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Series Preface 

For some time now, the study of cognitive development has been far and away 
the most active discipline within developmental psychology. Although there would 
be much disagreement as to the exact proportion of papers published in developmen
tal journals that could be considered cognitive, 50% seems like a conservative 
estimate. Hence, a series of scholarly books to be devoted to work in cognitive 
development is especially appropriate at this time. 

The Springer Series in Cognitive Development contains two basic types of 
books, namely, edited collections of original chapters by several authors, and 
original volumes written by one author or a small group of authors. The flagship for 
the Springer Series will be a serial publication of the "advances" type, carrying the 
subtitle Progress in Cognitive Development Research. Each volume in the Progress 
sequence will be strongly thematic, in that it will be limited to some well-defined 
domain of cognitive-developmental research (e.g., logical and mathematical de
velopment, semantic development). All Progress volumes will be edited collec
tions. Editors of such collections, upon consultation with the Series Editor, may 
elect to have their books published either as contributions to the Progress sequence 
or as separate volumes. All books written by one author or a small group of authors 
will be published as separate volumes within the series. 

A fairly broad definition of cognitive development is being used in the selection 
of books for this series. The classic topics of concept development, children's 
thinking and reasoning, the development of learning, language development, and 
memory development will, of course, be included. So, however, will newer areas 
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such as social-cognitive development, educational applications, formal modeling, 
and philosophical implications of cognitive-developmental theory. Although it is 
anticipated that most books in the series will be empirical in orientation, theoretical 
and philosophical works are also welcome. With books of the latter sort, 
heterogeneity of theoretical perspective is encouraged, and no attempt will be made 
to foster some specific theoretical perspective at the expense of others (e.g., 
Piagetian versus behavioral or behavioral versus information processing). 

C. J. Brainerd 



Preface 

This is the first volume in a projected serial publication of the "advances" type 
that is to be concerned with the field of cognitive development, broadly defined. All 
volumes in this series will be published with the subtitle Progress in Cognitive 
Development Research. As this is the inaugural volume, some remarks about the 
guiding aims of the series are in order. 

Like other "advances" publications, the principal goal is to present work that is 
on the growing tip of research in cognitive development and that meets the highest 
standards of our field. The format of individual volumes, however, will depart 
somewhat from the norm for "advances" series in psychology. A standard problem 
with most publications of this type is that only one or two contributions in any 
volume will be of interest to any given reader. The reason, of course, is that each 
volume, like individual issues of a technical journal, seeks to span the field as a 
whole. With the Progress series, however, no effort has been made to encompass 
cognitive-developmental research as a whole between the covers of single volumes. 
Instead, reasonable thematic structure has been imposed on each volume. For 
example, the theme of this book is children's logical and mathematical cognition. 
The next three books in the series will deal with verbal processes in children, 
children's learning, and new directions in cognitive-developmental theory, respec
tively. It is my hope that it will prove possible to identify themes that, on the one 
hand, will be sufficiently broad to be relevant to a significant proportion of the 
readership and that, on the other hand, will be sufficiently focused to interest any 
given reader in the contents of most of the contributions. To be sure, this will be a 
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delicate balancing act that, in all probability, will not always succeed. I strongly 
encourage investigators who have themes to suggest to contact me about guest 
editing a Progress volume. 

Another difficulty that commonly arises with "advances" series is that of being 
committed to a one-volume-per-year publication schedule, usually with strict page 
limits. This means that during certain years meritorious work has to be excluded on 
grounds of space constraints. To avoid this, the Progress series will be flexible with 
respect to the number of volumes published per year. There will be two this year 
(the present volume and Verbal Processes in Children) and two next year (Recent 
Advances in Cognitive-Developmental Theory and Learning in Children). Thereaf
ter, however, the number of volumes published in anyone year will depend only on 
the number of provocative themes. 

A second departure in format in this series concerns the style of chapters in 
individual volumes. In most books of this type, especially those in the classic areas 
of experimental psychology, the prototype contribution is a chapter written by a 
prominent investigator in which results and conclusions from a cumulative program 
of research are discussed. There are, I think, two objections to imposing this 
familiar structure on an "advances" series in cognitive development. First, 
although the scientific study of cognitive development is a broad and active field, it 
is relatively new in comparison with areas such as psychophysics, memory, 
learning, animal behavior, and perception. Consequently, the numbers of 
laboratories and investigators engaged in large-scale, cumulative research (as 
opposed to isolated studies) are as yet modest. I doubt that these numbers are 
sufficient to support an "advances" series along the aforementioned lines, though I 
could certainly be mistaken in this. Second and more important, this structure quite 
obviously tends to preclude contributions by new investigators. This would be 
particularly unfortunate for a series in cognitive development, because at the 
moment the field seems to be blessed with many promising young researchers from 
whom we have much to learn. It is my hope that the work of such newer 
contributors will figure prominently in the pages of this series. In the case of the 
present volume, for example, there is a roughly equal division between chapters 
written by younger researchers and those by more senior workers. In Verbal 
Processes in Children, the slant toward younger contributors is even more apparent. 

In place of the traditional distinguished-researcher-discusses-recent-work chap
ters, Progress volumes will normally aim for a mix of three types of contributions: 
(a) reports of new findings, (b) reviews of extant literatures, and (c) theoretical 
essays. Contributions in category (a), which are represented by the chapters by 
Siegel and Saxe in this volume, are intended to cover comprehensive programs of 
research dealing with problems whose significance is widely acknowledged. Here, 
the sorts of articles that are typically found in the Journal of Experimental 
Psychology: General are roughly what I have in mind. Contributions in category 
(b), which are represented by the chapter by Fuson, Richards, and Briars and that 
by Hoemann and Ross in this volume, are intended to be interpretative reviews that 
deal with some well-defined literature. Thus, Psychological Bulletin reviews come 
closer to the intent of category (b) than do the general literature overviews that one 



Preface ix 

finds in, say, Review of Child Development Research or Annual Review of 
Psychology. Contributions in category (c), which are represented by the chapters by 
Acredolo and Brainerd in this volume, are intended to be serious attempts at 
integrative and explanatory theorizing, rather than speculative think pieces or 
critiques of the logical structure of some other theory. In other words, Psychological 
Review articles are nearer the mark than, say, Behavioral and Brain Sciences 
articles, or Mind articles, or Human Development articles. 

Regarding the contents of this book, children's logical and mathematical 
cognition was selected as the theme for the first volume for reasons that are largely 
historical. It is this particular area of cognitive-developmental research that has been 
most closely connected to Piaget's theory, at least in the past. Since cognitive
developmental research owes its current prominence to the intensive interest in 
Piagetian theory that characterized the 1960s and early 1970s, it seems only fitting 
that the inaugural volume should deal with a topic on which Piaget's influence has 
been profound. 

There are six chapters in all. Two of them focus on aspects of number 
development: Fuson, Richards, and Briars review the state of our knowledge of 
children's counting systems and report some new results from their laboratories. 
One of the most striking features of this chapter is that counting, which seems to be 
such a simple behavior to adults, turns out to have a remarkably complex structure. 
Saxe reports some recent findings from his ongoing studies of mathematical 
cognition among the Oksapmin tribes in Papua New Guinea. The Oksapmin have a 
unique numerical system based on body parts, and Saxe reports how this system is 
affected by contact with Western arithmetical ideas. 

I should perhaps add that the fact that almost half the chapters are devoted to 
topics in number development is not accidental. At present, this seems to be the 
most active subdiscipline within the study of logical-mathematical development, 
and I would judge that at least half of the work that has appeared lately is somehow 
connected to number development. Since so much of the elementary school 
curriculum is devoted to transmitting basic numerical skills, the popularity of 
number-development research is hardly surprising. 

The remaining chapters are by Acredolo, Hoemann and Ross, Siegel, and 
myself. In view of the enormous impact of conservation concepts on the study of 
logical-mathematical development, no volume devoted to this area can be consid
ered complete without at least one chapter on conservation. Although conservation 
comes up in some of the other contributions, it is Acredolo's chapter that is 
principally concerned with these important concepts. Acredolo presents a new 
theory of the cognitive bases for conservation and summarizes the results of some 
previous experiments from which this theory evolved. In the chapter by Hoemann 
and Ross, the literature on children's probability concepts is reviewed. Since nearly 
all of the decisions that we make in everyday life are based on probabilistic 
information, probability concepts have long been extensively studied in the adult 
cognitive literature. Curiously, research on age changes in probability concepts has 
been much more sparse, with most of it concerned with testing one or another 
prediction from Piaget's theory. It is hoped that Hoemann and Ross' detailed, 
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integrative review of the literature will awaken interest in what is potentially a very 
instructive research domain. 

Siegel considers the perennial question of how children's linguistic competence 
interacts with the assessment of their logical-mathematical competence. She 
describes nonverbal assessment techniques for a variety of competences that have 
been productive with normal children and in assessing the logical-mathematical 
competence of children with linguistic disabilities. My own chapter is concerned 
with another perennial question, namely, children's learning of logical and 
mathematical concepts. I outline a general learning system for certain concepts that 
is based on a rule-sampling interpretation of a family of Markovian processes, and 
some relevant experiments are reported. The ability of this framework to deal with 
such thorny issues as learning-development interactions, transfer effects, and age 
changes in information-processing capacity is also analyzed. 

C. J. Brainerd 
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Children's Logical and Mathematical Cognition 



1. Conservation - Nonconservation: 
Alternative Explanations 

Curt Acredolo 

Conservation and the Appreciation of an Identity Rule 

As cognitively mature adults we know that a quantity remains constant across a 
transformation as long as there is no addition or subtraction of the specific quantity 
in question. That is, we appear to be aware of an identity rule: In the absence of 
addition or subtraction quantity (amount) is maintained. Furthermore, we appear 
to know that this rule is more than just one of many available cues for judging 
quantity. To the extent that the possibility of addition or subtraction can be moni
tored during a transformation, we know that the identity rule should take prece
dence over any other potential cue for judging the presence or absence of a change 
in quantity. 

Piaget (1952; Piaget & Inhelder, 1974) observed that preschool children seem to 
think that quantities change across transformations, even in the absence of addition 
or subtraction. If this is true, then preschoolers obviously do not yet fully appreciate 
the identity rule. Thus was born the study of "conservation development," directed 
toward revealing precisely when and how the child does come to recognize that the 
absence of addition or subtraction is sufficient information for the assertion of 
quantitative invariance. 

So defined, the study of conservation development hardly seems worthy of the 
tremendous amount of attention it has drawn over the last two decades. The pri-

I wish to thank Linda Acredolo, Anne Adams, Norman Anderson, R. Harter Kraft, Sheryl 
Flocchini, Jeannine Schmid, and Linda Siegel for commenting upon an earlier version of the 
chapter and offering encouragement. I particularly wish to thank Irwin W. Silverman for his 

detailed comments and suggestions. 
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mary reason for the popularity of this line of research rests with the pivotal status 
of the conservation-nonconservation event within Piaget's theory, and in particular 
with certain of Piaget's theoretical assertions concerning the development of this 
knowledge. 

This chapter is organized around two central issues in the study of conservation 
development, one methodological and one theoretical. First is examined the question 
of whether Piaget's diagnostic procedures are overly conservative. The issue centers 
around the possibility that the use of Piaget's standard task results in a large num
ber of false negatives-children who fail to give conservation judgments despite 
possessing an understanding of the identity rule. The second issue concerns Piaget's 
assertion that the identity rule emerges only in conjunction with the reversible 
operations of compensation and inversion. Evidence favoring the increasingly popu
lar alternative position that the identity rule emerges prior to these logical oper
ations will be summarized in the latter half of the chapter. These issues are actually 
related in that both involve the assertion that the identity rule emerges in develop
ment prior to the advent of consistent conservation in the standard task. They dif
fer in orientation, however, in that the first blames the task procedures, while the 
second challenges Piaget's theoretical assumptions. 

Before proceeding, I need to prepare the reader by clarifying certain terms and 
by briefly reviewing both Piaget's theory and the alternative model. I also need to 
comment briefly upon the precise nature of the standard assessment and its 
relationship to the identity rule. 

Operational and Nonoperational Conservation 

Readers familiar with Piaget's writings will recognize that the identity rule is 
equivalent to what Piaget calls quantitative identity. Henceforth, I shall use these 
two terms interchangeably. 

Piaget theorizes that an emergence of quantitative identity coincides with the 
advent of consistent conservation and requires the prior development of the 
reversible operations of compensation and inversion. Piaget justifies this conclusion 
by noting that young children admit to the absence of addition or subtraction across 
a transformation and yet fail to conserve. He argues that the development of some 
additional knowledge must be required which then gives this observation a "power 
which it did not have before" (Piaget, 1976, p. 99). Quantitative identity 

can only take form in conjunction with other operations .... It is, then, the 
total system of grouping which is responsible for the formation of the conser
vations and not identity [alone). Identity is but one element of the system, and 
an element which has been transformed by the system itself, rather than being 
the source of the system. (Piaget, 1976, p. 99) 

It must be stressed that the above conclusion constitutes only an assumption on 
Piaget's part, one admittedly based upon a rational argument, but by no means the 
only argument available. It is particularly unfortunate that Piaget chose to presup-
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pose the answer to what should have remained an empirical issue. But as Flavell 
(1963) noted, Piaget's model "has typically functioned as a theory within which to 
do research, rather than from which to do research" (p. 428). Piaget "examines the 
components of a given [logical] grouping and then tries, through a variety of experi
ments with children, to see if he can cull to the surface behavioral analogues or 
counterparts ... of one or another of these components" (Flavell, 1963, p. 189). 
As a result, "Piaget often appears to force unwilling [or ambiguous] data into 
present theoretical molds. In accord with his own theory of mind, his interpretations 
of empirical phenomena show a great deal of assimilative activity, sometimes ... at 
the expense of accommodations" (Flavell, 1963, p. 433). By taking a strong stand 
on the issue, Piaget directed attention away from the central epistomological 
question: How do children come to possess the identity rule? 

Given his theoretical assumptions, Piaget was interested only in the development 
of what we may call operational conservation-consistent conservation supported 
by the logical operations, compensation and inversion. Conservation behavior in the 
absence of these operations is viewed as something less than true conservation-just 
conservation behavior, not conservation understanding-and Piaget and his col
leagues have generally relegated such events to the status of pseudoconservations. 

An alternative proposition, which will be discussed more thoroughly in the latter 
half of this chapter, states that a grasp of quantitative identity can emerge prior to 
compensation and inversion. A supportive network of logical operations is not 
actually required for children to begin recognizing the quantitative implications of 
an absence of addition or subtraction. Furthermore, it is hypothesized that children 
can acquire the identity rule at very young ages but still fail to use the rule in stand
ard assessments because they do not yet recognize that the identity rule should 
always take precedence over other less reliable, but more immediate cues for judging 
quantity. Under this model, reliance on the identity rule and consistent conservation 
may simply await the increased reflectivity which accompanies general school readi
ness, and compensation and inversion can develop at some later time. 

If one adopts this alternative proposition, then not all conservation behavior in 
the absence of compensation and inversion is immediately labeled pseudoconser
vation. A third possibility emerges. Interest in operational conservation is now sup
plemented by interest in what we may call nonoperational conservation-conser
vation based simply upon quantitative identity (the identity rule) in the absence of 
compensation and inversion. l 

The differences between the two theories may be further clarified by noting the 
distinction between logical and natural necessities. The identity rule as understood 
by the adult is most certainly recognized as a natural necessity (Shultz, Dover, & 
Amsel, 1979; Strauss & Liberman, 1974; Shultz, Note 1) equivalent to what Carnap 
(1966) defmes as "a universal empirical law ," a regularity "observed at all times and 
all places without exception" (p. 3). Piaget suggests that, from its very first appear
ance, the identity rule takes on the additional status of a logical necessity as one 
component of a set of interrelated and interdependent logical-mathematical con-

lElsewhere I refer to this as an identity theory of cQnservation (Acredolo, 1981; Acredolo 
& Acredolo, 1979, 1980). 
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structions (piaget, 1971). In the alternative model, however, the identity rule may 
be grasped first as a natural necessity and only later as a logical necessity when 
compensation and inversion are added. 

Nonconservation and the Overreliance on Perceptual Cues 

According to Piaget (1952), if children are not aware of the identity rule, they 
cannot be said to understand quantity per se: 

Conservation is a necessary condition for all rational activity .... Whether it 
be a matter of continuous or discontinuous qualities, of quantitative relations 
perceived in the sensible universe, or of sets and numbers conceived by thought, 
whether it be a matter of the child's earliest contacts with number or of the 
most refined axiomatizations of any intuitive system, in each and every case the 
conservation of something is postulated as a necessary condition for any mathe
matical understanding. (pp. 3-4) 

This argument is not disputed even by Piaget's strongest critics. For example, 
Bryant (1974) emphatically agrees, if a child "does not understand that a group of 
six objects remains a group of six objects unless something is added or taken away 
he does not understand what 'six' means" (p. 126). At issue, however, is whether 
nonconservation judgments in the standard procedure accurately indicate a com
plete lack of appreciation of this invariance. 

In the standard conservation task, the identity rule is assessed by presenting 
children quantities (either continuous substances or discrete collections) undergoing 
so-called perceptual transformations-transformations involving changes in the 
immediately perceivable physical dimensions (e.g., changes in height, width, and 
depth, or changes in dispersal and density, respectively). If children fully appreci
ate the identity rule, they should view perceptual transformations as quantity 
irrelevant, given the absence of any obvious addition or subtraction. The great bulk 
of the research using the standard tasks strongly suggests, however, that preschool 
children believe that perceptual transformations do change quantity. Theoretically, 
they appear to adhere to what may be referred to as perceptual rules: Quantities 
vary directly with one or more salient physical dimensions. 

Of course, in many situations the use of perceptual rules is not at all inappro
priate. For example, if simply asked to judge which of two static quantities is larger, 
one is forced to rely on perceptual estimates by, for example, estimating relative 
water quantities on the basis of water levels or numerosities on the basis of item 
densities. Such rules may not be completely accurate, but in daily activities, they 
are not terribly inaccurate either. Furthermore, recent research on the development 
of such perceptual estimators is showing that with time they become increasingly 
sophisticated and accurate, moving from simple unidimensional to complex multi
dimensional rules (e.g., Anderson & Cuneo, 1978; Cuneo, 1980). in failing to con
serve on the traditional task, the children's problem is not that they hold perceptual 
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rules for judging relative quantities, but rather that they rely on these rules in situ
ations where the identity rule should clearly take precedence.2 

Thus, the standard conservation task does not actually measure the emergence of 
the identity rule itself; it measures only the decline in the overreliance upon per
ceptual rules. Whether these are actually reciprocal events is questionable. 

In the following section, this issue will be ignored, at least initially, in order to 
explore the simpler problem of measurement error. The question is this: Are there 
aspects of the standard task that cause children to utilize perceptual judgments 
when in fact a reliance upon the identity rule is completely within their capacity? It 
will be noted that various alterations in the standard assessment procedure increase 
the incidence of conservation judgments. The standard procedure appears to be 
overly conservative. Eventually, however, we must return to the central question of 
whether or not these new conservation judgments indicate operational conservation. 

Pseudononconservation 

A conservation judgment in the standard task requires not only knowledge of 
the identity rule; it also requires a number of other skills, thereby introducing the 
possibility of measurement error. The following discussion focuses on the problem 
of pseudononconservation-the strong likelihood that by using Piaget's standard 
conservation task a large number of children are misdiagnosed, being classified as 
nonconservers when in fact they do understand the identity rule. A similar argu
ment has been presented by Brainerd (1973) concerning the use of Piaget's pre
ferred judgment-plus-explanation criterion as opposed to a less stringent judgment
only criterion. The following discussion, however, goes one step further by suggest
ing that even with the judgment-only criterion use of the standard task results in 
the misidentification of a substantial proportion of children. 

It is suggested that in the main the problem rests with Piaget's decision to use 
an equivalence format where, instead of asking the child specifically whether a 

2It should also be noted that a reliance on perceptual cues will not mvariably produce an 
incorrect response when judging the constancy of quantities across perceptual transformations. 
Perceptual transformations are not always quantity irrelevant. In certain situations perceptual 
transformations signify an imperceptible addition or subtraction of particular quantities and 
thus nonconservation. For example, shape transformations of a fixed two-dimensional area ef
fect imperceptible variations (additions or subtractions) of perimeter. In this situation perime
ter is not conserved. And alternatively, when perimeter is fixed it is area which is not conserved. 
These and similar special cases have provided researchers with the opportunity to demonstrate 
the strength of the identity rule among cognitively mature adults. The absence of an obvious 
addition or subtraction in these special situations leads most adults into making initial impulsive 
errors, judging there to be a conservation when in fact there is none (Lunzer, 1968; Pinard & 
Chase, 1977; Russell, 1976). Unlike children, adults think that all perceptual transformations 
are quantity irrelevant, and they require some reflection before they recognize the exceptions 
to this ancillary rule. In using the standard conservation task as an index of the point at which 
the identity rule consistently takes precedence over the perceptual rule, we would be quite 

content to find children making the same sort of errors as the adults described above. 
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single quantity is maintained across a transformation, as is done in the identity for
mat, one instead asks whether an initial equivalence (or inequivalence) between two 
quantities is maintained across transformations of one or both. The possible meth
odological superiority of the identity format and other task variations is then 
discussed and an important issue is raised: Considering all the potential inaccuracies 
of the standard procedure, has it been shown "in a water-tight manner that the 
young child does not understand invariance" (Bryant, 1974, p. 128)? That is, are 
we certain that preschool children have no grasp of the identity rule whatsoever? 
Keep in mind that the intended purpose of the standard task is to index the 
emergence of an appreciation of the identity rule by monitoring the decline in a 
reliance on perceptual rules. The question at hand is whether the standard task suc
ceeds in this purpose. 

The Equivalence Format: A Source of Multiple Ills 

First note that in Piaget's standard procedure the child is confronted with two 
quantities instead of just one. That is, rather than asking a child whether a single 
quantity remains constant across a transformation, the standard procedure involves 
asking the child to judge whether an initial equivalence (or inequivalence) of two 
quantities remains constant across a transformation. It is assumed that a two
quantity, equivalence-format task indexes the same knowledge as a one-quantity, 
identity-format task, but over the past 20 years of research and thought, it has 
often been noted that the two-quantity task actually requires a number of ad
ditional competencies not required in the one-quantity task. 

Elkind (1966, 1967) was the first to suggest that conservation in the identity 
format emerges prior to conservation in the standard equivalence format, and that 
the former offers a purer index of conservation. While not all researchers have been 
able to detect a significant difference in the incidence of conservation across the 
two formats, the direction of difference is quite consistent (see the reviews by 
Brainerd & Hooper, 1975, 1978; and S. A. Miller, 1978; and the reports by Cowan, 
1979; and Shultz, Dover, & Amsel, 1979), and it now seems certain that in at least 
some domains, there exists a period during which a conservation judgment is more 
likely in the identity format than in the equivalence format. This is commonly 
referred to as the identity-equivalence decalage. 

Why did Piaget select the equivalence format instead of the Simpler identity for
mat in the first place? The equivalence format has the advantage of presenting the 
child with concrete illusions which are absent in the identity format, and Piaget 
(1952) believed that conservation should be assessed under strong misleading per
ceptual cues in order to guard against pseudoconservation-conservation responses 
based upon simple perceptual rules coupled with a failure to remember (or antici
pate) the change in physical dimensions (Elkind, 1967; Piaget, 1967, 1968). Thus, a 
child who judges water quantities by water levels might give a conservation response 
following the transformation in the identity format simply as a result of forgetting 
the water level prior to pouring. However, as Elkind (1967) notes, such an event 
can be made extremely unlikely by using large transformations and verbal and phys-
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ical reminders, and even if it does occur, it may be easily detected through multiple 
trials and counterarguments, and so the possibility of a small number of false posi
tives is not in itself sufficient reason to abandon the identity format. Furthermore, 
non-Genevan researchers have expressed concern about the incidence of false 
negatives as well as false positives, and it now seems likely that the equivalence 
format reduces false positives only at a very high cost in false negatives. 

Elkind suggested that the cause of the identity-equivalence decalage could be 
attributed directly to the need for a transitive inference in the equivalence format 
and the absence of such a need in the identity format. Given initial quantities P 
and Q, with P equal to Q, and the perceptual transformation of Q to Q', the child 
may appreciate the identity rule and recognize that quantity Q must equal quantity 
Q', and thus have sufficient knowledge to pass a task in the identity format, but in 
order to pass the task in the standard equivalence format, the child must also be 
able to remember that P equals Q, and that Q equals Q', and be able to combine 
these facts through a transitive inference to deduce that quantity P equals quantity 
Q'. Thus, rather than indicating an absence of the identity rule, failure in the equiva
lence format may reflect memory limitations, or as Elkind suggested, an inability to 
perform transitive inferences. 

It now appears unlikely that an inability to make inferences accounts for the 
decalage since Bryant and Trabasso (1971) and others (see the review by Thayer & 
Collyer, 1978) have demonstrated that, barring memory difficulties, most young 
children are capable of such inferences, though debate on this issue is continuing 
(e.g., Breslow, 1981; Perner, Steiner, & Staehelin, 1981). Memory limitations might 
be responsible, but existing memory research suggests that this is also an unlikely 
explanation (Bryant, 1974). What, then, might explain the observed decalage? As 
discussed in the next section, the equivalence format may increase the incidence of 
semantic misunderstandings. Alternatively, as discussed in a later section, noncon
servation in the equivalence format may result from a child's inability to judge the 
initial relationship confidently. That is, a child may recognize that Q must equal Q' 
but be uncertain about the asserted initial equivalence of P and Q, and following 
the transformation, the child may decide that actually P is not equal to Q and 
therefore deduce, by a logical inference, that neither can P equal Q'. 

The multiple problems with the standard equivalence format casts a shadow over 
our understanding of the conservation-nonconservation phenomenon. The more we 
explore such variations on the standard procedure, the more we seem to sense that 
somewhere along the line we may have taken the wrong path. 

Understanding the Question and the Importance of Context 

Many writers have raised the possibility that nonconservation judgments often, if 
not always, imply a misunderstanding of the questions rather than an inappreciation 
of the identity rule (e.g., Braine & Shanks, 1965a, 1965b; Griffiths, Shantz, & Sigel, 
1967; Hood, 1962; Lumsden & Poteat, 1968; Maratsos, 1974; Rothenberg, 1969; 
Siegel, 1978). I shall only briefly review the problem, as it is also discussed by 
Linda Siegel in Chapter 4 of this volume (see also Siegel, 1978). 
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The fact that young children have a poor understanding of relational terms such 
as more, less, and the same, and quantity terms such as number, amount, and length 
has been well established. For example, a number of researchers have documented 
the slow development of the relational term less as opposed to the early develop
ment of the term more (e.g., Clark, 1970; Donaldson & Balfour, 1968; Donaldson 
& Wales, 1970; Palermo, 1973, 1974; Weiner, 1974). At younger ages and in par
ticular contexts children appear to equate the two terms. Also Griffiths, Shantz, 
and Sigel (1967) report evidence suggesting that children correctly interpret the 
same even less often than less. Children are reluctant to apply the same to two 
equal quantities. They seem to feel that it can apply only when the two quantities 
are the same in all (or almost all) respects, as the two quantities are prior to but not 
after the transformation in the standard conservation of equality task. Smedslund 
(1966) reported instances in which, without any transformation at all, children 
changed their initial judgment that two small collections possessed the same num
ber of items, and others have reported the frequency with which even 5- and 6-year
old children prefer the phrase, "Both have more," when confronted with an equal
ity. Children seem to equate more with many or much (Donaldson & Wales, 1970; 
Weiner, 1974), and thus, it is possible in their eyes for two equal quantities to each 
have more. 

Rothenberg (1969) expressed particular concern with the observation that when 
confronted with two collections of equal numerosity, young children often answer 
"Yes" to both of the following questions: "Are there the same number in each?" 
"Does one have more?" This logical inconsistency may reflect just that, a logical 
inconsistency, or it may reflect an interpretation of the same and more that differs 
from that intended by the adult. For example, young children may interpret the 
same simply to mean "looks the same" (Braine & Shanks, 1965a, 1965b; Clark, 
1970), and they may interpret more as referring to the space occupied (Hood, 
1962). As a result it is quite easy to see how, following the transformation in the 
standard number task, the young child might argue that the two collections are 
"the same" (in general appearance) but one collection has "more" (spread). The 
child is not actually attending to number in either case. 

Similar concerns have been expressed about the use of certain quantitative 
terms. As Maratsos (1974) notes, "preschool children tend ... to define quanti
tative concepts and words along one dimension" (p. 367). Research on the word 
bigger, for example, has shown that children persist in interpreting this term as 
referring to height (e.g., Hulsebus, 1969; Lumsden & Kling, 1969; Lumsden & 
Poteat, 1968; Maratsos, 1973,1974; Poteat & Hulsebus, 1968; Phye & Tenbrink, 
1972). A conservation of area, mass, or liquid task in which children are asked, 
"Are they just as big, or is one bigger? ," might thus produce a large number of false 
negatives. In line with this hypothesis, Lumsden and Kling (1969) have demonstrated 
that pretraining on the correct interpretation of the term bigger results in an increase 
in the incidence of area conservation among older children. 

Other investigations of the effect of verbal pre training on the frequency of con
servation have not always been successful (e.g., Inhelder, Sinclair, & Bovet, 1974), 
but simply training children on a particular meaning of a word may be insufficient 
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to prevent misunderstandings. A child may come to understand a term correctly in 
one context, but still misinterpret it in another. More, for example, may be used to 
indicate either an occurrence (addition) or a static relationship (Weiner, 1974), and 
the term may be used in reference to anyone of several available quantitative 
dimensions, such as number, length, or height. The verbal and nonverbal context 
helps specify which meaning is intended, but young children are particularly depen
dent on nonverbal context (Bates, 1976), and so they may be easily confused when 
the nonverbal context is at odds with the verbal content. Recent research has sug
gested that the contextual features of the standard conservation task create a situ
ation particularly conducive to misunderstandings of this sort (McGarrigle & 
Donaldson, 1975; Rose & Blank, 1974; Silverman, 1979). 

McGarrigle and Donaldson (1975), for example, focused their investigation upon 
the "contextual information" imparted in the adult's deliberate manipulation of 
physical dimensions in the standard conservation task and the possibility that this 
action induces children to interpret the standard question as referring to alterations 
in the physical dimensions. They note that in most adult-child communications, 
nonverbal behaviors playa large role in guiding the child's interpretation, but the 
standard task disassociates the verbal and nonverbal components of the communi
cation and thus creates ambiguity. In the number task, "it is as if the experimenter 
refers behaviorally to length although he continues to talk about number" (McGar
rigle & Donaldson, 1975, p. 343). And thus, "if would not be surprising if he [the 
child] ignored normal word-referent relationships and interpreted the question on 
the basis of the experimenter's intentions as evidenced in his behavior" (p. 343). 

McGarrigle and Donaldson suggested that the conservation question can be dis
ambiguated by having the transformation occur as if by accident or by a third party. 
Adults may then ask about the maintenance of quantity without suggesting that 
they are referring to the physical dimensions. Using number and length tasks in 
the equivalence format, McGarrigle and Donaldson demonstrated that conservation 
judgments were much more likely when the transformation was performed by a 
third party, an errant and mischievous teddy bear. They conclude that "traditional 
procedures seriously underestimate the child's knowledge" (McGarrigle and Donald
son, 1975, p. 348). If "the length of a row changes, but without the experimenter 
appearing to have intended it, the child has no conflicting behavioral evidence rele
vant to his interpretation of the questions, and so he can correctly answer the 
experimenter's question on the basis of number" (p. 349). McGarrigle and Donald
son's fmdings have been validated recently in both an exact and a modified repli
cation by Dockrell, Campbell, and Neilson (1980). 

In the same vein, Rose and Blank (1974) were concerned with the possibility 
that asking a question both immediately before and immediately after the transfor
mation, the standard procedure in the equivalence format, might suggest to the 
child that a new judgment is expected. In everyday discourse we are seldom asked a 
question that we have just answered. When such an event occurs, it implies that 
either our first answer was incorrect or some event has occurred that might necessi
tate a change in response. The young child might recognize the maintenance of the 
quantity across the perceptual transformation, and although the standard conser-
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vation question explicitly refers to this quantity, its unexpected repetition might 
seem sufficiently strange to suggest to the child that the adult expects a change in 
response and thus really means to refer to the changing dimensions and not the 
unchanging quantity. It is as if the repetition of the question disambiguates the 
adult's question, but in the wrong direction. 

Using the number task in the equivalence format with a deliberate transfor
mation, Rose and Blank (1974) compared the frequency of conservation when the 
standard question was asked just once, following the transformation, rather than 
both before and after the transformation. The frequency of conservation judgments 
rose substantially in the after-only variant. They conclude: 

when the child has just declared the rows equal, he interprets the request for a 
second judgment as a signal to change his response. When he is not in this pre
dicament (by having to judge the arrays once), he is more likely to respond to 
what is supposed to be the central demand of the task, namely, the evaluation 
of number. (Rose & Blank, 1974, pp. 500-501). 

Although Miller (1977) was unable to replicate this finding, Silverman (1979) 
has replicated it, and he addresses the relationship between the Rose and Blank 
paradigm and that offered by McGarrigle and Donaldson. While McGarrigle and 
Donaldson questioned their children both before and after the transformation, the 
use of an accidental transformation makes the repeated question seem appropriate. 
The context does not suggest a change in the interpretation of the question. In 
fact, the context strongly suggests a continued interpretation of the standard 
question as referring to quantity. Thus, the use of either nondeliberate transfor
mations or after-only questioning would seem a necessary component of any 
attempt to assess accurately knowledge of the identity rule. 

The research discussed in this section suggests that semantic confusions are a 
major source of false negatives in the assessment of the identity rule. It is still 
unclear to what degree this will require readjustments of Piaget's model, but it is 
apparent that semantic confusions alone cannot completely account for noncon
servation. A variety of techniques have been found for reducing the disruptive role 
of language comprehension in assessing conservation, and nonconservation is still 
observed. Nonverbal assessments generally result in only small to moderate incre
ments in the number of children diagnosed as conservers (e.g., Miller, 1977; Silver
man & Schneider, 1968; Wheldall & Poborca, 1980; see the review of nonverbal 
methods provided by Miller, 1976b), though it must still be recognized that non
verbal methods (and other procedures for reducing the incidence of semantic con
fUSions) may contain still other sources of potential measurement error (Siegel, 
1978). Accurate assessments of the identity rule will require the control of these 
other sources of error as well. 

Because of contextual features, the conservation task in the equivalence format 
would seem to be more likely to evoke misunderstanding than the same task in the 
identity format. The necessity of drawing attention to the perceptual cues as a 
means of establishing the initial equivalence (or inequivalence) and the need for 
before-and-after questioning may increase the number of children who interpret 
the questions as referring to the perceptual cues instead of to the quantities. Since 
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both formats, however, usually involve deliberate rather than accidental transfor
mations, misunderstandings induced by contextual features may interfere as well 
with accurate assessments using the identity format, though not necessarily to the 
same degree. 

S. A. Miller (1977) attempted to test the hypothesis that the lower incidence of 
conservation in the equivalence format could be attributed to the presence of 
before-and-after questioning. He intended to compare the incidence of conservation 
in the identity format with the incidence in two forms of the equivalence format: 
one with the usual before-and-after questioning and a second with after-only 
questioning. Unfortunately he failed to produce the decalage and so could not 
address the question of causality. However, Cowan (1979) recently repeated 
Miller's experiment, this time producing the decalage, and found that after-only 
questioning is not sufficient to equate the equivalence and identity formats. 

The Initial Equivalence: Confident Judgment or Best Estimate? 

The standard conservation task begins with an attempt to establish in the child's 
mind that there is an equivalence between two quantities. With two sets of equal 
numerosity the items are arranged in parallel rows of equal length and item density, 
and thus the items are placed in a perceivable one-to-one correspondence. Similarly, 
with liquid and other continuous substances, the physical shapes of the two equal 
quantities, their height, width, and depth, are equated. Thus, at the beginning of 
the task, the equivalence of the perceptual features is impressed upon the children 
in the hope that this will convince them that the quantities are also equivalent. To 
adults this is sufficient information, but it is only assumed that it is also sufficient 
for young children. As further insurance, the children are also encouraged to par
ticipate in the construction of the equivalence and to express their confidence in 
the equivalence, but the sufficiency of these operations may still be questioned. 

Gelman (1972; Gelman & Gallistel, 1978) and Bryant (1972, 1974) suggest 
that preschool children do not grasp the quantitative implications of perceptual 
equivalences, and as a result, these children regard the standard task as calling for a 
series of estimations. In the opinion of these researchers, nonconservation merely 
signifies a revision in the child's initial judgment rather than an inappreciation of 
the identity rule? 

Gelman and Gallistel (1978) argue that the ability to make confident judgments 
of numerical equivalence based on one-to-one correspondence is a late acquisition 
in the child's developing sense of quantity. This is virtually a complete reversal of 
Piaget's model. Whereas Piaget holds that young children grasp the implications of 
one-to-one correspondences but lack the identity rule, Gelman and others argue 
that young children grasp the identity rule but lack instead the capacity to appre
ciate the implications of one-to-one correspondence. As Bryant (1972) notes, "this 
explanation [of the non conservation response] seems as cogent as Piaget's" (p. 80). 

Although there is as yet no direct evidence supporting this line of reasoning over 

3 Although these authors have addressed this problem only in reference to the number task, 
I have taken the liberty of presenting a broader view. 
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Piaget's, there is indirect evidence. Smedslund (1966) provides some support for 
this interpretation in noting the unwillingness of children to agree that two sets are 
equal in number despite constructing the sets themselves: 

The many errors on the first repeated standard question [where, prior to any 
transformation, the children were asked to assert the existence of a numerical 
equivalence they had helped to create] represents a puzzling and methodologi
cally important finding. Forty-four percent of the kindergarten .children and 21 
percent of the first graders failed to give a judgment of "equal" immediately 
after having selected the two collections as being equal and after having heard 
the experimenter emphatically affirm the equality. Even after having been cor
rected, a considerable number of children continued to make errors .... Only 
after a second correction did nearly all the children accept the idea of equality. 
However, their responses clearly revealed the degree to which the notion was 
foreign to them in this type of situation. (p. 151) 

The ... difficulty of the equal category in two-object situations mean that 
many ... findings on conservation must be considered highly ambiguous. Failure 
on a conservation task may simply mean that the subject has not understood the 
initial equality of the two objects or collections. (p. 152) 

Bryant (1974) also points to the fact that conservation occurs more frequently in 
the identity format, and since the identity format eliminates the problem of judging 
an initial equivalence, this may be interpreted as proof that reestimations contribute 
to the frequency of nonconservation in the equivalence format. He also notes that 
dramatic increments in the frequency of conservation have resulted when researchers 
have trained children to ignore misleading perceptual cues and attend instead to 
one-to-one correspondences (Bryant, 1972, Experiment 3) or to actual quantity 
(Gelman, 1969). 

A more direct test of the hypothesis is certainly needed and may now be avail
able. Gelman and Gallistel (1978) have recently provided evidence that even very 
young children (3-year-olds) can make confident judgments of numerical equiva
lence (or inequivalence) by counting. Children's confidence in their own counting, 
however, seems to mirror the limits of their actual counting ability. Children may 
be able to count to 20 or 30, but a close assessment of their repeated counting 
behavior may show that they begin to make errors (e.g., coordination or partition
ing) at around seven or eight in the counting sequence. Gelman and Gallistel find 
that children stop using the cardinal principle (Le., the last tag equals the numer
osity of the set) when set sizes become large enough that they cause counting 
errors. They suggest that children stop using the cardinal principle when they 
become uncertain about their own counting. If Gelman and Gallistel are correct, we 
should be able to use counting behavior as an index of when children would have 
confidence in an initial numerical equality. If nonconservation in the standard num
ber task often represents reestimations based on a lack of confidence in the initial 
judgment, we should find children conserving number when the initial equality is 
established by counting (as opposed to perceptually) and when the number of items 
in the sets are within the child's range of confident counting (as opposed to outside 
that range), even though counting is not allowed following the transformation. 
While it is true that this hypothesis predicts conservation with small set sizes and 
non conservation with large set sizes, a phenomenon which has already been observed 
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(e.g., Gelman, 1972; Winer, 1974, 1975; Zimilies, 1966), it assumes that confidence 
in the initial equivalence is the crucial variable. The presence or absence of confi
dence should prove a stronger predictor than set size, and it should remain strong 
even after controlling (methodologically or statistically) for the influence of set 
size. 

In Search of Accuracy 

Given the foregoing arguments, one must wonder, as does Bryant (1974), 
whether Piaget was correct in asserting that up until the middle years, children are 
"not prepared to believe that a given quantity ... remains the same irrespective of 
changes in shape" (Piaget, 1952, p. 8). It seems that a number of questions once 
thought answered have not been: At what ages do children clearly exhibit a con
sistent overreliance on perceptual cues in situations where the identity rule should 
take precedence? Is such a period of true nonconservation found in all children? To 
what extent is true nonconservation specific to the type or sizes of the quantities 
involved? 

It is obvious that in assessing the appreciation of the identity rule we need to 
make greater use of the identity format (including, of course, procedures to guard 
against pseudoconservation), thus eliminating the potential for errors induced by 
memory limitations, an inability to carry out transitive inferences, or an inability to 
grasp the quantitative implications of perceptual correspondences. While it is true 
that a high incidence of nonconservation is generally still observed with the identity 
format, semantic confusions may be responsible, and so these sources of error also 
need to be controlled. 

A recent study by Pennington, Wallach, and Wallach (1980) is a good example of 
the sort of assessments which should be done more often. They presented 130 dis
advantaged third graders with a conservation of numerical equivalence task (Piaget's 
standard procedure) and a comparable task in the identity format. Out of 45 stand
ard nonconservers, only 19 failed the task in the identity format, an example of the 
identity-equivalence decalage. Then, in an attempt to reduce the incidence of 
pseudononconservation attributable to semantic confusions, the identity task was 
repeated using the actual cardinal number when questioning the child ("Are there 
still 13?") rather than the standard verbal formula ("Are there the same number as 
before?"). The incidence of nonconservation now dropped to just eight.4 That 
these few children were still misunderstanding the task was suggested by the fact 
that they still failed to conserve when the task was repeated with a mere displace
ment and no change in perceptual cues. 

Given studies such as this, one cannot help but wonder if preschool nonconser
vation might disappear entirely if all the problems with the standard procedure 

4 One may argue that these additional conservers were not true conservers since they may 
have been capable to recognizing the invariance of cardinal number but not quantity. On the 
other hand, we must admit that the procedure may also operate by disambiguating the task and 
consequently revealing true conservation. Further research is needed to determine to what 

extent these counteracting events occur. 
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were corrected simultaneously-a minimally verbal task in the identity format with 
a nondeliberate transformation. Of course, we must be concerned with the possi
bility that such procedures yield something other than operational conservation. 
This supposition reintroduces the notion that children may understand the identity 
rule prior to grasping compensation and inversion (and appreciating the rule as a 
logical necessity), and that they may conserve on the basis of the identity rule in 
some situations while still overrelying on perceptual rules in other situations. 

N onoperational Conservation 

As noted earlier, in Piaget's model, the young child's capacity to recognize the 
absence of addition or subtraction is given little importance. Preschool children 
readily admit the absence of addition or subtraction across perceptual transfor
mations and yet most do not conserve, and thus Piaget (1952; Wallach, 1969) felt 
that young children must be incapable of sensing the natural affordance of these 
observations. He hypothesized that compensation and inversion must be added 
before children can grasp the logical implications of the absence of addition or 
subtraction. Furthermore, since compensation, inversion, and quantitative identity 
could comprise a set of interdependent logical axioms, Piaget supposed that the 
identity rule emerges as a logical necessity with the onset of consistent conser
vation. But is the identity rule completely absent before the emergence of the logi
cal operations, and consistent conservation, and is conservation in the standard 
task really based upon the recognition of a logical necessity? Many individuals 
have now challenged Piaget on these primary assumptions (e.g., Acredolo, 1981; 
Acredolo & Acredolo, 1979, 1980; Anderson & Cuneo, 1978; Brainerd, 1977; 
Bruner, 1966; Bryant, 1972, 1974; Flavell, 1963; Gelman, 1969, 1972; Gelman & 
Gallistel, 1978; Gibson, 1969; Hamel, 1971; Hamel, Van der Veer, & Westerhof, 
1972; Klahr & Wallace, 1976; Mehler & Bever, 1967; P. H. Miller & Heldmeyer, 
1975; Pennington, Wallach, & Wallach, 1980; Shultz, Dover, & Amsel, 1979; 
Siegler, 1981), and as early as 1963, Flavell foresaw the emergence of these alter
native views: 

It is our judgment that Piaget's bent toward mathematics and logic, towards 
systemization, towards symmetry and order has led him to see more coherence 
and structure in the child's intellectual actions than really are there .... What 
we are suggesting is that an accurate picture of intellectual life in this period 
would probably show a somewhat lower order of organizations, a somewhat 
looser clustering of operations, in short, a somewhat less strong and less neat 
system than Piaget's grouping theory postulates. (Flavell, 1963, p. 438) 

As emphasized earlier, a nonconservation response indicates only that the child 
is overrelying on perceptual rules. It does not necessarily mean that the child is 
completely unaware of the identity rule altogether, and many individuals have 
expressed the opinion that children possess a "sense" of quantitative invariance 
long before the emergence of consistent conservation. For example, Pennington, 
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Wallach, and Wallach (1980) argue that "the young child seems to have a partial 
and not well integrated concept of number [invariance], and ... this concept 
functions effectively as an implicit principle long before it is articulated as a clear 
and consistent rule" (p. 242). Similarly, Anderson and Cuneo (1978) discuss the 
existence of a "conservation tendency," and P. H. Miller and Heldmeyer (1975) 
argue that "many kindergarteners appear to hold two conflicting beliefs-a belief in 
nonconservation and a belief in conservation ... [and] which is expressed depends 
on the amount or type of perceptual information in the testing situation" (p. 591). 

On reflection it seems entirely possible that young children could come to 
appreciate the implications of an absence of addition or subtraction prior to the 
acquisition of compensation and inversion and that they could possess an under
standing of the identity rule for a considerable period of time prior to fmally grasp
ing the rule as preeminent. The identity rule may be present and quite functional in 
promoting the development of number and quantity concepts, and yet in certain 
situations the young child may inexplicably neglect to utilize this knowledge.s 

In the fIrst half of this chapter, I discussed the identity rule as Piaget does, as if 
it were essentially an all-or-none acquisition. Thus, the issue so far has been whether 
or not the standard conservation task accurately measures the capacity for con
sistent conservation. If the model presented above is accurate, however, then our 
research has been misdirected in focusing so completely on the emergence of con
sistent conservation. As Piaget argues, the emergence of an understanding of the 
identity rule surely SignifIes the establishment of a vital foundation in the child's 
developing conceptions of number and quantity. Piaget supposed, however, that the 
identity rule fIrst emerged only with the advent of consistent conservation. If it 
emerges earlier, then the advent of consistent conservation may simply mark the 
total elimination of an overreliance of perceptual rules with little or no fundamental 
change in the understanding of the identity rule itself. In fact, the relative ease of 
conservation "extinction" (e.g., see reviews by S. A. Miller, 1976a, and Hall and 
Kaye, 1978; and the report by Shultz, Dovel, & Arosel, 1979) suggests that even 
consistent conservation on the standard task is not based upon the recognition of a 
logical necessity. Thus, the issue of whether or not some feeling for the identity 
rule is present prior to the grasp of compensation and inversion and prior to the 
advent of consistent conservation is quite important. 

Demonstrations of an Early Understanding of the Identity Rule 

Bruner (1966) was the fIrst to call attention to the fact that a large proportion 
of nonconserving children anticipate conservation when asked simply to imagine 
the transformations. This now common observation (e.g., Acredolo & Acredolo, 
1979, 1980; Leahy, 1977; P. H. Miller & Heldmeyer, 1975; Piaget & Inhelder, 
1969, 1971) suggests that young children possess a capacity to conserve well before 

SEach of us, after all, is prone toward impulsive errors and toward the use of "shortcut" 
strategies. This is often seen in the case of formal operational tasks, where adults behave 
like concrete operational or even preoperational children despite obviously knowing better 

(Flavell, 1977). 
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the emergence of consistent conservation in the standard task. Bruner argued that 
the standard task encourages an overreliance on perceptual rules and hides the fact 
that the child also possesses a sense of quantitative invariance. Given Bruner's obser
vations, we may conclude that knowledge of the identity rule will appear when one 
protects the child from disruptive illusions. 

Piaget (1967, 1968, 1976), however, challenged this interpretation of the antici
pation phenomenon, suggesting that it actually constitutes an instance of pseudo
conservation. He argued that nonconserving children anticipate conservation only 
because they fail to anticipate a change in the physical dimensions. That is, he held 
that their anticipations of conservation actually represent a continued reliance on 
perceptual rules. Since children fail to anticipate a change in perceptual cues, 
which they normally use for estimating quantity, the perceptual rules themselves 
dictate a conservation response.6 

Piaget and Inhelder (1969, 1971) provided "proof' of his explanation by citing 
a study by Piaget and Taponier in which it was demonstrated that the only non
conserving children who will anticipate conservation are those who fail to anticipate 
a change in the salient physical dimensions. This study has often been questioned, 
however, since only a sparse and confusing account of the procedures and results is 
given. In addition, it now appears that Piaget and Taponier's fmdings are not repli
cable. It has recently been found that many nonconserving children who anticipate 
liquid, number, area, and length conservation also anticipate a change in the salient 
perceptual cues (Acredolo & Acredolo, 1979, 1980). In fact, it was found that 
many children anticipated conservation immediately after they had anticipated 
changes in the salient dimensions. 

In order to explain these observations within Piaget's theory, it is necessary to 
assume that the children were transitional conservers, capable of applying the logi
cal operations to small transformations only, in this case, imagined. While such a 
post hoc explanation does regain the integrity of Piaget's theory, it is neither parsi
monious nor particularly satisfying, and it seems a good example of Flavell's (1963) 
notion of "unwilling data." 

Further disproof of Piaget's pseudoconservation explanation of the anticipation 
phenomenon, is provided by P. H. Miller and Heldmeyer's (1975) observation that a 
high proportion of anticipation of conservation judgments are followed by logical 
explanations of the identity type-appeals to the initial equality and to the absence 
of addition or subtraction: "If logical explanations reflect operations, then these 

6The following statements by Piaget and Inhelder (1971) further clarify Piaget's interpre
tation of the anticipation of conservation phenomenon, in this case, within the liquid task: 

The youngest subjects expect some kind of generalized conservation or pseudo conservation 
that involves levels. They abandon this only when they actually see the liquids being poured 
• 0 0, since they can then observe, contrary to expectations, the levels are different. (po 260) 

o 0 0 He starts off by postulating the "persistency" of the rest, of the quantity, that is, 
and of the level (height), the latter being his gauge for the former. Thus it is only when the 
liquid is visibly transferred .. 0 that the subject feels constrained to accept non-conservation 
of the quantity, since he can no longer believe in the persistence of the level, and since he 

uses the latter to gauge the former and is incapable of dissociating them. (po 262) 
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children possessed the underlying cognitive operations normally attributed only to 
'true conservers'" (p. 591). 

Bryant (1972) reports a second way to demonstrate the presence of the identity 
rule and conservation among otherwise nonconserving children, this time with visible 
transformations and only a very slight modification of the standard Piagetian task. 
In his demonstration, Bryant used a transformation that results in a quantity
ambiguous static display where undimensional perceptual rules are of no utility. 
Unequal collections of items were displayed such as those shown in Figure 1.1. 
Three- to 6-year-old children were first presented these static arrays and asked to 
judge (without counting) which row had more. In display A of Fig. 1.1, attention 
to one-to-one correspondence generates a correct response. In display B, there is 
no one-to-one correspondence, and so the child is left with estimates based on a 
perceptual cue such as length, which generates the incorrect response (or density, 
which generates the correct response). Finally, in display C neither one-to-one 
correspondence nor length (or density) offer cues to relative quantity. Bryant 
established that judgments were random on C, poorer than chance on B (number 
judgments based on density are rare), and better than chance on A. 

He then used these same displays in a conservation of inequality task (before 
and after questioning in the equivalence format), transforming A to B or C, and 
B to A or C. When A was transformed to B, or vice versa, the children displayed 
what is typically interpreted as a non conservation response. They switched which 
row they thought had more. When either A or B was transformed to C, however, 
the children persevered in their initial judgment. If as Piaget argues, children equate 
number with length, we might expect an abandonment of their initial decisions and 
a tendency toward more random responding. This was not the case. The children 
could transfer information about relative numerosities across the transformation 

A B C 

• • • • • • I • • • • • • • • • • I • • • • • • • • • 

I • • • • • • I 
• • • • • • • • • • • • • • • • • • • • • • • • • 

15 14 15 14 15 14 

Fig. 1.1 Displays similar to those used by Bryant (1972) in demonstrating an early 
awareness of the identity rule. 
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when the resulting display did not suggest a change in their initial judgment. These 
results again suggest that children can and do use the identity rule and thereby 
deduce that, since nothing is added or taken away, the initial judgment remains the 
best guess. 

Again, the pseudoconservation argument does not work here. The children were 
directly confronted with the changing perceptual cues, and yet they persisted in 
their initial judgments. It must be noted, however, that Katz and Beilin (1976) 
were unable to replicate Bryant, and Starkey (1981) has recently demonstrated 
that a subtle procedural factor may have accounted for Bryant's observations. 

The Effects of Training Children to Ignore Perceptual Cues 

A major implication of the alternative model is that conservation based upon an 
understanding of the identity rule will emerge spontaneously simply by eliminating 
the overreliance on perceptual rules. There are several successful conservation train
ing studies that are particularly relevant to this hypothesis (Bryant, 1972; Gelman, 
1969; Hamel & Riksen, 1973; Smedslund, 1961; Winer, 1968). I briefly consider 
two of them. 

Gelman (1969) used an oddity learning format to persuade children to judge 
relative quantities in static displays on the basis of real quantity cues instead of 
merely "estimating" quantities on the basis of misleading perceptual cues. In 
short, she trained children to ignore length and density when judging relative numer
osities, and to ignore left-right end point misalignments when judging relative 
lengths. Using a pretest-posttest design, the incidence of number and length conser
vation rose dramatically, and the effects of training even generalized to mass and 
liquid conservation. Gelman (1969) concluded that "the five-year-old child appar
ently does have to learn to respond consistently to quantity and not be distracted 
by irrelevant cues, but does not have to learn, de novo, to define quantity and 
invariance .... These responses are present in a child's repertoire, but are dominated 
by strategies under the control of irrelevant stimuli" (p. 185). 

Like Gelman, Bryant (1974) also suggested that young children understand the 
identity rule but, nevertheless, often adhere to perceptual rules and are thus caught 
in a conflict between the two. Referring to number judgments, Bryant states, "It 
seems that children have two rules .... One rule is that number is invariant unless 
something is added or taken away. The other is that if two different rows have dif
ferent lengths, the longer one is usually the more numerous" (p. 152). Bryant 
(1974) argued that Gelman's study "certainly suggests that the young child's diffi
culty with the conservation task is not a difficulty in understanding invariance but 
in knowing which of two judgments is the better one" (p. 142). 

Bryant (1972) provided a successful variation in Gelman's procedure. He also 
trained children to distrust unreliable perceptual cues and to rely instead on more 
reliable quantity cues, in this case the information imparted by one-to-one corre
spondence. Bryant's initial displays were similar to those shown in the left-hand 
columns of Fig. 1.2. The diagrams to the right show the results of progressive trans
formations. In each case, the children were required to indicate which row had 



Conservation-Nonconservation: Alternative Explanations 19 

1 2 3 4 

• • • • • • I • • • • 
I Set • • • • • • 

A • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

• • • • 
Set • • • • • I • 

B • I • • • • • • • • • • • • • • • • • I • • • • • • • • • • • • • • • • 
• 

Fig. 1.2 Displays similar to those used by Bryant (1972) in training children to 
ignore perceptual cues. 

more items. With this procedure, Bryant could demonstrate to the children that 
judgments based on undimensional perceptual rules (e.g., length) result in switching 
judgments back and forth between the two rows, while judgments based one one
to-one correspondence yield consistent judgments. Following training the children 
were exposed to a standard conservation of inequality task. 

As in Gelman's study, the incidence of conservation rose, but Bryant makes an 
additional point. If children have no understanding of the identity rule at all, why 
should their inconsistent judgments based on length have caused them to abandon 
this perceptual cue? As Bryant (1974) surmises, "the effects shows that the child 
is not swamped by perceptual cues. He realizes that the number has not changed 
and is perturbed at having to change his mind so often" (p. 146). Hence, these 
results demonstrate in still another fashion that young conserving children must be 
aware of the identity rule. 

Conservation and Compensation 

Given the foregoing studies, we must consider the possibility that, for some 
children, an awareness of the conflict between the identity and perceptual rules 
may be solely responsible for the eventual abandonment of incorrect perceptual 
rules. Consistent conservation may emerge prior to the grasp of compensation 
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(Acre dolo , 1981; Acredolo & Acredolo, 1979). A large number of studies have 
now focused specifically on the relationship between conservation and compen
sation (e.g., Acredolo & Acredolo, 1979, 1980; Anderson & Cuneo, 1978; Brainerd, 
1977; Curcio, Kattef, Levine, & Robbins, 1972; Gelman & Weinberg, 1972; Good
now, 1973; Larsen & Flavell, 1970; Lee, 1971; Piaget & Inhelder, 1969; Sheppard, 
1974; Siegler, 1981), and despite the fact that some researchers have neglected to 
maintain a strict distinction between empirical covariation and logical compen
sation (Acredolo, 1981), the overall picture is that the identity rule can emerge 
prior to compensation. I shall not dwell long on this research as two recent reviews 
on the relationship between conservation and compensation are available (Acredolo, 
1981; Silverman & Rose, in press). 

A major problem in this line of investigation is the lack of an adequate test of 
compensation. Tasks that call upon the child to anticipate a change in one di
mension (e.g., water height) given a specific change in another dimension (e.g., 
column width) over the course of a specific anticipated perceptual transformation 
(pouring) measure knowledge of covariation, not compensation (Acredolo, 1981). 
However, if children fail to anticipate any change in the dimension at all-that is, 
if they lack knowledge of covariation-then clearly they do not understand com
pensation either. Thus, a covariation task may be used to infer the absence of 
compensation knowledge. The question is, Do any children pass a conservation 
task despite failing a covariation task? 

One line of evidence comes from the previously discussed research on the antici
pation of conservation phenomenon. If we assume that conservation in the standard 
task indicates the presence of compensation whereas nonconservation indicates the 
absence of compensation, then the observation of a large proportion of nonconserv
ing children anticipating conservation despite passing a covariation task (Le., antici
pation that can not be attributed to pseudoconservation) indicates conservation by 
identity preceding compensation. These premises are questionable, however, as one 
may argue that compensation (like the identity rule) may also emerge prior to con
sistent conservation. 

Stronger evidence that the identity rule develops before compensation comes 
from observations by both Acredolo and Acredolo (1979) and Piaget and Inhelder 
(1969). They observed that a small percentage of conserving children fail a simple 
covariation task, 9% and 11 %, respectively, when using the equivalence format. 
Even Piaget refers to this as an instance of conservation by identity (Piaget & 
Inhelder, 1969, 1971), though he chose to ignore the theoretical implications of 
the observation. When Acredolo and Acredolo assessed conservation using the 
identity format Gudgment-plus-explanation scoring, with counterarguments), the 
number of children conserving without compensation rose to 37%. Silverman and 
Rose (in press) note that similar observations have been made by Brainerd (1977), 
Curcio, Kattef, Levine, and Robbins (1972), Gelman and Weinberg (1972), Leahey 
(1977), and Lee (1971V 

Another line of evidence suggesting that the identity rule emerges prior to com-

7 Acredolo and Acredolo (1979) provide additional data indicating that conservation in the 
absence of covariation may be somewhat less stable than conservation accompanied by covari-
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pensation comes from recent work on the development of perceptual rules-rules 
for using one or more physical dimensions of a quantity to estimate the relative or 
absolute size of that quantity. Obviously, if children understand compensation, 
they should attend to more than just one dimension when estimating relative quanti
ties, but Anderson and Cuneo (1978) observed that 20% of their liquid-conserving 
S-year-old children still estimated relative quantities solely by water levels. Further
more, Silverman and Briga (Note 2) report that successful conservation training has 
no concomitant influence on the selection of perceptual rules. 

The Presence of Counting and Math Skills Among Nonconservers 

If the advent of consistent conservation marks the emergence of the identity 
rule, then number nonconserving children should display only imitative counting 
and math skills. Evidence of any real conceptual understanding of number should 
be absent. Recent research, though still quite tentative, is beginning to show, how
ever, that young children possess a fairly extensive understanding of number despite 
lacking the ability to consistently conserve on the standard task. 

For example, Pennington, Wallach, and Wallach (1980) note that among 8- to 
lQ-year-old disadvantaged children, the nonconservers possessed computational 
skills (addition, subtraction, multiplication) that were quite comparable to those 
of the conserving children. Furthermore, Gelman and Gallistel (l978) provide 
evidence that, by age 3, the average child has a grasp of many basic counting and 
numerical reasoning principles. Whether this represents conceptual knowledge or 
something less is still debatable, but the research gathered so far suggests it may 

... be an error to assume that a child must be able to [consistently] conserve 
if he is to be able to learn arithmetic with understanding .... If children deny 
invariance only under special conditions ... then-contrary to the usual expec
tations-nonconservers may have little difficulty understanding and using count
ing and arithmetic. (Pennington, Wallach, & Wallach, 1980, pp. 234-235) 

Conclusions 

In the first half of this chapter, a number of variations in Piaget's standard con
servation procedure were discussed. Use of these variations results in an increase 
in the incidence of conservation judgments among preschool children. However, 
do the recommended task variations (e.g., minimally verbal tasks using the identity 
format with nondeliberate transformations) increase the detection of operational 
conservation, or are we seeing merely further evidence of the existence of non
operational conservation? 

Recall that Piaget was interested only in operational conservation, and while he 
seems to have recognized the possibility of nonoperational conservation occurring 

ation, an observation which merges well with research on conservation extinction. As S. A. 
Miller (1973) has suggested, the appreciation of conservation as a logical necessity resistant to 

counterargument may come late in development. 
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at least occasionally (piaget & Inhelder, 1969, 1971), he did not wish to view it as 
true conservation. This is all well and good. The emergence of compensation and 
inversion should be charted. What the research suggests, however, is that nonoper
ational conservation is more pervasive than Piaget seems to have suspected. Whether 
or not one is willing to consider this an instance of true conservation or an instance 
of false positive really depends entirely upon how one wishes to defme conservation. 
The issue is relatively unimportant, however, since our primary aim ought to be 
to measure both the presence of the identity rule and its full appreciation as a logi
cal necessity. How we chose to use the term "conservation" is merely a matter of 
convention. 

Regardless, the point is this: The standard assessment procedure may not be up 
to the task of measuring either operational or nonoperational conservation accu
rately, and many researchers, including Piaget, may have frequently mistaken non
operational for operational conservation. The use of a jUdgment-pIus-explanation 
criterion may help in detecting true operational conservation, but as noted by 
Acredolo (1981), the presence of what we normally think of as "compensation" 
and "inversion" explanations is not conclusive proof that these logical operations 
are actually present in the child's thinking. 

Thus, we see that the standard task may be too liberal in the assessment of 
operational conservation but too conservative in the assessment of non operational 
conservation. On the one hand, the identity rule may emerge in the child's know
ledge at a much younger age than indicated by the advent of consistent conservation 
in the standard task, while on the other, the logical operations of compensation and 
inversion may emerge considerably later. 

The review of the research suggests that there are actually multiple routes to an 
adult comprehension of quantitative invariance, and which route is most frequently 
taken is still to be discovered. Four possible routes are reviewed in Table 1.1. Three 
milestones in observable task behavior are considered: (1) the transition from con
sistent nonconservation (an overreliance on perceptual rules) to partial conservation 
-that is, conservation in only some variations of the task (e.g., in a nonverbal task 
but not in the verbal variation, in the identity format but not in the equivalence 
format, or when the transformations are imagined but not when they are actually 
seen); (2) the transition from partial conservation to consistent conservation (con
servation in all task variations); and (3) the transition from consistent conservation 
to consistent conservation with resistance to extinction. 

The first alternative in Table 1.1 represents the Piagetian model. All conservation 
behavior, including partial conservation, is attributed to the child's grasp of com
pensation and inversion as well as quantitative identity. In this model, the second 
and third transitions are difficult to explain. In the second alternative, a slight alter
ation of Piaget's formulation, partial conservation emerges as a result of an early 
grasp of the identity rule, but consistent conservation awaits the development of 
compensation and inversion. Only the last transition remains a mystery. In the third 
alternative, both partial conservation and the development of consistent conser
vation are nonoperational. The transition from partial to consistent conservation is 
attributed to the recognition of the identity rule as preeminent among available 
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cues for judging quantities. Resistance to extinction awaits the development of 
operational conservation. Finally, in the fourth alternative, a nonoperational 
grasp of quantitative invariance supports partial conservation, consistent conser
vation, and resistance to extinction. In this case, the third transition again remains 
to be explained. 

Obviously, the third alternative is most attractive since explanations exist for 
all three transitions, but the specification of additional milestones would 
undoubtedly complicate the picture. The point of this exercise, however, is merely 
to demonstrate the increased complexity of charting conservation development 
once we accept the possibility of nonoperational as well as operational conservation. 

Future Research: The Development 
of the Identity Rule 

Given the foregoing conclusion that a grasp of the identity rule can develop early 
in life and even support, on its own, consistent conservation, we need to begin 
charting the slow growth of the identity rule from first emergence to ultimate status 
as an abstract principle. So far, we have relatively little research aimed directly at 
revealing the nature of the identity rule across its full range of development, but in 
closing, I shall discuss just a few of the opinions now emerging. 

The first task is to account for an early emergence of the identity rule. One way 
is by appealing to James Gibson's (1979) notion of affordances and to Eleanor 
Gibson's (1969) theory of perceptual learning. The Gibsons would argue that the 
observation of an absence of addition or subtraction naturally signifies an invariance 
in quantity just as the slow occlusion of an object by an edge naturally signifies its 
continued existence behind something else. Under the theory of perceptual learning, 
these "meanings" do not have to be empirically confirmed. They spring spontane
ously from the perceptions. The affordances are in the information provided at the 
eye, and no further (constructive) effort is demanded of the individual other than 
in attending to what is there and recognizing it as relevant. In this case, experience 
is the crucial variable. Our perceptions carry a great deal of information, and we 
generally require repeated exposures before we begin recognizing which bit of 
information is important and which is not. Thus, the very young child may take 
more notice of what a substance is and much less in how much is present. Children 
would not be expected to show any concern about amounts until that age at which 
they gain some ability to affect amounts. Even so, children may take some time 
before they begin recognizing the relevance of an absence of addition or subtraction 
during quantity transformations. 

An alternative argument is that children first learn the identity rule empirically 
through their experience with small numbers, a theory favored by Gelman and 
Gallistel (1978), Klahr and Wallace (1976), Siegler (1981), and Winer (1974), to 
name a few. Ignoring the debate over whether subitizing precedes or follows quanti
fication by counting, the possibility exists that by repeatedly counting-subitizing 
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small collections over the course of perceptual transformations, children learn 
directly that the cardinal number remains constant as long as there is no addition 
or subtraction. Klahr amd Wallace (1976) note that "there is ample opportunity 
for children to employ Qs [subitizing] to detect the consistent effects of addition, 
subtraction, and perceptual transformations on small quantities of discrete items 
such as the other members of his family, toys, shoes, cutlery, and so on" (p. 115), 
and Siegler (1981) suggests that "counting and pairing may be thought of as pro
viding outside referents for verifying whether conservation does or does not obtain 
in any particular situation" (p. 54). 

Evidence against this notion that children must learn the identity rule empiri
cally through their early experience with small numbers comes from a recent obser
vation by Woodruff, Premack, and Kennel (1978) working with Sarah, the illustrious 
language-trained chimpanzee. They observed that Sarah was quite capable of con
serving liquid and mass but not number. Apparently Sarah acquired the notion of 
liquid and mass invariance without having to learn the identity rule through empiri
cal confirmation by counting. Their results suggest that perceptual learning may be 
sufficient to account for the early emergence of the identity rule, but nevertheless, 
the course of conservation development may be modified, augmented, and hastened 
in children by their ability to empirically verify the identity rule through counting 
and subitizing small collections. 

A number of researchers have suggested that, in point of fact, the identity rule 
does first emerge as a reasoning principle applicable only to small, specifiable numer
osoties. For example, Gelman and Gallistel (1978) "take the position that initially 
the young child reasons about number only when he can obtain a specific consistent 
numerical representation of a collection" (p. 229). Initially "his reasoning principles 
do not tell him how transfo~ations affect relations; they tell him how transfor
mations affect numerosity" (p. 232). That is, initially the identity rule may take a 
restricted form: In the absence of addition or subtraction, cardinal number remains 
constant. Thus, the child may recognize that perceptual transformations leave the 
cardinal tag unchanged and yet still insist that the amount has changed, as in the 
common observation of children who insist that lengthening a line of six chips still 
results in six chips and yet at the same time more than there were before.8 

In line with this hypothesis, many researchers have confirmed that young 
children will exhibit knowledge of quantitative invariance when it comes to very 
small collections though not with the more commonly used large collections (Gel
man, 1972; Gelman & Tucker, 1975; P. H. Miller & Heller, 1976; Siegler, 1981; 
Silverman, Rose, & Phillis, 1979; Winer, 1974, 1975; Zirnilies, 1966). However, a 
recent study by Silverman and Briga (1981) suggests that these observations may 
not signify even a partial understanding of the identity rule. They demonstrated 
that young children can conserve small collections only if they are allowed to 
recount (or subitize) the sets after the transformation. That is, young children 
seemed capable of recognizing the invariance of number across perceptual transfor
mations only when it could be directly confirmed that the cardinal tags had 

8 See Footnote 4. 
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remained constant. Thus, the conservation of small numbers may not be based on 
the appreciation of the absence of addition or subtraction at all. 

Similarly, the results of Gelman's "magic" paradigm may be questioned (Gelman, 
1972; Gelman & Tucker, 1975; Silverman, Rose, & Phillis, 1979). In this paradigm, 
children are first trained across a sequence of trials to recognize which of two small, 
unequal collections is "the winner ," and then they are confronted with unexpected, 
surreptitious transformations involving either an addition/subtraction, a perceptual 
transformation, or a substitution. Between trials the individual collections are 
covered and then shuffled as in a shell game. Surprise following the transformation 
is the main dependent variable. The data from these studies indicate that children 
choose to define "the winner" in terms of number rather in terms of perceptual 
cues, and further that they are surprised when confronted with an unexpected 
addition or subtraction but relatively unconcerned when confronted with percept
ual transformations. Gelman and Gallistel (1978) hold that these results indicate 
that 3-year-old children already "recognize the existence of a large class of transfor
mations (manipulations) that can be performed on a set without altering the numer
osity of the set" (p. 168). However, in light of Silverman and Briga's observations, 
one may argue that the lack of surprise by children when faced with the perceptual 
transformations results only from the fact that they continue to obtain the same 
count they had in past trials and not from a specific appreciation of the absence of 
addition or subtraction per se. Obviously, however, much more research on this 
phenomenon is needed before we can be certain what it signifies. 

Regardless of whether or not 3-year-olds' conservation of small numbers repre
sents knowledge of the identity rule, it is still commonly anticipated that the 
identity rule first emerges in reference to small, specifiable numerosities. It is 
expected that once the identity rule is mastered in one domain, it is then simply 
generalized to others, to larger collections and then to various continuous quantities 
(e.g., Siegler, 1981). As Anderson and Cuneo (1978) suggest, "once this concept 
has reached some level of development, especially once it can be verbalized, then 
it can function as an independent idea. As such it may aid in its own further devel
opment" (p. 370). 

All the while, the child may be led into overrelying on perceptual cues in certain 
situations despite knowledge of the identity rule. The problem, however, is not in 
the lack of competence, but in a failure in performance. It is not that the child 
lacks the reasoning principles but rather "the problem is that the child fails to use 
his reasoning principles. What we need is an explanation of why he does not apply 
his principles" (Gelman & Gallistel, 1978, p. 229). 

An awareness of compensation may play no role in the initial recognition of 
the identity rule, and, in fact, compensation may be an eventual consequence 
rather than a cause of the child's initial grasp of the rule (cf. Acredolo, 1981; 
Acredolo & Acredolo, 1979; Anderson & Cuneo, 1978; Silverman & Rose, in press). 
As noted in an earlier article on liquid conservation (Acre dolo & Acredolo, 1979), 
a child who begins occasionally conserving liquid solely on the basis of the identity 
rule would still be "motivated to explain the illusions associated with the water 
levels, and this requires the development of compensation" (p. 533). In turn, the 
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eventual grasp of compensation may add still greater legitimacy to the identity rule 
and hasten its generalization to other quantities. 

Reference Notes 
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2. The Acquisition and Elaboration of the 
Number Word Sequence 

Karen C. Fuson, John Richards, and Diane J. Briars 

In this chapter we describe children's acquisition and elaboration of the sequence 
of counting words from its beginnings around age two up to its general extension to 
the base ten system notions beyond one hundred (around age eight). This develop
ment occurs, in our view, in two distinct, though overlapping, phases: an initial 
acquisition phase of learning the conventional sequence of number words and an 
elaboration phase, during which this sequence is decomposed into separate words 
and relations upon these pieces and words are established. During acquisition, the 
sequence begins to be used for counting objects. Near the end of the elaborative 
phase, the words in the sequence themselves become items which are counted for 
arithmetic and relational purposes. 

Learning the ordered sequence of counting words up to twenty is essentially a 
serial recall task: The words in the sequence must be recalled and they must be pro-
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duced in the correct order. "Learning" and "test" trials (e.g., "Show Grandma how 
you can count, dear") are presented in a haphazard fashion over a period of as much 
as 3 years. The acquisition of the sequence from twenty to one hundred is also a 
serial recall task, but one of a list with a repeating pattern. In the acquisition phase, 
the sequence functions as a single, connected, serial whole from which interior 
words cannot be produced independently. In the elaboration phase, the links be
tween individual words become strengthened, and contiguous words (with their 
connecting link) can be separated and produced apart from the total sequence. Each 
word in the sequence then can serve as the stimulus for the recall of the next word
each word is a "bead" connected only to the immediately preceding and immedi
ately follOWing words. Therefore, in naturally occurring serial lists such as the 
number word sequence, the latter elaborative phase has the structure of an associ
ative chain, but the former acquisition phase does not. Evidence supporting this 
view will be discussed in the "Elaboration of the Sequence" section of this chapter. 

Several years are required for the acquisition and elaboration of the sequence of 
number words. Consequently, different parts of the sequence may be in different 
phases of development at the same time. For example, relations may be established 
between words at the beginning of the sequence at the same time that the child is 
acquiring words later in the sequence. Thus, statements in this chapter about par
ticular phases or levels of development refer to some portion of the sequence rather 
than to the whole sequence. Typically, the most advanced development is at the 
beginning of the sequence, with progressively less advanced development toward 
the end. 

Young children hear number words in a variety of contexts. The number words 
vary in meaning according to the contexts in which they are used, and early in their 
learning of these words, children build up separate, context-specific areas of mean
ing. As children age, these areas begin to connect. Fuson and Hall (in press) have 
reviewed the literature on some of these meanings and uses, namely, sequence mean
ings (arising from the number words in their conventional sequence), counting 
meanings (arising from the use of the conventional sequence in counting entities), 
cardinal meanings (arising from the use of a number word to refer to the numerosity 
of some group of entities), ordinal meanings (arising from the use of a number word 
to refer to the relative position of some entity), measure meanings (arising from the 
use of a number word to refer to the numerosity of the units in some quantity), 
and quasi- ornonnumerical meanings (e.g., street addresses and telephone numbers). 
In this chapter we outline the development of meanings for sequence words and, 
where appropriate, relate this development to other meanings and uses of number 
words. We use the terms above (sequence, counting, cardinal, ordinal, and measure 
number words) to refer to the use of a number word in the specified context (e.g., a 
number word used in a cardinal context we term a cardinal number word). The 
details of the meaning of any such use depend upon the meaning the user and the 
listener construct. By the use of these terms we do not impute to a child an adult or 
mature understanding of sequence, counting, cardinal, ordinal, or measure numbers. 
Rather, we use these terms to emphaSize the different contexts in which number 
words are used. 
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The developmental sequence presented in this chapter has resulted from succes
sive interactions between empirical and conceptual analyses. The empirical work 
has ranged from pilot work with a few subjects to full-scale studies. Much of this 
work is preliminary. We fully expect that the levels of development that we describe 
now will be modified in various ways both by ourselves and by others as additional 
data are generated. 

Acquisition of the Sequence 

Distinction between Sequence and Nonsequence Words 

Children seem to learn very early the distinction between counting words and 
non counting words, and the words they produce in counting contexts (e.g., when 
asked to "count" or to "count these blocks") are confined almost entirely to count
ing words. In our counting experiments with 3-, 4-, and 5-year-old, subjects have 
never used anything but counting words. With over 30 middle class 2-year-olds, two 
children have used letters from the alphabet (mixed in with number words) on one 
trial each. Gelman and Callistel (1978) also reported very infrequent use of non
counting words by 2- to 5-year-olds. The noncounting examples given by them were 
two 2-year-olds who used the alphabet on some trials. Thus, the identification of 
counting words and counting contexts and the restriction of words used in counting 
contexts only to counting words seems to be easily and successfully accomplished. 
The only intrusions seem to be of other "words," the letters of the alphabet, which 
are learned in a very similar way: as an arbitrary, long sequence having a convention
al order and which adults and other children seem to love to ask one to recite. 

Overall Structure of Sequences 

The most common form of sequences up to thirty is the following: an initial 
group of words that is some beginning part of the conventional sequence (e.g., 
"one, two, three, four, five"), a next group of words, which deviates from the con
ventional sequence but which is produced with some consistency by a given child 
(e.g., "seven, nine, ten, twelve"), and a fmal group of words, which has little consis
tency over repeated productions (e.g., "fourteen, eighteen, thirteen, sixteen, twen
ty"). Identifying these three groups of words (the stable conventional, stable non
conventional, and nonstable portions) in the sequence of a given child requires 
repeated counting trials from that child. An example of such repeated trials is in 
Table 2.1. In this example, the stable, conventional sequence portion is "one two 
three four" and the stable nonconventional portion is "four six eight nine" (the 
linking member in each portion is recorded so that the structure with respect to 
omissions, reversals, etc. of the nonconventioIial portion is clear). The nonconven
tional portions vary from trial to trial and consist of the words following the "nine." 



36 K. C. Fuson, J. Richards, and D. J. Briars 

Table 2.1 Example of One Child's Repeated Counting Trials 

one two three four six eight nine fourteen sixteen thirteen five 
one two three four six eight nine twelve fifteen sixteen thirteen 
one two three four six eight nine fourteen 
one two three four six seven eight nine eleven 
one two three four six eight nine fifteen thirteen eleventeen 
one two three four six eight nine sixteen eight four twelve 
one two three four six eight nine thirteen two six 
one two three four six eight nine ten thirteen sixty 

Data Samples and Tasks 

Data will be presented below concerning each of these sequence portions. The 
data come from two samples. The longitudinal sample consists of 33 3-, 4-, and 5-
year-old middle class children attending an educational demonstration private school. 
At the first interview, six children in each half-year age group were included; three 
children had moved at the time of the second interview, so the sample dropped 
from 36 to 33. Word sequence data were collected twice (with a 5-month interval) 
on three different tasks: rote (nonobject) counting ("Count as high as you can for 
me"), counting a pile of 50 blocks ("How many blocks are in this pile?"), and 
counting a row of blocks that was lengthened on successive trials by the addition of 
one or two blocks ["I put down 1 (2) more block(s). How many blocks are there 
now?"] . On the final task the row was lengthened successively from 4 to 33 blocks. 
The cross-sectional sample consisted of 87 children aged 3 years 6 months to 5 years 
11 months: the children in the Time 2 interview of the longitudinal sample who 
were of this age (27 of them) and 60 additional children-12 children balanced by 
sex in each half-year age group. These additional children attended a Chicago public 
school whose population was computer selected to match the population of the 
city racially and economically. They received the same tasks that had been used 
with the longitudinal sample. 

The first data collection for the longitudinal sample was videotaped. Two coders 
transcribed these tapes; disagreements were resolved by a third person. The data 
collection from the cross-sectional sample was done by various pairs of trained col
lectors. Disagreements during training and during data collection were rare (less 
than 1 % disagreement). 

The Conventional Portion 

Effects of Sex. Each sequence measure in each section below was examined for 
effects of sex and for interactions with this variable using analyses of variance. No 
main effects of sex and no interactions with this variable were found for any measure. 

Cross-Age Variability. As might be expected, the conventional portion of the 
sequence increases considerably over this age range. Means, standard deviations, and 
ranges of the best rote count (Le., no objects present) sequence produced by a child 
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are given by half-year age groups for the cross-sectional sample in Table 2.2. One
way analyses of variance across age groups on these scores revealed a significant 
effect of age [F(4, 81) = 5.93, p < .0003]. Pairwise contrasts using the Newman
Keuls procedure indicated that the sequences of children in the two youngest groups 
differed Significantly from those of the two oldest groups, whereas the sequences of 
the middle group (old fours) did not differ significantly from any of the others. 
Thus, the second half of the fourth year appears to be a time of considerable exten
sion of the number word sequence. 

The first five rows of Table 2.3 present the percent of each age group with 
sequences of given lengths. These data indicate that the largest percentage of the 
two youngest groups have sequences between ten and fourteen, the 4*- to 5-year-

Table 2.2 Means, Standard Deviations, and Ranges by Age for the Last Word 
Reached Accurately in the Conventional Sequence 

Counting rows of blocks 

Age 

3 years 6 months to 
3 years 11 months 

Mean 
SD 
Range 

4 years to 4 years 
5 months 

Mean 
SD 
Range 

4 years 6 months to 
4 years 11 months 

Mean 
SD 
Range 

5 years to 5 years 
5 months 

Mean 
SD 
Range 

5 years 6 months to 
5 years 11 months 

Mean 
SD 
Range 

100% of Single 
trials best trial 

8.00 
4.75 

(2-19) 

9.47 
7.63 

(0-27) 

19.23 
8.79 

(10-34) 

22.38 
9.79 

(10-34) 

25.00 
8.49 

(13-35) 

14.06 
6.20 

(4-29) 

14.00 
6.94 

(6-33) 

20.77 
8.45 

(14-34) 

27.63 
7.84 

(14-34) 

26.94 
6.95 

(13-35) 

No object counting 

Single Best trial with 
best trial one omissiona 

14.17 
6.51 

(4-29) 

17.18 
8.71 

(10-39) 

29.59 
28.19 

(12-100) 

40.19 
25.76 

(11-100) 

38.17 
22.44 

(13-90) 

16.56 
6.51 

(9-29) 

18.71 
8.52 

(11-39) 

36.47 
26.94 

(13-100) 

44.81 
23.13 

(13-100) 

43.00 
19.64 

(13-90) 

a Sequence could omit one word; this sometimes was fairly far from the end of the otherwise 
accurate conventional sequence, for example, 1,2, ... , 13, 14, 16, 17, ... ,29. 
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olds have sequences between fourteen and twenty, and the two oldest groups have 
sequences between thirty and seventy-two. Table 2.3 also contains data from Bell 
and Bums (Notes 1 and 2) on the sequences of older children (kindergarten through 
second grade). These data come from a heterogeneous sample of children from a 
small city bordering Chicago. Children were asked to count to thirty, and they then 
were stopped and their sequence production was checked at certain key points (63-
72, 98-101, 196-201, and even higher). These data indicate considerable sequence 
production ability by the first and second graders, even though teachers indicated 
that they did not teach such higher counting and that all of the children's compu
tational work was with numbers less than 100. 

An examination of the sequences produced by children revealed that some chil
dren would omit a single word in a sequence and then continue to produce many 
more correct words. These children thus seemed to be much more able than those 
who produced no correct portion past their first error. To examine this capability, a 
more lenient measure, "best with one omission," was devised; it is the last word in a 
sequence that is correct except for a single omission. The means, standard deviations, 
and ranges for this measure for the rote counting sequences are also given in Table 
2.2. This measure indicates improved sequence production, especially for the three 
oldest groups. Thus, many of these children had productive knowledge about the 
sequence beyond the point of their first error. As before, a one-way analysis of vari
ance revealed a significant effect of age on this measure [F(4, 81) = 8.99, p < 
.0001], but here the means for the two youngest age groups were significantly dif
ferent from those for the three oldest age groups (Newman-Keuls p < .05). 

Within-Age Variability. The very large ranges and standard deviations in Table 
2.2 indicate considerable variability within age groups, also. Some 3-year-olds have 
longer conventional portions than do some 5-year-olds. This rather large within-age 
variability is indicated in more detail in the first five rows of Table 2.3, and the 
fmal three rows of Table 2.3 indicate that this extreme variability continues into 
the early grades of the elementary school (Bell & Burns, Notes 1 and 2). 

Decade Structure. The big jump (from 17 to 30 to 40) in the means in Table 2.2 
for the young 4-year-olds (age 4 years to 4 years 5 months), the old 4-year-olds (age 
4 years 6 months to 4 years 11 months), and the young 5-year-olds (age 5 years to 
5 years 5 months) and the similar jump in the percentage of 4-year-olds and 5-year
olds with sequences over thirty (Table 2.2) is the result of some old 4-year-olds and 
many young 5-year-olds at least partially solving what we termed in earlier articles 
(Fuson & Mierkiewicz, Note 3; Fuson & Richards, Note 4) the "decade problem." 
This problem arises from the repetitive decade structure of the sequence between 
twenty and one hundred. Many older children in our samples gave evidence that 
they understood this repetitive structure. Above the twenties their sequences showed 
the pattern of "x-ty, x-ty-one, x-ty-two, ... ,x-ty nine" followed by a different 
"x-ty to x-ty-nine" chunk. However, most of them had not vet learned the order of 
the x-ty words, the multiples of ten. The sequence would move, for example, from 
the twenties to the fifties, to eighties, to thirties, to the fifties again, to twenties, 



40 K. C. Fuson, J. Richards, and D. J. Briars 

etc. As Tables 2.2 and 2.3 indicate, the full solution of this problem is not attained 
by almost all children until the beginning of second grade, though a significant por
tion of kindergarten children have solved it. 

Siegler and Robinson (in press) asked children to produce a number word se
quence once in each of four sessions. They differentiated three groups of children 
by the place in the sequence where word production stopped: the first group 
stopped between one and nineteen, the second, between twenty and ninety-nine, 
and the third, above one hundred. Siegler and Robinson (in press) reported that the 
nature of the stopping points differed in the three groups: no obvious stopping-point 
regularities for the first group, an absolute majority of children in the second group 
who stopped at a word ending in "nine" and a few who stopped on a word ending 
in "0", and for the third group many counts ending in "nine" but even more ending 
in "0". When we examined the stopping points in the cross-sectional sample on the 
two rote counting trials (administered at the beginning and at the end of the inter
view), we found somewhat different results. The stopping points for our first group 
were distributed fairly evenly over the words from one through seventeen, but one
third of the stopping points were at "eighteen" or "nineteen." For this group, our 
percentage of counts stopping at a word ending in "nine" was 26% compared with 
Siegler and Robinson's 14%. As did Siegler and Robinson, we found low percentages 
of counts and of children in this group with stopping points ending in "0" (4% and 
8%), and we found a similar percentage of children ending a rote count with "nine" 
(38% compared to their 40%). In our second group (those with sequences between 
twenty and ninety-nine), we found much lower percentages of rote counts and per
centages of children ending with a "nine" (31 % vs. their 69% and 45% vs. their 96%) 
but higher percentages of rote counts and of children ending with a "0" (31 % vs. 
their 4% and 43% vs. their 14%). Thus, our two groups of children do not differ in 
their rates of stopping at "nine," but they do differ in their rates of stopping at "0." 
We had only four children in the third group. They all stopped at one hundred on 
each trial. 

Siegler and Robinson examined stopping points as a way to indicate children's 
knowledge of the decade structure. They inferred from their findings that the first 
group of children understood neither the structure of the teens nor that of the 
decades and that the many children in group two stopping at a "nine" word indi
cates that they know the decade structure but not the next decade word (and so 
they stop producing words). Our finding that as many of our children stopped at a 
o word as at a "nine" word contradicts the latter inference. However, we consider 
the use of stopping-point data to indicate knowledge of structure to be somewhat 
risky. The point at which children stop producing words in sequence is influenced 
by factors other than whether they, in fact, could produce additional words. They 
may make assumptions about stopping points preferred by the experimenter; they 
may tire; they may seek variety. In our sample, only 22% of the children stopped at 
the same word in their two rote counts, and the differences between the stopping 
points were often large. This variability is much larger than would be indicated by 
the consistency level differences that we found for the conventional sequences, and 
so other factors would seem to be influencing these stopping points. Some of Siegler 
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and Robinson's (in press) findings of stopping-point differences in the three groups 
of children (especially those concerning words ending in "nine") do not seem to 
generalize to other samples. We do not interpret these differences, however, as 
necessarily contradicting their models but rather as indicating some other factors 
that might be affecting choice of stopping points. 

The extent to which the "decade problem" is easily amenable to practice and to 
direct instruction is not clear at the moment. Three different training methods seem 
possible. One method would emphasize linking the first member of a cycle to the 
last member of the preceding cycle (e.g., practicing "thirty-nine, forty"). Another 
method would focus upon learning the list of decades as a new rote sequence ("ten, 
twenty, thirty, ... , ninety") and then using this list to select the correct next cycle. 
Our informal interviewing of adults suggests that some adults use this method when 
learning a number word sequence in a foreign language. Finally, decade words might 
be connected to their corresponding digits (twenty to two, thirty to three, etc.) and 
the order of digits used to order the decades. The relative effectiveness of these 
alternatives might be examined in future research. 

Within-Child Variability in a Single Session. We examined the extent to which a 
portion of the sequence, once learned, is reliably produced over trials. This was 
separated into reliability over short periods of time (variability within a single session) 
and over long periods of time. The latter is addressed by the longitudinal data in a 
later section. To assess the within-child variability at one session, children's repeated 
sequence productions in the rows task (in which blocks were added on each trial to 
make the row longer and longer) were examined. The number of sequences produced 
by a child varied from 3 to 24, with the 3 year 6 month to 4 year 11 month age 
groups producing a mean of about 16 trials, and the 5 year- to 5-year-ll-month age 
groups producing means of about 10 trials. The lower number of trials for the older 
children resulted from their sometimes using the numerosity of a previous row to 
respond to the "How many?" question after one or two blocks had been added to 
the row (e.g., There were 13 blocks and 2 were added: "Fourteen, fifteen. There 
are fifteen now."). 

Because we did not know at what level of consistency changes might be observed, 
several levels of sequence production were analyzed. The measure at each level was 
the last word in a correct portion of a sequence. For example, in the sequence "one, 
two, three, four, five, six, eight, nine, thirteen, nineteen," that measure would be 
"six." From highest to lowest consistency, the levels chosen are: 

100%: the sequence was produced correctly up to that word on 100% of the 
sequence. 

80%: the sequence was produced correctly up to that word on 80% of the 
trials on which the row was long enough to allow production of that 
sequence. 

60%: ... on 60% of .. . 
40%: ... on 40% of .. . 
Best: the sequence was produced correctly up to that word on at least one 

trial. 
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The analyses of the levels 80%, 60%, and 40% above revealed some fluctuations by 
level and by age group within the extreme 100% and Best level performances, but 
these were fairly minor. Therefore the data presented here will be confmed to the 
two extreme levels, 100% and Best. Additional data can be found in Fuson and 
Mierkiewicz (Note 3). 

Means, standard deviations, and ranges for the Best and 100% scores of the cross
sectional sample are presented in Table 2.2 by age group. A 2 (Consistency Level) 
by 5 (Age) analysis of variance revealed significant main effects of Level [F(1, 81) 
= 49.96, p < .0001], and of Age [F(4, 81) = 16.73, P < .0001], and a significant 
Level by Age interaction [F(4, 81) = 2.77, p < .04]. The interaction is a result of 
much closer means (two- to three-word difference) for the 100% and Best sequences 
for the old 4-year-olds and old 5-year-olds than for the other groups (about six
word differences). Thus, across this whole age range within-child variability in the 
sequences produced in one session clearly exists. The age differences in variability 
that appeared here (Le., the interaction) should probably be replicated before any 
interpretation is made. Pairwise contrasts using the Newman-Keuls procedure indi
cated significant differences (p < .05) between the 100% sequences of the two 
youngest and the three oldest age groups and significant differences between the 
Best sequences of the two youngest, the middle, and the two oldest age groups. 

Longitudinal Data: Age 3-5. The within-child variability of sequences produced 
over a 5-month period was examined at two extreme consistency levels: 100% and 
Best Overall (the single best sequence produced on any task). A 2 (Consistency 
Level) by 2 (Time) by 5 (Age) analysis of variance was conducted on scores consist
ing of the last word in the accurate portion of the sequence. Significant main 
effects were found for Consistency Level, an overall mean of 30.0 for 100% and 
36.7 for Best Overall [F(l, 26) = 15.80, P < .0005] ; for Time, an overall mean of 
29.4 at Time 1 and of 37.4 at Time 2 [F(1, 26) = 15.47, p < .0006] ; and for Age, 
overall means of9.7, 13.7,18.2,29.3,44.5, and 77.8 [F(5, 26) = 6.93,p < .0003]. 
A significant Consistency Level by Time interaction was also found [F(1, 26) = 
3.96, p < .05] with a larger increase over the 5-month interval in the single Best 
Overall scores (from 31.0 to 42.4) than in the 100% consistent scores (from 27.7 to 
32.4). For most age groups the 100% score at Time 2 was approximately equal to 
the Best Overall score at Time 1. Thus, the process of acquisition of longer correct 
sequences seems to have at least two aspects: extension of the sequence and con
solidation of this extension so that it is always produced. In the five-month interval, 
the most recent extension (the Best Overall score) seems to become consolidated 
(becomes the 100% score) at the same time that a new longer extension is being 
made. 

Stable Nonconventional Portions 

Nature of the Stable Nonconventional Portions. Stable, non conventional por
tions of a sequence consist of a group of two or more words that deviate from the 
conventional sequence and are produced consistently by an individual over several 
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trials within a given session. In a later section we shall examine the extent to which 
these within-session stable portions remain stable over longer periods of time. As 
with the conventional portions, we did not kriow where important differences 
might occur in stable portions, and so we examined several consistency levels 
(stable over 40%,60%,80%, and 100% of the trials). In the example given in Table 
2.1, the stable nonconventional portion "four, six, eight, nine" is stable over 80% 
of the trials (seven out of eight). None of the words following "nine" occurs more 
than 40% of the time. If "fourteen" had occurred after "nine" two more times, 
then the portion "four, six, eight, nine, fourteen" would have been a stable portion 
at the 40% consistency level (occurring four out of eight times). Similarly, if the 
"seven" had occurred within the stable portion three more times, the portion 
"four, six, seven, eight, nine" would have been a stable portion at the 40% level 
(four out of eight times). These examples illustrate the two major ways in which 
fluctuations in the stability of the nonconventional portion of words result: (a) the 
occasional insertion of correct words within the stable portion, and (b) the addition 
of a word or words at the end of the stable portion. 

The nature of the stable portions produced by children is exactly what one 
would expect in a serial recall task: Almost all of the stable portions have the words 
in the conventional order, but they contain omissions. Of the stable portions in the 
two samples (longitudinal and cross sectional) of children aged 3 through 5, 88% 
contained omissions, 3% contained repetitions, and 9% contained reversals. All 
examples of the stable portions containing reversals and repetitions are given in 
Table 2.4. Two of the reversals involve "six" or "sixteen," three involve "seven" or 
"seventeen," two involve "eight" or "eighteen," and one involves "fifteen." The 
two repetitions are substitutions for the word "fifteen." Table 2.4 also contains the 
distribution of words that were omitted across all stable portions with words 
"twenty" and below. In those stable portions which consisted of two words (the 
last word in the conventional portion and a later word), "fifteen" was omitted 
more than all other words put together. This may be because of its irregular con
struction as "fifteen" rather than "fiveteen." In those stable portions consisting of 
three of more words, almost all words are represented in the omissions. 

For the words between ten and twenty, the distribution of omissions resembles 
that of a typical serial position curve except that it is not bowed (Le., its high point 
is not pushed toward the end of the distribution); rather it is quite symmetrical 
about the midpoint word, "fifteen." However, this symmetry may be an artifact of 
two different factors operating at each end of the teens distribution. First, because 
most of the youngest children in our samples could produce correct sequences up 
into the teens at least once (mean Best score for the 3~- to 4-year-olds was 14), 
data from younger children would be needed to reflect accurately omissions of 
"ten," "eleven," and "twelve." Second, for a word to appear in Table 2.4, some 
word following it in the sequence must have been produced. For example, each 
"eighteen" omission must have had a "nineteen" or a "twenty" or a "twenty-one," 
etc., consistently produced. However, Table 2.4 does not imply, as a serial position 
display does, that each of the words at the far right (the recency portion of the list) 
was produced. Data on the rate at which each word between ten and twenty was 
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produced across the sample of 36 children producing stable portions between ten 
and twenty are given in Fig. 2.1. As in the omission data, there is a huge drop off 
for "fifteen," and here there is also a considerable dropoff from "nineteen" to 
"twenty." In the sequences produced 100% of the time, production of all of the 
teen words other than "fifteen" is approximately the same and somewhat less than 
that of "ten" through "twelve." In those produced less consistently, somewhat 
more fluctuation occurs among the teen words and the word "twelve." 

The data from Table 2.4 and from Fig. 2.1 taken together seem to indicate that 
during the acquisition of the teen portion of the sequence, children initially produce 
stable, nonconventional portions with multiple word omissions most frequently in 
the thirteen to seventeen range. Some of these stable multiple word omissions con
tain the words "eighteen" and "nineteen" and others do not. Relatively few of these 
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Figure 2.1 Percentage of conventional and stable portions containing words be
tween ten and twenty. This figure includes words from the conventional portion 
preceding a stable portion (e.g., for 1, 2, ... , 10, 11, 12, 13, 16, 18, 19, 1-+ 13 is 
conventional and 13,16,18,19 is stable; all words ten and above would have been 

entered in the table). 
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stable portions contain the word "twenty." Over time these multiple omissions 
become filled in with the correct words until the only remaining omission is the 
word "fifteen." The two children in the longitudinal sample whose stable portions 
moved from three or more words to two words followed this pattern. The omission 
of the word "fifteen" persisted in some children even after they produced a conven
tional sequence to "twenty-nine" or even into the thirties. It remains to be seen 
whether such a long-lasting omission has relatively trivial implications, that is, it is 
an easy one to correct, or whether it is more difficult to remedy. 

Stable portions can have different lengths (Le., contain a different number of 
words) and the gaps in them can be of different sizes (e.g., "twelve, fourteen" is a 
one-word gap, while "twelve, eighteen" is a five-word gap). For 100% stable portions 
of words below twenty, the mean length in the cross-sectional sample was 3.6 
words, the range was 2-10 words, and the percentages of gaps of one, two, three, 
and four or more words were 71%, 0%, 7%, and 21%, respectively. Those figures for 
the stable portions at the 40% level are a mean of 3.l3, range 2-10, and gap percent
ages of 59%, 11 %, 9%, and 20%. Therefore, most of the gaps are of one word, but 
some gaps are of two and three words, and a sizable number (about 20%) are of four 
or more words. 

Stable nonconventional portions containing words above twenty are of two 
kinds. Some (37.5% in our sample) end in a word between ten and twenty and then 
jump to a decade word (e.g., "eighteen, forty" or "seventeen, thirty") or to a 
decade-one word (e.g., "fourteen, forty-one" or "eighteen, eighty-one"). These 
confusions may stem from a misunderstanding of the decade structure or from 
acoustic confusion of "-ty" and "-teen" (e.g., fourteen and forty). Other stable 
nonconventional portions above twenty (37.5%) end in twenty-nine and jump to 
another decade ("twenty-nine, fifty, fifty-one, fifty-two, fifty-three"). Still others 
(25%) begin with the word "twenty" and then jump back into the teens words and 
produce several of them. Each of these types of stable portions seems to reflect 
partial knowledge of the decade word structure. 

Do All Children Have Stable Portions? Our data indicate that stable, nonconven
tional portions are typical of sequences below thirty during the acquisition period, 
but our data for sequences longer than this are somewhat incomplete. Because 
stable, non conventional portions occur after the conventional portion, it is necessary 
to obtain repeated productions of fairly long sequences. The task we used-succes
sively adding one or two blocks to a long row of blocks (up to 34)-was successful 
in accomplishing this aim: Children seemed to enjoy seeing the row grow longer and 
longer and stuck with this repetitive and somewhat boring task fairly well. However, 
the ceiling of 34 blocks meant that we could not examine the existence of stable 
portions in those children who produced accurate sequences up to 34. Furthermore, 
some children made counting errors on the rows task (skipping blocks, pointing at 
blocks without producing words, and skimming along blocks while only producing 
occasional words) which meant that the last word they produced was always within 
the accurate portion of their sequence. Finally, a few children refused to continue 
the task although they were still producing entirely correct sequences. For the Time 
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1 interview of the longitudinal sample and for the additional children in the cross
sectional sample, 27 of the 96 children had accurate sequences up to 34, 11 made 
counting errors that resulted in the production only of short accurate sequences, 
and six stopped the task while still producing correct sequences. Of the remaining 
52 children who had the opportunity to produce stable non conventional portions, 
46 or 88% of them did produce such portions, 28 at the 100% level (Le., these stable 
portions were produced on every trial on which they could have been produced) 
and 18 at the 40%-80% levels. Thus, the production of stable nonconventional por
tions seems to be quite typical during the period of the acquisition of the number 
word sequence, at least for sequences below thirty. Children with accurate sequences 
to 34 also produced nonconventional portions higher than this that were stable over 
two or three rote counting trials, but because the number of repeated trials we have 
for these children is so low, we did not include them in the above stable analyses 
(they were included in the 27 children with accurate sequences up to 34). 

Three of the six children who did not produce stable non conventional portions 
produced sequences with what we characterized as "trouble spots": places in the 
sequence where each word in that trouble spot was produced on some trial but no 
trial contained all of the words and the productions varied enough that no stable 
portion was produced. This trouble spot pattern also characterized the sequences of 
some children with stable portions only at the 40% level; their other sequences con
tained other words from that troubled area, each with several different patterns of 
such production. Two examples are: 

1. one, ... , fourteen, sixteen, seventeen, eighteen 
or one, ... , fifteen, seventeen, eighteen; 

2. one, ... , twelve, fourteen, fifteen 
or one, ... , twelve, fourteen, sixteen 
or one, ... , thirteen, fifteen 
or one, ... , thirteen, fourteen. 

This trouble spot pattern seems to be characterized more by an unequal and unpre
dictable production of certain words in the troubled area than by the consistent 
production of a sequence in that area. 

Cross-Time Stability of Stable Portions. Are stable non conventional portions 
really stable across different tasks and across several days, or are they just a tempo
rary and misleading phenomenon resulting from a short-term fixation on certain 
patterns of words beyond the conventional portion of the sequence? We have tried 
to gather short-term (e.g., two-day or one-week intervals) data on this question, but 
we have had difficulty in developing a task that will quickly reach the portion of a 
child's sequence just beyond the conventional portion and will hold the child's 
interest during repeated productions oflong word sequences. The only longitudinal 
data we have at this time is from our original longitudinal sample with a 5-month 
gap in interviews. Of the 11 children in this sample who had produced stable non
conventional portions at Time 1, one child was no longer at the school and four 
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now produced sequences that were correct at the old stable portion. The other six 
all were still producing stable portions that were related to their old stable portions. 
Two children continued to produce the same stable portion that they had produced 
5 months earlier ("thirteen, sixteen, twenty-one, twenty-two" and "four, six, seven, 
eight, nine, ten, eleven, twelve, fourteen, seventeen, eighteen"). Two children now 
gave stable portions that consisted of their old portions with all but one of the old 
omissions filled in (the stable sequence "twelve, fourteen, sixteen" had become 
"twelve, thirteen, fourteen, sixteen" and the stable sequence "ten, twelve, thirteen, 
seventeen, eighteen, nineteen, twenty-one, twenty-two, twenty-eight" had now 
become correct from ten to twenty-eight except for the omission of fifteen). Two 
children now produced a word they had omitted in the old stable portion but they 
also omitted the word next to it that formerly had been produced (a change from 
"five, six, eight" to "five, seven, eight" and a change from "twelve, fourteen, six
teen" to "twelve, fifteen, sixteen"). These data seem to indicate that the stable por
tions are not temporary stabilities, but rather they reflect ways in which the sequence 
is stored, remembered, and produced over fairly long periods of time. Words in mul
tiple omissions get filled in over time, though sometimes an old contiguous word 
gets lost in this process. 

The Stable-Order Principle. Gelman and Gallistel (1978) also reported stable 
nonconventional counting sequences produced by preschool children, but they 
characterized whole sequences, rather than parts of sequences, in this way, and they 
labeled such sequences "idiosyncratic." This word seems a bit too strong for such 
stable, nonconventional portions, for most of them in our data consist of the con
ventional sequence with omissions rather than more idiosyncratic creations. Gelman 
and Gallistel took the production of such stable, idiosyncratic sequences as evidence 
for what they called "the stable order principle." Their operational defmition of 
this principle was the production of a stable list over repeated counting trials. How
ever, if the stable order principle does not imply something beyond a description of 
the nature of the sequences produced by children, it is not clear why this is called a 
principle. Much of Gelman and Gallistel's discussion about this stable order counting 
principle seems to imply that children "honor this principle" (Le., produce stable 
ordered sequences) from some understanding about the need for using a stable 
sequence in counting objects (e.g., to ensure that the numerosities obtained by 
repeated counts of the same set are the same). 

Our data are in agreement with those of Gelman and Gallistel (1978) in that 
stable portions are typical of the sequence productions of children. However, the 
existence of such sequence portions does not, in our judgment, constitute evidence 
for possession of the stable order principle by children, if "principle" is meant to 
imply something more than the observation that stable, non conventional sequences 
are produced. We rather consider stable, non conventional sequences to result from 
the serial nature of the number-word sequence learning task. First, the existence in 
the nonstable sequence portions of so many forward ordered runs (see below) and 
the fact that most stable, nonconventional word groups differ from the conventional 
sequence only by omissions suggests that children learn the order of the words in 
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the conventional counting word sequence along with the learning of the words. 
Second, the nonstable portions of many children's productions contain words from 
the earlier, produced conventional portion, and these repeated words most often 
are not consistent with the way those words were produced earlier. This repetition 
and its inconsistent nature would seem to constitute strong evidence that these chil
dren, in fact, do not understand the stable order principle. A possible caveat to this 
negative inference is that after "thirteen," the standard English word sequence does 
begin to display repetitions of parts of words (e.g., "four-teen," "twenty-five"). 
Until the nature of these repetition patterns become clear, they may confuse chil
dren and make it more difficult for them to observe that, in fact, each counting 
word is unique and that it occurs always in the same order in the sequence. In con
clusion, it seems quite problematic to draw inferences about children's understand
ing of the need for using a stable sequence in counting only from the nature of their 
counting word productions. Direct evidence of such understanding is needed. 

Nonstable Sequence Portions 

Children did not always stop counting while in the conventional or stable por
tions of their word sequences. Many continued to produce words after their stable 
sequence, but these portions were not stable across repeated trials. Of the 46 chil
dren who produced stable portions, 28, or 61 %, also produced nonstable portions. 
The remaining 18 children said words beyond their stable portion on fewer than 
four trials (usually only the rote counting and movable block tasks), making the sta
bility of this extension of their word sequence impossible to determine. Eight of 
these children had conventional and stable portions sufficient for the rows task 
(Le., of 33 or more words); eight others made errors in counting the rows (skipping 
objects, etc.) so that the last word uttered was always within the stable portion of 
their word sequence. Two children stopped the rows task while still within their 
stable portion. The data reported in this section come from those children on whom 
we had four or more trials of sufficient length to determine that their nonstable 
portions were indeed not stable. 

Five examples of nonstable portions are given in Table 2.5. Nonstable portions 
are by definition irregular over repeated trials. However, they also possess some 
structure and some regularities, that is, they are not entirely random productions. 
Nonstable portions are composed largely of three different types of elements: 
(a) runs-from two to five words contiguous in the conventional sequence (e.g., 
"sixteen, seventeen, eighteen" or "twenty-one, twenty-two, twenty-three"); (b) runs 
with omissions-from two to five words in the conventional order but containing 
omissions (e.g., "twelve, fourteen, seventeen"); and (c) single unrelated words. The 
runs and runs with omissions are all forward directed (i.e., they are in sequence 
order), and these runs, runs with omissions, and the separate words are concatenated 
in a generally forward direction. For the longest nonstable portion of each child the 
ratio of contiguous word pairs that were in conventional sequence order ranged from 
0.40 (more backward than forward) to 11.50, with a mean ratio of 4.52. The aver
age nonstable portion therefore went forward four or five words, fell back to an 
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Table 2.5 Examples of Sequences with Nonstable Portions 

Case L: Age 3 years 10 months 
1~12 14 18 19 15 19 
1~12 14 18 19 16 17 18 
1~12 14 18 19 1517181917 
1~12 14 18 19 151617181915 17 
1~12 141819 1617 12141819 
1~12 1418 19 1617 18 19 17 1418 
1~121418 1916171819161718 19 16 
1~121418 19161718 19161718 19 17 18 

Ba 1~12 14 18 19 13 
Rbl~12 14 18 19 17 15 

Case M: Age 3 years 6 months 
1~13 19 16 13 19 
1~13 1619 
1~13 16141619 
1~13 16 19 16 13 141916 19 
1~13 19 16 14 

B 1~13 19161419161916 
R 1~13 19141614 
R 1~13 19 16 14 19 

Case N: Age 4 years 2 months 
1~14 16~19 301 
1~14 16~19 304060 
1~14 16~19 30 31 3S 383739 
1~1416~19304060800 

1~14 16~19 40 60 70 80 901011 1030 
B 1~14 16~19 60 30 800 
B 1~14 60 30 800809030 ten-eighty 60 31 38 39 32 31 34 3S thirty-ten 31 
R 1~14 16~19 3080060 
R 1~14 16~19 30180906030908030 

earlier word, and then went forward another four or five words, etc., or contained 
some other pattern of several forward and one backward word that would lead to 
the 4.5 ratio (e.g., nine forward words followed by two backward ones). 

Some words in the nonstable portions were favorites across children. Table 2.6 
contains the total number of times a word appeared in the longest nonstable portion 
of each child. The words "thirteen," "sixteen," "eighteen," "nineteen," and "twen
ty-nine" occurred with considerably higher frequency than other words. 

"Favorite" words also appeared within the nonstable portions of individual chil
dren. For some children, certain elements (runs, runs with omissions, and words) 
were repeated within a given nonstable portion, but these repetitions did not form 
regular patterns: Random elements were inserted in between others, and the ele
ments themselves were sometimes modified slightly (by omission or intrusion of a 
word). In addition, these "favorite" words or groups of words were not necessarily 
so favored in a later sequence production, though they frequently appeared once in 
other nonstable portions. 
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Table 2.5 (continued) 

Case 0: Age 4 years I month 
1-+1215 18 19 
1-+101214181916 II-teen 
1-+10 14 15 191 23 
1-+12 1418 1917 16 
1-+101214181916 II 12 

B 1-+71819121416 II-teen 12 IS 17181912 
B 1-+71819121718191215 191216 II-teen 14181914 
R 1-+10 17161819141813171816 
R 1-+10 II-teen 17 
R 1-+611-teen6 141718191216181912414 

Case P: Age 4 years 4 months 
l-+II 13 16 184056 
l-+II 13 1618405-+8 
I-+II 13 1618 145-+13 
I-+II 131618145-+131618 
l-+II 13 16181415 1618 19232611 13 16 18 
l-+II 13 16 184016181011 13 161824262824 
1-+ II 13 16 18 14 6 9 10 II 13 16 18 24 28 26 23 
1-+11 13 16 182428223-+11 13 1618 
1-+11 13 16 18201-+11 13 16 18 16 18 
1-+11 13 16 182021 262428 1-+5 
1-+ 12 10 II 13 16 18 21 22 17 16 18 21 22 26 24 26 23 28 16 14 12 13 16 

B l-+II 13 16 18 
R 1-+11 13 16 18 

a B=Blocks trials: while counting a pile of 50 movable blocks. 
b R=Rote trials: no objects. 

The extent to which individual children repeated a word within a nonstable por
tion seems to vary somewhat with the location of that nonstable portion within the 
word sequence. If the single longest nonstable portion of each child is considered, 
the mean numbers of words repeated within that portion were 1.32 and 1.38 for 
portions with words only above twenty or only below ten, respectively. For non
stable portions with words only between ten and twenty and for those containing 
words from the teens as well as words above twenty, the mean numbers of repeated 
words were 1.52 and 1.63, respectively. The latter comparatively high figures may 
indicate that children producing nonstable portions within these ranges do not yet 
know either the decade pattern or very many of the decade words, so they repeat 
the teen and twenty words that they do know. 

Children also vary in the relationship that the words in their nonstable portion 
have to those in their conventional and stable portions. For 25% of the subjects, the 
nonstable portion contained words from fairly early in their conventional portions. 
For all but one of these subjects, this seemed to be because they knew very few 
words outside their conventional portions: After these new words were produced, 
chunks from the conventional portion were emitted alternatingly with these new 
words. For the other subject, the production within the nonstable portion of the 
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Table 2.6 Total Number of Times a Number Word Appears in the Longest Non-
stable Portion 

Number of times Number of times 
Word word appears Word word appears 

One 3 Twenty-one 6 
Two 6 Twenty-two 8 
Three 5 Twenty-three 6 
Four 7 Twenty-four 11 
Five 8 Twenty-five 9 
Six 8 Twenty-six 14 
Seven 8 Twenty-seven 13 
Eight 8 Twenty-eight 11 
Nine 11 Twenty-nine 23 
Ten 7 Thirty 12 

Eleven 14 30-3gtl 11 
Twelve 14 40-49° 7 
Thirteen 30 50-59° 5 
Fourteen 20 60-69° 8 
Fifteen 10 70-79° 6 
Sixteen 25 80-89° 8 
Seventeen 15 90-99° 5 
Eighteen 24 

Words used four or more times outside Nineteen 31 
Twenty 22 of decade pattern: sixty, sixty-two, 

sixty-one, eighty 

° Complete decade counts appearing in the nonstable portion (e.g., 30, 31, 32, 33, ... , 38, 39). 

conventional sequence from. "one" or from "five" seemed rather to represent a 
hypothesis about repetitions in the structure of the word sequence (see example P 
in Table 2.5). Each repetition followed a word that "sensibly" preceded it (e.g., 
those repetitions beginning with five always followed a word with a "four" in it). 
For another 46% of the sample, the nonstable portion contained some words from 
earlier portions, but these came from near the end of the conventional portion or 
from the stable portion. For the remaining 29% of the subjects, the words in their 
nonstable portion were entirely new ones; none appeared earlier in the conventional 
or stable portions. 

The data on nonstable portions are based on sequences produced in three differ
ent tasks: counting a row of fixed blocks, counting a large pile (50) of blocks, and 
rote (nonobject) counting. In many of our tasks, we intentionally gave children 
more objects to count than words they possessed in their conventional sequence. 
Children therefore had to make counting errors (skip objects, etc.), quit counting, 
or continue producing words past their conventional sequences. Most of them did 
the last, and no child seemed uncomfortable in doing this or verbalized less faith in 
those words produced beyond the conventional portion. The rote (nonobject) 
sequences that were produced were generally consistent with the object sequences, 
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with one-third of the children who produced nonstable portions doing so on the 
first rote trial (the first counting trial overall) when no objects existed to extend 
sequence production. However, the possibility still remains that on the object trials 
the production of "incorrect" words was perceived by some children as a lesser evil 
than the other options (stopping or making correspondence errors), and that in fact 
children had differential faith in the conventional and nonconventional portions of 
the sequences they produced. This possibility needs to be examined in future work. 

Models of the Number Word Sequence during the Acquisition Period 

Greeno, Riley, and Gelman (Note 5) and Siegler and Robinson (in press) have 
proposed models of children's production of the number word sequence. Greeno 
and co-workers model the word sequence as separate words connected by a relation 
"next." This word sequence is then produced as part of the counting act. The Siegler 
and Robinson Model I (the model for sequences below twenty) has a beginning por
tion of the sequence consisting of single words connected by a "next" relation (these 
words are in the conventional order but may contain an omission) and one (or pre
sumably more than one) later-occurring group of words connected by a "next" rela
tion. In this model, when the last word in the first group of words connected by the 
"next" relation has been produced, a random choice "from the number list" (this is 
undefined) is made. This model thus incorporates the conventional and stable por
tion notions described in this chapter but views the nonstable portions as random 
productions. All of these features (a beginning portion followed by stably produced 
words with an omission, connected groups of words later in the sequence, random 
production of words and connected groups of words from the later part of the 
child's sequence) are actually consistent with parts of an earlier version of this 
chapter to which Siegler and Robinson refer (Fuson & Richards, Note 4). In that 
article, we termed the nonstable portions "spews" and described them as essentially 
random productions. Our subsequent analyses, however, have indicated that in fact 
they are not random, though not entirely regular, either. Thus, the Siegler and 
Robinson model does go a step beyond viewing the production of a number word 
sequence as involving only a simple "next" process, but it does not account for the 
nonrandom though irregular nature of the final nonstable portions nor for the 
probabilistic nature of the production of the end of the conventional and the stable 
portions. Sequences produced by Model I would consist of two parts: a conven
tional and stable part produced identically on every trial and a later part that dif
fered on every trial. The data reported in this chapter obviously are inconsistent 
with both of these model productions: the ends of children's conventional and 
stable portions vary somewhat over trials (for this reason we needed the different 
consistency trials in our analyses), and the nonstable portions are not completely 
random. Models of each of these aspects obviously will need to involve some 
probabilistic process. 

Siegler and Robinson proposed a more complicated model for sequences between 
twenty and ninety-nine. In the earlier draft of this chapter, which Siegler and Robin
son referenced (Fuson & Richards, Note 4), we reported that children's sequences 
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above twenty-nine often showed evidence of knowledge of the "x-ty to x-ty-nine" 
decade structure, and we noted that many children aged 41h-6 had what we labeled 
there (and here) "the decade problem," that is, children produced the decades out 
of order, frequently showing repetitions of these decades. Siegler and Robinson 
found similar patterns in their counting data, and their Model II incorporates these 
common findings. In that model, children produce a decade word (Siegler and 
Robinson term this a "rule applicability" word) and then cycle through adding each 
digit word to this word. When children do not know the order of the decades, the 
model postulates a random selection of a decade word. Again, our data indicate that 
though not entirely regular, this choice is also not random. "Favorite" and less 
favorite decades exist for particular children. Therefore, a probabilistic model again 
is probably more appropriate than a random model. 

Modeling the number word sequence during its acquisition will obviously be a 
challenging task. As the Siegler and Robinson models make clear, such models will 
need to differentiate among sequences of different lengths (those that do and do 
not involve the decades, the hundreds, the thousands, etc.) because additional struc
ture is involved in the higher word sequences. Such models also will need to account 
for the various probabilistic aspects of the sequence. After the sequence is acquired 
and is consistently produced, a simple model such as the one suggested by Greeno 
Riley & Gelman et al. is more appropriate, though after acquisition issues concern
ing the nature of the elaboration of various parts of the sequence (see later sections 
of this chapter) become important. At present we are considering two possibilities 
for models during the acquisition period. The first one is composed of probability 
trees for each number word. A tree connects a word to each word which may follow 
it, and each branch of such a tree is assigned a probability. Words in the portion of 
the sequence produced consistently have a single branch, and those occurring later 
in the more inconsistent portions have several branches. The other model involves 
two different memory stores. One consists of a connected "string" of number words 
that are produced one by one in sequence consistently from trial to trial. The other 
contains words and runs of words (With and without omissions), each of which has 
a probability attached to it. These probabilities determine which word or run will 
be produced, and the probabilities change with the production of a word or run. 

Two important ultimate goals of any models of the production of the number 
word sequence are to model the processes involved in both the acquisition of new 
words and in the change from inconsistent to consistent production of words. First, 
however, we must be able to model how a given sequence is produced at one point 
in time, and we cannot yet do that adequately. 

Invented Number Words 

Some of the words in the nonstable portions are invented words. Twenty-seven 
percent of the cross-sectional sample produced at least one invented word. The 
mean number of different invented words produced by each of these children was 
3.85 (SD = 3.78), and the mean number of such words produced including repe
titions was 5.70 (SD = 5.74). Table 2.7 lists all of the invented words from the 96 
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3- through 6-year-old subjects in the cross-sectional and longitudinal samples. 
Almost all of these words continue a given decade above nine ("twenty-ten, twenty
eleven"), and a few continue the teen structure downwards (e.g., "eleventeen"). 
These "errors" obviously are not random but are based upon partial knowledge 
about structure within the number word sequence. 

Very Early Word Sequences 

A final point might be made about the very early acquisition of the counting 
word sequence. It is not clear whether all children start with at least the first word 
or two of the conventional sequence or whether some children first produce totally 
non conventional sequences. In 140 children involved in our counting studies and 
pilot work for these studies, one 3-year-old and two 4-year-olds produced only non
stable nonconventional sequences. A few other children produced such sequences 
when they were tired or being silly, but produced sequences beginning with a con
ventional portion when told to "try hard" or to "shape up." This makes us some
what reluctant to infer that the other three subjects could not produce a sequence 
of counting words that began with a conventional group of words. Gelman (Note 6) 
reported that retarded children produce only nonconventional sequences. Whether 
the very earliest counting word sequences of most children begin with a convention
al portion is not yet settled. However, it is clear that most such sequences produced 
by 2-year-olds do begin with some conventional word or words. 

Summary 

The acquisition of the standard sequence of counting words up to one hundred 
begins in middle class American children before or soon after the age of 2 years and 
ends for most of them in first grade. The age of acquisition is extremely variable, 
with some 3-year-olds producing longer correct conventional sequences than some 
5-year-olds. Most middle class children 3~ years or older can produce sequences to 
ten and are working on the teen part of the sequence, and children 4~ to 6 or 6~ 
are working on solving the decade problem. During the period of acquisition, the 
form of the sequences produced by most children is that of a conventional portion, 
followed by a stable, nonconventional portion containing omissions, followed by a 
nonstable portion that may be characterized in different ways for different chil
dren. Now that the nature of the sequences during the acquisition phase is begin
ning to be established, research is needed on ways by which new words are added 
and on factors that affect such additions. 

Elaboration of the Sequence 

After the number word sequence is acquired, it fIrst functions as a unidirectional 
whole structure. The number words can be produced only by reciting the whole 
sequence. The elaboration of the sequence is a lengthy process of differentiating the 
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Table 2.7 Invented Number Words 

Number of Number of Mean use Range 
Word childrena timesb per child C of used 

fiveteen 1 1.00 
eleventeen 3 8 2.67 1-6 
twelveteen 1.00 
fivety 1.00 
eleventy 1.00 

ten-eighty 1.00 
twelve-one 1.00 
twelve-two 1.00 
twelve-three 1.00 
twelve-four 1.00 

twenty-ten 8 22 2.75 1-8 
twenty-eleven 7 16 2.28 1-6 
twenty-twelve 9 11 1.22 1-2 
twenty-thirteen 6 11 1.83 1-3 
twenty-fourteen 6 6 1.00 
twenty-fifteen 3 4 1.33 1-2 
twenty-sixteen 3 3 1.00 
twenty-seventeen 1 1 1.00 
twenty-eighteen 4 4 1.00 
twenty-nineteen 4 4 1.00 
twenty-twenty 2 2 1.00 
twenty-twenty two 1 1 1.00 
twenty-thirty 5 7 1.40 1-2 
twenty-forty 2 3 1.50 1-2 
twenty-fifty 2 2.00 
twenty-sixty 2 2.00 
twenty-seventy 2 2.00 
twenty-eighty 1 1.00 
twenty-one hundred 1 1.00 

• 

words in the sequence and constructing relations among these words. We have di
vided this period of elaboration into five levels (see Table 2.8): (a) string level-the 
words are not objects of thought; they are produced but not "heard" or reflected 
upon as separate words; (b) unbreakable chain level-the separate words can be 
"heard" and they become objects of thought; (c) breakable chain level-parts of 
chain can be produced starting from arbitrary entry points rather than always start
ing at the beginning; (d) numerable chain level-the words are abstracted still further 
and become units in the mathematical sense in that segments of connected words 
can themselves be counted or kept track of (they are countable items in the termi
nology of Steffe, Richards, and von Glaserfeld, Note 7); (e) bidirectional chain level 
-words can be produced easily and flexibly in either direction. These different 
levels are marked by performance differences in more complex aspects of sequence 
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Table 2.7 (continued) 

Number of Number of 
Word children a timesb 

thirty-ten 5 6 
thirty-eleven 1 1 
thirty-twelve 1 1 
thirty-seventeen 1 1 
thirty-eighteen 1 1 
thirty-nineteen 1 1 
thirty-thirty 2 3 

fifty-ten 3 3 
fifty-eleven 1 1 
fifty-twelve 1 1 
fifty-thirteen 1 

sixty-ten 4 
sixty-fifteen 1 
sixty-twenty 1 
sixty-twenty one 1 1 
sixty-twenty two 1 1 
sixty-twenty three 1 1 
sixty-twenty four 1 1 
sixty-twenty five 1 
sixty-twenty six 
sixty-twenty seven 
sixty-twenty eight 1 
sixty-twenty nine 1 

eighty-twelve 
eighty-nineteen 

a Number of children who said the word at least once. 
b Number of times word was said overall. 
c Mean word use per child. 
d Range of frequency use per child. 

Mean use 
per child c 

1.20 
1.00 
1.00 
1.00 
1.00 
1.00 
1.50 

1.00 
1.00 
1.00 
1.00 

4.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

1.00 
1.00 

Range 
of used 

1-2 

1-2 

production, in the ability to comprehend or produce relations on the words in the 
sequence, and in uses of the sequence of words. The abilities at each level are pre
sented schematically in Table 2.8. 

Producing relations on and using the number word sequence in other contexts 
require knowledge in addition to the sequence skills themselves. Placement of rela
tions or uses on the same horizontal line in Table 2.8 implies that the sequence skill 
is requisite for that relation or use. Developmentally, the lag between the acquisition 
of a sequence skill and a relation or use may be very small or fairly large, depending 
on the difficulty of the additional knowledge required. In some areas we know 
something about the nature and the difficulty of this additional knowledge; in other 
areas we know very little. Vertical placement of sequence skills within levels implies 
developmental lags except where specifically noted. 
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String Level 

At the string level the individual number words are completely embedded within 
the sequence. As sequence-number words, they are produced only within a recita
tion of the known sequence as a whole. The number word sequence for the young 
child at this level is just like any other recitation (e.g., nursery rhymes): The child 
"hears" the recitation only as a single whole and, if aware of the composing words, 
is so only to the extent of learning the correct recitation in some wholistic way. 
The individual words in some parts of the sequence may be inadequately differenti
ated, as, for example, in other sequences, "LMNO" or sweet "landaliberty." 

The sequence-number words can be used in the act of counting at the string level, 
but because the words are not yet heard and reacted to as separate words, only a 
global correspondence can be established among the word sequence, the sequence 
of indicating acts (usually pointing), and the items being counted. The counting act 
at this level consists of the production of the string of number words and of a 
sequence of indicating acts roughly aimed at the entities to be counted. From the 
adult perspective, some one-to-one correspondences may occur, but the child has 
not made the requisite distinctions in its own behavior to make such a correspon
dence. Rather, these correspondences arise fortuitiously or because of some human 
central nervous organization that makes it simpler to produce sequences of verbal 
and motoric acts in synchrony rather than completely in isolation. Over a period of 
two years, our experimenters have made records of over 40 2-year-olds counting 
various types of objects in various settings (homes, nursery schools, mother drop-in 
centers). We have found it difficult to obtain systematic data over various conditions 
(at least for object arrays of sufficient size to move beyond the child's accurate 
sequence) and difficult to describe the counting act at this level in any detail. Two 
impressions from this work might be noted for future research. First, the counting 
act seems to consist of the rather independent production of two separate sequences 
of behavior (the words and the pointing acts). Second, pointing at stationary objects 
seems to be a distinguishing feature of counting, for attempts to elicit imitation of 
counting that involved the movement of objects from an uncounted to a counted 
pile usually ended prematurely in some type of play with one of the piles of objects 
(Le., such moving actions are part of "building with blocks," not part of "counting"). 
An exception to this is when the moved object is the child herself. Our observations 
and mother report data indicate that a frequent natural use of counting is in count
ing stairs as one walks up or down them. 

Very few data presently exist about the string level. At the moment this level is 
characterized chiefly by what a child cannot do; these limitations will be more evi
dent as the abilities on the higher levels are presented. 

Unbreakable Chain Level 

Differentiated Words. At the unbreakable chain level the sequence words are 
distinguishable, and can be "heard" or attended to, as words in the production of 
the sequence. However, the sequence must still be produced starting from the begin-
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ning; it cannot yet be "broken" and produced from an arbitrary entry point. Be
cause each word has some separateness, intentional, as opposed to fortuitious, one
to-one correspondences among the words, indicating acts, and counted entities are 
now possible, thus laying the foundation for accurate counting (see Fuson & Mier
kiewicz, Note 3, for data about age-related changes in counting accuracy). This dis
tinguishing of words that appears at this level is simpler with counting sequences 
that begin with monosyllabic words. Israeli children fail initially to differentiate 
their sequence words and tend rather to make correspondences with each syllable 
of the first three two-syllable sequence words (echat, shtayim, shalosh) rather than 
with each word (Nesher, Note 8). 

The clear differentiation of words in the unbreakable chain enables the child to 
establish the counting meaning of a number word (the meaning produced in the act 
of counting). It also enables the child to begin to establish a relationship (see Table 
2.8) between the counting meaning and the meaning associated with the use of the 
final count word as an appropriate response to "How many?" (cardinal meanings), 
"Which position?" (ordinal meanings), or "How many units?" (measure meanings). 
This relationship between numerosity and the last word said in counting has (per
haps unfortunately) been termed the cardinality rule (Schaeffer, Eggleston, & Scott, 
1974) or the cardinality principle (Gelman & Gallistel, 1978). Similar rules need to 
be constructed to relate counting to ordinal and measure meanings of number words 
(see Fuson & Hall, in press, for a more detailed discussion of this point). Such links 
with separate cardinal, ordinal, or measure number words are only possible when 
the number word sequence consists of differentiated words (e .g., one two three four 
five) rather than of a string of words (e.g., onetwothreefourfive). 

A fmal use of the sequence skill of counting up from one is that children can 
begin to solve simple addition (and perhaps even subtraction) problems if objects 
representing each addend are provided and the total group of objects just needs to 
be counted. 

Evidence for Unbreakable Chains. A chain is unbreakable if a person given a 
word from her chain cannot at once give the next word in the chain but must instead 
produce the sequence up to the given word before responding. The unbreakable 
chain is a whole structure that can only be produced from its starting point (or from 
some special starting points within the chain). Adults still have chains at the un
breakable chain level for at least the musical scale and the alphabet. For example, 
19 of 20 adult self-reports in an informal study we did indicated that these adults 
had to say the whole musical scale (do, re, mi, ... ) up to a given word before they 
could tell the word that immediately followed it. Reaction time data also support 
such a "produce and search" process by adults with the alphabet (Hovancik, 1975; 
Lovelace, Powell, & Brooks, 1973; Lovelace & Spence, 1973; Klahr & Chase, Note 
9). However, because of its length, the alphabet seems to differ somewhat from the 
musical scale: The common use of the rhyme, or song, of the alphabet tends to 
decompose it into unbreakable chunks (ABCDEFG HIJKLMNOP etc.). Conse
quently, the search process may involve only the production of one of these 
unbreakable chunks rather than the whole chain. 
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We examined whether the number word sequence of children had an unbreakable 
chain level in a study comparing the ability of 3- and 4-year-olds to produce the 
next word when given a single word versus two or three successive words from the 
sequence. The latter condition was designed to induce in the children a sequence 
recitation context similar to that induced by their own production of the sequence. 
The effect was to impose upon them the strategy adults use when they cannot im
mediately answer "comes right after" questions: They produce the sequence, stop 
at the given stimulus word, and then give the next word. Superiority of the sequence 
recitation context would indicate that the number word sequence in young children 
does go through an unbreakable chain level, but that many children do not think 
of using the sequence production strategy for questions involving the next word. 
Each of the 24 children in this study was given three presentation conditions which 
varied the number of successive number words said (one, two, and three words). 
Questions were of the form, "When you are counting, what word comes right after 
6 (or 5,6 or 4, 5, 6)?" The order of presentation of these conditions was completely 
counterbalanced. Number words of two different sizes were given: single digit 
(three through nine) and teens (between thirteen and eighteen). A 2 (Age) by 2 
(Size of Number Word) by 2 (Number of Stimulus Words Said) analysis of variance 
was done on the percentage of correct responses for the two comparisons of single 
and multi pIe stimuli (one- versus two-word and one- versus three-word comparisons). 

The percentage of correct responses in each condition is given in Table 2.9. For 
the one- versus two-word comparison, significant main effects were found for the 
Number of Stimulus Words [F(l, 22) = 11.36, p < .01] , for the Size of Number, 
[F(1, 22) = 5.45, p < .05], and for Age [F(1, 22) = 10.53, p < .01]. The Age by 
Size of Number Word interaction was also significant [F(l, 22) = 5.06, p < .05]. 
More children gave correct responses to two-word than to one-word stimuli (69% 
vs. 45%). More correct responses were given by 4-year-old children than by 3-year
old children (73% vs. 41%). The 3-year-olds gave more correct responses for single
digit number words than for teens words (50% vs. 32%), while the 4-year-olds gave 
equal levels of correct responses for these different sizes (73% correct for both sizes). 
Almost identical results were obtained for the one- versus three-word comparison. 
The main effects and the interaction described above were all significant at the .01 
level. The performance levels in the three-word condition were similar to those in 
the two-word conditions except that the 3-year-olds did slightly worse on teens in 
the three-word than in the two-word condition (33% vs. 48%). 

The results of this experiment indicate that initially the number word sequence 
is in a recitation form, as a directed recited sequence, rather than as an associative 

Table 2.9 Percentage of Correct Responses on Recitation Context Study 

One-word stimulus Two-word stimulus Three-word stimulus 

Age Digit Teens Mean Digit Teens Mean Digit Teens Mean 

3-years 39 15 27 62 48 55 63 33 48 
4-years 64 63 63 82 83 82 83 81 82 
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chain of separable linked elements. The equal performance in the two- and the 
three-word conditions indicates that two words are sufficient to establish the di
rectionality of a recitation context and enable a child to produce the next word. 

Data from Siegler and Robinson (in press) also support an unbreakable chain 
level in the number word sequences of children. They reported that preschool chil
dren who were asked to start producing the number word sequence from a word 
well within their accurate counting range made a decade transition error (e.g., went 
from fifty-nine to seventy) or stopped at the end of a decade significantly more 
often than when they were producing the sequence from one. The total recitation 
context of the conventional sequence enabled children to produce a longer sequence 
than starting at some arbitrary point within it. 

Additional evidence for the existence of an unbreakable chain level in the number 
word sequences of young children comes from reaction time studies of simple addi
tion and subtraction problems given to 4- and 5-year-old children (Brainerd, Note 
10). These problems required the children to increase or decrease the given addend 
by one. Such problems are quite easy to answer by using the number word se
quence. Brainerd found reaction times supporting what he called a "drop back and 
count up" strategy. In order to produce the word following a given number word, 
some children produced the number word sequence starting from the beginning or 
very early in the sequence. In our terms, the children "drop back" to a piece of the 
sequence that is breakable and then count up, or they must begin at "one" in their 
unbreakable chain. 

Counting up to "a". The main sequence skill to emerge at the unbreakable chain 
level is the ability to count up from one to a preselected word, "a." This is more 
difficult than simply producing the sequence, for the child must remember the word 
up to which she or he is counting and must create some way to stop counting when 
that word has been reached. The latter would seem to require some checking proce
dure. This might be instituted after each word is produced, or it might follow some 
estimate of where the designated word "a" is in the sequence and be used only 
when "close" to the designated word. 

Emergence of" counting up to 'a' " may be based on a combination of matura
tional and specific experiential factors. Case, Kurland, and Daneman (Note 11) have 
used a counting span task that shares characteristics with "counting up to 'a'." In 
their task, a child must count a set, give its numerosity, then count a second set and 
give the numerosities of both sets in the order in which they were counted, etc. 
Thus, this task requires that a child remember a number word (the numerosity of 
the first set) while counting the second set. Case and co-workers found than 6-year
olds have a span of two (Le., can count a second set and then give the numerosities 
of the first two sets), while 4-year-olds have a span of only one. Experience with 
counting does influence span. Several weeks of massive practice increased the span 
of 4-year-olds to that of the average 6-year-old, and adults using a new counting 
sequence have a span equal to that of 6-year-olds (Case, Kurland, & Daneman, Note 
11). However, this additional experience must be quite extensive to have an effect, 
and Case and co-workers presented other data that implicated maturational factors 
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as the chief source of this change in span. The same balance of factors would seem 
to be operating with the "counting up to 'a' " skill. 

The ability to count up to a prespecified word enables new counting uses of the 
word sequence to be made (see Table 2.8). In addition to the sequence skill, these 
uses all require specific knowledge about the context in which that skill is being 
applied. In cardinal ("How many?") contexts, a child can now fmd or make a group 
of objects of a prespecified numerosity. In ordinal contexts, children can find (or 
make) the "ath" entity. In measure contexts they can find (or make) quantities of 
"a" units. 

The cardinal uses allow the child to develop general procedures for the solution 
of addition and subtraction problems. The count-all procedure for addition requires 
only the two sequence skills at the unbreakable chain level. In this procedure, items 
are counted out for one addend, then more are counted out for the other addend, 
and then all of the items are joined together and counted for the sum. For a count
part solution procedure for subtraction problems, items are counted out for the 
total, from which are separated items for the numerosity to be subtracted. Finally, 
what remains is counted (cf. Steffe, Thompson, & Richards, in press). The applica
tion of the word sequence skills to these cardinal operations of addition and sub
traction requires that the child understand the relationship between counting mean
ings and numerosity (cardinal) meanings of number words in both directions; that 
is, the child must know that she or he can count a set of objects to fmd its numero
sity and that, if a numerosity is known, a set of objects with the desired numerosity 
can be constructed by counting out objects. The child must also understand the 
fundamental meaning of addition as asking for a total of two different numerosities 
and of subtraction as asking for the remainder or the difference of two numerosities. 
Preschool children evidently have some basic understanding of "adding to" and 
"taking from" (Brush, 1978; Starkey & Gelman, in press), and school-aged children 
can use objects to model different types of addition or subtraction situations pre
sented verbally (Carpenter, Hiebert, & Moser, 1981; Carpenter & Moser, in press; 
Moser, Note 12). When problems are presented symbolically, young children's 
abilities are not so clear, but even 4-year-olds apparently can easily learn the count
all procedure for addends of five or less (Groen & Resnick, 1977). 

Relations on Sequence Words. At the unbreakable chain level the sequence skill 
"counting up to 'a' " can be used to generate relationships between words in the 
sequence. One such relationship is "And Then," that is, " 'a' and then ?" is the 
word immediately following "a" in the word sequence. Evidence was discussed 
above indicating that adults who have a chain at the unbreakable chain level (the 
alphabet or musical scale) do use their chain to answer And Then questions; that is, 
they produce the chain up to "a" and then give the next word as the answer. Some 
young children also seem to produce an unbreakable chain to fmd And Then rela
tions in the number word sequence. Some children in a sample of 36 3-,4-, and 5-
year olds asked to produce words immediately following given words either said the 
word sequence aloud or gave visible lip movement evidence of subvocalizing the 
sequence before producing the required word. Far more children, however, did not 
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use any observable procedure and simply replied quickly with a number word. 
These words were sometimes correct and sometimes not. The recitation context 
study reported earlier indicates that many children at these age levels can use the 
chain to answer And Then questions if successive words from the chain are spoken 
by the experimenter. It is not clear whether many children are not able to produce 
the chain from the beginning to answer an And Then question or whether children 
simply fail to think of using this strategy. The spontaneous use of it by some chil
dren supports the latter interpretation. 

The sequence skill "counting up to 'a' " can also be used to answer questions 
about the general order relation "Comes After" (as in seven comes after four). In 
response to a question such as, "Does eight come after five?" two such procedures 
using the unbreakable chain are possible. One could produce the unbreakable chain 
listening and stopping at the sound of either word; this requires knowing that the 
word heard first does not come after the other word. Or one could produce words 
and stop at the sound of the second word; this requires only a direct use of the 
meaning of "Comes After." Again, in our studies, we have sometimes seen children 
producing an unbreakable chain (Le., the sequence from its beginning) in response 
to "Comes After" questions, but, as with the "And Then" questions, a fairly quick 
response (sometimes correct and sometimes not) was much more common. 

A brief note is necessary here on the choices we made for the names of the 
sequence relations we discuss in this chapter. We have at various times used differ
ent labels for these relations. None has been entirely satisfactory. Other possibilities 
for the relation which takes some word from the number word sequence and gives 
the next word (and which we have termed "And Then") are "Immediate Succes
sor," ''Comes Just After," and "Next." The problem with the first two (and similar 
variants) is that their usage requires that the normal sequence order be reversed: "7 
is the Immediate Successor of 6." Because the forward linking relation is such a 
crucial one in the sequence, and because it depends so heavily on the forward 
recitation context, a term that would enable the relation to be stated in its forward 
recitation form seemed desirable. "And Then" was chosen because it met this 
requirement and because it implied only execution knowledge of the sequence and 
no further conceptual knowledge, as some of the other choices might have been 
inferred to involve. The awkwardness of the inverse of this relation ("And Then 
Before") is also then a positive characteristic, because it so accurately reflects the 
much more difficult nature of isolating in a forward directed sequence the word 
immediately preceding a given word. The terms "Comes After" and "Comes Before" 
were chosen for the general order relations on sequence words, because they 
seemed more general than "Comes Later Than" or "Comes Earlier Than," which 
refer only to time. 

Other Comments. The unbreakable chain level may last for a considerable peri
od of time in children even with a short chain and daily use. After the 5-year-old 
daughter of one of the authors learned the sequence of the days of the week, on her 
own she used the sequence at least once daily to solve relational questions about 
the sequence (e.g., "Today is Tuesday. What will tomorrow be?"). For at least four 
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weeks, she was unable to answer And Then questions (Le., to give the day following 
a given day) without running through the whole sequence to produce the answer. 

Finally, evidence does exist about the relationship between two abilities (accurate 
counting and responses to "And Then" questions) at the unbreakable chain level. A 
sample of 14 3- and 4-year-old children (ages 3 years 6 months to 4 years 8 months) 
was selected from a larger sample on the basis of the length of their correct word 
sequences (these ranged from twelve to nineteen) and on their counting ability 
(over several trials they made a moderate number of word-object correspondence 
errors with accurate correspondence on at least one trial). These children were given 
words from their own conventional and stable word sequences and were asked to 
give the word that came immediately after these words. All children received the 
words between four and twelve, and children with 100% conventional and stable 
sequences above that received words up to "nineteen." Response scoring was based 
on a child's own stable sequence; for example, if the sequence was " ... , fourteen, 
sixteen, seventeen," sixteen was scored as correct for the word following fourteen. 
The mean number of accurate responses was 49%, range 0-100% correct. Thus, while 
these children were capable of accurate object counting, they did not reliably or 
universally use the strategy of producing their word sequence in order to answer the 
"And Then" question. 

Breakable Chain Level 

Forward Sequence Skills. The breakable chain is a chain of connecting links that 
can be entered and produced beginning at any of its links (words). There are two 
new skills at this level: "counting up from 'a' " and "counting up from 'a' to 'b.' " 
The latter is more difficult because the word to which one is counting-up must be 
remembered during the counting. The skill of counting up from "a" for "a" below 
ten seems to be acquired between age 3~ and 5 at about the time when children are 
acquiring correct sequences through the teens. We found that of 14 children aged 
3~-4~ who had correct conventional sequences ending somewhere between twelve 
and nineteen, 6 were unable to start counting up from various words below ten, 3 
did so on 60% of their trials, and 5 did so on 100% of their trials. Counting up from 
"a" for "a" in the teens seems to be well established for most children by age 6. 
Secada, Fuson, and Hall (Note 13) found only 6 out of 63 6~·year·olds who could 
not count up from "a" when "a" was a word in the teens. Data about counting up 
from "a" to "b" are reported in the later section "Counting Down from 'b' to 'a.' " 

Forward And Then Relation. The ability to produce an immediate response to 
an And Then question appears to some extent in 3-year-olds and reaches fairly high 
levels in 5-year-olds. In the recitation context study described earlier, the correct 
response rate for 3-year-olds for And Then questions ("When you are counting, 
what word comes right after eight?") for words between two and nine was 39%, 
and for words between twelve and nineteen was 15% (see Table 2.9). Similar rates 
for the 4-year-olds were 64% and 63%, respectively. Success rates for words below 
20 rose to 72%,86%, and 100% for a sample of 36 middle class prekindergarteners 
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(aged 4 years to 5 years 5 months), kindergarteners (aged 5*-6*), and first graders 
(aged 6*-7*). Correct item response times taken by digital stopwatch dropped 
from a mean of 2.56 seconds for the prekindergarteners to 1.67 and 1.38 seconds 
for the kindergarteners and first graders. Thus, most end-of-the-year kindergarteners 
seem to have these responses accurately and immediately available. 

The sequence skill "counting up from 'a' " and the ability to respond immediate
ly to an And Then relational question would seem to be closely related. If one suc
cessively produces And Then related words beginning at "a," one sounds as if one is 
counting up from "a ," and vice versa. It is not clear whether the processes involved 
in these two procedures are the same, however. In the sample of 14 children for 
whom counting up from "a" data ("a" less than ten) were given above, data on 
responses to And Then questions were also gathered. Eight of the children per
formed better on the counting up from "a" task than on the And Then task; those 
performing moderately well on the And Then task counted up from "a" on all 
trials, and those giving only a very few correct And Then responses counted up to 
"a" on 60% of their trials. One of these eight children counted up from "a" in 
response to each And Then question about "a"; this child was the only one who 
responded accurately to every And Then question. Alternatively, four children did 
better on the And Then questions (success at a low-for one child-or at a moderate 
level-for three children) than on the count up from "a" task (they failed to count 
up on even a single trial). It is possible that this failure was a result of inadequately 
communicating the task to these children. However, some of them did seem to be 
trying to start counting up but they always fmally had to begin at one. Thus, rather 
than these procedures developing together, it seems that children may begin to do 
fairly well on either one ofthese procedures before the other one. 

These procedures also seem to be acquired in somewhat different patterns. Per
formance on And Then questions seems to improve continuously (scores for this 
sample ranged over the whole possible range), while that on "counting up from 
'a' " appears at only two levels (around half the trials or on all of the trials). All of 
these data seem to implicate two different processes rather than a single one used 
for both tasks. Understanding of the processes involved in these two procedures and 
of the relationship between them must await more defmitive research. 

Backward Sequence Skills. Two new sequences appear at the breakable chain 
level: (a) the ability to produce a backward number word sequence beginning from 
an arbitrary number word (the sequence skill "counting down from 'b' ") and 
(b) the ability to start at and stop at arbitrary words ("counting down from 'b' to 
'a' "). Each of these will be discussed in turn. 

Producing Backward Sequences. Backward word sequences are sometimes learned 
as separate new word sequences, as in "ten, nine, eight, ... , two, one, blast of£1" 
However, except for the rocket example and for some nursery school songs, back
ward sequences are rarely required in our culture, especially above ten. They there
fore seem rarely to be separately acquired but rather result from a slow and labori
ous production from the forward sequence. Vocalizing and subvocalizing patterns 



The Acquisition and Elaboration of the Number Word Sequence 69 

by the child subjects in the studies to be reported next indicated that many of them 
produced a two- to five-word forward sequence segment that included the word 
from which the backward sequence is to begin, then said this segment backward, 
and then repeated these two phases of (often subvocal) forward and overt backward 
chunks. Other children were not even this efficient; they always began their forward 
sequences from "one." This production of the backward from the forward sequence 
was especially evident for sequences between ten and twenty. For example, pro
ducing a backward sequence from eighteen might sound like "(silent lip movement: 
fourteen, fifteen, sixteen, seventeen, eighteen) eighteen, seventeen, sixteen, (lip 
movement: thirteen, fourteen, fifteen) fifteen, fourteen, thirteen, etc." This proce
dure requires the alternating use of two fairly difficult abilities: backward digit span 
(remembering several words and producing them in reverse order) and remembering 
the last word already produced in the backward sequence while finding and pro
ducing a forward segment that will end with the word just before that last word. 

The ability to produce a backward sequence from twenty is relatively late to 
appear. More than half of a sample of 14 5-year-olds attending a heterogeneous 
urban school were unable to give a backward sequence beginning from a word be
tween seven and twenty. Eleven of 32 6-year-olds were unable to produce such 
sequences from words between eleven and twenty, even though all of these could 
produce accurate forward sequences above twenty and at least one backward 
sequence beginning from a word below ten. The backward sequences were produced 
by the 6-year-olds with widely varying degrees of ease, with some children produc
ing them smoothly and qUickly and others doing so only very slowly and laboriously, 
with much sub vocalization of forward segments. During this generation procedure 
by the latter children, the forward sequence was evidently so salient that occasional 
forward intrusions would occur within the backward sequence (e.g., "fourteen, thir
teen, twelve, thirteen, eleven"). 

Bell and Burns (Notes 1 and 2) examined the ability of a heterogeneous sample 
of kindergarten and first, second, and third graders to produce backward sequences 
at various points from ten up to 3141. The percentage of correct performance at 
each testing point for each grade is given in Table 2.10. Producing a backwards 
sequence even from ten is a problem for a substantial number of the kindergarten 
sample and producing a backwards sequence from thirty remains a problem for 
almost two-thirds of the first graders and a third of the second graders. Performance 
within each of the first three grades is extremely varied, ranging over almost the 
entire range tested. 

Bell and Burns also found a similar performance lag between backward and for
ward sequences for most children through third grade. In the same sample as above, 
they examined the production of both forward and backward sequences at seven 
levels: below thirty (Levell), to thirty (Level 2), and then at certain higher key 
points: 68 to 72, 98 to 101, 197 to 203, 997 to 1003, and 3148 to 3151 (Levels 
3-7). The range in the level differences between the forward and backward sequences 
of individual children was 0 (no difference) to 5 (forward sequences to 1003 and 
backward sequence less than thirty). The percentage of this kindergarten through 
third grade sample with no difference in the level of their forward and backward 
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Table 2.10 Percentage of Age Groups Producing Accurate Backward Sequences of 
Various Lengthsa 

Not 1003 3151 
10-+1 1~1 3~20 72-+62 101-+91 203-+193 -+999 -+3141 

Kinder-
garten 41 44 7 4 4 0 0 0 

First 
grade 7 59 10 3 17 3 0 0 

Second 
grade 3 30 15 10 13 15 0 15 

Third 
grade 0 17 8 4 21 13 21 17 

a These figures are computed from raw data generously made available to us by Bell and Burns. 
Each percentage is for children who were successful up through that length but no higher. 

sequences was 38%, and the percentages with differences of one, two, three, four, 
and five levels between their forward and backward sequences were 20%, 18%, 16%, 
8%, and 3%, respectively. These figures indicate that considerable individual differ
ences exist in the ability to produce a backward sequence when a forward one is 
known. The percentage of children at each performance level whose backward 
sequence was at the same level as their forward sequence increased from 25% at 
Level 2 (in forward counting) to 50% at Level 5, indicating that producing a back
ward sequence once the forward one is known becomes relatively easier for children 
with longer sequences. The percentage with both forward and backward levels at 
Level 6 dropped to 14%, indicating perhaps that producing a sequence backwards 
over 1000 (Le., from 1003 to 997) is particularly difficult. The percentages of chil
dren with no differences between forward and backward sequences were relatively 
high at Levels 1 and 7 (44% and 71%) due to floor and ceiling effects. 

The types of errors the Bell and Burns children made at the decade words were 
of two types: they either omitted the decade word altogether (e.g., 72, 71, 69, 68, 
... , 62, 61, 59) or they began the backwards sequence within a decade with the 
decade word (72,71,60,69,68,67, ... ,62,61,50,59,58, etc.). Thus, for these 
children (and perhaps for all children at some developmental point) the decade 
word seemed to serve as the "starting signal" for the production of a decade-digit 
sequence; this "starting signal" was deemed necessary for a backward as well as for 
a forward production. Children also displayed similar difficulties with the hundreds 
and thousands words. The backward sequences for the most part maintained the 
structure within a decade (x-ty-nine,x-ty-eight, ... ,x-ty-one), however, indicating 
that children were using their knowledge of this forward structure to generate the 
backward sequences. Converging evidence on this point comes from Secada (Note 
14): pauses in the hand signs made by deaf children producing backward sequences 
from thirty sometimes come between the production of a sign for twenty and that 
for the digit word accompanying that twenty (thirty, twenty-nine, twenty-pause
eight, twenty-pause-seven, twenty-pause-six, twenty," etc.). These children 
seem to know that each word will be a "twenty-x" word, but they need to stop and 
think to produce the correct digit word. 
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Our data indicate that children initially produce backward sequences through 
the use of the echoic memory technique adults report using with the alphabet: The 
generation of parts of the forward sequence and the production of these parts back
ward while the forward part is still in short-term memory. The ability to do this 
would seem to be dependent upon a child's processing capacity (in the sense used 
by Case, Kurland, & Daneman, Note 11) and on the level of the word sequence 
(Le., at least at the breakable chain level). Later, as suggested by Bell and Burns, 
children use their ability to produce a backward digit sequence (from nine to one) 
and their knowledge of the structure of the forward sequence to produce backward 
sequences above twenty. Children's knowledge of the forward structure dictates 
how they will produce the backward digit sequence. Problems occur at the transi
tional points in the structure and reflect either inadequate knowledge of the forward 
structure or a representation of this structure that is inadequate to support the 
backward production at that point (as the auditory short-term memory supported 
the earlier productions). The situation with respect to the teens is not entirely clear. 
There was no evidence in any of our data that children were aware of or used the 
digit pattern present in the teens to produce a backward sequence. Rather they 
exhibited alternating forward-backward partial productions, indicating that the same 
echoic memory process used below ten was being used in the teens. Eventual facility 
in producing teen backward sequences rapidly may come from one of two sources: 
After they can produce it, children learn the backward sequence from twenty by 
rote (much as they do the sequence from ten) or they may later learn the digit 
structure in the teens (perhaps as a result of learning the symbols for those words) 
and then use this structure to produce the backwards sequence rapidly. An alterna
tive with all backward sequences, of course, is that they may be acquired indepen
dently as the forward sequence is, but this seems to occur rarely except for the 
sequence from ten to one. 

Counting down from "b" to "a." Counting down from "b" to "a" (Le., from 
one arbitrary word to another) is the backward skill analogous to counting up from 
"a" to "b." To assess the relative difficulty of counting up from "a" to "b" and 
counting down from "b" to "a," both of these tasks were administered to 16 chil
dren from a university laboratory preschool. The children ranged in age from 4 years 
2 months to 5 years 6 months (mean age 4 years 8 months). The order of presenta
tion of tasks was counterbalanced, with the counting up and counting down tasks 
administered on separate days to reduce interference between them. Each testing 
session began with an explanation of the task and two practice trials. For example, 
the counting up task was described as follows: "To count up from two to five, you 
start counting at two and count up to five, like this: two, three, four, five. Start at 
two; stop at five." Practice trials of counting up from three to six and four to seven 
followed. An analogous description and practice trials were given for the counting 
down task. Six counting trials were then presented. Five, five, seven, eight, eleven, 
and thirteen were used as starting numbers for counting up; eleven, twelve, thirteen, 
sixteen, eighteen, and twenty were used for counting down, with "b" differing from 
"a" by either seven or fourteen numbers. "Twenty-one" was the largest number 
appearing in these trials. Consequently, only children with conventional word strings 
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exceeding that number were used in this study. The assessment of children's con
ventional word strings revealed that our subjects were divided into two groups: 
Nine children had conventional strings of at least fifty (rote counts were stopped at 
fifty), while the other seven had conventional strings below thirty-nine, with most 
ranging from twenty-nine to thirty-four. As a result, the length of a child's conven
tional sequence was included as a variable in the following analyses. This allowed an 
examination of the relationship between the degree of acquisition of the conven
tional word sequence and its elaboration, as evidence by performance on the count
ing up and counting down task. In general, children exhibited the behaviors observed 
in the counting up and counting down studies described earlier, like getting a "run
ning start" to count up from "a" by surreptitiously counting from one, determining 
the next number when counting down by counting forward from a lower number, 
and intruding forward counts while counting down (e.g., "fifteen, fourteen, thir
teen, fourteen, fifteen, sixteen, ... ") 

The number of correct trials per child was measured by two criteria: In strict 
scoring, only flawless counts were considered correct, while lenient scoring included 
as correct those sequences with mistakes that were spontaneously corrected (such 
as lapsing into counting forward while trying to count backwards). A 2 (Direction 
of Sequence) by 2 (Conventional Sequence Length: to 50 or below 39) by 2 (Num
ber to be Counted Up or Down: seven or fouteen) analysis of variance was done on 
each of the scores (strict and lenient). As expected, counting up from "a" to "b" 
was clearly easier than counting down from "b" to "a." The main effect of Direction 
of Sequence was significant for both types of scoring: F(1, 14} = 13.73, P < .01 for 
strict scoring and F(I, 14} = 8.06,p < .02 for lenient scoring. The mean number of 
correct counting up and counting down trials was 4.25 (out of 6) and 2.58 trials, 
respectively, for the strict scoring, and 4.56 and 3.19 for the lenient scoring. The 
length of the conventional sequence produced by a child had a significant effect on 
performance with the lenient scores,F(I, 14} = 7.97,p < .02, and this effect ap
proached significance with the strict scores,F(1, 14} = 4.13, P < .06. Children with 
sequences to fifty had lenient score means of 4.56 correct trials per task compared 
to a lenient score mean of 3.00 for children with shorter conventional sequences; 
these means for strict scores were 4.06 and 2.57, respectively. This effect of con
ventional sequence length indicates that children with longer conventional word 
sequences have elaborated the earlier parts of their word sequences more than chil
dren with shorter conventional sequences as measured by the possession of these 
two sequence skills. The interaction of direction of count and conventional sequence 
length was not Significant with either type of score, indicating that the backward 
sequence elaboration was delayed similarly in both groups of children. The main 
effect of number counted up or down was Significant for the strict criterion scores 
[F(I, 14} = 4.63, P < .05], but not for the lenient scores, indicating that spontane
ously corrected mistakes were more likely to occur on the longer sequences than on 
the shorter ones. With the strict scores, 60% of the trials in which seven words were 
counted up or down were correct, while 50% of those requiring fourteen words 
counted up or down were correct. 

Errors made on these tasks revealed more details about the development of word 
sequence skills. The most common mistakes were sequence errors (selecting an in-
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correct next word, usually due to omission) and forgetting the stopping point, 
thereby producing a correct sequence that was too long or too short. In counting 
up from "a" to "b," sequence mistakes were made on only 5% of the trials, while 
20% of the trials contained stopping-point errors. Thus, the major difficulty in 
counting up from "a" to "b" was stopping the word sequence at the appropriate 
point, with 80% of the mistakes being of this type. On the counting-down task, 
27% and 28% of the trials contained counting mistakes and stopping-point errors, 
respectively. The difference between tasks in the number of sequence mistakes was 
significant [F(1, 14) = 8.16, p < .02], again indicating that backwards sequences 
are more difficult to produce. The difference between counting up and down in the 
number of stopping-point errors was not significant. However, it seemed possible 
that this was attributable to the smaller number of counting·down trials that were 
actually completed. To test this, a second analysis compared the percentage of com
pleted trials containing stopping-point errors on each task. This analysis revealed 
significant main effects of both Direction of Count [F(1, 14) = 5.29,p < .05], and 
Length of Conventional Sequence [F(1, 14) = 5.29, p < .05]. The mean stopping
point error rate was 20% for counting up and 39% for counting down. The children 
with longer and shorter conventional sequences made stopping errors on an average 
of 20% and 41 % of their completed counts, respectively. 

These results are consistent with a model of short-term memory having limited 
capacity (Case, Kurland, & Daneman, Note 11). According to such a model, more 
difficult tasks require more processing capacity, leaving less space available for 
retaining other information or for executing other cognitive processes. At least two 
sources of stopping-point errors seem possible: difficulty in remembering the stop
ping point and difficulty in using an adequate checking procedure for determining 
when this number has been reached. Both of these require space in short-term 
memory. Because producing a backward sequence is more difficult than producing 
a forward one, as indicated by the greater number of sequence errors and the 
number of trials not completed, producing a backward sequence requires more 
short-term memory capacity. More backward stopping-point errors would then be 
expected because less space is available for retaining the stopping number or for 
executing the checking procedure. Similarly, the significant effect oflength of con
ventional sequence suggests that the sequence skills are more effortful (or take 
more space in memory) for children with shorter conventional sequences. Conse
quently, these children are more likely either to forget the stopping-point word or 
to fail to execute their checking procedure than are children with longer conven
tional sequences. 

And Then Before Relations. The first step toward the production of a backward 
word sequence is the ability to answer And Then Before questions for a given num
ber word, for example, given "eight" to produce "seven." Performance on And 
Then Before questions ("When you are counting, what number comes just before 
eight?") is considerably lower than that for And Then questions ("When you are 
counting, what number comes just after eight?") until about age 5~. For two 
samples of 24 children aged 3~-4~ and 4~-5~, the percentages of correct perform
ance on these two types of questions were 13% versus 49% and 57% versus 81%, 
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respectively. Accuracy levels for these two relations were roughly equivalent for 12 
kindergarteners aged 5~-672 (80% vs. 86%), and performance was at ceiling for 12 
end-of-the-year, middle class first graders aged 6~-7~ (100% accuracy for both rela
tions). Response times taken by a digital stop-watch for producing correct And 
Then Before responses were slower for all age groups than times for producing cor
rect And Then responses (7.9 vs. 2.6 seconds, 4.3 vs. 1.7 seconds, and 2.1 vs. 1.4 
seconds for the three oldest groups described above). 

Use of And Then and And Then Before Relations. The And Then and And 
Then Before sequence relations have analogous relations on cardinal words: One 
Smaller Than and One Bigger Than. It was not evident whether these sequence and 
cardinal relations developed independently or whether one type of relation was 
used to construct the other. We examined this question in a study with 72 pre
kindergarten, kindergarten, and first grade children. At each age children were ran
domly assigned to cardinal or sequence conditions and given one of the following 
types of questions: sequence: "When you are counting, what number comes right 
after (comes right before) seven?" or cardinal: "What number is one bigger than 
(one smaller than) seven?" Subjects in both conditions were given both after and 
before (or bigger and smaller) questions. In all the Age by Number Word Size 
(below ten and between ten and twenty) cells, responses to the And Then/And 
Then Before sequence questions and the One Greater Than/Smaller Than cardinal 
questions were approximately the same, with two exceptions. For words between 
ten and twenty, correct responses to the sequence questions exceeded those for the 
cardinal questions for the prekindergarteners in the forward direction (And Then 
responses 78% correct and One Greater Than responses 56% correct) and for the 
kindergarteners in the backward direction (And Then Before 78% and One Smaller 
Than 50% correct). Data reported in earlier sections indicated that 4-year-olds are 
just becoming able to answer And Then questions for words in their sequence, and 
5-year-olds are becoming able to do so quite well for And Then Before questions. 
These are therefore exactly the ages at which one would expect performance on 
cardinal questions to be lower than that on sequence questions, if children do use 
the latter to answer the former. That is, one would not expect children just acquir
ing sequence relations to use them for cardinal relational questions. However, after 
the And Then or the And Then Before relations have been acquired, they could be 
used to respond to verbal questions involving the corresponding relations in cardinal 
contexts. At the latter point, performance in sequence and cardinal conditions 
would be equivalent. This is the pattern observed in the data. Thus children seem to 
use these sequence relations to determine the cardinal relations. 

Comes After and Comes Before Relations. In a preliminary exploration of per
formance on Comes After and Comes Before relational questions, 36 middle class 
children aged 4~-7~ were given questions such as, "In counting, which comes later, 
five or nine?" or "In counting, which comes earlier, five or nine?" All pairs of words 
were four words aparts; words "two" through "nine" and "twelve" through "nine
teen" were used. The form of the questions (Comes Later Than or Comes Earlier 
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Than), order of the words within the word pair, and size of the pair of words (single 
digits or in the teens) were all counterbalanced. Mean correct response rates for 
both question forms and both sizes of number word pairs fell (in no particular pat
tern) between 61% and 72% for children aged 4*--6*- and rose for those aged 6*--7*
to 98% and 92% for single-digit and teens responses, respectively. 

Three possible derivations of the Comes After and Comes Before relations seem 
plausible. One of these involves the use of other sequence relations, one depends on 
the use of analogous cardinal relations, and the third requires the use of some 
mental process on some representation of the sequence. These three derivations are: 
(1) that the Comes After (Comes Before) relation results from the application of 
transitivity to successive iterations of the And Then (And Then Before) sequence 
relation; (2) that the Comes After (Before) relation is derived from the isomorphic 
Greater Than (Less Than) relation defmed on the cardinal number words (or vice 
versa); and (3) that the Comes After (Before) relation is derived from the sequence 
itself by some sort of direct mental process with psychophysical properties. We shall 
discuss each of these in turn. During this discussion, it should be kept in mind that, 
in fact, it is possible that either different children use different ones of these 
methods or that different mixtures of these methods are used, perhaps depending 
upon the size of number involved. 

The fIrst possible derivation of the Comes After relation is the most mathemati
cal and perhaps the most obvious. It predicts that a child fIrst learns And Then for 
words in her or his sequence and uses these successively to fmd Comes After rela
tions. An example is: "5 And Then 6" and "6 And Then 7" and "7 And Then 8" 
and "8 And Then 9"; therefore, 5 is followed by 9 (or 9 Comes After 5). If And 
Then is so used to construct Comes After, the response to an And Then question 
should be faster than that to the derived Comes After relation. One would also 
expect that some children could answer And Then questions but would not be able 
to answer Comes After questions. 

We examined this in a preliminary way by giving to 36 fIrst graders, kinder
garteners, and prekindergarteners Comes After questions for number word pairs 
that differed by four ("In counting, which comes later, 2 or 5?") and And Then 
questions for the smallest number in the Comes After pair ("In counting, which 
comeslater,2 or 3?"). The scores of the fIrst graders reached ceiling. For the kinder
garteners and prekindergarteners, there were no signifIcant differences between 
these conditions in the error scores (all scores were between 61% and 72% correct). 
Response time data taken by digital stopwatch showed different patterns for num
ber pairs above and below ten. For the former, the mean response times of correct 
judgments (based only on those item pairs for which both And Then and Comes 
After responses were correct) for And Then responses were slower than the times 
for Comes After responses (1.9 vs. 1.5 seconds, 2.1 vs. 1.5 seconds, and 3.5 vs. 1.4 
seconds for the fIrst grade, kindergarten, and prekindergarten groups). For the num
ber words less than ten, neither type of pairs was consistently better across all age 
groups. These response time data indicate that the fIrst proposed derivation of the 
Comes After relation-from the composition of contiguous And Then relations-is 
inaccurate. Transitive application of the And Then relation does not seem to be the 
process by which the Comes After relation is determined. 
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The second alternative for the source of the Comes After (Comes Before) se
quence relations is that they are derived from the Greater Than (Less Than) cardinal 
relations. Fuson and Hall (in press) discussed this possibility and presented data 
that were not definitive with respect to the relationship between the two types of 
relations for words below ten but found that for words between ten and twenty, 
the cardinal relations seemed to be derived from the sequence relations. In their 
study they compared the performance of children aged 4-7 years old on questions 
involving the order relations on sequence and on cardinal words [the Comes After 
(Comes Before) and the Greater Than (Less Than) relations]. These data supported 
the conclusion that below the age of 671, the order relations on cardinal (numerosi
ty) words less than ten develop earlier than (or at least are more accurate than) 
those on sequence words, that a single process for deriving the order relations on 
sequence words is used over the whole range of sequence words from one to twenty, 
and that this same sequence process is used for order relations on cardinal words 
between ten and twenty. By age 671 a ceiling effect is reached for all questions of 
this type for words below twenty. These data thus support the opposite of Alterna
tive 2 above for number words between ten and twenty and are not definitive with 
respect to it for words below ten. 

Some authors in the literature have, in fact, argued for the opposite of the second 
alternative above, that is, they have argued for derivation of the cardinal relations 
from the sequence relations. Parkman (1971), for example, describes a model in 
which sequence words are produced covertly and very quickly and are used to de
cide Greater Than relational questions. Some of the kindergarten subjects on some 
items in the Sekuler and Mierkiewicz (1977) study overtly used such a sequence 
production procedure: The child would count from one until she or he reached one 
of the number words and then said that the other word was the bigger one (Mierkie
wicz, Note 15). Although we also observed the overt use of this procedure, most 
children gave no evidence of using it. It may be that this is a "fail-safe" procedure, 
used when the more usual process fails. 

The third possible source of performance on Comes After relational questions is 
that this relation on a given pair of number words is "read off' an internal repre
sentation of the number word sequence by a process with psychophysical character
istics. Such processes are characterized by an inverse relationship between reaction 
time and the distance between two stimuli (reaction time increases as the distance 
decreases) and are assumed to occur by some sort of analog process in which items 
become decreasingly discriminable as they become more similar on some physical 
scale. There is considerable literature on the existence of these relations in adults. 
The linear order literature and the digit and alphabet comparison literature are par
ticularly relevant to the Comes After (Comes Before) sequence relations. These are 
reviewed by Fuson and Hall (in press) with respect to their implications for under
standing relationships between the order relations on sequence words (Comes After/ 
Comes Before) and those on cardinal words (Greater Than/Less Than). In spite of 
the considerable amount of research on the Greater Than (Less Than) order rela
tions on cardinal words, the process used in producing these relations is still not 
clear. Nor is it clear whether the Comes After (Comes Before) order relations on 
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sequence words below ten are derived from those on cardinal words or whether the 
sequence order relations involve a different (though possibly similar) representation 
and an independent processing of this sequence representation. 

The Between Relation. The adult Between relation on sequence words (e.g., 
"Six is between five and eight") is equivalent to the conjunction of the Comes 
Before and the Comes After relations. For example, "Six is between five and eight" 
is equivalent to "Six comes after five and six comes before eight." The Between 
relation is also related (somewhat more primitively) to And Then and And Then 
Before relations, for the proper use of either of these will give at least one word 
between two given words (e.g., "five And Then" will be a word between five and 
eight as will "And Then Before eight"). The Between relation is also related to two 
word sequence skills at the breakable chain level: counting up from "a" to "b" and 
counting down from "b" to "a." The use of either of these will generate not only 
some but exactly all of the words between "a" and "b." The Between relation also 
possesses a spatial meaning. A request for a number word between five and nine 
might then elicit the use of a representation of the number word sequence that has 
a spatial aspect, with the resulting answer "seven," the "most" between word. If 
the Between relation is instead initially linked to counting up or down or to the 
And Then/And Then Before relations, such a request might produce the words 
"six" or "eight." Very little empirical work has been done on any of these aspects 
of the Between relation. 

Using the Between Relation. The Between relation on sequence words also has a 
counterpart relation in cardinal or numerosity contexts. The Between relation in 
cardinal contexts is defined by counterparts of the Comes After and Comes Before 
relations on sequence words: a word is between (in the cardinal sense) five and nine 
if it is "Bigger Than five" and "Smaller Than nine." We examined the nature of the 
relationship between the Between relation on sequence words and that on cardinal 
words. Forty-eight kindergarten and first grade children were asked to respond to 
cardinal or to sequence questions that gave the boundaries for the Between relation 
in two separate phrases. The questions asked were of the form, "Tell me two num
bers that come after three and before seven when you are counting" (sequence) and 
"Tell me two numbers that are bigger than three and smaller than seven" (cardinal). 
The number word pairs given in the questions always had three words between them 
to provide an opportunity for different strategies of response as described above. 
Steffe, Spikes, and Hirstein (Note 16) used such pairs for Between questions for 
that reason; we adapted their between questions to our two-phrase forms. In each 
condition of this study half of the questions involved pairs ten and below and half 
used pairs between ten and twenty. These pairs were used in the same random order 
for all subjects. For each condition the phrases within each question were ordered 
so that half of the questions had the number word pairs in ascending and half in 
descending order (e.g., "Tell me two numbers that are smaller than nine and bigger 
than five"). Half of the subjects began with each order. Grade, Word Context 
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(sequence or cardinal), and Order of First Pair were between-subjects variables and 
Size of Number Word was a within-subjects variable. 

Preliminary analyses indicated no main effect and no interaction with Order of 
First Pair on the number of correct responses, so further analyses collapsed over 
this variable. A 2 (Grade) by 2 (Word Context) by 2 (Size of Number Word) repeated 
measure analysis of variance on correct responses revealed significant main effects of 
Grade [F(1, 44) = 14.73,p < .001], Word Context [F(l, 44) = 5.01, p < .03], and 
Size of Number Word [F(l, 44) = 12.66,p < .001]' and a significant Grade by Word 
Context interaction [F(l, 44) = 16.62, p < .001]. The percentage of correct per
formance is given in Table 2.11. The kindergarten and first grade children performed 
equally well on the sequence questions (78% and 76%), but on the cardinal ques
tions the kindergarten children did much worse than did the first graders (37% vs. 
88%). In three of the four Grade by Word Context cells the children did slightly 
(about 10%) better on the pairs below ten than on those above ten. 

The two responses to each question were classified according to their location 
within the word sequence with respect to the given word pair (examples will be 
given for the pair "five and nine"). Three major types of response patterns depend
ing upon the sequence were identified. The first type consisted of a two-part strategy 
in which a single response was given to each of the two questions asked. These 
responses used the And Then relation on the smaller number and the And Then 
Before relation on the larger number. The classification of the responses in the 
Cardinal condition as And Then and And Then Before responses was based on the 
earlier reported evidence of children's performance in sequence and cardinal condi
tions. Supporting evidence that this strategy in fact did consist of answering each of 
two questions separately was that many children paused between their two re
sponses and some also then asked for a verification of one of the questions ("Was 
that 'after five'?") or subvocalized the question to themselves (e.g., lip movement 
for "comes after five" and then vocalization of "six"). The other two strategies 
used on the between questions required the integration of the two responses togeth
er into the sequence. The first consisted of simple count up or count down strategies 
(responses were "six, seven" or "eight, seven"). In the second, the first word given 
was the "middle" spatial response discussed earlier (giving the word exactly in be
tween the question pair); then the next word up or down from that middle word 
was given (responses were "seven, eight" or "seven, six"). Note that both of these 
sequence types had both forward and backward counterparts. Over all the condi-

Table 2.11 Percentage of Correct Responses to Two-Phase "Between" Questions 

Kindergarten First grade 

Single Single 
digits Teens digits Teens 

Sequence 
condition 85 70 76 76 

Cardinal 
condition 42 32 93 83 
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tions and over all subjects, the responses of these two types going up outnumbered 
the down responses by a ratio of five to one. 

Table 2.12 contains the percentage of uses of these strategies by age and by 
number word question asked. There is very little difference in the strategies used by 
the two age levels in the sequence conditions (Le., with the Comes After and Comes 
Before questions) but considerable difference between the two age levels in the 
strategies used in the cardinal condition (with the Bigger Than and Smaller Than 
questions). More first grade than kindergarten children used or tried to use the two
part strategy in the cardinal condition (59% vs. 27%) and a higher proportion of 
those who used it were able to use it successfully (75% vs. 23%). Earlier findings 
had indicated that kindergarten children could successfully use the And Then 
sequence relation in a cardinal context but that they were experiencing difficulty in 
using the And Then Before relations. The correct two-part responses given by the 
kindergarten children were consistent with this earlier fmding: 70% were words im
mediately following the given word (And Then responses) and only 30% were And 
Then Before responses. By the first grade, correct And Then and And Then Before 
responses were evenly balanced (49% and 51 %). In addition to this difference in the 
use of the two-part strategy, the kindergarten children seemed to have particular 
difficulty with the directionality of the words in the cardinal conditions; many of 
their incorrect two-part strategy responses were in the wrong direction (e.g., smaller 
than rather than larger than the word). They did not show the same directional dif
ficulty in the sequence condition. There was also a considerable difference between 
the sequence and the cardinal condition in the kindergarteners' percentage of errors 
that were close errors (within two words of the given number word pair): 69% of 
the errors in the sequence condition were of these close errors while only 43% of 
the errors in the cardinal condition were close. A fmal difference between the two 
age groups was that the first grade children were also somewhat more advanced 
than the kindergarten children in their use of the integrated sequence strategies in 
the cardinal condition (38% vs. 17%). 

The order in which the number word pair was presented in the very first question 
seemed to influence the answer strategy used over all the questions by the first 

Table 2.12 Percentage of Strategy Use by Grade and Question Type on Two-Phrase 
"Between" Questions 

Two-part strategy Integrated sequence strategies 

Count up/ Middle and 
Both One down two then up/ 

correct correct Total words down Total Other 

Sequence 
Kinderg. 28 17 45 36 6 43 13 
First 28 20 48 26 13 39 14 

Cardinal 
Kinderg. 6 21 27 10 7 17 55 
First 44 15 59 23 15 38 4 
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graders. In the sequence condition, if the words were given in their sequence order 
(e.g., "Give two words that come after five and come before nine"), children were 
more likely to use the integrated sequence strategies than the two-part strategy (25 
vs. 4 occurrences). If the words were given in reverse sequence order (e.g., "Give 
two words that come before nine and come after five"), the two-part strategy was 
more likely to be used than an integrated sequence strategy (23 vs. 12 occurrences). 
In the cardinal conditions, the children responded to the order in which they heard 
the number pair in the opposite way, presumably because they responded first to 
the last number word they heard. If the words were given in nonsequence order, 
they would respond to the last question first (by giving the word that was bigger 
than five: "six") and then would continue with the word follOwing six ("seven"), 
that is, they used an integrated sequence strategy rather than the two-part strategy 
by 28 to 9 occurrences. If the words were given in their sequence order, a number 
smaller than nine would first be given and then a response to the second part of the 
question (bigger than five) would be given; that is, the two-part responses outnum
bered the integrated sequence responses 33 to 8. This finding would seem to indicate 
that children, in fact, possess both the integrated sequence and the two-part strate
gies, and they employ the one that seems best to fit their initial view of a task. Task 
variables seem to present particularly tricky problems here, and such variables may 
be responsible for underestimating the extent to which children have in fact coordi
nated sequence and cardinal meanings and can use one type of meaning to respond 
to a question in the opposite context. 

This study, of course, was only a very preliminary step toward understanding the 
development of the sequence and the cardinal Between relations. Studies which 
compare the two-part terminology used here with the use of the word "between" 
obviously need to be done. The end of the year kindergarteners in the present study 
seemed to have much greater difficulty with the cardinal Greater Than/Less Than 
questions than with the sequence Comes After/Comes Before questions. These 
cardinal difficulties may have been exacerbated by the juxtaposition of two Greater 
Than/Less Than questions in the opposite direction when no concept of "between" 
was present to impose constraints on these directions. The sequence relations may 
have been simpler because the sequence itself may have imposed some sense of "be
tweeness" on the two relational statements. 

Use of Counting Up and Down Skills in Addition and Subtraction. At the break
able chain level the ability to count up from "a" to "b" may be used in addition 
situations such as "8 + ? = 13." Such users will begin counting up at eight and will 
stop at thirteen. However, children at this level fail to keep track of how many 
words they have counted up, and so they cannot give any accurate answer at the 
end of this procedure. Steffe, Richards, and von Glasersfeld (Notes 7 and 17) re
ported such failures by some children. Such performances occurred in the studies 
that we report in the next section. The breakable chain level also seems to occur in 
other cultures. New Guinea Oksapmin children and adults unfamiliar with economic 
transactions also use counting up from "a" to "b" without keeping track on their 
body parts counting system (see Saxe, Chapter 5 of this volume). They say and 
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point to the body parts from "a" to "b" (e.g., from elbow to ear), but fail to count 
or match these parts with any other set, and so they also fail to produce any answer. 
What is required for all of these problems in any culture is that the words of the 
sequence be taken as units that represent the missing addend and that some means 
of assessing the numerosity of these units be used. Both of these occur at the next 
level, the numerable chain level. 

Numerable Chain Level 

Forward and Backward Sequence Skills. At the numerable chain level, the num
ber words in the sequence can be taken as distinct units, and the numerosity of 
word segments (words contiguous in the sequence: seven, eight, nine, ten, eleven, 
twelve) can be ascertained. At this level, the number words are not just produced
they can also be counted or matched to a set of items of known numerosity (e.g., 
five fmgers). Two new forward sequence skills exist at this level: "count up a 
specified number on' from 'a' " and "count up from 'a' to 'b' to find the number of 
words from 'a' to 'b.' " Parallel skills for the backward sequence become evident 
some time later: "count down on' from 'b' " and "count down from 'b' to 'a' to 
fmd the number of words from 'b' to 'a.''' 

Counting up from "a" to "b" and counting down from "b" to "a" while keeping 
track of how many words are counted up or down require one to remember the 
word to which one is counting up (or down) while keeping track in some way of 
the number of word~ being produced. Counting up or down by "n" requires one to 
remember the number of words that one is counting up or down while also keeping 
track of the number of words that one has already produced. Both types of skills 
require both the memory of a number while one is counting up or down and some 
method of keeping track of how many one is counting up or down. We have done 
research on three of the four sequence skills and on keeping-track methods. The 
first study compared performance on counting up and down by "n" and the second 
compared the two counting-up skills using larger second numbers than were used in 
the first study. Each of these studies and the work on keeping-track methods will 
be discussed in turn. 

Our own research and the research of Steffe, Richards, and von Glaserfeld (Note 
17) has indicated a considerable delay between the ability to count up or down 
with small numbers (one, two, three, and perhaps four) and with larger numbers. 
Counting up or down two or three seems able to be done with methods that are 
used relatively early and do not generalize to larger numbers. For a particular chain 
to be at the numberable chain level, we therefore require performances on one of 
the word sequence skills with "a" and "b" differing by five or more. 

Counting Up or Down by "n". We investigated the approximate age of acquisi
tion of the skills of counting up and counting back by "n" and also explored the 
effects on this skill of the size of "n" and of the word being counted from. Initial 
piloting in an urban school with a heterogeneous population indicated that many 
5-year-olds had considerable trouble counting up with second addends of five or 



82 K. C. Fuson, J. Richards, and D. J. Briars 

more, and some of them could not even produce a backward counting sequence. 
Therefore, a sample of 32 randomly selected 6-year-olds (half aged 6 years to 6 years 
5 months and half, 6 years 6 months to 6 years 11 months) from this school was 
given matched counting up and counting down problems. Three sizes of number 
words counted up or down were used (two, five, and eight), and three starting 
points in the word sequence were employed (three, seven, and fourteen). Instructions 
of the form, "Start counting with 'a' and count up (or back) 'n' more numbers," 
were provided, and repeated demonstrations were given ifnecessasy. Experimenters 
recorded any "keeping-track" behavior exhibited, and after the fmal problem they 
asked children who had displayed no observable strategies how they had known 
when to stop counting. The order of the counting-up/ counting-down sets of prob
lems was counterbalanced. Sex was balanced within each age by order cell. Two 
scoring systems were used to evaluate the responses. The strict system gave a point 
only for a correct answer; this system thus identified problems for which a correct 
keeping-track method had been selected and been used properly. The lenient scor
ing system gave credit for any answer that was within one number of being correct. 

Most of the children could do some, but not all, of the problems. Four children 
performed perfectly on the counting up tasks, while none did perfectly on the 
counting down tasks (although one child overcounted by one on one problem and 
had the rest correct). Only two of the 32 subjects could not do any of the counting 
up tasks correctly, while five did not get any of the counting down problems cor
rect. A 2 (Age: young sixes and old sixes) by 2 (Direction: counting up and count
ing down) by 3 (Size of number word counted up or down: two, five, and eight) 
analysis of variance was done on the strict and on the lenient criterion scores. For 
the strict criterion scores, the main effects of Direction [F(1, 30) = 14.73, p < .01] 
and Size [F(2, 60) = 42.74,p < .01] were significant. None of the interactions nor 
the main effect of Age attained significance. Counting up was significantly easier 
than counting down; performance was 51% correct for counting up and 33% cor
rect for counting down. Many children were still having difficulty producing a back
ward word sequence, and some still had to produce it piece by piece from the for
ward sequence. With respect to the size of number counted up or down, children 
did much better when they had to count up or count down two than when they 
had to count up or count down five or eight, and they did somewhat better for five 
than for eight. A Newman-Keuls test on the means for each size indicated that each 
of these size differences was Significant. The percentages of correct responses for 
counting up two, five, and eight were 79%, 45%, and 30%, respectively, and for 
counting down by these amounts were 68%,18%, and 13%, respectively. 

The strict criterion scores assessed correct procedures correctly carried out. The 
lenient criterion scores (corre ct score +1 or -1) gave credit to children who were 
using a basically correct procedure but who made some minor error. A 2 (Age) by 
2 (Direction) by 3 (Size) analysis of variance on the lenient criterion scores revealed 
several more subtle effects. As with the strict criterion scores, the main effects of 
Direction [F(l, 30) = 21.57,p < .001] and Size [F(2, 60) = 28.57,p < .001] were 
significant. Counting up was still significantly easier than counting down (74% vs. 
52% correct). A Newman-Keuls test on the means for each size of number word 
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counted up or down indicated that the difference between counting up or down by 
two and by five and the difference between counting up or down five and eight 
were each significant. A significant Size by Direction interaction [F(2, 60) = 6.83, 
p < .005] indicated that the difference in performance between counting up and 
counting down was very small for two (80% vs. 74%), but was larger for five (83% 
vs. 47%) and for eight (59% vs. 34%). A significant Size by Age interaction [F(2, 60) 
= 6.83, p < .005] indicated that the difference in performance between counting 
up and counting down was very small for two (80% vs. 74%), but was larger for five 
(83% vs. 47%) and for eight (59% vs. 34%). A significant Size by Age interaction 
[F(2, 60) = 5.18, p < .01] indicated that the difference in the performance of 
younger (6-6~) versus older (6~-7) children on the problems involving counting up 
or down eight was much greater than was the age difference for counting up or 
down five or two (35% vs. 57% correct for eight, 63% vs. 68% for five, and 79% vs. 
75% for two). A Direction by Age interaction that approached significance [F(1, 
30) = 3.03, P < .10] revealed a tendency for the younger children to perform the 
same as the older children on counting up (74% correct vs. 74%) but to do much 
more poorly on counting down (44% vs. 60% correct). These results on this narrow 
age range (6-6~ vs. 6~-7) seem to indicate that the ability to count down develops 
fairly rapidly from early to late in the seventh year and that the young 6-year-olds 
are working on, but have not yet mastered, ways to keep accurate track of the num
ber words. The findings of significant Direction and Size of Number Word effects 
with both criterion scores emphasizes the relative difficulty of counting down as 
compared with counting up and of keeping track of eight versus five versus two 
number words counted up or down. 

There seemed to be no difference in the accuracy of counting up or counting 
down as a function of the magnitude of the first number word (three, seven, or 
fourteen). By age 6, these children seemed to be about equally proficient at counting 
up from fourteen as from three. However, this result may be partially a result of a 
lack of complete counterbalancing of these items; the larger number words tended 
to come somewhat later, and so a practice effect may have been operating. !n addi
tion, only the number of errors and not the speed of response was recorded. Differ
ent measures might have indicated differences due to location in the number word 
sequence. The effect of the place in the number word sequence where the counting 
up/counting down occurs needs further study. 

Forward Sequence Skills. Twenty first graders attending a school whose popula
tion was computer selected to reflect the racial and economic composition of the 
city of Chicago participated in this end-of-the-year study. Because the difference 
between "a" and "b" was larger than in the previous study, young 7-year-olds were 
selected for the sample (age range 7 years 1 month to 7 years 5 months, mean 7 
years, 3.4 months). The "count up 'n' from 'a' " questions were of the same form 
as the last study: "Start counting with 'a' and count up 'n' more number words." 
The question employed for the number of words from "a" to "b" skill was of the 
form, "Count up from 'a' to 'b' and tell me how many number words you counted 
up." The difference between "a" and "b" was either medium (six and seven) or large 
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(thirteen and fourteen), and "a" ranged from two to twelve ("b" was always less 
than twenty). The questions for each skill were blocked, and the order in which the 
blocks were given was counterbalanced. As in the earlier counting up "n" study, 
some children (in this study, about half) counted the starting word as one of the 
"n" words and thus produced an answer one word before (one less than) the cor
rect answer. This occurred even more frequently for the "count up from 'a' to 'b' " 
questions (in 70% of the sample) and was probably exacerbated by the form of the 
question used here. In future studies a question form more directly parallel to the 
other question should be tried (i.e., one that begins, "Start counting with 'a' "). 
Overall, performance on these two skills was roughly the same. If both exact answers 
and those subject to the "one less than" error noted above are pooled and if re
sponses obtained by the use of number facts are also included, 73% of the "Count 
up from 'a' to 'b'" medium responses were correct, and 65% of those for the 
"Count up 'n' from 'a' " were correct. Number facts were only used in response to 
the latter questions-7% of the time. Performance for the large numbers "n" (thir
teen, fourteen) was much poorer, 15% and 20%, respectively. This difference re
sulted chiefly from the fact that most subjects used their fingers to keep track of 
the number of words they were prodUcing, and they could not figure out how to 
use their fmgers for numbers which exceeded their own ten fingers. Though overall 
performance for these two skills was generally at about the same level, for individual 
children it was not always so. Five of the subjects performed better on the "Count 
up from 'a' to 'b' " tasks than on the "Count up 'n' from 'a' " task, and eight per
formed better on the latter than on the former. Seven children performed equally 
well on both tasks, but three of these reflected ceiling effects and one, a floor effect. 
This finding of individual children showing superiority in one or the other of these 
skills should be explored in the future with tasks that have small differences between 
"a" and "b" (as well as larger ones) to ensure that subjects understand each type of 
task. 

Procedures for Keeping Track of n. All of the skills at this level require that one 
keep track of the number of words uttered in a given counting up or counting down 
production. Fuson (in press) developed a classification of the keeping-track methods 
observed both with word sequences and addition situations in her studies and those 
of others (e.g., Carpenter, Hiebert, & Moser, 1981; Carpenter & Moser, in press; 
Moser, Note 12; Steffe, Spikes, & Hirstein, Note 16; Steffe, Richards & von Glaser
feld, Note 17). This classification appears in Fuson (in press) and is presented in 
Table 2.13. The first type of keeping track of the second addend ( counting entities) 
is used in addition situations and requires only a word sequence at the breakable 
chain level. Objects, not words, are used for each addend, and it is objects that are 
counted. In the last two major types of keeping track methods ("matching the 
count" and "counting the count"), the word sequence must be at the numerable 
chain level, for words now form the addends which are matched with other types of 
countable units (e.g., fmgers or "beats" in an auditory pattern) or are counted to 
assess the numerosity of the second addend. 

The use of these various keeping-track methods has not been studied very 
systematically. The "counting real entities" method is the first one to develop; it 
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Table 2.13 Keeping-Track Methods 

Example: 8 + 5 = 13 

COUNTING ENTITIES 0 0 0 0 0 
Real t t t t t 

"E" N TN EL TV TH" 

(-, 
~/ 

(-, 
'j () 

t t t 
Represented "E N TN EL 

r- ,-, 
l ' \_1 -' 
t t 

TV TH" 
MATCHING THE COUNT 

Match count to estimate "E N TN EL TV" 

"E N TN EL TV TH" 

Match count to fingers ~~~~f1 
Match count to auditory pattern "E N-TN-EL TV-TH" 

COUNTING THE COUNT 

Auditory count of fingers 
(Chisenbop) 

(X means that finger is pressed 
down on the table) 

Auditory count of visual
symbolic (number line) 

Auditory count of auditory 
(double counting) 

Visual count of visual 
(slide rule) 

"Eight" 

"Three" 

"One" "Two" 

"Four" "Five" 
Fingers say 
thirteen. 

2 3 4 5 6 7 8 9 10 11 12 13 

"ot t TJEE t FI!E" 
TWO FOUR 

"EIGHT. NINE IS ONE, TEN IS TWO, ELEVEN IS 
THREE, TWELVE IS FOUR, THIRTEEN IS FIVE." 

o 1 2 3 4 5 6 7 8 9 10 11 12 1314 151617 

0123456789 

8 + 5 = 13 

* Abbreviations represent auditory counting words: 
E N TN EL TV TH 

(8, 9, 10, 11, 12, 13) 
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may involve the use of real entities already present or the use of readily available 
entities such as fingers. After that, for "n" four or greater, some children seem to 
use the "counting represented entities" (counting a mental representation of 
entities which mayor may not be in a figural pattern), while others use the "match 
count to estimate" method, the "match count to fingers" method (successively 
producing a fmger with each word until a given number of fmgers has been pro
duced), or the "match count to auditory pattern" method (producing words in a 
rhythmic pattern). Three of these are fairly accurate, but the "match count to esti
mate" method is not. It entails no visible means of keeping track and seems to con
sist of the production of additional words until "about enough" of these have been 
produced. It thus is probably only a breakable chain level production: a child may 
simply be counting up some approximate number of words with no well-defined 
notion of each word as a separate unit. The "match count to auditory" pattern is 
the method that was seemingly used by most children for n = 2 in our counting-up/ 
counting-down study; the sound of the next two words seemed to be sufficient to 
stop further production. All of the "counting the count" methods need to be learned 
in school, with the possible exception of the "auditory count of auditory words," 
which has been observed by all of the above researchers in a few children when 
there was no evidence that this method had been taught in school. For more details 
concerning these methods, see Fuson (in press). 

Uses of Sequence Skills in Addition and Subtraction. The word sequence skills 
at the numerable chain level permit tremendous advances to be made in the solution 
procedures available for addition and subtraction problems (see Table 2.8). A child 
can now solve problems like "8 + 6 = ?" by counting up six words from "eight," 
problems like "8 + ? = 14" by counting up from eight to fourteen or by counting 
down from fourteen to eight while keeping track of how many words have been 
produced, problems like "14 - 6 = ?" by counting up from six to fourteen or 
counting down from fourteen to six while keeping track, problems like "? + 6 = 
14" by trial-and-error counting up six from arbitrary numbers or by counting down 
six from fourteen while keeping track. Some first and many second grade children 
have been observed to use all of these word sequence solution procedures (Carpen
ter, Hiebert, & Moser, 19~1; Carpenter & Moser, in press; Houlihan & Ginsburg, 
1981; Moser, Note 12; Secada, Note 18; Steffe, Richards, & von Glaserfeld, Note 
17), with the particular solution procedure used dependent upon the sizes of the 
numbers involved and, for verbal story problem versions, upon the situation por
trayed in the story. These solution procedures all involve beginning the counting up 
or down with one of the addends rather than with one. They are called "counting 
on" and "counting back." For discussions of the additional concepts involved in 
these procedures see Fuson (in press), Steffe, Thompson, and Richards (in press), 
Briars and Larkin (Note 19), Davydov and Andronov (Note 20), and Steffe, 
Richards, and von Glaserfeld (Note 17). 

The discrepancy between the ability to count up with small and with large num
bers has its counterpart in the use of counting up in addition situations. When the 
second addend is one or two and objects clearly portray a counting-up addition 
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situation (Le., the number of objects is known and then one object is added), even 
some 3-year-olds can use counting up one word to fmd the total number of objects. 
In the word sequence acquisition studies reported in the earlier sections, children 
ascertained the number of blocks in a row and then one or two more blocks were 
added to the end of the row. When only one block was added, on at least one trial 3 
out of 12 3-year-olds uttered the word that had been the number of the row of 
blocks on the last trial and then its immediate successor. They said, for example, 
"Eleven, twelve. There are twelve blocks now." Six out of 12 5-year-olds, for at 
least 60% of their trials, counted on from their previous response when one or two 
blocks were added, and two more 5-year-olds counted on for at least 40% of their 
trials. Five months later 6 of those 12 children counted on for at least 90% of their 
trials and four more did so for at least 60% of their trials. However, when "n" is 
five or greater, we have seen that most 5-year-olds and many 6-year-olds do not 
even possess the numerable chain level word sequence skills, let alone being able to 
apply them in addition and subtraction situations. 

More Complex Sequence Skills. Counting up or down can be done by tens and 
by ones. These more advanced counting up and counting down skills permit the 
solution of two-place addition and subtraction problems. For example, 54 + 37 
could be solved by counting up from 54 three more tens and then seven more ones: 
"Fifty-four. Sixty-four, seventy-four, eighty-four. Eighty-five, eightY-Six, eighty
seven, eighty-eight, eighty-nine, ninety, ninety-one." Or this problem could be solved 
by counting up three decades from fifty and then counting up the ones: "Fifty. 
Sixty, seventy, eighty. Eighty-seven, eighty-eight, eighty-nine, ninety, ninety-one." 
The extent to which such counting up or down could be used to measure or to 
facilitate understanding of our base ten system of numeration or of the usual addi
tion and subtraction computational procedures might be examined in future research. 

Counting up or down repeatedly by the same number (e.g., counting up by eight: 
"Eight, sixteen, twenty-four, thirty-two, forty, forty-eight, fifty-six, Sixty-four, 
seventy-two") will yield the multiplication or division sequence (the "facts") for 
that number. Such sequences might be used in at least four ways. First, they might 
be studied for patterns which could facilitate the remembering of facts. Second, the 
lists for the larger numbers (say, six through nine) could be memorized as a first 
step in remembering the multiplication facts; the various lists would serve to organ
ize all of the separate multiplication facts. Then factors that went with each pro
duct would need to be learned. Something like this happens now with the fives: 
The list "five, ten, fifteen, twenty, ... " serves to circumscribe the "fives facts" and 
then one needs only to sort out a few particulars. Third, learning that one could 
generate multiplication and division answers by such counting up and counting 
down might add to a child's understanding of multiplication and division. Fourth, 
such generation procedures might be used in more limited ways-in the production 
of one fact from another. For example, 3 X 6 might be found from 2 X 6 by count
ing up six from twelve. Houlihan and Ginsburg (1981) reported the use of such count
ing up from known facts by second graders in addition and subtraction problems. 
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Bidirectional Chain Level 

The sequences below the numerable chain level are all strongly unidirectional. 
Each word is a vector-an entity with direction. The forward or backward recitation 
context in which each sequence is produced strongly influences the production. We 
have seen this directional influence earlier in forward intrusions when backward 
sequences are beginning to be produced. In our studies we have also observed back
ward intrusions in forward tasks when the forward tasks followed a backward con
dition. That is, a child seems to set a particular recitation context and then has 
some difficulty shifting out of it. A sequence at the bidirectional chain level pos
sesses two attributes that distinguish it from other levels: (a) strongly automatized 
forward and backward sequences that contain no directional intrusions, and (b) the 
ability to change directions rapidly and flexibly. At the moment the developmental 
relationship between the bidirectional chain and the numerable chain is not known. 
The bidirectional chain level may develop independently of the numerable chain 
level, or it may follow the latter. If these levels develop independently, some children 
will be at the bidirectional level without being at the numerable level and vice versa. 

Steffe, Richards, and von Glaserfeld (Note 17) discussed two uses of bidirectional 
word sequences: bidirectional counting and reversible counting. In bidirectional 
counting a child can indicate the counting number of a particular object in a row by 
counting backwards from a given counting word. For Steffe and co-workers, this 
bidirectional counting indicates that a child has connected the forward and back
ward counting actions and knows that they will result in the same counting word 
for that object. In reversible counting, a child makes a conceptual abstraction and 
can use backward counting from a known number in a row of objects to determine 
the numerosity of a group of those objects hidden under a cloth. 

The bidirectional level ability to change word production direction rapidly and 
flexibly enables a child to select the most efficient direction to use to solve a par
ticular problem. It also can lead to an understanding of the inverse relationship 
between addition and subtraction through either one of two routes: through relating 
forward and backward counting of the same set of objects or through relating 
counting up and counting down sequence skills. With respect to the former, children 
as young as 3 and 4 evidently understand in an intuitive way that "putting together" 
and "taking away" are inverse operations in the sense that, if the number of objects 
in a set has been altered, a child will, by "taking away" or "putting together," at
tempt to recover the original set (Brush, 1978; Gelman & Gallistel, 1978; Starkey & 
Gelman, in press; Blevins, Mace, Cooper, & Leitner, Note 21). However, these oper
ations are not quantified at this point; children will do the correct replacement 
operation but will not use the correct amount. A bidirectional chain used in count
ing objects would seem to be one way to lead to such quantification of the inverse 
operation. The relating of the forward and backward counting up/counting back 
sequence skills in order to understand the inverse nature of the addition and sub
traction operations may occur in several situations: in verbal problems, in object 
situations, and in symbolic situations (e.g., 8 + 5 = 13 is related to 13 - 5 = 8 and to 
13 - 8 = 5), and thus these may differ considerably. Most present models of addi
tion and subtraction problem solving place understanding of this inverse relation-
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ship at the highest level (Riley, Greeno & Helier, in press; Briars & Larkin, Note 19; 
Nesher, Note 22; Steffe, Richards, & von Glaserfeld, Note 17). Future research may 
uncover ways in which the number word sequence at the bidirectional level con
tributes to the understanding of this inverse relationship. 

Conclusion 

The sequence of counting words is one of the most important tools of early 
mathematics learning. Its acquisition is a structured process, with children showing 
consistent individual patterns before the full conventional sequence is learned. 
After acquiring initial segments of the conventional number word sequence, there is 
a period of elaboration during which various sequence skills are acquired and rela
tions between words in the sequence are established. The sequence is first used as a 
problem-solving tool in the act of counting objects and then later the counting 
words themselves become the objects that are counted. This elaborated, flexible, 
and easily produced sequence can then become a representational tool that is used 
in sophisticated counting procedures. In this chapter we have provided an outline of 
the acquisition and elaboration of the number word sequence. Further work is 
required for fuller and more detailed understanding of many parts of this develop
mental learning process. 

Our preliminary efforts at examining sequence number words have consisted 
largely of isolated studies of certain aspects of these changes. Such intensive and 
isolated efforts are needed in the future, but they need to be complemented by 
research that involves performance by the same child across many tasks and across 
longer periods of time. The developmental sequence proposed in this paper is a 
description of levels, of static states. To date there has been little focus upon the 
processes by which a child moves from level to level. It is hoped that future work 
will be able to move from attempting to verify performance at certain levels to 
explicating the transitions between levels. We also wish to reiterate our caveat at the 
beginning of the paper about our use of the word "levels." These levels surely are 
"messier" than Table 2.8 implies. However, they do seem to be useful conceptual 
distinctions which can facilitate our consideration of changes in children's acquisi
tion and elaboration of the sequence of number words. 
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3. Children's Concepts of Chance 
and Probability 

Harry W. Hoemann and Bruce M. Ross 

Interest in children's concepts of chance and probability has been prompted by 
several questions. Assuming that the development of a concept of chance and prob
ability is influenced by experience, what are the conditions that bring it about? 
What are its precursors? Is it acquired all at once, or is it acquired gradually over a 
relatively long period of time? At what age is its development complete? Does every 
mature adult have a similarly functioning concept of chance, or are there individual 
differences? If so, how are they to be explained? To what extent is a concept of 
chance a result of formal instruction in school? What kinds of training are likely to 
improve upon immature or deficient concepts of chance or probability? When mak
ing probability judgments, is there one optimum strategy that can be said to be cor
rect in each type of situation, or is there a variety of strategies more or less adequate 
or appropriate? To what extent is performance in a probability setting controlled 
by the reinforcing consequences of previous outcomes? What is the relationship 
between chance and probability concepts, on the one hand, and the development 
of linguistic ability to articulate them, on the other? In what ways are various prob
ability tasks alike, and how do they differ? What makes some tasks seem harder 
than others? What is the relationship between the development of concepts of 
chance or probability and cognitive development in general? 

These do not seem to be trivial questions. Indeed, many of them have been 
addressed in published research reports and monographs. The purpose of this chap
ter is to review procedures that have been devised to investigate some of these 
questions and to evaluate the conclusions that have tentatively been drawn. We 
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hope that this survey of empirical studies and their accompanying theorizing may 
help to establish probability concept development as an important and intriguing 
topic for psychological research. 

Piagetian Theory 

Piaget and Inhelder (1975), whose work stimulated much of the interest in this 
area, viewed children's understanding of chance as complementary to their under
standing of cause and effect. Without some comprehension of caused events, there 
is no frame of reference for identifying events that are due to chance. Thus, Piaget 
and Inhelder concluded that children's concepts of chance and probability are 
secondary and derived concepts, emerging out of their search for order and its 
causes. This hypothesis is consistent with the cornerstone of Piagetian theory, 
which is that the main task of the intelligent mind is to construct logical means for 
structuring and, thereby, understanding reality. If chance is the domain where logic 
does not apply, then chance events are those that are left over when logic has had 
its day. 

We have come to expect Piaget and his associates to invent ingenious tasks to 
investigate children's cognitive capacities. Their work in the area of chance and 
probability does not disappoint us. Their devices and procedures enable an examiner 
to produce mixtures, to rig outcomes, to generate normal, skewed, and uniform 
distributions, to work miracles, to permit random draws, and to elicit combi
nations, permutations, and arrangements of elements. The tasks are intrinsically 
interesting to children across a wide age range, and the results are ordinarily ob
tained relatively quickly, so that neither the subject nor the examiner is likely to 
lose interest. 

As in other Piagetian studies, the clinical method was employed, and the data 
consist of protocols derived from exposing children to a variety of contrived events 
and questioning them about their understanding of what they experienced. For 
example, in one protocol a child was presented with a sack of six red and two blue 
counters and asked, "If you remove a counter from the sack, but do not look 
inside, what color do you think it is likely to be?" "Red." "Why?" "Because I 
like red a lot." The question is repeated with six blue and two red counters. "Red." 
"But there are a lot of blue ones; don't you think that it will be more likely to be a 
blue one?" "Yes." The question is repeated with six blue counters and one white 
counter. "White." ''Why?'' "Because white is theftrst." The interview is continued 
until the examiner is satisfied that the limits of the child's reasoning have been 
established. 

The protocols are recorded as nearly verbatim as possible, and they are subse
quently classified as to the type of reasoning they reflect. For example, predicting 
that red will be the color drawn because it is the child's favorite color is indicative 
of a rather immature mode of thinking. It does not take into account the odds 
favoring red. This protocol would be classified as belonging to the first and earliest 
stage of development of a concept of chance. 
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Piaget and Inhelder's analysis of the protocols that they gathered yielded three 
stages of development corresponding to the now familiar preoperatory, concrete 
operatory, and formal operatory periods. Prior to about age 6, children have no 
well-defined concept of cause and effect; therefore, they have no way to concept
ualize what is fortuitous. For preoperatory children, everything is more or less 
caused, more or less fortuitous, and more or less miraculous. Concrete operatory 
children, from ages 6 to about 12, are able to discriminate two classes of events, 
one governed by the laws of cause and effect and bound by logical consequences 
and another characterized as random, mixed, unpredictable, and subject to chance. 
As long as the probability task is not too complex, they are able to calculate or at 
least to estimate the relative probability of alternative outcomes, and their per
formance in probability tasks tends to take into account the prevailing odds. In the 
formal operatory period, beginning about age 12, the arithmetical tools of combi
nations and permutations come into service, and the set of all possible chance 
outcomes for a given situation can be calculated or, at least, conceptualized. In 
addition, the law of large numbers provides a logical basis for making individual 
predictions, since choosing the most favorable odds at least guarantees that one will 
maximize gains across large numbers of trials. Thus, in the three stages outlined 
above we see, first, a lack of differentiation between caused and chance events, 
second, a differentiation and the beginnings of the quantification of probabilities, 
but an incomplete set of strategies for calculating odds in complex situations and 
for defining or enumerating all possible outcomes, and, fmally, an integration of 
deductive logic and concepts of chance as formal structures are developed for 
dealing deductively with chance events. 

The natural inclincation of the human mind to search for order and structure 
may be implicated in young children's inability to respond appropriately to chance 
events. They tend to see order where it does not exist and to deny the reality of dis
order even when they see it happening before their eyes. Given a tray with a row of 
marbles on one end, eight white and eight red, one can tilt the tray so that the 
marbles will roll to the opposite side of the tray. As they do, they will collide and, 
sometimes, exchange places. Gradually, after many trials, they will be thoroughly 
and irrevocably mixed. In the first stage of the development of a concept of chance, 
children predict that the marbles will eventually return to their original places, or 
that the whole set of red will find its way to the side originally occupied by white, 
and vice versa. The original, ordered condition of the mixture has a privileged 
status in the minds of preoperatory children, and they believe it will sooner or later 
be restored. They do not recognize that a random mixture, like Humpty Dumpty, 
will not be put back together again. 

According to Piaget and Inhelder (1975), preoperatory children do not under
stand the irreversible nature of the random mixture because they have not yet dis
covered operatory reversibility. Consequently, they have no logical frame of refer
ence for interpreting something as irreversible. When preoperatory children are 
asked to draw one marble out of a sack containing a mixture of marbles, they do 
not realize that their hand could by chance come into contact with anyone of the 
marbles at anyone time and with any of a large number of possible sequences if 
they came into contact with several of the marbles. Preoperatory children tend to 
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see a correspondence between aspects of the situation that, in fact, have no causal 
connection. In the example cited above, it was predicted that red would be the 
color drawn because red was the child's favorite color. Another common basis for 
young children's predictions is the unique status of the marble that they happen to 
be thinking of. For example, if there is one red marble in the sack among many 
others of different colors, the preoperatory child may predict red because there is 
exactly one red marble in the sack and he or she was asked to draw out exactly one 
marble. These errors reflect a different concept of what is in the sack than that 
held by older children, who understand that the mixture is irreversible, and who 
realize that on a blind draw any of the colors could occur but not for reasons such 
as those cited by the younger children. 

Weisz (1980) has recently documented preschool children's inability to recog
nize the noncontingency of unrelated aspects of a chance event. In a card game 
whose outcome depended solely on the luck of the draw, kindergarten children uni
formly explained high or low winnings as a result of skill or concentration, and the 
kindergarteners predicted that older, practiced, and smarter children would do 
better than younger children, who had less practice and were not as smart. Even 
fourth graders had some lingering doubts about the irrelevance of these factors, 
though the game had been designed to produce outcomes solely due to chance. 

Piaget and Inhelder (1975) also relate young children's failure to quantify prob
abilities to their inability to deal with part-whole relations in the classic class
inclusion task. Given a display of three tulips and two daisies, preoperatory children 
will argue that there are more tulips than flowers. Once the tulips are thought of as 
tulips, they are no longer thought to be flowers. Probabilities also involve part
whole relations. The whole is the set of all possible outcomes, the denominator of 
the probability fracton, and the important part of that whole is the set of favorable 
cases, which goes in the numerator. Thus, the quantification of probabilities requires 
decomposing all possible outcomes into favorable and unfavorable cases, so that the 
favorable cases can be assigned to the numerator, and then recombining the out
comes into a whole, all possible outcomes, so that they can serve as the denomi
nator. However, these operations are carried out simultaneously rather than con
secutively. The probability of an event is seen as the resulting fraction. But to think 
simutaneously of the favorable cases both as the numerator and as a part of the 
denominator of a fraction is precisely what preoperatory children are unable to do. 

Piaget and Inhelder concede that young children sometimes make predictions 
that appear to be based on logical considerations. For example, they seem to know 
that each of two or more alternatives may sometimes occur. Thus, if they predicted 
a draw of a red counter from a pouch on the first trial, they may predict blue on 
the second trial. But they make this prediction not because they have weighed the 
odds and consider what is probable, but because they feel a need to compensate for 
the previous outcome. When asked why they predicted blue, they may reply, 
"Because it is blue's turn." The colors, like children, must share. It is only fair. 
What appears at first blush to be a precursor of a concept of probability, since it 
involves distributing predictions across the possible outcomes, turns out in the end 
to be a denial of chance and probability, since it imposes an orderliness on the out
comes that is derived from ethical necessity. 
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Young children also sometimes make predictions that appear to be the result of 
their experience with previous outcomes. For example, they may base their pre
dictions on the frequency of previous occurrences. If red has been drawn more fre
quently than any other color on several draws from a sack, the young child may 
predict red, explaining that red has occurred most often before. Again, this would 
appear to be a precursor of a concept of probability, since frequency over larger 
numbers of cases is an appropriate empirical approach to determining probability. 
The greatest frequency is associated with the highest probability. But here too 
Piaget and Inhelder caution that the behavior is deceptive. For the very young child, 
frequency is an attribute of a particular outcome (red) that may attract the young 
child's attention and serve as the basis for a prediction, but so may other attributes, 
such as the fact that red goes very well with pink, or that a red marble is the first 
marble in the display that has been placed nearby as a memory aid for what is in 
the sack. The child's mention of frequency would be impressive if this were the 
only attribute that the child was prone to use as a basis for prediction and if there 
were objective grounds for predicting red in addition to frequency across a small 
number of trials. According to Piaget and Inhelder, the child is merely reflecting a 
belief in a hidden order or regularity, which is manifesting itself in the frequency 
with which a given event has occurred. It would be gratuitous to call this the 
beginnings of a concept of chance. 

Piaget and Inhelder also investigated children's understanding of normal, skewed, 
and uniform distributions. To study children's understanding of normal and skewed 
distributions they devised an apparatus which funneled balls into slanted boxes 
with partitions at the base to catch the balls. When the funnel was placed in the 
middle of a box, the balls could be expected to fall on either side of the center with 
approximately equal frequency, yielding a symmetrical distribution. When the fun
nel was placed off center, near the side of the box, the balls should pile up on that 
side in a skewed distribution. Young children's predictions as to where the balls 
would go when dropped into the funnel reflected no concept at all of a symmetrical 
or skewed distribution. In the same vein, Piaget and Inhelder devised an apparatus 
simulating the falling of rain drops on squares of pavement. Older children, as 
expected, predicted that the squares of pavement would receive approximately 
equal numbers of drops as the rain continued to fall. Young children distributed 
the drops either markedly unevenly, with one or two squares receiving far too many 
drops as the rest of the squares were ignored, or much too uniformly, with each 
square receiving exactly one drop after the other, as if the drops were forced to 
treat the squares like children and give each one a turn. 

The limitations of young children's understanding of chance and probability are 
especially apparent when both caused and chance events are made to occur in the 
same setting. Piaget and Inhelder devised a spinner apparatus with colored sections 
of equal size to yield a uniform distribution of equally probable outcomes. As a 
second step, they added match boxes loaded with unequal weights, and they rigged 
one of the match boxes with a magnet so as to produce biased outcomes with the 
apparatus. In the first condition, when the apparatus was fair, young children 
believed inappropriately that they could predict a chance outcome or that they 
could control the outcome by aiming or thinking hard or by spinning it just hard 
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enough to make it stop on a predicted color. They saw causal relations where none 
existed, for example, between adjacent spaces or successive trials ("It will land on 
green because that is next to red") or between the spinner's outcome and some 
hidden intent ("It will land on red because it wants to"). In the second condition, 
when the apparatus was rigged, they were not as surprised as they should have 
been that the bar kept stopping at the same place. When they were asked whether 
it did that by chance or whether there was a reason, they sometimes decided that it 
was chance. 

By the same token, young children are not as impressed as they should be by an 
event so improbable as to be miraculous, such as 15 out of 15 heads or the same 
color counter drawn from a sack time after time even though the sack is supposed 
to contain other colored counters. It is only in contrast to lawful regularity that 
something is seen as a miracle, that is, contrary to natural law. For young children 
the absence of a system of deductive logic leaves everything more or less miraculous. 
In a probability setting virtually anything can happen, and many things do. 

According to Piaget and Inhelder (1975), the development of a concept of 
chance and the ability to quantify probabilities takes a long time. During the 
6-12-year age range, the concrete operatory period, children are more likely to base 
their predictions on the odds, especially when the number of possible outcomes is 
limited and when the odds are long and easy to estimate. Statistics replace fairness 
as the basis for making alternative predictions, and the more idiosyncratic bases for 
making predictions, such as color preferences, are no longer observed. 

Still lacking at the concrete operatory stage is a complete system for dealing 
with complex probability situations and with large numbers of possible outcomes. 
The enumeration of all possible outcomes may require the operations of combi
nations or permutations to exhaust the possibilities. The ability to quantify proba
bilities in complex cases requires formal, combinational thinking. 

Even when combinational operations are not worked out in detail so as to yield 
a numerical result, the ability to conceptualize the class of all possible outcomes 
still provides a logical basis for coping with experiences that would otherwise lie 
outside the realm of deductive reasoning. For example, in the case of the tray of 
marbles that are rolled back and forth to create an irreversible mixture, children in 
the formal operatory period are able to consider each possible arrangement of the 
marbles as one out of a very large number of possible arrangements. Armed with 
that concept, they can concede that the original, ordered array may reoccur, but 
only as one very rare event out of a very large number of possible alternative events. 
Moreover, formal reasoning provides a frame of reference for understanding chance 
events in general. One can appeal to the law of large numbers to make a prediction 
of a single chance event, since choosing the outcome with the most favorable odds 
insures the best results "in the long run." 

It is the unique capacity of formal thought to elevate the realm of the possible 
to a status even more important than what is real that gives it a special talent for 
resolving a rather basic question, namely, how can one deal deductively with events 
that are unpredictable? Operatory logic cannot assimilate one fortuitous event, but 
it can assimilate the class of all fortuitous events, which taken together comprise 



Children's Concepts of Chance and Probability 99 

the totality of what is possible. Moreover, the law oflarge numbers can be invoked 
to infer that the frequency of an event is governed by the probability of the occur
rence of that event. Now chance has lost its character as the realm of the unpre
dictable. It is no longer true that anything can happen and many things do. Every
thing that happens, even what happens by chance, is reducible to one of the out
comes among the many that are possible by chance. Nothing is new. Everything 
must of necessity remain within the framework of deduced possibilities. Thus, 
operatory intelligence assimilates chance. 

Subsequent Studies 

Task Analysis 

One of the first studies reported in the English language dealing with probability 
concepts was by Goodnow (1955). She compared a two-choice gambling task and a 
two-choice probability-learning task with comparable apparatus. Probability-learning 
tasks also typically involve two choices, but the payoff ratio is not divulged to the 
subject nor are they given any information as to what factors may govern payoffs at 
either alternative. Goodnow found that subjects tended to follow different strategies 
in the two tasks. In the probability-learning setting, subjects were dissatisfied with 
less than 100% success, and they accepted initial losses as they searched for a sys
tem that might eventually lead to a solution. In the gambling task, subjects were will
ling to accept a payoff of less than 100% as long as the gains outweighed the losses. 

Ross (1966) placed a small number of balls of two colors in an opaque box and 
required subjects to predict sequential draws with and without replacement. The 
subjects were instructed to respond non verbally by pointing to the color they pre
dicted. Correct responses when only one ball remained in the box indicated that 
subjects were able to keep track of its contents even when draws were made with
out replacement. Ross' subjects, whose ages corresponded to the age ranges normally 
considered to be in the concrete operatory and formal operatory periods, made 
predictions against the odds when the odds were not too long against the predicted 
outcome, but they tended to go with the odds when they were clearly uneven. 

[We recognize that the assignment of children to preoperatory, concrete opera
tory, and formal operatory periods on the basis of their chronological age is not 
always defensible. The age norms for these periods allow for considerable variability 
even within the same cultural setting and especially between subjects from a differ
ent socioeconomic status or from a different culture. Except when the context 
requires the operatory level as a theoretical (piagetian) assumption, we shall use 
more specificlabeling and refer to their schoollevel or the age level of the children.] 

Studies of Preoperatory Children 

Yost, Siegel, and Andrews (1962) took issue with Piaget's characterization of 
preoperatory children as having no concept of chance or probability. They cited 
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five factors that they felt might account for Piaget's negative results: (a) Piaget 
relied heavily on verbal tasks; (b) he did not control for color preferences; (c) the 
model that served as a memory aid proved to be a distracting influence; (d) no rein
forcements were given for correct responses to provide motivation; and (e) no pro
vision was made for statistical treatment of results. 

To contrast results obtained under the conditions enumerated above with results 
obtained in a setting designed to overcome these limitations, Yost and co-workers 
prepared a two-choice decision-making task with provision for reinforcements, for 
nonverbal responding, and for controls for color preferences. Significant differences 
were obtained between results in the decision -making task and results in a prediction 
task patterned after a study described by Piaget (1950). Five of nine subjects in 
the decision-making task performed above chance. In a second session, in which 
subjects were assigned to the opposite task from the one to which they had pre
viously been assigned, at least half the subjects in both groups performed above 
chance. 

Davies (1965) compared threshold ages for demonstrating a concept of probabil
ity with verbal and nonverbal responses. With nonverbal responses 3-year-old 
children showed some evidence of a grasp of probability, and all of the 6-year-old 
subjects responded appropriately. Not until age 9, however, were all of the children 
able to verbalize their understanding of the concept. 

Davies' apparatus eliminated the need for a model of the contents of a closed 
container. She designed a two-choice lever-pressing apparatus that appeared to be 
attached to two gum ball machines containing colored marbles-one-fifth red and 
four-fifths white in one jar and four-fifths red and one-fifth white in the other. The 
visual display also made preliminary mathematical calculation of the odds unneces
sary, since they could be estimated on the basis of a casual visual comparison of red 
and white marbles in the two containers. 

Goldberg (1966) modified slightly the procedures of Yost, Siegel, and Andrews 
(1962) by providing equivalent reinforcing conditions (knowledge of results) for 
the two-choice, decision-making task and the prediction task. Of 16 subjects rang
ing in age from 3 years 10 months to 5 years 1 month, 6 performed above chance 
levels in the prediction task, and 12 performed above chance levels in the two-choice 
decision-making task. These results are consistent with the fmdings of Yost and co
workers, but they show further that the absence of reinforcement in Piaget's pro
cedures does not account for children's superior performance in the task requiring 
a choice between two alternatives. 

The studies of Yost, Siegel, and Andrews (1962), Davies (1965), and Goldberg 
(1966) have in common the conclusion that when preoperatory children are given a 
fair test of their probability concepts, many of them perform above chance levels, 
suggesting that they have acquired some understanding of chance and probability. 
But neither they nor Piaget (1950) provided any evidence that probability concepts 
were required for successful performance on their tasks. In spite of their high face 
validity, some probability tasks may generate successful performance on the part of 
subjects who have no understanding at all of probability. For example, if a child 
who likes licorice jelly beans is offered two handfuls, one in which there are many 
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black beans (e.g., four-fifths black and one-fifth other colors) and one in which 
there are only a few (e.g., one-fifth black and four-fifths other colors), one would 
expect that the child could choose the hand with the greater number of black jelly 
beans without invoking a concept of probability. 

Estimating Magnitudes and Probabilities 

To ascertain whether commonly used probability tasks require an understanding 
of probability concepts for above-chance performance, a series of studies was 
carried out using tasks requiring a choice between two alternative odds and tasks 
requiring predictions with a single set of prevailing odds (Hoemann & Ross, 1971). 
Identical situations were presented to preoperatory and concrete operatory children 
with two types of instructions, one requiring a probability judgment and the other 
requiring a magnitude estimation. In the first two experiments, spinners with black 
and white wedges were used to present relative proportions of black and white 
areas. In the probability instruction for the two-choice, alternative odds task, 
subjects were asked, "If black is a winner (white for half the trials), where will you 
spin to win, here (the spinner on the right) or here (the spinner on the left)?" The 
position of the correct response was right for half the trials and left for half the 
trials. In the magnitude estimation instruction subjects were asked, ''Which circle 
has the most black in it (white for half the trials)?" In the probability instruction 
for the prediction task, subjects were shown a single spinner and asked, ''What do 
you think the pointer will point to when it stops, white or black?" In the magni
tude estimation instruction, subjects were asked, "Which color is the most, white 
or black?" 

If performance in the two types of instructions yielded the same result, it would 
appear that comparing proportions and estimating odds was not required for a cor
rect response. In the two-choice, alternative odds task this was the outcome ob
served. The differences in performance in the probability task and in the magnitude 
estimation task were very small at all age levels tested, regardless of the difference 
between the proportions presented in the two alternatives. It was concluded that 
probability concepts do not contribute to correct solutions in the two-choice task. 
In the prediction task, on the other hand, errors in the probability instruction were 
significantly higher than errors in the magnitude estimation instruction at all age 
levels. Moreover, children 5 years old and older were sensitive to the prevailing odds, 
that is, they made more accurate predictions as the odds differences increased. Four
year-old children, on the other hand, performed similarly, regardless of the magni
tude of the odds, and their mean performance was only 56% correct, which is not 
significantly above chance. It was concluded that probability concepts are required 
for successful performance in a prediction task. Moreover, in support of Piaget and 
Inhelder's (1975) analysis, it was concluded that the 4-year-old children showed no 
evidence of a concept of probability. 

Ordinarily one would not want to draw too strong a conclusion from a no-differ
ence fmding. As a matter of fact, the conclusion drawn from the data was not that 
the two-choice task fails to measure probability concepts. It may in a mature sub-
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ject who evaluates the alternatives and chooses the more favorable odds. The con
clusion drawn was that children may perform at better than chance levels without 
using (or having) a concept of probability. They may be simply choosing the alter
native with the greater amount of the specified color. The question is one of task 
validity rather than one of hypothesis testing. The burden of proof is on researchers 
who use the two-choice task for the purpose of measuring probability concepts to 
show that the task measures what it is supposed to measure. 

Piaget and Inhelder (1975, pp. 146-148) offer an explanation for the relative 
difficulty of the one-choice prediction task compared to the two-choice, alternative 
odds task. To perform correctly in the prediction task, it is argued, children must 
decompose all possible outcomes into favorable and unfavorable cases, and then 
construct a fraction that uses the favorable outcomes in the numerator and the 
total number of possible outcomes in the denominator. With the two-choice task, 
on the other hand, no decomposition of possible outcomes is necessary as long as 
either the numerator or the denominator remains the same in both of the alterna
tive odds. In a spinner task the sum of the sectors of the circles are always equiva
lent; consequently, all that the children had to do to make a correct response was 
to compare the relative size of the black areas when black was the favorable out
come or the relative size of the white areas when white was the favorable outcome. 
The larger amount would be the correct response. This is exactly the same demand 
made of children in the magnitude estimation task. 

Is there a way to make the two-choice task a probability task? Following Piaget 
and Inhelder's reasoning, the answer would appear to be "Yes." If colored marbles 
were used instead of spinners, one could arrange that neither the number of favor
able cases, nor the number of unfavorable cases, nor the number of total possible 
outcomes was the same in either alternative. For example, one could offer one red 
counter and two blue counters in one alternative, and two red counters and five 
blue counters in the other alternative. If red were designated a favorable outcome, 
it is highly unlikely that 4-year-old subjects would perform successfully at better 
than chance levels in such trials. Chapman (1975) designed an experiment includ
ing such trials and examined children in grades 1, 3, and 5 and college students. 
The results showed that even fifth grade children did not fully understand propor
tionality. 

Even with spinners one can arrange that the sums of the favorable and the 
unfavorable outcomes is not the same in the two circles by designating a "spin 
again" area in one of the circles. An outcome in that area could be treated as 
though it did not count. With such an apparatus one could offer alternatives in 
which the smaller of two areas of color was the correct choice from a probability 
standpoint because it offered better odds. Consistent with Chapman's (1975) 
results, it was determined (Ross & Hoemann, 1975) that such a task is not per
formed successfully without some coaching. 

Even when whole circles are used as spinners, it might still be possible to offer a 
task that requires some notion of probability. Subjects may be required to compare 
different colored alternatives, as in the questions, "Where will you spin to win?" 
"Will you spin here (on the right) for black or here (on the left) for white?" A direct 
comparison of the magnitude of these different colored areas can be justified only 
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if one recognizes that there is a logical basis for equating the possible outcomes in 
the denominator of the compared fractions. One cannot test such implicit under
standing, but if performance in a two-spinner task comparing black in the one circle 
and white in the other circle proves to be similar to performance in a one-spinner 
prediction task, this would provide some evidence that this two-spinner task, like 
the one-spinner prediction task, requires some understanding of probability concepts 
for a correct performance. A third experiment was conducted (Hoemann & Ross, 
1971) in which such a two-spinner task and a comparable one-spinner task were 
administered to 7 -year-old subjects. The results in the two tasks proved to be quite 
similar, leaving open the possibility that the two-spinner task with different colored 
alternatives, unlike the standard two-spinner task, might require some knowledge of 
probability for its solution. 

Alternative Hypotheses 

Not all researchers have accepted the magnitude estimation hypothesis for young 
children's success in the two-choice task. Perner (1979a) proposed two alternative 
hypotheses for the "double spinner facilitation effect." He cited Chapman (1975) 
and his own previous study (perner, 1979b) as examples of studies that had failed 
to replicate the effect. He noted that both of these studies had induced a problem 
solving set in their subjects either by having subjects solve problems prior to engaging 
in the probability task or by recruiting subjects from a museum environment in 
which they had been engaged in problem-solving tasks. Studies showing superior 
performance in the two-choice task, on the other hand, had induced a different 
kind of set, namely to express a preference. Perner hypothesized that subjects 
primed to express a preference would perform better in a two-spinner task than in a 
one-spinner task, while subjects primed to analyze the situation and "figure out" 
which was the better choice would perform similarly in both tasks. Moreover, 
preferentially primed subjects were expected to be misled by spinners with decep
tive disks in which the shorter segment was made fatter so that it presented a larger 
area of the minority color. 

A second alternative hypothesis proposed by Perner (1979a) focused on the 
amount of variability in the displays representing the odds in studies showing 
better performance in the two-choice task. The greater variability in the num
ber of elements or in the sizes of the areas may have attracted attention to these 
features of the display. Perner hypothesized that subjects exposed to more across
trial and between-trial variation would perform better on the two-spinner task than 
the one-spinner task, but subjects exposed to homogeneous trials would perform 
similarly in both tasks. 

The hypotheses were not supported by the data. Neither preferential priming 
nor more variability in odds differences produced the predicted results. Perner con
cluded that previously reported differences favoring the two-choice task are the 
result of idiosyncratic differences in procedures and cannot be replicated. 

Close scrutiny of Perner's data, however, lend considerable support to the mag
nitude estimation hypothesis proposed by Hoemann and Ross (1971) and extended 
to school-age children by Chapman (1975) and to adolescents by Ross and Hoemann 
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(1975). Perner tested two age levels, 4-5 and 6-7. He also presented long (7:1) and 
short (5 :3) odds. Of course, it is the younger subjects at preoperatory age levels 
whose performance is of special interest. At close odds (5 :3) they performed at or 
near chance levels in both tasks (61.0% and 55.6%). At long odds (7:1) their per
formance was near chance in the one-spinner task (58.8%) but much improved in 
the two-spinner task (74.8%). At close odds the older subjects scored 72% in the 
one-spinner task and 70% in the two-spinner task. At long odds their scores were 
83% (one spinner) and 75% (two spinner). These data are consistent with the con
clusion drawn by Piaget and Inhelder (1975) that preschool children do not have a 
sufficient understanding of probability to make predictions based on the odds even 
when the odds are very discrepant. The results replicate previous studies in that the 
4- to 5 -year-old children at 7: 1 odds performed much better in the two-spinner task. 
The fact that their performance was best when the odds were most discrepant sup
ports the magnitude estimation hypothesis for their success on this task. 

Even stronger support for the magnitude estimation hypothesis was generated 
by Perner's ingenious deceptive disk manipulation. If preschool children tend to 
choose the larger area of color rather than the better odds in the two-spinner task, 
then Perner's deceptive disks should induce them to prefer the alternative with the 
poorer odds because of the illusion of greater area. Thus, they should perform at or 
below chance levels in the two-spinner task when given the deceptive disks. In the 
one-spinner tasks with deceptive disks the preschool children's scores were 53.7% 
at long (7: 1) odds and 36.0% at close (5 :3) odds, and in the two-spinner task they 
were 38.0% at long odds and 46.8% at close odds. The older subjects were also 
somewhat misled by deceptive disks at close odds (58.4% in the one-spinner task 
and 30.6% in the two-spinner task), but less so at long odds (78.8% in the one
spinner task and 73.2% in the two-spinner task). 

Thus, although Perner was unable to fmd confirmation for the alternative expla
nations that he had proposed for preoperatory children's success in the two-spinner 
task, preferential priming and odds variability, his data are consistent with the view 
of Piaget and Inhelder that preschool children perform at or below chance levels in 
prediction tasks. His data also support the magnitude estimation hypothesis for pre
school children's success when they perform above chance levels in two-choice 
tasks. Since this hypothesis makes it unnecessary to invoke complex probabilistic 
reasoning or to attribute to young children advanced cognitive concepts, it should 
be preferred over alternatives that are less parsimonious. But what about the studies 
cited by Perner (1979a) that failed to fmd a difference between one-choice and 
two-choice tasks, for example, Perner (1979b) and Chapman (1975)? 

First, it needs to be mentioned that Chapman's conclusions are consistent with 
the position that it is not until the formal operatory period that children evaluate 
proportions in order to make probabilistic judgments. Prior to that, when the larger 
number of favorable outcomes was found in the alternative offering poorer odds 
(e.g., 2 blue, 1 yellow versus 3 blue, 3 yellow, with blue as the target color), children 
made many errors and showed only gradual improvement across Grades 1-5. 

Chapman (1975) reported that his subjects' verbal reports revealed a relatively 
unsophisticated strategy for solving probability tasks. His subjects based their 
choice of alternatives on differences in the quantity of items rather than on the pre-
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vailing odds. This strategy leads to a correct response in both one-choice and two
choice tasks except when the two-choice task presents the kinds of alternatives 
described above, namely, 2 blue, 1 yellow versus 3 blue, 3 yellow-blue target. 
Finally, it must be argued that Chapman's data are not relevant to the issue Perner 
raised, since it is preschool children's above-chance performance in the two-choice 
task that is hard to explain if it is a valid test of their probability concepts. None 
of Chapman's subjects was younger than first grade. . 

Given Chapman's data, it is, perhaps, more productive to ask why preschool 
children do not use magnitude estimation in the one-choice task, since it seems to 
work so well for older children in most circumstances. Piagetian reasoning would 
call attention to the fact that the outcome of the probability event is specified in 
the two-choice task, for example, a target color. The subjects' responses are limited 
to a choice of which bag or spinner they prefer in order to obtain the specified 
outcome. In the one-choice task, on the other hand, it is the outcome itself that 
must be predicted. If preschool children believe that these outcomes are influenced 
by a variety of hidden causes, from their own color preferences to the obligations 
of the colors to take turns, there is nothing to prevent them from finding an intel
lectually gratifying basis for predicting any of the possible outcomes. But concrete 
opera tory children are constrained by their newly acquired logical framework to 
consider some of these grounds for a prediction to be irrational. This leaves magni
tude estimation as a plausible basis for a prediction. It is easy to do, especially when 
the odds discrepancy is great. No computations are necessary. Also in the one-choice 
task it always leads to the best chance of success, since the larger number of ele
ments or the larger area of a standard disk always offers the preferred odds. Perner's 
data support this interpretation. The highest score found in any of the eight cells 
of his data for standard disks (two tasks X two age levels X two odds differences) 
was the score earned by the older children in the one-spinner task at long (7: 1) 
odds, 83.2%. 

There is, in reality, only one study reporting no "double spinner facilitation 
effect," namely, Perner's own prior investigation (1979b). Perhaps, as Perner 
(1979a) suggested, there were idiosyncratic procedures involved in that study 
leading to the discrepant fmding. But those are not sufficient grounds to conclude 
that the phenomenon cannot be reliably replicated, since it has already been 
replicated at least three times (Goldberg, 1966; Hoemann & Ross, 1971; Yost, 
Siegel, & Andrews, 1962), and since it is supported by Perner's own data (1979a) for 
preschool children at 7: 1 odds. 

On the basis of existing data, there does not seem to be any compelling reason to 
give up the magnitude estimation hypothesis for young children's successes in two
choice probability tasks. It is parsimonious, that is, it makes the fewest assumptions 
about the level of ability required by subjects for a successful performance. It is 
testable in that if young children are making probability choices on the basis of 
relative quantity, they ought to be misled by deceptive disks in which the area that 
appears to be larger offers poorer odds. This prediction has been verified indepen
dently by Ross and Hoemann (1975) and by Perner (1979a). Further, the magni
tude estimation hypothesis calls into question the validity of the usual two-choice 
task as a measure of probability concepts. If subjects not only do not need to have 
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a concept of probability to succeed but actually have a tendency to choose the 
larger number of favorable cases or the larger area of a favorable outcome, regard
less of the odds, one cannot draw inferences about their probability concepts from 
their success in such a task. 

If one excludes preschool children's success in the two-choice task from con
sideration, the conclusion drawn by Piaget and Inhelder (1975) that preoperatory 
children do not have a concept of probability appears to have been replicated 
repeatedly, inasmuch as children prior to age 6 not only do not perform above 
chance in the one-choice task but they do not even seem to be sensitive to odds dif
ferences. Their performance is almost as poor in trials with heavy odds favoring a 
particular outcome as in trials offering nearly even odds. Moreover, Perner (1979b) 
combined subjects from ages 3.9 to 9.9. It is unclear from the results whether the 
preschool children did or did not show superior performances in the two-spinner 
task, since the percentage scores (75%, double spinner; 74%, single spinner) are not 
reported separately for each age level. There was one condition in which results 
were broken down by age, a single spinner with two pointers; in that condition the 
4-year-old subjects simply spun the top pointer 19 out of 20 times, regardless of the 
odds. This "two-pointer" spinner was designed to create a one-spinner task some
what comparable to a two-spinner task in that two events could be conceptualized, 
one for each pointer, even though there was only one spinner. But the tendency of 
the younger subjects to spin the top pointer resulted in lower scores in this con
dition (70%) than in any of the other spinner conditions. 

Alternative Theories 

Up to now we have considered studies largely stemming from Piaget and 
Inhelder's theorizing. This is the case even when results have been found that are 
interpreted as contradictory to the ideas of Piaget and Inhelder. Other approaches 
have been advanced, however, that put the interpretation of children's probability 
performance on altogether different bases. We shall single out two of these alter
native conceptual approaches for consideration here. 

Fischbein (1975) in a book-length summary and interpretation of the child 
probability literature (including four experiments of his own) has put forward an 
intuitional basis as the key to probability understanding: 

We have defined an intuition as an action programme which is partially autono
mous within cognition, and which is a synthesis of individual experience in a 
given domain. Its global, immediate nature enables it to control action instan
taneously. According to this view, probability matching is the expression of a 
particular intuition, the intuition of relative frequency. (Fischbein, 1975, p. 58) 

(The emphasis here and in subsequent quotations is Fischbein's.) At the same time, 
"Intuitions themselves become more 'rational' with age, in that they adopt strate
gies and solutions which are based on rational grounds" (Fischbein, 1975, p. 65). 
But Fischbein immediately acknowledges that subjects do not necessarily reach cor
rect conclusions, an example being negative recency (gambler'S fallacy). 

Fischbein's lumping of probability learning experiments with their large number 
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of consecutive trials (sometimes hundreds) together with probability concept experi
ments is a different approach from that taken by the present writers, who have con
sistently maintained (Ross, 1966) that probability learning experiments do not do 
much to elucidate probability understanding. A considerable theoretical difficulty 
in giving probability learning experiments a developmental interpretation is that 
probability matching results tend to bear a curvilinear relationship to age. This find
ing was first pointed out by Weir (1964), and Fischbein makes some attempt to ex
plain this striking result. It is necessary that Fischbein do this since he claims that the 
"primary intuition of chance is present in the everyday behavior of the child, even 
before the age of 7. Chance is equivalent to unpredictability, and not necessarily to 
the smallness of odds" (Fischbein, 1975, p. 118). One of Fischbein's explanations is 
that the 

pre-school child grasps more readily than the adult that the maximum of correct 
predictions can be obtained by adopting the 'pure' strategy, i.e. constant pre
diction. This is not a far-fetched explanation; it accords with results we have ob
tained which demonstrate the superior ability of small children to estimate odds 
(in certain experimental conditions). (Fischbein, 1975, p. 119) 

We disagree with the interpetation that young children have a superior ability 
to estimate odds, but we have substantiated Weir's results and analyzed probability 
learning results in some detail (Sullivan & Ross, 1969). It was found that with an 
80:20 probability ratio for a two-choice probability task, majority choice as an 
overall percentage was more alike for 5-year-olds and 17-year-olds than for either 
9-year-olds or 13-year-olds. With a 67 :33 probability ratio the 5-year-olds preferred 
the majority choice more and were closer to probability matching than children at 
any other age including 17-year-olds. Needless to say, our interpretation of these 
counterintuitive results are on other bases than probability intuitions. 

Probability concept experiments have also been extensively considered by Fisch
bein. His proposition that young children have intuitions of chance and relative 
probability is incompatible with the conclusions drawn by Hoemann and Ross 
(1971), and he considers their experiments to be flawed both in procedure and 
interpretation of results. The argument is made that since each of the probability 
judgment tasks is dependent on perception, the differences obtained between the 
several Hoemann and Ross experimental procedures result from differences in per
ceptual complexity rather than children's variations in ideas about chance and 
probability. Hoemann and Ross (1971) did not, however, claim, as Fischbein sug
gests, that no probability component is involved in tasks where simple perceptual 
comparisons can produce a correct solution. 

With regard to the rmding that perceptual judgments and probability instruction 
tasks give similar results with young children if no ratio formulation is necessary, 
Fischbein makes an argument that strikes us as distinctly odd: "The problem as 
posed is in terms of estimating odds, and a correct response indicates that the child 
really does (althOUgh no doubt implicitly) make use of the idea of chance. Other
wise the child could not respond to this question as it is posed!" (author'S excla
mation mark, Fischbein, 1975, p. 88). If such a validity criterion is to be used when 
subjects' responses are far from being uniformly correct, there must be many more 
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intuitions that young children possess that are just waiting to be enumerated. 
It is evident that while we appreciate the novelty of Fischbein's approach, our 

interpretation has not been a sympathetic one. This may result from the biases of 
the present authors, who have an opposed point of view. With its comprehensive 
summary of the child probability literature, the Fischbein book deserves to be 
better known. The question that Fischbein raises as to the young child's early 
detection of uncertainty might be an interesting one for investigation. But we 
remain unconvinced that this detection of uncertainty by the young child mediates 
probability performance, particularly when Piaget and Inhelder (1975) have shown 
that at a somewhat older age children commonly tend to find causal explanations 
for randomized mixtures. 

In the information-processing tradition, a familiar one to contemporary psychol
ogists, Brainerd (1981) has performed a series of experiments on probability judg
ments using 5-year-olds and 8-year-olds as subjects. Brainerd has attempted to 
exploit the idea of "working memory" (a somewhat different concept than short
term memory) to demonstrate that probability choice errors are more a product 
of limited retention capacity than a conceptual deficit. The claim is made that 
accurate retrieval of frequencies is the processing operation most at fault when 
errors are made. Further, age changes in performance accuracy are directly related 
to age changes in frequency retrieval, while such retrieval is itself dependent on the 
constraints of working memory that characterize different ages. 

Thus, like Fischbein, Brainerd (1981) finds that nonconceptual processes medi
ate success in probability tasks. Fischbein maintains that obtained age differences 
reflect differences in the perceptual complexity of a task, while Brainerd fmds that 
age differences are a function of memory differences. Yet these two points of view 
are in some ways polar opposites. Brainerd's younger children do not achieve like 
Fischbein's; they make memory errors in the simplest of situations. For example, 
with 5-year-olds, 18% of their memory responses are in error when the children 
recall the starting frequency differential, even though there is replacement after 
each drawing, while 8-year-olds are practically perfect in their recalls. Thus, owing 
to the retention inadequacy of the younger children, it is possible to show that 
there is major dependency on memory accuracy in performing probability judg
ments. It would seem more difficult to extrapolate the memory constraint view
point to older ages where, as we have delineated, probability errors continue to 
be plentiful. Although this initial attempt to give children's probability understand
ing an information-processing explanation presents a developmentally limited 
endeavor, models of this kind could prove useful. Potentially, they could permit 
more accurate descriptions of specific probability situations. It is the belief of 
the writers, however, that a number of the Piagetian interpretations would have 
to be incorporated as decision-rule formulations in order to maximize the success 
of any such model. 

Gender Differences 

Gender differences have sometimes been observed in probability studies (Chap
man, 1975; Perner, 1979b; Pire, 1958; Ross, 1966), but only with school age 
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children. When they occur, they favor boys. Quantitative ability in general is an 
area in which gender differences have been observed in children, and they too are 
not found in preschool children but only children aged 9 and older (Maccoby & 
Jacklin, 1974). They favor boys. It is noteworthy that in all of the areas of behavior 
in which gender differences have been consistently observed, namely, quantitative 
ability, visual spatial, and field articulation (all favoring boys) and verbal ability 
(favoring girls), the proportion of the total variance accounted for by these gender 
differences is relatively small, ranging from .010 to .043 in studies in these four 
areas reporting w2 values (Hyde, 1981). Moreover, gender differences must be 
interpreted with caution when the male and female subjects have not been matched 
for cognitive level prior to the experiment. This precaution does not seem to have 
been taken in any of the published research in the area of chance and probability. 

Studies of Deaf Subjects 

Studies of deaf children's probability concepts are interesting in their own right 
for the light that they may shed on deaf children's cognitive development. Deaf 
subjects also offer an opportunity to observe the development of probability con
cepts in children who lack specific educational experiences with probability theory 
and wide experience with games of chance. Thus, they provide a useful control 
group to compare to the more widely experienced and diversely educated hearing 
groups. 

Ross (1966) found that 11- and 13-year-old deaf subjects lagged behind hearing 
subjects in solving simple probability tasks, but by age 15 they caught up. Later it 
was determined (Ross & Hoemann, 1975) that unselected deaf subjects showed a 
deficit at age 15 in more difficult probability problems. However, in that same study 
(Experiment 2), a select group of deaf subjects who had been given prior training in 
nonverbal logic performed as well as hearing subjects about the same age. 

The "catch-up" effect noted above and the equivalent performance of selected 
deaf subjects and hearing age peers suggest that the poorer performances that are 
sometimes observed in deaf subjects are not the result of a cumulative cognitive 
deficit but, rather, a lack of experience or practice in solving probability problems. 
This means that their deficiencies can be prevented or perhaps remedied by appro
priate training. 

The effects of training on deaf subjects' probability performance in middle and 
late childhood were evaluated as part of a larger study of deaf children's intellectual 
functioning (Furth, 1971). The training group in the study attended a Thinking 
Laboratory five days a week for the greater part of two school terms. A variety of 
"thinking games" was used in the laboratory, including sorting tasks, memory tasks, 
nonverbal logic, and manipulative tasks with blocks and clay. Probability training 
made use of one-choice prediction tasks with a spinner and with marbles in a can as 
well as two-choice alternative odds tasks with both marbles and spinners. The con
trol group in the larger study consisted of children approximately the same age and 
ability as measured by school achievement who were assigned to a Language Labor
atory for the same period of time that the experimental subjects attended the 
Thinking Laboratory. Activities involved the functional use of language in story 
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telling and picture description as well as work on vocabulary, sentence construction, 
and grammar. 

Ten two-choice problems were administered periodically to the trained and 
untrained subjects. The ten-problem test was administered at 5-month intervals 
except that seven months separated the third and fourth administrations. Eight 
months after the fourth test, a transfer test was administered with 12 easy problems 
in one session and 18 hard problems in another session. Training took place over a 
period of 16 months spanning a summer recess. The transfer tests were given 25 
months after the beginning of the program. 

In order to examine the effects of training as a function of age, subjects were 
divided into two age levels. The mean ages of the younger subjects were 8 years, 
6 months for the experimental group and 8 years,9 months for the control group. 
The mean ages for the older subjects were 11 years, 6 months for both groups. 

The results of the study were straightforward. Both training groups improved 
significantly from Test 1 to Test 4. Scores were 60% and 63%, respectively, for 
younger and older subjects on Test 1. They improved steadily across sessions and 
were 81% and 92%, respectively, on Test 4. The older control group showed some 
spontaneous improvement (p < .05) from Test 1 (65%) to Test 4 (86%), but the 
younger control group did not (53%-59%). On the easy transfer test, both the 
younger and the older training groups had scores significantly superior to their 
corresponding control groups. The spontaneous improvement of the older control 
subjects was not as generalizable as the improvement observed in the older trained 
subjects. 

The hard transfer problems were too difficult for all groups. The highest score 
was earned by the older training group, but it was only 64%. The effects of train
ing were limited to problems that could be solved without constructing and com
paring proportions. 

Deaf subjects were also included in two advanced probability tasks (Experiment 
4) designed to tap formal operatory thinking in adolescents (Ross & Hoemann, 
1975). The outcomes of a one-choice task were assigned different values, that is, 
a pink outcome was worth one point and a green outcome was worth two points. 
In a trial offering three pink and two green balls in the container, green would be 
the better choice from the standpoint of maximizing points within the constraints 
of the prevailing odds. Some trials had two outcomes and some had three outcomes. 
It was arranged that in some trials, like the example above, the less frequent color 
was the correct choice. 

Somewhat surprisingly, none of the subjects, whether deaf or hearing, did well 
when the less frequent color was the correct response. Apparently the subjects were 
not combining point values with the odds but were simply choosing the most fre
quent color. Either maximizing winning outcomes was more important to them 
than maximizing points, or else they did not know how to evaluate their best chance 
of winning the most points. 

To investigate these two possibilities further, a second version of the task was 
devised as a limited follow-up study with ten 15-year-old deaf boys in which points 
were subtracted from the subjects' score when a ball was drawn of the predicted 
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color. If subjects predicted the smallest number of balls in order to minimize the 
number oflosing trials (the reverse of the strategy used before), this could be costly 
when the predicted outcome was worth three points. In this avoidance task, sub
jects might predict the outcome with a point value of one, regardless of the odds. 
Either way, winning was no advantage; the only way to avoid a loss of points was to 
draw a ball that was not the predicted color. It was expected that these procedures 
would encourage subjects to pay attention both to point values and to the number 
of balls of each color. 

The avoidance paradigm met with only limited success. Some subjects based 
their predictions on point value instead of frequency, but no subject consistently 
combined both point values and frequencies to weight the odds so as to minimize 
their loss of points. 

Do deaf adults display formal operatory thinking in probability situations? Data 
are lacking. The performance of deaf adolescents hints that they probably have the 
potential to do so, but that they may need coaching or practice before they will do 
so habitually. But this may be true of hearing persons as well as deaf persons. Mean
while, anyone who has frequent contact with the deaf community of any major 
city undoubtedly knows persons deaf from birth or early childhood who do as well 
as the next man at the race track and who make as worthy an opponent as one 
might want in a game of stud poker. 

Studies of Adolescents 

Only a limited amount of research was conducted by Piaget and Inhelder (1975) 
on concepts of probability found in adolescents. They went beyond the ages of 
12-13 in only one study of permutations. In a later publication (Inhelder & Piaget, 
1958) they examined a few older subjects' understanding of distributions contain
ing chance elements as a part of their study of random variations and correlations. 

Given Chapman's (1975) fmding that concrete operatory children continue to 
use a magnitude estimation strategy throughout most of the concrete operatory 
period, it is appropriate to consider what kinds of strategies are used by adolescents 
to solve probability problems, especially two-choice problems, and whether these 
strategies reflect formal operatory reasoning. Piaget (1972) has conceded that not 
all adolescents develop formal operations at the same rate and that some individuals 
may never reach the level of formal thought. Most people, however, are expected to 
be able to engage in formal reasoning by age 20 at least in their areas of interest or 
aptitude. One does not have to be a university-trained scientist to test hypotheses 
systematically. A good auto mechanic does the same thing, and so does a farmer 
striving for the best possible yield. At the same time one cannot assume that sub
jects have attained formal operations simply because they are 12 years old or older. 

Before considering adolescents a word about school-age children assigned by 
Piagetian theory to the concrete operatory period is in order. These children are 
inclined to choose on the basis of the odds as long as they are not too difficult to 
estimate. But they estimate the odds using strategies that do not require the con
struction of proportions, and they lack the ability to calculate mentally the least 
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common denominator of unlike fractions, to convert to decimals, or to compare 
fractions with different denominators that are not far apart in value. They learn at 
a young age to estimate the odds when they are discrepant. When the odds are 
close, they appear to prefer to guess rather than try to carry out the necessary com
putations in their heads. At close odds, it is less important to choose the more 
favorable odds. Eventually, attention to the number of favorable and unfavorable 
cases in each alternative will lead to the development of a trade-off strategy, to be 
described shortly as the most effective strategy available for dealing with dis
similar fractions without calculating their value as a proportion. Another strategy 
that evolves during the concrete operatory period is to use a familiar fraction, such 
as one-half or one-fourth as a standard, and to judge the other fractions relative to 
the standard. If one or both of the fractions is a familiar one, that makes the task 
especially simple. But if one of the fractions is unusual, such as four-sevenths, the 
familiar fraction strategy often leads to errors. 

In order to extend Piaget and Inhelder's (1975) research well into the period of 
adolescence and to explore the various strategies that older subjects might use to 
solve simple probability tasks, 32 l5-year-old subjects were given 20 two-choice 
problems using poker chips as counters (Ross & Hoemann, 1975). None of the 
problems had an equal number of favorable or unfavorable chips in the alternatives 
from which subjects were to choose. Mter the problems were completed, the sub
jects were asked how they made their choices. In addition to any other question, 
the subjects were always asked if they used a specific method in making choices, 
whether there were any alternative methods of making choices, and whether some 
problems were easier than others. Frequently one or two problems were repeated 
and the subjects were asked to think aloud as they came to a decision. 

Fourteen subjects used a trade-off procedure in which they took the number of 
favorable (good) chips in one alternative and matched them one for one with the 
number of favorable chips in the other alternative. In the same way the subjects 
then matched the number of unfavorable (bad) chips in the two alternatives. The 
subjects then compared the good with the bad remainders to make a prediction. If a 
particular alternative had a remainder of one good chip but two bad chips, the bad 
chips outnumbered the good chip in that alternative, and subjects would avoid it, 
choosing the other alternative. Ten subjects used such a trade-off strategy across 
alternatives and then compared the remainders. Four subjects compared good and 
bad chips within each alternative and compared those remainders across alternatives 
to make their choice. The outcome is the same in both procedures, and, unless the 
final result is a tie, the procedure always yields an appropriate choice from a prob
ability standpoint. 

The trade-off strategy seems to be the favorite of adolescents, even though it 
sometimes results in a tie, requiring another strategy for breaking ties. This strategy 
is impressively systematic. Both the favorable cases and the unfavorable cases have 
to be taken into account, and the differences between alternatives have to be derived 
and compared before a decision is made. The fact that it does seem to be systematic 
and that it does lead, except in ties, to a definitive outcome makes it a candidate 
for consideration as an example of a formal operatory solution to a probability task, 
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even though it does not mandate constructing proportions. As a matter of fact, 
Piaget and Inhelder (1975) accepted a trade-off strategy as indicative of third level 
or formal functioning. In Chapter 6, they present partial protocols of four subjects 
given 19 problems, eight of which were hard problems in that the favorable and 
unfavorable cases were unequal. One subject, whose protocols were judged to be a 
good example of the third stage of development, solved five of the hard problems 
using a trade-off strategy with occasional reliance on a familiar fraction. On the 
basis of this criterion, Piaget and Inhelder classified children as belonging to the 
third stage who are somewhat younger than one expects for the formal operatory 
period unless the children are unusually precocious. The one subject mentioned 
earlier was 12 years 5 months of age, but the other three were 11 years, 10 years 
3 months, and 10 years 2 months of age, respectively. 

Four subjects used an incomplete trade-off strategy. They compared good chips 
found in the two alternatives and chose the alternative with the most good chips, 
regardless of the number of bad chips. This, of course, will lead to a wrong choice 
in the special case where the most good chips are found in the alternative with the 
poorest odds (2 blue, 1 white versus 3 blue, 3 white; target, blue). Since anyone 
who can count and compare sums can make use of this strategy, it clearly does not 
require formal operatory thinking. Subjects using this strategy will score "above 
chance" in any probability task that does not have very many problems of the type 
detailed above. Since mean percentage scores on probability tasks with heterogen
eous problems are directly affected by the types of problems included in the task 
and the relative proportion of them that mislead subjects using a particular strategy, 
such scores are uninterpretable unless they are broken down by problem type 
(Chapman, 1975) or unless the subjects' strategies are identified (Ross & Hoemann, 
1975). 

Four subjects also followed a rule involving counting and comparing sums, but 
they were attending to the total number of chips in each alternative, some favoring 
the larger total and some the smaller. If a probability task were designed in such a 
way that the larger group of elements was correct half the time, subjects using this 
strategy would perform at chance levels. 

Six subjects claimed that they took both good and bad chips into account, com
paring the good chips with the total chips in each alternative and then comparing 
them. If these subjects had used this procedure consistently and made no mistakes, 
they should have had perfect scores. But there is a mathematical problem involved 
in comparing fractions. Unless one calculates the least common denominator of two 
fractions or converts both fractions to decimal fractions, the comparison may not 
be easy to make. It is not all that obvious which fraction offers the better odds, 
3/7 or 4/10. 

Two subjects used a method of comparing proportions that relied on the fact 
that some fractions are relatively familiar, such as 1/4 or 1/2. If both of the alter
natives were familiar values or easily reducible to them (e.g., 2/4) this method was 
almost always successful. But many errors occurred when, for example, 2/3 was 
"felt" to be larger than 5/7. 

One subject followed the textbook procedure of calculating the odds in each al-
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ternative and then choosing the more favorable odds. Not surprisingly, that sub
ject's score was considerably higher (88%) than the rest of the subjects (61 %-66%). 

To summarize, of the 32 subjects tested one used the optimum strategy of calcu
lating and comparing proportions, two made frequent use of a familiar ratio to 
make the comparison, six claimed to be taking favorable and unfavorable cases into 
account, but on an intuitive level rather than on the basis of mathematical calcu
lations. Four used a rule that was correct when there were more good chips in the 
alternative with better odds. Four went with the alternative with either the most or 
the least number of elements (an inferior strategy to be sure). Finally, 14 used a 
trade-off strategy that took note of differences between both favorable and unfavor
able cases, comparing the alternative by means of any remainders after differences 
were compared. This worked except when the result was a tie. In that case, subjects 
had to come up with another strategy (two said that they did), or they had to guess. 

There are some problems with this classification scheme. Some strategies worked 
with one kind of problem but not with another. Also, even though subjects described 
a strategy as one that they characteristically used, there is no way of knowing from 
the data how consistently they used it. For example, the four subjects who used the 
partial trade-off strategy and the four subjects who went with the most or the least 
number of elements scored too well to have been using this strategy on every trial. 
Nevertheless, it is apparent that the subjects in this study made only minimal use of 
probability theory to solve the problems that were put to them. Even subjects who 
attempted to compare the proportions had some difficulty doing this using only 
mental arithmetic. Most of the subjects used a variety of ad hoc approaches, depend
ing on the nature of the problem, and sometimes they applied more than one rule 
to the same problem. 

Given this variety of strategies, some clearly inadequate for certain kinds of 
problems, is there any evidence that adolescents differ qualitatively from children 
who are in the concrete operatory age level? One study reported by Ross and 
Hoemann (1975) suggests that there is (Experiment SA and B). Like Perner's 
(1979a) investigation, this study used deceptive spinners. They differed from 
Perner's approach in that they made the better odds unattractive by constructing 
one of the spinner backgrounds with a large white area that did not count. When 
subjects' pointer landed on white, they were required to spin again until they 
obtained a red or a blue outcome. When three-fourths of the circle was white, a red 
outcome in that circle could be represented by an area of one-eighth of the circle 
and yet be more probable than a blue sector one-fourth of the area of the other 
circle. Different colors were used as alternative outcomes to discourage magnitude 
estimation as a strategy. 

The subjects in one experiment (SA) were given training in area comparison: 
"Look at the circle on the left. Is the red more than the blue or less than the blue, 
or are they about the same? Look at the circle on the right. Is the red more than 
the blue or less than the blue or are they about the same?" Only correct answers 
were accepted for these questions. Then the experimenter asked, "Which is the 
better choice?" During training wrong answers were corrected. In the problems 
where the smaller area was the correct choice, the experimenter followed the cor-
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rect (or the corrected) response with the statement, "That is a good choice, because 
white doesn't count, and the red (blue) gives you a better chance of winning." 

Eight problems were given before and after coaching. Before coaching, children 
in the 7-11 year age range consistently failed in the four problems in which the 
smaller area was the correct choice. Their scores were around 20% with 50% being 
chance. Mter coaching the 7-year-old subjects scored at chance levels (50%), but 
subjects 8 years old and older scored over 75% correct. Thus, the coaching was ef
fective for all but the youngest children in the concrete operatory period. Preteen and 
teenage deaf children also scored above 75% following area comparison coaching. 

Another group of children was given the same set of problems before and after 
coaching, but they were given odds training instead of area comparison training. 
They were asked, "What are your chances of getting red (blue)? Are they even, less 
than even, or more than even?" As before, incorrect answers were corrected. Sub
jects evaluated the odds in each alternative with the help of the experimenter. They 
were reminded of their answers as to the odds for each alternative, and then asked, 
"Which is the better choice?" 

Precoaching performance was the same as in Experiment 5A, around 20%. Post
coaching performance for children at ages 10 and 12 remained below chance. Mean 
scores were well below 50%. But older subjects at ages 14 and 15", scored well 
above chance. It could be argued that these results constitute evidence that the 
older subjects had attained the level of formal opera tory thinking, since very little 
coaching was required for their success, and the coaching that was used did not 
appeal to concrete features, such as colored areas, but invited attention to "better 
chances." The possibility was considered that increased vocabulary comprehension 
accounted for the coaching effect, but it does not seem plausible that such a pro
nounced effect could be due to improved linguistic skills between ages 12 and 14, 
especially since "better chances" did not have to be defined in any formal sense. 

In order to develop our understanding of the probability performances and 
abilities of older subjects further, it might be useful to establish more stringent 
criteria for a higher level of formal opera tory thinking as it is applied to probability 
problems. Higher levels of formal thought may be inferred from previous studies 
(Ross & Hoemann, 1975) by deaf subjects trained in nonverbal logic who, later, 
solved hard probability problems, by 14- and 15-year-old hearing subjects who 
benefitted from odds training with a deceptive spinner, and certainly by the one 
subject who explained verbally that he calculated the proportions in each alter
native and then compared them. 

Another way to elaborate upon older subjects' performance is to observe their 
preferred strategy as a function of different types of problems. The strategy that 
they report following a test with heterogeneous items may belie a variability in 
approaches that takes into account the difficulty of the task. It would be useful, 
for example, to discover whether subjects at the concrete operatory level are able 
to discriminate problems that are too difficult for them as compared to problems 
that are within their grasp. 

Already some interesting results have been obtained with two different types of 
deceptive spinners. Additional variations of this type on now-familiar tasks may 
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provide insight into the reasons why some children fail in certain kinds of tasks 
even though they enunciate a strategy that would appear to give them a basis for 
a correct response. Additional research is also needed to explore the effects of dif
ferent instructions (perner, 1979a), different kinds of coaching (Ross & Hoemann, 
1975), and different types of training. More complex tasks, such as the one assign
ing different point values to different outcomes, requiring subjects to combine infor
mation from two sources, will also be helpful for exploring the limits of subjects' 
abilities who fall into the "higher level" of formal thought discussed earlier. 

The search for a valid test of formal operatory strategies to the solution of 
probability problems is not over, nor is the search for adolescents who habitually 
use them. The strategies that they invoke are intriguing, and there are grounds for 
optimism that various coaching or training procedures might bring about consider
able improvement in their performance on a variety of tasks. Complicating the issue 
is the fact that simplistic strategies are appropriate for some probability tasks. The 
textbook strategy may be "correct" in all circumstances but cumbersome and 
unnecessary when comparing familiar proportions. A comprehensive survey of 
formal approaches to probability problems must allow for unsophisticated strategies 
when they work. 

Theoretical Implications 

One is liable to lose the forest for the trees, or in this case the conclusions for 
the colored balls and spinners, in detailing experimental procedures and the infer
ences that arise from them. There are, nevertheless, wider conclusions to be reached. 
Why should it be important whether young children act on the basis of magnitude 
estimation or some other guiding hypothesis? The issue is clear; either the young 
child does or does not have a primitive conception of probability. Our conclusion, 
on the basis of the convoluted strands of evidence we have just discussed, is that 
young children have no such system of concepts. From our point of view then, 
probability is not like perceptual constancies and other perceptual phenomena that 
have clear precursors in early childhood. There is a discontinuity, since probability 
reasoning in recognizable and consistent form does not arise till the concrete opera
tory period. It seems to us that even if one were to accept some of the special 
hypotheses controverting our experimental conclusions that we have detailed 
above, this crucial point is not challenged. We reiterate this conclusion with particu
lar obstinacy because some of our own earliest efforts started with the assumption 
that there at least ought to be a glimmer of probability understanding in young 
children. 

Results are generally in agreement with the predictions of Piaget, but at the same 
time Piaget has presented a specific and seemingly dogmatic conception of prob
ability achievement that would almost by definition make probability understand
ing by young children impossible, whatever one's theoretical persuasion. It is no 
accident that Piaget's (1975) book dealing with probabilities names "chance" but 
not "probability," and indeed in the book he places experiments on children's 
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conception of chance ahead of those on probability conception. This order is appro
priate, because for Piaget one must have a notion of chance to be able to handle 
probability reasoning. For Piaget, the young child goes through a fIrst stage in 
which there is a failure to differentiate between the possible and the necessary, fol
lowed by a second stage in which there is the discovery of chance as a noncompos
able reality and as the antithesis of cognitive operations. The terminal third stage 
allows probabilistic composition by a synthesis of chance and deductive operations. 

In Piaget's view, and specifically in opposition to the mathematician Borel, 
there is no such thing as an isolated probability event unrelated to a distribution, 
whether the distribution is explicit or implicit. As Matalon (1966) has pointed out 
-in an honorary volume to Piaget-this approach scarcely accords with the empha
ses by most later writers on the foundations of the probability calculus (such as 
Carnap, Nagel, and Savage), who largely ignore the definition and interpretation of 
chance events. Of course, the axiomatic treatment of probability need not accord 
with the psychological, but a concept of chance in any rigorous sense can hardly be 
a concept within the grasp of preoperative children. Thus, we might conclude that a 
strict adherence to Piaget's point of view would scarcely need experimentation to 
demonstrate young children's failure to reason probabilistically. 

It is to Piaget's credit that he attempts a full-fledged interpretation of how the 
concept of chance emerges during the concrete opera tory period. The diffIculty 
is that several interpretations are given that are not necessarily congruent with each 
other, while the experimental data base is very small. Piaget and Inhe1der (1975) 
tell us that the child who has become capable of deduction takes into account inde
termination, and this discovery is then the source of the idea of chance. Understand
ing of chance can occur on two levels, the spatiotemporal and logicoarithmetical. 
An example of the former might be predicting where a spinner would stop, while 
the latter would be exemplified by blindly drawing balls of several colors out of a 
container. One might expect that for Piaget a concept of physical chance would 
appear earlier than that for logical or numerical ensembles, but he does not explicitly 
state this. Rather, both types of chance are brought about in the same way, usually 
either by insuffIcient determination (including lack of adequate data) or the inter
vention of another independent causal series in a fortuitous (uncorrelated) way. 

As Matalon (1966) emphasizes, however, this is a model of chance that has as 
its foundation physical phenomena such as those derived from classical thermo
dynamics, and the model is complex in that these formulations are based on 
unobservable occurrences. Piaget boldly tries to bridge the gap between the physical 
and mental: 

Chance which is proper to psychic phenomena is due to the fact that conscious
ness can never bring together all the data into one united field except precisely 
in the logical or deductive domain. Consciousness proceeds then by successive 
centrations around a center motivated by the interest of the moment which 
stimulates them, but is more or less fortuitous in the points of their application 
and, therefore, intersecting the data at more or less uncertain points. (Piaget & 
Inhelder, 1975, pp. 240-241) 

This kind of centration explanation is a shift in perspective from the previously 
expressed idea of chance as the separation of incommensurable events from those 
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that are deductible. Piaget also makes play with the idea that chance (specifically in 
thermodynamics and entropic functions) is an irreversible process, but it takes 
reversible operations to understand the concept of chance. Hence, a conception of 
chance or at least its limits can only be fully encompassed by the attainment of 
formal operations. 

The conceptual apparatus appears to be at best only partially illustrated by the 
mere handful of demonstration experiments that Piaget and Inhelder have per
formed. Apart from the Piaget and Inhelder studies on mixtures and distributions, 
the development of children's chance concepts, whether in terms of sequences, 
visual displays, physical events, or unfathomable probabilities has scarcely been 
studied empirically by anyone. In setting apart the child's separation of the certain 
from the incalculable Piaget is pointing out a division that children must inevitably 
make at some point in their development. But the period during which a con
ception of chance originates is hypothesized as occurring at the time that concrete 
operations are devl!loping in the individual. Therefore, the concept of chance must 
have its greatest extension when it is first grasped. As the acquisition of operations 
increases what is calculable, the range of chance phenomena decreases. A seeming 
paradox occurs in that the period during which chance appears to have its greatest 
scope follows the preoperatory period when the child adheres to an almost total 
belief in causal determinism. By this reasoning the switch from a belief in deter
minism to chance is very abrupt. It is likely, though, that younger children more 
weakly hold their belief in chance than the older child and adolescent, who can 
defme a relatively more circumscribed field for chance occurrences. We offer these 
considerations as an example of an interesting area for research whether one follows 
or disavows Piaget's specific hypotheses. 

Probability problems have the virtue of being intrinsically motivating for children 
as well as adults and of possessing properties that are not duplicated by other test 
materials. A unique characteristic is that the probability problem solver can be 
right though wrong, and vice versa. That is, acting on a wrong hypothesis or on an 
arbitrary basis, a subject can be fortuitously correct while a reasoned correct choice 
can be wrong. At least this is the case in the usual probability experiment, where 
trial-by-trial outcomes are not under the control of the experimenter. Even though 
knowledge of results is often misleading, the sedulous experimenter must continue 
to congratulate the young child who makes long strings of wrong "correct" choices 
because of pure luck. If one were to consider reinforcement of prime importance 
for making choices, not only would administered reinforcement frequently be mis
leading, but each subject would be on a different reinforcement schedule. Correct 
probability concepts must instead be held in the face of some lack of success, while 
consistent errors can sometimes be correlated with success. It is hard to think of 
any other commonly administered cognitive task in which this is the case. 

Another property of probability tasks, but a less unique one in that it is com
mon to the problem solving literature, is that children and adults need not reach 
correct solutions in order to produce revealing results. A notable example was our 
earlier work with the gambler's fallacy (Ross & Levy, 1958), where 13-year-olds did 
not evidence the gambler's fallacy but IS-year-olds did, and adults did so to an even 



Children's Concepts of Chance and Probability 119 

greater degree. In other words, even the acquisition of a fallacy may be a develop
mental achievement. Again one may note that the gambler's fallacy can hardly be a 
function of differential reinforcement, yet it is pervasive. 

In that Piaget has set the agenda for probability concept studies, it comes as no 
surprise that the turning points are seen to correspond to the shifts from pre opera
tory to concrete operations and from concrete to formal operations. The importance 
of the shift from concrete to formal operations remains somewhat problematic. As 
detailed above, a variety of strategies can be used by adolescents even with straight
forward odds variation problems. And, as just mentioned, the indirect index of 
probability achievement given by a shift to use of the gambler's fallacy is not at
tained at age 13 when on average some use of formal operations might be assumed 
to have occurred. On the other hand, a gain in knowledge of simple permutations 
and combinations appears to take place around ages 12-13 in line with Inhelder and 
Piaget's (1958) results. But in our experience knowledge of simple permutations is 
often strikingly unintegrated with other conceptions that a subject holds about 
probability. 

What developments can we look for in the future that will more closely integrate 
the study of children's probability concepts with more mainstream areas of psy
chology? At the adolescent period there is the not-yet-achieved possibility of link
ing developmental questions with the large and growing literature on decision 
making. But one can easily be overly optimistic about the theoretical yield for 
developmental psychology to be gained from the hypotheses and theories derived 
from decision-making studies. This is so because much decision-making research is 
concerned with applied problems and with compound decisions in which it is not 
easy to disentangle the basic knowledge that subjects possess from situational factors. 

Putting these considerations to one side, it is also the case that with unselected 
adolescents probability achievement has quite a low performance ceiling. In some 
as yet unpublished research from our laboratory we have found that in attempting 
to combine probabilities, adolescents even at age 15 do not clearly distinguish 
between conjunctive probability multiplication and disjunctive probability addition. 
In particular, they cannot figure out whether combining probabilities should pro
duce odds more or less favorable than the original odds before probabilities were 
combined. It is our prejudice that decision-making studies often imply a level of 
probability literacy higher than can be found in the average educated adult popu
lation. This overestimation is not just due to subject selection or some limited 
special instructions subjects are given, but even more to problem arrangements, and 
answer alternatives that do not permit the low-level (sometimes even stupid) 
answers that many subjects would give if left to their own devices. Instead, answer 
alternatives tend to be all more or less plausible. This view may be too pessimistic; 
certainly much empirical work would have to be done to justify our speculative 
hunch. 

We would emphasize-perhaps we can speak here only for ourselves-that we 
do not view experiments on children's probability concepts as mainly hypothesis
testing experiments performed to verify or invalidate Piaget's theory. Empirical 
investigators have been less theoretical than Piaget and usually take a pragmatic 
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approach in that successful solution of probability problems has been taken as the 
criterion of probability understanding. The suggestive details that emerge from the 
Piagetian interview protocols have not been analyzed further when the more objec
tive scoring procedures have been applied. 

Possibly even more rewarding than pursuing some of these incidental obser
vations would be consideration of alternative formulations of probability. The 
simple frequentist view of probability as the limit of a relative frequency is the 
dominant one, adhered to by Piaget and all other developmental investigators 
(including the innovative formulations of Fischbein and Brainerd), but it far from 
exhausts the field. Alternative conceptions of probability are possible, such as the 
logical subjectivist theories (see Kyburg & Smokier, 1964). At least one partially 
alternative approach is known to psychologists through their acquaintance with 
Bayesian statistics. More than 30 years ago Carnap (1950) was counseling the neces
sity for a dual conception of probability, logical as well as frequentist. 

Our suspicion is that there are forms of reasoning by analogy that to some 
extent conform to nonfrequentist probability theories. The fit may be loose and 
the forms of reasoning intermediate in terms of present formalized theories, but 
the psychologist here as elsewhere is always in the position of bending normative 
logical and mathematical theories to his or her own uses. In spite of a paucity of 
empirical research we do not believe that our verdict will be reversed and that 
unselected late adolescents and adults will ever be shown to perform at a very high 
level with probability concepts formulated in frequentist terms. Yet with regard to 
making decisions under uncertainty, states of probability ignorance are not as 
handicapping as they should be in carrying out the transactions of everyday life. 
Forms of nonprobabilistic inferential reasoning might take up some of the slack 
and permit a logical rather than a frequentist approach to probability. The develop
mental psychologist is interested not only in identifying what some of these shifty 
dodges and hybrid evasions might be that adults resort to now and again but also 
in tracking their origins back to childhood cognitive operations. 
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4. The Development of Quantity Concepts: 
Perceptual and Linguistic Factors 

Linda S. Siegel 

In this chapter I shall be concerned with the development of various quantity 
concepts and some of the factors which influence their development. Two aspects 
of early quantity concepts will be examined: (a) linguistic factors and (b) percept
ual factors. The relationship between children's linguistic skills and their quantita
tive concepts will be considered in an attempt to separate cognitive processes from 
linguistic abilities. I shall also examine the perceptual and nonquantitative factors 
that influence the development of these concepts in order to understand the growth 
of number as a conceptual dimension. 

Linguistic Factors and the Development of Quantity Concepts 

By number concepts, we do not mean counting. Many children, even some as 
young as 18 months, can count by rote; that is, they can correctly say the number 
names in the proper sequence. (Research on this point is reviewed in some detail in 
Chapter 2 by Fuson, Richards, and Briars in this volume.) But this counting is not 
associated with a concept of quantity. It seems more like nonsense words that a 
child recites in a sequence. It is not uncommon to fmd children who can rote count 
but who cannot properly count a set of objects and arrive at the correct answer for 
the number of objects in the set. In one of our studies, we asked a 4-year-old to 
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count a set of nine pennies. He responded, "One, two, three, four hundred, seven, 
nine, fiveteen, eleventeen, thirty" and was quite pleased with his answer. The idea 
of number corresponding to a set size, the so-called cardination principle, was 
absent. Ask a 3- or 4-year-old to count his or her fingers. The child will fmd a 
different number each time he or she counts, sometimes counting the same fmger 
twice or three times or missing a few. In Saxe's Chapter 5 in this volume, some 
rather similar behaviors are reported for the Oksapmin people of Papua New 
Guinea. 

Therefore, children's language skills should be separated from their under
standing of number and quantity. Unfortunately, in many studies, a child is asked 
questions like "Which is more? ," "Are they the same number? ," "Put them in order 
from the biggest to the littlest," "Give me five," when, in fact, there is considerable 
evidence that children below the age of 6 or 7 do not understand some or all of 
these words (Donaldson & Balfour, 1968; Griffiths, Shantz, & Sigel, 1967; Siegel & 
Goldstein, 1969). 

Adults are often confused by a child's use of language which on the surface 
seems to indicate an understanding. A 2-year-old will say, while holding an empty 
glass in his or her hands, "I want more milk." The child is using more to mean 
some. A child may know that his or her mother is bigger than he or she is, but ask a 
child, "Who is bigger, mommy or daddy? ," and the child will say "You're both big." 
Ask again, "But who is bigger?" "You're both big." Big and little have onlyabso
lute meanings; all things in the world are either big or little but the child cannot 
understand the relational meaning of the words. 

An example of linguistic confusion is the child's failure to differentiate words 
related to number and length. In a study of this problem, Lawson, Baron, and 
Siegel (1974) showed 3- to 6-year-old children configurations of dots that varied in 
length and number and asked them, "Which row is longer or are they the same 
length?" and, "Which row has more or are they the same number?" Few children 
answered all the questions correctly. Some children answered every question as if 
they were asked about number; they interpreted questions about both length and 
number to mean number. Most of the rest of the children answered every question 
in terms of length; a longer length meant a bigger number, independently of what 
the number actually was. 

Because of this language problem, I have studied the development of number 
concepts using nonverbal tasks (Siegel, 1971a, 1971b, 1972a, 1972b, 1973, 1974a, 
1974b, 1978). These tasks are problem-solving situations that have in common that 
the child must solve them on the basis of a rule involving some aspect of quantity. 
Importantly, the understanding of words related to number and the production of 
language are not critical to the solution. 

A Taxonomy of Quantity Concepts 

I have developed a series of tasks in which quantity concepts are defmed several 
ways according to a taxonomy given below. It is important to note that in the 
majority of these concepts we are not dealing strictly with number in that there are 
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other dimensions, specifically brightness, density, and/or length, which are some
times correlated with number and may serve as cues instead of number. Therefore, 
these tasks are more properly referred to as quantity concepts, rather than number 
concepts. Studies such as that of Greenberg (Note 1) will be necessary to determine 
the extent to which number is really the relevant dimension in these concepts. 

Magnitude 

The simplest quantity tasks involve understanding the concept of "larger or 
smaller than" without any particular reference to exact numerical size. We have 
called these tasks magnitude tasks (e.g., Siegel, 1972a, 1972b). There are five of them. 

Area. In the magnitude area task the children are presented with two circles of 
different sizes and are required to choose the larger (smaller) one. The circles are 
selected from among nine different sizes. To solve this problem, the children have 
to be able to understand the concept of "larger (smaller) area." A typical stimulus 
appears in Fig. 4.1. 

Length. (also called length cue-Siegel, 1978). In the length task, children are 
presented with two lines of different lengths. They are required to select the longer 
(shorter) line to be correct. The line lengths are selected from among nine possible 
lengths. In this task, the concept of "longer" (shorter) is being tested. A typical 
stimulus appears in Fig. 4.1. 

Number. (also called no length cue-Siegel, 1978). In the number task, children 
are required to select the set with more (fewer) dots from among two sets whose 
size varies from among two to nine dots. The two lines of different numbers of dots 
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Fig. 4.1 Examples of stimuli used in the magnitude tasks. 
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are equivalent in length. In this task, the concept "more" ("fewer") is being tested. 
A typical stimulus appears in Fig. 4.1. 

Nonlinear Magnitude. In this task, dots representing the numbers are arranged in 
a random pattern of approximately equal areas. The child is asked to select the 
larger (smaller) set size and there is no length cue to set size. A typical stimulus 
appears in Fig. 4.1. 

Magnitude-Length-Number Conflict. The set of dots with the greater number of 
dots is shorter in length than the set with the smaller number of dots. Again, the 
child's task is to choose either the longer or smaller set size. A typical stimulus is 
shown in Fig. 4.1. 

Oneness 

There is, perhaps a quantity concept that appears to be simpler than any of 
those, in the preceding taxonomy, namely, the concept of "oneness." In this task, 
a set of size one is paired with all the other set sizes (e.g., two through nine) where 
the correct choice is either one, or for some children, the number besides one. 
While We have found that this is simpler than the above tasks (Siegel, 1972b), the 
problem is that one of the stimuli remains constant while the other varies. Hence, it 
may simply involve an oddity discrimination rather than a quantity concept because 
in all the other tasks both stimuli vary from trial to trial. As it stands now, the 
nature or the relationship of oneneSS to other quantity concepts is indeterminate. 

Equivalence and Conservation 

The above concepts are concerned with the perception of differences in quantity. 
Those that follow deal with the child's understanding of numerical equivalence. All 
of them have been designed to measure the understanding of "same number." 

One-to-One Correspondence. (also called equivalence-length cue). In this task, 
the child is required to match sets of equal numerical size. The child has to select, 
from among two sets, the set that has the same number of dots as a standard set. 
The sizes of the correct sets and the incorrect alternative vary from two to nine 
dots. The length of the sets are the same. A typical stimulus appears in Fig. 4.2. 

Equivalence-No Length Cue. The sample and the alternatives are all equal in 
length, irrespective of the number of dots in the set. There is no length cue to num
ber, but the sets vary in density. A typical stimulus appears in Fig. 4.2. 

Equivalence-Number-Length Conflict: Density. The correct alternative (identi
cal in number) is a different length than the sample. The incorrect alternative is the 
same density as the sample. A typical stimulus appears in Fig. 4.2. 
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Fig.4.2 Examples of stimuli used in the equivalence tasks. 

Equivalence-Number-Length Conflict: Length. The correct alternative is a differ
ent length than the sample. The incorrect alternative is the same length as the 
sample. A typical stimulus is shown in Fig. 4.2. 

Conservation. One aspect of the numerical reasoning is the understanding that 
number remains invariant in spite of spatial arrangement. This is the Piagetian con
cept of conservation (piaget, 1965). I have designed a nonverbal conservation task 
to measure this concept. The child is required to select, from among two sets, the 
set that has the same number of dots as the standard on top of the card. The sizes 
of the correct sets and the incorrect alternative vary from two to nine dots. Unlike 
the one-to-one correspondence task, there are no spatial or density cues for number. 
A typical stimulus is shown in Fig. 4.2. 

Summary 

These tasks are some of the tests of quantitative knowledge I have used with 
young children. They are all nonverbal tasks in the sense that they do not rely on 
the child's understanding of particular quantitative terminology. The children may 
be given verbal instructions, usually to select the correct choice to receive a reward, 
but because they receive feedback about the correctness of their responses, under
standing of the verbal instructions is not really necessary. The verbal instructions do 
not contain any words related to quantity. As the stimuli are different on each trial, 
problem solution is not a matter of stimulus-response association but of rule learn
ing. I have used these tasks to study the relationship between language and thought 
in young children. 
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The Relationship between Language and Thought in the Child 

The relationship of language to early conceptual development is central to many 
theories (Blank, 1974; Macnamara, 1972; Nelson, 1974). According to some ap
proaches, language plays little, if any, role in the development and structure of 
the thought. Among these is the Piagetian position (e.g., Inhelder & Piaget, 1964; 
Pascual-Leone & Smith, 1969; Sinclair-de Zwart, 1969) that the development of 
cognitive structures occurs independently of language. According to this position, 
language is not a necessary condition for the emergence of operational thought, 
although both language and thought may depend on the development of the same 
underlying mechanisms of symbolic functioning. Similar views have been ex
pressed by Furth (1966,1971), Lenneberg (1967), Macnamara (1972), and Olson 
(1970). 

Alternatively, according to other approaches, language is a cornerstone of cog
nitive development. Vygotsky (1962), for example, postulated an initial indepen
dence of language and thought, then the convergence when the child is approxi
mately 2 years old. From then on, thought processes were said to be largely depen
dent on the child's mastery of language. Bruner (1964) also has assigned a critical 
role to language in cognitive development. 

The relationship of cognition to language has been explored in a number of 
studies. In these studies, the order in which concepts and language associated with 
them are acquired have been studied. The assumption of such studies is: If concepts 
precede the relevant language, then one can conclude that the concepts probably 
provide a basis for the acquisition of the related language or that language does not 
playa necessary role in the acquisition of the concepts. 

Quantitative and logical concepts provide an interesting case study of the 
language-thought relationship because nonlinguistic techniques exist to assess the 
concepts. In the area of quantity concepts, for example, Beilin and Kagan (1969) 
found that children's performance on a task involving the discrimination of one 
from two objects was superior to their ability to produce the correct plurals of 
nouns, possessives, and verbs. Koff and Luria (Note 2) found that children were 
able to learn the concepts of middle size before they could comprehend and pro
duce comparatives expressing the relationship between objects of different sizes. 
For the development of logical concepts, Pascual-Leone and Smith (1969) found 
that children's ability to convey information about class membership was deter
mined by the logical structure of the task, not by the language available to them. 
Similarly, Jones (1972) found that general verbal ability and the use of tentative 
statements were not related to the ability to solve certain logical problems. Weil 
(Note 3) found that the development of time concepts preceded the ability to 
understand the past progressive tense and terms such as "before" and "after." 
However, Bruner (1964) found that failure to transpose a 3 X 3 matrix was related 
to certain inconsistencies in the child's use of relational language, and Scholnick 
and Adams (1973) found that the ability to reverse a classification matrix was not 
a necessary prerequisite of the ability to comprehend the passive grammatical 
structure, which presumably involves a reversal of the active forms. 
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I shall now describe several studies designed to assess the relationship between 
young children's quantity concepts and their understanding of certain words 
related to quantity. An important departure from previous studies was that language 
and related concept abilities were tested on the same set of stimuli, thereby increas
ing the probability that these tasks were measuring related structures. 

Study 1: Concept versus Language 

This experiment was designed to assess the sequence of the development of ele
mentary quantity concepts and the understanding of language about quantity. 1 The 
concept of relative quantity difference was measured by Siegel's (1971a, 1971b) 
magnitude length task (described earlier in this chapter). In this task, the child is 
required to select which of two sets has the greater or, for counterbalancing, fewer 
number of objects. The number of objects in each set varies from trial to trial so 
that the response is not merely to a single stimulus but is assumed to be mediated 
by a concept of relative size. In the corresponding language task, the child's under
standing of the words "big" and "little" is tested with the same stimuli. These par
ticular words, while not the most grammatically appropriate ones, were chosen 
because preschool children have difficulty in comprehending "more" and "less" 
(Donaldson & Balfour, 1968; Griffiths, Shantz, & Sigel, 1967; Siegel & Goldstein, 
1969). "Bigger" and "littler" are also difficult (Koff & Luria, Note 2) for young 
children. The understanding of numerical equivalence was determined by one-to
one correspondence task (Siegel, 1971 a, 1971 b) described earlier in this chapter, in 
which the child is required to discriminate sets of objects which are numerically 
equal. In the corresponding language task, the child's understanding of "same num
ber" was tested with the identical set of stimuli. 

Method 

Subjects. The subjects were 102 children enrolled in half-day nursery schools in 
Hamilton, Ontario. There were 45 3-year-olds, 21 boys and 24 girls, and 57 4-year
olds, 29 boys and 28 girls. 

Design. Each child performed four tasks: magnitude-concept, magnitude
language, equivalence-concept, and equivalence-language. The tasks were adminis
tered to each child in one of eight orders, which varied the order of magnitude or 
equivalence (first or second) and concept or language within each of these (rust 
or second). 

Concept Tasks. The two concept tasks, described below, were complex problem
solving tasks. Both these concept tasks were tested with a Behavioral Controls 400-
SR programmed learning apparatus. The response alternatives appeared under a 

1 This study has been briefly described in Siegel (1978). 
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clear plastic press panel, and the children responded by pressing the panel of their 
choice. The position of the correct alternative varied randomly from trial to trial. 
Correct responses were rewarded with tokens, which could be exchanged for a small 
toy at the end of a session. A noncorrection procedure was used. The only instruc
tion that the child received was that selection of the correct alternative would result 
in some "play money" that could be exchanged for a toy. No relational terminology 
was used in the instructions. The criterion was nine out of ten consecutive correct 
responses. If criterion was not reached in 50 trials, the task was terminated. 

Magnitude-Concept Task. There were 50 stimuli. Each stimulus consisted of two 
sets of dots of unequal number arranged in a horizontal line, each set containing 
from one to nine dots. The particular numbers in each stimulus varied from trial to 
trial; the combinations were selected randomly. Approximately one-half of the 
children were reinforced for selecting the stimulus with the larger number of dots 
and the remainder were reinforced for selecting the stimulus with the smaller num
ber of dots. 

Equivalence-Concept Task. The 50 sets of stimuli for this task each consisted of 
a sample and four alternatives. Only one of the alternatives was identical in number 
to the sample. Both the sample and the alternatives had between one and nine dots. 

Language Tasks. Both language tasks used stimuli identical to their correspond
ing concept task. These stimuli were presented to the child on 5 inch X 7 inch 
index cards. For each stimulus, the children were asked about the word in question. 
They were not given any feedback about the correctness of their response, but they 
were told several times during the task that they were doing very well. 

Magnitude-Language Task. The stimuli for this task were identical to those in 
the magnitude concept task, except that there were only 25 trials, chosen randomly 
from the set of 50. For each stimulus, the child was asked to select the "big" or, 
for counterbalancing "little" set. 

Equivalence-Language Task. The stimuli for this task were identical to the 
equivalence concept task except that there were only 25 trials, chosen randomly 
from the set of 50. For each stimulus the child was asked to select the group of 
dots that had the "same number" as the sample. 

Results 

The criterion for passing the magnitude and equivalence concept tasks was 
nine out of ten consecutive correct responses. If a child did not reach criterion 
in 50 trials, he or she was considered to have failed the task. A score of 15 or more 
correct out of 25 for the equivalence language task (four choice) and 18 or more 
out of 25 (2 choice) for the magnitude language task, was required for a passing 
score. For the magnitude task 44% of the 3-year-olds and 30% of the 4-year-olds 
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passed the concept task and failed the language comprehension task. The per
centages for the equivalence task were as follows: 3-year-olds, 9% and 4-year-olds, 
14%. Clearly, the concepts of quantitative equality and difference, as measured in 
the present study, developed before understanding of the relational terminology, 
specifically the words, "big," "little," and "same." 

The concept of differences in magnitude may be a necessary condition for 
understanding the relational terms "big" and "little" when applied to the same 
stimuli. The same is true of the concept of numerical equality and the word "same" 
when same refers to numerical identity. These fmdings are clear from the larger 
percentage of children in the pass-concept, fail-language cells and the small numbers 
(in two cases, 0) of subjects in the pass-language, fail-concept cells. Thus, if a child 
failed the concept task, there was no chance of success in the equivalence-language 
test and a very small chance in the magnitude-language test. Only three ofthe 102 
children showed a reversal of this trend in that their language developed before 
the corresponding concept, in these cases, the magnitude concept. While all of these 
children failed the magnitude-concept task, they consistently selected the wrong 
alternative on almost every trial, rather than responding randomly. In all cases, 
they were reinforced for the selection of the smaller group, yet consistently selected 
the bigger one. This pattern of responding, which was not noted in any other sub
jects, appears to indicate the presence of a concept rather than complete confusion 
about the difference between the stimuli. 

A significantly higher percentage of the 4-year-olds passed the language task 
when it was administered after the concept task than when it was administered prior 
to the concept task (81.25% vs. 56.00%, Z = 2.07, p < .04, two tailed). Since in 
this case, the success on language task was greater after learning the concept than 
before it, learning the concept appeared to facilitate solution of the language task. 
Since there were no cases in which concept acquisition was facilitated by having 
the language task first, this is indirect evidence that language-thought effects are 
unidirectional. I shall return to this point later. 

The concept tasks in this study were learning tasks with feedback provided for 
correct responses, since this seemed to be the most reasonable way to assess con
cepts nonverbally in the young child. But it could be argued that the children did 
not possess the magnitude and equivalence concepts when they started but acquired 
them in the course of the discrimination learning. There are two kinds of evidence 
that argue against this interpretation. First, the children who passed the concept 
task did so in relatively few trials. The mean number of trials to attain criterion for 
those who succeeded were: 3-year-olds, magnitude, 8.57; 3-year-olds, equivalence, 
7.15; 4-year-olds, magnitude, 5.04; 4-year-olds, equivalence, 6.96. Therefore, if 
concept acquisition is involved, it is quite rapid. Second, the probabilities of correct 
responding in the precriterion trials for those who succeeded do not change from 
trial to trial. The precriterion data do not suggest gradual acquisition and these data 
may be evidence of all-or-none learning (see Brainerd & Howe, 1979, 1980, for 
additional evidence on this point). As for the possibility of differential motivation 
in the language and concept tasks, because of the presence of reinforcement in the 
latter, if this were the case, certain differences between orders of task adminis-
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tration would be expected. The shift from reward to nonreward should have pro
duced a decrement when the language task was administered after the concept task. 
In fact, there were no order effects, except in one group in which the concept-first, 
language-second group performed better than the group which had the tasks in the 
reverse order, opposite to the above prediction. 

On the basis of these results, it seems quite clear that, for the preschool child, 
concepts of numerical equality and inequality are learned before the relevant 
relational terminology. These type of concepts exist independently of, and prior to, 
language, at least the language investigated in this study. 

Study 2: Does Language Training Facilitate Concept Acquisition? 

Study 2 was designed to examine the degree to which a relevant word facilitates 
concept acquisition.! The role of language in concept development was assessed by 
manipulating the presence or absence of a specific verbal cue about the nature of 
the solution. Also, the child's production of terminology related to quantity was 
examined, and the relationship of linguistic skills to the performance on the con
cept tasks was assessed. The role of language was assessed in Study 2 by varying 
certain aspects of the operation of linguistic factors within the concept learning 
task. To the extent that language-thOUght independence exists and if cognitive oper
ations develop before the appropriate language, then concept acquisition, at least 
early in development, should not be facilitated by language. 

Evidence of the role of linguistic control of cognitive operations in children under 
6 years of age is equivocal. Some studies have found little effect of subject gener
ated or externally given verbal cues (e.g., Conrad, 1971; Flavell, 1970; Olson, 1970; 
Osler & Madden, 1973; Reese, 1962; White, 1965), while other studies, such as 
those of Blank and Bridger (1964) and Kendler and Kendler (1962), have found 
that verbal cues facilitated the acquisition of certain concepts. One of the purposes 
of Study 2 was to determine the degree to which verbal labels could facilitate the 
acquisition of quantity concepts. The basic technique was to administer the prob
lems described previously to groups of 3- and 4-year-old children with instructions 
that spelled out the solutions, depending on which was appropriate to the task, as 
the "big," "little," or "same number" alternative (cue condition). Control groups 
(no cue condition) performed the identical task without the verbal cue. If these 
concepts exist prior to the relevant language, then, at least in the early stages of 
concept development, the verbal cue should not facilitate solution. However, if 
the verbal cue can influence the problem solving, then this may be a case of 
l~nguage facilitating thought. 

A related question about the relationship between language and thought con
cerns the degree to which a child can generate language about quantity in relation 
to the stimuli used in these problems and whether this language production is 
related to problem solution. To the extent that a discrepancy between language 
and concepts exists, then language production and concept attainment may occur 
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before language production. That is, if thought occurs prior to language, then 
children should be able to solve the problem before they can produce quantity 
language in relation to these stimuli. The child's ability to describe stimuli with 
meaningful language about the quantitative relationships was examined in an 
attempt to determine the extent to which language production is related to the 
ability to solve these problems. 

Another purpose of this experiment was to investigate H. H. Clark's (1970) 
three postulated stages in the acquisition of relational terminology. In the first 
stage, children use this terminology in the nominal sense. A relational word or 
adjective is used to denote membership in some global class, but comparative 
properties are absent. Children at this stage might say of two unequal groups, 
"They are both the big one." In the second stage, both polar terms of some di
mension are interpreted as referring to the most extended, or positive, end of the 
dimension, for example, both "more" and "less" are interpreted as meaning 
"more" (e.g., Donaldson & Balfour, 1968; Donaldson & Wales, 1970; Klatzky, 
Clark, & Macken, 1973; Palermo, 1973). In the fmal stage, children can use these 
words correctly. 

Method 

Subjects. The subjects were white middle-class children from nursery schools 
and day care centers in Hamilton and Burlington, Ontario. For the magnitude tasks, 
there were 180 preschool children (60 3-year-olds, 30 boys and 30 girls; 1204-
year-olds, 57 boys and 63 girls). For the equivalence tasks, the subjects were 80 
preschool children, 24 3-year-olds (13 boys, 11 girls), and 56 4-year-olds (28 boys, 
28 girls). 

Tasks and Design. Both the magnitude and equivalence tasks were discrimi
nation-learning tasks similar to those of Study 1. Instead of the programmed 
learning apparatus, the stimuli were presented to the child on 5 inch X 7 inch index 
cards. An individual child was only administered one task, magnitude or equiva
lence, and was randomly assigned to one of the conditions within each task. 

Magnitude. For each of the three magnitude tasks, 40 stimuli were used, each 
with two vertical rows of dots. The particular numbers used on each stimulus were 
selected randomly from all the possible combinations of the numbers 2-9. For each 
task, stimuli were presented in a predetermined random order. A representative 
stimulus from each magnitude task is shown in Fig. 4.1 (length, number, and length
number conflict). 

A representative stimulus for each equivalence task is shown in Fig. 4.2 [one-to
one correspondence, conservation, no length cue, number-length conflict (density), 
number-length conflict (length)] . 

The subjects were assigned to one of four independent groups. These were the 
absence or presence of the verbal cue (cue versus no cue) and, within each of these 
groups, one half of the subjects were reinforced for choosing the more numerous 
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set (labeled "big" for the cue condition) and one-half for the set with fewer objects 
(labeled "little" for the cue condition). The instructions for each condition were as 
follows: 

1. Cue. "Here is a picture. Here is another picture. (The experimenter pointed to 
each one in turn.) If you pick the big (little) picture, you will get some play 
money. When you have enough play money, you can buy these toys." 

2. No Cue. "Here is a picture. Here is another picture. (The experimenter pointed 
to each one in turn.) If you pick the correct picture, you will get some play 
money. When you have enough play money, you can buy one of these toys." 

Correct responses were reinforced with a coin. For the first five trials, if the 
child did not select the correct one, the experimenter told the child that his or her 
choice was wrong and then pointed to the correct one and told the child it was the 
correct one. Each child was administered 40 trials. 

Results 

Magnitude Task Analyses. The mean number of errors for the 40 trials of each 
task is shown in Fig. 4.3. A mixed model analysis of variance for condition (cue 
versus no cue), type of cue/concept (big versus little), and task was performed. For 
the 3-year-olds, there were no differences as a function of condition or type of 
cue/concept. There was a significant effect of tasks [F(2, 112) = 7.64,p < .005]. 
The length task was significantly easier than the other two (Duncan's multiple range 
test, p < .05). For the 4-year-olds, there were significant effects of condition [F(1, 
116) = 46.49, p < .001] and type of cue/concept [F(1, 116) = 22.44,p < .001], 
and a significant interaction between these two variables [F(1, 116) = 10.11, p < 
.005] . There were no differences in error rates for the "big" and "little" concepts 
in the no cue condition, but there were in the cue condition. There was also a sig
nificant effect of task [F(2, 232) = 7.96, p < .001]. The length task was the easiest, 
the number task more difficult, and the number-length conflict task the most diffi
cult (Duncan's multiple range test, p < .05). 

Equivalence Task Analysis. The mean number of errors for each age group is 
shown in Fig. 4.3. Mixed-model analyses of variance for condition (cue versus no 
cue), and tasks were performed separately for each age group. For the 3-year-olds, 
there were no effects of tasks or condition. The majority of the 3-year-olds were 
performing at, or near, chance (20 errors). For the 4-year-olds, there were signifi
cant effects of cue [F(l, 54) = 8.17, p < .005] and task [F(3, 162) = 4.41, p < 
.01] and no interaction. The number-length conflict (length) task was significantly 
more difficult than the other three (Duncan's multiple range test, p < .05). For 
either the magnitude or the equivalence tasks, there were no order effects of dif
ferences between the performances of boys and girls. 

Language Analysis. The subjects' responses to the language production task 
were scored for the presence or absence of correct quantity response by two inde-
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Fig.43 Mean number of errors for 40 trials of each task in Study 2. (From L. S. 
Siegel and C. J. Brainerd, Alternatives to Piaget: Critical essays on the theory. New 

York: Academic Press, 1978, Fig. 3.4, p. 52. Reproduced by permission.) 

pendent raters. Examples of appropriate responses were, "The big one," "The one 
with more dots (magnitude)," or "They both have the same number (equivalence)." 
Inappropriate responses were such statements as, "I wanted to," "I like that one," 
"The ones that have two," or "This has four and this has seven." Failures to 
respond were also included in this category. The relationship between success and 
failure on each task and production of quantity language was calculated by the 
McNemar test. For the 3-year-olds, successful performance on two of the magni
tude tasks (length and number-length conflict task) occurred prior to the ability 
to produce the appropriate quantity language. Significant numbers of children 
passed the concept tasks and failed the language production tasks. The same was 
true for the 4-year-olds on the magnitude-length task and the equivalence-length 
cue and number-length conflict tasks. For the other tasks, concept solution did not 
precede quantity language production. 

The language samples from the magnitude tasks were analyzed to determine the 
nominal or relational qualities of the child's descriptions of the stimuli. Analysis of 
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the linguistic descriptions of the equivalence stimuli showed that if quantity 
language was used, it was relational. For the magnitude task, the children's 
responses were classified in one of three categories: nominal [e.g., "The big (little) 
one," "It's too big," "They are both big (little)"), relational [e.g., "The big picture 
has more dots than that one," "This is more bigger," "This has more Oess) dots") , 
and other (including no response). For the 3-year-olds, 15% of the responses were 
nominal and 3% were relational. There was no significant difference in error rates 
between the children who used nominal or relational responses except for one task, 
the length task in the cue "little" condition. In this task, the relational responders 
made significantly fewer errors than the nominal ones. In addition, a number of 
children in this study showed a response pattern that is consistent with the inter
mediate stage proposed by Clark (1970) in which children use a single word to 
denote both ends of a polar dimension, for example, "more" is understood to 
mean both "more" and "fewer." This pattern consisted of selecting the wrong alter
native on most of the trials (at least 35 out of 40). Of the 3-year-olds, 6 out of 30 
children who were administered the "little" tasks did this on at least one of them. 
No 3-year-old did this in the "big" tasks. Nine 4-year-olds showed the same pattern 
in the "little" conditions and four did in the "big" condition. Their verbalizations 
in the language production task were, for the most part, correct. For example, in 
the "lit!le" groups, the children stated that they were selecting the littler stimulus, 
althOllgh, in fact, they were selecting the more numerous one. Therefore, they used 
the antonym to refer to the concept. Since most of the confusions occurred in the 
"little" conditions, and "little" was interpreted as meaning "big," this pattern 
could be a result of the child's assigning one term, usually the positive one, to both 
ends of the dimensions. 

To determine whether or not there were tendencies to refer to the positive, as 
opposed to the negative end, of the dimension, responses in the language production 
task were classified as positive (e.g., big, more, taller), negative (e.g., little, less, 
short), mixed (use of both types of terminology), or irrelevant or no response. 
These data are shown in Table 4.1. Clearly, for both the 3- and 4-year-olds, in the 
"big" conditions (both cue and no cue), there were significantly more references to 
the positive end of the dimension. Even in the "little" conditions, there were more 
responses to the positive end of the dimension, although the differences were not 
significant. 

Discussion 

For the younger children, a verbal cue did not facilitate the learningofnumeri
cal similarity or difference. For the older children, it did. These data suggest that in 
the early stages of quantity concept formation, language and thought function inde
pendently and that language has no facilitative effect on thought. Problem solution 
occurred prior to language production for some of the tasks, for others they were 
not related. In the case of the 4-year-olds, the facilitating effects of a cue can be 
considered evidence for verbal mediation. In this case, the argument for the indepen
dence of language and thought cannot be made, and it would appear that the older 
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Table 4.1 Asymmetry of Language Production in Magnitude Tasks: Study 2 

Proportion of responses a 

Task Positive 

3-year-olds 
Cue-big * .27 
No cue-big** .09 
Cue-little .09 
No cue-little .07 

4-year-olds 
Cue-big* .42 
No cue-big** .32 
Cue-little .21 
No cue-little .14 

a Significance of difference between positive and negative: 
*p < .00l. 

**p<.03. 

Negative 

.02 
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children sometimes used language to help them to solve the problem. However, 
even in the older age group, there were many children who could arrive at the cor
rect solution but not describe how they did so. It should be noted that one of the 
stimuli was available during the production task, so that memory failure was not a 
Significant factor in poor performance. 

As children mature, they are more likely to use comparative rather than nomi
nal terminology. Occasionally, another use of language occurred that was suggestive 
of an intermediate level of responding. In these cases, the child used the same word 
to refer to opposite ends of a dimension and combined this word with a different 
adjective or modifying phrase to refer to each extremity. For example, the children 
said such things as, "This is big and this is a little bit big," "This has a little bit lotsa 
dots and this has lotsa lot sa dots," "These are wider in and these are wider out," 
"Those are farther together and they're almost together ," "It's too long and it's not 
too long," and "This is long and this is a bit long" (pointing to the short of the two 
stimUli). This usage may account for the errors in labeling opposite ends of the 
same dimension with the same word. If children get confused and forget the modi
fier, the type of errors that Clark (1970) and Donaldson and Wales (1970) 
described could result quite easily. 

While there is clear evidence for asymmetry in the acquisition of positive and 
negative relational terminology, the same asymmetry is not apparent in the acqui
sition of the concepts. There were no differences between the acquisition of the 
"big" and "little" concepts in the no cue condition, but "big" facilitated concept 
attainment more than "little" did in the cue condition. In Study 1, the "big" and 
"little" concepts were of equal difficulty. The asymmetries appear to be more 
related to language acquisition than to acquisition of the concepts, again suggesting 
independence oflanguage and thOUght. 
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The order to task difficulty is consistent with earlier results (Siegel, 1974a, 
1974b) suggesting that the child gradually learns to separate and coordinate the 
dimensions of length and number. The number-length conflict task, in which 
length and number are negatively correlated was especially difficult. One of the 
children stated the problem with this task: "This one is bigger (pointing to the 
more numerous, more dense set) but this one is two so it's smaller." Another child 
said, "It's big because if you get mixed up you know it's big." It is apparently the 
relationship of these two dimensions that creates the difficulty with the under
standing of number. 

The development of children's perceptual and cognitive skills has been proposed 
as the basis for their early language acquisition (Bever, 1970; E. V. Clark, 1974; 
Slobin, 1973). This study suggests that conceptual development, in this case the 
ability to recognize numerical equality and inequality, occurs prior to the child's 
acquisition of relational terminology and is necessary, but not sufficient, for this 
acquisition. In addition, these data partially support the view that relative cog
nitive complexity determines the order in which language will be acquired. The 
magnitude concept presents a simpler, more basic quantity concept than equiva
lence (for a further discussion of this point see Brainerd, 1973; Siegel, 1974). 
Clearly, the magnitude concept was the easier. Understanding of the words "big" 
and "little" preceded the understanding of same number, which shows that words 
for the more complex concepts are learned later than words for the simpler ones. 

The results of these studies strongly suggest that language and thought function 
independently in the young child and, as the child develops, concepts and language 
tend to become more related. The implications of these fmdings for the assessment 
of cognitive operations in the young child are quite clear; concepts emerge on a 
nonverbal, probably perceptual level, before language has any relationship to them. 
Therefore, to the extent that the results from these experiments are generalizable 
to other concepts, measurements of cognitive skills which rely on the understand
ing of language or the production of linguistic responses will underestimate the 
cognitive abilities of the young child. These studies demonstrate that children can 
process information about relative and absolute size in a meaningful way and assimi
late new instances of these concepts, yet not necessarily be able to respond to or 
produce language about quantity. 

Study 3: Visual versus Verbal Functions 

While we have found discrepancies between young children's ability to solve 
conceptual problems and to produce language about those concepts, an alternate 
explanation has been offered for this discrepancy. Blank (1974) has proposed that 
young children are more likely to use language in a situation in which visual cues 
are not present. She cites, as evidence, the fact that she taught a simple visual form 
discrimination problem to 3-year-old children. She then asked them to tell her 
"which one had the candy." When the stimuli were present, the children often 
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failed to explain the reason for their choice. But when the objects were removed, 
most of the children could explain their responses. 

I attempted to test Blank's hypothesis by requiring 3- and 4-year-old children 
to learn the magnitude discrimination problem described earlier. They had to select 
a set with the larger number of dots. Once they had learned the problem, they were 
asked, "Which one got the candy?" under one of two conditions. In the stimulus 
present condition, one of the stimuli from the task was present. In the no stimulus 
condition, the children did not see a stimulus from the task when asked the 
question. A third condition, stimulus first, was added in which the children were 
shown one of the stimuli before they started the concept learning task, and asked 
to "Tell me about this" and were encouraged to verbalize about the stimuli. 

The purpose of the study was to test two hypotheses: (a) that a visual cue will 
retard language production; and (b) that language experience will facilitate concept 
learning. There were 32 3-year-olds and 32 4-year-olds in each of the three groups. 
The children were asked, "Tell me which one has the candy," at the end of the task. 
The percentage of children giving quantity responses in their answer is shown in 
Table 4.2. A quantity answer was defined as any answer that contained a specific 
number or a word denoting absolute size or a relational concept, for example, "The 
big one," "Two and nine," "Many more there," "Lots more there," "This is a big 
one," and "This is over the one and this is the big one." 

For the 3-year-olds, there were no significant differences between the three 
groups [X 2 (2) = 11.29, p < .1] . However, children who saw the card before they 
started the test were significantly more likely to give a quantity response than 
either the Stimulus Present or the No Stimulus group [X2(1) = 5.10 P < .025, 3.65, 
.05 > p < .10, respectively]. For the 4-year-olds, there were no significant differ
ences among the three groups. 

Therefore, Blank's hypothesis about visual interference with language production 
was not confirmed with this particular task. However, some prior exposure to the 
stimulus and having been encouraged to talk about it did facilitate the use of a 
quantity explanation at the end of the task, at least in the case of the 3-year-olds. 
This prior exposure may have called their attention to language and may have 
encouraged them to use language in the solution of the tasks. 

One of the conclusions of this study is that the relevant language does not 
appear to be used spontaneously. Another is that there is no evidence that visual 
functions are dominant and compete with with verbalizations. Blank hypothesized 
that language emerges first in the situations dealing with the memory for absent 

Table 4.2 Percentage of Children in Each Condition (Study 3) Who Produced a 
Quantity Responsea 

3-year-olds 
4-year-olds 

Stimulus present 

37.5 
52.4 

No stimulus 

31.3 
62.5 

a These percentages are calculated only for the children who passed the task. 

Stimulus first 

76.5 
66.7 
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but previously seen events or concepts does not seem to be true for this situation. 
This was not the case in the data from this study. Language occurs only if children 
this age are encouraged to verbalize, which again suggests an independence of 
language and thought in the young child. 

Study 4: Training of Cognitive and Language Abilities 

One way of investigating the relationship between language and thought is to 
examine the relative effects of training in these areas. If language training facili
tates the acquisition of concepts, then the possibility exists that language may 
playa significant role in a thought of a young child. However, if training on con
cepts is more effective, then language may not have a primary role. The degree 
to which language or concept training generalizes to other concepts may provide 
information about the role of language in thought. 

I have investigated these relationships with the magnitude concepts we have 
discussed earlier. Three- and 4-year-old children were tested for their understand
ing of two of the magnitude concepts, length and number. In each case, the child 
was required to select the larger set size. A concept or language training with either 
length or number concepts was then instituted. 

Concept Training 

The concept training procedure involved 40 trials of presentation of stimuli 
similar to the ones used in the concept task. One-half of the children were trained 
on the Length task, and half were trained on the Number task. They were rein
forced for a correct response with a correction procedure. Wrong responses were 
corrected. 

Language Training. The language training consisted of presentation of the same 
stimuli as in the concept task with 40 trials of feedback about the correctness or 
incorrectness of the child's response. The child was instructed to select the "big 
one." The children received the language training with either the length or number 
stimuli. 

Pretest. Each child was administered a pretest of four tasks, Length-Concept, 
Length-Language, Number-Concept, and Number-Language. Four counterbalanced 
orders were used. After the children had been trained, they received a posttest of 
all four tasks. 

The focus of this study was whether concept or language training would facilitate 
the learning and to what extent training would generalize to the other task on 
which the child had not been trained. These results are shown in Table 4.3. As can 
be seen, the concept and the language training were about equally successful when 
the posttest involved the same task. However, language training did not generalize 
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to the other tasks, whereas the concept training did in about one-third of the cases. 
Therefore, it appears that the concept training is more successful when it comes to 
generalization. While the language training was successful for a particular task, it 
hardly generalized to other tasks, although most of the children were reasonably 
successful in the language training task. 

Two trends have emerged thus far. First, language does not facilitate thought in 
the case of more complex concepts, but it may with simpler concepts. Second, 
language exerts more influence on cognition as children get older. In younger 
children, there appears to be an independence of language and thought, but language 
may serve a facilitative function with some concepts as children get older. 

Study 5: Cognitive Development of Children 
with Impaired Language Development 

Another way of investigating the language-thought relationship is to study 
children with language problems. We studied a group of preschool children who 
were language impaired, that is, they had normal nonverbal cognitive skills as 
measured by standardized tests, but their language development was delayed (Siegel, 
Lees, Allan, & Bolton; 1981). The aim of the study was to discover how they would 
perform on these cognitive tests. If they solved these tasks in a manner identical to 
normal children, then we could conclude that their significantly below average lan
guage abilities do not appear to influence their cognitive development. If, on the 
other hand, their performance was below average, then language might play a role in 
cognitive development, at least in relation to the particular concepts that we studied. 

The subjects of this study were preschool children, aged 3-5 with impaired 
language development and a comparison group of children with normal language 
development, who were matched with language-impaired children on the bases of 
age, sex, and social class. The children in the language-impaired group had normal 
nonverbal intelligence scores (Leiter) and significantly below average scores on 
standardized tests of language comprehension and expression (Reynell). Their 
hearing was in the normal range, and they had no neurological or psychological 
problems that were assessed to be the primary reason for the language impairment. 

Table 4.3 Proportion of Children Who Failed the Pretest and Passed the Posttest in 
Each Condition (Study 4) 

Training 

Language training on the identical task 
Concept training on the identical task 
Language training on a different task 
Concept training on a different task 

Concept task 

.33 

.44 
o 

.35 

Posttest 

Language task 

.47 

.27 

.09 

.33 
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The language-delayed and normal children were given the tasks area, length, 
number, and one-to-one correspondence and have been described previously. 
We added several others (see Fig. 4.4): 

Seriation. In this task, the child was shown lines of four different lengths, 
arranged in a random order with the bottoms even. The child had to select the 
second largest. In order to achieve a correct solution, a child had to be able to 
seriate, that is, to order the lines by size. 

The tasks also included three tasks which were nonverbal alternatives to certain 
spatial concepts in the Piagetian system (Piaget & Inhelder, 1956). These tasks 
were as follows: 

Spatial Ordering. In this task, the child was required to match sets of 3-4 dots 
of different colors which were in the same spatial order. The child had to select 
from two sets of dots, the correct response being the set in which the order of the 
colors of the dots matched the standard. 

AREA 

• 
ONE-TO-ONE 

CORRESPONDENCE 

•••• 

••••••• 

SPATIAL ORDERING 

®®@ 

®®@ @®® 

LENGTH 

• • • • • • • • 

CONSERVATION 

•• •• 
•• •• •• • 

TOPOLOGICAL 
SPACE 

II 
e 0 

NUMBER 

• • • • • • • • 

SERIATION 

I I • I 
HORIZONTALITY 

Fig. 4.4 Examples of the stimuli used in Study 5. 
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Topological Space. In this task, the child had to select between two alternatives 
the shape in which the topological features matched those of the standard. The 
incorrect alternative matched the standard in Euclidean features. In the example in 
Fig. 4.4, the circle matches the square topologically in that they are both closed. 
The incorrect alternative is a square, which has the same Euclidean features as the 
standard but a different topological feature (open). 

Horizontality. In this task, the child was required to recognize that water level 
remains parallel to the surface in spite of the tilt of the container. The child had 
to select between two alternatives, one in which the water level was parallel to the 
surface and the other in which it was parallel to the bottom of the container. A 
stimulus from each of these tasks is illustrated in Fig. 4.4. 

As can be seen in Table 4.4, there were no differences between the language
impaired and normal language children on the three magnitude tasks (area, length, 
and number). The judgment of relative quantity was, therefore, not significantly 
different in these groups. The language-impaired group had difficulty with the more 
complex concepts (one-to-one correspondence, conservation, seriation, spatial 
order, and topological space). Therefore, the understanding of these more complex 
concepts may require language for their solution. One concept, horizontally, did 
not show any difference between the groups because so few children in either group 
passed. 

The language-impaired children had no difficulty with the simpler concepts of 
larger or more. It may be that these concepts involve global wholistic judgments 
and do not involve the use oflanguage. 

Table 4.4 Percentages of the Impaired Language and Normal Children Passing the 
Tasks Used in Study 5 

Magnitude concepts 
Area 
Length 
Number 

Concrete operations 
One to one correspondence 
Conservation 
Seriation 

Spatial concepts 
Spatial order 
Horizontality 
Topological space 

a n = 26 in each group. 
b Not significant. 
* p < .01, two tailed. 

** p<.OOl,twotailed. 

Language impaired 

62 
50 
62 

g 

4 
o 

g 
12 

g 

Normal language a 

42** 
23 b 
42 

42** 
gb 

46.* 
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On the other hand, the language impaired children's difficulty with the more 
complex concepts may reflect the role of language in these cognitive operations. 
They had difficulty with concepts such as one-to-one correspondence, conservation, 
spatial ordering, and seriation, which may involve some type of sequential process
ing. Language may be important in these situations because it helps in the storage 
of information and/or place marking in a sequence. 

Therefore, it appears from the results of this study that the relationship of 
language and thought depends on task complexity. Based on the performance of 
the language impaired subjects, language may playa role in more complex tasks but 
does not appear to playa major role in simpler tasks. 

Study 6: The Abstraction of the Concept of Number2 

These demonstrations of the complex relationships between language and 
thought in young children lead to the inevitable conclusion that nonverbal methods 
are the appropriate means to study the development of quantity concepts in the 
young child. Using nonverbal methods, I have studied the emergence of the under
standing of the concept of numerical equivalence, a fundamental cardination con
cept. The purpose of this study was to examine the children's emerging concepts 
of number, independent of their language skills. 

It has been found in previous studies involving verbal methods that the child 
easily confuses a variety of dimensions with number. One of the most common 
of these is length. Children often have trouble differentiating number as a dimension 
independent of length (e.g., Baron, Lawson, & Siegel, 1975; Brainerd, 1977; Gel
man, 1972; Lawson, Baron, & Siegel, 1974; Piaget, 1965; Pufall & Shaw, 1972; 
Siegel, 1974a). Children have difficulty recognizing that two sets are numerically 
equivalent if they have different spatial arrangements (Siegel, 1973). Children also 
have difficulty recognizing that two sets are numerically equivalent if they have dif
ferent matching set with the correct numeral or judging the relative size of two sets 
if the arrangement of objects in a set is not linear (Siegel, 1972, 1974b). If a set is 
heterogeneous-that is, it is composed of sets of nonidentical objects-it is more dif
ficult for children to judge the number in that set or to associate the correct 
numeral with it than if the set is composed of identical items (Siegel, 1973, 1974b), 
although Gelman and Tucker (1975) have found that heterogeneity does not inter
fere with the judgment of small set sizes. On the basis of these studies it appears 
that the child often has difficulty in extracting number as a dimension. 

This study was designed to determine the manner in which children learn to ab
stract number from dimensions irrelevant to number. Specifically, the manner in 
which this abstraction process interacts with the child's perception of numerosity 
and with nonnumerical stimulus dimensions was examined. We chose the dimensions 

2The author wishes to thank Fred Meek who assisted in the data collection and analysis of 
this study. 
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of color, form, size (area), and heterogeneity, all of which may vary along with 
number in sets that require numerosity judgments. 

In studies, the child's concept of number depends on the absolute size of the set; 
that is, the child learns about the smaller numbers (set sizes 1-5) before he or she 
learns about the larger ones (set sizes 6-9). (For an extensive review of the literature 
see Gelman, 1972.) Therefore, we examined the hypothesis that the abstraction of 
number as a relevant dimension might depend on the absolute size of the set. It was 
expected that number might be more easily perceived as a relevant dimension with 
smaller set sizes than with larger set sizes. We also tested the hypothesis that the 
ability to recognize the numerical inequality of sets with identical items would 
depend on the absolute size difference between the sets. That is, if two sets were, 
for example, perceptually similar but 4-7 items different in numerical size, they 
would be more likely to be judged as not the same number as two sets perceptually 
similar but only 1-3 items different in size. 

Thus, the ability to recognize the numerical equivalence or inequivalence of sets 
was expected to depend on two factors: (a) perceptual ones involving the percept
ual similarity within and between sets; and (b) cardinality of the sets, both in terms 
of the absolute cardinal number in the sets and the absolute size of the difference 
between sets. 

The results showed that the two processes of (a) abstracting number as a dimen
sion; and (b) understanding of cardinality appear sequentially. Because we used 
totally nonverbal methods, the issue of linguistic confusion and understanding of 
relational terminology is not relevant. 

Subjects. The subjects were 84 4-, 5-, and 6-year-old children, 28 children (14 
boys and 14 girls) at each of the three age levels. They were chosen randomly from 
classes in various preschools and elementary schools in Hamilton, Ontario. 

Procedure. The tasks involved learning the principle of numerical equivalence. 
The child was required to learn to match two numerically eqUivalent sets, using a 
series of stimulus configurations with a sample and four alternatives, only one of 
which matched the sample in numerical size (Fig. 4.5). 

These were administered on a teaching machine apparatus. The children were 
instructed to select the one that had the same number as the "top one" (sample), 
and they received feedback about the correctness or incorrectness of each response. 
The feedback was both verbal ("Yes, that's right," or, "Not that one," etc.) and 
tangible, a small play coin, if the answer was correct. The first five trials were cor
rection trials on which the machine did not advance unless a correct response was 
made. These forced-choice trials insured that the children understood there was a 
correct response. The individual tasks were: 

1. Equivalence: The sample and all the alternatives were homogeneous sets of 
circles which were equivalent and arranged in a linear array. The numerical size 
of the sample and alternatives were chosen randomly from the set of 1-9. A 
typical stimulus from this task is illustrated in Fig. 4.5. 
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Fig. 4.5 An example of the stimuli for the equivalence task (Study 6). 

The following six tasks were constructed so that the child could match the 
sample and the alternatives on either the dimension of number (correct) or 
some other dimension, specifically, shape, color, and size (incorrect). The cor
rect choice was identical in numerical size, but was a different shape, color or 
size (depending on the task) from the sample. The alternative that was identical 
in shape, color or size, but not number, to the sample was called the conflict 
alternative. It matched with the sample on some dimension other than number. 
This allowed us to test the degree to which each dimension was confounded 
with number. The conflicting alternative was either close (1-3 items different) 
or not close (4-7 items different) to the sample in numerical size. 

2. Shape (4-7): The sample and the correct alternative were identical in number 
but different shapes (e.g., circles and squares). A total of 10 different shapes 
were used. One alternative, 4-7 items different from the sample, was the same 
shape as the sample but, obviously, different in numerosity from the sample. 
The two remaining alternatives were sets composed of shapes that were the same 
as the sample, but different in number. A representative stimulus is illustrated 
in Fig. 4.6. 

3. Shape (1-3): This task was the same as shape (4-7), but the sample and the con
flicting alternative differed by 1-3 items. 

4. Color (4-7): The sample and the correct alternative were identical in number, 
but different in color. A total of 10 different colors were used. One alternative, 
4-7 items different from the sample, was the same color as the sample but dif
ferent in numerosity. The two remaining alternatives were the same color as the 
correct alternative but different in number. 

5. Color (1-3): This task was the same as color conflict (4-7), but the sample and 
the conflict alternative differed by 1-3 items. 

6. Size (4-7): The sample and the correct alternative were different in size (area) 
but identical in number. A total of 10 sizes were used. For half the trials, the 
conflict alternative was a set of circles smaller in area than the correct one and 
for the other half of the trials, it was larger. The numerical size of the conflicting 
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Fig.4.6 An example of one of the stimuli for the shape (4-7) task. The conflict 
alternative has six dots. 

alternative was 4-7 items different from the sample. 
7. Size (1-3): This task was the same as size 4-7, but the size of the conflict alter

native was 1-3 items different from the sample. 

Two tasks called heterogeneous-shape and heterogeneous-shape/color, were 
included in the sets which were completely heterogeneous. A representative 
stimulus from the heterogeneous-shape task is shown in Fig. 4.7. Each set was 
composed of different items. These tasks were as follows: 

8. Heterogeneous-shape: The sets were heterogeneous for shape. 
9. Heterogeneous-shape/color: The sets were heterogeneous for both shape and 

color. 

•• 
-+~ I 

• • + • 
* +* • 0 

Fig.4.7 An example of one of the stimuli from the heterogeneous shape task. 
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If the child has difficulty abstracting number as a dimension, we would expect 
two major fmdings. First, the simple equivalence tasks in which number was not in 
conflict with other dimensions should be the easiest. The tasks that had number in 
conflict with other dimensions should be especially difficult for the younger 
children. Second, the conflicting alternative (the set that was identical to the 
sample in some dimension other than number) should be chosen instead of the 
numerically correct but perceptually different one, especially by the younger 
children. 

Results 

The mean number of errors in 20 trials for each task and each age are shown in 
Table 4.5. A mixed model analysis of variance for the within subject variable of 
task and the between subjects variables of age and order was performed. There were 
significant effects of age [F(2, 72) = 36.95, p < .001], and task [F(8, 576) = 
20.57, p < .001] and a significant Age X Task interaction [F(16, 576) = 3.02, p < 
.001] . 

The equivalence task, which did not have a dimension in conflict with number, 
was the easiest. The other tasks, which required the dimension of number to be 
differentiated from another dimension (size, shape, or color) or those involving 
heterogeneous sets, were more difficult for the 4-year-olds. Only some of the tasks 
requiring number to be selected from other dimensions were more difficult for 
the 5-year-olds. The 6-year-olds achieved relatively high levels of performance on 
all tasks. The 4-year-olds performed at almost as high a level as the 5- and 6-year
olds on the equivalence task, but on the tasks that required them to separate 
number from another dimension, they made many errors. In shape (4-7) and shape 
(1-3), they chose the correct alternative only one-third of the time. The 6-year
olds were correct 75%-80% of the time on these two tasks. 

There were Significant developmental changes in the children's ability to match 
perceptually dissimilar sets on the basis of number. 

Perceptual: Nonnumerical Strategies. Six of the tasks had what was called a 
conflicting alternative which were different in cardinal number, but identical in 
shape, color, or size (depending on the task) to the sample. The correct answer was 
identical in cardinal number but different in size, shape, or color from the sample. 
The hypothesis was that younger children would be more likely to select the 

Table 4.5 Mean Number of Errors in 20 Trials 

Hetero-
Size Size Color Color Shape Shape geneous Heterogeneous 
4-7 1-3 4-7 1-3 4-7 1-3 shape shape and color 

4 7.5 9.2 10.4 9.6 10.6 13.7 12.6 11.3 11.5 
5 4.5 5.5 6.2 5.1 4.9 9.2 7.0 6.0 7.2 
6 2.1 1.7 3.0 2.4 3.2 3.6 4.6 2.8 3.5 
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conflicting alternative than the older children. The percentage of errors that were 
choices of the conflicting alternative are shown in Table 4.6 for each age and task. 
These are contingent percentages (Le., the number of conflict errors divided by the 
total number of errors) of all the children in this study were much less likely to 
choose the conflicting alternative than the younger children. There was a significant 
tendency for the younger children to select the conflicting alternative, even though 
they were never reinforced for it. Although this strategy was unproductive in 
obtaining the reward, it was quite prevalent. (The dimension of number was rein
forced, but the younger children did not seem to be able to ignore the irrelevant 
dimension and pay attention to number.) The presence of other dimensions inter
fered. They had evidenced an understanding of number in their performance on the 
simple equivalence task, so that they possessed the capacity to perceive number. 
Thus, the problem seems to be one of abstracting number in the face of irrelevant 
information. The older children, especially the 6-year-olds, were making different 
types of errors, estimation errors, which I shall describe in detail below. 

Estimation: Numerical Strategies. I also examined the hypothesis that the 
process of recognizing that two sets are equivalent in number occurs later than the 
process of abstracting number. Certain features of these data substantiate the 
hypothesis. The older children were more likely than the younger children to make 
errors based on the absolute or relative numerical size of the set. Essentially, they 
were not as likely to be distracted by the irrelevant dimensions but were more 
likely to choose an incorrect answer (a) in the trials with the higher cardinal num
bers; and (b) close in cardinal number and close in numerical size to the correct one. 
Their responses were controlled much more by numerical size. 

To illustrate the above trends, let us look at the relative percentage of errors 
made by each group as a function of the cardinal number of the correct answer. 
Table 4.7 shows the percentages of errors made in the trials in which the correct 
answer was 6-9. Again, these are contingent percentages. As can be seen, the 4-year
olds were equally likely to make errors if the set size was 1-5 or 6-9 on most tasks. 
However, the 6-year-olds made many more of their errors on the trials with the 
larger cardinal number sets. In one task, over 90% of the errors were on the trials 
with the large number sets. The 5-year-olds are typically at an intermediate level. 
Many of their errors were in the trials with the higher set sizes. There is clearly 
a developmental trend in the increased likelihood that an error will be made in the 
higher set sizes for the older children. This trend was tested statistically by x2 

tests on the frequencies of errors in each set size category as a function of age. 

Table 4.6 Mean Percentages of Errors That Were Choices of the Conflict Alternativea 

Size Size Color Color Shape Color 
4-7 1-3 4-7 1-3 4-7 1-3 

34.82 55.86 23.71 73.86 48.36 66.36 
5 19.04 58.43 8.93 66.75 16.00 51.29 
6 3.10 47.50 0.00 56.50 7.50 40.25 

a These are contingent probabilities. 
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Table 4.7 Percentage of Errors as a Function of Cardinal Number (6-9) of Correct 
Alternative 

Age 

Task 4 5 6 

Equivalence 49.72 70.59 75.15 
Size 4-7 56.18 65.88 78.11 
Size 1-3 56.29 72.18 66.11 
Color 4-7 62.77 76.78 91.70 
Color 1-3 68.53 85.39 88.34 
Shape 4-7 54.20 57.58 57.18 
Shape 1-3 63.51 78.48 81.15 
Heterogeneous shape 50.32 66.82 71.48 
Heterogeneous shape and color 64.50 73.94 87.77 

The data for these tasks, as a function of age and set size in which error occurred, 
are shown in Table 4.8. Children who made no errors or an equal number of errors 
in each category have been eliminated from the analysis. In many of the tasks, there 
was a Significant association between error rate and age. The older children made a 
greater proportion of their errors on the large set sizes, indicating that their errors 
were due to an inaccurate assessment of cardinal number, since cardinal number is 
harder to assess accurately with large set sizes. Thus, the younger children were 
making errors by selecting an incorrect stimulus dimension for matching, while the 
older children were making errors by selecting an incorrect alternative in the larger 
numerical set size comparisons. 

Developmental Differences in Strategies. The findings described thus far suggest 
the sequential emergence of two processes relating to the child's understanding of 
cardinal number: (a) the abstraction of the dimension of number; and (b) the 
ability to match sets on the basis of cardinal number in spite of the presence of 
irrelevant dimensions. To assess the presence of these strategies, we examined the 
tendency to choose an incorrect alternative close in numerical size to the correct 
one (cardinal number strategy). Close in numerical size was defmed as selecting a 
set size one item different from the sample. Children were defined as having the 
cardinal number strategy if they chose an alternative that was one different from 
the correct one more frequently than they chose the conflict alternative. Children 
were defined as having the perceptual strategy if they chose the conflict alternative 
more frequently than an alternative close in numerical size to the correct one. The 
number of children employing each strategy is shown in Table 4.8. Children who 
made no errors, or who made an equal number of each type of error, were elimi
nated from the analysis. As can be seen from the data in Table 4.8, there is a 
significant association between age and strategy in all the tasks except one size 
(1-3). This may result from the fact that the dimension of size is logically related to 
number while color and shape are not. The older children are more likely to use a 
cardinal number strategy, and the younger ones are more likely to use a perceptual 
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Table 4.8 Frequency of Errors as a Function of Set Size and Agea 

Equivalence Size (4-7) Size 0-3) 

1-5 6-9 1-5 6-9 1-5 6-9 

4 14 7 4 8 13 4 11 15 
5 2 16 5 4 8 5 2 21 
6 4 15 6 1 13 6 3 15 

X2 = 15.50, p < .001 X2 = 4.28, P < .20 X2 = 8.29, p < .02 

Color (4-7) Color 0-3) Shape (4-7) 

1-5 6-9 1-5 6-9 1-5 6-9 

4 8 15 4 7 20 4 14 12 
5 1 21 5 2 23 5 8 17 
6 25 6 1 23 6 4 15 

X2 = 12.05,p<.01 X2 = 6.13,p < .05 X2 = 5.50, P < .01 

Heterogeneous Heterogeneous 
Shape 0-3) (shape) shape and color 

1-5 6-9 1-5 6-9 1-5 6-9 

4 4 16 4 15 10 4 5 20 
5 20 5 7 17 5 2 20 
6 20 6 2 13 6 0 25 

X2 = 3.60, p < .20 X2 = 9.85, p < .01 X2 = 5.71, p < .1 0 

a The entries in the cells represent the number of children who made a greater percentage of 
errors in each set size category. 

one. Even in the simple equivalence task, the 6-year-olds, if they made errors, 
selected an alternative that was one different in numerical size from the sample 
81.0% of the time, while the 4- and 5-year-olds did so only 48.7% and 38.7% of the 
time, respectively. 

Relative Numerical Size of the Sets. Recognizing that two sets are different in 
cardinal number, obviously depends on the relative size of the sets. Sets very dif
ferent in number are clearly easier to recognize as having different numerosity. 
Therefore, we included tasks in which the conflict alternative was close in numeri
cal size (1-3 different) or more different in numerical size (4-7) from the correct 
answer. We expected that the 4-7 tasks would be easier than the 1-3 tasks. In fact, 
there was no significant difference in error rates between these two tasks, as can 
be seen Table 4.5. However, inspection of the data in Table 4.6 reveals that there 
was a Significantly greater tendency in all age groups to choose the conflict alter
native if it was close in size to the sample. The joint combination of perceptual 
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identity and numerical similarity (but not identity) was a very powerful determi· 
nant of error responses. The oldest children made very few errors which involved 
the irrelevant dimension if it was not close in numerical size to the sample. 

The younger children clearly had difficulty with the dimension of cardinal num· 
ber in situations in which there were irrelevant dimensions present. Was this diffi· 
culty merely a problem of the perceptual salience of the other dimensions as 
opposed to number? That is, were the children merely selecting a more salient 
dimension and responding to it? Here is where the learning paradigm is useful and 
why the use of nonverbal techniques are important. If the children responded to a 
different dimension and chose a set identical in shape but not in number to the 
sample, they did not receive reinforcement. Therefore, even if they started off 
attending to the irrelevant dimension, this response was not reinforced. Even in 
this case, they made many errors (many of the younger children the percentage of 
errors was as high as 80%·90%). Therefore, the irrelevance of other dimensions to 
number was difficult to learn for the younger children. The majority of these 
children could all do a simple equivalence task, so they did have the ability to 
solve a number problem. However, their failure to understand number as a dimen· 
sion and their attention to dimensions other than number interfered with their 
performance. The difficulty of understanding number as a dimension was not just 
a result of contrasting number with a particular dimension. Abstracting number 
was difficult with the dimension of shape, size, color, and even heterogeneous sets. 

It could be argued that the children were attacking these problems as oddity 
ones. An examination of Fig. 4.6 shows that the conflict alternative is different in 
shape from the others. Again, the use of the learning paradigm is helpful. Even if 
the children chose this oddity strategy (in this case the wrong strategy), it was not 
reinforced, so they should have little reason to continue it. 

Even if the child can count and understand simple equivalence, number is abo 
stracted gradually as a dimension. Only after this process has occurred does cardinal 
number become important. The younger children's responses are controlled by 
perceptual equivalence, while the older ones by numerosity. 

Conclusion 

In summary, we have described two sequential processes in the young child's 
abstraction of number. First, the child must recognize number as an independent 
dimension; then the child must learn that cardinal number means exact numeri· 
cal correspondence. 

We have presented a series of studies illustrating a variety of linguistic and 
perceptual factors which influence the young child's acquisition of a variety of 
quantity concepts. In general, there is an increase with age in the degree to which 
language plays a role in the child's understanding of quantity. Perceptual, non· 
quantitative factors playa significant role early in development and appear to pre· 
cede the use of language. As the child develops, there is a movement away from a 
perceptual matching strategy to a conceptual, numerically based one. However, 
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counting, whether internal or audible is probably tied to language, and the child's 
estimation errors are probably a result of a failure to employ language skillfully, or 
perhaps at all, in the task. 

There is evidence that language was playing a role in the more complex tasks in 
this study. When perceptual solutions fail, that is where sequence iteration infor
mation is important, language may become a significant component of the tasks. 

In summary, we have demonstrated the predominance of perceptual nonlinguis
tic operations in early quantity concepts and the increasing role of language in the 
solution of tasks involving elementary notions of quantity. 
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5. Culture and the Development of 
Numerical Cognition: 

Studies among the Oksapmin of 
Papua New Guinea 

Geoffrey B. Saxe 

Psychologists concerned with the development of cognition have largely studied 
age-related changes in Western middle class children. Although some classic findings 
have been produced by this approach, it has its limitations. By studying develop
ment in only one society, we are blind to the way in which culture may influence 
cognitive development. It is only through the analysis of development in different 
cultural contexts that some perspective on the links between culture and cognitive 
development can be achieved. In this chapter, research concerned with the numer
ical concepts of a remote and recently contacted group in Papua New Guinea, 
the Oksapmin, is discussed. The Oksapmin people are just emerging from Stone 
Age conditions and hence present a radical contrast to the West in their patterns of 
social life as well as in their practices involving number concepts. 

The research with the Oksapmin is presented in four sections. In the first section, 
some of the methodological preliminaries and problems inherent in cross-cultural 
research are discussed, a discussion that situates the Oksapmin research in the 
context of the general enterprise of cross-cultural cognitive studies. In the second 
section, the Oksapmin community is introduced. The focus is on the character 
of the Oksapmin body-part numeration system and the way in which it is employed 
in activities that involve number and measurement concepts. In the third section, 
research on developmental changes in numerical understanding in the Oksapmin 
community is summarized. The research is focused on both ontogenetic and socio-

This chapter was prepared while the author was supported by a grant from the National 
Institute of Education (G-7S-Q076 and G-SO-Q119) and a grant from the Indigenous Mathe
matics Project of Papua New Guinea. Appreciation is extended to Maryl Gearhart, Thomas 

Moylan, and Carl Saxe for comments on an earlier draft of this chapter. 
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historical changes in the way Oksapmin use their body-part numeration system to 
represent discontinous and contino us quantities. In the fourth and final section, 
the findings with the Oksapmin are discussed as a contribution to our 
understanding of the interplay between culture and the individual's formation 
of numerical concepts. 

Methodology and Cross-Cultural Number Research 

The methodological problems inherent in cross-cultural cognitive research have 
received considerable discussion in the cross-cultural literature (see Berry & Dasen, 
1974; Glick, 1975; Laboratory of Comparative Human Cognition, 1979). The crux 
of these problems is a tension between two different methodological goals. One 
goal is to maintain a consistent defmition of cognition or "cognitive abilities" 
across cultural settings and, accordingly, a consistent operational defmition of what 
stands for evidence that subjects do or do not possess these abilities. The other 
goal is to obtain rich descriptions of the unique and special forms of cognition 
within particular cultural settings. If one strives for standard operational defmi
tions across settings, the consequence is often that the special characteristics of 
cognition in particular settings are ignored. But, if one strives to capture cognitive 
functioning as it occurs in context, comparability of observations across settings is 
often sacrificed. In the Oksapmin research, a developmental perspective is adopted, 
which, in part, circumvents the tension between these two methodological concerns. 

A central tenet of the developmental approach is that cognitive phenomena 
should be understood as processes undergoing transformation, transformations that 
are produced as subjects attempt to gain better control and understanding of their 
interactions with their environments (cf. Piaget 1963, 1970; Vygotsky 1962, 
1978; Werner 1957; Werner & Kaplan, 1963). Moreover, the process of transfor
mation has a universal direction. It is toward the elaboration of systems of knowing 
which are progressively more comprehensive and powerful. From this perspective, 
the major task is to understand the principles that regulate these transformations, 
and it is this defmition of the research task that leads to a strategy that accommo
dates both of the methodological concerns presented above. The strategy is to pro
duce an ethnography of cognitive activities within a particular cultural setting and, 
at the same time, construct procedures that would reveal developmental transfor
mations in these activities. The virtue of this approach is that it does not involve 
direct comparisons of cognition across social contexts, and, as a consequence, 
the standardization of procedures is related to indigenous concepts. Therefore, the 
standardization process does not directly interfere with the analysis of special forms 
of cognition that are unique to particular cultural groups. However, since the stand
ardization is produced in order to illuminate general principles of developmental 
change, the fmdings are not limited to a single context, but rather can be used to 
inform our understanding of the general process of cognitive development. 
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The Oksapmin Community 

The Oksapmin people live in a remote highlands area of the West Sepik pro
vince of Papua New Guinea. There are no roads to the area, and the only means of 
access is by single engine aircraft and travel by foot. There are between 6000 
and 8000 speakers of the Oksapmin language, who live in small hamlets scattered 
through two valleys. This is a subsistence economy: people use slash-and-burn 
methods to cultivate taro and sweet potato, hunt for small game with bow and 
arrow, and keep pigs. (See Fig. 5.1.) 

Western contact was first established with the Oksapmin by the Australian 1938-
1940 Hagen-Sepik patrol, although it was not until the 1950s that the Oksapmin 
were contacted by additional patrols. A government patrol post and a mission station 
were established in the Oksapmin area in the early 1960s. By the late 1960s, a 
recruitment program was begun in which Oksapmin men were offered the oppor
tunity to leave the area for two-year periods to work on copra and tea plantations 
and earn currency. In the early 1970s, the first government school was established 
in the Oksapmin area. 

The standard Oksapmin numeration system differs markedly from the Western 
system, as do the systems of other Papua New Guinea groups (see Lancy, 1978). 
To count as Oksapmins do, one begins with the thumb on one hand and enumerates 
27 places around the upper periphery of the body, ending on the little finger of 

Fig. 5.1 A common scene on a major path in an Oksapmin valley. 
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the opposite hand. If one needs to count further, one can continue back up to the 
wrist of the second hand and progress back upward on the body (see Fig. 5.2). 
People use the system in everyday activities. For example, aside from using the sys
tem to count (pigs, currency, etc.), people also use it to denote the ordinal posi
tion of an element in a series of elements (the ordinal position of a hamlet in a 
series of hamlets on a path), or in basic measurement operations (as a means of 
measuring and representing the length of string bags, a common cultural artifact). 
In traditional life there is virtually no context in which Oksapmin use the system to 
do arithmetical computations. Now, however, with the introduction of currency 
and formal schooling, the need to use the system for computation is becoming a 
practical necessity for some individuals. 

Studies on Numerical Cognition among the Oksapmin 

In the studies described below, the developmental approach was translated into 
a research program through an analysis of two forms of cognitive developmental 
change, namely, cognitive developmental change in ontogenesis and in ongoing 
social history. In each case, the design and analysis are closely linked to an analysis 
of the sociohistorical context of Oksapmin life. For example, the analysis of onto
genetic change is focused on the way in which Oksapmin children come to incor
porate the body numeration system into their own problem-solving activities involv
ing discontinuous and continuous quantities. The analysis of historical change is 
is focused on the way traditional forms of numeration are changing to more power
ful systems and the factors in the lives of the Oksapmin people which are moti-

Fig. S.2 The conventional sequence of body parts used by the Oksapmin. In order 
of occurrence: (1) tip Ana, (2) tipnarip, (3) bumrip, (4) hAtdip, (5) hAthAta, (6) 
dopa, (7) besa, (8) kir, (9) towAt, (10) kata, (11) gwer, (12) nata, (13) kina, (14) 
aruma, (15) tan-kina (16) tan-nata, (17) tan-gwer, (18) tan-kata, (19) tan-tow At, 
(20) tan-kir, (21) tan-besa, (22) tan-dopa, (23) tan-tip Ana, (24) tan-tipnarip, (25) 

tan-bumrip, (26) tan-hAtdip, (27) tan-hAthAta. 
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vating these changes. Though the studies are described individually, the separation 
between ontogenetic and sociohistorical change is merely for analytic purposes. It 
should be clear in the course of this section that the ontogenetic and sociohistorical 
changes discussed represent a dynamic system in which one serves as a necessary 
basis for the other. 

There are a number of procedural similarities that each of the studies share. 
In each study, an Oksapmin informant administered the interview tasks in the indi
genous language, and all interview procedures were standardized through either a 
back-translation method (see Saxe, 1981) or with the aid of Thomas Moylan, a 
linguistic anthropologist, who has considerable proficiency with the Oksapmin 
language. When age was used as a variable in any of the studies, it was determined 
either on the basis of missionary records of visual comparison of children of known 
ages with children of unknown ages. In general, age group contrasts are cautiously 
interpreted. Based on their recorded age, individuals are classified as a member of 
one of two age groups with a separation between age groups of one or two years. 
Those children who were identified as in that one- to two-year "limbo" period 
are excluded from age group analyses. 

Ontogenetic Changes in Oksapmins' Use of Body Parts 
as a Notational System for Quantitative Relations 

Before discussing the studies, it will be helpful to put the Oksapmin research 
in perspective by discussing some general features of numeration systems and some 
fmdings with Western children. The activity of numeration, whether it be with 
body parts or Western number words, involves establishing a one-to-one corre
spondence between two sets of elements. One set, the "standard," is a convention
ally defmed list of symbols that is always used in counting. It is a historical form of 
knowledge produced in the social history of a cultural group. The second set, the 
"variable," is a target array that varies from one count to another. The aim in 
counting is to establish a one-to-one correspondence between the sets such that the 
standard serves to denote a progressive summation of correspondences with the 
variable set. Thus, to count five objects, an individual establishes five correspon
dences between the standard set ("one, two, three, four, and five") and the variable 
set (the five objects). The fifth member of the standard set ("five") then serves as 
a notation for the summation of the five correspondence relations. When this 
summation is used to refer to the set of correspondences, it is known as the cardinal 
value of a set; when it is used to refer to a summation of the positions of the corre
spondences in the enumeration, it is referred to as the ordinal value of a set. If the 
variable set consists of a continous quantity, the subject must first consider it as 
units or discrete parts. Correspondences that the subject establishes between the 
standard set and the discrete parts are then progressively summed in the act of 
counting just as they are with a discrete set of elements. 

Any formulation of cognitive development must account for how social forms 
of representation that are initially external to the child become the child's own and 
interwoven with its own cognitive functioning. One way in which this internali-
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zation might occur-and the working hypothesis for the Oksapmin research-is that 
children nrst acquire some part of their cultural group's standard set of number 
terms in the context of playful activites (e.g., in social interaction with adults or 
more capable peers). To the extent that children use these terms to solve numerical 
problems, children's use of the terms is regulated by the adult. The adult's conven
tionally defmed system becomes a vehicle of number representation for the child 
through a further constructive process: The child attempts to understand the organ
ization of its own enumerative activities. With progress in this understanding, the 
child would be increasingly capable of using number terms to solve numerical prob
lems without the aid of the adult. 

To date, there has been no research on the origins of number representation in 
children's social interactions with adults (see Wertsch, 1979, for an analysis of other 
forms of problem solving in adult-child interaction). However, various researchers 
have observed a developmental progression among Western children that is consis
tent with the formulation presented above concerning the shift from "premedi
ational" to "mediational" uses of number terms. For example, children at the age 
of 3 or 4, when asked to compare two sets numerically, often count the sets, but do 
not base their comparisons on counting (see Russac, 1978; Saxe, 1977). Similarly, 
other researchers have noted that children may count a collection but not use the 
last numeral to refer to the summation of the set (Gelman & Gallistel, 1978; 
Schaeffer, Eggleston & Scott, 1974). If this process of change from a phase in 
which number terms are used in a "premediational" fashion to a phase in which 
they are used in a "mediational" fashion can be shown to be a general one, it would 
represent a way in which historical forms of knowledge become interwoven with 
the construction of concepts and problem-solving strategies during ontogenesis. It 
was this formulation that served as the organizing hypothesis for the studies on 
ontogenetic change described below. 

Oksapmins' Use of the Body to Represent Discontinous Quantities. In order 
to determine whether Oksapmin children experienced a similar transition from a 
"premediational" (or rote) to a "mediational" (or problem-solving) phase in their 
use of counting as Western children as well as the characteristics of this transition, 
two methods were used (see Saxe, 1981). First, tasks from previous research in the 
United States (cf. Saxe, 1977; 1979) were adapted to give Oksapmin children the 
opportunity to demonstrate how they used counting both to compare and to repro
duce sets. Second, tasks were created to determine whether there were confusions 
that arose from the organization of the body counting system. In particular, if 
young children do not view the last numeral recited as a notation for a summation, 
they may simply identify numerical equivalence on the basis of physical or "percep
tual" characteristics of body parts. To test this possibility, children were required 
to compare the values of body parts that differed in their physical similarity. 
For example, children were asked to compare numerically symmetrical as opposed 
to asymmetrical body parts, or to compare the value of body parts arrived at from 
the left thumb as opposed to the right thumb. 

The results of the interviews on children's use of counting to compare and repro
duce sets revealed a comparable trend to that found in the United States. Young 
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Oksapmin children counted, though often in response to a probe question, but 
typically did not base their comparisons of reproductions on the products of their 
counting, whereas older children did. There was an exception to this sequence. 
When set size was small (e.g., three elements), subjects often solved that tasks with
out verbal enumeration of the elements. Rather, they simply stated whether one set 
contained more in the case of the comparison tasks or put out the same number 
as that contained in the model in the case of the reproduction tasks. It was only 
after some probing that children counted on the small set size tasks, and sometimes 
they would count only one array, as if to demonstrate that they had put out the 
correct number. Whether the small set size judgments were mediated by a non
counting process (Le., "subitizing") or whether children had used a silent count
ing process could not be determined. 

The second type of method required children to compare directly the numerical 
values of body parts instead of deploying body parts to help solve a task. Numerical 
comparisons were presented in the context of two different stories. In one story, 
children were told that one day a man was counting sweet potatoes and they were 
shown the place to which the man counted on their own bodies (a sweeping gesture 
was made from childrens' right thumbs to a specified body part on the right side 
of their bodies). Children were then told that on another day the man was counting 
sweet potatoes and counted to a different place on his body (another sweeping 
gesture was made from childrens' right thumbs to a specified body part on the 
left side of the childrens' bodies). Children were then asked if the man counted to 
the same amount of sweet potatoes (pointing to the two body parts) or different 
amounts. If children responded different amounts, they were asked which was the 
bigger amount. Six pairs of body parts were indicated, three symmetrical pairs and 
three asymmetrical pairs. They were (a) right wrist (6)jleft ear (16); (b) right ear 
(12)jleft ear (16); (C) right elbow (8)jleft wrist (22); (d) right shoulder (10)jleft 
shoulder (18); (e) right side of neck (11)jleft biceps (19); (f) right biceps (9)jleft 
biceps (19). 

In a second story, children were told that people in their own village count from 
the right to the left sides of their bodies (this was indicated with a circling gesture 
around the upper periphery of the child's body); however, in a village over the 
mountains, people count from the left to the right side of their bodies (again, 
this was indicated with a circling gesture). Children were then told a story about 
two men counting sweet potatoes, one from the child's hamlet and the other from 
a faraway hamlet over the mountains. The child was told that both men counted 
to the same body part, one beginning at the right thumb, the other beginning 
at the left thumb (this was again demonstrated with circling gestures from left to 
right and right to left). The child was then asked whether the two men counted to 
the same number of sweet potatoes or whether they counted to a different number 
of sweet potatoes. If children claimed that the men counted to different numbers, 
the children were asked who counted to the bigger number. This procedure was 
repeated for several body parts. 

Children's responses to these stories both corroborate and supplement the find
ings from the comparison and reproduction tasks. Young Oksapmin children who 
knew the standard set of numerals nonetheless compared body parts with respect 
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to their physical similarity rather than with respect to their values as summations. 
When comparing the values of symmetrical of asymmetrical body-part pairs that 
were reached from a common point of origin in the first story, the younger children 
incorrectly identified symmetrical body parts as equivalent in value, and when they 
correctly identified asymmetrical body parts as none qui valent , they did not regularly 
identify which of the two represented the larger value. Older children produced 
accurate body part comparisons, regardless of the physical Similarity of the body 
parts. A similar developmental trend was evident with the second story. Younger 
children tended to consider the same body part reached from two different points 
of origin (left and right thumbs) to represent the same value. In contrast, children 
in the older age group considered the value of a body part to be based upon its 
ordinal position in an enumeration. Thus, the fmdings from these tasks indicate 
that the spatial organization of the Oksapmin system leads children who are in a 
premediational phase to some particular types of conceptual confusions. During 
a pre mediational phase, these children do not dissociate physical characteristics 
of their standard set of body parts from the use of these body parts as signifiers 
for correspondence relations. The fmding that Oksapmin children go through a 
premediational phase with discrete quantities suggested that a parallel process 
might occur with continuous quantities. The developmental process with continuous 
quantities might serve both to provide further corroboration for the transition as 
well as illuminate how the organization of the Oksapmin system might lead to 
conceptual developments that differ from those found in Western culture. 

Oksapmins' Use of the Body to Represent Continuous Quantities. As noted 
earlier, the Oksapmin use their body system as a measurement instrument to evalu
ate continuous quantities (e.g., in the evaluation of the size of a common cultural 
artifact, the string bag). The purpose of the study dicussed below was to explore 
developmental changes in how Oksapmin use the body system to mediate these 
measurement operations. 

The string bag serves many functions in the Oksapmin society (see Fig. 5.3). 
People carry a variety of things of importance in the bags. These include infants, 
vegetables, and personal effects. In addition, bags are used in ceremonial dancing. 
The bags are made by Oksapmin women and girls by rolling pith from the inner 
bark of a local tree into a string, and weaving the string with a variety of stitches 
into a bag. String bags are measured for their depth both while they are being made 
and after they are completed by men, women, and children. To measure a bag, 
an individual inserts and extends both arms in the bag and notes the point at which 
the outer rim meets a point on the arms. With the exception of the knuckles, the 
same body parts used in the numeration system are used as indicators of the depth 
of a bag. The depth of bags are referred to as the knuckles, the wrist (6), forearm 
(7), inner elbows (8), bicep (9), and shoulder (10). 

In order to use a standard measure for length, a subject must understand several 
interrelated facts that are relevant to the study of Oksapmin use of their arms as 
standard measures. First, the subject must understand that the length of the standard 
measure is conserved over spatial displacements. Thus, if a standard measure (S) is 
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Fig. 5.3 An Oksapmin woman nursing an infant in a string bag and an Ok sap min 
man wearing a string bag. 

used to measure the length of an object (L), the subject must consider the relations 
established between the objects of measurement and the standard measure as 
invariant. Second, a subject must regard the length relation as transitive. For 
example, if the standard measure, S, is longer than an object L 1 and shorter than an 
object L 2 then the relative lengths of L 1 and L 2 can be inferred. Third, the subject 
must understand that in order for the measurements produced with two or more 
standard measures (S 1 , S2, . . . ) to be directly comparable, the length of the units 
used on each standard measure must be equivalent to one another. It is of interest 
that one property of the Oksapmin body-part system is that units are not equiva
lent since peoples' bodies vary in size. In other words, there is no universal standard 
for length as there is in Western society. 

To investigate developmental changes in Oksapmins' understanding and use of 
their arms as a standard measure, a set of four tasks was devised (see Saxe & Moy
lan, in press). Concepts of conservation were assessed in two ways. The first task 
was embedded in the context of measuring string bags, and in order to relate 
observed developmental changes to a known developmental sequence in the con
servation of length (Piaget, 1960), a standard conservation of length task was also 
administered. In the "string bag" conservation task, individuals were required to 
measure a string bag with their arms. While their arms were in the string bag, the 
point at which the outer rim met the subject's arm was marked with a piece of 
charcoal. The string bag was then removed and placed in such a way that the point 
from the bottom of the string bag to its rim was misaligned with the length from 
the fmger tips to the charcoal mark on the body. The subjects were then inter-
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viewed as to whether or not these two distances were equivalent. This task pro
cedure paralleled the standard task (cf. Piaget, 1960) that consisted of two sticks of 
equivalent length; the sticks were aligned in parallel with their end points matching, 
and then one was displaced so that the end points were no longer in alignment. 

Another task was designed to assess developmental changes in the ability to pro
duce length comparisons between string bags using the standard body parts as the 
intermediate term. In this type of task, subjects were told a story about two women 
who made string bags. String bags were then presented one by one to subjects, who 
were asked to measure them with their arms. After each measurement, the bags 
were folded and put on either side of the subject. The subject was then asked which 
was the bigger bag and to explain his or her judgment. 

A fourth task was devised to assess developmental changes in Oksaprnins' under
standing of the necessity of equivalent units when comparing measurements pro
duced by the two standard measures. In this task, stories were used again. Subjects 
were told two stories, one about a little girl who was making a string bag for her 
father and the other about a big woman who was making a string bag for her little 
son. In each story, the maker (the woman or the girl) measures the string bag before 
giving it. When the recipient of the gift (the man or the boy) receives the string 
bag, he also measures it. As part of the story, the subjects were told the maker's 
measurement (forearm, inner elbow, or bicep). Subjects were then asked whether 
they thought the string bag came up to the same place on the recipient as it did on 
the donor of the bags of whether it came up to a different place. Regardless of the 
subjects' judgments, they were asked to explain their answers. In addition, if sub
jects stated that the bag would come up to a different place, they were questioned 
about which place on the body it would come to and to explain why. 

The results of the interviews with both nonschooled and schooled populations 
support and supplement the fmdings on ontogenetic changes in subjects' use of the 
conventional body system to represent discontinous quantities. Not only did the 
fmdings again show an age-related change from the premediational to the media
tional use of body parts, they also revealed some traits that are specific to the 
Oksapmin community. 

The conservation data showed that although there was a developmental change 
in the frequency of correct responses for both tasks, only a little over one-third of 
the adult subjects passed the standard test (with sticks), whereas virtually all of 
them demonstrated an understanding of conservation when the task was embedded 
in the context of measuring string bags. This obviously suggests that when task 
contexts more closely mirror the practical activities of people (using the arms to 
measure string bags), tasks will be more sensitive to the more sophisticated levels of 
individuals' cognitive adaptations. It was also found that differences in performance 
across tasks no longer held with Oksapmin adolescents who had received five years 
of schooling. 

Unlike subjects' performance on the conservation tasks, which showed clear 
developmental trends, subjects' performance on the comparison tasks showed that 
virtually all of the adults and school children solved these tasks, and that a majority 
of nonschooled children solved the tasks. The facility with which subjects solved 
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this task further corroborates the thesis that when measurement operations are 
embedded in the context of practical activities, it is more likely that subjects 
will display more sophisticated forms of cognition. These data are also consistent 
with evidence which suggests that certain forms of transitive inference are basic 
abilities that are present in young children (e.g., Brainerd, 1979; Bryant & Trabasso, 
1971; Siegel, 1971). 

The equivalent units data are perhaps the most interesting because they show 
how the Oksapmin come to take into account some of the special characteristics 
of their indigenous system. For an individual to understand equivalent units in the 
indigenous system, he or she must consider two series of asymmetrical relations and 
correspondences between these relations. For example, a subject must consider that 
the length from the finger tips to the inner elbow of a big person corresponds to 
the length from the finger tips to a point above the inner elbow in a smaller person. 
In addition, a subject must understand the inverse relation between the length of an 
arm and the point that the rim of a string bag would reach on an arm. For example, 
the longer the arm, the lower the point on the arm (the body part) the rim will 
reach. Only by understanding the correspondences between arms and the inverse 
correspondence between arm length and the point on the arm that the string bag 
would reach could subjects achieve correct predictions on the equivalent units 
stories. 

Subjects' responses to the stories revealed the expected ontogenetic trends. 
Children tended to believe that the recipient of the string bag would measure the 
bag to the same body part as the donor, whereas adults tended to believe that the 
recipient would measure the bag to a different place on the arms and correctly indi
cate the direction of discrepancy. Of particular interest was evidence for a "tran
sitional" understanding. Some individuals would correctly assume that the string 
bag would arrive at a different place but not invert the relation between the point 
that the bag would come up to on the arm and the size of the person measuring the 
bag (the bigger the person, the lower the point that the rim would reach). For ex
ample, these individuals would claim that if the little girl measured a string bag to 
the elbow, when her father put it on it would go to the bicep because his arms were 
longer. These findings suggest a sequence from not considering correspondences 
between two series, to considering correspondences but not understanding inverse 
correspondences, to considering correspondences and understanding inverse corre
spondences. 

In summary, the fmdings from the studies on discontinuous and continuous quanti
ties generally show that there is a developmental transformation in the way in which 
Oksapmin use their body part system to mediate their problem solving, a trans
formation that is comparable to findings in Western societies on the development 
of numerical representation. Young Oksapmin children know the conventionally 
defmed set of body parts, yet do not use them to mediate their probelm solving 
with either discontinuous or continuous quantities. The generality of the premedi
ational phase across the Oksapmin and Western settings suggests that it serves an 
important function in the early development of number and measurement opera
tions. Through incorporating a conventionally defmed list of symbols and enumera-
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tive procedures into their own activities, children establish the preconditions for 
discovering the structure of their cultural group's system for numerical reference. 
The different conventional systems, however, interact with the cognitive develop
ment of the child in different ways. Not only do the different systems create differ
ent conceptual problems for children who are trying to understand the structure 
of the systems, they also ultimately lead children to different conceptual procedures 
for solving problems. 

Thus far, the concern has been with the Oksapmin child's acquisition of a con
ventional system of representation without an examination of how conventional 
systems themselves develop in the social history of a cultural group. In the follow
ing section, the studies are concerned with profound changes in number symbol
ization that are emerging in Oksapmin culture and the mechanisms whereby these 
changes are occurring. 

Sociohistorical Changes in Oksapmins' Use of Body Parts 
as a Notational System 

The organizing hypothesis for the studies on sociohistorical change is that as 
new forms of social interactions emerge in a community, new cognitive problems 
arise. As individuals attempt to achieve solutions to these new types of problems, 
they construct novel forms of problem-solving strategies. Those strategies that can 
be generalized to new situations become conventional procedures and emerge as 
cognitive norms in community life. 

This framework served as the organizing basis for an investigation of the way in 
which two new social institutions, the trade store and the community school, are 
leading Oksapmin individuals to construct new collective systems of representation 
for number. An inherent part of participation in either of these institutions is that 
arithmetic problems are posed in social interactions. Since arithmetic problems have 
no direct counterpart in traditional Oksapmin life, the Oksaprnin must invent new 
ways of using their body part system to solve them. 

The Trade Store: The Influence of Participation in Western-Style Economic 
Exchange on the Fonnation of Arithmetic Concepts. The introduction of Western
style currency was a new form of exchange for the Oksapmin. Traditionally, 
Oksapmin traded goods directly (e.g., bows for salt, axes for bows). Perhaps the only 
analog of currency in traditional life were shells traded from the coast. Shells were 
(and still are) considered valuable in and of themselves. They were used as a med
ium of exchange for some but not all local goods. 

The history of currency in the Oksapmin community is short but complex. 
Three Western currencies have been used, but only the first and the third (the 
current kina) have left a lasting mark. The first currency was Australian shillings 
and pounds (20 shillings = 1 pound) and was brought by early missionaries and 
patrol officers to the region. Since 1966, currency has taken other forms. In 1966, 
the Australian dollar was instituted (100 cents = 1 dollar), and in 1975, when the 
country became independent, Papua New Guinea issued its own currency in the 
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form of kina and toea (100 toea = 1 kina, 200 toea = one 2-kina note). Many 
Oksapmin people, particularly individuals older than about 30, translate kina and 
toea into pounds and shillings (the first currency system). On this basis, people call 
one lO-toea coin 1 shilling (a 20-toea coin is called 2 shillings) and one 2-kina 
note is called 1 pound. Many people count kina and toea as their pound and shilling 
equivalents. 

Some Oksapmin people have adapted the indigenous numeration system in order 
to communicate about currency (cf. Moylan, Note 1), and this adaptation itself 
reflects a sociohistori<;al change in Oksapmins' approach to number representation. 
Oksapmin can now count considerably larger quantities than they could using the 
standard indigenous system. Using the adapted system, an individual counts shillings 
up to the inner elbow on the other side of the body (20) and calls it one round or 
one pound. If the individual needs to continue the count, he or she begins again 
at the thumb of the first hand and then verbally records each round. Similarly, 
an individual may count 2-kina notes and thus count forty kina (20 2-kina notes = 
40 kina) as one round. The adapted system, then, is a hybrid. It employs the same 
conventionally defmed system of body parts that are used in the traditional system 
[at least up to the elbow on the other side (20)], but it has incorporated the base 
principle of a Western currency system (Le., the base 20 system of the early Aus
tralian currency). It is important to point out that Oksapmin use this system flexibly. 
There are many ways of expressing the same value either through combinations of 
the traditional and the adapted system or using only one system. Not suprisingly, 
the individuals who use the adapted system regularly are those who engage in fre
quent economic transactions involving currency. The studies that are now summa
rized were concerned with how these transactions provide contexts in which new 
arithmetical concepts evolve. 

The institution that dominates economic exchange is the trade store. In recent 
years, Oksapmin men have been flown out of the region to work on tea and copra 
plantations. After two years, they return with currency (about 200 kina). Some of 
them invest in tins of fish and bags of rice and build trade stores in which they sell 
goods to the members of their hamlets.1 

As an inherent part of the interactions that occur at the trade store, customer 
and owner pose arithmetic problems to one another. From the customer's perspec
tive, the trade store owner sells goods for a specified price, and the customer must 
offer the currency that is required for the purchase. From the trade store owner's 
perspective, the customer has a certain amount of money, and the trade store 
owner must evaluate whether the customer has presented the appropriate amount 
and/or how much change the customer should receive. In fact, transactions such as 
those that occur in trade stores can be successfully negotiated in any number of 
ways, owner and customer contributing in different degrees to the completion of 
the exchange. For example, one possibility is that the trade store owner completes 
the entire transaction and selects the appropriate amount of currency from the cus
tomer. Another would be that the customer requests a commodity, overpays, and 

IThe iust trade store was built in 1972, and now trade stores are widespread in Oksaprnin 
region numbering about one hundred. 
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then receives change from the trade store owner. A third would be that the cus
tomer calculates the exact amount and determines the change. The style of transac
tion depends on, among other factors, the owner and customer's relative competen
cies at producing arithmetic calculations. Regardless, the trade store presents a social 
context for arithmetic computation, a context that is very new to Oksapmin life. 

To determine how the use of currency in economic transactions is influencing 
arithmetic concepts, adults who had different levels of experience with the money 
economy were asked to solve problems involving currency transactions (see Saxe, 
in press). These included trade store owners, men who had returned from a period 
of work at a plantation, and groups of young and old adults who had little experi
ence with economic exchange that involved currency. The problems presented 
involved the addition and subtraction of coins. In half of these problems, coins were 
actually presented to the subjects, and in the other half, the problems were merely 
presented by indicating appropriate body parts. In both cases, the problems mirrored 
typical problems that an individual might encounter in everyday life. For instance, 
in a typical addition problem, a subject was told, "You have 7 coins and are given 
14 more. How many do you have altogether?" In a typical subtraction problem, an 
individual was told, "You have 16 coins and spend 7 at the trade store. How many 
do you have left?" 

An analysis of subjects' strategies revealed some dramatic differences between 
the four groups. For the sake of brevity, only some of the strategies for the solu
tions of the problems without coins will be presented here. People who had little 
experience with economic exchange involving currency typically did not differen
tiate body parts from body parts as numerical symbols in solving arithmetic prob
lems. The plantation goers and the trade store owners typically did make this differ
entiation. Thus, to subtract 9 coins from 16 coins, traditional people would often 
fIrst enumerate the thumb (1) to the ear-on-the-other-side of the body (16)-the 
number of coins that they had. Then, they would enumerate the thumb (1) to the 
bicep (9) to indicate the number of coins "taken away." Finally, as their answer, 
they would state the names of the remaining body parts as they enumerated them; 
these included the shoulder (10), neck (11), ear (12), eye (13), nose (14), eye-on
other-side (15), and ear-on-other-side (16), or simply gesture at the body parts that 
remained. In contrast, people who had regular experience with economic exchange 
would differentiate between body parts as body parts and body parts as numerical 
symbols, enabling them to offer a specifIc representation for the remainder. For 
instance, to solve the same problem a typical strategy would be to enumerate the 
shoulder (10) to the ear-on-the-other-side (16), using the terms thumb (1), index 
fmger (2), middle fmger (3), ... forearm (7). Thus, unlike the people who had little 
experience with economic exchange, these people would call one body part by the 
name of another body part to achieve a precise numerical representation ("fore
arm" or 7) for the product of the subtraction. Some individuals, particularly trade 
store owners, would achieve quite sophisticated uses of the body system to mediate 
arithmetic computations that went beyond the differentiation of the body system 
as a system for numerical representation. For example, consider a strategy that a 
number of trade store owners used that incorporated the base structure of the 
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currency system into their body part computations. To subtract 9 coins from 16 
coins, the individual would group the 16 coins into two parts on his body, putting 
10 on one side up to his shoulder (shoulder = 10) and 6 on the other side up to his 
wrist (wrist = 6). The individual would then state that he spent 9 (bicep = 9), and 
indicate that the body parts from the bicep (9) down to the thumb (1) no longer 
were present. This left only the shoulder (10th) on the first side of the body. The 
individual would then add the shoulder (the remaining 10th on the first side) to the 
wrist (6) on the second side of the body, which results in the correct answer, 
forearm, or 7. 

Between-group differences in arithmetic concepts were also clearly evident in 
addition problems. For example, to solve 14 + 7, traditional people would again 
not differentiate body parts from body parts as numerical symbols. Typically, 
they would enumerate the first 14 body parts [the thumb (1) to the nose (14)] , 
and then, to add seven additional coins they would continue to enumerate additional 
body parts [eye-on-other-side (15), ear-on-other-side (16), ... ], and not know 
when to end their enumeration. In contrast, the trade store owners and plantation 
goers made this differentiation between body parts and body parts as numerical 
symbols, in that, similar to the subtraction problems, they called one series of body 
parts by the names of another series of body parts in order to effect a correct 
solution. To solve the same problem, a typical strategy would be first to enumerate 
the thumb (1) to the nose (14), and then, rather then calling the eye-on-the-other
side (15) its proper name, these people would call it the thumb (1). The ear-on-the
other-side (16) was, in turn, called the index fmger (2), and this enumeration pro
ceeded until the individual called the forearm-on-the-other-side (21) the forearm 
(7), the correct answer to the problem. It is of some interest to note that there were 
a number of variants of each strategy, some of which were probably transitional 
forms. For example, to solve the same problem, some individuals would establish 
spatial correspondences between two series of body part names in their addition 
procedure. Thus, the individual would point to the thumb (1) and the eye-on-the
other-side (15), and then point to the index fmger (2) and the ear-on-the-other
side (16), and this would continue until the final pair was reached, the forearm (7) 
and the forearm-on-the-other-side (21). 

The variations in arithmetical problem-solving strategies has a developmental 
parallel in Western culture. Various investigators have documented developmental 
changes in children's incrementing strategies as well as using their fingers in 
"counting on" procedures that bear a resemblence to the body strategies used by 
the Oksapmin people (e.g., Groen & Parkman, 1972; Groen & Resnick, 1977; 
Carpenter, Note 2; Fuson, Note 3; Steffe, Note 4). Not only do the Oksapmin data 
point to the universality of the subject's use of correspondences between two series 
to establish solutions to arithmetical problems, they also point to the dependence 
of this process on certain forms of social interaction. 

The Community School. A very different institution from the trade store that 
has also been introduced with contact is the community school. At school, Oksap
min children participate in a wide range of activities-from formal school lessons to 
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the building and maintanence of the school grounds. The teachers do not know the 
Oksapmin language nor the Oksapmin numeration system, and as in all community 
schools in Papua New Guinea, formal teaching is conducted in English. 

Just as in the trade store, arithmetic problems are posed between individuals 
in the school setting. Teachers pose arithmetical problems to children as a part of 
school instruction, and children pose arithmetical problems to one another in the 
course of daily activities. Although there is formal instruction in how to solve 
arithmetic problems using Western conventions, it would be natural for children 
to create ways of using their existing knowledge about number-their indigenous 
counting system-to attempt to solve the Western-styled problems especially since 
English is not well understood in the lower grades. Two methods were used to 
explore this possibility. First, children in Grades 2, 4, and 6 were observed in their 
classrooms as they took an arithmetic test, and two coders noted whether or not 
individual children showed signs of pointing around their bodies as they took the 
test (see Fig. 5.4). Second, the same children were individually interviewed about 
their strategies for solving arithmetic problems (Saxe, Note 5). 

Many children used the conventional body part system to help them solve the 
arithmetic problems during the test; however, the frequency with which children 
used their bodies to solve the tasks differed over grade level. While a majority of the 
children in Grade 2 used their bodies, by Grade 6, only 10% used their bodies. To 
discover the body part strategies children employed, children were interviewed indi
vidually about a variety of arithmetic problems. In addition, a group of nonschooled 

Fig. 5.4 Oksapmin school children taking an arithmetic test in class. The two 
children at the left are using the indigenous system. 
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adolescents was interviewed to determine, if the schooled children had invented 
sophisticated body part strategies, whether these inventions were attributable to the 
school experience. 

In the initial interview, children were presented with four arithmetic problems, 
one by one (5 - 3, 3 + 5, 14 + 7, and 16 - 7). The problems were presented in a 
story format involving the addition and subtraction of pigs. If children used an 
overt body-part counting strategy, the nature of the strategy was recorded, and if 
they did not, they were asked to explain how they arrived at their answer. They 
were also asked whether or not they could use their bodies to help them solve the 
problems. If children were successful at solving these problems with body strate
gies, they were given additional, more difficult problems that went beyond the 
standard 27 body parts (41 - 6, 34 + 12, etc.). 

A wide range of body strategies was used to solve the problems, and, as was the 
case in the study on the influence of currency, some of the strategies involved a dif
ferentiated use of body parts as symbols for number, and others did not. Similar to 
the adults who had little experience with exchange involving currency, Grade 2 
children iterated body parts while trying to solve the problems, and did not call one 
body part by the name of another body part in their solutions. In contrast, Grade 4 
and Grade 6 children tended to use strategies that resembled those of the adults 
who had experience with currency. The exception to this parallelism was in the way 
in which the children solved the second series of problems. With these more difficult 
problems, children had to know how to count in English, and it was only at Grade 
6 that children regularly used an adequate body strategy to solve these problems. 
For instance, to add 34 + 12, children would start with the larger of the two 
numbers, 34. Children would then count the thumb (1) in English as "35," the 
index finger (2) as "36," the middle fmger (3) as "37," and so on until they reached 
the ear (12), which was called "46," the correct answer. Grade 6 children tended to 
use a similar procedure for subtraction problems. For example, to subtract 41 - 6, 
children would again start with the larger of the two numbers, 41. Children would 
then count the wrist (6) in English as "41," the little finger (5) as "40," the ring 
fmger (4) as "39," and so on on until they reached the thumb (1), which was called 
"35." 

Summary. The studies discussed in this section have been concerned with how 
the trade store and the community school are influenCing the way in which the 
Oksapmin people are structuring arithmetic concepts. The focus on these new social 
institutions was important for different reason. The trade store, though a product 
of outside contact, has arisen by the work of Oksapmin people themselves and is 
not a context within which arithmetic is taught to people by teachers. Instead, 
arithmetical reasoning is being spontaneously invented by people participating in 
the institution, both owners and buyers. In contrast, the community school has 
been introduced directly from the outside. Teachers do not speak the language, 
nor do they know the indigenous numeration system. Their mission is to teach 
children Western-style arithmetic. What is striking is that Oksapmin people are 
constructing new ways of using their traditional numeration system in order to 
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cope more adequately with problems encountered in both social institutions. 
Together, the fmdings imply that "primitive" forms of numerical thought change 

to more "abstract" forms as a result of adaptations to new types of problems, 
problems for which the primitive forms are ill-suited. Moreover, the problems arise 
in the course of social interactions, interactions that are linked to the social and 
historical conditions of development. The findings also suggest that the new adapta
tions in numerical thought are not a simple replacement of old forms with new ones; 
rather, the change is a product of subjects' construction of more specialized forms 
of symbolization out of the subject's existing ones. 

Concluding Remarks 

The research described in this chapter demonstrates the way in which develop
mental analysis can circumvent basic methodological problems in cross-cultural 
cognitive research. By organizing a research program to reveal cognitive changes 
that are a part of ongoing life, it is possible to at once approach a faithful descrip
tion of cognition within a cultural context, and at the same time, produce findings 
that will illuminate our understanding of universal processes of cognitive develop
mental change. 

The overriding theme of this chapter is that cognitive development is rooted 
in both the historical conditions of development and individuals' attempts to gain 
control over their interactions with their environments. Thus, in the case of onto
genetic change, Oksapmin children grow up in a historical period in which the body 
system is used as the symbolic vehicle for numerical representation. Early in develop
ment, this system becomes a part of children's enumerative activities as a result 
of social interactions with adults or more capable peers. However, this early use of 
the body system is "premediational" and is only used effectively in problem solv
ing with the guidance by another. As children crack the code of this socially 
defmed system, the system becomes a vehicle whereby they mediate their quanti
tative evaluations. Through this process, children at once render a historical achieve
ment of culture their own, and at the same time, shift the bases of their quantita
tive problem solving. In the case of sociohistorical change, Oksaprnin people are 
living in a period in which new social institutions are emerging. These institutions 
create new conditions for social interaction, an inherent aspect of which is that 
people pose arithmetic problems to one another. As a product of these interactions, 
Oksapmin people are elaborating new types of numerical thought which are inter
twined with the concerns of social life. Thus, in both domains of developmental 
change, change results from the individual's construction of solutions to problems 
that arise in social life. As a consequence, we observe cognitive adaptations in onto
genesis and social history that are linked to the sociohistorical context of develop
ment. 

Finally, though ontogenetic and sociohistorical aspects of development were 
separated for analytical purposes, they are inherently related. The studies reviewed 
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each present a single view of the complex interactions between these processes. A 
perspective that emerges from these studies is the need to understand cognitive 
development in the context of a historical period which is itself changing. Indeed 
the studies imply that sociohistorical changes create new conditions for social inter
action which, in turn, lead to the construction of new collective representations. 
The new generation then addresses sociohistorical conditions from a new knowledge 
base and constructs new sociohistorical adaptations. The advantage of cognitive 
studies in the Oksaprnin community is that it presents a cultural context in which 
this complex of interactive relations is remarkably visible, a complex that is critical 
for any general treatment of the origins and development of human cognition. 
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6. Children's Concept Learning as 
Rule-Sampling Systems 

with Markovian Properties 

Charles J. Brainerd 

One of the principal routes to generality in any science is the formulation and 
testing of mathematical models of the events that one studies. Mathematical models 
offer investigators a number of technical advantages in the treatment and reporting 
of data, with the most obvious ones being elegance, precision, and predictive power. 
In addition, however, the vigorous application of mathematical models to well
defined data spaces often produces more than mere technical advantages. Models 
that have especially simple and comprehensible forms may precipitate advances in 
theoretical understanding by focusing our attention on abstract communalities 
between seemingly disparate phenomena. The classic example of this effect in 
psychology is the remarkable degree of theoretical unification that was achieved in 
Bush and Mosteller's (1955) application of linear difference equations to condition
ing paradigms. More recently, the impetus for many hypotheses about the mechanics 
of adult memory has come from simple stochastic models (see Greeno, 1974; Greeno, 
James, DaPolito, & Polson, 1978). The distinction between short-term and long
term storage, for example, was motivated in large measure by the application of fmite 
Markov chains to paired-associate data (e.g., Atkinson & Crothers, 1964; Greeno, 
1967). 

My concern in this chapter is to explore an elementary, three-state model of 
children's concept learning. The model is derived from a rule-sampling theory of 
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script were written while I was on leave at the Institute of Child Development, University of 
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how children learn concepts in training experiments. This theory, which is a con
tinuation of some earlier analyses of conservation learning (Brainerd, 1978a, 1979a, 
1979b), is based on some rather simple assumptions. Despite their simplicity, the 
assumptions imply a reasonably powerful stochastic model. The model can be used 
to evaluate both the statements of the theory about concept learning and its inter
pretations of related phenomena with precision and economy. 

The chapter proceeds as follows. In the first section, three general issues are con
sidered. First, some problems that arise with traditional approaches to explaining 
children's concept learning are briefly reviewed. Second, a rule-sampling theory is 
outlined. The main premise of the theory is that the learning of a broad range of 
logical, physical, spatial, and mathematical concepts can be conceptualized as ab
stract rule-sampling systems. More particularly, it is argued that during the course 
of a concept-learning experiment: (a) children hold rules that they use to generate 
responses to concept-test items; (b) each rule belongs to one and only one of three 
mutually exclusive and exhaustive sets; and (c) learning consists of discrete, all-or
none transitions from one rule state to another. Third, a mathematical model that is 
implied by these proposals is discussed. Here, interest centers on how one goes about 
converting qualitative statements about learning into numerical statements about 
the free parameters of the model. 

The second section is concerned with five questions that have been the subjects 
of much attention in previous research, namely, learning on errors, stage skipping, 
information-processing efficiency, the learning-development relationship, and trans
fer of concept learning to untrained concepts. It is shown that these questions can 
be analyzed within the framework developed in the first section and that such 
analyses lead to numerical predictions about the parameters of the model. Some of 
these predictions seem counterintuitive when judged by the current climate of theo
retical opinion and, for that reason, are well worth investigating. For example, the 
analysis of the learning-development relationship causes one to expect that concept 
learning will be inversely related to pre training knowledge under certain conditions. 
Cognitive-developmental theory makes the opposite prediction (cf. Brainerd, 1977a). 
Concerning transfer, the analysis causes one to expect that training affects subjects' 
rule states for untrained concepts but does not help them to learn these concepts in 
subsequent training experiments. Again, cOgnitive-developmental theory predicts 
the opposite result. 

A series of concept-learning experiments is reported in the last section. The data 
of these experiments are used to address a number of technical questions that arise 
whenever quantitative models are applied to learning data (e.g., parameter estima
tion, hypothesis testing, goodness of fit). However, the main emphasis is on evalu
ating the numerical predictions discussed in the second section. 
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Concept Learning as Rule Sampling 

Theoretical Traditions in Children's Concept Learning 

Since the appearance of two landmark studies by Smedslund (1959) and Wohl
will (1959), an impressive amount of data has accumulated on children's learning of 
concepts that are nominally associated with Piaget's concrete-operational and 
formal-operational stages. The preponderance of this work, of course, has been con
cerned with conservation. However, learning experiments have been reported for 
concepts such as class inclusion (e.g., Kuhn, 1972; Youniss, 1971), seriation (e.g., 
Coxford, 1964; Bingham-Newman & Hooper, 1974), transitivity (e.g., Brainerd, 
1973a, 1974a), identity (e.g., Hamel & Riksen, 1973; Litrownik, Franzini, Living
ston, & Harvey, 1978), classification (e.g., McLaughlin & Brinley, 1973; Parker, 
Sperr, & Rieff, 1972), isolation of variables (e.g., Case, 1974; Siegler, Liebert, & 
Liebert, 1973), proportionality (e.g., Brainerd, 1971; Brainerd & Allen, 1971 b), 
perspective taking (e.g., Burns & Brainerd, 1979; Iannotti, 1978), ordinal and cardi
nal number (e.g., Brainerd, 1974b; Brainerd & Howe, 1979), and even subjective 
morality (e.g., Arbuthnot, 1975; Jensen & Larm, 1970). Reviews of various seg
ments of this literature are available (e.g., Beilin, 1971, 1978; Brainerd, 1973b, 
1977a, 1978b; Brainerd & Allen, 1971a; Glaser & Resnick, 1972; Strauss, 1972). 

Research on children's concept learning, thought quite productive empirically, 
suffers from something of a theoretical vacuum. The main problem is that 20 years 
of experimentation has left little doubt that Piagetian theory is incapable of explain
ing the laboratory learning of its own concepts (Brainerd 1978b; Siegel & Hodkin, 
in press). The principal claims about learning expounded in the theory are, first, 
that it is chiefly confmed to children who already possess measurable knowledge of 
the to-be-trained concept and, second, that it is only produced by training pro
cedures which incorporate processes operating in everyday cognitive development. 
On the former point, Piaget (1970a) states that "teaching children concepts that 
they have not acquired in their spontaneous development ... is completely useless" 
(p. 30). On the latter point, Inhelder, Sinclair, and Bovet (1974) state that, "We 
started with the idea that under certain conditions an acceleration of cognitive 
development would be possible, but that this could only occur if training resembled 
the kind of situations in which progress takes place outside the experimental set-up" 
(p. 24). These statements have not received much empirical support. 

The fust claim is contradicted by at least three facts. First, amount of concept 
learning has not been found to covary with amount of pre training knowledge 
(Brainerd, 1977a, 1979a; Thomas, 1980). Second, learning routinely occurs in chil
dren who show no evidence of the to-be-trained concept on pretests (Brainerd, 
1977a, 1978b). Third, preschool children, who are far below the age range for con
crete and formal operations, are known to learn concepts such as class inclusion, 
ordinal number, cardinal number, conservation, transitivity, and perspective taking 
in the laboratory (Brainerd, 1977a; Siegel & Hodkin, in press). The second claim is 
contradicted by the fact that procedures which have little or nothing to do with 
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"spontaneous development" produce tolerably good concept learning (Siegel & 
Hodkin, in press). Interestingly, these procedures normally produce more substantial 
evidence of learning than an alternative procedure (active self-discovery) that em
bodies Piagetian laws of spontaneous development (Brainerd, 1978b). 

Generally speaking, investigators have attempted to fill the vacuum left by Pia
getian theory by borrowing explanations from other theoretical traditions, usually 
from some well-known learning theory. The theories that have been so employed 
include perceptual differentiation (e.g., E. J. Gibson, 1969; Smothergill, 1979), 
cognitive dissonance (e.g., Murray, 1972, 1979), attentional theories of discrimi
nation learning (e.g., Boersma & Wilton, 1974; Gelman, 1969), operant theory (e.g., 
Bucher & Schneider, 1973), and social learning theory (e.g., Rosenthal & Zimmerman, 
1978; Zimmerman & Rosenthal, 1974). Unfortunately, this theory-adaptation 
strategy has three weaknesses that limit its usefulness as a method of formulating 
explanations of children's concept learning: (a) potential irrelevance; (b) concept 
specificity; and (c) process specificity. 

The first limitation is that it is not immediately clear why theoretical constructs 
designed to explain the results of attitude change experiments with adults (diSSO
nance), or the results of discrimination learning experiments with infrahumans 
(attention), and so forth should also explain the results of concept-learning experi
ments with children. [For a related discussion, see J. J. Gibson's (1976) critique of 
information-processing interpretations of infant perception.] This is especially true 
of theories that deal with elementary forms oflearning (e.g., attentional theory and 
operant theory). Concerning (b), a given theory is usually adapted to the learning of 
one target concept, normally conservation, and the question of whether it applies 
to other concepts is left moot. In many cases, it is difficult even to imagine how the 
theory could be extended to concepts other than the target. This statement applies, 
for example, to attentional and dissonance explanations of conservation learning. 
Concerning (c), the theory-adaptation strategy commits an investigator to the view 
that some mode of experience specified by the theory (observation of skilled 
models, being instrumentally conditioned, experiencing dissonance, learning to 
extract perceptual invariants, learning to attend selectively, etc.) is the path whereby 
children normally acquire the target concept. However, the literature establishes 
beyond reasonable doubt that logical, physical, spatial, and mathematical concepts 
can be trained by a plethora of apparently unrelated experiences (Beilin, 1971, 
1978). For example, we know that perspective-taking concepts can be trained by 
such disparate methods as acting in skits (Chandler, 1973), engaging in fantasy play 
(Burns & Brainerd, 1979; Scheffman, 1980), and receiving response-contingent 
feedback (Cox, 1977). In short, the data provide unmistakable signals that the road 
to understanding children's concept learning does not lie in some specific training 
experience or in some class of closely related experiences. 

Rule-Sampling Systems and Concept Learning 

Conceptual Responses as Rule-Governed Behavior. If the goal is to devise an 
acceptable theory of children's concept learning, common sense suggests that con-
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ceptual behavior itself-not attitudes, aggression, bar pressing, sensory discrimi
nation, etc.-should be our point of departure. Consider the structure of the typical 
concept-learning experiment. First, we administer a series of items for the to-be
trained concept as pretests. Next, we administer a series of training trials. Further 
concept-test items mayor may not appear as part of these trials. Finally, more 
concept-test items are administered as posttests. If items are given during training 
and errors and successes are the performance measures, we have two measures of 
learning, namely, the rate of improvement during training and the level of posttest 
performance (relative to control subjects). If no items are given during training, 
only the second measure is available. 

To explain the results of such experiments, we need to describe a mechanism 
whereby the frequency of correct responses increases on concept-test items. This, in 
turn, requires a description of some processes that children could use to generate 
responses to these items. On this point, there seems to be some consensus that such 
responses can be viewed as instances of rule-governed behavior. That is, children can 
be thought of as holding rules (strategies, algorithms, hypotheses, etc.) that they 
use to generate their responses (cf. Brainerd, 1979a, 1979b; Siegler, 1979, in press). 
Although several facts converge on this conclusion, there are two principal lines of 
evidence. The first and older source is children's explanations of their responses. 
The wealth of explanation protocols reported in Piaget's many normative studies 
and in similar studies conducted outside Geneva show three things that are relevant 
to the present discussion. First, when children are asked to explain a response, their 
replies usually consist of citing a rule of some sort. On an animism test, for example, 
a child who says that automobiles are alive and refrigerators are not may explain 
these responses by stating that "only things that move are alive" (piaget, 1929). 
The principle "movement equals life" is obviously an algorithm that allows the sub
ject to decide whether or not an object is alive. Second, children who give different 
responses cite different rules. To continue the animism example, a child who says 
that neither refrigerators nor automobiles are alive may explain these responses by 
stating that "only things that move by themselves are alive" (piaget, 1929). Third, 
only one rule is typically cited to justify any given response. For example, children 
who give correct responses on number conservation items tend to rely on one of the 
following rules: qualitative identity, quantitative identity, inversion, compensation, 
and addition-subtraction. However, when they are asked to explain several responses, 
they normally cite a single rule repetitively (Brainerd & Brainerd, 1972), though 
several other rules may be available in their repertoires. 

The second and more recent source of evidence is nonverbal rule assessment. 
Siegler and his associates (e.g., Siegler, 1976, 1979, in press; Siegler & Richards, 
1979; Siegler & Vago, 1978) have adapted Levine's (1966) probe-trial methodology 
to the task of diagnosing the rules that children use on concept tests. To date, this 
technique has been applied to concepts such as proportionality, speed, conservation, 
the fulcrum principle, and time. Generally speaking, it has been found that: (a) vir
tually all children are diagnosed as holding rules that are relevant to a focal concept 
test, where a "relevant rule" is one that produces a consistent pattern of choice 
responses on the test; (b) children who give different responses on a concept test 
are diagnosed as holding different rules; and (c) individual children are diagnosed as 
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holding only one of the rules being assessed. Note that these are the same three 
findings that can be culled from explanation data. 

At first glance, these data on rule usage might not seem to provide much leverage 
on the problem of how to devise a general explanation of children's concept learn
ing. If children's responses to concept-test items are rule based, then it is not un
reasonable to view concept learning as a process whereby children surrender old 
rules in favor of new rules-that is, to view it as a rule-sampling system of some sort. 
However, the rules that one observes for individual concept tests, whether in expla
nation data or in nonverbal rule-assessment data, are quite different. The rules used 
on animism items, for example, are not anything like the rules used on proportion
ality items. This disparity would seem to pose serious obstacles to a general theory 
based on the idea that concept learning consists of rule sampling. Fortunately, how
ever, rules share some abstract properties on which a theory that is not wedded to 
particular rules or concepts can be erected. 

Rule-Sampling Description of Concept Learning 

The abstract properties in question are the probabilities with which different 
rules produce correct responses on their respective concept tests. Logically, we can 
partition all the rules that children might conceivably use on any test into just three 
equivalence sets: W, a set of wrong rules whose members produce incorrect responses 
with probability one; Va set of valid rules whose members produce correct responses 
with probability one; and P, a set of partially valid rules whose members produce 
correct responses with probability 0 < p < 1. The p values taken on by rules in P 
may differ. The only requirement for membership in P is that p should be greater 
than zero and less than one. 

From the standpoint of the probability of a correct response on a concept test 
item, these equivalence sets exhaust the universe of possible rules, and they are also 
mutually exclusive. Evidently, we can apply this scheme to any concept test what
soever. Moreover, since the scheme is exhaustive for any conceivable concept test, 
we do not have to know anything about specific rules on any given test to apply it. 
The broad applicability of the scheme and the fact that we do not have to know 
anything about specific rules allows us to avoid the problem that different rules are 
used on different concept tests. 

Before considering a formal description of concept learning in terms of the three 
equivalence sets, let us remind ourselves of some relevant normative facts. Generally 
speaking, the concepts that have been most often studied in concept-learning experi
ments with children share the following stereotyped pattern of development. Below 
a certain age, which usually corresponds to the preschool and early elementary 
school years, the probability of a correct response on items that measure target con
cepts is effectively zero. Above a certain age, which usually corresponds to the late 
elementary school and early adolescent years, the probability of a correct response 
on the same items is effectively one. In between, the probability of a correct re
sponse is greater than zero but less than one. If these responses are viewed as rule 
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governed, it is apparent that there is a correlation between age and the use of rules 
from different equivalence sets. 

In what remains of this section, a stochastic description of concept learning is 
given. The description, which is based on the notion that learning consists of samp
ling rules in response to feedback, is developed with reference to a paradigmatic 
experiment concerned with a hypothetical concept C. To begin with, we have a 
pool of test items that measure C. We select j items from the pool and administer 
them before training as a pretest. Subjects who show some predetermined level of 
pretest performance (e.g., those who do not make correct responses on all the items) 
continue to the training phase. During the training phase, subjects receive a sequence 
of trials designed to improve their performance on C items. Each trial consists of 
the administration of an item from the pool, followed by the subject's response, 
followed by feedback as to the correctness of the response. The term "feedback" is 
a general word that covers a variety of informative inputs-for example, simple cor
rection, observation of a skilled model, discussion with peers, statement of a verbal 
rule, or perceptual demonstration of a rule. Training continues until the subject has 
met some criterion of success or until some fixed number of trials has been reached. 
Finally, i more items are selected from the pool and administered as posttests. The 
general problem is to describe the psychological events that occur during the train
ing trials. 

It is assumed that subjects occupy exactly one of three states on any training 
trial-namely, State W, State P, or State V-and that learning involves all-or-none 
transitions between states. Occupying anyone of these states simply means that the 
subject is using a rule from that equivalence set. Subjects may start in State W, 
State P, or State Von Trial 1. Learning proceeds as follows for subjects who start 
in State W. On Trial I, an incorrect response occurs with probability one. After 
feedback is received, the subject may retain the current W rule, with probability 
1 - a, or the subject may sample a new rule from either P or V, with probability a. 
If sampling occurs, then either a V rule is selected, with probability b, or a P rule is 
selected, with probability 1 - b. If a V rule is selected, the process enters State V 
and the subject makes correct responses on all subsequent items. If aP rule is selected, 
the process enters State P and the subject either makes a correct response on Trial 2, 
with probability p, or makes an incorrect response with probability 1 - p. These 
statements also apply to any subsequent pair of trials nand n + 1 for which the sub
ject was in State W on Trial n. 

Consider some subject who starts in State Wand enters State P following the nth 
training trial. The subject now holds a partially valid rule. Suppose that the subject's 
response on Trial n + 1 is correct (with probability p). After feedback, the subject 
may either retain the current P rule, with probability 1 - e, or sample a new rule 
with probability e. In the former case, correct responses and errors occur on Trial 
n + 2 with probabilities p and 1 - p, respectively. In the latter case, either a V rule is 
sampled, with probability f, or another P rule is sampled with probability 1 - f. If a 
V rule is sampled, the process enters State V and only correct responses occur on 
subsequent trials. If a P rule is sampled, correct responses and errors occur on Trial 
n + 2 with probabilities p' and 1 - p', respectively. For simplicity, let c = efandg = 
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(1 - e)p + e(1 - f)p'. The parameter c gives the probability of sampling a V rule 
after any correct response generated by a P rule. 

Suppose that the same subject who entered State P following feedback on Trial 
n after starting in State W makes an error on Trial n + 1. After feedback on Trial 
n + 1, the subject may either retain the current P rule, with probability 1 - k, or 
sample a new rule with probability k. In the former case, correct responses and 
errors occur on Trial n + 2 with probabilities p and 1 - p, respectively. In the latter 
case, either a V rule is sampled, with probability t, or another P rule is sampled, 
with probability 1 - f. If a V rule is sampled, the process enters State V, and only 
correct responses occur on subsequent trials. If a P rule is sampled, correct responses 
and errors occur on Trial n + 2 with probabilities p" and 1 - p", respectively. Let 
d = kt and h = (1 - k)p + k(1 - f)p". The parameter d gives the probability of sam
pling a V rule after any error in State P. 

Up to this point, the learning process has been described for subjects who hold 
a W rule on Trial 1. It only remains to describe the process for subjects who hold a 
P rule or a V rule on Trial 1. The latter subjects make correct responses on Trial 1 
and all subsequent trials. Rille sampling does not occur in these subjects; they con
tinue to hold whatever V rule they began with. Subjects who start in State P make 
correct responses and errors on Trial 1 with probabilities p and 1 - p, respectively. 
In the latter case, learning proceeds in the same manner as for subjects who entered 
State P on Trial n after starting in State Wand made an error on Trial n + 1. In the 
former case, learning proceeds in the same manner as for subjects who entered State 
P on Trial n after starting in State Wand made a correct response on Trial n + 1. 
Since subjects can only be in State W. P, or V on Trial 1, this completes the rule
sampling description of learning. 

Markov Model and Numerical Predictions 

These statements imply a three-state Markov process. Like any Markov model, 
the process is completely specified by its starting vector, transition matrix, and 
response vector: 

P[V(I),PE(1),Pe(1), Wei)] 
= [t, (1- t)(1 - s)(1- p), (1- t)(1 - s)p, (1- t)sl, 

V(n+1) PE(n+I) Pe (n+l) W(n+l) P(Correct) 

Yen) 0 0 0 

PEen) d (1 - d)(1 - g) (1 - d)g 0 
,and 

o 
, (1) 

Peen) c (1 - c)(1 - h) (1 - c)h 0 

Ween) a a(1 - b)(1 - p) a(1 - b)p 1 - a o 

where PE and Pe are substates of State P, denoting trials on which errors and cor
rect responses, respectively, occur. 

Before Eq. (1) can be applied to data, several elaborations are necessary. In par-
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ticular, ways must be found to estimate its parameters, to assess goodness of fit, 
and to test hypotheses about the numerical values ofits parameters. Although these 
elaborations are not difficult, they are tedious. Consequently, they have been rele
gated to a short statistical appendix at the end of the chapter. The only point to be 
made here is that Eq. (1) turns out to be exceptionally tractable and easy to apply. 

Setting aside the technical details of the mathematical machinery for the mo
ment, let us suppose that Eq. (1) has been shown to give a statistically satisfactory 
account of the data of some concept-learning experiment-that is, the data seem to 
approximate a three-state, all-or-none process closely. In such circumstances, interest 
centers on testing hypotheses about the observed numerical values of the parameters 
of Eq. (1). In the case of anyone experiment, there will normally be several 
questions that we wish to pose about how the rule-sampling process works. Since 
the theory implies a well-defmed model, a very efficient procedure is available for 
addressing such questions: Covert them to predictions about the numerical values 
of the parameters of the model and determine whether the observed values of the 
parameters conform to predictions. The fact that substantive questions about learn
ing can be translated into numerical predictions about the parameters of Eq. (1) is 
the reason that principal interest attaches to testing hypotheses about its parameters 
in applications to data. I now consider some illustrative questions which can be 
investigated in this manner. 

Some Questions about Concept Learning 

Five questions are examined below to illustrate how Eq. (1) can be exploited: 
(a) learning on errors; (b) stage skipping; (c) efficiency of information processing; 
(d) the learning-development relationship; and (e) transfer of training. These partic
ular points have been chosen because each is of some historical significance. It is 
obvious that there are other important questions about concept learning that could 
be translated into numerical statements about Eq. (1). 

Learning on Errors 

A common idea about concept development is that it depends on committing 
errors. In instructional psychology, for example, advocates of so-called mastery 
learning claim that the best learning in classroom situations takes place when chil
dren are allowed to make mistakes and then discover that they were wrong: "if we 
want learning to be permanent and solid enough to permit cognitive development 
throughout the child's life, we must let the child go from one stage after another of 
being 'wrong' rather than expect him to reason logically ... " (Kamii, 1973, p. 225). 
Another illustration of this basic idea may be found in writers who believe that cog
nitive conflict is essential to learning. For example, Murray (1972) reported that his 
experiments on conservation learning were motivated by the assumption that "the 
young child's ability to give conservation judgments ... would improve after he had 
been subjected to the contrary arguments and viewpoints of other children" (p. 1). 
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Clearly, feedback of this sort is "contrary" only to the extent that the young child 
is making erroneous judgments. 

A third illustration comes from writers who maintain that correct responses are 
dead weight in a learning experiment. Specifically, it has been sometimes been pro
posed that, regardless of the training method being used, feedback does not im
prove conceptual performance on those training trials on which correct responses 
occur (Brainerd, 1979a, 1979b). 

How can the rule-sampling theory and its mathematical realization be brought to 
bear on the learning-on-errors hypothesis? First, the theory states that learning con
sists of state changes, which are consequences of rule sampling. Rule sampling may 
occur on three types of trials, namely, W trials (with probability a), PE trials (with 
probability k), and Pc trials (with probability e). Since W andPE trials are, by defi
nition, trials on which errors occur, we expect that the relevant parameters will 
both be greater than zero. However, a more important pair of predictions deals with 
the relationship between the two intermediate-state learning parameters, e and k. 
Strong support for the learning-on-errors hypothesis would consist of showing that 
e = 0, while d was greater than zero. Since Pc trials are the only types of trials on 
which correct responses are observed before entry into State V, this result would 
suggest that rules are never sampled after correct responses. Weaker support for the 
hypothesis would consist of showing that e < k. This result would suggest that, al
though rule sampling sometimes occurs after a correct response, it is more likely to 
occur after an error. Since c = ef and d = kf, the hypothesis that e = 0 can be tested 
by determining if c = 0, and the hypothesis that e < k can be tested by determining 
ifc<d. 

Stage Skipping 

Another common belief about concept development is that children's knowledge 
of concepts consists of sets of discrete states that are ordered in time. In Piagetian 
theory and in the writings of neo-Piagetian theorists (e.g., Kohlberg, 1968), these 
knowledge states are called stages. Now, the notion of "stage" has a complex and 
obscure eschatology (e.g., see the papers in Brainerd, 1978c, 1979c), which I do 
not propose to examine here. Despite the ineffability of "stage" in cognitive-develop
mental theory, the basic idea, that conceptual knowledge consists of discrete levels, 
is simple enough. In the present theory, this idea is embodied in the assumption that 
children use rules to generate responses to concept-test items and the assumption 
that learning consists of sampling rules. The former assumption also enters into 
information-processing analyses of concept development (e.g., Simon, 1962). 

When conceptual knowledge is viewed as transitions through sequences of dis
crete stages, it becomes important to ask whether, in general, each stage is necessary. 
Must children go through all the stages in a sequence, or can they skip some? The 
standard position of cognitive-developmental theory, of course, is that stage skip
ping does not occur (e.g., Inhelder, 1956; Piaget, 1960; Vanden Daele, 1969). This 
hypothesis is grounded in the familiar assumption that a stage has its own set of 
cognitive structures and that these structures presuppose those of the immediately 
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preceding stage: "As regards intellectual operations, it is clear ... that the initial 
sensorimotor structures are integrated into the structures of concrete operations 
and the latter into formal structures" (piaget, 1960, p. 13). Or, more simply: "no 
stage can be skipped ... " (Kamii, 1973, p. 226). These statements translate into 
numerical predictions as follows. 

The rule-sampling theory incorporates the notion of discrete stages of knowledge 
in the form of discrete rule states. It permits five types of transitions between these 
states, namely, W to V (with probabilityab), W to PE [with probability a(1 - b) 
(1 - p)], W to Pc [with probability a(1 - b)p] , PE to V (with probability d), and 
Pc to V (with probability c). Note that the first transition is two state and, hence, 
it violates the no-skipping rule. Therefore, the parameter b provides a direct measure 
of state-skipping propensity for any given experiment. Strong evidence for the no
skipping hypothesis would be b = O. Weaker support would be b < 1 - b. Either 
b = 1 - b or b > 1 - b would constitute evidence against the hypothesis. 

Information-Processing Efficiency 

A ubiquitous fact about learning is that it develops. Adults will learn almost 
anything more rapidly than children will. Why? A familiar answer is that children 
are inefficient information processors. That is, they are less likely to alter their cur
rent state of knowledge or behavior as a consequence of feedback than adults are. 
According to this view, an important goal of the developmental analysis of learning 
is to identify skills whose acquisition permits more efficient processing of infor
mation. The developmental analysis of discrimination learning, for example, has 
suggested several skills that may mediate age changes in this area: selective attention 
(e.g., Fisher & Zeaman, 1973); perceptual differentiation (e.g., Tighe & Tighe, 1972); 
verbal labeling (e.g., Kendler & Kendler, 1962); and hypothesis testing (e.g., Phillips 
& Levine, 1975). Likewise, the developmental analysis of verbal learning has sug
gested that the acquisition of memorization strategies such as rehearsal, elaboration, 
or clustering may mediate age changes in memory (e.g., Pressley, 1980). 

In this theory, the subjects' task in a concept-learning experiment is to locate a 
rule that will generate correct responses with probability one, and this is said to be 
accomplished via rule sampling. If subjects always processed information perfectly, 
we would expect that they should sample a new rule whenever feedback indicates 
that their current rule is not a V rule-that is, an error should produce rule sampling 
with probability one. There are two types of trials that are relevant to this prediction, 
namely, W trials (on which sampling occurs with probability a) and PE trials (on 
which sampling occurs with probability k). Thus, the parameters a and k provide 
quantitative measures of information processing efficiency. The closer the observed 
value of each is to one, the more efficiently information was processed in the experi
ment for which they were estimated. 

The parameter a measures processing efficiency in State W, whereas k measures 
processing efficiency in State P. It may be that the efficiency rates of these states 
are different. Therefore, we would like to test the hypothesis that a = k. This poses 
a technical difficulty. Although the parameter a can be estimated for the data of 
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any given experiment (see the Appendix), k cannot be estimated. The parameter d 
in Eq. (1) can be estimated (see the Appendix). But since d = k[, the finding d < 1, 
unlike the finding a < 1, does not tell us anything definite about information pro
cessing. The value of d is affected by both the sampling probability of V rules (i.e., 
f) and by the probability of initiating rule sampling following an error in State P 
(Le., k). Fortunately, it is possible to obtain some quantitative evidence bearing on 
State P efficiency by considering the parameters g and p. 

For any pair of consecutive trials in State P, g is the probability of a correct 
response on Trial n + 1 given an error on Trial n. If processing efficiency is perfect 
in State P (i.e., k = 1), then we expect that g > p. The rationale runs as follows. The 
parameter p gives the average probability of a correct response for P rules. However, 
this value is smaller for some P rules than others. (Recall that the defining character
istic of a P rille is that it generates correct responses with a probability somewhere 
between zero and one.) The rules used on PE trials will obviously tend to have cor
rect response probability values somewhat lower than the average value p, and con
versely for the rules used on Pc trials. But if subjects always resample after aPE 
trial, the value of g must be at least as large as p, with the exact value depending on 
whether the subject samples with or without replacement. Suppose that sampling is 
with replacement (i.e., the current P rille is returned to the set of P rilles before 
another P rule is sampled). Under this assumption, the correct response probability 
of new P rules must be the same as the average value for the set as a whole (i.e., g = 
p). If sampling is without replacement (i.e., the currentP rule is not returned to the 
set before another P rule is sampled), it follows that the correct response proba
bility of new P rules will be somewhat higher than the average value for the set as a 
whole (i.e.,g > p). 

Thus, the relative magnitudes of g and p provide some useful hints about the 
efficiency of the rule-sampling process in State P. If g > p, it seems reasonable to 
conclude that subjects normally sample a new rule after an error. But if g < p, it 
seems reasonable to conclude that they often retain a rule for at least one more 
trial following an error. 

The Learning-Development Relationship 

One of the oldest and most contentious issues in the study of children's concept 
learning concerns whether or not children's ability to learn depends on their pre
training levels of cognitive development. The Significance of this issue stems from 
the fact that it is related to one's assumptions about what sorts of constraints 
development imposes on learning. Theorists who believe that developmental con
straints are weak and general (e.g., Bandura & McDonald, 1963; Rosenthal & Zim
merman, 1978) have usually maintained that learning and pre training level of cogni
tive development are not closely related. Theorists who believe that developmental 
constraints on learning are both tight and concept specific take the opposite view. 
Of course, Piaget is the most influential representative of the second position. He 
claims, first, that "learning is no more than a sector of cognitive development" 
(Piaget, 1970b, p. 714) and, second, that concept learning will "vary very significant
ly as a function of the initial cognitive levels of the children" (piaget, 1970b, p. 715). 
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Although several experiments have been reported in which these predictions 
were examined, the relationship between concept learning and cognitive develop
ment remains murky. The main difficulty is that most extant studies suffer from an 
elementary methodological flaw. In these studies, the learning-development relation
ship has been estimated via the relationship between pre- and posttest performance 
on concept-test items. The underlying assumption is that although "level of cogni
tive development" cannot be directly measured, because it is a theoretical construct, 
children's pretest performance is monotonically related to their cognitive levels. 
Subjects are stratefied in terms of their levels of performance on the target concept 
before and after training, and the pre-post performance levels are correlated. A posi
tive correlation has usually been observed; the posttest rank ordering preserves the 
pretest rank ordering. This correlation has been interpreted as supporting the hy
pothesis that development imposes strong constraints on concept learning, but it is 
actually irrelevant to the hypothesis. 

The problem is that pre-post correlations are contaminated by the reliability of 
the tests (Brainerd, 1977a; Thomas, 1980). As long as the items being administered 
are reliable, these correlations should be positive. They will be positive even if the 
true relationship between pretraining performance and learning is zero or negative. 
Since the subjects' posttest performance is a function both of what they learned 
during training and of what they knew before they were trained, it is necessary to 
correct posttest performance for pretraining knowledge to produce an unbiased 
estimate of the relationship between learning and pretraining knowledge. When 
these corrections are made, previous studies seem to show that the two variables are 
not highly correlated (Brainerd, 1977a; Thomas, 1980). 

The learning-development question can be investigated with the machinery of 
the rule-sampling theory. Subjects are at one of three performance levels when 
training begins, namely, W, P, or V. Subjects in State V do not make errors, and so 
learning is restricted to subjects who start in either W or P. Therefore, the hypothesis 
that level of pretraining performance is related to learning becomes a statement 
about differential learning rates for Wand P subjects. If the hypothesis is correct, P 
subjects should learn more rapidly than W subjects. If we recall at this point that 
learning refers to interstate transitions, this means that the probability of making an 
interstate transition when the process is in P (Le., a P-to-V transition) is greater than 
the probability of making an interstate transition when the process is in W (Le., W 
to V or W to P). Since parameters corresponding to these probabilities are available 
in the transition matrix of Eq. (1) and can be independently estimated (see the Ap
pendix), it appears that the learning-development question can be addressed by 
examining their numerical values. 

The relevant parameters in Eq. (1), then, are the interstate transition parameters. 
There are two such parameters for State W, a and b, and two more for State P, c 
and d. The parameters a and d are of primary concern because they refer to identical 
events in the two states. a gives the probability of making an interstate transition on 
any trial in State W, whereas d gives the probability of making an interstate transi
tion on any error trial in State P. Only errors occur in State W, and, consequently, 
these parameters give the probability of an interstate transition following an error 
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trial in their respective states. Under the hypothesis just discussed, we obviously 
expect that a < d. But it is logically possible that either a = d or a> d. Both of the 
latter results appear counterintuitive. In addition to the aforementioned claims of 
cognitive-developmental theorists, most other theories of cognitive learning seem to 
imply that subjects would find it easier to learn a concept if they knew something 
about it than if they knew nothing about it (Brainerd, 1973b, 1979a). 

The other two interstate transition parameters, band c, are not of interest here 
for reasons suggested above. b measures something other than the probability of 
leaving State W. It measures the probability of going to V without passing through 
P on trials when the process leaves W. In other words, b is conditional on the process 
leaving W in the first place, but it is the probability ofleaving W that we are inter
ested in. Concerning c, it refers to trials which are not comparable to W trials be
cause the subject's response is correct. We saw earlier that there are reasons for sup
posing that rule sampling in State P is less likely to occur following correct responses 
than following errors, and we would not be surprised to fmd that c = O. Hence, the 
fmding that a;;' c would not be particularly interesting or informative. Such a result 
would only be of interest if it were found that d = c, which does not seem probable. 

Transfer of Training 

The study of transfer has received much attention in concept-learning experi
ments with children. The reasons for this emphasis are chiefly historical. When 
experimentation began, it was commonly assumed that Piagetian theory predicted 
no learning effects. Although it has subsequently become clear that this assumption 
was an oversimplification, it has also become clear that Piaget and his co-workers de
fine "learning" in a rather special way. They do not accept training-induced improve
ments in performance as evidence that concept learning has occurred unless it can be 
shown that these improvements are extremely general. For example, Inhelder and 
Sinclair (1969) describe their methods of measuring conservation learning as follows: 

The posttests should comprise all the items of the pretest .... At least one item 
should pertain to a structure in a different field but of the same level as the 
structure that was the object of the learning sessions .... They should comprise 
at least one item pertaining to the same structure but touching a different prob
lem (for example, conservation of weight-transitivity of weight) .... (p. 5) 

Since the Genevan definition of learning emphasizes generality, transfer tests 
have been Ubiquitous. The two types that have been most thoroughly studied are 
near transfer and far transfer. Tests of the former sort consist of items that measure 
the same concept learned during training but in a slightly different format. For 
example, suppose that the subjects in some experiment were trained on length con
servation and that the training materials were pieces of colored string. Suppose that 
these subjects were administered posttest items for length conservation in which 
new materials were used (e.g., pieces of dowling stock or Muller-Lyer illusions). 
These stimulus alterations count as near transfer tests. Slight permutations of the 
wording of questions asked during and after training also count as near transfer tests. 
Far transfer tests consist of items which measure a concept that is different than 



Children's Concept Learning as Rule-Sampling Systems 191 

but related to the one learned during training. In our illustrative experiment, post
test items concerned with any conservation concept other than length would be far 
transfer tests. Similarly, if transitivity of length were the object of training, posttest 
items for transitivity of weight or transitivity of number would be far transfer tests. 

The available literature shows that near and far transfer are routinely observed 
and that near transfer effects are larger than far transfer effects. The rule-sampling 
theory provides an explanation of these two results. Consider a hypothetical experi
ment concerned with some concept C. On the assumption that training continues to 
a strict acquisition criterion, the subjects hold V rules for C at the end of training. 
If transfer tests are then administered, it would seem that a subject's performance 
should depend on at least two factors: Is the V rule that the subject holds applicable 
to the transfer items-that is, can it be used to generate correct responses to these 
items? If the current V rule is applicable, does the subject recognize that it is? It 
seems obvious that the answers to these questions will depend in large measure on 
the Similarity of training and transfer items. The probability that the answer to both 
questions is "yes" should increase as a function of similarity. As long as training and 
transfer items resemble each other in major respects, as they do on both near and 
far transfer tests, then the performance of trained subjects on transfer items should 
be better than the performance of untrained controls. As long as the amount of re
semblance varies for different types of transfer items, as it does for near and far items, 
transfer should be more pronounced for items that are more similar to training items. 

An interesting feature of this explanation of transfer is that it generates some 
rather surprising predictions about transfer experiments in which subjects are trained 
on two consecutive and related sets of items. It leads to the expectation that trans
fer is an all-or-none phenomenon and, more specifically, to the expectation that 
transfer effects are confined to the parameters in the starting vector of Eq. (1). To 
see how these predictions follow, let us return to the illustrative experiment in the 
preceding paragraph. After subjects have been trained to criterion on C items, sup
pose that they are trained to criterion on a set of items that differ from C items in 
one or more ways. This different set of items may either be concerned with the 
same concept (near transfer) or with a different but related concept (far transfer). 
At the end of the first series of training trials, subjects hold V rules for the first set 
of items. From the standpoint of the second set of items, these subjects may be 
divided into three groups: (a) subjects whose V rules are applicable to the second 
set (Le., will produce correct responses with probability greater than zero) and who 
recognize that they are applicable; (b) subjects whose V rules are applicable to the 
second set but who fail to recognize this fact; and (c) subjects whose V rules are not 
applicable to the second set of items. Subjects in Group (a) will show higher levels 
of performance at the outset of training on the second set of items than previously 
untrained controls. Subjects in Groups (b) and (c) will not show higher levels of 
performance than controls at the outset. Finally, the proportions of subjects falling 
in these three groups will depend on the type of items in the second set. Presumably, 
the proportion of subjects in Group (a) should be larger for more similar items 
(near transfer) than for less similar items (far transfer). 

These statements are easily converted to numerical predictions about Eq. (1). 
First, note that the implications are for the starting vector. If, as a result of initial 
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training, the proportion of subjects in Group (a) is larger than it is for untrained 
controls, then the proportion of subjects who start in states V and/or P will be 
greater than it is for controls-or, conversely, the proportion of subjects who start 
in State W will be smaller than for controls. In short, positive transfer means that 
the parameter t should be larger and the parameter s should be smaller for pre trained 
subjects than for controls. Turning to near versus far transfer, it was mentioned that 
the proportion of subjects in Group (a) should depend on the similarity between 
training and transfer items. Given two groups of subjects who have received initial 
training on the same set of items, the proportion of Group (a) subjects should be 
greater for those whose second set of items more closely resembles the first set. 
This also translates into a statement about t and s: t should increase and s should 
decrease as the similarity between the first and second sets increases. 

This analysis of transfer implies that such effects are all or none in nature. By 
this, I mean that if transfer effects do not materialize on Trial 1 of the second task 
(Le., changes are not observed in the starting vector parameters), then they will not 
show up at all. This aspect of the analysis, like the earlier possibility that a ;;;;. b, ap
pears counterintuitive. Intuitively, it would seem that a large number of training 
trials on a set of closely related items should have more carry over to the transfer 
phase than simply determining the states in which subjects start on Trial 1. But the 
theory tells us that if learning consists of sampling rules in response to feedback, 
the rules that subjects hold from a previous task affect only their starting states 
on any subsequent task. This leads us to expect that the parameters in the tran
sition matrix of Eq. (I)-particularly the learning parameters a, b, c, and d-will 
tend to have the same numerical values for pretrained subjects and untrained 
controls. 

Some Experimental Evidence 

I now report three experiments, one on the learning of class-inclusion concepts 
and two others on the learning of conservation concepts. The general aim of these 
experiments was to generate a large data base for purposes of illustrating how to ex
plore numerical predictions such as those discussed in the preceding section. There 
were, in addition, some restricted aims on which the experiments differed. For 
example, a specific motivation of the class-inclusion experiment was to undertake a 
detailed analysis of goodness of fit. Although some quantitative evidence has been 
reported which suggests that class-inclusion learning may be a three-state Markov 
process (Brainerd, 1979b), the evidence came from a flXed-trials experiment whose 
data did not permit the parameters of Eq. (1) to be estimated. For conservation, on 
the other hand, reasonably comprehensive analyses of goodness of fit have already 
been reported (Brainerd, 1979a). The specific motivations for these experiments 
were to investigate questions other than goodness of fit (e.g., the locus of transfer 
effects). 
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General Method and Design 

Since all three experiments relied on similar training methodologies and their sub
ject samples were drawn from the same pool, it is convenient to discuss the proced
ural aspects of the experiments together. They are grouped under familiar headings. 

Subjects. The subjects for all three experiments were drawn from a larger sample 
of chilren who were administered pretests for class inclusion, number conservation, 
and liquid quantity conservation. The larger sample consisted of 491 kindergarten 
and first grade children, which comprised the entire kindergarten and first grade 
enrollments of eight elementary schools located in middle class residential areas of 
two eastern Canadian cities (London and Toronto). On the basis of the pretests, 80 
children were selected for Experiment 1 (class inclUSion), 125 children were selected 
for Experiment 2 (number conservation), and 125 children were selected for 
Experiment 3 (quantity conservation). The selection criteria are described below. 
The mean ages ofthe subjects in th~ three experiments were 6 years 6 months (Experi
ment 1), 5 years 7 months (Experiment 2), and 5 years 7 months (Experiment 3). 

Materials. The same sets of materials were used during the pretest and training 
phases of these experiments. They are described separately for the class inclusion 
and conservation experiments. 

Experiment 1: Class Inclusion Training. Pictorial arrays based on stimuli ad
ministered by Brainerd and Kaszor (1974) were used to test class inclusion knowl
edge before training and to train the concept. A total of 50 arrays were available. 
Two familiar class of objects, both of which were members of a familiar superordi
nate class, appeared in each array. Examples of some of the superordinate and sub
ordinate classes include: articles of clothing (shoes and coats), fruits (apples and 
oranges), vegetables (carrots and potatoes), animals (cow and horse), insects (fly 
and ant), flowers (tulip and rose), trees (maple and pine), birds (robin and chicken), 
and tools (hammer and saw). The total number of elements appearing in anyone 
array (Le., the sum of the two subordinate classes) ranged from 5 to 10. The total 
number of elements in each subordinate class ranged from 2 to 8. The number of 
elements in the two subordinate classes were equal in half the arrays and unequal in 
half the arrays. 

Experiments 2 and 3: Conservation Training. The materials used to assess num
ber conservation before training and to train the concept consisted of sets of toy
size objects. There were 11 sets in all: cups, chairs, drums, birds, automobiles, boats, 
fish, erasers, crayons, butterflys, and footballs. By pairing each set with every other 
set, a total of 66 unique comparisons involving differing sets were possible (7 fish 
and 7 birds, 8 fish and 8 cups, etc.). The number of items from a set used in any 
given number conservation item ranged from 5 to 10. The materials used to assess 
quantity conservation were sets of different-size glasses and containers of different
colored water. The glasses ranged from a height of 35 cm and a width of2.5 cm to 
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a height of 10 em and a width of 7.5 cm. There were five containers of colored 
liquid, the colors being green, red, yellow, blue, and colorless. To assess quantity 
conservation, the glasses were presented in triads consisting of two same-size glasses 
and a third glass that was either shorter and wider or taller and thinner (see Brainerd, 
1977b). By varying glass size and water color independently of each other, 60 
unique combinations were possible. 

Procedure. The procedure for all three experiments consisted of a series of pre
tests and a series of training trials. The pretest items were administered in a single 
session lasting approximately 15 minutes. The training trials were administered one 
day later in a session lasting approximately 15 minutes (Experiment 1) or approxi
mately 30 minutes (Experiments 2 and 3). 

Pretests. The pretests were the same for all subjects. A total of ten class inclu
sion items, nine number conservation items, and nine quantity conservation items 
were administered. For the class inclusion items, the pretests followed Brainerd and 
Kaszor (1974). Briefly, an array was first selected at random from the pool of 50. 
The subject was shown the array and asked to count all the items in the superordi
nate class and to count all the items in the two subordinate classes. After counting, 
two questions were posed. If the subordinate classes contained the same number of 
elements, the questions were: "Are there more As (superordinate class) than there 
are Bs (subordinate class)?" and "Are there less Bs than there are As'!' If the sub
ordinate classes contained the different numbers of things, the questions were: "Are 
there more Bs (larger subordinate class) than there are As (superordinate class)?" 
and "Are there less As than there are Bs?" These questions control for the tendency 
of children who do not understand the inclusion concept to respond in terms of the 
numerical relationship between the two subordinate classes (see Brainerd & Kaszor, 
1974). After the two questions for the first array had been answered, four more 
arrays were randomly chosen and the procedure was repeated for each of them. The 
arrays were sampled without replacement (i.e., none was used more than once). 
Arrays used on the pretest were not used during training. 

For the number conservation items, the pretests followed Brainerd and Brainerd 
(1972, deformation items). First, one of the possible set pairings was randomly 
selected, and two parallel rows containing the same number of elements were con
structed. After the subject had agreed that the rows contained the same number of 
objects, one of them was either lengthened or shortened (randomly) and the follow
ing three questions were posed: "Are there more As Qonger row) than there are Bs 
(shorter row)? ," "Are there the same number of As as there areBs? ," and "Are there 
less Bs than there are As?" After the questions had been answered, two more set 
pairings were randomly selected and the procedure was repeated for each pairing. 
Across subjects, a lengthening transformation was used on half the pretest items 
and a shortening transformation was used on the other half. Set pairings were 
sampled with replacement. 

For the quantity conservation items, the pretests also followed Brainerd and 
Brainerd (1972, deformation items). First, one of the possible combinations of 
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triads and water colors was selected at random. At the outset, the two same-size 
glasses contained equal amounts of colored liquid and the different-size glass was 
empty. After the subject had agreed that there was the same amount to drink in the 
two same-size glasses, the contents of one of them was poured into the empty glass 
and the following three questions were posed: "Do these two glasses have the same 
amount to drink?," "Does this glass (indicating the one with the higher liquid level) 
have more to drink than the other one?," and "Does this glass (indicating the one 
with the lower liquid level) have less to drink than the other one?" After the ques
tions had been answered, two more glass-liquid combinations were randomly selected 
and the procedure was repeated for each combination. Across subjects, half the pre
test combinations involved pouring the liquid into a taller-thinner glass and half 
involved pouring the liquid into a shorter-wider glass. The pretest combinations 
were sampled without replacement. 

The order in which the three types of pretests were administered to individual 
subjects was random. After completing the pretests, subjects were assigned to the 
three experiments as follows. First, subjects who passed all of the pretest items for 
both conservation and class inclusion were discarded. Second, subjects who failed at 
least one item on both the number conservation and quantity conservation pretests 
were assigned to either Experiment 2 or Experiment 3. This continued until a total 
of 125 children had been assigned to each experiment. Third, subjects who failed at 
least one item on the class inclusion pretest, regardless of their performance on the 
conservation pretests, were assigned to Experiment 1 until a total of 80 subjects 
had been reached. Subjects who did not satisfy the second criterion but who 
satisfied the third were immediately assigned to Experiment 1. 

Training. One day after the pretests, a series of training trials concerned with 
class inclusion (Experiment 1) or conservation (Experiments 2 and 3) was adminis
tered. The training method was a judgment-contingent feedback procedure that is 
not unlike the feedback administered in concept identification experiments. Since 
this method has been described in earlier papers (e.g., Brainerd, 1972a, 1972b, 
1974a, 1977b), it is only briefly summarized here. 

In Experiment 1, the training trials consisted of a sequence of items that, except 
for the administration of feedback, was identical to the pretraining items. On Trial 
1, an array was randomly selected and the subject was asked to count the number 
of elements in the superordinate class and in each subordinate class. The questions 
mentioned above (two per array) then were posed. After each answer, the subject 
received verbal feedback from the experimenter as to the correctness or incorrect
ness of the response. On each subsequent trial, a new array was selected (sampling 
was without replacement) and the feedback procedure was repeated. Training con
tinued until the subject had given eight consecutive correct responses. 

The training phase of Experiments 2 and 3 was more complicated. In Experi
ment 1, it consisted of a series of training trials on number conservation followed 
by a repetition of the nine-item pretest for quantity conservation. For Experiment 
2, it was the reverse (Le., quantity training, followed by a repetition of the number 
pretest with new set comparisons, followed by number training trials). The training 
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procedure for number consisted of a series of items that were identical to the num
ber pretest items except for the administration of feedback. On Trial 1 , a pair of sets 
was randomly selected and two identical rows containing equal number of elements 
were constructed by the experimenter. After the subject had acknowledged equality, 
one row was either shortened (half the trials) or lengthened (half the trials), and the 
questions noted above (three per problem) were posed. After each answer, the ex
perimenter provided verbal feedback about the correctness of the subject's response. 
On each subsequent trial, a new pair of sets was randomly selected (sampling was with
out replacement) and the feedback procedure was repeated. Training continued until 
the subject had given nine consecutive correct responses. The training trials for quanti
ty conservation were identical except, of course, for the fact that items for which the 
subjects received feedback were concerned with quantity rather than number. 

None of the arrays, set comparisons, or glass-liquid combinations used on the 
pretests was used during training. The apparatus used to present the stimulus ma
terials on the training trials was a modified Wisconsin General Testing Apparatus. It 
was used in all three experiments, and it has been described in detail elsewhere 
(Brainerd,1979a). 

Results 

Goodness of Fit. In reporting the results, emphasis will be placed on the numeri
cal values of the parameters of Eq. (1) and on testing hypotheses about these values. 
Logically, however, such analyses make no sense unless one is confident that the 
data conform to the model. This is a question about goodness of fit. It asks whether 
the observed distributions of learning statistics such as those considered in the Ap
pendix (see Eq. AI2-A16) can be predicted, within statistically acceptable limits, 
by expressions for these statistics that are derived from Eq. (1). 

The three experiments provided five sets of data for which goodness of fit was 
separately investigated: (a) the class inclusion acquisition data (Experiment 1); 
(b) the number conservation acquisition data of children who had not received pre
vious training (Experiment 2); (c) the quantity conservation acquisition data of 
children who had already been trained on number conservation (Experiment 2); 
(d) the quantity conservation acquisition data of children who had not received pre
vious training (Experiment 3); and (e) the number conservation acquisition data of 
children who had already been trained on quantity conservation (Experiment 3). 
For each set, the goodness-of-fit analysis proceeded as follows. First, the observed 
distributions of the five learning statistics discussed in the Appendix (errors before 
first correct, corrects before last error, errors after first correct, trial of last error, 
and the learning curve) were tabulated. Second, Eqs. (A3)-(All) were used to find 
the maximum likelihood estimate of each of the eight parameters. Third, the para
meter estimates were substituted in the theoretical expression for the sampling dis
tribution of each statistic (Eqs. A12-A16), and the predicted distribution ofthe statis
tic was calculated. Fourth, a formal test of goodness of fit (Kolmogorov-Smirnov one
sample test) was computed to determine whether the observed distribution of each 
statistic departed significantly (p < .05) from the distribution predicted by Eq. (1). 



Children's Concept Learning as Rule-Sampling Systems 197 

These analyses showed that Eq. (1) gave a tolerably good account of all five sets 
of data. In the case of the four sets of conservation data, this result was expected 
because previous goodness-of-fit analyses have produced good agreement between 
such data and the predictions of a three-state Markov process (Brainerd, 1979a). 
However, detailed goodness-of-fit results have not previously been reported for class 
inclusion. As illustrations of the degree of correspondence between observation and 
prediction for the class inclusion data, the predicted and observed distributions of 
one statistic concerned with the first stage of learning (errors before first correct) 
and two statistics concerned with the second stage of learning are shown in Table 
6.1. Interested readers can calculate the predicted distribution of each statistic for 
themselves by substituting the parameter estimates appearing in Table 6.2 in the 
appropriate expression in the Appendix. 

Likelihood Ratios. The numerical estimates of the parameters are given in Table 
6.2 for each set of data. As discussed in the Appendix, these parameters were esti
mated by the method of maximum likelihood. Although other procedures are avail
able for estimating the parameters of a Markov model (e.g., the method of moments, 
the method of minimum x2 ), maximum likelihood is usually the procedure of 
choice, when it is applicable, because it has several advantages over other methods. 
The chief one is that maximum likelihood estimators are known to be suffiCient 
estimators: If a sufficient estimator of some parameter exists, then the method of 
maximum likelihood will fmd it. Another advantage, one that is exploited here, is 
that a well-defmed technology exists for testing statistical hypotheses about param
eters which involves the computation of likelihood ratios. 

The method for conducting likelihood-ratio tests of hypotheses about the param
eters of Eq. (1) is outlined in the Appendix (see Eq. AI7). More general discussions 

Table 6.1 Observed and Predicted Distributions of Three Random Variables for 
the Class Inclusion Experiment 

k 

Random variable 0 2 3 4 5 6 7 8 9 10 

Errors before 
first correct 

Observed 19 20 16 14 7 2 0 1 2 1 
Predicted 19 18 17 11 7 4 3 2 1 0 

Runs of errors 
after first correct 

Observed 17 19 8 4 4 0 1 0 0 
Predicted 23 14 8 4 3 1 0 0 0 

Runs of corrects 
before last error 

Observed 19 10 5 0 I 0 0 0 
Predicted 19 9 5 2 1 0 0 0 0 
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Table 6.2 Maximum Likelihood Estimates of the Eight Parameters for the Five 
Data Sets 

Parameter 

Experiment t s p a b c d g h 

Experiment 1 0 .625 .367 .327 .658 0 .293 .191 .492 

Experiment 2 
Number 0 .728 .427 .544 .676 0 .449 .241 .621 
Quantity .424 .427 .444 .474 .602 0 .299 .330 .541 

Experiment 3 
Number .550 .283 .459 .537 .692 0 .501 .290 .711 
Quantity 0 .702 .463 .398 .655 0 .381 .306 .582 

of likelihood-ratio testing in the context of learning models may be found in Greeno 
(1967), Levine and Burke (1972), and Theios, Leonard, and Brelsford (1977). 
Since the results reported below may not be comprehensible without some under
standing of how likelihood ratios are computed, I briefly discuss the logic of likeli
hood-ratio tests and give two illustrations. 

Equation (A2) is a likelihood function from which estimates of the parameters 
of Eq. (1) can be obtained by solving the system of Eqs. (A3)-(All). Once esti
mates have been obtained for some set of data, we proceed to test hypotheses 
about the estimates such as those considered earlier. There are two general classes 
of hypotheses, within group and between group. The former are hypotheses con
cerned with parameter values for a single set of data. The latter are hypotheses con
cerned with parameter values for two or more sets of data. 

Tests of within-group hypotheses are conducted as follows. First, the numerical 
value of L in Eq. (A2) is found when all eight parameters are free to vary. Next, 
Eqs. (A3)-(All) are manipulated algebraically to fmd a restriction or restrictions 
on Eq. (A2) implied by the hypothesis that we are testing. Once an appropriate 
restriction has been identified, it is introduced into Eq. (A2), and a new value of L 
(call it L ') is computed. When this value is in hand, the ratio L' /L is calculated. A 
theorem originally proved by Anderson and Goodman (1957) tells us that the sta
tistic -2ln(L IL) has a X2 (n) distribution, where n is the number of restrictions on 
Eq. (A2) implied by the hypothesis under test. If a significant X2 value is obtained, 
we reject the hypothesis; otherwise, we accept it. The hypothesis that c = 0 is a 
within-group hypothesis of this sort. Manipulation of Eqs. (A3)-(All) reveals that 
c = 0 implies that e = 0 in Eq. (A2). Therefore, we test c = 0 by computing a L ' 
value under the restriction that e = O. Since e = 0 is a single restriction, the test 
statistic -2ln(L IL) is X2 (1). 

Tests of between-group hypotheses proceed as follows. First, the value of L in 
Eq. (A2) is found for each of the two (or more) sets of data being compared. Call 
these values Ll and L 2. The joint likelihood Ll X L2 then is calculated. Next, Eqs. 
(A3)-(All) are manipulated to find a restriction or restrictions on the joint likeli
hood function implied by the hypothesis being tested. This restriction takes the 
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form of an equivalence relationship between the two sets of data on one or more 
parameters. This restriction is introduced into Eq. (A2), and new values of Ll and 
L2 (call them L { and L~) are obtained. After the joint likelihood L { X L~ has been 
found, the test statistic -2 In(L; X Li )/(L 1 X L2) is calculated. The Anderson
Goodman theorem tells us that the distribution of the statistic is X2 (n), where n is 
the number of restrictions on Eq. (A2) imposed by the hypothesis, and that the 
hypothesis should be rejected if a significant X2 value is obtained. The hypothesis 
that the starting parameter t is the same for different sets of data, which is relevant 
to questions about transfer, is a between-group hypothesis. Manipulation of Eqs. 
(A3)-(All) reveals that the assumption that t is same for two sets of data implies 
that the parameter 1T is the same for these data sets. Consequently, we find the joint 
likelihoods with and without this restriction on 1T. Since only one restriction has 
been imposed by the hypotheSiS, the test statistic -2In(L{ X Li)/(L 1 X L2) is a X2 
test with one degree of freedom. 

Results of Parameter Tests. I now report results which bear on the questions 
about how children learn concepts in training experiments that were raised earlier. 
Tests of within-group hypotheses are reported first, and the between-group data are 
reported second. The significance level for all likelihood ratio tests was .05. 

Four of the five topics considered earlier generate hypotheses about the within
group behavior of the parameters, namely, (a) learning on errors versus learning on 
corrects; (b) stage skipping; (c) efficiency of information processing; and (d) the 
learning-development relationship. Concerning (a) it will be recalled that the idea 
that children use rules to guide their responses strongly suggests that the effective
ness of feedback on any given trial will depend on the response that has just been 
made. Feedback confirms or disconfirms the current rule, accordingly as the re
sponse was correct or incorrect, and this leads one to expect that c = 0 or at least 
that d > c. The former result was obtained for all five sets of data. Interestingly, no 
Significance tests were needed: Examination of the sixth column of Table 6.2 shows 
that the maximum likelihood estimate of c was always zero. It seems, therefore, 
that correct response trials were simply dead weight in these experiments. 

Concerning (b), the no stage skipping rule of cOgnitive-developmental theory 
entails that jumping from W to V without going through P should be an uncommon 
event, thatis,b = 0 or at least b < 1 - b. Neither of these predictions was confirmed. 
Inspection of the fifth row of Table 6.2 indicates that significance tests are not 
required to disconfirm either prediction. None of the observed values of b was even 
close to zero. All values were greater than ~, which shows that b < 1 - b is also 
false. In fact, the values are sufficiently greater than ~ that the hypothesis that b > 
1 - b suggests itself. This hypothesis was tested with likelihood ratios for all the 
data sets. It was accepted in each case (Le., the hypothesis that b = ~ was rejected). 
Contrary to the no stage skipping rule, the subjects in these experiments were more 
likely to go directly from W to V than to go from W to P. 

Concerning (c), we saw earlier that the efficiency with which children process 
information in a concept-learning experiment comes down to a question about the 
numerical values of the learning parameter a and the performance parameters p and 
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g. If processing is perfect in State W (Le., if children invariably sample a P or V rule 
following disconfmnatory feedback), then we expect that a = 1. If processing is per
fect in State P, then we expect that p = g. Judging from the values appearing in the 
third, fourth, seventh, and eighth rows of Table 6.2, neither of these predictions 
hold for the present data. Likelihood-ratio tests of the hypothesis that a = 1 pro
duced significant X2 statistics for all five data sets. Similarly, likelihood-ratio tests 
of the hypothesis that p = g produced significant X2 statistics. In other words, the 
hypothesis could not be accepted for any of the data sets. Under the rule-sampling 
interpretation, this result suggests that when subjects were in State P they often 
failed to sample a new rule when their current rule was inconsistent with feedback. 
Likewise, a < 1 suggests that the subjects often failed to initiate rule sampling in 
State W. 

Concerning (d), the notion that children who know something about a concept 
are more likely to benefit from training than children who know nothing about it 
translates into the prediction that interstate transitions are more likely to occur 
when the process is in State P than when it is in State W. This, in turn, is a statement 
about the relative magnitudes of the learning parameters a, c, and d. The last two 
parameters should be larger than the first. Since the assumption that concept learn
ing is a rule-sampling system provides grounds for supposing that c will be small, a 
prediction that has already been confirmed, we are primarily concerned with the 
relationship between a and d. Comparison of the values for these parameters that 
appear in each row of Table 6.2 reveals that, contrary to the relationship between 
learning and development envisioned by cognitive-developmental theorists, a < d 
cannot be accepted for these data; a was always larger than d. In some instances, 
the difference is large enough that one is prompted to investigate the converse of 
the cognitive-developmental hypothesis, a < d. Likelihood-ratio tests showed that 
this hypothesis could be accepted for all four sets of conservation data but not for 
the class inclusion data. The present subjects apparently were at least as likely to 
make an interstate transition (W to P to W to V) when they were in State Was 
when they were in State P. 

Finally, the questions about transfer of training that were examined earlier im
ply between-group predictions about the parameter values obtained when children 
learn a concept with or without prior training on a related concept. Two sets of 
between-group comparisons were possible: a comparison of the quantity conser
vation data from Experiment 2 (prior training on number conservation) to the 
quantity conservation data of Experiment 3 (no prior training on conservation) and 
a comparison of the number conservation data from Experiment 2 (no prior train
ing on conservation) to the number conservation data of Experiment 3 (prior train
ing on quantity conservation). It will be recalled that there are at least three plausi
ble, parametric explanations of positive transfer effects with such data (starting 
parameter differences only, learning parameter differences only, and both starting 
and learning parameter differences). For both comparisons, the analysis began with 
an omnibus between-group test rather than tests focusing on specific parameters. 
An omnibus likelihood-ratio test, which is analogous to the omnibus F test in analy
sis of variance, asks if there are any differences at all between the pairwise param-
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eter values of two or more sets of data (see Brainerd, Howe, & Desrochers, 1980). 
Specifically, it is a likelihood-ratio test with eight degrees of freedom which evalu
ates the hypothesis that the values of each parameter are the same for the different 
data sets. If this hypothesis is rejected, we can then proceed to test pairwise hy
potheses about specific parameters. 

The omnibus test produced a null hypothesis rejection for both of the two sets 
of quantity data and the two sets of number data. If we inspect pairs of quantity 
parameters and pairs of number parameters in Table 6.2, it seems that the value of 
t is larger and the value of s is smaller for children who have been previously trained. 
Conversely, it does not appear that the four learning parameters are much larger for 
previously trained subjects, although there is a slight trend in this direction. To eval
uate these possibilities, likelihood-ratio tests concerned with the hypothesis that a 
given parameter was the same for two sets of data were conducted for the param
eters t, s, a, b, and d. Separate tests were conducted for the quantity and number 
data. For both comparisons, the hypothesis that t was larger for pre trained subjects 
and the hypothesis that s was smaller for pretrained subjects received statistical sup
port. However, no support was obtained for the hypothesis that the learning param
eters differed as a function of pretraining. Insofar as quantity and number conser
vation are concerned, the effects of previous training on a related concept appar
ently were confmed to determining the subjects' starting states. 

Some Interpretations 

Throughout this chapter, my central purpose has been to draw attention to the 
fact that a simple mathematical model, under an equally simple cognitive interpre
tation, can help us articulate questions about how children learn concepts in training 
experiments. In view of the fact that this has traditionally been a contentious area 
of research with sharp divisions of theoretical opinion, such a neutral device for 
applying leverage to theoretical questions seems to have considerable utility, or at 
least so I believe. A secondary aim has been to transmit to other workers in this area 
the necessary mathematical machinery for applying the model to data. The experi
ments reported above were means of accomplishing these ends. They are not in
tended to provide defmitive evidence on any of the issues discussed earlier on, and 
the reader is encouraged to avoid viewing them in this manner. Instead the intent of 
the experiments was to show how Eq. (1) can be exploited to answer theoretical 
questions. The specific questions posed earlier are merely illustrations (albeit ones 
that are presumably familiar to most students of children's concept learning) of the 
sorts of questions that investigators may wish to ask. 

With these caveats in mind, the experiments did manage to produce three results 
that, by dint of their counterintuitiveness, merit some further discussion. First, 
there is the fmding that a ;;:. d. Cognitive-developmental theory, other theories of 
cognitive learning, and our intuition all seem to tell us that knowing a little about a 
concept is an aid to learning (Brainerd, 1973a). It was not helpful in these experi
ments, however, and what is more, it was a significant disadvantage in the conserva
tion experiments. The latter result is quite bothersome because of the apparent sug-
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gestion that a little knowledge is sometimes a bad thing. Although the observed 
relationship between a and d seems counterintuitive, it is important to note that it 
does not conflict with the rule-sampling theory. The theory permits any numerical 
relationship between a and d. Further, if it were generally observed in concept-learn
ing experiments that a > d, the theory gives a possible explanation. Suppose, as the 
observed values of c indicate, that learning is largely confined to error trials. An im
portant difference between State Wand State P, therefore, is that all W trials provide 
opportunities for learning but only some P trials provide opportunities for learning. 
This difference could well affect the relative efficiency of learning in the two states. 
Specifically, feedback on P trials confirms the subjects' current rule, and this could 
conceivably make subjects unwilling to surrender such rules on error trials. More 
simply, confirmation ofaP rule may reduce the effectiveness of subsequent discon
firmations. This extraneous influence is absent in State W. 

Second, there is the rmding that b > 1 - b. In addition to violating the rule pro
hibiting stage skipping, this result troubles our intuition because we expect that it 
should be easier to learn a little about a concept than to learn a lot. Evidently, the 
reverse is sometimes true. Once again, there is nothing in this fact that is inconsistent 
with the rule-sampling theory. Indeed, at least two plausible explanations can be 
devised. First, suppose that the average number of V rules that subjects have avail
able is greater than the average number of P rules. Second, suppose that, regardless 
of the relative number of V and P rules, V rules have much larger sampling proba
bilities than P rules. In either case, children who hold a W rule would be more likely 
to select a V rule than a P rule when sampling first occurs. 

Last, there is the rmding that transfer of previous concept training affects chil
dren's starting states but does not affect the rate at which they learn a related con
cept. Since performance on Trial 1 is determined by the subjects' starting states 
while performance on subsequent trials is determined by starting states and learning 
rate, the implication is that previous training on a related concept does not transfer 
beyond Trial 1. When one considers that all the subjects in the two transfer experi
ments received at least 10 pre training trials and several subjects received 20-30 pre
training trials, it is natural to assume that transfer effects would be more general. 
Despite the intuitive appeal of this assumption, we have previously seen that the 
specificity of transfer is interpretable within a rule-sampling framework. We saw, 
more particularly, that the result can be interpreted as showing that previous 
concept training affects the rules held at the outset of subsequent training but 
not the rule-sampling system operative during subsequent training. 

Remark 

In most sciences, progress consists of simultaneous movement in two directions. 
The first and more familiar direction is outward toward the study of new paradigms 
and the discovery of new empirical phenomena. The second and less farnilar di
rection is inward toward organization, systematization, integration, and, most 
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important of all, explanation of what we think we know. Progress in the first di
rection is a necessary prerequisite for progress in the second direction: The data 
base must reach a fairly advanced state before organization, systematization, inte
gration, and explanation become essential. 

This means that investigators must decide when the data base in their particular 
area is sufficiently articulated to permit reasonable progress in the second direction. 
In the older areas of psychological research (e.g., psychophysics, animal condition
ing, and human memory), this point was reached long ago. The implicit thesis of 
this chapter is that it has now been reached in the study of children's concept learning. 

Appendix 

Although the model in Eq. (1) is relatively simple, some mathematical develop
ments are necessary to put it into shape for application to data. These developments 
are of three general sorts, namely, methods of parameter estimation, methods of 
evaluating goodness of fit, and methods of testing statistical hypotheses about the 
numerical values of the parameters of Eq. (1). 

Parameter Estimation 

The parameters of Eq. (1) refer to theoretical processes (using and sampling rules) 
that cannot be observed in concept-learning data. Consequently, its parameters can
not be directly estimated. However, it is possible to obtain unique estimates of all 
the parameters for a paradigmatic experiment of the sort described in the first 
section of the paper by USing the so-called observable-process strategy (Levine & 
Burke, 1972). This strategy, which was introduced into the psychological literature 
by Greeno (Greeno, 1967, 1968), consists of three steps. First, a Markov process 
that involves only the observable data (Le., errors and successes on the pretests and 
on the training trials) and that is implied by Eq. (1) is constructed. Second, a likeli
hood function is written for the observable process from which the maximum likeli
hood estimates of its parameters can be found for any set of data. Third, a set of 
functions is written that expresses the theoretical parameters in Eq. (1) as functions 
of the parameters of the observable process. This system of equations can then be 
used to obtain the necessary estimates of the theoretical parameters. One merely 
substitutes the estimates of the observable parameters in the equations and solves 
the system for each theoretical parameter in turn. 

The observable process that is implied by Eq. (1) has the following starting 
vector, transition matrix, and response vector: 

P [Q(1), [Q(1), [R(1), [s(1), E 1 (1)] 
= [1T, 0,1/>, A, 1 - 1T - 0 -1/>- A], 
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Q (n + 1) R (n + 1 ) 

Q(n) 1 0 

R(n) u (l-u)v 
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o 

Ej 

0 

0 

0 

0 
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P(Correct) 
0 

0 

0 (A1) 

o 

The states of the process are as follows. Q is the state on all training trials after the 
last error in protocols with one or more training-trial errors, the state on all training 
trials in protocols with no training-trial errors and no pretest errors, and the state 
on all training trials after Trail 1 in protocols with no training-trial errors but one or 
more pretest errors. R is the state on all training-trial errors after the first trial if 
(a) the first correct training-trial response has occurred; or (b) there were one or 
more correct responses on the pretest; or (c) both (a) and (b). S is the state on cor
rect training-trial responses after Trial 1 if the last error has not yet occurred. Ei is 
the state on the ith training trial if (a) the response is an error; (b) the responses on 
the previous i-I training trials were all errors; and (c) there were no correct re
sponses on the pretest. The sub states IQ' IR, and IS in the starting vector all refer to 
protocols in which there were both errors and correct responses on the pretest.IQ 
is the state on Trial 1 for such protocols if there are no training-trial errors. IR is 
the state on Trial 1 for such protocols if the response is an error. IS is the state on 
Trial 1 for such protocols if the response is correct and if there is at least one error 
on some subsequent training trial. 

Analysis of Eq. (AI) using techniques developed by Greeno (1968) shows that 
there are a total of ten free parameters, which I shall denote by the set 1T, 0, cp, X, 
'Y, p, u, v, z, w. The likelihood function that expresses the a posteriori probability 
of any set of data in terms of these parameters is 

L = (1T~(Q) (O)N(IQ) (cpt(IR ) (X)N(IS) (l-1T _ 0 - cp _ Xf(E 1) (u~(R,Q) 

• (1 - u~(R,R)+N(R,S) (v~(R.R) (1 _ v~(R,S) (z~~,R) (1 _ z~(S,S) 

.{ h [(O!.)N(E,~Q) (p.)N(Ei,S) (l_O!._p.t(Ei,Ei+l)l}. 
i=I I I I I 

(A2) 

The terms O!i and Pi are complex functions of some of the other parameters in the 
set mentioned above. Their definitions are 
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(wi-1(u - (1 - r)p) 
a·=------------~~~--~~~-----------

I [(W)i-l (r - (1 -U)V)] [(1 -(r - (1 - u)v» ] i-; 
+ «1 -u)v) 

(w-(I-u)v) (w-(1-u)v) 

(A3) 

{3i = [(1 - u)(1 - v)] 

[(w)i-l(r - (1 -u)v) (1 - (u - (1 - r)p»] 

[r-(1-u)v] 

[(wi-1 (r - (1 - U)V)] ~(1 - (r - (1 - U)V»] i-I 
+ «1 -u)v) 

(w - (1 - u)v) (w - (1 - u)v) 
(A4) 

F or any set of data, the maximum likelihood estimates of the ten parameters of 
the observable process can be found by using any standard optimization program 
(e.g., SEEK, SIMPLEX, STEPIT) to minimize either L or the negative natural log of 
L or some positive multiple of the negative natural log of L. It is most convenient 
to minimize twice the negative natural log of L because -2 In L is a statistic that 
figures prominently in hypothesis testing (see below). 

It only remains to exhibit a set of expressions that maps the ten parameters of 
the observable process onto the parameter space of the theoretical model in Eq. (1). 
Once estimates of the former parameters are in hand for some experiment, the 
maximum likelihood estimates of the latter parameters can be found by algebraic 
manipulation of this system of equations. The relevant expressions are 

[(I-t)(I-s)(Py+l] 
1T = t + .;...;.--~--....;....;..--~ 

[(c)/(1 - (1 - c)h)] 

o = [(I-t)(I-s)pc(I-(p)i)]/[I-(I-c)h], 

cp = (1 - t)(1 - s)(1 - (p)i)(1 - p), 

A = [(I-t)(1-s)(I-(p)i)p(l-c)]/[I-(1-c)h], 

u =d+ [(I-d)gc]/[I-(1-c)h], 

v = [(I-g)(I-(1-c)h)]/[(1-g)(1-(I-c)h)+g(l-c)(1-h)], 

w = 1 -a, 

z = 1 - (1 - c)h, 

I ~ c J I [(1-s-t)(I-p)(ch+(I-g)d)] 
as b +(I-b)(I-e) + --------

P = ---->. __ -:-----!:~(1_-(.:...I-_c.:...)h..:::) LL-__ ..:..[I_-...;(_I-...;c):...,.h:....] __ 
as(1 - (l-b)e) + (l-s-t)(1-p)(g+ (l-g)d) 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

(AI 0) 

(All) 

(AI2) 

(A 13) 
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[s(1-a+a(1-b)e)+(1-s-t)(1-p)(1-d)(1-g)] 
r = 

[s + (1 - s - t)(1 - p)] 
(AI4) 

Goodness of Fit 

For a multistate model such as Eq. (1), it is desirable to evaluate the ability of 
the model to account for data generated by individual states of the process as well 
as the data of the process as a whole. I now consider some expressions for five rele
vant statistics of the data. The statistics that refer to individual states are errors 
before first success (State W), runs of errors after the first success (State P), and 
runs of successes before the last error (State P). The learning curve and trial number 
of the last error refer to the process as a whole. 

Errors before First Success. Let C be a random variable that counts the number 
of errors that occur before the first correct training-trial response. The sampling dis
tribution of C is 

P(C = k) = t + (1 - t)(1 - s)p for k = 0, 

P(C= k) = (1- t)sa(b + (1-b)(1- e)) for k = 1, ,-------""\ 
(1 - d)(1-g) 

P(C=k) = [(1 - t)(1 - s)(1-p), (1- t)s] X 
o 

a(I - b)e 1 - a 

X 
I-(1-d)(I-g) 0 III _ 

a(1 - b)(e) a X l..!J for k - 2, 3, .... 

(AI Sa) 

(AIsb) 

(AIsc) 

Although Eqs. (AIsa) and (AIsb) are in standard algebraic notation, Equation 
Aisc is in matrix notation. That is, the first term is a row vector, the last term is a 
column vector, the other two terms are square matrices, and X denotes matrix mul
tiplication rather than standard algebraic multiplication. 

Runs of Errors After First Success. Let LR be a random variable that counts the 
length of each run of training trials in which the process is in State R. The sampling 
distribution of LR is 

P(LR=k)=d+(I-d)g for k=I, 

P(LR = k) = [(1 - d)(1 - g)] k-I [d + (I - d)g] for k = 2,3, .... 

(AI6a) 

(AI6b) 

Runs of Successes Before the Last Error. Let LS be a random variable that 
counts the length of each run of training trials in which the process is in State S. 
The sampling distribution of LS is 

P(LS=k)=I-(I-c)h for k=l, 

peLS = k) = [(1- c)h]k-I [I - (I - c)h] for k = 2,3, .... 

(AI7a) 

(AI7b) 



Children's Concept Learning as Rule-Sampling Systems 207 

Trial of Last Error. Let LE be a random variable that counts the trial number on 
which the last error occurs. The sampling distribution of LE is 

P(LE = k) = t + (1 - t)(1 - s)p for k = 0, (AI8a) 

P(LE = k) = sa(1 - t)(b + [(I - b)(1 - e)c] -;- [1 - (I - c)h)) 
+(I-t)(I-s)e(d+[(I-d)gc]/[l-(1-c)h)) for k=l, (AI8b) 

P(LE = k) = [(1 - t)(1 - s)(I- p), (1- t)s] k X (1-d)g 
a(1 - b)p 

X [c/(I-(1-c)h] X [1] + [(1-t)(I-s)(I-p),(I-t)s]k 

X I~ X [1] for k = 2, 3, . . . . (-A18c) 

In Eq. (18c), the first and fourth terms are row vectors, the second and sixth terms 
are column vectors, the other three terms are scalars, and X denotes matrix multi
plication. 

Learning Curve. Let Xl , X 2 , X3 , ... be a sequence of binary random variables 
such that Xk = 0 if a correct response occurs on the kth training trial and Xk = I 
otherwise. The sampling distributions of these random variables are given by 

P(XI = 0) = t + (I - t)(1 - s)p, (AI9a) 

P(Xk=O) = [t,(I-t)(I-s)(1-p), (1-t)(1-s)p,(1-t)s] X M k- 1 XV. (AI9b) 

Equation (AI9b) is in matrix notation. The termsM and V are the transition matrix 
and the response vector, respectively, from Eq. (1). 

Hypothesis Testing 

Whenever the parameters of a Markov chain are estimated by the method of 
maximum likelihood, likelihood ratio tests can be used to evaluate hypotheses 
about the numerical values of parameters by relying on a theorem from Anderson 
and Goodman (1957). In the experiments reported in the last section of this paper, 
three types of hypotheses about the parameters of Eq. (1) are of interest: (a) hypo
theses which state that certain parameters shall have fixed values (e.g., c = 0 or h = ~); 
(b) hypotheses which state that the numerical values of certain parameters are equal 
(e.g., p = g); and (c) hypotheses which state that the numerical values of certain 
parameters shall be different under some conditions than under others (e.g., starting 
parameters shall have different values on transfer problems than on initial learning 
problems). In general, such hypotheses are tested as follows. 

First, Eq. (A2) is used to find the likelihood of the data when all ten parameters 
are free to vary. Second, Eq. (A2) is used to estimate the likelihood of the data 
when the restrictions on parameter variation implied by the hypothesis being tested 
have been imposed on the expression. Call this new value L ' . Finally, Anderson and 
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Goodman's (1957) theorem tells us that the test statistic -21n[i 'Il] has an asymp
totic X2 distribution with degrees of freedom equal to the number of independent 
restrictions that were imposed on Eq. (A2) to obtain i '. 
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A 

Acquisition period for sequence words, 
35-55 

Addition; see Sequence words 
Arithmetic; see Numerical cognition in 

Oksapmin; Sequence words 

c 
Chains; see Sequence words 
Chance; see Probabiiity concepts, 

research; Probability concepts, 
theories 

Children's concept learning 
experiments, 192 - 201 
information-processing efficiency, 

187 -188, 199-200 
learning and development, 188 -190, 

200-202 
learning on errors, 185-186, 199 
stage skipping, 186-187, 199 
theories, 179 - 180 
transfer, 190 - 192, 200 - 202 

see also Training 
Conservation, concepts 

number, 126-127, 193-199 
quantity, 193 - 199 
see also Equivalence; 

Identity-equivalence decalage; 
Numerical cognition in 
Oksapmin; Quantity concepts, 
types 

Conservation, pathways, 22-24 
Conservation, types 

compensation, 19-21 
equivalence, 6-7 
identity, 13 -18 
nonoperational, 14-15 
operational, 2-4 
perceptual, 4 - 5 
pseudo, 5-6 

Contextual factors in conservation, 
7-11 

Counting; see Counting and 
conservation; Number words; 
Numerical cognition in Oksapmin; 
Sequence words 

Counting and conservation, 21 
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D 

Deafness; see Probability concepts, 
research 

E 

Elaboration period for sequence words, 
48-49 

Equivalence 
and conservation, 126-127 
identity-equivalence decalage, 6 
initial equivalence in conservation, 

11-12 
see also Conservation, types 

Estimation, 11-13, 149-150; see also 
Markov models; Probability 
concepts, research 

I 

Identity; see Conservation, types; 
Equivalence; Identity-equivalence 
decalage; Identity rule 

Identity-equivalence decalage, 6 
Identity rule 

L 

and conservation, 13-18 
development of, 24-27 
see also Conservation, types; 

Equivalence; 
Identity-equivalence decalage 

Language; see Language and thought; 
Linguistic factors and quantity 
concepts; Number words; 
Perceptual factors and quantity 
concepts; Sequence words; 
Training 

Language and thought 
concepts versus language, 129-132 

language impainnent, 141-144 
language training, 132-138, 

140-141 
language training versus concept 

training, 140-141 
visual versus verbal, 138-140 
see also Perceptual factors and 

quantity concepts 
Learning; see Acquisition period for 

sequence words; Children's 
concept learning; Language and 
thought; Rule sampling; Training 

Linguistic factors and quantity concepts 
definitions, 123-124 
language and thought, 128-129 
language impainnent, 141-144 
language training, 132-138 
language training versus concept 

training, 140-141 

M 

Markov models 
goodness of fit, 196 - 197, 206 - 207 
hypothesis testing, 197 -199, 

207-208 
identifiable model, 203 - 204 
parameter estimation, 196, 

203-206 
theoretical model, 184-185 
see also Rule sampling 

Mathematical models; see Markov 
models 

Memory; see Probability concepts, 
theories 

N 

Number; see Conservation, concepts; 
Number words; Numerical 
cognition in Oksapmin; Perceptual 
factors and quantity concepts; 
Sequence words 
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Number words 
cardinal, 34, 65, 78-80 
counting, 34, 64-65, 71-73, 

80-83, 123-124 
invented, 54-55 
measure, 34 
ordinal, 34 
sequence, 34 

Numeration; see Numerical cognition in 
Oksapmin; Sequence words 

Numerical cognition in Oksapmin 
arithmetic, 169-171, 172-173 
body part comparisons, 162 
body part notation, 160-161 
conservation, 165 -167 
counting, 162-163 

o 

numeration, 159-160 
representation of continuous quantity, 

164-168 
representation of discontinuous 

quantity, 163 - 164 

Oksapmin 

p 

community, 159-160 
community schools, 171-173 
currency, 168 -169 
demography, 157 -158 
research methods, 158, 160-161 
string bags, 164-167 
trade stores, 169-171 
see also Numerical cognition in 

Oksapmin 

Perception; see Conservation, types; 
Perceptual factors and quantity 
concepts; Training 

Perceptual factors and quantity concepts 
abstraction of number, 138-140 
development, 150-151 

nonumerical strategies, 148-149 
visual versus verbal, 13 8 - 140 

Probability concepts, research 
adolescents, 111-116 
deaf subjects, 109-111 
double spinner effect, 103 -104 
Genevan studies, 94-95 
magnitude estimation influences, 

101-105 
preoperational studies, 99-101 
role of proportionality, 104 
sex differences, 108-109 
task analysis, 99 

Probability concepts, theories 
intuitive, 106-108 

Q 

magnitude estimation hypothesis, 
99-100 

Piagetian interpretations, 94-96, 
116-118 

preference, 106-108 
working memory, 108 

Quantity concepts; see Conservation, 
concepts; Linguistic factors and 
quantity concepts; Perceptual 
factors and quantity concepts; 
Quantity concepts, types 

Quantity concepts, types 
oneness, 126 

R 

equivalence and conservation, 
126-127 

magnitude, 125-126 

Rules; see Identity rule; Rule sampling; 
Sequence words 

Rule sampling 
and concept learning, 182-183 
and rule-governed behavior, 180-181 
Markovian representation, 184-185 
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s 

Sequence words 
bidirectional chain level, 88 - 89 
breakable chain level 

and then and then before, 74 
and then before, 73-74 
backward sequences, 68 - 73 
between, 77-80 
comes after and comes before, 

74-77 
counting up and down, 80-81 
definition, 6-7 
existence, 67 -68 

conventional portion, 36-42 
nonstable sequence portions 

data, 50-53 
definition, 49-50 

numerable chain level 
addition and subtraction, 86-87 
complex skills, 87 
counting up and down, 81-83 
definition, 81 
forward sequences, 83 - 84 
keeping track, 84-86 

sequence versus nonsequence, 35 
stable conventional portions 

data, 43-46 
definition, 42-43 
existence, 46-47 

Index 

stability, 47 - 48 
string level, 61 
structure, 35-36 
unbreakable chain level 

counting, 64-65 
definition, 61-62 
existence, 62-64 
relations, 65-66 

see also Number words 
Stable-order principle, 48-49 
Stages; see Children's concept learning 
Strategies; see Perceptual factors and 

quantity concepts 
Subtraction; see Sequence words 

T 

Training 
feedback, 193 - 194 
in concepts, 140-141 
in language, 132-138, 140-141 
in probability, 114 - 115 
perceptual, 18 - 19 

w 

Working memory; see Probability 
concepts, theories 
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