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This book is dedicated to National Science Foun
dation program officers Andrew Molnar, Nora 
Sabelli, and Beverly Hunter, whose encourage
ment, guidance, and support has made possible 
the project work reported here. They have consis
tently promoted the development of computer sim
ulation and modeling methodology for science 
education. 

"The challenges before those of us interested in 
educational reform, and in educational and cog
nitive research, are to explore the pedagogical 
implications of this methodology that has revolu
tionized science, to adopt and modify it, to collab
orate with scientists thinking about the science 
that will be taught in the 21st century, and exper
iment with how to best teach it to students with 
diverse learning styles, in such a way that the 
goal of general scientific literacy can be reached." 
(Nora Sabelli, 1994, Interactive Learning Envi
ronments, Vol. 4, No.3, 195-198, Ablex Publish
ing Corporation, Norwood, NJ) 



Series Preface 

The world consists of many complex systems, ranging from our own bodies 
to ecosystems to economi~ systems. Despite their diversity, complex systems 
have many structural and functional features in common that can be effec
tively simulated using powerful, user-friendly software. As a result, virtually 
anyone can explore the nature of complex systems and their dynamical be
havior under a range of assumptions and conditions. This ability to model dy
namic systems is already having a powerful influence on teaching and study
ing complexity. 

The books is this series will promote this revolution in "systems thinking" 
by integrating skills of numeracy and techniques of dynamic modeling into a 
variety of disciplines. The unifying theme across the series will be the power 
and simplicity of the model-building process, and all books are designed to 
engage the reader in developing their own models for exploration of the dy
namics of systems that are of interest to them. 

Modeling Dynamic Systems does not endorse any particular modeling par
adigm or software. Rather, the volumes in the series will emphasize simplic
ity of learning, expressive power, and the speed of execution as priorities 
that will facilitate deeper system understanding. 

Matthias Ruth and Bruce Hannon 
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Preface 

Computer-based modeling and simulation are becoming increasingly impor
tant in the learning and teaching of science because of three converging 
trends: the adoption of new standards for science education for all citizens, 
the explosion in scientific information and in its accessibility through com
puter networks, and the development of powerful modeling tools made pos
sible by the increased computational and multimedia capabilities of our ma
chines. The Science Education Standards of the National Research Council 
assign a key role for modeling in science education: 

As they mature, students become increasingly able to understand invisible conceptual 
worlds of science, and to build more abstract understandings. They develop manipu
lative and cognitive skills that allow more complex experimentation and analysis of 
quantitative as well as qualitative data. In addition to their ability to identify patterns 
within such data, students become increasingly able to formulate explanations for phe
nomena in terms of models and theories, many of them mathematically grounded. 1 

The thesis of this book is that the introduction of computational modeling in 
the precollege science and mathematics curriculum has the potential to sig
nificantly improve the quality of education. However, there is a serious lag 
between these new capabilities and their effective educational implementa
tion and use. This book considers the question: What issues need to be ad
dressed in bringing modeling into the precollege curriculum? The book 
brings together in-depth discussions of these issues in the context of several 
major educational modeling projects from across the United States, as well 
as a major project from England. The accompanying CD-ROM includes most 
of the software modeling tools and applications described, together with as
sociated documentation. Updates of some of the included software can be 
obtained from the various projects' web sites , which can be accessed through 
links from the Springer-Verlag Internet site at http://www.springer-ny.com/ 
biology/moddysys/. 

1 National Science Education Standards, Washington, DC: National Academy Press, 
1996. 
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x Preface 

In many ways, this book is an outgrowth of two 3-day conferences on the 
topic "Setting a Research and Planning Agenda for Computer Modeling in the 
Precollege Curriculum," sponsored by the National Science Foundation (NSF 
Grant RED-9255877). The conference participants included precollege teach
ers; university faculty in mathematics, science, and engineering; software de
velopers; educational researchers; and NSF program officers. The confer
ences had two major purposes: to significantly increase the level of 
communication among experts in the field and to provide information and 
guidance to policy makers, researchers, and educators on issues related to 
the use of models and simulations in schools. 

The major conclusions of the conference participants were twofold: (1) 

From the earliest grades, children can be-and should be-engaged in the 
process of building, refining, using, and validating increasingly realistic mod
els of natural and social phenomena. (2) Modeling ideas and activities should 
have a central role throughout the precollege science and mathematics cur
riculum. 

The conferences were motivated by the fact that computer capabilities for 
representing knowledge, simulating complex phenomena, creating visually 
rich animated displays, and enabling people more readily to communicate 
and share information with each other and with their computer tools-pro
vide enormous potential for modeling, in education as well as research. We 
are beginning to realize and demonstrate some of the educational benefits 
made possible by the thoughtful use of computer technology. Students can 
use computers to model systems with complex structures and behaviors in a 
variety of representations and at different levels of depth and detail. Models 
can be made transparent and accessible to students for exploration, study, 
and analysis. Students can use design tools to build their own models. They 
can access real data through computer sensors that monitor the physical 
world. Modeling tasks and projects can contribute greatly to motivating an 
understanding of the ideas and issues at the heart of learning and thinking 
within all the disciplines. Modeling activities can foster transformational 
changes in students' experience of science, mathematics, and other subjects, 
with dramatic learning. 

We hope this book gives educators and policy makers valuable guidance in 
making thoughtful decisions on the use and benefits of modeling in their 
schools. And we hope it will contribute to the increased adoption of model
ing ideas and activities in precollege science and mathematics curricula. 

The editors wish to thank Nora Sabelli, Beverly Hunter, and John Richards 
for their thoughtful advice and guidance in planning the two conferences as 
well as for many hours, since then, of valuable conversation. 

Wally Feurzeig and Nancy Roberts 
Cambridge, Massachusetts 
March 1999 
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Introduction 

From the time of Galileo until fairly recently, there were two complementary 
ways of doing science: experiment and theory. Now there is a third way. 
Computer modeling, a child of our time, is a powerful new paradigm, serv
ing as a bridge between the traditional processes of experiment and theory 
and as a synergistic catalyst to both. The use of computer models as tools for 
furthering scientific knowledge is fast becoming a key component of current 
scientific research. We don't know what scientific discoveries will be made 
in the twenty-first century, but we can be sure that explorations and experi
ments with computer models will playa paramount role in making major ad
vances possible. 

The essence of computer modeling-mathematical experimentation
provides a powerful tool for connecting observed phenomena with underly
ing causal processes. Indeed, much of our understanding of the workings of 
the physical world stems from our ability to construct models of it. Models 
are particularly valuable mental tools, because in simplifying the complexi
ties of the real world, they enable us to concentrate our attention on those 
aspects of it that are of greatest interest or significance. It has even been sug
gested that our ability to create, examine, and refine such models is crucial 
to our understanding of the world and that without this ability, we would lit
erally be unable to "think" as humans. 

Computer-based modeling is particularly powerful when it is linked to the 
ability of the computer to simulate the system modeled and to display its be
havior via computer graphics. Modeling provides a central and fundamental 
tool for describing and exploring complex phenomena. Real-time interactive 
models with richly animated graphical displays-the same kinds of tools be
ing used to great benefit in scientific research-can be made accessible for 
use by students. The models and modeling tools that students work with are 
typically a great deal simpler than those used by scientists, but the funda
mental character of the modeling activity is the same. 

Visualization is valuable for students for very much the same reasons that 
it is valuable for researchers. It enables them to observe and study complex 
processes as these processes are run and to "see" into phenomena that are 

xv 



xvi Introduction 

not accessible to direct observation, thereby enhancing their comprehension 
of the underlying mechanisms. It can provide insight into the inner workings 
of a process-not just what happens, but also how and why. Visualization 
can greatly aid students in understanding the complex dynamic behavior of 
systems composed of interacting subsystems-in studying reaction-diffusion 
processes in chemistry, for example, or the dynamics of competition, preda
tion, and adaptation in multispecies population ecology models. 

The sciences we need to learn in the twenty-first century will involve ex
tensive use of computational models. Acquiring fluency in model-based in
quiry should become an essential goal of precollege science education. Yet 
the notions and art of modeling are seldom taught in school science or math
ematics classrooms today. Experiments, such as those described in this book, 
by a small number of science educators have been conducted since the ar
rival of computers, but there has been essentially no significant impact in pre
college classrooms. This situation, which has been frustrating to scientists 
and science educators who work with computer modeling in their laborato
ries and classrooms and know its great educational potential, was the driving 
force that led to the NSF-sponsored conferences and to this book. 

A number of obstacles stand in the way of effective adoption and integra
tion of modeling activities into the precollege curriculum. Several key issues 
that were articulated by participants in the two modeling conferences need 
to be clarified and resolved in order to guide ongoing modeling develop
ments in a coherent and educationally productive fashion. In the follow
ing list, these issues are presented as "tensions" between closely related but 
distinctly different and ostensibly opposed perspectives. The versus in the 
phrases that describe them is not intended to imply an intractable duality. 
Rather, the contrasting views are highlighted to invite discussion about re
solving differences or reconciling perspectives. The tensions identified were 
those between 

• Modeling in science research versus modeling in science education. 
This issue concerns the differences between modeling by experts and 

modeling by novices, in particular between modeling by scientists and 
modeling by precollege students. Some participants claimed that, under the 
guidance of professionals, average high school students can use the same 
models and supercomputing facilities employed by research scientists. Oth
ers insisted that all but the brightest high school students need specially de
signed modeling tools and applications to introduce them to model-based 
inquiry methods. 

• Learning to use models versus learning to design and build models. 
Participants differed as to whether (and how) students can learn to design 

and build their own models in addition to working with models provided 
to them. Some participants were convinced that students have a sufficiently 
difficult task learning how to conduct model-based investigations with 
models that are given to them. Others held the constructivist position that 
students learn the skills of model-based inquiry from engagement in the 
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process of building models and simulations-indeed, that the process of 
designing and building models is a natural part of the process of learning to 
use models as investigative tools. 

• Computer-based modeling versus laboratory experimentation. 
Computer models are obviously unreal. How is it, then, that they can be 

credible tools for capturing key aspects of reality? Participants agreed, of 
course, that computer models are not a substitute for observation of and ex
perimentation with real phenomena. They also agreed that computer mod
eling adds a valuable new dimension to scientific inquiry and understand
ing. The key issue is the appropriate relationship between the activities of 
computer modeling and laboratory experiment, and how these two kinds 
of activities should be integrated in the science course . 

• Visualization of model output behavior versus visualization of model struc
ture and processes. 

Computer modeling programs in science research applications typically 
employ visual representations of the model's behavior-animated displays 
of the outputs generated in the course of running the model. Some partici
pants believed that this kind of visualization is sufficient for science edu
cation. Others argued that an additional kind of visualization facility is 
needed. In contrast to visualization of the outputs produced by the model, 
this tool would make possible the visualization of the model processes 
themselves-the model structures and algorithms-as they interact during 
the run. The issues here are: when is this kind of visualization useM in 
model development and model-based inquiry, and what are effective in
structional strategies for its use. 

This is a select sample, and not an exhaustive list. To understand the edu
cational and technological problems surrounding the effective introduction 
of modeling in the precollege curriculum, it is crucial that we address these 
tensions and investigate the associated issues. These need to be resolved in 
order to inform and help provide direction to science educators, software de
velopers, curriculum designers, and policy makers for the integration of mod
eling and simulations into the curriculum. In the following chapters, the au
thors address these issues in the context of their own work as they seek to 
convince people involved in precollege education that modeling can be a 
powerful catalyst for improving science education. 

The first part of this book, Modeling Tools for Students and Teachers, de
scribes several computer modeling languages and illustrates their use in a 
wide range of elementary and secondary classroom applications. World
Maker, Model-It, LinkIt, STELLA ®, and StarLogo are generic modeling tools. 
WorldMaker and Model-It are useful for introducing modeling to beginning 
students in terms of qUalitative rules describing their objects' actions and re
lationships. LinkIt, designed for "modeling without mathematics," represents 
variables and the "semi-quantitative" causal connections between them 
graphically, without the user's having to specify the form of the mathemati
cal relations. STELLA ®, which derives from the system dynamics modeling 
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perspective, uses Stock and Flow diagrams to provide a graphical represen
tation of differential equations. StarLogo makes it possible to model parallel 
processes that may involve large numbers of objects. 

The tools described in these chapters exemplify a rich variety of modeling 
paradigms and designs. The computer can be a superb tool for constructing 
and investigating alternative models of real-world systems. Even though this 
pedagogical use has been the subject of several research projects during the 
past few years, two circumstances have made progress difficult: the lack of 
model development tools that are accessible to students with limited knowl
edge and skill in mathematics, and the lack of a compelling methodology for 
introducing students to the notions and art of modeling as a significant part 
of their science activity throughout the secondary curriculum. The authors 
describe tools and strategies to overcome these difficulties, show examples 
illustrating their use by students and teachers in a number of domains, and 
discuss the benefits of their modeling approaches in enhancing mathematics 
and science learning. 

Model-Based Inquiry, the second part of the book, describes four exem
plary projects investigating the introduction and integration of modeling 
ideas and activities into the secondary science curriculum. These chapters fo
cus on tools that embody the knowledge of specific domains such as genet
ics, physics, and physiology. The authors capture the new capabilities made 
possible by computer modeling for supporting science inquiry, particularly 
modeling experiments and model-based reasoning. They discuss the role of 
model building by students and the interplay between computer modeling 
and physical experiment. 

The last part of the book, Toward Extended Modeling Environments, de
scribes two projects centered on the educational application of new and so
phisticated modeling technologies. These chapters present two ends of a 
continuum: from providing science students with a facility for creating tan
gible and attractive objects generated by mathematical models, to inhabiting 
a virtual reality environment designed to provide students with the sensation 
of being present inside the science space of the model. 



Part 1 

Modeling Tools for 
Students and Teachers 

Each chapter in this section describes a modeling tool designed for precol
lege students. The tools employ a variety of modeling representations and 
structures. Their specific capabilities are suited to different kinds of applica
tions and levels of complexity. Despite the authors' differences in approach 
and focus, they share the conviction that appropriately structured activities, 
which give students substantial opportunities for designing and building 
models, can provide powerful science learning experiences. 

Modeling Clay for Thinking and Learning describes two modeling tools 
developed at the University of London by author Jon Ogborn and his col
leagues. These tools are designed to make computational modeling a part of 
curriculum experience for students from the age of about 10 years onward, 
without requiring conventional mathematical skills. One tool, WorldMaker, 
enables students to create a discrete model world by placing various types of 
objects on a grid of cells and specifying simple rules to describe the interac
tions of the objects. The model is then run to investigate the consequences 
of these rules over time. The other tool, LinkIt, goes from a world of inter
acting objects to a world of interacting variables. It enables students to ex
press causal relationships among variables through causal linkage diagrams 
instead of mathematical equations. The author'S research suggests that by de
veloping models with these tools, students come to confront and treat im
portant mathematical ideas and scientific issues. He argues that the activity of 
building computer models should be an integral part of the school mathe
matics course, from arithmetic through calculus. 

Training System Modelers is a major initiative for developing materials 
to train teachers to integrate systems-oriented modeling into their curricula. 
Authors Ronald J. Zaraza and Diana M. Fisher use the STELLA ® modeling 
language, which was developed for creating models based on the system 
dynamics perspective originated by Jay Forrester. STELLA ® models com
prise four types of components. Stocks store information or values. Flows 
change the values of stocks. Converters carry out logical or arithmetic oper
ations. And connectors carry information from one component to another. 
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The models are developed as visual diagram structures connecting such ele
ments. Models enable users to experiment with a system, study its behavior, 
and investigate the effect of changes in the model on the system's behavior. 
Zaraza and Fisher assert that teachers need to build models of the systems 
they teach to understand fully the dynamics of the systems and the theory un
derlying them. They have found is that when teachers start with simple mod
els and incrementally embed appropriate new features, they internalize not 
only the process of model building but also the generalizations encompassed 
by the underlying theory. The chapter includes a number of teacher and stu
dent models across a wide range of applications. 

Construction of Models to Promote Scientific Understanding describes 
the use of Model-It, a software tool designed to introduce beginning students 
to modeling. The key elements in the models developed with Model-It are 
objects, their characteristic properties (factors), and the relationships be
tween factors. The use of Model-It is described in connection with student 
work in a unit on global climate. Student models include factors such as the 
amount of carbon dioxide emitted by cars, the level of ozone in the atmo
sphere, and the amount of pollutants emitted by factories. Relationships are 
typically qualitative statements connecting two factors-for example, as the 
level of chlorofluorocarbons in the atmosphere increases, the level of ozone 
in the atmosphere decreases. The chapter describes the classroom context 
of the iterative model development process, which is highly structured and 
includes explanation, demonstration, presentation, review, and evaluation. 
The authors, Michele Wisnudel Spitulnik, Joe Krajcik, and Elliot Soloway, are 
committed to teaching model construction as a central element in science 
learning. 

In A Visual Modeling Tool for Mathematics Experiment and Inquiry, 
Wallace Feurzeig describes Function Machines, a visual computer language 
designed to facilitate student work in mathematical modeling. The language 
employs high-level representations of mathematical processes. A model's 
computational processes are represented visually as "machines" with inputs 
and outputs. Machines communicate data to each other graphically via pipes 
connecting the output of one to the input of another, in data-flow fashion. 
Students can view a model's inner workings as it runs. At the same time they 
can view the model'S external behavior, the outputs generated by its opera
tion. These dynamic visual representations significantly aid in the under
standing of key computational concepts and make complex modeling pro
grams more transparent and accessible. The chapter discusses recent work 
with Function Machines in mathematics classrooms and gives examples of its 
use in expressing parallel processes and in addressing complexity. 

Decentralized Modeling and Decentralized Thinking discusses modeling 
activities that enable students to explore the workings of systems involving 
complex group behavior that seems to be centrally controlled (such as for
aging in ant colOnies, traffic jams, and the operation of market economies). 
The models are developed in StarLogo, a modeling environment designed 
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to help students make a fundamental epistemological shift, moving beyond 
the "centralized mindset" to more decentralized ways of understanding com
plexity and making sense of the world around them. StarLogo facilitates the 
programming of massively parallel processes involving a large numbers of ob
jects. Author Mitchel Resnick argues that the process of learning to design 
and build models will help students develop theories to improve their under
standing of the world. He discusses a set of principles that, in his view, should 
guide applications of computer modeling in science education. 

An Object-Based Modeling Tool for Sdence Inquiry describes OOTI..s 
(Object-Object Transformation Language), a computational environment for 
modeling situations and phenomena that satisfy mass action laws. The OOTI..s 
equation language describes "well-stirred" systems composed of large num
bers of dynamically interacting objects. The many areas of application in
clude epidemiology, population ecology (competition, predation, and adap
tation), economics models, physics (gas kinetics), traffic flow, and chemical 
processes (reaction-diffusion equations). OOTLs provides students with a 
parser to construct equations describing interactions between symbolic ob
jects shown visually as colored icons. The objects may represent chemical 
species, gas molecules, or humans. Objects interact with each other at 
specified rates. The OOTLs equations describe the transformations that result 
from the object interactions. The authors, Eric Neumann, Wallace Feurzeig, 
and Peter Garik, give examples of the application of OOTLs and illustrate its 
use in conjunction with laboratory experiments. 

These six chapters present a rich variety of classroom uses of modeling and 
simulation to help students learn science and mathematics. Chapters 1 and 2 
describe modeling tools based on animated causal diagrams. Ogborn intro
duces Linklt, a tool that expresses relationships using "semi-quantitative" 
variables. It helps students gain insight into phenomena that involve causal
ity and feedback. Zaraza and Fisher take their students into the quantitative 
world by introducing them to system dynamics ideas, using STELLA ® as the 
modeling software. Work with Model-It, the subject of Chapter 3, moves in 
the opposite direction from STELLA ®. It models relationships among objects 
by using qualitative descriptions. All three chapters present clear examples 
showing how a student's model reflects the student's level of understanding 
of a problem, where this understanding is incomplete, and how the student's 
understanding deepens through model building. 

Chapters 4, 5, and 6 present distinctly different approaches to model rep
resentation and processing from those described above. In Function Ma
chines, users express mathematical models as functions; these are repre
sented visually as interconnected machine structures. By inspecting the 
machines as they run, students can better understand a model's structure, 
processes, and behavior and can more easily design, modify, and extend mod· 
els. StarLogo postulates a decentralized object-based modeling world within 
which each object follows its own set of rules. The objects operate indepen
dentlyand, together, generate the observed group behavior as an intrinsically 
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emergent consequence. OOTLs is another object modeling world. In OOTLs, 
events are conceptualized as interactions among the objects involved in the 
model processes. The interactions are expressed as rate equations. OOTLs is 
particularly well suited for modeling dynamic processes in terms of state tran
sitions among the interacting objects. Function Machines, StarLogo, and 
OOTLs all support parallel processing. The chapters include examples of par
allel modeling applications. 
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Modeling Clay for Thinking 
and Learn i ng 

Jon Ogborn 

Need Only Experts Apply? 

To start, here is a tale of how the obvious isn't always obvious. 
It seems obvious and natural to us, because it is what we are all accus

tomed to, that the education of students in theoretical thinking in science 
has to progress through the following foot-dragging and painful sequence of 
stages: 

1. Learn some arithmetic (in elementary school) 
2. Learn, or fail to learn, some algebra (in high school) 
3. Leam some calculus (maybe only at college) 
4. Learn (or not) about finite-difference approximations to calculus 
5. Use computational models of processes (maybe in graduate school) 

A good proportion of the whole population drops out at the first stage, and 
only the very few who study mathematics, science, or engineering at uni
versity get to stage 3 and beyond. Mathematics is generally held to be too 
difficult for most, and mathematics with calculus and computers is often 
saved up for university and graduate school, where most of us never arrive. 
As a result, the population at large has no idea how computers guide space
craft or predict the course of the economy. Worse, the limitations of com
putational models are hidden from public view; certainly, observers cannot 
distinguish those successes and failures of models that depend on the smart
ness of people from those that depend on the "smartness" of computers. 
Mathematics that most of us can't do is needed before one can make models 
with that mathematics. It all seems so blindingly obvious. Only experts need 
apply. 

On the contrary, this writer believes that this alleged "natural progression" 
is very far from obvious and that much of it can actually be reversed. That is, 
students can use computers to make models and, through that process, learn 
some mathematics, rather than having to learn mathematics in order to get 
started. Thus my progression would look something like this: 
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1. Make some computer models 
2. Make some more computer models 
3. Analyze some computer models 

learn some arithmetic 
learn some algebra 
learn some calculus 

When one makes models, one begins to think mathematically. When one 
compares models and analyzes how they work, one can be led to deeper 
structures-for example, the calculus notion of a rate of change. It might 
even be that calculus would come to seem easy, just a collection of recipes 
for how things change: "If it's like this now, how will it be in a moment?" At 
the least, nearly everybody in the whole population would themselves have 
made a computer model of something and would have had a chance to grasp 
the seeming paradox that such models can be, all at the same time, wonder
ful, faSCinating, productive of thought, overly simple, misleading, and maybe 
downright wrong. They might understand that models are mechanized 
thought, which, like thought itself, is highly valuable and deeply dangerous. 
A population that believes that thinking is too difficult for it is a population 
terribly at risk in any world, let alone in our technologically complex one. 

The idea is that making models can help make mathematics. Mathematics 
is not needed to make models. However, making models is learning, in one 
special way, to "think mathematically" -in a way that many people can do. 
Not only experts need apply. 

Such thoughts map out a long educational journey, perhaps too long to 
travel in a lifetime. But all journeys start with a few steps. And all those steps 
need to do is to head in the right direction. The foregoing argument is a com
pass to guide them. You, the reader, may well feel that the projected journey 
is absurd, ill-conceived, or dangerous. Bear with me. In this chapter I will sug
gest only a few, I think rather reasonable, first steps. And I will start, not with 
mathematics or computers, but with people and how people think. 

Reflecting about how people think leads me to two propositions or hy
potheses. They are the following: 

1. We need computer modeling systems that express their models in terms 
of objects and the actions of these objects on one another. Given such 
tools, children as young as 9 or 10 years old can make interesting mod
els and begin to theorize for themselves in a way that many would char
acterize as "abstract" or "mathematical." 

2. We need computer modeling systems that allow one to express relation
ships between things that can reflect "big" and "small," as well as "in
creasing" and "decreasing," but do not require one to write algebra. 
Given such tools, many students can think effectively about quite com
plex systems, even those that involve feedback, and can learn much reg
ular mathematics from them. 

The rest of this chapter provides a basis for these proposals and suggests 
some first steps toward realizing them in practice. 
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How People Think 

Of course, people do think, sometimes rather well. Oddly enough, many of 
us have been taught to think negatively of the way we think. To describe one 
crucial aspect of how people-naturally, fluently, and successfully-think, 
I will start in a perhaps unexpected place, with some rebellious American 
linguists. 

Over recent years, the linguists George Lakoff and Mark Johnson have, 
through a succession of books and articles (LakoffandJohnson, 1980, 1981; 
Lakoff, 1987; Johnson, 1987), shown the fundamentally metaphorical, con
crete substance of everyday thought. Mark Johnson, in The Body in the 
Mind, shows how much of our natural spontaneous thinking is founded on 
imagined bodily action: an idea "strikes" us; an opportunity is "grasped"; a 
message is "got across"; a value is "tenaciously held"; a chance is "let slip"; a 
prospect is "in view"; a project "falls by the wayside." Independently, in his 
Women, Fire and Dangerous Things, George Lakoff displays whole systems 
of concrete metaphor underlying the ways we think: communication as pip
ing through conduits; causation as action making movement or displace
ment; logic as putting things in containers. Together, in Metaphors We Live 
By, Lakoff and Johnson first set in motion such a program of understanding 
thinking. As linguists, they are regarded as rebellious because they deny-or 
ignore-the current consensus among most linguists that language is a mat
ter of arbitrary syntactic structures. Instead, they focus on something else, 
the material out of which people make their meanings. 

A First Pillar: Objects and Events 

The key point is that people think through imagined objects and events. Cu
riously, Lakoff and Johnson never (so far as I can tell) mention a great Swiss 
predecessor, though one who worked in a very different field - I refer to Jean 
Piaget. Perhaps they are inclined to dismiss Piaget as the author of a rigid
seeming system of "stages of thought" from preoperational through concrete 
to formal. Perhaps they know of the many demonstrations that adults, in
cluding many university undergraduates, do not much use "formal"(that 
is, logical) schemes of reasoning. These results are widely, but in my opin
ion mistakenly, regarded as showing that something is terribly wrong with 
people's thinking. I believe they show instead something rather natural-in
deed obvious: that Lakoff and Johnson are right about how people think. 

Piaget's great merit, in my opinion, was that he was the first to character
ize-and then to study in delicate and exhaustive detail-the mode of think
ing that he called "concrete operational." It is, simply, thinking done using 
imagined objects and events. Piaget saw it as characteristic of children be
tween about 5 and 15 years of age; later work indicates its fundamental im-
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portance in all adult thinking-work to which Lakoff and Johnson have sig
nally contributed while seeing themselves as doing something else: under
standing how language works. 

Piaget's great failure, again in my opinion, was that he grotesquely overes
timated the importance, and misunderstood the nature of another mode of 
thOUght that he called by "formal operations," by which Piaget meant rea
soning detached from imagined concrete particulars. Like many other philos
ophers of this century, influenced and impressed by the growth of mathe
matical logic and its value in addressing questions of the foundations of 
mathematics, Piaget attributed far too much importance to logic-that is, to 
the security of reasoning independent of the content of that reasoning. That 
did not stop him from joking that he personally had never got beyond the 
stage of concrete reasoning. He just missed the fact that getting beyond that 
stage is not the point: It is not a stage but an essential component of how we 
all think. What we call formal reasoning is instead just a special and rather un
usual case of concrete reasoning. It is "concrete reasoning with symbols." 
Mathematicians and logicians have become so accustomed to the way some 
systems of symbols work that they treat them as concrete objects. What are 
called rules or laws of reasoning are just expressions of what one can do to 
these symbolic objects and what the objects themselves can do or cannot do. 
Concrete thinking with imagined real objects and events is founded on ex
actly the same sort of knowledge: what things can do, can have done to them, 
and are made of. 

Happily, this last formulation of the basis of the way people create mean
ing-what things can do, can have done to them, and are made of-was for
mulated by Piaget himself in a book (piaget and Garcia, 1987) that appeared 
posthumously: Towards a Theory of Signification. It is a view with which 
Lakoff and Johnson ought cheerfully to concur. 

Here, then, after an express whistle-stop tour of some of this century's 
thought, is a first pillar for understanding spontaneous human thought. It 
uses imagined objects and events, often metaphorically, basing ideas on what 
things can be envisaged as dOing, having done to them, and being made of. 
That is, it rests on imagined action. It may not be necessary to add that action 
is what Piaget saw as the whole basis of intelligence. 

A Second Pillar: Semi-Quantitative Reasoning 
Pick up any newspaper and tum to the business pages. You will find things 
like this, in today's paper: 

The evidence that no head of steam is building amongst manufacturers for large wage 
rises will be taken by the Government as another indication that inflationary pressures 
in the economy remain subdued. 

The Guardian, February 17,1997 

You will also find "pressures raising prices," "share values falling due to 
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lack of support," "steady drift" up or down, "continuing momentum" for 
change, and so on. These phrases reflect the way people naturally think 
about the relationships between one process and another-namely, that they 
go together or oppositely, or that one pushes another up or down. Reflect on 
other common-sense things one says: that students would do better if they 
were more motivated, that one could do more in one's job given more energy 
or less constraint, that lack of confidence inhibits achievement. Try thinking 
about gardening: "Rain makes the flowers grow faster." Try thinking about 
holidays: "lots of sunshine makes us cheerful." All fit the same mold. 

The concreteness and basis in action of such thinking are evident. What is 
not quite so evident is the underlying structure as a kind of natural mathe
matics. It is based on a kind of variable, such as "amount of happiness" or 
"amount of stress." These "variables" are not, however, and usually cannot 
be, quantified-numbers and units cannot be attached to them (though 
economists sometimes try to do so, as in "liquidity preference"). But they do 
contain ordering of magnitudes; such a "quantity" is envisaged as being more 
or being less, as being large or small, as enormous, normal, or essentially 
nothing. Such "quantities" are also envisaged as changing-as rising or fall
ing, quickly or slowly. 

I shall call reasoning of this kind semi-quantitative. It has been studied un
der the label qualitative reasoning by a number of people in cognitive sci
ence who are interested in giving computers more "natural" modes of 
thought (Gentner and Stevens, 1983; de Kleer and Brown, 1985; Forbus, 
1985; Hayes, 1985). Interestingly, it is far from being as vague as it seems. It 
obeys a rather well-defined calculus. It can be modeled as "quantities" that 
are all on essentially the same scale (small, medium, or large) and affect one 
another through links that determine the "sign" of the effect (the same or op
posite in direction-"positive" or "negative"). The effects of one such "quan
tity" on another are of two broad kinds. One kind occurs when the effect is 
direct, in a sort of semi-quantitative proportionality: The wealthier you are, 
the happier you are. The other kind occurs when one "quantity" causes the 
other to change: The more you eat, the fatter you gradually get. This latter 
kind of effect is analogous to the calculus relationship between a quantity and 
what determines its rate of change. 

This type of thinking is sufficiently prevalent and natural to have been used 
for many years, under the name causal-loop diagrams, in the initial design of 
dynamic models. Causal-loop diagrams are recommended, for example, as a 
strategy for devising models for the computer modeling system STELLA ®, and 
they figure prominently in primers such as Introduction to Computer Simu
lation, by Nancy Roberts and others (Roberts et al., 1983). Figure 1.1 shows 
an example. 

Two Steps Forward 

Following our instincts, and constructing the kinds of arguments above as we 
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FIGURE 1.1 Forest Development. Adapted from Roberts et al., Introduction to Com
puter Simulation, p. 53. 

went along (sometimes to rationalize what we had done and sometimes to 
think about where to go next), we have, in our research group at the Uni
versity of London Institute of Education in collaboration with others, con
structed two prototypes of computer modeling systems that we believe rep
resent steps forward in using computers to help people think. Both could be 
called "modeling minus math." But both could also be called "modeling mak
ing math." 

The first we grandiosely call WorldMaker (Boohan, 1994). It addresses the 
problem of a modeling system organized around objects and their actions on 
one another, the first of the themes of natural reasoning discussed above. The 
second is more prosaically called LinkIt (see Mellar et al., 1994; Kurtz dos 
Santos, 1995; and Sampaio, 1996). It provides for animated causal-loop dia
grams like Figure 1.1, of arbitrary size and complexity, to be drawn on the 
screen and run to see what happens. 

These are only first steps. Both systems have important limitations, which 
I shall describe insofar as I can see them. And both point to further develop
ments and to problems of incorporating such ideas within the school cur
riculum. There is much left to do. 

WorldMaker: Modeling with Objects and Rules 

In WorldMaker, objects interact with one another and with the places where 
they live, much as things do in the real world. But in WorldMaker, you, the 
user, create all the objects and places, put them where you like, and tell them 
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what they can do or have done to them. You might create "people" entering 
and leaving a supermarket and standing in line at the "checkouts." You might 
make "beta particles" that are absorbed differently by different materials. You 
might make "molecules" that move at random. You might make "farmers" 
who plant "vegetables" and "pests" that eat them. You might make rabbits 
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that eat grass and breed, as in Figure 1.2. Having made such things and told 
them what they can do, you place them on the screen and set them in action. 
The result is seldom exactly what you expect and often teaches you some
thing about how the real world works. 

Two Students Use WorldMaker 
Before describing WorldMaker in detail, let's take a brieflook at it in use. The 
following vignette comes from Nancy Law, who observed two students and 
their teacher using the system at the University of Hong Kong. They are mak
ing a model much like that of Figure 1.2. 

Two 17-year-old Hong Kong students decided to use WorldMaker to build an ecolog
ical system. They started with a very simple world: an ecology that contains only rab
bits and grass. Rabbits eat grass, turning it to bare earth. If they eat they may repro
duce, but they may die if there is no grass to eat. Grass can regenerate from bare earth 
if there is grass nearby. In addition to observing this simple world develop visually as 
objects on the world grid, they used the built-in graphing module to monitor the 
changes in the total number of rabbits. They were surprized to see that the total num
ber of rabbits oscillated with a rather stable periodicity and wanted to account for 
such behaviour. After thinking for a while, one of them said, "Well, this is probably 
because the rabbits hibernate in winter, so the numbers become smaller in winter." 
Another said, "The amount of grass would be smaller in winter, so there would be less 
food." The teacher working with the pair was surprized at their interpretation and 
queried whether in fact rabbits do hibernate in winter. It is interesting that up to this 
pOint, both the students and the teacher were trying to interpret the behaviour of the 
model not as a consequence of the formal system they had built, but in the context of 
the actual ecological world that they wanted to model. This kind of response to mod
eling outcomes is in fact rather common and is frequently reported in other studies. 
What is interesting in this case is that the students very soon decided that their con
jecture was not valid: "We did not set any rules relating to the effect of the seasons, 
so it cannot be right." One of the students then remembered learning about similar 
population oscillations in connection with predators and prey. It appears that the 
transparency of the model helped these students to bridge the gap between the ac
tual world of objects and events that they are familiar with, and the abstract world of 
models as formal systems. They had also begun to compare models at the level of 
structure. 

From then on, the students' behaviour noticeably changed: they decided to change 
the icon they used to stand for rabbits from one which looked like a rabbit but did not 
stand out well against the background to a bright red car which stood out sharply 
against the various background colours used. The objects and backgrounds had be
come for them only symbols to be manipulated. Accompanying this change, there 
was also a clearer focus in their modeling activity: they wanted to look for conditions 
of ecological equilibrium and ways of minimizing the oscillations they observed. They 
started by changing the probability settings for the different rules, then tried to add in 
predators to the ecological system. Cognitively for these students, the model as a rep
resentation had moved from a concrete level to an abstract one, thereby laying the 
groundwork for theorizing to take place. 
Nancy Law, University of Hong Kong 
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We designed WorldMaker to make it accessible to children at as early an 
age as possible. The following results come from Eleni Maragoudaki (1996), 
who first showed that it could be used with 9- or lO-year-olds. She used very 
simple models, including one like Figure 1.3, in which a "farmer" runs around 
the screen planting "vegetables" on "bare earth," and a "pest" runs around 
the screen eating the "vegetables." 

The question was, whether these young children could understand and 
follow the operation of the rules? The answer was that they could learn to do 
so quite quickly, especially if they had a part in making the rules. Could they 
explain what happens in different circumstances-that with only farmers, 
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the screen fills with plants and that with only pests, it fills with bare earth? 
They could. Thus we have examples of necessary consequences (that is, 
mathematical/logical features) that these young children could grasp. They 
found it harder to see the equilibrium between plants and bare earth with 
both farmers and pests present. And we noticed the same effect that Nancy 
Law mentioned in the previous instance: The children were quite likely to 
import into their explanations things that they knew about the real world 
but that were not actually represented in the rules. In other words, they set 
very loose limits on what they supposed the computer might be doing. Of 
course, these youngsters had yet to learn the idea of a programmed system 
that does only what its rules say and nothing else. Here they made a start at 
grasping this idea-one that Nancy Law's older students still had to work out 
for themselves. 

General Description of WorldMaker 

Objects in WorldMaker live on a grid of cells on the computer screen, as in 
Figure 1.2. Each cell can take only one object, but each cell can also have a 
given background that may affect or be affected by the object on it. A "rab
bit" could, for example, change the background it was on from "grass" to 
"bare earth," simulating rabbits eating grass. Backgrounds can also be af
fected by neighboring backgrounds. Thus in this example "bare earth" could 
regenerate to "grass" if there was "grass" adjacent to it. 

Objects can move, as long as there is an adjacent empty cell in which to 
move. Two kinds of motion are possible. In one, an object selects at random 
from any empty cells next to it and jumps to one of them. In the other, an ob
ject has been given or has acquired a "direction" and moves into an empty 
cell if its direction points to that cell. This second kind of motion allows ob
jects to be steered in motion on the screen-for example, on a background 
track laid down on the screen or by a background acting like gravity. Collid
ing objects can be told to exchange directions, so that they bounce off one 
another or off a wall. 

The inspiration for WorldMaker is the cell automaton invented by John von 
Neumann (for modeling and simulation with cell automata, see Toffoli and 
Margolus, 1987). But it differs from a cell automaton in having objects whose 
identity persists as they move around the screen (in a cell automaton, only 
the cells "exist"). A similar idea has been exploited by Christopher Langton 
in a system called VANTS (Virtual ANTS). 

Objects and backgrounds are told how to behave and interact with rules, 
all in pictorial form. The rule-pictures show the condition for something 
to happen-for example, a rabbit on grass or earth next to grass-and they 
show the outcome-grass changed to earth or earth to grass, in this case. 
Rules can specify movements of objects, changes to objects (including cre
ating and destroying them), and changes to backgrounds. 

There is one absolutely fundamental restricting principle underlying all the 
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rules, and it is that of local action. Objects can affect or be affected only by 
others in a cell next to them; backgrounds can be affected only by back
grounds next to them; objects can affect only backgrounds they are sitting 
on; and backgrounds can affect only objects sitting on them. 

The icons for objects and backgrounds can be chosen from an available 
collection, or they can be created or edited by the user via a bitmap editor. 
The modeler selects among the objects and backgrounds available for use in 
a given model, adding or removing them from the model as required. In ef
fect, an icon becomes an object or background by having rules given to it. 
"Worlds"-that is, models-can of course be saved complete with objects, 
backgrounds, rules, and a screen display of the model in a given state. 

Objects and backgrounds are easily and quickly placed as desired on the 
grid of cells, using simple "paint" tools (pen, fill, outline fill, and random fill). 
They are erased by using a permanent "empty object" or "blank background." 

When the model world is set running, the objects and backgrounds inter
act according to the rules. The world can be set to run rapidly, slowly, or step 
by step, so that one can either see a final result quickly or follow carefully just 
how it arises. The probability that any rule will "fire" when its condition is 
met can be varied from 100% (always) to 0% (never). Thus the models can be 
deterministic or probabilistic. 

All the objects and backgrounds of a given kind (rabbit, or grass) behave 
identically in the same circumstances. But of course in a given model, they 
often find themselves in different circumstances, so that different rules apply 
or not. For example, some rabbits are on grass with empty cells around them, 
so they eat and breed. Others are on bare earth far from grass, and they die, 
while yet others are crowded by other rabbits and have no room to breed. In 
this way, a few simple objects and backgrounds, with a few simple rules, can 
yield quite varied and complex behavior. 

A graphical plotting module makes it possible to show dynamic scrolling 
graphs of the total numbers of different objects or backgrounds present on 
the screen grid. 

Examples of WorldMaker Models in Science 

Biology and Ecology 

Many biological and ecological systems lend themselves naturally to model
ing with WorldMaker. One of the simplest examples is the behavior of simple 
pond organisms, which tend to cluster in nutrient-rich regions and not in 
nutrient-poor regions, as in Figure 1.4. All that is needed to model this is 
an object to represent the pond organism and two rules to make it move. If 
it is on a "nutrient-poor" background, it "jumps" completely randomly to a 
nearby empty cell, and it does so often (the rule probability is set high). If it 
is on a "nutrient-rich" background it also jumps at random to a nearby cell, 
but it does so only rarely (the rule probability is set low). With only these re-
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sources, the behavior of the model is striking. If a block of "nutrient-rich" 
background is painted anywhere on the screen and the rest is painted "nu
trient-poor," the pond organisms very soon congregate mainly in the "nutri
ent-rich" region. Outside it they skitter about rapidly, but when they happen 
upon it, by chance they slow down and so have less chance of leaving it 
again. It's quite a sight to let them settle down-and then to move the "nu
trient-rich" region elsewhere and watch them "find" it again. 

This model and others like it carry some important biological messages. 
First, organisms need not have purpose or foresight to behave as though they 
did. A model of ants forming a line to a morsel of food could deliver the same 
message. Second, and more generally, purely local rules (acting only between 
neighboring cells or, in the real world, perhaps only on contact) can have 
globally patterned consequences. Localized "blind" actions can have global 
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"far-seeing" effects. Let's not forget that our immune systems work like this 
too. 

The rabbits and grass model of Figure 1.2 is another example of local rules 
(or, in the real world, actions) that have global consequences, in the form of 
population oscillations. Another, more important global effect is that of dy
namic equilibrium. The model of Figure 1.3, which includes a farmer who 
plants vegetables that are eaten by pests, always arrives after some time at the 
same ratio between lettuces and bare soil, no matter how much of each we 
start with. The proportions of each are-with fluctuations-the same; they 
depend only on the numbers of farmers and pests. But the screen almost 
never looks exactly the same twice. Nothing decides where there will be let
tuces or bare soil at a given moment, but the interaction ensures a fixed pro
portion between their numbers. 

A number of "obvious" consequences of these models are, nevertheless, 
worth showing. If rabbits breed more often than they die, the screen will in
evitably fill up with rabbits until no more can be added. Population explo
sions are a necessary consequence of breeding without checks. A subtler 
case is that of two competing breeding species each of which kills the other. 
In the long run-and it may be a very long run-only a single species will be 
left, but we cannot generally tell in advance which one it will be. 

Chemical Change 

The difficult idea of dynamic chemical equilibrium is easy to model and illus
trate. Take the example of water (H20) dissociating into hydrogen ions (H+) 
and hydroxyl ions (OH-). All three objects are given a rule to make them 
jump at random around the screen. As shown in Figure 1.5, the water mole
cules are given a rule that converts them into a pair of ions side by side. The 
two ions follow a rule that if they come together, they can turn into a water 
molecule. 

Starting with only water molecules, there is a net dissociation until ions re
combine as often, on average, as they form. The graphs of numbers of par
ticles show that a fluctuating equilibrium has been reached. This model does 
not include the energy extracted from the surroundings when a water mole
cule splits up or the energy released when two ions combine, but its effect 
can be modeled by setting the probabilities of the dissociation and associa
tion reactions differently. If water rarely dissociates, but ions readily recom
bine, we get a balance with few ions, as is indeed the case in real water. 

Subtler than this, and very striking, is the case of auto-catalysis. Sequences 
of reactions can be modeled in which an intermediate species from one re
action is necessary for a later reaction. In this case, the whole reaction pro
ceeds slowly until a number of molecules of the intermediate species have 
been produced, at which point it dramatically speeds up. 
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Diffusion of randomly moving particles from more to less concentrated re
gions is very easy to model; it requires just a random jumping rule for a "mol
ecule" and an object to make walls. It is amusing to write one's name in mol
ecules, as IBM is reputed to have done, and watch it dissolve into chaos-not 
forgetting the common root of the term 'gas' and the Greek word' chaos' . 

The Earth's atmosphere thins out as one goes up a mountain because grav
ity pulls the molecules of the air down, but this produces a concentration gra-
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dient away from the Earth, and the molecules diffuse up this gradient. The ac
tual gradient of pressure (density, concentration) in the atmosphere is a bal
ance between the two. To model it, an "air molecule" needs two rules: one 
to make it fall and one to make it jump randomly in any direction. The rule 
for making it fall can be produced by creating a "gravitational field" back
ground and painting that background over the screen with a downward di
rection. The rule for the molecules is just to acquire this direction and then 
move along it. If one starts with all the molecules near the ground, they drift 
upward. If one starts with all of them near the top, they sink down. If one 
starts with them evenly distributed in height, a graded distribution soon de
velops. The air can be "cooled" by reducing the probability of random jump
ing, and the molecules drift down in response, reaching a steeper grading. 

Good fun can be had modeling evaporation and rainfall over oceans. A 
layer of "sea" is needed near the bottom of the screen, with the property of 
emitting and absorbing vapor molecules. Vapor molecules just jump around 
at random. The top ofth¢ screen can be covered with a "cold" background 
on which vapor molecules combine to make raindrops. Raindrops fall, and 
they sweep up vapor molecules near them. With these resources, one can 
create one's own miniature storms at sea. 

Crystallization from a vapor around seed particles on a cold surface is what 
makes the beautiful frosted patterns on the window on cold winter morn
ings. Model it with a vapor of randomly moving molecules, adding one sta
tionary "seed." Give the seed the single rule that if a vapor molecule chances 
to land near it, the vapor molecule turns into a seed particle. What you get is 
a fractal crystal growing out from the seed, with spidery arms that leave tor
tuous tunnels between them. This is called diffusion-limited crystallization; 
the spidery fractal forms because there is a much smaller chance that a vapor 
molecule will diffuse randomly into the center of the crystal than that it will 
land by chance near the tip of a branch. Thus branches lengthen, and new 
small branches keep starting off near the tip of an existing one. Here yet again 
is a global effect-and one connected to much recent mathematical think
ing-arising from a purely local behavior. 

Thermal equilibrium-the spontaneous passage of energy from hot to 
cold-is worth modeling. A simple (if not very realistic) way to do it invokes 
an idea that Peter Atkins advances in his book The Second Law. Pretend that 
atoms in a solid can have just two energy states, high and low. Make an ob
ject for each, and give them the rule that high-energy atoms and low-energy 
atoms next to one another just exchange energy-high becomes low, and 
vice versa. There is no need for them to move. With this rule, "energy" from 
a block of high-energy atoms placed next to a block of low-energy atoms, as 
in Figure 1.6, will "diffuse" throughout the whole block. Temperature is rep
resented here by the ratio of numbers of high-energy and low-energy par
ticles in a given region. Greater ingenuity is needed to create particles with a 
whole set of energy levels. 
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Radioactive decay chains are rather easy to model. A simple one could use 
the sequence of rules 

A~B 

B~C 

with different probabilities assigned to each rule. A screen starting full of the 
A nuclide builds up a population of B nuclides, which then decay into C. The 
number of A's declines exponentially; the number of B's rises and then falls; 
the number of C's rises, slowly at first, then quickly, and then slows down and 
stops as it reaches a maximum. The relevant differential equations are mod
erately hard to write and solve; the WorldMaker model is almost trivial to cre
ate and easy to understand. Theorems such as that the total number of par
ticles is constant and that the sum of the slopes of the three curves must 
always be zero, so that the slopes of the A and C curves are equal and oppo
site where the B curve is a maximum, can be intuited. 

Abstract Topics 

Mathematicians who have played with cell automata and related systems, in 
the field of complexity theory, have discovered a range of fascinating phe
nomena that involve chaotic and self-organizing behavior, much of which is 
amenable to investigation (and play) with WorldMaker. We will give one ex
ample here. 
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Convert your Neighbor Be Converted by your eighbor 

FIGURE 1.7 Ideological Conversion Rules. 

Let the problem be called the ideology problem. Suppose the world con
tains people of two ideologies (political perspectives? religions? languages?) 
whom we will call greens and reds. Greens try to convert reds to green. Reds 
try to convert greens to red. There are two ways to express the rules for con
version, as seen in Figure 1.7. They appear very similar but have drastically 
different effects. Note tha,t both pairs of rules are exactly symmetrical. 

If we fill the screen with a random mixture of greens and reds and use the 
rules whereby each converts the other, with identical probabilities (say 50%), 
the screen presents an astonishing sight. The random mixture very rapidly 
"crystallizes" into solid regions that are either wholly red or wholly green. At 
the boundaries between the two, changes occur and the areas of red and 
green grow or shrink. In time, either red or green wins completely, but one 
can never tell in advance which it is going to be. No doubt, if the winners 
then write history, they will explain how their chance victory was inevitable! 

After we watch for a while, the mechanism becomes clear. Any projecting 
bit of either territory will be lost, because individuals in it are surrounded by 
more of the opposite kind than of their own kind and hence will more often 
be converted than get a chance to convert. Straight-sided strips of territory 
are the least unstable, because excursions or incursions tend to get eaten 
away. The worst case is that of an island in the middle of hostile territory. 
This, then, is what we get when the rules make each individual convert oth
ers near it to its own cause. 

In the second pair of rules, individuals near others of a different kind get 
converted to that kind, instead of converting them. (See Fig. 1.7) These rules 
work very differently. Now solid blocks of the two kinds of territory rapidly 
fragment into a seemingly random pattern, mixing reds and greens close 
together. This is because, now, any little lack of straightness in a boundary 
tends to grow: A protrusion of one region into another gives individuals in 
the invaded region more chances to be converted than there are chances for 
the invaders to be converted themselves. Again, it just depends on the fact 
that in the region of a spike of invaders, there are more invaded than invad
ing. Consequently, the pattern on the screen grows as spiky and fragmented 
as possible, whereas before, it spilled into uniform regions with rather 
smooth edges. 

Now we arrive at the exciting part. What if we run both sets of rules to-
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counter, so that (for example) a rabbit might die only after finding itself on 
bare earth a number of times in succession. It would also be good if objects 
could have different "states" that obey slightly different rules. In such a case, 
a female rabbit might become pregnant after meeting a male, and only female 
rabbits might give birth (compare the sexless reproduction of Figure 1.2!). 
Several such improvements, together with others, could be achieved by mak
ing the system more "object-oriented" than it is, with generic objects spe
cialized into species each with subspecies, and so on. Rules would then ex
ist at various levels, with (for example) movement rules being rather generic 
and interaction rules more specific. 

Results and Possibilities 
Initially, we tried out WorldMaker mainly with rather young students, from 9 
or 10 years up to 11 or 12 years, because we were interested in creating a way 
of making models they <;t>uld use. Only now are we beginning trials with 
older students, who range from 15 to 18 years old. 

The results with younger students show that they begin to learn to use 
WorldMaker within half an hour or so but that learning all it can do takes a 
considerably longer time. The idea of making a model by giving objects rules 
turns out to be easy to understand, and students rapidly learn to make and in
terpret rules in pictorial form. 

In making models with WorldMaker, both younger and older students 
sometimes have some trouble deciding which elementary actions available in 
the system to use to make a model. Where an effect (such as rabbits breed
ing if they meet and are well fed) has to be made out of several rules, the way 
forward is often not clear. Simple, direct rules that correspond well to the 
way the actual situation is imagined (an animal affecting the place it is on; one 
object affecting another near it) are much easier to arrive at. 

We have very often noticed, both in young students and in older ones, a 
tendency to have an explosion of ideas rather than to run short of them. 
People like to "improve" a model by adding more and more complexity to it. 
The idea seems to be that the more different aspects of behavior are taken 
into account, the more "realistic" the model will be. Readers with some so
phistication in modeling will recognize this as a mistake. It is often the case 
that adding complications adds little or nothing to the overall behavior of a 
model. Predator and prey populations oscillate in accordance with very 
simple rules, and the oscillation persists when complexities are added; for ex
ample, it matters little whether "reproduction" involves two sexes. This, 
however, need not be thought of as a problem. That many models produce 
their behavior from a simple structural core is a lesson to be learned about 
what makes mathematics valuable-that necessary relationships are gener
ally related to deep structural features. 

There is an important aspect of looking "mathematically" at WorldMaker 
that even the younger students begin to manage. It is easy to have two mod
els that have the same rules and differ only in the names of objects and places. 
Abstractly, they are the same model, and students can see that they must be-
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have in essentially the same way. This understanding seems to be enhanced 
by the pictorial expression of rules, in which patterns of similarity are easy to 
see. Further evidence of such abstract thinking comes from showing students 
forms of rules without named objects and then asking them to suggest what 
the rules might describe, which they can quite often successfully do. 

It is, however, difficult for younger (and sometimes older) students to 
grasp that a WorldMaker model "knows" nothing more than the rules it has 
been given. Young children are quite likely to say that WorldMaker could 
model a world in which sharks eat fish but to deny that it could model fish 
eating sharks: "It should know that that is impossible." Such students quite 
often import known aspects of the real world to explain what happens. For 
example, if "rabbits" in a model go extinct in interacting with a predator, they 
may suggest that a disease has killed them. Again, this misconception high
lights something useful and general that students need to learn about model
ing-that a model contains no more than what has been put into it. 

A key issue is thus that of simplification. The essential virtue of models is 
that they represent stripped-down versions of reality, in which only those fea
tures essential to producing the effects of interest are retained. This is a les
son that students are slow to learn, because learning it requires a good deal 
of experience with models. All the more reason for them to get started as 
soon as possible. 

Why Do Buses so Often Come in Threes? 

To conclude, here is an example of "mathematical" thinking that we have 
tried successfully with young students. In cities with public bus services, it is 
a common complaint that when one waits at the bus stop for a particular bus, 
one often waits for a long time-after which three buses arrive together. Is 
there anything that makes this likely? 

A simple model is easy to make. A closed loop of "road" carrying directions 
is drawn on the screen, and buses subject to a rule that makes them move 
around the road are put on it. They, of course, travel without getting closer 
together or farther apart. Now we introduce a place from which "people" 
emerge and a path along which they go to the road. An additional rule now 
says that if a bus is next to a person, it does not move but instead picks up 
the person. If people emerge to catch the buses rather infrequently, the buses 
stay apart, but if many people wait for them, the first bus is held up for sev
eral time steps, and the buses behind it catch up. Soon the buses are clustered 
together on the road. 

The problem has been stripped down to essentials. The essentials are that 
buses move if they can, that buses don't pass one another, and that buses 
have to wait while there are people there to board. These principles are all 
that is needed to produce the phenomenon that so many have observed. The 
natural desire of people to get on the first bus that shows up is enough to pro
duce the undesired effect of bunching the buses. Such simple necessary re-
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lations are the essence of mathematical thinking, even if many would not rec
ognize this as "mathematics." 

Linklt: Modeling with Variables and Links 

LinkIt takes us from a world made of interacting objects to a world made 
of interacting variables. In this new world-a world essential to the scien
tific imagination-rabbits are replaced by population density, births by fer
tility rates. In the physical world, an automobile travels from place to place; 
in this world of variables, it is described by its displacement, velocity, and 
acceleration. 

Such variables are often thought of as affecting one another. The fertility 
rate increases the population; the death rate diminishes it. The amount of 
sunlight reaching the earth helps determine its temperature. The depth and 
volume of water in a bucket increase and decrease together, as do the pres
sure and temperature of a gas at a constant volume. LinkIt provides for vari
ables to be defined and for such relationships to be established between 
them. It is not, however, necessary for these relationships to be defined by 
way of a formula, as one might expect. All one has to do is to draw-and 
modify the meaning of-links between variables. 

A Linklt Example-the Rain Forest 
We can see something of how this works by showing how the rain forest sys
tem we first encountered in Figure 1.1 (it is taken from a primer on system 
dynamics) comes out when translated into LinkIt. Figure 1.8 shows one such 
translation. Variables are placed on the screen using the mouse, after the box
like variable icon is selected from the icon menu at the top. Links are made 
by selecting the link-like icon at the left and then clicking, in order, on the 
variable from which the link is to go and on the variable to which it is to go. 
Double-clicking on variables or links opens up dialogue boxes in which vari
ous parameters are set. 

Figure 1.8 has exactly the same "variables" as Figure 1.1, and there are links 
in exactly the same places. The notation is a little different. In place of "plus" 
signs by arrows in Figure 1.1, such links carry a symbol with two small arrows 
pointing in the same direction. This symbol says, "These two variables go to
gether; if the first is large, the other will be influenced to be large." Thus for 
example, the more the "rainfall" the more the "water available." Other links 
in Figure 1.8 carry symbols with a pair of opposed arrows. This symbol says, 
"These variables go oppositely; the more of the first there is, the less of the 
second there will be." An example is the link from "water used" to "water 
available." "Water available" is affected by both "rainfall" and "water used" 
(its value moves with that ofthe former and in the direction opposite to that 
of the latter). Therefore, the value it gets must take into account both of these 
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FIGURE 1.8 Rain Forest System of Figure 1.1 Translated into Linklt. 

other variables, and it is in fact set to be an average of the difference between 
the two. Another such "opposed" link reflects the fact that a high "density of 
plants" reduces the "sunlight reaching each plant," whereas a high value of 
"sunlight reaching each plant" makes for a high "density of plants." Where 
more than one variable acts as input to another, the net result (in this model 
but not always, as we shall see) is calculated by averaging them. 

Unlike Figure 1.1, the system in Figure 1.8 can be run. In the Figure, the 
values of variables are represented visually by level markers-horizontal lines 
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in the icon boxes whose heights are proportional to their values. Starting 
with high values for "rocks," "rainfall," and "sunlight," the model settles down 
to values much as shown in Figure 1.8 (after moving about a bit because of 
the way values are fed around loops). We can now see what happens if we 
increase or decrease the controlling variables (those that do not get input 
from any other)-"rainfall," "sunlight," and "rocks." 

The example illustrates several aspects of LinkIt. The system being mod
eled is quite complex, yet as its effects unfold, it becomes amenable to un
derstanding, because it can be run. The modeler sees the consequences of de
cisions about how to choose variables and link them together. This often 
leads to the rethinking of those decisions. The thinking required can be in 
the actual physical terms ofthe system being modeled: We think about "how 
dense the plants are" and what makes that variable great or small or what 
makes its value increase or decrease. We increase or decrease a value by drag
ging its level up or down. The computer system largely looks after the for
malities, keeping the w~y variables are linked together consistent. All this 
helps us focus on the physical system, whereas unless we were very experi
enced at describing systems in terms of algebraic or differential equations, 
the formal aspects would demand a lot and perhaps all of our attention. 

The values of variables displayed on the screen by their level markers are 
kept within the range ofthe boxes by "squashing" the values to fit within that 
range. Thus a value at the bottom of a box represents "nothing" and a value 
at the top represents "as large as you can imagine." How this is done is dis
cussed below. The effect is that all variables are on a common scale, from 
nothing to very large. They are, as discussed previously, semi-quantitative in 
nature. They reflect values that are understood as larger or smaller, but not as 
absolute values with units. 

In Figure 1.8 the rain forest is represented as a static system of variables, 

Rate of Inflow 

Size of Hole Rate of Leakage 

FIGURE 1.9 A Leaky Tank. 
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FIGURE 1.10 Dialogue to Select Rate-of-Change Option. 

combining to give a fixed result. If the job were done mathematically, we 
would have a set of algebraic relations to solve. This introduction to LinkIt 
illustrates only its most basic features, however. LinkIt can also be used to 
construct dynamic models in which certain variables determine the rate of 
change of others; thus it can solve differential equations. The effects of sev
eral variables on another can be combined in different ways, adding (and sub
tracting), and multiplying (and dividing) as well as being averaged as in Fig
ure 1.S. And variables can be allowed to have values less than zero as well as 
greater than zero. Finally, a variable can be made Boolean in nature, trigger
ing on (or off) when its input is above (or below) a level that the user can 
choose. All operations on a model are done by clicking or dragging; there are 
no equations to write. The next section illustrates these possibilities through 
a variety of models that are useful in science. 

Examples Showing Possibilities of Linklt 
In Figure 1.S it might have been better to represent the rain forest more dy
namically. What sunlight, rich soil, and water actually do is to make plants 
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FIGURE 1.11 Dialogue to Select "Multiply" Option. 

grow faster. High levels of these variables should make the variable "density 
of plants" increase rapidly. 

A simpler example of rates of change is shown in Figure 1.9. The inflow to 
a water tank determines how rapidly the amount of water in the tank in· 
creases. But if the tank has a leak, water runs out as well, at a rate determined 
by the size of the hole(s). Accordingly, in Figure 1.9, the variables "rate of 
inflow" and "rate of leakage" are connected to the variable "water in tank" in 
a new way. As Figure 1.10 shows, the option rate of inflow sets how much 
water in tank will change" has been selected. This automatically sets the 
same type of option for all variables affecting "water in tank." The links to 
"water in tank" now have a different icon, small arrowheads pointing up or 
down (see Figure 1.9) according to whether the rate of change increases or 
decreases the variable it affects, and this is set by choosing the direction of 
the effect to be "same" or "opposite," as also seen in Figure 1.10. 

There is one more feature to be set. If there is no water in the tank, none 
will leak out no matter how large the hole. Similarly, if the hole has zero size, 
no water will leak out no matter how much water is there. This means that 
the variables "water in tank" and "size of hole" must combine to determine 
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Mortality Death Rate 

FIGURE 1.12 Unlimited Population Growth. 

the rate ofleakage in such a way that if either is zero, the result is zero-that 
is, they must multiply. This is how we often explain multiplication in teach
ing IlnkIt: A good example is shopping for food. If the amount bought is zero, 
you spend nothing whatever the price; if by chance the goods are free, you 
spend nothing however much you take. Arguably, the rain forest model of 
Figure 1.8 would be better if the quantities "water available," "rich soil," and 
"sunlight reaching plants" were multiplied in determining the rate of growth 
of plants-all are conditions necessary for plant growth. Figure 1.11 shows 
the option "Multiply" being chosen for one link to "rate of leakage"; making 
this choice for one link selects it automatically for other links to the same vari
able. The solid black arrowheads on the links in Figure 1.9 show that this 
choice has been made-look for them in later models! 

The result of all this is simple but important. When the model is set run
ning, the level of water in the tank rises or falls, reaching a steady level after 
some time. How high that steady level is depends on the variables "rate of 
inflow" and "size of hole." The bigger the rate of inflow and the smaller the 
hole, the higher the final level-and, of course, vice versa. We have an ex
ample of a dynamic equilibrium, able to be approached from above or below: 
The level of water in the tank can be set by dragging it to any initial level one 
wants, and it can even be changed during a run (perhaps corresponding to 
throwing a bucketful of water into the tank). 

Similar ideas apply to the growth of populations, as illustrated in Fig
ure 1.12. A given population has a certain birth rate and a certain death rate, 
which together determine how rapidly it will increase or decrease. These 
variables are affected by the population itself: More people have more babies, 
and more people means that more die-both in a given time. The value of the 
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FIGURE 1.13 Limited Population Growth. 

Velocity Displacement 

FIGURE 1.14 Stripped-Down Oscillator. 

current population multiples with the inherent fertility or mortality to deter
mine the birth and death rates. Unlike that of the water tank, this model has 
no simple equilibrium. The population either rises without limit or falls to 
zero; it illustrates the very important pattern of exponential growth or decay. 

Real populations are limited by many factors, including space to live and 
food to eat. Figure 1.13 shows a modification to the model that takes account 
of limited food. The food supply affects the birth rate and the death rate, the 
latter inversely Oow food supply tends to produce a high death rate). The 
food supply is improved by having a larger area of land available but is de
creased by the existence of a large population. The model now has a stable 
equilibrium population (even with differing underlying fertility and mortal
ity) at which the effect of the food supply is to make birth and death rates 
equal. 

So far, all the variables used in models have had only positive values 
(though with negative values, we could have combined birth and death rates 
into one variable in Figures 1.12 and 1.13). A good example of a model with 
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variables that may take on positive and negative values is the harmonic oscil
lator, shown in a stripped-down version in Figure 1.14 and in a more elabo
rate version in Figure 1.16. 

The model of Figure 1.14 could hardly be simpler, though this does not 
mean it is easy to understand. It shows, in a form probably too abstract for 
most students at first acquaintance, the essentials of a harmonic oscillator. 
The velocity is the rate of change of the displacement. The displacement, act
ing through a spring, determines the negative rate of change of the velocity, 
because the force of the stretched spring acts to decelerate the oscillating 
mass. With just these two coupled variables, we get oscillations ifwe start the 
model off with a nonzero value for either variable. The model shows the two 
essentials of harmonic motion: the feedback from each variable back to itself 
via the other, and the fact that the relationship is of second order, each vari
able being the rate of change of a rate of change. 

Both variables have to be able to be positive or negative in order to repre
sent velocities and displacements both in one direction and in its opposite. 
This choice is made through another dialogue box obtained by clicking on a 
variable, as shown in Figure 1.15. 
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FIGURE 1.16 Harmonic Oscillator with Effects of Mass and Spring Constant. 
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FIGURE 1.17 Home Heating System. 

To show that a more comprehensive picture is possible, Figure 1.16 pro
vides a more elaborate harmonic oscillator model, including explicit repre
sentations of the mass and the spring constant. Note that force and mass com
bine to determine the deceleration by multiplying by the force and dividing 
by the mass. Increasing the mass makes the oscillations go more slowly; in
creasing the spring constant increases their frequency. 
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So far, all the variables we have used have been continuous. Some situa
tions (for example, a thermostat) involve something turning on or off ac
cording to the strength of its input. LinkIt provides just such a variable, as 
seen in Figure 1.17, which represents the heating system of a house. The net 
gain of energy to the house is determined by the net gain or loss from outside 
(which depends on the difference in temperature between inside and out
side) plus any additional gain from the heating system when the temperature 
falls below a preset value. 

In the state shown in Figure 1.17, the house is warmer than the surround
ings, leading to a net loss of energy. But the house temperature is lower than 
that set on the thermostat, as indicated by the small arrowhead on the left
hand side of the variable "thermostat." The thermostat is therefore on, so the 
furnace is supplying energy to the house, which will warm up until its tem
perature reaches the preset value. At that pOint, the thermostat will go off 
and the house will cool down, in time triggering the thermostat to warm it 
up again, and so on. A.further dialogue box for such "on/off" variables makes 
it possible to choose whether the variable will be on or off in terms of 
whether its input is above or below the threshold. 

Such variables are useful in problems that contain some kind of poten
tial crisis, such as a war or epidemic breaking out when conditions pass a cer
tain level. They can also be used to represent networks of "on/off" circuit 
elements. 

How Linklt Works 

LinkIt is designed so that behind the scenes, values of connected variables are 
calculated and displayed dynamically, in a series of iterations. First, values of 
independent variables are collected, together with the initial values of any 
variables whose inputs are set (so that their rate of change can be deter
mined). These data are used to calculate the values of variables to which they 
provide input, and so on until all values are determined and can be displayed. 
After display, the next iteration begins. 

The value of a variable shown on the screen is not the value calculated be
hind the scenes. It is, for the purpose of display, "squashed" into a fixed range 
(for example, to squash values into the range -1 to + 1, we use the logistic 
transformation [( exp(x) -1)/( exp(x) + 1)]. When collected for the next itera
tion, values are "unsquashed," via the appropriate inverse transformation, be
fore being used. 

The determination of the next value of a variable proceeds in two different 
ways, depending on whether its inputs determine its value or its rate of 
change. If the inputs determine its value, they are simply combined and used 
to set the new value. How they are combined depends on the "sign" of the 
link and on the method of combination. If inputs are set to add, they are 
added together, subtracting those that have "opposite" links. If inputs are set 
to multiply, they are multiplied, dividing by any that have "opposite" links. If 
they are set to average, that is what is done, taking account of sign. 
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Clearly, multiplication by a large value or division by a value near zero can 
lead to a very large result. A cut -off is imposed, such that the "squashed" value 
for display is very near the extreme end of the box representing the vari
able. Division by zero is avoided by replacing zero by a small number. The in
puts to a variable are analyzed to see whether they could produce a negative 
result. If so, a message is displayed advising that the variable affected be 
changed to have "any value" if it presently allows only positive values. If this 
is not done, negative values are set to zero. 

If the inputs to a variable determine its rate of change, the net input is cal
culated as above and is then used, after being multiplied by a suitable small 
fraction, to increment or decrement the current value. 

Thus calculations take place in an essentially linear regime (ignoring the 
large-number cut-off), whereas the display is nonlinear and all displayed val
ues are scaled to the same fixed range (0 to 1 or -1 to + 1). This enables 
LinkIt to dispense with varying scales for quantities, and with units. Every
thing is on the same scale of nothing - small - big - very big. 

Limitations of Linklt 

It is clear from the foregoing account of how LinkIt works that it provides an 
approximation to dynamic models involving differential equations, with 
equations of order higher than 1 represented as sequences of simple deriva
tives. The method of integration is essentially the simple one devised by 
Euler, which projects future values linearly from current values and which, 
as is well known, gives systematic errors such as tending to make the ampli
tude of an oscillator increase when it should stay constant. Systems of alge
braic relations can be combined with relations involving derivatives. 

Models that use no links representing rates of change are essentially sys
tems of algebraic relations. These might be better represented as systems of 
constraints, so that inpV = nRT, for example, one could calculate any quan
tity given the others. This is not possible in LinkIt, which follows the direc
tion of links in calculating quantities. Thus one could have (say) p = nRT/V 
in LinkIt but not (with the same variables and links) any of the other possible 
relationships. Loops of links in systems of algebraic equations necessarily 
sometimes give trouble (in STELLA ® they are automatically disallowed). 
LinkIt permits such loops, which may then sometimes give rise to unusual be
havior when a variable switches its value back and forth from one iteration 
to the next. We let this happen because it is visually very obvious that some
thing is wrong. 

Because of the "squashing" function used in displaying variables, LinkIt 
will not (so far as we know) show chaotic behavior (for example, in such a 
case as dx/dt = kx(1 - x). It is essentially suited to monotonic relations be
tween variables, but it is not restricted to linear relations, though no provi
sion is made for nonlinear relations other than those obtained by multiplica
tion or division. 
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Students Using Linklt 
linkIt and another simpler version called IQON have been used, in the 
United Kingdom and in Brazil, with students ranging from 13 to 18 years. We 
find that students of all these ages can easily learn the basics of the system and 
can construct models of their own. They quickly become able to build more 
or less reasonable models with around half a dozen variables and links. Some
thing similar has also been found in the United Kingdom and in the United 
States, using STELLA®. Students find it easy to use STELLA® as a "drawing 
tool" for modeling, employing it as a sketch pad to help them think of vari
ables of interest and link them more or less appropriately. And of course 
STELLA ® was designed to facilitate just this kind of thinking. However, the 
point of using STELLA ® is, after having sketched the outline of the model in 
this way, to go on and define relationships between variables in appropriate 
mathematical forms. Only then will the STELLA ® model run. When it does 
run, observing differences between how the model works and what was ex
pected often leads to further thOUght and development of the model. 

What linkIt and IQON do is short-circuit the process of defining the model 
in explicit mathematical forms-a step essential to STELLA ®. A model drawn 
on the screen in linkIt or IQON runs as soon as it is drawn. It runs even if it 
is only partially finished. Thus the user gets early and rapid feedback on 
whether the model is coming along well and can get plenty of surprises lead
ing to critical thought. 

A good proportion of students begin with what has been called "laundry 
list thinking," assembling a considerable set of variables that might affect the 
variable of interest. Asked what affects pollution, they might nominate size of 
factories, number of cars, effectiveness of cleanup, strength of wind, and so 
on. This leads them to build star-like models, with many variables giving in
put to one central variable (Bliss, 1994; Kurtz dos Santos, 1995). Such mod
els are of limited interest. Models become much more interesting when there 
are chains of effects of one variable on another and when there are feedback 
loops. 

Typically, students end up building models with four to six variables and a 
similar number of links, sometimes with feedback loops (Bliss, 1994; Sam
paio, 1996). They have some trouble in linkIt distinguishing an inverse link 
(a "dividing" link corresponding to l/x) from a subtractive link (correspond
ing to -x). It is not always clear to them why an "opposite direction" link 
from a variable that has a negative value has an effect opposite from what 
they may expect (increasing the value of the variable it goes to, for ex
ample). Indeed, much of their thinking about variables and the relationships 
among them is "positive thinking": They prefer "same direction" links to "op
posite directions" links where possible, even if it means inverting the name 
and meaning of a variable. 

We have compared what students do when constructing their own mod
els (expressive use) and what they do when looking at and trying to improve 
models given to them (exploratory use) (Bliss, 1994; Kurtz dos Santos, 1995; 
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Sampaio, 1996). We consistently find, over a range of ages, that students' 
own models are initially simpler than those they can cope with when models 
are presented to them but that the improvements they make to their own 
models are much more interesting, and lead to more complex models, than 
the changes they make to models provided for them. Furthermore, when 
constructing their own models, older students often invent "devices" to 
achieve a given effect (such as a variable that receives feedback via another) 
and then use these devices in other models (Sampaio, 1996). Herein they 
show signs of beginning to think structurally-that is, mathematically. 

This suggests a pedagogic strategy of using both exploratory and expressive 
modes. Exploratory use of the system can introduce systems of some com
plexity, whereas expressive use encourages further thinking and abstraction. 

For us, the most valuable activity that IinkIt or IQON produces is not the 
models made or seen, but the talk and discussion that accompany their mak
ing and use. Because the models run as soon as they are drawn on the screen, 
they provoke immediate discussion as values rise or fall in ways not always 
expected. These discussions do have their failings. Students sometimes try 
arbitrary "fixes" to get the result they expect, without giving much thOUght 
to the meaning of the "fix." This of course arises in work with any computer 
program that makes changing things easy. Students also sometimes stop too 
soon, when the result seems to be what they want but the model does not in 
fact reflect their ideas. As we noted in connection with WorldMaker, students 
will from time to time project their knowledge of the world onto the model, 
"explaining" something the model does by invoking a feature of the world 
that is not in fact represented anywhere in the model. 

Even so, much of the discussion is productive and in focus. IinkIt has given 
us a way to get students talking about variables and their possible effects on 
one another, for quite complex systems, long before they have anything like 
the mathematical ability to explore these relationships by using algebra or 
calculus. 
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Training System Modelers: 
The NSF CC-STADUS and 
CC-SUSTAIN Projects 

Ron Zaraza 

Diana M. Fisher 

Background 

The CC-STADUS Project (Cross-Curricular Systems Thinking and Dynamics 
Using STELLA®) has an unusual origin and has experienced an even more un
likely evolution. Although some work had been done in computer modeling 
in K-12 classrooms prior to 1990, the number of teachers actually using sys
tem dynamics was very small. Almost no instructional materials were avail
able, either commercially or in the public domain. The Creative Learning Ex
change had been established to serve as a clearinghouse for K-12 materials, 
but by the early 1990s it had accumulated little. 

One of the co-authors became aware of the STELLA ® computer modeling 
software after attending a workshop and shared this information with the 
other co-author. Over a period of 2 years, we began to use STELLA ® to teach 
our classes. The software opened up for us new instructional possibilities. 

Mathematics and physics classes in the K-12 environment are among the 
most tradition-bound subjects. Despite publication of the National Council 
of Teachers of Mathematics Standards and numerous documents released by 
the National Science Teachers Association and the American Association of 
Physics Teachers, much of the instruction remains focused on sequences of 
topics and standard problems that have not changed appreciably for the last 
40 years. Critics of math and science education note that instructors tend to 
teach as they were taught. Furthermore, teachers of mathematics and science 
successfully learned in the environment they experienced, so they often do 
not see a need to change. They learned mathematics by mastering arithmetic, 
algebra, geometry, trigonometry, and calculus, usually in a rigid, sequential 
curriculum. Physics teachers take these mathematical tools and learn to ap
ply them, using well-defined rules, to a narrow range of limited (and unreal
istic) problems. 

These approaches exclude the use of mathematics and physics in explor
ing real and interesting problems for the students. Worse, these paths are not 
accessible to many-perhaps not even to a majority of students. It has been 
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amply demonstrated that alternative approaches can work. The first trans
formational geometry text, written by Zalman Usiskin, introduced some new 
and powerful ideas about how mathematics can be done. "Conceptual Phys
ics," a course first designed for college students, is now widely used in high 
schools as an alternative physics course. This text allows students to focus on 
ideas, not equations. Unfortunately, students do not solve the problems nu
merically, which is sometimes frustrating for those who want "the answer." 

Computer modeling seemed to represent an even more important al
ternative approach to mathematics and physics. The STELLA ® software 
uses four components common to all work in system thinking/dynamics. 
Stocks, or accumulators, store information or values. Flows change the val
ues of stocks. Converters carry out logical or arithmetic operations. Connec
tors carry information from one model piece to another. The matching of 
these model pieces with the language and concepts of mathematics and 
physics is obvious. 

Flows are often referred to by Jay Forrester, the founder of system dynam
ics, as rates. In mathematics, students use rates throughout computation
based courses (most often grades K -7) without any discussion of what rates 
do. Then, their first formal exposure to a rate is the concept of "slope" that 
they encounter in algebra classes. Any of these rates allow for the parallel in
troduction of flows in models. In calculus, the concept of the derivative is 
the ultimate example of a rate. Stocks, on the other hand, are the results of 
integration. Models allow students to explore these two key concepts of cal
culus while learning much more basic mathematics; thus their conceptual 
framework can be more solid before they formally encounter mathematical 
symbolism. 

Physics, as a discipline, has sometimes been characterized as the study of 
rates. Position, velocity, acceleration, force, impulse, momentum, energy, 
current, and power are all concepts that either are rates or are controlled 
by rates. This makes them ideal subjects for representation by models. That 
such models can be easily modified to allow students to explore problems be
yond their mathematical reach deepens their understanding of the physics 
content. 

The stocks of mathematics or physics and the rates that change them are 
key to the study of these two subjects. Development of basic models to use 
in classes initially dominated our work with systems. As simple models were 
developed, our own interests and questions asked by students led us beyond 
merely using models in the classroom. Our broader need for information led 
us to extensive reading in systems thinking and system dynamics. This lead 
to a broader perspective. The focus moved from "modeling as an instruc
tional tool providing an alternative path to knowledge" to "systems thinking 
as a structure for organizing information" and "system dynamics as a means 
of using/expanding that knowledge." This inevitably led to a different per
spective on modeling as well. It became obvious that there were models com-
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mon to both subjects and that only a few basic model structures were nec
essary to deal with most problems. 

Perhaps more important was a shift in who used the models. Initially, in sci
ence, much of the work focused on a model used by a teacher to present and 
explore ideas with students. When students began to use models, or suggest 
changes in models, it quickly became apparent that more in-depth learning 
was possible if the students were actually using and (in some cases) building 
the models. In math, students built small models to represent the traditional 
functions taught in most algebra classes. This work led to the creation of a 
modeling class in one school and an independent-study modeling program at 
the other. Now, 5 years later, more than 120 students at the two schools are 
enrolled in modeling classes. 

The power of modeling in the secondary classroom was becoming evi
dent. As work continued, it became clear that system dynamics was a tool 
that could address a problem of education: learning diSciplines in isola
tion, ignoring interconnectedness between subjects, ideas, and phenome
non. In 2 years it became obvious that the models used in our classes de
scribed patterns of behavior that were exhibited in other areas as well. Stu
dents working with models began to ask questions that transcended the 
boundaries of the subject for which they were created. It became clear that 
system dynamics models were inherently interdisciplinary and that they of
fered teachers an opportunity to address problems and ideas in a compre
hensive manner not previously possible. 

This realization ultimately led to the formation of the CC-STADUS Proj
ect. This National Science Foundation project was designed to create a cri
tical mass of teachers to develop and use models and their accompany
ing curricula. An equally important goal was the development and release 
of a substantial number of models and curriculum materials, allowing oth
ers to carry the experiment forward without having to start from the very 
beginning. 

CC-STADUS 

A few key assumptions guided the initial design of the CC-STADUS Project. 
The central assumption was that for teachers to use models in the classroom, 
it was essential that they work with practitioners and be trained by practi
tioners. Thus the project has always been, and will always be, directed by 
working classroom teachers. living up to the expectation that what is pre
sented to teachers has already been successfully tried by teachers is neces
sary for creditability and effectiveness. 

A second assumption was that systems work in classes would become vi
able on a large scale only if there was a broad range of models and curricu
lum materials available. Some teachers are innovators and creators. They 
generate new approaches, new ideas, and new tools for teaching. Most teach
ers, though not themselves innovators, are willing to use new, proven tools, 
techniques, and ideas if these are readily available. In 1992, the number of 
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models available commercially or in the public domain was so small that 
there was little chance for system dynamics to catch on. To develop the mod
els necessary to allow systems use to grow, the project would have to focus 
on training modelers. 

The third major assumption was that modeling real-world problems is, by 
its nature, an interdisciplinary activity. Although much lip service is paid to 
the idea of interdisciplinary work in education, there has been very little 
progress beyond the most simplistic questions and approaches. The use of 
system models allows the interdisciplinary work to increase in complexity as 
students ask important questions. The model grows as student understanding 
grows. At the same time, even relatively simple models can pose problems 
for more than one discipline. Because modeling is a powerful way to gener
ate interdisciplinary discussion, the project focused on training mathematics, 
science, and social science teachers, and it insisted on the development of 
cross-curricular models. 

The choice of modeling software at the inception of the project was virtu
ally predetermined. All of the principal investigators were Macintosh users. 
Most had experience on other platforms and had experience programming. 
However, it was assumed that most participants would not be experienced 
programmers. In fact, because one-third of the participants were expected to 
come from the social sciences, where computers had made little penetration 
in secondary schools, it was necessary to choose the easiest-to-Iearn software 
on the easiest-to-use operating system. This limited the choices to Macintosh 
software, which was fortunate: At that time, about 90% of all computers used 
in Pacific Northwest schools, outside of business departments, were Macin
tosh machines. The only modeling package available for the Macintosh-and 
the simplest modeling software available at the time-was STELLA 11. This 
package was the one we were familiar with, and it used the language in 
which the few models already released were written. 

At the present time, there are a number of other modeling packages 
available, including Powersim and Vensim. However, the project staff still 
feels that the STELLA ® software is the easiest to learn and the most intuitive. 
There is also now a substantial "installed base" of software and models 
developed for STELLA ®. As a result, our work will continue to be done with 
STELLA®. 

Implementation 

The CC-STADUS Project was designed to train 36 teachers each year in the 
use and development of dynamic models for their curricular areas. Prefer
ence was given to teams of three teachers from a single building if the team 
included a math teacher, a science teacher, and a social science teacher. 
Teachers were trained from the Portland metropolitan region the first year, 
from Oregon and southern Washington the second year, and from through
out the Pacific Northwest the third year. The project was given an extension 
and supplementary grant that allowed a fourth year of training to be offered. 
That training focused on the Portland area, but included a team of teachers 
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from San Antonio, Texas, who planned to be a core group developing similar 
training in Texas. 

The initial training was 3 weeks in length. The first week of training fo
cused on familiarizing participants with basic systems concepts and instruc
tion in the use of the STELLA ® software. Participants began by playing the 
FishBanks simulation as an introduction to the idea of computer simulations. 
This was followed by training in STELLA ® conducted in single-discipline 
groups. All instruction was done by the principal investigators and a core 
team. This core team consisted of two experienced modelers from each dis
cipline. For most of the remainder of the first week, two core-team members 
worked with the 12 same-subject-area participants. This allowed the training 
experience to focus on simple models that were directly related to the par
ticipants' own teaching assignments. It also provided a familiar environment 
in which to ground the new systems concepts. 

The second week of training focused on the use of computer modeling in 
business, research, and higher education. This instruction was carried out by 
practitioners who use modeling in their own work. Included was a short dis
cussion on the mathematical basis of the STELLA ® software and its limita
tions. Also included in this week, and carried over to the next, was discussion 
of some of the educational theory behind modeling and its classroom use. 

The last week dealt with further background on systems and the actual pro
ject work. The participants, working in teams of three or more, developed 
cross-curricular models with curriculum materials for a minimum of two dif
ferent disciplines. 

This basic pattern was repeated for each of the next 3 years, with some 
changes that reflected our increasing understanding of how best to use and 
teach modeling. Changes were recommended by the core teams. Each sum
mer, the best of the new participants were asked to work as the core-team in
structors for the following year's workshop. New team members were de
briefed with the old core team and the principal investigators. 

After the first summer training, the new core team made a recommenda
tion that has shaped all future workshops. Initially, each of the three disci
plines received very different training, with topiCS and model structures cho
sen to fit the curriculum of each diScipline. There was no real coordination 
of topics. As a result, each discipline group had different modeling experi
ences. When they came together to develop their cross-curricular model, the 
teachers did not have common experiences or a common vocabulary to dis
cuss their ideas for models and curriculum. There were some common ex
periences, but dissimilarities outweighed similarities. 

All the new core-team members strongly recommend that all groups work 
with similar modeling structures and that any other structures be added only 
after adequate work has been done on the "core structures." Some feel 
strongly that no other structures should even be presented. Long discussion 
led to identifying four basic structures. Since that time, all training has fo
cused on models that feature linear relationships, exponential growth and de
cay, S-shaped growth, and quadratic equations. Even though the model struc-
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tures are kept uniform, the subject matter of the models taught has contin
ued to focus on the discipline, thus providing teachers with a core set of mod
els easily transferable to their classrooms. Oscillatory models, as interesting 
and important as they are, were identified as too complex for initial training. 
With only 20 clock-hours for actual training in the STELLA ® software, the 
strong recommendation that the focus be kept simple has proved correct. 
Each year, participants have achieved a greater "comfort level" and greater 
mastery of the basics of modeling than did the first group. 

This recommendation also focuses the project on an important realization 
about the nature and future of modeling. The shared experience in learning 
STELLA ® gives participants a common language for discussing models. This 
facilitates designing models for their final project. It also starts teachers think
ing about how model archetypes translate across disciplines. This in turn 
starts a series of conversations on system dynamics as the language that al
lows ideas and concepts to cross the line between disciplines. The project 
has gradually moved into advocacy for system dynamics as the field that can 
bind the other disciplines into a coherent whole. 

The teachers who were beginning to use systems gave us a list of sugges
tions about what we could have done to help them get started. Foremost 
among these suggestions was demonstration teaching during the training. 
Also needed was a discussion of where and how to introduce models into the 
curriculum. The result of all the recommendations was a summer institute 
that evolved into a 12-day training program with most of the educational and 
systems theory deleted and some demonstration teaching and discussion 
time added. 

The Product: The Cross-Curricular Models 

So far, only a few of the major cross-curricular models developed by parti
cipants in the CC-STADUS project have been released. The remainder are 
undergoing mathematical verification or editing (model or curriculum mate
rials). Basic patterns have emerged that divide models into two types. The 
first type, and by far the style of model that teachers are most likely to at
tempt, consists of what we have identified as "content-rich" models. These 
models deal with a highly specific problem in great detail. The model tends 
to be somewhat complex, with many interrelationships and feedback rela
tionships. 

System dynamics is attractive to teachers because it allows discussion of 
the interconnectedness of real-world problems and phenomena. This leads 
teachers to adopt the "content-rich" model. These types of models are also at
tractive because they give real numerical results for complicated situations. 
Because of this apparent numerical precision, they are regarded as more 
real-and therefore more useful and important. Thus they are often the ini
tial effort in the group modeling, and they frequently dominate the initial ef
forts of participants after the training program. 

Two excellent examples of this type of model were developed in the first 
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FIGURE 2.1 Mahenjo Daro Model. 

2 years of the project. The first, Mahenjo Daro, deals with the growth and de
struction of an ancient city (see Figure 2.1). The city was founded by a no
madic tribe of about 300 who settled in a fertile flood plain below forested 
hills and mountains. The richness of the soil, the availability of ample game 
and of land for domestic animals, and an apparently boundless supply of 
wood for building, heating, and cooking led to a city of 40,000 inhabitants en
joying an extensive infrastructure in only a few hundred years. But 300 years 
later the city was destroyed and abandoned. The model explores in great de
tail the reasons for its destruction and presents the students with a simple ba
sic problem: Prevent the destruction of Mahenjo Daro. 

Mahenjo Daro is an outstanding example of a detailed historical model that 
explores the key factors that control events. It allows modification of key fac
tors and exploration of their effects. In short, it is a well structured model that 
accurately describes a historical reality and allows experimentation. Yet, de
spite its excellence, this model has been used by only a few participants. Its 
downfall lies in its specificity. Unless a model fits exactly into a teacher's cur
riculum, it will not be used. Mahenjo Daro perfectly describes a very narrow 
situation and is not easily modified or translated to any other. Its very com
pleteness makes it unsuitable for adaptation to other problems. Fortunately, 
it deals with a situation that fits into the global studies classes taught in many 
high schools. 

Another example of a content-rich model is the PERS model. This model 
explores the effects on a school district of proposed changes in a state's pen-
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sion plan. This model too is a marvel of detail, though simpler in basic struc
ture. It also exhaustively describes a real situation and allows it to be modi
fied. However, it is even more specific than Mahenjo Daro. Thus, the few 
times when it has been used, it has served as an example of how a model can 
be built to explore political decisions and their implications. 

About half of all cross-curricular models fall into the content-rich cate
gory. They are excellent examples of how models can describe events and 
situations with great precision, and they have definite places in some curric
ula. However, the utility of these models will always be limited by their 
specificity. 

Other models developed by project participants are referred to as "cur
riculum-rich." These models tend to be simpler and more generic, as do the 
curricula designed for them. Perhaps the best example of such a model is in 
the Rulers packet. This set of three models (see Figure 2.2) explores popula
tion growth, beginning with a basic population model. This model is then 
modified to look at the interaction between a population and a nonrenew
able resource and, finally, that between a population and a renewable re
source. This last model is far less complex than Mahenjo Daro. 

The strength of the Rulers packet and of models like it is (1) their focus on 
basic ideas that are common to many problems and (2) the ability of the 
model to be expanded to address these problems in more detail. The basic 
model has been used to look at population growth in nations throughout the 
world and to examine all manner of growth of organisms. It has been used 
as a starting point for student research on the growth of E. coli in a stream 
system. In many classes, it is expanded to look at interactions of the base pop
ulation with other factors that control births and deaths. The models can 
be expanded as needed and desired. New questions are developed and ex
plored. The original package serves more as a catalyst than as a detailed, self
contained unit. 

Such models open up the curriculum to exploration by students and teach
ers. Their simplicity brings out questions that lead to the creation of more re
alistic models. By provoking such questions, it encourages classes to explore 
the system that the basic model sketches out in simple form. Students ask 
better questions, probe more deeply, and even begin modifying and adding 
to the model themselves. These modifications are then tested for validity 
as students see whether they perform as they should. The models do not ex
haustively cover a narrow topic. They present broad ideas that allow the cur
riculum to be expanded by the curiosity of the students. They pose many 
questions, allowing the teacher and students to choose which possibilities to 
pursue. 

Verification IVaI idation and Documentation 
Documentation has always had the potential to make computer software suc
cessful or cause it to fail. Well-documented programs can be readily learned 
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and problems quickly overcome. Poorly documented software may be dis
carded out of frustration. We emphasized this point repeatedly to partici
pants in the summer institute. The models they develop are not just for their 
use. They are for distribution to the greater educational community. There
fore, their documentation has to be as thorough as pOSSible, allowing new 
teachers to understand the model. Model dependencies have to be carefully 
specified. The dynamics of each component have to be clearly defined, and 
the set of initial parameters clearly specified. 

As the participants develop their models, the internal documentation fea
tures of the software are used to provide extensive explanation of the model. 
This documentation is not limited to the "how"-that is, what a particular 
model piece does. This information explains the reasoning behind the model 
and the reason for the model's structure. 

Inclusion of the "why" in the documentation provides justification for 
choices made and choices discarded. It places each part of the model in con
text. This makes the model easier to use, and it provides users with informa
tion that allows them to modify parts of the model. This explanation is also 
included and expanded in the curriculum packets developed for the models. 
The model itself provides a "snapshot" that ties the modeling topic and the 
modeler's interpretation together. Without a full explanation of the reason
ing, the context of the model cannot easily be established, and its utility is 
diminished. 

Participants are also asked to test their models carefully, examining the ef
fects of changing the interval between calculations, DT (Delta Time). In the 
event that the model settles into a steady state, they are asked to see whether, 
when perturbed from that steady state, the model ultimately returns to it. 
These checks allowed the participants to do some verification of their mod
els. Discussion of these tests is included in the curriculum packets. 

Full documentation also captures the intent of the model. This can be vi
tally important in verification of the model. We became aware of the need for 
careful verification of models early in our work. Several models then in the 
public domain were discovered to have significant flaws. These flaws were 
related to the mechanism of the specific behavior being modeled. It became 
obvious that our participants would usually not be experts in the phenomena 
they were modeling, so there was the risk that the same sorts of flows would 
arise. Further, our own adventures with choice of DT, integration method, 
and quirks of the software made us aware that mathematical peculiarities 
could arise that did not represent the actual behavior of the system. 

To minimize those possibilities, all cross-curricular models are reviewed 
twice. Initially, they are reviewed by Andrew Jonca, a Ph.D. mathematician 
specializing in numerical analysis. He checks model results with results pro
duced by more traditional approaches. This step ensures mathematical valid
ity. Then the models are reviewed by the project staff for content validity. 
Where there is uncertainty, source documents or outside experts are con
sulted. Finally, once the model has been validated, the curriculum materials 
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are reviewed and edited. TIlls entire process gives us a great deal of con
fidence in the models and materials. 

After the Summer 

The first year of training brought home the need for substantial revisions in 
the summer institute. It also made other needs very obvious. Participants, in 
addition to building a major cross-curricular model, are required to use mod
els at least twice in classes during the ensuing school year, to develop at least 
one simple model specific to their curriculum area, and to make a presenta
tion to co-faculty on system modeling. Most NSF summer institutes have sim
ilar expectations and get 50-65% implementation and compliance. Each year 
the CC-STADUS participants met or exceeded this figure. However, feed
back-even from those who met all requirements-pointed out problems. 

The most difficult requirement for teachers has been making presentations 
to other faculty. Many interpreted this requirement as necessitating a pre
sentation to their entire faculty. TIlls was often difficult to schedule, and 
many found it too intimidating to try. After the summer training, most par
ticipants were so drained that they did not use STEllA ® again until the end 
of the summer or the beginning of the school year. They forgot things. Thus 
they lacked the confidence to make a presentation to a large group. They felt 
like a child taken on a long bike trip the day after the training wheels were 
removed. Those who did small-group presentations felt less stress and char
acterized their efforts as more successful. These presentations tended to be 
less formal and more personal. Many later applicants were people who had 
learned of the program from presentations done by past participants. Since 
that first year, participants have been encouraged to make small-group pre
sentations rather than addressing the whole faculty. 

Of the three requirements, the most important has always been use in the 
classroom. That is one area where a surprising number of problems emerged. 
Some teachers simply couldn't see how to fit one of the models into their 
classroom. Others were not sure exactly how to teach using models. Still 
others had difficulty getting access to computers. 

The first year, attempts to deal with the three problems were not particu
larly well thought out or organized. It soon became clear that the problem of 
how to teach with models was the most serious. Core-team teachers and the 
principal investigators tried to deal with this difficulty one on one. Some
times a few suggestions were sufficient. In other cases, offering to demo
teach the class or team-teach a unit took care of the problem. It was clear that 
we had to develop a systematic way to prevent difficulties in teaching with 
models. Appropriate changes were made in the summer training for the fol
lowing years. 

Similarly, the other problems were dealt with individually, as they arose. It 
was only when the end-of-the-year surveys were tabulated that it became ap
parent that some of the nonusers had the same concerns but never contacted 
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the core team. It was clear that efforts had to be more proactive. The second 
and third years, more regular contacts were initiated by the core team. This 
reduced the number of nonusers but still left a significant minority who 
wanted to use the models but simply were not able to. The fourth year of the 
grant, we tried a new approach - one that will be carried into the new grant. 
The three summer days deleted from the training were added as work days 
on Saturdays. Those days were used to check participants' work and to deal 
with any problems. Although much of the time has been spent helping de
bug models, some has been devoted to making suggestions on classroom pre
sentations. We have also placed participants in a position where they could 
easily arrange other help, as needed. This eliminated the "block" that so of
ten seems to keep people from initiating a contact. The institutionalization of 
contact ensures that it actually happens in a timely manner. 

Insufficient hardware was often cited as an impediment to implementa
tion. This was curious, because access to hardware was a requirement for ac
ceptance into the training program. Some teachers who found they were not 
going to complete their requirements may have used inadequate hardware as 
an excuse. In any case, the problem seemed to diminish as more schools nat
urally purchased additional computers. On the other hand, lack of sufficient 
copies of STELLA ® arose as an issue repeatedly during the early years. It had 
been anticipated that the teachers would have their own copy with which 
to practice and that the school would purchase additional copies for stu
dent use. This was not to be. Consequently, starting in the second year, we 
scraped together enough money from the grant to purchase ten run-time ver
sions of the STELLA ® software for each participant, in addition to the full ver
sion, so they would have software to put on additional machines. At least the 
students would be able to run models and to create, within one class period, 
small models that did not need to be saved (as was generally the case for most 
math exercises). This was a reasonably satisfactory solution. 

Building the subject-specific model was less difficult for most teachers than 
we anticipated. Most used one of the models built during training as a start
ing point and then made additions. The result was usually a fairly simple 
model that was easy to use in the classroom. In those cases where teachers 
encountered difficulty, a quick phone conversation usually sufficed. The Sat
urdays scheduled during the fourth year have resulted in a significant pattern 
change. The teachers have built more ambitious models, or sequences of 
models (such as the Rulers packet). The improved summer institute, coupled 
with better support through structured meetings, has resulted in dramatically 
improved modeling work. This reinforces the belief that support is essential 
for teachers to progress as modelers. The more assistance provided, the more 
rapid the progress. This support will also bring more teachers to the level 
where they can begin providing support to others. 
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Student Response 

The real goal of all the work with modeling has been to provide students with 
an opportunity to use and build models in the classroom. Underlying all the 
work is the belief that using and building models allows students to explore 
problems in more depth, ask and answer better questions, and develop an 
understanding that their world is full of systems of varying complexity. Stu
dents come to realize that simple solutions rarely exist for complex prob
lems. Simple solutions ignore the inherent complexity of human endeavor of 
an natural phenomena. In short, the whole point of bringing modeling into 
the classroom is to create an environment in which students become better 
thinkers. 

The 4 years of the CC-STADUS project have provided ample anecdotal ev
idence that modeling does create such an environment. Moreover, the proj
ect directors have observed activities in more than 100 classrooms where sys
tems were used this last year. And the authors have been using models in 
their math, science, and modeling classrooms since 1991. Some definitive 
conclusions about the use of system dynamics are possible. 

First and foremost, the use of models has proved to be engaging for the stu
dents. Attention during the presentation of modeling ideas is substantially 
greater than in other classrooms. This is corroborated by the classroom teach
ers, who report that students tend to get more involved and are more atten
tive during both group and individual work with models. 

Models tend to pique the student's curiosity. Secondary students have been 
the victims/witnesses of many educational trends and have been subjected 
to literally tens of thousands of commercials through TV. They are skeptical 
consumers, whether of new teaching approaches or of correct answers in 
classes. Models tend to focus and direct that skepticism in an intellectually 
positive way. For example, in many of the biology and social science classes, 
the first modeling work is done with population models-often those that 
represent growth patterns in Third World countries. The dramatic results of 
these models, showing 10- and 20-fold increases in population in the next 
century, are frequently met with student assertions that it won't happen the 
way the model shows. When pressed for reasons why, the students began to 
talk about variable birth rates, increased death rates due to malnutrition, and 
societal pressures to change land use. 

In some cases, modeling never goes any further. Instead, discussion moves 
to pressures in the system that will either prevent or accelerate the predicted 
disaster. In these cases, although the model is not used to continue the learn
ing, it provides the trigger that stimulates it. Often, the discussion makes ref
erence to the model in an effort to evaluate what effect various contingencies 
would have on the outcome without ever actually modeling it. 

Equally often, the model is revisited, usually at the direction of the teacher. 
One of the most effective ways of doing this is simply to ask students what 
changes they think need to be made to the model. The tendency is for stu
dents to want to incorporate a lot of changes all at once. However, when 
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teachers work through changes one at a time, students get a clearer idea of 
how elements of the system interact. This approach builds a detailed under
standing of very complex systems and allows students to generate their own 
knowledge. It also illustrates the fact that systems are often resistant to 
change because of their complexity and feedback structure. Understanding 
the concept of a leverage point in a system is a powerful idea that was de
veloped time and again in the classes we observed. 

Less common, but tremendously exciting, are the instances where stu
dents asked whether they could work with the model themselves. In only 
a few cases were these students who had had some formal training with 
STELLA ®. In most cases, no previous exposure had occurred. These were 
simply students who found exploring an idea using a computer model excit
ing. These students usually needed help from the teacher (although the man
ual itself sometimes sufficed). The students often pushed the model well be
yond what the teacher would ever have attempted with the entire class. 
Occasionally, the students used the model as a starting point for a new model. 

Critiquing model results and asking questions based on models are excel
lent ways to facilitate student learning by modeling. Other approaches also 
work well. Some teachers have found it very useful to build a model in class, 
asking questions as they go. Student responses and suggestions shape the 
model structure. This has been particularly useful in two different situations. 
In a physics class, after discussing the equations on which the three common 
forms of heat flow (conduction, convection, and radiation) are based, the 
teacher and class built the three models. Comparing the structures of the 
three models was a good way to discuss similarities and differences among 
the processes. Actually running the models allowed the students to explore 
the relative importance of the processes. In a biology class, a discussion for
mat led to a model of the environmental factors that affected bacterial growth 
in a local stream. 

Whatever the approach, using models presents a means of addressing com
plex questions in class. This approach also brings home the idea that "right 
answers" don't really exist for many real-world problems. Instead, a range of 
solutions exist, and each spawns other problems and complications. This 
leads to excellent opportunities for students to write position papers, pre
senting arguments for and against potential solutions. Student work in this 
area has often been truly remarkable. Using a model to run trial solutions, stu
dents are able to develop written recommendations that rival the work of 
professionals. 

Teacher Receptiveness 
Assumptions we made at the beginning of the project about the openness of 
teachers to systems modeling in their classes have been almost completely 
wrong. As already noted, the two fields wherein traditional work translates 
most easily into systems models are physics and mathematics. Thus it seemed 
reasonable to assume that teachers in those areas would be the most open to 
the use of systems. In fact, the exact opposite has been true. Physics and 
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mathematics teachers are the most likely to see no need for computer mod
eling. They concede that it may be useful in "those other fields" where prob
lems are "ill-defined" and answers are not "precise and real." However, paths 
to solutions in their fields are well defined, are well understood, and do not 
need other approaches that "circumvent" the rigor of those disciplines. 
(Note: The quotations are not from any single individual but are, rather, a col
lection of statements made by a number of teachers over the last 5 years). 
Only when such teachers are shown a series of problems that their students 
(and in some cases, they themselves) cannot solve, but that yield readily to 
solution by models, do they begin to acknowledge that there is some useful
ness in modeling. It is interesting that the most successful math and physics 
students, those taking advance-placement level courses, show a similar re
luctance to use models. They also tend to moderate their views when con
fronted with problems outside their reach. 

Other science teachers tend to be more open to modeling. They see it as a 
tool that allows experimentation with ideas and relationships, not merely 
thinking about how they should change. This same perception has been used 
as a compelling argument to go beyond systems thinking to system dynamics 
in discussing the appropriate use of systems concepts in education. Biology, 
chemistry, and earth science teachers all see numerous areas of their field 
that lend themselves to computer modeling. The main problem here is the 
tendency to make models too grand and all-encompassing. Modelers in these 
fields, particularly chemistry, find that it is hard to locate sufficient data upon 
which models may be based. 

Next to science teachers, the group that has embraced system dynamics 
most enthusiastically has been the social science teachers. They seem to per
ceive systems as a way to represent visually the concepts with which they 
have always worked. The ability to work easily with numbers is seen as a 
plus, conferring some more traditional (mathematical) validity on their ideas 
and solutions. Our expectations initially were that this group would be most 
resistant, because fewer social science teachers had experience in computer 
programming. The first 2 years, this group showed more initial anxiety but 
still evinced the greatest enthusiasm for the potential of computer modeling. 
In the last 2 years, differences in familiarity and skill with computers have di
minished, eliminating that initial concern for most teachers in this group. 

Another factor that has led to increasing "comfort" for the social science 
group is the assurance that they will not be required to learn the mathemat
ics necessary to make their models work. Because the participants are 
grouped into teams, optimal use is made of the particular expertise of each 
team member. The social science teacher provides many problem scenarios 
that are perfect for study with system dynamics techniques. The math teach
ers bring their understanding of functions and techniques to analyze data and 
define growth patterns via the appropriate systems structures. Actually, the 
math teachers were the most resistant to the group work until their role was 
defined. The roles each participant is to play in the team project toward the 
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end of the workshop have to be explained early in the training so that ex
pectations are clearly understood by each person. 

Use of Models in Physics Classes 

Because the language of system dynamics so closely matches the concepts 
of physics, initial work in developing models, both prior to the formal CC
STADUS project and during it, has focused on developing model analogs of 
the basic equations used in physics. Thus the initial models depicted nonac-
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celerated and accelerated motion (see Figure 2.3). These models are ex
amples of the linear and quadratic relationships taught to all CC-STADUS par
ticipants during the first week of their training. Using the language of stocks 
and flows to supplement the mathematics describing position, velocity, and 
acceleration has proved to be an effective way of introducing the concepts 
to students, as well a prOviding a means of checking their work as they ad
dress problems. The structure of the accelerated-motion model offers a 
unique advantage in explaining the differences among average, constant, and 
instantaneous velocity. 

The constant-velocity model is the starting point for the accelerated
motion model. A second piece is added that changes the velocity as the ob
ject accelerates. Students in traditional physics courses learn that 

Change in position = velocity X time 
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for constant velocity only. However, when confronted with accelerated mo
tion, they often fall back on the constant-velocity equation, which yields a 
wrong answer. The STELLA ® model for accelerated motion provides a graph
ical clue that when acceleration is present, something very different is hap
pening. The velocity is constantly being changed, so the rate of change in po
sition (velocity) is going to change constantly as well. This makes the simple 
equation obviously wrong. Using graphs produced by the model, it is pos
sible to look at the instantaneous and average velocities, emphasizing their re
lationship to distance (see Figure 2.4). Recently, some physics teachers asso
ciated with the project have begun to label the models differently, using "rate 
of change in position" and "rate of change in velocity" to emphasize the con
cept of rate when discussing velocity and acceleration. This added emphasis 
is expected both to reinforce the concept and to strengthen association of 
the model and concepts with the mathematical representation. 

This use of STELLA ® models to clarify and reinforce traditional methods 
of teaching concepts is typical of much of the use of models throughout 
physics. But the accelerated-motion model also makes available learning op
tions that are unique to modeling. Consider: The traditional equations used 
to describe the motion of objects are all idealized. In particular, they ignore 
all consideration of friction, air resistance, and nonconstant accelerations or 
forces. Students develop a sense of frustration with this limitation. They find 
the concepts and equations difficult enough to learn and work with. Discov
ering that these do not fully describe any real problem calls into question the 
reasonableness of making the effort. The common teacher response, "You'll 
be able to answer that question when you learn partial differential equa
tions," doesn't help. 

Simple modifications to the accelerated-motion model make it possible for 
students to explore the real problems-even to get actual numerical results. 
One model developed for classes was the result of student responses to a clas
sic physics problem. Students are presented with a situation in which a car 
at rest is passed by a moving truck. The car at rest then accelerates and passes 
the moving truck. The problem asks how long it will take for the car to pass 
the truck and how far it will go in so doing. Traditional solutions require stu
dents to write two equations of motion (one for the car and one for the 
truck), set them equal to one another, and then solve for time. Again, this 
problem usually puts unrealistic limitations on the situation, including con
stant truck speed and constant car acceleration. Some student inevitably ob
serves, "I'd like to get my hands on that car, because mine sure doesn't ac
celerate uniformly to 60 mph!" 

That comment can derail the entire process. It undermines the key idea 
that is the goal of the problem: recognizing that both vehicles travel the same 
distance in the same time interval, which makes a solution possible, if cum
bersome. A simple modification to the accelerated-motion model (see Fig
ure 2.5) allows the acceleration to change. The model, developed by students 
using acceleration data from Road and Track magazine, allowed learners to 
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deal with a problem conceptually identical to the traditional problem, but 
more realistic. It also gave them an inkling of the ability of higher mathemat
ics to take simple ideas and solve complex problems. 

Students encounter similar situations throughout physics. PSSC Physics, re
garded as the most rigorous secondary physics text, includes a short sec
tion on air resistance, including a problem dealing with a Ping-Pong ball (Fig
ure 2.6). Most students are utterly frustrated by the problem. However, an
other simple modification to the accelerated-motion model enables them not 
only to solve that problem but also to explore solutions for other objects. It 
also, through the model structure, emphasizes the conceptual basis for air re
sistance and its dependence on velocity. 



• ~I 

~I 

~I 

Student Response 57 

Distance Graphs for Car/Truck Problem 

1: Porsche Distance 2: Truck Distance 
200.00 ..-------....,--------.---------,.----,r-----, 

100.00 +-------I--------!--...,..-----:,...-I<"'--------1 

0.00 

0.00 2.50 

Graph 1: Page 1 

5.00 

Seconds 

7.50 10.00 

2:00 PM 6/7/1997 

FIGURE 2.5 (Continued). 

Current Velocity 

FIGURE 2.6 Ping-Pong Ball Falling Model. 

Models have been developed and used to illustrate other commonly taught 
concepts in physics. Force models, dealing with changes in both position and 
momentum serve as frameworks for other models that deal with problems 
not generally addressed mathematically. A rocket model (Figure 2.7) uses the 
more basic force-momentum model to look at the effect a changing mass has 
on the impulse equation taught in all physics classes. This model has been 
used by some teachers to predict the performance of commercially available 
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model rockets, with good results. It has also been used to show how some 
major concepts, such as conservation of energy, can lead to erroneous as
sumptions if close attention is not paid to rates of energy transfer. This work 
involves the determination of optimal burn rates for rocket engines. 

All physics models developed within the project or used by the project re
volve around the simple model structures taught in the CC-STADUS summer 
institute: linear growth, quadratic growth, exponential growth/decay, and 
S-shaped growth. Although the bulk of the models focus on mechanics and 
kinematics, a number have been designed for use in thermodynamics, elec
tricity and magnetism, and radioactivity. Many are presented as generic mod
els for both whole-class situations and individual student use. Experience 
suggests that for developing new ideas, a whole-class environment, in which 
building or using the model is part of a discussion process, is most appropri
ate. That setting ensures a sort of "quality control," providing all students 
with the same experience as the concept is developed. Further exploration 
is usually done by students individually or in pairs. 

A few models in use provide students with insights that are not normally 
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developed in a secondary physics class. One is made possible by an ex
tremely simple model referred to as the generic decay model (Figure 2.8). 
This simple exponential decay model is built (under careful direction) by 
students and used to explore radioactive decay and half-life, including radio
active dating. After completion of that activity, students move on to exam
ining a three-stage decay sequence (Figure 2.9). Building this model allows 
them to understand what is actually happening in such a sequence (the 
stock-flow structure clearly shows the supply of one element flowing/chang
ing to a supply of another), as well as the role half-lives play in determining 
the speed of progression of the sequence. Both are key ideas in understand
ing the problems associated with the disposal of radioactive wastes. 

Work in Biology Classes 
Although the material covered in biology classes is not normally presented in 
mathematical formulations that translate easily into systems models, the con
cepts dealt with are natural for modeling. Most biology teachers who have 
participated in the CC-STADUS Institute build and use variations on the 
simple population models while exploring exponential growth and decay. 
Some use these models without modification, but most regard them as a start
ing point from which they take a number of different paths. 

Some teachers begin to explore links with other variables in the environ
ment. Most commonly, they restrict these links to available food and living 
area. This investigation may be focused on humans or on other organisms. Of
ten this idea is then carried further, using one of the cross-curricular models 
developed by the project (Mahenjo Daro or the Sahel) or expanding the mod
els created. In one case, where students are conducting stream studies, stu
dents working with the teacher and an experienced modeler developed mod
els that tied bacterial growth to some of the ten or more variables they had 
been following. A few biology teachers, after doing basic work with popula
tion models, explore interacting species using models such as the classic 
Lynx and Hare model developed by High Performance Systems, the publisher 
ofSTELLA®. 

Although a few commercial models of cellular metabolism have been re
leased, none are currently being used by biology teachers associated with 
the project. Several are planning to develop such models for their specific 
curriculum. 

System Dynamics in the High School 
Mathematics Classroom 
The past 10 years have seen some changes in two areas that have set the stage 
for the introduction of system dynamics in the mathematics classroom. 
Physics study expanded to include, in many high schools, a course in con
ceptual physics, so a foundation could be laid for more rigorous study in the 
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future. The conceptual materials focused on developing an understanding of 
the key principles governing mechanics, sound, light, and electromagnetic 
phenomena. This course laid very important groundwork for future study 
with a much broader student audience than would have been reached by tra
ditional physics, which is usually taught to juniors and seniors. 

Also implemented at many universities and some high schools was the re
form calculus, which broadened the vision of "doing calculus" to include 
more conceptual understanding of integration and differentiation. Students 
study functions from a numerical, symbolic, and graphical perspective and in
clude written explanations wherever appropriate. (This has come to be re
ferred to as the "Rule of Four. ") These approaches have gained widespread 
acceptance and have opened to many students an avenue of understanding 
and study that is not provided by traditional courses in these areas. Develop
ments in computer technology have been instrumental in supporting this 
transformation. 

The study of system dynamics brings to high school mathematics those op
portunities provided to students via the inclusion of conceptual physics and 
reform calculus. System dynamics provides an opportunity to study the tra
ditional functions presented in most mathematics classes from a conceptual 
perspective. That context is the behavior of the function over time, empha
sizing its rate of change. The teacher merely begins with the study of dis
tance-versus-time situations using a motion detector. Students walk in front 
of the detector and produce a graph of their motion. Discussion revolves 
around the shape of the graph and how it is connected with the velocity of 
the person moving. Balls thrown into the air or oscillating springs can be an
alyzed in a similar fashion, embedding these concepts in the concrete expe
rience of the students. More students understand this approach than the sym
bolic approach used to differentiate among functions. This does not exclude 
or obviate the need for the symbolic approach. It just increases the "Rule of 
Four" to a "Rule of Five," the fifth being a systems perspective on functions. 
The experiences with the motion detector can provide students with con
ceptual understanding of some of the characteristics of functions, generally a 
whole year before they are studied in the traditional, symbolic form. It is not 
necessary to make the symbolic connection at the same time the activity is 
introduced; one need only discuss the important "behavior-over-time" char
acteristics ofthe function/phenomenon being studied. This gives the student 
concrete examples on which to "hang" the abstract symbolic representation, 
once they study it. It provides the same preparation that conceptual physics 
classes do for mathematically based physics classes. 

Having introduced functions in such a concrete manner leads directly to 
expressing each function type using STELLA ® symbols. The focus of the 
STELLA ® representations follows so directly from the rate-of-change study 
that it crystallizes the concepts introduced using the motion detector. The 
STELLA ® diagrams show the actual "internal system behavior" of the func
tions. It is as though one were able to look at the internal workings of a black 
box that one had tried to study looking only at inputs and outputs. The view 
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FIGURE 2.10 Linear, Quadratic, and Exponential Generic Models Diagram. 
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FIGURE 2.11 Predator/Prey Model. 

is awesome, illuminating, and powerful. Nearly all of the standard function 
types studied in traditional algebra I, algebra n, precalculus, and calculus 
classes can be easily represented by STELLA® diagrams. Linear, quadratic, ex
ponential, convergent, logistic, and sinusoidal functions are all expressed 
simply and easily using STELLA® (see Figure 2.10). And other, more compli
cated functional relationships can be introduced if desired. 

This visual, conceptual view of function structures is very useful for stu
dents and gives them another way to understand what is already being pre
sented in math classes. If this were all that could be accomplished, it would 
be worth the effort. But it is just the beginning. The introduction of system 
dynamics for representing functions opens a door that allows many students 
to make a quantum leap in numerical analysis of real-world applications. An 
altered view of the world-a system dynamics view using the STELLA® lan
guage-will change what we teach students at the high school level in the fu
ture. Because the STELLA® language enables students to represent problems 
using a visual-diagram structure, students understand better how to design 
and analyze problems. As one designs the diagram, dependencies become 
transparent. Problems can be studied that contain both increasing and de-
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creasing rates of change. Consider that 98% of the problems currently stud
ied in algebra and precalculus contain only a growth or a decay component, 
not both. But real-world problems nearly always contain both. It is possible 
to introduce more interesting problems at earlier levels by using STEllA@ di
agrams, because the visual design is conceptually easier to create. Problems 
such as predator-prey interactions that create oscillations (see Figure 2.11) 
can be introduced in algebra II, during the study of circular functions, ex
panding the typical swing/spring/Ferris wheel examples. 

When problems are introduced conceptually, via the STEllA@ interface, 
students have a better understanding of the symbolic representation they 
encounter in later courses, because they have something more concrete to 
hang it on. 

It does not take a significant amount of time to implement these changes 
in mathematics classes, given an interested teacher who is willing to experi
ment building models herself or himself. Ten to twelve days in the school 
year are sufficient to inclutle most of the motion detector and STEllA@ ac
tivities we have discussed. The key, however, is to have the students involved 
in the action part of the motion detector exercises and, even more important, 
to have the students always build the STELLA@ models for the functions they 
are studying. The value is reduced significantly if either of these activities is 
done merely as a demonstration. "If they build it, they will learn, » has been 
the motto of our project and the teaching of system dynamics from its in
ception. The building can be done as a classroom exercise in which the 
teacher, working with one computer at the front and assisted by student in
put, develops the model. In math it works best to have the students in a lab, 
building their own solutions to problems after key concepts have been pre
sented or discussed in a classroom setting. 

Assessment is not difficult. Merely presenting a problem for which stu
dents must draw an appropriate STELLA@ diagram, with identifying labels 
and numerical definitions, works well. Students can explain motion graphs 
or draw motion graphs, given a physical description. Students can be given 
problems as projects to be turned in as a part of reports, requiring that they 
design STEllA@ models and/or use motion graphs. 

Although much can be done in traditional mathematics classes to enhance 
learning via system dynamics, teachers are often constrained by a traditional 
syllabus that mandates spending significant time on required topics. Conse
quently, it is difficult to realize the full impact of the study of system dynam
ics in traditional mathematics courses. An independent course that focuses 
on system modeling, however, brings out the power of this method of study 
beyond question. At Franklin High School such a course has been in the cur
riculum for 5 years. The number of students taking this class as a math elec
tive has grown from 11 to 60; students find this method of study interesting 
and useful. At Wilson High School, similar work is being done in a science 
class devoted to dynamic modeling. In both courses, exercises are provided 
during the first semester that include techniques of data analysis, learning to 
design a variety of models using the STEllA@ software, and learning to vali-
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FIGURE 2.12 Pronghorn Population Model. 
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FIGURE 2.13 Time of Death Model. 

date and explain the small models that students are expected to create. Dur
ing the second semester, students work in teams on projects. They decide on 
a problem to study, contact a resource person or expert on the topic, collect 
data, design a working model, validate the model, and write a 10- to 20-page 
technical paper explaining their model. 

One model created by two high school juniors studied the population dy
namics of a herd of pronghorn antelope in central Oregon. A wildlife biolo
gist in that area had recently modeled the population, and he faxed the stu
dents his spreadsheet results and the observed data. The students created a 
model similar to Figure 2.12 and were able to obtain results closer to the ob
served data than the results of the wildlife biologist. 

Two seniors, one of whom had taken the forensic science class at Franklin 
High School, studied some of the factors that are considered in determin
ing the time of death of a corpse. They spoke several times with a medical 
examiner in Portland, who generously lent them charts and articles to read 
on the subject. They created a model that took into account three primary 
factors: ambient temperature, weight of the body, and whether the body 



Plans for the Near Future 65 

Stomach Body 

Consumption Absorption Rate Elimination Rate 

FIGURE 2.14 Alcohol Consumption Diagram. 

wore dry clothing, wore wet clothing, or had no clothing (Figure 2.13). This 
model, although simple, won first place in the modeling competition (see 
SYM*BOWL in the following section). 

A very interesting model relates the increase in blood alcohol level (BAC) 
to strength of the alcohol, gender of the drinker, size of the drinker, and 
length of time over which the alcohol was consumed was created by two 
high school seniors. This model set the stage for studying not only the vari
ables included but also legal arguments involving driving under the influence 
of intoxicants. A similar model is shown in Figure 2.14. 

Over the past 5 years, students have created over 80 models that study 
problems ranging from how one becomes addicted to cocaine to whether a 
current tax-cap ballot measure will undermine school funding, to expenses 
involved in owning and operating a bed and breakfast. The problems are in
teresting to the students, who create the models and write papers beyond 
what would ordinarily be considered high-school work. Indeed, university 
professors who have seen these models and papers have commented that 
they have some graduate students who could not produce work of the qual
ity that these junior and senior high school students are producing. Next year 
the Franklin modeling course will have 20 high school freshmen among the 
60 students who will take the course. At Wilson, 25 freshmen will be among 
the 57 students taking first- or second-year modeling. The prerequiSite for the 
Franklin modeling course is completion of algebra I with a grade of A or B. 
This course is a perfect application of the mathematics concepts that are be
ing taught in traditional courses. 

An interesting characteristic of the modeling classes is that 50% of the class 
enrollment is female. No special efforts made were to this end. Of the mod
els we have presented, the "Pronghorn" model was created by a female-male 
team, the "Time of Death" model was created by two females, and the "Al
cohol Consumption" model was created by two females. 

Bear in mind that Franklin High School is an inner-city high school that 
serves primarily a blue-collar population. Only about 20% of the school pop
ulation attends 4-year institutions of higher leaming after graduation. After 
next year, system concepts and the use of STELLA ® will be expanded to pre
algebra courses to determine whether students who are less successful in the 
traditional track respond well to a systems approach. Wilson High School is 
in a considerably more affluent city environment. Many of the students en
rolled in systems classes there, however, are not among the highest-achiev-
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ing students. It has become a desirable course for creative students who are 
not excited by traditional math and science classes. 

Plans for the Near Future 

Both Wilson High School and Franklin High School will offer system (mag
net) programs, which started in 1997. Wilson will focus on system study 
in science and social science, providing 2 years of system modeling and 
a course in science, society, and technology. Franklin's program will focus 
on system study in mathematics and science and will require the system stu
dents to create, each year, a model on a topic relevant to their current level 
of mathematics and science. In both programs, students will be required to 
take 4 years of math, 4 years of science, and 2 years of system dynamics mod
eling. Ultimately, the programs at Wilson and Franklin will be shared to ex
pand the systems co~ses offered at each school. The goal is to train students 
to do systems modeling early in their high-school career so that they can use 
the theory and tools in most of their courses throughout high school. 

Both Wilson and Franklin have system dynamics modeling classes. Three 
more high schools in the Portland area will add systems modeling courses to 
their curriculum in the 1997-1998 school year, and two other schools plan 
courses for 1998-1999. As more participants are trained in the NSF CC-SUS
TAIN project, it is expected that the number of schools that offer systems 
modeling courses will grow. A growing number of teachers in the middle 
schools are also giving their students system dynamics experience by pro
viding simple models that students manipulate or using activities like the 
FishBanks simulation. 

In 1996 a research pharmacologist who has used STELLA® in his drug re
search for about 10 years directed a high school modeling competition called 
SYM*BOWL. The competition was held at Oregon Health Sciences University 
in Portland, Oregon. The first year, 16 high school teams participated from 
four high schools in the Portland metro area. The second competition was 
held in 1997, and 20 teams participated, one of which flew in from Vermont. 
Students provide their written technical papers to the judges a week before 
the formal competition. At the competition, students bring posters and com
puters and spend the morning answering questions posed by judges who are 
assigned to cover each student group. From this group of 20, five or six top 
teams are selected. In the afternoon each team presents its model to the 
entire audience. From the top five, three teams place. Each of the students in 
the top five teams receives a copy of the STELLA ® software. The students in 
the top three teams receive plaques and money prizes. The number of par
ticipants continues to grow, as does public interest in the competition. As the 
number of schools who have trained teachers grows, the number of teams 
competing will grow as well, so we expect there will have to be regional 
competitions, the winners of which will compete nationally. 

The future of teacher training in systems is part of the design of the NSF 
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CC-SUSTAIN (Cross-Curricular Systems Using STELLA ®: Training and Inser
vice) grant. The acronym represents the intent of the grant. If the preparation 
of teachers who learn systems modeling is to be sustained, it must be institu
tionalized. The project directors are currently working with faculty at both 
Portland State University and the University of Portland to include systems 
modeling as part of the teacher training programs. Additionally, the Math 
Learning Center, a not-for-profit organization that provides workshops in 
40 states, will work with the directors to design workshops of four lengths 
to include in their offerings. Workshops will be half a day, 2 days, 5 days, or 
12 days long (similar to the training provided each summer by the NSF grant). 
The directors will design the training materials, and the CC-STADUS and CC
SUSTAIN participants will become the instructors for these workshops. Fi
nally, as part of the CC-SUSTAIN grant, a satellite group of nine teachers from 
one location in the United States will be trained each of the 3 years of the 
grant. These satellites will be supported by visits from the directors for 3 
years so that, each year, they can provide training of increasing length in the 
summer. At the end of 3 years, each should provide a 12-day training program 
in its area similar to the one in Portland, using its own modelers as trainers, 
thus becoming a center for systems training. 

It is necessary that published materials become available to support this ef
fort. The directors will provide the Math Learning Center with training pack
ets of materials for the workshops it will offer. Additionally, each director will 
produce booklets on the following topics: "The Curriculum for a Year-Long 
Course in System Dynamics Modeling at the High School Level," "Systems 
Models and Curriculum to Support the Study of Physics at the High School 
Level," and "Systems Modeling Curriculum to Support the Study of Mathe
matics at the High School Level." 

It is quite apparent that current developments in both computer hardware 
and software require changes in how we teach and what we teach. The 
power of system dynamics theory, coupled with an intuitive software lan
guage like STELLA ®, provides a vehicle for students to understand complex 
nonlinear problems that are significantly more advanced than can be ac
cessed by any tools previously available to high school students. The fact that 
the tool provides a visual representation of the problems studied opens doors 
to students who have not found traditional methods helpful. Not only does 
system dynamics theory make it possible to reach more students, helping 
them understand the concepts we are currently trying to teach them; it also 
provides new areas of study for students who have found the traditional ap
proach to a subject uninteresting because of its oversimplification or the lack 
of a variety of problems to study. We have found students much more recep
tive to using a tool such as STELLA ® than are adults who have invested a lot 
of time learning to find solutions "the old way." Tools like STELLA ® and tech
niques of analysis like system dynamics will become part of the regular meth
ods of solution for students in the future. As young students have led the com
puter revolution, so will they lead the transition to system dynamics-using 
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tools like STELLA ® in analyzing problems. They are so receptive because this 
is such a reasonable way to think about problems. 

Long-Term Vision 

Our perspective on the future of systems may be somewhat surprising. First 
of all, we like to compare the spread of systems work to an infection. Initially 
there are very few cells present. However, because infections are classic ex
amples of exponential growth, about the time the growth becomes notice
able, it quickly "takes off." The infection can be easily controlled only in the 
early stages, when numbers are very small. We believe the use of systems is 
in that early, fragile stage. Although it is exhibiting exponential growth, it is 
still below the "level of notice" because the number of teachers who are us
ing systems is tiny compared to the total number of teachers. The next 5 - 7 
years will be critical. If the current level of growth in use can be maintained, 
systems will soon become highly visible, even though still used by a small mi
nority of teachers. If this is as powerful a tool for learning as we think, that 
growth will continue. 

What, then, will the role of systems be in education 15 - 25 years down the 
road? By that time, systems will be relatively widely accepted as a tool-as a 
way of learning. All curricular areas, with the possible exception of foreign 
language, will be using systems as one of the primary instructional tools. Not 
in every class everywhere, but in a significant number of schools-a number 
that increases steadily. That does not mean that all instruction and learning 
will be through the use of systems. System thinking/dynamics is not a cure
all. There are some topicS for which it works extraordinarily well. For other 
topics it may not make a significant difference. With still other topics, it may 
actually be detrimental. However, systems will be a broadly accepted tool in 
general use. 

That does not necessarily mean that everyone will be modeling. Building a 
model is a higher-order skill than using a model, and not everyone needs to 
do it. Just as relatively few people today take programming courses in ma
chine language or in languages such as C++ and Pascal, though many of us 
use software written in those languages, many more students and teachers 
will use models than will build them. That simply means that models and sys
tem dynamics will have become an accepted tool for the masses, as word pro
cessing and spreadsheet software have already. 

A strong indicator of the failure of system dynamics would be the emer
gence of System Thinking/Dynamics departments in secondary schools. Seg
regating and separating systems would undermine its greatest potential: the 
capacity for linking ideas across traditional boundaries. The systems revolu
tion will have succeeded when most students see models in every class, every 
year. That goal is probably 50 or more years distant, but when it is achieved, 
the objective of systems thinkers-educating everyone to understand the in
terconnectedness of learning and ideas-will have been reached. 
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Construction of Models to Promote 
Scientific Understanding 

Michele Wisnudel Spitulnik 

Joeseph Krajcik 

Elliot Soloway 

Students should use scientific knowledge to build explanations of phe
nomena and to make informed decisions (American Association for the Ad
vancement of Science, 1993; National Research Council, 1996). We propose 
promoting the use of scientific knowledge by involving students in the con
struction of models. This chapter (1) describes a curricular unit designed to 
promote inquiry, collaboration, and the building of dynamic models; (2) pre
sents one case study that examines students' understandings as they engage 
in this type of learning environment; and (3) reflects on the usefulness of a 
model-building environment with respect to science understanding. 

Model-It 

Model-It, developed by the Highly Interactive Computing group at the Uni
versity of Michigan, is designed to facilitate model building by allowing stu
dents to define what they want to include in their model, build relationships 
between variables in their model, and test and evaluate their model (Jackson, 
Stratford, Krajcik and Soloway, 1995). The software supports students con
structing models in several ways (Jackson et at., 1996). First, it allows stu
dents to define the things, or objects, to be included in the model. These ob
jects are represented visually, either with digitized images or with other 
graphics such as clip art or student-generated drawings. Examples of objects 
include people, cars, the atmosphere, and factories. Once the students define 
the objects they want to include, they define the factors, or the measurable 
characteristics of the objects. Examples of factors include amount of carbon 
dioxide emitted by cars, level of chlorofluorocarbons in the atmosphere, 
level of ozone in the atmosphere, and amount of pollutants emitted by facto
ries. Next, students define relationships between factors. Model-It allows stu
dents to define these relationships in a number of ways. They can, for in
stance, construct sentence-like qualitative relationships or input real data; in 
both cases, the software "translates" the qualitative or data-based representa
tion into a graphical representation. An example of a student-generated, qual-
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itative, sentence-like relationship is "as the level of chlorofluorocarbons in
crease in the atmosphere the level of ozone in the atmosphere will decrease." 
Finally, Model-It allows students to test these relationships and their model by 
"running" the model. Students use meters to change values for the factors 
they want to test. They can also watch the status of factor values by viewing 
a graph. In this way, students can generate "what if" questions and predic
tions, and they can test different hypotheses within minutes. 

The Global Climate Change Unit 

Context 
The global climate change unit was designed for the project-based science 
program called the Founqations of Science, or FOS. The project-based sci
ence class was developed with the support of a research project at the Uni
versity of Michigan, funded by the National Science Foundation. The Foun
dations of Science class is designed as a 3-year interdisciplinary (earth 
science, biology, and chemistry) course, FOS I-ill. The goals for this 3-year 
course are to integrate the separate science disciplines; to do real science, us
ing projects as the driving force in the curriculum; and to create a classroom 
where the use of computational media is routine. Researchers at the Univer
sity of Michigan have worked collaboratively with the Foundations of Science 
teachers for 4 years to develop curricular units that engage students in in
quiry and dynamic model building. 

Projects and Models 
The Foundations of Science class uses the features of project-based learn
ing (Blumenfeld et at., 1991) as a guide for designing curricula. Specifi
cally, many of the projects include a driving question that serves as the focus 
for the whole unit of instruction; student-designed investigations; student
constructed models; students collaborating with other students, teachers, 
and outside resources to obtain information; and use of technological tools 
to support data gathering, analysis, telecommunications, and presentation. 
The students in the FOS I course engage in a couple of projects during the 
year. The first project, which lasts for one semester, focuses on the driving 
question "Is our local creek safe?" Students work collaboratively to collect 
and analyze stream water and, using Model-It, construct a model of the qual
ity of the stream. 

The second semester of the FOS I curriculum revolves around the question 
"Is our climate changing and does it matter?" This question is divided into 
three smaller questions: (1) "What is our weather like now?" (2) "What can we 
predict for our future climate and what impact does this have on our envi
ronment?" and (3) "What was our climate like in the past and what evidence 
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TABLE 3.1 Goals for the Global Climate Change Unit 
Content Goals 

General 
• Describes the purpose of the content, how it might be used or how it relates to funda

mental ideas 
• Constructs relationships between concepts (and different symbolic representations) 

to develop in-depth explanations 
• Explains phenomena and/or makes decisions using facts and concepts 
• Constructs, interprets, and uses many symbol systems to explain phenomena 

Specific 
• Explains the natural factors that influence climate and climate change 
• Describes the sources of human pollution 
• Describes different types of pollutants 
• Describes the impact of pollutants on climate and climate change 
• Describes the impact of climate change on environment 
• Describes any preventive measures or possible solutions 

Nature of Science Goals 

• Describes science, models, and theories as human constructs that are subject to 
change (tentative nature of science) 

• Describes purposes of models, theories, and evidence and how they are used by dif
ferent groups of people (scientists, politicians, business professionals) 

• Evaluates (including limits and assumptions) models, theories, or evidence in terms 
of articulated attributes of a good model, theory, or set of evidence 

Inquiry Goals 

• Defines a problem area and constructs a systematic method to address the problem 
area 

• Constructs and revises models (representations, explanations) to explain a phenome
non and/or make predictions 

• Uses empirical evidence and/or models to construct or justify an argument for or 
against a stated position 

• Evaluates arguments 

do we have of paleoclimate changes?" The second question is the focus for 
this model-building unit. 

Goals of the Global Climate Change Unit 
The goals for this unit are divided among three main areas: Content, Nature 
of Science, and Inquiry (see Table 3.1 for summary). The Content goals in
clude what students are expected to do with the scientific content while they 
construct their models. For example, students should be able to explain the 
phenomenon they are investigating and why this phenomenon is important. 
Specifically, the teachers want students to demonstrate an understanding of 
(1) the factors that influence climate change, (2) the sources and types of hu
man pollution that contribute to potential climate change, (3) the impact of 
pollutants on climate, (4) the impact of climate change on the environment, 
and (5) preventive measures or possible solutions. The Nature of Science 
goals include what we would like students to understand about the scientific 
enterprise. For example, students should be able to describe the purposes of 
models, who builds models and why, and how one might evaluate the qual-
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ity of a model. The Inquiry goals include what students should be able to do 
in researching a problem. For example, students are expected to define a 
problem area and design a systematic approach to address the problem; stu
dents build a model of their system to explain the problem; and finally, stu
dents should make some claims about their problem and justify the claims 
with empirical evidence. 

The Global Model Planner 
Along with Model-It, the Global Model Planner was designed as a way to sup
port students' building of scientific understanding throughout the Global 
Climate Change Unit. Stratford highlights the importance of students plan
ning first, before beginning to build models (Stratford, 1996). Perkins and 
others highlight the importance of students defining goals and purposes 
for the work they do (perkins, 1996) . The intent of the Global Model Plan
ner is to help students plan, reflect on, and evaluate their models. The plan
ner prompts students to define goals for their project, define purposes for 
their model, and decide what objects and factors they would include in their 
models. It encourages students to reflect on their models by asking them 
what assumptions and limits they are building into their models. Finally, the 
planner encourages students to evaluate their models in terms of the goals 
they set and the use of evidence. 

Translating Goals into Classroom Action: A Brief Account 
The unit revolves around groups of students investigating the driving ques
tion "Is our climate changing and does it matter?" and building a model to 
represent some aspect of this phenomenon. Figure 3.1 is a schematic dia
gram that represents the main features of this project. With the teacher's 
guidance, students define a meaningful and reasonable problem and begin re
searching their issue. Students locate resources, refine their problem, and 
collect more information. As students continue to track down relevant re
sources, the teacher engages students in role-playing activities designed to 
highlight how and why people build and use scientific models and how dif
ferent groups of people may respond to opposing models of the same phe
nomenon (Nature of Science goals). The teacher also structures discussions 
around how and where people are finding useful information. Lessons, 
demonstrations, and other laboratory activities are also incorporated to help 
students learn about some of the scientific concepts they encounter. 

Once students have enough information, they begin to make sense of it 
by organizing it to give it structure (Content goals). Before students begin to 
build their models, they first plan their models with the Global Model Plan
ner. The planner encourages students to identify the objects in their system 
(or the things out there in the world, such as people, cars, and plants) and 
the factors in their system (or the things about the objects that can be mea
sured-for example, the number of cars people drive and the amount of car
bon monoxide emitted from cars). The students also describe the relation-
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What can we predict for our future climate? 

What impact would a changing 
climate have on local ecosystems, 
agriculture, and human activity? 

FIGURE 3.1 A Map Representing the Global Climate Change Unit. 

ships between these factors. For example, as the number of cars increases, 
the amount of carbon monoxide increases (Content goals). Students present 
their plans to their classmates and teacher for comments. 

Students begin to build their models, using Model-It, by incorporating the 
information they have found. As students continue to build their models, the 
relationships between factors become better defined and evolve from very 
descriptive, qualitative relationships to more quantitative, data-based rela
tionships. Students explain each of the relationships (Content goals) within 
their models and then begin running and testing them. The teacher encour
ages students to make predictions about what they expect to happen and 
then to verify whether it actually happens. Students then evaluate their mod
els and revise them so that they better reflect the problem they address (Na
ture of Science and Inquiry goals). A round of peer reviews is organized by 
the teacher so that every group of students evaluates another group's model. 
Students use an evaluation criteria sheet in the Global Model Planner to help 
give each group useful feedback. Finally, students present their work to their 
classmates, and the presentations are video-taped for Cable Access Televi
sion. During the presentations, students describe the problem they chose 
and the purpose of their model. They demonstrate and explain their model 
and justify any claims they make on the basis of scientific evidence. 
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"Ozone Depletion is a Real and Threatening Problem" 
A Case Study of Jamie, Lauren, and Rachel 

This case study explores the understandings of one group of students as they 
engage in the Global Climate Unit. The case study presented here is one part 
of an ongoing research program within the Foundations of Science class
rooms and is the culmination of 4 years of collaboration between the Foun
dations of Science teachers and the researchers at the University of Michigan. 
The students in this case had previously used Model-It to construct models of 
stream quality, so they were already familiar with the software. 

The data used to support this case study come from several sources, in
cluding the model the students constructed, interviews with the students 
during and after construction of their model, copies of the students' Global 
Model Planners, and classroom video tapes. Each data source is analyzed and 
coded for categories withpl the areas of content, inquiry-related understand
ing, and nature of science. For example, the categories used to identify con
tent understanding include use of purpose, construction of relationships and 
explanations, and use of symbol systems. Categories used to identify inquiry 
understanding include defining a problem, constructing a model, construct
ing an argument, and evaluating an argument. Categories used to identify na
ture of science include descriptions of the purpose of models and evaluation 
of models. The findings from all of the data sources are used to build a de
scriptive case for each group's content, inquiry, and nature of science un
derstanding. The case of Jamie, Lauren, and Rachel is a representative ex
ample of average to above average students in the ninth-grade Foundations of 
Science classroom. 

Building Content Understanding 
The process of building a model allows Jamie, Lauren, and Rachel to con
struct robust content understanding. The students build this understanding 
by defining and revising a purpose for their model over time, by identifying 
the objects and factors to include in their model, and by building relation
ships and explanations of the phenomena within their model. The following 
paragraphs elaborate on how model building supports the construction of 
Jamie, Lauren, and Rachel's content understanding. 

The Purpose 

Jamie, Lauren, and Rachel decide early in the unit to focus their model build
ing on ozone depletion. They explain that the purpose of their model is to 
identify "what causes ozone depletion, what is effected by it, how to prevent 
it, and how to deal with the existing problem (Global Model Planner)." Once 
they have a chance to work on their model, their purpose becomes more 
specific: "(We want to) show the process of ozone-depletion, show the ef
fects on life on earth, show the sources of ozone-depleting substances, and 
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talk about what's being done and what has been done for production (Class
room Video)." The students remain interested in "how to deal with the ex
isting problem" and want to consider actions that will have an effect on the 
problem. In an interview at the end of the unit, the students stress this action 
component of their project. Rachel explains the purpose of their project: 

Rachel: It's sort of like a community thing. Sort of like educating the community. 
What we wanted to do is, we just wanted to find out about it, and we really wanted 
to find out what's been done to stop it and maybe like a few alternatives that have 
been proposed. 

Building Relationships and Explanations 

Construction of the ozone depletion model gives Jamie, Lauren, and Rachel 
an opportunity to decide what objects and factors to include in their model 
and an opportunity to build relationships and explanations of the phenom
ena. Jamie, Lauren, and Rachel decide that they want four objects within 
their model. They describe these objects in their Global Model Planners: "at
mosphere" will be included because "this is where ozone depletion takes 
place"; "chemicals that destroy" will be included because "these are what de
stroy the ozone layer"; "sources of chemicals" will be included because they 
"show the culprits of our problem. The chemicals come from places and we 
need to know where"; and the "earth" will be included because it will "show 
the effects of ozone depletion on life on earth." 

These students also discuss some initial ideas for the factors associated 
with these objects. They describe four factors for the object "atmosphere." 
These are "stratosphere ozone layer, 03' methane, chlorine nitrate" and they 
are included because "these chemicals are in the ozone layer and they play 
a role in ozone depletion." The object "chemicals that destroy" has several 
factors, including "CFC's, halons, methyl chloroform, carbon-tet, methyl bro
mide, HCFC." These factors are included because they are "the causes of 
ozone depletion." The object "sources of chemicals" has several factors, in
cluding "aerosol spray, foam blowers, solvents, cleansers, ingredients for 
other substances, agricultural uses, seaspray, substitutes for CFC-industry, 
cars, air conditioners." The students' reason for including all of these is "so 
we know what products not to use and know what uses of the chemicals 
there are." Finally, the object "earth" has three associated factors: plants, an
imals, and ecosystems. The students want to include these "to show what the 
effects of ozone depletion can do to us and our environment" (Global Model 
Planner). 

As the students continue to build their model, they refine it by re-evaluat
ing what should be included. They continue to have the objects "atmo
sphere, earth, and source," but the object "chemicals" becomes a factor of 
the object "atmosphere." Jamie explains in her Global Model Planner: 

The issue of ozone depletion involves many parts of our world. The first is atmo· 
sphere, naturally because it is where ozone is and where ozone depletion takes place. 
The factors of atmosphere are the chemicals involved in ozone depletion. This makes 
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FIGURE 3.2 Jamie, Lauren, and Rachel Construct a Factor Map with Model-It. This is 
the final version of their model. 

sense because the atmosphere is where they do their damage and where they are 
when we want to focus on them. Earth is an object and has ecosystems as the factor. 
Source is an object with all the sources of the chemicals as factors. 

In their final model, the students use only the three objects: atmosphere, 
source and earth (Figure 3.2). The factors are similar to their original ideas, 
with just a few modifications. The object atmosphere has several factors, all 
of which are chemicals or pollutants that contribute to ozone depletion. 
These include carbon tetrachloride, methyl bromide, methane, chlorofluoro
carbons (CFC's), chlorine nitrate, methyl chloroform, hydrochlorofluorocar
bons (HCFC's) and halons. The students limit the number of factors the ob
ject "source" has by including only numbers of air conditioners, numbers of 
cars, and amount of industry (they omit specific sources such as aerosol cans 
and foam blowers in favor of more general categories). They also decide to 
limit the factors associated with the object "earth." They decide to group all 
of their original factors together to have one general factor, ecosystems. 
Table 3.2 lists their final factors and summarizes their explanations for in
cluding them. 

The students build explanations as they construct their model. The expla
nations they give for the factors related to the "earth" and "source" objects 
are relatively simple. Their explanation for including air conditioners is "The 



78 3. Construction of Models to Promote Scientific Understanding 

TABLE 3.2 Objects and Factors in Jamie, Lauren, and Rachel's Final Model 
Objects and 

Related Factors 

Earth (Has 1 factor) 
ecosystem 

Source (Has 3 factors) 
air conditioners 

cars 

industry 

Atmosphere (Has 8 factors) 
carbon tetrachloride 

methyl bromide 

methane 

Chlorofluorocarbons 
(CFC's) 

chlorine nitrate 

methyl chloroform 

hydrochlorofluoro
carbons (HCFC's) 

Halons 

Explanation for Inclusion in Model 

This factor includes all ecosystems, such as plants, marine 
life, and land animals / humans. 

The trouble with air conditioners is that they leak CFC's. 
There have been laws passed, but the problem remains 
that we still have old air conditioners in use emitting CFC's. 
The problem areas of cars are the exhaust and the air 
conditioners. These areas both emit CFC's. 
This is the cause of many ozone-destroying chemicals. 
Among the many are halons, chlorine nitrate, and methane. 

Carbon tetra-chloride is a chemical that is used in the mak
ing of other chemicals, like CFC's. It is restricted in indus
trial countries for other uses but not anywhere else. 
Oceanic algae emits 60 to 160 thousand metric tons of 
methyl bromide per year. Humans also contribute methyl 
bromide by biomass burning. This contributes 40 to 50 
thousand tons. There are also agricultural uses which pro
duce 20-60 thousand tons per year. All this added together 
is 120 -270 metric tons of methyl bromide emitted per 
year. 
Methane decreases the amount of CFC's in the atmosphere. 
What happens is that methane replaces one of the hydro
gen atoms in CFC's and makes the CFC molecule heavier, 
bringing it down to earth. Therefore, the level of CFC's in 
the atmosphere is decreased. 
CFC's are the biggest destroyer of the ozone. They rise to 
the ozone layer, and because they are insoluble, they keep 
destroying over and over again for decades. 
This is a natural compound which forms over the polar ar
eas during the winter season. From here it then drifts to 
the equator and little by little it destroys ozone over a wide
spread circle. This process is very gradual. 
In 1988 there are 580,000 metric tons of methyl chloro
form in the lower atmosphere. This is where methyl chlo
roform becomes chemically reactive. The objects that pro
duce this chemical include cleaning products, precision 
parts, and dry cleaning. 
The difference between HCFC molecules and regular CFC's 
is that HCFC's are CFC's with extra hydrogen atoms. 
HCFC's were originally made to replace CFCs, but they do 
just as much damage. 
This is made from a compound of CFC's and bromine. 
There are two types of Halons. The Halon, 1301, has a ODP 
of 16. While the other, 1211, has an ODP of only 4. 
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trouble with air conditioners is that they leak CFC's. There have been laws 
passed, but the problem remains that we still have old air conditioners in use 
emitting CFC's" (from final model). Their explanation for including cars is 
"The problem areas of cars are the exhaust and the air conditioners. These ar
eas both emit CFC's" (from final model). Their explanations for including the 
atmospheric factors are much more detailed. These explanations involve 
more reasoning and are based on specific pieces of evidence the students 
gathered during their research. For example, their explanation for including 
methyl bromide in their model is, "Oceanic algae emits 60 to 160 thousand 
metric tons of methyl bromide per year. Humans also contribute methyl bro
mide by biomass burning. This contributes 40 to 50 thousand tons. There are 
also agricultural uses which produce 20 - 60 thousand tons per year. All this 
added together is 120-270 metric tons of methyl bromide emitted per year" 
(from final model). 

Relationships Between Factors 

In the early stages of their model building, the students describe generally 
what types of relationships they will construct: "The relationships are be
tween which chemicals deplete or help, and where they come from, and 
then the effect the ozone depletion has on life" (Global Model Planner). They 
outline a few of these relationships: "Chemicals hurt earth and destroy ozone; 
industries cause ozone depletion and create chemicals; and the atmosphere 
protects the earth" (Global Model Planner). As the students continue to cre
ate their model, they better articulate these relationships. Specifically, they 
pinpoint the causes of ozone depletion by identifying the sources of each 
ozone-destroying chemical and by describing the different effects that each 
chemical/pollutant has on the ozone layer. As they build their model, they 
continue, however, to construct Simplistic relationships between a depleted 
ozone layer and life on earth. 

The students' final model contains 20 relationships between factors. These 
relationships are represented in their finished Model-It factor map (see Fig
ure 3.2), and examples of some of these explanations are summarized in 
Table 3.3. The students define all of these relationships qualitatively. For ex
ample, they explain as a source of a chemical increases (sources are air con
ditioners, cars, and industry), the amount of chemical increases always by 
about the same (chemicals being chlorofluorocarbons, hydrochlorofluoro
carbons, carbon tetrachloride, methyl bromide, chlorine nitrate, methyl chlo
roform, halons, and methane). The students do not differentiate among the 
different types of source and the amounts of chemical output. Likewise, the 
students explain that as most of the chemicals increase, the ecosystems de
crease by about the same. The students include one interesting deviation. 
They describe methane as a different case with two relationships involving 
methane: As ecosystems increase, methane increases by about the same, and 
as methane increases, CFC's decrease by about the same. 
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TABLE 3.3 Examples of Relationships and Explanations in 
Jamie, Lauren, and Rachel's Final Model 

Relationships Type of 
Between Factors Relationship Explanation of Relationship 

As air conditioners by about the same 
increase, CFC's increase 

As cars increase, CFC's by about the same 
increase 

As industry increases, by about the same 
chlorine nitrate increases 

As CFC's increase, by about the same 
ecosystems decrease 

As chlorine nitrate by about the same 
increases, ecosystems 
decrease 

As ecosystems increases, by about the same 
methane increases 

As methane increases, by about the same 
CFC's decreases 

Explanations for Relationships 

This is due to the fact that old air condi
tioners (made before the ban on CFC's) 
keep emitting CFC's. 
As countries recycle their old cars (with 
old air conditioners), the output of these 
cars (such as CFC's) keep producing the 
CFC's which have been banned. 
Many factories in the U.S. (and other 
countries) emit chlorine nitrates among 
other ozone deplering chemicals. There
fore, as industries up-size, so does the 
amount of chlorine nitrates in the atmo
sphere. 
CFC's (being the largest amount of 
ozone-<iepleting chemicals) also indi
rectly hurt all ecosystems. This is so be
cause the less ozone there is, the more 
uv rays come in, and the more all the 
ecosystems suffer. 
Because chlorine nitrate harms the ozone 
layer, it also harms all ecosystems in 
some way. This is so because as the 
ozone depletes, it lets in harmful UV rays 
which causes various hazards. 
A great deal of methane is caused by 
cows (believe it or not!). The relation
ship between the ecosystem of cows and 
methane is that as the number of cows 
increase, so does the level of methane. 
The methane molecule decreases 
CFC's by taking away one of the chlorine 
molecules and replacing it with a meth
ane molecule. Because this different mol
ecule is heavier, it drags the CFC mole
cule down into the ocean. This action 
has a result of an increase in ozone. 

Jamie, Lauren, and Rachel build explanations for the model relationships 
while constructing their model. Examples of these explanations are given in 
Table 3.3. A typical explanation for the increase in a source of a chemical and, 
in turn, for the amounts of chemical emitted is "As countries keep recycling 
their old cars, chemicals, such as HCFC's (which have been banned) are once 
again released into the atmosphere" (from final model). A typical explana
tion for the negative impact on ecosystems due to increases in amounts of 
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chemicals is "Because chlorine nitrate harms the ozone layer, it also harms all 
ecosystems in some way. This is so, because as the ozone depletes it lets in 
harmful UV rays which causes various hazards" (from final model). Finally, 
the students explain the unusual relationships with methane. They explain 
why methane increases as ecosystems increase: "A great deal of methane is 
caused by cows (believe it or not!). The relationship between the ecosystem 
of cows and methane, is that as the number of cows increases, so does the 
level of methane" (from final model). And they explain the relationship be
tween methane and the level of CFC's: "The methane molecule decreases 
CFC's by taking away one of the chlorine molecules and replacing it with a 
methane molecule. Because this different molecule is heavier, it drags the 
CFC molecule down into the ocean. This action has a result of an increase in 
ozone" (from final model). The students expand on this explanation during 
an interview: 

Interviewer: How does it (methane) decrease CFC's? 

Lauren: I think you are talking about methane? 

Jamie: Yeah, what happens is the CFC molecule, one of the chlorines, I think, I'm not 
positive, is taken off and a methane is put in its place. And that molecule is heavier 
than it was before, so it sinks .... 

Rachel: To the earth. 

Jamie: Yeah, into the ocean. 

Lauren: Into the water cycle. And the water cycle pretty much gets rid of it. 

Jamie: Yeah, but it's not in the atmosphere any more because it's too heavy. So it de
creases the levels of CFC's, but not a lot. But it still does it. 

The students explain how chemicals, like CFC's, destroy the ozone layer. 
The students do not include this explanation in their actual model but ex
plain the process during a final class presentation of their model. Jamie uses 
transparencies with reactions and molecular drawings written on them (see 
Figure 3.3) and explains during the presentation: 

This is the process of ozone depletion by CFC's. The process by other ozone-deplet
ing chemicals is similar but it's not exactly the same. First, ultraviolet radiation strikes 
a CFC molecule and causes a chlorine atom to break away. The chlorine atom collides 
with an ozone molecule and steals an oxygen atom to form a chlorine monoxide and 
leaves a molecule of ordinary oxygen. When a free atom of oxygen collides with the 
chlorine monoxide, the two oxygen atoms form a molecule of oxygen and the chlo
rine atom is released and free to destroy more ozone. This creates a cycle where chlo
rine can destroy ozone over and over and over again. (presentation Video) 

Finally, during their class presentation, the students also explain some of 
the things that have been done to prevent ozone depletion. Rachel describes 
some of the conferences that have taken place to set limits on amounts of 
CFC's that can be produced and used: 
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I'm going to talk about the last part of our driving question, and that was what's been 
done to eliminate some of these chemicals 01' lower them, and so far there have been 
four big conferences. The Clean Air Act, that was just a U.S. conference, but there are 
also three other international conferences: the Montreal Protocol, the Copenhagen 
Amendment, and the London Amendment. The Montreal Protocol and London 
Amendment, and also the Copenhagen Amendment, were the three biggest conven
tions. In the Copenhagen Amendment, it was enacted November 1992, and all in
dustrial countries were required to cut CFC's by 75% from 1986 levels, and by 1994 
they were supposed to completely eliminate them. And, for all substances controlled 
by the Montreal Protocol and the London Amendment, developing countries were 
required to make the same cuts as the industrial countries, but they were allowed a 
10-year delay. And the Clean Air Act cut class 1 substances, those were pretty much 
the eight substances that we had in our model. And there were a couple of other ones 
that were singled out (chemicals) and so in 1991 (Rachel puts up a data chart) they 
were cut by 85%, and they were cut by an additional 5% down to and later they went 
down to 15% and by the year 2000 they are supposed to be completely eliminated. 
There were two substances that were singled out, and they are carbon tetrachloride 
and methyl chloroform, and they were probably the most harmful class I substances. 
So, methyl chloroform has not been completely cut, its supposed to be cut by 2020. 
And the carbon tetrachloride is supposed to be cut by 1999, well, 2000 and so there 
have been cutbacks but there is still a lot that needs to be done. (presentation Video) 

During an interview, the students comment on the impact the conferences 
may have on ozone-depleting substances and on their model: 

Interviewer: So if you included those plans (the conferences to cut down on specific 
chemicals) into your model, what predictions could you make? 

Lauren: That the levels of CFC's and other chemicals would go down. 

Interviewer: OK, so if the levels of the chemicals go down, then what else? 

Lauren: The ecosystem would go up. The industries, well, the industries producing 
CFC's would probably go down, and I don't know about methane. 

Rachel: Well they wouldn't necessarily go down, but what they were dOing, they 
were looking for alternatives, so only the places that . . . only the industries that 
directly produced CFC's would go down. Like not the car industry 01' the air force 
industry. 

Using Several Symbol Systems 

In constructing their model, the students routinely use chemical names and 
chemical formulas in describing the pollutants that contribute to ozone de
pletion. They also use chemical reactions and molecular drawings to explain 
how chemicals that contain chlorine deplete ozone. Figure 3.3 is an example 
of a slide the students used during their class presentation to describe the 
process of OZOne depletion. 

Summary 

Jamie, Lauren, and Rachel construct robust content understanding. They con
struct a specific purpose for their model. They spend time identifying the ob-
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Ozone Depletion 

1. This is the process of 
ozone depletion by CFCs. 

Ultraviolet rad iation 
strikes a 
CFC 
molecule ... 

FIGURE 3.3 A slide that Jamie, Lauren, and 
Rachel use During a Class Presentation. 

jects, factors, and relationships to include in their model, and they build de
tailed explanations for the phenomena they research. They construct several 
cause-and-effect relationships and explain them in some detail. Many of these 
explanations include data as evidence to support their explanations. Finally, 
the students use several symbol systems, including chemical formulas, reac
tions, and molecular-level drawings, to build explanations of the phenomena. 

Building Inquiry Understanding 
The process of building a model allows Jamie, Lauren, and Rachel to con
struct moderate inquiry understanding. The students construct this inquiry 
understanding by defining and refining their problem area over time, by as
Signing roles and responsibilities for the research required for model build
ing, by building and revising a qualitative model, and by building an argument 
that includes the use of their model as justification. 

Defining a Problem 

Jamie, Lauren, and Rachel work to define the problem that becomes the ba
sis for their model. Early in the model building unit, they decide they want to 
concentrate on ozone depletion, but they do not have a more specific focus. 
They do some initial research and use the research time to discuss and refine 
their problem. The students find quite a bit of information related to ozone 
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depletion on the World Wide Web, and Rachel and Lauren want to clarify 
what kind of information to find and how to proceed with the search: 

Rachel: Hey, Jamie, where are we going with this? Like what's our objective, like we 
need something central to it. 

Jamie: We need as much information as possible. 

Rachel: Yeah, but its hard to collect information when you don't know exactly where 
you are going with it. 

Lauren: Well, you're going, what are you researching? 

Jamie: We want to figure out what it is we can do about this problem, the position 
of the ozone. We want to find out as much as possible, that's where you are going, 
OK? (Class Video) 

During this exchange, Jamie defines the focus of their model as "what it is 
we can do about this problem (ozone depletion)." As the students continue 
to research, they further refine their problem. Jamie talks with Lauren about 
the various roles they should have: 

Lauren: I am covering the UV rays and stuff like that? 

Jamie: Yeah, I will start with what happens with ozone depletion and what it gives 
off and you are going to say how it affects you. 

Rachel, clarifying what they are doing: Jamie is doing "What is ozone depletion?" 
Lauren is doing "What is affected by ozone depletion?" and I'm doing "How to pre
vent it and what has been done already." (Class Video) 

Later, after the students are finished with their model and presentation, 
they explain, during an interview, that they did not focus their model around 
one singular question. They explain that the problem for them was to edu
cate themselves and the broader "community": 

Interviewer: So what is your driving question? What's your purpose for this model? 

Rachel: It's sort of like a community thing. Sort of like educating the community. 
What we wanted to do, is we just wanted to find out about it, and we really wanted 
to find out what's been done to stop it and maybe like a few alternatives that have 
been proposed. 

Constructing a Model 

Jamie, Lauren, and Rachel assign each other roles at the start of the model
building unit. They agree that each of them should be responsible for re
searching a different aspect of ozone depletion. Jamie is responsible for 
looking up information related to the chemicals that contribute to ozone de
pletion and how ozone depletion occurs. Lauren is responsible for looking 
up information related to the sources and/or causes of the chemicals that im
pact ozone depletion. And Rachel is responsible for researching some of the 
known solutions or preventions. The students use Internet resources for 
their research. 
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Jamie, Lauren, and Rachel build a qualitative model to address the ques
tions they set out to research. They spend a great deal of time in the begin
ning discussing what factors they should include in their model and how to 
represent the connections between them. The following in-class exchange 
demonstrates some of their initial trials at building a model: 

Jamie: (She writes on a piece of paper) So the environment is going to be the at
mosphere and the earth? So, in here, we have the ozone. We have 0 3 and we have 
methane. 

Lauren: Are you drawing a model, or what? 

Jamie: I'm just (drawing) words because I'm confused about what this is supposed 
to look like. How about you? 

Lauren: Are you going to draw a concept map? 

Jamie: Yeah, that's what this is (she points to the factor map). OK, so then we have 
the other chemicals, like the CFC's. (She writes the chemical names on the Global 
Model Planner). (Classroom Video) 

Once the students get the hang of how to represent their factors in a con
cept map-like form, they construct the relationships among all of the factors 
they want to include in their model (Figure 3.4). 

The main set of cause-and-effect relationships within the model is the fol
lowing: As the number of air conditioners, cars, and industry increases, the 
amount of ozone-depleting chemicals increases, which leads to a decrease in 
ecosystems (this applies to all of the chemicals in their model except for 

FIGURE 3.4 An Early Version of Jamie, Lauren, and Rachel's Model. 
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methane, which they show as decreasing the levels of CFC's and having a 
positive effect on ecosystems). In this early version of their model, the stu
dents also have a relationship between ecosystems and the numbers of air 
conditioners, cars, and industry. The students' reasoning for this is that the 
ecosystems (or the people in the ecosystems) are what produce the air con
ditioners, cars, and industry (as ecosystems increase, so do numbers of air 
conditioners, cars, and industry). This creates a cyclical model with no inde
pendent variables. During the class presentation, Jamie, Lauren, and Rachel 
show frustration with their model because they cannot get it to "work." Lau
ren presents the model and says, 

The one in the middle (the meter), that's the earth's ecosystems, and so what we were 
planning to have happen, what we were trying to show, is if we up the air condition
ers, and source cars and industry, that all of these chemicals that were affected in the 
factor map would go up and the earth ecosystem, the value of it would go down, be
cause all of these are hurting the atmosphere more and more. And then if we brought 
these down (the amounts of air conditioners, industry, and cars) then all of the chem
icals would go down and the ecosystems would go up. (presentation Video) 

A student in the class and the teacher help to point out the problem in their 
model during the presentation: 

Andrew: Are there no independent factors that you can change? 

Lauren: It's just the source, cars, and source, industry, and source, air conditioners. 

Teacher: See when you don't have a meter on it (on a factor), that means that factor 
depends on something else, and you need an independent factor that you can move 
(a meter). 

Lauren: Oh, I think that's what our problem is .... 

Teacher: So what would you choose as your independent variable, if you wanted to 
take one of those as your independent variable, one that you want to manipulate and 
change? What one do you think would be the best one to pick? 

Lauren: Only one? 

Teacher: Well, you could pick other ones, but let's just say one for now. 

Lauren: I'd say the source, all the source things, because I think probably the only 
reason they are not independent is because the ecosystems go to them and ... 

Teacher: So if you deleted a relationship between an ecosystem and some of your 
sources, then your model would probably run exactly how you want it to 

Lauren: Yeah. (presentation Video) 

The students take this advice and revise their final model to have air condi
tioners, cars, and industry represented as independent variables (they delete 
the relationships between ecosystems, air conditioners, cars, and industry; 
see Figure 3.2). 
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Constructing and Evaluating an Argument 

Throughout the construction of their model, Jamie, Lauren, and Rachel take 
the position that ozone depletion is a worldwide problem that needs serious 
attention. They state in their Global Model Planners, "Ozone depletion is a 
very real and threatening problem, and it affects everybody. It is imperative 
that the whole world comes to an agreement about this problem and comes 
up with alternatives to the things that are causing the break down" (Global 
Model Planner). They use their model as a way to justify this argument, and 
they elaborate on this in their Global Model Planners both at the beginning 
of the unit and later, during the unit. 

Early in the unit, they describe in their Global Model Planners generally 
how models can be used to justify their argument: 

Rachel: A model can show the effects of ozone depletion if nothing is done to delay 
or deal with it. 

Jamie: The model can show ozone depletion and its effects on life on earth. 

Lauren: The model can show what will happen to the earth if the ozone totally dis
appears, in other words, if we don't do anything to stop it. 

Later in the unit, they describe in their Global Model Planners how their 
model in particular can be used to justify their argument: 

Rachel: It [the model] showed that there were many ozone-depleting factors, with 
only a few that regenerated it. It showed the process of ozone depletion. It showed 
where most of the chemicals come from. 

Jamie: It [the model] proves that increasing levels of chemicals hurt earth. It proves 
that chemicals increase ozone depletion. It showed the process of ozone depletion. 

Lauren: It [the model] showed all the relationships, in other words, what chemicals 
do to the environment. It showed what factors causes ozone depletion directly and 
indirectly. 

The students use their model to justify their argument, but they do not ex
plicitly describe or use evidence to justify their argument. 

Summary 

Jamie, Lauren, and Rachel construct moderate inquiry understanding. They 
begin building their model with a few questions in mind and later focus and 
refine their problem area. The students assign roles and responsibilities to 
each other throughout the model building. They divide the questions they 
want to research among the three of them and pull most of the pieces to
gether in a model; they incorporate into their model factors related to the 
sources and chemical causes of ozone depletion, but they leave factors re
lated to prevention and solutions out of their model. The students build a 
qualitative model based primarily on Internet resources. The students origi
nally create a model with one large feedback loop (no independent vari-
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abIes), but they revise this after presenting their model to the class. The stu
dents state a position and describe the use of their model (that includes data) 
as a justification for their argument, but they do not explicitly state the use of 
experimental evidence as a basis for evaluating their model and argument. 
These actions together demonstrate a moderate level of inquiry understand
ing: The students define a reasonable research problem for the amount of 
time they have to work; they construct a model to demonstrate the relation
ships among the factors in their system; and they revise their model to show 
the impact of increasing numbers of sources of ozone-depleting chemicals. 

Building Nature of Science Understanding 

The process of building a model gives Jamie, Lauren, and Rachel direct ex
perience with defining and describing the purposes of models within sci
entific practice. The students build a high level of nature of science under
standing by demonstrating a sophisticated understanding of the purposes of 
models and by articulating the limits and assumptions of their model. They 
describe the purpose of models as prOviding a means of testing ideas, making 
predictions, and educating a larger community. They evaluate their own 
model by describing the use of data and evidence to support the model and 
by describing some of the assumptions they made when constructing their 
model. 

Purpose of Models 

Early in the unit, Jamie, Lauren, and Rachel describe the purpose of models 
as a way to test hypotheses and make predictions related to future phenom
ena. They write about the general purposes of models in their Global Model 
Planners: 

Lauren: Purpose of building models is to prove a hypothesis that you have come 
up with. 

Rachel: To prove a point or make a prediction. They are also used to test a hypothesis. 

Jamie: To predict or forecast what the outcome of a particular change might be. 
To make a smaller version of a large object-and to test out hypotheses of a larger 
version. 

As the unit progresses, Jamie, Lauren, and Rachel continue to describe the 
purpose of models as a way to make projections, and they also suggest that 
models can be used to educate people. They explain this educational use of 
models during an interview after the completion of their own model. How
ever, they say during the interview that they would not necessarily use their 
own model in educating people, because they feel it is too complicated: 

Interviewer: How could a model be incorporated into educating a community? 

Rachel: You could take a snapshot of a model and put it in ... what we are doing here 
(showing the models on public access television). This is more in depth (their own 
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model), but if you were educating the community, it would just be more basic stuff 
like don't use these types of aerosols or something ... 

Interviewer: So back to this idea of models being used to help educate people. I think 
Rachel said that this model is a little too complicated if you were going to show 
people? 

Rachel: If you were (going to show this to) the community, I mean, if you research it 
to research it, they (the larger community) don't want it ... I don't think they would 
want in-depth research, just basic information. I mean they (people) have other con
cerns, but I'm sure people would like to use products that aren't ozone-depleting, but 
they don't really know what they are, so I think this would be a little too confusing to 
show them that. They wouldn't understand this right off the bat. 

The students also describe that different people or groups of people use 
models for different purposes. The students respond to the question "How 
do people use models?" in their Global Model Planner: 

Lauren: Scientists use models as experiments. In other words, they use them to see 
what will happen to things under certain conditions. Politicians may use them to pre
dict who will vote for them. Environmentalists use them to show what all the pollu
tion we give off does to the world. 

Rachel: Scientists use models maybe to play out some kind of scenario to see what 
might happen. Politicians use them maybe for their campaigning, and environmen
talists use models to show the depletion of the environment so far and to predict its 
future. Environmentalists-they use them for the same reasons we did. 

Jamie: Scientists might use them to test hypotheses or projects. Politicians to fore
cast polling results and in campaigns. Environmentalists use them to predict what the 
environment will be like in the future by what we do today. 

Evaluation of Models 

Jamie, Lauren, and Rachel describe the use of data in constructing their 
model and some of the assumptions they make when evaluating their model. 

Global Model Planner: What processes do people go through to build models? 

Lauren: 1. come up with a hypothesis to prove; 2. decide what kind of model they 
want. 

Rachel: They collect data and research. 

Jamie: 1. they observe; 2. they collect data; 3. apply their info; 4. make the model. 

In evaluating their own model, the students base their evaluation on what 
they were able to "complete" and do not explicitly address the use of evi
dence to support their model. They explain in their Global Model Planners: 

Jamie: We clearly stated what causes ozone depletion and what it is, we covered 
what is affected by it, we didn't cover how to prevent it besides the obvious, to re
duce the chemicals. We covered what has been done in the past. 
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Lauren: We have found all of the factors that we are planning to put in the model. 
Such as how ozone depletion occurs and how we can prevent it. 

The students are, however, able to discuss some of the assumptions that 
are built into their model. The students explain some of their assumptions in 
their Global Model Planners. 

Jamie: That ozone depletion is bad. 

Lauren: Even though there is no actual ozone [as an object, because it is invisible] it 
is still there. 

Rachel: Ozone is a real problem and the measures being taken are working. 

The students also describe their model as a "simulation" of phenomena, 
not the phenomena themselves: 

Global Model Planner: How close does your model come to real-world phenomena? 

Jamie: I think our details were close, but not all of the picture. We were missing a 
lot, but we covered a considerable amount. 

Lauren: We tried to simulate all the factors as best we could, however it is impossible 
to create a situation that is exactly the same. 

During an interview, the students recognize that they made a conscious 
choice about how to structure their model. They choose to emphasize the re
lationships between the sources of chemicals that influence ozone depletion 
and the chemicals themselves, rather than the impacts these chemicals have 
on elements within the ecosystem. 

Rachel: Our factor map is kind of confusing because we had so many chemicals that 
related to the sources and the earth. 

Jamie: Yeah, we did more detail rather than anything else. 

And they write in their Global Model Planner, 

Global Model Planner: Are there things you are realizing your model will not be able 
to show? 

Jamie: It lacks specific problems with life on earth. It doesn't have more specific 
sources of industry. The numbers for the chemicals are hard to get. More details, if to 
be more exact. Details include effects and specific problems and info on chemicals. 

Summary 

Jamie, Lauren, and Rachel exhibit a high level of nature of science under
standing by describing the purpose of model building as a way to test hy
potheses, make predictions, and educate a community. They evaluate their 
model in terms of what they hoped to accomplish, but not necessarily with 
the eye toward interpretation and use of data. They do, though, describe 
some of the assumptions and limits of their model. 
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Conclusions of the Case 
This case illustrates that model building provides Jamie, Lauren, and Rachel 
with an opportunity to build understanding of both the phenomenon of 
ozone depletion and the processes used to attain scientific understanding. 
The process of model building facilitates the students' identification of key 
concepts associated with ozone depletion, and the students begin to build 
explanations for phenomena, including explanations of which chemicals 
contribute to ozone depletion and what preventive measures are currently 
being used to control the problem. In building these explanations, the stu
dents use some data to justify their explanations and use symbolic expres
sions typical of scientists who study this phenomenon, including chemical re
actions and molecular drawings. Construction of the model also provides the 
students with the opportunity to discuss the purposes of their model in par
ticular, and the purposes of models in general. This allows the students to de
scribe models as a way of testing hypotheses and making predictions. It also 
provides an impetus for discussing the limits of models and the assumptions 
that are made in the construction of any model. Finally, the process of model 
building engages these students in doing science. The students ask a question 
they are interested in and construct and revise a model to address the ques
tion. They use model building as a way to state a claim-that ozone is real 
and threatening problem-and construct a model (that is based on evidence) 
to support their claim. When defending their position, the students had 
difficulty in referring to the evidence they collected, and we see this as the 
next teaching and learning challenge. 

Reflecting on the Purpose of Model Building 

Engaging students in model building has the potential to transform what hap
pens in our classrooms. It provides students with the opportunity to take 
ownership and responsibility for their learning. Students are able to ask and 
pursue answers to their own questions, while also being critical users of in
formation. Students work with each other, much as they would in a real
world situation, sharing resources, debating ideas, and negotiating solutions 
to real, complex problems. The teachers in these dynamic classrooms are the 
quality control managers of ideas and products, rather than purveyors of in
formation. They model the types of processes and the critical thinking re
quired when students try to build explanations of complex problems. 

Engaging students in model building has the potential to boost scientific 
understanding. The constructive process of model building requires that stu
dents sort out and build explanations of scientific phenomena, rather than 
merely memorizing facts and definitions. It requires that students define and 
revise problems over time. It requires that students search for information 
and data sources. If supported, the process of using data to build a model can 
give students a reason to determine the quality of different sources of infor-
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mation. Model building also involves testing ideas, making predictions, and 
revising previously held ideas if the model being constructed does not match 
up with empirical evidence. Model building provides a context for students 
to build scientific arguments, to state a pOSition, and then to justify that po
sition with evidence. It also provides a real context for students to think 
about the purposes of science and of the tools of science (such as models and 
theories). In this way, model building becomes a powerful activity for en
gaging students in doing and thinking about science. Science is no longer 
something that is read about in a book; rather, it becomes an activity through 
which phenomena are studied, manipulated, sometimes controlled, and per
haps even acted on. 

The findings from this study suggest that given a collaborative, inquiry
based model-building environment, students construct scientific understand
ing. Model building provides a context for students to build and integrate 
content, inquiry, and epistemological understandings. The chapter demon
strates that model building engages students in defining problem areas, build
ing explanatory mechanisms of scientific phenomena, and reflecting on the 
purposes of models. However, the findings also have many implications for 
further research. 

One implication is that special emphasis must be placed on the use of evi
dence within models and arguments for students to build data-based 
justifications. Further research is needed to identify the supports that aid stu
dents in using evidence to justify models and scientific arguments. Several re
searchers describe this challenge, and it remains a critical key to engaging stu
dents in thoughtful inquiry (Hancock, Kaput & Goldsmith, 1992; Krajcik 
et al., 1996; Schauble, Glaser, Duschl, Schulze &]ohn, 1995). Supports may 
take the form of teaching strategies (Spitulnik, 1998), or they may be curric
ular or technological supports; in either case, this essential element of un
derstanding must be addressed to further students' understanding. 

A second implication is that constructing understanding takes concerted 
effort and time. The students working in the Global Climate Change Unit did 
not squabble or complain (too much) about the cognitive demands of model 
building, but this may be due to the type of student who chooses to attend 
the alternative school or it may be due to the atmosphere in their school. Fur
ther research will help elucidate the conditions necessary for a productive 
work environment. These conditions may include explicit project goals, 
clearly defined authentic tasks, and expectations for collaboration (Craw
ford, 1996). Students also construct understanding over an extended period 
of time. Research could help identify the conditions under which it is advan
tageous to extend the time frame for a project or to determine appropriate 
endpOints. Research is also needed to track student understanding longitudi
nally. Students in this study engaged in only two model-building projects (a 
project on water quality and the Global Climate Change Unit). The potential 
for understanding over an extended time frame, such a full school year or 
longer, is tremendous. 
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Finally, a third implication is that model building would not be possible 
without the technological support of tools like Model-It. Further design, test
ing, and implementation of these types of tools will help identify the key fea
tures that support students in building models, in doing science (defining 
problems, making predictions, collecting data, analyzing data, building rep
resentations, and explaining phenomena), and in reflecting on the process. 
Tools are currently being designed and constructed (Loh et at.; 1997; Quin
tana et at., 1998), but further research is necessary to examine their impact 
on flexible understanding. 

The case presented in this chapter is just one example of how students can 
work collaboratively in a model-building environment to gain scientific un
derstanding. The potential of this kind of learning environment is tremen
dous, but we need to continue developing the tools and teaching strategies 
that will better facilitate scientific understanding for all students. 
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A Visual Modeling Tool 
for Mathematics Experiment 
and Inquiry 

Wallace Feurzeig 

Introduction: The Function Machines Language 

Programming languages are potentially powerful tools for helping students 
develop mathematical ways of thinking. However, helping students acquire 
fluency in developing mathematically rich programs, especially in a way that 
they find engaging and pleasurable, is a nontrivial task indeed. Even Logo, the 
most accessible functional language, poses significant conceptual barriers to 
the acquisition of the necessary knowledge and skill. The mechanisms for 
passing data and transferring control between procedures, particularly itera
tive and recursive control structures, are particularly difficult for beginning 
students. The Function Machines computer language was expressly designed 
to overcome these barriers through the use of visual representations that 
make control structures and program operation more transparent and acces
sible. Work with Function Machines enhances students' development of the 
notions and art of mathematical modeling and model-based inquiry. 

Function Machines is a visual programming environment with the repre
sentational power of a universal programming language. It is based on a func
tional control structure and a data-flow model of program execution. Its key 
construct is the "function-machine," a visual isomorph of the function con
cept in mathematics. Machines are visual analogs of Logo procedures or Lisp 
functions. They communicate data to each other via "pipes" connecting the 
output of one to the input of another, in data-flow fashion. The sequence of 
execution between machines may be similarly directed by constructing 
"wires" connecting one machine to another. In the absence of such wiring, 
control flow among machines is unconstrained, and execution is essentially 
parallel. 

The Function Machines language expresses program structures visually as 
two-dimensional graphical icons, in contrast with the symbolic textual ex
pressions used in traditional (one-dimensional) languages. The system pro
vides, as primitive constructs, machines that correspond to the standard 
mathematical, graphics, list processing, logic, and I/O operations. These ma
chines are used as building blocks to construct more complex machines in 
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an extensible fashion. Any collection of connected machines can be encap
sulated under a single icon as a higher-order "composite" machine; proceed
ing in this way, it is possible to construct machines (programs) of arbitrary 
complexity. 

Execution is essentially parallel-many machines can run concurrently. 
The program structures of Function Machines are modular and recursive. A 
composite machine may be used as a component of a more complex machine 
or of itself. The operation of recursion is made visually explicit by displaying 
a separate window for each instantiation of the procedure as it is created and 
erasing it when it terminates. The natural hierarchical organization of pro
grams that is implicit in the notion of a composite machine fosters modular 
design and helps to organize and structure the process of program develop
ment. The explicit representation of data paths and control paths makes the 
semantics of functional operation transparent in Function Machines in a fash
ion readily accessible to beginning students. Function Machines thus pro
vides a natural starting point for a constructive approach to the teaching of 
mathematics. 

The underlyling idea in Function Machines (the "function machine" meta
phor) is that a function, algorithm, or mathematical model can be thought of 
as a machine, represented visually in Figure 4.1. Machines can have one or 
more inputs. The output of a machine can be "piped" into the input of an
other machine, as with the addition and multiplication machines shown in 
Figure 4.2. When this two-machine network is activated, the addition ma
chine will sum its inputs (3 and 2) and feed the output to the left-hand input 
of the multiplication machine, which will then run and output 35, the prod
uct of its inputs. 

Input Hopper 

Output Spout 

FIGURE 4.1 Function 
as Machine. 

FIGURE 4.2 
A Two-Machine 
Network. 



FIGURE 4.3 
Backput Iteration. 

FIGURE 4.4 After the 
Count of 9. 

FIGURE 4.5 Inside the 
Counting Machine. 
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The output of a machine can be piped into its own input. This simple form 
of iteration, which is called "backput" iteration, is shown in Figure 4.3. Here 
the right-hand input is a constant, the number 1. Each time the addition ma
chine runs, it adds 1 to the left-hand input and replaces the right-hand input 
by the resulting sum. Thus it successively generates the counting numbers. 

The result after 9 iterations is shown in Figure 4.4. The current sum, 9, has 
been piped into the left-hand input and the machine is highlighted, Signify
ing that it is ready to run again. The outputs of the + 1 addition machine can 
be printed to a display window by piping them to a Print machine, as shown 
in Figure 4.5. Further, this two-machine structure has been embedded within 
a higher-level "composite" machine, whose inner body is shown surrounding 
the two machines. When the composite machine runs, the addition machine 
receives its inputs from the input hopper of the composite machine, and it 
will pipe its outputs to the output spout of the composite (as well as to the 
Print machine.) 
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FIGURE 4.6 Running the Composite Counting Machine. 
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The outer body of this composite machine, which is labeled "counter," is 
shown in Figure 4.6. Counter is ready to run. Its current input is 9. When it 
runs, it will execute the machines in its inner body. Its output will become 
its next input. The figure shows the display window created by the Print ma
chine, which has printed the sequence of outputs generated thus far by 
counter. 

Mathematical models in Function Machines are developed through such an 
incremental process. Typically, models are composite machines constructed 
from simpler machines, starting with the primitive machines provided with 
the system. 

Iteration and Recursion in Function Machines 

Iterative and recursive processes are essential for building more powerful 
programs, but they are often very hard for beginning students to use. The dy
namic visual data-flow representations of control structures in Function Ma
chines facilitate students' understanding and development of mathematically 
rich and computationally powerful processes. The simplest form of iteration, 
called backput iteration, is introduced on the students' first day with Func
tion Machines. 

Figure 4.7 shows the use of a built-in iteration machine, the Repeat ma
chine. Each time a Repeat machine runs, it decrements its first input (the 
number of iterations remaining) and carries out the computation called for in 
its inner body. In the example shown, the Repeat machine draws a turtle 
figure, a closed spiral, by repeating 100 times a left tum (initially 40 degrees, 
incremented each time by a constant of 30 degrees) and a constant forward 
step of 10 units. 

Function Machines includes primitive machines for more complex forms 
of iteration than that provided by the Repeat machine, including a For-loop 
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repeat angle delta 

Repeat Insp i 

FIGURE 4.7 Using Iteration with the Repeat Machine to Generate a Closed Spiral. 

arc angle 

polyspi 

FIGURE 4.8 Recursive Computation of a Polygonal Spiral. 

machine and a To-Each machine (which applies an iteration over a set of in
puts.) Nested iterative operations are a great deal easier to follow in this 
iconic visual form than in the usual one-dimensional textual representation. 

Even more striking in its clarity is the Function Machines representation of 
recursion. Recursion is much more confusing than iteration to beginning stu
dents. The idea of a procedure being defined in terms of itself seems cryptic, 
circular, even nonsensical. The sense and operation of recursion become 
marvelously clear in Function Machines, paving the way for students to ex
perience and explore the extraordinary mathematical power of recursive 
processes. Figure 4.8 shows the use of recursion in a Function Machines pro
gram, the polyspi machine. 

The inner body of polyspi is shown in the center. Each time polyspi runs, 
the turtle moves forward 10 units and turns right (117 degrees initially, in
cremented by 3 degrees on each new call of polyspi.) The inclusion of the 
polyspi machine icon inside its own inner body is accomplished in a straight
forward way. First polyspi is saved in unfinished form (without the polyspi 
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Triangles 

FIGURE 4.9 Combining Iteration and Recursion to Generate a Sierpinski Triangle. 

machine icon in its body). This causes the icon to be included in the com
posite machine menu. Then polyspi is retrieved, and the polyspi icon is 
copied from the menu into the body of the machine. 

Figure 4.9 shows the combined use of recursion and iteration. The inner 
body of the Triangles machine is an iterative Repeat machine (not shown) 
whose inner body is shown in the center. The repeat machine is run three 
times. Each time it runs, it calls the Triangles machine recursively. The re
sulting figure for a recursion level of depth 4 is shown on the right. 

Classroom Investigations 

Function Machines has been used extensively for mathematical explorations 
and investigations in elementary and secondary classrooms (Feurzeig and 
Richards, 1996; Feurzeig et al., 1993; Wight et al., 1988). Its visual represen
tations of program structures significantly enhance students' understanding 
of key mathematical concepts such as algorithm, function, and recursion. By 
explicitly showing the passage of data objects into and out of machines, and 
by highlighting the data and control paths as machines are run, Function Ma
chines renders computational processes as visual animations, and the pro
gram semantics becomes a great deal more transparent. 

Function Machines is especially valuable for developing mathematical 
models. To understand a model, students need to see the model's inner work
ings as it runs. At the same time, they need to see the model's external be
havior-the outputs generated by its operation. Function Machines supports 
both kinds of visualizations. The use of these dual-linked visualizations has 
unique and valuable learning benefits. 

The following example illustrates the use of Function Machines for intro
ducing mathematical modeling to middle-school students. The object is to 
help students develop, investigate, and reason about models of dynamic sys
tems, with a focus on the effects of feedback. The example also illustrates the 
strategy of beginning with a simple model and moving to more complex and 
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realistic model constructions through a sequence of successive developmen
tal stages driven by inquiry issues. Students begin by building an apparently 
plausible model to address a real-world problem. They run the model to ob
serve its behavior and its limitations in treating key aspects of the problem in 
a realistic fashion. They also improve the model by modifying or extending 
its structure. Proceeding incrementally in this way, they develop a sequence 
of models of increasing explanatory or predictive power. This example, 
which involves the modeling of population dynamics, begins with a story. 

In a certain town, during the last several years, exactly 100 babies were 
born each year. In the town census this year (2020), the human population 
was found to be 5510. The town planners wish to have a model that will give 
an estimate of the future population each year for the next 20 years. What 
will such a model contain? To find the total number of people each year, we 
add the population at the start of the year to the births occurring during the 
year. Students build such a model in Function Machines by using a Repeat ma
chine, a machine that repeats the computations within it a specified number 
of times. The inside of the machine is shown in Figure 4.10. 

The left-hand input of the machine is set at 20, the number of times we 
wish to run the machine. Each time it runs, it will update the current popu
lation by 100 births and print the computed population for the correspond
ing year in a display window. The updated population is piped to the left
hand input of the addition machine as the starting population for the 
following year, via backput iteration. Then the process repeats. After it re
peats its computation 20 times, the Repeat machine will exit. 

This model will output a population of 5610 for year one, 5710 for year 
two, and so on up to 5510 + 100 * 20 = 7510 for the twentieth year, 2040. 
Ah, but isn't something wrong with the model? Thoughtful students realize 

FIGURE 4.10 The Initial Population Model. 
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that the population will not continue to grow at exactly 100 births each year. 
As the population increases, the number of babies born each year will not be 
constant; it is more likely to grow in proportion to the current population 
size, by a certain percentage each year. Thus the notion of growth rate 
emerges. Students develop more realistic models, incorporating a noncon
stant birth rate. Students engage in considerable discussion about how the 
computation should be done before coming to agreement on the mathemat
ical formulation below. In the new formulation, the number of births affects 
the population, and the population also affects the number of births-stu
dents are thus introduced to the notion of a positive feedback loop. They 
then build and run their models, trying a variety of birth rates. 

Figure 4.11 shows a typical new model, which extends the original model 
by computing births as a function of population size. The left-hand window 
shows the Repeat machine. Embedded in it is a Population Growth machine, 
whose inner body is shown in the right-hand window. The Population 
Growth machine computes the number of births in a given year by multiply
ing the population size that year by the birth rate. It then adds the number of 
newborns to the current population to compute the new population size at 
the end of the year. Both the new total population and the number of births 
are sent to a Print machine, which prints them in a display window. 

Ah, but isn't something wrong with this model also? Even though the stu
dents now take into account a more realistic growth rate based proportion
ally on the size of the population, they realize that the model does not allow 
for death-in effect, it assumes that everyone lives forever. If this were true, 
the town would eventually run out of food and water, not to mention having 

* 

Print 

FIGURE 4.11 Incorporating Birth Rate. 
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Print 

FIGURE 4.12 Incorporating Deaths. 

other kinds of problems! They therefore decide that their models must in
corporate deaths. 

The town planners propose a goal of attaining a no-growth population so 
they can easily maintain a high quality of life for the townspeople. They think 
that living to 100 years will allow people a substantial life span and the joy of 
knowing several generations of their offspring. Students modify their models 
to include a computation of the effect of deaths on decreasing population 
size, given that the townspeople have an average lifetime of 100 years. 

Figure 4.12 shows a simple mathematical model for computing the num
ber of deaths per year and the corresponding reduction in population size. 
The left-hand window shows the Repeat machine. Embedded in it is a Popu
lation Deaths machine, whose inner body is shown in the right-hand window. 
The Population Deaths machine computes the number of deaths in a given 
year by dividing the population size that year by the average lifespan (100). 
It then subtracts the number of deaths from the current population, to com
pute the reduced population size at the end of the year, and outputs both 
results. These are sent to the Print machine, which prints them in a display 
window. 

The students are then asked to build a more comprehensive feedback 
model to include both the birth rate and the death rate and to integrate their 
effects. A representative model that expresses the relationship among births, 
deaths, and total population is shown in Figure 4.13. The left-hand window 
shows the Repeat machine; the inner body of the embedded Population ma
chine is shown in the right-hand window. Its operation is evident. Given the 
population at the start of each year, the births and deaths during the year are 
computed as before. Their difference, which is the net change in population, 
is added to the starting population to give the population at year's end. 
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FIGURE 4.13 The Comprehensive Population Model. 

Students try to determine what average life span would keep the popu
lation at a near-constant level over a 20-year period. They adjust the value of 
average life span until the model is close to equilibrium, maintaining a popu
lation level of around 5500. They then run the model for a 40-year period and 
try to adjust the value of the average life span until their model outputs are 
close to equilibrium again. Next, they investigate the effects of decrease in 
birth rate and increase in average life span on maintaining a constant popu
lation level. In the course of their work, students move from examining the 
processes that affect population size (birth and death) to considering the un
derlying rules that govern those processes, to investigating the behavior that 
the rules produce (dying out or explosion of the population), to studying 
modifications of the rules (either to produce a desired kind of behavior or to 
try to get model outputs that are more realistic.) 

Modeling Complexity 

Function Machines is beautifully suited for displaying the structure and be
havior of mathematical models of dynamic systems. Simple physical systems, 
in certain regimes, display wild and erratic behavior that may cause arbitrar
ily close initial states to diverge exponentially, making it effectively impos
sible to predict the future behavior of the system. This phenomenon is inti
mately linked to the behavior of mathematical functions-often very simple 
ones-when they are iterated many times. Only one of three things can hap
pen: Successive iterates of the function may approach a single fixed point; 
they may converge to a limiting orbit of points; or they may behave more er-
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FIGURE 4.14 Iterating the Quadratic Function. 

ratically, never quite returning to a value they have taken on before. In the 
last case, the iterated function sometimes displays an extremely sensitive de
pendence on initial conditions, so that neighboring starting points, when op
erated on repeatedly by the function, diverge very rapidly from one another, 
and all information about the starting point is lost. Behavior characterized by 
such an extreme sensitivity to initial conditions is termed chaotic. 

Amazingly, a function as simple as the familiar quadratic, such as the func
tion k ox o (1 - x), exhibits chaotic behavior under iteration for some values of 
the parameter k. Figure 4.14 shows a Function Machines model for the qua
dratic function, called the Logistic machine. The left-hand window shows 
two Logistic machines, each of which is given a value of k = 3.8. Both ma
chines use backput iteration on their second input, the input for x. The in
sides of the two machines are shown in the right-hand windows. The first has 
an initial value of x = 0.5. (This is in the middle of the range of allowable val
ues 0 ::s x ::s 1.) The second machine has an initial value of x = 0.500001, 
very close to that of the first machine. The corresponding outputs of the two 
machines are given as coordinates to a Scatter Plot machine, which prints the 
associated points in a display window. 

The left-hand window of Figure 4.15 shows the Scatter Plot outputs from 
running the first several iterations of the twin Logistic machines. The outputs 
of the two machines are initially identical; thus the points fall on a diagonal 
line. However, as shown in the right-hand window of the figure, after a while 
the outputs of the two machines diverge wildly, and the resulting points in 
the Scatter Plot pepper the plane in an apparently random fashion. The be
havior is chaotic. 

As Figure 4.16 shows, the path to chaos is not, itself, chaotic. The left-hand 
window shows the result of running the twin Logistic machines with a value 
of the parameter k = 3.65. The ouput has a clearly defined structure
the values of all iterates are confined within the two symmetrically related 
squares. If one backs down a little further to a parameter value of k = 3.5, 
the regularity of the output is evident. The right-hand window displays the 
Scatter Plot output produced by hundreds of iterations. It clearly shows that 
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FIGURE 4.15 Scatter Plot Output for k = 3.B. 
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FIGURE 4.16 Scatter Plot Outputs for k = 3.65 and k = 3.5. 

the iterates exhibit four·fold periodicity. Smaller values of k produce even 
simpler regularities. For example, the k = 3.25 iteration shows period two 
behavior, and the k = 2.5 iteration shows rapid convergence of the iterates 
to a fixed point. The result of the k = 2 iteration is left as a mental exercise 
for the reader. 

Mathematical chaos is founded on a set of remarkable discoveries: (1) that 
nonlinear processes can give rise to very complex, unpredictable behaviors 
in a rich variety of systems-physical, chemical, and biological, (2) that these 
chaotic behaviors are nevertheless deterministic and can be modeled by 
simple mathematical equations (those with few variables or with a small 
number of degrees of freedom), (3) that the processes by which systems ap· 
proach chaos are themselves orderly, and (4) that the underlying deep struc· 
ture of chaotic behavior is very similar across diverse domains and systems, 
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perhaps even universal. Function Machines is a useful tool for investigating 
nonlinear processes and for gaining insight into these wonderful discoveries. 

Parallel Computation 

The ability to run multiple processes simultaneously in a computer frees the 
machine from the "von Neumann bottleneck," where the length of a com
putation is largely the time it takes to move data between the processor and 
memory. Parallel processing avoids the situation where everything is waiting 
for the execution of a single operation. There are basically two software ap
proaches to handling parallel constructs. The first divides the data of the pro
gram into independent units that can be operated on in parallel. This idea 
grew out of the need, in scientific programming, to operate on homogeneous 
data structures. In order to perform an operation on a vector of independent 
elements, for example, the, 'same operation must be performed on every ele
ment in the vector. Because these are independent, the operations can be 
performed in parallel. The second approach divides the operations of the 
program into independent processes that can be computed in parallel. This 
is the approach that is implemented in the Function Machines mathematical 
modeling language. Function Machines simulates parallel execution on a ma
chine with a single processor. 

In building a model with embedded parallel processes, the designer con
fronts new problems. Typically, conflicts arise in attempting to coordinate 
and synchronize the various processes. We agree that "Concurrent program
ming languages (particularly those targeted at novice programmers) should 
make processes as 'concrete' as possible. That is, languages should make it 
easy for programmers to think about and identify with computational pro
cesses" (Resnick, 1990). The key difficulties in process synchronization and 
contention that characteristically arise in the development of models with 
concurrent operations are readily diagnosed in Function Machines modeling. 
The dynamic visual representation of processes is helpful in identifying and 
resolving these conflicts. Simple examples of some typical conflicts are illus
trated next. 

Race Conditions 
A race condition occurs when more than one machine may supply a value for 
another machine. The values will therefore be determined by which of the 
previous operations finished first. In the example shown in Figure 4.17, two 
addition machines are feeding values simultaneously to the same hopper. In 
part (a) both machines are firing. In part (b) they have both arrived at their 
respective values (5 and 9), and in part (c) the multiplication machine will 
operate on 9. What is important here is that in another run, the 5 might be 
taken instead ofthe 9. This leads to nondeterminism in the code-and to in
herent unpredictability. 
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FIGURE 4.17 Race Condition. 

Deadly Embrace 

(b) (e) 

FIGURE 4.18 
Deadly Embrace. 

In this situation, two machines are waiting for data from each other (see Fig
ure 4.18). As a result, the program is unable to continue. If either machine 
were to run, then the process could resume. 

Data Blocking 
In Function Machines, a machine normally fires when its hoppers are filled. 
In Figure 4.19 we see a situation in which a machine is unable to fire, even 
though its hoppers are filled. In part (a) the addition machine fires, with in
puts of 5 and 7. In part (b) the result, 12, is seen in the spout. It would nor
mally be passed into the hopper of the multiplication machine. However, 
that hopper is already filled. Moreover, the multiplication machine cannot 
fire, because it is waiting for a value in its other hopper. Thus, when the ad
dition hoppers are filled again (with 8 and 9) the machine tries to fire and can
not. It will continue trying to fire until the multiplication machine gets its sec
ond input. Then it will fire and empty its hopper. 

In the Function Machines environment, a machine runs whenever its in
puts are available. Because this can occur simultaneously for several machines, 
the system naturally supports concurrency and parallel computation. Thus, 
besides its unique and valuable potential as a starting computational language 
for beginning students, Function Machines offers opportunities for introduc
ing, very early, the advanced subject of parallel algorithms and models. 

We have piloted the use of Function Machines extensively in elementary 
and secondary classrooms. We have introduced the program to teachers as 
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(a) (b) (e) (d) 

FIGURE 4.19 Data Blocking. 

AulO Mon ilor Monitor 

FIGURE 4.20 Function Machines Auto Monitor Model. 

well as students through both undergraduate and graduate courses and in 
summer teacher institutes. Function Machines has been used in teacher 
workshops such as "Introduction to Computer Structures," given at Lesley 
College in Cambridge, Massachusetts. The teachers successfully create Func
tion Machine models for mathematical machines-digital computing devices 
such as adders and multipliers. They also develop models of interactive 
games and computer-based devices. Some of these, such as the simple model 
described next, involve parallel computation. 

Figure 4.20 shows a Function Machines model of an automobile system 
for testing the states of a set of sensors and making appropriate audible re
sponses. The system monitors sensors that determine the on/off or open/ 
closed states of various automobile devices such as the ignition, brakes, fuel 
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level, seat belts, and headlights and that respond with an audible signal or 
message if the state of some device is faulty. The program shown in the figure 
was developed by an elementary school teacher. The Auto Monitor machine 
includes sensors to determine whether a car door is open, whether a seat belt 
is buckled, whether the ignition is on, and whether the headlights are on. 
The top-level Monitor machine is shown at the top of the left-hand window. 
It takes the four corresponding yes or no inputs and passes them to its em
bedded machines, shown in the right-hand window. The four yes or no in
puts are passed to "tester" machines that convert these yes or no values to 0 
or 1 for input to the logic machines ("And" and "Not"), which have their 
usual functions. Note that this is a parallel model; all four tester machines are 
ready to fire "at the same time." 

The "And" machines activate Response machines that invoke the speech 
output software to produce spoken utterances-in these instances, "close 
the door," "fasten your seat belt," and "tum on the lights." Depending on the 
inputs, the program may make one or more of these speech responses (or 
none), as appropriate. The figure shows the program at the point where it is 
about to run the four tester machines. It will run them all "at the same time," 
illustrating the capability for concurrent parallel processing inherent in Func
tion Machines. The leftmost Response machine is shown at the bottom of the 
left-hand window. Its response message, "close the door," will be uttered by 
the Talk machine if the input piped to the left-hand hopper of the" = " ma
chine is not 0; this corresponds to the condition (shown in the right-hand 
window) that the door is open and the ignition is on. 

Tasks like the auto monitor pose significant logical challenges to generalist 
teachers. In pre-service and in-service workshops, we and others have shown 
that elementary school teachers who are not mathematically or computa
tionally skilled can learn to use the visual modeling facilities of Function Ma
chines to develop models of moderately sophisticated logical complexity, in
cluding stochastic as well as deterministic models. 1 

In the auto monitor model, the use of parallelism was incidental. The com
putation could have been done sequentially, completing the evaluation of the 
state of the seat belt sensors and the corresponding response before begin
ning the evaluation of whether the door was open or the lights on. In some 
models, however, parallelism is intrinsic to performing a correct computa
tion. An example is the model for the classic "turtle tag" problem. The task is 
to describe the pattern generated by the tracks of four moving turtles, which 
are initially positioned at the vertices of a square. The turtles are traveling 
simultaneously, each one moving clockwise toward its nearest neighbor. 
Figure 4.21 shows a Function Machines simulation modeling this turtle tag 
dance. 

The turtle display (in the right-hand window) shows the current positions 
of the turtles. As the program runs, each turtle first computes the heading of 

1 An extensive set of stochastic modeling projects has been developed for use in 
teacher workshops (Morrison and Feurzeig, 1993). 
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FIGURE 4.21 On the Way. 

FIGURE 4.22 Rendezvous. 

its nearest neighbor. Thus turtle a seeks turtle d, d seeks c, c seeks b, and b 
seeks a. Then each turtle moves a short distance along its new heading, and 
the process continues with further rounds of seeks and moves. The output of 
each Move machine passes the current position and heading of its turtle to 
the appropriate Seek machine to ready it for its next computation. The figure 
shows the Turtle Tag program in operation. As the left-hand window shows, 
the four Seek machines are ready to run. Note that all four have been acti
vated at the same time so that they will run concurrently. The program has 
been in operation for some time. The right-hand window shows the tracks 
that have been generated thus far. 

Figure 4.22 shows the turtles' final positions. It illustrates the use of simul
taneous visualizations of the program structure and operation, as well as its 
output behavior. As the program runs, we can see the processes that are cur
rently computing. At the same time, we also see what effects these processes 
have on the model's visual outputs. Moreover, we can study the relationship 
between the program description and the program output more intensively 
by running the program incrementally, one step at a time. Observing the dy-
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namic visualization of the model processes can give students very direct in
sight into the mechanisms underlying the model's visual outputs. The bene
fits of working with both kinds of visualizations increase as models become 
more complex. Indeed, they have enormous potential for enhancing science 
research as well as science education. 

The wide adoption of computational modeling experiences as a key and 
central component of precollege science and mathematics education has 
been hampered by the lack of accessible and informative visualization tools. 
Function Machines directly addresses this need. 

The initial version of Function Machines was designed and implemented at 
BBN in 1987.2 It currently runs on all Macintosh systems. The Function Ma
chines User Manual (Morrison and Walters Associates), included on the ac
companying CD, provides a complete reference to the language, along with 
sample sessions to familiarize users with the fundamentals of Function Ma
chines programming. 3 
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Decentral ized Model i ng and 
Decentralized Thinking 

Mitchel Resnick 

Introduction: The Era of Decentralization 

It seems fair to say that we live in an era of decentralization. Almost every 
time you pick up a newspaper, you can see evidence of the growing interest 
in decentralized systems. On the front page, you might read an article about 
the transition of the former Communist states from centrally planned econ
omies to market-based economies. Turn to the business page, and you might 
find an article about the shift in corporate organizations away from top-down 
hierarchies toward decentralized management structures. The science sec
tion might carry an article about new distributed models of the mind, and it 
might include a technology column about the role of the Internet in promot
ing distributed approaches to computing. And in the book review, you might 
discover how the latest literary theories are based on the idea that literary 
meaning itself is decentralized-always constructed by individual readers, 
not imposed by a centralized author. 

But even as the influence of decentralized ideas grows within our culture, 
there is a deep-seated resistance to such ideas. At some deep level, people 
seem to have strong attachments to centralized ways of thinking. When 
people see patterns in the world, they often assume that there is some type 
of centralized control, even when it doesn't exist. For example, most people 
assume that birds in a flock playa game of "follow the leader": The bird at the 
front of the flock leads, and the others follow. But that's not so. In fact, most 
bird flocks don't have leaders at all. Rather, each bird follows a set of simple 
rules, reacting to the movements of the birds nearby it. Orderly flock patterns 
arise from these simple, local interactions. The bird in front is not a "leader" 
in any meaningful sense-it just happens to end up there. The flock is orga
nized without an organizer, coordinated without a coordinator. Yet most 
people continue to assume the existence of a "leader bird." 

This assumption of centralized control, a phenomenon I call the central
ized mindset, is not just a misconception of the scientifically naive. It seems 
to affect the thinking of nearly everyone. Until recently, even scientists as
sumed that bird flocks must have leaders. It is only in recent years that sci-
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entists have revised their theories, asserting that bird flocks are leaderless 
and self-organized (Heppner and Grenander, 1990; Reynolds, 1987). A simi
lar bias toward centralized theories can be seen throughout the history of 
science. 

In this chapter, I discuss how computer-modeling activities can help 
people move beyond the centralized mindset and gain new insights into (and 
appreciation for) the workings of decentralized systems. In particular, I will 
discuss a programmable modeling environment, called StarLogo, that I de
veloped to help precollege students model and explore decentralized sys
tems. By telling "stories" of students' activities with StarLogo, I hope to shed 
light on the nature of the centralized mindset and on ways of moving beyond 
it. At the same time, I have a more general goal: to present (and defend) a set 
of principles to guide the uses of computer modeling in science education. 

Learning Through Modeling 

My "decentralized modeling" research project has been guided by five core 
principles. In my view, these principles apply not only to my own research 
project but to all applications of computer modeling in science education. 

• Principle 1: Encourage construction of models (not just manipulation of 
preexisting models). In many educational applications of computer mod
eling, students do little more than twiddle parameters on preconstructed 
models. For example, they are given a model of a spring with a mass on the 
end, along with sliders for controlling the spring constant and mass. That 
type of activity can have some value. But students are likely to make much 
deeper connections with the concepts underlying the model if they are 
given the opportunity to construct models on their own (papert, 1991). Ac
cordingly, I designed StarLogo as a programmable modeling environment, 
with which students can construct their own models . 

• Principle 2: Rethink what is learned (not just how it is learned). The ac
tivity of computer modeling provides a new opportunity for students to 
learn through exploration and experimentation. But often overlooked is 
the potential to use modeling to rethink not just the process but also the 
content of science education. Too often, educators use computer modeling 
as a new way to teach the same old things (such as the motion of springs). 
In my work, the emphasis has been on using modeling to help students ex
plore ideas and concepts that were previously inaccessible. For example, 
ideas about decentralized systems and self-organizing systems have tra
ditionally been taught at the graduate level, via advanced mathematics. Star
Logo was designed to make these ideas accessible to pre-college students, 
without any advanced mathematics. 

• Principle 3: Support true computational models (not just computeriza
tion of traditional mathematical models). For several hundred years, 
mathematicians and scientists have used differential equations to model dy
namic systems. Many computer-modeling tools reimplement this approach 
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on the computer, using the computer to solve differential equations nu
merically. These tools are certainly very useful, and some of them do a very 
good job of hiding the formal mathematics under graphical descriptions of 
the differential equations. But the most fundamental contributions of com
puter modeling are likely to come from tools that are based on totally new 
representations tailored explicitly for the computer. That is the case with 
StarLogo, which is based on hundreds of individual objects acting in paral
lel. This type of representation was not possible in the paper-and-pencil era, 
and it offers new ways for even young students to explore the workings of 
dynamic systems . 

• Principle 4: Facilitate personal connections (not just mathematical ab
stractions). In designing new types of learning tools, it is important to con
sider two types of connections (Resnick et al., 1996). First, there are epis
temological connections: How will the tool connect to important domains 
of knowledge and encourage new ways of thinking? But equally important 
are personal connections: How will the tool connect to users' interests, pas
sions, and experiences? Many computer-modeling tools are "impersonal"; 
students must manipulate either mathematical abstractions or aggregate 
quantities. StarLogo aims to be more "personal," encouraging students to 
think about the actions and interactions of individual (and familiar) objects . 

• Principle 5: Focus on stimulation (not just simulation). Many computer 
models try to imitate some real-word system or process as accurately as pos
sible. Computer simulations of nuclear reactors are used to predict when 
the reactors might fail; computer simulations of meteorological patterns are 
used to predict tomorrow's weather. In these cases, the more accurate the 
simulation, the better. But for educational applications of computer mod
eling, real-world fidelity should not have first priority. Instead, the real 
world should serve only as an inspiration-a departure point for thinking 
about some set of ideas or concepts. The goal is not to simulate particular 
systems and processes in the world; it is to probe, challenge, and disrupt 
the way people think about systems and processes in general. That is the 
goal of StarLogo: to stimulate people to develop new ways of thinking 
about decentralized systems. 

The Centralized Mindset 

Before exploring how computer modeling can help people move beyond the 
centralized mindset, it is worth examining the nature of that centralized 
mindset. In some ways, the pervasiveness of the centralized mindset might 
seem surprising. After all, aren't we living in an era of decentralization? Ac
tually, however, it isn't so surprising if we look at the growing interest in de
centralization from a different perspective: Why are people becoming more 
interested in decentralized ideas now? Why didn't it happen before? Why 
have people resisted decentralized approaches in the past? What underlies 
this resistance? What made people cling to centralized approaches so tightly 
for so long? 
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The centralized mindset can be seen throughout the history of science. Un
til the mid-nineteenth century, almost everyone embraced the idea that living 
systems were designed by some God-like entity. Even scientists were con
vinced by the so-called watchmaker argument (or the "argument from de
sign") proposed by theologian William Paley in his book Natural Theology 
(paley, 1802). Paley noted that watches are very complex and precise ob
jects. If you found a watch on the ground, you could not possibly believe that 
such a complex object had been created by chance. Instead, you would nat
urally conclude that the watch must have had a maker. For Paley, the same 
logic applies to living systems: they, too, must have a maker. 

It is not surprising that scientists accepted Paley's argument in the early 
nineteenth century, because there were no viable alternative explanations 
for the complexity of living systems. What is surprising is how strongly sci
entists held on to centralized beliefs even after Darwin provided a viable (and 
more decentralized) alternative. Science historian Ernst Mayr (1982) notes 
that biologists put up "en0rmous resistance" to Darwin's theories for a full 
80 years after publication of On the Origin of Species, so persistent was the 
general preference for more centralized alternatives. 

The history of research on slime mold cells, as told by Evelyn Fox Keller 
(1985), provides another example of centralized thinking. During their life 
cycle, slime mold cells sometimes gather together into clusters. For many 
years, scientists believed that the aggregation process was coordinated by 
specialized slime mold cells known as "founder" or "pacemaker" cells. Ac
cording to this theory, each pacemaker cell sends out a chemical signal, 
telling other slime mold cells to gather around it, and this results in a cluster. 
In 1970, Keller and Segel (1970) proposed an alternative model, showing 
how slime mold cells can aggregate without any specialized cells. Neverthe
less, for the following decade, other researchers continued to assume that 
special pacemaker cells were necessary to initiate the aggregation process. 
As Keller (1985) writes, with an air of disbelief: "The pacemaker view was 
embraced with a degree of enthusiasm that suggests that this question was in 
some sense foreclosed." By the early 1980s, researchers began to accept the 
idea of aggregation among homogeneous cells, without any pacemaker. But 
the decade-long resistance serves as some indication of the strength of the 
centralized mindset. 

People also view the workings of the economy in centralized ways, assum
ing singular causes for complex phenomena. Children, in particular, seem 
to assume strong governmental control over the economy. Of course, gov
ernments do playa large role in most economies, but children assume that 
governments play an even larger role than they actually do. In interviews 
with Israeli children between 8 and 15 years old, psychologist David Leiser 
(1983) found that nearly half of the children assumed that the government 
sets all prices and pays all salaries. Even children who said that employers 
pay salaries often believed that the government provides the money for the 
salaries. A significant majority of the students assumed that the government 
pays the increased salaries after a strike. And many younger children had the 
seemingly contradictory belief that the government is also responsible for 
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organizing strikes. As Leiser writes, "The child finds it easier to refer unex
plained phenomena to the deliberate actions of a clearly defined entity, such 
as the government, than to impersonal 'market forces.' " 

In some ways, it is not surprising that people have such strong commit
ments to centralized approaches. Many phenomena in the world are, in fact, 
organized by a central designer. These phenomena act to reinforce the cen
tralized mindset. When people see neat rows of com in a field, they assume 
(correctly) that the com was planted by a farmer. When people watch a bal
let, they assume (correctly) that the movements of the dancers were planned 
by a choreographer. When people see a watch, they assume (correctly) that 
it was designed by a watchmaker. 

Moreover, most people participate in social systems (such as families and 
school classrooms) where power and authority are very centralized. These 
hierarchical systems serve as strong models. Many people are probably un
aware that other types of organization are even possible. In an earlier re
search project, I developed a programming language (called MultiLogo) 
based on "agents" that communicated with one another. In using the lan
guage, children invariably put one of the agents "in charge" of the others. 
One student explicitly referred to the agent in charge as "the teacher." An
other referred to it as "the mother" (Resnick, 1990). 

Perhaps most important, our intuitions about systems in the world are 
deeply influenced by our conceptions of ourselves. The human mind is com
posed of thousands of interacting entities (see, for example, Minsky, 1987), 
but each of us experiences our own self as a singular entity. This is a very con
venient, perhaps necessary, illusion for surviving in the world. When I do 
something, whether I'm painting a picture or organizing a party, I feel as 
though "I" am playing the role of the "central actor." It feels like there is one 
entity in charge: me. Thus it is quite natural that I should expect most systems 
to involve a central actor, or some entity that is in charge. The centralized 
mindset might be viewed as one aspect (and a lasting remnant) of the ego
centrism that Piaget identified in early childhood. 

Tools for Decentralized Thinking 

In some ways, people already have a great deal of experience with decen
tralized systems. They observe decentralized systems in the natural world, 
and they participate in decentralized social systems in their lives. But, of 
course, observation and participation do not necessarily lead to strong intu
itions or deep understanding. People observed bird flocks for thousands of 
years before anyone suggested that flocks are leaderless. Observation and 
participation are not enough. People need a richer sense of engagement with 
decentralized systems. One way to achieve that is to give people opportuni
ties to design decentralized systems. 

At first glance, this approach to the study of decentralized systems might 
seem like a contradiction. After all, how can you design decentralized phe-
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nomena? By definition, decentralized patterns are created without a central
ized designer. But there are ways to use design in the study of decentralized 
systems. Imagine that you could design the behaviors of lots of individual 
components-and then observe the patterns that result from all of the inter
actions. This is a different sort of design: You control the actions of the parts, 
not of the whole. You are acting as a designer, but the resulting patterns are 
not designed. 

Over the years, computer scientists have developed a variety of computa
tional tools that can be used for this type of "decentralized design." Cellular 
automata represent one example (see Chapters 1 and 6). In cellular automata, 
a virtual world is divided into a grid of "cells." Each cell holds a certain 
amount of "state." Cellular automata have proved to be an extraordinarily 
rich framework for exploring self-organizing phenomena. Simple rules for 
each cell sometimes lead to complex and unexpected large-scale structures. 

To engage students in thinking about decentralized systems, I wanted to 
provide an environment similar to cellular automata but more connected 
to students' interests and experiences. Although cellular automata are well 
suited for computer scientists and mathematicians, they seem ill suited for 
people who have less experience (or less interest) in manipulating abstract 
systems. The objects and operations in cellular automata are not familiar to 
most people. The idea of writing "transition rules" for "cells" is not an idea 
that most people can relate to. 

Instead, I decided to create an environment based on the familiar ideas of 
"creatures" and "colonies." The goal was to enable students to investigate the 
ways in which colony-level behaviors (such as bird flocks and ant foraging 
trails) can arise from interactions among individual creatures. l Logo seemed 
like a good starting point for my computational system (papert, 1980; Harvey, 
1985). The traditional Logo "turtle" can be used to represent almost any type 
of object in the world: an ant in a colony, a car in a traffic jam, an antibody in 
the immune system, or a molecule in a gas. But traditional versions of the 
Logo language lack several key features that are needed for explorations of 
colony-type behaviors, so I developed a new version of Logo, called StarLogo, 
that extends Logo in three major ways (Resnick, 1991, 1994). 

First, StarLogo has many more turtles. Whereas commercial versions of 
Logo typically have only a few turtles, StarLogo has thousands of turtles, and 
all of the turtles can perform their actions at the same time, in parallel. 2 For 
many colony-type explorations, having a large number of turtles is not just 
nice but necessary. In many cases, the behavior of a colony changes qualita
tively when the number of creatures is increased. An ant colony with 10 ants 
might not be able to make a stable pheromone trail to a food source, whereas 
a colony with 100 ants (following exactly the same rules) might. 

1 I am using the tenns creature and colony rather broadly. On a highway, each car can 
be considered a "creature," and a traffic jam can be considered the "colony." 
2The initial version of StarLogo was implemented on a maSSively parallel computer, 
the Connection Machine. We have since implemented StarLogo on traditional se
quential computers by simulating parallelism. 
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Second, Star Logo turtles have better "senses." The traditional Logo turtle 
was designed primarily as a "drawing turtle" for creating geometric shapes 
and exploring geometric ideas. But the StarLogo turtle is more of a "behav
ioral turtle." StarLogo turtles come equipped with "senses." They can detect 
(and distinguish) other turtles nearby, and they can "sniff" scents in the 
world. Such turtle-turtle and turtle-world interactions are essential for cre
ating and experimenting with decentralized and self-organizing phenomena. 
Parallelism alone is not enough. If each turtle just acts on its own, without 
any interactions, interesting colony-level behaviors generally do not arise. 

Third, StarLogo reifies the turtles' world. In traditional versions of Logo, 
the turtles' world does not have many distinguishing features. The world is 
simply a place where the turtles draw with their "pens." Each pixel of the 
world has a single piece of state information-its color. StarLogo accords a 
much higher status to the turtles' world. The world is divided into small 
square sections called patches. The patches have many of the same capabili
ties as turtles, but they cannot move. Each patch can hold an arbitrary variety 
of information. For· example, if the turtles are programmed to release a 
"chemical" as they move, each patch can keep track of the amount of chem
ical that has been released within its borders. Patches can execute StarLogo 
commands, just as turtles do. For example, each patch could diffuse some of 
its "chemical" into neighboring patches, or it could grow "food" based on the 
level of chemical within its borders. Thus the environment has a status equal 
to that of the creatures inhabiting it. 

StarLogo programs can be conceptualized as turtles moving on top of 
(and interacting with) a cellular automata grid. All types of interactions are 
possible: turtle-turtle, turtle-patch, and patch-patch interactions. StarLogo 
places special emphasis on local interactions-that is, interactions among 
turtles and patches that are spatially near one another. Thus StarLogo is well 
suited for explorations of self-organizing phenomena, in which large-scale 
patterns arise from local interactions. In addition, the massively parallel na
ture of StarLogo makes it well suited for explorations of probabilistic and sta
tistical concepts-and for studies of people's thinking about these concepts 
(Wilensky, 1993). 

Figure 5.1 shows a StarLogo simulation of slime mold cells aggregating into 
clusters. In this simulation, each cell emits a chemical pheromone, and it also 
moves in the direction where the pheromone is strongest (that is, it "follows 
the gradient" of the pheromone). At the same time, the patches cause the 
pheromone to diffuse and evaporate. With this simple strategy, the cells 
quickly aggregate into clusters, demonstrating as they do so that aggregation 
can arise from a decentralized mechanism. 

In some ways, the ideas underlying StarLogo parallel the ideas underlying 
the early versions of Logo itself. In the late 1960s, Logo aimed to make then
new ideas from the computer science community (such as procedural ab
straction and recursion) accessible to a larger number of users. Similarly, Star
Logo aims to make 1990s ideas from computer science (such as massive 
parallelism) accessible to a larger audience. And whereas Logo introduced a 
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FIGURE 5.1 Slime Mold Cells Aggregating into Clusters. 

new object (the turtle) to facilitate explorations of particular mathemati
cal/scientific ideas, such as differential geometry (Abelson and diSessa, 
1980), StarLogo introduces another new object (the patch) to facilitate ex
plorations of other mathematical/scientific ideas (such as self-organization). 

StarLogo Stories 

This section presents stories of student projects with StarLogo, describing 
the models that students constructed and what they learned in doing so. The 
students typically came to M.I.T. for eight to ten sessions, each lasting 60 to 
90 minutes. Most students worked together in pairs. I worked directly with 
the students, suggesting projects, asking questions, challenging assumptions, 
helping with programming, and encouraging students to reflect on their ex
periences as they worked with StarLogo. Computer interactions were saved 
in computer files, and all discussions were recorded on audio tape. In the 
early seSSions, I typically showed students existing StarLogo programs. The 
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students experimented with the programs, trying different parameters and 
making slight modifications of the programs. As the sessions progressed, I en
couraged students to develop their own project ideas, and construct their 
own models, on the basis of personal interests. 

Traffic Jams 

Ari and Fadhil were students at a public high school in the Boston area. Both 
enjoyed working with computers, but neither had a very strong mathe
matical or scientific background. At the time Ari and Fadhil started working 
with StarLogo, they were also taking a driver's education class. Each had 
turned 16 years old a short time before, and they were excited about getting 
their driver's licenses. Much of their conversation focused on cars. When I 
gave Ari and Fadhil a collection of articles to read, a Scientific American 
article titled "Vehicular Traffic Flow" (Herman and Gardels, 1963) captured 
their attention. 

Traffic flow is a rich domain for studying collective behavior. Interactions 
among cars in a traffic flow can lead to surprising group phenomena. Con
sider a long road with no cross streets or intersections. What if we added 
some traffic lights along the road? The traffic lights would seem to serve no 
constructive purpose. It would be natural to assume that the traffic lights 
would reduce the overall traffic throughput (number of cars per unit time). 
But in some situations, additional traffic lights actually improve overall traffic 
throughput. The New York City Port Authority, for example, found that it 
could increase traffic throughput in the Holland Tunnel by 6% by deliberately 
stopping some cars before they entered the tunnel (Herman and Gardels, 
1963). 

Traditional studies of traffic flow rely on sophisticated analytic techniques 
(from fields such as queuing theory). But many of the same traffic phenom
ena can be explored with simple StarLogo programs. To get started, Ari and 
Fadhil decided to create a one-lane highway. (Later, they experimented with 
multiple lanes.) Ari suggested adding a police radar trap somewhere along 
the road, to catch cars going above the speed limit. But he also wanted each 
car to have its own radar detector, so that cars would be alerted to slow down 
when they approached the radar trap. 

After some discussion, Ari and Fadhil decided that each StarLogo turtle/car 
should follow three basic rules: 

• If there is a car close ahead of you, slow down . 
• If there are not any cars close ahead of you, speed up (unless you are al

ready moving at the speed limit). 
• If you detect a radar trap, slow down. 

Ari and Fadhil implemented these rules in StarLogo. They expected that a 
traffic jam would form behind the radar trap, and indeed it did (Figure 5.2). 
After a few dozen iterations of the StarLogo program, a line of cars started to 
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FIGURE 5.2 Traffic Jams Caused by Radar Trap (shaded area). (Cars move left to right.) 

fonn to the left ofthe radar trap. The cars moved slowly through the trap and 
then sped away as soon as they passed it. Ari explained: "First one car slows 
down for the radar trap, then the one behind it slows down, then the one be
hind that one, and then you've got a traffic jam." 

I asked Ari and Fadhil what would happen if only some of the cars had 
radar detectors. Ari predicted that only some of the cars would slow down 
for the radar trap. Fadhil had a different idea: "The ones that have radar de
tectors will slow down, which will cause the other ones to slow down." Fa
dhil was right. The students modified the StarLogo program so that only 25% 
of the cars had radar detectors. The result: The traffic flow looked exactly the 
same as when all of the cars had radar detectors. 

What if none of the cars had radar detectors-or, equivalently, what if the 
radar trap were removed entirely? With no radar trap, the cars would be con
trolled by just two simple rules: If you see another car close ahead, slow 
down; if not, speed up. The rules could not be much simpler. At first, Fadhil 
predicted that the traffic flow would become unifonn; cars would be evenly 
spaced, traveling at a constant speed. Without the radar trap, he reasoned, 
what could cause a jam? But when the students ran the program, a traffic jam 
fonned (Figure 5.3). Along parts of the road, the cars were tightly packed and 
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FIGURE 5.3 Traffic Jam Without Radar Trap. (Cars move left to right, but jam moves 
right to left.) 

moving slowly. Elsewhere, they were spread out and moving at the speed 
limit. 

Ari and Fadhil were surprised. And when I showed Ari and Fadhil's pro
gram to other high school students, they too were surprised. In general, the 
students expected the cars to end up evenly spaced along the highway, sep
arated by equal distances. Several of them talked about the cars reaching an 
"equilibrium" characterized by equal spacing. No one expected a traffic jam 
to form. Some of their predictions: 

Emily: [The cars will] just speed along, just keep going along ... they will end up 
staggered, in intervals. 

Frank: Nothing will be wrong with it. Cars will just go .... There's no obstacles. The 
cars will just keep going, and that's it. 

Ramesh: They will probably adjust themselves to a uniform distance from each 
other. 

When I ran the simulation, and traffic jams began to form, the students 
were shocked. In their comments, most students revealed a strong commit
ment to the idea that some type of "seed" (such as an accident or a broken 
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bridge) is needed to start a traffic jam. Perhaps Frank expressed it best: "I 
didn't think there would be any problem, since there was nothing there." If 
there is nothing there-if there is no seed-there should not be a traffic jam. 
Traffic jams do not just happen; they must have localizable causes. And the 
cause must come from outside the system (not from the cars themselves). 
Some researchers who study systems talk about exogenous (external) and en
dogenous (internal) factors affecting the behavior of a system. In the minds 
of the students, patterns (such as traffic jams) can be formed only by exoge
nous factors. 

Fadhil suggested that the jams were caused by differences in the initial 
speeds of the cars. Accordingly, the students changed the StarLogo program, 
starting all of the cars at the exact same speed. But the jams still formed. Fa
dhil quickly understood. At the beginning of the program, the cars were 
placed at random positions on the road. Random positioning led to uneven 
spacing between the cars, and uneven spacing could also provide the "seed" 
from which a traffic jam cQUld form. Fadhil explained: "Some of the cars start 
closer to other cars. Like, four spaces between two of them, and two spaces 
between others. A car that's only two spaces behind another car slows down, 
then the one behind it slows down. " 

Next they changed the program so that the cars were evenly spaced. Sure 
enough, no traffic jams formed. All of the cars uniformly accelerated up to the 
speed limit. But Ari and Fadhil recognized that such a situation would be 
difficult to set up in the real world. The distances between the cars had to be 
just right, and the cars had to start at exactly the same time-like a platoon 
of soldiers starting to march in unison. 

Termites and Wood Chips 
Termites are among the master architects of the animal world. On the plains 
of Africa, termites construct giant mound-like nests rising more than 10 feet 
tall, thousands of times taller than the termites themselves. Inside the 
mounds are intricate networks of tunnels and chambers. Each termite colony 
has a queen. But, as in ant colonies, the termite queen does not "tell" the ter
mite workers what to do. On the termite construction site, there is no con
struction supervisor, no one in charge of the master plan. Rather, each ter
mite carries out a relatively simple task. Termites are practically blind, so they 
must interact with each other (and with the world around them) primarily 
through their senses of touch and smell. From local interactions among thou
sands of termites, impressive structures emerge. 

The global-from-Iocal nature of termite constructions makes them well 
suited for StarLogo explorations. Callie, one of the high school students, 
worked on a simple form of termite construction: She programmed a set of 
termites to collect wood chips and put them into piles. At the start of the pro
gram, wood chips were scattered randomly throughout the termites' world. 
The challenge was to make the termites organize the wood chips into a few, 
orderly piles. 
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Callie and I worked together on the project. We started with a very simple 
strategy, programming each individual termite to obey the following rules: 

• If you are not carrying anything and you bump into a wood chip, pick it up . 
• If you are carrying a wood chip and you bump into another wood chip, put 

down the wood chip you're carrying. 

At first, Callie and I were both skeptical that this simple strategy would 
work. There was no mechanism for preventing termites from taking wood 
chips away from existing piles. Thus, while termites were putting new wood 
chips on a pile, other termites might be taking wood chips away from it. It 
seemed like a good prescription for getting nowhere. But we pushed ahead 
and implemented the strategy in a StarLogo program, with 1000 termites and 
2000 wood chips scattered in a 128 X 128 grid. 

We tried the program, and (much to our surprise) it worked quite well. At 
first, the termites gathered the wood chips into hundreds of small piles. But 
gradually, the number of piles declined, and the number of wood chips in 
each pile increased (see Figure 5.4). After 2000 iterations, there were about 
100 piles, with an average of 15 wood chips in each pile. After 10,000 itera
tions, there were fewer than 50 piles left, with an average of 30 wood chips 
in each pile. After 20,000 iterations, only 34 piles remained, with an average 
of 44 wood chips in each pile. The process was rather slow, and it was frus
trating to watch, because termites often carried wood chips away from well
established piles. But, all in all, the program worked quite well. 
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Why did it work? As we watched the program, it suddenly seemed obvi
ous. Imagine what happens when the termites (by chance) remove all of the 
wood chips from a particular pile. Because all of the wood chips are gone 
from that spot, termites will never again drop wood chips there. Hence the 
pile has no way of restarting. 

As long as a pile exists, its size is a two-way street: It can either grow or 
shrink. But the existence of a pile is a one-way street: once it is gone, it is gone 
forever. Thus a pile is somewhat analogous to a species of creatures in the 
real world. As long as the species exists, the number of individuals in the spe
cies can go up or down. But once all of the individuals are gone, the species 
is extinct, gone forever. In these cases, zero is a "trapped state": Once the 
number of creatures in a species (or the number of wood chips in a pile) goes 
to zero, it can never rebound. 

Of course, the analogy between species and piles breaks down in some 
ways. New species are sometimes created, as offshoots of existing species. 
But in the termite progran;I, there is no way to create a new pile. The program 
starts with roughly 2000 wood chips. These wood chips can be viewed as 
2000 "piles," each with a single wood chip. As the program runs, some piles 
disappear and no new piles are created, so the total number of piles de
creases monotonically. 

Rabbits and Grass 

The great baseball manager Casey Stengel once said, "If you don't know 
where you're going, you might end up somewhere else." My experiences 
with computer-based modeling activities have taught me a corollary: "Even 
if you think you know where you're going, you'll probably end up some
where else." 

That's what happened to Benjamin, a high school student, when he set out 
to create an StarLogo program that would simulate evolution by natural se
lection. I had given Benjamin a Scientific American article (Dewdney, 1989) 
about a computer program called Simulated Evolution (palmiter, 1989). 
Benjamin, who had just finished his junior year in high school, decided that 
he wanted to create a StarLogo program similar to the commercial program 
described in the article. His goal was to devise a set of computer "creatures" 
that would interact and evolve. 

At the core of Benjamin's simulation were turtles and food. His basic idea 
was simple: Turtles that eat a lot of food reproduce, and turtles that don't eat 
enough food die. Eventually, he planned to add "genes" to his turtles. Dif
ferent genes could provide turtles with different levels of "fitness" (perhaps 
different capabilities for finding food). But Benjamin never got around to 
the genes. Rather, on the road to evolution, Benjamin got sidetracked into an 
interesting exploration of ecological systems (in particular, predator-prey 
systems). 

Benjamin began by making food grow randomly throughout the StarLogo 
world. (During each time step, each StarLogo patch had a random chance of 
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growing some food.) Then he created some turtles. The turtles had very mea
ger sensory capabilities. They could not "see" or "smell" food at a distance. 
They could sense food only when they bumped directly into it. Hence the 
turtles followed a very simple strategy: Wander around randomly, eating 
whatever food you bump into. 

Benjamin gave each turtle an "energy" variable. Every time a turtle took a 
step, its energy decreased a bit. Every time it ate some food, its energy in
creased. Then Benjamin added one more rule: If a turtle's energy dipped to 
zero, the turtle died. With this program, the turtles do not reproduce. Life 
is a one-way street: Turtles die, but no new turtles are born. Still, even with 
this simple-minded program, Benjamin found some surprising and interesting 
behaviors. 

Benjamin ran the program with 300 turtles. But the environment could not 
support that many turtles. There wasn't enough food, so some turtles began 
to die. The turtle population fell rapidly at first and then leveled out at about 
150 turtles. The system seemed to reach a steady state with 150 turtles: The 
number of turtles and the density of food both remained roughly constant. 

Then Benjamin tried the same program with 1000 turtles. If there wasn't 
enough food for 300 turtles, there certainly wouldn't be enough for 1000 
turtles, so Benjamin wasn't surprised when the turtle population began to 
fall. But he was surprised at howfar the population fell. After a while, only 
28 turtles remained. Benjamin was puzzled: "We started with more. Why 
should we end up with less?" After some discussion, he realized what had 
happened. With so many turtles, the food shortage was even more critical 
than before. The result: mass starvation. Benjamin still found the behavior a 
bit strange: "The turtles have less (initial energy as a group), and less usually 
isn't more." 

Next, Benjamin decided to add reproduction to his model. His plan: When
ever a turtle's energy increases above a certain threshold, the turtle should 
"clone" itself and split its energy with its new twin. That can be accom
plished by adding another procedure to the program. 

Benjamin assumed that the rule for cloning would somehow "balance" the 
rule for dying, leading to some sort of equilibrium. He explained: "Hopefully, 
it will balance itself out somehow. I mean it will. It will have to. But I don't 
know what number it will balance out at." After a little more thought, Ben
jamin suggested that the food supply might fall at first but that it would then 
rise back and become steady: "The food will go down, a lot of them will die, 
the food will go up, and it will balance out." 

Benjamin started the program running. As Benjamin expected, the food 
supply initially went down and then went up. But it didn't "balance out" 
as Benjamin had predicted: It went down and up again and again and 
again. Meanwhile, the turtle population also oscillated, but out of phase with 
the food. 

On each cycle, the turtles "overgrazed" the food supply, leading to a scar
city of food, and many of the turtles died. But then, with fewer turtles left to 
eat the food, the food became more dense. The few surviving turtles thus 
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found a plentiful food supply, and each of them rapidly increased its energy. 
When a turtle's energy surpassed a certain threshold, it cloned, increasing the 
turtle population. But as the population grew too high, food again became 
scarce, and the cycle started again. 

Visually, the oscillations were striking. Red objects (turtles) and green ob
jects (food) were always intermixed, but the density of each continually 
changed. Initially, the screen was dominated by red turtles, with a sparse scat
tering of green food. As the density of red objects declined, the green ob
jects proliferated, and the screen was soon overwhelmingly green. Then 
the process reversed: The density of red increased, and the density of green 
declined. 

Depending on the particular parameters, the oscillations took on different 
forms. In Benjamin's initial program, the oscillations were damped: With 
each cycle, the peaks were a little less high, the troughs a little less deep. In 
the first cycle, the turtle population dwindled to just 26 turtles and then rose 
to 303 turtles. In the next cycle, the population shrank to 47 turtles and then 
rose to 244 turtles. Eventually, the turtle population stabilized between 130 
and 160 turtles. 

Benjamin recognized that this result depended critically on the parameters 
in his StarLogo program. He wondered what would happen if the food grew 
just half as quickly. He figured that this new world would support fewer 
turtles, but how many fewer? In the original version of his StarLogo program, 
each patch had 1 chance in 1000 of growing food. Benjamin changed it to 
1 in 2000. 

When Benjamin ran the program, he was in for another surprise: All of the 
turtles died. But Benjamin, who had just finished graphing the oscillations 
from the previous experiment, quickly realized what had happened. "The os
cillation must be between some number and negative something," he said. 
That is, the trough of the oscillation must drop below zero. And once the 
population drops below zero, it can never recover. There is no peak after a 
negative trough. Extinction is forever; it is a "trapped state." 

The problem lay in the initial conditions. Benjamin had started the simula
tion with 1000 turtles. If there were fewer initial turtles, the first trough 
wouldn't sink so deep. Benjamin came up with an ingenious solution. "I'll 
start with just one (turtle)," he explained. "It will definitely survive. I'll put 
money on it." Benjamin started the program again, this time with a single 
turtle. For a while, the single turtle roamed the world by itself. Benjamin 
cheered it on: "Come on. Hang on there. Come on. Get some food." Finally, 
the turtle cloned, and then there were two. "He's going to live," exclaimed 
Benjamin. 

The turtle population rose to about 130 turtles, leveled off, and then fell. 
As before, the turtle population went up and down in a damped oscillation. 
Eventually, the population stabilized at about 75 turtles. Thus, with food 
growing at half the rate at which it grew before, the turtle population stabi
lized at about half the number at which it leveled off before. The "equilibrium 
population" seemed to be proportional to the rate of food growth. 
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Before running the program, Benjamffi had predicted that the equilibrium 
population would be more drastically affected by the reduction in food 
growth. He expected the population to stabilize with considerably fewer 
than 75 turtles. But after watching the program run, he developed an expla
nation for the proportional relationship. Looking at the dots of food on the 
screen, he noted that the "food density" at equilibrium looked about the same 
as in the previous experiment, despite the change in the rate of food growth. 
That made sense to him: A certain food density is needed to keep the turtles 
just on the brink between death and reproduction. To reach a relatively 
steady state, the system needed to maintain that special food density. Given 
that the food was growing just half as quickly as before, it made sense that 
the system could support only half as many turtles. 

Benjamffi's reasoning is an example of what Hut and Sussman (1987) 
dubbed "analysis by synthesis." Traditionally, synthesis and analysis have 
been seen as opposed to one another-two alternative ways of solving prob
lems. But with comp,uter-based explorations, the two approaches get mixed 
and blurred. It is very unlikely that Benjamin could have developed his ex
planation without actually viewing (and manipulating) the simulation. Only 
by building and creating (synthesis) was Benjamin able to develop a well
reasoned explanation for the behavior of the turtles (analysis). 

The oscillating behavior in Benjamin's project is characteristic of ecologi
cal systems with predators (in this case, turtles) and prey (in this case, food). 
Traditionally, scientific (and educational) explorations of predator-prey sys
tems are based on sets of differential equations known as the Lotka-Volterra 
equations (Lotka, 1925; Volterra, 1926). For example, the changes in the pop
ulation density of the prey (nl) and the population density of the predator 
(ni) can be described with the following differential equations: 

dnddt = nl(b - k1n2) 
dn2/dt = n2(k2nl - d) 

where b is the birth rate of the prey, d is the death rate of the predators, and 
kl and k2 are constants. It is straightforward to write a computer program 
based on the Lotka-Volterra equations, computing how the population den
sities of the predator and prey vary with time (see, for example, Roberts 
et al., 1983). 

This differential equation approach is typical of the way scientists have tra
ditionally modeled and studied the behaviors of all types of systems (physi
cal, biological, and social). Scientists typically write down sets of differential 
equations and then attempt to solve them either analytically or numerically. 
These approaches require advanced mathematical training; usually, they are 
studied only at the university level. 

The StarLogo approach to modeling systems (exemplified by Benjamffi's 
project) is sharply different. StarLogo makes systems-related ideas more ac
cessible to younger students by providing them with a stronger personal 
connection to the underlying models. Traditional differential equation ap
proaches are "impersonal" in two ways. The first is obvious: They rely on ma-
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nipulation of abstract symbols (accessible only to students with advanced 
mathematical training). The second is more subtle: Differential equations 
deal in aggregate quantities. In the Lotka-Volterra system, for example, the 
differential equations describe how the overallpopulations (not the individ
ual creatures) evolve over time. There are now some very good computer
modeling tools-such as STEllA@ (Richmond and Peterson, 1990) and 
Model-It (Jackson et al., 1996)-based on differential equations. These tools 
eliminate the need to manipulate symbols, focusing on more qualitative and 
graphical descriptions. But they still rely on aggregate quantities. 

In StarLogo, by contrast, students think about the actions and interactions 
of individual objects or creatures. StarLogo programs describe how individual 
creatures (not overall populations) behave. Thinking in terms of individual 
creatures seems far more intuitive, particularly for the mathematically un
initiated. Students imagine themselves as individual turtles/creatures and 
think about what they might do. In this way, StarLogo enables learners to 
"dive into" the model (Ackermann, 1996) and make use of what Papert 
(1980) calls "syntonic" knowledge about their bodies. By observing the dy
namics at the level of the individual creatures, rather than at the aggregate 
level of population densities, students can more easily think about and un
derstand the population oscillations that arise. Future versions of StarLogo 
will enable users to zoom in and out, making it easier for them to shift back 
and forth in perspective from the individual level to the group level. 

I refer to StarLogo models as "true computational models" (Resnick, 1997), 
because StarLogo uses new computational media in a more fundamental way 
than most computer-based modeling tools. Whereas most tools simply im
plement traditional mathematical models on a computer (numerically solving 
traditional differential equation representations, for instance), StarLogo pro
vides new representations that are tailored explicitly for the computer. Of 
course, differential equation models are still very useful, and they are supe
rior to StarLogo-style models in some contexts. But too often, scientists and 
educators see traditional differential equation models as the only approach to 
modeling. As a result, many students (particularly students alienated by tra
ditional classroom mathematics) view modeling as a difficult or uninteresting 
activity. What is needed is a more pluralistic approach, recognizing that there 
are many different approaches to modeling, each with its own strengths and 
weaknesses. A major challenge is to develop a better understanding of when 
to use which approach, and why. 

Decentralized Thinking 

As students began working with StarLogo, they nearly always assumed cen
tralized causes in the patterns they observed, and they nearly always imposed 
centralized control when they wanted to create patterns. But as students con
tinued to work on StarLogo projects, most of them began to develop new 
ways of thinking about decentralization. In almost all cases, they developed 
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an appreciation for and a fascination with decentralized systems. At one 
point, while we were struggling to get our termite program working, I asked 
Callie whether we should give up on our decentralized approach and pro
gram the termites to take their wood chips to predesignated spots. She 
quickly dismissed this suggestion. 

Mitchel: We could write the program so that the termites know where the piles are. 
As soon as a termite picks up a wood chip, it could just go to the pile and put it down. 

Callie: Oh, that's bOring! 

Mitchel: Why do you think that's boring? 

Callie: Cause you're telling them what to do. 

Mitchel: Is this more like the way it would be in the real world? 

Callie: Yeah. You would almost know what to expect if you tell them to go to a par
ticular spot and put it down. You know that there will be three piles. Whereas here, 
you don't know how many mounds there are going to be. Or if the number of mounds 
will increase or decrease. Or things like that .... This way, they [the termites] made 
the piles by themselves. It wasn't like they [the piles] were artificially put in. 

For Callie, preprogrammed behavior, even if effective, was "boring." Callie 
preferred the decentralized approach because it made the termites seem 
more independent ("they made the piles by themselves") and less predictable 
("you don't know how many mounds there are going to be"). 

Over time, other students shared Callie's fascination with decentralization, 
though they often struggled in their efforts to use decentralized strategies in 
analyzing and constructing new systems. As I worked with students, I as
sembled a list of "guiding heuristics" that students used as they began to de
velop richer models of decentralized phenomena. These heuristics are not 
very "strong." They are not "rules" for making sense of decentralized systems. 
Rather, they are loose collections of ideas associated with decentralized 
thinking. Pedagogically, they serve as good discussion points for provoking 
people to think about decentralization. They also serve as a type of measur
ing stick for conceptual change: As students worked on StarLogo projects, 
they gradually began to integrate these heuristics into their own thinking and 
discourse. In this section, I discuss five of these guiding heuristics. 

Positive Feedback /sn/t Always Negative 
When people think about the scientific idea of positive feedback, they typi
cally think of the screeching sound that results when a microphone is placed 
near a speaker. Positive feedback is viewed as a destructive force that makes 
things spiral out of control. By contrast, negative feedback is viewed as very 
useful-as keeping things under control. Negative feedback is symbolized by 
the thermostat that keeps room temperature at a desired level by turning the 
heater on and off as needed. 
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When I asked high school students about positive feedback, most were not 
familiar with the term, but they were certainly familiar with the concept. 
When I explained what I meant by positive feedback, students quickly gen
erated examples that involved something getting out of control, often with 
destructive consequences. One student talked about scratching a mosquito 
bite, which made the bite itch even more, so she scratched it some more, 
which made it itch even more, and so on. Another student talked about stock 
market crashes: A few people start selling, which makes more people start 
selling, which makes even more people start selling, and so on. 

Despite these negative images, positive feedback often plays a crucial 
role in decentralized phenomena. Economist Brian Arthur (1990) points to 
the geographic distribution of cities and industries as an example of a self
organizing process driven by positive feedback. Once a small nucleus of high
technology electronics companies started in Santa Clara County south of San 
Francisco, an infrastructure developed to serve the needs of those compa
nies. That infrastructure encouraged even more electronics companies to lo
cate in Santa Clara County, which encouraged the development of an even 
more robust infrastructure. Thus Silicon Valley was born. 

For some students who used StarLogo, the idea of positive feedback pro
vided a new way of looking at their world. One day, a student came to me 
excitedly. He had been in downtown Boston at lunch time, and he had had a 
vision. He imagined two people walking into a deli to buy lunch. 

Once they get their food, they don't eat it there. They bring it back with them. Other 
people on the street smell the sandwiches and see the deli bag, and they say, 'Hey, 
maybe I'll go to the deli for lunch today!" They were just walking down the street, 
minding their own business, and all of the sudden they want to go to the deli. As more 
people go to the deli, there's even more smell and more bags. So more people go to 
the deli. But then the deli runs out of food. There's no more smell on the street from 
the sandwiches. So no one else goes to the deli. 

Randomness Can Help Create Order 
Like positive feedback, randomness has a bad name. Most people see ran
domness as annoying at best, destructive at worst. They view randomness as 
opposed to order. Randomness undoes order; it makes things disorderly. 

In fact, however, randomness plays an important role in creating order in 
many self-organizing systems. People often assume that "seeds" are needed to 
initiate patterns and structures. In general, this is a useful intuition. The prob
lem is that most people have too narrow a conception of "seeds." They think 
only of preexisting inhomogeneities in the environment, such as a broken 
bridge on the highway or a piece of food in an ant's world. 

This narrow view of seeds causes misintuitions. In self-organizing systems, 
seeds are neither preexisting nor externally imposed. Rather, self-organizing 
systems often create their own seeds. It is here that randomness plays a cru
cial role. Random fluctuations act as the "seeds" from which patterns and 
structures grow. Randomness creates the initial seeds, and then positive feed-
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back makes the seeds grow. For example, the differing velocities of cars on a 
highway create the seeds from which traffic jams can grow. 

A Flock Isn't a Big Bird 

In trying to make sense of decentralized systems and self-organizing phe
nomena, the idea of levels is critically important. Interactions among objects 
at one level give rise to new types of objects at another level. Interactions 
among slime mold cells give rise to slime mold clusters. Interactions among 
cars give rise to traffic jams. Interactions among birds give rise to flocks. 

In many cases, the objects on one level behave very differently than objects 
on another level behave. For some high school students, these differences in 
behavior were very surprising (at least initially). For example, the students 
working on the StarLogo traffic project were shocked by the behavior of the 
traffic jams: The jams moved backward even though all of the cars within the 
jams were moving for:ward. 

Confusion of levels is not restricted to scientifically naive high school stu
dents. I showed the StarLogo traffic program to two visiting computer scien
tists. They were not at all surprised that the traffic jams were moving back
ward. They were well aware of that phenomenon. But then one of the 
researchers said, "You know, I've heard that's why there are so many acci
dents on the freeways in Los Angeles. The traffic jams are moving backward 
and the cars are rushing forward, so there are lots of accidents." The other re
searcher thought for a moment and then replied, "Wait a minute. Cars crash 
into other cars, not into traffic jams." In short, he believed that the first re
searcher had confused levels, mixing cars and jams inappropriately. The two 
researchers then spent half an hour trying to sort out the problem. It is an in
dication of the underdeveloped state of decentralized thinking in our culture 
that two sophisticated computer scientists needed to spend half an hour try
ing to understand the behavior of a ten-line decentralized computer program 
written by a high school student. 

A Traffic jam Isn't just a Collection of Cars 

For most everyday objects, it is fair to think of the object as a collection of 
particular parts: A chair has four particular legs, a particular seat, and so on. 
But not so with objects such as traffic jams. Thinking of a traffic jam as a col
lection of particular parts leads to confusion. The cars that compose a traffic 
jam are always changing, as some cars leave the front of the jam and others 
join from behind. Even when all of the cars in the jam have been replaced 
with new cars, it is still the same traffic jam. A traffic jam can be thOUght of 
as an "emergent object" -it emerges from the interactions among lower-level 
objects (in this case, cars). 

As students worked on StarLogo projects, they encountered many emer
gent objects. In the termite example, the piles of wood chips can be viewed 
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as emergent objects. The precise composition of the piles is always changing, 
as tennites take away some wood chips and add other wood chips. After a 
while, none of the original wood chips remains, but the pile is still there. 

The Hills are Alive 

In Sciences o/the Artificial (1969), Herbert Simon describes a scene in which 
an ant is walking on a beach. Simon notes that the ant's path might be quite 
complex. But the complexity of the path, says Simon, is not necessarily a 
reflection of the complexity of the ant. Rather, it might reflect the complex
ity of the beach. Simon's point: Don't underestimate the role of the environ
ment in influencing and constraining behavior. People often think of the en
vironment as something to be acted upon, not something to be interacted 
with. People tend to focus on the behaviors of individual objects, ignoring 
the environment that surrounds (and interacts with) the objects. 

Adopting a richer view of the environment is important in thinking about 
decentralized and seIf-organizing systems. In designing StarLogo, I explicitly 
tried to highlight the environment. Most creature-oriented programming en
vironments treat the environment as a passive entity manipulated by the crea
tures that move within it. In StarLogo, by contrast, the "patches" of the world 
are equal in status to the creatures that move in the world. By reifying the en
vironment, I hoped to encourage people to think about the environment in 
new ways. 

Initially, some students resisted the idea of an active environment. When I 
explained a StarLogo ant-foraging program to one student, he was worried 
that pheromone trails would continue to attract ants even after the food 
sources at the ends of the trails had been fully depleted. He developed an 
elaborate scheme in which the ants, after collecting all of the food, deposited 
a second pheromone to neutralize the first pheromone. It never occurred to 
him simply to let the first pheromone evaporate. In his mind, the ants had to 
take some positive action to get rid of the first pheromone. They could not 
rely on the environment to make it go away. 

New Media, New Mindsets 

There is an old saying that goes something like this: "Give a person a hammer, 
and the whole world looks like a nail." Indeed, the ways in which we see the 
world are deeply influenced by the tools and media at our disposal. If we are 
given new tools and media, not only can we accomplish new tasks, but we 
also begin to view the world in new ways. 

Often, we hardly recognize how our tools and media are influencing our 
ways of viewing the world. For several centuries now, scientists have de
scribed the world in terms of differential equations. Is that because differen
tial equations are the best way to represent and describe the world? Or is it 
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because the common media of the era (paper and pencil) are well suited to 
manipulations of differential equations? Could we say, "Give a scientist paper 
and pencil, and the whole world looks like differential equations"? 

New computational media now hold the promise for radically reshap
ing how people model (and think about) the world. But this shift won't hap
pen automatically. Computer modeling will bring profound change to the 
classroom only if modeling tools take full advantage of new computational 
representations. Just as sculptors need to understand the qualities of clay 
(or whatever material they are using), designers of computer-modeling tools 
need to understand their chosen medium. StarLogo, for example, leverages 
two new computational paradigms-massive parallelism and object-oriented 
programming. These new paradigms offer new design possibilities: new 
ways to create decentralized models. But even more important, these new 
paradigms offer new epistemological possibilities: a new decentralized 
framework for making sense of many phenomena in the world. 

Adding new tools to the carpenter's toolkit changes the way the carpenter 
looks at the world. So, too, with computational ideas and paradigms. That is 
the central challenge for computer-modeling activities in education: not only 
to help students create models in new ways but also to help students develop 
fundamentally new ways of thinking about the systems and phenomena they 
are modeling. 
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An Object-Based Modeling 
Tool for Science Inquiry 

Eric K. Neumann 1 

Wallace Feurzeig 

Peter Garik 2 

OOTls: The Object-Object Transformation language 

A major challenge of future secondary and undergraduate science instruction 
will be to help students learn to formulate, at an appropriate level of repre
sentation, mathematical models of physical phenomena for use with a com
puter simulation engine. Students will learn to investigate the behavior of 
these models and test their Validity and scope of application. In order to make 
this leap in instruction to teaching model formulation, we have to confront 
the fact that students typically find it very difficult to express problems in the 
standard formal mathematical representations. The symbolic language of dif
ferential equations, for example, is very far removed from students' mental 
models of the objects and object interactions involved in problem situations. 
Another kind of representation language-mathematically equivalent and 
mechanically translatable to differential equations, but more natural and ac
cessible to students-is needed to provide them with initial experiences in 
problem formulation. The transition to the standard formal language can be 
made later, after they have acquired the relevant insights. This chapter de
scribes a modeling tool for expressing phenomena directly in terms of the 
characteristic interactions among the objects involved. This object-based 
representation facilitates the introduction of modeling ideas and activities in 
science education. At the same time, it offers science researchers a produc
tive new approach for investigating complex phenomena. 

We designed OOTLs (Object-Object Transformation Language), a compu
tational modeling environment, to help students acquire experience and skill 
in formulating models of dynamic processes, expressed as objects and the in-

1 Presently at NetGenics Inc., Cleveland, Ohio. 
2BBN consultant, presently at Boston University. 
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teractions among them. 3 Events in OOTLs are conceptualized as interactions 
among the objects that are identified as the key players in the model pro
cesses. The OOTLs modeling language supports the description and simula
tion of phenomena for which the law of mass action holds: It applies to "well
stirred" systems composed of large numbers of dynamically interacting 
objects. OOTIs has application to a wide variety of phenomena in many ar
eas of science, including epidemiology (the spread of contagious disease), 
population ecology (competition, predation, and adaptation), economics 
(market dynamics), physics (gas kinetics), chemical dynamics (reaction-dif
fusion equations) and traffic flow. OOTLs provides students with a parser to 
construct equations describing interactions between objects. The objects, 
which are represented as graphical icons, may represent chemical species, 
gas molecules, or humans. Objects interact with each other at specified rates. 
The equations describe the transformations that result from the object inter
actions. Objects may be created or consumed (for chemical reactions, there 
are sources and sinks for reactants; for a biological problem, birth and death 
of species; for a model of an economy, imports and exports or innovation and 
obsolescence). 

In designing OOTLs, we have taken into account the visual representations 
that research scientists have found useful in formulating their problems. The 
mathematical science literature is filled with diagrammatic shorthands for 
equations where graphs embody the basic interactions and, at the same time, 
specify the equations to be solved to provide a numerical solution. Selection 
of an appropriate representation can greatly aid problem formulation and in
sight. For example, Feynman diagrams are a way to think of quantum elec
trodynamic processes that is conceptually simpler and clearer than an equiv
alent formulation in terms of the expansion of an integral equation. Similar 
diagrammatic techniques have been extended to many-body theory and to 
statistical mechanics. 

When physicists, chemists, biologists, and engineers think about the time 
evolution of interacting systems, they often invoke similar mental models in 
their formulations. For a physicist the code words are mean field; for a chem
ical engineer or chemist, stirred reactor; for a population biologist, high pop
ulation density or rapid activation. The common mental model is one of 
collisions between the interactants. The collisions give rise to specific prod
ucts. In a chemical reaction, the result can be new species and the destruc
tion of some of the reactants; in a predator-prey interaction, the death of the 
prey and the eventual birth of a new predator. The mental model is very con-

3This contrasts with modeling systems in which users describe phenomena in terms 
of differential equations. We believe that an effective environment for introducing the 
skills of modeling to a large student population must be founded on representations 
that depict directly-in a concrete, visual, dynamic fashion-the objects being mod
eled and their interactions rather than the mathematical machinery required to per
form the simulation. 
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crete in both these instances, and the correspondence to the OOTLs fonuu
lation is direct. 

OOTLs can be used for modeling both discrete and continuous phenom
ena in applications spanning a rich variety of science domains and levels of 
complexity. The system is capable of representing a wide variety of different 
types of model structures, including the following ones. 

Aggregate behavior models describe the large-scale behavior of particles 
such as molecules and electrons. Models of this type typically assume random 
parallel motion of large numbers of particles. When the particles encounter 
each other, a number of interactions can occur under different conditions, 
such as agglomeration, recombination, rebounding, and splitting. When par
ticles encounter a barrier, the set of interactions that are possible include 
penetrating the barrier, rebounding from it, and sticking to it. Some aggregate 
behavior models express the particles as objects with embedded behaviors 
and employ rate equations to describe the transitions of objects from one 
state to another. Aggregate behavior models are appropriate for describing 
phenomena in statistical mechanics, diffusion processes, and DNA replica
tion, for example. 

System dynamics models are designed to study systems of interrelated 
processes described in tenus of causal relationships among the variables that 
characterize the component processes. The relationships among processes 
are often depicted graphically as a network of causal links relating the pro
cess variables by positive or negative connections to specify direct or inverse 
proportionality. Variable values can increase or decrease as a result of the ef
fects of other variables linked to them, and there can be feedback loops 
among the process variables. Some implementations employ "semi-quantita
tive" values instead of algebraic expressions to represent the magnitude of 
the effect of one variable on another. 

Cellular automata models are designed to study the behavior of discrete 
processes defined on a cellular grid. In the usual cellular automata operation, 
local rules for system behavior are associated with the cells of the grid and 
describe the change in the state of each cell at any time as a function of the 
states of the cells in its local neighborhood. Local behaviors within cells can 
give rise to emergent global effects. In some cellular automata models, the 
rules are associated with active objects rather than with the entire ensemble 
of cells. As these objects move through the grid, their behavior (for example, 
heading) is determined by the state (for example, color) of the cell they en
counter at each step, and they can, in turn, modify the states of these cells. 
When active objects encounter each other, the rules determine the resulting 
action (such as annihilation, giving birth to a new object, or no effect). World
Maker is an example of a cellular automata modeling system. 

Events in OOTIs are conceptualized as interactions among the objects 
identified as the key players in the model processes. OOTLs is particularly 
well suited for modeling dynamic processes in tenus of state transitions 
among the objects that are involved. The objects may represent chemical spe
cies, gas molecules, or humans. They may be represented visually. Changes 
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in the objects' characteristics, such as the concentrations of the reactants in 
a chemical reaction-diffusion process, are also represented visually and can 
be shown dynamically by color change as the reaction proceeds. Visualiza
tions can be richly informative in processes involving spatial diffusion, for 
example. 

Equations are specified simply by dragging graphical icons into windows. 
This enables students to study the time behavior of the reactions before they 
have the mathematics necessary to understand the underlying differential 
equations. The number of coupled reactions and the number of participating 
objects are not limited. 

Objects are assigned arbitrary colors-red, blue and green-which mix to 
form other colors on the screen. Thus, as the reactions progress, the color of 
the reaction products changes. Concentrations of all constituents, and any 
mathematical combinations of them, can be graphed in real time. OOTLs also 
models diffusion processes. Multiple reactors can be created and linked in lin
ear or two-dimensional arrays. Diffusion constants can be specified, and the 
resulting dynamics can be displayed by means of animated colors. Because 
the diffusion constants ofthe different constituents need not be the same, the 
effects of variation in this important parameter are directly observable. 
OOTIs can function as a gateway to many different topiCS in various areas of 
science and mathematics. It provides a natural platform for building dynamic 
process models in a wide range of phenomena, including 

• Chemical reaction dynamics: attractors; diffusion-induced Turing structures 
• Population ecology: predator-prey relationships, mutual symbiosis 
• Epidemiology: spread of disease, parasite distribution 
• Immune response: lymphocyte activation and antibody selection 
• Traffic flow and management: traffic waves, bus scheduling 
• Developmental biology: growth and emergence of structures, tissue induc-

tion 
• Economics: market competition, overutilization of limited resources 
• Neurobiology: epileptiC seizures, synaptic transmission 
• Percolation: forest fires, aquifer formation, mineralization 
• Animal behavior: swarming, termite tunneling 
• Thermodynamics: crystallization, phase transitions 

We have used OOTLs to model many such systems. 

Model-Based Inquiry with OOlls 

The following example illustrates the use of OOTLs. The application de
scribes a classic situation in epidemiology: the spread of disease in a large 
population concentrated in a local geographic area. A familiar example is 
mononucleosis (the "kissing disease") spread among students who live close 
to each other in university dormitories. The basic model assumes that most 
students will eventually contract the disease through contact with a student 
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who is infected, and that each student who becomes infected will eventually 
recover and acquire immunity. Thus there are three subpopulations of stu
dents at any time: the Susceptible students, those who have not yet caught 
mononucleosis but who will catch it if they come in contact with an infected 
student; the Infected students, those who are currently ill; and the Recovered 
students, those who have been ill and are now immune. 

The system of ordinary differential equations describing this dynamic 
model involves three populations of individuals and is defined as follows 
(where a is the transmission rate, the fraction of the individuals in the sus
ceptible population that becomes infected per encounter per day; and b is 
the recovery rate, the fraction of the individuals in the infected population 
that recover per day). 

dSjdt = -a*S*I = change in Susceptible 
dIjdt = a*S*I - b*I = change in Infected 

dRjdt = b*I = change in Recovered 

(1) 

(2) 

(3) 

For each susceptible individual who gets ill, S is decreased by the same 
amount as I is increased; thus the term a*S*I appears twice, once negative, 
once positive. The same applies to the recovery rate term, b*I, though it is 
offset by only one equation. Our experience, and that of other investigators, 
is that most high school students are unable to formulate these rate equa
tions. 

This is how students might build the same spread-of-<lisease model using 
OOTLs. They begin by identifying the types of objects that are relevant. In 
this instance they identify two kinds of objects-individuals who are cur
rently infected (denoted /), and those who are healthy but susceptible (de
noted S.) They then describe the possible interactions between such individ
uals that can give rise to the observed behaviors-transmitting or "catching" 
the disease. In this case, the students identify a single interaction: "When a 
susceptible individual meets an infected one, the healthy individual becomes 
infected also." They specify an interaction rate, a. They next define and se
lect the icons to specify susceptible and infected individuals and then arrange 
them to form the causal OOTLs interaction equation shown in Figure 6.1, 
which describes what occurs before and after the two types of individuals 
come into contact. 

Once this transformation equation has been input via the OOTLs graphical 
interface, students can simulate the system on the basis of the initial condi
tions they choose. If they start with a small number of sick people and a large 
number of healthy ones, over time all the healthy individuals will "tum into" 
sick ones, reaching a stable final state, though the dynamics involved in at
taining this are not trivial. Students are then asked whether this is the actual 

5+1 1+ 1 

FIGURE 6.1 The First 
Interaction Equation. 



FIGURE 6.2 The Second 
Interaction Equation. 
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outcome that describes what happens in the real world. Their considered an
swer is "No. People do not stay sick forever. They get better." 

The issue they now must address is how people stop being sick and how 
this is to be represented. One way to extend their model is simply to allow 
for sick individuals to become healthy again after a period of time. This re
quires creating a new type of object (denotedR), for individuals who have re
covered and are immune to further infection. Accordingly, a second trans
formation equation, expressing recovery, is added to the model: Sick 
individuals eventually recover at some rate b (see Figure 6.2). 

This is known as a first-order decay, and it produces exponential diminu
tion over time. The result of simulations with this new two-equation model 
now yields a peak level of infection, with the number of infected dropping 
thereafter, followed by a new stable state in which not all the originally 
healthy (susceptible) individuals necessarily become sick. Students can ex
tend the model by adding more transformations of increasing complexity, 
such as a rule to allow recovered healthy players to become susceptible to 
infection again over time. Alternatively, recovered individuals could still be 
carriers without exhibiting any outer symptoms, thereby infecting healthy in
dividuals. And finally, students might incorporate population dynamics, al
lowing individuals to reproduce, die, and form subpopulations with different 
rates of growth and death. 

In realizing these OOTLs models, the appropriate mathematics is handled 
by the OOTLs graphics language preprocessor. Note that whereas the differ
ential equations representation employs three equations, one for each pos
sible health state of the individual, in OOTLs only two process equations are 
required. The differential equations form is redundant. Beginning students 
are often confused by the significance of its terms. The dynamics of the dif
ferential equations are fully captured by OOTLs, as illustrated by the simula
tion output in Figure 6.3. 

The dynamics resulting from this formulation display the classic onset and 
course of an epidemic, with the number of infected peaking at a certain time 
and then diminishing as the number of recovered increases asymptotically. 
Note, however, that not all susceptible individuals will necessarily get ill. If 
the rate of spread is less than the rate of recovery, then some individuals es
cape infection. However, decreasing the rate of recovery Oengthening the in
cubation-illness period) has the effect of ensuring that more individuals will 
get the disease. This important concept is very easily explored in the process
specific form embodied in OOTIs. 

The OOTLs system provides its own differential equations simulation en
gine. However, OOTLs can also be used as a language front end to drive other 
simulation engines, including those that employ discrete and stochastic 
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FIGURE 6.3 The Output.of the Epidemiology Model. 

mechanisms as well as those that employ continuous dynamics. This can 
have the advantage of expressing the model interactions that drive the simu
lation in a clearer and more straightforward fashion. 

Using OOTls to Drive the Starlogo Simulation Engine 

The contagious disease phenomena expressed in OaTis can also be imple
mented by using a discrete process simulation instead of the differential equa
tions continuous dynamics simulation just described. OaTIs has been used 
in this way with the StarLogo simulation system.4 Figure 6.4 shows the out
put of the OaTIs disease model coupled to a StarLogo simulation. Though 
the model is realized now through a stochastic and discrete dynamic mecha
nism, it clearly exhibits the same dynamics that we observed in Figure 6.3 for 
the OOTLs-driven differential equations simulation. In Figure 6.4, the colored 
StarLogo turtles shown in the left-hand window represent individuals from 
the three subpopulations. The outputs of the OOTLs-driven StarLogo simula
tion are shown visually both as a spatial embedding (the left-hand window) 
and as a graph of the level of the subpopulations across time (the right-hand 
windowY 

When OaTIs drives the StarLogo engine, the StarLogo code for the disease 
process (in Figure 6.4) is automatically generated by the OaTIs front end. 
For example, the StarLogo code generated for the state change from Infected 

4 See Chapters 5 and 7 for detailed descriptions of StarLogo and its use. 
S It is important to make clear to students the nontrivial relation that holds between 
concentration variables in the differential equations and population numbers within 
finite spaces, because these factors affect the scaling of rates between continuous and 
discrete models. 
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FIGURE 6.4 Epidemiology Model Outputs: OOTls-Driven Starlogo Simulation. 

to Recovered is as follows, where model specifics are shown in bold and 
health denotes the state of an individual: 

if (health = infected) and (b % > random 100) [set health recovered] 

This StarLogo procedure states that an infected individual has a probability b 
of recovery in the simulation's cycle. 

Phenomena such as those expressed in the contagious disease model, 
where the population may be relatively small (thousands of objects), where 
the distributions of objects or the geometry of the environment may be non
homogeneous, and where global averaging masks a great deal of information, 
may best be simulated as discrete systems. Many problems in biology and en
gineering fall into this class. StarLogo's simulation engine, which permits the 
parallel interaction of many independent reactants, is an excellent vehicle for 
treating such problems. 

OOTLs can be used with other modeling tools to generate both continuous 
and discrete implementations and both deterministic and stochastic imple
mentations. Although OaTIs is a state transition modeling tool, it can be 
used to generate model inputs for driving cellular automaton models, system 
dynamics models, and aggregate behavior models. As the foregOing examples 
with continuous and discrete simulation engines illustrate, OaTIs presents 
students with a unified conceptual framework for thinking about processes 
of many different kinds, and it provides a generic language for expressing 
these processes in a precise way. 

The Interplay Between Computer Modeling 
and Laboratory Experi ment 

There are three levels of modeling activities-formulating a model, reasoning 
about model behavior within the model world itself without reference to ex
ternal reality, and extending the model to capture key aspects of the real
world phenomena addressed by the model that were missing or inappropri-
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ately expressed. The true power and relevance of science modeling comes 
from relating models to reality as a means of helping to make sense of the 
world. But students seldom experience this level of modeling. Often, they do 
not advance beyond learning to handle the formalisms and manipulations as
sociated with a model (such as how one needs to think in order to build sys
tems in STELLA@ or to program in StarLogo.) As a result, they seldom expe
rience the use of modeling as a rich vehicle for true scientific inquiry. The 
following example shows how a modeling investigation that does not go be
yond the formal modeling level can miss a critical aspect of science inquiry, 
that of developing an understanding of the underlying mechanism that gives 
rise to the phenomenon. 

Many dynamic systems problems involve processes that require a cata
lyst-a compound that is required for a reaction but not used up by it. Ex
plorations of catalysis to determine a causal mechanism can engage students 
in experiments that involve the close coupling of modeling and laboratory 
work, with extensive interplay between the real-world and computer-world 
investigations. A representative example is an enzyme lab, where a substance 
(S) is broken down by an enzyme (E), to yield a product (P) that can be 
stained for quantification. The lab work begins with the student adding the 
substance to the reaction chamber. She can measure the amount of S used up 
and the amount of product P produced, and she can observe that the catalyst 
E remains constant over time. She is then asked to describe the process as 
simply as possible, using the OOTLs object model interface. She proposes the 
simple OOTLs model shown in Figure 6.5. 

The model states that S goes to P at rate k. The reaction requires the cata
lyst E, though E is not consumed. The OOTLs model is then used to drive a 
simulation engine, such as StarLogo, which generates populations of S and E 
objects that come into contact to transform S into P. Here the first interesting 
phenomenon becomes apparent, one that is usually overlooked when only a 
numerical model is used: The number of collisions between S and E goes 
down over time, because the level of S decreases as it is transformed into P, 
and this results in slower P production. E remains constant as required-this 
fact is made more compelling by viewing the objects directly. Indeed, if the 
student considers the time required to convert half of S to P, she will also see 
that E stays constant for the subsequent series of half-way conversions (50% 
-> 25%, 25% -> 12.5%). This observation also provides the critical point for 
understanding exponential decay. 

After simulations are performed with different starting amounts of S, the 
graphical outputs from the student's model will also show that the rate of P 

k 

s E 

FIGURE 6.5 Initial Enzyme Model. 
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FIGURE 6.6 Extended Enzyme Model. 

production increases linearly with increases in initial levels of either S or E, 
separately. There is no intrinsic limit to the production rate, a result that does 
not reflect reality. If the student performs the corresponding experiments in 
the laboratory world, she will discover important new phenomenon charac
terizing catalytic reactions: saturation. This is clearly shown experimentally 
as diminishing returns in P production even if S is increased indefinitely, to 
the point where no matter how much S is added, the rate of P synthesis be
comes constant. 

The student's original model is thus seen to be flawed. To duplicate the sat
uration effect seen in the experiment, she needs to modify or extend her 
model. She intuits that this can be done by postulating a new mechanism, the 
formation of an intermediate product. Thus she adds a step, the insertion of 
a new compound between the two sides. In her extended model, E and S co
alesce at some rate kl to form the compound E*S, which she calls X. This 
compound then decomposes into P and E at a different rate, k 2• She inputs to 
OOTLs the pair of equations shown in Figure 6.6 

This OOTLs process is then Simulated-by driving StarLogo, for example. 
Initially, while E is bound in the compound E*S form, it is not available to cat
alyze the S -> P reaction. The E that is bound can be seen to be eventually re
leased when P is produced by the k2 reaction. Even so, a substantial fraction 
of E remains bound as E*S as it is recycled until all S is used up, at which time 
all E is finally released with the completion of P production. 

By using differing initial amounts of S in the reaction, the student observes 
that the fraction of E bound as E*S depends on how much S is used. At some 
specific concentration of S, most of the enzyme becomes bound to E*S as it 
"waits" for the rate-limiting k2 step to finish converting E*S to P + E. No mat
ter how much more S is added, the total rate of P production cannot surpass 
a hard limit. To a first-order approximation, the student has captured the nec
essary relations in the process to explain a saturation effect in enzyme catal
ysis. Her model can now be used as a "mind's eye" into deeper comprehen
sion and exploration of related mechanisms. 

In addition, several factors that may influence the amount of saturation for 
S are now open for exploration: Does the amount of enzyme have an effect 
on the saturation limit? Does kl have an effect as well? How critical is the k2 
reaction constant? Does kl have to be greater than k2? The student's OOTLs 
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model can be used to generate quantitative simulations and analyses to help 
answer these and associated questions. Activities of these kinds can greatly 
enhance science education. The synergetic coupling of modeling and labo
ratory experimentation can help students get at what is really going on and 
make sense of observed phenomena by revealing and explaining the under
lying processes. 
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Part 2 

Model-Based Inquiry 

The chapters in this section describe highly focused projects for integrating 
modeling into the secondary science curriculum. Although the modeling 
tools are different in each case, these four projects all focus on the use of 
modeling to help students develop scientific reasoning skills and think like 
scientists. 

GasLab-an Extensible Modeling Toolkit for Connecting Micro- and 
Macro-properties of Gases, by Uri Wilensky, describes the work of learners 
engaged in substantial model-based investigations of stochastic phenomena. 
High school students and teachers used a version of the StarLogo language to 
study the behavior of gas molecules in a box. Particles in GasLab are modeled 
as Newtonian billiard balls colliding elastically with the walls of the box and 
with each other. Particles are color-coded by speed or energy. The model can 
support hundreds of thousands of particles. GasLab is embedded in a general
purpose modeling language; thus the user can extend the model and run new 
experiments by programming the molecules and the surrounding box with 
the desired properties. The chapter describes an intensive modeling investi
gation by a high school physics teacher, leading to the creation of a model for 
investigating the physics of gases under widely varying conditions. The chap
ter describes several examples of high school students' investigations with, 
and extensions to, the teacher's model. Wilensky advocates giving the stu
dents "expert-built" demonstration models as a starting point for encourag
ing them to extend their knowledge and test their ideas by creating their own 
models. 

The thesis of Designing Computer Models That Teach, by Paul Horwitz, is 
that computer models can be extraordinarily effective in teaching science, 
but only if their design and use clearly address certain psychological and ped
agogical requirements. He expresses the concern that learning accomplished 
entirely through interactions with a computer model may be effective in de
veloping competence only within the computer context. He therefore calls 
for broadening the learning process so that students are made aware of what 
they are learning in the computer-modeling world and of how it applies in 
the world outside. He identifies some of the principles underlying the design 
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of successful teaching models and discusses the problems that must be over
come before a computer model can become a practical classroom tool. He 
describes the development and classroom use of GenScope, a current sci
ence-modeling microworld that concretely exemplifies these design prin
ciples. GenScope enables students to undertake investigations of a wide va
riety of genetic phenomena. It represents and interconnects phenomena at 
several distinct levels of description, including the molecular, cellular, indi
vidual organism, family tree, and population levels. In a concerted effort to 
make GenScope an effective teaching tool, automated scripts are being de
veloped to provide careful problem sequencing and selective scaffolding and 
to link activities on the computer to knowledge of the real world. 

Modeling as Inquiry Activity in School Science: What's the Point? de
scribes experiences of middle-school students in the use of Explorer Science 
computer models developed by science educators for teaching topics in 
wave phenomena, population ecology, and the human cardiovascular sys
tem. The research focus was on determining what conditions best support 
students in learning to conduct investigations using models built by experts. 
The modeling situations included open-ended exploration, structured class
room teaching, and guided inquiry approaches. The computer modeling in
vestigations were combined with real-world observation and laboratory ex
perimentation. Authors William Barowy and Nancy Roberts found that the 
key to effective students involvement and learning was in allowing students 
some measure of control over the modeling activities and agenda, rather than 
requiring them to work through a fixed preassigned lesson sequence. 

Alternative Approaches to Using Modeling and Simulation Tools for 
Teaching Science chronicles several years of development of ThinkerTools, 
a microworld to teach Newtonian physics more effectively to precollege stu
dents. Authors Barbara Y. White and Christina V. Schwarz show how even rel
atively simple modeling and simulation tools, such as those embodied in the 
ThinkerTools software, can make possible a variety of instructional activities 
and approaches. The first iteration of the software presented a series of 
games that gradually increased in complexity and abstraction to help stu
dents develop an understanding of force and motion. Current iterations of 
ThinkerTools combine computer-based modeling activities with real-world 
experiments. The authors state that modeling tools are transforming the prac
tices of science and engineering. Their study illustrates an approach to the 
use of modeling tools that, they believe, can facilitate even greater transfor
mations in science education. 
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GasLab-an Extensible Modeling 
Toolkit for Connecting Micro
and Macro-properties of Gases 

Uri Wilensky 

Introduction: Dynamic Systems Modeling 

computer-based modeling tools have largely grown out of the need to de
scribe, analyze, and display the behavior of dynamic systems. Recent decades 
have seen increasing recognition of the importance of understanding the 
behavior of dynamic systems-how systems of many interacting elements 
change and evolve over time and how global phenomena can arise from 
local interactions of these elements. New research projects on chaos, self
organization, adaptive systems, nonlinear dynamics, and artificial life are all 
part of this growing interest in system dynamics. The interest has spread from 
the scientific community to popular culture, with the publication of general
interest books about research into dynamic systems (Gleick 1987; Waldrop, 
1992; Gell-Mann, 1994; Kelly, 1994; Roetzheim, 1994; Holland, 1995; Kauff
man, 1995). 

Research into dynamic systems touches on some of the deepest issues in 
science and philosophy: order vs. chaos, randomness vs. determinacy, analy
sis vs. synthesis. The study of dynamic systems is not just a new research tool 
or new area of study for scientists. The study of dynamic systems stands as a 
new form of literacy for all-a new way of deSCribing, viewing, and sym
bolizing phenomena in the world. The language of the present mathematics 
and science curriculum employs static representations. Yet our world is, of 
course, constantly changing. This disparity between the world of dynamic 
experience and the world of static school representations is one source of 
student alienation from the current curriculum. The theoretical and com
puter-based tools arising out of the study of dynamic systems can describe 
and display the changing phenomena of science and the everyday world. 
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Dynamic Systems Modeling in the 
Connected Probability Project 

The goal of the Connected Probability project (Wilensky, 1995a, 1995b, 
1997) is to study learners (primarily high school students) engaged in sub
stantial investigations of stochastic phenomena. As part of the project, learn
ers are provided with access to a wide variety of modeling tools that they can 
use in pursuit of their investigations. They are particularly encouraged to use 
the StarLogo (Resnick, 1994; Wilensky, 1995a) modeling language to conduct 
their investigations. 

StarLogo is one of a new class of object-based parallel modeling languages 
(OBPML). Chapter 5 in this book includes a detailed description of StarLogo. 
In brief, it is an extension of the Logo language in which a user controls a 
graphical turtle by issuing commands such as "forward," "back," "left," and 
"right." In StarLogo, the user can control thousands of graphical turtles. Each 
turtle is a self-contained "object" with an intemallocal state. Besides the tur
tles, StarLogo automatically includes a second set of objects, "patches." A grid 
of patches undergirds the StarLogo graphics window. Each patch is a square 
or cell that is computationally active. Patches have local state and can act on 
the "world" much as turtles do. Essentially, a patch is just a stationary turtle. 
For any particular StarLogo model, there can be arbitrarily many turtles (from 
o to 32,000 is typical in the StarLogo versions we have used), but there are a 
fixed number of patches (typically, 10,000 laid out in a 100 X 100 grid). 

The modeling projects described in this chapter have run in several differ
ent versions of the StarLogo language on several different platforms. For sim
plicity of the exposition, all models are described in their reimplemented 
form in the version of StarLogo called StarLogoTl.O,l which is a Macintosh 
computer implementation-an extension and superset of StarLog02.0.2 

This chapter describes in detail the evolution of a set of StarLogo models 
for exploring the behavior of gases. We now call this collection of models 
GasLab. The original GasLab model was built, in the Connection Machine ver
sion of StarLogo, by a high school physics teacher involved in the Connected 
Probability project. He called the model GPCEE (Gas Particle Collision Ex
ploration Environment). In the reimplementation of GPCEE for newer ver
sions of StarLogo, the GPCEE model was renamed Gas-in-a-Box, and it is one 
of an evolving collection of models that constitute GasLab. 

1 Developed at Tufts University'S Center for Connected Learning and Computer-based 
Modeling. 
2Developed at the M.LT. Media Laboratory. 
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FIGURE 7.1 Maxwell-Boltzmann Distribution of Molecule Speeds (illustration from 
Giancoli, 1984). 

The Creation of the Gas-in-a-Box Model-Harry's Story 

In the context of the Connected Probability project, students were offered 
the opportunity to construct StarLogo models of phenomena of interest to 
them that involved probability and statistics. Harry, a high school physics 
teacher enrolled in an education class that I was teaching, had long been in
trigued by the behavior of a gas in a sealed container. He had learned in col
lege that the speeds of the gas molecules were distributed according to a fa
mous law, the Maxwell-Boltzmann distribution law. This distribution had a 
characteristic right-skewed shape (see Figure 7.1). He had taught this law and 
its associated formula to his own students, but there remained a gap in his un
derstanding. How/why did this particular distribution come about? What 
kept it stable? To answer these questions, he decided to build (with my 
help 3) a StarLogo model of gas molecules in a box. 

Harry built his model on the basis of certain classic physics assumptions: 

• Gas molecules are modeled as spherical "billiard balls" -in particular, as 
symmetrical and uniform with no vibrational axes . 

• Collisions are "elastic" - that is, when particles collide with the sides of the 
box or with other gas molecules, no energy is lost in the collision; all the 
energy is preserved as kinetic energy of the moving molecules. 

3 At the time Harry was building his model, StarLogo was not nearly so "user-friendly" 
as it is in current versions. This necessitated my working with Harry in constructing 
his model. Harry specified the behavior he wanted, and I did most of the coding. As 
StarLogo got more robust and easier to use, subsequent students were able to pro
gram the GasLab extensions themselves. 
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• Points of collision between molecules are determined stochastically. It is 
reasonable to model the points of collision contact between particles as 
randomly selected from the surface of the balls. 

Harry's model displays a box with a specified number of gas particles ran
domly distributed inside it. The user can set various parameters for the par
ticles: mass, speed, direction (see Figure 7.2). The user can then perform 
"experiments" with the particles. Harry's program was a relatively straight
forward (though longish) StarLogo program. At its core were three proce
dures that were executed (in parallel) by each of the particles in the box: 

go: The particle checks for obstacles, and if none are present, it moves for-
ward (an amount based on its speed variable) for one clock tick. 

bounce: If the particle detects a wall of the box, it bounces off the wall. 
collide: If the particle detects another particle in its vicinity, the particles 

bounce off each other like billiard balls. 

Harry was excited by the expectation that the macroscopic laws of the gas 
should emerge, spontaneously, from the simple rules, at the microscopic 
level, that he had written for the particles. He realized that he wouldn't need 
to program the macro-level gas rules explicitly; they would come "for free" if 
he wrote the underlying (micro-level) particle rules correctly. He hoped to 
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gain deeper explanatory understanding of, and greater confidence in, the gas 
laws through this approach - seeing them emerge as a consequence of the 
laws of individual particles and not as some mysterious orchestrated proper
ties of the gas. 

In one of his first experiments, Harry created a collection of particles of equal 
mass randomly distributed in the box. He initialized them to start at the same 
speed but move in random directions. He kept track of several statistics for 
the particles on another screen. When looking at this screen, he noticed that 
one of his statistics, the average speed, was going down. This surprised him. 
He knew that the overall energy of the system should be constant: Energy 
was conserved in each of the collisions. After all, he reasoned, the collisions 
are all elastic, so no energy is lost from the system. The number of molecules 
isn't changing, so the average energy or 

total energy 
number of molecules 

should also be a constant. But energy is just proportional to the mass and the 
square of the speed. Because the mass is constant for all molecules, the aver
age speed should also be constant. Why, then, did the model output show the 
average speed to be decreasing? In Harry's words, 

The IMPliCATION of what we discovered is that the average length of each of the in
dividual vectors does indeed go down. PICTURE IT! I visualize little arrows that are 
getting smaller. These mental vectors are just that. Little 2 (or 3}dimensional arrows. 
The move to the scalar is in the calculation of energy (with its v**2 terms). Doesn't it 
seem difficult to reconcile the arrows (vectors) collectively getting smaller with a 
scalar (which is a quantity that for a long time was visualized as a fluid) "made up" 
from these little vectors NOT getting less! 

Harry was dismayed by this new "bug" and set out to find what "had to" be 
an error in the code. He worked hard to analyze the decline in average speed 
to see whether he could get insight into the nature of the calculation error he 
was sure was in the program. 

But there was no error in the code. After spending some time unsuccess
fully hunting for the bug, Harry decided to print out average energy as well. 
To his surprise, the average energy stayed constant. 

At this point, Harry realized that the bug was in his thinking rather than in 
the code. To get a more visual understanding of the gas dynamics, he decided 
to color-code the particles according to their speed: Particles are initially col
ored green; as they speed up, they get colored red; as they slow down, they 
get colored blue. Soon after running the model, Harry observed that there 
were many more blue particles than red. This was yet another way of think
ing about the average-speed problem. If the average speed were indeed to 
drop, one would then observe more slow (blue) particles than fast (red) 
ones, so this result was consistent with the hypothesis that the bug was in his 
thinking, not in the code. 
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Harry now began to see the connection between the shape of the 
Maxwell-Boltzmann distribution and the visual representation he had cre
ated. The color-coding gave him a concrete way of thinking about the asym
metrical Maxwell-Boltzmann distribution. He could "see" the distribution: 
Initially, all the particles were green, a uniform symmetrical distribution, but 
as the model developed, there were increasingly more blue particles than red 
ones, resulting in a skewed, asymmetrical spread of the distribution (see Fig
ures 7.3, 7.4, and 7.5). 

Even though Harry knew about the asymmetrical Maxwell-Boltzmann dis
tribution, he was surprised to see the distribution emerge from the simple 
rules he had programmed. Because he himself had programmed the rules, he 
was convinced that this stable distribution does indeed emerge from these 
rules. Harry tried several different initial conditions, and all of them resulted 
in this distribution. He now believed that this distribution was not the result 
of a specific set of initial conditions but that any gas, no matter how the par
ticle speeds were Witialized, would attain this stable distribution.4 In this 
way, the StarLogo model served as an experimental laboratory where the dis
tribution could be "discovered." This type of experimental laboratory is not 
easily (if at all) reproducible outside of the computer-modeling environment. 

But there remained several puzzles for Harry. Though he believed that the 
Maxwell-Boltzmann distribution emerged from his rules, he still did not see 
why they emerged. And he still did not understand how these observations 
squared with his mathematical knowledge. How could the average speed 
change when the average energy was constant? 

Reflecting on this confusion gave Harry the insight he had originally sought 
from the GasLab environment. Originally, he had thought that because gas 
particles collided with each other randomly, they would be just as likely to 
speed up as to slow down, so the average speed should stay roughly constant. 
But now, Harry saw things from the perspective of the whole ensemble. The 
law of conservation of energy guaranteed, Harry knew, that the overall pool 
of energy was constant. Although there were many fewer red particles than 
blue ones, Harry realized that each red particle "stole" a significant amount 
of energy from this overall pool of energy. The reason: Energy is proportional 
to the square of speed, and the red particles were high-speed. Blue particles, 
in contrast, took much less energy out of the pool. Therefore, each red par
ticle needs to be "balanced" by more than one blue particle to keep the over
all energy constant. In Harry's words, 

There have to be more blue particles. If there were the same number of blues as reds, 
then the overall energy would go up. Let's say 1000 green particles have mass I and 
speed 2, then the overall energy is equal to 2000 [ED-I/2 • m * V**2j. If half the 

4In fact, it is a deep insight of mathematical physics that any set of objects that has 
randomized collisions and conserves energy will relax into a Maxwell-Boltzmann 
distribution. 
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FIGURE 7.3 8000 Gas ParticiesAfter 30 Ticks. Faster Molecules Are Red, Slower Mole
cules Are Blue, and Molecules Moving at Medium Speed Are Green. (See color slide 
in CD-ROM.) 

4240 

>u z 
w 
::::l 
0-w 
a::: 
u.. 

VELOCITY 24 

FIGURE 7.4 Dynamic Histogram of Molecule Speeds After 30 Clock Ticks. 
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FIGURE 7.5 Dynamic Plot of Fast, Slow, and Medium-Speed Particles. 

greens become red at speed 3 and half become blue at speed 1, then the energy of the 
reds is 500 * 1/2 * 9, which equals 2250. (Wow, that's already more than the total en
ergy.) And the energy of the blues is 500 • 1/2 • 1, which equals 250. Oh, yeah, I guess 
I don't need the 500 there, a red is 9 times as energetic as a blue so to keep the en
ergy constant we need 9 blues for every red. 
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Harry was now confident that he had discovered the essence of why the 
Maxwell-Boltzmann distribution arose. As particles collided they changed 
speeds, and the energy constraint ensured that there would be more slow 
particles than fast ones. Even so, he was still puzzled on the "mathematical 
side." He saw that the greater number of blue particles than red particles 
ensured that the average speed of the molecules would indeed decrease from 
the initial average speed of a uniform gas. But how did this square with the 
mathematical formulas? 

Harry had worked on the classic physics equations when he felt sure there 
was a bug in the StarLogo code. He had worked on them in two different 
ways, and both methods led to the conclusion that the average speed should 
be constant. What was wrong with his previous reasoning? 

In his first method, he had started with the assumption that momentum 5 is 
conserved inside the box. Because mass is constant, the average velocity as a 
vector is constant. And because the average velocity is constant, he had rea
soned that its magnitude, the average speed, had to be constant as well. But 
now he saw that this reasoning was faulty: 

[I] screwed up the mathematics-the magnitude of the average vector is not the av
erage speed. The average speed is the average of the magnitudes of the vectors. And 
the average of the'magnitudes is not equal to the magnitude of the average. 

In his second method, he began with the assumption that the energy of the 
ensemble would be constant. This could be written 2.il/2mv/ is constant. 
Factoring out the constant terms reveals that 2.iV/ is a constant. From this he 
had reasoned that the average speed, 2.iabs(vD, would also have to be con
stant. He now saw the error in that mathematics as well. It is not hard to show 
that if the former sum (corresponding to energy) is constant, then the latter 
sum (corresponding to speed) is at its maximum under the uniform initial 
conditions. As the speeds diverge, the average speed decreases, just as he 
"observed." For a fixed energy, the maximum average speed would be at
tained when all the speeds were the same as they were in the initial state. 
From then on, more particles would slow down than would speed up. 

Although both of these bugs were now obvious to Harry and he felt that 
they were "embarrassing errors for a physics teacher to make," confusion be
tween the vector and scalar averages still lurked in the background of his 
thinking. Once brought to light, it could readily be dispensed with through 
standard high school algebra. However, the standard mathematical formalism 
did not help Harry see his errors. His confusion was brought to light (and led 
to increased understanding) through his constructing and immersing himself 
in the Gas-in-a-Box model. In working with the model, it was natural for him 

5 A source of confusion in many a physics classroom: Why do we need these two sep
arate quantities, energy = mv2 and momentum = mv. The algebraic formalism masks 
the big difference between the scalar energy and the vector momentum. 
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to ask questions about the large ensemble and to get experimental and visual 
feedback. This also enabled Harry to move back and forth between different 
conceptual levels: the level of the whole ensemble, the gas, and the level of 
individual molecules. 

Harry was now satisfied that the average speed of the ensemble would in
deed decrease from its initial uniform average. The reasoning reflected in his 
comments above relieved his concerns about further investigations into the 
connection between the micro- and macro-views of the particle ensemble. 

Harry was led inexorably to the question of why the particle speeds would 
spread out from their initial uniform speed. Indeed, why do the particles 
change speed at all? When teased out, this question could be framed as fol
lows: "The collisions between particles are completely symmetrical. Why, 
then, does one particle change speed more than the other? To answer this 
question, Harry conducted further modeling experiments, repeating colli
sions of two particles in fixed trajectories. After seeing two particles collide 
at the same angle again aqd again but emerge at different angles each time, 
he remembered that "randomness was going on here." The particles were 
choosing random points on their surface to collide, so they did not behave 
the same way each time. By experimentally varying the collision points, he 
observed that the average speed of the two particles did not usually stay con
stant. Indeed, it remained constant only when the particles collided head-on. 

It was not long from this realization to the discovery of the broken sym
metry: "When particles collide, their trajectories may not be symmetrical 
with respect to their collision axis. The apparent symmetry of the situation is 
broken when the particles do not collide head-on - that is, when their direc
tions of motion do not have the same relative angle to the line that connects 
their centers." See Figure 7.6. 

Harry went on to do the standard physics calculations that confirmed this ex
perimental result. In a one-dimensional world, he concluded, all collisions 

Particle B moving down and to the left 

The symmetry is broken - particle B has a much smaller 

angle than particle A does between its axis of motion and the 

collision axis joining their two centers. 

FIGURE 7.6 Broken Symmetry Leads to Changing Speeds. 
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would be head-on, so the average speed would stay constant6 ; in a multidi
mensional world, particle speed distributions become nonuniform, and this 
leads inevitably to the preponderance of slower particles and to the charac
teristic asymmetrical distribution. 

Harry had now adopted many different views of the gas and used many dif
ferent methods to explain the asymmetry of the particle speed distribution. 
Through connecting the macro-view of the particle ensemble with the micro
view of the individual particle collisions, he had come to understand both lev
els of description in a deeper way. Through connecting the mathematical 
formalism to his observations of colored particle distributions, he had caught 
errors he had made on the "mathematical side" and, more important, an
chored the formalism in visual perception and intuition. Harry felt he had 
gained great explanatory power through this connection of the micro-view 
and macro-view. This connection was made feasible through the support of
fered by the StarLogo modeling language. 

When asked what he had learned from the experience of building the Gas
in-a-Box model, Harry made one more trenchant observation. He had found 
that the average speed of the gas molecules was not constant. Upon reflec
tion, he realized, 

Of course the average speed is not constant. If it were constant, 1'd have known about 
it. It isn't easy to be a constant and that's why we have named laws when we find con
stants or invariants. The law of conservation of energy guarantees that the energy of 
the gas is a constant. We do not have a law of conservation of speed. 

Harry now understood the concept of energy in a new way. He saw that 
energy could be seen as a statistical measure of the ensemble that was in
variant. He saw that there could be many statistical measures that character
ize an ensemble. Each of them could lay claim to being a kind of "average"
that is, a characteristic measure of the ensemble. The idea of "average" is then 
seen to be another method for summarizing the behavior of an ensemble. Dif
ferent averages are convenient for different purposes. Each has certain ad
vantages and disadvantages, certain features that it summarizes well and oth
ers that it does not. Which average we choose or construct depends on 
which aspect of the data we see as important. Energy, Harry now saw, was a 
special such average-not (as he had sometimes suspected) a mysteriously 
chosen formula, but rather a measure that characterized invariantly the col
lection of particles in a box. 

6 Although this insight of Harry's is strictly true in the formal environment of Harry's 
thought experiment, in a real-world one-dimensional environment, there would be 
randomizing factors (such as nonsphericality of the particles) that would cause the 
distribution to relax into the highly asymmetrical one-dimensional Maxwell-Boltz
mann distribution. 
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Creation of the GasLab Toolkit-Extensible Models 

After Harry finished working with the Gas-in-a-Box model, I decided to test 
the model with students who had not been involved in its development. I 
contacted a local high school and arranged to meet 3 hours a week for sev
eral weeks with a few juniors and seniors taking introductory physics. The 
group was somewhat fluid; it consisted of three regular members and three 
or four others who sometimes dropped in. The students who chose to be in
volved did so out of interest. Their teacher described the three regular mem
bers as "average to slightly above average" physics students. I introduced the 
students to the Gas-in-a-Box model, showing them how to run the model and 
how to change elementary parameters of the model. I asked them to begin 
by just "playing" with the model and talking to me about what they observed. 
I describe below these students' experience with GasLab. I have introduced 
GasLab to dozens of group~ of students (high school and collegiate) since that 
time. The details of their explorations differ in each case, but the overall char
acter of the model-based inquiry is typified by the story related below. 

The students worked as a group, one of them "driving" the model from the 
keyboard and the others suggesting experiments to try. One of the first sug
gested experiments was to put all of the particles in the center of the box.7 

This led to a pleasing result as the gas "exploded" in rings of color, a red ring 
on the outside, with a nested green ring and a blue ring innermost. The stu
dents soon hit on the same initial experiment that stimulated Harry. They 
started with a uniform distribution of 8000 green particles and immediately 
wondered at the preponderance of blue particles over red particles as the 
simulation unfolded. Over the next week, they went through much of the 
same reasoning that Harry had gone through, connecting the energy econ
omy of the gas particle ensemble with the speed distribution of the particles. 

But these students were not as motivated by this question as Harry was. 
One student, Albert, became very excited by the idea that the micro-model 
should reproduce the macroscopic gas laws: 

What's really cool is that this is it. If you just let this thing run, then it'll act just like a 
real gas. You just have to start it out right and it'll do the right thing forever. We could 
run experiments on the computer and the formulas we learned would come out. 

Albert went on to suggest that because this was a real gas, they could verify 
the ideal gas laws for the model. The group decided to verify Boyle's law
that is, to confirm that changing the volume of the box would lead to a recip
rocal change in the pressure of the gas. 

7To do this, they issued the simple StarLogo command 'setxy 00'. Though the StarL
ogoT code for doing this is quite simple, this is not an experiment that can be repli
cated in the laboratory-a case of the model as an instantiation of ideal gas theory 
rather than its real-world application. 
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Now the group was faced with creating an experiment that would 
test whether Boyle's law obtained in the Gas-in-a-Box model. Tania made a 
suggestion: 

We could make the top of the box move down like a piston. We'll measure the pres
sure when the piston is all the way up. Then we'll let it fall to half way down and 
measure the pressure again. The pressure should double when the piston is half 
way down. 

The group agreed that this was a reasonable methodology, but then they 
were stopped short by Isaac, who asked, "How do we measure the pressure"? 
This question was followed by a substantial pause. They were used to being 
given an instrument to measure pressure, a black box from which they could 
just read out a number. As Albert said for the group, "We have to invent a 
pressure-measure, a way of saying what the pressure is in terms of the par
ticles." The group pondered this question. At their next meeting, Tania sug
gested the first operational measure: 

We could have the sides of the box8 store how many particles hit them at each tick. 
The total number of particles hitting the sides of the box at each tick is our measure 
of pressure. 

They programmed this measure of pressure into the model. There ensued 
lots of discussion about what units this measure of pressure represented. 
At long last, they agreed that they did not really care what the units were. 
All they needed to know, in order to verify Boyle's law, was that the mea
sure would double, so a unit scale factor would not affect the result of the 
experiment. 

They created a "monitor" that would display the pressure in the box and 
ran the model. To their dismay, the pressure in the box fluctuated Wildly. 
Tania was quick to point out the problem: 

We only have 8000 particles in the box. Real boxes full of gas have many more parti
cles in them. So the box is getting hit a lot less times at each tick than it should be. I 
think what's happening is that the number of particles isn't big enough to make it 
come out even. 

Persuaded by this seat-of-the-pants "law of large numbers" argument, they 
made an adjustment to the pressure-measuring code. They calculated the 
number of collisions at each tick over a number of ticks and then averaged 
them. Trial-and-error simulations varying the averaging time interval con
vinced them that averaging over ten ticks led to a sufficiently stable measure 
of pressure. 

Now that they had a stable pressure gauge, they were ready to construct 
the piston and run the experiment. But here again, they ran into conceptual 
difficulties. How was the piston to interact with the particles? Were they to 

8They implemented this strategy by storing the numbers in the patches. 



Creation of the GasLabToolkit-Extensible Models 163 

model it as a large, massive particle that collided with the small particles? In 
that case, how massive should it be? And if they did it that way, wouldn't it 
affect the pressure in the box in a nonuniform way? As Albert said, 

If we do the piston, then the North-South pressure in the box will be greater than 
the East-West pressure. That doesn't seem right. Shouldn't the pressure in the box 
stay even? 

This issue was discussed, argued, and experimented on for several hours. 
It was at this point that Tania suggested another approach. 

I'm confused by the effect the piston is supposed to have on the particles. I have an 
idea. Why don't we start the particles out in half the box, then release the "lid" and 
let them spread out into the whole box. If we do that, we won't have to think about 
pistons and we can just see if the pressure decreases in half. 

The group agreed that this was a promising approach and quickly imple
mented this code. They were now able to run the experiment that they 
hoped would confirm Boyle's law. Their experiment worked as they hoped. 
When they lifted the lid so that the box had double the volume, the pressure 
in the box did, indeed, drop in half. See Figures 7.7 and 7.8. 

This confirming result could have led to an unfortunate acceptance of Tania's 
measure of pressure as accurate. (Indeed, experimental results with this 
isothermal version of Boyle's law could not have disconfirmed Tania's mea
sure.) However, in time, the students did come to reject this measure on con
ceptual grounds. They reasoned that heavier particles oUght to make more of 
a difference in the pressure than lighter ones. Similarly, they reasoned that 
faster particles should have more effect than slower ones. This led them to 
revise their pressure measure to the conventional physics definition: mo
mentum transfer to the sides of the box per unit time. 

FIGURE 7.7 Box with Lid Down, Volume = 1200; Box with Lifted Lid, Volume = 
2400. Lifting the Box Lid Proportionally Reduces Pressure. 
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FIGURE 7.8 Plot of Pressure as Measured in the Box at the Two Different Volumes. 

Their escapade with Tania's definition, however, did yield insights. As 
Tania later said, 

I guess for Boyle's law to work, all that matters is how dense the molecules are in the 
box. With more space they're less likely to collide, so the pressure drops. 

There is another incident of note surrounding the Boyle's law experiment. 
A week or so after completing the experiment, Isaac ran the model again 
with all particles initialized to be at the center of the box. While watching his 
favorite "explosion," Isaac noted that the gas pressure registered O! Quickly, 
he realized that that was a consequence of their definition - no particles 
were colliding with the sides of the box. Somehow, this didn't seem right to 
Isaac, and he asked the group if they should revise their concept of pressure 
yet again. Argumentation ensued as to "whether a gas had internal pressure 
without any box to measure it." They realized that the experiment in ques
tion was not feasible in a real experimental setting, but nonetheless, it did 
seem that there should be a theoretical answer to the question. Isaac sug
gested various ingenious solutions to the problem, but in the end, the group 
did not alter their pressure gauge. The ingenious solutions were difficult to 
implement, and their current gauge seemed to be adequate to the experi
ments they were conducting. 

One other noteworthy development was related to the emergence of the 
Maxwell-Boltzmann distribution discussed in the previous section. Albert 
came in one day excited about an insight he had had. The gas molecules, he 
said, can be thOUght of as probabilistic elements, like dice. They can ran
domly go faster or slower. But although there is no real limit to how fast they 
can go,9 their speed is bounded below by zero. It's as if particles were con-

9He was ignoring the quite high speed limitation imposed by energy considerations. 
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ducting a random walk on the plane but there was a wall on the y-axis. Albert 
saw that this constrained random walk would have to produce a right-skewed 
distribution. I challenged him to go further: (a) Could he construct a Star Logo 
model to prove his theory? (b) Could he determine what particular proba
bility constraints would produce a strict Maxwell-Boltzmann distribution? 
(c) Could he find other, seemingly unrelated phenomena that satisfied the 
same formal constraints and thus would also produce a Maxwell-Boltzmann 
distribution? Albert and his fellow students were up to these challenges. 

These students (and subsequent groups of students) have conducted many 
more experiments with the Gas-in-a-Box model. Through reviSing and ex
tending the model, they created a set of models that has since been expanded 
into the toolkit we now call GasLab. The set of extensions of the original Gas
in-a-Box model is truly impressive in its scope and depth of conceptual analy
sis. Among the many extensions they tried were heating and cooling the gas, 
introducing gravity into the model (and a very tall box) and observing atmo
spheric pressure and density, modeling the diffusion of two gases, allowing 
the top to be porous and· seeing evaporation, relaxing elasticity constraints 
while introducing weak attraction and looking for phase transitions, intro
ducing vibrations into the container and measuring sound density waves, and 
allowing heat to escape from the box into the surrounding container. Over 
the course of several weeks, these high school students "covered" much of 
the territory of collegiate statistical mechanics and thermal physics. Their un
derstanding of it was deeply grounded both in the intuitive understandings 
gained from their concrete experience with the models and in the relations 
among the fundamental concepts. 

GasLab provides learners with a set of tools for exploring the behavior of 
an ensemble of micro-level elements. Through running, extending, and cre
ating GasLab models, learners were able to develop strong intuitions about 
the behavior of the gas at the macro-level (as an ensemble gas entity) and its 
connections to the micro-level (the individual gas molecule). In a typical 
physics classroom, learners usually address these levels at different times. 
When attending to the micro-level, they typically focus on the exact calcula
tion of the trajectories of two colliding particles. When attending to the 
macro-level, they focus on "summary statistics" such as pressure, tempera
ture, and energy. Yet it is in the connection between these two primary lev
els of description that the explanatory power resides. 

Two major factors enable students using GasLab to make the connection 
between these levels: the replacement of symbolic calculation with simu
lated experimentation and the replacement of "black-box" summary statistics 
with learner-constructed summary statistics. The traditional curriculum seg
regates the micro-level and macro-level of description because the mathe
matics required to connect them meaningfully is thought to be out of reach 
of high school students. In the GasLab modeling toolkit, the formal mathe
matical techniques can be replaced with concrete experimentation with sim
ulated objects. This experimentation allows learners to get immediate feed
back about their theories and conjectures. The traditional curriculum hands 
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learners summary statistics such as pressure as "received" physics knowl
edge.1t is a "device" built by an expert, which the learner cannot inspect or 
question. Most fundamentally, the learner has no access to the design space 
of possibilities from which this particular design was selected. In the GasLab 
context, learners must construct their own summary statistics. As a result, the 
traditional pressure measure is seen to be one way of summarizing the effect 
of the gas molecules on the box-one way to build a pressure gauge. The ac
tivity of designing a pressure measure is an activity of doing physics, not ab
sorbing an expert's "dead" physics. 

The two factors described above (the ability to act on the model and to 
"see" its reactions, and the ability to create interpretations of the model in the 
form of new computational objects that, in turn, can be acted upon) make a 
significant difference in the kinds of understandings students can construct 
of the behavior of gas molecule ensembles. Through engaging with GasLab, 
high school students have access to the powerful ideas and explanations of 
statistical thermal physics. Yet by engaging in such activities, the students 
came to understand the gas as a concrete entity, much in the same way they 
experience physical entities outside the computer. These constructive mod
eling and model-based reasoning activities can give students a concrete un
derstanding of, and a powerful way of apprehending, the physics and chem
istry of gases-one that eludes even some professional scientists who learned 
this content in a traditional manner. 

Implications for the Pedagogy of Modeling 

Despite the rapid rate of infiltration of computer-based modeling and dy
namic systems theory into scientific research and into popular culture, com
puter-based modeling has only slowly begun to affect education commu
nities. Computer-based models are increasingly used in the service of 
pedagogic ends (Buldyrev et al., 1994; Chen and Stroup, 1993; Doerr, 1996; 
Feurzeig, 1989; Horwitz, 1989; Horwitz et al., 1994; Jackson et al., 1996; 
Mandinach and Cline, 1994; Mellar et al., 1994; Roberts et al., 1983; Repen
ning, 1994; Shore et al., 1992; Smith et al., 1994; White and Frederiksen, 
1998; Wilensky, 1997; Wilensky and Resnick, 1999), but there remains 
significant lack of consensus about the proper role of modeling within the 
curriculum. 

Model Construction vs. Model Use 
One tension that is felt is between students using already-constructed mod
els of phenomena and students constructing their own models to describe 
phenomena. At one extreme is the use of preconstructed models purely for 
demonstration of phenomena. This use of modeling employs the computer 
to animate and dynamically display the structures and processes that describe 
the phenomena. It may permit students to modify the model's inputs and pa
rameters, but it does not enable students to modify the model's structures, 
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processes, or operation. At the other extreme, learners are involved in con
structing their own models of phenomena de nova. Between these extremes 
are other kinds of modeling activities. One of particular interest is student use 
of preconstructed models as investigative tools for model-based inquiry -ac
tivities that may involve learner modification and extension of the initial mod
els provided to them. Here, students are given starting models but are also in
volved in model design and development. 

For the use of models to provide demonstrations, I employ the term dem
onstration modeling. Although such demonstration models can be visually 
striking, the experience is not very different from viewing a movie of the phe
nomenon in question. The computational medium is being used merely for 
delivery. From a constructivist point of view, this delivery model is unlikely 
to lead to deep learning, because it does not engage with the learner's point 
of entry into the phenomenon to be understood. Nor does this approach take 
advantage of the computer's interactivity to give the learner a chance to 
probe the model and get the feedback necessary to construct mental models 
of the phenomenon observed. 

Constructivists might be happier with the "from scratch" modeling activ
ity that requires the learner to start where she is and interact with the mod
eling primitives to construct a model of the phenomenon. That special breed 
of constructivist called constructionists (papert, 1991) would argue that this 
externalized construction process is the ideal way to engage learners in con
structing robust mental models. The learner is actively engaged in formulat
ing a question, formulating tentative answers to her question, and (through 
an iterative process of reformulation and debugging) arriving at a theory of 
how to answer the question instantiated in the model. This process is an act 
of doing and constructing mathematics and science instead of viewing the re
sults of an expert's having done the mathematics and science and handing it 
off to the learner. On the epistemological side, this understanding that math
ematics and science are ongoing activities in which ordinary learners can be 
creative participants is an important meta-lesson of the modeling activity. The 
two sides of this debate are summarized in Table 7.1. 

TABLE 7.1 Model Use vs. Model Construction 
Model Use (Demonstration Models) 

Passive 

Viewing a "received" mathematics 
and science 

Transmission of ideas 

Dynamic medium used for viewing 
output of mathematical thought 

An expert's question 

An expert's solution 

Learning in a single step 

Experts must anticipate relevant 
parameters for learning 

Model Construction (Model Based-Inquiry) 

Active 

Constructing mathematics and science 

Expression of ideas 

Dynamic medium used as executor of 
mathematical thought 

The learner's own question 

The learner's own tentative solution 

Learning through debugging 

Learners can construct parameters relevant 
to their learning 
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An argument on the side of using demonstration models is that the con
tent to be learned is brought immediately and directly to the attention of 
the learner. In contrast, in the process of constructing a model, the learner is 
diverted into the intricacies of the modeling language itself and away from 
the content to be learned. Because there can be quite a bit of overhead as
sociated with learning the modeling language, the model construction ap
proach could be seen as very inefficient. Moreover, there is skepticism about 
whether students who are not already mathematically and scientifically so
phisticated can acquire the knowledge and skills needed to design and con
struct models. 

Selecting the Appropriate "Size" of Modeling Primitives 
like most tensions, this tension is not really dichotomous. There are many in
termediate states between the two extremes. Demonstration models can be 
given changeable parameters that users can vary and, thereby, explore the ef
fect on the behavior of the model. If there are large numbers of such para
meters, as in the popular Maxis simulation software packages (Wright, 1992a, 
1992b), the parameter space can be quite vast in the possibilities for explo
ration. This takes demonstration models several steps in the direction of 
model construction. On the other hand, even the most "from scratch" mod
eling language must contain primitive elements. These primitive elements re
main black boxes, used for their effect but not constructed by the modeler. 
Not too many constructionist modelers would advocate building the model
ing elements from the binary digits, let alone building the hardware that sup
ports the modeling language. The latter can serve as an absurd reduction of 
the "from scratch" label. Thus even the die-hard constructionist modelers 
concede that not all pieces of the model need be constructed; some can be 
simply handed off. 

I place myself squarely in the constructionist camp: The challenge for us is 
to construct toolkits that contain just the right level of primitives. In con
structing a modeling language, it is critical to design primitives not so large
scale and inflexible that they can be put together in only a few possible ways. 
If we fail at that task, we have essentially reverted to the demonstration mod
eling activity. To use a physical analogy, we have not done well in designing 
a dinosaur modeling kit if we provide the modeler with three pieces, a T. rex 
head, body, and tail. On the other hand, we must design our primitives so that 
they are not so "small" that they are perceived by learners as far removed 
from the objects the learners want to model. If we fail at that task, learners 
will be focused at an inappropriate level of detail and so will learn more about 
the modeling pieces than about the content domain to be modeled. To return 
to the physical analogy, designing the dinosaur modeling kit to have pieces 
that are small metal bearings may make constructing many different kinds of 
dinosaurs possible, but it will also be tedious and far removed from the func
tional issues of dinosaur physiology that form the relevant content domain. 

Thus modeling language (and model) designers must decide what char-
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acteristics of the primitive modeling elements to give to learners. Modeling 
language designers who choose to make their primitive elements on the large 
side we call demonstration modeling designers, whereas those who tend 
to keep their primitives small we call constructionist modeling designers. 
Demonstration modeling designers have no choice but to make the pieces, 
from which the models are built, semantically interpretable from within the 
model content domain. Constructionist modeling designers, however, can 
make the underlying model elements content-neutral, 10 thus creating a mod
eling language that is general-purpose, or they can choose modeling elements 
that have semantic interpretation in a chosen content domain, thus creating 
a modeling toolkit for that content domain. 

General-Purpose VS. Content Domain 
Modeling Languages 
Both of these choices-content domain modeling languages and general
purpose modeling languages-can lead to powerful modeling activities for 
learners. The advantage of the content domain modeling language is that 
learners can enter more directly into substantive issues of the domain (issues 
that will seem more familiar to them and to their teachers). The disadvantage 
is that the primitive elements of the language, which describe important do
main content, are opaque to the learner. Another disadvantage is that use of 
the language is restricted to its specific content domain. That disadvantage 
may be nullified by designing a sufficiently broad class of such content do
main modeling languages, though maintaining such a broad class may be 
challenging. The advantage of the content-neutral primitives is that all con
tent domain structures, because they are made up of the general-purpose ele
ments, can be inspected, constructed, and modified by the learner. The dis
advantage is that the learner must master a general-purpose syntax before 
being able to make headway on the domain content. What is needed is a way 
for learners to be able to begin at the level of domain content but not be lim
ited to unmodifiable black-box primitives. 

In the Connected Probability project, the solution we have found to this 
dilemma is to build "extensible models" (Wilensky, 1997). In the spirit of 
Eisenberg's programmable applications (Eisenberg, 1991), these models are 
content-specific models that are built using the general-purpose StarLogoT 
modeling language. This enables learners to begin their investigations at the 
level of the content. Like the group of high schoolers described in the earlier 
section of this chapter, they begin by inspecting a prebuilt model such as Gas-

!OThis is a Simplification. Even so-called content-neutral sets of primitives have affor
dances that make it easier to model some content domains than others. StatLogoT, for 
example, makes it much easier to model phenomena that can be viewed as accumu
lations of large numbers of elements, such as statistical and stochastic phenomena. 
Processes that ate composed of a small number of latger elements are less naturally 
modeled in StarLogo. 
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in-a-Box. They can adjust parameters of the model such as mass, speed, and 
location of the particles and can conduct experiments readily at the level of 
the content domain of ideal gases. But, because the Gas-in-a-Box model is 
built in StarLogoT, the students have access to the workings of the model. 
They can "look under the hood" and see how the particle collisions are mod
eled. Furthermore, they can modify the primitives, investigating what might 
happen if, for example, collisions were not elastic. Finally, students can in
troduce new concepts, such as pressure, as primitive elements of the model 
and conduct experiments on these new elements. 

This extensible modeling approach allows learners to dive right into the 
model content, but it imposes neither a ceiling on where they can take the 
model nor a floor below which they cannot see the content. Mastering 
the general-purpose modeling language is not required at the beginning of 
the activity but, rather, happens gradually as learners seek to explain their ex
periments and extend the capabilities of the model. 

When engaged in classroom modeling, the pedagogy used in the Con
nected Probability project has four basic stages. In the first stage, the teacher 
presents a "seed" model to the whole class. Typically, the seed model is a 
short piece of StarLogoT code that captures a few simple rules. The model is 
projected through an LCD panel so that the whole class can view it. The 
teacher engages the class in discussion of what is going on with the model. 
Why are they observing that particular behavior? How would it be different 
if model parameters were changed? Is this a good model of the phenomenon 
it is meant to simulate? In the second stage, students run the model (either 
singly or in small groups) on individual computers. They engage in system
atic search of the parameter space of the model. In the third stage, each mod
eler (or group) proposes an extension to the model and implements that ex
tension in the StarLogoT language. Modelers who start with Gas-in-a-Box, for 
example, might try to build a pressure gauge, a piston, a gravity mechanism, 
or heating/cooling plates. The results of this model extension stage are often 
quite dramatic. The extended models are added to the project's library of ex
tensible models and made available for others to work with as seed models. 
In the final stage, students are asked to propose a phenomenon, and to build 
a model "from scratch", using the StarLogoT modeling primitives. 

Phenomena-based vs. Exploratory Modeling 
When learners are engaged in creating their own models, two primary av
enues are available. A modeler can choose a phenomenon of interest in the 
world and attempt to duplicate that phenomenon on the screen. Or a mod
eler can start with the primitives of the language and explore the possible ef
fects of different combinations of rule sets. The first kind of modeling, which 
I call phenomena-based modeling (Wilensky, 1997; Resnick and Wilensky, 
1998) is also sometimes called backwards modeling (Wilensky 1997) because 
the modeler is engaged in going backwards from the known phenomenon to 
a set of underlying rules that might generate that phenomenon. In the GasLab 
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example, Harry knew about the Maxwell-Boltzmann distribution and tried 
creating rules that he hoped would duplicate this distribution. In this spe
cific case, Harry did not have to discover the rules himself, because he also 
knew the fundamental rules of Newtonian mechanics that would lead to the 
Maxwell-Boltzmann distribution. The group of students who worked on 
modeling Boyle's law came closer to pure phenomena-based modeling as 
they tried to figure out the "rules" for measuring pressure. Phenomena-based 
modeling can be quite challenging, because discovering the underlying rule 
sets that might generate a phenomenon is inherently difficult-a fundamen
tal activity of science practice. In practice, most GasLab modelers mixed 
some knowledge of what the rules were supposed to be with adjustments to 
those rules when the desired phenomenon did not appear. 

The second kind of modeling, which I call exploratory modeling (Wilen
sky, 1997; Resnick and Wilensky, 1998) is sometimes called "forwards" mod
eling (Wilensky, 1997) because modelers start with a set of rules and try to 
work forwards from these rules to some as-yet-unknown phenomenon. 

New Forms of Symbolization 

In a sense, modeling languages are always designed for phenomena-based 
modeling. However, once such a language exists, it also becomes a medium 
of expression in its own right. In just such a way, we might speculate, natural 
languages originally developed to communicate about real-world objects and 
relations but, once they were sufficiently mature, were also used for con
structing new objects and relations. Similarly, learners can explore sets of 
rules and primitives of a modeling language to see what kinds of emergent ef
fects may arise from their rules. In some cases, this exploratory modeling may 
lead to emergent behavior that resembles some real-world phenomenon, and 
then phenomena-based modeling resumes. In other cases, though the emer
gent behavior may not strongly connect with real-world phenomena, the re
sulting objects or behaviors can be conceptually interesting or beautiful in 
themselves. In these latter cases, the modelers have created new phenom
ena, objects of study that can be viewed as new kinds of mathematical ob
jects-objects expressed in the new form of symbolization afforded by the 
modeling language. 

Aggregate vs. Object-based Modeling 

In the previous section, we discussed the selection of modeling language 
primitives in terms of size and content-neutrality. They can also be distin
guished in terms of the conceptual description of the fundamental modeling 
unit. Presently, modeling languages can be divided into two kinds: "aggre
gate" modeling engines, such as STELLA@ (Richmond and Peterson, 1990), 
Link-It (Ogborn, 1994), Vensim, Model-It (Jackson et ai., 1996), and "object
based" modeling languages, such as StarLogo (Resnick, 1994; Wilensky, 
1995a), Agentsheets (Repenning, 1993), Cocoa (Smith et ai., 1994), Swarm 
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(Langton and Burkhardt, 1997), and OOTLs (Neumann et al., 1997). Aggre
gate modeling languages use "accumulations" and "flows" as their funda
mental modeling units. For example, a changing population of rabbits might 
be modeled as an "accumulation" (like water accumulated in a sink) with rab
bit birth rates as a "flow" into the population and rabbit death rates as a flow 
out (like flows of water into and out of the sink). Other populations or dy
namics (the presence of "accumulations" of predators, for instance) could 
affect these flows. This aggregate approach essentially borrows the concep
tual units-its parsing of the world-from the mathematics of differential 
equations. 

Object-based modeling languages, by contrast, enable the user to model 
systems directly at the level of the individual elements of the system. For ex
ample, our rabbit population could be rendered as a collection of individual 
rabbits each of which has associated probabilities of reproducing or dying. 
The object-based approach has the advantage of being a natural entry point 
for learners. It is usually easier to generate rules for individual rabbits than to 
describe the flows of rabbit populations. This is because the learners can lit
erally see the rabbits and can control the individual rabbit's behavior. In Star
LogoT, for example, students think about the actions and interactions of in
dividual objects or creatures. StarLogoT models describe how individual 
creatures (not overall populations) behave. Thinking in terms of individual 
creatures seems far more intuitive, particularly for the mathematically unini
tiated. Students can imagine themselves as individual rabbits and think about 
what they might do. In this way, StarLogoT enables learners to "dive into" the 
model (Ackermann, 1996) and make use of what Papert (1980) calls "syn
tonic" knowledge about their bodies. By observing the dynamics at the level 
of the individual creatures, rather than at the aggregate level of population 
densities, students can more easily think about and understand the popu
lation dynamics that arise. As one teacher comparing students' work with 
both STELLA ® and StarLogoT models remarked, "When students model with 
STELLA®, a great deal of class time is spent on explaining the model, selling 
it to them as a valid description. When they do StarLogoT modeling, the 
model is obvious; they do not have to be sold on it." 

There are now some very good aggregate modeling languages, such as 
STELLA ® (Richmond and Peterson, 1990) and Model-It (Jackson et al., 1996). 
These aggregate models are very useful-and they are superior to object
based models in some contexts, especially when the output of the model 
needs to be expressed algebraically and analyzed via standard mathematical 
methods. They eliminate one "burden" of differential equations-the need to 
manipulate symbols-and focus instead on more qualitative and graphical de
scriptions of changing dynamics. But conceptually, they still rely on the dif
ferential equation epistemology of aggregate quantities. 

Some refer to object-based models as "true computational models" (Wilen
sky and Resnick, 1999) because they use new computational media in a more 
fundamental way than most computer-based modeling tools. Whereas most 
tools simply translate traditional mathematical models to the computer (nu-
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merically solving traditional differential equation representations, for ex
ample), object-based languages such as StarLogoT provide new representa
tions that are tailored explicitly for the computer. Too often, scientists and 
educators see traditional differential equation models as the only approach to 
modeling. As a result, many students (particularly students alienated by tra
ditional classroom mathematics) view modeling as a difficult or uninteresting 
activity. What is needed is a more pluralistic approach that recognizes there 
are many different approaches to modeling, each with its own strengths and 
weaknesses. A major challenge is to develop a better understanding of when 
to use which approach, and why. 

Concreteness vs. Formalism 
Paradoxically, computer-based modeling has been criticized both as being 
too formal and as not being formal enough. On the one hand, some mathe
maticians and scientists maintain that computer models are insufficiently rig
orous. As we noted in the previous section, it is somewhat difficult, for ex
ample, to get hold of the outputs of a StarLogoT model in a form that is readily 
amenable to symbolic manipulation. Moreover, there is not yet any formal 
methodology for verifying the results of a model run. Even in highly con
strained domains, there is no formal verification procedure for guarantee
ing the results of a computer program-much less any guarantee that the 
underlying assumptions of the modeler are accurate. Computational models, 
in general, are subject to numerical inaccuracies dictated by finite precision. 
Object-based models, in particular, are also vulnerable to assumptions in
volved in transforming a continuous world into a discrete model. These 
difficulties lead many formalists to worry about the accuracy, the utility, and 
(especially) the generality of a model-based inquiry approach (Wilensky, 
1996). These critiques raise valid concerns that must be reflected on as an in
tegral part of the modeling activity. As we recall, Harry had to struggle with 
just such an issue when he was unsure whether the drop in the average speed 
of the gas particles was due to a bug in his model code or to a "bug" in his 
thinking. It is an inherent part of the computer-modeling activity to go back 
and forth between questioning the model's faithfulness to the modeler's in
tent (as in seeking code bugs) and questioning the modeler's expectations for 
the emergent behavior (as in seeking bugs in the model rules). 

Though the formalist critic may not admit it, these limitations exist in 
all modeling-even in using formal methods such as differential equations. 
Only a small set of the space of differential equations is amenable to analytic 
solution. Most modifications of those equations lead to equations that can 
be solved only through numerical techniques. The game for formal model
ing, then, becomes trying to find solvable differential equations that can 
be said to map onto real-world phenomena. Needless to say, this usually leads 
to significant simplifications and idealizations of the situation. The classic 
Lotka-Volterra equations (Lotka, 1925), for example, which purport to de
scribe the oscillations in predator-prey populations, assume that birth rates 
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and death rates are numerically constant over time. This assumption, though 
reasonable to a first approximation, does not hold in real-world populations, 
so the solution to the differential equations is unlikely to yield accurate pre
dictions. A stochastic model of predator-prey dynamics built in an object
based language will not produce a formal equation as a result, but it may give 
better predictions of real-world phenomena. Moreover, because object-based 
models are capable of refinement at the level of rules, adjusting them is also 
more clearly an activity of trying to refine content-based rules successively 
until they yield satisfactory results. 

On the other hand, educator critics of computer-based modeling have ex
pressed concern that the activity of modeling on a computer is too much of 
a formal activity, removing children from the concrete world of real data. It 
is undoubtedly true that children need to have varied and rich experiences 
away from the computer, but the fear that computer modeling removes 
the child from concrete experience with phenomena is overstated. Indeed, 
the presence of computer-modeling environments invites us to reflect on the 
meaning of such terms as concrete experience (Wilensky, 1991). We have 
come to see that those experiences we label "concrete" acquire that label 
through mediation by the tools and norms of our culture. Therefore, which 
experiences are perceived as concrete is subject to revision by a focused cul
tural and/or pedagogic effort. This is particularly so with respect to scientific 
content domains in which categories of experience are in rapid flux and in 
which tools and instruments mediate all experience. In the GasLab case, it 
would be quite difficult to give learners "real-world" experience with the gas 
molecules. A real-world GasLab experience would involve apparatus for mea
suring energy and pressure that would be black boxes for the students using 
them. The range of possibilities for experiments that students could conduct 
would be much more severely restricted and would probably be limited to 
the "received" experiments dictated by the curriculum. Indeed, in a signifi
cant sense, the computer-based GasLab activity gives students a much more 
concrete understanding of the gas, because they see it as a macro-object that 
emerges from the interactions of large numbers of micro-elements. 

Concluding Remarks 

The use of model-based inquiry has the potential to exert a significant impact 
on learning in the next century. We live in an increasingly complex and in
terconnected society. Simple models will no longer suffice to describe that 
complexity. Our science, our social policy, and the importance of an engaged 
citizenry require an understanding of the dynamics of complex systems and 
the use of sophisticated modeling tools to display and analyze such systems. 
There is a need for the development of increasingly sophisticated tools de
signed for learning about the dynamics of such systems and a corresponding 
need for research on how learners, using these tools, begin to make sense of 
the behavior of dynamic systems. It is not enough simply to hand learners 
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modeling tools. Careful thought must be given to the conceptual issues that 
make it challenging for learners to adopt a system dynamics perspective. The 
notion of levels of description, as in the micro- and macro-levels we have ex
plored in this chapter, is central to a system dynamics perspective, yet it is 
quite foreign to the school curriculum. Behaviors such as negative and posi
tive feedback, critical thresholds, and dynamic equilibria pervade complex 
dynamic systems. It is important to help learners build intuitions and qualita
tive understandings of such behaviors. Side by side with modeling activity, 
there is a need for discussion, writing, and reflection activities that encour
age students to reexamine some of the basic assumptions embedded in the 
science and mathematics curriculum-the assumption, for example, that sys
tems can be decomposed into isolated subsystems and that causes add up lin
early and have deterministic effects. In the Connected Probability project, we 
have seen the "deterministic mindset" (Wilensky, 1997; Resnick and Wilen
sky, 1998) prevent students from understanding how stable properties of the 
world, such as Harry's Maxwell-Boltzmann distribution, can result from 
probabilistic underlying rules. 

A pedagogy that incorporates the use of object-based modeling tools for 
sustained inquiry has considerable promise as a means to address such con
ceptual issues. By providing a substrate in which learners can embed their 
rules for individual elements and visualize the global effect, it invites them to 
connect micro-level simulation with macro-level observation. By allowing 
them to control the behavior of thousands of objects in parallel, it invites 
them to see probabilism underlying stability and to see statistical properties 
as useful summaries of the underlying stochasm. By providing visual descrip
tions of phenomena that are too small or too large to visualize in the world, 
it invites a larger segment of society to make sense of such phenomena. By 
providing a medium in which dynamic simulations can live and a medium 
that responds to learner conjectures with meaningful feedback, it gives many 
more learners the experience of doing science and mathematics. A major 
challenge is to develop tools and pedagogy that will bring this new form of 
literacy to all. 
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Designing Computer Models 
That Teach 

Pau I Horwitz 

Introduction 

Of all the species on earth, Homo sapiens is the only one, so far as we know, 
that uses models (Deacon, 1997). We invent models for many, often conflict
ing purposes: to provide parsimonious descriptions of observed phenomena, 
to predict what will happen under prescribed circumstances, and sometimes 
to explain why things happen the way they do. Models are the indispensable 
tools of modem science, and increasingly they run on computers, which en
ables us to predict, and to varying degrees control, the exact landing spot of 
a Mars probe, the three-dimensional configuration of a molecule, and the 
chance of rain tomorrow. Such uses of models, in fact, have given rise to a 
new kind of research, aptly described by the phrase computational science. 

But whereas the research laboratory has embraced computer-based mod
els as an aid to understanding, the same cannot be said for schools, where 
precollege science classes all too frequently concentrate on teaching facts, 
rather than scientific reasoning (Carey, 1986). The question naturally arises, 
then, whether the use of computational models in a school environment 
might not help students to think like scientists. Indeed, several efforts have 
been made to introduce, into the classroom, models similar or identical to 
those used in research. 

This chapter will argue that computer models can indeed be extraordinar
ily effective in teaching science, but that for them to achieve this potential, 
they must be carefully designed and used. After a brief examination of vari
ous kinds of scientific models, I outline some of the pedagogic principles that 
underlie the design of successful teaching models. Using existing examples, 
I describe how a model may be linked in students' minds to the real-world 
phenomena it represents. Finally, I discuss some of the problems that must 
be overcome before the computer-based model can become a practical class
room tool. 
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Varieties of Models 

Scientific models may vary quite dramatically across diSciplines. As Ernst 
Mayr has pointed out (1989), a physics model, such as Einstein's theory of rel
ativity (1905), is very different from a model in biology, such as Mendel's 
model for genetics (1866). As a result, scientists in different disciplines often 
differ considerably in what they consider a model and how they judge its util
ity. Physicists tend to set great store in the simplicity of a model, its funda
mental nature, and its explanatory power. Particularly prized are those mod
els that start from an axiomatic base (such as Newton's laws of motion, or the 
constancy of the speed of light)-particularly so if they can be shown to ap
ply to a wide range of phenomena. Biological models, in contrast, are judged 
primarily on the basis of their explanatory power. They are expected to be 
approximate, to be somewhat ad hoc, and to admit of exceptions. An ex
ample may help to make the distinction clear. 

In the early 1970s, high-energy physics was in a state of chaos and confu
sion. New particles were being discovered every other month, sometimes 
seen directly as tracks in a spark chamber photograph, more often inferred 
from "resonances" observed in various scattering reactions. But however 
they were observed, there was general consensus that there were entirely 
too many of them, and the central task of particle physics at the time was to 
classify them and impose some order on the experimental data. Many at
tempts were made to do this, but most were considered unsatisfactory, even 
by their inventors, because they were too complicated. (Of one new model 
it was rumored, only half in jest, that it had more free-floating input parame
ters than data points against which it could be tested!) The general feeling 
among physicists at the time was that "curve fitting" and "phenomenology" 
were never going to usher in any deep understanding. The true theory, if and 
when it ever arrived, would be, everyone was convinced, instantly recogniz
able by its simplicity and elegance and would not be judged solely on its abil
ity to fit a large quantity of data. 

At about this time, biology was going through a similar period, but in re
verse. Even as the particle physicists thrashed about trying to find a model 
simple enough to be credible (a goal eventually achieved by Weinberg and 
Salam in the mid-seventies), the biologists were busy undermining one that 
was too simple! During the years immediately following the discovery of the 
double-helix shape of the DNA molecule, the "holy grail" of molecular biolo
gists had been to work out the code that translates from the sequence of nu
cleotides strung out along the DNA to the sequence of amino acids on the re
sulting protein molecule. A few rash souls (mostly physicists!) ventured the 
opinion that once this code was broken and we could "read the book" of 
DNA, all the secrets of life would be laid bare. Nothing, of course, could have 
been further from the truth. In fact, the complications were just beginning. 
For example, although it is true that "codons" (triplets of nucleotides) corre
spond to amino acids in more or less the same way across all organisms, it 
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does not follow that every protein encoded by the DNA will actually be pro
duced within a particular cell. Furthermore, in many organisms, genes are of
ten interrupted by long stretches of "noncoding" DNA that does not, ac
cording to our current understanding of the matter, appear to have any 
function at all. Moreover, genes are turned on and off in complex and poorly 
understood ways, either by other "control" genes or in response to condi
tions that affect the cell in which they reside. Even the assumption that every 
gene codes for a trait does not hold in general. So much for a simple, univer
sal explanation of inheritance! 

The moral of the story is simply stated: In physics, if a theory is too com
plicated and ad hoc, everyone distrusts it and looks for something simpler; 
in biology, if a theory is too simple and pat, everyone distrusts it and starts 
looking for exceptions. And both groups are right in reacting in these con
trasting ways. 

Teaching Models 

Computational models used for research in whatever discipline are not nec
essarily much good for teaching. Consider, for example, a meteorological 
model that takes fixed input, such as topographic data, as well as readings of 
such time-varying quantities as temperature, barometric pressure, and wind 
velocity, at each of several million points within a volumetric grid. Using the 
applicable partial differential equations (such as various simplifications ofthe 
basic Navier-Stokes equations), the model chums out predicted values for 
each of the variables at each point over the next 24 hours (it typically re
quires several hours to do so), thereby making a prediction of the weather 
one day ahead, at each location within the grid. 1 A model of this kind, though 
it may be very useful for deciding whether to take an umbrella to work, is not 
appropriate for teaching students about the weather. It is far too complex, 
too opaque, and too far removed from the way humans think about the 
weather to be a useful guide. Trying to learn meteorology from such a model 
would be like taking chess lessons from Deep Blue. 

So what do we look for in a good teaching model? It should be simple but 
not too simple, capturing the essence of the professionals' mental models 
of the domain but omitting unnecessary complications. It is also useful for 
the model to be modifiable-either by the teacher or by the students them
selves-which may enable it, among other things, to change to meet the 
needs of students as they become better versed in the subject matter. At first, 
we may want certain aspects of the model to be inspectable by the students; 
later on, we may wish to tum this feature off, in order to force the students 
to make inferences indirectly by experimenting with the model. We shall see 
examples of this sort of thing later in this chapter. 

1 In general, additional information is obtained by interpolating between the grid 
points. 
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Note that a model that is intended to teach may be quite different from a 
simulation. Simulations are often prized for their realism - their ability to cap
ture a sense of "being there." Thus simulations generally do not allow stu
dents to do anything they would not be able to do in real life, and conversely, 
anything that can be done in the real world can usually be done in the simu
lation as well. Teaching models frequently violate both these rules. In fact, as 
we shall see, much of their didactic power stems from their designers' free
dom to decide what to allow the student to do. 

The interface to a teaching model is often not user-friendly in the normal 
sense of the word. Usually, the designers of computer tools are keenly aware 
that they are designing something to be used by an expert. They study their 
intended users intensely to find out how the users think about the subject 
matter, and then they try to design software that matches the users' assump
tions and reasoning patterns. But a model intended to teach is by definition 
written with naive users in mind. Clearly, students don't have the reasoning 
patterns of experts-the whole point is to help them acquire such reasoning 
patterns. Thus, as we shall see repeatedly in this chapter, educational models 
often have interfaces that are counterintuitive to students, precisely because 
they are designed to force the students to reason about the subject matter in 
unfamiliar ways. 

Designing an Educational Model 

The designing of a good teaching model starts with several simple but im
portant questions. What exactly do we expect the students to do with it, and 
when they do it, what do we think they will learn? What do the students 
think they are doing when they use the model-what semantics or purpose 
do they associate with their manipulations of it? And, of course, the question 
one should ask of any piece of software: Why are we doing this on a com
puter? In this case, what educational value does the computer bring to the 
enterprise? What special role does it play that couldn't have been filled as 
well or better in some other way? 

Fundamentally, all a computer program can ever do is show users things 
and let them do things. Thus, in designing any educational software, the two 
most important decisions one makes are what to show the students (the "rep
resentations" in the jargon of the trade) and what to enable the students to 
do (the "affordances"). To generalize slightly, there is usually a continuous 
spectrum in both dimensions. The software designer can choose how salient 
to make certain things and how carefully to hide others; certain features of 
the interface affect how easy or difficult it is for the user to perform various 
actions. 

So far, so good. But surely such choices apply to any computer application. 
How do they play out specifically in the case of models intended to teach? 
The things a model shows the student are mostly in the form of objects, be 
they planets, fruit flies, or carbon atoms, that can be manipulated in various 
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ways. But objects generally carry with them a certain semantics, and to the 
extent that the objects in the model are familiar to them, students assess the 
manipulations in terms of what these objects represent and associate causal
ity with the consequences of those manipulations. In other words, the stu
dents form a mental model of what is going on-whether we want them to 
or not! Hence the power of the computer-based model to teach resides 
mainly in the behaviors of the various objects that we choose to include and 
in the reactions of these behaviors to the various manipulations that we allow 
the students. 

It is worth noting, in this regard, that most students do not come to science 
class with a well-formed understanding that the physical world operates ac
cording to rules. Many, in fact, do not recognize that a "rule" can be descrip
tive in this way, rather than prescriptive. After all, the everyday rules with 
which most students are familiar are normative, generally stated in the im
perative, and capable of being broken, though admittedly at some cost. 
"Wash your hands before coming to dinner," is a rule, as is "Speed limit 55 
mph." Such rules describe what oUght to be, not what is, and certainly not 
what cannot be otherwise. By contrast, the rule that "The energy of a closed 
system is constant" is an observed fact about the workings of the world, a fact 
that constrains physical systems-often in mysterious ways, as countless 
would-be inventors of perpetual-motion machines have discovered to their 
dismay. Computers, which are understood to operate in accordance with 
fixed internal programs, offer students an exemplar of a rule-based system 
that can guide them to a recognition of the operation of rules in nature. 

A useful starting point for designing a computer-based model for teaching 
something is to choose the set of objects and manipulations that the model 
will incorporate. If we choose them carefully, these will be familiar and in
teresting enough to "jump start" the students' learning, but a formless and 
unstructured environment will not be enough to sustain the process. Often, 
we must impose a higher-level semantics and purpose on the model. It is not 
enough, in other words, that the students be able to manipulate the objects; 
they must have a reason for manipulating them -a reason that motivates 
their investigation and connects it to the science concepts we hope they 
learn. This semantic overlay can also serve to link the features of the com
puter model to their analogs in the real world-a crucial aspect of the learn
ing process and, as we shall see, by no means an automatic consequence of 
students' interactions with the model. 

Thinking along these lines, my colleagues and I at the Concord Consortium 
(and earlier at BBN Corporation) have created several game-like environ
ments that pose problems to students and offer powerful computer-based 
tools with which to solve them (Horwitz and Feurzeig, 1994; Horwitz and 
Barowy, 1994; Horwitz, 1996). Each tool embodies an underlying model of 
a specific scientific domain, and each offers a set of representations and 
affordances appropriate to that domain. In each case, the student learns the 
domain by exploring the operation of the model. We call these open-ended 
exploratory environments "computer-based manipulatives" in order to em-
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phasize their close pedagogic analogy with the mathematics manipulatives 
commonly used in the elementary grades. 

In the discussion to follow, several existing and potential computer-based 
manipulatives are used as examples, but our main purpose is not to describe 
particular projects or products. Rather, we wish to propose a general meth
odology for designing computer models for teaching science, and the exam
ples are intended for illustrative purposes only. We start with an examina
tion of the factors that affect a deSigner's choice of representations and 
affordances. 

Choice of Representations 
In choosing what objects to represent, the educational software designer is 
not limited to those that are accessible in real life. On the computer we can 
show students many things that are ordinarily invisible, and we may choose, 
for pedagogical reasons, to hide other things that would normally be visible. 
Nor is it simply a matter of showing the user things that are too small to be 
seen with the naked eye or too difficult or hazardous to approach. Many sci
entific models include abstractions-for example, the center of mass of a col
lection of objects-that are invisible because they are not real but that are of
ten more important for understanding the working of the model than the real 
objects themselves. In this situation it may be useful, from an educational 
standpOint, to show students the normally invisible object and perhaps to 
hide some or all of the visible ones. 

But it is not enough to show them something: We must make the students 
care about it, too. One way to do this is by inventing a game. For example, 
we might present the students with a collection of point particles that they 
may affect by "landing on them" and firing little rocket engines to acceler
ate them in various directions. We then make the center of mass of the par
ticles both visible and salient and create a game of "center-of-mass hockey," 
wherein the goal is to move the center of mass of the collection of particles 
into the opponent's territory by selectively moving the particles. In this way, 
though the students are able to affect only the real objects, their attention is 
focused on how such manipulations affect the position and velocity of the 
"unreal" center of mass. 

Often we can get an educational advantage from hiding information that 
would normally be available to students. Referring to our collection of par
ticles, suppose our goal were to help the students understand, at a qualitative 
level, the nature of collisions between the particles. We could simply confine 
the particles to a box (so as to keep them on the screen), have them bounce 
off the walls and each other according to an underlying model (conserving 
momentum and energy, for example), and tell the students to observe the 
motions of the particles very carefully and see whether they can figure out 
what is going on. This might work, but it would be a lot more motivating if 
we simply made one of the particles invisible and challenged the students to 
locate it by studying the motion of the visible particles. Every so often, one 
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of these would bump into the invisible one and make a sharp tum. From a 
careful study of the motion -and a pretty detailed knowledge of the dynam
ics ofthe collision!-the students should be able to figure out where the in
visible particle is and where it is going. 2 

Choice of A ffordances 

Often, for pedagogic purposes, we enable students to do things on a com
puter that they would not be able to do in real life. An obvious example is a 
simulation of a physical system in which the student can eliminate friction en
tirely in order to investigate the properties of a purely Newtonian world 
(White, 1993). Even further removed from real-world analogs are those envi
ronments that enable one to alter fundamental physical laws-letting the 
force of gravity vary as l/r3 for instance-in order to see the effects of radi
cally different models. (See Chapter 10.) 

As with representations, the designer of a computer-based manipulative 
can sometimes teach a fundamental concept by not letting students do some
thing they naturally want to do. For example, RelLab (Horwitz and Barowy, 
1994), a computer-based manipulative for teaching special relativity, treats all 
reference frames as equivalent; every object constitutes a frame from which 
to observe the motion of all the others, and there is no such thing as a pre
ferred rest frame. This "frame democracy" (which is the fundamental con
cept behind relativity) bothers many students because it violates their every
day perception of absolute motion (cars move, trees stand still, and so on). 
This came across in an especially illuminating moment at the end of one of 
our early trials of RelLab. After a 4-week relativity module, during which the 
students used ReILab nearly every day, we asked them to tell us what they 
liked and what they didn't like about the software. One of the more articu
late students complained loudly and bitterly about how confusing it was, a 
condition she attributed to the absence of a privileged frame (she called it the 
"God's eye view") from which one could determine "What was really going 
on." Even as she said this, though, she caught herself and added, in a soft, 
wondering tone, almost as though she were speaking to herself, "But I guess 
that was the point, wasn't it?" 

As a student grows in sophistication, the appropriate mix of affordances 
may vary. For example, in order to encourage students to reason indirectly 
from experimental evidence, we may choose to take away certain affor
dances in a progressive and systematic manner. Here is a detailed example of 

2To dress the activity up and make it more fun, we could invent a tool that looks like 
a "butterfly net." Once a student has figured out where the invisible particle is, the ob
ject is to place the net over it and click the mouse button. This action renders the in
visible particle visible and freezes all motion. If the invisible particle lies within the 
butterfly net, we award the student a pOint, create a new invisible dot at a random lo
cation with a random velocity, make the butterfly net just a wee bit smaller, and start 
the cycle over. 
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FIGURE 8.1 Examples of Dragons in GenScope. This species is used only in the early 
stages of a student's exploration of the model. Other available species include hu
mans and labrador retrievers. 

FIGURE 8.2 Chromosomes in GenScope represented as "popsicle sticks." The lines 
represent the locations of genes; the labels are the physical traits the genes control. 
The popup menus offer a simple method of altering the genes from one allele to an
other. When this is done, the organism changes its appearance in accordance with 
the classical Mendelian laws of inheritance. This is a purely informatic representa
tion of the chromosomes (it focuses on their role as the carriers of genetic informa
tion) and offers no insight into their structure within the cell. 

how this is done in GenScope, a computer-based manipulative we have de
signed to teach students about genetics (Horwitz, 1996). 

GenScope offers students a multilevel view of genetics and enables them 
to move easily between the levels. Clicking on an organism (see Figure 8.1) 
with the "chromosome tool," for instance, brings up the textbook view of the 
organism's chromosomes, represented as short, fat rectangles like Popsicle 
sticks with lines across them representing the loci of various genes (these are 
shown in Figure 8.2). Another tool enables the student to see what those 
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FIGURE 8.3 DNA in GenScope. This is the gene for wings-specifically, its dominant 
allele, W. It is much shorter than genes in real organisms (the main reason for start
ing with dragons is because we can make them very simple). The ladder-like struc
ture at the top shows color-coded rectangles representing the four base pairs that are 
contained in the model: adenine, thymine, cytosine, and guanine. The sequence of 
base pairs is represented at the bottom of the window by their initial letters, which 
may be altered by placing the cursor between them and deleting or inserting letters, 
in a manner analogous to using a word processor. 

genes are really "made of"-double strands of DNA in which the four dif
ferent base pairs are represented both as colored beads and as sequences of 
letters (see Figure 8.3). At yet other levels, students may observe and manip
ulate cells, pedigrees, or whole populations of organisms that roam around 
the screen, mating with each other and maintaining a constantly changing 
gene pool. 

Genes generally occur in multiple varieties, or alleles, and GenScope lets 
students alter an organism's genes in several different ways. In the early 
stages of a student's use of GenScope, the software is configured so that at 
the chromosome level, each gene is associated with a popup menu that en
ables the student to switch it from one allele to another. Just as the genes it 
carries affect the physical traits of an organism in the real world, so in Gen
Scope any alteration of a gene may affect 3 the appearance of the organism 

3 Changes in genes do not always have an effect on the appearance of an organism. 
Mendel's well-known rules of inheritance are respected in GenScope, and organisms 
with two dominant alleles look the same as those with one dominant and one reces
sive allele. 
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that carries it. If the DNA window for the affected gene is open, it too reflects 
the change. 

Obviously, in reality no one can alter a gene from one allele to another, nor 
would such a change, if it were possible, have any effect on an organism. 
Thus the operation of changing genes in no way simulates a laboratory or 
clinical procedure. The affordance is included in the software to allow stu
dents to discover Mendel's laws of inheritance for themselves by observing 
the consequences of these laws in a direct and motivating manner. This phase 
of exploration by direct manipulation of genes usually lasts 2 or 3 days and 
culminates, in our curriculum, with an activity designed to get students to ar
ticulate, discuss, and write down, using their own notation, the rules for in
heritance of each trait. 

In our introductory activities we generally use a Simple-and fictitious
species: dragons. These are represented by deliberately cartoon-like graphics 
and have only three pairs of chromosomes and seven genes that code for six 
traits: presence or absence of horns, presence or absence of wings, shape of 
tail, number of legs, color, and whether or not they breathe fire. 

Once students have explored the connection between the genotype (the 
set of alleles) of an organism and its phenotype (the set of traits), they are 
ready to investigate the reality of the genes themselves, in effect recapitu
lating much of the genetics research of the 1960s and 1970s. The represen
tation of genes as loci on a symbolic chromosome conveys no information 
about what they really are-sequences of base pairs on an immensely long 
molecule-or about how they can have such a dramatic effect on all life 
forms. Although GenScope, in its present form, sheds no light on the latter 
mystery,4 we can and do use it to teach students that genes are nothing more 
than segments of DNA. 

The strategy for doing this is very simple. We challenge students to pro
duce an organism with a particular trait by manipulating its genes. By this 
time the students have been altering genes and observing the consequences, 
and they have learned, for example, that giving a dragon two recessive w 
alleles will give the dragon wings. Starting with a wingless dragon, the stu
dents examine its chromosomes and determine that it is "heterozygous"; that 
is, it possesses two different alleles, one w and one W, for wings. They un
derstand that in order to give the dragon wings, they must change the W into 
a w. But for this exercise we have taken away the students' ability to manip
ulate the wings gene directly. What are they to do? Using the DNA tool, they 
can examine and alter the two alleles. They will find that the Wallele is rep
resented in DNA by the sequence: ATGCCTACGGCCGCAATG.5 The w allele, 

4 We are working on a more elaborate version of the software containing a full-fledged 
molecular level that will include representations of transcription (of DNA into RNA) 
and translation (of RNA into protein). This will offer the first link in the elaborate 
model of how genotype affects phenotype. 
5 Strictly speaking, this is just one strand of the DNA that makes up the Wallele of the 
wings gene. The other, complementary strand is the same as the first, with A replaced 
by T, C by G, and vice versa. 
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in contrast, is represented by ATGCCTGCGGCCGCAATG. The difference is 
in the seventh base, which is an A (which stands for adenine) in the domi
nant, Wallele, and a G (for guanine) in the recessive w. Because GenScope 
enables the students to delete and insert base pairs, it is a straightforward op
eration to change the W to a w and give the dragon wings, but only if they 
understand the connection between the gene and the DNA. When they do 
make the alteration, by the way, the gene's label changes at the chromosome 
level, and the dragon instantly sprouts wings. 

Later still in the students' progression, we take away their ability to alter 
the DNA and challenge them to breed a dragon with wings, starting from two 
heterozygous parents (each of whom has a 1/2 probability of bequeathing 
that crucial w allele to its offspring, so that on average 1/4 of their offspring 
will have wings). This further reduction of the students' ability to manipu
late the model forces them to reason in ways more closely analogous to those 
employed by profeSSional geneticists. When, as a final challenge, we present 
them with an organism that has a previously unobserved trait (such as a 
dragon with horny plates on its neck), the students are now prepared to de
termine whether this trait is dominant or recessive and which chromosome 
it resides upon. At first they tum to the chromosome tool and seek to locate 
the gene that way. But we have hidden the gene, and it cannot be uncovered 
by such a simple and unrealistic technique. Instead, the students must inves
tigate this new trait the way a real scientist would-by selectively breeding 
the unusual animal with other dragons of known genotype. 

In summary, by a carefully sequenced set of moves that progressively limit 
students' interactions with the software until they are analogous to the rea
soning available in the real world, we guide them bit by bit to reason in ways 
analogous to those of the professional scientist. 

Evaluation for Redesign 

It is not enough to design a model for teaching; One must also observe it in 
use, evaluate its effects, and modify it as required. Moreover, students are not 
simple, predictable robots. They do not bring identical attitudes and precon
ceptions to the learning process, and what they learn from working with an 
interactive model may differ, often dramatically, from what its designer in
tended. When this happens, it may suggest the need for substantial redesign 
of the model and/or its accompanying pedagogy. Again, a recent example 
from our research with GenScope may serve to make the point. 

Students can get confused when the same thing is represented in more 
than one way. We ran into this problem early in the design of GenScope. Gen
Scope represents chromosomes in two very different ways. At the chromo
some level (Figure 8.2) they are represented as "popsicle sticks" with labels 
on them; at the cell level (Figure 8.4) they are seen as "spaghetti strands" that 
wiggle around and assort themselves randomly as the cell divides, via meio
sis, into gametes. The first of these representations focuses on the informatic 
function of the chromosome-its role as the carrier of genetic information. 
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FIGURE 8.4 Cells in GenScope. This view of a cell (technically, only the nucleus of a 
cell) represents the chromosomes as they might appear in the laboratory. This repre
sentation makes no attempt to convey the information carried on the chromosomes, 
but when the student runs meiosis, the chromosomes move about on the screen and 
randomly assort themselves into gametes (sex cells). When one female and one male 
gamete are brought together in the middle pane of the window, fertilization takes 
place and a new organism is "born." 

The second shows chromosomes more or less as they appear within cells. It 
emphasizes their structure and their behavior in meiosis, at the expense of 
not allowing the student to observe the genes directly. 

When we first tried out GenScope in classrooms, we discovered to our dis
may that students_often did not understand thatthe spaghetti strands theyob
served and manipulated at the cell level were the same objects as the pop
sicle sticks whose genes they had observed and altered at the chromosome 
level. Our response was to add a bridging representation to GenScope-one 
in which a single cell is "zoomed out" so that it fills the entire screen (see Fig
ure 8.5). In this representation the chromosomes become large enough so 
that the genes they carry can be labeled and observed, even while the cell un
dergoes meiosis (during which the chromosomes move about on the screen, 
carrying their allele tags with them and eventually randomly assorting them
selves into gametes). This intermediate representation combines both the in
formation and the structural aspects of chromosomes and helps students rec
ognize that the two displays actually represent the same physical object. 

Adaptive Models 
Several of the examples we have used illustrate the need for a computer
based manipulative able to adapt itself to the changing needs of the student. 
In fact, as we have seen, quite often the curriculum we have created for Gen
Scope, in particular, assigns students a series of similar tasks but progressively 
strips away their "privileges" -in terms of both representations and affor
dances-so that they are forced to rely more and more on indirect reasoning 
of the sort that scientists employ in the real world. 
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FIGURE 8.5 The "zoomed out" representation of chromosomes. The letters represent 
the alleles for each of the genes. This representation thus combines structure (physi
cal layout of the chromosomes) and function (the information they carry) and forms 
a bridge between the representations depicted in Figures 8.2 and 8.4. 

This is easy to implement if one is dealing with students in a controlled, lab
oratory environment where the researcher can intervene to alter the configu
ration of the software at strategic points in the student's learning. But how 
are we to arrange for such adaptive behavior in the classroom environment, 
in which at any given moment some 30 students may be working (usually 
in pairs) on a series of problems, each pair following a different route to the 
solution? 

The management of inquiry-based classrooms poses problems unrelated to 
the use of computer-based manipulatives. Open-ended exploration that en
ables students to "construct their own knowledge" is a powerful teaching 
tool, but in practice it can be a very inefficient process, as students persevere 
though laboring under a misconception or "play around" for a significant 
fraction of the class time without making visible progress. It is all right
some might argue that it is essential-for students to struggle in this way, but 
if the struggle goes on too long, they become frustrated and "tum off." Ide
ally, a tool for open-ended inquiry should help the teacher to intervene at just 
the right moment. 

Moreover, the designer of a computer-based manipulative must bear in 
mind that students have very different learning styles, just as teachers have 
different teaching styles. In some situations it may be appropriate to let the 
student loose to explore a model with little or no direction, but in different 
circumstances a more structured and linear approach may be called for. What 
is needed is a way to control, to some degree, how the software interacts 
with the student. We would like the computer-based manipulative itself to 
communicate with students, monitor their progress, and adapt itself to their 
needs. And would like it to do all this following the wishes of the teacher or 
curriculum developer. In software terms, the computer-based manipulative 
must become scriptable. 
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Scripts are not a new technology. Most business applications are script
able, allowing the user to write simple programs that cause them to perform 
a specified sequence of often-used functions with a single mouse click. 
Scripts also provide a convenient medium of communication between appli
cations, enabling a spreadsheet, for example, to obtain input from a database 
and hand its results to a word processor. Nor is the idea of altering the qual
ity and quantity of help available to students particularly new. Such flexible 
support, often known as scaffolding, has been available for many educational 
applications for many years. 

What is new is the notion of giving teachers and curriculum developers 
control over the form that such scaffolding takes at various stages of the 
student's learning. In addition to controlling an underlying computer-based 
manipulative, scripts must be capable of displaying information to the stu
dent in the form of text, animations, audio, or video material. They must also 
be able to gather information from the student, in the form of text entry or 
mouse clicks, and to ,receive updates from the computer-based manipula
tive itself. And most important, the scripts must be written in a high-level 
language that is inspectable and editable by teachers, researchers, and cur
riculum developers. We are in the process of creating this capability in Gen
Scope. 

What will happen when a student starts up the scripted version of Gen
Scope? It depends, of course, on the script. To take a specific example, a pro
totype script that we have written starts by opening up a window that chal
lenges the students to mate two parent organisms and, by selecting the 
appropriate egg and sperm to fertilize, create a baby with a specific set of 
traits. When the student clicks "OK" the script closes the text window, brings 
up GenScope, and configures it for the activity, reading in a file that creates 
the female and male organisms, locking their chromosomes so that students 
cannot alter the genes, and eliminating certain other unnecessary features. 
Then the script "goes away" and leaves the students to solve the puzzle. It is 
not entirely passive, however. 

A major feature of scripts is their ability to monitor the students' actions. 
By constraining the problem very precisely, a curriculum developer can use 
this monitoring capability to identify "teachable moments" and can tell the 
sCript to intervene when such opportunities present themselves. For ex
ample, in the context of the fertilization activity just described, the prototype 
script we have designed remains in the background, keeping track of (and 
logging) certain critical student actions but not intervening until the students 
click the button to run fertilization. At that point, if the gametes have the 
right genes and the students have actually looked at them (which it can tell 
from the log it has created), the sCript waits until the baby appears and then 
congratulates the students and suggests that they call their teacher over and 
explain how they solved the problem. If, however, the students have not ex
amined the gametes to determine which genes they carry, the script gently 
reminds them to do that and starts the cycle over. 
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But what if the task requires a special arrangement of the chromosomes, 
one that is unlikely to happen by chance? How can a script handle that situ
ation? It can do just what a teacher might do. The first time the students try 
and fail, the script can simply say something like "Too bad-try again." The 
second time, it can give them a hint ("Does this baby look like the first one 
you made?") and then suggest that they "Run meiosis again and watch care
fully how the chromosomes move." By the time the third offspring comes off 
the assembly line with the wrong chromosomes, the script can reconfigure 
GenScope to give the students control over how the chromosomes move and 
ask them to give it "one more try." The objective here is that the students, in 
their mounting frustration, realize why the babies are not coming out with 
the desired collection of traits and why the assortment of chromosomes dur
ing meiosis, ordinarily random, is so important. 

Will this strategy work? We don't know. We are just now building into Gen
Scope the ability to write interactive scripts of this kind, and we have not yet 
had a chance to try them out with students. 

Linking Models to the Real World 
Models, by definition, are not real, and it is not always obvious how they con
nect to real things. The most carefully crafted computer model designed to 
teach some important scientific concepts may come across to students as just 
another video game. As a result, what they learn from the computer may be 
nothing more than the skill required to "win" the game. In particular, it may 
not extend to reasoning about real-world examples. Furthermore, many sci
entific discoveries carry with them important implications for society. Con
sider, for example, the legal, ethical, and moral dilemmas that seem to arise 
almost daily from scientific advances in genetics. In a world increasingly con
fronted with such issues, it is unacceptable to teach science without en
couraging students to consider its social implications. 

Although this linking of model to real-world analogs can be accomplished 
through classroom discussions, slide shows, field trips, or laboratory experi
ments, we have found that students do not easily relate their experience on 
the computer to the other things that happen to them in and out of school. 
Thus it is important to forge these links on the computer itself. 

We are currently exploring the possibility of creating multimedia material, 
in the form of video, audio, animations, and text, and linking it to an under
lying computer-based manipulative via the same scripting technology that we 
originally created to handle the adaptive scaffolding problem. One example 
of how this might be done is to create an "interactive documentary" that links 
video sequences with computer-based manipulative activities. Actors playing 
the roles of researchers (or patients with a genetic disease, or forensic scien
tists trying to determine the identity of a criminal) would be used to establish 
a context for student investigations, posing problems and appearing at im
portant points to offer advice or encouragement. Alternatively, the results of 
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computer-based manipulative investigations could be linked and compared 
to laboratory data (such as DNA sequences) available over the Internet or 
stored on a CD-ROM. 

Assessment 
In our research, particularly with GenScope, we have found that students of
ten fail to transfer knowledge gained on the computer to performance on pa
per-and-pencil assessments (Horwitz and Christie, 1998). In their interactions 
with the computer, they may show evidence of multilevel reasoning and of 
using the model for abstract problem solving, but when confronted with a 
paper-and-pencil test, they do not score significantly higher than comparable 
students who have been taught genetics without the use of the computer. 
There are at least two possible explanations for this effect: (1) The students 
aren't really learning significantly more on the computer than they learn via 
lectures and textbook, or (2) they are learning more, but the knowledge 
doesn't transfer to the assessment. 

If we accept the first hypothesis, we must explain how the students are 
managing to solve difficult problems on the computer without really under
standing the underlying model of genetics. Are they just "playing around" un
til they get the answer they want, or do they really understand what they're 
doing? In other words, are they constructing a mental model of genetics, or 
are they merely mastering a complicated and counterintuitive computer in
terface? We may be able to shed light on this question by narrowing the gap 
between the assessment items and the computer-based activities. If we find, 
for example, that students who have used GenScope are able to answer ques
tions about dragons but fail to perform at the same level when presented 
with homologous questions about, say, dogs, we will take it as evidence of 
shallow and superficial understanding. We may, however, discover that stu
dents are able to answer such "transfer" questions orally but fail to do so on 
paper-a finding that would have profound implications for the very nature 
of assessment itself. 

In future research, we hope to use the sCripting technology described here 
to probe more deeply into the nature of students' learning with computer
based manipulatives. We believe this can be done in various ways. For in
stance, we will be able to collect data unobtrusively during the students' in
teractions on the computer, logging their significant actions, and at critical 
points asking them probing questions aimed at characterizing their reasoning 
process. Sometimes these questions can be asked directly on the computer, 
but at other times we will instruct the students to explain, to us or to their 
teacher, what they are doing. Of course, in addition to shedding light on stu
dents' cognition, this kind of "embedded assessment" can also have a signifi
cant positive instructional effect and may thus serve to improve the students' 
scores on written tests. 

If the second hypothesis appears to be correct, then we will need to find 
out why we are not achieving transfer between the two modalities. Is it, for 
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instance, because the pencil-and-paper modality "turns the students off" and 
thus reduces their ability to demonstrate what they know? Is it a conse
quence of the specialized vocabulary, or other abstract representations, used 
on the written assessment? Or is a latency effect at work (a period of days to 
weeks may elapse between the computer activity and the written test)? Is 
performance undermined by the psychological stress inherent in taking a 
scary-looking written assessment? Our ability to embed the assessment func
tion within the software will enable us to explore these hypotheses. By ask
ing the students gentle questions every once in a while, we will be better able 
to judge what they are thinking as they work their way through the puzzles 
we give them. We may then be able to devise written tests that are more ap
propriate. Alternatively, by collecting a portfolio of students' work and us
ing it to assess their progress, we will attempt to compensate for any "test 
phobia" that may be undercutting their performance. 

Conclusion 

Models, whether on or off the computer, aren't "almost as good as the real 
thing"-theyare fundamentally different from the real thing. From an edu
cational standpoint, they are neither better nor worse than "hands on" meth
ods. Rather, the two approaches are complementary, and neither works very 
well in isolation. We have concentrated in this chapter on a particular kind 
of computerized model, the computer-based manipulative, as an example of 
one way to use computers to teach science. We have examined the design of 
such computer-based manipulatives, paying particular attention to such is
sues as selective scaffolding, careful sequencing of problems, and linking ac
tivities on the computer to knowledge of the real world. As we have empha
sized, the computer-based manipulative paradigm, powerful though it may 
be, must be brought to bear in the context of conjunction with many other 
tools-"wet" labs, textbooks, and classroom activities-that can help stu
dents to link the various features of the computer-based manipulative to the 
real-world facts, phenomena, and procedures that they represent. 

The most important question that still confronts us in the use of computer
based manipulatives is "What are the students learning?" The discrepancy we 
have observed between students' performance on the computer, captured in 
observation notes and on videotape, and their scores on written tests points 
out the importance of addressing this question.6 We do not lay the "blame" 
for this discrepancy on the tests themselves, which have been designed to as
sess what we think the students are learning. Rather, it appears that learning 
accomplished entirely within the context of interactions with a computer-

6For SimpliCity, we have limited ourselves in this chapter to GenScope. We have, how
ever, also observed this effect with RelLab, a computer-based manipulative for special 
relativity. 
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based manipulative may become learning about that computer-based manip
ulative, rather than generalizing to learning about the domain. It is very im
portant, therefore, to broaden the learning process so that students are made 
aware of the model underlying the computer-based manipulative and of its 
application to real-world phenomena. This broadening process has implica
tions for the teacher, the curriculum developer, and the software designer. 
We hope that the scripts we are currently designing will go a long way to
ward making students conscious of what they are learning when they ex
plore and solve problems on the computer and of how what they are leam
ing applies in the world outside the classroom. 
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Model i ng as I nqu i ry Activity 
in School Science: 
What's the Poi nt? 

William Barowy 

Nancy Roberts 

Introduction 

"What's the point?" Asked a middle-school student who was given the task of 
exploring modeling software with her partner in a clinical interview. Having 
no prior exposure to the computer model, and having been given no other 
directions than what they needed to run a simulation, she and her partner 
questioned the authenticity of the moment. They had just met the inter
viewers, and a camcorder was located behind them, pointed over their shoul
ders at the computer screen. In the process of designing the interview to ex
plore student inquiry with computer models in the least invasive way, we as 
researchers created a context that made no sense to the students. 

"What's the point? I don't get it," echoed a sophomore a year later when 
asked to sit in front of a computer running modeling software in her high 
school biology class. In contrast to the middle-schooler, this student was sit
ting with the rest of her class. She was working on a lesson specifically de
signed to fit into the fourth day of a constructivist conceptual change unit on 
plant nutrition. The unit had been modified so that the students would be 
working with the Explorer: Photosynthesis l computer model (Duffy and 
Barowy, 1995) as an alternative to lecture for presenting the "school science 
view" (Driver and Bell, 1986; Driver, 1987). As we talked with the student, it 
soon became clear to us that she too was confused about what we expected, 
although the lesson sheet included an introduction to the computer model 
and described a purpose-the teachers' purpose-for the lesson. 

This class was not like her usual experiences with her teacher, who de
scribes himself as "traditional." She and her classmates had no prior experi
ence in the computer lab or with the new software. Yet, after careful and de-

1 Explorer software is available from LOGAL®, 125 Cambridge Park Drive, Cambridge, 
MA02140. 
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liberate discussion with one of us about computer models and how this task 
was related to her other learning experiences in the science lab, this student 
became thoughtfully and enthusiastically immersed. We later observed her 
working diligently with the computer model and conversing with another 
student. 

What is the point? Although both students used similar Science-modeling 
software, their participation in two disparate systems of activity with differ
ent goals, tasks, and social interactions contributed to substantially different 
consequences. The high school student became engaged when we inter
vened, whereas the middle school student became engaged only sporadically 
during the clinical interview. In this chapter we explore middle-school stu
dent interactions across several situations that shed light on how students 
can learn with expert-built science computer models-models designed 
by scientists and built by professional programmers for educational use. We 
observe different forms of student reasoning and talk emerging with distinct 
systems of (negotiated) goals, expectations for participation, computer
modeling tools, and co-constructions of mathematical graphs and system 
diagrams. 

The Issue 

We began our work with a simple question: What can students learn with 
computer models? As we sought to answer this question critically, we en
countered theoretical and practical issues in learning that underlie the use of 
modeling for science and math education. Generative-approach advocates of 
model-building (papert, 1990) insist that student externalization of knowl
edge is essential to their learning. Efforts therefore should be directed at 
building tools to help students construct their own models. The construction 
of models by learners has turned out to be a difficult goal to attain, however. 
Mandinach and Thorpe (1988) and Riley (1990) have reported difficulties not 
only with students being able to build models, but also with teachers being 
able to adopt and manage model-building activities in the classroom. 

Historically, two approaches have been pursued. The first has been to de
velop more ability-appropriate model-building software such as Model-It 
(Jackson et al., 1996 and Chapter 3) and StarLogo (Resnick, 1994 and Chap
ter 5), which, generally speaking, offer students more support in building 
models. The second approach has been to provide expert-built models that 
students may investigate in order to understand the behavior of the system 
being simulated (Richards et al., 1992). The distinction between the two ap
proaches is somewhat blurred by the continuum of expert-built microworlds 
along this dimension, which facilitate student construction of simulations 
that conform to the rules imposed by particular knowledge domains. For ex
ample, Interactive Physics and RelLab (Horwitz and Barowy, 1994) are two 
environments that support student constructions in Newtonian physics and 
special relativity, respectively. 
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We have chosen to explore how middle-school students learn from expert
built, student-investigable models. Through our work, we have refined our 
initial question as follows: What conditions best support student investiga
tion with expert-built models? What processes can and will students engage 
in when these conditions are met? What knowledge or skills must students 
already have acquired to learn effectively with computer models? We explore 
these questions with and without software in four different situations: an 
open-ended exploration, the classroom, guided inquiry, and the Nature of 
Models interview. We discuss aspects of social interactions and re-presenta
tional tools (which include computer model tools, graphs, and causal dia
grams) that, in our present theoretical view, provide some clarity about what 
happens when students either build or manipulate models. 

Approach 

This study is an exploration of the thinking and learning of middle-school stu
dents as they worked with computer models and simulations. Because our 
primary goal was to seek optimum contexts for learning with scientific com
puter models, the study did not attempt to control variables-an approach 
that presumes a theoretical framework to define which variables to control. 
Instead, in our effort to understand student interactions emerging from a 
variety of learning and problem-solving situations, we created and varied 
the conditions in a manner approaching the experimental-developmental 
method of Vygotsky (1978), or design experiment methodology (Brown, 
1992; Collins, 1992; Hawkins and Collins, in press), or the positive-critical 
method of cultural psychology (Cole, 1997, 1996) that emerged from the in
tegration of experiment with naturalistic observations (Cole and SCribner, 
1974). These methods for research into cognitive processes share the use of 
an intervention shaped by a theoretical framework. 

Our study falls between these and grounded theory (Glaser and Strauss, 
1967). Like many other experimenters before us, as we approached the issue 
of learning with models, we were guided by our own prior experience de
signing and using models, learning from them, and teaching with them. It 
was this craft knowledge that shaped the design of our interventions. We be
gan building systems models to explain our observations (Roberts et aT., 
1996). Activity theory retroactively emerged as a framework that concisely 
encompassed the results of our inquiry into the prerequisite skills and knowl
edge and the types of settings in which students begin to use scientific mod
els much as scientists do: as explanatory constructs and vehicles of investi
gation (Leont'ev, 1975). 

The subjects of our study were seventh-grade students from an inner-city, 
Massachusetts school. The students were recruited by a participating teacher 
to represent a wide spectrum of abilities. The same students participated in 
all aspects of the study. These students joined our study as an opportunity to 
learn science and have fun. Some students were clearly supported by their 



200 9. Modeling as Inquiry Activity in School Science: What's the Point? 

Screen B • 

t 
<) 

!1 I . . 

itT -

~ @i 

Lt1 'uu ,uu" Amplitude LtOO I Q 

r-t 50 

:~ Freq ... nc~ ~J ? r-;-

~ 0. Number It .1 -&)- l of snaps 

~ -50 
Friction ~~J ~ -'00 -. 

~ 
0 20 40 60 80 .00 

[ Line Groph I [ Controls I 
~ {} 
I--'--' ¢I 1<:) 

FIGURE 9.1 Screen from the Explorer: Waves Simulation. One complete wave cycle 
has been created [number of snaps] with initial amplitude of 100 and frequency of 
0.2, in arbitrary units. 

parents, who wanted to meet with us to learn more about the study. We have 
the distinct impression that some were strongly encouraged by the teacher 
despite their having some initial reservations, but we have no tangible evi
dence to substantiate this claim. 

We studied four situations. First, we began and ended this study by con
ducting the Nature of Models clinical interview with individual students. The 
interview assesses student understanding of models and how they are used 
in science. The Nature of Models interview is described in detail later in 
this chapter (Grosslight et at., 1991). Second, we conducted baseline clinical 
interviews using the Explorer: Waves model, in which pairs of students were 
asked to explore a highly abstract model of wave phenomena with mini
mal intervention. Third, we engaged the students in classroom teaching on 
equilibrium in aquatic populations, using the Explorer: Population Ecology 
model. Unlike the prior investigations, the ecology teaching component was 
conducted in a school with the students' teacher. Fourth, we investigated the 
combination of causal diagramming, graphing, experimentation, and the Ex
plorer: Cardiovascular model. During this last component, half of the stu
dents participated in a section run by their teacher in school, and half par
ticipated in a section run solely by the investigators in their research offices. 

Open-Ended Exploring 

We selected the Waves model, a highly abstract representation of wave phe
nomena, as the basis for a clinical interview. The initial interface to the model 
is shown in Figure 9.1. We developed the interview as a precursor to under-
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standing the use of a computer model as an explanatory construct. The stu
dents were asked to explore the Waves model with minimal intervention 
from the interviewer. We were interested in exploring the notion that sci
ence students bring knowledge acquired prior to instruction (Clement, 1982; 
Clement et at., 1991; Saxe, 1991). The Waves model poses an extreme case: 
The middle-school students had not previously studied wave phenomena 
with this software. 

We felt that our results would suggest what types of learning might occur 
in similar, "Exploratorium" settings. We have encountered the approach of 
letting students explore software on their own in some schools, where the 
social ecology of work sometimes precludes teachers from learning about the 
software first (Barowy and Laserna, 1996; Saferstein and Souviney, 1996). Yet 
success with this approach presumes that students have mastered experi
mentation skills or that they are able to view the computer model as an ana
log. Unable to identify what phenomena the software is modeling, what 
sense would students make of the model? What patterns of experimentation, 
if any, would emerge when they were given the task of exploring the model. 
Would they be able to generate analogies to explain what they observed? 

During clinical interviews, the interviewer refrains from providing infor
mation relevant to the students' problem at hand in order to learn about the 
students' abilities without adult intervention. Within this structure, the goals 
of exploration are determined by the students. Interviewers ask questions 
only to clarify student comments or encourage them to vocalize their think
ing. The format affords a useful glimpse into the types of reasoning students 
can apply without adult intervention. Because the interviewer gives students 
no guidance, they must make their own decisions about how to proceed. 

At the beginning of the interview, the students were introduced to the 
software. We explained to them that we were interested in what they were 
thinking as they explored it. They were shown how to run, stop, and restart 
a simulation. Most students had previous experience with operating the Mac
intosh computers on which the software ran. They were familiar with the 
click and drag interface and with the use of buttons and pull-down menus. 
We encouraged them to ask questions concerning the operation of the soft
ware, such as how to operate a slide control, which we answered directly 
when asked. Otherwise, researchers simply asked clarifying questions, such 
as "Can you tells us what you are doing/thinking now?" in order to encour
age students to explain their actions. 

We found, in an observation consistent with Schauble et at. (1991), that 
when left to their own initiative, our seventh-grade students often applied an 
"engineering" model of experimentation in this exploratory setting. Students 
with an engineering orientation manipulate the model to produce a desired 
outcome, which may be an instance that contrasts highly with a previous out
come. Students simultaneously test many variables they believe to be causal, 
while trying to make causal inferences. In comparison, students oriented to
ward a "scientific" model of experimentation apply the strategy of testing 
one variable at a time (controlling variables) to achieve greater understand
ing. The latter strategy per se (not necessarily a full model of experimenta-
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tion) is often addressed in school science. In the following dialogue, "SI" and 
"S2" are student comments, and "R" is a researcher. The interview took place 
in the students' school. One student explains: 

52: She [S 1] changed all of them [variables], and if you wanted to see what the dif
ference was, then you keep only one variable because then you don't know what's 
causing it to be different. 

R: Is that something you've learned here? 

51,52: Yeah, in science. 

Later, the students' comments revealed that a tension had emerged be
tween the two students: S 1 wished to experiment in the pattern of the en
gineering model, whereas S2 wished to control variables. Without close 
scrutiny of both her actions and her explanations, S 1 would appear to have 
been engaged in random probing, which a RAND study of students interact
ing with microworl4s labeled thrashing, wherein "one issue would take cen
ter stage, another would arise to replace it, and later the first issue would 
resurface" (McArthur and Lewis, 1991). However, key utterances (such as 
"make it look like ... ") indicate her goal orientation and distinguish her en
gineering approach from random exploration. Her persistence also supports 
a goal-oriented explanation: S 1 makes several attempts to vary two parame
ters in the model despite her earlier recognition of the strategy of controlling 
variables. 

52: So that's forty ... [amplitude] 

51: Yeah, try to make it look like ... 

52: So let's not fool around with the forty since we have a good guess. Keep it at 
forty ... 

51: Well, let's try and make it go like ... 

52: No. Let's fool around with something we are not really sure of, like, try friction. 
[sets friction to the midpoint in the range] 

51: But let's see if it [amplitude] goes to 30 this time [is changing friction value at 
same time] 

52: But you don't want to test two things at the same time because then you don't 
know what's causing it [sets amplitude back to forty and runs simulation]. 

All students treated the simulation primarily as a novel phenomenon. Most 
of the subjects' explorations were consistent with Schauble's engineering 
model, although recovering students' purposes for making experimentation 
decisions was difficult and uncertain. In one other exceptional interview, 
two students consistently displayed an ability to generate analogies to explain 
the animation on the computer screen. Like the other students, they changed 
variables in a manner consistent with the engineering model, yet they often 
expressed the purpose of trying to generate wave patterns that were similar 
to those they had seen in other contexts, such as in the wave tank at the 10-



Classroom Experiments 203 

cal science museum. These students appeared to apply minimally abstracted 
experiences, or p-prims (diSessa, 1988), to explain the animation as they 
changed the model variables. Sutton (1993) calls this activity figuring, "ap
plying something we already have in order to make sense of the relatively un
familiar." 

When left on their own, as in this exploratory interview, our students 
struggled to experiment in a meaningful way. That is to say, they had 
difficulty accomplishing tests that provided them with results with which 
they could make sense of their situation. The transcript provided earlier is 
our best evidence of what knowledge the students were able to bring to the 
interview. The two students brought recognition of the strategy of control
ling variables but were unable to apply it consistently. Apparently their goal 
orientation - their tendency to think in terms of producing a desired out
come-militated against changing one variable at a time. If otherwise the 
best that students can do is generate a disparate collection of analogies to ex
periences they have had earlier in life, then they will not reliably see patterns 
emerging during their exploration. The variables and interrelationships pro
grammed into a model may be obscured by the students' haphazard testing 
of variables. 

It is quite possible, within the design of the Explorer software, to provide 
a scaffolding so that students have access to one or a few variables at a time. 
The obvious approach is to design a lesson in which the students are care
fully led through manipulation of the parameters of the model. Students tend 
to find this dull and unmotivating, and furthermore, they are not given a 
chance to exercise investigation skills. Instead, we prefer to consider sys
temically the open-ended design of the software as coupled with social in
teractions that are specific to the content, skills, and motivations to be 
learned. One example is the use of Explorer software for coordinating theo
retical explanations with complex physical phenomena that the students 
have experienced (Richards, et al. 1992). Another is the support for students 
creating thought experiment resolution of cognitive dissonance (Horwitz 
and Barowy, 1994) in relative motion. 

Classroom Experiments 

The classroom experiments explore activity in which students were pro
vided with a structured environment for learning with a computer model. 
The small-group teaching sessions focused on the development of the 
students' understanding of the ecological behavior of populations. Guided 
model investigations were followed by a hands-on experiment in which the 
students built an aquarium containing organisms that constituted a three
level food chain: guppies, Daphnia, and algae. The hands-on experiment 
provided a measure for whether students' understanding of the computer 
model would spontaneously transfer to the design of environmental condi
tions for stable equilibrium of the aquarium. 



204 9. Modeling as Inquiry Activity in School Science: What's the Point? 

Number 
of fish 
i"j"7"3--" 
L __ •.• .• ___ .. 

200 

ISO 

100 

SO 

0'+---.------. 
o SO 100 

Time 

FIGURE 9.2 The Population Ecology Model. 

I Aquarium I 

The Population Ecology model simulates the growth and interaction of 
populations of organisms in a controlled ecosystem. The ecosystem can be 
divided into regions and habitats to examine any of several imaginary combi
nations of species, observing noncompetitive, competitive, and predatory re
lationships. The model generates "real-time" graphical presentations of data 
for each population. Students are able to adjust initial population levels of 
species and then run the simulation to observe the model behavior over time. 

The students with whom we worked had been studying ecology in science 
with the aid of a classroom aquarium. Our intervention drew on the work by 
White and Horwitz (1988) with the Thinkertools software (Chapter 10), in 
which students built a causal model of force and motion through a series of 
increasingly complex microworlds. We first presented students with instruc
tions to manipulate the model to recreate particular graphs. Students were 
given a set of challenges paraphrased as "Manipulate the conditions to create 
this kind of graph." In contrast to open-ended exploring, this approach pro
vides carefully structured but non-negotiable experimentation goals for the 
students" 

This intervention seemed plausible for learning about population ecology, 
where both direct observation and experimentation are difficult. (Observa
tion of ecological systems requires the investment of significant resources in 
quantifying participating species, and the characteristic lifetimes and rates of 
interactions among species rule out experimentation within the time con
straints in schools.) Understanding whether a computer tool could circum-
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vent these difficulties and build student understanding seemed a worthwhile 
pursuit. 

Students were exposed both to transient and long-term equilibrium be
havior of two-level and three-level food chains. They were given target 
graphs of population levels to recreate by modifying variables and running 
simulations. Written lessons focused on how changes in population and sup
porting habitat at one level would affect that same level and other levels in 
the system. We asked students to make semi-quantitative predictions of 
model behavior before they made any changes in the model prior to running 
simulations, and we asked them to justify their predictions verbally and in 
writing. 

Formative evaluation of each lesson influenced the design of the next les
son. This process enabled lesson designs to be sensitive to students' difficul
ties or insights with the population ecology content. The lessons generally in
cluded work sheets on which students were asked to make and explain 
predictions, to describe their results, and to indicate how these results com
pared to their predictions. 

The teacher worked with us in developing the lessons and was responsible 
for interacting with the students during the experimental teaching sessions. 
We had selected this teacher in part because she described herself as an in
quiry teacher. Together with the teacher, we explicitly negotiated the goal of 
developing students' abilities to inquire with the model. We developed the 
plan for students to contribute more fully to the direction of the work as they 
grew more proficient with the software, applying a cognitive apprenticeship 
metaphor (Collins et al., 1989). We coached the teacher in how to use the 
software and made suggestions for interacting with the students. We mod
eled for the teacher a style of interacting with the students that we believed 
would support inquiry. 

We noted sustained teacher-centered discourse in the sessions, described 
by Stubbs (1983) as IRF (for Initiate, Respond, Follow-up or Feedback). The 
teacher Initiates discursive interaction with the students by posing a ques
tion, to which the students Respond. The teacher Follows-up or provides 
Feedback to the students, which may be a form of Evaluation of the stu
dents' responses. The latter, labeled IRE, is a common discourse genre in 
school settings (Cazden, 1988; Lemke, 1990; Wells, 1996). The following di
alogue is an example of the discourse we observed. 

T: Now what do you think time means? What do you think the time part means? 

S1: How long it takes. 

T: Usually how long it takes for fish to reproduce .... It could be years, it could be 
weeks, it could be months, for guppies it could be days. All right so you have a lot of 
information there ... it depends on what species of fish you are talking about. 

T: Now, you have how many variables that you can play with right now? 

S3: Three. 



206 9. Modeling as Inquiry Activity in School Science: What's the Point? 

51: Three. 

T' Three? Think about it. How many little arrows or diamonds do you have? 

51-3: Four. 

T: Four. So, how many variables do you have? 

51: Four. 

T: Four variables, OK. 

Implicit in the above discussion is the teaching of control of variables-the 
objective the teacher later articulated to us. We also observed the teacher to 
use the word "So" to draw conclusions, and the word "Well" to begin ex
postulation, which offers clues to the students about whether they are re
sponding with answers she expects. When the students became unrespon
sive, the teacher's approach sometimes became more tutorial-like, in which 
she hinted about h~r expectations to the students. In the following discus
sion, her voice softens. She helps the students focus their attention on fea
tures of the display that are central to the task: the number of algae, the shape 
of the graph. In explaining the shape of the graph, the teacher indirectly sug
gests possible actions for the students. She then directs attention to essential 
features of the software. 

T: OK, well you've got the first ... you got almost opposite of what it should be do
ing. You want it to come out and up. You've got the curve going one way. Now how 
do you think you might get it down to here? 

51: Really lower the algae. 

T: OK! 

51:And the fish. 

T' Well, you can change both of them if you feel that's the way you would do it. OK, 
now compare ... 

51: Looks about the same. 

T: Looks about the same ... 

51: One started a little lower than the other one. 

T: OK now, where do we want the fish roughly to start out from? 

51: The bottom. 

T: At the bottom. 

51: Decrease ... 

52: You want us to make it look like that? 

T: Ahhmm. 

52: ALL RIGHT! 
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When the teacher directed the lesson, the students did not contribute to 
the learning goals but instead followed the teacher's lead. ("You want us to 
make it look like that?") To our surprise, the goals that we made explicit in 
the series of challenges we provided for the students helped to sustain the 
teacher-centered social ecology. As the students struggled with manipulat
ing variables to create the target graphs, the teacher took control. After 6 or 
7 years of public schooling and perhaps 12 or 13 years of adult authority, the 
students expected this. They looked to the adults to set the tasks, and when 
we asked them simply to explore (in other words, to set their own goals) as 
in the open-ended explorations, they would sometimes ask if they were do
ing that right, if they were doing what we wanted them to do. 

lt is widely noted that students' and teachers' participation in teacher
directed investigations can hinder the opportunities for students to engage in 
the processes considered to be scientific inquiry (NRC, 1996; AAAS, 1993). 
So what did the students learn? Supported by the teacher's suggestions, and 
by questions directing the students' attention to features of the software re
lated to the challenges, students became adept at manipulating the model's 
independent variables to recreate graphs of dependent variables over time. 
This in itself is a significant learning outcome. Can it transfer to other situa
tions? Although we did not specifically design the lessons for transfer, we did 
test whether transfer would occur spontaneously. When it came time to de
sign the actual aquarium, the computer model was made available to the stu
dents. No students spontaneously tried to use the model to determine the ini
tial populations of algae, Daphnia, and fish. 

During the entire school-based teaching experiment, we observed that the 
students played, experimented, and investigated their own questions in the 
intervals between teacher-led interactions. The teacher allowed these epi
sodes as motivation for the students to complete the software challenges that 
they found difficult and discouraging. Clearly, the teacher is not solely re
sponsible for the social structure of the classroom teaching experiments. In 
the classroom example, the curriculum also contributed by imposing a non
negotiable goal structure that the students and teacher were compelled to 
carry out. The teacher, intuitively recognizing the need to motivate her stu
dents, provided ways around the curriculum to keep the students interested. 

Guided Inquiry 

We conducted the teaching experiment on the cardiovascular system with 
half the middle-schools students in the BBN labs, while the classroom teacher 
worked with the other students in their school. We will describe only the 
BBN seSSions, because only this component was qualitatively different from 
the classroom teaching experiments. Preliminary analysis of the school ses
sions conducted by the teacher indicates that these sessions were qualita
tively no different from the classroom teaching experiments in ecology. 
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FIGURE 9.3 Anne's Causal Diagram. 

Each session lasted one and one-half hours. During the course of these ses
sions, we introduced dynamic feedback systems thinking (Roberts, 1978), 
encouraged hands-on experimentation, and provided a simulation of the hu
man cardiovascular system. The discussion began between two students, 
Anne and Joanna, and the two of us, as the students described a set of ex
periments they did in their regular science class with their teacher the week 
before. 2 Prior to their participation with us, the students had determined 
their pulse rates while resting, walking, running, and doing jumping jacks. 
The teacher had discussed with them the relationship between level of effort 
and heart rate. 

As we began by discussing what topic to pursue with the students, theyex
pressed an interest in continuing the learning about the cardiovascular sys
tem that they had started in school. Thus, in our first session, we introduced 
the students to causal diagramming of the effects of exercise on heart rate 
and breath rate. As we discussed the cardiovascular system with the students, 
we asked them to draw a diagram of how exercise affected heart rate. With 
help from Joanna and us, Anne drew the diagram shown in Figure 9.3. 3 

The diagram is interpreted in the following manner, working clockwise 
from the upper left: Increasing how much exercise you do increases how fast 
your heart beats. An increase in how fast your heart beats increases how fast 
you are breathing. An increase in how fast you are breathing increases how 
tired you are. An increase in how tired you are decreases how much exercise 
you do-hence a different arrow. 

The second session included students Peter, John, and Anne. Schedule 
changes allowed the boys to participate, but joanna's family moved away, 

20nly two students attended the first session because of scheduling difficulties. 
3Where possible, we have provided the students' drawings. Reproduction quality and 
the difficulty of producing drawings recorded on videotape or poster paper, preclude 
our presenting them all. 
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and she was no longer able to attend. We asked Anne to draw and explain her 
diagram to John and Peter. As she recreated her diagram, John interjected. 

John: Wait a minute, you forgot to put the question mark in. 

Anne: No, we didn't use question marks. 

John: Well, it's not proper English. Mr. Driscoll would be disappointed. 

Anne: Well, Mr. Driscoll's not here. 

We learned that Mr. Driscoll was the students' English teacher. As a new
comer, John had not yet experienced the new ways of participation we had 
begun to develop with Anne and Joanna. Instead, he brought knowledge ap
propriate to another activity system he participated in, his school experi
ence. Perhaps because he had no researcher expectations "laid out" for him, 
John displayed those expectations that he transferred from school. John read 
the phrase as a question, requiring a question mark, and he summoned the 
authority of his teacher, Mr. Driscoll, to bolster his interpretation.4 

In contrast, Anne's use of the phrase was to express a quantity, as she had 
learned during the first lesson. With her rebuttal "Mr. Driscoll's not here," 
Anne expressed her understanding that the BBN lessons were different from 
school. In other words, the new lessons constituted a system of activity with 
different conventions for participation than those that prevailed in school. 
The episode with John is representative of the tension we initially encoun
tered as we began to engage the students in the new teaching experiment 
with new expectations for participation. 

Anne, John, Peter, and the two of us began a discussion of Anne's original 
diagram. During the discussion, both John and Anne modified the diagram, 
which was drawn on a white-board. Their co-construction of the systems 
modelled to a disagreement between John and Anne, both of whom were 
trying to express their own views. Their final version appears in Figure 9.4. 
The diagram was not consensual: The students did not agree about several as
pects of its form, and the diagrams the students drew individually were all dif
ferent from the one on the white-board. Peter's and John's diagrams showed 
some causal links reversed, but the correctness of their diagrams is sec
ondary. More important, the disagreements became focal points for learning 
during subsequent discussion. The students' performance in resolving these 
disagreements is in striking contrast to the performance of the very same stu
dents in interviews and in the classroom. 

John, and soon Peter, disagreed with Anne about two aspects of the dia
gram. In the first, Peter maintained that "How much exercise" could be re
duced to the constituents "How hard exercise" and "How long exercise." 
Anne expressed that "how much exercise" was correct-that Peter's inter
pretation was not right. "How much exercise" appears undifferentiated in 

4Christine Theberge Rafal identified and interpreted this interaction. 
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FIGURE 9.4 Anne, John, and Peter's Co-Constructed Diagram. 

Anne's original model. "How hard exercise" and "How long exercise" were 
distinctions contributed by John and Peter. 

We were unable to facilitate resolution, and the discussion reached an im
passe. Anne then refocused work on another relation in the causal model, the 
relationship between how long it takes the heartbeat to slow down and how 
fast the heart beats. She stated that the amount of time required for the heart 
to make the transition from its running equilibrium rate to its resting equilib
rium rate would be the same as going from running rate to walking rate. John 
and Peter again disagreed with her. We then asked students to make predic
tions about how heart rate would change over time and to draw what they 
were saying in terms of graphs of heart rate vs. time. Anne and Peter ex
pressed competing predictions. 

Anne: If you walk, it doesn't matter if you walk or you rest, it's gonna be the same, 
so they should be about, in the same line. 

Peter: But I'm saying though, say your heart rate like slows down this fast, it'll go 
there sooner than it'll go to there. 

Peter drew his graph (Figure 9.5) and pointed out that in order for the 
heart rate to drop from the running rate to the resting rate, it must first pass 
through the walking rate. Peter's logical argument became an opportunity to 
resolve the different predictions that Anne and Peter were making at a theo
retical level. The basis of Peter's argument is similar to what Clement has 
called rational evaluation. In a study of professional scientists' construction 
of models, Clement (1989) describes rational evaluation as a process through 
which hypotheses are supported or disconfirmed depending on their consis-
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FIGURE 9.6 Peter's Graphical Interpretation of Anne's Argument. 

tency with other established theories. In contrast, empirical testing is the 
process by which models are compared to experimental evidence. 

Peter's argument rested upon his mathematical knowledge of graphing. He 
drew lines showing heart rate decreasing linearly with time for both hard
exercise and mild-exercise initial conditions. He placed, on the line for hard 
exercise, a mark that coincides with the rate for mild exercise, supporting his 
claim that as the heart relaxes to its resting rate, the heart rate will pass 
through the value for mild exercise. Insofar as Peter's argument draws not on 
experimental evidence but on an understanding of mathematics, its form is 
consistent with Clement's notion of rational evaluation. 

Anne disagreed and claimed that the time for the heart to relax would be 
independent of the starting heart rate. After some verbal discussion that led 
to no resolution, Peter drew a graph to interpret what Anne was saying (Fig
ure 9.6). 
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R2: Anne is saying it'll get to the same, the walking and resting heart rate, at the same 
time. 

Peter: Anne is saying it'll go to there, say, and like that. 

Anne: Say ... no, that's not ... I am saying that it will take about the s ... I can't re
ally express it in a graph. 

Peter: You're saying it will take the same amount of time, right ... 

Rl: OK, well ... 

R2: Maybe your graph isn't set up right. 

Anne: Not set up .. . 

Peter: So running ... rest ... 

Rl: Go ahead ... 

Anne: I don't think the graph is set up right. It doesn't make sense. It doesn't show 
what I'm saying. 

Anne objected to the graph Peter drew when she echoed R2's comment "I 
don't think the graph is set up right." To us, however, Peter's graph seemed 
to show precisely what Anne was saying. Anne continued to protest the 
graph, looking to the researchers to support her, as though to appeal to their 
authority. Anne's earlier performance with graphing tasks indicated to us that 
her objection could have arisen because she had not mastered graph inter
pretation. Peter made several more attempts to reconcile the situation. 

Peter drew a graph and said, "You sound like you're saying that .... " Peter 
was trying to make sense of Anne's argument in a graph and was proposing 
another re-presentation of her view. Anne continued to protest the graph: "I 
don't like that graph. It doesn't express what I am saying." We attempted to 
reconcile by suggesting the students do an experiment, but the conversation 
had a momentum of its own. Unlike the earlier teacher-centered discourse 
that appeared in the classroom experiments, we adults seemed to have far 
less influence on the direction of this conversation. As we tried to focus on 
empirical testing to resolve the conflict, Peter and Anne continued to ignore 
us and stayed focused on the graphing issue. As the conversation continued, 
we became convinced that Anne's disagreement was stemming from her 
difficulty interpreting Peter's graphs. 

Anne: But I don't know what kind of graph to do. I don't think a graph really ex
presses it ... that curve doesn't work. 

Failing to redirect the conversation, one of us (Rl) attempted to describe 
how the graph that Peter drew was consistent with Anne's verbal argument. 
Rl's description of the slope of the graph appears understandable to Peter, 
but not to Anne. 

Rl: ... hard exercise to walking and this is going from hard exercise to rest, so your 
pulse rate, here, as time's going on, your pulse rate's dropping. 
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Peter: Well, yeah. 

R 1: And so if it takes the same amount of time ... 

Peter: So you think it's dropping slower when it's going to ... 

Rl: ... then your heart rate's dropping faster when you're going from hard exercise 
to rest. Does that make sense? 

Rl: So it's slowing down, when you, you're doing this hard exercise, and when you 
stop and rest, your heart beat slows down faster than if you go from hard exercise to 
mild exercise. That's what that graph is saying. It's different from that graph. 

Peter: That's what it sounds like to me she's saying. 

Anne: That's not what I'm saying. 

Rl: OK what do you say? 

Anne: I'm saying that it doesn't matter, it's gonna take, I say it doesn't matter if you 
go to mild exercise or to rest it's still going to be the same amount of time. 

Peter: Yeah I know, but that's what this says. This is the amount of time and the 
amount of time is the same. 

Rl: Right. 

Anne: I suppose. 

Anne's comment "I suppose" carries a sense of resignation. One might ask 
whether it was Peter's final reinterpretation of the graph in a manner that 
Anne could understand, or perhaps the researcher's agreement, that per
suaded her, but that would be missing the essential features of an emerging 
system of activity in which the motivation and ideation emerged jointly be
tween the adults and the students. 

The social and cognitive dissonance that started with the creation of the 
causal diagram brought both adults and students to participate together in 
changing Anne's point of view. No one conducted rational evaluation alone. 
The process was distributed through the group and mediated by the graph. 
It is in moving from this description of activity as a social system to Anne's ac
ceptance of the graph that we begin to understand how social activity is re
lated to individual learning. Perhaps Anne is finally convinced because she 
understands Peter's logical argument. Or perhaps the authority of the re
searcher as an adult led her to relinquish her stance. 

The discussion focused on the details of the mathematical graph during the 
entire episode and did not appear confrontational to us, yet there was a re
sistive tone in Anne's voice. Rl finally tried to rearticulate Peter's point about 
how this graph represents Anne's argument. 

Rl: See the amount of time is the same. Because that's what, this graph, I should re
ally label the graph. This is heart rate. This is heart rate, that's the number that's on 
the graph and over here is time. So if you, so you're starting over here where you're 
exercising hard and you say OK, let's make the change right away. And time's pro-
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ceeding and you're checking your pulse rate and your pulse rate's dropping. Here's 
where your .... This is the curve where you go from hard exercise to mild exercise ... 

Anne: Right. 

Rl: ... but it takes the same time as going from hard exercise to resting. 

Anne: Yeah. That's what I'm saying. 

Peter has already expressed how Anne's argument is conveyed by his re
drawn graph, yet it is not until RI rephrased what Peter said that Anne finally 
consented-we doubt that she was convinced. Anne may have been follow
ing a convention she brought from participating in other activity systems, 
home and school, that students learn from an authoritative figure rather than 
from another student. This view, and/or her inability to interpret graphs, may 
have prevented Anne from considering and accepting at first the graph that 
Peter drew for her. 

Peter's initiative afforded the group an opportunity to engage collectively 
in rational evaluation, reflecting on the validity of both Anne's and John's 
opinions. This can be identified in the phrases where the researchers and the 
students are saying, "I think this is what you are saying." Would any of the stu
dents have engaged on their own in this reflective process, or in any of the 
other processes in Clement's model? It does not seem likely, although we 
hope to have provided a plausible existence proof that the processes can be 
distributed socially, with the participation of adults. 

We finally intervened successfully, to ask the students if their ideas could 
be tested, and then engaged them in designing experiments to test the rela
tion in question. The students drew on the cardiovascular experiments done 
earlier in school. These were exercises in which they first determined the 
equilibrium resting, walking, and running heart rates of the human subject. 
In experiment I, the subject runs for a period of time and then walks. The 
students measure the time it takes for the pulse rate to drop to the walking 
rate. In experiment 2, the subject runs for a period of time and then rests. The 
students then measure how long it takes for the heart rate to drop to the rest
ing rate. For each case, the students waited for the heart rate to drop to the 
resting pulse rate before determining the next rate. 

Just prior to the experiments, we prompted the students to make predic
tions about how heart rate would change over time in terms of graphs of 
heart rate vs. time. Surprisingly, Anne drew a graph (Figure 9.7) nearly iden
tical to the Peter's earlier interpretation of her argument! In the I-week in
terval between the discussion of the graph and the development of the ex
periments, Anne appeared to have accepted Peter's graphical interpretation. 
Yet the two students still disagreed in their predictions. 

A fourth student, Brian, attended for the first time. Not having been in 
previous lessons, Brian was unable to participate equally with the other stu
dents. Recognizing this, the students made him the subject of the experi
ments the others had designed the lesson before. The students used stetho
scopes and stopwatches, as they did in their science class, to make their 
measurements. The students had some difficulty when they realized that 
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Brian's heart rate was dropping significantly over the IS-second interval they 
were using to measure his heart rate. Peter and John became disappointed 
with the experiments. 

The students reached another impasse. We adults knew that shortening 
the time interval would not solve the problem, because the measurement un
certainty would increase as fewer heartbeats were counted. Without access 
to more sophisticated tools such as an electrocardiogram, a computer model 
seemed appropriate for continuing the investigation. Thus we provided the 
Explorer: Cardiovascular model to investigate the phenomena further. The 
simulation includes a theoretically calculated heart rate that is displayed con
tinuously and thus does not have the limitations that appeared in the stu
dents' measurements. The simulation interface was modified to look like that 
shown in Figure 9.8. 
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Rl: How do you guys think ... Does it seem possible to do the experiment that we 
were doing before this way? 

All: Umhuh. 

Rl: What do you think we have to do now to test? 

Anne: Go from running to walking and then go from running to resting and see how 
long it takes. 

In contrast to the students' earlier experiences with computer models 
in the clinical interviews and in the classroom teaching experiment, the stu
dents' use of the Cardiovascular model appeared purposeful and meaningful 
- the model was being used to test the hypotheses they had developed to
gether earlier. The students controlled the variables, but not because they 
were told to do this by their teacher. Instead, the students came to the com
puter model with the purpose of resolving a disagreement in their predic
tions. When Anne found that the simulation did not support her point of 
view, the students become involved in a discussion about the Validity of the 
experimental data: 

Anne: I don't know, this one [the simulation] I think is better than Brian's. 

Rl: Do you think this one is better than Brian's, even though this one doesn't do what 
you predicted? 

Anne: I guess so, it doesn't do what anybody predicted, really. Nobody predicted it 
would do all different times. Brian did what I predicted. 

Peter: We don't actually know if he did what Anne predicted. 

Anne: We got the same thing. 

John: What about in an experiment you can't be sure about some data on some ex
periments. 

Rl: Why is that? 

Anne: Why John? 

John: Because in most experiments Brian's heart could have slowed down quickly in 
the 15 seconds .... You know it has to do with timing of the stuff that things could 
go wrong that you know and you record data that might be wrong. So, the good thing 
to do in an experiment is to do it more than once. 

We observe that the students do not distinguish between testing their pre
dictions through experiment and testing their predictions with the computer 
model. Is it reasonable to expect students to make these distinctions? Kuhn 
(1989) has shown that it is hard for students to delineate between theory and 
evidence at the middle-school level. Our results are puzzling and ambiguous, 
because the students did differentiate between the predictions of their causal 
models and the data, as indicated by the foregoing dialogue. Furthermore, 
John recognized the limitations imposed by the finite time interval over 
which they accumulated their heart rate data. Could the students have made 
the epistemological distinction between the computer model and evidence? 
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To do so would mean understanding the nature of the computer model-that 
it is constructed in congruence with scientific theory. We did not make ex
plicit attempts to help students understand computer models in this way. 

Technically, the students' comparison of their predictions, based on their 
causal model, to the Explorer: Cardiovascular Model is an example of ratio
nal evaluation. That is, the students compared their predictions to those 
made from culturally acquired theoretical knowledge as programmed in the 
model and played out through the simulation. We view the model as a valu
able cultural artifact to help the students learn the theory through interacting 
with it, but our view is not generally shared within the science education 
community. 

Although modeling is recognized across many disciplines, such as physies 
(Hestenes, 1992) and biomedicine (NRC, 1985), and has spawned modem 
computational science (Kaufman and Smarr, 1993), neither rational evalua
tion nor (more generally) modeling is considered "real science" in many 
classrooms (Barowy and Lasema, 1997). Some science teachers consider 
computer simulations vicarious experiences. We suggest that this is because 
the populace views science as proceeding primarily by testing theories 
against experimental evidence. The belief has roots in science methodology 
(popper, 1959; Lakatos, 1978) and appears as the "scientific method" in text
books, which are used much more commonly in schools than are computer 
models. 

Nature of Models 

We began and ended this study by conducting the Nature of Models inter
view with individual students in a clinical interview setting to assess their 
conceptions of models and of how models are used in science. The full Na
ture of Models interview is described in detail elsewhere (Grosslight et al. , 
1991) and so is only briefly described here. 

The interview begins by asking students general questions about the na
ture and purpose of science. What is the reason for doing science? How do 
you think scientists do that? Students are then given a series of questions 
about models, which they answer in their own words. Are there different 
kinds of models? What are models for? Can you ever change a model? Next, 
students are presented with four examples and asked if these are models. We 
presented students with a toy airplane, a graphic depicting a house, a map 
of the local public transportation rail, and a diagram of the earth's hydro
geologie cycle. Finally the students are asked: Can you use models in science? 
Do scientists make up models? 

By conducting the interview before and after the classroom experiment 
and guided inquiry, we were able to gauge whether the students' knowledge 
of models improved as a result of our interactions with them. The students' 
views did not change; they maintained a simple copy epistemology. Students 
with a copy epistemology express the view that a model is a copy, albeit 
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sometimes smaller, of the original. Models are merely physical copies of real
ity that are intended to "show off stuff." This is to be compared to the more 
expert view that models are constructed re-presentations that may embody 
different theoretical perspectives. Not surprisingly, the copy view is consis
tent with the way most students presently come into contact with models
what they see in science museums, in science classroom demonstrations, or 
in science education manipulables. 

Reviewing the videotapes of the interview induces discomfort. The stu
dents sometimes sit with their hands or arms folded, or hunched over, and 
they often glance at the hands and face of the interviewer, as though look
ing for clues that will help them answer the questions. Granted, it is not the 
purpose of the interviews to make the participants comfortable. Yet, even 
though an interviewer may try to act relaxed and take actions such as sitting 
on the same side of the table as the student, the design of the interview for a 
one-way flow of information creates an environment that seems artificial to 
all participants throush the entire process. 

The following dialogue is indicative of the discourse style that is typical of 
the interview. 

R: How about in science. Do you think scientists can have more than one model for 
the same thing? 

S: I think so. 

R: Could he have different models for the same thing? 

S: I'm pretty sure he could. 

R: How could they be different? 

S: I don't know. 

Participating in the interview also feels far from being natural. The dis
course style is that of repeating blocks of [I-R], the researcher Initiating a 
question to which the student Responds. It is not clear to us whether the 
responses of the student represent minimal knowledge of models or the stu
dent's attempt to minimize the chances of giving a wrong answer to an au
thority figure. Similar strategies are employed in classroom contexts. In Talk
ing Science, Lemke (1990) notes that in classroom IRE (triadic) dialogue, 
students often call out answers to questions posed by a teacher, before the 
teacher selects them to give an answer. Doing so "tends to reduce anxiety 
about speaking formally to the class and being on the spot if you're wrong." 

Our interviews with these middle-school students are consistent with 
Grosslight's findings. Yet the students were able to apply system and com
puter models, much as scientists use models, during guided inquiry. Without 
being prompted, they engaged in discussion about the validity of the causal 
model with which they were working, and they engaged in testing it. These 
students were also able to use the expert-built Cardiovascular model to in
vestigate situations where they had difficulty in obtaining direct data. 
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The activity system in which a student participates-with the associated 
resources, routines, expectations, and adult support-shapes his or her ac
tions. An interview constitutes a relatively barren activity system. There are 
no tools to support student thinking, and the design prohibits the adult par
ticipation that might suggest possibilities for the students to pursue. Conse
quently, the interview should not be viewed as a measure of students' ability 
to engage in modeling in other contexts. 

Discussion 

We have conducted an exploratory investigation of science student learning 
mediated by expert-constructed computer models and student-constructed 
conceptual models across several situations. We have looked carefully at the 
interdependence among tT).otives, technological artifacts, and social interac
tions. We see these dimensions coming to play through influencing what stu
dents are able to do and what they know. Student interest in learning, the ac
tions afforded by the computer tools, and social conventions come together 
as a system of interacting, interdependent elements, shaped by a history of 
participating in other systems of activity, and with tools shaped by a history 
of scientific endeavor. 

In the guided inquiry experiment, where the goal of investigation was ne
gotiated with the students, we were able to achieve the most powerful re
sults by creating a system of activity that nurtured student investigation. Al
though the students did not recognize explicitly, nor could they articulate, 
the epistemological status of models, as in the Nature of Models interview, 
they were able to build and use models in effective and sophisticated ways. 
It is an untested hypothesis that if students could better understand the na
ture of models, then they would be able to benefit even more from interact
ing with computer models. 

In contrast, students had difficulty forming coherent goals for investigation 
alone, as in the open-ended investigations. Furthermore, when adults pro
vided complete goals for students, as in the classroom experiments, the stu
dents participated marginally in an authority-based and teacher-centered 
structure. Consequently, the classroom provided students with experience in 
controlling variables, a skill understood to be important by many science ed
ucators, yet the students essentially did what they were told. When left to 
their own, as in the open-ended investigations, they were unable to demon
strate these skills completely, never having practiced them in an authentic 
context. 

Our results indicate that the ability to develop a causal model and to use 
a scientific model did not arise from the talent of any individual student. 
Rather, the determination of causal model validity occurred in the interaction 
between the students and adults within a system of activity that the adults 
helped to establish. The system enabled students to make the moves they 
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were unable to make in the classroom activity or to demonstrate as individu
als in the interviews. The open-ended interviews and the Nature of Models in
terviews provide data about what the students knew and could do alone
but these were interview situations, not settings in which the students were 
truly supported in pursuing their own goals. 

Although this phenomenon is captured in the core idea of zone of proxi
mal development (or zoped), we have attempted to explicate how one 
defines and establishes a zoped as a system of activity. Scientific inquiry in the 
classroom is not the same as "discovery learning." In our example of guided 
inquiry, the goals, the questions, and the means to pursue them are the 
purview of neither the adult nor the student alone but, rather, are effectively 
established in the nexus of social interaction and the tools available. Adult in
tervention influenced the students to test their ideas with experiments and 
computer models-forms of empirical testing and rational evaluation in our 
eyes, though certainly not in the eyes of the students. 

When disagreemept arose from different expressed understandings, or so
cio-cognitive dissonance, the adults did not use their authority to suppress it 
but instead sought to explore and resolve those differences through scientific 
inquiry. Although cognitive conflict is a term associated with Piaget, we pre
fer socio-cognitive dissonance, because it emphasizes reconciliation in the 
social plane, rather than on an individual level. In addition, conflict carries an 
antagonistic meaning, when indeed we see the respectful consideration of 
differences in understanding as a useful precondition for engaging in inquiry. 

The replacement of "authority based on power" with "authority based on 
competence" in guided inquiry affords essential elements of Piaget's theory 
of peer interaction in synergy with Vygotsky's apprenticeship learning model. 

An important adult contribution in guided inquiry was the introduction to 
the students of causal diagramming. Causal diagramming provided artifacts 
that facilitated and mediated discussion. The artifacts included not only the 
drawings themselves but also the conventions for drawing them - a way of 
thinking. The generative capacity of causal diagramming, along with the ease 
with which it is learned, helped students formulate and articulate their be
liefs, which then became the focal point for investigation. 

Although the Explorer expert-built Cardiovascular model did not offer the 
same generative capacity as causal diagramming, it was sufficient for test
ing ideas as a form of rational evaluation. This tool does not support the 
ideation that we have found can engender socio-cognitive dissonance and 
that can subsequently lead to guided scientific inquiry. As an artifact that 
manifests cultural knowledge, however, it can be valued for the information 
that it contains and for the ways in which information may be sought inter
actively. Students may check their ideas against what is known, much as a sci
entist does when researching other scientists' work, or as modem computa
tional scientists do in playing out the consequences of a model of a complex 
phenomenon. 

Students did not attempt to evaluate the computer model per se. Why 
should they? We, as researchers, made the computer model available when 
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the experiment provided unsatisfactory results. The authority of the model, 
like the authority of researchers as adults, was perhaps historically unques
tionable. Even as Anne's prediction disagreed with the model, she did not 
wish to test the computer model itself. The transfer of status, expectations, 
routines, and scripts from the activity system of schooling, as seen in the 
Mr. Driscoll dialogue, can interfere with the emergence of new standards of 
activity. These rules for participation and their connections to authority and 
the use of language in schools are described in detail by Lemke (1990). 

Furthermore, despite the students' experience in modeling, it must be rec
ognized that they did not learn about modeling processes, as indicated in the 
concluding Nature of Models interview. This is not surprising. The adults un
successfully attempted to pay attention to this topic during the guided in
quiry phase, but the students were focused on the differences between their 
predictions and were not responsive. We wish to pursue Grosslight's con
tention that students need more experience discussing the role of models in 
scientific inquiry. 

Conclusions 

This chapter has presented an exploratory study of science student learning 
with modeling tools. We provide evidence that meaningful building of mod
els, and use of expert-built science computer models for student learning, 
can occur during guided inquiry, despite contrary evidence in other situa
tions. We envision the design of activities and social interactions using com
puter models, together with the design of the computer models per se, for 
learning science as a system. The system forms a set of conditions and capa
bilities that we have observed to be useful in stimulating scientific inquiry 
with middle-school students. Inquiry learning with scientific models, along 
with assessment of that learning, includes the negotiation of learning goals 
and the distribution of cognitive effort. Like Cole and others (LCHC, 1989), 
we have pursued learning as "complex activity ... in meaningful contexts." 

The complex activity and meaningful contexts emerge in a system in 
which motive is negotiated. Students practice scientific inquiry when the 
questions and goals emanate from their efforts, as guided and supported by 
adults. We have found that facilitating student ideation, which we did in this 
study with causal diagrams, helps students express their personal knowledge 
of the system being studied. Because knowledge and prior relevant experi
ences differ from one student to the next, individual creations are distinct, 
and socio-cognitive dissonance emerges. These differences in understanding 
provide strong motives for students to engage in inquiry about the topic, if 
that activity is part of an established system of expectations and routines that 
provides the requisite cognitive and affective support. 

The role of adults, or of more expert participants generally, is to recognize 
promising socio-cognitive dissonance; nurture it; suggest methods, ap
proaches, and appropriate tools to resolve it; and facilitate an inquisitive, cre-
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ative, and respectful atmosphere. Adults can guide discussion to ensure that 
it is meaningful, is purposeful, and leads to significant learning, even if not to 
resolution of the problem. Several approaches, such as "Convergent concep
tual change" (Rochelle, 1992), "sense-making" (Newman et al., 1994), and 
"paradox resolution" (Horwitz and Barowy, 1994), suggest this direction. De
spite students' admirable performance during our guided inquiry sessions, 
the notable absence of expressed understanding about models and of any sys
tematic treatment of models as provisional re-presentations, indicates that 
adults would also do well to address the nature of models in their discussions 
with students. 

What is the point? The performance of the students during guided inquiry 
stands in stark contrast to their performance in the classroom experiment, 
the latter being closer to most practices of school science. It should be noted, 
however, that we have observed classroom interactions similar to any of 
those we have presented. In our experience, much work is to be done. Com
puter tools to supp<;>rt student inquiry should be created not alone, but to
gether with contexts and activities that are meaningful to the students. Sara
son (1972, 1996, 1997) frames the objective generally as the "creation of 
settings." That some essential precursors are the negotiation of goals and the 
distribution of cognition means that the latter cannot be done for classrooms 
but must include students and teachers. 

Furthermore, engaging in the iterative constructing of models, as scientists 
do, is contrary to the traditional notion of curricula as material to be deliv
ered. Indeed, we hope we have presented compelling evidence of how tra
ditional curricula can militate against student involvement in inquiry. 

Creating settings such as guided inquiry will require significant changes in 
science education practice and will create major challenges. We can begin by 
convincing all involved that these processes are legitimate. We can increase 
awareness and understanding of many matters, including how to foster sci
entific inquiry through modeling. Indeed, we can all better understand what 
scientific inquiry itself really is. 
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Alternative Approaches 
to Using Modeling and 
Simulation Tools for 
Teaching Science 

Barbara Y. Wh ite 

Christina V. Schwarz 

Introduction 

Computer modeling and simulation software are transforming the way sci
ence and engineering are done. They make possible analytic and conceptual 
tools that allow scientists to employ new forms of analysis, engage in new 
kinds of thought experiments, and create new types of theories. In this chap
ter, we illustrate how such computer-based tools can also transform the prac
tice of science education. We describe how modeling and simulation tools, 
such as those embodied in our ThinkerTools software, facilitate a variety of 
instructional approaches that attempt to realize the increasingly ambitious 
and varied goals being advocated for modem science education. These goals 
include engaging young students in authentic scientific inquiry in which they 
learn about the nature of scientific models and the processes of modeling. 
They also include enabling students to learn abstract and complex subject 
matter at increasingly younger ages. 

Over the past 20 years, we have been developing and evaluating alterna
tive, computer-enhanced approaches to science education. Our approaches 
have evolved to achieve differing pedagogical goals, which have been moti
vated by changing visions of what is important in science education and the 
role that technology can play in this reform process. In what follows, we pre
sent three successive versions of our ThinkerTools software and curricula 
in which the emphasis shifts from developing students' understanding of the 
subject matter to enhancing their inquiry expertise and finally to refining 
their expertise in modeling. 
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Early ThinkerTools Research: Intermediate Causal 
Models, Conceptual Change, and a Middle-Out 
Approach to Science Education 

The focus in our early research was primarily on conceptual change and on 
enabling young students to acquire relatively abstract and complex theories 
of force and motion phenomena (Horwitz, 1989; White, 1981, 1984, 1993a; 
White and Horwitz, 1988). Our goal was to counteract the commonly held 
view that learning physics is beyond the reach of most students. We argued 
that students' difficulties in understanding physics arise from deficiencies in 
the traditional definition of knowing physics, with its focus on algebraic 
equations and solving quantitative problems, and from deficiencies in tradi
tional approaches to teaching science in which students listen to lectures and 
solve quantitative problems for homework. We further argued that recon
ceptualizing what it means to understand physics, as well as how it is taught, 
can help make the subject accessible and interesting to a wide range of stu
dents, including younger and lower-achieving students. 

Computer models and simulations were important in our reconceptualiza
tion process. What the first author calls "intermediate causal models" played 
a central role (White, 1989, 1993b). Intermediate causal models can be char
acterized as applying the laws of physics, in causal form, to predict what hap
pens as events occur. They employ various visual representations to depict 
the resulting sequence of behaviors at an intermediate level of abstraction. 
This type of model can be embedded in a computer simulation that can ex
plain its reasoning verbally (using synthesized speech) and can depict its 
behavior visually and dynamically. Intermediate causal models can also be 
internalized by students in the form of mental or conceptual models. Acqui
sition of such conceptual models enables students to step through time and 
events while using laws and representations to predict and explain what will 
occur. 

Figure 10.1 shows an intermediate causal model from the domain of force 
and motion. This model is useful for predicting how forces affect the motion 
of an object in a one-dimensional world with no friction. It "reasons" by step
ping through time and analyzing what forces are acting on the object. To do 
so, it uses the laws of physics that have been shown to determine the changes 
in velocity produced by those forces. The model also uses various diagram
matic representations (as illustrated in Figure 10.1) to encode these changes 
in velocity. 

We find that intermediate causal models provide an excellent vehicle for 
reforming our conception of what it means to understand and teach science. 
They enable us to change our view of scientific understanding by providing 
formal models of reasoning processes, such as causal discrete-state reason
ing, and representational forms, such as diagrams. These can playa crucial 
role in scientific theorizing, but they have not previously been accorded the 
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Basic Force-and-Motion Principle: 

When no impulses are applied to an object, its speed stays the 
same, because there is nothing to make it change. But whenever 
an impulse is applied, it causes the object to change speed. 

Prediction Law: 

If the impulse is in the same direction in which the object is moving, 
it adds 1 to its speed (+ 1); 
An impulse applied in the opposite direction subtracts 1 from its speed (-1). 

A Model-Based Prediction: 

++ .... . ~. 
Start 

• 
++ ..- . .... 

Stop 

FIGURE 10.1 A model-based prediction of the effects of a sequence of four impulses 
on an object's motion. The "dotprints" show the position of the object as time passes. 
The arrows indicate the direction and timing of each impulse. The "datacross" is used 
to calculate and show the effect that each impulse has on the object's velocity. 

respect they deserve. Intermediate causal models can thus serve as target 
conceptual models embodying an important type of expertise that students 
need to acquire. They can also change our view of science education, be
cause enabling students to create and experiment with computer simulations 
of this type allows for alternative approaches to science education that have 
the potential to make difficult subjects, such as physics, interesting and ac
cessible to a wide range of students. 

We believed that focusing instruction on intermediate causal models in
stead of algebraic abstractions or real-world experiments has a number of ad
vantages. First, even young children can make sense of such models, because 
it is a small step from this form of representation and reasoning to how one 
naturally reasons about real-world phenomena. Furthermore, intermediate 
causal models provide an efficient starting point for instruction, because it is 
also a relatively small step from this form of representation and reasoning to 
algebraic abstractions and constraint-based reasoning, which are useful for 
solving many types of problems. Working with intermediate causal models 
thus provides a bridge between real-world phenomena and mathematical for
malisms. In addition, they are useful in their own right and are particularly 
good for predicting and explaining real-world phenomena. 

Accordingly, we developed an instructional approach in which the em
phasis is on experimenting with computer models with the goal of creat
ing explicit, written-down conceptual models (like the one shown in Fig
ure 10.1). As illustrated in Figure 10.2, this can be characterized as a "middle-
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Algebraic Equations 

F = rna 

Intermediate Causal Models 

+ 
••••• 

• r --
Real-World Phenomena 

FIGURE 10.2 Casual models that portray sequences of events at an intermediate level 
of abstraction provide a bridge between real-world phenomena and abstract mathe
matical formalisms. 

out" approach to science education, in which students start by working with 
and understanding intermediate causal models and then connect these mod
els to real-world phenomena and to more abstract formalisms. This middle
out approach places far less emphasis than traditional instruction on doing 
real-world experiments or solving quantitative problems. 

The ThinkerTools Computer Microworlds 
In our early ThinkerTools curricula, the children's primary conceptual tools 
are a sequence of interactive microworlds that embody increasingly sophis
ticated models for how forces affect motion. The children interact with this 
sequence of microworlds, which incorporates intermediate causal models 
that gradually increase in complexity. They begin with a simple one-dimen
sional world in which there is no friction or gravity. Working with this mi
croworld, the children discover that they can use scalar arithmetic to model 
force-and-motion phenomena. They then progress to a two-dimensional 
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FIGURE 10.3 This game helps students develop a conceptual model of force-and
motion phenomena that incorporates a simple form of vector addition. The screen 
shot illustrates the representations of motion employed within the microworlds (that 
is, the moving dot and its dotprints, arrows, and datacross). 

world in which they work toward creating a conceptual model that incorpo
rates simple vector addition. Next, they go to a one-dimensional world with 
gravity. By doing a limit analysis, they learn to model continuous forces, such 
as gravity, as a series of small impulses closely spaced in time. Finally, they 
progress to a two-dimensional world in which gravity is acting. Working with 
this microworld, the children use their conceptual model to analyze and ex
plain the trajectories of objects. This involves stepping through time and ap
plying their laws and representations to predict and encode what will occur. 

In working with the microworlds, children are frequently engaged in 
game-like activities and experiments in which they try to control the motion 
of an object by applying forces to it. (This object is introduced as a generic 
object called a dot, which is the pictorial equivalent of a variable; students 
can map it onto different objects, such as spaceships or billiard balls at dif
ferent times.) The activity shown in Figure 10.3, for example, is set in the 
context of a two-dimensional microworld in which there is no friction or 
gravity. In this game, students apply impulses to the dot so that it navigates 
the track and stops on the target. (Impulses are forces that act for a limited 
time, like a hit or a kick.) 
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The ThinkerTools microworlds incorporate multiple levels of abstraction. 
For example, there is the dot itself, which moves dynamically around on the 
screen. A more abstract representation of the dot's motion is provided by 
"wakes" or "dotprints." These are little dots that the big dot leaves behind at 
fixed time intervals. They show, by their position and spacing, where the 
dot has been and how fast it was going. At a higher level of abstraction, the 
students are encouraged to think of the dot's motion in terms of its compo
nents-that is, its speed in the horizontal dimension and its speed in the ver
tical dimension. (Components are useful for reasoning about complex situa
tions, such as analyzing trajectories.) The components of the dot's velocity 
are illustrated dynamically by arrows that are constantly pointed at the dot. 
They are represented more abstractly by a vector representation we call a 
datacross (shown at the top left of Figure 10.3), which indicates the magni
tude of horizontal and vertical velocities. 

In the early stages of working with these microworlds, students typi
cally focus on the behavior of the dot and ignore the other representations. 
The teacher then gives them tasks to illustrate the utility of the more abstract 
representations. For example, in one such activity the dot is off the screen, 
and the only way the students can determine its velocity is to look at its data
cross and see what effect the impulses they apply have on its velocity. By 
focusing on the datacross and applying impulses, the students can bring the 
dot back onto the screen and stop it on the target "X." Through activities 
like this, students become familiar with the power and utility of such abstract 
representations. 

The Middle-Out Instructional Approach 
In creating the original ThinkerTools curriculum, we developed a four-phase 
instructional cycle that is repeated with each increasingly complex mi
croworld. The four phases in this cycle correspond to cognitive stages in the 
development of subject-matter expertise: motivation, conceptual evolution, 
formalization, and transfer. Students start by engaging in thought experi
ments to motivate their explorations. They then work with a given mi
croworld and try to develop a conceptual understanding of it. Next, they for
malize their understanding by creating an explicit rule or model. Then they 
transfer its use to several real-world situations by generating model-based pre
dictions and explanations for various phenomena. By applying this cycle in 
conjunction with the microworlds, the curriculum embodies a middle-out ap
proach to science education. 

In the first phase of the instructional cycle, the motivation phase, the chil
dren are asked to do thought experiments in which they imagine what will 
happen as forces are applied to an object. For instance, in conjunction with 
the first microworld (which is a one-dimensional world with no friction or 
gravity), they are asked to predict what will happen in the following situation: 

There is an object resting on a table. The table is very smooth, so there is no friction. 
A blast of air is applied to the object. Then, as it is moving along, a blast of air, the 
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same size as the first, is applied in the opposite direction. What will the second blast 
of air do to the motion of the object? 

The teacher simply listens to the children's answers and reasoning without 
commenting on their correctness or incorrectness. Some say that the second 
blast of air will cause the object to turn around and go in the opposite direc
tion. Others say that the second blast of air cancels the first and the object 
will stop. Still others say that it simply slows the object down but that the ob
ject keeps moving in the original direction. The children thus discover that 
different people may have different hypotheses about what will happen in 
such situations. These disagreements motivate them to find out who has the 
correct beliefs about how forces affect motion. 

The children then go on to the second phase of the instructional cycle, the 
evolution phase, in which they work in pairs with the computer games and 
inquiry activities. The games are designed to help them to determine the laws 
that are governing the behavior of the microworld (White, 1984). The chil
dren are asked to predict what they think is going to happen within this 
world. Then, by playing the games and doing the experiments, they see what 
actually happens. On the basis of these experiences, they write down laws 
that they think govern this microworld. 

To facilitate this process, the children then proceed to the third phase of 
the instructional cycle, the formalization phase. In this phase, they work 
together in larger groups to evaluate candidate laws for describing the be
havior of the microworld. These may include rules such as "Whenever you 
apply an impulse to the dot, it changes speed" or "Whenever you give the 
dot an impulse to the left, it slows down." Of course, the proposed laws vary 
in accuracy, preciSion, and range of applicability. The children's task is to 
decide which of the laws are right and which are wrong. For the laws they 
believe to be wrong, they have to prove to the rest of the class that those 
laws are wrong and explain why. For the laws they believe to be correct, they 
have to decide which are the most useful and defend their choice. Through 
such activities, the children come to realize that a useful scientific law is 
something that makes precise predictions that apply across a wide range of 
circumstances. 

In the fourth phase of the instructional cycle, the transfer phase, the 
teacher introduces the real world. In this phase, the children do activities in 
which they try to determine whether the conceptual model they have devel
oped is accurate and useful for explaining what happens in the everyday 
world. In these activities, students are asked to "step through time" and use 
their laws and representations to predict and explain what will happen to an 
object's velocity (as illustrated in the example presented in Figure 10.1). 
They then experiment with the real world to see what actually happens. In
eVitably, they discover that their conceptual model has limitations. For ex
ample, their model may predict that an object maintains a constant velocity 
after it has been hit, but in the real-world experiment, they observe that the 
object slows down. To resolve such discrepancies, they carry out additional 
modeling activities, such as going back to the microworld and putting in fric-
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tion. They can then see that a microworld with friction behaves according to 
some of their original predictions and is a better model for many real-world 
situations. In this way, the children's conceptions of force and motion phe
nomena evolve. 

This four-phase instructional cycle is repeated with each new microworld. 
Each time it is repeated, more of the inquiry process is turned over to the stu
dents. For example, in the early microworlds they evaluate laws that we have 
created, but in the later microworlds they have to create and evaluate their 
own laws. 

Instructional Trials of the Middle-Out Approach 
In order to determine the effectiveness of this approach, we arranged for this 
instructional cycle, centered on the four microworlds, to be implemented 
in sixth-grade, public-school classes by a teacher who did not know any 
physics and had never before used computers in her classroom. What were 
the results? 

At the end of the ThinkerTools curriculum, most of the children success
fully answered questions that assessed their understanding of the alternative 
representations of motion and their knowledge of the laws of the micro
worlds. To assess their understanding of the representations, they were asked 
to choose which pattern of dotprints corresponds to statements such as "the 
dot is accelerating," and they were asked to translate between the datacross 
and dotprint representations ("Draw the datacross that goes with this dot
print pattern"). To assess their knowledge of the laws, they were asked to 
predict the path of the dot (by drawing its dotprint pattern) under various 
conditions (as it was given impulses in microworlds with and without friction 
or with and without gravity). On a test consisting of such questions, the chil
dren averaged 77% correct with a standard deviation of 19%. The evidence 
thus indicates that most understood the laws and representations used in the 
microworld. 

Could the children take their conceptual model and apply it to real-world 
situations? To assess this, we constructed a test consisting of problems, such 
as the one shown in Figure 10.4, that involve predicting what will happen in 
simple, real-world situations. On these real-world transfer questions, children 
who had taken the ThinkerTools curriculum performed dramatically better 
than a control group of their peers (65% compared with 44%). They also per
formed significantly better than high school physics students in the same 
school system who were taught force and motion with a traditional physics 
text (and who averaged only 58% correct). This was a surprising finding, be
cause the high school physics students not only were older but were also 
a much more select group (few students choose to take physics in high 
school). 

How did the children reason when they answered such problems? To 
find out, we interviewed some of them at the conclusion of the program. As 
an example, consider what occurred when we asked one student about 
throwing a ball upward: "Imagine that we throw a ball straight up into the air. 
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Imagine that you kick a ball horizontally ( ~ ) off a cliff. 
Drawn below are three paths that someone might think the 
ball would take as it falls to the ground. 

A B 

Circle the path you think is correct: A B C 

C 

Explain the reasons for your choice: _________________ _ 

FIGURE 10.4 A sample problem from a physics test. 

Describe what happens to the motion of the ball, and then explain why that 
happens." First of all, the student described the motion of the ball in a step
by-step manner: "It will start going up at the speed you threw it up, and then 
it will gradually slow down, and there will be a second when it is stopped in 
the air, and then it will start coming down, and it will gradually speed up." 
Next, he gave a causal account of those events, using the conceptual model 
that he had developed: "Because going up, the gravity keeps pulling, adding 
another impulse down, and that will eventually stop the ball, and then going 
down it keeps adding another impulse down which makes it go faster and fas
ter." This quote demonstrates that he was able to do a causal, step-by-step 
analysis of what would happen, and he showed no evidence of any of the 
common misconceptions about force and motion. 

We found that many students could also engage in a more precise and ab
stract form of reasoning. For example, we asked the students to draw and ex
plain what would happen if the following sequence of impulses were applied 
to an object in a frictionless environment: right, down, left, and up. One stu
dent drew the diagram shown in Figure 10.5. Each time an impulse was ap
plied, she drew a datacross to indicate the object's new velocity. Then, on the 
basis of the velocity shown in the datacross, she determined the position of 
the object's next dotprint. In this way, she stepped through time and ana
lyzed events to determine the object's velocity and position. 

Thus classroom observations, interviews, and the results of our physics 
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FIGURE 10.5 An example of a diagram drawn by a student to portray how a sequence 
of impulses would affect an object's motion. 

transfer test reveal that many students were indeed able to generalize the use 
of conceptual models derived in the microworld contexts to a variety of 
simple real-world contexts. In the formalization phase of the instructional cy
cle, they had successfully abstracted what they learned from the computer 
microworld into a set of laws. In the transfer phase, these students had 
learned how to map the laws onto different real-world problem-solving situ
ations. Students also saw how these laws had to be refined as they were gen
eralized to increasingly complex circumstances, through the increasingly 
complex progression of microworlds. 

Problems in the Development of Inquiry Expertise 

When we examined what the students did when they formulated laws and 
designed experiments for themselves, we found limits to their scientific in
quiry skills. For instance, students were asked to experiment by putting dif
ferent amounts of friction into the first microworld to determine what would 
happen. We expected groups of students to come up with simple, qualitative 
laws such as "The more friction you put in, the faster the dot slows down" or 
"The faster the dot goes, the more friction slows it down." They did indeed 
derive such laws. One group of students surprised us, however, by discover
ing a law that we had not discovered ourselves (see Horwitz, 1989). We call 
it the "linear friction law:" In the microworld, the effect of friction is linearly 
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proportional to the speed with which the object is moving. The consequence 
is that when students apply a sequence of impulses to the dot, it does not 
matter whether they apply them in quick succession or widely spaced in 
time; in either case, the dot will come to rest at the same point. The students 
discovered this fact, but they did not fully explore its implications (such as 
whether it means the dot can stop only at certain locations on the screen), 
nor did they go on to investigate whether it is an accurate model of real-world 
friction (such as that which affects rolling balls and sliding hockey pucks). 

As a further example of limited inquiry skills, in the fourth unit on analyz
ing trajectories, the students were asked to design an educational experi
ment. They had already determined the principles that affect trajectories and 
were asked to develop a game-like experiment, using objects such as ping
pong balls, blowguns, and buckets, that would help someone else learn 
about trajectories. The activities they created were, for the most part, enter
taining games, not good instructional experiments. Also, when evaluating 
each other's activitie~ at the end of the period, their criteria for a good ac
tivity had more to do with its being enjoyable than with whether it was 
instructive. 

If one reflects on the instructional approach, these limitations in the stu
dents' inquiry skills are understandable. The students were never given ex
amples of good and bad experiments, as they were with laws. In fact, their 
primary perception of what they were doing in the microworlds was "play
ing fun games," not doing experiments. This orientation was revealed in their 
answers to the opinion survey taken at the end of the course. For example, 
in response to the question "What did you like about the course?" many stu
dents said, "I learned physics while playing fun games." In response to the 
question "How could the course be improved?" many said, "More games and 
less talk." Further, students were never explicitly told that the four phases of 
the instructional cycle correspond to steps in the scientific method or that 
they represent a particular kind of systematic inquiry. For instance, the stu
dents who discovered the linear friction law did not investigate the implica
tions or generality of their law. Although they had practiced generalizing laws 
in the transfer phase of the instructional cycle, it was not made explicit to 
them that they were testing the explanatory power of a law and that the gen
eralization process plays a crucial role in scientific discovery. Therefore, it is 
perhaps not surprising that the students did not spontaneously explore the 
generality of laws they discovered. 

Recent ThinkerTools Research: Scientific Inquiry, 
Modeling, and Metacognition-Creating a 
Classroom Research Community 

Such problems in the development ofthe students' inquiry expertise, as well 
as an increasing focus on inquiry skills within both the cognitive science and 
the science education communities, led us toward an increased emphasis 
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on enabling students to learn about inquiry goals, processes, and strategies 
(Frederiksen and White, 1998; White and Frederiksen, 1998). We worked 
with teachers from urban classrooms to develop new educational tools and 
instructional approaches and have been investigating whether they do in
deed make physics and scientific inquiry accessible to all students. TIlls effect 
has included research on the use of various metacognitive tools and activities 
designed to enable students to create explicit models of both subject-matter 
and inquiry expertise, as well as to learn how to monitor and reflect on their 
inquiry processes. 

The ThinkerTools Modeling and Simulation Tools 
In contrast to the earlier version of the TIlinkerTools software, in which stu
dents could only interact with prepared force-and-motion games and experi
ments, the new version enables students to create their own Newtonian 
microworlds, games, and experiments (see Figure 10.6). Using simple draw
ing tools, students can construct and run computer simulations. Objects, 
which are again called dots (the large circle shown in Figure 10.6), and bar
riers can be placed on the screen. Students can define and change the prop-
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FIGURE 10.6 The ThinkerTools software provides a modeling and inquiry tool for cre
ating and experimenting with simulations of force-and-motion phenomena. 
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erties of any object, such as its mass, elasticity (bouncy or fragile), and ve
locity. They can then apply impulses to the object to change its velocity by 
using the keyboard or a joystick, as in a video game. Students can thus create 
and experiment with a "dot-impulse model," and they can discover, for ex
ample, that when one applies an impulse in the same direction that the dot 
is moving, it increases the dot's velocity by 1 unit of speed. In this way, they 
can use simulations to discover the laws of physics and their implications. 

To facilitate this inquiry process, the software includes measurement tools 
that allow students to make accurate observations of distances, times, and 
velocities easily. It also includes graphical representations of variables. For 
example, as in the previous version of the software, the dot leaves behind, 
as it moves, "dotprints" that show how far it moved in each second, and 
the "datacross" again shows the dot's x and y velocity components. In this 
version, students can also have the software keep a table or graph to record, 
for example, the velocity of the dot. And analytic tools such as "stepping 
through time" allow students to pause the simulation and to proceed time 
step by time step so that they can better see and analyze what is happening 
to the motion of the dot. In this mode, the simulation runs for a small amount 
of time, leaves one dotprint on the screen, and then pauses again. These an
alytic tools and graphical representations help students determine the un
derlying laws of motion. They can also be incorporated within the students' 
conceptual model to represent and reason about what might happen in suc
cessive time steps. 

This new version of the software enables students to create experimental 
situations that are difficult or impossible to create in the real world. For ex
ample, they can turn friction and gravity on or off and can select different fric
tion laws (sliding friction or gas/fluid friction). They can also vary the amount 
of friction or gravity to see what happens. Such experimental manipulations, 
in which students dramatically alter the parameters of the simulation, make 
it possible for them to use inquiry strategies, such as looking at extreme 
cases, that are hard to employ in real-world inquiry. This type of inquiry en
ables students to see more readily the behavioral implications of the laws of 
physics and to discover the underlying principles. 

Instructional Approaches for Inquiry and Reflection 

To embody our increased emphasis on inquiry, we developed the Thinker
Tools Inquiry Curriculum, which revolves around the new version of the 
ThinkerTools software. This curriculum employs a constructivist approach 
that focuses on inquiry and modeling. It is aimed at developing students' 
metacognitive knowledge-specifically, their knowledge about the nature of 
scientific laws and models, their knowledge about the processes of modeling 
and inquiry, and their ability to monitor and reflect on these processes. The 
pedagogical strategies include having students make their conceptual models 
and inquiry processes explicit, supplying instructional materials to scaffold 
their inquiry process, and teaching them methods for monitoring and reflect
ing on their progress. 
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Scaffolded Inquiry 

The ThinkerTools Inquiry Curriculum is centered on a generic inquiry cycle, 
shown in Figure 10.7, derived from our earlier instructional cycle. In contrast 
to our earlier approach, this cycle is made explicit to students and is pre
sented as a sequence of goals to be pursued: question, predict, experiment, 
model, and apply. The students start by formulating a research question. 
They then generate alternative hypotheses related to their question. Next, 
they design and carry out experiments in which they try to determine which 
of their hypotheses, if any, is accurate. They carry out these experiments in 
the context of both the computer simulation and the real world. After the 
students have completed their experiments, they analyze their data and try 
to formulate a model to characterize their findings. (An example of such a 
model is shown in Figure 10.1.) Once the students have developed their 
model, they try to apply it to different real-world situations in order to inves
tigate its utility and its limitations. Determining the limitations of their con
ceptual model raises new research questions, and the students begin the in
quiry cycle again. 

The inquiry cycle thus starts with formulating a research question, which 
is perhaps the single most difficult step in scientific research. In the Thinker
Tools Inquiry Curriculum, the process of formulating a research question is 
heavily scaffolded. The teacher begins the curriculum by tossing a bean bag 
around the room and asking the students to describe all of the factors that af
fect its motion. In this way, they see that this apparently simple motion is ac
tually very complicated. The teacher then asks the students to think about 

THE INQUIRY CYCLE 
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FIGURE 10.7 A portrayal of the scientific inquiry process, which students use to guide 
their research. 
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how they could simplify this situation. The research strategy is to start with 
simplified, idealized force-and-motion situations, such as one-dimensional 
motion in a world with no friction or gravity. Gradually they add complexity, 
such as thinking about friction, varying the mass of the object, dealing with 
two-dimensional motion, understanding gravity, and finally reasoning about 
trajectories (which is where the curriculum started with students tossing a 
bean bag around their classroom). This strategy of starting with Simplified sit
uations and gradually adding complexity is made explicit to the students. 

The inquiry cycle is repeated with each module of the curriculum. Each 
time it is repeated, the conceptual models that the students are creating in
crease in complexity. Furthermore, the curriculum scaffolds their inquiry less 

Now you will evaluate the work you just did. 

Reasoning Carefully 

A => B 
B => C 
A => C 

Reasoning Carefully. Students can reason 
appropriately and carefully using scientific concepts and 
models. For instance, they can argue whether or not a 
prediction or law that they or someone else has suggested 
fits with a scientific model. They can also show how 
experimental observations support or refute a model. 

Circle the score that you think your work deserves. 

2 
not adequate 

3 

adequate 
4 5 

exceptional 

Justify your score on the basis of your work. ________ _ 

Writing and Communicating Well 

Writing and Communicating Well. Students clearly 
express their ideas to each other or to an audience 
through writing, diagrams, and speaking. Their 
communication is clear enough to allow others to 
understand their work and reproduce their research. 

Circle the score that you think your work deserves. 

2 

not adequate 
3 

adequate 
4 5 

exceptional 

Justify your score on the basis of your work. ________ _ 

FIGURE 10.8 An example of a reflective assessment page found in the students' re
search books. This sample page is located at the end of the model phase of the in
quiry cycle. 
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and less. By the end of the curriculum, the students are engaging in inde
pendent inquiry on research topics of their own choosing. To do this, they 
follow the inquiry cycle, which provides them with a high-level goal struc
ture for guiding their research. 

Reflective Assessment 

In addition to the inquiry cycle, we introduce students to a set of criteria for 
monitoring and reflecting on their research. These include cognitively ori
ented criteria, such as "being inventive," "being systematic," and "reasoning 
carefully," as well as socially oriented criteria, such as "communicating well" 
and "teamwork." The definitions for these criteria were designed to help stu
dents understand the nature and purpose of research. The students use these 
criteria in a process we call reflective assessment in which they evaluate their 
own and each others' research (Frederiksen and Collins, 1989). For example, 
Figure 10.8 provides a sample reflective assessment page from the students' 
research books in which they use some of these criteria. In this case, "rea
soning carefully" and "communicating well" are defined for the students, 
who then rate the research they have just completed on a five-point scale. 
The students then justify their ratings by explaining why their work deserves 
those scores. 

Our hypothesis was that this reflective assessment process would help stu
dents to tmderstand better the purpose and steps of the inquiry cycle. We 
also thought that having their work constantly evaluated by themselves, their 
peers, and their teachers would be highly motivating. Moreover, this process 
encourages the students to monitor and reflect on their work continually, 
which should improve their inquiry process. We further hypothesized that 
such a metacognitive reflective assessment process would be particularly im
portant for academically disadvantaged students, because one reason why 
these students are low-achieving is that they lack metacognitive skills, such 
as monitoring and reflecting on their work. If this process is introduced and 
scaffolded as we illustrated, it should enable low-achieving students to learn 
these valuable metacognitive skills, and their performance should therefore 
be closer to that of high-achieving students. 

Instructional Trials of the ThinkerTools 
Inquiry Curriculum 

The ThinkerTools Inquiry Curriculum, revolving around the modeling soft
ware, the inquiry cycle, and the reflective assessment process, was imple
mented by three teachers in their urban classrooms. We saw these instruc
tional trials of the curriculum as an opportunity to do a controlled study on 
the value of the reflective assessment process, in particular, and on the de
velopment of metacognitive skills in general. For each of the participating 
teachers, half of his or her classes engaged in the reflective assessment pro
cess and the other half did not. Thus all of the classes did the same Thinker-
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Tools Inquiry Curriculum, but half of the classes included reflective assess
ment activities, such as that shown in Figure 10.8, whereas the control 
classes included alternative activities in which students commented on what 
they liked and what they did not like about the ThinkerTools curriculum. 

These three teachers were teaching 12 classes in grades 7 through 9. Two 
of the teachers had no prior formal physics education. They were all teach
ing in urban situations in which their class sizes averaged almost 30 students, 
two-thirds of whom were minority students, and many of whom were from 
low-SES backgrounds. In regard to the students' achievement levels on a stan
dardized achievement test (the Comprehensive Test of Basic Skills-CTBS), 
the distribution of percentile scores was almost flat, indicating that there 
were many low-, middle-, and high-achieving students, which is an ideal pop
ulation for research purposes. 

In presenting the results of these instructional trials of the ThinkerTools 
Inquiry Curriculum, we first focus on the students' learning of inquiry and 
the impact that the reflective assessment process had on that learning. Then 
we tum to the students' learning of physics. Because these findings are pre
sented in depth in White and Frederiksen (1998), we will summarize only the 
major findings here. 

The Development of Inquiry Expertise 

One of our assessments of students' scientific inquiry knowledge is an inquiry 
test that was given both before and after the ThinkerTools Inquiry Curricu
lum. In this written test, the students were asked to investigate a specific re
search question: "What is the relationship between the weight of an object 
and the effect that sliding friction has on its motion?" As a first step, the stu
dents were asked to come up with alternative, competing hypotheses with 
regard to this question. They then had to design on paper an experiment that 
would determine what actually happens. Next, they had to pretend to carry 
out their experiment. In other words, they had to do it as a thought experi
ment and make up the data they thought they would get if they actually car
ried out their experiment. Finally, they had to analyze their made-up data to 
reach a conclusion and relate this conclusion to their original, competing 
hypotheses. 

In scoring this test, the focus was entirely on the students' inquiry process. 
Whether or not the students' theories embodied the correct physics was re
garded as totally irrelevant. Figure 10.9 presents the gain scores on this test 
for both low- and high-achieving students and for students in the reflective as
sessment and control classes. First, note that students in the reflective as
sessment classes had greater gains on this inquiry test. Second, note that this 
result was particularly strong for the low-achieving students. This is the first 
piece of evidence indicating that the reflective assessment process is benefi
cial, particularly for academically disadvantaged students who get low scores 
on standardized achievement tests. 

When we examined this effect in more detail by looking at the gain score 
for each component of this test, we found that the gain scores were greatest 
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FIGURE 10.9 The mean gain scores on the inquiry test for students in the reflective as
sessment and control classes, plotted as a function of their achievement level. 

for the more difficult aspects of the test: making up results, analyzing those 
made-up results, and relating them to the original hypotheses. In fact, the 
gain scores were greatest on this test for an attribute we call "coherence," 
which measures the extent to which (1) the experiments that the students 
designed address their hypotheses, (2) their made-up results are related to 
their experiments, and (3) their conclusions follow from their results, and 
whether they relate their conclusions to their original hypotheses. This kind 
of overall coherence in research is, we think, a very important indication of 
sophistication in scientific inquiry. It is on this coherence measure that we 
found the greatest difference in favor of students who engaged in the reflec
tive assessment process. 

Another measure of students' inquiry expertise is the quality of their re
search projects. Students carried out two projects in this course, one about 
half-way through the curriculum and one at the end. For the sake of brevity, 
we added the scores for these two projects together, as shown in Figure 
10.10. These results indicate that students in the reflective assessment classes 
performed better on their research projects than students in the control 
classes. In addition, the reflective assessment process is particularly benefi
cial for the low-achieving students: Low-achieving students in the reflective 
assessment classes perform nearly as well as the high-achieving students. 
These findings were the same across all three teachers and all three grade 
levels. 
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FIGURE 10.10 The mean scores on their research projects for students in the reflective 
assessment and control classes, plotted as a function of their achievement level. 

The Development of Physics Expertise 

We gave the students a physics test in which they were asked to predict and 
explain how forces affect an object's motion, such as in the item shown in 
Figure 10.4. This test was given before and after the ThinkerTools curricu
lum. We found significant pre-test to post-test gains. We also found that our 
middle-school, ThinkerTools students did better on such items than did high 
school physics students who were taught via traditional approaches. When 
we analyzed the effects of the ThinkerTools curriculum on items that repre
sent near or far transfer in relation to contexts students had studied in the 
course, we found that there were significant learning effects for both the 
near-transfer and the far-transfer items. Together, these results show that one 
can teach sophisticated physics in urban, middle-school classrooms when 
one makes use of simulation tools combined with teaching and scaffolding 
the inquiry process. 

Problems in the Development of Modeling Expertise 

With regard to developing the students' understanding of modeling and in
quiry, there are some interesting challenges. We asked students the follow
ing question in an interview at the end of the curriculum: "If you did a com
puter experiment and a real-world experiment and you got different results, 
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which one would you believe and why?" We found that students have in
triguingly different theories about the relationship among the computer 
model, their own conceptual model, and the real world. For example, some 
students (roughly a third of those interviewed) believe that the computer 
model embodies the right physics, and so their job is to discover its laws in 
order to create their conceptual model and make sure that their real-world 
experiments yield the correct results. This not unreasonable view suggests 
that these students understand the basic idea of a model. 

Other students appear to lack such a modeling perspective and make state
ments such as "The computer is just a machine and so it cannot hit a ball or 
know any physics. What I really believe is the results of my real-world ex
periments because that is the only thing that is real." These students do not 
appreciate that the computer simulation is following laws embedded in a rea
soning structure (stepping through time and using laws to calculate changes 
in velocity on the basis of the forces that are acting) and that versions of these 
laws and reasoning structures are needed for their conceptual model. To de
velop this understanding, it may be necessary to introduce a more explicit 
representation of how the computer simulation works. For example, in some 
of our earlier research we created simulations that could, at the students' re
quest, illustrate such model-based reasoning by thinking out loud (White and 
Frederiksen, 1990). 

Some students, in contrast, did appear to have the desired modeling per
spective. They explained that the computer simulation is just a model and 
that it is an accurate model of the real world only if you include the right pa
rameters. For example, you need to put in air resistance when there is sig
nificant air resistance, and you need to choose the correct law for resistance, 
such as selecting gas/fluid resistance and not sliding resistance when appro
priate. Thus, if you put in the right parameters and choose the correct law for 
the computer model, then the computer model will be an accurate model of 
the real world. 

To help students develop the desired modeling perspective, we created 
yet another version of the ThinkerTools curriculum and an augmented ver
sion of the software. This new direction for our work is in line with chang
ing visions for science education: There is an increasing recognition that 
using computer-based modeling tools and learning about the process of mod
eling are important components of science education. 

Latest ThinkerTools Research: Toward a 
Better Understanding of the Nature of Scientific 
Models and the Process of Modeling 

In our latest version of the curriculum, we have focused on teaching students 
about the nature of scientific models and the process of modeling (Schwarz 
and White, 1998a, 1998b; White and Schwarz, 1997). We think this new em-
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phasis is important for a variety of reasons. First, models and the process 
of modeling are fundamentally important components of the scientific en
deavor. Thus students who take science courses should learn about these 
important processes and products of science. Second, gaining a deeper un
derstanding of the nature of science may help students develop more fruitful 
epistemological beliefs. Finally, getting students to create their own com
puter simulation models will enable them to reify, visualize, and test their 
conceptual models. This may help them to develop their conceptual models 
more effectively as well as gain a better understanding of the process of 
modeling. 

The ThinkerTools Modeling Software 

To improve students' learning about the nature of models and modeling, we 
created an enhanced version of the ThinkerTools software that allows stu
dents to modify the simulation itself; it can then violate Newtonian principles 
and obey laws that are closer to students' alternative conceptions of force 
and motion. Students modify a simulation by selecting from among alterna
tive rules that can govern the simulation's behavior. They are given three or 
four qualitative or semi-quantitative rules that govern a particular aspect of 
the simulation, such as motion in the absence of forces, the effects of friction 
on motion, or the relationship between mass and the effects of a force. An 

Model Desi n 

Options: Motion With No Force Like Friction 

The motion of an object when no forces like fri ction are acting on it : 

o Slows Dow n 
An object in metion will slow down when there is no foroe like friotion aoting on it . The objeot 
will move slower and s lowe .. . 

o Speeds Up 
An object in motion will speed up when ther .. is no force like friction aoting on it . The object will 
move fast .... and fast .. r . 

® Const ont Speed 
An object in motion will .. emain in motion at a constant s peed wh .. n ther e is no force like friction 
acting on it. 

Concel n Done D 

FIGURE 10.11 This screen shot illustrates how the software enables students to choose 
from among alternative laws of motion. 
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example of a set of such alternative laws is given in Figure 10.11 for the case 
of motion in the absence of forces. 

Once students have chosen a "model design" rule, they are asked to type 
in a causal explanation in response to the prompt "I think this is true be
cause .... " Afterwards, they can run a simulation that uses their chosen mod
eling rule(s). Watching the behavior of the simulation, students see the con
sequences of their rule(s). They can go on to create and run simulations of 
various phenomena using their chosen modeling rule(s). In this way, the soft
ware allows students to embody, run, and test the rules incorporated within 
their model. 

An additional feature of the software was created to enhance students' un
derstanding of the implications of their model and the ways in which such 
models "reason." When running in single-step mode, the computer articu
lates (using speech synthesis) the rules that are governing the motion of the 
dot. For example, suppose a student has chosen the rule "An object in mo
tion will slow down when there is no force like friction acting on it" and has 
responded to the prompt "I think this is true because ... " with "I have no 
force to keep me going." Whenever that nile is invoked by the simulation, the 
computer says at each time step, "Without a force like friction acting on me, 
I will slow down, because I have no force to keep me going." Thus, at each 
time step, the dot talks aloud about whichever rules are determining its mo
tion. We designed this feature of the software to help students learn about 
the nature of the computer model and, more specifically, to appreciate that 
the simulation is governed by rules and that it embeds those rules in a rea
soning structure that steps through time and applies those rules whenever 
their application conditions are met. 

In the ThinkerTools Modeling Curriculum, students are encouraged to 
compare their model with the Newtonian model. The Newtonian model runs 
the simulation according to Newton's laws of motion. Students are never told 
that Newton's laws are the normative models for nonrelativistic motion
only that Isaac Newton was a famous physicist of the seventeenth century 
who invented important models of force and motion. Thus, from an episte
mological standpOint, the Newtonian model is treated in the same way as the 
models students are constructing themselves. The alternative would have 
been to treat the Newtonian simulation as an accurate representation of real
world motion, which students use in validating their own models (as in the 
prior curriculum). 

We created the model-design feature of the software in this simple form for 
several reasons. According to previous research on students' intuitive con
ceptions, novices think about force-and-motion phenomena primarily in 
qualitative terms. Therefore, creating software to imitate common intuitive 
conceptions should enable students to choose rules that approximate their 
own conceptions. The pedagogical idea is that students will be able to im
plement their conceptual models directly within the simulation and will then 
be able to see the implications of their conceptual model. We also wanted to 
provide a modeling structure that would enable students to gain a better un-
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derstanding of the different types of modeling rules and the ways in which 
they are used within a model to reason about force-and-motion phenomena. 
Thus, expressing the rules in a qualitative (or semi-quantitative) form seemed 
promising as a starting point for students' conceptual development. Finally, 
keeping the modeling tool simple allows the students to concentrate on the 
models themselves; they need not spend time learning how to create a simu
lation by using a programming language such as Logo or Boxer (diSessa, 
1993; Papert, 1980; Sherin, diSessa, and Hammer, 1993). 

Instructional Approach for the 
ThinkerTools Modeling Curriculum 
In this model-design version of the ThinkerTools curriculum, students con
duct their research using a slightly revised version of the inquiry cycle, which 
includes six steps: question, hypothesize, investigate, analyze, model, and 
evaluate. As in the earlier version, they begin their research with a question, 
such as "What is the motion of a moving object when no forces like fric
tion are acting on it?" They then develop alternative hypotheses about the 
answer to this question, such as that the object would slow down, speed up, 
or travel at a constant speed. Unlike the prior version of the ThinkerTools 
curriculum, however, students then conduct only real-world experiments in 
the investigation phase of the inquiry cycle. For example, in investigating mo
tion with and without friction, the students begin by giving a plastic puck an 
impulse and measuring the object's speed over 1- and 2-meter distances. 
They then reduce the amount of friction between the puck and the floor by 
adding a balloon and stopper to the puck, in order to make it act like a mini
hovercraft, and repeat the experiment and measurements. Students must 
work especially carefully at conducting their real-world experiments and 
collecting data, because in contrast to the prior version of the curriculum, 
in which students also experimented with Newtonian computer simula
tions, real-world experimentation is at this point the students' only means of 
gathering information to create their conceptual model. (Computer experi
ments are not carried out until the modeling and evaluating phases of the 
inquiry cycle.) 

Once students have gathered their data, they analyze their results. For the 
"motion-with-no-force" topic, students analyze the differences in speed be
tween the first and second meters for the pucks with different amounts of 
friction. They then create a tentative rule to characterize their results. They 
next go to the computer and create a model by choosing a rule for the com
puter that most closely corresponds to their own rule. Then, in order to see 
the consequences of their rule, they run a simulation that uses their model. 
In the final phase of the inquiry cycle, the students evaluate their model us
ing a set of criteria for characterizing good scientific models. Does the model 
accurately portray behavior? Does it embody a plausible mechanism? We 
think that within the model-design curriculum, it is particularly important for 
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students to use such criteria to judge their models, because they are not con
strained to working with a computer simulation that embodies the accepted 
Newtonian theory. Finally, as in our earlier curriculum, students evaluate 
their models by applying them to various situations in the real world to see 
their utility as well as to investigate their limitations. 

In addition to having students use the software to create models, we in
cluded several classroom activities that attempted to make the forms of mod
els and the process of modeling explicit. For example, the curriculum was in
troduced by having students watch and discuss a videotape of modem uses 
of computer models and simulations. These included computer simulations 
of a storm and of two galaxies colliding, an impulse-based simulation of vari
ous objects in motion, and a portion of the computer-animated movie Toy 
Story. Further, in the modeling section of the inquiry cycle, we had students 
read passages about the nature of models, how the computer model works, 
and how computer models can be useful. Finally, students engaged in class
room debates about their'models. They were assigned to groups charged 
with creating arguments to support each model, taking into account the 
criteria for characterizing good models as well as considering the model's 
limitations. 

Results of Instructional Trials of the 
ThinkerTools Modeling Curriculum 

Overall, the results suggest that although the curriculum was fairly success
ful at promoting knowledge of models and modeling, as well as expertise in 
scientific inquiry, it was not as successful as the prior version of the curricu
lum at promoting conceptual understanding of Newtonian physics. 

Modeling Expertise 

Analyses of data from students in four classes indicate that most students 
developed a basic understanding of the nature of models by the end of the 
curriculum. For example, when we analyzed students' projects, we found 
that 88% of students who completed a final project included, in their proj
ect report, some sort of model that went beyond simply restating their data. 
Further, 91 % of these models were in the form of a general-purpose rule that 
often included some sort of explanation. An example of a student'S model 
is "Falling objects speed up as they fall. I think this is because gravity is al
ways applying force on everything .... This rule was the closest I could find 
to my real-world experience. Regardless of [its] mass, the height [it was] 
dropped from, or [its] weight, the object will speed up until confronted with 
an obstacle." 

A second source of evidence that students improved their understanding 
of the nature of models is obtained from written pre-tests and post-tests. In 
these modeling tests, one set of questions asks students to categorize which 
of a series of items they considered to be models. The items included a pen-
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cil, a globe, an equation, and a scientific rule. We found that there was a sig
nificant improvement in students' ability to identify correctly those items that 
could be regarded models. For example, when given the item "roughly every 
twenty-four hours, the sun rises in the east, and sets in the west, because 
the earth rotates on its axis" only 14% of students thought this was a model 
on the pre-test, whereas 48% of them believed it was a model on the post-test 
(X2 (1, n = 71) = 22.15, P <.001). Overall, there was improvement in stu
dents' ability to differentiate modeling items, such as a scientific rule, an 
equation, and the ThinkerTools simulation, from nonmodeling items, such as 
a pencil and a bicycle. 

To illustrate further the type of understanding that students developed 
about the nature of models, the purpose of modeling, and the evaluation of 
models, we present the responses of a student answering a series of inter
view questions. These interviews were conducted 2 Yz months after the cur
riculum ended. 

Interviewer: What do you think a scientific model means? 

Student: Well, it can be a theory or rule about what you think happens in real life, or 
it can be a representation of something. Any representation of a real thing, like a car 
model, or a theory. It's a representation of the real world. 

Interviewer: What is the point of trying out the different model rules on the com
puter? 

Student: 'euz, then you can visualize each one instead of randomly picking one be
cause your data says it. Like you want to be able to compare to what really happened 
instead of just looking at data that could be all messed up. 

Interviewer: What criteria would you use to evaluate your research findings? 

Student: Well, I looked if my data seemed like plausible, and I looked to see if my 
model could be used to predict anything really accurately. 

Physics Expertise 

With regard to the students' understanding of physics, analyses of our con
ceptual physics test show that students made only modest improvements in 
developing a Newtonian conceptual model. Students did demonstrate signifi
cant improvement on some questions, such as the following: 

Imagine that a spaceship is coasting along in deep space. It is not near any planets 
or other outside forces. What will be true about the speed of the spaceship as it 
moves along? 

A. the speed will decrease 
B. the speed will remain the same 
C. the speed will increase 

Eighty-two percent of the students chose the Newtonian answer B on the 
post-test, compared to only 63% on the pre-test (X2 (1, n = 125) = 13.7, 
P <'001). Overall, however, students showed only a modest improvement on 
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the physics test, with an average post-test score of 55% correct compared to 
a pre-test score of 49% correct (hI = 5.27, P <.001). In contrast, the prior 
version of the curriculum led to post-test scores of 68% correct. It should be 
noted that the model-design version of the curriculum did not cover as much 
physics as the prior curriculum. To allow for this, we also compared the ef
fectiveness of the two curricula for the subset of items that addressed physics 
covered in the model-design curriculum. This comparison again indicated 
that the model-design version of ThinkerTools produced a smaller gain, 8.5%, 
than the prior version ofthe curriculum, where the gain was 15.3% (t2I5 

1.99,p <.05). 

Epistemological Beliefs 

Students were also given an assessment that investigated their epistemologi
cal beliefs at the beginning and end of the curriculum. The test includes items 
that assess whether students believe scientific knowledge is coherent or 
composed of pieces, whether it is simple or complex, whether it is applica
ble or inapplicable to real life, and whether it is certain or tentative. There 
were significant changes in students' performance on a quarter of the items. 
The pattern of results for those items indicates that students changed their 
beliefs toward more realistic and more productive epistemologies. For ex
ample, on one such item, students were asked to decide which point of view 
they agreed with in the following hypothetical debate between two students: 

Paul: The thing I like about science is that nothing is ever settled completely. New 
information could make us change old theories. 

Dan: I disagree completely. Once experiments have been done and a theory has been 
made to explain the results of those experiments, the matter is settled. 

At the end of the curriculum, students were more likely to agree with Paul, 
whereas at the beginning, they were more likely to agree with Dan (t95 

2.37,p = .02). 

Inquiry Expertise 

Analyses of students' performance on our written inquiry assessment, given 
both as a pre- and as a post-test, indicate that the curriculum resulted in 
significant improvement in students' inquiry skills. As described earlier, the 
inquiry test presents students with a research question and asks them to gen
erate alternative hypotheses, design an experiment, make up data, and then 
analyze those data and draw conclusions. Students showed significant im
provement on all sections of this assessment, particularly on the analysis and 
conclusions sections. On the pre-test, students had a mean of 46%, whereas 
on the post-test they had a mean of 58% (t57 = 4.4, P <.001). Students who 
experienced the prior version of the ThinkerTools curriculum showed simi
lar levels of performance on the post-test. 
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Comparison of Results 

The model-design version of the ThinkerTools curriculum appears to have 
been as successful as our prior curriculum at developing students' inquiry 
skills and to have been more successful at developing their understanding 
of modeling. However, it was less successful at improving students' under
standing of physics. The probable explanation for these differential results 
is that in the model-design version of the curriculum, students spend more 
time learning about the nature of models and the process of modeling and 
less time interacting with Newtonian simulations that embody the scientifi
cally accepted model. These findings highlight the tension between using 
the software to discover the correct Newtonian physics and using the soft
ware to create models in order to develop a more sophisticated epistemology 
of science. 

Discussion 

Synthesizing the Various Approaches 
How can we synthesize our alternative pedagogical approaches so that we 
can achieve our multiple pedagogical goals: enabling students to develop ex
pertise in modeling and inquiry and helping students acquire a deep under
standing of the subject matter? We think that it is possible to blend our vari
ous approaches by creating a curriculum that would begin by using the 
software in model-discovery mode and then progress to using the software in 
model-design mode. Alternatively, students could use the software in model
discovery mode for more difficult concepts and switch to model-design mode 
for easier concepts. For instance, they could interact only with Newtonian 
models when attempting to create laws about what happens in a world with 
no friction, which is counterintuitive and thus very difficult. In contrast, 
when they are trying to create laws for friction, which is relatively easy, they 
could create computer models that embody competing theories. In this way, 
simulations that embody the scientifically accepted Newtonian theory could 
be employed to facilitate the acquisition of key Newtonian conceptions that 
are known to require major conceptual change (such as a shift from "force 
causes motion" to "force causes change in motion"). Students could then en
gage in a more authentic modeling and inquiry process for topics that require 
more modest conceptual change. 

There are ways of extending the use of the software as well. Students could 
use the model-design mode of the software in the hypothesis stage of the in
quiry cycle to envision alternative theories of force and motion. They could 
also engage in a more explicit model-comparison process by comparing the 
data from their real-world experiments with those produced by various com
puter models. In these ways, they could take further advantage of the mod
eling capabilities of the software to help them explore and evaluate alterna-
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tive laws and models. Such activities would also allow students to engage 
more fully in the processes of modeling and inquiry. 

By extending and synthesizing these various ways of using the software, 
we could create an instructional approach that better achieves the pedagog
ical goals of the students' understanding the subject matter and acquiring in
quiry and modeling expertise. However, our present ambitions go beyond 
simply blending and extending our previous approaches, because there are 
additional pedagogical goals that we now want to pursue. We want to enable 
students to progress to more abstract, mathematical ways of encoding and 
reasoning with scientific knowledge. We want to foster an even more effec
tive classroom community of researchers in order to facilitate the modeling 
and inquiry processes. Finally, we want to enable students to create more ex
plicit models of their inquiry and reflection processes in order to help them 
become expert inquirers who have knowledge of and control over their own 
inquiry skills. These are the foci of our latest research on the ThinkerTools 
Project. 

Summary and Conclusion 

Technological tools make possible a multitude of new and exciting ap
proaches to science education. In this chapter, we have argued that the cre
ation of such new approaches should be driven by pedagogical goals, which 
should determine the design of the computer-based tools as well as shape 
the creation of instructional activities and approaches. Our own work has 
evolved from a focus on students' conceptual models of physics toward an 
increasing focus on their understanding of the processes of scientific inquiry 
and modeling. In other words, the emphasis has shifted from understanding 
the subject matter to understanding the inquiry process itself. The features of 
our ThinkerTools software and the ways in which it is used instructionally 
have evolved to meet these changing goals. 

In the early stages of our research, students interacted with force-and-mo
tion microworlds that we created to make Newtonian principles as apparent 
as possible. We designed computer games and other experimental activities, 
set in the context of a progression of increasingly complex microworlds, that 
enabled the students' knowledge of the relevant physics to become increas
ingly sophisticated. Our work was highly successful in helping students to ac
quire relatively sophisticated conceptual models of force and motion, but it 
was less successful in helping students to understand the process of creating 
models and to engage in scientific inquiry on their own. 

As our work continued and as research in the cognitive sciences also pro
gressed, we came increasingly to recognize the importance of enabling stu
dents to learn about the processes of inquiry and modeling. We redesigned 
the software so that students could create their own microworlds that obey 
laws of their own choosing. In addition, within any microworld, students can 
create their own experiments, games, or other activities. And, we augmented 
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the software to include other types of tools, such as inquiry support and 
reflective assessment tools that help students learn about and reflect on the 
inquiry process itself (White and Frederiksen, in press; White, Shimoda, and 
Frederiksen, in press). 

As a consequence, there are now a wide variety of ways to use these soft
ware tools to meet differing pedagogical goals. In one approach, students in
teract with Newtonian microworlds presented to them, and their primary 
goal is to develop Newtonian conceptual models of force and motion. In an
other approach, students create their own Newtonian microworlds and 
study their behavior. Their goal is to construct a theory of force and motion 
and, in so doing, to develop, reflect on, and improve their inquiry skills. In 
yet another approach, students create both Newtonian and non-Newtonian 
microworlds, and their primary goal is to develop an understanding of sci
entific modeling. Here, students use computer-modeling tools to reify and in
vestigate the implications of their own theories. They also explore alternative 
models that embody competing theories of force and motion. In these ways, 
students can engage in a variety of inquiry processes aimed at achieving dif
fering pedagogical goals. 

On the basis of this line of research, we conclude that focusing science ed
ucation on the processes of scientific inquiry, modeling, and reflection has 
tremendous potential for enabling students to develop skills for life-long 
learning, problem solving, and collaboration. Students can utilize powerful 
tools that help them develop expertise related not only to scientific inquiry 
and modeling but also to learning and problem solving in general. As tech
nology advances and our knowledge of human cognition develops, the goals 
for science education will continue to evolve. There is at present, for in
stance, an increasing recognition of the social nature of the scientific en
deavor (Dunbar, 1995) and a corresponding increase in the tools available to 
support the social processes involved in scientific theorizing and experi
mentation (pea, 1994). Similarly, in science education there is a move to cre
ate classroom communities in which social processes, such as debate and ne
gotiation, play prominent roles as students learn via collaborative inquiry 
(Brown and Campione, 1996; Linn, Bell, and HSi, in press; Scardamalia and 
Bereiter, 1994; White and Frederiksen, 1998). Such reformulations of our ap
proaches to science education will become increasingly important in the 
twenty-first century, as new types of conceptual and social tools are devel
oped and the nature of our society is rapidly transformed. 
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Part 3 

Toward Extended 
Modeling Environments 

The chapters in this section describe two very different innovations in mod
eling technology designed to improve science and mathematics learning. The 
Eisenbergs describe a modeling system for generating concrete objects as 
products, in order to give students experience in relating abstract represen
tations to real phenomena in the physical world. Dede and his colleagues de
scribe a virtual reality environment for giving students immersive experi
ences in simulated science worlds to improve their understanding of real 
phenomena not directly accessible to perception. 

The Developing Scientist as Craftsperson describes work by Michael 
Eisenberg and Ann Eisenberg with a CAD-like program, HyperGami, that en
ables users to generate concrete paper sculptures from abstract mathemati
cal descriptions. Increasingly, the day-to-day practice of science education is 
pervaded by the presence of computational media. Simulations, modeling 
tools, and virtual laboratories have become the stock in trade of the up-to
date science educator; and consequently, the young scientist is a person who 
spends a large proportion of his or her time in abstract and nonphysical 
"worlds." This move toward an increasingly "virtualized" science education 
has important benefits for some scientific domains and for some activities: Ar
guably, it is only through the simulation of especially complex systems that 
the student can get a sense of how such systems are capable of behaving. 
However, the authors argue that to relate the abstract representations in sci
ence models to real phenomena, students also need to be given more expe
riences with real, concrete objects. They discuss the benefits of giving sci
ence students an opportunity to derive visual and tactile pleasure from their 
work by producing something concrete and beautiful. The Eisenbergs seek 
to dissipate some of the tension between the "virtual" and "real-world" paths 
to learning science and mathematics. They summarize their work with the 
HyperGami system to ground their discussion of crafispersonship in science 
education. They present an overview of HyperGami and illustrate the types 
of constructions that have been made using the system. 

Multisensory Immersion as a Modeling Environment for Learning Com
plex Scientific Concepts describes ScienceSpace, a set of three virtual model-



258 Toward Extended Modeling Environments 

ing worlds designed to explore the potential utility of physical immersion 
and multisensory perception in enhancing science education. NewtonWorld 
provides an environment for investigating the kinematics and dynamics of 
one-dimensional motion. PaulingWorld makes possible the study of molecu
lar structures through a variety of representations, including quantum-level 
phenomena. MaxwellWorld enables students to explore electrostatic forces 
and fields, learn about the concept of electric potential, and "discover" the 
nature of electric flux. Students do not employ external models of phenom
ena. Rather, they immerse themselves in these spatially distributed, synthetic 
worlds as "avatars" (graphical surrogates that serve as the virtual-world per
sonas of the human participants), use virtual artifacts to develop knowledge, 
and seek to gain direct experiential intuitions about how the world operates. 
Virtual reality models can provide learners with three-dimensional represen
tations; multiple perspectives and frames of reference; a multimodal inter
face; simultaneous visual, auditory, and haptic (touch) feedback; and new 
types of interaction unavailable in the real world (such as seeing through ob
jects and teleporting). The authors' experimental results indicate that trans
ducing data and abstract concepts into mutually reinforcing multisensory 
representations enhances students' understanding of scientific models. They 
believe that these varied aspects of multisensory immersion can provide 
learners with experiential metaphors and analogies that enhance their un
derstanding of complex phenomena remote from everyday experience and 
can help in displacing intuitive misconceptions with alternative, more accu
rate mental models. 

During the coming years, our concept of educational modeling and simu
lation will be greatly extended through further technological advances like 
these. Mathematical models will be used to create both real objects and vir
tual worlds that seem real. However real these external artifacts become, 
what ultimately matters for science learning is what happens inside the stu
dent's mind-not the computer simulation, and not even the underlying 
mathematics and science model, but the student's evolving mental model 
as it progresses, through empowering modeling experiences, to a deeper 
understanding of the world. 



1 1 

The Developing Scientist 
as Craftsperson 

Michael Eisenberg 

Ann Eisenberg 

Introduction 

Increasingly, the day-to-day practice of science education is pervaded by the 
presence of computational media. Simulations, modeling tools, and virtual 
laboratories have become the stock in trade of the up-to-date science educa
tor. As a consequence, the young scientist is a person who, more and more, 
spends a large proportion of his or her time in abstract and nonphysical 
"worlds." This move toward an increasingly virtualized science education has 
important benefits for some scientific domains and for some activities: Per
haps only through the simulation of especially complex systems can the stu
dent get a sense of how such systems are capable of behaving. Moreover, the 
real, physical world constrains us as human beings-and it may constrain our 
scientific imaginations as well. We cannot easily experience the frictionless 
environments that would make many principles of Newtonian mechanics 
more intuitive (Chapter 10; White and Horwitz, 1987; diSessa, 1982); we do 
not grasp the behavior of objects moving at speeds near that of light (Hor
witz, 1994); we do not see firsthand the evolution of ecosystems, a phenom
enon perhaps best understood at a time scale of millennia (Dawkins, 1996). 
In all these cases, the building and studying of virtual worlds, simulations, and 
abstract models may be a crucial step in the education of the scientist. 

But something is lost, too, in this move away from the physical-some
thing pleasurable, sensual, and intellectual about the behavior of stuff. At our 
own university, a professor in mechanical engineering lamented that her stu
dents were increasingly arriving at college with no experience of the me
chanical world, of real materials. These students, she said, have never actu
ally sat down to fix a bicycle. 

Does it matter whether students fix real bicycles, mix real chemicals, col
lect real butterflies, or view real stars? We believe that it does and that the ad
vent of powerful and compelling "virtual" environments should now cause 
science educators to reexamine carefully the delicate relationship between 
computational media and real-world artifacts. Interesting hints about the role 
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of the physical world are to be gleaned from the biographies of scientists. 
Repeatedly, in reading about the childhood or education of famous scientists, 
we find that for these individuals, the presence of physical objects and the 
practice of "scientific handicrafts" played an important formative role. The 
young Stephen Hawking's bedroom has been described as "the magician's 
lair, the mad professor's laboratory, and the messy teenager's study all rolled 
into one .... On the sideboard stood electrical devices, the uses of which 
could only be guessed at, and next to those a rack of testtubes, their contents 
neglected and discoloured among the general confusion of odd pieces of 
wire, paper, glue, and metal from half-finished and forgotten projects." 
(White and Gribbin, 1992, p. 12); Linus Pauling learned chemistry as a young 
assistant in a pharmacy (Csikszentmihalyi, 1996, p. 86). Isaac Newton is re
ported to have tinkered with homemade mechanical devices as a youth 
(Bernstein, 1993, p. 162). Real-world objects, in the recollections of scien
tists, often seem to be associated with moments of high motivation or strik
ing imagery. Albert. Einstein, in perhaps the most famous anecdote along 
these lines, distinctly recalled a pivotal childhood experience in which he re
ceived a compass as a gift: 

That this needle behaved in such a detennmed way did not at all fit into the nature of 
events, which could find a place in the unconscious world of concepts (effect con
nected with direct "touch"). I can still remember (or at least I believe I can remem
ber) that this experience made a deep and lasting impression upon me. Something 
deeply hidden had to be behind things. (Bernstein, 1993, p. 161). 

Similar recollections crop up in interviews with other well-known scien
tists. Richard Feynman, for instance, recalled working with colored floor tiles 
at a very young age, and he likewise mentioned an instance in which view
ing a ball rolling in a wagon piqued his early curiosity about the nature of in
ertia (Mehra, 1994, pp. 3-5). Feynman also repaired radios and other appli
ances while still a youngster (Feynman, 1985). The astronomer Fred Hoyle 
recalled having his interest in science sparked by a chemistry set (Lightman 
and Brawer, 1990, p. 52). The astrophysicist Margaret Geller, in an interview 
(Lightman and Brawer, 1990, p. 360), recalled working with solid geometric 
kits as a child and added, 

My father is a crystallographer .... He had an attraction for any kind of toy that had 
anything to do with geometry .... For example, I'd make a cube, and he'd explain to 
me the relationship between that and the structure of table salt. And I'd make an icosa
hedron, and he'd explain how you see that in the real world .... I would be able to 
visualize in 3-D. And I realize now-I've talked to lots of people in science - that very 
few people have that ability. 

For those who enjoy scientific biography, tales like these are easy to find. 
But maybe they are just tales and nothing more. Biography, as the more skep
tically inclined will point out, is by its very nature anecdotal evidence. And 
worse-biography isn't even unbiased data. The biographers are writers 
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working for a paycheck; maybe they're looking for easy illustrations of sci
entific precocity, searching for punchy tales that sound like childhood 
epiphanies. The scientists themselves, in recollecting their childhood expe
riences, might be attempting to frame a coherent narrative; perhaps certain 
events are endowed in retrospect with an exaggerated importance so that 
they foreshadow later developments in much the same fashion as mystical 
omens do in the biographical essays of Plutarch and Suetonius. 

But still, it is hard not to notice the consistent patterns among these histo
ries, cutting as they do across boundaries of time, geography, gender, eco
nomic background, and eventual specialization. In all the cases cited-and 
many more in the literature-the budding interest of the young scientist 
seems to have been inextricably linked with the day-to-day practice of what 
might be called a "scientific craft." Individual stories may vary in their credi
bility, but we believe in the overall pattern of the biographical data. We'd go 
so far as to say that many, if not most, scientists need to encounter objects 
and experience craftspersonship as students (and probably as adult profes
sionals, too). Because it negtects this side of human experience, a purely vir
tualized scientific training is incomplete and is likely to be ineffective. 

Of course, we needn't view these two educational paths-one focusing on 
computational modeling and simulation, the other on physical objects and 
handicrafts-as opposites. Indeed, this chapter focuses on an attempt to dis
sipate some of the tension between the "virtual" and "real-world" paths to 
learning science and mathematics. We explore a variety of themes that have 
emerged as salient for us over the last several years in working on a program 
named HyperGami, a system that might be summarized as an educational 
CAD program for the creation of mathematical paper sculpture. In the course 
of developing HyperGami, working with the program, and collaborating with 
HyperGami students of various ages, we have become sensitized to these 
themes. And we have come to view them as important for science education 
generally. 

In the remaining sections of this chapter, we summarize our work with the 
HyperGami system and use that work to ground our discussion of craftsper
sonship in science education. The second section of this chapter presents an 
overview of HyperGami, along with the types of constructions that we and 
our students have made using the system. The third, fourth, and fifth sections 
explore the themes that are the true focus of this chapter: the affective and 
social roles that Scientific/mathematical objects (especially homemade ob
jects) are capable of playing in students' lives; the pacing and "rhythm" of stu
dents' scientific activities; and the cultures and values associated with differ
ent types of physical materials in science/mathematics education. In each of 
these sections, moreover, we suggest ways in which computational media 
might be used to enhance the benefits of craft activities in science education. 
In the sixth and final section, we discuss several new directions of our own 
work and speculate about how computational tools (going well beyond Hy
perGami) might affect the growth of a craft culture in science education. 
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HyperGami: An Overview 

HyperGami is a Macintosh-based software application developed by the au
thors in the MacScheme programming environment (SI). We have described 
the system at great length elsewhere (Eisenberg and Nishioka, 1997a, 1997b), 
so we present only a summary outline of the application here. 

The basic activity in HyperGami consists of creating novel or complex pa
per polyhedral models and sculptures; essentially, one creates the three
dimensional shape on the computer screen, allows the software to unfold 
that shape into a decorable two-dimensional form, and then prints out (and 
constructs) the eventual model. Figure 11.1 shows the HyperGami screen in 
the midst of a sample scenario of just this sort. Here the user has employed 
the software to create a particular shape-a stretched, capped hexagonal 
prism. The shape is visible in the ThreeD window of the screen; the software 
has also "unfolded". the solid into the folding net form visible in the TwoD 
window of the screen. The user is now in the midst of decorating the folding 
net; this can be done by employing solid colors, patterns, textures, hand
drawn decorations, and so forth. HyperGami is a programmable application 
that employs an enriched version of the Scheme programming language as 
part of its interface (Eisenberg, 1995). The user therefore has at her disposal 
a complete Scheme interpreter, augmented with an extensive (and always 
growing) library of procedures and objects for creating and decorating Hy
perGami constructions. To take an especially simple corollary of this idea, in 
the Figure 11.1 scenario the user has employed HyperGami's turtle proce
dures to decorate one of the faces of her hexagonal prism with a geometric 
design in the spirit of Abelson and diSessa (1980). 

There are many more features in the HyperGami system, but space limita
tions preclude our offering a more thorough discussion. We must mention 
several points, however, because they come up later in this chapter. First, Hy
perGami includes tools through which the user may transfer a decoration 
from the folding net to the three-dimensional view of a polyhedral object; this 
permits the user to predict, in some measure, what the eventual construction 
will look like if the current folding net is printed out and folded into three
dimensional form. Figure 11.2 shows an example. Here, the decoration from 
a hexagonal prism such as that shown in Figure 11.1 has been transferred to 
its three-dimensional rendering. 

A second point is simply that paper-the basic material of HyperGami con
structions-is itself an extremely rich craft medium and one whose versatil
ity is still expanding. HyperGami creations may be printed out on standard 
printer paper, on glossy paper, on thick cardstock, on pretinted papers, on 
acetate, or on large poster-sized sheets. (We ourselves have barely begun to 
explore the varieties of paper available and to experiment with these papers 
in our constructions.) 

A third point is that HyperGami includes a number of features specifi
cally designed with the needs and problems of the paper crafter in mind. For 
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FIGURE 11.1 The HyperGami screen in the midst of a sample scenario. The transcript 
window at the top is the interface to the MacScheme interpreter, augmented with a 
large number of system-specific procedures and data objects. The shape being con
structed is shown in a three-dimensional view at the right, in the ThreeD window; its 
unfolded version (or folding net), generated by the system, is shown at the left. In the 
scenario, the user has decorated the folding net using a variety of means: textures, 
solid colors, patterns, text, and hand-drawn and program-created design. 
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FIGURE 11.2 The user has transferred the decoration from the folding net at the left to 
the three-dimensional 'view at the right. The transfer takes place on a pixel-by-pixel 
basis, which makes it somewhat slow and laborious (not to mention inexact), but the 
view at the right does give a reasonable preview of what the eventual folded shape 
will look like. 

FIGURE 11.3 A polyhedral sculpture of a pair of fish. 

instance, the program includes tools with which the more advanced user can 
"tailor" a folding net in such a way that it is easier to fold (or perhaps to dec
orate). Many of the built-in procedures for decorating folding nets take ad
vantage of the geometric properties of the net's polygons (for instance, one 
of the example procedures furnished with the program allows the user to 
decorate a net polygon with "spokes" radiating from the center of the poly
gon to each of its vertices). Recent additions to the program permit the user 
to generate "tabs" on the folding nets (these greatly assist in the construc
tion of the eventual shape), and a "surface turtle" package allows the user to 
move a Logo-style turtle over the entire surface of a polyhedron, "jumping" 
smoothly from face to face of the net as suggested by the discussion in Abel
son and diSessa (1980, ch. 6). 

Figures 11.3-11.9 illustrate the types of constructions that we and our 
students have created in HyperGami. Figures 11.3 and 11.4 depict polyhe-



HyperGami: An Overview 265 

FIGURE 11.4 "Tweedledee-ahedron and Tweedledum-ahedron." 

FIGURE 11.5 A "trapped octahedron" polyhedral construction by a 12-year-old boy. 

dral sculptures ("orihedra") that we have created. Figure 11.3 depicts two 
fish created from trapezohedra and prisms. Figure 11.4 depicts two twins 
("Tweedledee- and Tweedledum-ahedra") built from a variety of shapes, in
cluding the icosidodecahedron (the bodies of the figures) and the small 
rhombicosidodecahedron (their heads). 

Figures 11.5 and 11.6 depict work done by HyperGami students. Since 
the development of HyperGami began, we have worked with over 50 stu
dents ranging from elementary to high school age. Typically, these students 
work with us as individuals or in pairs or small groups, for a period of an 
hour or two per week over the course of about a semester. [Eisenberg and 
Nishioka (1997a) and Eisenberg and Nishioka (l997b) include more details 
on our experiences with students.] By and large, students work toward cre
ative projects of their own devising, such as the sculptures in Figures 11.5 
and 11.6, although over the past year we have also begun the creation of 
more specifically curricular materials (such as exercises), mostly for use with 
our high school students. Figure 11.5 shows a marvelous polyhedral figure-
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FIGURE 11.6 A polyhedral kangaroo designed and created by a high school senior. 

FIGURE 11.7 Two "pillowhedra" made from sewn fabric. 

FIGURE 11 .8 A rhombic 
dodecahedron of soap. 

a "trapped octahedron" -in which an octahedron is shown embedded 
within eight pieces that collectively make up a figure rather like a surround
ing cube (this piece was created by a sixth-grade boy). Figure 11.6 shows a 
polyhedral sculpture, composed mainly of prisms and pyramids, of a kanga
roo (the body is a truncated tetrahedron) done by a twelfth-grade girl. 

Finally, Figures 11.7, 11.8, and 11.9 depict work done in materials other 
than paper. Figure 11.7 shows a pair of "pillowhedra" created by printing out 
folding nets onto special paper that can then transfer its decoration to fabric; 
usually, this process is employed to create customized T-shirts, but it can just 
as easily create three-dimensional sculptures in fabric. Figure 11.8 shows a 
rhombic dodecahedron created from soap (using a HyperGami construction 
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FIGURE 11.9 A truncated pyra
mid of wax, decorated with a 
turtle-graphics design. 

as a mold), and Figure 11.9 shows a polyhedral wax candle (created in simi
lar fashion) . These last examples illustrate the ways in which an application 
such as HyperGami can lead to the construction of an immense variety of 
craft objects in different media. 

Theme 1 : The Affective Role 
of Objects in Science Education 

In the previous section, we introduced HyperGami and presented an illus
trative range of artifacts that our students and we have created with the pro
gram. As mathematical objects, HyperGami sculptures fit within a long-stand
ing tradition of polyhedral modeling in mathematics education (see, for 
instance, Cundy and Rollett, 1951; Hilton and Pedersen, 1994; and Jenkins 
and Wild, 1985). Indeed, Margaret Geller's autobiographical anecdote, re
counted earlier, suggests that such objects are effective practice materials in 
developing skills of spatial cognition. 

For the purposes of this chapter, however, we prefer to take a broader 
view. Rather than focusing on the (relatively narrow) mathematical issues 
raised by polyhedral modeling, we wish to explore the more important and 
general role of computationally enriched craft activities in mathematics and 
science education. These issues go well beyond the specific examples of 
HyperGami work; they include many types of materials besides paper and 
other paradigms for computational media besides stand-alone applications. 
Nonetheless, our own experiences with HyperGami are what made these 
broader issues accessible to us, so we tend to use our HyperGami work as a 
source of illustrations. 

Crafts and Affect 

For us, one of the crucial aspects of our (and our students') HyperGami ex
perience is that it has, over time, produced objects that we now enjoy hav
ing around. That's a simple observation, and at first blush it might seem 
almost trivial. Why should mathematics or science educators concern them-
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selves with the creation of fun objects? The answer is suggested by the re
marks from and about young scientists quoted earlier: Geller's polyhedral 
models, Feynman's geometric tiles, Newton's gadgets-all seemed to pro
vide a sensual as well as intellectual pleasure. And even more: Pleasurable 
physical objects contribute to a setting, a sense of place, in which mathe
matics and science may be studied. Recall Hawking's room: a rich, full setting 
in which a young scientist could be stimulated on a day-to-day basis. 

How different this is from the physical environment of science education 
as it is increasingly defined by computational media! No matter how aesthet
ically pleasing the view from a computer screen may be, that view is only a 
tiny and temporary fraction of one's setting. As computer scientists, we know 
this phenomenon well: Month after month, year after year, as we toil away at 
our computers, we return to our offices and see no tangible change to reflect 
our work. A computer whose disk has been filled with our programs and pa
pers looks very much like the computer on the day we purchased it. Maybe 
this is why so many: computer scientists' offices are decorated with screen 
dumps of their work. No doubt the screen dumps are useful for a variety of 
reasons, but perhaps their most important role is emotional. The screen 
dumps on the wall tell the programmer that he or she is, at the end of the day, 
producing something-that progress is being made. In some small measure, 
the screen dumps cheer us up. 

Unfortunately, the measure of cheer provided by such means remains 
small. When science education and math instruction are centered in purely 
virtual media, they foster relatively uninspiring physical surroundings. They 
provide students with rooms, laboratories, and corridors unenlivened by the 
students' own work and creations. And for many of us-perhaps most of 
us-setting matters. Csikszentmihalyi et al. (1993), in their provocative study 
of talented high school students, note that students who work within the arts 
tend to have an easier time being motivated academically than those who 
study math and science. Part of this motivation is provided by the studio set
ting in which the artists work: 

[G]ifted young artists mostly work in a studio class at school. There they work by 
themselves but are surrounded by peers engaged in similar activities. The drawing or 
sculptute of one student is accessible to the others and therefore can be shared as it 
progresses. The work itself can perhaps best be characterized as an expressive per
formance . ... (p. 105) 

For students of science and (perhaps more pointedly) mathematics, even 
the most successful and enjoyable work often leaves no souvenirs, no re
minders, no physical traces at all. To some extent this is just the way these 
fields operate; solving a mathematical problem is an abstract activity whose 
purpose is to leave us intellectually, not materially, enriched. But this culture 
of asceticism can over time produce an unnecessary emotional strain. And it 
may account for the sense of longing that occurs in the students described by 
Pedersen (1988) as they encounter the polyhedral models in her office: "I 
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have these models in my office and students come in and beg to know how 
to make them. They never ask, 'What are they good for?' They know! And we 
know too." 

Craft objects not only visually enrich the physical environment of the 
young mathematician and sCientist, but they do so in a way that reflects the 
personal experience and progress of the students. In this sense, they take on 
biographical meaning that, say, a poster or store-bought object cannot. In the 
same vein, a craft object can playa role as a personal statement, as a public 
display, or as a gift. Repeatedly we have seen our students put their Hyper
Gami objects to just such uses. Polyhedral models and sculptures are given as 
presents, used as Christmas ornaments, and placed on display in the home or 
classroom. One student modeled her pet rooster in polyhedral form; another 
gave her favorite polyhedron a nickname. We ourselves have used Hyper
Gami models as thank-you notes, wedding and birthday gifts, and souvenirs 
of special occasions. In this way, HyperGami objects (and craft objects more 
generally) take on a versatile role as "social currency,» and it is precisely along 
these day-to-day social c:lit:Densions that math and science education are typi
cally so impoverished. 

There is yet another, more intellectual role in which tangible objects ex
cel: They symbolize and reflect a growth in skill over time. When a stu
dent creates and displays objects over the course of a semester, a year, or a 
period of several years, the display itself becomes a tangible reminder of the 
student's growing skills. Perhaps last year's mathematical mementoes are 
much simpler (or less polished) than this year's; perhaps last year's mechan
ical or electronic projects are less impressive; perhaps the student has be
come more adept at producing homemade scientific instruments. The crucial 
point is that, by contrast, the purely computational world offers little in the 
way of a continuous, unconsciously available record of progress. Of course 
a student can bring up a sequence of programs or simulations that he or she 
has written, but the act of bringing up that sequence is deliberate and te
dious. There is little in the virtual world that is analogous to the simple pro
cess of viewing, without even meaning to, a shelf full of ever-improving craft 
objects. 

Creating mathematical and scientific objects via handicrafts is an emotion
ally satisfying activity with an intellectual message: It serves to demystify the 
practice of math and science as a profession. A student who has created her 
own scientific instrumentation at home is just a little less likely to regard the 
laboratory with dread. A student who builds mathematical polyhedra in the 
classroom will be less likely to flinch when he encounters those solids in a 
later course in chemistry or solid geometry. A student who has built, and 
held, mechanical models in the garage has a sense not only of the principles 
but of the gritty aesthetics of engineering-the way materials bend, or heat 
with friction, or hold up with time, or smell when they are new. For these 
students/craftspeople, the scientific world is simply an outgrowth of their 
most homey, day-to-day activities. 
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Computation and the Affective Role of Crafts 
How can the addition of computational media enhance the positive affective 
nature of scientific craftwork? Our experiences with HyperGami suggest two 
major answers to this question. First, by making the craftwork more person
alized and expressive, computational media can nudge scientific crafts to
ward an activity that might more appropriately be called "scientific artwork." 
Rather than simply building polyhedral models, students are able to use the 
software to make objects with personal meaning (a dinosaur, a holiday Christ
mas tree, the aforementioned pet rooster). More generally, computational 
media allow us to rethink scientific crafts along new lines. An experiment 
with geometric optics can become (under the influence of the appropriate 
computational tool) a means for constructing artistic effects with light; a kit 
for building mechanical demonstrations can become a system for creating 
whimsical automata; a crystal-growing kit can become part of a larger appli
cation in which stud,ents design (on the computer screen) and then construct 
sculptures or tangitne landscapes containing mineral forms. 

A second answer to the question of how computation can enhance the af
fective role of crafts focuses on the notion of displaying or sharing objects. 
As we have noted, craft objects tend to be put on display or given as gifts; in 
either case, they are created in the anticipation of an audience other than 
their creator alone. Computational tools allow for craft objects to be shared, 
displayed, or documented in more powerful and inventive ways than were 
heretofore possible. In the case of HyperGami, students' works have been 
displayed on the World Wide Web, which gives them a huge potential audi
ence; we ourselves have placed folding nets on the Web so that one of our 
sculptures could be recreated by visitors to the HyperGami website. The fact 
that HyperGami figures are created in a medium that is originally computa
tional allows those figures to be duplicated, annotated, and altered in ways 
that are otherwise difficult. For instance, it is a relatively trivial matter to 
recreate the polyhedral fish sculptures of Figure 11.3 at, say, a larger scale by 
simply printing out the folding nets at a greater magnification. In the same 
vein, someone who wishes to recreate one of our sculptures with a different 
pattern of decoration would have little trouble simply taking the original (un
decorated) folding nets and altering them; indeed, several of our younger stu
dents' projects have been of precisely this type. 

Theme 2: Crafts and the Pace of Science Education 

Working with craft materials takes time-often, a lot of time. Although a 
simple HyperGami project can generally be completed in an hour or two, 
a moderately complex project may easily stretch out over several evenings 
of construction. Of course, HyperGami is not especially unusual among craft 
activities in this respect. All sorts of crafts, from the creation of mosaics 
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and stained-glass windows to the carving of wood, can at times be similarly 
slow-paced. 

Is slow pace a problem? Set against the rhetoric of most educational re
search, it might seem so. Educational researchers-especially those in edu
cational technology-often measure the success of a program by how much 
less time the students need to spend learning some material than they spent 
previously (thus one might see a claim that, because they used a particu
lar application, students were able to pass a standardized algebra test in a 
third less time than they previously required). This is an impressive result, as
suming that the study time is itself devoid of pleasure. If we are doing some
thing distasteful but necessary, we certainly wish to accomplish the task in 
less time. 

Perhaps, though, the success of science and math education should not be 
measured in terms of how fast we can get the ordeal over with. That metric 
may be appropriate for some training situations-when we need to acquire 
some specific skill in order to move on to more interesting work, for ex
ample-but it seems a joyless metric to apply to the educational enterprise 
as a whole. We might rather view the success of science and math education 
in terms of how much structure it is capable of bestowing on the student's 
leisure hours. A student who turns her room into a lab or his garage into a 
workshop, one who looks forward to returning to her telescope at night, one 
who mulls over a mathematical puzzle on the bus, and one who ponders a 
scientific question during a morning shower are those who have experienced 
a good scientific education. In contrast, a student who passes his tests in half 
the time and looks forward to spending that extra time in front of the televi
sion set is a problematic success story at best. 

Scientific Crafts and the Rhythm of Science Education 

Alfred North Whitehead, in his book The Aims of Education (1929), dis
cusses the notion of a "rhythm" to the educational process: 

Life is essentially periodic. It comprises daily periods, with their alternations of work 
and play, of activity and of sleep, and seasonal periods, which dictate our terms and 
our holidays. . . . These are the gross obvious periods which no one can overlook. 
There are also subtler periods of mental growth, with their cyclic recurrences, yet al
ways different as we pass from cycle to cycle, though the subordinate stages are re
produced in each cycle. That is why I have chosen the term 'rhythmic,' as meaning 
essentially the conveyance of difference within a framework of repetition. Lack of at
tention to the rhythm and character of mental growth is a main source of wooden fu
tility in education. (p. 29) 

When technology is applied to science and math education, the rhythmic 
patterns that Whitehead describes seem, too often, to go unacknowledged. 
The pacing and style of many applications are reminiscent of arcade games
a mixture of constant animation, sound, and bright colors. Sometimes, of 
course, that sort of pace is exactly what a student might wish (we ourselves 
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enjoy video games as much as the next person), but a relentless focus on one 
sort of pacing for science education leaves the student inexperienced in and 
uncomfortable with the slower, dreamier side of impassioned work. 

We view the leisurely pace of craft activities within science education as a 
largely (though not uniformly) positive feature. True, a slower activity de
mands a longer attention span, but it also rewards that longer attention span 
and may thus serve over time to extend it. It distresses us to hear educational 
innovators simply assume that students cannot or will not concentrate-that 
their short attention spans are ajait accompli, to be accommodated to but 
not challenged by their tools. In our view, students' reflexive (and counter
productive) expectation of video-game pacing is a predictable and inevitable 
result of a culture of design that refuses to challenge itself. 

Allowing for the pace of craft activities to invade science and math educa
tion is not, in other words, simply a challenge to the students' expectations; 
it is also a challenge to the preconceptions of the designers and educators 
and to the educational culture. Often, the real goal of introducing a craft ac
tivity is simply for the student to spend leisurely time contemplating the ac
tivity itself, getting the feel of the material and seeing a construction take 
shape over time. One would no more seek to compress the time period of 
this activity than to compress a performance of "Clair de Lune" into 30 sec
onds. And it is a healthy exercise-again in our view-for educators to as
sume that students will and should have periods of meditative time on their 
hands. Maybe that assumption is a bit of a fiction, but we think it's a fiction 
that can become a self-fulfilling prophecy. 

The longevity-or at least the potential longevity-of craft objects is still 
another factor that deserves mention in this context. Craft objects, as sug
gested by the discussion in the previous section, have educational value that 
may be played out over a span of months or years. A HyperGami polyhedron 
on the shelf may, months later, suggest a starting point for a sculpture; or the 
student may suddenly notice a pattern in the shape that escaped her atten
tion at the time the object was created. A craft object created by a fifth-grader 
in September, and displayed in a classroom, might be the subject of a discus
sion with its creator in April. Again, it is unusual for the products of classroom 
activity (such as workbook pages) to have any meaning or resonance for their 
creators more than a day or two after they are completed. 

Computation and the Pacing of Scientific Craft Activities 

Computational media have an important property that is useful in regulating 
the pacing of craft activities: They allow for a surer sense of direction and 
eventual success in the creation of a craft object. In our own. experiences 
with HyperGami, we have noticed something that we have informally called 
the "it's-going-to-be-so-cool" effect; having begun the creation of a particular 
model, we can see that it is turning out well. When this effect takes hold in 
the midst of a construction project, it can prompt us to keep working for 
hours, just to see the final product. 
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Computational media can extend the "cool effect" of craftwork by giving 
the creator a relatively early view of what the finished product will (or might) 
be. In the case of HyperGami, the software enables the user to see what the 
decorated three-dimensional shape will eventually look like; sometimes it is 
precisely this view that reassures us that a shape is worth creating. In the ab
sence of the sort of predictive power that computational design media offer, 
the craftsperson must proceed on sheer faith in the eventual product, and he 
may suffer intense disappointment when the result of hours of work is a 
product whose imperfections could have been apparent at the outset if pre
sented by the appropriate design tool. These elements-faith, patience, and 
occasional disappointment-are arguably necessary elements of the crafting 
process. Nonetheless, having a computational tool that permits us to make 
sounder judgments about the eventual success of a crafting project might 
give the novice a less frustrating introduction to the process of crafting itself. 
Moreover, if well designed, such a tool should not entirely eliminate the ele
ment of risk (and those ~sociated elements of faith, patience, and disap
pointment) that accompany crafting; rather, the tool would ideally enable ex
pert crafters to raise their ambitions a bit higher. 

Theme 3: Materials as Representatives 
of Specific Cultures 

How Should We Think About Scientific Craft Materials? 

Once we start considering the use of craft activities in science education, an 
astonishing variety of ways of interpreting materials and understanding them 
come to light. Materials-whether paper, Lego bricks (P2), Fischeflechnik 
kits (PI), wooden blocks, modeling clay, yam, balsa wood, stained glass, fab
ric, or myriads of others-are associated with their own particular cultures 
of usage. Although these cultures are rarely made explicit in discussions of 
scientific education, they seem to operate forcefully in the lives of students. 
Certain types of materials (such as wooden blocks) will be seen as appropri
ate for children of some ages, but not for others; a first-grade classraom will 
supply at least some different materials from a sixth-grade classroom. 

One could devote volumes to a fine-grained critical analysis of the cultural 
implications of different craft materials, but it is important not to make too 
much of this sort of analysis, which can easily become a dry academic exer
cise. After all, a notion such as "the implicit culture of a material" is only an 
approximation. Some adults play with wooden blocks; some children work 
with oil paints; some little girls play with Lego bricks, some little boys with 
fabric. Still, it is worthwhile to explore these issues, if only to alert ourselves 
to potentially novel and productive ways of thinking about the design of sci
entific craft activities. 

Our own experiences with HyperGami have suggested to us a number of 
dimensions along which to think about craft materials in science and mathe-
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matics education. These dimensions are not orthogonal-the placement of a 
certain material along one dimension will probably affect its placement along 
at least several others. But, for us at any rate, these dimensions offer some 
conceptual purchase on how to think about the overall landscape of sci
entific crafts. 

Longevity/Permanence 

Although some craft materials are especially short-lived (perhaps the most 
obvious examples are edible craft materials, such as chocolate), others (such 
as hardwood and ceramics) are meant to last. Materials such as candle wax 
and the paper of HyperGami constructions occupy an interesting middle 
ground. Paper polyhedra are hardly likely to last for decades, but they can eas
ily last for months or years (we still have several early constructions that are 
over 4 years old). In some cases, additional steps may be taken to make ma
terials last longer (for instance, we have recently begun spraying HyperGami 
constructions with various fixatives to prevent the colors from fading over 
time). Longevity is an interesting dimension in the design of scientific craft 
materials, because arguably those materials that can last for at least a half-year 
or so are capable oflonger-term educational effects. Ephemeral constructions 
(such as the results of chemical experiments) may well have educational im
pact, but the creative designer of scientific crafts may think about ways of ex
tending the longevity of such constructions. (In the case of chemical experi
ments, for instance, the designer might consider including in the chemistry 
kit certain experiments involving reactions that take place over a period of 
months.) 

Reparability (U ndoabi lity/Redoabi I ity) 

Some craft materials are designed so that constructions may be taken apart 
after a time. Many commercial modular materials-Lego blocks (P2), Poly
drons (P3), and Zometool kits (P4), to name just a few-have this property: 
Once a project has been completed, it can be decomposed and its parts 
reused in some other project. Other craft materials-clay, paper, wood-are 
less likely to be used in creating "undoable" projects (a HyperGami piece, for 
instance, is meant to be folded once and for all). Reparability is an advantage 
in some ways. It means, after all, that unpromising projects can be stopped 
midway and that simpler projects can be used to supply parts for later ones. 
But reparability has other interesting consequences that are not always help
ful. For one thing, "undoable" objects are, in a sense, impermanent (to recall 
the previous dimension), even if they are made of sturdy materials; a Lego 
construction is unlikely to last very long even if its individual pieces do. Un
doable objects seem to inspire less emotional investment and to have less 
power as "social currency." This is perhaps because of the possibility of 
reuse: One is unlikely to give a Zometool construction as a gift, in part be
cause one might later need the pieces of which it was made, in part because 
the recipient might be tempted to disassemble the gift! In any event, the 



Theme 3: Materials as Representatives of Specific Cultures 275 

reparability or undoability of craft materials has interesting implications for 
the uses of those materials. 

Affordabi lity 

1bis is an obvious dimension to consider in thinking about educational crafts. 
Typically, the standard examples of "cheap" craft materials are yarn, paper, 
and water-based paints. It is worth mentioning, though, that a wide variety of 
newer, more specialized craft materials-suitable for science education pro
jects-are in fact relatively affordable: "smart" materials such as "muscle 
wire" (Gilbertson 1993), diffraction gratings, flexible mylar mirrors, temper
ature-sensitive films, glow-in-the-dark paints, and so on. We have, in other 
writing, referred to such materials as middle-tech, somewhere on the spec
trum between the obvious "high-tech" examples of digital logic and the "low
tech" examples of clay and yarn (Eisenberg and Eisenberg, 1998b). Thus, al
though affordability is cle~ly desirable in a scientific craft material, it is also 
a dimension along which a material's classification need not be forever fixed. 
After all, many of today's most commonplace materials (paper among them) 
were once rare and precious. 

Intended Audience 

Craft materials often seem designed with a specific audience in mind, at least 
within some particular surrounding culture. For example, the colors with 
which materials are made might suggest that they are intended for young chil
dren (bright primary colors). Or the fact that materials require fine motor 
control might suggest that they are intended for older students. Or perhaps 
the fact that materials (such as those in chemistry sets) have certain physical 
risks associated with them suggests that these materials are intended only for 
adults, or at least for students who have adult supervision. In our own expe
riences with HyperGami, we have noticed a general, age-related response to 
the medium of polyhedral paper sculpture: Whereas adults and young chil
dren have often expressed delight, teenagers (especially males) have often 
been noticeably cooler (Eisenberg and DiBiase, 1996). 1bis has led us to re
think the types of examples that we now present to high school students. 
These examples now tend to de-emphasize the element of whimsy that, to 
teenagers, can seem perilously undignified. 

Still other dimensions could be mentioned in a more thorough discussion 
of this kind: the portability of craft materials; their associated settings or in
frastructure, and the opportunities that some materials might offer for col
laborative work. Nonetheless, the four dimensions we have discussed at least 
suggest the lines of thought that our work with HyperGami has opened for 
us. These, of course, are dimensions that apply equally well to traditional and 
computationally enriched craft materials. In the following paragraphs, how
ever, we note some specifically new dimensions that the advent of computa
tion has introduced into scientific crafts. 
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Computation and New Ways of Thinking About Crafts 

Role of Computation in Design 

HyperGami, as an application, offers a clear illustration of one style of com
putationally enriched craft: In this style of work, the craftsperson does most 
of the explicit design work on the computer and then completes the con
struction using real-world materials. This paradigm, we believe, could profit
ably be extended to other sorts of scientific craft activities-geometric optics 
projects, crystal-growing sets, and kaleidoscope design, to name just a few. 
In any of these cases, one could well imagine beautiful software applica
tions whose express purpose is to assist the student of science in creating and 
understanding real-world objects. And, like HyperGami, these applications 
could presumably expand the range of expressiveness or complexity of the 
craft, helping the designer create never-before-possible objects. 

This is not, of course, the only way computational media can affect the de
sign of craft objects. A software application might be used only to design part 
of some larger project (for example, an application might be used to decorate 
but not design balsa wood gliders); or an application might be used mainly to 
provide more elaborate or animated instructions on how to do the crafting it
self (there exist CD-ROMs for teaching origami and paper airplane construc
tion). Conceivably, software might be used in an expanded role beyond that 
illustrated by HyperGami. For instance, an application might be designed to 
assist the craftsperson not only in the design phase but during the process of 
physical construction itself. (One could imagine an application that helps stu
dents construct a terrarium and then later assists them in monitoring or ana
lyzing the miniature ecosystem that they have created.) 

Craft Objects with Embedded Computation 

In most of the discussion thus far, we have assumed rather traditional views 
of computation and crafts as individual entities. That is, "computation" is pro
vided by a large machine sitting on the desk (and probably connected to 
other large machines via networks), whereas "crafts" are traditional physical 
materials. An especially interesting direction for integrating computational 
media and crafts is to embed a certain degree of computation within the craft 
materials themselves. This is, of course, the direction Resnick and his col
leagues have pursued creatively at the MIT Media Lab in developing the "pro
grammable Lego brick" and its conceptual offspring (Resnick, 1993; Res
nick et al., 1996). Likewise, the now-popular idea of "wearable computing" 
offers fascinating possibilities for integrating computational media and fab
rics (Mann, 1997). 

There are still other possibilities for integrating computation and crafts, es
pecially those crafts that show up often in science education. One might en
vision, for example, a set of plastic biological models (such as those ofthe hu
man heart or eye that are used in classrooms) augmented with computational 
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elements so that students can observe phenomena (such as arrhythmia). Or 
the simple frameworks constructed for use with soap films (so that students 
can observe minimal surfaces generated by the films) might be made so that 
the frameworks shift or twist slightly after construction, revealing the ways 
in which minimal surfaces readjust under dynamic conditions. 

Often, "embedded computation" within craft objects implies adding some 
sort of dynamic (as opposed to static) element, as in the two foregoing ex
amples. But this needn't always be the case: Computational elements might 
simply be used for measuring, monitoring, or communicating. A homemade 
water-based barometer might be equipped with computational elements that 
signal an approaching storm or that simply record readings of water levels 
over a period of time for the purpose of later display. A homemade mobile 
might include a computational device whose purpose is to record and graph 
the movements of the mobile's arms over the course of a day. 

The advent of small, light, flexible computational devices provides a richly 
fertile ground for experim~nting with the integration of computers and crafts 
in novel ways. Indeed, we and our colleagues and students have used the 
MIT Media Lab's "cricket" -a recent, smaller and lighter version of the origi
nal programmable brick-in a wide variety of science-related projects. These 
include a "computationally enriched kaleidoscope" by A. Warmack, a cricket
driven dynamic color display by M. Burin, K. Johnston, and D. Olvera that em
ploys tanks filled with water tinted in various shades, and a cricket-operated 
magnetic field sensor devised by T. Wrensch (Eisenberg and Eisenberg, 
1998b). By thumbing through any catalog of scientific toys and crafts, or by 
strolling through the local science museum, one is sure to get new ideas for 
ways to use embedded computation within traditional scientific crafts. 

Programmability/Reprogrammability/Adaptability 

One final, and important, dimension worth noting in this discussion is that of 
programmability. Some examples of computational craftwork might employ 
computers as part of, say, clothing, to make it change color in different light
ing conditions, but the behavior of the object under consideration is fixed by 
the designer and is not alterable by the user. In other cases, the user might be 
able to program the behavior of the object at the outset but not be able to al
ter the program thereafter (for instance, the user might initially specify the 
behavior of a programmable mobile or kaleidoscope). Or perhaps the user 
could reprogram the computational element in some restricted fashion but 
could not alter it while it was running within the constructed device. A more 
powerful possibility would be to allow the user to reprogram the computa
tional elements of some craft object "on the fly," while the device is running; 
this would permit a user to reprogram or fine-tune, say, a programmable ba
rometer while it was in the process of taking measurements. Finally, one 
might allow for the possibility of a certain level of internal adaptability in the 
device's programming, based perhaps on its use; for example, a computer
augmented home-built Van de Graaff generator might be constructed such as 
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to permit higher-voltage demonstrations only after it had been successfully 
used in a certain number of (relatively safer) lower-voltage experiments. 

New Directions in Computational Crafts 

Over the last several years, we have come to derive such pleasure from inte
grating computation and papercrafts that it is often difficult for us to choose, 
like sage adults, which of the myriad lines of thOUght and work to pursue. 
Certainly, we plan more development for HyperGami itself. Recent additions 
to the program (besides one or two mentioned earlier in this chapter) include 
the implementation of loadable texture libraries, several new geometric op
erations on solids, and the (still experimental) development of "intelligent 
spatial advisors" to help users select possible customizations to perform on 
polyhedra (Eisenberg and Eisenberg, 1997c). In the somewhat longer term, 
we have begun a reimplementation of (much of) HyperGami in Java, which 
we hope will permit both a wider dissemination of the program and its fur
ther evaluation. And there are numerous additional research issues that we 
fervently wish to pursue within the narrow context of HyperGami develop
ment. These include representing the bending (and perhaps crumpling) of 
paper surfaces, representing additional paper-sculpture techniques (such as 
tearing or cutting slits in surfaces), representing sets of distinct polyhedra on 
the screen at one time (in the current version of HyperGami, each individual 
polyhedron must be constructed separately, and one does not typically view 
sets of polyhedra on the screen at one time). 

Going beyond the specific domain of HyperGami, there is still much to do 
within the basic paradigm of the original program-that is, creating software 
applications to assist in the design of more complex or expressive scientific 
crafts. One might imagine an application to aid in the design of metal-ring 
topological puzzles, an application for the design of marionettes, an applica
tion to assist in the practice of creative glassblowing, an application for the 
design of new types of birdhouses, or one for the design of novel sorts of 
kites. Perhaps some of these ideas would fare better than others in practice, 
but there is a single notion behind them that is consistently worth exploring: 
that computational media (especially when augmented by a composable no
tation like a programming language) can enrich those activities that young 
scientists have historically found to be motivating and pleasurable. 

There are other directions to pursue that transcend the basic paradigm of 
HyperGami-like applications. In the previous section, we alluded to new pos
sibilities for integrating computational elements within craft objects them
selves and gave a few primitive illustrations of the idea. We believe that many 
of the smaller, more ubiquitous pieces of scientific crafts-mirrors, motors, 
springs-might well be designed to include small amounts of embedded 
computation. (For example, one might imagine a simple "intelligent spring" 
that sends a signal if it is stretched beyond the limit at which it is well ap-
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proximated by Hooke's law.) And there are natural ways in which the World 
Wide Web could augment the practice of crafts. For instance, it is quite plau
sible to imagine a world in which scientific craft objects routinely come with 
their own associated websites explaining how those objects were con
structed. (Several ideas along these lines are mentioned in Eisenberg and 
Eisenberg, 1998a.) 

It might even be possible to change the fundamental mindset with which 
craft objects are created. Traditionally, craft materials are not designed with 
educational purposes in mind. The early manufacturers of paper almost cer
tainly never envisioned the development of mathematical papercrafts, and 
the first makers of soap probably never thought about the use of their inven
tion for the study of minimal surfaces. In other words, the traditional rela
tionship between the development of materials and the needs of science ed
ucators has been serendipitous; industry creates, and (on occasion) the world 
of scientific crafts catches a lucky break. Perhaps we can do better by start
ing from a perceived need,in science education and attempting to design real
world crafts in response. Indeed-returning to the examples with which we 
began this paper-it may not be hopeless to design new craft activities or 
craft materials (perhaps with some sort of embedded computation) that illu
minate concepts such as Newtonian mechanics in the absence of friction, 
wave/particle duality, objects moving near the speed of light, and evolution
ary processes that typically take place over millennia. The real world, the 
world of crafts, is partly our own creation as designers, and the basic stuff of 
home science can itself be a target domain for innovation. 

For us, these (admittedly futuristic) notions originated with paper. In de
signing, using, and teaching with HyperGami, we have come to feel that this 
system is most fruitful as an "object to think with" -a single instance of a 
much larger class of examples in which computers and traditional (or non
traditional) craft materials are integrated. There is something satisfying about 
using new technology to work within a tradition of paper geometric con
struction that dates back at least to Albrecht Diller in the sixteenth century 
(Malkevitch 1988). And there is something satisfying in the varied pace of the 
HyperGami activity itself, in which abstract design on the computer screen 
is followed by patient and careful handling of paper in all its exquisitely tan
gible manifestations. 

After all, it's a natural desire to employ all one's senses and cognitive pow
ers in the course of a single project. We do not feel that a love of crafts is in
compatible with technophilia, nor that an enjoyment of computer applica
tions must detract from time spent in crafting. The world is not, or should not 
be at any rate, a battleground between the real and the virtuaL It is instead a 
marvelous continuum-a source of wonders that blend and knead together 
the natural and the artificial, the traditional and the novel, the scientifically 
objective and the personally expressive, the tangible and the abstract. We an
ticipate a future in which ever more astonishing things will present them
selves to our minds, and ever more astonishing ideas to our hands. 
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Multisensory Immersion 
as a Modeling Environment 
for Learning Complex 
Scientific Concepts 
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The power of technology to change one's intellectual viewpoint is one 
of its greatest contributions, not merely to knowledge, but to something 
even more important: understanding ... it goes beyond the limits of hu
man perception. 

Arthur C. Clark, Technology and the Limits of Knowledge 

In every aspect of our knowledge-based sOciety, fluency in understanding 
complex information spaces is an increasingly crucial skill (Dede and Lewis, 
1995). In research and industry, many processes depend on people utilizing 
complicated representations of information (Rieber, 1994). IncreaSingly, 
workers must navigate complex information spaces to locate data they need, 
must find patterns in information for problem solving, and must use sophis
ticated representations of information to communicate their ideas (Kohn, 
1994; Studt, 1995). Further, to make informed decisions about public-policy 
issues such as global warming and environmental contamination, citizens 
must comprehend the strengths and limitations of scientific models based on 
multivariate interactions. In many academic areas, students' success now de
pends on their ability to envision and manipulate abstract multidimensional 
information spaces (Gordin and Pea, 1995). Fields in which students struggle 
with mastering these types of representations include mathematics, science, 
engineering, statistics, and finance. 

Research on learning scientific concepts yields insights into why under
standing complex information spaces is difficult. Many scientific domains 
deal with abstract and multidimensional phenomena that people have diffi
culty comprehending. Mastery of abstract scientific concepts requires that 
students build flexible and runnable mental models (Redish, 1993). Fre
quently, these scientific models describe phenomena for which students 
have no real-life referents (Halloun and Hestenes, 1985a) and incorporate 
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invisible factors and abstractions (Chi, Feltovich, and Glaser, 1991; White, 
1993). Students learning science need to be able to sift through complex in
formation spaces, identifying what is important and what is not and recog
nizing critical patterns and relationships. Learners may need to translate 
among reference frames, to describe the dynamics of a model over time in or
der to predict how changes in one factor influence other factors, and to rea
son qualitatively about physical processes (McDermott, 1991). 

Developing effective pedagogical strategies and simulation technologies 
for teaching complex science concepts presents a substantial challenge for 
educational researchers and instructional designers. Despite the utilization of 
new teaching approaches, tools, and technologies, students struggle with ab
stractions in science. They not only enter their courses with gaps and inac
curacies in their conceptual understanding of the material but also often 
leave with unaltered misconceptions (Halloun and Hestenes, 1985b; Reif and 
Larkin, 1991). Students' lack of real-life referents for intangible phenomena, 
coupled with an inability to reify ("perceptualize") abstract models, is an im
portant aspect of this problem. In an effort to help students comprehend ab
stract information spaces, finding ways to utilize our biologically innate abil
ity to make sense of physical space and perceptual phenomena seems a 
promising approach. 

Using Models and Simulations to 
Convey Complex Scientific Concepts 

Guided inquiry experiences using scientific models that reveal the short
comings of learners' current conceptual frameworks can help wean students 
from erroneous beliefs. Before the formal representations that scientists use 
are introduced, these models can develop learners' abilities to tmderstand in
tuitively how the natural world functions. Fostering in students the ability to 
predict qualitatively the behavior of phenomena under investigation is a 
valuable foundation for teaching them to manipulate quantitative formulas. 
Also, students are not empty vessels to be filled with theories; they have 
firmly held, often erroneous beliefs about how reality operates. Model-based 
instruction can help learners' existing mental models evolve into more accu
rate conceptions of reality. 

To date, uses of information technology to apply these pedagogical prin
ciples have centered on creating computational tools and two-dimensional 
virtual representations that students can manipulate to complement their 
memory and intelligence in constructing more accurate mental models. 
Perkins (1991) classifies the types of "constructivist" paraphernalia instanti
ated via information technology as information banks, symbol pads, con
struction kits, phenomenaria, and task managers. Transitional objects (such 
as Logo's "turtle") are used to facilitate translating personal experience into 
abstract symbols (papert, 1988; Fosnot, 1992). Thus, technology-enhanced 



284 12. Multisensory Immersion as a Modeling Environment 

constructivist learning currently focuses on how representations and tools 
can be used to mediate interactions among learners and natural or social 
phenomena. 

However, high-performance computing and communications capabilities 
are opening up new possibilities in modeling scientific phenomena (Dede, 
1995). Like Alice walking through the looking glass, the virtual reality inter
face enables learners to immerse themselves in distributed, synthetic envi
ronments. They can become "avatars" (computer-graphics representations 
that serve as personas of human participants in the virtual world) who col
laborate in inquiry-based "learning by doing" and use virtual artifacts to con
struct knowledge. The key features that virtual reality (VR) adds to modeling 
as a means of constructivist learning are 

• Immersion: Learners develop the subjective impression that they are par
ticipating in a "world" that is comprehensive and realistic enough to induce 
the willing suspension of disbelief (Heeter, 1992; Witmer and Singer, 1994). 
By engaging students in learning activities, immersion may make important 
concepts and relationships more salient and memorable, helping learners 
to build more accurate mental models. Also, inside a head-mounted dis
play, the learner's attention is focused on the virtual environment and is 
not subject to the distractions present in many other types of educational 
environments. 

• Multiple three-dimensional representations and frames of reference: Spa
tial metaphors can enhance the meaningfulness of data and provide quali
tative insights (Erickson, 1993). Enabling students to interact with spatial 
representations from various frames of reference may deepen learning by 
providing different and complementary insights (Arthur, Hancock, and 
Chrysler, 1994). 

• Multisensory cues: Via high-end VR interfaces, students can interpret vi
sual, auditory, and haptic (tactile) displays to gather information, while us
ing their proprioceptive system to navigate and control objects in the syn
thetic environment. This potentially deepens learning and recall (psotka, 
1996). 

• Motivation: Learners are intrigued by interactions with well-designed im
mersive "worlds," which encourages them to devote more time and con
centration to a task (Bricken and Byrne, 1993). 

• Telepresence: Geographically remote learners can experience a simultane
ous sense of presence in a shared virtual environment (Loftin, 1997). 

By using a VR interface, instructional designers can not only display how a 
model can aid in interpreting a scientific phenomenon but can also enable 
learners (1) to experience being part of the phenomenon and (2) to partici
pate in a shared virtual context within which the meaning of this experience 
is socially constructed. 
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The Potential of Multisensory Immersion 
for Learning Scientific Concepts 

The virtual reality interface has the potential to complement existing ap
proaches to science instruction. By themselves becoming part of a phenom
enon (a student becomes, for example, a point-mass undergoing collisions 
in an immersive virtual environment without gravity or friction), learners 
gain direct experiential intuitions about how the natural world operates. In 
particular, good instructional design can make those aspects of virtual en
vironments that are useful in understanding scientific principles salient to 
learners' senses. For example, in two-dimensional Newtonian microworlds, 
students often ignore objects' velocities, focusing instead on position. In 
our comparable immersive environment, NewtonWorld, learners "inside" a 
moving object are themselves moving; this three-dimensional, personalized 
frame of reference directs attention to velocity as a variable. In Newton
World, we heightened this saliency by using multisensory cues to con
vey multiple, simultaneous representations of relative speeds. As another 
example of the power of "perceptualization," learners who struggled with 
the concepts underlying our vector-field-based immersive environment, 
MaxwellWorld, reported that representations providing redundant data si
multaneously through visual, auditory, and haptic stimuli aided their com
prehension. Transducing data and abstract concepts (such as energy) into 
mutually reinforcing multisensory representations may be an important 
means of enhancing understanding of scientific models. 

In addition, researchers are documenting that the social construction of 
knowledge among students in a shared, text-based virtual environment 
makes possible innovative, powerful types of collaborative learning. As we 
discuss later, adding immersive, multisensory representations to these textual 
"worlds" might increase communicative and educational effectiveness. Over
all, we believe that various aspects of multisensory immersion, when applied 
to scientific models, can provide learners with experiential metaphors and 
analogies that (1) help them understand complex phenomena that are re
mote from their everyday experience (relativity, quantum mechanics) and 
(2) help displace "common-sense" misconceptions with alternative, more ac
curate mental models. 

Challenges in Using Virtual Reality for Learning 

In spite of its potential benefits, many barriers intrinsic to current virtual re
ality technology can block students' mastery of scientific concepts. These 
challenges to educational design are as follows: 

• Virtual reality's physical interface is cumbersome (Krueger, 1991). Head
mounted displays, cables, 3-D mice, and computerized clothing all can in
terfere with interaction, motivation, and learning. 
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• Display resolution is inversely proportional to field of view. A correspond
ing trade-off exists between display complexity and image delay (Pi
antanida, Boman, and Gille, 1993). The low resolution of current VR dis
plays limits the fidelity of the synthetic environment and prevents virtual 
controls from being clearly labeled. 

• VR systems have limited tracking ability with delayed responses (Kalawsky, 
1993). 

• Providing highly localized 3-D auditory cues is challenging because of the 
unique configuration of each person's ears. Also, some users have difficulty 
localizing 3-D sounds (Wenzel, 1992). 

• Haptic feedback is extremely limited and expensive. Typically, only a single 
type of haptic feedback can be provided by computerized clothing; for ex
ample, one glove may provide heat as a sensory signal but cannot simulta
neously provide pressure. In addition, using computerized clothing for out
put can interfere with accurate input on users' motions. 

• Virtual environments require users to switch their attention among the dif
ferent senses for various tasks (Erickson, 1993). To walk, users must pay at
tention to their haptic orientation; to fly, they must ignore their haptic 
sense and focus on visual cues. Also, as Stuart and Thomas (1991) describe, 
multisensory inputs can result in unintended sensations (such as nausea 
due to simulator sickness) and unanticipated perceptions (such as being 
aware of virtual motion but feeling stationary in the real world). 

• Users often feel lost in VR environments (Bricken and Byrne, 1993). Accu
rately perceiving one's location in the virtual context is essential to both 
usability and learning. 

• The magical (unique to the virtual world) and literal (mirroring reality) fea
tures of VR can interact, reducing the usability of the interface (Smith, 
1987). Also, some researchers have demonstrated that realism can detract 
from learning rather than enhance it (Wickens, 1992). 

As virtual reality technology evolves, some of the challenges to educational 
design will be overcome. At present, however, achieving the potential of im
mersive, synthetic worlds to enhance learning requires transcending these 
interface barriers through careful attention to usability issues. 

Another class of potential problems with the use of immersive virtual 
worlds for education is the danger of introducing new or unanticipated mis
conceptions that result from the limited nature of the "magic" possible via 
this medium. For example, learners will not feel their sense of personal phys
ical weight alter, even when the gravity field in the artificial reality they have 
created is set to zero. The cognitive dissonance that this mismatch creates, 
which reflects conflicting sensory signals, may create both physiological 
problems (such as simulator sickness) and false intellectual generalizations. 
One aspect of our research is examining the extent to which manipulating 
learners' visual, auditory, and tactile cues may induce subtle types of mis
conceptions about physical phenomena. The medium (virtual reality) should 
not detract from the message (learning scientific principles). 
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The Vi rtual Worlds of ScienceSpace 

ScienceSpace is a collection of virtual worlds that we designed to explore 
the potential utility of physical immersion and multisensory perception to 
enhance science education (Dede, Salzman, and Loftin, 1996). ScienceSpace 
now consists of three worlds-NewtonWorld, MaxwellWorld, and Pauling
World-in various states of maturity. All three worlds are built using a poly
gonal geometry. Colored, shaded polygons and textures are used to produce 
detailed objects. These objects are linked together and given behaviors 
through the use of NASA-developed software (VR-Tool) that defines the vir
tual worlds and connects them to underlying physical simulations. lnter
activity is achieved through the linkage of external devices (such as a head
mounted display) using this same software. Finally, graphics-rendering, 
collision detection, and lighting models are provided by other NASA-devel
oped software. 

Our hardware architecture includes a Silicon Graphics Onyx Reality En
gine2 four-processor graphics workstation, Polhemus magnetic tracking sys
tems (with a 3Ball or stylus), and a Virtual Research VR4 head-mounted dis
play. One Polhemus tracker is in the 3Ball or stylus that the participant holds 
in one hand; a second is mounted on a fixture and held in the other hand; and 
a third is mounted on the head-mounted display. The hand holding the 3Ball 
or stylUS is represented in the virtual world as a hand with the index finger 
extended (aligned with the user's hand). Attached to the second tracker is a 
menu system. Sound is produced by a Silicon Graphics Indy workstation and 
delivered via head-mounted display headphones and external speakers. Vi
brations are delivered to a subject's torso by a "vest" with embedded sub
woofers. This interface enables us to immerse students in 3-D virtual worlds 
using the visual, auditory, and haptic senses. Students use a virtual hand (con
trolled by the 3Ball) , menus, and direct manipulation to perform tasks in 
these immersive virtual environments. 

Newton World 

NewtonWorld provides an environment for investigating the kinematics and 
dynamics of one-dimensional motion. In NewtonWorld, students spend time 
in and around an activity area, which is an open "corridor" created by colon
nades on each side and a wall at each end (see Figure 12.1). Students interact 
with NewtonWorld using a "virtual hand" and a menu system, which they ac
cess by selecting the small 3-Ball icon in the upper left comer of the head
mounted display. Students can launch and catch balls of various masses and 
can "beam" (teleport) from the ball to cameras strategically placed around 
the corridor. The balls move in one dimension along the corridor, rebound
ing when they collide with each other or the walls. Equal spacing of the 
columns and lines on the floor of the corridor aid learners in judging distance 
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FIGURE 12.1 Above the corridor, showing cameras, balls with shadows, and the 
far wall. 

FIGURE 12.2 After launch, illustrating the spring-based launching mechanism. 

and speed. Signs on the walls indicate the presence or absence of gravity and 
friction. 

Multisensory cues help students experience phenomena and direct their 
attention to important factors such as mass, velocity, and energy. For ex
ample, potential energy is made salient through tactile and visual cues, and 
velocity is represented by auditory and visual cues. Currently, the presence 
of potential energy before launch is represented by a tightly coiled spring, as 
well as via vibrations in the vest. As the ball is launched (Figure 12.2) and po-
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FIGURE 12.3 A collision seen from the center-of-mass reference frame. 

tential energy becomes kinetic energy, the spring uncoils and the energy vi
brations cease. The balls now begin to cast shadows whose areas are directly 
proportional to the amount of kinetic energy associated with each ball. On 
impact, when kinetic energy is instantly changed to potential energy and 
then back to kinetic energy again, the shadows disappear and the vest briefly 
vibrates. To help students judge the velocities of the balls relative to one an
other, the columns light and chime as the balls pass. 

Additionally, we provide multiple representations of phenomena by al
lowing students to assume the sensory perspectives of various objects in the 
world. For example, students can become one of the balls in the corridor, a 
camera attached to the center of mass of the bouncing balls (Figure 12.3), or 
a movable camera hovering above the corridor. Figure 12.4 shows a collision 
seen from just outside one colonnade. These features aid learners in under
standing the scientific models underlying Newton's three laws, potential and 
kinetic energy, and conservation of momentum and energy. 

NewtonWorld was the first virtual environment we built, so its current in
terface does not incorporate the sophisticated features we developed in de
signing MaxwellWorld and PaulingWorld. Accordingly, we are redesigning 
NewtonWorld to take advantage ofthese new capabilities. Figures 12.5 and 
12.6 show sketches illustrating our redesign, which is presently under con
struction. New features include a "scoreboard" to help learners relate quali
tative and quantitative representations, an improved interface based on a 
"roadway" metaphor, three levels of interaction that support progressively 
more complex types of learning activities, and the inclusion of perfectly elas
tic and perfectly inelastic collisions. Dede, Salzman, Loftin, and Ash (in prepa
ration) provides additional details of our design strategies and early research 
results for NewtonWorld. 
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FIGURE 12.4 A collision seen from just outside a colonnade. 

FIGURE 12.5 Level 1 of redesigned NewtonWorld, showing "scoreboard" and 
"roadway." 

PaulingWorld 

PaulingWorld makes possible the study of molecular structures through a va
riety of representations, including quantum-level phenomena. PaulingWorld 
is in its early stages of development. Learners can view, navigate through, su
perimpose, and manipulate five different molecular representations: wire
frame, backbone, ball-and-stick, amino acid, and space-filling models. See 
Figures 12.7 through 12.10 for examples of these models. To design the im
mersive multisensory representations and underlying scientific models that 
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FIGURE 12.6 Within the "roadway" view. 

FIGURE 12.7 Wireframe model. 

we will use for quantum-mechanical bonding phenomena, we are working 
with an NSF-funded project, "Quantum Science Across the Disciplines," led 
by Peter Garik at Boston University (http://qsad.bu.edu/). 

MaxwellWorid 

Although we discuss examples from all three of our virtual worlds, this chap
ter focuses on our design and evaluations of MaxwellWorld as an illustration 
of how models based on multisensory immersion can aid in the learning of 
complex scientific concepts. To date, we have collected more research data 



292 12. Multisensory Immersion as a Modeling Environment 

FIGURE 12.8 Backbone model. 

FIGURE 12.9 Ball-and-stick model with some amino acids. 

on learning in MaxwellWorld than in our other virtual environments, and 
MaxwellWorld also illustrates some particularly interesting applications of 
scientific modeling to education. 

MaxwellWorld allows students to explore electrostatic forces and fields, 
learn about the concept of electric potential, and "discover" the nature of 
electric flux. The fieldspace in this virtual world occupies a cube approxi
mately 1 meter on a Side, with Cartesian axes displayed for convenient refer
ence. The small size of the world produces large parallax when viewed from 
nearby, making its three-dimensional nature quite apparent. 
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FIGURE 12.10 Space-filling model. 

FIGURE 12.11 User exploring a field with test charges and field lines. 

Students use a virtual hand, menu, direct manipulation, and navigation to 
interact with this world (see Figure 12.11). The virtual hand is attached to the 
3Ball, which is held in one hand. The menu is attached to the tracker held by 
the other hand. Attaching the menu to the user's other hand allows students 
to remove the menu from their field of view, while keeping it immediately ac
cessible. Students select menu items by holding up the menu with one hand, 
pointing to the menu option with the virtual hand, and depressing the 3Ball 
button (see Figure 12.12). Thus menu selection in MaxwellWorld is similar to 
menu selection on two-dimensional interfaces in which users manipulate the 
menu with a cursor controlled by a mouse. MaxwellWorld also utilizes direct 
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More ... 

FIGURE 12.12 Activating the menu via the virtual hand. 

manipulation. Once users have selected objects from the menu, they can 
place them in the world, move them around, and delete them. Finally, users 
can change their location by selecting the navigation mode via the menu, 
pointing the virtual hand in the desired direction, and depressing the 3Ball 
button. 

Our decision about which vector field phenomena and representations to 
incorporate into MaxwellWorld was based on the advice of our domain ex
pert, Dr. Edward Redish from the University of Maryland. Using the virtual 
hand, students can place both positive and negative charges of various rela
tive magnitudes into the world. Once a charge configuration is established, 
learners can instantiate, observe, and interactively control model-based sci
entific representations of the force on a positive test charge, electric field 
lines, potentials, surfaces of equipotential, and lines of electric flux through 
surfaces. For example, a small, positive test charge can be attached to the tip 
of the virtual hand. A force meter associated with the charge then depicts 
both the magnitude and the direction of the force of the test charge (and 
hence the electric field) at any point in the workspace. A series of test 
charges can be "dropped" and used to visualize the nature of the electric field 
throughout a region. In our most recent version of MaxwellWorld, learners 
can also release a test charge and watch its dynamics as it moves through the 
fieldspace (Figure 12.13) and then "become" the test charge and travel with 
it as it moves through the electric field. 

In like manner, an electric field line can be attached to the virtual hand. 
A student can then move his or her hand to any point in the workspace and 
see the line of force extending through that point. MaxwellWorld can also 
display many electric field lines to give students a view of the field produced 
by a charge configuration (Figure 12.11). In another mode of operation, the 
tip of the virtual hand becomes an electric "potential" meter that, through 
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FIGURE 12.13 Dipole with moving test charge. 

FIGURE 12.14 Tripole with equipotential surface. 

a simple color map and a "=" or "-" sign on the finger tip, allows students 
to explore the distribution of potential in the fieldspace. By producing and 
manipulating equipotential surfaces, learners can watch how the shapes of 
these surfaces change in various portions of the fieldspace (Figure 12.14). By 
default, the surfaces are colored to indicate the magnitude of the potential 
across the surface; however, the student can also choose to view the electric 
forces as they vary across the surface. This activity helps students distinguish 
between the concepts of electric force and potential. 

Via the production of a "Gaussian" surface, the flux of the electric field 
through that surface can be visually measured. Gaussian surfaces can be 



296 12. Multisensory Immersion as a Modeling Environment 

placed anywhere in the workspace by using the virtual hand to anchor the 
sphere; the radius (small, medium, or large) is selected from the menu. This 
representation enables students to explore flux through a variety of surfaces 
when these are placed at various points in the field. All these capabilities 
combine to make it possible to represent many aspects of the complex sci
entific models underlying vector field phenomena. 

Conducting Research on ScienceSpace 

We have developed elaborate, customized assessment methodologies for 
evaluating the usability and learnability of our ScienceSpace worlds (Salzman, 
Dede, and Loftin, 1995). Although infrequent, potential side effects such as 
"simulator sickness" necessitate the inclusion of special questions and pro
tections to ensure users' comfort. Moreover, because each person evolves a 
unique psychomotor approach to interacting with the three-dimensional na
ture of physical space, individuals appear to have much more varied re
sponses to 3-D, multimodal interfaces than to the standard 2-D graphical user 
interface with menus, windows, and mouse. Evaluating the multisensory di
mensions of an immersive virtual world adds another level of complexity to 
the assessment process. 

Thus, portions of our protocols center on calibrating and customizing the 
virtual world's interface to that particular learner. Throughout the sessions, 
we carefully monitor the learning process and record student comments and 
insights. We also videotape the hours of time we spend with each subject so 
that we can study these records for additional insights. Finally, our protocols 
are designed so as to help us capture various aspects of the leamer's experi
ence, in addition to assessing educational outcomes. By focusing on the stu
dents' experience as well as on their learning, we gain insights that guide the 
refinement of the user interface and help us understand how to leverage VR's 
features for modeling science. 

The following is a summary of the four issues our protocols are designed 
to assess. 

• The VR experience. The VR experience can be characterized along several 
dimensions. We have focused on usability, simulator sickness, meaningful
ness of our models and representations, and motivation. Our most recent 
addition has been the inclusion of questions to assess how immersed stu
dents feel in the modeling environment . 

• Learning. Here our goal is to determine whether and how students 
progress through learning tasks within the virtual environment, to assess 
their mastery of concepts at both the descriptive and the causal levels (dis
cussed later), and to assess whether their learning can be generalized to 
other domain-specific problems. 

• The VR experience vs. learning. We want to understand the relationship 
between the VR experience and learning and to identify when the two may 
conflict. 
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• Educational utility. We hope to be able to demonstrate that the system is 
a better (or worse) teaching tool than other pedagogical strategies by com
paring the quality and efficiency of learning among alternatives that vary in 
cost, instructional design, and pedagogical strategy. 

This careful evaluation strategy is generating data from which we are gaining 
insights into how multisensory immersion can enhance learning, as well as 
how virtual reality's usability can be enhanced. Many of the strategies under
lying these assessment methodologies and instruments are also generalizable 
to a wide range of synthetic environments beyond VR. 

MaxwellWorld: Formative Evaluation 

In the summer of 1995, we assessed our initial version of MaxwellWorld as a 
tool for remediating misconceptions about electric fields and teaching con
cepts with which students are unfamiliar. During the sessions, we adminis
tered one to three lessons on the construction and exploration of electric 
fields (electric force, superposition, test charges, field lines); electric poten
tial (potential and kinetic energy, potential difference, work, potential vs. 
force); and the concept of flux through open and closed surfaces, leading up 
to Gauss's law. 

Our observations during these sessions, students' predictions and com
ments, usability questionnaires, interview feedback, and pre- and post-test 
knowledge assessments helped us determine whether this early version of 
MaxwellWorld aided students in correcting any of their preexisting miscon
ceptions and in learning underlying scientific concepts with which they were 
not familiar. These experiences were also valuable in developing modifica
tions to MaxwellWorld to enhance learning outcomes. 

The findings that follow are based on 14 high school students and 4 college 
students who participated in these evaluations. Thirteen of the 14 high 
school students had recently completed their senior year; 1 student had re
cently completed his junior year. All students had completed at least a course 
in high school physics. Each session lasted for approximately 2 hours. Stu
dents were scheduled on consecutive days for the first two sessions, and the 
third session was conducted approximately 2 weeks later. 

All of the students enjoyed learning about electric fields in MaxwellWorld. 
When asked about their general reactions to MaxwellWorld, a majority of the 
students commented that they felt it was a more effective way to learn about 
electric fields than either textbooks or lectures. Students cited the three
dimensional representations, the interactivity, the ability to navigate to mul
tiple perspectives, and the use of color as characteristics of MaxwellWorld 
that were important to their learning experiences. 

Evaluations before and after lessons showed that lessons in MaxwellWorld 
deepened the students' understanding of the distribution of forces in an elec
tric field and enhanced their comprehension of the scientific models that in
terrelated representations such as test charge traces and field lines. Manipu-
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lating models of the vector fields in three dimensions appeared to play an im
portant role in their learning. Several students who were unable to describe 
the distribution of forces in any electric field before using MaxwellWorld 
gave clear descriptions during the post-test interviews and demonstrations. 
Also, manipulating field lines and traces in three dimensions helped students 
visualize the distribution of force. As an illustration, one student expected 
field lines to radiate from a single charge along a flat plane and was surprised 
to see that they radiated in three dimensions. Another student expected to 
see field lines cross but found that this could not occur. 

Although this initial version of MaxwellWorld helped students qualitatively 
understand three-dimensional (3-D) superposition, students had difficulty ap
plying superposition when solving post-test problems. Learners appeared to 
understand the concept of superposition during the lessons and particularly 
enjoyed the demonstrations of superposition (moving the source charges dy
namically changes the traces and field lines); they often alluded to this during 
the post-testing. However, many of them had difficulty applying superposi
tion to post-test demonstrations and sketches, a result that indicates the need 
to refine our modeling and instruction. 

This early version of MaxwellWorld extended traditional 2-D representa
tions to include (1) the third dimenSion; (2) the ability to manipulate repre
sentations as a means of understanding the dynamics of electrostatic models; 
and (3) two-color schemes to measure and distinguish the magnitude of the 
force on, and the potential experienced by, test charges, field lines, and 
equipotential surfaces. These representational capabilities helped students to 
deepen their understanding of physics concepts and models. The post-test 
outcomes showed that students were able to learn about flux through open 
and closed surfaces using MaxwellWorld. All students performed well during 
post-testing, demonstrating an understanding of important and difficult-to
master concepts such as Gauss's law, field vs. flux, and directional flux. 

Although only four of the students used MaxwellWorld to learn about elec
tric potential, all of them demonstrated that they could visualize the distribu
tion of potential for basic charge arrangements, interpret the meaning of a 
distribution of potential, identify and interpret equipotential surfaces, relate 
potential difference and work, and describe some of the differences between 
electric force and electric potential. All were particularly surprised to see 
(1) 3-D representations of equipotential surfaces, particularly in the case of a 
bipole (two charges of the same size and magnitude), and (2) the varying na
ture of forces over an equipotential surface. 

We observed significant individual differences in the students' abilities to 
work in the 3-D environment and with 3-D controls, as well as in their sus
ceptibility to the symptoms of simulator sickness (eye strain, headaches, 
dizziness, and nausea). Some students learned rapidly to use the menus, ma
nipulate objects, and navigate, but others required guidance throughout the 
sessions. Most students experienced nothing more than slight eyestrain; 
however, two students experienced moderate dizziness and slight nausea 
during the first session and consequently did not return for the second ses
sion. No student complained of any symptoms during the first 30-45 minutes 
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of the lesson, an outcome that reinforced our strategy of using multiple, short 
learning experiences. 

These "lessons learned" from an early formative evaluation of Maxwell
World are consistent with evaluative data collected on our other Science
Space worlds (Salzman, Dede, and Loftin, 1995). To wit, 

• Enabling students to experience phenomena from multiple perspectives 
appears to help them understand complex scientific concepts and models. 

• Multisensory cues appear to engage learners, direct their attention to im
portant behaviors and relationships, help them understand new sensory per
spectives, prevent errors through feedback cues, and enhance ease of use. 

• Simulator sickness and system usability pose potential threats to the learn
ing process. 

• Talk-aloud protocols employing a cycle of prediction-observation-com
parison (White, 1993 and Chapter 10) are highly effective for administer
ing lessons and for monitoring usability and learning in VR modeling en
vironments. 

Our early evaluations of MaxwellWorld indicate that using this type of sci
entific modeling helped students to deepen their understanding of electric 
fields and electric potential and to correct misconceptions about these phe
nomena. However, these studies did not establish the extent to which stu
dents' learning was due to (1) the method of instruction (the lessons), (2) sci
entific models and representations that could have been used equally well 
in a conventional 2-D modeling environment, or (3) the unique features of 
multisensory immersion in virtual reality. 

MaxwellWorld: Multisensory Immersion vs. 
Conventional 2-D Representations 

InJanuary 1996, we initiated an extended study designed to accomplish two 
goals: (1) compare learning and usability outcomes from MaxwellWorld to 
those from a highly regarded and widely used two-dimensional microworld, 
EM Field™, which covers similar material, and (2) assess the usability and 
learnability of an enhanced version of MaxwellWorld with additional model
ing and representational capabilities suggested by results from the initial for
mative evaluation described above. 

The first stage of this study compared MaxwellWorld and EM Field on 
the extent to which representational aspects of these simulations influenced 
learning outcomes. EM Field runs on standard desktop computers and pre
sents learners with 2-D representations of electric fields and electric poten
tial, using quantitative values to indicate strength (Trowbridge and Sher
wood, 1994). To make the two learning environments comparable, we 
removed some of MaxwellWorld's more powerful features and designed les
sons to utilize only those features of MaxwellWorld for which EM Field had a 
counterpart; this limited version of MaxwellWorld we designated MWL. With 
these conditions constraining the functionality of the VR environment, the 
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FIGURE 12.15 A dipole with field lines and test charge in MW L (left) and EM Field 
(right). 

primary differences between the simulations were representational dimen
sionality (EM Field's 2-D vs. MWL'S 3-D) and type (EM Field's quantitative vs. 
MWL'S qualitative). See Figure 12.15. 

In the second stage of the study, we utilized MaxwellWorld's full range of 
capabilities (including multisensory input) to determine what value these fea
tures added to the learning experience. Through the pre-test for stage two, 
we also examined the extent to which students, after a period of 5 months, 
retained mental models learned in either environment. Through this two
stage approach, we hoped to separate the relative contributions of 3-D rep
resentation and multisensory stimulation as instrumental to the learning po
tential of virtual reality. 

Initial Hypotheses 

Our initial hypotheses for this two-phase study were as follows: 

Learning. Learning can occur along three dimensions. First, there is concep
tual understanding-students' ability to define key concepts and describe 
interrelationships among significant representations in the scientific model. 
Second, there is 2-D understanding-students' abilities to create and in
terpret 2-D representations of the phenomena (the ability to illustrate con
cepts on paper). Third is 3-D understanding-students' abilities to create 
and interpret full 3-D representations of the phenomena (this reflects their 
ability to visualize the true three-dimensional nature of the concept). We 
expected students to learn along all three dimensions while completing 
lessons in either MWL or EM Field. 

Learning in EM Field vs. MWL. Our previous experience with VR learning en
vironments indicated that 3-D simulations are likely to facilitate the con
struction of more thorough and accurate mental models of intrinsically 
three-dimensional phenomena. Therefore, we hypothesized that students 
who used MWL would perform better on conceptual questions than those 
who used EM Field. Additionally, students in earlier studies of Maxwell
World had demonstrated the ability to represent phenomena using 2-D 
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sketches after working in the 3-D simulation. However, because students 
learning in MWL would need to translate 3-D information into 2-D infor
mation for the tests, we did not expect their performance to exceed the 
performance of students working in a 2-D environment, who would not 
need to perform this translation. Therefore, we hypothesized that students 
who used MWL would not perform significantly worse on questions re
quiring two-dimensional understanding than those who use EM Field. Fi
nally, we felt that working in 3-D would result in a better three-dimensional 
understanding of the phenomena than working in 2-D. Therefore, we hy
pothesized that students who used MWL would demonstrate significantly 
better three-dimensional understanding than those who used EM Field. 

Learning in the Full Version of MaxweliWorld. In phase two of the study, 
with the constraints on MaxwellWorld's performance removed, we hy
pothesized that students would identify the multisensory representations 
as valuable for their learning. 

Retention. We hypothesi21ed that, over a 5-month period, students would 
experience Significantly greater retention of learning in MWL than in EM 
Field. 

We also identified several additional factors that would probably influence 
the learning experience and outcomes: 

Simulator Sickness. Our work with virtual realities suggested that many stu
dents would experience mild symptoms of simulator sickness, particularly 
eye strain, at some point during their use of the system. We hypothesized 
that MWL and MaxwellWorld students would experience significantly 
more such symptoms than EM Field students. We further expected simu
lator sickness to interfere with learning. 

Nature of the Learning Experience. Inherent to any human-computer in
teraction are the subjective experiences of usability, motivation, and abil
ity to understand the representations. We expected students to find MWL 
and MaxwellWorld more motivating and meaningful than EM Field. We hy
pothesized that such greater motivation might result in increased learning 
(through such factors as increased student attention and concentration). 
We also expected students to find MWL and MaxwellWorld more difficult 
to use than EM Field. However, because careful design of the interface and 
lessons had greatly reduced usability problems in MaxwellWorld, we hy
pothesized that these interface challenges characteristic of VR would not 
interfere with learning. 

Stage One of the Comparison Study 

The first stage of this study was completed by 14 high school students (12 
males and 2 females). All students had 1)1, years of high school physics and 
were recruited from a physics class in a local high school. (The gender dis
parity in the sample population reflects the fact that relatively few women 
take high school physics.) Students' performance in their science and math 
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classes varied; their grades ranged from A through C (A's and B's were the 
norm). Although students wereaavaneed in their knowledge of physics rela
tive to the typical high school population, the pre-test they took at the start 
of this study indicated that most remembered little about electric fields and 
electric potential (this confirms the limits of conventional approaches to 
teaching this type of scientific material). Students participated in two 2-hour 
learning experiences, completing lessons in either EM Field or MWL. The les
sons focused on electric fields and electric potential, mirroring concepts cov
ered in our initial formative evaluation of MaxwellWorld. 

Procedure and Materials 

Evaluations were conducted in our virtual reality lab, where we videotaped 
and logged student-administrator interactions. Male and female students 
were assigned randomly to one of two groups: EM Field and MWL. Both 
groups were equivalent in terms of their science background, and both 
groups of students participated in two sessions. Before the sessions, students 
were asked to complete Recruitment questionnaires. During Session 1, stu
dents completed a Background questionnaire and a Pre-lesson test, and then 
they completed Lesson 1. During Session 2, students completed Lesson 2, 
which was followed by a Post-lesson test, Experience questionnaire, and In
terview. Immediately following each lesson, students also completed a Simu
lator Sickness questionnaire. Lessons required approximately 1 hour 15 min
utes to complete, and sessions lasted for approximately 2 hours. Students 
were given a break-time approximately half-way through each lesson. 

Background Questionnaire and Recruitment Questionnaires. These ques
tionnaires were used to characterize our sample for this study. They 
elicited information about the students' demographic characteristics, edu
cational backgrounds, attitudes toward learning science, and any history of 
motion sickness. 

Lessons. Lessons were constructed so that the informational content and 
learning activities were the same for both groups. Lesson 1 focused on the 
construction and exploration of electric fields, Lesson 2 on electric poten
tial and its relationship to the electric field. These lessons were adminis
tered orally by the test administrator. Learning activities in the lessons re
lied on a cycle of "predict-observe-compare." This served two purposes: to 
help us gauge the students' understanding and progress, and to prime 
them for the upcoming activity. Each successive learning activity built on 
the previous activities, increasing both in level of complexity and in the in
tegration of information that was necessary. 

Pre- and Post-lesson Tests. We used two versions of a Pre-/Post-Iesson test 
to assess learning. Half of the students in each group were randomly as
signed to receive version A for the pre-test and version B for the post-test, 
and vice versa. These tests examined three dimensions of understanding 
for each concept: conceptual understanding (ability to define concepts), 
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two-dimensional understanding (ability to create and interpret 2-D repre
sentations), and three-dimensional understanding (ability to create and in
terpret 3-D representations). The first two sections were administered on 
paper. The third section was administered orally, and students used physi
cal 3-D manipulatives to demonstrate their understanding. 

Experience Questionnaire. This questionnaire was used to assess the nature 
of the learning experience. It consisted of a series of 7-point anchored rat
ing scales related to usability, motivation, and ability to understand the rep
resentations. Here is an example: "Using the menu system was ... [very 
difficult -3] ... to ... [+3 very easy]." 

Simulator Sickness. The Simulator Sickness questionnaire, SSQ (Kennedy, 
Lane, Berbaum, and Lilienthal, 1993), consisted of a series of 4-point ratings 
of symptoms associated with simulator sickness. It can be analyzed to yield 
oculomotor, disorientation, nausea, and overall simulator sickness scores. 

Interviews and Qualitative Data. To help us understand the nature of the 
statistical outcomes, as well as to diagnose strengths and weaknesses of EM 
Field and MaxwellWorld and of our lessons, we collected the following 
qualitative data: students' predictions and observations throughout the les
sons; their comments, likes, and dislikes; their suggestions for improve
ment; and their reflections on the learning process. 

Analyses and Results 

Stage one of our study yielded the following outcomes: 

Learning. As anticipated, students learned as a result of completing the les
sons with either MWL or EM Field. Students were better able than before 
to define concepts, describe concepts in 2-D, and demonstrate concepts 
in 3-D. 

Learning in MWL vs. EM Field. MWL students were better able to define con
cepts than EM Field students. Also, MWL students were not any worse than 
EM Field students at sketching concepts in 2-D. A closer examination of the 
sketches shows that although MWL students performed better on the force 
sketches, they performed worse on the sketches related to potential, 
which resulted in total sketch scores that were similar for the two groups. 
Finally, MWL students were better able than EM Field students to demon
strate concepts and their underlying scientific models in 3-D. Despite the 
inherent three-dimensionality of the demonstration exercises (as well as 
our use of the terms surface and plane in the lessons), EM Field students 
typically confined their answers to a single plane; drew lines when de
scribing equipotential surfaces; and used terms such as circle, oval, and 
line. In fact, only one of the seven students in the EM Field group described 
the phenomena in a three-dimensional manner. In contrast, MWL students 
described the space using 3-D gestures and referred to equipotential sur
faces by using terms such as sphere and plane. 

Simulator Sickness Scores. As we anticipated, MaxwellWorld's immersive 
VR environment induced more symptoms associated with simulator sick-
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ness than did EM Field's monitor-based 2-D environment. In MWv overall 
simulator sickness scores tend to be slightly higher on day 1 than on day 2. 
This may have been due to adaptation to the VR environment. In a result 
consistent with our earlier research findings, there appear to be large indi
vidual differences in the way students react to the VR environment. We 
found that simulator sickness scores did not significantly predict learning 
outcomes. Though it constituted a minor nuisance, simulator sickness did 
not interfere with mastering the material. 

The Nature of the Learning Experience. Students rated MWL as more moti
vating than EM Field. Ideally, we would like to see the ratings for motiva
tion even higher. However, we suspect that the intensity and the con
trolled nature of the lessons may prevent students from feeling extremely 
motivated during the learning experience. We found that motivation 
scores did not significantly predict learning outcomes, and motivation 
alone did not account for the differences in learning in each group. 

Students found using the various features of MWL significantly more dif-
ficult than using EM Field. Further, ratings for the ability to understand MWL's 
representations were slightly, though not significantly, higher than the rat
ings for EM Field. The variability in ratings was greater for EM Field than for 
MWv which suggests that there were more individual differences in ability to 
extract information from the EM Field representations than from the MWL 
representations. 

Student Comments. Students' comments provide further insight into the na
ture of the learning experience. Overall, students described MWL as easy 
to use, interesting, and informative. They especially liked the three-dimen
sional representations, the ability to see phenomena from multiple per
spectives, and the interactivity of the system. MWL students found using 
the 3Ball and virtual hand somewhat challenging and indicated that the re
sponsiveness of MWL was problematic at times. Students described EM 
Field as very easy to use but somewhat boring. They found the simplicity 
of its graphics both a strength and a weakness. Additionally, more MWL stu
dents than EM Field students indicated that they found it easy to remain at
tentive during sessions. 

Stage Two of the Comparison Study 

Procedure and Materials 

During stage two, we examined the "value added" by the full power of 
MaxwellWorld's multisensory representations. Seven EM Field and MWL 
students returned for stage two, conducted approximately 5 months after 
stage one. All students experienced the full power of MaxwellWorld, receiv
ing an additional lesson (built upon the concepts taught in earlier lessons) 
that relied on multisensory cues to supplement the visual representations. 
The auditory and haptic representations that were used provided, simultane
ously, information redundant to that expressed through the visual sensory 
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channel. We also assessed stage-one retention at the beginning of stage two. 
(The retention test was an abbreviated version of the Post-lesson test used in 
stage one.) 

Analyses and Results 

No statistically significant differences in retention outcomes were observed. 
However, with only seven participants, this stage of the study had very low 
power. Our limited data suggest that with a larger number of subjects, reten
tion of 3-D understanding might be significantly higher for MaxwellWorld 
participants than for EM Field participants. 

Data for stage two did yield insights into the value of multisensory repre
sentations. Students learned from visual and multisensory representations 
used in the lesson and demonstrated significantly better understanding of 
concepts, 2-D sketches, and 3-D demos after the lesson than before it. Ratings 
concerning multisensory ,representations (haptic and sound), post-lesson 
understanding, and student comments all suggest that learners who experi
enced difficulty with the scientific concepts found that multisensory rep
resentations helped them understand more than purely visual representa
tions did. 

Summary of This Comparison Study 

Both stages lend support to the thesis that immersive 3-D multisensory rep
resentations can help students develop more accurate and causal mental 
models than 2-D representations. Learning outcomes for stage one show that 
MWL learners were better able than EM Field learners to understand the space 
as a whole, recognize symmetries in the field, and relate individual visual rep
resentations (test charge traces, field lines, and equipotential surfaces) to the 
electric field and electric potential. MWL students appeared to visualize the 
phenomena in 3-D, whereas EM Field students did not. 

Subjective ratings for stage one yielded converging evidence that the vir
tual worlds' representational differences were responsible for differences in 
learning. In stage one, students rated the representations used in MWL as eas
ier to understand than the representations used in EM Field. Second, differ
ences in learning could not be attributed solely to motivation (which was 
higher in MWL than in EM Field). Additionally, MWL students learned more 
even though they experienced more usability problems and simulator sick
ness. Finally, during interviews, students cited MWL's immersive 3-D repre
sentations as one of its key strengths. In stage two, the enhancement of visual 
representations with multisensory cues appeared to enhance learning, espe
cially for students who had trouble grasping the concepts. 

Outcomes of this study support the following findings related to modeling 
scientific concepts: 

• Virtual modeling experiences such as those provided by EM Field and MWL 
should be integrated with initial instruction to avoid the forming of mis-
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conceptions that are difficult to remediate later. Although students in both 
the EM Field and the MWL group demonstrated a better overall under
standing of the topics on the post-test than on the pre-test, some snldents 
with a moderate knowledge of electrostatics at pre-test benefited less than 
students who demonstrated little or no knowledge at pre-test. In addition, 
some of the more advanced students who had misconceptions appeared to 
have a hard time overcoming them despite experiences in the virtual 
worlds . 

• Immersive 3-D multisensory representations such as those used in MWL 
may facilitate the students' development of comprehensive and runnable 
mental models more effectively than the 2-D representations of EM Field. 
Learning outcomes, subjective ratings, and comments from both stages one 
and two all provide evidence that supports this finding . 

• Although no new types of misconceptions were introduced by conducting 
the learning experiences in an immersive environment, students have a 
number of misconceptions about electrostatic phenomena, and some of 
them are difficult to remediate. Working with the students yielded insights 
into the nature of their preexisting misconceptions. For example, learners 
have a strong tendency to think of charges in an electric field indepen
dently, and they have trouble describing the nature of superpositional fields 
and potential for sets of charges. Experiences in both MWL and EM Field 
clearly helped students to think about this issue, but the students still had 
some difficulty understanding regions between sets of charges. In addition, 
field line representations are notoriously difficult to comprehend. Even af
ter use of EM Field or MWL , several students continued to have misconcep
tions about the meaning of field lines, although most learners gained a 
greater understanding of this representational formalism. At the conclusion 
of the lessons in both systems, some students did not fully understand how 
the electric field influences charged objects and the interrelationship be
tween potential and force. Modeling environments and activities must be 
carefully designed to try to avoid such shortcomings. 

Although the subject population is small, the results of this study suggest 
that the three-dimensional nature of VR is an aid to learning and that the vir
tual reality experience can be more meaningful and motivating for students 
than comparable 2-D microworlds. Given that many capabilities of Maxwell
World were suppressed in this study, these findings are a promising indica
tion of the potential of immersive scientific models to enhance educational 
outcomes. 

Next Steps in Our Virtual Reality Research 

Over the next 2 years, we plan to extend our current research on the Science
Space worlds along several dimensions. We will conduct tests on Maxwell
World (on immersive frames of reference and on multiple sensory channels) 
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to examine the contribution of "perceptualization" to scientific model-based 
learning. Using the revised version of NewtonWorld, we also intend to ex
amine how, by facilitating innovative types of student collaborations, virtual 
reality may enhance the nature of social constructivist learning. These three 
planned studies are described in more detail below. 

Further, to examine challenges in curriculum integration and in classroom 
implementation, we will move our VR worlds out of laboratory environments 
into precollege settings. In public-school classrooms (fifth grade for New
tonWorld, twelfth grade for MaxwellWorld), we plan to integrate VR experi
ences into science instruction. By this means, we hope to find out whether 
our laboratory results on learning and usability hold up in the more complex 
environment of schools and to determine how students and teachers adapt 
VR environments to their needs and interests. 

Understanding Frames of Reference 
as a Means of "Perceptualization" 

We believe that transforming current scientific visualization tools into "per
ceptualization" experiences could augment their power to boost learning. 
We have documented that adding multisensory perceptual information 
helped students who were struggling to understand the complex scientific 
models underlying Newton World and MaxwellWorld. Providing experiences 
that leverage human pattern recognition capabilities in three-dimensional 
space, such as shifting among various frames of reference (points of view), 
also extends the perceptual nature of a visualization. These enhanced visual
ization (or perceptualization) techniques facilitate student experiences that 
increase the saliency and memorability of abstract scientific models, poten
tially enhancing the learning process. 

By using frames of reference in virtual reality, we can provide learners with 
experiences that they would otherwise have to imagine. For example, we 
can enable students to become part of a phenomenon and experience it di
rectly. Alternatively, we can let learners step back from the phenomenon to 
get a global view of what is happening. One frame of reference may make sa
lient information that learners might not notice in another frame of refer
ence. Further, multiple frames of reference might help students fill in gaps in 
their knowledge and become more flexible in their thinking. 

Although there are numerous frames of references, many can be classified 
as one of two types: exocentric or egocentric (McCormick, 1995; Wickens 
and Baker, 1995). See Figure 12.16. In our MaxwellWorld study on frames of 
references and perceptualization, the two concepts learners will be asked to 
master are the distribution of force in electric fields and the motion of test 
charges through electric fields. Comprehending distribution depends more 
heavily on global judgments than on local judgments, whereas understanding 
motion requires more local judgments than global judgments. We will exam
ine how the egocentric frames of reference, the exocentric frames of refer-
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FIGURE 12.16 Exocentric and egocentric frames of reference in MaxwellWorld. 

ence, and the be-centric frames of reference (utilization frames of reference 
of both types) shape mastery of these two types of material. 

Mastery of scientific models can be assessed on two levels: descriptive and 
causal. If an individual can describe what he or she is examining and identify 
patterns in the data, his or her mastery can be characterized as descriptive. If 
that person can further interpret the meaning of the patterns and manipulate 
the information for problem solving, his or her mastery is causal as well. 
Causal mastery reflects a deeper understanding of the information; it is what 
we seek to accomplish in teaching learners about scientific models. We will 
examine both descriptive and causal mastery, as they are reflected in perfor
mance on frame of reference learning tasks, as a means of providing insights 
into the strengths and weaknesses of frames of references. 

Multisensory Cues and Perceptualization 
Through a study of visual, auditory, and haptic (touch/pressure) sensory 
cues, we plan to extend our explorations on how multisensory immersion 
influences learning. Various sensory modalities can provide similar, mutually 
confirming input. Or, through each sensory channel conveying different 
data, they can increase the amount of information conveyed to the learner. 
Little is known about what level of redundancy in sensory input is optimal for 
learning or about how much information learners can process without sen
sory overload. Moreover, each sense uniquely shapes the data it presents (for 
example, perceived volume and directionality of sound are nonlinear, vary 
with the pitch of the input, and are idiosyncratic to each person). Such com
plex considerations affect any decision about which sensory channel to use 
in presenting information to learners. Virtual reality provides a good research 
environment for exploring these design issues, as well as for exploring how 
multisensory immersion shapes collaborative learning. 
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Immersive Collaborative Learning as a 
Means of Enhancing Social Constructivism 

As a near-term research initiative in our ScienceSpace worlds, we will inves
tigate the effectiveness of collaborative learning situations in which three stu
dents in the same location rotate roles among (1) interacting with the world 
via the head-mounted display, (2) serving as external guide, and (3) partici
pating as a reflective observer. We also plan to experiment with collaborative 
learning among distributed learners inhabiting a shared virtual context. The 
student would act and collaborate, not as himself or herself, but behind the 
mask of an "avatar": a surrogate persona in the virtual world. Loftin (1997) 
has already demonstrated that two users can simultaneously manipulate a 
shared immersive environment by using a communications bandwidth as low 
as that of a standard ISDN telephone line. By adapting military-developed dis
tributed simulation technology, we could scale up to many users in a shared, 
interactive virtual world. 

Collaboration among learners' avatars in shared synthetic environments 
may support a wide range of pedagogical strategies (such as peer teaching, 
Vygotskian tutoring, and apprenticeship). In addition, adding a social dimen
sion makes technology-based educational applications more intriguing to 
those students who are most motivated to learn when intellectual content is 
couched in a social setting. In virtual environments, however, interpersonal 
dynamics provide leverage for learning activities in a manner rather different 
from typical face-to-face collaborative encounters (Dede, 1995). We believe 
that our ScienceSpace worlds offer an intriguing context for extending such 
work on social constructivism in virtual environments. Physical immersion 
and multisensory stimulation may intensify many of the psychological phe
nomena noted above, and "psychosocial saliency" may be an interesting 
counterpart to perceptual saliency in enhancing learning. Important issues to 
be addressed include the relative value of providing learners with graphically 
generated bodies and the degree to which the "fidelity" of this graphical rep
resentation affects learning and interaction (here fidelity is not simply visual 
fidelity but also the matching of real body motions to the animation of the 
graphical body). 

Lessons Learned to Date on Learnability 
and Usability in Virtual Reality 

What generalizations can we make about model-based science learning from 
our research to date with immersive multisensory virtual environments? On 
the basis of lessons learned from all our ScienceS pace worlds, we are devel
oping design heuristics, assessment methodologies, and insights, some of 
which are applicable to a range of educational-modeling environments be
yond virtual reality. 
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Learning and Knowledge Representation 
Our goal is to develop an overarching theory of how learning difficult, ab
stract material can be strongly enhanced by scientific models instantiated via 
multisensory immersion and perceptualization. The following are illustrative 
themes applicable across all the virtual worlds we have created. 

• Multisensory cues can engage learners, direct their attention to important 
behaviors and relationships, prevent interaction errors through feedback 
cues, and enhance perceived ease of use. 

• The introduction of new representations and perspectives can help stu
dents gain insights that help them correct misconceptions formed through 
traditional instruction (many representations used by physicists are mis
leading for learners), as well as aiding learners in developing accurate men
tal models. Our research indicates that qualitative representations (such 
as the shadows that show kinetic energy in NewtonWorld) can increase 
saliency for crucial features of both phenomena and traditional represen
tations. 

• Three-dimensional representations seem to help learners understand phe
nomena that pervade physical space. Being immersed in a 3-D environment 
is also motivating for learners. 

• Learner motivation is high in virtual reality environments, even when nov
elty effects wear off. The inclusion of interactivity, constructivist pedagogy, 
and challenge, curiosity, fantasy, and beauty (Malone and Lepper, 1984) all 
seem to augment student interest and involvement. 

• Initial experiences in working with students and teachers suggest that it 
may be possible to achieve collaborative learning by having two or more 
students work together and take turns "guiding the interaction," "recording 
observations," and "experiencing activities" in the VR environment. Ex
tending this to collaboration among multiple learners located in a shared 
synthetic environment may further augment learning outcomes, as may fea
tures (such as a "Hall of Fame") that provide social recognition for learner 
achievements . 

• In addition to pre-test and post-test assessments of learning, continuous 
evaluation of progress through lessons is critical to diagnosing the strengths 
and weaknesses of the virtual worlds. We have found that talk-aloud proto
cols employing a cycle of prediction-observation-comparison are highly ef
fective for monitoring usability and learning. 

We believe these early results are clear evidence that VR has the potential to 
facilitate certain types of scientific-model-based learning more effectively 
than any other pedagogical modalities. 

Challenges in Current Virtual Reality Interfaces 
We have found the following usability issues to be characteristic of virtual re
ality interfaces. 
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• limitations of the physical design and optics in today's head-mounted dis
plays may cause discomfort for users. Because the visual display is an inte
gral part of interaction and communication of information in these learning 
environments, these limitations presently reduce usability and learning. De
lays in VR system response time can also be a factor with complex envi
ronments. Both of these problems are becoming less serious as hardware 
technology advances. 

• Immersion does present some challenges for lesson administration (for ex
ample, students in the head-mounted display are not able to access written 
instructions or to complete written questions). We have found that oral 
interaction works well. 

• Students exhibit marked individual differences in interaction style, ability to 
interact with the 3-D environment, and susceptibility to simulator sickness. 

• To help learners utilize educational virtual worlds, calibrating the display 
and virtual controls for each individual is important. Additionally, moni
toring and systematically measuring simulator sickness is vital, because ma
laise signals interface problems and also can explain why a student is having 
trouble with certain learning activities. 

• Spreading lessons over multiple VR sessions appears to be more effec
tive than covering many topics in a single session. For example, although 
students began to challenge their misconceptions during a single 3-hour 
NewtonWorld session, many had trouble synthesizing their learning dur
ing post-testing. We believe that factors such as fatigue and cognitive over
load in mastering the interface influenced these outcomes. In contrast, we 
completed our MaxwellWorld evaluations over several sessions, tackling 
fewer topicS during each session and dedicating less time per session to 
pre-testing or post-testing. Reviews and post-tests demonstrated that stu
dents were better able to retain and integrate information over multiple 
lessons. 

In our judgment, none of these interface challenges precludes developing 
compelling learning experiences in virtual reality. 

Implications of Our Work for 
Using Models in Science Education 

The results of our research can inform larger debates within the science 
education community on the best practice in using models and simulations 
to help students learn complex scientific concepts. Some of the issues ac
tively discussed among researchers studying the utility of models for learn
ing science are listed here (Feurzeig, 1997). After each topic, we present our 
beliefs about what ScienceSpace research contributes to resolution of the 
issue. 

The tension between computer-based modeling activities, and real-world observation 
and laboratory experimentation. 
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The Debate. In interacting with a model, learners are manipulating a repre
sentation of reality that can simplify complex scientific concepts and their 
interrelationships. However, unless carefully designed, models can over
simplify reality in a manner that later makes deeper understanding of phe
nomena harder to attain. Still, models that go beyond simulation to allow 
learners to change underlying variables and relationships-to illustrate 
how the idealized phenomenon functions by altering it in ways not pos
sible in reality-can make possible a kind of meta-understanding that can
not be achieved via real-world experimentation. Yet real-world phenom
ena are more "real" to learners: more believable, more fully sensory. On the 
other hand, some complex scientific concepts (such as relativity and quan
tum mechanics) involve intangible phenomena unobservable in the every
day macroscopic settings to which learners have access. Models are the 
only means by which students form nonabstract impressions of such phe
nomena. Given these relative strengths and limits, what should be the ped
agogical balance between interacting with models and experiencing real
ity itself? 

Our Contribution. Models based on multisensory immersion give learners 
experiences closer to the perceptual aspects of reality than any other sim
ulation medium. Our research suggests that virtual reality is a potentially 
powerful means of bridging the gap between models and real-world ex
perimentation by combining strengths of each: the sensorial, immersive in
volvement of real-world experiences and the emphasis on crucial variables 
for understanding that models can provide (in our work, through percep
tual saliency). In our research so far, we have not found that carefully de
signed "almost real" models induce new types of learner misconceptions. 
However, we do believe transitionalleaming experiences that gradually re
move the affordances of models to reveal the full complexity and confu
sion of reality are important for generalizability and transferability of learn
ing. The best pedagogical strategy may involve beginning with real-world 
experiments to show the complexity and counterintuitive nature of phe
nomena, then using models to simplify the situation and to enhance com
prehension via interactive representations, and finally combining and ex
tending the models to show how the complexity of real-world behavior 
emerges from a multiplicity of simultaneous underlying causes. 

The tension between modeling in science research and modeling in science 
education. 

The Debate. This issue concerns the differences between modeling by ex
perts and modeling by novices-in particular, between the modeling tools 
used by scientists and those used by precollege students. Some researchers 
claim that under the guidance of professionals, typical students (especially 
at the secondary school level) can learn scientific concepts by using the 
same models and supercomputing facilities used by research scientists. 
Others insist that all but the brightest high school students need specially 
designed modeling tools and applications to introduce them to model
based inquiry. 
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Our Contribution. In our design of representations for virtual reality, we 
have noted that part of the difficulty in mastering complex scientific con
cepts is the misleading representational formalisms and terminology that 
have emerged historically in science and now are entrenched as standard 
professional notation. Students come to us with misconceptions that ap
pear to be linked to these traditional representations. We find that, despite 
our best efforts to compensate for the shortcomings of these formalisms, 
students sometimes remain confused about how to relate conventional 
representations to reality and how to use standard scientific terminology to 
convey their ideas. Two examples from electrostatics illustrate this point. 

First, from their prior physics instruction, many of our learners in Maxwell
World have initial misconceptions linked to the "field line" representation. 
For experts, field lines are a quick way of ascertaining the direction of a vec
tor field along a series of points. However, novices understandably develop 
several intuitive misconceptions through analogical reasoning: Field lines il
lustrate the path an untethered test charge would take through the field, the 
force does not vary from point to point along the field line, field lines can 
cross, and so forth. Additionally, learners often have difficulty relating field 
lines to another common representation of force, test charge traces. In 
MaxwellWorld, we attempt to overcome the shortcomings of the traditional 
field line representation by adding several enhancements. First, field lines are 
colored according to the strength of the force along them, which helps stu
dents visualize how the force varies from point to point. Second, our "en
hanced" field lines can be continuously manipulated in 3-D. By grabbing a 
point on a field line and moving it, students can see how characteristics of the 
field line (both the shape and the strength of the field along it) change from 
point to point, and they can verify that field lines will never cross. Finally, by 
releasing a test charge on a field line, learners can see that the test charge 
moves along the field line only when the line does not curve. 

Another example of a problematic representation is the "equipotential 
surface," which indicates a set of points across which a test charge's electric 
potential (or energy) would remain constant. In 2-D, this surface appears 
to be a line, so students have trouble distinguishing equipotential surfaces 
from field lines. Further, the standard formalism for equipotential surfaces 
does not convey information about the magnitude of the surface's potential. 
Nor does this representation help students relate the concepts of potential 
and force on the surface (this is also a problem with field lines). Conse
quently, students have trouble remembering which representation tells them 
about electric field (or force) and which tells them about electric potential 
(or energy). For example, we have observed a number of students describing 
field lines when asked to describe equipotential surfaces, and vice versa. At a 
deeper level, students have trouble distinguishing the concept of electric 
field (or force) from electric potential (or energy). For example, when stu
dents are asked whether the force on a test charge will vary or remain con
stant as they move it along an equipotential surface in a complex field, they 
most commonly predict that it will remain constant. We have enhanced the 
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equipotential surfaces displayed in MaxwellWorld in an effort to compensate 
for these shortcomings of the standard formalism. 

In general, these traditional scientific representations have one thing in 
common: They fail to make salient information that may be obvious to the 
expert, but not to the novice. The missing data often are crucial in provid
ing the foundation for understanding how these models represent reality. 
Our approach has been to enhance traditional representations, adding new 
information and offering learners an opportunity to investigate the inter
relationships among them. However, we have sometimes found ourselves 
limited in the extent to which we can build on these conventional formal
isms, and even our enhanced versions are subject to some of the same mis
interpretations. 

We believe that researchers in the modeling community need to investi
gate the strengths and limitations of both enhanced and unique representa
tions that are less subject to misinterpretation than those scientific for
malisms that have emerged historically, before the availability of visualization 
tools. As we have found in our work, new notational systems may enable stu
dents to learn the underlying scientific concepts more readily. Unfortunately, 
learning with models based on new representations does not intrinsically 
convey the standard formalisms used by scientists to represent concepts. 
Therefore, our research suggests that until the scientific community is will
ing to replace historic formalisms with alternative, equally accurate repre
sentations more readliy comprehended by novices, many students will need 
specially designed modeling applications that focus on making salient other
wise "cognitively opaque" notational systems. 

The tension between computer visualization of a model's output behavior and com
puter visualization of a model's structure and component processes. 

The Debate. Computational modeling programs often employ visual repre
sentations of the model's behavior-animated displays of the outputs gen
erated in the course of running the model. (Indeed, many researchers use 
computational models primarily for obtaining visualizations of model be
havior, and modeling is thought of as almost synonymous with visualiza
tion.) Typically, scientists who conduct computational modeling research 
with sophisticated visualization facilities (at supercomputer centers, for in
stance) are content with programs that visualize a model's output behav
ior ("data visualization") but not its internal structure and component pro
cesses. Researchers disagree about whether this "output only" approach to 
visualization should be followed in science education. 

Our Contribution. As we noted earlier, mastery of scientific models can be 
assessed on two levels: descriptive and causal. Descriptive mastery indi
cates that an individual remembers representations and their behavioral in
terrelationships; causal mastery shows a deeper understanding about what 
these descriptive dynamics imply about the nature of reality. In our evalu
ations of multisensory immersion's educational utility, we are careful to 
define causal mastery as the true goal and are not overly impressed when 
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students exhibit descriptive mastery (even though the ability to describe a 
phenomenon's dynamics is a richer type of learning than presentational in
struction typically achieves). Our experiences with educational modeling 
suggest that both inculcating causal understanding in students and mea
suring their attainment of this capability would be far more difficult with 
"output only" models than with the structure-and-processes instructional 
design we use, which allows real-time manipulation of causal factors in or
der to observe secondary effects. 

The tension between learning to use models and learning to design and build models. 

The Debate. Clearly, it is important for students to learn to use precon
structed models, but researchers differ as to how much (and how) pupils 
can learn to design and build their own models. Some argue that if students 
don't learn how to create models in classroom settings, how can we ex
pect them to develop fluency at model building in workplace contexts? 
Further, constructivist learning theorists argue that students can compre
hend much about model-based inquiry from engagement in the process of 
building models and simulations-indeed, that the process of designing 
and building models is an essential part of learning to use models as inves
tigative tools and of understanding the strengths and limitations of models 
as a means for representing reality. 

Our Contribution. For the very difficult scientific concepts on which our re
search is based-material that warrants the "sledgehammer" power of 
multisensory immersion to enhance learning-designing appropriate rep
resentations, interactive interfaces, and educational experiences is very 
challenging. That naive students could rapidly construct meaningful mod
els of these complex phenomena is unlikely, however well designed the 
authoring tools they utilize. Our studies suggest that-at least for this type 
of counterintuitive, abstruse material-the use of preconfigured models 
for guided inquiry is much more efficient and probably just as effective as 
learners creating models from scratch. 

Beyond these issues that are currently the subject of lively debate, we wish 
to mention a weakness that plagues most present approaches to model-based 
science learning: the lab-like nature of the learner's experiences. Controlled 
manipulations of a phenomenon, as in a scientific laboratory setting, are vital 
for understanding its nature, yet they are unmotivating to learners who are 
not already interested in science. Beginning with more playful and game-like 
exploration is important for motivating most students, and ending with these 
types of activities probably also boosts the transferability and generalizability 
of learning. At this point, our ScienceSpace worlds are as subject to this crit
icism as most other science-based educational models, yet we believe a ma
jor strength of multisensory immersion will be its capacity to support playful 
exploration in fantastical settings. As we develop our worlds, we plan to in
corporate activities that support game-like competitions, invite exploration 
of curiously configured, beautiful environments (for example, Mandelbrot 
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spaces), and contextualize scientific phenomena within an "edutainment" 
context (such as MaxwellWorld-like field spaces within the warp engines in 
a StarTrek virtual environment). We believe one of the most important chal
lenges for model-based instructional design will be making these science 
learning environments more motivating and intriguing without weakening 
their educational value. 

Conclusions drawn from an incipient set of studies on virtual reality as a 
modeling medium certainly do not provide definitive, generalizable answers 
about model-based instructional design. However, our experiences and re
search results provide a different perspective on the strengths and limitations 
of model-based learning, and further studies to explore the potential power 
of multisensory immersion certainly seem indicated. 

Conclusion 

The virtual reality interface has the potential to complement existing ap
proaches to model-based instruction in science. An overarching goal in our 
ScienceSpace research is to develop a theory of how multisensory immersion 
aids learning. In our virtual worlds, we can simultaneously provide learners 
with 3-D representations; multiple perspectives and frames of reference; a 
multimodal interface; simultaneous visual, auditory, and haptic feedback; and 
types of interaction unavailable in the real world (such as seeing through ob
jects, flying like Superman, and teleporting). With careful design, these ca
pabilities can combine to create a profound sense of motivation and concen
tration conducive to mastering complex, abstract material. 

By themselves becoming part of phenomena, learners gain direct experi
ential intuitions about how the natural world operates. Instructional design 
can make those aspects of virtual environments that promote understanding 
of scientific principles salient to learners' senses, and multisensory cues can 
heighten this saliency. Our experimental results indicate that transducing 
data and abstract concepts into mutually reinforcing multisensory represen
tations is a valuable means of enhancing understanding of scientific models. 
Providing experiences that leverage human pattern recognition capabilities 
in three-dimensional space, such as shifting among various frames of refer
ence (points of view), also extends the perceptual nature of a visualization. 
In addition, the social construction of knowledge among students immersed 
in a shared virtual environment may support innovative, powerful types of 
collaborative learning. 

Overall, we believe that multisensory immersion, when applied to sci
entific models, can provide learners with experiential metaphors and analo
gies that help them understand complex phenomena remote from their 
everyday experience and can help displace intuitive misconceptions with al
ternative, more accurate mental models. Studying this new type of learning 
experience to chart its strengths and limitations is an important frontier for 
cognitive science research, scientific modeling, and constructivist pedagogy. 
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Beyond its implications for model-based learning of science, we believe 
that our research illuminates larger issues related to students' understanding 
complex information spaces. In every aspect of our knowledge-based soci
ety, fluency in utilizing complicated representations of information is an in
creasingly crucial skill. Comprehending models that include sophisticated 
interrelationships, such as nonlinearities and feedback loops, is important 
not only for scientists but also for workers and citizens. Such complex be
haviors are typical of many crucial phenomena in modem civilization, and 
our well-being vitally depends on understanding the strengths and limitations 
of the decision-making models we create of those situations. Inculcating in 
students model-assessment skills such as sensitivity analysis is not simply a 
way of meeting discipline-based science standards as educational outcomes; 
these are survival skills necessary for our time, just as irrigation and planting 
skills were for agricultural economies. The educational standards of the near 
future will probably reflect a focus that transcends knowledge of various iso
lated disciplines and emphasizes integrated skills central to twenty-first-cen
tury work and citizenship. Model-based learning has much to contribute as 
we strive to understand how best to conceptualize and achieve this next gen
eration of educational standards. 
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Conclusion 

Introducing Modeling 
into the Curriculum 

Wally Feurzeig 

Nancy Roberts 

The integration of modeling and simulation into mathematics, science, and 
the social sciences succeeds or fails for the same reasons most other educa
tional strategies succeed or fail. To learn effectively, students must be invested 
in the topic under study. It helps a great deal if students believe the subject is 
of importance or interest to them personally. It is easier to draw in marginally 
interested students by compelling, hands-on activities than by lectures and 
assigned readings. As Spitulnik, Krajcik, and Soloway state in Chapter 3 of this 
book, "Model building becomes a powerful activity for engaging students 
in doing and thinking about science. Science is no longer something that is 
read about in a book, but rather becomes an activity through which phe
nomena are studied, manipulated, sometimes controlled and perhaps even 
acted upon." 

The studies here suggest that students' attention is more easily captured 
and that more in-depth learning takes place if students build and work with 
their own models rather than working solely with "expert-built" models or 
observing the use of models in demonstrations. As Ogborn (Chapter 1) notes, 
"We consistently find, over a range of ages, that students' own models are ini
tially simpler than those they can cope with when models are presented to 
them, but that improvements made to their own models are much more in
teresting, and lead to more complex models, than are changes they make to 
models provided for them." When a teacher provides a model to students, 
she has to make the model world meaningful to them (Horwitz, Chapter 8; 
Barowy and Roberts, Chapter 9; White and Schwarz, Chapter 10). When stu
dents create and extend their own models, they model a world as they un
derstand it. Their understanding improves as their models improve (Ogborn, 
Chapter 1; Spitulnik, Krajcik, and Soloway; Chapter 3; Wilensky, Chapter 7). 

Several authors suggest a strategy involving students' use of expert models 
as well as models of their own making. For students whose mental models of 
the phenomena of interest are not strong, an expert model may be the only 
place to start. After exploration and experiment with the model across a va
riety of simulations, a student's mental model of the domain becomes 
stronger and he can develop the ability first to modify the given model and 
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then to move toward building his own models. As Ogborn puts it, "This sug
gests a pedagogic strategy, using both exploratory and expressive modes. Ex
ploratory use of the system can introduce systems of some complexity, whilst 
expressive use encourages further thinking and abstraction." 

Another strategy-one that is more akin to the way models are developed 
professionally-can be employed in the classroom. A model-building team is 
formed comprising of both modeling experts and subject-matter experts in 
all the areas relevant to the problem domain under study. The modeling ex
perts have the high-level tool-building skills, whereas the subject-area experts 
have in-depth knowledge and a strong mental model of the problem area. 
The same kinds of teams can be created in the science classroom. Some stu
dents will have a strong understanding of the problem being studied, some 
will have strong abilities to translate these ideas into the language of the cho
sen tool, and some, perhaps because of their insecurity in both areas, can be 
the question askers and model testers, who try a wide variety of simulation 
runs to see whether the model behaves as expected. This is the approach that 
Spitulnik, Krajcik, and Soloway described in their case study of Jamie, Lauren, 
and Rachel (Chapter 3). 

Whichever strategy for introducing modeling is embraced, people at the 
NSF modeling conferences that gave rise to this book, along with its authors, 
agree that 

• Computational modeling can dramatically enliven science and mathematics 
education; it can be designed and used in a way that engages students in 
active investigation; and it can offer students compelling learning experi
ences that enhance scientific understanding . 

• Modeling should be introduced into the science curriculum at elementary 
school levels. The ubiquity of modeling and simulation tools in the sciences 
and professions underscores the importance of the early introduction of 
modeling . 

• Modeling is a unique and valuable vehicle for understanding and better cop
ing with complexity in real-world problems. 

Schools oUght to be able to give all students the opportunity to gain a firm 
scientific foundation for understanding and interpreting the world. Current 
inequities in the quality of science education, and administrative practices 
such as ability grouping and tracking, can lead to unequal learning opportu
nities and foster the creation of a scientific elite. Disenfranchised students are 
effectively prohibited from active and thoughtful participation in many prac
tical, social, and political aspects of life that involve science. Their access to 
higher levels of science study and their entry into science- and technology
oriented careers is severely restricted (Shymansky and Kyle, 1992). 

Students of all abilities and at all grade levels should be able to 

• make sense of the world in a deeper and more comprehensive way than is 
currently possible. 
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• move fluently among different kinds of modeling paradigms-including 
models with different graphical, mathematical, and physical representa
tions . 

• become more personally and creatively engaged in the process of con
structing knowledge. 

Children can be- and should be-engaged in the process of designing, 
building, and experimenting with increasingly realistic and expressive mod
els in many domains of mathematics and science. Modeling ideas and activi
ties should come to playa regular and central role throughout the science 
curriculum. 
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Appendix A 

Websites of Contributing Authors 

Authors' Websites 

Chapter 2: 
http://www.teleport.com/-sguthrie/cc-stadus.html 
Chapter 3: http://www.cogitomedia.com/ 
Chapter 4: http://copernicus.bbn.com/jm/ 
Chapter 5: 
http://starlogo. www.media.mit.edu/people/starlogo/ind 

ex.html 
Chapter 7: http://www.ccl.tujts.edu/cm/ 
Chapter 8: http://genscope. concord.org/ 
Chapter 10: http://thinkertools.berkeley.edu:7019/ 
Chapter 11: 
http://www. cs. colorado. edu/-eisenbea/hypergami/ 
http://www. cs. colorado. edu/-eisenbea/javagami/ 
Chapter 12: http://www.virtual.gmu.edu/ 

Associated Software 

STELLA® (http://www.hps-inc.comj) 

Model-It 
Function Machines 
StarLogo 

Gas Lab (StarLogoT) 
GenScope 
ThinkerTools 
HyperGami and Java Gami 

ScienceSpace 
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Appendix B 

Contents of Enclosed CD-ROM 

Chapter 1: WorldMaker (PC) and LinkIt (Mac and PC) and student models 
Chapter 2: STELLA r,un-time version (Mac and PC) and models 
Chapter 3: Model-It (Mac) and student models 
Chapter 4: Function Machines (Mac) and student models 
Chapter 5: StarLogo (Mac and PC) and student models 
Chapter 7: StarLogoT (Mac) and GasLab and figures (Mac and PC) 
Chapter 8: GenScope (Mac) and figures (Mac and PC) 
Chapter 9: Movies showing students engaging in model-related discussions 
(Mac and PC) 
Chapter 10: ThinkerTools (Mac) 
Chapter 11: Examples of HyperGami products (Mac and PC) and 
JavaGami (Mac) 
Chapter 12: Movies showing virtual reality environments of ScienceSpace 
(Mac and PC) 

Some CD drives may have difficulty in reading or working with the CD. 
All ftles are available for download from http://www.springer-ny.com/ 
supplements/feurzeig/. 
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Index 

2-D modeling, vs. multisensory immer
sion, 299-306, 300f 

Abstract topics, WorldMaker models of, 
20-21,2lf 

Accelerated motion, 54-55, 54f, 56f 
Acceleration, constant, 53, 53f 
Accumulations, 172 
Action 

local, 14 
in thinking, 8-9 

Adaptive models, 190-193 
Affect, crafts and, 267-270 

computation and, 270 
Affordances, 185-189, 186f-187f 
Aggregate behavior models, 140 
Aggregate modeling, 171-172 
Aitkins, Peter, 19 
Analysis by syntheSiS, 130 
Approaches, pedagogical. See also 

specific approaches, e.g., 
ThinkerTools 

synthesis of, 252-253 
Arthur, Brian, 133 
Arts, student motivation in, 268 
Assessment, 194-195 

Backput iteration, 97, 97f 
Backwards modeling, 170-171 
Behavior, environment on, 135 
Biology, WorldMaker models of, 15 -17, 

16f 
Biology classes, CC-STADUS in, 60 

Calculus, reform, 60-61 

Cardiovascular system model, 215 - 217, 
215f 

Causal diagramming, 220 
Causal-loop diagrams, 9, 10f 
Causal models, intermediate, 227-229, 

228f,229f 
CC-STADUS 

in biology classes, 60 
cross-curricular models in, 43-45, 

44f 
documentation in, 45, 47 
future plans for 

long-term, 67-68 
near, 65-67 

history of, 38-40 
implementation of, 40-43 

follow-up of, 48-49 
revisions to, 48-49 

intent of, 40 
in mathematics 

implementation of, 63 
student models in, 63-65, 64f, 65f 
system dynamics of, 61-62, 62f 

in physics, 52-59, 53f-59f 
for accelerated motion, 54-55, 

54f, 56f-57f 
for decay models, 58f, 59 
for ping-pong ball falling model, 

55, 57f-58f 
for reinforcing traditional teach

ing,55 
for rocket model, 56, 58f 

student response to, 49-51 
teacher receptiveness to, 51-52 
verification and validation of, 47 
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CC-STADUS (cont.) 

whole-class environment in, 57, 59 
CC-SUSTAIN,66-67 
Cell automation, 14 
Cellular automata, 119 

models of, 140 
Centralized mindset, 114-115, 116-118 
Change, rates of, 27f, 28, 28f 
Chaos, mathematical, 106-107 
Chemical change, WorldMaker models 

of, 17, 18f 
Chemical equilibrium, simple, 17, 18f 
Climate change unit. See Global climate 

change unit 
Cognitive conflict, 220 
Complex concepts 

learning about, 282 - 283 
models/simulations for, 283-286 

Complexity, modeling of, 100-107, 
105f,l06f 

Computation 
affective role of crafts and, 270 
pacing of scientific craft and, 272-

273 
Computation, parallel, 107-112 

data blocking in, 108-112, 109f, 
lllf 

deadly embrace in, 108 
race conditions in, 107, 108f 

Computational crafts. See Craft(s); 
HyperGami 

Computational models. See also 

Model(s); specific models, e.g., 
StarLogo 

true, 115-116, 131, 172-173 
Computational science, 179 
Computer-based manipulatives, 183-

184 
Computers, in science education, 5-6 
Concrete experience, 174 
Concrete operational thinking, 7-8 
Concreteness, 173 -174 
Conflict, cognitive, 220 
Connected Probability project, 152 

extensible models in, 169-170 
gas-in-a-box model in, 153-160, 

153f, 154f, 157f, 159f 
stages of pedagogy of, 170 

Constructionists, 167, 167t 
Constructivism, social, multisensory 

immersion for, 308 

Constructivist learning, technology-
enhanced,283-284 

Constructivists, 167 
Content-rich model, 43-45, 44f 
Copy epistemology, 217-218 
Craft, scientific, 261 

culture and, 273-275 
educational pace and, 270-273 
educational rhythm and, 271-272 
pacing and, computation and, 272-

273 
Craft objects 

affordability of, 275 
audience for, 275 
longevity of, 272, 274 
performance of, 274 
reparability (undoability/redoability) 

of,274-275 
Crafts 

affect and, 267-270 
computation and, 270 

computational (See HyperGami) 
Cross-curricular models, in CC-STADUS, 

43-45,44f 
Cross-Curricular Systems Thinking and 

Dynamics Using STELLA (CC
STADUS). See CC-STADUS 

Cross-Curricular Systems Using STELLA 
(CC-SUSTAlN), 66-67 

Culture, materials as, 273-275 
Curriculum-rich models, 45 

Data blocking, 108-112, 109f, lllf 
Deadly embrace, 108 
Decay, first-order, 143 
Decay chains, reactive, 19-20 
Decentralized design, 119 
Decentralized modeling, 2-3, 114-136. 

See also Decentralized thinking 
interest in, 114 -115 
learning with, 114-115 
with StarLogo, 119-131 (See also 

StarLogo) 
Decentralized thinking, 2-3, 131-135 

centralized mindset vs., 114 -115, 
116-118 

emergent objects in, 134-135 
envkonmentin,135 
interest in, 114 -115 
levels and, 134 
order from randomness in, 133-134 



positive feedback in, 132-133 
resistance to, 114 
in StarLogo, 119-131 (See also Star

Logo) 
tools for, 118-121, 12lf 

Demonstration modeling, 167-168 
Design, of teaching models. See Model 

design 
Diagramming, causal, 220 
Diagrams, causal-loop, 9, lOf 
Diffusion, of randomly moving parti-

cles, 17-20, 20f 
Documentation, of CC-STADUS, 45, 47 
Dynamic systems modeling, 151 

Ecology, WorldMaker models of, 15 -17, 
16f 

Education, science 
computers in, 5-6 
mathematics in, 5 

Einstein, Albert, 260 
Elements, primitive modeling, 168-169 
Emergent objects, 134-135 
Empirical testing, 211 
Environment, on behavior, 135 
Epistemology, copy, 217-218 
Equilibrium, thermal, 19, 20f 
Essentials 

bus example of, 24 
of problems, 23 - 24 

Evaluation, rational, 210-211 
Evaporation, 19 
Events, in thinking, 7-8 
Evidence,v~ theory,216 
Evolution phase, 232 
Existence proof, 214 
Experience(s) 

concrete, 174 
minimally abstracted, 203 

Exploratory modeling, 171 
Explorer. See Modeling, as inquiry 
Explorer: Cardiovascular Model, 215-

217,215f 
Extensible, 161-166, 163f, 164f 
Extensible models, 161-166, 163f, 

164f,169-170 

Farmers and pests model, 12-13, 13f, 
16-17 

Feedback, positive, 132-133 

Feynman,FUchard,26O 
Figuring, 203 
First-order decay, 143 
Flows, 39 
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Formal modeling, 173-174 
Formal operations thinking, 8 
Formalism, 173 -174 
Formalization phase, 232 
Forrester, Jay, 39 
Forward modeling, 171 
Frame democracy, 185 
Function machines, 95 -112 

classroom investigations of, 100-
104, 102f-103f 

iteration and recursion in, 98-100, 
99f-100f 

mathematics models from, 100-104, 
lOlf-103f 

modeling complexity in, 104 -1 07, 
105f-106f 

parallel computation in, 107-112 
data blocking in, 108-112, 109f, 

l1lf 
deadly embrace in, 108 
race conditions in, 107, 108f 

Function Machines, website of, 323 
Function machines language, 95 -98, 

96f-98f 

Gas-in-a-box model 
creation of, 153-160, 153f, 154f, 

157f,159f 
use of, 161-166, 163f, 164f 

Gas Particle Collision Exploration Envi
ronment (GPCEE), 152 

GasLab, 151-176 
dynamic systems modeling and, 151 

in Connected Probability project, 
152 

gas-in-a-box model in, 153-160, 
153f, 154f, 157f, 159f 

in modeling pedagogy, 166 -174 
(See also Modeling) 

aggregate vs. object-based, 171-
173 

concreteness VS. formalism in, 
173-174 

construction VS. use of, 166-168, 
167t 

languages in, 169-170 
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GasLab 
in modeling pedagogy (cont.) 

phenomena-based vs. exploratory, 
170-171 

size in, 168-169 
symbolization forms in, 171 

tool kit for, 161-166, 163f, 164f 
website of, 323 

Geller, Margaret, 260 
GenScope, 186-189, 186f, 187f 

redesign of, 189-190, 19Qf, 19lf 
scripted version of, 192 
website of, 323 

Global climate change unit, 71-91 
account of, 73-74 
conclusions on, 90 
content understanding in, 75-83 

objects and factors in, 76-79, 78t 
purpose of, 75-76 
relationships and explanations in, 

76-83 
relationships between factors in, 

79-83, 80t, 83f 
context of, 71 
Global Model Planner in, 73 
goals of, 72-73, 72t 
inquiry understanding in, 83-88 

constructing/evaluating argument 
in,87 

model construction in, 84-86, 85f 
problem definition in, 83-84 

map of, 74f 
nature of science understanding in, 

88-90 
evaluation of models in, 89-90 
purpose of, 88-89 

projects and models in, 71-72 
Global Model Planner, 73 
Gravitational field, 18 

Harmonic oscillator, 30-32, 3lf, 33f 
Hawking, Stephen, 260 
Hoyle, Fred, 260 
HyperGami,261-279 

affective role of objects in, 267-270 
basic activity in, 262, 262f 
computation and crafts in 

adaptability of, 277-278 
in deSign, 276 
embedded,276-277 
new directions in, 278-279 

programmability/reprogrammabil
ity of, 277-278 

constructions with, 264-266, 264f-
267f 

by designers, 264-265, 264f-265f 
by students, 265-267, 265f-267f 

crafts in 
affectand,267-270 
pace of education and, 270-273 
rhythm of education and, 271-272 

features of, 262-267, 264f 
materials and culture in, 273-275 
as math objects, 267 
overview of, 262-267 
website of, 323 

Ideology problem, 20-21, 2lf 
Immersion, multisensory, 282 -317. See 

also Multisensory immersion 
Inquiry 

guided,207-217,208~ 210~215f 

modeling as (See Modeling, as in
quiry) 

scaffolding of, 239-241, 239f, 240f 
Inquiry cycle, 239-241, 239f 
Instructional cycle, four-phase, 231-233 
Intermediate causal models, 227-229, 

228f,229f 
IQON,35-37 
IRF (Initiate, Response, Follow

up/Feedback),203-207,204f 
Iteration 

backput, 97, 97f 
in function machines, 98-100, 99f 

Johnson, Mark, 7 

Keller, Evelyn Fox, 117 
Kuhn,216 

Lakoff, George, 7 
Langton, Christopher, 14 
Languages, 95 

function machines, 95-98, 96f-98f 
in GasLab, 169-170 
modeling 

aggregate, 172 
general-purpose vs. content do

main, 169-170 
object-object translation (OOTI), 3, 

5,138-148 (See also Object-



object translation language 
(OOTI)) 

Scheme, 172 
in HyperGami, 261 

STEllA as, 172 
Law, Nancy, 12, 13-14 
Learning 

content of, 115 
through modeling, 114 -115 (See 

also Model(s); Modeling) 
Leiser, David, 117-118 
LinkIt, 10, 10f, 24-37 

design of, 34 
examples of, 27-33 

harmonic oscillator, 30-32, 3lf, 
33f 

for multiplication, 28-29, 29f 
population growth in, 29-30, 3Of, 

3lf 
rain forest, 24 - 27, 26f 
rates of change with, 27f, 28, 28f 
thermostat, 32-33, 33f 

limitations of, 34-35 
student use of, 35-37 
variables and links in, 24-25 

Links, modeling with, 24-37. See also 

LinkIt 
Logic, Piaget on, 8 
Logistic machines, 105-106, 100f 
Logo, 119 

V~ StarLogo, 119-121 
Lotka-Volterra equations, 130, 131, 

173-174 

Majenjo Daro model, 43-44, 44f 
Manipulatives 

computer-based,183-184 
scriptable, 191-193 

Maragoudaki, Eleni, 12-14, 13f 
Math education 

critiques of, 38-39 
tradition in, 38 

Mathematics, 5 
CC-STADUS in 

implementation of, 63 
student models in, 63-65, 64f, 65f 
system dynamics of, 61-62, 62f 

high school, system dynamics in, 
60-65, 62f, 64f 

modeling in, 6 
visual modeling tool for, 95-112 
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(See also Visual modeling tool, 
mathematics) 

Maxwell-Boltzmanil distribution law, 
153-160, 153f, 154f, 157f, 159f, 
164-165 

MaxwellWorld, 285, 291-296, 293f-
295f 

formative evaluation of, 297-299 
multisensory immersion vs. 2-D in, 

299-306, 300f 
Mayr,Enrun, 117, 180 
Microworlds, computer, 229-231, 230f 
Middle-out instructional approach, 

231-233 
Mindsets 

cenumlized,114-115 
decenumlized (See Decenumlized 

thinking) 
tools and media in, 135-136 

Model(s), 182 
adaptive, 190-193 
aggregate behavior, 140 
of cardiovascular system, 215 - 217, 

215f 
cellular automata, 140 
complex concepts in, 283-286 
construction of, encouraging, 115 
content-rich, 43-45, 44f 
curriculum-rich, 45 
design of (See Model design) 
extensible, 161-166, 163f, 164f, 

169-170 
gas-in-a-box 

creation of, 153-160, 153f, 154f, 
157f,159f 

use of, 161-166, 163f, 164f 
generality of, 173 
intermediate causal, 227-229, 228f, 

229f 
Majenjo Daro, 43-44, 44f 
in mathematics, 6 
multisensory (See Multisensory im

mersion; ScienceSpace; Virtual 
reality) 

nature of, 217-219 
output vs. structure and processes 

in,314-315 
PERS,44-45 
Population Ecology, 203-207, 204f 
Rulers packet, 45, 46f 
simulation vs. real world in, 312 
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Model(s) (cont.) 

system dynamics, 140 
teaching, 181-182 
for theorizing, 6 
true computational, 115-116, 131, 

172-173 
using vs. designing/building, 315-

316 
varieties of, 180-181 
VVaves, 200-203, 200f 

Model design, 182-196 
adaptive, 109-193 
affordances in, 185-189, 186f-187f 
assessment in, 194-195 
in GenScope, 186-189, 186£, 187f 

redesign of, 189-190, 190f, 191f 
objects and manipulations in, 183-

184 
purpose in, 182 
real world examples of, 193-194 
redesign of, 189-190, 190f, 191f 
representations in, 184-185 
as rule-based systems, 183 
semantics in, 183 
vs. use, 315-316 

Model-It, 70-71, 131 
website of, 323 

Modelers, training of. See CC-STADUS; 
CC-SUSTAIN 

Modeling 
activity levels in, 145 -146 
aggregate vs. object-based, 171-173 
backwards, 170-171 
concreteness vs. formalism in, 173-

174 
construction vs. use of, 166-168, 

167t 
decentralized, 114 -136 

interest in, 114 -115 
learning with, 114-115 
with StarLogo, 119-131 (See also 

StarLogo) 
demonstration, 167-168 
of dynamiC systems, 151 
forward, 171 
GasLab for, 166-174, 167t 
introduction into curriculum of, 

320-323 
languages in, 169 -170 
by learners, 198 

multisensory immersion in, 282-
317 (See also Multisensory im
mersion) 

pedagogy of, 166-174, 167t 
phenomena-based vs. exploratory, 

170-171 
power and relevance of, 146 
purpose of, 91-93 
in research vs. education, 312-314 
size in, 168-169 
symbolization in, 171 
understanding and, 146-148, 146£-

147f 
virtual reality for, 284 
vs. laboratory experiment, 145 -148, 

146f-147f 
Modeling, as inquiry 

adult role in, 221-222 
approach to, 199-200 
classroom experiments on, 203-

207,204f 
discussion of, 219-221 
guided inquiry in, 207-217, 208f, 

21Of,215f 
issues in, 198-199 
Nature of Models interview in, 217-

219 
open-ended exploring as, 200-203, 

200f 
purpose of, 197-222 

Modeling languages. See also specific 
languages, e.g., StarLogo 

aggregate, 172 
general-purpose vs. content domain, 

169-170 
Modeling tools, 1-4. See also specific 

tools, e.g., VVorldMaker 
Motion, accelerated, 54-55, 54f, 56f 
Motivation, student, in arts vs. 

math/science, 268 
Motivation phase, 231-232 
MultiLogo, 118 
Multiplication, in LinkIt, 28-29, 29f 
Multisensory immersion, 282 - 317. See 

also ScienceSpace; Virtual reality 
frames of reference in, 307-308, 

308f 
implications of work on, 311-316 
learning and knowledge representa

tion in, 310 



lessons learned on, 309-311 
MaxwellWorld in, 291-296, 293f-

295f (See also MaxwellWorld) 
model output VS. structure and pro

cesses in, 314-315 
model use vs. design/building in, 

315-316 
modeling in research vs. education 

and, 312-314 
NewtonWorld in, 287-289, 288f-

29lf 
PaulingWorld in, 290-291, 29lf-

293f 
perceptualization from cues in, 308 
potential of, 285 
research on, 296-297 

future, 306-307 
simulation VS. real world in, 312 
in social constructivism, 308 
virtual worlds of, 287-296 
VS. conventional 2-D, study of, 299-

306,300f 
initial hypothesis in, 300-301 
stage one of, 301-304 
stage two of, 304-305 
swnmary of, 305-306 

Nature of Models interview, 217-219 
Network, two-machine, 96, 96f 
Newton, Isaac, 260 
NewtonWorld, 285, 287-289, 288f-

29lf 

Object-based modeling, 171-173 
Object-object translation language 

(OOTL), 3, 5, 138-148 
applications of, 139 
conceptualization of events in, 140-

141 
in driving StarLogo engine, 144-

145, 145f 
equations in, 141 
intent of, 138-139 
model-based inquiry with, 141-144, 

142f-143f 
modeling vs. lab experiment and, 

145-148, 146f-147f 
models in, 139-140 
objects in, 141 
with other modeling tools, 145 
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visual representations in, 139 
Objects 

affective role of, 267-270 
emergent, 134-135 
modeling with, 10-11, l1f 
in thinking, 7-8 
transitional, 283 

Open-ended exploring, 200-203, 200f 

p-prims, 203 
Pacing, of scientific craft, 270-273 

computation and, 272 - 273 
Paley, William, 117 
Papercrafts, mathematical. See Craft(s); 

HyperGami 
Parallel computation, 107-112 

data blocking in, 108-112, 109f, 
I11f 

deadly embrace in, 108 
race conditions in, 107, 108f 

Pauling, Linus, 260 
PaulingWorld, 290-291, 29lf-293f 
Pedagogical approaches. See also 

specific approaches, e.g., 
ThinkerTools 

synthesis of, 252-253 
PERS model, 44-45 
Personal connections, 116 
Phenomena-based modeling, 170 -171 
Physical change, WorldMaker models 

of, 17-20, 20f 
Physics, 39 
Physics classes, CC-STADUS in, 52-59, 

53f-59f 
for accelerated motion, 54-55, 54f, 

56f-57f 
for constant velocity and constant 

acceleration, 53-54, 53f 
for decay models, 58f, 59 
for ping-pong ball falling model, 55, 

57f-58f 
to reinforce traditional teaching, 55 
for rocket model, 56, 58f 

Piaget, Jean, on thinking, 7-8 
Pond organisms, simple, 15-16, 16f 
Population Ecology model, 203-207, 

204f 
Population growth, in LinkIt, 29-30, 

30f,3lf 
Positive feedback, 132-133 
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Programming languages, 95. See also 
specific languages, e.g., Func
tion machines language 

Proof, existence, 214 

Quantimtivereasonmg,9 

Rabbits and grass model, llf, 12, 16-17 
Race conditions, 107, 108f 
Rainforest 

causal loop diagram of, lOf 
in linkIt, 24 - 27, 26f 

Rainfall, 19 
Randomness, order from, 133-134 
Rates of change, 27f, 28 
Rational evaluation, 210-211 
Reactive decay chains, 19-20 
Reasoning 

formal vs. concrete, 8 
quantimtive, 9 
rules or laws of, 8 
semi-quantimtive,8-9 

Recursion, in function machines, 99-
1oo,99f 

Redesign, of models, 189-190, 190f, 
19lf 

Reflective assessment, 240f, 241 
RelLab,185 
Repeat machine, 98-99, 99f 
Represenmtions, 184-185 
Rethinking, in linkIt, 25-26 
Rhythm, of science education, 271-272 
Rulers packet models, 45, 46f 
Rules, modeling with, 10-11, llf 

Scaffolding, 192-193 
Scheme programming language, Hyper

Gami,261 
Science education 

critiques of, 38-39 
pace of, 270-273 
rhythm of, 271-272 
tradition in, 38 

ScienceSpace,282-317 
challenges with, 285-286 
implications of work on, 311-316 
learnmg and knowledge represenm-

tion in, 310 
lessons learned on, 309-311 
MaxwellWorld in, 291-296, 293f-

295f 

formative evaluation of, 297-299 
multisensory immersion vs. 2D in, 

299-306, 300f 
models and simulations theory in, 

283-285 
NewtonWorld in, 287-289, 288f-

29lf 
PaulingWorld in, 290-291, 29lf-

293f 
potential for, 285 
research on 

conducting, 296-297 
~ture,306-309,308f 

website of, 323 
Scientific craft, 261 
Scientific undersmuding, models for, 

70-93 
global climate change unit, 71-91 

(See also Global climate change 
unit) 

Model-It, 70-71 
purpose of, 91-93 

Scientists, childhood experiences of, 
260-261 

Scripmble manipulatives, 191-193 
Scripts, 192-193 
Semi-quantimtive reasoning, 8-9 
Simplification, in WorldMaker, 23-24 
Simulation(s),182 

complex concepts via, 283-286 
introduction of, 320-323 
in 1binkerTools, 237-238, 237f 
vs. real world, 312 
vs. stimulation, 116 

Slime mold cells 
research on, 117 
StarLogo simulation of, 120, 12lf 

Socio-cognitive dissonance, 220 
StarLogo, 119-121, 121f 

decentralized thinking in, 131-135 
emergent objects in, 134-135 
environment in, 135 
levels and, 134 
modeling systems in, 130-131 
object-object translation language 

in, 144-145, 145f 
order from randomness in, 133-

134 
positive feedback in, 132-133 
student projects with, 121-131 

rabbits and grass, 127-131 



termites and wood chips, 125-
127, 126f 

traffic jams, 122-125, 123f, 124f 
student reaction to, 131-132 
website of, 323 

STELLA, 131. See also CC-STADUS; 
CC-SUSTAIN 

as aggregate modeling language, 
172 

in mathematics, system dynamics 
of, 61-62, 62f 

student use of, 35 
website of, 323 

Stimulation, vs. simulation, 116 
Symbolization, new forms of, 171 
SYM*BOWL, 66 
Syntonic knowledge, 131 
System dynamics 

in high school mathematics, 60-65, 
62f,64f 

models of, 140 
teacher view of, 43, 51-52 

System modelers, training of. See 
CC-STADUS; CC-SUSTAlN 

Teaching models, 181-182 
Theorizing, models for, 6 
Theory, vs. evidence, 216 
Thermal equilibrium, 19, 20f 
Thermostat, 32-33, 33f 
ThinkerTools, 226-254 

computer microworlds in, 229-231, 
230f 

intermediate causal models in, 227-
229, 228f, 229f 

midd1e-out instructional approach 
in,231-233 

instructional trials of, 233-236, 
234f,235f 

research on, early, 227-229, 228f, 
229f 

research on, latest, 245-252 
instructional approach in, 248-

249 
instructional trials in, 249-252 
modeling software in, 246-248, 

246f 
research on, recent, 236-245 

inquiry curriculum in, 241-245, 
243f,244f 

inquiry in, 239-241, 239f, 240f 
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metacognitive knowledge in, 238 
modeling and simulation tools in, 

237-238, 237f 
reflective assessment in, 240f, 241 

website of, 323 
ThinkerTools Inquiry Curriculum, trials 

of, 241-245, 243f, 244f 
ThinkerTools Modeling Curriculum 

approach in, 248-249 
trials of, 249-252 

Thinking 
action in, 8-9 
concrete operational, 7-8 
formal operations, 8 
objects and events in, 7-8 
stages of, 7 
substance of, 7 

Training, of system modelers. See 
CC-STADUS; CC-SUSTAlN 

Transfer phase, 232-233 
Transitional objects, 283 
2-D modeling, vs. multisensory immer

sion, 299-306, 300f 

Understanding, models for, 2, 70-93 
global climate change unit, 71-91 

(See also Global climate change 
unit) 

Model-It, 70-71 
purpose of, 91-93 

VANTS (Virtual ANTS), 14 
Variables, modeling with, 24-37. See 

also LinkIt 
Velocity, constant, 53, 53f 
Virtual reality. See also Multisensory 

immersion; ScienceSpace 
challenges with, 285 - 286 
future research on, 306-307 
for modeling, 284 
of ScienceSpace, 287-296 

MaxwellWorld in, 291-296, 293f-
295f 

NewtonWorld in, 287-289, 288f-
29lf 

PaulingWorld in, 290-291, 29lf-
293f 

Virtual reality interfaces. See also 
MaxwellWorld; specific inter
faces, e.g., ScienceSpace 

challenges with, 310 
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Visual modeling tool, mathematics, 
95-112 

classroom investigations of, 100-
104, lOlf-103f 

function machine in, 95 
iteration and recursion of, 98-100, 

99f-100f 
function machines language in, 95-

98,96f-98f 
modeling complexity in, 104-107, 

105f-106f 
parallel computation in, 107-112 

data blocking in, 108-112, 109f, 
lllf 

deadly embrace in, 108 
race conditions in, 107, 108f 

von Neumann, John, 14 
"von Neumann bottleneck," 107 

VVatclunakerargument, 117 
VVaves model, 200-203, 200f 
VVebsites, 323 

"Whitehead, Alfred North, 271 
VVorldMaker, 10-24 

description of, 14 -15 
explosion of ideas with, 23 
limitations of, 22 
modeling with objects and rules in, 

lO-ll,llf 
with older students, 23 
results and possibilities with, 22-24 
science models with, 15-21 

of abstract topiCS, 20-21, 2lf 
of biology and ecology, 15 -17, 16f 
of chemical change, 17, 18f 
of physical change, 17-20, 20f 

simplification in, 23 - 24 
student use of, 12 
with young children, 12-14, 13f 
with younger students, 22 - 23 

Zone of proximity development 
(zoped), 220 
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