
 2011  ) . In Europe, policy measures have aimed at 
implementing ICT in education in order to sup-
port the acquisition of these competencies. As we 
have shown in our report on TACONET activi-
ties, there is empirical evidence that TELEs do 
have the potential to support SRL. But as 
Kirkwood and Price stated after having reviewed 
a large number of studies on technology enhanced 
learning: “… although ICT can enable new forms 
of teaching and learning to take place, they can-
not ensure that effective and appropriate learning 
outcomes are achieved” (Kirkwood & Price, 
 2005 ; p. 257). We should be aware that the imple-
mentation of ICT is not suf fi cient to achieve a 
change in learning that takes place in institutions 
of education and training. As Salomon noted 
almost 20 years ago: “If nothing signi fi cant 
changes in the classroom save the introduction of 
a tool, few if any important effects can be 
expected” (Salomon,  1993 , p. 189). 

 The NOI is a good example of a signi fi cant 
change in the educational and training system 
of a country. ICT did play an important role, 
but the scope of change that was reached 
encompassed much more dimensions than a 
simple enhancement in the utilisation of digital 
technologies. NOI empirical evidence brings 
into life a much sought aim: that of singling 
out ways and strategies to bring down the bar-
riers that have excluded low-skilled adults both 

from the effective participation in continuing 
learning and from the acquisition of the mini-
mum self-regulating skills that characterise a 
competent lifelong learner—a very promising 
approach.      
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     Introduction 

 In the past couple of decades, metacognition has 
been increasingly considered a valuable support 
to the learning of a second language (L2) (Cotteral 
& Murray,  2009 ; Victori & Lockhardt,  1995 ; 
Wenden,  1998  ) . Its application in this  fi eld has 
concerned several aspects in language learning, 
in particular: the conscious use of learning strate-
gies (   Rivera-Mills & Plonsky,  2007  ) , the develop-
ment of metalinguistic re fl ection (Gombert,  1992 ; 
Simard,  2004 ; Suzuki & Itagaki,  2007  ) , and 

instruction for listening comprehension (Goh, 
 2008 ; Graham & Macaro,  2008 ; Valiente,  2008 ; 
Vandergrift & Tafaghodtari,  2010  ) . Effective 
language learning strategies mainly concern 
memory development, work organization, and 
evaluation of personal language-related out-
comes. Metalinguistic re fl ection consists in 
learner’s conscious attention to the nature and 
function of linguistic elements; it can be carried 
out either within a single language or through 
the comparison of different languages. Finally, 
improving listening comprehension involves 
practicing core skills, such as listening selec-
tively, e.g., for details or for gist, making infer-
ences, and predicting the content of the following 
sentences, yet always keeping the attention on the 
development of effective communication; in this 
process, it is important that the learners develop 
awareness of task requirements as well as of their 
own strengths and weaknesses as listeners. 
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  Abstract 

 This study concerns the use of audio technology and metacognition to 
improve pronunciation in the learning of a second language (L2). It 
describes a methodological approach to guide L2 learners to observe their 
utterances and become aware of their pronunciation errors, with the sup-
port of peer collaboration and metacognitive prompts. Identifying pronun-
ciation errors is not easy because it requires good self-observation, 
evaluation and re fl ection skills. A meaningful episode from a pilot test of 
our methodological approach is presented, together with some re fl ections 
on the potential implications of our work.    
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 We focus on applying metacognition to a differ-
ent step in L2 learning, namely, helping learners 
improve their pronunciation. This is a very impor-
tant aspect, because good pronunciation and the 
ability to apply it in oral production are crucial to 
successful language use. The dif fi culty of improv-
ing pronunciation is evidenced by the fact that 
learners are often unable to identify their own 
errors, unless they are trained to do so (Dlaska & 
Krekeler,  2008  ) . This is particularly true with young 
students, who are often barely aware of their learn-
ing outcomes. Disregarding these points contrib-
utes to low achievement in L2 for many learners. 

 Learning to pronounce effectively is usually 
viewed as a process in which rules are learned by 
heart and automated, and hence not as a typical 
application domain for metacognition. In our opin-
ion, however, improving this aspect involves meta-
cognition to a substantial degree, in that it requires 
that learners have a high level of awareness of their 
own utterances and the ability to evaluate them in 
comparison with those of others. This ability entails 
acquiring nontrivial observation/self-observation 
and re fl ection abilities, which in turn require the 
selection and application of regulatory strategies 
to plan, monitor, and evaluate the activity. 

 Audio  fi les can be used to help students 
become aware of sound nuances, especially since 
current technology allows much more precise 
and  fl exible use of audio than was possible when 
language learning was relying on cassette record-
ings and the like. As with any other technology 
employed in education, however, we cannot 
expect the tool to be effective if not paired with a 
suitable methodology of use (Domine,  2009  ) . In 
order to meet these learning needs, we have 
designed a methodological approach to the use of 
audio technology and have tested it in a junior 
secondary school to check if it is actually feasible 
and apt to put into play metacognitive processes 
suitable to improve L2 pronunciation. 

 Conceived in the context of task-based language 
teaching and learning (Ellis,  2003  )  and based on 
the theoretical framework of metacognition (see 
Sect. “Metacognition   ” below), our proposal con-
sists of a number of short tasks of increasing 
dif fi culty to be carried out over a few months, in 
parallel to regular classes, so as to complement the 
usual curricular activities on grammar, lexicon, 

and civilization, yet running independently of 
them. We intentionally avoided the typical devices 
proposed in phonetics studies, such as analysis of 
larynx and tongue movements or diagrams of 
sound pitches, because our aim is not to give learn-
ers phonetics competence but rather to help them 
become able to use precisely and in a natural way 
the sounds of a second language by gaining aware-
ness of what they actually utter. Introducing tech-
nical notions in this respect would only add 
cognitive load and make learners (especially teen-
agers, who are our main target population) look at 
oral production in L2 as an arti fi cial activity. 

 In the next section we present the theoretical 
framework of metacognition that is at the basis of 
our work. In Sect. “Applying Metacognition and 
Audio Technology to Improve L2 Pronunciation”, 
we describe the main issue, the technology applied 
and our methodological approach. We also describe 
and comment on a representative episode of its 
pilot implementation. Some re fl ections on possible 
implications of our work conclude the chapter.  

   Metacognition    

 Metacognition was initially addressed in the 
seventies of the past century in the area of devel-
opmental and cognitive psychology and has 
subsequently attracted the attention of an ever-
growing number of researchers and practitioners 
in several  fi elds. This diversity has given rise to a 
large amount of literature analyzing metacogni-
tion from a variety of perspectives that are not 
always in complete agreement with each other; as 
a consequence, a complete and consistent con-
ceptualization of metacognition is still object of 
study (Veenman, van Hout-Wolters, & Af fl erbach, 
 2006  ) . Here, we limit our theoretical framework 
to the main characteristic aspects and to those 
that are relevant for our work. 

   The Nature of Metacognition 

 According to Flavell, to whom the birth of this 
 fi eld of inquiry is usually credited, metacogni-
tive knowledge is “knowledge concerning one’s 
own cognitive processes or products or anything 
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related to them … For example, I am engaging 
in metacognition … if I notice that I am having 
more trouble learning A than B … if I think to 
ask someone about E to see if I have it right” 
 (  1976 , p. 232). 

 In a later paper, Flavell deepens the concept 
and de fi nes metacognitive knowledge as “knowl-
edge and beliefs about what factors or variables 
act and interact in what ways to affect the course 
and outcome of cognitive enterprises”  (  1979 , 
p. 907). He identi fi es three different types of 
metacognitive knowledge, which correspond 
respectively to focusing on the learner, on the 
learning task and on the process of learning:  per-

son knowledge  (knowledge about oneself and 
others as cognitive processors),  task knowledge  
(knowledge about the information and resources 
needed to undertake a task), and  strategy knowl-

edge  (knowledge regarding the strategies which 
are likely to be effective to support tasks develop-
ment and goal achievement). 

 Numerous studies from other authors have 
contributed to increasingly detailed characteriza-
tions. The three kinds of knowledge highlighted 
by Flavell helped identify two main aspects of 
metacognition: knowledge about knowledge 
(What is my knowledge gap?) and regulation of 
knowledge (What should I do to overcome it?) 
(Schraw & Moshman,  1995  ) . These aspects are at 
the root of the widely accepted distinction 
between metacognitive knowledge, on one side, 
and strategies (Wenden,  1998  )  or skills (Veenman 
et al.,  2006  )  on the other. 

 Differentiating cognition and metacognition is 
an important and dif fi cult question. In general, 
knowledge that is used to solve problems and 
accomplish tasks is cognitive, while knowledge 
that enables learners to in fl uence their own men-
tal activity is considered metacognitive. Despite 
the clear distinction between these two kinds of 
knowledge from a theoretical point of view, sepa-
rating them is not easy in practice, because it 
appears that learners move back and forth between 
metacognitive and cognitive processes frequently 
and rapidly (Larkin,  2010  ) . Cognitive and meta-
cognitive activities usually form a circular pro-
cess in which it is dif fi cult to completely separate 
the two components (Veenman et al.,  2006  ) . The 

ratio between cognition and metacognition in 
leaning activities varies over time, while learners 
acquire expertise, because regulation strategies, 
which initially need to be consciously applied 
and involve metacognition, gradually become 
internalized and automated, hence turning into 
cognitive skills, whose application does not 
require metacognitive processing (Larkin,  2010 ; 
Williams & Atkins,  2009  ) . 

 It has been documented that learners of any 
age can have metacognitive knowledge (Wenden, 
 1998  ) . It is recognized that this knowledge can 
appear rather early in childhood (Desoete,  2008 ; 
Larkin,  2010  ) , under the in fl uence of interaction 
with the environment, and then can continue to 
develop through adolescence (Schraw & 
Moshman,  1995  ) , and even throughout life 
(Veenman et al.,  2006  ) . Strategies, on the other 
hand, are the basis of intentional and purposeful 
action, and must be selected consciously from 
among alternatives in order to attain some 
intended goal (Grif fi th & Ruan,  2005  ) . Strategies 
develop later than knowledge, and usually need 
training and practice to improve (Schraw & 
Moshman,  1995  ) .  

   Learning Metacognition 

 Even though research clearly indicates that meta-
cognition can be improved through instruction 
(Schraw,  1998 ; Kramarski,  2008  ) , there does not 
seem to be a single way apt to facilitate metacog-
nitive development in any situation. We report 
just a few examples. 

 Based on a large analysis of the literature, 
Veenman and colleagues  (  2006  )  summarize three 
fundamental principles to favor metacognitive 
development: embed metacognitive instruction in 
the content matter; inform learners about the use-
fulness of metacognitive activities; provide exten-
sive training opportunities. Larkin  (  2010  )  points 
out the need to organize learning situations that 
expressly require careful, highly conscious think-
ing and to provide learners with environments 
allowing metacognition to develop. Desoete 
 (  2009  )  suggests that educators stimulate self-
re fl ection through re fl ective discourse and pay 
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attention to whether learners correctly attribute 
success in relation to the use of strategies. Carr 
 (  2010  )  recommends explicit metacognitive 
instruction by means of self-explanation prompts 
and social interaction, two activities that also 
appear to support the transfer of learned skills to 
different tasks. Williams and Atkins  (  2009  )  
remark that the effectiveness of strategy instruc-
tion does not appear to depend much on the par-
ticular strategies that are taught but on the fact 
that strategy instruction forces the students to pay 
attention and re fl ect on the task at hand. 

 A problem to be tackled during metacognitive 
instruction is to avoid inert knowledge. It is not 
rare that learners are aware of metacognitive 
knowledge and strategies and yet do not attempt, 
or are not able, to apply them (Hoffman & 
Spatariu,  2008 ; Roll, Aleven, & Koedinger, 
 2008 ; Schraw & Moshman,  1995  ) . In order to 
avoid such situations, many authors suggest that 
learners be supported with metacognitive 
prompts, that is, questions that activate re fl ective 
cognition or recall strategy use. Prompting aims 
to stimulate awareness of task characteristics, 
regulation strategies, and evaluation of outcomes; 
it may in fl uence both the accuracy and the 
ef fi ciency of a learning activity (Hoffman & 
Spatariu,  2008  ) . Providing students with meta-
cognitive prompts appears to be more fruitful 
than showing them how to do an intended task 
(Roll et al.,  2008  ) . It is necessary, however, to 
avoid prompts that students feel are unnecessary, 
irrelevant, super fl uous or redundant, because 
being too directive may hinder learners’ cogni-
tive activity instead of stimulating it, hence 
resulting in lower performance (Davis,  2003 ; 
Hoffman & Spatariu,  2008  ) . 

 A different way to overcome the problem of 
inert metacognitive knowledge is described by 
Schraw and Moshman  (  1995  ) , who suggest that 
learners should integrate their knowledge about 
cognition and regulatory strategies within a 
uni fi ed conceptual framework. Such integration 
is called a (personal) metacognitive theory and 
can take different forms, and gradually changes 
over time under the in fl uence of personal experi-
ence and self-re fl ection. These authors charac-
terize three different kinds of such metacognitive 

theories, which depend on the learner’s level of 
awareness of his/her own cognitive functioning 
as well as of the constructive nature of knowl-
edge: tacit or implicit; explicit and informal; 
explicit and formal. Awareness appears to be the 
necessary condition for the learner to be able to 
apply her/his knowledge and strategies to regu-
late cognition and learning. Schraw and 
Moshman also suggest three factors that appear 
to support learner’s construction of a metacogni-
tive theory: cultural learning (internalizing cul-
tural elements via social interaction), individual 
construction (re fl ectively analyzing one’s cogni-
tion and systematizing cognitive skills), and peer 
interaction (engaging in collective reasoning 
with a group of peers). Peer interaction is par-
ticularly relevant in that learners are reported to 
engage in more sophisticated reasoning while 
working as a group than when working alone 
(Schraw & Moshman,  1995  ) . 

 The importance of collaborative work to fos-
ter metacognition is also highlighted by other 
authors; Larkin  (  2010  )  for instance, points out 
that metacognition is socially constructed during 
joint engagement with a task, not only through 
re fl ection after completing the task.  

   Metacognition for Learning 

 The literature reports on ways of supporting 
metacognition in general domains, such as mem-
ory, writing, and reading understanding, as well 
as in a variety of subjects, besides language learn-
ing, as already mentioned in the introduction: 
mathematics, science, chemistry, physical educa-
tion and sport, religious education, ICT, history, 
geography, art, music and drama, in all cases with 
a positive in fl uence on subject-matter learning 
(   Hacker, Dunlosky, & Graesser,  2009b ; Israel, 
Collins Block, Bauserman, & Kinnucan-Welsch, 
 2005 ; Kaberman & Dori,  2009 ; Larkin,  2010 ; 
Salatas Waters, & Schneider,  2010 ;Veenman 
et al.,  2006  ) . 

 Metacognition appears to in fl uence learning 
outcomes by affecting how learners approach a 
task (Larkin,  2010  ) . Many authors also claim that 
metacognitive activities have an impact on learn-
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ing skills, beyond subject learning, even across 
domains that have little in common (Kaberman & 
Dori,  2009  ) . White and colleagues  (  2009  ) , for 
instance, argue that metacognition helps people 
to take charge of their own learning and supports 
the transfer of learning capabilities from one 
domain to others. Hacker and colleagues  (  2009a  )  
assert that the basic components of metacogni-
tion can apply to almost any task that a student 
wants to perform. Larkin  (  2010  )  explains the 
transfer of learning skills across domains based 
on the fact that repeated application of meta-
cognition leads learners to build a base of meta-
cognitive knowledge about themselves in relation 
to tasks. 

 Despite the many voices in favor of the trans-
ferability of metacognitive skills across tasks and 
domains, clearly understanding how and to what 
extent this transfer takes place is still an open 
issue. Veenman and colleagues  (  2006  )  observe 
that studies focused on multiple tasks or domains 
have so far been in limited number and have had 
inconclusive or contradictory results, so that 
more investigation would be necessary in this 
respect. It appears, however, that general meta-
cognition skills actually exist, can be fostered in 
parallel in different learning situations and are 
likely  fl exible enough to transfer to different 
domains and learning environments (Roll, 
Aleven, McLaren, & Koedinger,  2007 ; Veenman 
et al.,  2006  ) . 

 An important point in favor of giving atten-
tion to metacognition in formal learning is that 
metacognitive competence is, at least partially, 
independent of intelligence (Larkin,  2010  ) . 
Intellectual abilities can boost a learner’s forma-
tion of an initial core of metacognitive knowledge, 
but do not appear to in fl uence, positively or nega-
tively, its developmental course (Veenman et al., 
 2006  ) . This means that metacognitive activities 
can fruitfully be proposed to all students in a 
class, independent of their pro fi ciency. Also stu-
dents with poor academic outcomes can take 
advantage of them. In fact, many authors claim 
that such activities appear to be particularly 
bene fi cial for weaker students (e.g., Goh,  2008 ; 
Vandegrift & Tafaghodtari,  2010  ) , since they 
help them raise their performance to levels closer 

to those of their academically stronger peers 
(Kaberman & Dori,  2009  ) . Moreover, the litera-
ture reports that metacognition can successfully 
be used with students with learning disabilities 
(   Desoete,  2009 ; Larkin,  2010  ) . 

 Supporting metacognition is a way to favor 
conceptual change (Larkin,  2010  ) , because this 
support facilitates re fl ection on the difference 
between what learners think is true and newly 
acquired information that supports or discon fi rms 
the original beliefs (Carr,  2010  ) . 

 Metacognition appears to be important not 
only to favor academic achievement, but also in a 
wider life context. Focusing on this aspect pro-
vides an opportunity to look at the learners in all 
their complexity, as self-aware agents able to 
construct their understanding of the world 
(Hacker et al.,  2009a  ) . Larkin  (  2010  )  points out 
that learners’ ability to re fl ect upon how they 
think and act can help them to make wiser deci-
sions in other aspects of life, as well as to under-
stand if they are getting closer or further away 
from their goals. For this reason, the positive 
in fl uence of developing metacognition goes far 
beyond the school context and helps learners 
gain knowledge about themselves and others in 
relation to the world (Larkin,  2010  ) .   

   Applying Metacognition and Audio 
Technology to Improve L2 
Pronunciation 

   The Key Issue Being Considered 

 Correctly pronouncing the sounds of a foreign 
language requires that learners overcome the 
automatism to pronounce alphabet letters always 
as in their mother language (Dlaska & Krekeler, 
 2008  ) , and start to associate letters or groups of 
letters with possibly different sounds in different 
contexts. (This last concept is familiar to native 
speakers of some languages, like English, but is 
rather surprising to native speakers of many other 
languages.) This task, hence, requires conceptual 
change and the use of ef fi cient memorization 
strategies, both of which bene fi t from a metacog-
nitive approach. 
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 L2 learners, moreover, need to become able to 
articulate sounds that may not exist in their lan-
guage. This entails clearly perceiving their own 
utterances and those of others and detecting simi-
larities and differences. This ability, which 
becomes automatic over time, requires the acqui-
sition of self-awareness, the conscious applica-
tion of strategies and often also the detection of 
models that can help the learners to evaluate the 
correctness of their own productions. This again 
indicates that the learning of L2 pronunciation is 
a task that bene fi ts from a metacognitive 
approach. 

 Spotting pronunciation errors is much less 
trivial than it might seem, in that students (and 
people in general) are mostly not used to closely 
monitoring their own and other’s utterances and 
often keep repeating the same errors because they 
never really become aware of them despite being 
repeatedly corrected by their teachers. Effective 
help in this respect may come from collaboration 
with peers, in that the literature reports good reli-
ability for peer assessments of pronunciation 
(Dlaska & Krekeler,  2008  ) . 

 Working on learners’ pronunciation may be 
supported by means of audio  fi les. These types of 
 fi les are currently used in school much less often 
than texts and pictures, and when they are used 
(which takes place especially in language learn-
ing or history) they mostly consist of original 
documents to be listened to. Students’ produc-
tions and teacher’s corrections, on the other hand, 
are usually limited to texts (on paper or  fi les), 
regardless of the topic under study, at the expense 
of oral production.  

   The Technology Applied 

 We tackle the above task by relying on audio 
technology. In particular, we make use of a pro-
gram to record and reproduce sounds and of mul-
timedia exercises to practice sound observation. 

 The software we have been using for record-
ing and playing audio  fi les in the experience 
described below is Audacity, a free, open source 
program which is easy to use and to learn and is 
available, in several languages, for the three most 

widely used operating systems for personal com-
puters. We considered the possibility of using 
widely available small recording devices, like 
portable phones, mp3 or digital recorders, but we 
found the use of Audacity on a personal computer 
preferable because of the better (and uniform) 
quality of sound and the more ef fi cient manage-
ment of  fi les. 

 As for the multimedia exercises used to stimu-
late sound observation, we chose those proposed 
by the free Web site   http://phonetique.free.fr    , 
which require the user to discriminate between 
similar sounds whose incorrect pronunciation 
may alter a word’s meaning. In this site, the lis-
tening exercises are proposed in groups of several 
items related to similar sounds; when all items in 
a group have been completed, the learner has the 
possibility to check the correctness of her/his 
answers, to correct the errors possibly made and 
 fi nally to get the right answer in case she/he is 
unable to work it out. The possibility to see the 
mistakes made and try to correct them is very 
important in the context of our approach, because 
it helps to raise learners’ awareness of their weak-
ness and strengths. 

 Other technological tools for sound recording 
and observation might obviously be used instead 
of the mentioned ones, provided they offer the 
same functionalities.  

   The Proposed Methodological 
Approach 

 Any technology suggested to support education 
should be paired with a suitable methodology of 
use, especially in the case of tools of wide appli-
cability, like audio  fi les, which do not embody 
any educational orientation. To this end, we 
worked out a methodological approach based on 
a sequence of increasingly dif fi cult tasks, with 
the aim to guide learners to observe their own 
utterances so as to notice pronunciation errors, 
with the support of group work and of metacog-
nitive prompts provided by the teacher to stimu-
late perception, re fl ection, and memorization. 

 Our target audience are L2 learners, especially 
young, novice language speakers, who need to 

http://phonetique.free.fr
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acquire a correct method and attitude towards 
language learning, as well as to become familiar 
with the sounds of the new language and with the 
application of suitable strategies to carry out the 
task. It is important to act at the beginning of lan-
guage study, before (bad) pronunciation habits 
are already consolidated. There is no reason, 
however, to exclude the application of this 
approach with adult learners who are  fi rst tack-
ling, or improving, a foreign language. 

 Prerequisite to the application of our approach 
is that the learners be already familiar with the 
pronunciation rules of the target language, so that 
they are able to read aloud simple sentences in 
L2, even if with uncertainties and errors. An ini-
tial base of domain-speci fi c knowledge is an 
essential condition for learners to start the acqui-
sition and use of metacognition, gaining awareness 
of their learning needs and developing suitable 
strategies to cope with them (Hoffman & Spatariu, 
 2008 ; Veenman et al.,  2006  ) . It must be noted, 
however, that the reverse is not true, i.e., high lev-
els of domain knowledge are not suf fi cient to 
guarantee that learners will use metacognitive 
knowledge and strategies (Schraw,  1998  ) , which 
stresses the need to plan educational activities 
stimulating metacognition. 

 The overall learning path starts with some 
exercises to help the learners to “sharpen their 
ears,” trying to discriminate between similar 
sounds that should not be confused with each 
other. This activity is carried out individually and 
aims to consolidate the learners’ initial base of 
knowledge on pronunciation. At the end of the 
exercises the learners are asked to answer a small 
number of written questions about the dif fi culties 
they encountered, so as to help them notice which 
sounds are more dif fi cult for them to discrimi-
nate, hence improving awareness of their own 
strengths and learning needs. Such self-knowl-
edge is part of metacognitive knowledge, as 
pointed out by Flavell  (  1976  ) . 

 Then the typical tasks start. Each task consists 
of (individually) recording a short text followed 
by work in small groups on these audio  fi les. 
Each group listens to and compares the record-
ings of all its members, trying to detect all pro-
nunciation errors, discussing what the right 

pronunciation should be, looking for help from a 
variety of sources in case of need. Sources to be 
used should be planned by the teacher according 
to the learners’ general competence and cognitive 
maturity; they may differ from task to task and 
range from  ad hoc  recordings provided by the 
teacher, to audio  fi les on the Web suggested by 
the teacher, to (on or off line) dictionaries with 
audio facilities, and up to Web sites (typically 
videos) autonomously retrieved by the learners 
themselves. Finally the text is recorded again by 
each group member, possibly more than once if 
pronunciation errors are still made, until the 
group evaluates that a correct version has been 
obtained. Some general metacognitive prompts 
are given with the task assignment, to provide 
some basic guidance for the activity, such as 
“what do you check to make sure if the words are 
pronounced correctly?” and “Where can you get 
help to check which is the correct pronuncia-
tion?” Moreover, the teacher keeps an eye on the 
development of the activity, intervening with 
other guiding questions when the students seem 
to be at an impasse and need suggestions to 
choose a suitable strategy or encouragement to 
carry on the task. The teacher also pays attention 
to pronunciation errors possibly overlooked by 
all group members, so as to call attention on fur-
ther corrections that are still necessary. 

 Activities of this kind are repeated several 
times over a few months, with increasingly com-
plex recordings, until pronunciation con fi dence 
and a satisfactory level of pro fi ciency are 
reached. The texts to be recorded range from 
short free talks, with basic sentences and a lim-
ited variety of words, to more complex free texts, 
to simple readings, and up to more complex 
readings requiring attention also to intonation 
and rhythm. 

 Each student collects all her/his recordings in 
a sort of audio portfolio witnessing her/his 
improvement. This portfolio may be used both 
for evaluation and to help him/her re fl ect on his/
her progress. At the end of the learning path, 
each student is asked to write (in his/her native 
language) a report pointing out the dif fi culties 
met, the strategies used and what he/she thinks to 
have learned in the task. Sharing and discussing 
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these reports with the whole class, under teach-
er’s guidance, aims to further stimulate re fl ection 
and self-awareness.  

   A Practical Implementation 

 We have tested our approach with Italian pupils 
in the  fi rst year of lower secondary school (11–
12 year-olds), who were in their  fi rst year of 
learning French. French pronunciation presents 
several dif fi culties for Italian learners because of 
some letters that are pronounced differently in 
the two languages (e.g.,  e ,  ch ,  u ), the presence of 
sounds that do not exist in Italian (e.g., nasal 
vowels,  ll ,  eu ,  e ), groups of letters that sound 
differently in different contexts (e.g.,  ent  at the 
end of a word, as in  souvent  or in  mangent ) and 
different groups of letters that sound the same 
(e.g.,  eau ,  au,  and  o ). We now discuss one ses-
sion of group work on pupils’ recordings, to 
illustrate how the methodological approach 
works in practice. 

 The group involved was formed by two girls 
and one boy, all having average or average-to-
low grades in French and in all subjects. This was 
the  fi rst time they met to work on French record-
ings. They met in school, and had at their dis-
posal a PC with Audacity installed, as well as 
paper and pencil to take notes. They worked on 
this task for about 40 min. The whole session was 
recorded to provide data for analysis. 

 All pupils had already completed  fi ve groups 
of phonetic exercises assigned by the teacher on 
the Web site   http://phonetique.free.fr    , focused 
on the distinction of [y] — [u]; [e] — [ə] — [ e ]; 
[o] — [ø]; [o] — [œ] and nasal vowels, with aver-
age results (from zero errors in the [o]-related 
exercises up to 4 out of 10 concerning the sounds 
[e] — [ə] — [ e ]). Moreover, each of them had indi-
vidually prepared an audio  fi le of 20–30 s, with 
a short self-presentation in French (name, school, 
family composition), freely following a pattern 
recorded by the teacher. Hence, the presentations 
were similar enough to be comparable, even 
though they were not exactly equal. The three 
presentations were of different quality; all of 
them had pronunciation errors. 

 The pupils started by listening to the three 
recordings one after the other, then listened to 
them again, but did not seem to have an idea how 
to compare them, so the teacher asked “ Do you 

remember how all the words were pronounced, 

when you reach the end of a recording ?” This 
comment made the pupils realize that they were 
listening to too much of the recorded speech at 
once, and started listening the recordings a short 
piece at a time, alternating between the three  fi les 
on similar parts, which facilitated discerning sin-
gle words and how they had been pronounced by 
the three of them. They started taking notes on 
paper on the problems they were spotting (which 
did not include all pronunciation errors). 

 At the end of this part of the activity, the 
teacher reminded them that they were supposed 
to record their presentations again and without 
errors; hence the pupils decided to concentrate on 
a presentation at a time, and started listening the 
same one several times, pointing out what they 
did not  fi nd right, in a happy way as though they 
were taking part in a game: “ I heard an  e  too 

much in that word ” — “ You said  italienne , which is 

feminine, but you are a boy ” “ the  t  should be 

heard in that word ”, etc., and concluding “ So 

many mistakes! ”. When detecting an error, all the 
pupils kept trying to pronounce the word cor-
rectly, repeating it several times with some varia-
tions, as though they had to check if it sounded 
right, obviously attempting to help the group 
mate who had pronounced it wrong to correct the 
pronunciation. This activity sometimes required 
the intervention of the teacher who helped them 
notice that there was still a problem and asked 
how they could get help to  fi x it: “ we should go to 

France and listen to native speakers ” — “ well, this 

is not very practical, we cannot do so now ” — “ we 

need to  fi nd an example ” — “ where can you  fi nd 

an example? ” — “ on the web ” — “ good, where on 

the web? what do you look for ?” — “ oh, but we 

can listen the teacher’s example! ”. 
 After examining each presentation, its author 

recorded it again trying to make it right, and the 
new recording was checked to determine if it was 
well done. All pupils had to record more than 
once before they produced a satisfactory version, 
because some errors were repeated even if they 

http://phonetique.free.fr
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had been recognized in the previous recording. 
This led them to notice some memory problems, 
and therefore the teacher asked the group “ what 

can she do to remember? can you give her a sug-

gestion? ” which prompted the pupils to propose 
some strategies: “ write it on paper ” — “ repeat it 

until she remembers ” — “ think of how it is writ-

ten ”. In this rerecording phase all errors were 
spotted by some of the pupils, and often it was the 
speaker herself/himself who commented on them. 
The boy, whose presentation was analyzed last, 
had made the most errors in the initial recording; 
in this  fi nal phase, he was able to correct himself 
several times while recording, probably taking 
advantage of the experience of the session work. 

 At the end, the teacher asked the pupils to 
share their impressions of the experience. They 
had found the activity to be dif fi cult, and also 
found French dif fi cult, but they thought that work-
ing with peers had been helpful, had fun doing the 
task and were happy to have been able to record a 
completely correct presentation in the end.  

   Discussion 

 The above description of an implementation ses-
sion gives a good idea of the kinds of behavior 
that are induced by the proposed methodological 
approach to the use of audio technology. 

 At the beginning, the pupils were not able to 
tackle the task autonomously; they clearly 
needed guidance in order to focus on the ele-
ments to observe and to decide how to proceed 
and detect sources of help. They reacted posi-
tively to the teacher’s questions and managed 
to successfully go through the task. An increas-
ing ability to detect errors is evident if we com-
pare the pupils’ behavior at the beginning and 
at the end of the session: while at the beginning 
they were simply listening the recordings as a 
whole, later they learned to concentrate on 
small portions, where it was easier to notice 
details, and during the  fi nal rerecording they 
managed to remember all necessary correc-
tions after only a few attempts. In this respect, 
the teacher crucially helped to boost the meta-
cognitive process with suitable questions, pay-

ing attention to the learners’ needs at each 
moment so as to shape and adjust her/his inter-
ventions as necessary. 

 Even though the activation of metacognitive 
processes is not made explicit in pupils’ dia-
logues, it can be inferred from the cognitive 
activities carried out; this typically occurs in 
practical situations, according to the literature 
(Veenman et al.,  2006  ) . The improvement of self-
observation and of strategic behavior strongly 
suggests that metacognition was actually put into 
play through joint engagement in the task. 

 The pupils’ satisfaction with their improved 
productions helps build self-con fi dence in per-
sonal pronunciation skills, which in turn is likely 
to enhance the learner’s con fi dence in being able 
to communicate in foreign language. This is 
important from the point of view of our study, 
since self-con fi dence is rooted in person-related 
knowledge and beliefs (Flavell,  1979  ) , so much 
so that it is reported in the literature that 
con fi dence in one’s knowledge is a form of meta-
cognition important in academic settings 
(Lundberg & Mohan,  2009  ) . 

 Obviously we cannot expect that new skills 
were acquired in just one session, as the literature 
underlines the need for repeated practice before 
learners internalize strategies and automate them 
into skills (Larkin  2010 ; Schraw & Moshman, 
 1995 ; Veenman et al.,  2006  ) . This is the reason 
why our methodological approach requires that 
learners repeat the activity several times over a 
few months, varying the content and complexity 
of the recordings, so as to help them to develop a 
habit of mind through a range of stimulating 
experiences.   

   Implications and Conclusions 

 The literature review presented in Sect. 
“Metacognition” points out that learners’ global 
metacognitive development can be favored, 
among others, by the following:

   Providing opportunities for active and con-• 
structive collaboration with peers.  
  Diversifying metacognitive activities across • 
subjects and topics.    
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 Active learning is widely recognized to make 
learners feel responsible for their activity and 
induce positive effects on learning outcomes and 
learners’ global development. Moreover, con-
structive collaborative activity is reported to posi-
tively in fl uence metacognitive development, 
more than individual study, by engaging learners 
in reasoning more deeply (Schraw & Moshman, 
 1995  ) . The proposed approach contributes in this 
respect by engaging learners in active collabora-
tion on meaningful tasks. 

 Metacognitive skills are reported to initially 
develop in separate domains, to later become gen-
eralized across domains (Veenman et al.,  2006  ) . 
Fostering the use of metacognition on a wide front 
is useful not only by helping learners to improve 
their learning outcomes and understanding in sev-
eral subjects and topics, but also by providing them 
with a large variety of metacognitive facets, which 
will possibly give rise to a more composite and 
effective competence when learners’ metacogni-
tive skills merge to become generalized across 
domains. The proposed approach concerns an 
unusual but effective  fi eld in which learners may 
develop metacognitive skills, hence contributing to 
a meaningful diversi fi cation of their global meta-
cognitive competence. 

 Focusing on a novel domain for learners’ 
metacognitive activity also represents a contribu-
tion to the development of this research  fi eld, as 
the literature points out the need to explore meta-
cognitive processes in new domains and across 
domains (Veenman et al.,  2006  ) . 

 Despite their simplicity, the technological 
tools used were crucial to implement the activ-
ity, which could hardly have been run so 
smoothly with traditional means. Their use was 
essential to call pupils’ attention on their way 
to utter the different sounds of the new lan-
guage, and hence to support the subsequent 
effort to improve personal performance. The 
use of free and widely available technology 
makes it feasible to apply this methodological 
approach also in schools that have limited funds 
and cannot afford sophisticated and expensive 
technological tools.      
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 Self-regulated learning (SRL) is a complex pro-
cess in which learners have been described to 
“personally activate and sustain cognitions, 
affects, and behaviors that are systematically ori-
ented toward the attainment of personal goals” 
(Zimmerman & Schunk,  2011 , p. 1). Multiple 
theories of SRL (Pintrich,  2000 ; Winne & Hadwin, 
 1998 ; Winne,  2011 ; Zimmerman,  2000,   2011  )  
describe this process and each  acknowledges that 
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  Abstract 

 Models of self-regulated learning (SRL) describe the complex and dynamic 
interplay of learners’ cognitions, motivations, and behaviors when engaged 
in a learning activity. Recently, researchers have begun to use  fi ne-grained 
behavioral data such as think aloud protocols and log- fi le data from edu-
cational software to test hypotheses regarding the cognitive and metacog-
nitive processes underlying SRL. Motivational states, however, have been 
more dif fi cult to trace through these methods and have primarily been 
studied via pre- and posttest questionnaires. This is problematic because 
motivation can change during an activity or unit and without  fi ne-grained 
assessment, dynamic relations between motivation, cognitive, and meta-
cognitive processes cannot be studied. In this chapter we describe a method 
for collecting  fi ne-grained assessments of motivational variables and 
examine their association with cognitive and metacognitive behaviors for 
students learning mathematics with intelligent tutoring systems. Students 
completed questionnaires embedded in the tutoring software before and 
after a math course and at multiple time points during the course. We 
describe the utility of this method for assessing motivation and use these 
assessments to test hypotheses of self-regulated learning and motivation. 
Learners’ reports of their motivation varied across domain and unit-level 
assessments and were differently predictive of learning behaviors.      
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motivational constructs play an in fl uential role. 
The methodologies used to research SRL have 
primarily focused on behaviors that can be related 
to cognitive and metacognitive processes such as 
think aloud protocols in which learners verbalize 
their thoughts (Azevedo, Moos, Johnson, & 
Chauncey,  2010 ; Ericsson & Simon,  1984 ; 
Greene, Robertson, & Costa,  2011  )  and log analy-
ses in which the educational software logs learn-
ers’ interactions with the system (Aleven, Roll, 
McLaren, & Koedinger,  2010  ) . However, little 
work has used these methods to assess motivation 
because less is known about how such behaviors 
relate to various motivational constructs. 

 Prior research that has examined learners’ 
motivational states has primarily relied on con-
struct-, context-, and task-speci fi c questionnaires 
administered before and after learning activities 
or classes. This method has yielded interesting 
results, but is problematic for two reasons. First, 
recent research suggests that pre-/post-assessment 
may be insuf fi cient to accurately capture the 
dynamics of various motivational constructs that 
vary over the course of a learning activity or unit 
(e.g., achievement goals; Fyer & Elliot,  2007 ; 
Muis & Edwards,  2009  ) . Second, a critical com-
ponent of SRL theory is that the underlying pro-
cesses are interactive suggesting that motivational 
states, like cognitive and metacognitive processes, 
should interact with each other in real time to 
affect learning outcomes. Measuring a motiva-
tional state prior to and separate from this process 
eliminates the opportunity to observe both 
dynamic changes in the construct and its in fl uence 
within the SRL process. As a result, the use of 
pre-/post-measurement can lead one to draw con-
clusions about the role of motivation in SRL that 
are, at best, insuf fi cient to capture the dynamic 
complexity of SRL and, at worst, inaccurate. 

 In this chapter, we describe a project in which 
we take the  fi rst step towards developing  fi ne-
grained assessments of motivational constructs in 
an SRL context. We pose questions to students at 
varying points during learning to capture self-
reports of their motivational state with respect to 
the domain and the unit or problem they have just 
completed. Our focus is on motivational con-
structs that are hypothesized to vary much more 

rapidly on the order of minutes to hours (e.g., 
self-ef fi cacy for speci fi c math problems; Pajares, 
 1997  ) , although we also acknowledge that learn-
ers likely have some stable motivational charac-
teristics such as domain-level achievement goals 
that change relatively slowly over the course of 
months to years (Ames,  1992  ) . For this reason, 
we investigate motivation at multiple grain sizes, 
examining the variability of a learner’s motiva-
tional state when construed with respect to both 
the domain and at  fi ner-grained levels such as the 
unit or problem. By repeatedly evaluating one’s 
motivational state, we can observe variation or 
stability of speci fi c constructs (e.g., self-ef fi cacy), 
examine the task variables (e.g., unit or problem 
dif fi culty) that might affect such a state, and iden-
tify the associated learning behaviors. Our theo-
retical approach is analogous to Mischel  (  1968, 
  1973  ) , Cervone (Cervone & Shoda,  1999  )  and 
others who, in questioning the stability of person-
ality constructs, conducted productive programs 
of research examining the dynamics of personal-
ity and developed a deeper understanding of 
those constructs; one’s personality is both coher-
ent across situations and in fl uenced by situational 
factors. The methodology we describe, especially 
when combined with online traces of behavior, 
can enrich our understanding of SRL as well as 
improve our ability to predict (and promote desir-
able) learning outcomes. 

 While our approach is not an online method 
like the log- fi les, eye tracking, or verbal proto-
cols that continuously collect data, our repeated 
sampling of self-reports are considerably  fi ner 
than traditional methods that only measure moti-
vation at pre- or posttest. So, while our data do 
not provide a continuous measure of learners’ 
motivational states, the frequency of our sam-
pling (as often as every 1–2 min) does provide a 
series of snapshots of motivational variables that 
can be used to examine the relationship between 
motivation, learning behaviors, and learning out-
comes, all of which are speci fi c to a particular 
learning context. Furthermore, these  fi ner-grained 
snapshots can be used more productively than 
simple pre-/posttest assessments when relating 
motivational data to other streams of trace data 
such as those mentioned above. 
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 In this chapter, we  fi rst describe the Cognitive 
Tutor, the intelligent tutoring system with which 
we conduct our research, and then summarize 
two theoretical frameworks that describe the SRL 
process, paying special attention to the motiva-
tional components included in each. We next 
describe the methods others have used to capture 
traces of SRL and the questionnaire methods 
typically used to assess motivation. In light of 
this review, we argue that motivation needs to be 
assessed using  fi ner-grained methods that are 
more sensitive to the changes in motivation that 
occur during learning. The remainder of the 
chapter describes a microgenetic approach to 
assess motivation in SRL and illustrate the 
bene fi ts and challenges of this approach with 
both hypothetical examples and empirical data. 

 First, however, we describe our interest in 
motivation as it relates to metacognition. We 
agree with the perspective of Veenman (   Veenman, 
Bernadette, Hout-Wolters, & Af fl erbach,  2006  )  
who suggests that metacognition cannot be stud-
ied in “splendid isolation” (p. 10). In the inaugu-

ral issue of  Metacognition and Learning , 
Veenman states that “we need to know more 
about how individual differences and contextual 
factors interact with metacognition and its com-
ponents” (p. 4). Motivational constructs can oper-
ate as individual difference variables or can be 
in fl uenced by contextual factors and should be 
examined concurrently with metacognitive pro-
cesses as components of the dynamic models 
SRL theorists propose. 

 While there are dozens of motivational con-
structs that we might examine, we focus our 
work on achievement goals and self-ef fi cacy for 
three reasons. First, each of these factors is 
explicitly referenced in one or more of the cen-
tral theories of SRL (see Fig.  41.1 ). Changes in 
these factors are theorized to in fl uence meta-
cognitive processes. Second, these constructs 
have been associated with particular patterns of 
learning behavior in empirical studies, some of 
which are metacognitive in nature. Third, prior 
research has illustrated that learners’ level of 
self-ef fi cacy (Pajares,  1997  )  and achievement 

  Fig. 41.1    Motivational constructs embedded in process models of self-regulated learning       
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goals (Muis & Edwards,  2009  )  change during 
learning. In order to observe these changes and 
to investigate their in fl uence on learners’ meta-
cognitive monitoring and acts of metacognitive 
control, we propose an approach that supports 
analysis of  fi ne-grained behavioral data. In order 
to establish the context in which we conduct our 
research, we present an intelligent tutoring sys-
tem that traces learners’ behaviors, the Cognitive 
Tutor, which we use to assess students’ motiva-
tional state while learning mathematics.  

   The Cognitive Tutor 

 Cognitive tutors are a family of intelligent tutor-
ing systems (c.f. Koedinger & Aleven,  2007  )  that 
combine the disciplines of cognitive psychology 
and arti fi cial intelligence to construct computa-
tional cognitive models of learners’ knowledge 
(Koedinger & Corbett,  2006  ) . Cognitive tutors 
are unique in that they monitor student’s perfor-
mance and learning by model tracing and knowl-
edge tracing. That is, the cognitive tutor runs 
step-by-step through a hypothetical  cognitive 

model  (which represents the current state of the 
learner’s knowledge) as the learner progresses 
through a unit. This allows the tutor to provide 
real-time feedback and context-speci fi c advice. 
Learning in the tutor is de fi ned as the acquisition 
of  knowledge components , which are the mental 
structures that learners use, alone or in combina-
tion with other knowledge components, to accom-
plish steps in a problem. 

 The cognitive tutor combines a series of struc-
tured learning tasks (i.e., math problems) along 
with opportunities for self-regulation of learning. 
In most cognitive tutor environments, learners 
are given access to a unit which includes an intro-
ductory text and a problem set, as well as tools 
they can choose to access to support their learn-
ing. These include a hint button that provides 
context-speci fi c hints, a glossary of terms rele-
vant to the content and, at times, a worked exam-
ple of a problem similar to those they are to 
complete. Students can also assess their own 
progress towards mastery (as assessed by the 
tutor) by clicking on the  skillometer , a menu that 

presents skill bars indicative of the progress 
towards mastery for each skill in the unit. Bars 
are green in color and increase when steps are 
completed accurately; they turn gold when mas-
tery is met. 

 While the tutor chooses the problems, the 
learner chooses how long to spend on the intro-
ductory reading, when to begin the problem set, 
as well as whether or not to request hints, access 
the glossary, check the skill bars, review the intro-
ductory text or view worked examples and in gen-
eral, how deliberately to approach to tutor problem 
(versus super fi cial processing or guessing strate-
gies). The inclusion of these resources creates the 
opportunity for the learner to self-regulate learn-
ing. For example, a learner, who while complet-
ing a problem encounters an unfamiliar term, can 
access a glossary to obtain a de fi nition. Another 
learner who begins a problem set and does not 
understand a step can request a hint that provides 
directions on that step. Students’ metacognitive 
monitoring is supported by the provision of the 
skillometer, as well as feedback about the accu-
racy of answers submitted per step. When tutor 
feedback indicates that a step is incorrect, a stu-
dent might try to self-explain why that step is 
incorrect. After reading the hints, the student 
could try to reconstruct for himself/herself the 
line of reasoning presented in the hint (typically, a 
principle-based explanation of what to do next 
and how, and perhaps why). Access to the worked 
examples, glossary and introductory text also pro-
vide opportunities for metacognitive monitoring; 
learners can click on these features to make meta-
cognitive judgments about their understanding of 
the concepts or mastery of a skill. This metacog-
nitive monitoring may be aided by tutor feedback. 
For instance, the decision to ask for a hint may be 
based on self-assessment of whether a step is 
familiar (Aleven et al.,  2010  ) . 

 In addition to providing instruction and oppor-
tunities for self-regulation, the cognitive tutor col-
lects  fi ne-grained behavioral data of students’ 
interactions with the tutor. This data is logged at the 
 transaction level , whenever a learner attempts a 
step in a tutor problem, requests a hint, accesses a 
glossary item, etc. The tutor records this data as 
log- fi les that serve as a database for conducting 
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microgenetic analyses of learning, using an open 
repository called DataShop (Koedinger, Baker, 
Cunningham, Skogsholm, Leber, & Stamper, 
 2010  ) . Microgenetic approaches (c.f. Siegler & 
Crowley,  1991  )  involve the logging of frequent 
observations of individuals’ behavior and allow for 
examination of change at a  fi ne-grained level (e.g., 
eye-tracking, verbal protocols, log- fi les, etc.). 

 Analyses of transaction data have made it pos-
sible for researchers to identify when learners 
seek help in tutoring environments (Aleven & 
Koedinger,  2000  )  and when they abuse help 
features (Baker, Corbett, Koedinger, & Wagner, 
 2004  ) . As a result of these investigations, research-
ers have attempted to scaffold help seeking by 
modifying the cognitive tutor design and creating 
a Help Tutor (Aleven, McLaren, Roll, & 
Koedinger,  2006  ) . Transaction level data also 
allows for examination of behaviors as they relate 
to speci fi c learning outcomes (e.g., Ritter, 
Anderson, Koedinger, & Corbett,  2007 ; Koedinger 
et al.,  2010  ) . In their present form, cognitive 
tutors provide a useful environment for studying 
facets of students’ SRL behaviors like help 
seeking. 

 Building on the basic functionality of the 
Cognitive Tutor, we have implemented an addi-
tional component that, when added to the tutor, 
allows for the consideration of motivational con-
structs as they affect learning. Before we outline 
how this questionnaire component is integrated 
to capture self-reports of learner motivation, we 
 fi rst de fi ne the motivational constructs on which 
we focus, learners’ achievement goals and per-
ceived self-ef fi cacy for mathematics, and high-
light their role in SRL theories.  

   Motivational Factors: Achievement 
Goals and Self-Ef fi cacy 

   Achievement Goal Orientation 

 Elliot (Elliot & McGregor,  2001 ; Elliot & 
Murayama,  2008  )  posits a 2 × 2 framework 
describing one’s achievement goals in terms of 
de fi nition (mastery vs. performance) and valence 
(approach vs. avoidance). Those with mastery 

approach goals engage in a task with the purpose 
of developing competence and de fi ne success 
with respect to intrapersonal standards of 
improvement over previous levels of competence, 
or as focused on meeting a self-imposed criterion 
of task-mastery (Ames,  1992 ; Elliot,  1999  ) . 
Performance approach oriented learners de fi ne 
success interpersonally by measuring compe-
tence normatively against the competence of 
peers and aim to demonstrate their competence 
by outperforming peers. Mastery avoidance goals 
denote an orientation towards avoiding failure as 
de fi ned by “avoiding self-referential or task-
referential incompetence” (Elliot,  1999 , p. 181). 
A performance avoidance oriented learner 
engages in a task to demonstrate that they are not 
any less competent than their peers. 

 Research on achievement goal theory has 
shown that individuals’ goal orientations are 
related to learning behaviors and performances. 
Mastery-oriented individuals employ effective 
problem-solving practices (Elliott & Dweck, 
 1988  ) , are more likely to expend effort, persist in 
the face of failure, and engage in deep processing 
(Elliot, McGregor, & Gable,  1999  ) . Performance 
approach goals have also been positively related 
to effort (Harackiewicz, Barron, Pintrich, Elliot, 
& Thrash,  2002  )  but their processing tends to be 
more super fi cial (Elliot et al.,  1999  ) . Research 
has shown that performance avoidance goals are 
positive predictors of surface processing and neg-
ative predictors of deep processing (Elliot et al., 
 1999  ) , and performance avoidant learners dem-
onstrate disorganization and low interest (Elliot 
& Harackiewicz,  1996 ; Elliot & Church,  1997  ) . 
One’s goal orientation has also been associated 
with employment of SRL processes. Research 
has shown that mastery approach goals predict 
increased cognitive engagement and performance 
(Greene & Miller,  1996 ; Greene, Miller, Crowson, 
Duke, & Akey,  2004  )  and that performance goals 
have been found to predict study strategies 
(Archer,  1994  )  and metacognitive strategy use 
(Bouffard et al.,  1995 ; Meece, Blumenfeld, & 
Hoyle,  1988  ) . 

 With respect to performance, both mastery 
and performance approach goals have been 
found to relate positively to achievement 
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(Linnenbrink-Garcia, Tyson, & Patall,  2008  )  
and students who pursue mastery goals show 
evidence of transferring past learning experi-
ences to new tasks (Belenky & Nokes,  2012  ) . 
Performance avoidance goals have consistently 
been shown to predict poor performance (Elliot 
& Church,  1997 ; Elliot et al.,  1999 ; Harackiewicz 
et al.,  2002  ) . 

 In sum, we are interested in assessing achieve-
ment goals with  fi ne-grained measures and exam-
ining their relations to behaviors in the tutoring 
system. We do so in order to further explore how 
achievement goals are in fl uenced by task context 
(as theorized by Ames,  1992  and demonstrated by 
Horvath, Herleman, & McKie,  2006  ) , how these 
changes in goals might alter the behaviors learners 
employ, and whether these context-speci fi c factors 
might explain some of the con fl icting results sum-
marized by Linnenbrink-Garcia et al.  (  2008  )  who 
found that mastery and performance goals are only 
predictive of achievement in some cases.  

   Self-Ef fi cacy 

 Bandura  (  1994  )  de fi ned perceived self-ef fi cacy as 
the belief about one’s ability to perform at a par-
ticular level on a task. Self-ef fi cacy is theorized to 
in fl uence cognitive, metacognitive, motivational, 
and affective processes. Learners with high levels 
of self-ef fi cacy are willing to engage in dif fi cult 
tasks, set challenging goals, and maintain strong 
commitments to achieving their goals. High self-
ef fi cacy is theorized to support effort regulation 
and to in fl uence one’s attribution of failure 
(Bandura,  1991 ; Weiner,  1986  ) . When individuals 
do fail to achieve, those high in self-ef fi cacy are 
more likely to attribute their failure to insuf fi cient 
effort, knowledge or skills and reengage to correct 
this insuf fi ciency. In addition to in fl uencing attri-
bution to self or environmental factors, self-
ef fi cacy in fl uences persistence and performance 
in learning tasks (Bandura,  1997  ) . This associa-
tion suggests that simultaneous examination of 
learners’ ef fi cacy and learning behaviors might be 
an important methodological approach to further 
our understanding of the in fl uence self-ef fi cacy 
has on other components of SRL.   

   Role of Motivation in Theories 
of Self-Regulated Learning 

 We describe our method in relation to the two 
most prominent theories of SRL, both of which 
depict SRL as a cyclical process involving cogni-
tive, metacognitive and motivational components. 
We summarize each below and draw particular 
attention to Zimmerman’s  (  2011  )  recent focus on 
motivational processes as they occur at each 
phase of the SRL process. 

   Winne and Hadwin’s COPES Model 

 Winne and Hadwin  (  1998 ; Winne,  2011  )  offer a 
description of SRL as an event-based phenome-
non that occurs in weakly sequenced phases. 
Learners, when self-regulating their learning (1) 
de fi ne the task, (2) set goals they would like to 
attain and develop a plan for their attainment, (3) 
enact tactics, and (4) monitor their progress 
towards goals against a preconceived set of inter-
nal standards. Within each phase, self-regulatory 
behaviors are governed by both cognitive and 
situative factors in which learners generate behav-
iors that are evaluated in light of their self-
imposed standards. In this framework, motivation 
governs SRL processes beginning with the assess-
ment of task conditions. We illustrate this rela-
tionship (see Fig.  41.1 ) using achievement goals 
and self-ef fi cacy as examples, given their promi-
nence in models of SRL. 

 The conditions that affect how students 
engage in a learning task include environmental 
conditions (e.g., time limits, environmental 
affordances) and learner characteristics such as 
cognitive and metacognitive capacities like prior 
knowledge, domain knowledge, metacognitive 
knowledge of tactics that could be employed, 
and motivational conditions including interest 
and goal orientation (see Fig.  41.1 ). These fac-
tors in fl uence the type of goals learners set, the 
tactics they enact, and the standards by which 
they judge their learning and performance. 
Winne and Hadwin  (  1998  )  provide the follow-
ing example:
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  For example, students with a performance motiva-
tional orientation that view tasks as just jobs to 
complete may judge that the goal they understood 
their teacher set is at too high a level or requires too 
much effort. Therefore, they adjust or alter stan-
dards for summarizing the science chapter to levels 
where ‘just getting by’ is adequate. In light of this 
re-framed goal, the student now builds a plan to 
approach it. This student will probably plan sim-
plistic tactics, such as paraphrasing headings and 
monitoring surface features of typography to insure 
that every bold phrase and every scientist’s name 
(standards) is reproduced in the  fi nished product 
(p. 281)   

 Similarly, one’s level of self-ef fi cacy 
in fl uences the goal setting and evaluation pro-
cesses. Ef fi cacious learners are theorized to have 
greater expectations for what they can achieve in 
a task and set goals accordingly (Bandura,  1991  ) . 
Their level of ef fi cacy for carrying out the plan 
to achieve the goal can in fl uence their persis-
tence, and recurring ef fi cacy judgments will 
in fl uence their strategies during learning. This 
process has implications for future cycles 
through learning phases. The evaluation of learn-
ing leads to adaptations of learning processes. 
These adaptations are based on one’s sensitivity 
to feedback, which can be internally or exter-
nally generated, and which is interpreted in the 
light of one’s goals. One’s level of self-ef fi cacy 
affects the way such feedback is interpreted. 
Negative feedback can be a useful tool for a 
highly ef fi cacious learner who uses the feedback 
as a cue that his or her performance is insuf fi cient 
and continued or greater effort is required, while 
a learner with low self-ef fi cacy may interpret 
negative feedback as indicative of de fi cits that 
cannot be overcome, and lead to disengagement 
or frustration.  

   Zimmerman’s Social Cognitive Model 

 Zimmerman  (  2000  )  de fi nes self-regulation as 
referring to “self-generated thoughts, feelings 
and actions that are planned and cyclically 
adapted to the attainment of personal goals” (p. 
14). Individuals are theorized to engage in plan-
ning (i.e., forethought), volitional control, and 
self-re fl ection (see Fig.  41.1 ). This process occurs 

within a larger self-regulatory context in which 
learners regulate their behaviors, adjust perfor-
mance processes, and adapt to their environment 
by managing the environmental factors that might 
inhibit goal attainment. By monitoring the suc-
cess of their strategies and using feedback about 
potential barriers to goal attainment, learners can 
adapt to changing environments and regulate pro-
cesses en route to attaining their goals. 

 Focusing on the cycle described in 
Zimmerman’s framework, individuals  fi rst plan 
in which they analyze the task in order to identify 
the desired goal and develop a strategy to obtain 
this goal. This plan is then evaluated for its poten-
tial success, which Zimmerman  (  2000  )  describes 
as being mediated by one’s self-motivational 
beliefs, including “self-ef fi cacy and goal orienta-
tion” (p. 17). In the forethought stage, self-regu-
lation can break down if an individual cannot 
clearly determine a goal, or cannot develop a 
strategy for reaching it. It can also stagnate if the 
individual cannot motivate himself or herself to 
seek such a goal or carry out the selected strategy. 
Once a goal has been identi fi ed and the individual 
intends to carry out a strategy to attain the goal, 
the individual acts. This stage is referred to as the 
performance or volitional control phase. Here, 
individuals critique their own strategy use in an 
attempt to maximize the ef fi ciency of their efforts 
while carrying out a chosen strategy. After hav-
ing completed an action and monitored the pro-
cess and outcome, an individual engages in 
self-re fl ection by evaluating the performance and 
attributing the success or failure of the perfor-
mance to causal factors. 

 In a more recent conceptualization of his 
sociocultural model, Zimmerman  (  2011  )  pro-
vides an elaborated description of motivation as 
catalyst at each SRL stage. During forethought, a 
learner’s goal orientation dictates a goal to 
increase his competence, which may involve 
greater persistence in a dif fi cult task, or a goal to 
perform well, which may involve avoiding chal-
lenges. Additionally, his perceived self-ef fi cacy 
for a task will dictate the strategies he chooses to 
employ. In the performance phase, self-ef fi cacy 
beliefs motivate his time management and self-
monitoring practices (Bandura,  1997  ) . 
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 Zimmerman  (  2011  )  underscores the importance 
of assessing motivation not as “person measures” 
(p. 60) at pre- and posttest due to subjects’ inaccurate 
recall and poor calibration, and praises event-based 
measurement of cognitive and metacognitive 
processes by way of trace and think-aloud method-
ologies. We share Zimmerman’s views that a learn-
er’s motivation is an active and dynamic part of the 
self-regulatory process and that data collected dur-
ing learning is necessary to capture the “dynamic 
interactive relations among these variables during 
successive SRL cycles” (p. 60). We next summa-
rize the methods that have been used to capture 
evidence of cognitive, metacognitive, and motiva-
tional components of SRL, then describe our 
method for administering prompts to elicit self-
reports of learners’ motivational state during the 
learning tasks in which metacognitive and cogni-
tive processes are traced.   

   Measurement of Self-Regulated 
Learning with Learning Technologies 

 Increasingly, research conducted in technology 
enhanced learning environments re fl ects the pro-
cess view of SRL espoused by the most prominent 
theorists. Data is collected online and the analysis 
that ensues is conducted under the assumption 
that the learning process is iterative and learners’ 
actions are dependent upon learning that has taken 
place earlier in the task or during prior learning 
tasks. At present, however, learning technologies 
that capture SRL data conduct no online measure-
ment of motivational constructs. Instead, motiva-
tional constructs tend to be assessed before or 
after the learning task. 

 With only two data points, this method can only 
detect linear change. For example, when measuring 
learners’ self-ef fi cacy before and after the task, we 
cannot determine the point at which a learner’s 
self-ef fi cacy began to change or how it changed 
(linear, stepwise, etc.) over the course of a learning 
task. We can only measure whether it rose, fell or 
stayed the same from pre- to posttest. This limits 
our understanding of self-ef fi cacy to coarse-grained 
associative relationships with learning behaviors. 
In contrast, if learners respond to ef fi cacy prompts 

repeatedly throughout a unit, we can examine  fi ne-
grained changes from one data point to the next, 
concurrent with changes in behavior and identify 
patterns in log- fi les where reports of ef fi cacy trend 
higher or lower, or when they follow an initiation of 
a behavior or a change in performance. Next we 
summarize measures and procedures typically 
employed to assess achievement goals, as well as 
recent evidence outlining elements of stability and 
change in achievement goals. This evidence dem-
onstrates a need to employ more frequent,  fi ne-
grained assessment than is typical.  

   Assessment of Motivational 
Constructs 

   Instruments and Methods 

 When researchers aim to assess achievement 
goals, they employ questionnaires that include 
items that gauge the learner’s endorsement of per-
formance approach, performance avoidance, mas-
tery approach, and mastery avoidance goals. The 
two most common questionnaires employed are 
the Achievement Goals Questionnaire (Elliot & 
McGregor,  2001  and a revised version, the AGQ-
R; Elliot & Murayama,  2008  )  and the Patterns of 
Adaptive Learning Scale (PALS; Midgley et al., 
 2000  ) . Each are composed of a series of items that 
pose a statement meant to re fl ect a speci fi c 
achievement goal. For instance, an AGQ-R item 
re fl ecting a performance approach orientation 
reads, “My goal is to perform better than the other 
students.” A PALS item re fl ecting the same orien-
tation reads, “It’s important to me that I look smart 
compared to others in my class.” Respondents 
select a number from a Likert scale re fl ecting their 
level of agreement with the statement and mean 
scores per achievement goal are derived. 

 These questionnaires tend to be given once prior 
to or after the learning task. Recent studies that 
have administered achievement goal questionnaires 
repeatedly have reported both stability, but also 
some change over time and with respect to task 
conditions. Fryer and Elliot  (  2007  )  found rank-
order stability across achievement goals and that 
mean levels of performance approach goals were 
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stable across three time points (reported in con-
junction with exams) while mastery approach 
increased and performance avoidance decreased 
over time. Examining self-reported achievement 
goals for two exams and two writing assignments, 
Muis and Edwards  (  2009  )  found a similar pattern 
of results and describe the extent the changes that 
occurred as moderate to large. These  fi ndings con-
form to theories of achievement goals (Ames, 
 1992 ; Dweck,  1986 ; Fryer & Elliot,  2007  )  that sug-
gest an individual’s achievement goal orientation is 
consistent to the extent that it re fl ects the cognitive 
framework the individual uses to guide behavior. 
At the same time, learners are theorized to set goals 
in light of task conditions (Pintrich,  2000 ; Winne & 
Hadwin,  1998  ) . Because task conditions are often 
outside the scope of learners’ control (i.e., the con-
tent of a task is prescribed) and because they tend 
to change over the course of a task when learning 
occurs in the context of adaptive learning technolo-
gies (i.e., tutors concentrate problems requiring 
yet-to-be-mastered skills), learners’ task-speci fi c 
goals can differ from their typical goal orientation. 
Muis and Edwards’  (  2009  )   fi nding that endorse-
ment of achievement goals varied from exam to 
exam and differed between assessment types sug-
gests that variation in the content of a task may 
in fl uence individuals’ adoption of achievement 
goals. A number of research studies have assigned 
participants to conditions in which task conditions 
have successfully elicited achievement goals (c.f. 
Linnenbrink-Garica et al.,  2008 , Table 2), which 
demonstrates the extent to which task conditions 
can in fl uence achievement goals. Because learners’ 
achievement goals have been shown to be contin-
gent upon task conditions, repeated measurement 
is necessary to understand how task conditions 
might in fl uence one’s task-level achievement goals 
and the behaviors they motivate. 

 Achievement goals are not unique among moti-
vational constructs in their capacity for change dur-
ing the course of learning. Perceived self-ef fi cacy 
has been shown to build upon prior ef fi cacy judg-
ments (Bandura,  1997  )  and, during the course of 
learning, self-ef fi cacy judgments are adjusted in 
light of actual performance and feedback. Learners’ 
self-ef fi cacy is theorized to in fl uence the goals 
learners set, the tactics they enact and the attribu-

tions they make about feedback when judging 
their progress towards goals. Exploration of this 
dynamic relationship between motivational state 
and metacognitive process requires  fi ne-grained 
assessment of both constructs. 

 Factors like achievement goals and self-ef fi cacy 
represent the motivational dimension of learning 
that Winne and Hadwin  (  1998  )  and Zimmerman 
 (  2000  )  identi fi ed as germane to SRL and as 
in fl uential over metacognitive processes. However, 
methods to capture  fi ne-grained evidence of these 
and other motivational constructs have not been 
incorporated into educational software prior to 
our study. We next present our methodological 
approach to address this situation, followed by 
some preliminary results.   

   Fine-Grained Sampling: A 
Microgenetic Approach to Assessing 
Motivation in SRL 

 We have added a component to the Cognitive 
Tutor that collects  fi ne-grained motivational data 
to concurrently examine the dynamic and inter-
active metacognitive  and  motivational factors 
that in fl uence learning. Using the items from ques-
tionnaires traditionally used to assess motivation 
pre- or posttest, we embed single items as prompts 
after problems and small, task-speci fi c question-
naires after units to capture more  fi ne-grained 
changes in motivational states (Fig.  41.2 ). We 
employ these prompts at multiple grain sizes and 
repeatedly over time in order to develop a rich 
understanding of how factors such as learners’ 
goal orientation and level of self-ef fi cacy affect 
SRL in speci fi c contexts and at speci fi c points 
during the use of the tutor. The following section 
serves as an overview of our  fi rst year-long inves-
tigation in which this microgenetic and longitudinal 
approach is employed.  

   A Microgenetic and Longitudinal 
Approach to Questionnaire Use 

 We collected automated self-report (question-
naire) data in multiple classrooms of students via 
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cognitive tutors for a range of variables. These 
students use the cognitive tutor software across 
the whole school year as part of their regular 
mathematics instruction. This effort has two 
components. First, we take a microgenetic 
approach to collect questionnaire data with a 
small number of prompts that are administered 
frequently (i.e., dense data collection over a range 
of time periods, providing motivational tracking 
from minutes to hours to weeks). These prompts 
are embedded in the learning software and there-
fore can be administered at the end of a unit and 
between problems. At these  fi ner-grained levels, 
a small, speci fi c set of constructs are sampled in 
order to limit the proportion of time students 
spend completing measures when engaging with 
the tutor. This method of data collection is applied 
to motivational variables that are expected to vary 
over the course of a semester or unit). Second, 
two or three times a year, we administer ques-

tionnaires focused on constructs that are theo-
rized to be stable over time (i.e., these include 
domain-level achievement orientation, domain-
level self-ef fi cacy, and theory of intelligence; 
   Dweck,  1999 ). 

 Key to the current approach is that this tradi-
tional pre-/post-data can be related to the more 
 fi ne-grained prompts as well as traces of the 
behaviors in the tutor log data. Concurrent col-
lection of these multiple streams of data allow for 
testing of theoretical assumptions that would not 
be testable using traditional methods of measure-
ment. Additionally, students use the tutor for the 
duration of the school year (and often multiple 
years), making this platform uniquely suited for 
longitudinal data collection and evolution. In the 
next section, we expand on the bene fi ts associ-
ated with employing a microgenetic approach 
including opportunities for (1) testing theories of 
SRL and (2) improving our understanding of 

  Fig. 41.2    Microgenetic approach to assessment of motivational constructs in the cognitive tutor       
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motivational constructs. We then provide some 
initial results from a study of geometry learners’ 
achievement goals at domain and unit levels.   

   Bene fi ts of a Microgenetic Approach 

   Testing Theories of Self-Regulated 
Learning 

 A microgenetic approach allows us to isolate a 
particular component of a learning theory and 
use transaction level data to determine if the 
theorized process plays out as expected when 
individuals engage in the learning activity. In 
SRL theories, metacognition is described in a 
 fi ne-grained manner and many parameters are 
theorized to affect metacognitive processes in 
ways that in fl uence learning. Each of these 
parameters is also theorized to change dynami-
cally over time. Microgenetic methods allow us 
to focus on a speci fi c metacognitive process and 
test whether it occurs as theorized, as well as 
whether the presence of, absence of, or change in 
another parameter might in fl uence how the meta-
cognitive process works. 

 For example, Winne theorizes that learners 
evaluate their learning against a self-set standard 
(Winne & Hadwin,  1998,   2008 ;    Winne,  1997 , 
 2011  ) . Zimmerman  (  2011  )  suggests that such 
standards are in fl uenced by a learner’s achieve-
ment goals, which have been found to vary when 
measured repeatedly (Fryer & Elliot,  2007 ;    Muis 
& Edwards,  2009  ) . As an illustration, consider a 
learner who consistently evaluates performances 
with respect to a standard over the course of the 
unit. If we  fi nd that his standard changes over 
time as evidenced by a change in the strength or 
prominence of one achievement goal over oth-
ers, then we can explore the implications of this 
change on the learner’s behavior. To do so, we 
would examine log- fi le data prior to and after a 
shift in goal endorsement (i.e., when a learner 
who previously rated mastery approach goals as 
strongest now rates performance avoidance goals 
as strongest; Muis & Edwards) and examine the 
time elapsed between hint requests and the next 
transaction. Perhaps we notice that when his 

goals shift from a stronger desire to master a 
skill to a stronger desire to perform just well 
enough to complete the unit, the learner also 
spends less time reading hints (smaller durations 
of time between a hint request and the next click) 
and a pattern of hint abuse (i.e., rapid clicking to 
a  fi nal hint that provides the answer to a problem 
step, but where the speed of clicks suggests min-
imal consideration of the conceptual scaffolding 
provided). We would expect such behavior to 
produce poor learning and can test this by ana-
lyzing the students’ learning curve of various 
knowledge components traced by the tutor. 
Learning curves show the change in a perfor-
mance metric (e.g., accuracy, time) over succes-
sive opportunities to apply a given skill, based 
on the performance of a group of students on 
problem steps that require that skill. The slope of 
the curves indicates the rate of learning. If our 
hypothesis is accurate, a learner who switches 
from a mastery approach goal to a performance 
avoidance goal should have a learning curve with 
a slope that  fl attens when the goal changes and a 
new pattern of behavior emerges (Koedinger 
et al.,  2010  ) . 

 This hypothetical example illustrates how a 
microgenetic approach allows us to isolate one 
element of a theory and determine whether a 
change in motivation precipitates a change in 
behavior. This approach opens new dimensions of 
investigation for testing the role of motivational 
constructs in SRL theories. A better speci fi cation 
of the dynamic role of motivation in SRL theories 
will further improve both the explanatory power 
of these models as well as improving the predic-
tions for individuals’ learning.  

   Investigating Motivational Constructs 
at Different Grain Sizes 

 Collecting traditional pre/post and  fi ne-grained 
prompts allows for comparison of motivational 
constructs at different levels of granularity. With 
this data, we can determine whether the in fl uence 
of a motivational construct on a learning process 
changes when the construct is investigated at 
domain, unit, and problem (see Fig.  41.2 ). This 
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multilevel depiction of phenomena like achieve-
ment goals and self-ef fi cacy enables scientists to 
examine patterns of stability and change and 
improve theoretical models to account for this 
change. 

 For instance, we might seek to test Bandura’s 
 (  1997  )  hypothesis that learners’ level of self-
ef fi cacy is related to their level of performance 
on problems. We could measure this construct 
(self-ef fi cacy) at pretest or at posttest and test 
correlation with course grades. However, it is 
possible that students might feel con fi dent in 
their understanding of some concepts but not 
others and may excel on problems testing some 
skills and struggle on problems testing others. 
When learners are asked to make domain-level 
judgments, they must take an ‘average,’ so to 
speak, of their distinct self-ef fi cacy judgments. 
In this self-reported averaging – or perhaps they 
simply use the last episode they can remember—
some variation and precision is likely to be lost. 
Similarly, using student grades as a measure of 
performance can oversimplify scenarios where a 
learner performs well on one type of problem 
and poorly on another. In our method, we also 
prompt students to make ef fi cacy judgments 
immediately after a unit in the tutor and compare 
them to measures of performance on the unit. At 
a  fi ner grain still, we also prompt learners’ to 
judge self-ef fi cacy immediately after problems 
that align to one of the unit’s learning objective 
(see problem-level assessment in Fig.  41.2 ). By 
sampling self-ef fi cacy at this grain size, we could 
determine whether Bandura’s hypothesis holds 
at both the domain level (as evidenced by a 
signi fi cant correlation between domain-level 
self-ef fi cacy collected as a pretest to math per-
formance represented by grades) and at the prob-
lem level (correlation between problem-level 
ef fi cacy judgments and performance on prob-
lems). If we were to  fi nd that the correlation 
between students’ self-ef fi cacy and performance 
is lower at the problem level than at the domain 
level, we would have discovered that self-ef fi cacy 
judgments are associated with performance at 
more general levels of speci fi city, but this rela-
tionship weakens in the context of an actual task. 

We could then examine what other factors might 
inform students’ self-ef fi cacy judgments by 
looking at behaviors, performances, or motiva-
tional factors that may also predict variance in 
problem level self-ef fi cacy judgments.  

   Investigating Associations Between 
Motivation and Metacognition 

 We can also use these  fi ne-grained samplings of 
ef fi cacy to examine the effect of an attempt at 
metacognitive control on a motivational variable. 
For example, we might test whether ef fi cacy 
increases after students view a conceptual hint by 
identifying all learners who requested a hint and 
examine their ef fi cacy judgments on problems 
testing a skill before and after the hint request. 
When a learner identi fi es that she does not under-
stand a concept, she might seek help from the 
tutor and request a hint. This represents a cogni-
tive judgment (i.e., that she needed help) and by 
isolating instances of this action and the students’ 
responses to self-ef fi cacy prompts, we can test 
theoretical assumptions about relationships 
between help seeking and self-ef fi cacy. The addi-
tional inclusion of performance data (available in 
the log- fi le data) allows us to examine how a 
motivational state and an action spurred by a 
metacognitive control process affect learning. We 
next provide an empirical example of our work 
employing embedded questionnaires to examine 
the dynamic nature of motivational variables 
when learning with the cognitive tutor.   

   An Empirical Example of the Dynamic 
Nature of Motivation and Its Effect 
on Learning Behaviors 

 An abundance of studies have demonstrated the 
knowledge tracing capabilities of the cognitive 
tutor (e.g., Ritter, Anderson, Koedinger, & 
Corbett,  2007  ) , and additional studies have dem-
onstrated that the tutor is also an effective 
platform for identifying learning behaviors, 
scaffolding those that are adaptive (e.g., help-
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seeking:    Aleven, Roll, MacLaren, & Koedinger, 
 2010  ) , and discouraging those that are maladap-
tive (e.g., gaming; Baker et al.,  2006  ) . 

 To determine whether the tutor can be 
adapted to assess student motivation, we 
examined 72 high school geometry students’ 
responses to domain-level questionnaires 
administered at the beginning and end of a 
semester and a series of unit-level question-
naires administered immediately after the  fi nal 
problem set of the unit was completed (Bernacki, 
Nokes-Malach, & Aleven,  2012 ). Our goal was 
to examine the relationship between domain 
and unit-speci fi c motivation, the in fl uence of 
task conditions on motivation, and relationship 
between motivation and learning behaviors in 
an intelligent tutoring system. 

 We tested the stability of achievement goals 
across levels of speci fi city by determining 
whether domain and unit-level achievement goals 
correlate (indicating stability), or if achievement 
goals for speci fi c units differed from domain-
level achievement goals. We also examined indi-
viduals’ self-reported achievement goals across 
 fi ve units to determine whether learners endorse 
similar achievement goals across units despite 
known differences in content (e.g., task dif fi culty 
and duration). Students used the software two 
days per week during scheduled math classes and 
some worked with the software as homework. 
Units varied in the number of problems students 
completed per unit (medians ranged from 20 to 
40 problems), total time spent per unit (medians 
ranged 34–73 min). The content of these units 
included multiple geometry principles such as 
the Pythagorean theorem, calculation of area, and 
properties of triangles and trapezoids. 

 In the  fi rst analysis, students reported different 
achievement goals (i.e., mastery-approach, per-
formance-approach, and performance avoidance) 
when they are measured at different levels of 
speci fi city (domain and unit level). In all but one 
case, correlations between students’ self-reported 
achievement goals for math versus achievement 
goals for the unit they just completed were 
nonsigni fi cant, and in some cases, the correlation 
was actually negative. We take this to mean that 

students are pursuing different goals in the math-
ematics units they just completed compared with 
those they report when they reason abstractly 
about their goals in math. 

 When we examined the stability of achievement 
goals across units, unit-level achievement goals were 
highly correlated. Correlation coef fi cients across all 
pairs of units per construct ranged from  r  = 0.30 to 
0.71 (mean  r  = 0.58). However, achievement goals 
were variable within learners. When averaging the 
proportion of students who report increases, 
decreases and no change in achievement goals across 
all pairs of units, we found that approximately one 
third of students increased in their endorsement of 
each achievement goal, one third decreased and the 
third reported no change in their goals. This within-
learner variability con fi rms that  fi ne-grained mea-
surement is important, so long as these differences in 
achievement goals have implications for the 
behaviors learners conduct in the tasks. 

 When we examined the relationship between 
domain-level and unit-level achievement goals 
and learning behaviors (by comparing the 
coef fi cient of determination ( R  2 ) for regression 
equations where learning behaviors were regressed 
on a set of domain-level or unit-level achievement 
goals in a single unit), results indicated that for 
some behaviors (help seeking, error rate and accu-
racy) domain-level achievement goals were better 
predictors of behavior, whereas for others (prob-
lems needed to achieve competence, seconds 
needed to complete problem) unit-level achieve-
ment goals were better predictors. Collectively, 
these  fi ndings indicate that when students self-
report their domain-level and unit-level achieve-
ment goals, they re fl ect different aspects of 
learners’ motivational states, and these aspects are 
useful for predicting different learning behaviors. 

 Because achievement goals were found to 
vary by level of speci fi city and across units, and 
because they can be used to predict the behavior 
of learners, we con fi rmed that there are bene fi ts 
to assessing achievement goals at a  fi ne-grained 
level. Additional studies are underway that 
prompt students to endorse their achievement 
goals  after a problem and within a unit  (i.e., 
between math problems) so that we might be able 
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to examine how a change in one’s achievement 
goals might instantiate a change in one’s approach 
to solving math problems. We are also examining 
self-reports of self-ef fi cacy for math tasks after 
units and between problems to con fi rm that such 
measures can provide information about the 
learning behaviors common to students with par-
ticular perceptions of their ef fi cacy.  

   Conclusion 

 Our approach takes the  fi rst step towards the 
development of  fi ne-grained assessments of moti-
vation as learners engage in SRL processes. The 
preliminary evidence suggested that learners’ 
unit-speci fi c motivations may differ from their 
domain-level motivations, that learners’ motiva-
tions change along with changes in task condi-
tions, and that motivational data collected in 
conjunction with a unit can better predict a set of 
learners’ behaviors as they engaged with the 
tutor. For these reasons, the approach appears to 
be fruitful for testing theories that posit interac-
tions between motivation, cognition, metacogni-
tion, and learning outcomes. Despite these 
bene fi ts, the approach has its limitations, and 
measurement challenges remain. We need to 
assess the reliability of students’ responses to 
items to determine the degree to which variation 
in responses can be attributed to true differences 
in a motivational state versus variation due to 
measurement error. Similarly, we need to  fi nd 
ways to validate these questionnaires through 
behavioral or observational measures. We must 
also be wary of the in fl uence that interrupting 
students’ learning with prompts to answer ques-
tionnaire items may have on their learning. A 
long-term goal of this project is to validate stu-
dents’ responses to questionnaire items and then 
use existing log- fi le data and questionnaire 
responses to develop machine learned detectors 
for motivational variables. If this can be accom-
plished, we can then move past embedded ques-
tionnaires and assess motivation using the same 
unobtrusive methods used to trace behaviors rep-
resenting the cognitive and metacognitive pro-
cesses characteristic of SRL.      
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     Introduction 

 Strategies and technologies for automated support 
for student learning, through tutoring strategies, 
peer tutoring, and learning companions, are cen-
tral themes of research advanced by the Intelligent 

Tutoring Systems community. The approach of 
the investigation presented here is the use of mul-
timodal real-time sensing coupled with an ALC 
that engages in verbal affective support and non-
verbal social mirroring in ways that provide adap-
tive help to empower students to persist in the 
face of frustration. 

 Our approach combines Dweck’s theories on 
trait and incremental self-theories of intelligence 
with Flavell’s research on metacognitive knowl-
edge, experience, and skill to inform our own 
research goals to  fi nd ways to help students realize 
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  Abstract 

 Understanding the affective state of a learner is an important element in 
determining when and how best to provide appropriate support.  We advanced 
an Affective Learning Companion built upon an Affective Agent Research 
Platform with the goal of discovering when, at various points in the problem 
solving process a student encounters optimal Flow experiences or non-opti-
mal Stuck experiences (Burleson 2006; Burleson and Picard 2007).   We 
employed the theories of Carol S. Dweck and John H. Flavell, to help stu-
dents become aware of their emotional states, and to develop metacognitive 
strategies to use this awareness to persevere in the face of frustration. We 
wanted to know when and how an intelligent computer tutoring system 
could provide personally tailored intervention to prompt a student to  fi nd the 
best way to continue to engage in challenging experiences. The  fi ndings 
argue that there are important opportunities to increase girls’ meta-affective 
skills, increase their experience of Flow and decrease their experience of 
Stuck, increase their mastery orientation, and increase their intrinsic-moti-
vation.  This holds true not only for the further development of affective 
support and its bene fi ts for girls, but also for the appropriate “coordination” 
of the elements of the character’s emotional intelligence for boys.    
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their potential and navigate through frustration. 
Such researchers as Tak-Wai Chan theorized that 
an ITS—through a nonthreatening Learning 
Companion—can act as a kind of peer (Chan & 
Baskin,  1988  ) . Peer tutors and learning compan-
ions have been shown to be good role models and 
supportive to learners because they can put a 
learner at ease. In the case of peer tutors, students 
may not believe they can ever equal an adult or 
teacher; a peer tutor can promote the idea of a level 
playing  fi eld, which in turn gives the learner a 
sense that success is attainable. On the emotional 
front, with or without tutoring, a learning compan-
ion, embedded with metacognitive strategies might 
serve as a social re fl ective agent that can empower 
students to combat anxiety and other negative feel-
ings that often hinder successful learning. 

 Other researchers, such as Schank and Neaman 
 (  2001  ) , theorized that a fear of failure may block 
learning. They urged ITS developers to provide 
the kinds of motivation that outweighs or dis-
tracts feelings of failure. However, this approach 
fails to appreciate that often, it is OK or even pro-
ductive (providing important learning, re fl ection, 
insight, and even at times, motivation) to fail. We 
sought to support learners’ ability to persevere in 
the face of failure and to  fi ght through frustration, 
e.g., to foster their ability to fail fearlessly so that 
they might go on to greater successes. We believe 

a productive strategy for ITS is to foster metacog-
nitive skills that help students manage the nega-
tive feelings that often come with a sense of 
failure, so that they don’t quit or avoid challeng-
ing growth opportunities in the future. To this 
end, our affective agent research platform used 
sensors (see, Fig.  42.1 ) to sense elements of stu-
dent affect and use this to study ways to help 
them to persevere through frustration.  

 The affective agent research platform was 
used to present the Towers of Hanoi, 1  with an 
affective learning companion in each of the four 
conditions of a 2 × 2 empirical investigation. The 
study contrasted, in one dimension, verbal affec-
tive support with verbal task support and in the 
other dimension, sensor-based social nonverbal 
mirroring (NVM; see Section “Theoretical/
Conceptual Framework”), e.g., as empathetic 
facial expression and postural interaction, with 
prerecorded nonverbal interactions. This was 
achieved with a real-time multimodal sensing 

    1    Towers of Hanoi is an nineteenth century mathematical 
challenge. Its apparent dif fi culty, to a user that does not 
understand recursion, can be adjusted by presenting the 
activity with a fewer or greater number of disks. This 
puzzle and the number of disks were selected so that the 
challenge could be set at a level that would frustrate users. 
Pilot studies indicated that seven disks was suitably chal-
lenging for 11–13-year-old participants.  

  Fig. 42.1    Affective Agent Research Platform consisting 
of the Affective Learning Companion (ALC), the 
Character System, Behavior Engine, Inference Engine, 

and the System Server, which collects data from four 
 sensors: the pressure mouse, skin conductance sensor, 
 posture chair, and blue-eyes camera       
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system that also allowed the logging and subse-
quent classi fi cation of behavior events, e.g., 
selection of a “quit” button. This was ach   ieved by 
developing the system using a modular architec-
ture including a system server, data logger, infer-
ence engine, behavior engine, and character 
engine. The character engine employs scripted 
character attributes and uses multimodal real-
time sensing to capture diverse elements of learn-
ers’ affective expression. The character scripts 
are used to deliver the affect and task-based 
 support, and are augmented by real-time sensor-
based instructions that enable the ALC to display 
social NVM or prerecorded nonverbal events. It 
was hypothesized that the affective support and 
the NVM would improve student’s persistence, 
intrinsic motivation, and measures of Flow/Stuck 
and self-reported meta-affective skill (see below 
for descriptions of these measures). 

   Trait and Incremental Self-Theories 
of Intelligence 

 Dweck’s work shed light on the role of feelings 
in learning and their interaction with self-theories 
of intelligence. She developed a strategy of 
metacognitive knowledge for how to think about 
one’s own intelligence and one’s ability to 
“grow” one’s own intelligence. She demonstrated 
that if students can embrace the concept that the 
mind is like a muscle that can grow stronger, then 
too, they can believe their intelligence can grow 
stronger. Throughout this chapter we refer to this 
concept as Dweck’s message—encouraging stu-
dents to think of their mind as a muscle that, even 
when challenges are frustrating, grows stronger 
through their efforts. Dweck’s message was used 
as the affective verbal intervention. What students 
believe about their own intelligence profoundly 
affects their motivation, learning and behavioral 
strategies—especially when they perceive failure 
(Dweck,  1999  ) . This research identi fi ed two pre-
dominant groups of people—incrementalists, 
who believe their own intelligence can be 
enhanced, and trait learners, who  fi gure their 
intelligence is largely  fi xed. When incremental-
ists fail at a task, they are motivated to try harder 

to get better and smarter. On the other hand, peo-
ple who hold trait-based beliefs may lack the 
motivation to continue. They may quit in order to 
avoid con fi rmation of an inability based on previ-
ous failure of the task. Our work, expands on the 
delivery of Dweck’s interventions, opening the 
way to sensing and responding to students on a 
personal level in real-time by assessing when a 
learner becomes frustrated, and then trying and 
evaluating different interventions; ultimately the 
aim is that these will be suited speci fi cally for 
that student’s needs. 

 Studies of expert tutor’s interaction strategies 
have found that nearly half of an expert tutor’s 
interactions with students are affective in nature 
(Lepper, Woolverton, Mumme, & Gurtner,  1993  )  
and that interactions are adapted to respond to 
individuals needs (Lehman, Matthews, D’Mello, 
& Person,  2009  ) . Expert tutors might be empa-
thetic and encourage a student to use such a strat-
egy as a mind-is-like-a-muscle in times of 
frustration, or when the student looks ready to 
quit. Or, the expert tutor will feel when it’s right 
to stand back when he or she senses the likeli-
hood of quitting is low and the student can  fi gure 
it out on his or her own. We wanted our platform 
to be able to sense when to intervene and when to 
let the student learn to face and overcome chal-
lenges as they engage in personally motivated 
effort and learning.  

   Metacognitive Knowledge, Experience, 
and Skill 

 Dweck’s theories build on Flavell’s theories of 
metacognition to describe how students can use 
strategies and self-awareness to improve their think-
ing processes (Efklides & Vauras,  1999 ; Flavell 
 1979  ) . Flavell’s theory of Metacognition comprised 
three elements: metacognitive  knowledge, meta-
cognitive experience and metacognitive skill. 
Metacognitive knowledge is about a person know-
ing strategies that might be effective. Metacognitive 
experience is an awareness of what’s going on with 
one’s thinking at any given time, and metacognitive 
skill is the ability to coordinate the application of 
metacognitive knowledge in the context of one’s 
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metacognitive experience, applying the knowledge 
in a situation in which it will be effective. 

 In particular our research focuses on the realm 
of metacognition based on affect, or meta-affect, 
which comprises meta-affective knowledge, 
meta-affective experience and meta-affective 
skill. This aligns with the affective elements of: 
phase 2, monitoring; phase 3, control; and phase 
4, reaction and re fl ection; in Pintrich’s concep-
tual framework for assessing motivation and self-
regulated learning (Pintrich,  2004  ) . 

  Meta-affective knowledge  is knowing how 
affect impacts one’s thinking ability. For exam-
ple, does a person’s thinking processes become 
more rigid and less  fl exible when frustrated 
(leading to a negative impact on progress), or 
does that thinking process grow, in line with 
Dweck’s theory that “the mind is like a muscle 
and through exercise and effort you can grow 
your intelligence?” 

  Meta-affective experience , then, is a conscious 
re fl ection of one’s own feelings and how they 
steer one into action, or inaction. For example, 
there is an affective self-awareness when a per-
son becomes frustrated and is aware that this 
frustration is impeding their progress. 

 Finally,  meta-affective skill  is the ability to 
synthesize meta-affective knowledge and meta-
affective experience: to, at a time of meta-affective 
experience, apply one’s meta-affective knowl-
edge. For instance, instead of letting frustration 
lead to quitting, a person might calm him or her-
self down and consider alternate strategies to 
resolve the problem. They might apply their 
knowledge that sticking with the task at hand, 
even though it is frustrating, may better help them 
achieve their desired goal. 

 Section “Theoretical/Conceptual Framework” 
discusses how Flow and Stuck theory is used to 
help students through affective and nonverbal 
social interactions from an ALC. Section 
“Effectiveness of Tool/Empirical” discusses the 
detection of “frustration” using an array of multi-
modal real-time affective sensors. In “Discussion” 
section, we discuss the challenges that persist 
across the development of our theories, methods, 
analysis and instructional contexts. Finally, in 
Section “Design Implications,” we look at the 

design implications in terms of the compelling 
opportunities to further advance investigation of 
nonverbal mirroring (NVM), longitudinal adap-
tive support, and self-actualized learning and 
creativity.   

   Theoretical/Conceptual Framework 

 Now that we have discussed Dweck’s work on 
Trait and Incremental Self-Theories of Intelli-
gence and how we situate these with Flavel’s 
Metacognitive Knowledge, Experience, and Skill 
framework, in this section we discuss Flow/Stuck 
Theory and NVM. 

   Flow/Stuck Theory 

 When it comes to developing ITS, there is a dis-
tinction between manipulating the environment, 
or task, to keep  fl ow going versus empowering 
the student through self-awareness to self-regu-
late their own motivational strategies (Hill et al., 
 2001 ; Kapoor et al.,  2007 ; Malone,  1984  ) . A stu-
dent’s perception of the challenge at hand and 
their belief in their own abilities to match it can 
determine whether he or she experiences Flow 
or Stuck (See Table  42.1 ). Flow is the theory of 
optimal experience. Stuck is a state of nonopti-
mal experience encountered when a student is 
frustrated during a learning activity (Burleson, 
 2006  ) . So, instead of the positive experience of 
Flow, which is when a learner believes his or her 
skill matches the challenge at hand and there’s a 
feeling of being in control and being able to con-
centrate, focus and enjoy an activity for its own 
sake, Stuck represents the opposite. It is a nega-
tive or nonoptimal experience in learning, that 
goes beyond just being frustrated; it is accompa-
nied by feelings of lack of control, lack of con-
centration and focus, mental fatigue and distress. 
Stuck has the potential to sap students’ endur-
ance because they perceive tasks as taking lon-
ger than they actually do. Several researchers 
have linked a participant’s overestimation of 
how long it took to complete a task with self-
reported levels of frustration (Czerwinski, 
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Horvitz et al.,  2001 ; Liu & Picard,  2005 ; 
Weybrew,  1984 ; Zeigarnik,  1967  ) .  

 Negative affect has been shown to have a dis-
proportional impact as compared to positive affect, 
a phenomenon called “negative asymmetry.” 
Because of its negative asymmetry and the detri-
mental consequences of negative affect (Giuseppe 
& Brass,  2003  ) , mitigating negative affect may 
have a signi fi cant effect. Our goal is to work with 
students through an ITS to help them become self-
aware of Stuck and metacognitive strategies they 
can apply to overcome it. Their affective aware-
ness coupled with their meta-affective skill may 
improve their overall attitude toward and experi-
ence with learning opportunities. 

 We, along with others working on emotional 
intelligence, contend that an awareness of affec-
tive states (in our case, feelings of frustration and 
Stuck) can in fl uence the ability to alter that state. 
Within the theory of Flow, feelings of awareness 
can have a negative impact on Flow experiences 
as they can interrupt the state and tend to dimin-
ish happiness and the sense of optimal experience 
(Csikszentmihalyi,  1990  ) . When it comes to 
Stuck, however, feelings of awareness that serve 
as interruptions can actually be used to help users, 
as indicators of when to apply their metacogni-
tive knowledge (e.g., Dweck’s message), to lessen 
the effects of Stuck on learning. 

 Learners in Stuck may be thinking “I can’t do 
this” or “arrrghh, this isn’t working,” and feeling 

helpless or hopeless. They often internalize these 
feelings of dif fi culty and become Stuck. Our 
strategy is to help the students to interrupt their 
Stuck experience, more productively. We do this 
within an ITS by  fi rst detecting frustration and 
then providing an external interruption with con-
tent that has been shown in prior work to help 
students persist through frustration (Dweck,  1999  ) . 
Eventually we intend to fade this support, 
developing better learning strategies, e.g., learners 
who can work through frustration and avoid the 
detrimental impact of Stuck. 

 To pursue this research challenge we con-
structed an ALC that recognized different indi-
cators of failure/frustration and then help the 
student become aware of and work through a 
state of Stuck (e.g., to apply Dweck’s message 
and preserver). When things are humming 
along and a student continues to progress 
through a task, feeling con fi dent he or she will 
get to the next step and the next, and so forth, 
he or she is literally going with the  fl ow. It’s 
when students get stuck—or frustrated—that 
progress on a challenge can be negatively 
impacted and the pursuit of the challenge 
abandoned. An effective computer tutor must 
recognize frustration and react accordingly to 
encourage the student to develop their self-
ef fi cacy, so that they may persevere through 
frustration and overcome and succeed at greater 
and greater challenges.  

   Table 42.1    Flavell’s Meta-Experience or feelings of experience include Csikszentmihalyi’s Flow or Optimal 
Experience and Stuck or nonoptimal experience   

  Flow : optimal experience—Csikszentmihalyi   Stuck : nonoptimal experience—Burleson 

 All encompassing  All encompassing 

 A feeling of being in control  A feeling of being out of control 

 Concentration and highly focused attention  A lack of concentration and inability to maintain focused 
attention 

 Mental enjoyment of the activity for its own sake  Mental fatigue and distress caused by engagement with 
the activity 

 A distorted sense of time  A distorted sense of time (Weybrew,  1984 ; Czerwinski 
et al.,  2001  )  

 A match between the challenge at hand one’s skills  A  perceived  mismatch between the challenge at hand 
and one’s skill 

 Frequently associated with positive affect  Frequently associated with negative affect 

  Meta-Experience: feelings of experience (Flavell,  1979 ;    Efklides,  2002 )  
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   Nonverbal Social Interaction 

 NVM, the synchronicity between two or more 
individuals’ facial expressions and head and body 
movements, serves important functions in human 
social interactions. Recently, NVM between a 
human and an embodied agent (a virtual charac-
ter) has been shown to increase the persuasive 
ability of the agent and increase the social bond 
with the agent (Bailenson & Yee,  2005  ) . How an 
agent within the learning system acts or reacts to 
a student can be informed by a learner’s facial 
expressions, gestures, postural shifts, and arousal 
state. Agent’s expressive behaviors also can pro-
mote useful outcomes such as making agents 
likeable (Elliott,  Rickel & Lester,  1999 ; Johnson, 
Rickel, Lewis & Lester,  2000 ; Koda & Maes, 
 1996 ; Lester, Towns & Fitzgerald,  1999  ) . For 
instance, if the agent cracks a joke and one stu-
dent smiles while another frowns, then it likely 
would be  fi ne for that agent to  fl ash a smile back 
to the  fi rst student. However, the second student 
might perceive that smile as rude. Depending on 
the agent’s goals, one response might be more 
intelligent than another. If whatever the agent is 
doing increasingly irritates that student, then it 
might be helpful for the agent to see the student’s 
response and act in a way that acknowledges its 
failure (that is, if the goal includes wanting the 
student to have a favorable impression). We know 
that individuals’ opinions of the competence, 
trustworthiness, and likeability, of others are col-
ored by how the other—human or intelligent 
agent—chooses to respond to their emotion. 

 Beyond overt facial expression, we know that 
some types of body movement, such as mirroring of 
body position, are important to interpersonal rela-
tionships as nonverbal ways of expression, interpre-
tation, and communication (Bull,  1983  ) . So, while 
we don’t assume that human–human interaction is 
the same as human–computer interaction, we rec-
ognize there is much to be learned from  fi ndings, 
e.g., those of Reeves, Nass and Moon, (Moon,  2000 ; 
Reeves & Nass,  1996  ) , that show that person-to-
person interaction can help us design human–com-
puter interaction. Bailenson used social mirroring 
in his work on Transformed Social Interactions to 
show that an agent mirroring a user’s head move-

ment is perceived as more persuasive and likeable 
than one responding with prerecorded head motions 
(Bailenson & Yee,  2005  ) . In another nonverbal 
channel, Marci and Gottman found that skin con-
ductance, a measure of arousal, from couples in 
counseling sessions could indicate the strength of 
their relationships and predict divorce (Gottman & 
Levenson,  1992 ; Marci & Riess,  2005  ) . 

 To advance Lepper’s and Winslet’s  fi ndings on 
the importance of the social and motivational 
bonds between instructor and student, within and 
ITS, we employed NVM in a multimodal real-
time affective agent platform. Based on 
Bailenson’s implementation of NVM we used 
data from the four sensors to mirror (with a four 
second delay, to avoid the awkward experience of 
real-time mirroring yet maintain the bene fi cial 
social experience) (Bailenson & Yee,  2005  ) : with 
the pressure mouse, tension or agitation, pre-
sented as rapid body movement; skin conduc-
tance, which can be interpreted as levels of 
arousal, adjusting skin tone, to present the charac-
ter as pail, neutral, or  fl ush; with the chair, leaning 
forward and sitting or slumping back; with the 
camera, head nod and shake behaviors and mouth 
 fi dget (asymmetric mouth movement) and smile 
(symmetric upward movement of the sides of the 
mouth). While, we recognize that—to date—
there are not yet any intelligent tutoring systems 
that can sense natural (both verbal and nonverbal) 
human communication of emotion and respond 
as well as or equal to another person, (Burleson 
et al.,  2004  )  we have built an ITS that was capable 
of recognizing and responding to elements of stu-
dent affect (verbally and nonverbally) to mitigate 
Stuck and promote Flow, and in this respect can 
be considered a “relational agent,” an ALC.   

   Effectiveness of Tool/Empirical 

 In this section we discuss the detection of “frus-
tration” using an array of multimodal real-time 
affective sensors. This discussion also includes 
an introduction to the measures, methods, and 
 fi ndings on fostering Flow and mitigating Stuck; 
the ef fi cacy of NVM; and students’ belief in their 
ability to use metacognitive strategies. 



65142 Affective Learning Companions and the Adoption of Metacognitive Strategies

   Measures and Methods 

 Our Affective Agent Research Platform collected 
data in relation to the student’s affective states 
through NVM. In this system, the student sits in 
front of a wide screen plasma display showing an 
agent and a 3D environment. The student inter-
acts with the agent and can manipulate objects 
and tasks within the environment. Besides non-
verbal interactions, our character interacts with 
the user through an asymmetric voice/text selec-
tion dialogue (Burleson et al.,  2004  )  in which the 
characters speaks using Microsoft’s “Eddie” 
voice scripted with Text-Aloud, a text-to-speech 
application and the student responds by clicking 
on one of multiple text response options. The 
chair is out fi tted with a high-density array of 
force-sensitive resistors (FSR); the mouse detects 
use through pressure on similar resistors; and, a 
wireless skin conductance sensor with two 
electrodes on a wristband was worn by the student. 
A video camera for off-line coding and the Blue-
Eyes camera (Kapoor et al.,  2007  )  to record ele-
ments of facial expressions were also used. While 
game state or task state is not a traditional sensor ,  

it is gathered by our system as a source of data 
and is treated as a sensor channel in a manner 
similar to each of the other sensors. 

 Data is collected by the system server and 
stored in the data logger to be processed off-line 
using a classi fi er that can determine affective 
state, i.e., when a student will (or will not) express 
their desire to quit by selecting an onscreen but-
ton (Kapoor et al.,  2007  ) . The server coordinates 
user interface, activity, and behavior engine and 
character interactions. The behavior engine pro-
cesses the real-time data from the sensors to 
interpret nonverbal interactions to be displayed 
by the character engine. The character’s behav-
iors include speaking (affective and task-based 
messages), nodding, smiling or  fi dgeting the 
mouth, shifting its posture forward or backward, 
changing its color and  fi dgeting very slightly. 
(These are the character behaviors controlled in 
this experiment, although the character is capable 
of much more the NVM was presented as a 4 s 
delayed response to the sensor input) (see 
Fig.  42.2  for a range of character expressions).  

 We conducted a series of pilot studies and 
experiments. The  fi rst of the two most important 

  Fig. 42.2    Images showing some of the diverse expressive abilities of the Affective Learning Companion (ALC) 
controlled by the Character System, which, during Nonverbal Mirroring (NVM), is driven by sensor input       
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studies predicted frustration and provided an 
opportunity to try out the system, i.e., the affec-
tive support dialogue and the NVM. The second 
was the 2 × 2 empirical study investigating 
Dweck’s affective message promoting meta-
affective strategies (thinking of the mind as a 
muscle even though you may be frustrated) vs. 
task-based support and NVM vs. prerecorded 
nonverbal behaviors, with respect to the four con-
ditions’ impact on Flow and Stuck. These two 
studies included twenty-four 12- to 13-year-old 
middle school students and seventy-six 11- to 
13-year-old girls and boys, respectively. They 
interacted with the agent and sensing system, for 
16 and 25 min periods while trying to solve a 
Towers of Hanoi activity with seven disks. 
Subsequent to the Towers of Hanoi activity, the 
students in the  fi rst study spent an additional 
10 min interacting with the system while trying 
to solve another puzzle. The research platform 
and architecture senses and analyzes signals 
related to affect with the ability to interpret and 
respond through an agent that is both scriptable 
and expressive in real-time. We applied tech-
niques from psychophysiology, emotion commu-
nication, signal processing, pattern recognition, 
and machine learning. 

 In the  fi rst study, prior to applying the sensors 
to students, we conducted a pretest to determine 
the students’ self-theory of intelligence and how 
they approach reaching their goals (Dweck,  1999  ) . 
The agent appeared and presented to participants 
a 7-min slide show based on a similar presenta-
tion Dweck has used to shift children’s beliefs 
about their own intelligence. Then, the learning 
companion introduced the Towers of Hanoi activ-
ity. Two buttons prominent at the top of the screen 
with text, “I’m frustrated” and “I need some 
help,” were available to the student, although he 
or she was free to choose or ignore the buttons. 
These were used as self-labeled affect by the off-
line classi fi cation algorithms. If a student clicked 
on one of the buttons, or after 16 min passed, 
whichever occurred  fi rst, the student was pre-
sented with a supportive dialogue by the  character 
during which he or she is encouraged to continue. 
After 16 min from the beginning of the activity, 
or when he or she  fi nished the activity, a post-

activity survey asked about the experience. A 
second activity was administered and followed 
by the post-test self-theory of intelligence and 
goal mastery orientation surveys. Then, the stu-
dents were given a debrie fi ng and a chance to ask 
questions. 

 In the second study we wanted to contrast ITS 
traditional task-based support with the alternative 
of affective support. T, the ALC provided either 
task-based guidance (discussing the bene fi t of 
moving large or small disks) or affective support 
based on Dweck’s message, at the mean time of 
quitting (174 s into the activity, as determined in 
the  fi rst study). Students were then asked if they 
thought they would be able to use the strategy 
and were encouraged to do their best; which was 
measured in terms of perseverance (measured as 
the duration a student continues to engage in the 
activity before quitting). Additional dependent 
measures for post-activity frustration, self-
reported meta-affective ability, and stuck/ fl ow, 
were derived from the pretest and posttest 
instruments.  

   Sensing Student Frustration 

 We used technologies developed by members of 
the MIT Media Lab’s Affective Computing 
Group and the data from the  fi rst study to predict 
with 79% accuracy whether a participant would 
quit at a given time; the time window that pro-
vided the most accurate classi fi cation was 3 s 
(Kapoor et al.,  2007  ) . This was conducted through 
the data from the 24 participants. A Support 
Vector Machine (SVM) was developed and vali-
dated using “leave-one-out cross-validation.” 
Using data from 150 s from each subject we 
classi fi ed the data observed through the sensors 
as “pre-frustration” or “not pre-frustration” 
behavior based on probabilistic machine learning 
techniques. Our system allowed students to report 
how they were feeling by being able to click on a 
button labeled “I’m frustrated,” or another labeled 
“I need some help.” The student could ignore 
them or click one of them. When a student clicks 
the “I’m frustrated” button, we label the segment 
leading up to that click as “frustration.” We know 
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that students might be feeling frustration and still 
not click the button, but studies from human–
computer interactions suggest a kind of comfort 
zone in which people are more willing to share 
negative information about themselves with a 
computer than with a trained person (Card et al., 
 1974 ; Lucas et al.,  1977 ; Robinson & West,  1992  )  
so this approach is likely to work better within an 
ITS than within a non-ITS setting. We use the 
user’s self-labeling as an indication of them being 
frustrated and aware of it, and then went back and 
collected their behavioral data leading up to that 
button click. The data was compared with com-
parable data from the students who did not indi-
cate frustration, (i.e., those who either did not 
click on a button or those who clicked on “I need 
some help” since even though they had the oppor-
tunity to, they chose not to express frustration). 
These two sets of data were then used to construct 
an automated system to discriminate between 
frustrated versus other. Then, the system was 
tested on a set of data that was not used to train 
the system, e.g., leave-one-out cross-validation. 
The classi fi cation system was not used in real-
time, during the second study.  

   Findings on Flow, Stuck, Meta-Affective 
Skill, and NVM 

 We now summarize some of the results of our 
understanding of the impact of NVM and of the 
affect vs. task-based support of an ALC’s interven-
tion, as these relate to frustration, meta-affective skill, 
and Flow/Stuck. Our  fi ndings showed that gender 
had a signi fi cant effect on students’ experience 
with the ALC (Burleson & Picard,  2007  ) . It is pos-
sible that differences in the social and emotional 
skill developments of girls and boys at these ages 
(11–13 year olds), with girls typically maturing 
earlier than boys, may have contributed to these 
differences. For example, it was found that the girls 
who were more frustrated at the time of interven-
tion showed higher levels of intrinsic motivation, 
regardless of intervention. A possible explanation 
for this may be related to how much a participant 
cares about the activity. Girls who care more about 
doing this activity (or activities in general) may 

also  fi nd it more frustrating. Independent of the 
frustration and independent of the type of interven-
tion they receive, the caring may also lead to their 
increased intrinsic motivation. To assess intrinsic 
motivation, following a recommendation from 
Dweck, we provided students a short break to do 
anything that they wanted and observed weather 
they reengaged in the activity on their own accord. 

 To further explore this, we developed a mea-
sure of congruence as a function of frustration 
and intervention type that we used to encode what 
we believed to be the appropriateness of the inter-
vention (Affective vs. Task) provided with respect 
to a participant’s self-reported level of frustration 
at the time of intervention (174 s into the activity, 
the mean time of quitting as determined in the 
 fi rst study). For example, affective interventions 
for those with higher levels of frustration and task 
interventions for those with lower levels of frus-
tration were coded as more congruent. While 
boys and girls who received interventions that 
had lower congruence had similar levels of post 
activity frustration, we found that boys who 
received interventions that had higher congru-
ence had higher levels of post activity frustration 
and girls who received interventions with higher 
congruence had substantially less post activity 
frustration. While there was not a main effect for 
the type of intervention, in contrast to the girls, 
boys showed a strong difference in their levels of 
frustration due to the type of intervention, with 
much lower levels of frustration occurring in the 
task support conditions. 

 One of the biggest gender differences was 
found in the relationship between self-reported 
meta-affective skill and Flow/Stuck in the pre/
post activity instruments (Burleson,  2006  ) . In 
contrast to the result that no signi fi cant correlation 
between meta-affective skill and Flow/Stuck was 
present when assessed across both genders, the 
assessment with only girls shows a strong correla-
tion between meta-affective skill and more Flow/
less Stuck, while for boys, these measures show a 
strong correlation in the opposite direction. This 
is a clear instance where the grouping of the gen-
ders clearly mixes different gender effects, yield-
ing no signi fi cance when assessed together. One 
possible hypothesis for the discrepancy in gender 
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at this age is that girls aged 11–13 may be better 
able to assess their own emotions than boys. If 
girls are better at assessing their emotions then 
they may be better able to use their meta-affective 
skill to lead themselves to more Flow/less Stuck. 
Boys on the other hand may report that they have 
meta-affective skill but may actually be less able 
to recognize their own emotions; thus, even 
though they may have reported having some meta-
affective skill, they may not be as capable at 
applying it to their own experiential bene fi t, leav-
ing them to experience less Flow/more Stuck. 

 While girls showed no main effect difference 
in the level of frustration based on the type of 
intervention, a further analysis indicated that this 
masked a more complex relationship that showed 
signi fi cant differences, due to the interaction of 
the type of intervention and the presence of mir-
roring (NVM). These differences can be explained 
in terms of the “coordination” of the different 
elements of the character’s emotional intelli-
gence. Girls who experienced an affective sup-
port intervention in conjunction with NVM 
(Condition 1) had lower levels of self-reported 
post activity frustration than girls who received 
either affective support without NVM (Condition 3) 
or girls who received task support with NVM 
(Condition 2). Condition 1 is an experience in 
which the mirroring and intervention are “coordi-
nated” so that the character displays higher levels 
of emotional intelligence (as de fi ned in this 
experiment as the presence of intervention, con-
gruence, and mirroring) than participants receiv-
ing Condition 2 and Condition 3 experiences. 

 One might argue that girls who received task 
support without mirroring (Condition 4) were 
also in a “coordinated” condition that presents a 
character with higher levels of emotional intel-
ligence; they could also argue that in this condi-
tion girls experienced similar low levels of 
frustration when compared to the girls in condi-
tion 1. Extending this argument one might then 
argue that the existing capabilities of Intelligent 
Tutoring Systems, to provide task support 
 without mirroring have similar bene fi ts to girls, 
and the effort to develop affect support and mir-
roring are unwarranted. However the importance 
of affect support for girls is bolstered by further 

analysis showing that girls that receive affective 
support self-report having higher levels of meta-
affective skill and more Flow/less Stuck (these 
relationships were not found for boys). Meta-
affective skill correlated signi fi cantly with 
bene fi cial changes in goal/mastery orientation 
and there was a trend toward signi fi cance in the 
positive relationship between Flow/Stuck and 
intrinsic-motivation. The  fi ndings from this 
analysis, taken together, support an argument 
not only for the further development of affective 
support and its bene fi ts for girls, but also for the 
appropriate “coordination” of the elements of 
the character’s emotional intelligence. 

 These  fi ndings indicate that there are impor-
tant opportunities to increase girls’ meta-affec-
tive skills, increase their experience of Flow and 
decrease their experience of Stuck, increase 
their mastery orientation, and increase their 
intrinsic-motivation. Data from the boys also 
supports the argument for coordinating the ele-
ments of the character’s emotional intelligence. 
A signi fi cant interaction between congruence 
and NVM indicates that the boys that experience 
more congruent intervention without mirroring 
also experienced twice as much post activity 
frustration as boys in the other three mirror-
ing × congruence conditions. This particular 
form of discordant emotional intelligence dis-
played by the character seems to have had a 
negative impact on these boys.   

   Discussion 

 In this section we’ll discuss a few of the chal-
lenges that persist across the development of our 
theories, methods, analysis and how these relate 
to diverse instructional contexts. 

 While Dweck’s work and her theories are sub-
stantial, and there is recent work from Person and 
Greasser (D’Mello et al.,  2010  )  and Lehman 
(Lehman et al.,  2009  ) , overall little is known about 
expert human tutors and their methods. A deep 
understanding of the complex role that affect 
plays within the dynamic process of learning is 
also incomplete (Picard et al.,  2004  ) . Likewise, 
NVM is not fully understood and its effects while 
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reproducible are not always reliably so (Bull,  1983  ) . 
Many subtleties may yet be discovered. 

 When we conduct research that combines 
tutoring, affective learning, and NVM these 
uncertainties are compounded. For example, 
many challenges facing the development of affec-
tive tutoring systems can be seen when results are 
compared to results of human–human interaction 
studies. From human–human interaction, we 
know that human expression is not necessarily 
affectively congruent with the task. There are dif-
ferent conditions for smiles, including nervous-
ness, humor, and success. We can expect such 
interactions to be similarly complex for human–
agent interactions, so it is unclear what the agent 
expression should be for it to be perceived empa-
thetically. However, we’ll need new advances in 
real-time technology to allow us to recognize 
these deeper nuances of interactions. As we move 
toward training multimodal sensor systems in 
multiple sessions, across larger and more diverse 
populations, we expect that we will generate new 
approaches. Currently the development, deploy-
ment, maintenance, and con fi guration of novel 
multimodal sensors are one of the most signi fi cant 
challenges that need to be overcome to elucidate 
these deeper phenomena. 

 Methodologically, since our ITS is quite com-
plex and requires advanced instrumentation, 
moving from the laboratory settings that were 
employed in the studies presented here to real 
world classroom environments presents further 
challenges. There have been some recent advances 
(Arroyo et al.,  2009 ; Arroyo et al.,  Accepted  )  and 
we are hopeful that these will continue to lead to 
advancing understanding across diverse popula-
tion. For example, students with learning disabil-
ities seem to respond particularly well to our 
current ALC interventions and we are now 
engaged in a new series of studies involving high 
school and college students with mathematics 
disabilities. We are also beginning studies across 
diverse cultural settings and exploring ways to 
provide support in activities that extend beyond 
the desktop. 

 Analysis of affective sensor data is an ongoing 
research frontier, with some, but not enough, con-
sensus on the best practices and gold standards. 

Issues include the data sampling rate, the time-
frame to use for analysis, and the relative merit of 
self-report and consensual coding. We continue 
to favor behavioral events, such as the decision-
making and related actions involved in activating 
a quit button, as salient events and meaningful 
elements that are useful for grounding our under-
standing of participants’ affective states and the 
investigation of how these behaviors and their 
underlying cognitive and affective processes 
affect participants’ ongoing learning activities. 

 Only a very few instructional settings have 
been studied in conjunction with affective sens-
ing and even fewer with affective learning com-
panions or response systems. Understanding how 
to provide interventions and when the best time 
to intervene might be continues to be an open 
challenge and research opportunity, across most 
learning settings. While we have developed and 
evaluated an initial set of interventions, we are 
 fi nding that interventions need to be speci fi cally 
tailored to the learning settings. This process can 
require extensive pilot testing and experiments. 
The work presented here did not speci fi cally 
address learning metrics within the Towers of 
Hanoi context, but rather individuals’ persever-
ance (for which there was no main-effect from 
the interventions) and meta-affective strategies. 
Separately, we have aimed our research at advanc-
ing combinations of learning and affect (Arroyo 
et al.,  2009  )  in real world settings.  

   Design Implications 

 In conclusion we discuss how the design implica-
tions of our work and  fi ndings, in terms of the 
opportunities to further advance investigation of 
Affective Agent Research Platforms and agents 
that employ theory-based design and incorporate 
NVM, longitudinal adaptive affective support, 
are informing our future work. We have shown 
the ability to provide adaptive metacognitive sup-
port that relates to affect (meta-affective support). 
We have also shown that coupling this with NVM 
has the potential to reduce learners’ frustration. 
Right now there are many ways to implement 
NVM and further work is needed to determine 
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the most effective approaches and bene fi ts. It is 
an open question as to whether, ultimately, it 
might be possible to mirror without as many sen-
sors once agents are trained (some elements of 
NVM could be implemented using widely avail-
able built in cameras). More recently, using simi-
lar range of sensors, we have shown the ability to 
reliably detect frustration and several additional 
affective states (Arroyo et al.,  2009 ; Kapoor, 
Burleson, & Picard,  2007  ) . We have also moved 
our investigations out of laboratory settings into 
computer classroom settings showing the ability 
to use multimodal sensors in real-time in class-
room settings to detect and respond to students’ 
affective states in learning contexts. 

 If our  fi ndings are con fi rmed by further stud-
ies and if they can be more broadly applied across 
diverse populations, then we believe that the ITS 
community can effectively advance the use of 
ALC by incorporating deeper levels of emotional 
intelligence that are better correlated to the com-
plex dynamics and interactions of both learners’ 
affective and cognitive experiences. However, as 
our initial results demonstrate, developers and 
researchers need to make sure they are carefully 
coordinating (consider coupling mirroring with 
verbal affective support, for girls, and abandon-
ing mirroring when providing task support, for 
boys) the diverse elements of emotional intelli-
gence appropriately for any given population, 
learning setting, to individual learners. 

 While the strategies and algorithms for this 
careful coordination are not yet fully understood 
and a great deal of research remains to be con-
ducted to address the multiple challenges of 
long-term adaptive support, these approaches 
may 1 day foster a new generation of personal-
ized learning (Gardner,  2009  ) . Even in the near-
term we are exploring the use of nonverbal 
social–emotional communication and relational 
agents in areas as diverse as engineering design 
teams and therapeutic care giving. In the long 
term, we see the potential to expand the range of 
learning opportunities from the current desktop 
 implementation into a vast array of everyday 
 situations. Ultimately, we see these situations 
involving individual and social activities, life-
long learning, and the promotion of self-actual-
ized learning and creativity (   Burleson  2005 ).      
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   Overview 

 The Ecolab software is an interactive learning 
environment for 10–11-year-old learners designed 
to help children learn about food chains and food 
webs. This area of Ecology forms part of the Key 
Stage 2 (7–11 years old) UK National Science 
Curriculum. In a large programme of work, we 
have used the software to explore the design of 
metacognitive tools to support learning. In the 
current chapter, we discuss the results of our 
recent work on achievement goal orientation and 
help seeking within the Ecolab environment. We 
situate these results within the broader landscape 
of our previous studies and discuss the evolution-
ary approach we have adopted to develop a meth-
odology to support the design of metacognitive 
learning tools. This methodology has been built 
up over a series of empirical studies with the 

Ecolab software that have  demonstrated that 
children who achieved above average learning 
gains use a high level of system help. Each 
study adds more evidence and detail to increase 
our understanding of children’s help-seeking 
behaviour. We can therefore use this foundation 
to situate and interpret our  fi ndings and to 
extend our investigations to encompass differ-
ent aspects of learner help seeking. In the 
empirical work that we focus upon in this chap-
ter, we investigate the relationships between 
young learners’ metacognition: speci fi cally 
their help-seeking behaviour and their achieve-
ment goal orientations towards learning. This 
work draws together and extends two strands of 
our previous research: metacognitive software 
scaffolding (Luckin & Hammerton,  2002  )  and 
the in fl uence of goal orientation on children’s 
learning (Harris, Yuill, & Luckin,  2008  ) . In a 
series of studies, we have evaluated children’s 
help-seeking behaviour and achievement goal 
orientation in classroom settings and then 
assessed the relationship between learning out-
comes and help-seeking behaviour during inter-
actions with the Ecolab II software. Our 
research with Ecolab shows how tracking meta-
cognitive behaviours—choice and use of more 
or less speci fi c help—in the light of children’s 
goal orientations and having the software adapt 
the type of help according to learners’ motiva-
tion can be used to support learning. This work 
shows the value of including learner motivation 
in the design of metacognitive scaffolding.  
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   Theoretical Background 

   Metacognition and Help Seeking 

 Our work with Ecolab addresses help seeking as 
a metacognitive activity. Metacognition refers 
both to an awareness of cognitive processes and 
the ability to regulate them (   Flavell & Wellman, 
 1977  ) . Planning, monitoring, checking and error 
detection and correction are all key processes 
involved in metacognitive regulation. Students 
who engage in these activities regularly are those 
who typically show the greatest learning gains 
and deep-level processing (Goos, Galbraith, & 
Renshaw,  2002  ) . Help seeking involves both an 
awareness of dif fi culty or error and the ability to 
use an appropriate strategy in order to overcome 
the problem detected. Seeking appropriate help is 
generally considered an adaptive strategy that 
promotes task mastery and comprehension 
(Newman,  1990  ) . However, learners’ behaviour 
varies a great deal in relation to help seeking. For 
example, some learners do not always request 
help when it would be most useful, while others 
consistently seek help even though they are able 
to undertake a task independently (Butler,  2006  ) . 
Students vary in the quality, as well as the quan-
tity, of the help they request, and a distinction has 
been made between instrumental and executive 
help (Nelson-Le Gall & Glor-Scheib,  1985  ) . 
Instrumental help involves using methods that 
clarify and support understanding, such as help-
ful hints or clues, which lead to independent task 
mastery. Executive help involves seeking solu-
tions that lead to task completion without neces-
sarily increasing comprehension, such as 
requesting a solution. In previous work, differ-
ences in help-seeking behaviour have been shown 
to relate to different types of achievement goals 
(Butler,  2006 ; Harris et al.,  2008  ) .  

   Achievement Goal Theory 

 Goal theorists argue that people approach learning 
in distinct ways depending on their beliefs about 
and attitudes towards a particular task (Ames,  1992 ; 

Dweck,  2000 ; Dweck & Legget,  1988 ; Nichols, 
 1984  ) . Those who are focused on understanding 
new material, mastering skills and developing com-
petence are said to hold mastery goals: learning and 
improvement are assessed using self-referenced 
standards where the quality of one’s work is judged 
relative to one’s previous achievement. Mastery 
goals are associated with the use of adaptive learn-
ing strategies and deep-level learning (Ames, 
 1992  ) . For example, mastery-motivated children 
tend to expend more effort, are more persistent, 
show a preference for challenging tasks and use 
instrumental help-seeking strategies (Newman, 
 1990  ) . In contrast, learners who are focused on 
demonstrating their knowledge and gaining favour-
able judgements of ability are said to hold perfor-
mance goals: learning is judged by how well one is 
performing relative to others and involves social 
comparisons (Elliot & Dweck,  1988  ) . With a 
greater concern for evaluation of performance by 
others, help seeking tends to be viewed as an indi-
cation of low ability within a performance orienta-
tion. Performance-motivated children tend to show 
a preference for tasks they feel they can complete 
without challenge, and if they do seek help, they 
tend to choose executive-type help (Aleven, 
McLaren, & Koedinger,  2006  ) . In general, perfor-
mance goals are associated with less adaptive strat-
egies and consequently surface-level learning 
(Elliot & Dweck,  1988 ;    Ryan & Pintrich,  1997 ).   

   The Ecolab Software 

 The Ecolab software is an adaptive interactive 
learning environment that provides 10–11-year-
old children with a virtual ecology laboratory 
that can be viewed as a simulated world of ani-
mals and plants, as a food web or as an energy 
histogram (see Fig.  43.1 ). The Ecolab also pro-
vides an arti fi cial collaborative learning partner 
that offers adaptive assistance based on a detailed 
learner model. It was built as a research tool to 
investigate how the zone of proximal develop-
ment (ZPD, Vygotsky,  1978,   1986  )  could be used 
to inform software design and has been the sub-
ject of several iterations of participatory design 
activity that have produced Ecolab II.  
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 The original version of the Ecolab software 
called Ecolab I provided “help” at the domain 
level, that is, at the level of individual actions, 
such as when an animal moved or ate another ani-
mal or plant. This help was available when the 
learner was completing these speci fi c actions and 
made an error. Findings from the Ecolab I evalu-
ation demonstrated that offering learners a com-
bination of challenging activities and appropriate 
support could improve test scores, which may 
indicate learning. A further important  fi nding 
from the Ecolab I evaluation was that help-seek-
ing behaviour amongst learners varied in its 
ef fi cacy and was an important factor for learning 
outcomes. Ecolab II offered different qualities 
and quantities of prompt to try to get the child to 
consider what they should do next: be it selecting 
a task or selecting how much help to ask for. 

 The Ecolab II system builds a software-based 
model of the learner and scaffolds their interac-
tions with timely interventions. This learner 
model represents the system’s interpretation of 
the learner’s understanding of a small curriculum 
of knowledge about food chains and webs and 
the learner’s ability in two metacognitive 

 processes: help seeking and task selection. In 
 relation to help seeking, the child can select help 
from the system at one of four levels of speci fi city. 
Clue levels were developed using Wood, Bruner 
and Ross’s  (  1976  )  levels of scaffolding as a guide. 
Clues increase in speci fi city from low-level 
instrumental help at clue levels 1 and 2, to more 
speci fi c executive help including part or all of the 
solution at clue levels 3 and 4 (see Luckin,  2010  
for a full description of the Ecolab software).  

   Using the Ecolab II Software 
to Explore Learners’ Goal Orientation 

 At the start of our exploration of mastery- and 
performance-oriented learners’ interactions with 
Ecolab II, we conducted an initial classroom 
study with thirty- fi ve 10-year-old children. The 
aim of the study was to explore how mastery and 
performance goals might in fl uence learners’ 
help-seeking behaviour when using Ecolab II. 
Previous work had highlighted the importance of 
observing behaviour  and  the context in which it 
occurs in order to assess accurately the role that 

  Fig. 43.1    Ecolab II screen views. ( a ) world view, ( b ) webview, ( c ) energy view       
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mastery and performance goals play in learning 
(Harris et al.,  2008  ; Martinez-Miron, Harris, Du 
Boulay, Luckin & Yuill,  2005 ) . We therefore 
began our study by constructing detailed learner 
pro fi les in relation to the children’s achievement 
goal orientation and help-seeking behaviour. This 
method enabled us to identify 27 children who 
displayed clear preferences for either mastery 
goals (seven male, six female) or performance 
goals (nine male,  fi ve female). We then observed 
their interactions with Ecolab II and used system 
logs to measure help-seeking behaviour (Harris, 
Bonnett, Luckin, Yuill, & Avramides,  2009  for 
full details). 

 We found several important differences 
between mastery- and performance-oriented chil-
dren in the type of help they used and also in 
whether that help was effective in moving them 
forward with the task. Firstly, performance-ori-
ented children tended to select clues at the higher 
end of the scale (i.e. clues that offered more help) 
more frequently than their mastery-oriented coun-
terparts. This suggested that within the Ecolab II 
environment, performance-oriented children were 
pursuing more executive-type help, a pattern of 
results which replicates  fi ndings from other 
domains (e.g. Aleven et al.,  2006  ) . Secondly, we 
found that although the performance-oriented 
children were selecting higher-level clues more 
frequently, this level of help was proving less use-
ful to them. Level 4 clues provided a single, 
generic example of a relationship hierarchy within 
the ecosystem (e.g. “stickleback eats tadpole and 
is eaten by heron”). Performance learners had 
signi fi cant dif fi culty in generalising from the 
generic example to the speci fi c organisms they 
were working on at the time (e.g. “vole eats black-
berries and is eaten by grass snake”). We found 
that mastery children were better able to genera-
lise these generic clues to their own food chains. 
On the other hand, performance-oriented children 
seemed less able to do this and tended to repeat 
their earlier mistakes after selecting clue level 4. 
These children were also signi fi cantly more likely 
to move on to another problem if the clue had not 
helped them immediately. This  usually involved a 
less challenging action such as linking two organ-
isms rather than three organisms. 

 These results suggested important differences 
in metacognitive behaviour between mastery- 
and performance-oriented children. In addition, 
we were able to monitor and track these 
 differences using system logs. This suggests the 
potential for modelling learners’ motivation and 
therefore providing scaffolding structures that 
can dynamically support learners of differing 
goal orientations. However, before these devel-
opments can be explored, a deeper understanding 
of the role of goal orientation in help seeking and 
their impact on learning gains is needed.  

   Goal Orientation, Help Seeking 
and Learning Using Ecolab II 

 We addressed the question of how goal orienta-
tion and different patterns of help-seeking impact 
on learning outcomes in a second large-scale 
classroom study. The differences evident between 
mastery and performance learners in our previous 
study led us to implement some software revi-
sions. The  fi rst revision was an alteration to the 
content of the help offered at the highest help 
level (i.e. greatest amount of assistance from the 
software; level 4) to address the dif fi culty that 
performance learners experienced with generalis-
ing assistance from an example to the speci fi cs of 
their particular problem. In this study, we changed 
the content of level 4 help so that it re fl ected more 
directly the speci fi c problem at hand rather than a 
generic example. The second change we made 
was the addition of audio prompts. This was 
implemented to address the way in which learn-
ers seemed to miss learner model prompts in 
preference for clicking through to the next prob-
lem without reading the prompts. Including audio 
slowed down the rate at which learners could 
click through and also allowed us to eliminate 
differences in reading ability, which may have 
disadvantaged some children. 

 Twenty-nine 10-year-old children (13 males 
and 16 females) participated in this study, which 
took place over a 4-week period. We followed the 
same procedure as the  fi rst study, but this time 
children completed an Ecolab pre- and posttest 
before and after their two Ecolab sessions (Luckin 
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& Hammerton,  2002  ) . Again, we used system 
logs to analyse help-seeking behaviour and we 
calculated the difference between children’s 
scores on the pre- and posttest assessment as a 
measure of learning outcome. We describe our 
results here in more detail under the following 
two sections 

   Learning Outcomes 

 First we analysed children’s pretest scores to 
measure their initial level of domain knowledge. 
We then used a median split to divide the sample 
into two groups indicating children of higher and 
lower initial ability. The group mean for the 
whole sample was 40.38 (SD = 14.39) out of a 
possible 75. Although there were equal numbers 
of mastery- and performance-oriented children 
in the higher ability group, performance-oriented 
children were over-represented in the lower abil-
ity group. As a result the performance group 
mean at pretest (M = 36.33, SD = 13.05) was 
signi fi cantly lower than the mastery group mean 
(M = 47, SD = 14.05) at pretest. After two ses-
sions of exploration with the Ecolab environ-
ment we administered the same test again to 
measure any changes in the children’s domain 
knowledge. At posttest the group mean had 
increased to 46.13 (SD = 12.96) out of a possible 
75 which represented a signi fi cant change. 
However, closer examination of these scores 
showed that improvement was not evident across 
the whole sample and in fact some children 
showed no change or even a slight regression in 
their test scores. Figure  43.2  shows the break-
down of improvement by initial ability level and 
achievement goal orientation. There are two 
points to make about this graph. First,  children 

initially categorised as lower ability were the 

ones who showed the most improvement . This 
may not seem that surprising given that the 
potential for improvement was greatest in this 
group. However, there was no ceiling effect in 
the higher ability group, as pretest scores were 
on average 23 points below the maximum. This 
suggests that although there were opportunities 
for learning, these had not been realised by the 

higher ability group. This result is also consistent 
with previous Ecolab evaluations during which 
lower ability learners frequently made greater 
learning gains (see Luckin,  2010  for detail). 
Second,  there are interesting differences between 

mastery and performance children particularly 

for the high ability group . In fact the pattern of 
improvement for these groups is qualitatively dif-
ferent. While the high ability performance 
 children made some improvement, their mastery-
oriented peers showed a regression in their test 
scores from pre- to posttest. Closer examination 
of the posttest result showed that the mastery-
oriented group did make improvements but only 
on the  fi nal section of the test. This section was 
by far the most challenging as it represented a 
signi fi cant degree of transfer in which children 
had to translate hierarchical food chain relation-
ships into algebraic representations. The mastery-
oriented group signi fi cantly outperformed the 
performance group at posttest on this part of the 
test, while the performance-oriented group made 
greater learning gains on the less challenging 
parts of the test. This suggests that the level of 
challenge experienced, or perceived, by the 
learner has an important role to play in their level 
of engagement and improvement.   

   Metacognitive Behaviour 

 The next stage in our analysis was to examine 
whether improvement scores were related to par-
ticular patterns of help-seeking behaviour during 
children’s interaction with the Ecolab. Given the 
qualitative difference between mastery and per-
formance-oriented children in patterns of learn-
ing outcome, we examined log data for each 
group separately. Analysis of the logs revealed 
that in this study, mastery and performance chil-
dren’s preferences for help at the four levels of 
speci fi city were broadly similar. In a similar pat-
tern to that observed in our previous study, per-
formance-oriented children showed a greater 
preference for clues at the highest level of 
speci fi city. This re fl ects a performance tendency 
towards executive-type help in which the whole 
or part of the correct solution is provided. 
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 Next we were interested in the usefulness of 
help at the different levels of speci fi city both in 
the immediate term (i.e. during task) and in the 
longer term (i.e. during posttest). In order to do 
this, we calculated the number of times each clue 
was followed by an attempt to complete the action 
(e.g. complete a food chain) to which the clue 
referred. Instances where clues were not followed 
by an attempt to complete the current activity or 
that were followed by selecting another clue were 
excluded for this part of the analysis. Of the food 
chains that were attempted, we calculated the 
proportion of actions, which were correct or 
incorrect directly following the use of the clue. 

 We found a general increase in the proportion 
of correct actions with the increase in clue 
speci fi city. This was expected, provided the child 
followed the advice offered by the clue, because 
higher clues provided help that was focused on 
the particular action and organisms the child was 
working with when the clue was selected. In fact, 
level 4 help provides the complete answer to the 
problem. Interestingly however this did not 
always lead to the child reproducing the correct 

answer, a point we return to below. We did 
observe a difference between mastery- and per-
formance-oriented groups in the immediate use-
fulness of higher and lower-level help. For 
mastery-oriented children, the proportion of cor-
rect actions following a clue steadily increased in 
line with clue speci fi city; help levels 1 and 2 led 
to correct actions around 50% of the time while 
levels 3 and 4 led to correct actions around 60% 
of the time. However, there appears to be more of 
a step change in the usefulness of higher versus 
lower end clues for the performance-oriented 
children. For these children, less than 40% of 
help at levels 1 and 2 led to correct actions, but 
this rose to almost 70% correct for levels 3 and 4. 
It seems therefore that clue speci fi city made a 
bigger difference to the performance-oriented 
children. These children choose clues at the 
higher level more often, and these clues led to 
producing a greater number of correct food 
chains. 

 These results stand in contrast to our  fi rst 
study in which the generic higher-level clues 
were least useful and suggest the revision we 
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made to the software in increasing the speci fi city 
of level 4 help proved useful, for performance-
oriented learners at least. However, increasing 
the speci fi city of these clues meant that they now 
contained the correct solution, which would 
reduce the need for children to work this out on 
their own. Our next question therefore concerned 
the longer-term effect on learning this behaviour 
may have. Here we found another important dif-
ference between mastery- and performance-ori-
ented learners. For the mastery-oriented group, 
there were no associations between their use of 
help and improvement scores. However, for the 
performance-oriented group, a very clear pattern 
emerged in relation to their use of higher-level 
help.  Improvement scores were positively corre-

lated with the proportion of incorrect actions fol-

lowing high - level clues  ( r (17) = 0.49, p < 0.05) 

and negatively correlated with the proportion of 

correct actions following high-level clues 

(r (17) = 0.51, p < 0.05) . This means that the more 
mistakes performance children made after receiv-
ing high-level help, the greater their learning 
gains at posttest. This is a particular interesting 
result in the light of the pro fi les of learning behav-
iour associated with mastery and performance 
goals. For example, performance goals are typi-
cally associated with a desire not to make mis-
take, while mastery goals orient learners towards 
“learning from mistakes.” However, our results 
suggest that performance-oriented learners do in 
fact learn from their mistakes even if they try to 
avoid making them by selecting executive-type 
help. This is a particularly interesting  fi nding in 
the light of the revisions we made to this level of 
help (i.e. increased speci fi city) and the tendency 
for performance-oriented learners to show a pref-
erence for level 4 help. It is not clear from our 
data why level 4 help did not always lead to a cor-
rect action given that it explicitly stated the cor-
rect solution. However, it does suggest that 
merely repeating the solution provided in the clue 
is not effective at promoting learning. This is 
consistent with research into “gaming the  system” 
(Baker, Corbett, Koedinger, & Wagner,  2004  ) , 
which refers to behaviour aimed at exploiting 
system help in order to obtain a correct answer. If 
performance-oriented learners were using level 4 

help for this purpose, they would not have needed 
to re fl ect on the content of the clue unless the 
solution was not followed correctly. We might 
speculate therefore that getting an incorrect 
answer after level 4 help violates the expectation 
that performance-oriented learners hold of the 
purpose and usefulness of this level of help (i.e. it 
contains the correct answer). The effect of this 
may cause the learner to stop and re fl ect when 
they would not otherwise have done. While fur-
ther empirical investigation of this effect is 
needed, the data does suggest that adaptations to 
level 4 help, which use a “violation of expecta-
tion” approach, may be particularly effective for 
performance-oriented learners.   

   Discussion 

 In this section of this chapter, we re fl ect upon our 
learning technology: the Ecolab software, our the-
oretical framework, the zone of proximal develop-
ment and software scaffolding, offer a critique of 
our methodology and discuss the implications of 
the results reported and the challenges we face for 
the further development of the goal-oriented 
Ecolab II software and the design of metacognitive 
tools to support learning more generally:
    1.    The context for learning with the Ecolab. 

 The Ecolab software is designed for use with 
learners aged 10–11 years within the formal 
education classroom. It encompasses subject 
matter about food chains and food webs, 
which is a part of the national curriculum 
within the United Kingdom for children of 
this age. It was built as a research tool to inves-
tigate how the ZPD could be used to inform 
software design. The Ecolab was designed for 
a single learner to use on a laptop or desktop 
computer. The software constructs a software-
based model of the learner and scaffolds their 
interactions with timely interventions. Initially, 
in the Ecolab I software, this learner model 
represented the system’s interpretation of the 
learner’s understanding of a small curriculum 
of domain knowledge. Subsequently, in Ecolab 
II, this model also includes the learner’s ability 
in two metacognitive processes: help seeking 
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and task selection. The Ecolab software in its 
various versions has provided a test rig for the 
empirical exploration of scaffolding these 
metacognitive processes for over 10 years.  

    2.    The zone of proximal development and the 
theoretical framework that underpins the 
Ecolab approach. 
 The ZPD provides the theoretical underpin-
ning for the work conducted with the Ecolab. 
It speci fi es that what is important when con-
sidering a child’s learning and development is 
their ability to achieve a solution when they 
are offered assistance. However, Vygotsky 
 (  1978,   1986  )  does not prescribe the exact 
nature of the instructional assistance that is to 
be offered to learners. The scaffolding 
approach (Wood, Bruner & Ross,  1976 ) repre-
sents one way of pinning down the nature of 
the assistance that more able others, including 
teachers and intelligent tutoring systems can 
provide for children as they learn and has been 
used in much subsequent research. The scaf-
folding approach informed the interpretation 
of the ZPD upon which the Ecolab design 
framework, and speci fi cally the learner model, 
is based. It is a design framework that explores 
the relationship between the identi fi cation of a 
learner’s collaborative capability and the 
speci fi cation of the assistance that needs to be 
offered to the learner in order for them to suc-
ceed at a particular task. This assistance is 
offered by the Ecolab software itself based 
upon the model of the learner it maintains: it is 
the software that acts as the learner’s more 
able partner. Through a range of empirical 
studies, some of which are described in this 
chapter, we have been able to vary the learner 
model and the scaffolding assistance offered 
to the learner by the Ecolab. In particular we 
have been able to explore the manner in which 
the metacognitive processes of help seeking 
and task selection might be scaffolded and the 
impact that individual differences in a learn-
er’s goal orientation might have upon the 
interventions that are effective for learning.  

    3.    Learning from the empirical  fi ndings of the 
Ecolab studies about learner goal orientation 
and metacognitive processes. 

 The methodology used for the studies we 
report in this chapter has been built upon pre-
vious  experience. All three learning measures 
use, or use and extend, previous approaches: 
the goal-orientation pro fi ling has been previ-
ously validated with learners of this age, the 
learning outcomes are measured using an 
assessment that has been used for every Ecolab 
evaluation to date, and the log analysis uses 
techniques developed through previous Ecolab 
evaluations. We are now building into the soft-
ware improved logging functionality in an 
attempt to automate some of the analysis that 
we have previously needed to complete “by 
hand.” This evolutionary approach to method-
ology design also means that we have a wealth 
of data about the way learners use the Ecolab 
software in which to situate each new study. 

 For example, children who achieved above 
average learning gains during previous evalu-
ations of the Ecolab II software used a high 
level of help: In one study, 73% used a high 
level of system assistance, and 82% of these 
learners with above average learning gains 
used an above average amount of system assis-
tance, and in a second evaluation study, 87% 
used a high level of system assistance, and 
62% used an above average amount system 
assistance. Whilst the numbers involved in 
these studies are small (26 in each of these two 
studies), each extra study adds more evidence 
and detail to increase our understanding of 
children’s help-seeking behaviour. We can 
therefore use this foundation to situate and 
interpret our  fi ndings with respect to the rela-
tionships between help seeking and learner 
goal orientation. 

 We know that effective help seeking sup-
ports increased learning gains, and if we are to 
develop software that encourages such effec-
tive help seeking, then we need to understand 
more about what motivates learners’ help-seek-
ing behaviours. The work reported here once 
again offers evidence that children who were 
initially categorized as lower ability showed the 
most improvement in their learning gains. In 
addition, we can see that the patterns of 
improvement for mastery-oriented and perfor-
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mance-oriented children, particularly for the 
high ability groups, are qualitatively different. 
The high ability performance-oriented children 
make modest  improvements, but their mastery-
oriented peers show a regression in their test 
possibly due to a lack of perceived challenge 
and subsequent engagement. Performance-
oriented learners used more level 4 help (the 
greatest amount of help offered by the sys-
tem), than mastery-oriented learners, and 
more interestingly we saw a step change in 
the usefulness of higher- versus lower-level 
help for the performance-oriented children, as 
compared to their mastery-oriented peers. 
This usefulness was not restricted to the per-
formance-oriented children’s performance, 
whilst using the Ecolab II software, it also 
extended to their learning gains, as measured 
by the change in their scores from pre to post 
system use. For performance-oriented learn-
ers, the more mistakes made after receiving 
high-level help whilst using the software, the 
greater their learning gains at posttest.  

    4.    Challenges, limitations and implications. 
 The  fi ndings we report here support the pro-
posal that it is possible to use software scaffold-
ing, such as that offered by Ecolab II, and to 
adapt it to meet the needs of learners with dif-
ferent goal orientations so that they can achieve 
more effective help seeking. Performance-
oriented learners’ help-seeking skills have been 
demonstrated to be an area that needs improve-
ment and our  fi ndings therefore represent valu-
able progress. However, there is evidence to 
suggest that the needs of the mastery-oriented 
learners were less well supported by the adap-
tations made to the Ecolab II software. It is 
therefore worth re fl ecting upon what might be 
changed in future evaluation studies to meet the 
challenge for mastery-oriented learners and to 
overcome the limitations in the current software 
implementation. 

 One possible explanation for the mastery 
group’s lack of progress or even regressed out-
comes might lie in their experience of the 
challenge provided by the software. We know 
that mastery-oriented learners are motivated 
by challenging tasks that test their capabilities 

and drive them towards new levels of under-
standing and task mastery (Dweck & Leggert, 
 1988  ) . If they did not experience this sort of 
motivation whilst using the Ecolab II, their 
engagement with and interest in the task would 
have been low. Future Ecolab developments 
oriented towards mastery learners may there-
fore consider ways of adapting to learners’ 
challenge seeking behaviour in order to main-
tain motivation, interest and engagement. 

 The software scaffolding adaptations made 
for this study were informed by empirical 
work with learners: we altered the content of 
the help offered at the highest help level (level 
4) in order to try to address the dif fi culty that 
performance-oriented learners experienced 
with generalising from an example to their 
speci fi c problem, and we added audio prompts 
to ensure learners were not able to click 
through important prompts or were not disad-
vantaged by reading ability. The results from 
the latest study suggest that these adaptations 
have offered support to performance-oriented 
learners, but have been less helpful to mastery-
oriented learners. This  fi nding suggests that a 
fruitful course of investigation would be to 
consider how the learner model might re fl ect 
learner goal orientation. Initially, two versions 
of the Ecolab II software are needed. The ver-
sion used in the study reported here might be 
considered to be the performance-oriented 
version. A version without the changes to the 
content of level 4 help, so that learners are 
required to make the generalisation from the 
example to their particular problem, might be 
one feature of a more challenging mastery-
oriented version. 

 For all learners, the lack of use of level 2 
and level 3 help, which is more instrumental, 
is a concern. In future studies, we need to test 
the extent to which when learners do use these 
intermediate levels of help, they are suf fi cient 
to help learners to achieve success. We also 
need to evaluate differences in the behaviour 
of performance and mastery-oriented learners 
with these intermediate help levels. This might 
perhaps be explored through adaptations to 
the learner model so that it re fl ects a bias 
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towards suggesting that learners use these 
intermediate help levels. Subsequently this 
bias would need to be tuned towards any dif-
ferences found between performance-oriented 
and master-oriented learners. Evaluations of 
the two version of the Ecolab II could offer 
data to inform the manner in which the learner 
model is adapted in order to better tailor scaf-
folding interventions to the goal orientations 
being displayed by each individual learner. 

 Our programme of work with Ecolab uses 
a combination of automatically logged data 
on, e.g. help choices, dispositional measures 
of learners (learning goal orientation) and 
learning outcome measures, to make infer-
ences about why learners choose the help they 
do, and then we manipulate the design of 
adaptive software so that it best  fi ts the meta-
cognitive needs of learners with different goal 
orientations. We anticipate that this multi-
method approach can be adapted and extended 
by us and others to develop new, better-adapted 
versions of software such as Ecolab and that 
the approach could be developed to look at 
other aspects of motivation in learning.          
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  Abstract 

 Complex learning of dif fi cult subject matter with educational technologies 
involves a coordination of cognitive, metacognitive, and affective pro-
cesses. While extensive theoretical and empirical research has examined 
learners’ cognitive and metacognitive processes, research on affective pro-
cesses during learning has been slow to emerge. Because learners’ affec-
tive states can signi fi cantly impact their thoughts, feelings, behavior, and 
learning outcomes, inquiry into how these states emerge and in fl uence 
engagement and learning is of vital importance. In this chapter, we describe 
several key theories of affect, meta-affect, and affect regulation during 
learning. We then describe our own empirical research that focuses on 
identifying the affective states that spontaneously emerge during learning 
with educational technologies, how affect relates to learning outcomes, 
and how affect can be regulated.  The studies that we describe incorporate 
a variety of educational technologies, different learning contexts, a num-
ber of student populations, and diverse methodologies to track affect. We 
then describe and evaluate an affect-sensitive version of AutoTutor, a 
fully-automated intelligent tutoring system that detects and helps learners 
regulate their negative affective states (frustration, boredom, confusion) in 
order to increase engagement, task persistence, and learning gains. We 
conclude by discussing future directions of research on affect, meta-affect, 
and affect regulation  during  learning with educational technologies.   
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     Affect, Meta-affect, and Affect 
Regulation During Learning 

 Though affect is usually relegated to the sidelines 
as a perennially present but low-impact mood 
state, when triggered by the right event, emotions 
quickly claim the spotlight in our theater of con-
sciousness. Anger and rage rapidly consume us 
when we perceive that we have been wronged, 
elation  fi lls an uneventful day when a much antic-
ipated grant is funded, and we are enveloped in 
sadness upon hearing of the death of a loved one. 
Anger, joy, fear, sadness, disgust, surprise, angst, 
contempt, envy, grief, pride, shame, and ecstasy, 
are some of the everyday feelings that are famil-
iar to us all. It could be argued that such affect 
states interact with every thought, modulate every 
decision, and in fl uence every action, from the 
mundane to the elaborate. 

 Given the pervasiveness of affect in our daily 
lives (Scherer, Wranik, Sangsue, Tran, & Scherer, 
 2004  ) , what should not come as a surprise to 
most, is that learning at deeper levels of compre-
hension is essentially an affectively charged expe-
rience (Calvo & D’Mello,  2011  ) . During learning 
with educational technologies like multimedia, 
hypermedia, and intelligent tutoring systems, 
learners may experience frustration when they 
have to manage a multitude of topic-related 
hyperlinks, confusion when illustrative  fi gures 
and graphs seem to contradict the corresponding 
text, anger when a knowledgeable pedagogical 
agent withholds helpful guidance, boredom when 
the environment lacks stimulation, and perhaps 
even hopelessness or despair when their efforts 
seem unlikely to help them reach their goals. This 
negative portrait of the emotional experiences 
that accompany learning has a complementary 
positive side. Learners experience curiosity when 
they encounter novel and unfamiliar topics, 
eureka moments when insights are unveiled and 
major discoveries made, delight when challenges 
are conquered, and  fl ow states (Csikszentmihalyi, 
 1990  )  when they are so engaged in learning that 
time and fatigue disappear. In agent-based learn-
ing technologies, learners can even experience 
feelings of companionship when the agent appears 

helpful and supportive, and gratitude when the 
agent provides scaffolding to help them resolve 
an impasse or get them out of a stuck state. 

 In general, emotion and cognition are inextri-
cably bound in educational technologies that 
require learners to generate inferences, demon-
strate causal reasoning, diagnose and solve prob-
lems, make conceptual comparisons, produce 
coherent explanations, and show application and 
transfer of acquired knowledge. Contemporary 
theories of emotion and cognition assume that 
cognitive processes such as memory encoding and 
retrieval, causal reasoning, deliberation, and goal 
appraisal are modulated and facilitated by affect 
(Bower,  1981 ; Mandler,  1999 ; Ortony, Clore, & 
Collins,  1988 ; Scherer, Schorr, & Johnstone,  2001 ; 
Stein & Levine,  1991  ) . The inextricable link 
between affect and cognition is suf fi ciently com-
pelling that some claim the scienti fi c distinction 
between emotion and cognition is arti fi cial, arbi-
trary, and of limited value (Lazarus,  2000  ) . 

 Although the twentieth century has been ripe 
with emotion theory along with models of emo-
tion and cognition, research investigating the links 
between emotions and learning is much more 
recent. Some of the most exciting research has 
emerged from the interdisciplinary arena that 
spans psychology (Dweck,  2002 ; Stein & Levine, 
 1991  ) , education (Meyer & Turner,  2006 ; Pekrun, 
Elliot, & Maier,  2006  ) , computer science (Arroyo 
et al.,  2009 ; Conati & Maclaren,  2009  ) , and neuro-
science (Immordino-Yang & Damasio,  2007  ) . 
Some of this research has focused on student emo-
tions in classrooms, where a broad array of affec-
tive responses are elicited in a number of contexts. 
Research in the context of learning technologies 
has focused on in-depth analysis of a smaller set of 
emotions (boredom,  fl ow, confusion, frustration, 
anxiety, curiosity, delight, and surprise) that arise 
during deep learning over short time spans of 1–2 h 
(Baker, D’Mello, Rodrigo, & Graesser,  2010 ; 
Conati & Maclaren,  2009 ; Craig, Graesser, Sullins, 
& Gholson,  2004 ; D’Mello, Craig, Sullins, & 
Graesser,  2006 ; Graesser et al.,  2006  ) . 

 This chapter discusses such research by pro-
viding a synthesis of affect–learning connections 
that we and our collaborators have explored over 
the past few years. We also discuss meta-affect 
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and affect regulation as two related and equally 
signi fi cant phenomena.  Meta-affect  pertains to 
“thinking about affect” and using this informa-
tion to guide thought and action.  Affect regula-

tion , a relatively new and exciting  fi eld of research 
(Gross,  2008  ) , addresses how people regulate 
their emotions either before or after they occur. 
After discussing these phenomena, we describe 
novel learning technologies that aspire to promote 
engagement and learning by modeling and exter-
nally regulating learner affect. We conclude by 
re fl ecting on some of the key  fi ndings and pro-
pose some avenues for further research.  

   Affect During Learning 

 The affect–learning theories that have emerged 
highlight the contributions of academic risk tak-
ing, motivation, mood states,  fl ow, goals, and cog-
nitive disequilibrium. They also describe how 
affect can play a role in learners’ metacognitive 
processes and self-regulation. This section pro-
vides a brief overview of some of these theories 
followed by a discussion of some empirical 
research aimed at testing their critical hypotheses. 

   Theories of Affect and Learning 

 The academic risk theory and intrinsic motiva-
tion literature address how individual differences 
in risk taking behavior and motivation in fl uence 
learners’ emotional states and behavior choices. 
The academic risk theory contrasts (a) adven-
turesome learners who want to be challenged 
with dif fi cult tasks, take risks of failure, and 
manage negative emotions when they occur, with 
(b) cautious learners who tackle easier tasks, 
take fewer risks, and minimize failure and its 
resulting negative emotions (Clifford,  1988  ) . 

 The intrinsic motivation literature has 
identi fi ed affective states such as curiosity as 
indicators of motivation level and learning 
(Harter,  1992 ; Stipek,  1988  ) . Intrinsically moti-
vated learners derive pleasure from the task itself 
(e.g., enjoyment from problem solving), while 
learners with extrinsic motivation rely on external 

rewards (e.g., praise from a pedagogical agent 
after successfully solving the problem). 

 Whereas these theories address individual 
differences, mood theories and  fl ow theory are 
concerned with how mood states impact emo-
tions and performance. Mood theories highlight 
the role of baseline mood states (positive, nega-
tive, or neutral) in learning, particularly for cre-
ative problem solving. In particular,  fl exibility, 
creative thinking, and ef fi cient decision-making 
in problem solving have been linked to experi-
ences of positive affect (Isen,  2001  ) , while neg-
ative affect has been associated with a more 
methodical approach to assessing the problem 
and  fi nding the solution (Schwarz & Skurnik, 
 2003  ) . According to  fl ow theory, learners are in 
a state of  fl ow (Csikszentmihalyi,  1990  )  when 
they are so deeply engaged in learning the mate-
rial that time and fatigue disappear. The zone of 
 fl ow occurs when the structure of the learning 
environment matches a learner’s zone of proxi-
mal development (Brown, Ellery, & Campione, 
 1998  ) , so that the learner is presented with just 
the right sort of materials, challenges, and prob-
lems to the point of being totally absorbed. 

 Goal theory and cognitive disequilibrium 
theory specify how particular events predict 
emotional reactions and are pitched at a  fi ner 
temporal resolution than theories that highlight 
individual differences and mood states. Goal 
theory is consistent with contemporary 
appraisal theories (Scherer et al.,  2001  ) , argu-
ably the most widely accepted account of emo-
tion. Appraisal is a presumably unconscious 
(but can also be consciously mediated) process 
that produces emotions by evaluating an event 
along a number of dimensions such as novelty, 
urgency, ability to cope, consistency with 
goals, etc. Goal theories emphasize interrup-
tions of goals as the key appraisal dimension 
(Stein & Levine,  1991  ) . In particular, the 
arousal level (intense/weak) of an emotional 
episode is dependent upon how great the inter-
ruption is to the person’s goal whereas the 
valence (positive/negative) depends on the per-
son’s evaluation of the interruption (Lazarus, 
 1991 ; Mandler,  1999  ) . Hence, outcomes that 
achieve challenging goals result in positive 
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emotions, whereas outcomes that jeopardize 
goal accomplishment result in negative emo-
tions (Dweck,  2002 ; Stein & Levine,  1991  ) . 

 The cognitive disequilibrium theory postulates 
an important role for impasses (VanLehn, Siler, 
Murray, Yamauchi, & Baggett,  2003  )  in compre-
hension and learning processes. Cognitive dis-
equilibrium is a state that occurs when learners 
face obstacles to goals, contradictions, incongrui-
ties, anomalies, uncertainty, and salient contrasts 
(Graesser, Lu, Olde, Cooper-Pye, & Whitten, 
 2005 ; Piaget,  1952  ) . Cognitive equilibrium is 
restored after thought, re fl ection, problem solv-
ing, and other effortful deliberations. This theory 
states that the complex interplay between exter-
nal events that trigger impasses, and the resultant 
cognitive disequilibrium, are the key to under-
standing the cognitive-affective processes that 
underlie deep learning. In particular, the affective 
states of confusion and perhaps frustration are 
likely to occur during cognitive disequilibrium 
because confusion indicates an uncertainty about 
what to do next or how to act. 

 Because emotions have the potential to impact 
motivation, attention, thoughts, and behavior, stu-
dents should be equipped with strategies for regu-
lating the emotions that arise during learning. 
However, theories of how emotional processes are 
regulated during learning with educational tech-
nologies have been slow to emerge. The cogni-
tive-affective model of learning (Moreno & 
Mayer,  2007  )  highlights the role of affect and 
motivation by suggesting that learners’ emotions 
have the potential to direct energy and attentional 
resources to the learning task. The dual-process-
ing model of emotion (Boekaerts,  2007  )  suggests 
that students’ emotions can help direct the strate-
gies they use during learning. For example, in the 
face of stress, some students may select nonpro-
ductive strategies such as avoidance or distraction 
that redirect their attention away from their learn-
ing goals. Other students may see stress as an 
opportunity to improve and will tend to use cop-
ing strategies to help them deal with their emo-
tions and stay focused on their learning goals. 
Although these theories underscore the impor-
tance of emotion on self-regulation during learn-
ing with educational technologies, many questions 

remain to be answered regarding the intricate rela-
tionship between emotion and self-regulation.  

   Identifying the Affective States That 
Occur During Complex Learning 

 The theoretical perspectives described above 
make a number of predictions about the affec-
tive experiences that arise during learning 
with educational technologies. We have tested 
some of these predictions in our analysis of 
emotion-learning connections in a variety of 
learning contexts, with a number of student 
populations, and with diverse methodologies. 
Table  44.1  presents an overview of 18 studies 
that we and our collaborators have conducted 
over the past 6 years.  

 The “learning context” column in Table  44.1  
refers to the educational technology used, and the 
educational task including computer tutoring, 
problem solving, text comprehension, and essay 
writing. The numbers in parentheses beside each 
learning context refer to the number of studies 
involving that context. As evident from Table  44.1 , 
seven of the studies involved learning computer 
literacy with  AutoTutor  (Graesser et al.,  2004  ) , an 
intelligent tutoring system with conversational 
dialogues (described in more detail in a subse-
quent section). Other computer learning systems 
include  Aplusix  (Nicaud & Saidi,  1990  ) , an ITS 
for mathematics, the  Incredible Machine  (Ryan, 
 2001  ) , a simulation environment for logic puz-
zles, and a version of Operation ARIES!, a game-
like ITS for critical thinking. 

 Emotions are notoriously dif fi cult to measure 
because they are fuzzy, ill-de fi ned, noisy, and 
compounded with individual differences in expe-
rience and expression. Methodological artifacts 
usually have an undesirable in fl uence on the mea-
sured emotions, so it is imperative to obtain con-
vergence across methodologies. This is precisely 
the approach we have adopted in our research, as 
illustrated by the diverse research protocols 
depicted in Table  44.1 . 

 The studies have yielded a number of insights 
into student affective experiences during deep 
learning and effortful problem solving with edu-
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cational technologies. One  fi nding is that confu-
sion, frustration, boredom, and  fl ow/engagement 
are the dominant affective states that students 
experience irrespective of the learning environ-
ment, the learning task, the student population, 
and the emotion measurement methodology. In 
contrast to these states that are consistently 
observed with high frequencies, some emotions 
are consistently observed, but with lower fre-
quencies. Others are observed with relatively 
high frequencies, but only in some contexts. In 
particular, delight and surprise occur in many 
contexts, but the frequency of occurrence of 
these states is low. Curiosity occurs with high 
frequency, but it is only observed in some con-
texts; when students are intrinsically motivated 
with respect to the task, as was the case when 
aspiring law school students solved analytical 
reasoning problems from the LSAT. Similarly, 
anxiety is observed in high-stakes situations as 
was the case with the LSAT. Despite differences 
in patterns of occurrence, confusion, frustration, 
boredom,  fl ow/engagement, delight, surprise, 
curiosity, and anxiety are the major emotions 
that students experience during learning and 
problem solving; we refer to these as “learning-
centered” states .  

 In contrast to the learning-centered emotions, 
the “basic” emotions consisting of anger, joy, sur-
prise, disgust, happiness, and sadness (Ekman, 
 1992  ) , are comparatively rare (one exception is 
happiness, which does occur in some contexts). 
These emotions are considered to be “basic” by 
some who claim that they are innate, universally 
experienced and recognized, and cross cultural 
boundaries (Ekman,  1992 ; Izard,  1994  ) , but others 
dispute this view (Barrett,  2006 ; Russell, 
Bachorowski, & Fernandez-Dols,  2003  ) . Although 
these six basic emotions have claimed center-stage 
of most emotion research in the last four decades, 
our results suggest that they might not be relevant 
to lerning, at least for the short learning sessions of 
these studies. It is possible that they might be more 
relevant during learning in more extended time 
spans (such as completing a dissertation) or high 
stakes tests (e.g.,  fi nal exams in courses). However, 
this hypothesis needs to be substantiated with 
some empirical evidence.  

   Relationship Between Affect 
and Learning 

 In addition to specifying the emotions that are 
expected to occur during learning, the theories 
also predict speci fi c relationships between emo-
tions and learning gains. According to  fl ow the-
ory, the state of  fl ow should also show a positive 
correlation with learning gains (Csikszentmihalyi, 
 1990  ) , while boredom should be negatively cor-
related with learning gains. If constructivist the-
ory and the claims about cognitive disequilibrium 
are correct, we should observe a positive relation-
ship between confusion and learning gains if the 
learning environment productively helps the 
learners regulate their confusion. Similarly, a 
negative correlation is predicted between frustra-
tion and learning gains. 

 These predictions were tested by correlating 
the proportional occurrence of boredom, confu-
sion,  fl ow, and frustration with measures of deep 
learning collected in the studies with AutoTutor 
(see Table  44.1 ). Perhaps the most important and 
consistent  fi nding was that confusion was posi-
tively correlated with learning gains (Craig et al., 
 2004 ; D’Mello & Graesser,  2011 ; Graesser, 
Chipman, King, McDaniel, & D’Mello,  2007  ) . 
This relationship is consistent with the model 
discussed earlier that claims that cognitive dis-
equilibrium is one precursor to deep learning 
(Graesser et al.,  2005  )  and with theories that 
highlight the merits of impasses during learning 
(VanLehn et al.,  2003  ) . According to these mod-
els, confusion itself does not cause learning gains, 
but the cognitive activities that accompany con-
fusion and impasse resolution are linked to learn-
ing, a  fi nding that has received some empirical 
support  (D’Mello & Graesser,   in review  ) . 

 One study con fi rmed the prediction that bore-
dom was negatively correlated to learning while 
 fl ow was positively correlated (Craig et al.,  2004  ) . 
However, we have not been able to replicate this 
 fi nding in subsequent studies. It might be the case 
that these states operate on longer time-scales, so 
their effects on learning could not be observed in 
short 30–35 min learning sessions. Longer learn-
ing sessions would be required before the effects 
of these states can be observed. 
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 One surprising  fi nding was that frustration 
was not correlated with learning gains in any of 
the studies with AutoTutor. Frustration is a state 
that occurs when learners fail to resolve an 
impasse, they get stuck, and goals are blocked. 
The apparent lack of a relationship between frus-
tration and learning might be attributed to the fact 
that the ITS used in these studies does not let a 
learner perseverate in a stuck state. Typical learn-
ing situations with educational technologies are 
fraught with such stuck states, since learners must 
often manage an abundance of information with 
little direction or guidance (especially in multi-
media and hypermedia contexts). In comparison, 
AutoTutor offers explanations and hints in order 
to advance the learning session. Withholding 
assertions and preventing a student from proceed-
ing until they provide an appropriate response 
would presumably increase frustration and pos-
sibly impact learning. 

 There is some evidence to support this claim. 
For example negative affect (amalgamation of 
frustration, anxiety, and annoyance) was nega-
tively correlated with posttests scores when the 
task was to read a passage in physics without any 
interference from a tutor (Linnenbrink & Pintrich, 
 2002  ) . Frustration was also negatively linked to 
performance outcomes when students solved 
analytical reasoning problems in the absence of a 
tutor (D’Mello et al.,  2010  ) .   

   Meta-affect During Learning 

 So far we identi fi ed the emotions that are relevant 
to learning with educational technologies, but the 
story does not end here. There is the question of 
how learners think about the emotions they 
experience. The  feelings-as-information  theory 
(Schwarz,  2012  )  provides some useful insights 
into meta-affective processes (outside of learning 
contexts) that can be applied to learning with 
educational technologies. A central tenet of this 
theory is that affect has an informational function 
and different feelings (in context) convey differ-
ent types of information. For example, a learner 
experiencing hopeless confusion while solving a 
physics problem might infer that there is a 

knowledge de fi ciency. Surprise, feelings of 
knowing (i.e., familiarity), and boredom are three 
states that inform learners about their knowledge 
levels (Ortony et al.,  1988  ) . 

 Another principle of the theory is that the 
impact of a given feeling is proportional to its 
perceived information values with respect to the 
current situation. Feelings that are considered to 
be directly related to the task provide more infor-
mation than feelings considered to be purely inci-
dental. For example, being sad because a 
pedagogical agent expressed disappointment in 
one’s failure to comprehend a topic is relevant to 
the learning task and is of some value. However, 
sadness because it is a gloomy day is purely inci-
dental to learning physics and is less informa-
tional in this context. 

 The  fi nal postulate of the theory is that when 
feelings are used as an information source, they 
are used as any other information source. Feelings 
can be used to modulate learning, help with deci-
sions, and in fl uence processing strategies. For 
example, experiencing confusion during problem 
solving might facilitate the deployment of ana-
lytical processing strategies  (D’Mello & Graesser, 
  in review ; Schwarz,  2012  )  that are focused on 
identifying and resolving the source of the confu-
sion. Feeling that the learning goal has not been 
reached (i.e., the learner has not gained an under-
standing of the topic at hand) may lead to an 
increased use of learning strategies like summa-
rizing or attempting to make inferences (Azevedo, 
 2009  )  or investing more time in learning the topic 
(Metcalfe,  2002  ) . 

 Although the feeling-as-information theory 
postulates a signi fi cant role for meta-affect, 
con fi rmatory empirical data from learning con-
texts is sparse. We do know that learners’ identify 
confusion, frustration, boredom,  fl ow/engage-
ment, delight and surprise when they are asked to 
emote-aloud (i.e., articulate their emotions) dur-
ing learning or when they view videotapes of 
their tutoring sessions and judge their emotions 
at different points in time (D’Mello et al.,  2006 ; 
Graesser et al.,  2006  ) . However, we do not know 
how reliably different classes of learners can 
identify these emotions. We suspect from 150 
years of psychological research on emotions 
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that some learners lack sensitivity to their own 
emotions, that other learners are hypersensitive, 
and that there is a large continuum of possibilities 
in between. We also know that people do not 
always accurately identify the source of their 
feelings (Schwarz,  2012  ) , thereby limiting its 
informational values. 

 Research is conspicuously absent on how the 
learners perceive the causes, consequences, and 
information value of each affect state. The nega-
tive emotions are particularly in need of research. 
When a learner is frustrated from being stuck, the 
learner might attribute the frustration to either 
themselves (“I’m not at all good at physics”), the 
computer tutor (“The tutor doesn’t understand 
this either”), or the materials (“There are too 
many hyperlinks here to even begin to synthe-
size”). As the theory suggests, the information 
value derived from the feeling of frustration 
would presumably depend on these attributions 
of cause (Weiner,  1986  ) . When a student is con-
fused, some students may view this as a positive 
event to stimulate thinking and attempt to show 
their ability by conquering the challenge; other 
students will attribute the confusion to their poor 
ability, an inadequate tutor, or poorly designed 
educational technology. When students are bored, 
they are likely to blame the tutor or material 
rather than themselves.  

   Affect Regulation During Learning 

 Once learners experience an emotion and are 
aware of the emotion, there is the question of how 
they might regulate the emotion. The goal of 
emotion regulation is presumably to downregu-
late negative emotions and upregulate positive 
emotions, although it is never quite this straight-
forward. For example, during collaborative online 
learning, one student might suppress happiness 
from receiving praise from a pedagogical agent 
when in the presence of a friend who has just 
received negative feedback from that agent. 
Regulation of emotions during learning with edu-
cational technologies is yet another area with 
considerably little empirical research. However, 
Gross  (  2008  )  has proposed an important process 

model of emotion regulation that is applicable in 
everyday situations. Perhaps this model can yield 
some insights into how learners might regulate 
their affective states. 

 The model assumes that an emotion arises 
when an emotion-eliciting situation is experi-
enced, attended to, and cognitively appraised 
(these different phases are a critical component 
of the model). The model proposes  fi ve broad 
emotion regulation strategies; four of these strat-
egies can be deployed before the emotion (to be 
regulated) is experienced, while the onset of the 
emotion governs deployment of the  fi fth strategy. 
The  fi rst two strategies, situation selection and 
situation modi fi cation, are regulatory strategies 
aimed at selecting and modifying contexts (situa-
tions) that minimize or maximize the likelihood 
of experiencing certain emotions. For example, a 
learner who perceives that he or she has low com-
puter skills may choose to use Wikipedia to 
gather information about a topic rather than using 
a more complex information source like PsychInfo 
in order to avoid the negative emotions (e.g., 
frustration in this case) associated with organiz-
ing a search, conducting a literature review, and 
synthesizing information. This is an example of 
situation selection, because the learner has opted 
out of a negative affect-induction situation (i.e., 
the complex information source). 

 Eventually, this learner may  fi nd that using a 
more complex information source is necessary in 
order to obtain the resources which are needed gain 
a full understanding of a given topic. If the learner 
has no choice in selecting the situation (i.e., the stu-
dent has to use PsychInfo rather than Wikipedia), 
the learner can reduce his or her negative emotions 
by asking a peer or teacher to demonstrate the 
proper way use a complex search engine. Here, an 
emotion-inducing situation (i.e., using PsychInfo) 
has been alleviated by modifying the situation (i.e., 
seeking help from a peer or teacher). 

 Affect can also be regulated when a situation 
cannot be selected or modi fi ed. In these cases, a 
person can avoid attending to situational elements 
that might induce negative emotional reactions. 
For example, after receiving negative feedback 
from a pedagogical agent, a learner might try to 
keep frustration levels down by focusing on the 
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instances where he or she received positive feed-
back, while ignoring negative feedback; this 
strategy is referred to as  distraction  (Gross,  2008  ) . 
Alternately,  rumination  involves explicitly attend-
ing to the emotion-elicitation situation and can 
lead to a heightened intensity and increased dura-
tion of an emotional reaction (Bushman,  2002  ) . 
Rumination would occur when a learner perse-
verates on the negative feedback, thereby increas-
ing these negative emotions. 

 Affect can be regulated even when a person’s 
attention is focused on an event that has the 
potential to elicit a particular emotional reac-
tion. One such strategy is  cognitive reappraisal  
(Dandoy & Goldstein,  1990  ) , which involves 
changing the perceived meaning of a situation in 
order to alter its emotional content. For example, 
negative yet constructive feedback can actually 
be transformed into a more positive experience 
if the learner perceives the feedback in a differ-
ent way. This would occur if the learner believes 
that the agent is only giving feedback in an 
attempt to help the learner resolve a misconcep-
tion and understand the material more clearly. In 
essence,  cognitive reappraisal  occurs when the 
learner switches from a mindset of “the agent is 
trying to embarrass me” to “the agent just wants 
what’s best for me.” 

 Finally,  response modulation  is a strategy that 
can only be applied after the emotion is experi-
enced. Perhaps the most widely studied form of 
response modulation is  expressive suppression , 
which involves a sustained effort to minimize 
the expression of emotional behavior. Hence, a 
student in the throes of anger as a result of an 
agent’s feedback can attempt to alleviate the 
anger by relaxing the body and taking slow deep 
breaths. 

 At this point in science, there is insuf fi cient 
research documenting whether and to what extent 
students engage in these affect regulation strate-
gies during learning with educational technolo-
gies. This leaves the door wide open for 
resear chers to conduct more research in this area 
and propose models and theories that are more 
speci fi c to educational technologies. For exam-
ple, we have recently conducted one preliminary 
study that tested the effect of cognitive reappraisal 

on alleviating boredom. Learners were asked to 
study 18 pages of the US Constitution and Bill of 
Rights (this can be quite a dull read) from a Web-
based digital text over a 30–60 min session. 
Learners who were instructed to use a cognitive 
reappraisal strategy (experimental group) reported 
more arousal, valence, attentiveness, and demon-
strated enhanced comprehension of the material 
than those in the control group, who were not 
instructed to reappraise their emotions (Strain & 
D’Mello,  2011  ) . Indeed, emotion regulation strat-
egy training does have some bene fi ts, at least 
within the context of this laboratory study. The 
pertinent question is whether this intervention is 
equally effective in more authentic learning con-
texts and with more advanced educational 
technologies.  

   Affect, Meta-affect, and Affect 
Regulation with an Affective Tutor 

 After exploring the affective, meta-affective, and 
affect-regulatory processes during learning we 
turn our attention to an affect-sensitive version of 
an intelligent tutoring system (ITS) called 
AutoTutor. AutoTutor helps students learn topics 
in Newtonian physics, computer literacy, and 
critical thinking via a natural language conversa-
tional dialogue (Graesser et al.,  2004  ) . AutoTutor’s 
dialogues are organized around dif fi cult ques-
tions and problems that require reasoning and 
explanations in the answers. AutoTutor actively 
monitors learners’ knowledge states and engages 
them in a turn-based dialogue as they attempt to 
answer these questions. It adaptively manages 
the tutorial dialogue by providing feedback (e.g., 
“good job,” “not quite”), pumping the learner for 
more information (e.g., “What else”), giving 
hints (e.g., “What about X”), prompts (e.g., “X is 
a type of what”), identifying and correcting mis-
conceptions, answering questions, and summa-
rizing answers. 

 While the existing AutoTutor system is 
sensitive to learners’ cognitive states, the affect-
 sensitive version is dynamically responsive to 
learners’ affective states as well (D’Mello et al., 
 2010  ) . It detects and responds to boredom, 
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confusion, and frustration because appropriate 
responses to these negative states could poten-
tially have a positive impact on engagement and 
learning outcomes. 

   Design of the Affect-Sensitive 
AutoTutor 

 The affect-sensitive tutor embeds the learner and 
the tutor into an affective loop that involves 
 detecting  the learner’s affective states,  respond-

ing  to the detected states, and  synthesizing  emo-
tional expressions via animated pedagogical 
agents. The affect detection system monitors con-
versational cues, gross body language, and facial 
features to detect boredom, confusion, frustra-
tion, and neutral (no affect). Affect-detection 
accuracy is not perfect but is reasonably accurate 
(affect diagnosis is correct about 50% of the time 
compared to a 25% chance baseline). 

 Once the learner’s affect has been detected, 
the tutor attempts to regulate the sensed affec-
tive state with an emotional statement. 
AutoTutor’s strategies to respond to learner’s 
emotions were derived from attribution theory 
(Weiner,  1986  ) , cognitive disequilibrium during 
learning (Graesser et al.,  2005 ; Graesser & Olde, 
 2003 ; Piaget,  1952  ) , politeness theory (Brown & 
Levinson,  1987 ; Wang et al.,  2008  ) , and recent 
statements about the role of empathy in regulat-
ing negative emotions (Dweck,  2002 ; Lepper & 
Chabay,  1988  ) . In addition to theoretical consid-
erations, the assistance of experts in tutoring 
was enlisted to help create the set of tutor 
responses. 

 The affect-sensitive responses attempt to reg-
ulate negative emotions by attributing the source 
of the learners’ emotion to the material or the 
tutor instead of the learners themselves. So the 
affective AutoTutor might respond to mild bore-
dom with “This stuff can be kind of dull some-
times, so I’m gonna try and help you get through 
it. Let’s go.” A response to confusion would 
include attributing the source of confusion to the 
material (“Some of this  material  can be confus-
ing. Just keep going and I am sure you will get 
it”) or the tutor itself (“I know I do not always 

convey things clearly. I am always happy to repeat 
myself if you need it. Try this one”). 

 In addition to detecting and regulating 
learner affect, the affective tutor also synthesizes 
affect with facial expressions and emotionally 
modulated speech. These affective expressions 
include: approval, mild approval, disapproval, 
empathy, skepticism, mild enthusiasm, and high 
enthusiasm.  

   Evaluating the Affect-Sensitive 
AutoTutor 

 We have recently conducted an experiment that 
evaluated the pedagogical effectiveness of the 
affective AutoTutor when compared to the origi-
nal tutor (D’Mello et al.,  2010  ) . This original 
AutoTutor has a conventional set of fuzzy pro-
duction rules that are sensitive to the cognitive 
states of the learner, but not to the learner’s emo-
tions. The obvious prediction is that learning 
gains should be superior for the affective 
AutoTutor. 

 The results of the experiment indicated that 
the affective AutoTutor was signi fi cantly more 
effective ( d =  0.713) than the regular tutor for 
low-domain knowledge students, during the sec-
ond half of the interaction. This suggests that it is 
inappropriate for the tutor to be supportive to 
these students before there has been enough con-
text to show there are problems. Simply put, it 
may not be wise to be supportive until the stu-
dents need support. Second, the students with 
more knowledge never bene fi ted from the affec-
tive AutoTutor. These students do not need the 
emotional support, but rather they need to con-
centrate on the content. Third, there are condi-
tions when emotional support is detrimental, if 
not irritating to the learner. There appears to be a 
liability to quick support and empathy compared 
to no affect-sensitivity for students who have 
high domain knowledge and are being tutored 
early in the learning session. In summary, the 
evaluation of the affective AutoTutor has yielded 
some important insights; however, these  fi ndings 
are tentative and merit replication in a broader set 
of contexts.   
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   Conclusions 

 This chapter has discussed the affective, meta-
affective, and affect-regulatory processes that 
accompany deep learning and problem solving 
with educational technologies. We have identi fi ed 
a set of learning-centered affective states (confu-
sion, frustration, boredom,  fl ow/engagement, 
delight, surprise, anxiety, and curiosity) that were 
prominent in our analyses of affect during 
learning. Complimentary research validating this 
set of states with different learning environments, 
diverse student populations, and with alternate 
methodologies would represent an important 
advancement in this area. Of equal importance is 
the need for research studies that track emotions 
in the wild (i.e., in classrooms, school labs, and 
online courses) (Arroyo et al.,  2009 ; Baker et al., 
 2010  )  and for extended periods of time. In par-
ticular, longitudinal studies that model how emo-
tions emerge from interactions between affective 
traits, moods, and external events will represent a 
signi fi cant advancement in modeling the diffu-
sive, elusive, fuzzy, and dynamic nature of emo-
tions during learning. 

 Our discussions of meta-affect and affect reg-
ulation were unfortunately brief, mainly due to 
the paucity of research that has tracked these pro-
cesses during learning sessions. This does not 
come as a surprise; however, because with the 
exception of anxiety, systematic research into 
affect–learning connections is still in its infancy. 
In our view, identifying the emotions that are rel-
evant to learning with educational technologies is 
the  fi rst step in such a research program. The next 
steps involve understanding the critical meta-
affect and affect regulation processes that are 
active during learning. The time is ripe for excit-
ing research along these fronts. 

 Finally, we described and evaluated an ITS 
that detects, regulates, and synthesizes affect. The 
idea of having a fully automated affect-sensitive 
tutor has been proposed only recently (Picard, 
 1997  ) , so these affective tutors are indicators of 
the astonishing progress being made in this area. 
Although our initial experiment with the affect-
sensitive AutoTutor yielded some positive effects, 

it should be noted that a one size  fi ts all approach 
to affective feedback is not likely to adequately 
regulate all the emotional experiences that accom-
pany learning. What is needed is a bold innova-
tive approach that optimally coordinates cognition 
and emotions in a manner that is dynamically 
adaptive to the knowledge, goals, traits, moods, 
and styles of each individual learner. In addition 
to augmenting next-generation learners with cut-
ting-edge technologies, such a research program 
will undoubtedly sustain signi fi cant discoveries 
bridging affect and learning for several decades.      
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    Introduction    

 The ever-evolving landscape of technology has 
produced environments that offer interactive 
forums to uniquely facilitate the acquisition of 
knowledge. Hypermedia, for example, represents 
a type of computer-based learning environment 
(CBLE) that offers an augmentation of multimedia 
and earlier forms of hypertext. Multimedia envi-
ronments present information through a variety of 
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  Abstract 

 Despite its popularity in the classroom, hypermedia learning is challenging, 
as empirical research has shown. The inherent design of the hypermedia 
structure requires students to engage in a variety of metacognitive moni-
toring processes, which provides feedback that facilitates the process of 
adaptation during learning. The Self-Regulated Learning Theory (SRL) 
has provided a theoretical lens to examine these processes during hyper-
media learning. While a myriad of theoretical approaches to SRL exist, the 
Information Processing model has been widely used in the context of 
hypermedia learning. This article outlines the contributions of this theory 
to  fi eld of hypermedia learning, while also highlighting the need for addi-
tional empirical research that systematically considers theoretically-
grounded constructs of motivation within SRL. The premise of this chapter 
is that motivation offers a potential explanation of individual differences in 
how students respond to negative feedback loops during hypermedia learn-
ing. Methodological and theoretical challenges are examined, including 
the identi fi cation of speci fi c motivation constructs (e.g., outcome expecta-
tions, incentives, ef fi cacy expectations, attributions, and utility) that align 
with existing SRL theoretical frameworks.     



684 D.C. Moos and C.A. Stewart

formats, including audio, animation, and/or still 
images. Richard Mayer’s long line of research has 
identi fi ed the potential bene fi t of providing stu-
dents with multiple representations of information. 
Aside from engaging the student, multiple repre-
sentations can facilitate knowledge acquisition in a 
manner that is consistent with cognitive principles 
of learning (Mayer,  2005  ) . However, multimedia 
environments lack the interactivity found in other 
types of CBLEs, such as hypertext. 

 Students can experience a certain level of inter-
activity when learning with hypertext through 
hyperlinked nodes of textual information. This 
design feature in hypertext allows students to 
make decisions with respect to the instructional 
path (Shapiro & Niederhauser,  2004  ) . Hypermedia 
takes the design features from both multimedia 
and hypertext by integrating multiple representa-
tions within hyperlinked nodes. Research has sug-
gested that this combination of interactivity and 
rich, multiple forms of information provides a 
powerful learning context for a diverse group of 
students (Jacobson,  2008  ) . Despite the promises of 
these design features, hypermedia can present 
signi fi cant challenges to students. Multiple repre-
sentations necessitate the coordination of informa-
tion, while nonlinear access through hyperlinked 
nodes requires students to constantly monitor the 
relevancy of content and their emerging under-
standing. These challenges have attracted a 
signi fi cant body of research, which has provided 
evidence of processes that facilitate learning with 
hypermedia (see Azevedo,  2007,   2009 ; Greene & 
Azevedo,  2009 ; Moos & Azevedo,  2008c ; Schraw, 
 2006 ; Veenman,  2007 ; Winne & Nesbit,  2009 ; 
Zimmerman,  2008  ) . Take, for example, the fol-
lowing excerpt from a study that used a think-
aloud protocol to capture how students learn about 
conceptually complex topics such as the circula-
tory system within the context of a hypermedia 
environment (Moos & Azevedo,  2008a  ) . A portion 
of the student’s thoughts and actions during a 
30-min hypermedia learning task is provided 
below. 

 I am going to start with the circulatory system just 
because I am already there… 

 …and I’m just reading the introduction…circula-
tory system…also known as the cardiovascular 

system and it deals with the heart…it transports 
oxygen and nutrients and it takes away waste…
um, it does stuff with blood and I’m kind of 
remembering some of this from bio in high school, 
but not a lot of it. 
 Reads: The heart and the blood and the blood ves-

sels are the three structural elements and the heart 

is the engine of the circulatory system, it is divided 

into four chambers. 

 I knew this one, two right and two left…the atrium, 
the ventricle and the left atrium, and the left ventri-
cle…okay start the introduction [of the heart], just 
kind of scout it out real quick…and there’s a section 
called function of the heart…and it looks like it will 
give me what I need to know…um…introduction, 
oh that’s just basic stuff that we’ve been doing… 
 Reads: Structure of the heart has four 

chambers… 

 We did that… 
 Reads: The atria are also known as auricles. They 

collect blood that pours in from veins… 

 So, it looks like the first step is atria in the system 

and then the veins. 

 This segment illustrates the richness that some 
students experience while learning with hyperme-
dia. In the excerpt, the student monitored the rele-
vancy of the hypermedia content and her emerging 
understanding while also using strategies to build 
relevant domain knowledge. This active engage-
ment of the learning process included nonlinear 
navigation. This student began with the introduc-
tion of the circulatory system in the hypermedia 
environment but then navigated to another section 
(the Heart) in response to a monitoring activity (i.e., 
“…I knew this one…”). Furthermore, she limited 
reading of text when metacognitive activities reveal 
an adequate understanding (i.e., “We did that…”). 
This excerpt represents how self-regulation can 
positively affect learning with hypermedia due to 
its inherent design features, both in terms of its non-
linearity and provision of multiple representations. 
However, while some students actively engage in 
the design features of hypermedia while self-regu-
lating their learning, empirical research has demon-
strated signi fi cant variability between students. For 
example, take the excerpt from another participant 
in the same study (Moos & Azevedo,  2008a  ) . 

 I am going to the introduction… 

 Reads: Circulatory system, or cardiovascular sys-

tem, in humans, the combined function of the heart, 

blood, and blood vessels to transport oxygen and 
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nutrients to organs and tissues throughout the body 

and carry away waste products… 

 I’m going to take notes…transport oxygen…nutri-
ents…to organs and tissues and carry away waste 
products. 
 Reads: Among its vital functions, the circulatory 

system increases the flow of blood to meet increased 

energy demands during exercise and regulates 

body temperature. In addition, when foreign sub-

stances or organisms invade the body, the circula-

tory system swiftly conveys disease-fighting 

elements of the immune system, such as white blood 

cells and antibodies to regions under attack… 

 I’m writing down the structural elements… 
 Reads: The heart is the engine of the circulatory 

system. It is divided into four chambers: The right 

atrium, the right ventricle, the left atrium, and the 

left ventricle. The walls of the chambers are made 

of a special muscle called myocardium, which con-

tract continuously and rhythmically to pump 

blood. 

 …okay, the heart…engine…the chambers…right 
and left atrium…right and left ventricle. Okay…
special muscle…myocardium…mmmm… 
 Reads: The human heart has four chambers, the 

upper two chambers…the right side of the heart is 

responsible for pumping oxygen-poor blood to the 

lungs…This oxygen-poor blood feeds into two large 

veins, the superior vena cava and inferior vena 

cava. The right atrium conducts blood to the right 

ventricle, and the right ventricle pumps blood into 

the pulmonary artery. The pulmonary artery car-

ries the blood to the lungs, where it picks up a fresh 

supply of oxygen and eliminates carbon dioxide. 

 Unlike the  fi rst example, this student read 
substantially more information and progressed 
through the environment in a linear progression. 
That is, while the  fi rst student navigated to a dif-
ferent section (the Heart) once she identi fi ed an 
adequate understanding, the second student 
began in the introduction and proceeded to read 
linearly. Furthermore, the second student relied 
on a much less diverse set of learning processes. 
The  fi rst student monitored the relevancy of the 
content and her emerging understanding, while 
the second student used the environment in a 
much more linear fashion and relied on a small 
subset of strategies (namely, note-taking and 
summarizing). The discrepancy between how 
these two students engaged in the learning 
process with hypermedia re fl ects the substantial 
individual differences found in empirical 
research. The following section will  fi rst discuss 
the theoretical frameworks that have been used to 

explain how students learn with hypermedia, 
highlighting how these theoretical approaches 
have provided the foundation for research 
concerning individual differences in hypermedia 
learning. Following this section, the chapter will 
discuss the empirical and methodological 
approaches that are grounded in the aforemen-
tioned theoretical frameworks. Next, the chapter 
will identify possible explanations for individual 
differences with an emphasis on the need for 
research to more fully explore the role of theoreti-
cally grounded motivation constructs. Lastly, this 
chapter concludes by exploring the methodologi-
cal and theoretical challenges to considering moti-
vation in SRL with hypermedia.  

   Theoretical and Conceptual 
Framework 

 Learning with hypermedia requires students to 
engage in a variety of cognitive (i.e., use of 
learning strategies and activation of prior knowl-
edge), metacognitive (i.e., identifying the rele-
vancy of content and monitoring emerging 
understanding), and motivational (i.e., self-
ef fi cacy) processes (Azevedo,  2005,   2008, 
  2009 ; Azevedo, Moos, Witherspoon, & Chauncey, 
 2010 ; Greene & Azevedo,  2007,   2009 ; Moos & 
Azevedo,  2008c ; Moos & Marroquin,  2010 ; 
Moos,  2009 ,  2010,   2011 ;    Veenman,  2007 ; Winne 
& Nesbit,  2009 ; Zimmerman,  2008  ) . As such, the 
inherent nature of hypermedia calls for a theoreti-
cal explanation of learning that is robust enough 
to account for a diverse set of factors. Self-
regulated learning (SRL) theories offer a natural 
 fi t for this line of research. While SRL consists of 
many camps and perspectives that sometimes 
focus on different constructs (Boekaerts, Pintrich, 
& Zeidner,  2000 ; Zimmerman & Schunk,  2001  ) , 
these perspectives share four common assump-
tions that have been used to guide hypermedia 
research (Pintrich,  2000  ) . First, it is assumed that 
students actively construct their own meaning 
from an interaction between prior knowledge and 
information available in the context. Second, it is 
also assumed that students can potentially moni-
tor and regulate their cognition, behavior, and 
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motivation. Third, it is assumed that all behavior 
is goal directed and self-regulated students mod-
ify their behavior to achieve a desired goal. 
Lastly, it is assumed that self-regulation results 
from an interaction of contextual factors, per-
sonal characteristics of the student, and the stu-
dent’s performance. 

 While these basic assumptions highlight the 
guiding principles of SRL, there are distinct theo-
retical perspectives that guide speci fi c areas of 
research. Winne  (  2001  )  and Winne and Hadwin’s 
 (  1998  )  information processing theory (IPT) of 
SRL has received considerable attention within 
hypermedia learning research. This theoretical 
approach outlines four phases of SRL: (1) under-
standing the task, (2) goal setting and planning 
how to reach the goal(s), (3) enacting strategies, 
and (4) metacognitively adapting studying. 
Though phases may suggest that SRL is linear, an 
underlying assumption is that there is a recursive 
nature because of a feedback loop. Information 
processed in one phase can become an input to 
subsequent information processing. Additionally, 
students may adapt their  planning  and/or  strate-

gies  in order to meet the goal based on discrepan-
cies revealed by  monitoring  activities. Students 
may experience this cyclical process a number of 
times throughout a hypermedia learning session. 
Take the student presented in the earlier example, 
which illustrated how self-regulation manifests 
itself in hypermedia learning. This student read 
the text and used strategies such as note-taking 
(stage 3). A monitoring activity (stage 4) revealed 
that, in fact, she had previously learned the mate-
rial in that particular section of the hypermedia 
environment. As a result of this monitoring activ-
ity, she developed a new plan (to learn about the 
direction of blood  fl ow, stage 2) and then enacted 
a strategy (summarizing, stage 3). Thus, truly 
self-regulated students will proceed through a 
number of cycles in the four phases of SRL. 

 The  fi rst phase of SRL consists of the student 
constructing a perception of the learning task. 
These perceptions are derived from information 
about the task, such as learning goals, as well as 
information from long-term memory. Task 
de fi nition and performance is facilitated when a 
student draws prior domain knowledge into work-

ing memory from long-term memory. The next 
phase of self-regulated learning concerns the 
development of goals and plans (Butler & Winne, 
 1995 ; Winne & Hadwin,  1998  ) . Processes associ-
ated with this stage are dynamic as students can 
modify the goals through the process of learning. 
In phase 3, the student applies tactics and/or strat-
egies (Winne,  2001 ; Winne & Hadwin,  1998  ) , 
which facilitate knowledge acquisition. Lastly, 
phase 4 consists of cognitive evaluation and mon-
itoring activities. These processes reveal any dis-
crepancy between the current knowledge state 
and a goal (Winne,  2001 ; Winne & Hadwin, 
 1998  ) . In other words, phase 4 re fl ects metacog-
nition, commonly referred to as the knowledge of 
one’s thinking and the ability to re fl ect and mod-
ify processes and strategies related to this knowl-
edge (Flavell,  1979,   1985 ; Schraw & Dennison, 
 1994  ) . According to Winne  (  2001  )  and Winne 
and Hadwin’s  (  1998  )  model of SRL, these meta-
cognitive processes assume a foundational role in 
self-regulated learning because they produce 
information that facilitates the adaptation of plan-
ning and/or strategies to more effectively meet 
the learning goal(s) (Butler & Winne,  1995 ; 
Winne,  1997 ; Winne & Hadwin,  2008  ) . 

   Empirical Evidence and Methodological 
Approaches 

 Some methodological approaches consider SRL 
as a relatively enduring trait (i.e.,  aptitude ), while 
others assume that SRL is a dynamic process that 
unfolds within particular contexts (i.e.,  event ). 
The IPT approach to SRL lends itself to the view 
that SRL is a sequence of dynamic  events , a view 
that has distinct implications for methodologies. 
Perhaps the most relevant implication of this ide-
ological position is that SRL processes are cycli-
cal in nature and dynamically unfold during a 
learning task (Azevedo & Witherspoon,  2009 ; 
Winne,  2001 ; Winne & Perry,  2000 ; Zimmerman, 
 2008  ) . Thus, SRL needs to be measured in real 
time so that the dynamic nature of the complex 
processes can be captured. Several approaches 
have emerged that offer methodologies consistent 
with the assumption that SRL is an event. For 
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example,  error detection tasks  are designed to 
measure SRL processes related to monitoring 
and control as they unfold within a speci fi c con-
text (Winne & Perry,  2000  ) . This methodological 
approach induces errors in the learning task, 
which allows the researcher to observe (a) when 
and whether the student detects the error and (b) 
what the student does once the error is detected. 
Students may or may not be told that errors exist 
in the instructional material prior to the learning 
task. Several methodologies exist, including ask-
ing students to mark the errors (e.g., by underlin-
ing) and/or the use of eye tracking to determine 
eye  fi xations (Schneider et al.,  2008  ) . 
Methodologies that use eye tracking assume that 
students will attend longer to errors in the instruc-
tional material. Another approach that has been 
used to examine SRL in real time is  traces  or 
observable indicators of cognitive activities 
(Winne,  1982  ) . For example, measuring note-
taking and underlining during learning provides 
real-time information about the student’s cogni-
tive activities. In these trace methodologies, it is 
assumed that students mark text (such as under-
lining) and/or attend to information longer when 
they are discriminating between content (   Winne, 
 2005  ) . Thus, these behaviors (underlining and/or 
extended eye  fi xations) represent cognitive and 
metacognitive activities, which are consistent 
with some SRL theories. For example, Winne 
and Hadwin’s  (  1998  )  model suggests that meta-
cognitive monitoring leads to adaptation, possi-
bly in the form of enacted strategies (such as 
underlining) and/or changes in behavior (such as 
attending to information). Given these assump-
tions, studies that use trace methodologies, such 
as error detection tasks and/or eye tracking, typi-
cally focus on speci fi c processes related to SRL, 
namely, metacognition and strategies. 

 Another approach to measuring SRL during 
learning is the use of the think-aloud method. This 
protocol is an on-line trace methodology that offers 
a means through which researchers can examine 
SRL  during  learning (Azevedo,  2005  ) . The think   -
aloud protocol has an extensive history in cogni-
tive psychology and cognitive science (see 
Ericsson,  2006 ; Ericsson & Simon,  1994  ) . 
Cognitive psychology and cognitive science have 

used both concurrent and retrospective think-aloud 
protocols as data sources for cognitive processes 
(   Anderson,  1987 ). While the think-aloud protocol 
has been most popular in reading comprehension 
(Dreher & Guthrie,  1993 ; Pressley & Af fl erbach, 
 1995  ) , it has been shown to be an excellent tool to 
gather verbal accounts of SRL and map out self-
regulatory processes during learning (e.g., Azevedo 
& Cromley,  2004 ; Boekaerts et al.,  2000  ) . A con-
current think-aloud protocol assumes that thought 
processes are a sequence of states and that infor-
mation in a state is relatively stable (Ericsson, 
 2006 ;    Ericsson & Simon,  1994 ). Consequently, 
verbalizing thoughts during learning will not dis-
rupt the learning process. It should be noted “that 
subjects verbalizing their thoughts while perform-
ing a task do  not  describe or explain what they are 
doing (Ericsson & Simon,  1994 , pg. xiii)” during 
concurrent think-aloud protocols. If subjects are 
not asked to re fl ect, describe, and/or explain their 
thoughts during learning, but rather are asked to 
simply verbalize thoughts entering their attention, 
then it is assumed that the sequence of thoughts 
will not be disrupted. 

 Research in the  fi eld of hypermedia learning 
has used a concurrent think-aloud protocol to 
explore how different developmental groups use 
SRL processes. For example, Azevedo, Moos, 
Greene, Winters, and Cromley  (  2008  )  examined 
adolescents’ ability to use SRL processes while 
learning about the circulatory system with hyper-
media. A portion of this sample had access to a 
tutor who assisted in the use of SRL, while the 
other group did not have access. In the absence of 
support, adolescents tended to use ineffective 
strategies and few monitoring activities. However, 
adolescents who worked with a tutor during the 
hypermedia learning task engaged in a variety of 
SRL processes, including effective strategies, a 
myriad of monitoring activities, and adaptive 
help-seeking behavior. 

 Greene, Bolick, and Robertson  (  2010  )  consid-
ered the role of SRL in hypermedia environments 
for high school students. This study, which was 
guided by Winne and Hadwin’s  (  1998  )  SRL 
model, found that high school students tended to 
rely on strategy use (phase 3) while learning with 
hypermedia. Interestingly, though, it was planning 
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processes, and not strategy use, that were most 
predictive of hypermedia learning. Research has 
also used this methodology to examine how adult 
students self-regulate their learning with hyper-
media. Moos  (  2010  ) , for example, considered the 
extent to which various SRL processes (learning 
strategies, monitoring, and planning) were pre-
dictive of hypermedia learning outcomes for 
undergraduate students. Results indicate that 
while these SRL processes were predictive of 
learning outcomes, there was also substantial 
individual variability in how frequently partici-
pants self-regulated their learning. 

 The results from these studies re fl ect some 
commonalities in research examining SRL with 
hypermedia. First, processes related to SRL are 
predictive of learning outcomes with hyperme-
dia. For example,    De Jong  (  1992  )  found that a 
signi fi cant amount of the variance in learning 
outcomes (19–60%) was explained by students’ 
use of regulation strategies, results that have also 
been found in the context of hypermedia learning 
(Moos,  2011  ) . Second, despite the documented 
importance of these processes in hypermedia 
learning, there is signi fi cant variability in how 
students self-regulate in this context, differences 
that can only be partially explained by develop-
mental level. The following section discusses 
possible explanations of these individual differ-
ences and the need to more fully explore the role 
of motivation in these differences.  

   Individual Differences in SRL 
with Hypermedia 

 Empirical evidence that explicitly attempts to 
identify stable individual differences with respect 
to SRL, and metacognition in particular, contin-
ues to be scarce. From a theoretical standpoint, 
Winne  (  1997  )  suggested that a wide range of 
potential individual differences should be exam-
ined to further our understanding of self-regulated 
learning and metacognition. Keleman, Frost, and 
Weaver  (  2000  )  agreed, highlighting the impor-
tance of collecting a robust body of research 
guided by theoretically driven data on individual 
differences. To narrow the search for potential fac-

tors that affect metacognition and self-regulation in 
general, a wide array of individual differences must 
be assessed and if appropriate, dismissed. Keleman 
et al.  (  2000  )  challenged the notion that individual 
differences in metacognitive accuracy re fl ect dif-
ferences in participants’ metacognitive ability, 
seeking to disprove the existence of a  general  
metacognitive ability. Using four common meta-
cognitive tasks, (JOL, FOK, text comprehension 
monitoring, and ease of learning judgments), this 
study found that individual differences with 
respect to memory and con fi dence were stable 
across learning tasks and produced consistent and 
reliable correlations with self-regulation. However, 
individual differences in metacognitive accuracy 
did not reveal a similar robustness across learning 
tasks as they were much less stable. These data 
question whether individual differences in meta-
cognitive accuracy for particular tasks represent a 
more general metacognitive ability. Thus, this 
 fi nding suggests that measures of general meta-
cognitive ability may not be a valid explanation of 
individual differences that have an impact on self-
regulated learning ability and/or metacognitive 
abilities (Keleman et al.,  2000  ) . 

 Other studies have considered additional vari-
ables over and beyond that of general metacogni-
tive ability, taking a different approach and focusing 
on the role of developmental differences in meta-
cognition. According to Bartsch and Estes  (  1996  ) , 
who investigated and explained the “theory of 
mind” approach, an adolescent’s initial understand-
ing of mental states serves as the groundwork for 
an eventual ability to engage in processes related to 
metacognition. It is at this developmental stage, 
Bartsch and Estes  (  1996  )  argued, that children’s 
ability to engage in and/or develop metacognitive 
abilities is most vulnerable to individual differ-
ences. For example, they suggest qualitative condi-
tions like various developmental needs (e.g., autism 
spectrum disorder (ASD)), or an individual’s cul-
tural approach to the theory of mind can alter one’s 
metacognitive development. 

 Vukman  (  2005  )  supported the claim that ado-
lescence is a critical developmental stage for 
metacognitive abilities. In this study, 57 individu-
als from four developmental groups (“adoles-
cents,” “young adults,” “mature adults,” and 
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“older adults”) solved both logical interpolation 
and relativistic/dialectic problems. A think-aloud 
protocol was used to assess the participants’ 
metacognitive accuracy. The  fi ndings indicated 
that development into adulthood increases the 
capability to be aware of and be able to accurately 
re fl ect on one’s own abilities. Younger adults 
demonstrated signi fi cantly lower metacognitive 
accuracy, and  fi ndings regarding the participants’ 
awareness of and re fl ection on one’s own mental 
processes were consistent with previous research: 
There is an increase into early adulthood, fol-
lowed by a peak in mature adulthood, and then a 
slight decline in older adults. 

 Developmental differences, however, offer 
only a partial explanation for individual differ-
ences in metacognition. Even adults demonstrate 
substantial individual differences (e.g., Azevedo 
et al.,  2008 ; Greene & Azevedo,  2009  ) , a  fi nding 
that has been explained by differences in prior 
domain knowledge. Moos and Azevedo  (  2008a  ) , 
for example, used a think-aloud protocol to exam-
ine how undergraduate students used SRL pro-
cesses while learning about a complex science 
topic with a hypermedia environment. Differences 
in the extent to which these participants used 
SRL were signi fi cantly explained by their prior 
domain knowledge of the science topic. Those 
who came into the learning task with lower prior 
domain knowledge tended to rely on learning 
strategies and rarely planned nor did they engage 
in metacognitive monitoring processes. On the 
other hand, participants who had higher prior 
domain knowledge used fewer strategies and 
more metacognitive monitoring processes during 
the hypermedia learning task. This  fi nding is con-
sistent with the IPT explanation of factors that 
affect metacognition. 

 According to Winne  (  1996  ) , there are  fi ve 
areas in which individual differences may affect 
students’ ability to self-regulate their learning: 
domain knowledge, knowledge of tactics and 
strategies, performance of tactics and strategies, 
regulation of tactics and strategies, and global 
dispositions. This theoretical explanation high-
lights the role of prior domain knowledge in the 
process of self-regulation, which was supported 
by Moos and Azevedo  (  2008a  ) . Their  fi ndings 

suggest that those with higher prior knowledge 
have an existing knowledge structure that enables 
them to effectively monitor the nonlinear nature 
of hypermedia and their emerging understand-
ing. Thus, they can engage in “knowledge 
veri fi cation” (Moos & Azevedo,  2008a  ) , where 
they regulate their learning by using planning 
process to activate relevant prior domain knowl-
edge and monitor their learning by comparing 
information in hypermedia with their current 
understanding. Students with lower prior knowl-
edge, however, do not initially have access to 
this prior domain knowledge and thus do not 
have the knowledge base to engage in such mon-
itoring processes. Rather, they engage in “knowl-
edge acquisition” (Moos & Azevedo,  2008a  ) , 
whereby they need to rely on strategies to 
develop a well-established knowledge base of 
the topic. However, this explanation does not 
address individual differences with respect to 
students’  willingness  to use SRL processes, 
including metacognitive processes, during 
hypermedia learning. 

 Closely considering the IPT approach to SRL 
may account for this largely unexplored area of 
hypermedia learning. This theory has been cited 
as having provided substantial contributions to 
the  fi eld and most notably for its explanation of 
the role of self-monitoring processes in terms of 
feedback loops (Zimmerman & Schunk,  2001  ) . 
An underlying assumption of this theoretical 
approach is that students are compelled to self-
adjust their learning in the face of negative dis-
crepancies between feedback and self-evaluative 
standards. However, while this theoretical 
approach offers a powerful explanatory lens, it 
currently does not offer a full explanation of indi-
vidual differences in response to negative feed-
back loops (Zimmerman & Schunk,  2001  ) . In 
other words, while maturation and prior domain 
knowledge may offer students the capacity to 
engage in self-regulation, their willingness to 
engage in these processes varies. Furthermore, 
individual reactions to negative feedback loops 
differ, and differences may be magni fi ed in con-
texts that require the use of dynamic adaptation 
of strategies and tactics. Hypermedia offers an 
example of such an environment; the nonlinear 



690 D.C. Moos and C.A. Stewart

access to information requires students to con-
stantly monitor their emerging understanding and 
relevancy of the content, while making adapta-
tions based on the feedback loop of these moni-
toring processes. A challenge for the IPT approach 
to SRL is to explain differences in how individu-
als respond to negative feedback loops. A prom-
ising direction for this issue is to explore the 
relationship between motivation and SRL within 
the hypermedia environment. 

 The importance of motivation in the context of 
active participation in one’s learning is not a new 
concept within the SRL theory (e.g., Pintrich & 
De Groot,  1990  ) , though there has been less 
empirical attention in the context of hypermedia 
learning (see Moos & Marroquin,  2010  for a 
review). SRL theories identify the role of motiva-
tional beliefs in the student’s task perception. 
Zimmerman’s  (  1995  )  social-cognitive perspec-
tive of SRL, for example, highlights the role of 
personal agency and self-ef fi cacy in behavioral 
processes. Complete explanations of individual 
differences with respect to SRL need to be driven 
by theoretical frameworks that account for SRL 
as complex, dynamic interaction between social, 
behavioral,  and  motivational components 
(Zimmerman,  1995  ) . These theoretical consider-
ations have been supported by empirical research 
that has examined various constructs of motiva-
tion and different components of SRL (e.g., 
Bartels, Magun-Jackson, & Joseph,  2010 ;    E fl ides, 
 2011 ; Moos,  2010,   2011  ) . 

 For example, Hong, Peng, and Rowell  (  2009  )  
compared the use of self-regulation and metacog-
nitive strategies on homework between 7th- and 
11th-grade Chinese students, studying the effects 
of grade differences, achievement levels, and 
gender. Amongst the 7th-grade students, high 
achievers used self-regulation and metacognition 
strategies more frequently when compared to low 
achievers. However, these results were not 
duplicated for 11th-grade students. In fact, Hong 
et al.  (  2009  )  found that older students in general 
used self-regulation and metacognitive strategies 
less often, which they identi fi ed as a function of 
motivation. Speci fi cally, these researchers found 
a positive relationship between intrinsic motiva-
tion and use of SRL processes. The older students 

experienced diminished intrinsic motivation, 
which, in turn, resulted in decreased use of SRL 
processes. This  fi nding of declining intrinsic 
value placed in schoolwork has been corrobo-
rated for Western culture students as well 
(Wig fi eld & Guthrie,  1997  ) . 

 Research has explored other theoretically 
grounded constructs of motivation, including 
goal orientation. For example, Bartels and 
Magun-Jackson  (  2009  )  examined the relation-
ship between approach-avoidance motivation and 
self-regulation for 145 undergraduates. Regression 
analyses revealed that participants’ reported use 
of two cognitive strategies (organization and 
elaboration) was signi fi cantly predicted by their 
approach-avoidance motivation. Speci fi cally, 
those classi fi ed as approach motivated used these 
cognitive strategies signi fi cantly more frequently 
(Bartels & Magun-Jackson,  2009  ) . This study 
furthers the argument that motivation con-
structs play a key role in explaining individual 
differences in SRL by noting the cyclical 
nature of this complex relationship. According 
to this line of research, motivation (i.e., 
approach goal orientation) can lead to the use 
of strategies such as elaboration and organiza-
tion, which will lead to higher learning out-
comes. As a result, a positive feedback loop 
encourages the student to use additional strat-
egies, which further increases academic per-
formance. Thus, the initial individual 
difference between those students with differ-
ent levels of motivation is magni fi ed as they 
progress through the task due to feedback loops 
and responses to these loops. While this study 
highlights the dynamic impact of motivation on 
use of cognitive strategies during learning, it 
should be noted that this study used a self-report 
questionnaire to measure SRL and hypothesized 
the relationship between cognitive strategies and 
learning outcomes. 

 Vollmeyer and Rheinberg  (  2006  )  provided 
additional empirical support through examining 
motivation at the initial point of learning (in the 
form of challenge, probability of success, inter-
est, and anxiety), as well as motivation during 
learning (in the form of  fl ow), in a number of 
contexts including hypermedia. Results supported 
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a model in which initial motivation signi fi cantly 
affects motivation during learning, as well as the 
use of learning strategies and overall perfor-
mance. This study highlights the importance of 
extensively measuring motivation and its effect 
on cognitive strategies related to SRL with hyper-
media. Research has also examined the relation-
ship between motivation and other SRL processes 
with hypermedia learning, including monitoring 
and planning. For example,    Moos and Azevedo 
( 2009 ) measured undergraduates’ self-ef fi cacy, 
use of metacognitive monitoring processes, prior 
knowledge, and learning outcomes. Results indi-
cated that self-ef fi cacy was a signi fi cant predictor 
of the participants’ monitoring of their under-
standing, environment, and progress towards the 
learning goal. These lines of research have begun 
to address the dynamic relationship between 
motivation and various processes of SRL with 
hypermedia. Continued examination of these 
complex relationships requires a careful consid-
eration of methodological and analytical chal-
lenges associated with this line of research. 
Furthermore, the recent focus on event-based 
methodological approaches to capture SRL, such 
as think-aloud protocols (see Azevedo and col-
leagues’ research) and other trace methodologies 
(see Winne and colleagues’ research), has pro-
vided the means to better address theoretical 
questions concerning SRL.   

   Methodological and Analytical 
Challenges 

 The challenges of measuring motivation during 
hypermedia learning are not distinct from that of 
capturing cognitive and metacognitive processes 
related to SRL. The chosen methodology of 
measuring these processes is directly aligned 
with the assumption that motivation is either an 
event or aptitude. When motivation is considered 
an aptitude, stability is assumed, and thus, it is 
further assumed that a single measurement 
aggregates a motivation construct based on mul-
tiple events (Winne & Perry,  2000  ) . As such, 
self-perceptions of motivation are considered 
valid measures, with self-report questionnaires 

being the most typical protocol for measuring 
motivation. Several self-report questionnaires 
are used most frequently including the  Learning 

and Study Strategies Inventory  (LASSI; 
Weinstein,  1987  ) . This self-report questionnaire, 
which is composed of 77 items, was “designed to 
measure use of learning and study strategies” 
(Weinstein,  1987 , p. 2) by undergraduate stu-
dents. Another frequently used self-report ques-
tionnaire the  Motivated Strategies for Learning 

Questionnaire  (MSLQ) was developed to addi-
tionally assess “college students’ motivational 
orientations and their use of different learning 
strategies for a college course” (Pintrich, Smith, 
Garcia, & McKeachie,  1991 ; p. 3). The motiva-
tion section in the MSLQ was designed to mea-
sure the broad areas of affect, expectancy, and 
value, while the learning strategies section was 
designed to measure cognitive, metacognitive, 
and resource management strategies. 

 While self-reports are relatively easy to 
administer and score, their alignment with key 
assumptions of the IPT approach to SRL comes 
into question. Self-reports assume that motiva-
tion is an aptitude, while measurements guided 
by the IPT approach generally categorize all pro-
cesses related to SRL, including motivation, as 
events. This theoretical assumption perceives 
self-regulation in terms of dynamic, constant 
interaction between self-evaluative standards, 
self-monitoring relative to those standards, and 
adjustments geared towards addressing discrep-
ancies between these standards. These dynamic 
processes can result in recursive updates to “cog-
nitive conditions” (Winne & Hadwin,  1998  ) , 
including motivational factors and orientations. 
For example, take a hypothetical student who 
uses information from resources, instructional 
cues, time, and/or the social context and comes 
to the decision that the task is dif fi cult (Winne, 
 2001  ) . This preconceived conceptualization of 
the task might create initial feelings of low 
self-ef fi cacy. This student’s motivation could 
be measured through a typical self-report ques-
tionnaire administered after the provision of 
information that suf fi ciently identi fi es the task con-
ditions, but before the student actually engages in 
the learning task. Such a methodological approach 



692 D.C. Moos and C.A. Stewart

would be effective in identifying the student’s 
 initial  motivation. However, empirical evidence 
has demonstrated that self-ef fi cacy, along with 
other cognitive and metacognitive processes 
related to SRL, are apt to  fl uctuate, even during 
relatively short learning tasks (Moos & Azevedo, 
 2008b  ) . This  fl uctuation may be magni fi ed in 
learning contexts that require self-regulation, 
such as hypermedia. Students typically report 
higher levels of self-ef fi cacy immediately prior 
to using hypermedia, possibly because they are 
not fully aware of the cognitive and metacogni-
tive challenges presented by this environment 
(Moos & Azevedo,  2008b  ) . 

 There is a methodological need to capture 
motivation at various points during the learning 
process. The challenge of this approach is identi-
fying when to administer motivation measures. 
Research has used time intervals to collect 
motivation (see Moos & Azevedo,  2008b  ) , a 
methodological approach that calls for adminis-
tering self-report questionnaires (i.e., MSLQ) at 
set time intervals during the hypermedia learning 
task (i.e., every 10 min). This approach provides 
an analytical bene fi t because it allows for a 
systematic collection of data points that are 
consistent across participants. However, while 
this approach may be attractive from a method-
ological standpoint, there are some theoretical 
concerns. It is assumed that adaptations to SRL 
processes, including motivational beliefs, are a 
function of the feedback loop generated by meta-
cognitive monitoring (Winne & Hadwin,  1998  ) . 
Thus, it would stand to reason that the most 
appropriate time to measure the  fl uctuation of 
motivation during hypermedia learning is imme-
diately following metacognitive monitoring as 
this process is responsible for adaptations to 
motivational beliefs. Previous empirical research, 
though, has demonstrated signi fi cant variability 
in the timing and frequency with which students 
engage in metacognitive monitoring during 
hypermedia learning. A challenge for future 
research is to develop methodologies that allow 
for highly individualized measurements of moti-
vation  fl uctuation in hypermedia learning. 
Empirically identifying circumstances that trig-
ger adaptations of motivational beliefs is an 
important  fi rst step. 

 This step has been taken by research that has 
used production rules to model  fl uctuations of 
learning processes (see Aleven, Roll, McLaren, 
& Koedinger,  2010 ; Winne & Nesbit,  2009  ) . 
Current work has focused on “state-transition” 
analyses (e.g., Witherspoon, Azevedo, & 
D’Mello,  2008  )  so that data can be mined to 
better understand the evolvement (and triggers) 
of cognitive and metacognitive processes dur-
ing hypermedia learning. These data mining 
techniques are leading to production rules that 
can be embedded in intelligent hypermedia 
environments, which have the potential to iden-
tify, model, and foster cognitive and metacog-
nitive processes during learning (see Azevedo 
et al.,  2008 ,     2010 ). However, this line of 
research heavily focuses on the “cold” cogni-
tive structures of SRL, with the “hot” compo-
nents (i.e., motivation) receiving much less 
attention. Methodological approaches that also 
consider state-transition analyses with respect 
to motivation will enable the creation of more 
robust production rules that encompass all 
aspects of SRL (see Baker, Rodrigo, & 
Xolocotzin,  2007  ) .  

   Theoretical Challenges 

 The challenge of determining when to measure 
motivation is magni fi ed by the importance of 
identifying which theoretically grounded motiva-
tion constructs are most appropriate to consider. 
Earlier theoretical frameworks suggested that 
 outcome expectations, incentives, ef fi cacy expec-

tations,  and  attributions  are the motivation con-
structs that best explain students’ de fi nition of the 
task and development of plans to reach goals and 
critical phases in SRL (Byrnes,  1998 ; Winne, 
 1997  ) . Winne  (  1997  )  further argued that  utility  is 
a critical motivation construct to consider, particu-
larly if it is assumed that individuals may have 
their own idiosyncratic view of the task and plan. 
These views may drastically differ from the 
experimenter set goals, and thus it is important to 
account for this motivation construct. While such 
theoretical approaches articulate the role of some 
motivation constructs in SRL, they are faced with 
the challenge of explaining individual differences 
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with respect to adaptation in the face of negative 
feedback loops. Some students may adjust their 
strategies, adapt different learning goals, and 
increase their effort in the face of negative dis-
crepancies between goals and current knowledge 
state, but other students may not make any adjust-
ments and/or simply lower standards. Why do 
these individual differences exist, and how can 
IPT provide a theoretical explanation, particu-
larly in the context of hypermedia learning? Why 
might some students be willing to make adapta-
tions in the face of negative feedback loops, while 
others choose not to do so? Answers to these 
questions can be considered by examining the 
motivation constructs already identi fi ed in the 
IPT theory of SRL:  outcome expectations, incen-

tives, ef fi cacy expectations, attributions,  and  util-

ity . Take ef fi cacy expectations, for example. A 
student who is ef fi cacious is bound to respond 
differently to a negative feedback when compared 
to a student who has low ef fi cacy. However, the 
theoretical explanation is complicated by the 
consideration of multiple motivation constructs. 
How might a student respond if he or she were 
ef fi cacious, but saw little value in the learning 
task (Wig fi eld & Eccles,  2000  ) ? These questions 
are line with the evolving  fi eld of academic moti-
vation. Different intellectual traditions (Weiner, 
 1992  )  have given rise to various motivation theo-
ries, and as a consequence, a number of concep-
tually distinct motivation constructs have been 
identi fi ed. As highlighted by several researchers 
(see Murphy & Alexander,  2000  for a review), 
research interested in explaining individual dif-
ferences in the learning process would be well 
served to systematically examine various, theo-
retically grounded constructs of motivation.  

   Conclusion 

 In the context of hypermedia, the vast majority of 
research has focused on the “cold” cognitive 
structure (Pintrich, Marx, & Boyle,  1993  )  
involved learning. As a result, a growing but rich 
body of research has provided process data on 
the cognitive and metacognitive processes that 
facilitate hypermedia learning. However, this 
research has been limited in explaining individual 

differences in the use of SRL processes, particu-
larly metacognition. Individual differences tend 
to be explained by maturation and/or prior domain 
knowledge, with less empirical work focusing on 
the motivationally “hot” information that is criti-
cal in the adaptation of SRL during hypermedia 
learning. The IPT approach to SRL offers a pow-
erful, theoretical lens to examine the role of adap-
tation during hypermedia learning. Increased 
empirical attention to theoretically grounded con-
structs of motivation will strengthen the explana-
tion of individual differences in how students 
react in the presence of negative feedback loops.      
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      In the beginning of the 1990s, I started my 
research on knowledge acquisition in coopera-
tion with Bruce Burns (University of Sydney, 
Australia) and Keith Holyoak (University of 
California, Los Angeles, USA). The aim of our 
research was to investigate in how people learn 
about relations between variables in an unknown 
system. This question is very important, as peo-
ple have to act in complex environments, like the 
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  46      The Role of Motivation 
in Knowledge Acquisition       

     Regina   Vollmeyer       and    Falko   Rheinberg      

  Abstract 

 As our research is based on so called dynamic systems or microworlds we 
 fi rst describe and discuss this paradigm. We give a short overview on the 
huge variety of tasks that are subsumed under this label. In particular, we 
re fl ect on advantages of our biology-lab task.  

 Subsequently, we introduce our cognitive-motivational process model 
which speci fi es variables that help to describe self-regulated learning. 
Initial motivation (probability of success, interest, anxiety, and challenge) 
affects performance through mediating variables, for example strategies 
and motivation during learning. Metacognition especially planning could 
be included as a further mediating variable. 

 This theoretical model has already been studied with our biology-lab 
task (Vollmeyer & Rheinberg,  2006 ). In this study, motivation in fl uenced 
performance (initial motivation and motivation during learning could both 
predict knowledge acquisition). Initial motivation in fl uenced which 
 strategy was chosen (more motivated participants chose more systematic 
strategies and were more motivated during learning). Participants with a 
systematic strategy and more motivation during learning performed better. 
With the aid of this study we discuss which aspects of metacognition could 
be integrated into the model without risking an overlap with the construct 
of motivation.    
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world climate or an oil rig explosion in the Gulf 
of Mexico. Such complex systems have in com-
mon that people do not know exactly which vari-
ables are affected if one condition is changed. In 
real life, it is not possible to run experiments and 
watch what happens. However, researchers have 
created so-called microworlds which make it 
possible to study how people acquire knowledge 
and/or solve problems in arti fi cial microworlds. 

 After having started studying cognitive pro-
cesses, Falko Rheinberg and I integrated motiva-
tion into this research in the end of the 1990s. In 
this chapter, we will argue that integrating motiva-
tion into a theory of problem-solving represents 
progress, as we think that with this variable we can 
predict the performance in problem-solving tasks 
more precisely. However, before we  introduce our 
theoretical framework (see “ The Cognitive-
Motivational Process Model ”), we describe the 
technology, which we call “microworlds” or com-
plex dynamic systems, and its advantages. 

   Microworlds 

 Osman  (  2010  )  gives a review of research on human 
behavior in microworlds or complex dynamic sys-
tems. With these microworlds, researchers studied 
mainly cognitive processes, for example, decision-
making, implicit learning, or planning. Microworlds 
are used not only in psychology but also in other 
domains (e.g., economics, management, or engi-
neering). Figure  46.1  illustrates a simple micro-
world that we used in our research on 
problem-solving (e.g., Burns & Vollmeyer,  2002 ; 
Vollmeyer, Burns, & Holyoak,  1996  ) .  

 In a cover story, the participants were told that 
they were in a biology lab in which there is a tank 
with three water quality factors (oxygenation, chlo-
rine, and temperature). These quality factors were 
the output variables of this system, affected by three 
input variables (iron, carbon, and aluminum). On 
each trial, a participant can change one, two, three, 
or none of the input variables. One output is 
relatively simple to manipulate because it is 
in fl uenced by only one input (carbon → oxygenation). 
The other two outputs are more complex, because 
each is in fl uenced by two inputs. One output (chlo-
rine) is affected by two inputs, and the other (tem-
perature) is affected by a decay factor (marked with 
a circle connected to the output) in addition to a 
single input variable. The decay factor was imple-
mented by subtracting a percentage (10%) of the 
output’s previous value on each trial. Decay is a 
dynamic aspect of the system, because it yields 
state changes even if there is no input (i.e., all inputs 
are set to zero). The system is therefore complex in 
that it involves multiple input variables that must be 
manipulated to control multiple output variables. 

 In the research in which microworlds are used 
to study cognitive processes, our biology lab is a 
rather simple system, as it includes six variables 
in total, three inputs and three outputs. There are 
even microworlds with more than 2,000 variables 
like the simulation of the town Lohhausen 
(Dörner, Kreuzig, Reither, & Stäudel,  1983  ) . 
In this microworld, participants take over the role 
of the mayor of the town Lohhausen, and their 
goal was to take care of the future prosperity of 
the town over the short and long term. A 10-year 
period was simulated, and participants had eight 
2-h sessions in total. However, it was not clear 
which variable was a good indicator for prosper-
ity. Was it the town’s capital, the bank’s capital, or 
the factory’s capital? Were social indicators 
important (number of unemployed, number of 
apartments)? As there were so many variables, 
participants were in an uncertain situation. In 
smaller systems, it is possible to learn the struc-
ture of the whole system, whereas in microworlds 
with many variables and complicated relations 
between variables, participants are not able to 
detect all variables and their relations. These more 
complex microworlds have a high intransparency, 
and participants have to deal with uncertainty as 
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+2 Oxygenation
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+4 Temperature
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  Fig. 46.1    Structure of a biology-lab system       
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to how to solve problems with these systems. 
However, some microworlds mirror real-world 
problems (i.e., have higher ecological validity) as, 
for example, radar tracking (Kozlowski & Bell, 
 2006  ) . It depends on the research question what 
kind of microworld researchers choose. An early 
overview of mainly European microworlds is pre-
sented by Funke  (  1991  ) . 

 Two different phases can be distinguished 
with such microworlds: (1) the exploration phase 
and (2) the application phase. If the microworld 
is presented with a nonspeci fi c goal (e.g., “Learn 
how the inputs and outputs are connected”), 
learners explore the system. A screenshot of such 
a microworld is depicted in Fig.  46.2 . Participants 
start with the actual state on Trial 1 in which they 
can choose numbers for the three inputs. The 
result of their manipulation is presented on Trial 
2 under actual states. As the participants know 
that they have to  fi nd out the rules how the system 
works, they are free to choose values for the 
inputs. Through hypothesis testing, they need to 
formulate and test the rules. However, as soon as 
speci fi c goals appear (e.g., “Bring oxygenation 
to 50”), learners need to apply their knowledge. 
If participants know the exact weights for each 
link, they can calculate the correct input. Another 
method is the means-ends analysis already 
described for problem-solving. Participants have 

to enter values for the inputs and watch how close 
they are to the goals. They then push the inputs 
closer and closer to the goals. Therefore, with 
microworlds, it is possible to study different cog-
nitive processes.  

   Advantages of Using Microworlds 

 Microworlds have the advantage that they are 
presented on a computer, and therefore, it is easy 
to collect log  fi les. These log  fi les contain infor-
mation about which inputs a participant manipu-
lated. Microworlds also make it easy to exercise 
control over experimental procedures, as they can 
keep track of the amount of time each participant 
works with the system. Also, the presentation of 
questionnaires can be controlled by the system. 
Thus, it is unproblematic to compare participants 
in an identical situation. 

 Another advantage is that prior knowledge 
about the content does not interfere with the 
learning behavior because no participant has ever 
learned how, for example, iron affects chlorine. 
Therefore, it is a complete new situation for a 
novice. Normally, prior knowledge is a good pre-
dictor for learning (   Hattie,  2008  ) . Thus, when 
running experiments with verbal material (e.g., as 
in a study with a hypermedia system on World 

  Fig. 46.2    Screenshot of a biology-lab system       
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War I, Vollmeyer & Burns,  2002  ) , researchers 
need to take into account that learners with more 
prior knowledge acquire more knowledge about 
this material. In novel domains, control of prior 
knowledge is not necessary with microworlds. 

 A third advantage is that besides log  fi les 
other research methods can be used. For exam-
ple, it is possible to use research methods to cap-
ture the participants’ thoughts with the 
thinking-aloud technique (Burns & Vollmeyer, 
 2002 ; Ericsson & Simon,  1993  ) . This is particu-
larly interesting because with think-aloud proto-
cols researchers can study how participants plan 
and monitor their actions, which are aspects of 
metacognition (see below). 

 The above-mentioned advantages render 
dynamic systems especially suitable for research 
questions that can be tested experimentally in the 
laboratory or in the classroom. To develop theo-
ries, such a system can be varied in small steps 
(e.g., task dif fi culty, goal speci fi city, implement-
ing feedback). This may be the reason why 
researchers use them for many different research 
questions; one research question is self-regulated 
learning.   

   Self-Regulated Learning 

 In the last 15 years, several theories that describe 
self-regulated learning were put forward in edu-
cational psychology, but Rheinberg, Vollmeyer, 
and Rollett  (  2000  )  de fi ned a self-regulated learner 
as someone who learns without being forced or 
without external tutoring. Other authors add com-
ponents to describe what exactly such a learner is 
regulating. In their model, Schunk and 
Zimmerman  (  1994  )  and Zimmerman  (  1995  )  
speci fi ed self-regulated learning strategies, self-
monitoring of effectiveness, and self-motivation. 
Boekaerts  (  1996  )  and Pintrich  (  2000  )  described 
how learners use cognitive strategies, metacogni-
tion, volition, and motivation to monitor their 
learning process. In the literature on organizational 
psychology, researchers more often use Kanfer 
and Ackerman’s  (  1989  )  model of self-regulation, 
which comprises self-monitoring, self-evalua-
tion, and self-reaction. Thus, different theories of 

self-regulation explain the learning process, but 
each one speci fi es different variables. 

 In line, we (Vollmeyer & Rheinberg,  1998, 
  2006  )  formulated a theoretical framework in 
which several psychological constructs describ-
ing learning can be put in order. The model 
emphasizes motivation and cognitive processes 
during learning, and therefore, we called it the 
cognitive-motivational process model.  

   The Cognitive-Motivational Process 
Model 

 The starting point of our cognitive-motivational 
process model is that people have a certain initial 
motivation when they encounter a certain task, 
for example, a dynamic system as our biology 
lab. The initial motivation has an impact on the 
learning outcome, not in a direct but in an indi-
rect way. Between initial motivation and the 
learning outcome are mediating variables. To be 
more concrete, we will explain the different parts 
of the model in Fig.  46.3 .  

   Initial Motivation 

 As there are many different motivational constructs 
in psychology, we  fi rst had to reduce the number 
of motivational constructs. We did this on a 
theoretical and empirical level (see Rheinberg, 
Vollmeyer, & Burns,  2001  )  and postulated four 
aspects of initial motivation: (1)  probability of suc-

cess , (2)  anxiety , (3)  interest , and (4)  challenge . 
  Probability of success  is an aspect discussed as 

early as the models of Lewin, Dembo, Festinger, 
and Sears  (  1944  ) , as well as that of Atkinson 
 (  1957,   1964  ) . It is also part of newer theories such 
as those by Bandura  (  1997  ) , Anderson  (  1993  ) , 
and Wig fi eld and Eccles  (  2002  ) . Learners at least 
implicitly calculate the probability of success in 
that they take into account their ability and the 
perceived dif fi culty of the task. 

 The second aspect is  anxiety , which we partly 
interpret as fear of failure in a speci fi c situation 
(Atkinson,  1957,   1964  ) . However, this aspect is 
not intended to be the opposite of high probability 



70146 The Role of Motivation in Knowledge Acquisition

of success, because it can be high for learners 
who, for example, are in a social situation in 
which they do not want to fail even though they 
expect to succeed. 

 The third aspect is  interest . For learning, the 
topic of the learning material is important as has 
been shown in theories on interest (e.g., Krapp, 
Hidi, & Renninger,  1992  ) . If learners are inter-
ested, they have positive affect and positive eval-
uations regarding the topic. 

 The last aspect we included in the model is 
 challenge . Challenge is experienced among others 
if learners accept the situation as an achievement 
situation in which they want to have success (value 
component from expectancy-value models).  

   Mediators for the In fl uence of Initial 
Motivation on Performance 

 Researchers often study the relationship between 
motivation and performance. However, they sel-
dom explain exactly how positive motivation 
leads to a good learning outcome. Does this effect 
occur because motivated learners persist longer 
on the task? Or do they put more effort into the 
task to process the material deeper? To answer 
these questions, we identi fi ed some potential 
mediators, but of course the list is not exhaustive. 
We  fi rst describe which mediators we have stud-
ied, and then we will discuss how metacognition 
could be integrated as a mediator. Our research 

inspired by this model will be presented in the 
section entitled “    Our Results on Self-Regulatory 
Behavior Gained with Microworlds .” 

   Duration and Frequency of the Learning 

Activity 

 An indicator for high motivation is a high per-
sistence for a task, which is measured as time 
on task (i.e.,  duration ). If initial positive moti-
vation prolongs time on task, then people might 
acquire more knowledge. Indeed, researchers 
(e.g., Fisher,  1996 ; Helmke & Schrader,  1996 ; 
Volet,  1997  )  have found that the longer students 
study a certain topic at school the higher is their 
level of academic achievement. As it is not clear 
what people exactly do when they learn longer, 
time on task is a vague measure. However, the 
use of microworlds makes available a second 
indicator of persistence, namely, the  total num-

ber of times  with which participants manipulate 
the inputs. We studied persistence with the help 
of the microworld biology lab (Vollmeyer & 
Rheinberg,  2000  ) .  

   Systematic Learning Strategies 

 Learning strategies are regarded as an important 
predictor of learning outcomes. Craik and 
Lockhart  (  1972  )  described why deep processing 
of the learning material leads to better knowledge 
than shallow strategies. However, it seems to be a 
problem to  fi nd indicators of deep processing or 
good strategies. For example, Artelt  (  2000  )  and 

Initial Motivation Mediators Performance

Probability of success Persistence Knowledge acquisition

Anxiety Strategy systematicity Goal achievement

Interest Motivational state

Challenge Metacognition (planning)

  Fig. 46.3    Variables of the cognitive-motivational process model       
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Jamieson-Noel and Winne  (  2003  )  showed that 
there is no relationship between learners’ self-
reported strategies and their actual use. Thus, 
researchers need other methods than self-reported 
questionnaires. More speci fi cally, they need 
objective data to describe learners’ strategies. As 
an example, we describe how we operationalized 
strategy systematicity when using a microworld 
(e.g., Vollmeyer et al.,  1996  ) . Based on Tschirgi’s 
 (  1980  )  classi fi cation, participants who vary only 
one input at a time and hold the other inputs con-
stant are called systematic (e.g., iron 10, carbon 
0, aluminum 0). In contrast, participants could 
change all inputs haphazardly which is highly 
unsystematic (e.g., iron 10, carbon 10, aluminum 
10). Using systematic strategies leads to more 
knowledge acquisition.  

   Motivational State During Learning 

 As a third mediator, Vollmeyer and Rheinberg 
 (  1998  )  suggested the  motivational state  of the 
learner. Whereas the already described  initial 

motivation  refers to participants’ appraisals, 
affect, and interpretations of the whole situation 
 before  starting to learn, the motivational state 
refers to the participants’ motivation  during  the 
exploration phase. In our questionnaire, we ask 
how much fun people are having during learning 
and whether or not people clearly know what to 
do next. The latter aspect refers to expectancies: 
If learners do not know how to handle a task, they 
are less motivated and may give up. As people 
experience success and/or failure during learning, 
their motivational state can vary over the learning 
period, and therefore, it is informative to measure 
it several times. When using microworlds, it is 
possible to interrupt the learners after manipulat-
ing the system for a certain number of trials.  

   Metacognition 

 In most self-regulation theories, metacognition is 
an important variable (see “ Self-Regulated 
Learning ”). Although metacognition is a “fuzzy 
concept” (Flavell,  1981  ) , in our own work on 
learning with microworlds, we followed Simon’s 
idea  (  1996  )  that metacognition is mainly used for 
executive control like planning (Vollmeyer & 
Rheinberg,  1999  ) , a cognitive process which is 
mainly used in the exploration phase. In the area 

of problem-solving, Davidson, Deuser, and 
Sternberg  (  1994  )  instead described four meta-
cognitive processes: problem identi fi cation, rep-
resentation, planning how to proceed, and solution 
evaluation. This de fi nition is similar to the one 
used in Winne’s model of self-regulated learning 
(e.g., Winne,  2001 ; Winne & Hadwin,  1998  ) . 

 To point out that different researchers use the 
term metacognition to mean different cognitive 
processes, we want to refer to a recent study by 
Güss, Tuason, and Gerhard  (  2010  ) . They studied 
how different cultures (the USA, Brazil, India, 
Germany, Philippines) solve problems with two 
microworlds. Therefore, they asked their partici-
pants to think aloud while they were a command-
ing of fi cer of a  fi re brigade (microworld: 
WINFIRE) or a supermarket manager controlling 
the temperature of a cold storage depot (micro-
world: COLDSTORAGE). In the coding system 
for their thinking-aloud protocols, they had one 
category for metacognition. This category was 
used when general goals or strategies were 
expressed (“I’m going to prioritize the towns over 
the forest”). Hence, in this study on problem-
solving, metacognition was restricted to 
planning. 

 Another aspect of metacognition is monitor-
ing, that is, controlling one’s learning. Nelson 
and Narens  (  1994  )  divided monitoring into three 
categories: (1) ease of learning, (2) judgments of 
learning, and (3) feeling of knowing. 

 However, as Weinert  (  1984  )  had discussed 
earlier, metacognition, or more concretely, moni-
toring, and motivation are sometimes de fi ned and 
operationalized the same way (e.g., ease of learn-
ing maps to probability of success, feeling of 
knowing maps to “motivational state”). Therefore, 
if both constructs (motivational state and meta-
cognition) were included in one study, we would 
expect a correlation between these two media-
tors, because their operationalization overlaps. 
The same problem occurs with the construct of 
  fl ow  by Csikszentmihalyi  (  1975  ) . Flow is a pleas-
ant state, in which the following characteristics 
occur: (1) a challenge-skill balance, (2) merging 
of action and awareness, (3) unambiguous feed-
back, (4) concentration on the task at hand, (5) time 
transformation, and (6)  fl uency of action. We 
added the construct   fl ow  as mediating variable 



70346 The Role of Motivation in Knowledge Acquisition

into our cognitive-motivational process model 
(Vollmeyer & Rheinberg,  2006  ) . However, as 
motivational state and  fl ow overlap in their 
de fi nition as well as in their operationalization 
(i.e., among other items both questionnaires ask 
for self-reported ability), it is unclear how to dis-
entangle these concepts. As  fl ow is theoretically 
better de fi ned, we decided to use only  fl ow in fur-
ther investigations. Adding metacognition (espe-
cially monitoring) into the cognitive-motivational 
process model would even enlarge the problem 
because all measures are self-reported and some 
questionnaire items express similar meaning. The 
aspect of planning, however, should capture new 
information about the cognitive process.   

   Performance 

 The cognitive-motivational process model leaves 
open how many indicators for performance 
should be conceptualized. In terms of validity, it 
is better to use more indicators. When using 
microworlds, researchers can measure what the 
participants learned of the system’s structure in 
the exploration phase. Knowledge acquisition is 
gathered in that a diagram as in Fig.  46.1  without 
the links and weights is presented to the partici-
pants. After every round, they have to  fi ll in which 
link exists and which weight they assume. The 
more they know about the links between the 
inputs and the outputs, the better is their knowl-
edge acquisition. If speci fi c goals are presented 
in the application phase (e.g., “Oxygenation 
should be on 50”), then goal achievement could 
measure the transfer of knowledge. The latter is 
true for participants who discovered the system’s 
links and the weights. They only have to use their 
knowledge to calculate the inputs.   

   Our Results on Self-Regulatory 
Behavior with Microworlds 

 In a prior article (Vollmeyer & Rheinberg, 
 2006  ) , we summarized our results of how 
motivational effects in fl uence self-regulated 
learning. Therefore, a test of our cognitive-
motivational process model has been published 

in detail. The published study was based on 109 
students. In the current chapter, we present a 
short version with more emphasis on the results’ 
limitations and challenges. 

 The general aim of our research was to demon-
strate the importance of motivation in the learning 
process. Even before participants start acquiring 
knowledge about a microworld, positive initial 
motivation (high probability of success, high inter-
est, and high challenge) should help in choosing a 
more systematic and maybe a more effortful strat-
egy. Positive initial motivation should also support 
motivation during learning. A systematic strategy 
and positive motivation during learning should fos-
ter knowledge acquisition. We exploited the micro-
world’s advantages in that we could use the log 
 fi les to de fi ne strategies. Thus, we had a category 
system consisting of three categories: the highly 
systematic strategy (change one input variable at a 
time, Tschirgi,  1980  ) , the highly unsystematic 
strategy (change all inputs at a time), and a category 
in between (change two variables). We interrupted 
our participants three times (Rounds 1 to 3) after 
six trials to measure their motivation with a ques-
tionnaire. Finally, we had two measures of perfor-
mance, namely, knowledge acquisition and goal 
achievement. For knowledge acquisition, we asked 
our participants to  fi ll in the links and weights in the 
empty structure diagram (see Fig.  46.1 ) (measured 
three times during participants’ activity with the 
microworld). We then counted how many correct 
links and weights the participant had discovered. 
Goal achievement was the score calculated as dif-
ference between the goal state and the actual score 
of each output variable. With the help of a path 
analysis, we could support these theoretical assump-
tions through an empirical model (see Fig.  46.4 ).  

 The structural equation model (see Fig.  46.4 ) 
shows that with high motivation (high interest, 
high challenge, and high probability of success), 
participants chose a more systematic strategy and 
experienced more positive motivation during 
learning. A highly systematic strategy and posi-
tive motivation during learning led to better 
knowledge acquisition. When participants had to 
apply their knowledge, good knowledge of the 
system’s structure and high motivation helped 
them reach goal states more accurately (high goal 
achievement).  
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   Limitations and Challenges 

 Comparing the theoretical model in Fig.  46.3  and 
the empirical model in Fig.  46.4  makes it obvious 
that we could not include all possible mediating 
variables. To study the role of  persistence , we 
would need a different design, in which it is left 
open how often a participant wants to manipulate 
our microworld. We realized such a design 
(Vollmeyer & Rheinberg,  2000  )  and found that 
indeed motivation affects persistence: Whereas 
initial motivation had an in fl uence on persistence 
(i.e., more motivated participants were more per-
sistent), the relationship between persistence and 
learning was disrupted because learners with 
more knowledge stopped earlier. However, learn-
ers with low knowledge but high motivation were 
more persistent and hence accumulated more 
knowledge over time. Thus, motivation had its 
most measurable impact on the learning out-
comes of slow learners. 

 More problematic is the inclusion of the medi-
ating variable metacognition. Although it would 
be possible to have participants think aloud to 
measure their problem identi fi cation, planning, 
and so on, adding these aspects of metacognition 
into the path analysis would lead to methodologi-
cal problems. For each additional variable, we 
need more participants to have enough power to 
run the path analysis. Another limitation of the 
path analysis is that it is based on correlations, 
and thus, we cannot claim causality. The model 
in Fig.  46.4  is based on the procedure that initial 
motivation was measured before participants 
entered their  fi rst change to an input. Strategy 
systematicity was coded from the  fi rst trial to the 
 fi rst interruption, and knowledge acquisition and 
motivational state were both measured during the 

interruption. Therefore, the path model could be 
criticized on the grounds that the relation between 
knowledge acquisition and motivational state 
could be turned around. Even if we added only a 
single indicator for metacognition, we would 
enlarge the problem of causality. As the verbal 
protocols would be measured at the same time as 
the strategy systematicity, it could be argued that 
metacognition in the exploration phase (i.e., plan-
ning, solution evaluation) in fl uences strategy sys-
tematicity, or vice versa. Depending on how we 
choose the direction of the arrows, we will obtain 
different effects on the dependent variables (i.e., 
knowledge acquisition and goal achievement). 
Even if we compared all plausible models and 
their model  fi ts, we might  fi nd the best empirical 
model but still be left with doubts as to whether 
the best theoretical model was detected. 

 To integrate metacognition into our model, it 
is necessary to  fi rst study all aspects that Davidson 
et al.  (  1994  )  mentioned for problem-solving via 
verbal protocols. Then maybe we could  fi nd a 
way to reduce the four aspects if they are corre-
lated. Thus, one aggregated score for metacogni-
tion in the exploration phase could be added into 
our model. However, monitoring will be even 
more dif fi cult to integrate methodologically 
because this concept is already close to motiva-
tional state (see above) and it is measured through 
a questionnaire at the same time point as motiva-
tional state and knowledge acquisition (problem 
of causality). 

 Analyzing our data through structural equa-
tions offers another interesting question: What 
happens during the learning process? With the 
help of our microworld, we can study, with 
signi fi cant precision and in a longitudinal way, 
what participants feel after they manipulated the 

Round 1 Round 2 Round 3

interest
systematicity systematicity systematicity

challenge
motivat. state motivat. state motivat. state

probability of

success knowledge knowledge knowledge goal

achievement

.68

.66

.53 .81

.42

.46

.58

.51

.34

.68

.19

.74

.76

.72

.18

.63

.22.17

  Fig. 46.4    Path analysis of the task-speci fi c model for the microworld  biology lab        
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inputs for a certain number of trials. Did some 
participants lose interest? Or was there an increase 
in some participants’ belief that they could man-
age the task (i.e., probability of success)? For 
these questions, we also need more participants 
to study subpopulations. 

 Up to now, we have not really analyzed our 
data as a process model for self-regulated learn-
ing. Self-regulation means that learners supervise 
their own learning and change their behavior and/
or their motivation if, for example, a strategy 
does not work or an unexpected result occurs. In 
the path analysis in Fig.  46.4 , systematicity and 
motivational states between Rounds 1 and 2 are 
not as high as between Rounds 2 and 3. Between 
the  fi rst rounds it seems that some learners 
changed their behavior and/or their motivation. 
Although theoretically we expect a feedback 
loop, the empirical model cannot depict these 
assumptions. More analyses are needed to explain 
this self-regulation process.  

   Final Remarks 

 So far we used microworlds only for research 
questions as opposed, for example, to diagnostic 
questions (Wirth & Klieme,  2003  ) . We gained 
insight into how motivation affects the learning 
process. However, previously we started manipu-
lating single variables of the model. For example, 
Vollmeyer and Burns  (  1996  )  presented correct, 
wrong, or no hypotheses about the structure of 
the system. The result was that even a wrong 
hypothesis helped students better predict the out-
comes for the output variables. In a study by 
Vollmeyer, Püttmann, and Imhof  (  2009  ) , we 
increased the (self-reported) probability of suc-
cess through instruction related to stereotype 
threat (Schmader, Johns, & Forbes,  2008  ) . In this 
study, we did not use a microworld but a physics 
task because we manipulated girls’ stereotype 
threat. (Instruction: “It is important to keep in 
mind that if you are feeling anxious while work-
ing with the program, this anxiety could be the 
result of these negative stereotypes that are widely 
held in society and have nothing to do with your 
actual ability to do well on the task.”) As expected, 

the girls’ probability of success increased. As a 
consequence, the girls started with better learning 
strategies and experienced more  fl ow during 
learning than the girls without this instruction. 
Finally, they even acquired the same amount of 
knowledge as males did. 

 If even such small manipulations can foster 
the formulation of hypotheses (Vollmeyer & Burns, 
 1996  )  or probability of success (   Vollmeyer et al., 
 2009 ), the next step in our research could be to 
develop a program to support students’ self-regu-
lated learning. Our results have demonstrated that 
a more positive motivation before starting to learn 
and more systematic strategies improved learning.      
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  Essay-writing skills 

 data collection , 285  
 performance predictions and monitoring 
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  Huntington’s disease , 82   
  Hypermedia , 263, 314  

 Aquarium Construction Toolkit project , 554  
 CBLEs , 683  
 COPES model , 57–59, 130–131  
 empirical evidence and methodological approaches , 

686–688  
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 prefrontal cortex , 86  
 TBRS , 85  
 top-down signals , 87  
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 learning , 90–92  
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 domain model , 356  
 formative assessment , 357  
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 feedback and summaries , 421  
 homework problem , 419  
 Interactive MultiMedia Exercises   ( see  Interactive 
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 planning and goal setting , 221  
 problem representation process , 220  
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 recharacterization process , 221–222  
 regulation phase , 221  
 social support , 222–223  
 solution process , 220  

 technology-based learning environments , 411  
 traditional assessment approaches , 411  
 visualization map , 232–233   

  Programa Operacional de Potencial Humano (POPH) , 605   
  Programme for International Student Assessment 

(PISA) , 36   
  Prose-diagram interaction (PDI) feature , 540    

  Q 

  Questionnaire on Current Motivation (QCM) , 581   
  QuizGuide , 352–353    

  R 

  Reading to Learn (RTL) 
 empirical roots , 535–537  
 highlight and animate feature , 543  
 research program , 534  
 study one 

 Comprehension Fostering codes , 539  
 Comprehension Monitoring codes , 539  
 General codes , 539  
 reading comprehension , 538  
 TTS , 534  

 study two 
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 measurement , 542  
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