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It is hard to think of any significant aspect of our lives that is not
influenced by what we have learned in the past. Of fundamental
importance is our ability to learn the ways in which events are
related to one another, called associative learning. This book pro-
vides a fresh look at associative learning theory and reviews ex-
tensively the advances made over the last twenty years. The
psychology of associative learning begins by establishing that the
human associative learning system is rational in the sense that it
accurately represents event relationships. David Shanks goes on to
consider the informational basis of learning, in terms of the mem-
orisation of instances, and discusses at length the application of
connectionist models to human learning. The book concludes with
an evaluation of the role of rule induction in associative learning.
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Preface

The place of learning theory in psychology has fluctuated dramatically over
the last few decades. At the height of the behaviourist era in the 1940s and
1950s, many people would have identified learning as the single most
important topic of investigation in psychology. By the 1970s, though, the
picture was very different. A large number of influential psychologists had
come to regard learning theory as a sterile field that made little contact
with the realities of human cognition, and instead their interest switched
towards such topics as knowledge representation and inference. Lately,
things have come full circle, and the expanding new field of connectionism
has restored learning theory to centre stage.

My aim in this book has been to have a fresh look at learning theory. 1
believe that the changing fortunes of the field have occurred because psy-
chologists have often come to the topic of learning with certain deep con-
ceptions of the mind already in place. But I suggest that rather than seeing
learning as a topic to be annexed by and interpreted in terms of whatever
the current fashionable theory happens to be, it is far more profitable for
traffic to flow in the opposite direction. Let us commence by asking some
general questions about learning, and see what sort of mind we end up
with.

Someone coming to the field of learning afresh is likely to be discon-
certed by the apparent incompatibility of a number of theoretical
approaches and even terminologies. For instance, what relation is there
between implicit learning and contingency judgment? What relation is there
between a conditioned stimulus and a prototype? My overriding aim in this
book has been to try to present a unified account of learning. I try to avoid
the use of confusing terminology, and argue that the various theoretical
approaches that have been offered can readily be compared with one
another. The key idea is that different theories often look at things from
different perspectives, one focusing (say) on a high-level description of
what a learner is doing, while another concentrates on the details of the
learning mechanism. If we start out with a clear idea of the different ques-
tions we want to ask, and the different levels at which these questions may
be pitched, many of the confusions are likely to dissolve.

Of course, no-one can completely avoid carrying theoretical baggage
around, so I might as well come clean and confess that I believe empiricism
is the basic starting point from which learning should be viewed.
Empiricism is the doctrine that all true knowledge of the world can be
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traced back to information presented to the senses. More importantly, it
denies that organisms arrive in the world with significant amounts of innate
knowledge already in place. I do not know whether empiricism will turn
out to be correct, but often it seems that it is rejected (for instance, in
Chomskyan linguistics) simply because no-one has managed to work out
how a certain concept or piece of knowledge (such as a rule of grammar)
could have been learned. But that is surely a defeatist attitude. The extra-
ordinary learning capabilities of connectionist systems, described in
Chapter 4, should make us very cautious about abandoning an otherwise
useful default assumption.

I should also point out that as far as I am concerned, this book is as
much about memory as about learning. It is regrettable that these topics
are often seen as independent, for surely they are opposite sides of the same
coin? ‘Memory’ simply describes the states that intervene between learning
and behaviour. While it is true that I do not discuss many of the issues
(e.g. short-term memory, retrieval) that occupy the minds of memory
researchers, I do believe that the theoretical project of learning theory is the
same as that of the study of memory: namely, to understand the processes
by which information about the world is acquired and deployed by the
human cognitive system.

A number of colleagues have been kind enough to read drafts of the
book and offer their suggestions for improving it. Among them are Nick
Chater, Anthony Dickinson, Zoltan Dienes, and Steven Sloman. I would
like to thank them warmly for their helpful comments while also absolving
them of any responsibility for errors or misconceptions in the end-product.
I am particularly grateful to Tony Dickinson for getting me interested in
learning in the first place, for being such an excellent collaborator subse-
quently, and for devoting so many hours to discussing learning theory with
me. Finally, I should like to express my appreciation to the many students
at Cambridge and University College who served as guinea pigs during the
development of my often incoherent views on learning and memory.

The figures present data either taken from published tables or estimated
graphically from published figures.



1 Introduction

It is hard to think of any significant aspect of our lives that is not influenced
by what we have learned in the past. The world looks and sounds the way it
does because as infants we learned to partition it up in certain meaningful
ways: we see familiar faces rather than meaningless blobs of colour and
hear words rather than noise. Similarly, we behave in the ways we do
because we have learned from past experience that our various actions have
certain specific consequences. Like many topics of psychological inquiry,
the importance of learning can perhaps best be realised by considering what
life is like for people who have learning difficulties. Consider the case of
Greg, a patient described by Sacks (1992), who became profoundly amnesic
as a result of a benign brain tumour that was removed in 1976. Although
his memory for events from his early life was almost completely normal,
Greg remembered virtually nothing that had happened to him from 1970
onwards and appeared quite unable to learn anything new. He continued to
believe, for instance, that Lyndon Johnson was the American President. In
1991 he was taken to a rock concert given by a group that he had been a
great fan of in the 1960s, and despite sitting through the concert in rapture
and recalling many of the songs, by the next morning he had no memory of
the concert. More distressingly, when told of his father’s death he was
immeasurably sad but forgot the news within a few minutes. He was unable
to learn that his father was no longer alive, and relived his grief anew every
time he was told the news.

Another of Greg’s difficulties, more mundane but also more representa-
tive of the sorts of behaviours studied by psychologists, was his inability to
remember lists of words for more than a few minutes. This difficulty had
nothing to do with understanding the words, since Greg’s linguistic knowl-
edge, having been learned early in life, was preserved. Rather, it is attribut-
able to an inability to learn new associations between a certain context — the
time and place in which the list was read — and the words on the list. For a
normal person, remembering a list of words heard in a certain context
would be relatively straightforward, since recollection of the context would
bring the words to mind simply by association. Greg’s other problems, such
as his inability to learn who is President, can also be interpreted in terms of
a basic difficulty in learning associations: a normal person will have little
difficulty learning a new association between a name and the label
‘President’.

Although learning lists of unrelated words may not be of much value in
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2 The psychology of associative learning

the real world, in general this sort of associative learning is at the heart of
any organism’s psychological capabilities, because it endows the organism
with the ability to adapt its behaviour as a result of acquiring information
about associations or contingencies that exist between events in its environ-
ment. The ability to search out rewards like food and avoid threats like
predators can only be achieved by learning predictive relations between
rewards and threats, on the one hand, and events that are reliable signals of
them, on the other. And as many researchers have observed, this adaptive
ability is a major feature of what we understand by terms like ‘intelligence’
and ‘intelligent behaviour.” Indeed, as Howard (1993) has pointed out, one
widespread definition of intelligence equates it with flexible learning: a per-
son (or animal) who is able to learn efficiently and transfer its knowledge to
new situations that it encounters is called intelligent.

This book reviews research conducted over the last 20 or so years on the
psychology of human learning and focuses specifically on associative learn-
ing. In an associative learning situation, the environment (or the experi-
menter) arranges a contingent relationship between events, allowing the
person to predict one from the presence of others. The predictive events will
either be external signals which I shall term ‘cues’, or the subject’s own
actions. Predictive relationships can be of two sorts, causal or structural.
The most obvious form of relationship is causal, where one event or set of
events is followed after an interval of time by another. For instance, in my
office there is (barring an electrical fault) a consistent causal relationship
between pressing the light switch and the light coming on. In contrast, we
may say that a relationship is structural when an organism learns to predict
one feature or attribute of an object or event from the presence of other fea-
tures that regularly co-occur with it. For example, as a result of exposure to
the co-occurrence of the sight and sound of running water, an organism
may benefit from being able to predict that the sound of water is a good
index of the sight of it. The ability to classify objects is another example of
structural prediction. When 1 classify a particular sound as a word I am
assigning it to a category, the category consisting of all the possible tokens
of that spoken word. But the relationship between sound and category is
structural, not causal: being a member of the category is a feature or prop-
erty of the sound.

The term ‘associative learning’ has traditionally been meant to provide a
contrast with ‘nonassociative learning’, but in fact this contrast is probably
of little significance. Typically, the term nonassociative learning has been
used to describe phenomena such as habituation, priming, and perceptual
learning where, in contrast to associative situations, no explicit contingen-
cies between experimenter-defined stimuli or actions are programmed, but
where learning can nevertheless be observed. Thus in perceptual learning,
subjects are simply exposed to isolated stimuli (such as faces) and learn to
discriminate them better than would otherwise be possible, without there
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being any overt contingency between these stimuli and other events. The
problem with this definition is that there inevitably are structural contin-
gencies amongst the elements of a stimulus, and so as researchers like
McClelland and Rumelhart (1985) and McLaren, Kaye and Mackintosh
(1989) have noted, so-called nonassociative learning may be grounded in
associative learning of those contingencies. I shall not discuss in any detail
tasks such as priming that are typically regarded as examples of nonassocia-
tive learning, but it is worth bearing in mind that the principles of associa-
tive learning may be perfectly applicable to nonassociative learning as well.

What exactly is meant by ‘learning’? The definition of this apparently
innocuous term has been a topic of passionate debate by psychologists. In
their enthusiasm to rid the subject of mentalistic concepts, the behaviourists
argued that learning must be observable and that therefore it should be
equated with the emergence of new patterns of responding. When we say
that a dog in a laboratory Pavlovian conditioning experiment has learned
something about the relationship between a bell and food, what we mean is
just that a new behaviour has been conditioned: the dog salivates to the
bell, whereas previously it did not. On such a view, we should only use the
term ‘learning’ if there is some observable change in behaviour, in which
case the new behaviour is the learning.

However, there are at least two obvious problems with this definition.
The first is that learning may occur without any concomitant change in
behaviour: if a cue and an outcome such as shock are presented to subjects
administered drugs that block muscular activity, conditioned responding
may perfectly well occur to the conditioned stimulus when the paralytic
drug has worn off (e.g. Solomon and Turner, 1962). Learning clearly occurs
when the animals are paralysed, even though no behavioural changes take
place at that time. The second problem is that in many cases it can be estab-
lished that organisms do much more than simply acquire new types of
behaviour. For instance, in a famous experiment, MacFarlane (1930)
trained laboratory rats to run through a maze to obtain food, and found
that when the maze was filled with water, the animals continued to obtain
the food even though they now had to swim to reach it. Clearly, learning in
this case does not merely involve the acquisition of a set of particular
muscle activities conditioned to a set of stimuli, but instead involves acquir-
ing knowledge of the spatial layout of the maze, with this knowledge
capable of revealing itself in a variety of different ways.

For these reasons, a more cognitive view is that learning is an abstract
term that describes a transition from one mental state to a second in which
encoded information is in some way different. This transition may perfectly
well take place without the development of any new behaviour, and further-
more may manifest itself in a variety of quite different behaviours. But
although it avoids the problems associated with defining learning in terms
of behaviour, this definition also has its shortcomings. For instance, how
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are we to distinguish between learning and forgetting? Forgetting, like
learning, can be viewed as a change in encoded information, except that in
this case information is lost rather than gained. Qur definition would
plainly need to be supplemented by a proviso that learning involves the gain
of information, but it is likely to be very difficult to specify what we mean
by ‘information gain’ without relying simply on behaviour. We might find
ourselves reverting to a behavioural definition of learning, which is precisely
what we were trying to avoid.

Another problem with the cognitive definition is that it fails to deal satis-
factorily with examples of what we might call ‘non-cognitive’ learning. The
cognitive definition refers to a transition from one mental state to another,
and the reason for incorporating the restriction to mental states is to
exclude examples like the following. Roediger (1993) reports that the aver-
age duration of labour for first-born babies is about 9.5 hours, while that
for later born babies is about 6.6 hours. Clearly, for second and third chil-
dren the amount of time the mother spends in labour is much less than for
first children. It seems strange to say that the female reproductive system is
capable of ‘learning’ and ‘remembering’, so we would like to exclude this
sort of case, despite the fact that information has obviously been acquired
by the body. The restriction to mental states excludes the labour case
because the relevant changes take place in the body without any mental
component. But then we seem to be committed to saying that all habits and
skills (which we do want to include as examples of learning) must be men-
tal, and this seems unduly restrictive. Is it not likely that some aspects of
learning a skill like playing tennis are really bodily rather than mental?
Borderline cases like this probably illustrate the futility of trying to define
learning.

Since the experimental study of learning began in the late nineteenth cen-
tury, when Hermann Ebbinghaus (1885) commenced his pioneering labora-
tory investigations of human learning and evolutionists such as George
Romanes (1882) began to use controlled experiments to investigate animal
intelligence, the study of animal and human learning has continued in par-
allel, but regrettably not always with as much cross-reference as one might
wish. Although in this book I focus solely on human learning, I hope that
nothing concluded here will offend a student of animal learning. While
humans may have learning capabilities that are available to few (or no)
other organisms, such as the ability to abstract general rules (Mackintosh,
1988), I would argue that the correspondences between human and animal
learning mechanisms far outweigh their differences. Some psychologists
believe that since the motivation and prior experience of laboratory animals
can be carefully controlled, it is research with animals that tends to produce
the major discoveries about learning, with the study of human learning
merely following along behind.

However, one of the principal aims of this book is to show that genuine
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insights about learning have been made in the last decade or two of research
on humans. Because amenable human subjects only require appropriate
instructions in order to perform almost any task, no matter how bizarre,
there are a number of things that can be investigated in humans that would
be extremely difficult, if not impossible, to study in non-humans. Obvious
examples include tasks requiring subjects to make similarity and probability
judgements, from which a wealth of interesting findings have emerged.
Further, data can be obtained from humans that are orders of magnitude
more complex, and therefore theoretically challenging, than those obtainable
from non-humans. The obvious example involves language acquisition,
where even highly simplistic models need to be of great sophistication (e.g.
Elman, 1990; Pinker, 1991). In addition to focusing solely on human learn-
ing, the discussion in this book is also restricted in that it will not extend to
language learning. To cover language acquisition would of course require a
book in itself, but I should mention that I believe that the ability to explain
language learning is the touchstone of any theory of learning, and I would
be surprised if language learning turns out to rely on mechanisms radically
different from those discussed here.

Historical background

For much of the century following Ebbinghaus’ (1885) pioneering studies of
learning, research has been conducted either explicitly or implicitly within
the associationist tradition. It is important to distinguish the term ‘associa-
tive’ as in ‘associative learning’ from the term ‘associationism.” The former
is a purely descriptive term referring to the type of learning that takes place
— whatever its nature — when a relationship exists between certain events in
the organism’s environment. ‘Associationism’, in contrast, refers to a par-
ticular view of how that learning is effected: it is the view that in the final
analysis, all knowledge is based on connections between ideas. Sensory sys-
tems provide an organism early in life with very simple perceptual experi-
ences, which during development become associated as a result of their
co-occurrence to yield more complex experiences. These associations are
such that when one has been formed, it automatically carries the mind from
one idea to another.

Associationism took a central place in the psychology of learning not
only because of its simplicity but also, and more fundamentally, because it
provided the bedrock for the empiricist analysis of the mind, and of science
in general, which had become dominant by the nineteenth century. An
obvious difficulty for the empiricist view that all knowledge is derived from
experience is that many concepts or ideas, such as a biologist’s concept of a
gene, are infinitely more complex than the simple sensory experiences that,
according to empiricism, provide the only foundation for knowledge.
Associationism provides a potential solution in the hypothesis that primi-
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tive experiences can become associated to yield more complex ideas, and
those ideas can then in turn become associated to yield even more complex
ideas, until all of the complexity of the biologist’s concept is accounted for.

The associationist perspective provided both an overall conception of
learning and knowledge, and also in the hands of Ebbinghaus and his fol-
lowers the obvious means of investigating learning. If simple association of
ideas is the only process involved, then all that is needed is to set up some
simple associative learning task in which as many superfluous features as
possible are removed, and use it to investigate the basic laws of learning.
The learning of lists of nonsense syllables and of ‘paired-associates’ pro-
vided the ideal solution: learning that the nonsense syllable wux was on a
list seems to require nothing more than the formation of associations
between the phonetic elements of the syllable and associations between
those elements and the list context, while learning the arbitrary response
‘reason’ to the stimulus word ‘window’ requires the formation of an asso-
ciative bond between two pre-existing but previously unconnected ideas.
Thus it was thought that laboratory studies of nonsense syllable and paired-
associate learning would be sufficient to uncover all of the universal laws of
learning.

By the 1950s the associationist analysis of learning had reached almost
total dominance, to the point where many textbooks on learning and mem-
ory took it for granted that associationism provided the only explanatory
framework worth considering. In the hands of researchers like Benton
Underwood (1957) and Leo Postman (1962), paired-associate learning
acquired the status in studies of human learning that the Pavlovian condi-
tioning procedure has acquired in animal research and, as is clear from
reviews such as that of Deese and Hulse (1967), sophisticated discussions of
whether learning occurred gradually or was all-or-none, whether forgetting
was due to trace decay or interference, seemed to imply that genuine
progress was being made.

However, by the early 1970s cognitive psychologists had begun to tire not
only of such artificial tasks as paired-associate learning, but also of learning
in general. Partly, no doubt, this was due to the apparent intractability of
some of the key issues: investigators had argued themselves to a standstill
over the continuous versus all-or-none debate, for instance (Restle, 1965).
But more important was a long-term shift of interest towards knowledge
representation. Two particular strands to this shift are worth considering.

The associationist view that complex concepts can be reduced to the
association of elementary ideas had been resisted throughout the first half
of the century by a small minority of researchers, including Gestaltists such
as Koffka (1935) and Kohler (1947). Rather than consisting of the associa-
tion of ideas, the Gestaltists emphasised the importance of organisation,
and viewed learning as the construction of an organised whole in which the
associated items are subcomponents. On this view, learning does not pro-
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ceed via the strengthening of simple connections between ideas: rather, it
involves the construction of new entities, holistic memory traces represent-
ing the ideas, their conjunction, and the current context. Retrieval, simi-
larly, does not involve the activation of one idea via the flow of energy
along a connection, but rather the reactivation of an entire memory trace.

Moreover, it was not only the Gestaltists who took this view of learning.
In a paper published in 1893, the philosopher James Ward asked the appar-
ently simple question of why repetition improves memory, and challenged
the typical associationist view that repetition leads to the gradual strength-
ening of a mental bond or connection. Instead, Ward proposed that each
repetition lays down a quite separate memory trace, and that memory
improves because more traces exist to be accessed. The largely-forgotten
memory researcher Richard Semon also advocated such a multiple-trace
view (see Schacter, Eich and Tulving, 1978), and combined it with sophisti-
cated ideas about how retrieval occurs (he coined the term ‘ecphory’ that
refers to the reactivation of a complete memory trace on presentation of a
cue that matches part of it). The multiple-trace view has, of course, been
continued in recent years both in Endel Tulving’s (1983) work on memory
retrieval and in Hintzman’s (1976) use of frequency judgments to try to dis-
criminate strength and multiple-trace views of repetition effects.

The holistic view of learning and representation gained support from a
large number of animal discrimination-learning experiments conducted dur-
ing the 1950s. Suppose an animal is shown two red stimuli on some trials
and is rewarded for choosing the right-hand one, while on other trials, a pair
of green stimuli is presented and reward is given for choosing the left-hand
stimulus. Simple though this discrimination may be, it cannot be solved on
the basis of associations between the simple co-occurring elements of the
task (red, green, left, right, reward, non-reward). This is because each ele-
ment should become equally associated with each other element: red and
green, for instance, are equally associated with left and right and reward and
non-reward. The fact that humans as well as laboratory rats can learn these
discriminations (e.g. Bitterman, Tyler and Elam, 1955) argues that the sim-
plest sort of associationist analysis is insufficient, although in Chapter 4 we
will see that this sort of discrimination, which is called a nonlinear classifica-
tion, can be dealt with by more modern associationist theories.

In contrast to the difficulty posed for associationism, Gestalt views of
learning are sufficiently flexible to be untroubled by this sort of discrimina-
tion learning: the organism is assumed to memorise the entire set of elements
occurring on a given trial, such as {red, right, reward}, with the elements
merely being parts of a larger memory trace. The organism may now solve
the discrimination when shown a red stimulus by recalling that right is the
choice that has been rewarded {red, ?, reward}. This sort of analysis led
Medin (1975) to formulate an explicit model of configurational learning in
the Gestaltist tradition called the context model, and we shall see in Chapter
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3 that this theory has had some striking successes in describing human learn-
ing data. The model adopts a radically different unit of analysis from that of
traditional associationist accounts: instead of elements becoming associated
with outcomes, it is memorised configurations or ‘instances’ that underlie
learning. The overall degree of similarity between a test item and the ensem-
ble of stored instances determines the response that the item evokes.

The second and perhaps more powerful reason for an increasing interest
in knowledge representation arose from the advent of the computer as a
new model of the mind which made associationism seem totally inadequate.
With the development of knowledge-representation programming lan-
guages like Lisp, investigators such as Newell, Shaw and Simon (1958)
quickly began to develop computer models of highly complex human abili-
ties such as solving logic problems and playing chess. Not only must paired-
associate learning have looked decidedly trivial in comparison, but also the
explanatory apparatus of these new computational models was far richer
than associationism allowed: languages like Lisp represent knowledge sym-
bolically, which meant that inference was readily possible, and the success
of these models clearly suggested that their symbolic data-structures corre-
sponded to those that were actually used by the human mind. The idea that
complex knowledge, as argued by Quillian (1968), consists of concepts con-
nected in propositional networks by semantically-interpreted relations
appears to be quite at variance with associationism.

The development of these richer views of knowledge representation had a
concomitant influence on ideas about learning. If knowledge is represented
propositionally, then learning must involve the construction of proposi-
tional structures via a set of pre-existing general symbol-manipulating pro-
cedures. Accordingly, as computer models evolved, it became increasingly
popular to view learning as a form of hypothesis-testing or rule-induction,
and detailed studies of rule-induction were carried out, most famously by
Bruner, Goodnow and Austin (1956) and Hunt, Marin and Stone (1966).
As we will see in Chapter 5, such an approach has continued to this day
and offers some important insights into learning.

Not everyone was persuaded by the rule-induction view of learning, and
dissatisfaction was greatest amongst researchers interested not so much in
learning as in conceptual representation. In a seminal article, Eleanor Rosch
(1973) pointed out that knowledge of everyday objects such as chairs and
birds is unlikely to be based on inductively-learned rules, since such rules
would have to specify certain necessary and sufficient features for an object
to be a member of the category. Yet surely, she argued, no such features
exist: what could the necessary and sufficient perceptual features possibly be
that define the category bird? Rather than sharing a set of common defining
features, each member of a category can be thought of as a set of features,
with large degrees of overlap between the features of different members of
the category but with none of the features being necessary or sufficient. On
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this view, categories may show ‘graded structure’, with some members of the
category possessing more of its characteristic features than others and hence
being more typical. As Barsalou (1990) has shown, such graded structure is a
property of almost all categories, a fact that encourages the view that cat-
egories are represented by mental prototypes which correspond to objects
possessing all of the characteristic features of that category.

Prototype theories therefore suggest that the learning process involves
abstracting the category prototype from the experienced exemplars. A novel
item is classified according to its similarity to the prototype stimulus. We will
consider the prototype approach in Chapter 3, but here it is worth briefly
mentioning one historical development that played a major role in the con-
struction and testing of the instance and prototype theories discussed in
Chapter 3. Objects in the world vary on a large number of independent
dimensions such as colour, size, height, and so on, and we can therefore rep-
resent each object as a point in a multi-dimensional physical space. Each
object also corresponds to a point in a corresponding mental space, where the
dimensions of the space are those that the perceptual system uses to represent
stimuli. However, the physical and psychological spaces may not be at all
similar. For example, colour is one of the most salient aspects of mental rep-
resentation, but has no exact physical correlate (see Hardin, 1990) — it is a
psychological property. In the late 1950s, researchers began to develop the
tools needed to analyse psychological spaces. By obtaining proximity mea-
sures such as similarity ratings from all pairwise combinations of a set of
stimuli, it is possible to recover the locations and organisation of the stimuli
in psychological space using statistical procedures such as multi-dimensional
scaling and cluster analysis (see Shepard, 1980). From the point of view of
learning, these developments have had immense importance. As a conse-
quence of a learning episode, some representation of the training items will be
formed, perhaps a prototype. Responding to a test item will be a function of
its similarity to this representation. But how do we know how similar it is?
Techniques such as multi-dimensional scaling provide an answer and there-
fore allow us to predict with great accuracy how test items will be treated.

Thus research up to the mid-1970s had set the scene for a variety of alter-
natives to the traditional associationist theories. Healthy interest was being
paid to prototype and instance theories and to rule induction processes. The
subsequent development of each of these approaches will be the focus of
Chapters 3 and 5, while Chapter 4 will discuss the various ways in which
associationism has evolved over the last two decades.

Three questions about learning

In this brief historical review, I have discussed alternative theories of learn-
ing as if they are incompatible with one another and as if evidence in favour
of one theory must necessarily weaken the support of the others. There is
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no doubt that many researchers see the various theories in this way.
Hintzman (1976), for example, was quite adamant that frequency judgment
data supported the multiple-trace approach and disproved theories based
on associative strength, while more recently Waldmann and Holyoak (1992)
claimed that some data of theirs ‘clearly refute connectionist learning theo-
ries that subscribe to an associationistic representation of events as cues and
responses’ (p. 233). But it is also possible to see these theories as differing in
their level of analysis and thus as not necessarily incompatible. Perhaps
processes which at one level of analysis are well-characterised as being asso-
ciationistic can also be described, at another level, as involving prototype
abstraction or instance memorisation?

Ever since Marr (1982) published his highly-influential analysis of levels of
explanation, psychologists have had to consider quite carefully how their
research questions should be framed. Marr distinguished very clearly
between the questions of what the system is computing and how it is doing
it. Such questions need to be answered in quite different ways; the ‘what?
question cannot be answered, for instance, by citing some complex brain
mechanism which is more appropriate for the ‘how? question. With respect
to learning, the highest level requires us to consider what it is in the environ-
ment that the associative learning system is sensitive to, while lower levels
concentrate on the internal characteristics of the learning mechanism itself.

Following Anderson’s (1990) extensive discussion of the different sorts of
questions that can be asked of the cognitive system, I shall adopt the view
that theories of learning have to address the following three fundamental
questions. The first asks whether associative learning is #ormative (and
hence rational). An associative relationship consists of a temporal distribu-
tion of events, and normative theories tell us whether or not an objective
relationship exists in a given situation. Such theories can therefore be
regarded as providing independent measures of association. Although the
framing of normative theories is perhaps more the business of philosophers
and statisticians than of psychologists, we will see that consideration of
such theories is highly relevant to an understanding of learning. If it turns
out that people perform well in comparison with the norms provided by a
rational analysis, then it is reasonable to conclude that some mental algo-
rithm exists for computing the norms in question. Chapter 2 considers the
view, recently developed in detail by Cheng and Holyoak (1994), that the
appropriate normative theory of associative learning is contingency theory.
This theory provides a means of determining for any given situation what
the objective relationship is between a pair of events; on this theory, people
behave normatively or rationally if they believe events to be related only
when contingency theory specifies that they indeed are. By considering evi-
dence that has accumulated during the last 20 years, we will ask whether the
human associative learning system behaves in ways that would be judged
‘rational’ given the prescriptions of contingency theory.
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The first question establishes what the system is doing. Once this question
is dealt with, we can ask the second question. How, in broad informational
terms, is it doing it? What forms of representation are actually learned that
allow the system to behave as it does? I shall call this the representation
question. For instance, learning may involve the memorisation of relatively
unanalysed experiences or the construction and testing of complex hypothe-
ses. For each such theory, a different representational assumption is made
concerning the sort of data-structure that is learned. In Chapter 3 we will
consider two popular answers to this question that were briefly discussed
above. The first proposes that learning is mediated by mental prototypes
that are abstracted from a set of learning episodes, and the second argues
that separate memory traces of each training item are stored. We will see
that the memorisation of multiple events provides a very good explanation
at the informational level of what the human learning system is doing.

The final question concerns the most basic level of analysis that psychol-
ogy is concerned with. Given an adequate answer to the second question,
we then want to know what the precise mechanism is that carries out these
informational processes. For example, how does the system memorise
instances? In Chapter 4 we will see that contemporary associationist models
of learning provide detailed answers to this final mechanism question. Such
models are mechanistic in the sense that they react moment-by-moment to
the stimulus environment and learn associative relationships on-line, and
they achieve this via processes such as activation and inhibition that are
known to occur in the brain. Moreover, they show why it is that the system
looks, from the informational perspective, as if it is encoding multiple mem-
ory traces and they also show how rational behaviour can emerge. Thus the
approach adopted here is to ask a series of questions which progressively
reveal more and more detail about the workings of the system. The first
task is to characterise what the system is doing, the next is to describe how
in broad informational or computational terms it is doing it, and the third
is to explain the exact mechanism that achieves this computation.

Two examples may help to clarify matters. Let us suppose that a previ-
ously-untrained subject in a laboratory learning experiment has seen a
series of electrocardiogram traces depicting normal and abnormal heart
functioning and has attempted to learn what characterises the abnormal
traces. Then, he or she is shown a new trace and asked to decide whether it
is normal or abnormal. We wish to understand why the subject makes the
decision he or she does. The normative question suggests that we should
begin by asking what the subject should rationally do in this situation. For
this, we need a normative theory of classification. The pattern classification
literature has established (e.g. Duda and Hart, 1973) that correct classifica-
tions are approximately maximised when an object is placed into the cate-
gory containing the training item most similar to the test item. Thus, we
find the nearest neighbour to the test item amongst the training stimuli, and
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place the test item in the nearest neighbour’s category (in this case, the cate-
gories are ‘normal’ and ‘abnormal’).

Having established what is rational for our subject to do, we see whether
he or she behaves in accordance with this rational prescription. If the
answer is ‘yes’ — and previous analyses (Anderson, 1990) suggest that it will
be if we have thought carefully enough about our rational theory — we then
go on to the second question and ask what information the subject needs to
have encoded during the study phase in order to behave in this normative
manner. Clearly, in order to perform the nearest-neighbour analysis, the
subject must have memorised each training item together with its category.
Finally, we can ask how this memorisation process can be implemented in a
learning mechanism. We may, for instance, be able to construct a connec-
tionist system that implicitly performs the appropriate memorisation
process. At that point we would be approaching a complete psychological
explanation of the subject’s behaviour.

The second example concerns forgetting. Suppose we are interested in why
forgetting occurs at the rate and in the precise manner that it does. Again,
the initial question to ask is ‘what is it rational to do? At first sight, it might
seem that any degree of forgetting over time is irrational, but if the memory
system is limited in capacity, some loss of information over time will be nec-
essary to allow new information to be stored. It turns out (Anderson and
Schooler, 1991) that the normative thing to do is to forget as a decreasing
power function of time, since that is the rate at which information in the
environment becomes redundant. Anderson and Schooler demonstrated this,
at least for one situation, by examining an electronic version of the New
York Times. They found that if a certain name such as ‘Qaddafi’ appeared in
a headline in the newspaper on a given day, then the likelihood that it would
appear on a later day was a decreasing power function of elapsed time.
Having established that this is what the system should do, we can then ask
whether humans or other organisms do indeed forget at this rate (the answer
appears to be ‘yes’; see Wixted and Ebbesen, 1991). We can then proceed by
considering what sort of informational processes (such as retroactive inter-
ference) would yield this behaviour, and finally what sort of processing
mechanism could carry out these informational processes.

In sum, a complete psychological analysis of learning requires considera-
tion of at least three separate questions, and I have labelled these the nor-
mative, representation, and mechanism questions.

Dependent measures

For much of its history the experimental study of learning adopted an
extremely limited number of procedures, amongst which paired-associate
learning has had pride of place. Thankfully, in the time that has elapsed since
the heyday of the associationists in the 1950s, a rather richer set of techniques
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has been examined. As a very brief illustration, laboratory investigations
have made serious attempts to develop procedures that are representative of
real-world learning tasks such as how medical practitioners acquire knowl-
edge of diseases from photographic illustrations (Brooks, Norman and Allen,
1991), how people learn different artists’ styles (e.g. Hartley and Homa, 1981)
and syntactic relations (Morgan, Meier and Newport, 1989), how they learn
to recognise faces (Nosofsky, 1992), add and subtract numbers (Young and
O’Shea, 1981), and many others. In addition, countless investigations have
attempted to study learning in natural settings.

In addition to this variety of procedures, laboratory associative learning
tasks have utilised a range of dependent measures which I shall briefly
introduce. The critical events are either external stimuli (called cues) or the
subject’s own actions, and depending on the relationship in effect, learning
may be manifest in different ways. Perhaps the simplest emerges in changes
in rate of responding in an action-outcome learning task. When the experi-
menter arranges a relationship or ‘contingency’ between an action and
some valued outcome, such as earning money, a subject is likely to increase
his or her rate of responding in the same way that animals in operant condi-
tioning experiments do. In such experiments it is also straightforward to ask
subjects to make numerical judgments concerning the action—outcome rela-
tionship, usually on a rating scale from —100 to +100, where —100 indicates
that the action prevents the outcome from occurring and +100 means that
it causes the outcome. Rating scales of this sort have been used in very
many of the experiments that will be considered.

In cue—outcome learning tasks, a rather wider range of dependent mea-
sures is available. Once again it is possible to ask subjects to judge a
cue—outcome relationship on a rating scale. A second possibility, applicable
if the outcome is a motivationally-significant event, is to measure the degree
of Pavlovian conditioned responding. For instance, while being exposed to
pairings of a tone and a small electric shock, changes in galvanic skin con-
ductance on the palms of the hands can be used as an index of learning. A
third possibility, applicable to category learning experiments, is to examine
choice responses: the subject in the study phase of the experiment may be
shown some paintings, say, by unfamiliar artists A and B. After learning to
correctly classify the study items, the subject may then be shown new paint-
ings by A and B and asked to classify these ‘transfer’ items. Less commonly
used have been measures of response time, but again these are perfectly
valid indices of learning.

Implicit learning

Given this variety of measures, it is important to consider whether conclu-
sions drawn on the basis of one measure also extend to other measures. In
this regard, a variety of studies of human implicit learning have advanced
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the controversial conclusion that dissociations can be obtained, specifically
between performance measures such as rate of responding on the one hand
and consciously-based judgments on the other. The most obvious example
of the latter would be a verbal judgment about the extent of an associative
relationship, where such a judgment — unless it is a pure guess — is likely to
be grounded in a conscious belief about the relationship. But this sort of
explicit measure is not restricted to verbal reports, as we will see below:
other forms of response can also be interpreted as being based on conscious
knowledge.

Compelling examples of dissociations between implicit and explicit
response measures come from amnesic patients such a Greg who, while hav-
ing little conscious awareness of even the recent past, can nonetheless learn
new pieces of music, for example, and retain them over long periods of time
(Sacks, 1992). Such dissociations, if they are valid, suggest that instead of
there being a single knowledge source which can be examined by any of a
variety of tests, there are multiple sources some of which can only influence
certain response measures. If this is the case, then it would seem that multi-
ple learning systems must exist in order to feed the different knowledge sys-
tems with input. Learning is said to be ‘explicit’ or ‘declarative’ when it is
accessible to consciousness, and ‘implicit’ or ‘procedural’ when it is not.

As an illustration of an apparent dissociation in normal subjects between
these dependent measures, consider an experiment by Willingham, Greeley
and Bardone (1993). On each trial, an asterisk appeared at one of four loca-
tions on a computer screen and subjects had to press as fast as possible the
response key appropriate for that location. After pressing the correct
response key, the next stimulus was presented. Subjects were given instruc-
tions appropriate for a typical choice RT task, but in fact for some subjects
there was a sequence underlying the selection of the stimulus on each trial.
For these subjects, a 16-trial stimulus sequence containing four occurrences
of each stimulus was repeated many times over, while for control subjects
the situation was identical except that the order of stimuli within each of
the 16-trial sets was randomised.

Willingham et al. observed that reaction times dropped across 420 train-
ing trials, and that this speed-up was greater for the sequence than for the
control subjects. Thus a performance measure — in this case reaction time —
indicated that at least some aspects of the sequence had been learned by
subjects exposed to the structured sequence. However, some of the subjects
who showed this RT speed-up were not only unable to verbally report any
of the predictive relationships in the stimulus sequence, but were also
unaware that there had even been a sequence at all. Thus we appear to have
evidence in these results of a dissociation between different dependent mea-
sures used to index learning: reaction times indicate sequence learning,
whereas verbal judgments do not. Since a verbal judgment reports a con-
scious state of knowledge, many authors have been keen to interpret these
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dissociations as evidence for unconscious (‘implicit’) learning. Specifically,
it has been claimed that measures indicative of conscious knowledge disso-
ciate from those that do not require conscious knowledge (performance
measures) and which instead may reveal unconscious sources of knowledge.

Another example, perhaps better-known, comes from studies of artificial
grammar learning. An artificial grammar is a set of construction rules —
vastly simplified compared to the grammar of a natural language — which is
able to generate a set of strings. In most applications, such artificial gram-
mars are used to generate strings of letters. Figure 1.1 shows such a gram-
mar. To generate a string, the grammar is entered at the left-most node and
a choice is arbitrarily made between the two available letters (M and V). If
V is selected, the node at the end of the V path is reached and the options
for the second letter are the paths out of that node, both of which add an X
to the string. By moving though the network, letters are chosen until the
right-most node is reached, at which point a complete grammatical
sequence such as VXVRXR is generated.

Subjects are required to try to learn the structural rules of the grammar.
In a typical experiment, such as that originally conducted by Reber (1967),
they are presented with a list of grammatical strings in the first phase of the
experiment and are told simply to learn the strings for a later memory test.
Prior to that test, subjects are informed that the strings were formed
according to a set of rules, and that they must now examine some new
strings and decide which ones conform to the rules and which do not. Thus
for each new test string, they have to make a grammaticality decision.

In order to perform above chance on such a test, it is obvious that sub-
jects must learn something in the study phase concerning the structure of
the stimuli. In fact, as we shall see in the forthcoming chapters, it is contro-
versial as to what exactly subjects do learn. Nevertheless, the typical result
is that subjects perform well above chance, usually being able to make
about 65% correct decisions in the grammaticality test. But the interesting
issue for our present purposes is that some of the knowledge used to decide
whether an item is grammatical or not may be implicit and unavailable for
conscious report by the subject. For instance, Mathews et al. (1989) pre-
sented subjects with study strings to memorise, and then in the test phase
asked them to describe in exhaustive detail their reasons for deciding that a
given test string was grammatical or nongrammatical. The verbal reports of
these ‘experimental’ subjects were then given to ‘yoked’ subjects who had
not been exposed to the study strings but who were required to judge the
grammaticality of each test string by following and utilising the rules given
to them by the experimental subjects. Mathews et al. found that although
subjects in the experimental group had been exhorted to report all the struc-
tural rules they were aware of, the performance of the yoked subjects who
were using those rules was considerably poorer than that of the experimen-
tal subjects themselves. Thus it seems that experimental subjects had uncon-
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Figure 1.1. (a) An artificial grammar for generating letter strings. To generate a string, the grammar is
entered at the left-hand side and links are traversed until the grammar is exited on the right-hand side.
Each link yields a new letter which is added to the string. If a node contains a letter, then the letter can
be omitted or added repeatedly at that point in the string. (b) Some strings generated by the grammar.

scious access to certain bits of knowledge concerning the grammatical rules,
but were unable to pass this knowledge on to the yoked subjects.

Dienes, Broadbent and Berry (1991) reached a similar conclusion using a
rather more direct method. After presenting subjects with study strings to
memorise, they then examined whether each subject’s verbally reported
rules were sufficient to account for his or her grammaticality decisions. The
result was that the correlation between actual performance and perfor-
mance predicted on the basis of reported rules was extremely low. Again,
subjects appear to have unconscious access to knowledge of the grammar.

Despite this evidence for a distinction between conscious and unconscious
learning, it is unclear at present whether such results demand an explanation
in terms of distinct learning systems, and Mark St. John and I (Shanks and
St. John, 1994) have argued that they may not. Three points need to be
emphasised. First, there have been numerous examples of clear associations
rather than dissociations between performance and report measures, which
suggests that special conditions may be required to obtain dissociations. As a
simple illustration, Shanks and Dickinson (1991) asked subjects to perform a
simple instrumental learning task in which pressing a key on a computer key-
board was related, via a schedule of reinforcement, to a triangle flashing on
the screen. Subjects were exposed to a reinforcement contingency in which
they scored points whenever the triangle flashed, but lost points for each
response, so that they were encouraged to adapt their response rate to the
reinforcement schedule. Learning was demonstrated by changes in subjects’
rates of responding. As a measure of awareness, subjects were asked to report
on a scale from 0 to 100 what they thought the relationship was between the
response and the reinforcer. We found that response rate and judgments were
equally sensitive to two manipulations: first, as the degree of temporal conti-
guity between the action and outcome was reduced, both judgments and
response rate declined, and secondly, a reduction of the degree of contingency
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between the action and outcome had comparable effect on judgments and
response rate. These manipulations will be discussed at greater length in
Chapter 2, but for present purposes all we need to observe is that the two
types of response are often associated rather than dissociated.

Another example comes from a recent experiment by Lovibond (1992).
He was interested in whether it is possible to dissociate conditioned
responses to a conditioned stimulus (CS) that predicts an unconditioned
stimulus (US), from conscious knowledge of the CS-US relationship.
Lovibond presented subjects with two stimuli (slides depicting flowers or
mushrooms), one of which (the CS+) was paired with shock while the other
(CS-) was non-reinforced. Awareness of the relationship between the stim-
uli and shock was measured in two ways. First, during the learning phase
subjects continually adjusted a pointer to indicate their moment-by-
moment expectation of shock, and secondly, at the end of the experiment
they were given a structured interview designed to assess their awareness.

At the end of the study Lovibond partitioned the subjects into those who
apparently were aware and those who were unaware of the CS-US relation-
ships. The left panel of Figure 1.2 shows that indeed some subjects (labelled
‘unaware’) gave no indication that they associated A with shock to a greater
extent than B. Critically, the right-hand panel shows that these unaware sub-
jects also gave no hint of stronger conditioned responding to A than to B. For
subjects who were aware of the conditioning contingencies, galvanic skin
responses (GSRs) were stronger to A than to B. Thus on these results we
would have to conclude that learning about a CS—shock relationship does not
occur in the absence of awareness of that relationship, and that this particular
pair of dependent measures is hard to dissociate. It is also worth noting that
when subjects are made necessarily unaware of associative relationships by the
administration of general anaesthetic, associative learning as measured by per-
formance indices also seems to be abolished. Thus Ghoneim, Block and
Fowles (1992) were unable to obtain Pavlovian conditioning to an auditory
stimulus in anaesthetised subjects using a procedure that elicited clear condi-
tioning in awake subjects.

Of course, just because many situations fail to reveal dissociations
between dependent measures does not mean that those situations, such as
the serial RT task of Willingham et al., where dissociations are obtained are
any less genuine. However, there has been an extended debate about
whether apparent dissociations reflect a psychologically-significant distinc-
tion between different knowledge sources, or merely reflect different degrees
of sensitivity in different tests of knowledge, and this represents the second
reason to question whether distinct learning systems exist. It remains a pos-
sibility that there is only a single source of knowledge, with different tests
being able to detect different proportions of this knowledge. When an
apparent dissociation between two tests emerges, perhaps it is because one
of the tests has not detected information as exhaustively as the other.
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Figure 1.2. The relationship between contingency awareness and Pavlovian conditioning. Subjects
were given four presentations each of stimuli A and B, with A being followed by shock and B being
unreinforced, and shock expectancy and skin conductance were measured on each trial with each stim-
ulus. The subjects were divided into two groups according to whether they were aware or not of the
stimulus contingencies. The left-hand panel shows shock expectancy ratings for stimuli A and B in the
Aware and Unaware groups, and the right-hand panel shows the change in skin conductance (the con-
ditioned response) on each trial. Unaware subjects showed no evidence of differential conditioned
responding while aware subjects did. (After Lovibond, 1992.)

As an illustration of the extent to which sensitivity may account for these
dissociations, consider a further piece of data from Dienes et al’s (1991)
artificial grammar learning experiment described above. Recall that subjects
were presented in the study phase with a set of letter strings generated from
a grammar, and were then required in the test stage to discriminate between
new grammatical and non-grammatical strings. Although Dienes et al.
found that subjects’ reportable knowledge was inadequate to account for
their grammaticality performance, another test which Dienes ef al. also
interpreted as measuring conscious knowledge was adequate. In this addi-
tional test, subjects were shown incomplete letter sequences such as VXV...
and asked to judge which letter continuations (...R? ...X?) were acceptable.
The results from this continuation test correlated much better with gram-
maticality performance than did verbal reports; indeed, using a signal detec-
tion analysis, Dienes et al. found that the continuation test was at least as
sensitive to knowledge of the composition rules as was the grammaticality
test itself. Thus it is difficult at present to dismiss the claim that when disso-
ciations between performance and conscious report measures of learning
occur, this is because tests with differing degrees of sensitivity are being
compared.

The third problem with claims for the existence of implicit learning con-
cerns what Dunn and Kirsner (1989) have called the transparency assump-
tion. So far, I have been assuming that any given test is either an implicit or
an explicit one. For instance, in the Dienes ef al. study the grammaticality
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test has been viewed as a test of implicit knowledge and the letter continua-
tion test as a measure of explicit knowledge, and the question we have been
considering is whether these tests yield similar or different results. But in
order to conclude from a dissociation of two dependent measures that dif-
ferent mechanisms underlie performance on the two tasks, we must assume
that performance of each task requires only a single psychological process.
Yet this view — that a test is transparent with respect to a given psychologi-
cal process — seems most unlikely to be true.

Instead, a given test is likely to engage a large number of diverse
processes, some to a greater extent, some lesser. Granting for the moment
that knowledge can be represented implicitly, it is likely that both the gram-
maticality and continuation tests in Dienes et al.’s study draw on both con-
scious and unconscious knowledge rather than depending exclusively on
one form of knowledge or the other. On this conception, if there really are
distinct conscious and unconscious learning processes, then it is extremely
unlikely that transparent tests of them will exist. Instead, the existence of
these processes will require a rather subtler form of experimental demon-
stration than merely attempting to find dissociations between two tasks.
Some progress in this direction has been made (Jacoby, 1991), but it is clear
that even if separate implicit and explicit learning processes exist, untan-
gling them is going to prove very difficult.

Summary

The study of associative learning has been dominated during this century
by associationist accounts which assume that the elements of a stimulus
come to be related with one another and with the outcome as a result of
their co-occurrence. Alternative approaches, including configurational and
prototype theories, have also been advocated but these are better seen not
as competitors to associationism but as answers to a different question. It is
important to distinguish between the representational issue concerned with
how, in informational terms, the learning system operates, and the imple-
mentational or mechanism question of how those computations are carried
out. Prior to consideration of either of these questions, it is necessary to ask
what the system is doing and whether it is normative or not.

This chapter has also briefly introduced some of the main ways in which
associative learning is studied in the laboratory and has considered whether
dissociations may be obtained between different response measures.
Specifically, proponents of the existence of a separate implicit learning
mechanism have argued that response measures which do not require con-
scious knowledge of an associative relationship may yield quite different
results from measures which do. Although the data relevant to this issue are
extremely interesting, I have suggested that as yet the existence of separate
implicit and explicit learning systems has not been proved.
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If we take the commonsense view that the human associative learning sys-
tem has evolved for adaptive purposes, then it is immediately clear that the
major benefits learning affords an organism are the ability to make predic-
tions about events in the environment and the ability to control them. If it
is possible to predict that a certain event signals either impending danger
such as a predator, or imminent reward such as access to food, then appro-
priate action can be taken to avoid the danger or extract maximum benefit
from the reward. It has been common, particularly in discussions of animal
conditioning, to interpret learning from the perspective of the benefit it
brings the organism.

Of course, this is not to say that learning is always beneficial, and the
high incidence of maladaptive behaviours, such as phobias in humans that
can be traced to prior learning episodes, attests to this fact. Nevertheless, it
seems plausible that such learned behaviours emerge from a system that
fundamentally exists to exploit and benefit from regularities that exist in the
world, whether they be signal-outcome or action—outcome regularities. For
instance, when Pavlov’s dogs learned to salivate to a bell that signalled
food, it is likely that they benefited from the increased digestibility and
hence nutritional benefit of the food. When a child learns that saying ‘juice’
reliably produces a rewarding drink, it has acquired the ability to control a
small but important aspect of its environment.

In this chapter we will try to establish the degree to which human learn-
ing is appropriately adapted to the environment. To the extent that people
only learn associative relationships where they indeed exist, and do not
believe events to be related when they are not, we can say that the system is
well adapted. But how exactly are we to know whether a pair or set of
events are objectively related? Clearly, we require some procedure or norm
for specifying when events are truly related. In short, we need a normative
theory which gives us a yardstick against which to compare human behav-
iour. The statistical concept called ‘contingency’ provides just such a yard-
stick, and the best-developed current theory of the objective relatedness of
events relies on this notion of contingency. In this chapter we will examine
contingency theory in some detail, particularly as it has recently been
described by Cheng and Holyoak (1995), and will ask whether humans
behave in associative learning tasks in the way prescribed by this normative
model.

20
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Information in the environment

The world provides a number of informational clues concerning associative
relationships. Laboratory investigations using humans and other organisms
have identified a number of such factors. In the present section we will look
at what is perhaps the most fundamental of these, namely the degree of cor-
relation or contingency over time between events. From a statistical perspec-
tive, associative learning simply requires the calculation of the degree to
which a pair of events covary. In a typical task in which the subject
attempts to work out whether two events are related, the two events can be
treated as variables and the relationship between them can be described by
some metric of statistical covariation. When the events are cues or actions
and outcomes, then from a statistical point of view the variables are binary
valued, that is, present or absent. The more general case is where the events
are continuous variables which can vary in magnitude. For continuous vari-
ables, the term correlation is used to describe relatedness, while for discrete
variables, the term contingency is used. It is now well-known that variations
in correlation or contingency affect associative learning, and this is such a
fundamental property of learning that we will devote a good deal of atten-
tion in forthcoming chapters to attempting to understand its basis.

For continuous variables, the appropriate measure of covariation is the
correlation coefficient r. However, we will be more interested in binary-val-
ued events, and Figure 2.1 shows a convenient way of representing such
events that allows statistical contingency metrics to be straightforwardly
calculated. Suppose we have some cue (or action) that is present or absent
on each trial and is or is not accompanied by the outcome. The cells in the
figure denote each of the possible combinations of events: the cue and the
outcome (cell a), the cue but not the outcome (cell b), the outcome but not
the cue (cell ¢), and the absence of both cue and outcome (cell d). A typical
associative learning situation involves filling in the cells in such a matrix
with the frequencies of the relative events. For example, the relationship
between pressing a light switch and a light coming on may be represented
by a large number of pairings of the switch and the light (cell a) and a large
number of occurrences of neither the switch nor the light (cell d). Unless the
wiring is faulty, cells b and ¢ would have entries of zero.

For binary variables, a variety of measures of contingency is possible (see
Hays, 1963), but statisticians typically define covariation in terms of 2,
which is defined as:

x% = N(ad-be)*/[(a+b)(c+d)(a+c)b+d)),

where a, b, ¢, and d are the cell frequencies and N (= a+b+c+d) is the total
number of events. In the last chapter I drew a distinction between structural
and causal prediction, with the structural type involving predicting one
attribute of a stimulus on the basis of others, and the causal type involving
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Figure 2.1. A contingency table representing the four possible combinations of events consist-
ing of the presence and absence of a target cue C and an outcome O. Cell a is the frequency of
conjunctions of the cue and outcome, cell b the frequency of occurrences of the cue without
the outcome, cell ¢ the frequency of occurrences of the outcome without the cue, and cell d the
frequency of occasions on which neither event is present. -C and —O refer to the absence of the
cue and outcome, respectively.

predicting an effect on the basis of a temporally prior cause. The %2 statistic
is probably appropriate for structural prediction, but is less so from the
point of view of causal prediction — which has been much more extensively
studied — since it is a measure of the two-way dependency between a pair of
events. Applied to a causal cue-outcome situation, it will yield large positive
values if the outcome is dependent on the cue or if the cue is dependent (in
the statistical sense) on the outcome. Since in causal prediction we are inter-
ested only in the question of whether the outcome is dependent on the cue,
a slightly different measure is needed. Specifically, Allan (1980) has sug-
gested that in this case the appropriate measure for a one-way dependency
is the statistic AP:

AP = P(O/C)-P(0/-C)
= al(a+b)—c/(c+d)
= (ad-bo)/[(a+b)(c+d)],

where P(O/C) is the probability of the outcome given the cue and P(O/-C)
is the probability of the outcome in the absence of the cue. Intuitively, there
is no significant covariation between two events if the outcome is just as
likely when the cue is present as when it is absent. Accordingly, AP is zero
whenever the two conditional probabilities are zero. It approaches 1.0 as
the presence of the cue tends to increase the likelihood of the outcome, and
approaches —1.0 as the cue tends to decrease the likelihood of the outcome.
In the latter case, we would still say that there is a degree of contingency or
covariation between the events, but that the two events are negatively asso-
ciated. In situations where P(O/C) is greater than P(O/~C), the cue to some
degree causes the outcome, whereas in situations where P(O/C) is less than
P(O/-C), the cue is a preventive cause which makes the outcome /less likely
to occur.
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In the last three decades there has been a wealth of evidence concerning
the effect on learning of varying the degree of contingency between the cue
or action and outcome. To the extent that associative learning is appropri-
ately influenced by degree of contingency, we can conclude that it is norma-
tive. Originally, results were decidedly mixed. In the 1960s, two influential
studies suggested that people are at worst insensitive to contingency or at
best only marginally influenced by it. Smedslund (1963), for example, pre-
sented student nurses with a sequence of 100 cards each of which reported
the presence of a set of symptoms and diagnoses for a certain patient. The
task was to estimate the extent to which symptom A was associated with
diagnosis F, and in different conditions this contingency varied from posi-
tive to negative. Smedslund reported extensive over- and under-estimation of
contingency, although subjects did seem to be at least partly influenced by it.

A more pessimistic conclusion — that subjects are entirely insensitive to
variations in contingency — was reported by Jenkins and Ward (1965). They
gave subjects 60 trials on which the action of pressing one of two buttons
(Al or A2) was followed by one of two outcomes (O; or O,). The
action—outcome contingency was the major independent variable, but the
overall frequency of the outcome was also manipulated independently of
contingency. At the end of each set of trials subjects rated their degree of
control over the outcomes. Jenkins and Ward defined the actual degree of
contingency as the difference between the conditional probability of the
outcome given one response and the conditional probability given the other
response. The results of the experiments showed that subjects’ judgements
deviated highly from the programmed contingencies, but were related to the
overall frequency of the outcome. In fact judgements were unrelated to the
actual contingency even when considerable efforts were made to remedy the
insensitivity by giving subjects practice problems with feedback concerning
the actual contingency.

In contrast to these early findings from humans, by the late 1960s sensitiv-
ity to contingency had been clearly established by Rescorla (1968) in condi-
tioning experiments with laboratory animals, and soon the effect was
established beyond question in humans. For example, Alloy and Abramson
(1979) observed considerable sensitivity to event contingency in their sub-
jects in a situation in which there was just one action and one outcome. In
their studies, each set consisted of 40 trials on each of which the subject
could choose whether or not to press a button, and a light either came on or
did not. The subjects were required, at the end of the set, to rate the degree
of contingency between responding and the onset of the light. The indepen-
dent variable, actual contingency as measured by AP, varied from 0 to 0.75.

The crucial result of the experiments was that normal subjects accurately
judged the degree of contingency in cases where AP was positive and in
which the outcome, the onset of the green light, was affectively neutral.
However, they overestimated the contingency in noncontingent (AP = 0.0)
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Table 2.1. Design and results of the Shanks (1991a, Experiment 1) study

Condition Trial types Test symptom AP Mean rating

Contingent AB—O, A 1.0 62.3
B—no O

Noncontingent CD—O, C 0.0 41.8
D-O,

A-D are the cues (symptoms) and O,, O, are the outcomes (diseases); no O indi-
cates no outcome.

sets of trials when the outcome occurred frequently or was not neutral in
the sense that it was related to monetary gain. They underestimated the
contingency in contingent sets when the outcome was affectively negative,
i.e. related to monetary loss. Depressed subjects, on the other hand, were
highly accurate in their judgments. The conclusion reached by Alloy and
Abramson was that people are indeed sensitive to contingency, but that cer-
tain situations lead to systematic biases. Finally, Alloy and Abramson were
able to give a convincing explanation of why earlier studies had obtained
little evidence of sensitivity to correlation. They argued that Jenkins and
Ward’s (1965) studies were difficult to interpret because subjects had been
required to make one of two responses on each trial rather than to respond
or not respond. Instead of contrasting one response with the other, if
Jenkins and Ward’s subjects were rating the degree of contingency between
either response and the outcome, then insensitivity to the manipulated con-
tingencies would have been observed.

Sensitivity to variations in contingency has also been shown to emerge in
cue—outcome learning tasks. Table 2.1 shows the design and results of an
experiment I conducted (Shanks, 1991a, Experiment 1) in which subjects
saw hypothetical patients with certain symptoms (the cues). For each
patient, the subject had to diagnose what iliness (the outcome) they thought
that patient had, and feedback was provided concerning the diagnosis.
Some patients had symptoms A and B, and the correct disease was disease 1
(AB—O,) and others had just symptom B and no disease (B—no O). Thus
there is a positive degree of contingency between symptom A and disease 1,
and this was reflected in subjects’ judgments of the A—O, relationship
(mean = 62.3 on a scale from 0 to 100). Some patients had symptoms C and
D and disease 2 (CD—O,) and others symptom D and disease 2 (D—O,).
The D—O, trials increase the probability of disease 2 in the absence of cue
C, relative to the situation for cue A, and hence reduce the C—O, contin-
gency, a fact that was reflected in the lower judgments for the C—O, rela-
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Figure 2.2. Mean response probability per sec across 10 blocks of 24 s under various
action—outcome contingencies. The contingency values (AP) are shown to the right of each
curve. Under positive contingencies response rate increased across trials while under negative
contingencies it decreased. (After Chatlosh ef al. 1985).

tionship than for the A—O, relationship (mean = 41.8). In the terminology
of animal conditioning, cue D is said to have ‘blocked’ learning about the
relationship between cue C and disease 2.

There is evidence that sensitivity to contingency is found when the depen-
dent measure is response rate rather than a numerical judgment of causality.
Figure 2.2 reproduces the data from a study by Chatlosh, Neunaber, and
Wasserman (1985) in which subjects pressed a key in order to make a light
flash, with each flash of the light earning the subject a point. The schedule was
divided into 1-second (s) time intervals with P(O/A) and P(O/-A) determined
for those intervals. The figure shows the mean probability of a response col-
lapsed across 24-s blocks of trials for conditions in which AP was 0.750, 0.375,
0.0, -0.375, or —0.750. Chatlosh et al. found that response rates attained a
higher level when there was a positive action—outcome contingency than when
there was a zero contingency, which in turn yielded a higher rate than when
there was a negative contingency. As can be seen from Figure 2.2, by the end
of 4 min exposure to the schedules, there was a perfect ordering of the condi-
tions with respect to the response probabilities they produced. Note also that
the conditions were separated even on the first block, indicating that 24 s is
sufficient to distinguish quite finely between different levels of contingency.
Given this degree of sensitivity, it seems plausible that with sufficient motiva-
tion, subjects’ response rates would have continued to climb under all positive
contingencies to the point where a response was emitted on every trial, and
would have declined to zero under all negative and zero contingencies.
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Finally, in addition to situations in which relationships are learned
between binary variables, such as the pressing of a light switch and the illu-
mination of a light, there are also many situations in which relationships
are learned between continuous or multi-valued variables. For instance,
novice drivers have to learn the relationship between force on the accelera-
tor pedal and the actual acceleration of the car. This is a continuous rela-
tionship. Although situations of this sort have been much less extensively
studied, the evidence suggests that people are quite sensitive to the degree of
covariation, just as they are with binary-valued variables. Beach and Scopp
(1966), for instance, obtained close concordances between the judged
covariation of two continuous variables and their statistical correlation, r.

Contingency theory

Plainly, these results establish that human associative learning is sensitive
to, amongst other things, the degree of statistical covariation between
events. Capitalising on this fact, there has been a long tradition — going
back to the classic 1967 article by Peterson and Beach entitled “Man as an
intuitive statistician’ — of arguing that human behaviour in learning tasks is
not only correlated with normative measures such as r, ¥, or AP, but is to
all intents and purposes perfectly calibrated with such statistics. The out-
come of comparisons between associative judgments and normative mea-
sures should tell us whether humans behave rationally or whether they are
prone to systematic biases. More importantly, such comparisons allow us to
determine what it is at the most general level that the learning system is
doing. If it turns out that people’s behaviour is closely matched to the con-
tingency metric AP, then we can conclude that the system is in one way or
another managing to compute the degree of contingency between events.

However, it is one thing to claim that judgments vary with variations in a
certain statistic: it is quite another to suggest that performance is perfectly
calibrated with respect to that statistic. Associative learning may in some
circumstances correlate with AP, but do subjects behave exactly as pre-
scribed by the AP formula? And if not, then is there an alternative non-
normative statistic based on the cell entries of the contingency table which
better describes performance? In this section, we will consider the evidence
for and against the idea that associative learning conforms to the norm pro-
vided by contingency theory.

Although the AP rule is normative in the sense that it can be justified on
statistical grounds, whereas other rules may not be justifiable, it is perfectly
possible that subjects do fall back on simpler rules, and the fact that judg-
ments tend to conform to AP does not exclude these alternative rules since
the predictions of the various rules may be highly correlated. What is
needed is some procedure to differentiate amongst them. As an illustration,
consider an experiment by Allan and Jenkins (1983). They presented sub-
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jects with a cue—outcome learning task which took place on a computer. An
image of a joystick on the left of the screen moved on some trials to indi-
cate the cue, and the outcome consisted of a dot on the right-hand side of
the screen moving downwards. Each of 50 trials was signalled by a band
appearing on the screen. The band remained on for 1.3 s, during which the
cue either occurred or did not, followed on some trials by the outcome. In
order to make the predictions of the different rules as divergent as possible,
the problems were run with different overall probabilities of the cue, P(C).
This probability was either 0.5 or 0.7. Subjects were required to rate on a
scale from 0 to 40 the influence of the cue on the outcome.

Allan and Jenkins programmed the 10 different problems shown in Table
2.2 in each of which the contingency between the cue and outcome, as
determined by the values of P(O/C) and P(O/~C), was varied. For five of
the problems, the objective covariation as measured by AP was zero, while
in the remaining problems it varied up to 0.8. Each problem can be referred
to by two numbers (e.g. 0.9/0.9) where the first refers to P(O/C) and the sec-
ond to P(O/~C). To begin with, note that the five noncontingent problems
did not yield equal ratings, as would be required if subjects were computing
AP. Instead, ratings in these problems increased with the overall probability
of the outcome (in Table 2.2 the ratings have been converted to a scale from
0 to 100). For the problems in which a covariation did exist, judgments
tended to increase with increases in AP, but again were far from accurate.
For instance, the two problems in which AP was 0.4 received very different
ratings.

Of course, there are many potential rules that could be constructed using
the cell entries of the contingency matrix, but there are six in particular that
have attracted attention. Note that (apart from AP) these rules are all non-
normative in the sense that they would not yield statistically-valid measures
of relatedness. The ‘cell a’ rule assumes that judgments correspond to the
number of pairings of the cue and outcome, in other words to the entry in
cell a of the contingency matrix. Judgments describable by such a rule
would be linearly related to the frequency of these trial types, and naturally,
such a rule would in many cases yield highly inaccurate judgments.
Nevertheless, it may still yield judgments that conform to Allan and
Jenkins’s data. The ‘a-b’ rule bases judgments on the frequency of the cue
with (a) versus without (b) the outcome. The ‘a+c’ rule relates judgments to
the total number of outcomes (cells a and c¢). In the ‘AF’ rule judgments are
also dependent just on cells a and c, but are assumed to be related to the
difference between the frequency of trials where the outcome occurs with
the cue (a) and trials where the outcome occurs in the absence of the cue
(c): that is, AF = a—c.

The two most sophisticated rules are AD and AP, and these take all four
cells of the contingency table into account. Clearly, cell a confirms the exis-
tence of a relationship, and equally, occurrences of the cue without the out-
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Table 2.2. Results of Allan and Jenkins’ (1983) experiment

P(O/C) P(O/~C) AP P(C)=0.5 P(C)=0.7
AF AD J AF AD J
0.1 0.1 0.0 0 0 5 2 16 13
0.3 0.3 0.0 0 0 14 6 -8 18
0.5 0.5 0.0 0 0 15 10 0 19
0.7 0.7 0.0 0 0 20 14 8 29
0.9 0.9 0.0 0 0 30 18 16 60
0.3 0.1 0.2 s 10 25 9 2 13
0.9 0.7 0.2 5 10 28 20 22 43
0.5 0.1 0.4 0 20 33 16 12 38
0.9 0.5 0.4 10 20 48 24 28 69
0.9 0.1 0.8 20 40 70 30 40 75

P(O/C) = probability of outcome given cue. P(O/~C) = probability of outcome in
absence of cue. P(C) = probability of the cue. Judgments (J) have been converted
to a scale from 0 to 100.

come (b) and the outcome without the cue (c) suggest that the cue is not
positively related to the outcome. The AD rule proposes that judgments are
a function of the difference between the evidence confirming a relationship
and that disconfirming it:

AD = (a+d)y—(b+c).

For the purposes of this rule, cell d is regarded as confirmatory rather than
disconfirmatory, although in reality trials on which both cue and outcome
are absent are neutral with respect to the existence of a causal relationship.
At the general level, it does not seem as if any of the rules provides an
especially good fit to the data. Subjects’ judgments certainly do not correlate
perfectly with AP, otherwise they would be equal in all of the noncontingent
conditions, yet this is clearly not the case: judgments were very much higher
in condition 0.9/0.9 than in condition 0.1/0.1, for instance. It is easy as well
to dismiss the other rules. The ‘cell a’ rule predicts equal judgments in all of
the conditions where P(O/C) is 0.9, since the number of cue-outcome pair-
ings is equal in these conditions. Again, this is obviously not borne out by
the data (and the ‘a-b’ rule fails for the same reason). The ‘a+c’ rule incor-
rectly predicts equal judgments in the 0.9/0.1 and 0.5/0.5 conditions where
P(C) = 0.5, because in these conditions the total number of outcomes (a+c)
is the same. Finally, as Table 2.2 illustrates, the AF and AD rules predict
equal ratings in the noncontingent problems in the conditions where P(C) =
0.5 (and the same is true of the ‘a—c’ rule). However, assuming some appro-
priate monotonic function for mapping the obtained values of AF (or AD)
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onto judgments, these rules do fare better than the AP rule in that they can
at least predict reasonably well the ratings observed when P(C) = 0.7. Across
all problems, the median correlation in Allan and Jenkins’s experiment
between judgments and predictions was 0.73 for the AD rule, 0.65 for the AF
rule, and only 0.50 for the AP rule.

These results are obviously discouraging for the view that associative
learning is normative. However, it is possible that different subjects’ judg-
ments may conform to different rules and that by collapsing across subjects,
regularities in the data are being obscured. For this reason, Allan and
Jenkins correlated for each subject the judgments they gave under the dif-
ferent contingency conditions with the predictions from each of the rules.
Unfortunately, the results confirmed the conclusions from the overall
analysis: most subjects appeared if anything to be basing their judgments
on the AD rule. In sum, judgments do not seem to conform to those pre-
dicted by the normative AP rule.

Rather contrasting results were obtained by Wasserman, Chatlosh and
Neunaber (1983) in an action—outcome learning study. Subjects in this
experiment pressed a telegraph key (the action, A) and judged the extent to
which it caused a light to flash. The actual schedule consisted of dividing
the 4 min duration of each condition into 1 s time intervals. If the subject
responded during a given interval by pressing the telegraph key, then the
white light flashed for 0.1 s at the end of that interval with a probability
P(O/A), and if the subject did not respond during the 1 s interval, the light
flashed with probability P(O/~A). At the end of each problem, subjects
rated the action—outcome relation on a scale from —100 (‘prevents the light
from occurring’) to +100 (‘causes the light to occur’). Nine conditions were
constructed by having P(O/A) and P(O/-A) take all combinations of the
values 0.875, 0.500, or 0.125 per second.

Like Allan and Jenkins, Wasserman et al. found very little evidence to
suggest that their subjects’ judgments might conform to the ‘cell a’ or ‘a+c’
rules, which is perhaps not surprising since these rules correlate poorly with
the objective contingency. For instance, we would expect that raising
P(O/-A) will tend to reduce judgments, yet this has no effect on the number
of action—outcome co-occurrences (cell a), and actually increases the total
number of outcomes (cells a+c). However, for the AF, AD, and AP rules,
substantial proportions of subjects’ judgments were correlated with the pre-
dictions derived from each rule. Of course, a particular subject’s judgments
could be significantly correlated with more than one rule. But in general the
AP rule came out best: in four subsets of subjects who differed in terms of
their overall response rate, the mean percentage of subjects whose judg-
ments were significantly correlated with the AP rule was 80%. The corre-
sponding figure for the AD rule was 68%, and for the AF rule was 60%.
Thus Wasserman et al’s results are considerably more encouraging than
were Allan and Jenkins’s for the normative view.
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Figure 2.3. Mean judgments of contingency in 25 conditions formed by crossing different val-
ues of P(O/A) and P(O/-A). The abscissa shows P(O/~A), and points with the same value of
P(O/A) are connected. Perfect conformity between judgments and AP would yield a set of par-
allel straight lines separated vertically by 0.25 units and with slopes of -0.5. (After Wasserman
et al. 1993.)

In a further experiment using the same procedure, Wasserman et al.
(1993) presented subjects with 25 different problems constructed by taking
all possible pairings of P(O/A) and P(O/~A) with the values of 1.0, 0.75, 0.5,
0.25, and 0.0 per second. Again, the results indicated an impressive degree
of sensitivity to the actual degree of contingency. Figure 2.3 shows the
mean judgment given for each condition. Perfect concordance between
judged and actual contingencies would result in a set of straight parallel
lines with slopes of —0.5, with each pair of adjacent lines separated vertically
by 0.25 points. Although not exactly conforming to this pattern, the corre-
spondence is still excellent, so much so that 96.7% of the variance in the
judgments is accounted for by the actual contingency AP. As P(O/A) was
held constant, judgments decreased as P(O/~A) was raised from 0.0 to 1.0.
Conversely, judgments increased (became less negative) when P(O/-A) was
held constant as P(O/A) was raised from 0.0 to 1.0. Quite unlike the results
obtained by Allan and Jenkins, judgments were close to zero when P(O/A)
and P(O/-A) were equal. In sum, in Wasserman et al.’s procedure subjects
were to a very high degree sensitive to the actual covariation between the
action and outcome when judging their relatedness.

What are we to make of the different conclusions reached by Allan and
Jenkins and by Wasserman and his colleagues? There are, of course, a num-
ber of differences between the tasks used. For example, Allan and Jenkins’s
subjects were making cue—outcome ratings while Wasserman et al.’s were
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making action-outcome ratings. However, the likeliest candidate is the rate
of learning in each task. With a free-operant procedure such as that used by
Wasserman and his colleagues, learning tends to be quite rapid, whereas in
the discrete-trial procedure of Allan and Jenkins’s study it is likely to be
rather slower. This suggests that after further exposure, subjects in Allan
and Jenkins’s study might have been able to give ratings that accorded bet-
ter with the AP rule. However, with the briefer amount of exposure that
occurred in the actual experiment, judgments deviated substantially from
the predictions of the rule. Clearer evidence comes from studies directly
examining the evolution of associative ratings.

Learning functions

Several studies have looked at the way in which associative judgments
progress as more experience of a contingency is acquired, and the results
tend to support the above analysis. Typically, it has been observed that
under a positive contingency judgments appear to increase as more experi-
ence of the contingency is provided. Judgments start close to zero and rise
towards an asymptote at about the actual contingency. With a negative
contingency judgments decrease from close to zero towards a negative
asymptote. Figure 2.4 shows the learning curves obtained under a number
of contingencies in an experiment by Francisco Lopez and myself. In that
study, subjects saw tanks traverse a computer screen and either blow up or
not. Subjects were told the tanks were passing through a minefield which
contained colour-sensitive mines, and their task was to judge the relation-
ship between the colour of a tank and whether it avoided being blown up.
On each trial, a tank crossed the computer screen and was either coloured
or not. Thus the cue (C) is the colour of the tank and the outcome (O) is
avoiding being destroyed. The tanks were coloured on half the trials and
not coloured on the remainder.

The experiment included four different cue—outcome contingencies, each
lasting for 40 trials, with each subject seeing just one contingency. In one
problem (0.75/0.25) the contingency was positive in that P(O/C) was greater
than P(O/~C). In two problems (0.75/0.75 and 0.25/0.25) AP was zero but
the overall probability of the outcome varied. Finally, in one problem
(0.25/0.75) the cue and outcome were negatively related. Subjects made
judgments every five trials on a rating scale from —100 to +100. Figure 2.4
shows these judgments, and as we would expect on the assumption that the
difference between Allan and Jenkins and Wasserman ef al.’s results was
due to differences in exposure, judgments approached the actual values of
AP as training proceeded. Judgments increased towards a value of 50
(= 0.5x100) in the 0.75/0.25 condition and decreased across trials towards
—50 (= -0.5x100) in the 0.25/0.75 condition. In the noncontingent problems,
judgments quite quickly converged towards the actual contingency of zero.
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Figure 2.4. Mean judgments of contingency across 40 trials under four different cue-outcome
contingencies. Judgments were made on a rating scale from —100 to +100. Each condition is
designated by two numbers, the first being P(O/C) and the second P(O/~C). Judgments
increase under the positive (0.75/0.25) contingency and decrease under the negative (0.25/0.75)
contingency, in each case yielding terminal judgments close to the actual contingencies (x100).
In the noncontingent conditions (0.75/0.75 and 0.25/0.25), judgments converge to zero, but
when the probability of the outcome is high (in the 0.75/0.75 condition), early judgments are
erroneously positive. (After Lopez & Shanks, unpublished data.)

Note, however, that after about 10 trials judgments in the noncontingent
conditions were strongly biased, as in Allan and Jenkins’s experiment, by
the overall probability of the outcome, with judgments in the 0.75/0.75 con-
dition being noticeably higher than those in the 0.25/0.25 condition.
Nevertheless, the results point to the conclusion that associative judgments
may approximate AP at asymptote, but deviate considerably prior to
asymptote.

It is clear that although terminal judgments can approach the actual con-
tingencies, the AP statistic does not accurately describe the shapes of these
learning curves. As it stands, the AP rule in fact makes quite clear predic-
tions about what the shapes of these acquisition curves should be: flat. This
is because increasing the amount of exposure to P(O/C) and P(O/-C), the
terms in the rule, does not change their mean values. Of course, more expo-
sure will ensure that these probabilities are based on a larger sample of tri-
als, and this will reduce the variance across trials in a group of subjects. But
it will not affect the mean values of the probabilities. Plainly, this is in con-
trast with the subjects’ judgments, which change dramatically across trials.
In actual fact, for each block of eight trials in the experiment, the value of
AP was exactly equal to its programmed value.
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These results suggest two alternative conclusions concerning the norma-
tivity of associative learning. One is that judgments are normative at
asymptote but biased prior to asymptote, and the other is that the AP met-
ric is appropriate as an asymptotic but not as a pre-asymptotic norm. At
present it is hard to know how to decide between these possibilities, but it is
worth mentioning that alternative attempts to formulate normative theo-
ries, constructed for example around Bayes’ theorem (see Fales and
Wasserman, 1992), would predict learning functions that start at zero and
slowly increase or decrease towards asymptote. Certainly, one could argue
that it is rational for judgments to start close to zero: in the absence of any
prior knowledge, the likelihood is that a pair of events that have never been
seen before will be unrelated.

Note that the reason that Allan and Jenkins’s data seemed to be in accor-
dance with the AD rule is that the rule correctly predicts increasing and
decreasing judgments under positive and negative contingencies, respec-
tively. The terms in the AD rule [AD = (a+d)-(b+c)] are all zero at the out-
set. Under a positive contingency, the difference between (a+d) and (b+c)
becomes steadily greater and hence AD increases as more trials are wit-
nessed, while under a negative contingency AD steadily becomes more nega-
tive. Thus judgments may conform better with the predictions of this rule
than with those of the AP rule simply because in failing to predict increasing
judgments, the AP rule is doing particularly badly. The AD rule is unlikely
to be a good model of the subjects’ judgments, of course, because it fared
poorly with Allan and Jenkins’s noncontingent data and also because it
predicts ever-increasing judgments under a positive contingency and ever-
decreasing ones under a negative contingency, rather than judgments that
level off.

The conclusion from this discussion is that, to a first approximation,
associative judgments are unbiased at asymptote. When given sufficient
exposure to a relationship, judgments match quite closely the contingency
specified by the normative AP theory. However, substantial biases may
occur prior to asymptote, with judgments commencing close to zero and
only slowly regressing towards the predicted values. As we will see in
Chapter 4, this regression process is a property of certain associationist
learning mechanisms which can be said, in their asymptotic behaviour, to
be computing AP.

Extinction and latent inhibition

In addition to the effect on learning of variations in contingency, there are
some other simple and well-known effects that have a straightforward nor-
mative interpretation. Extinction is one such phenomenon. If a cue such as
a tone is paired with an outcome like shock over several trials, and then is
presented for several trials without the shock, then conditioned responding
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established in the first stage gradually fades until completely abolished, and
judgments of the strength of the cue-outcome relationship also decline (e.g.,
Davey, 1992a). From a normative point of view, the unreinforced trials in
the second stage serve to reduce the probability of the outcome given the
cue, P(outcome/cue), and hence reduce AP.

There is one interesting exception to the general rule that repeated unre-
inforced presentation of a stimulus leads to a reduction in its associative
strength. Studies of animal conditioning have established that repeated pre-
sentation of a cue that has been negatively associated with an outcome (a
so-called ‘conditioned inhibitor’) does not lead to any change in its learned
properties. Thus Zimmer-Hart and Rescorla (1974) presented animals with
trials on which a light predicted shock (light—shock) and other trials on
which a compound consisting of the light and a tone predicted no shock
(tone+light—no shock). These trial types established a negative contingency
between the tone and shock. At the end of the learning phase, the animals
suppressed their ongoing activity in the presence of the light but not in the
presence of the tone-light compound, indicating that they regarded the tone
as being negatively related to shock.

The interesting result was that repeated presentation of the tone after the
initial learning trials did not affect its ability to suppress responding to the
light. Although this experiment has not been conducted with humans, it has
been replicated so many times with animals that we can be fairly confident
of its generality. Interestingly, a moment’s reflection shows that this result is
entirely consistent with contingency theory. During the training trials, the
animals were able to learn that P(shock/tone) was zero whereas P(shock/no
tone) was considerably greater than zero. Subsequent trials on which the
tone was presented on its own merely confirm the fact that P(shock/tone) is
zero and do not alter the computed value of AP. Thus it is quite amenable
to contingency theory that repeated presentation of a stimulus that has a
negative contingency for an outcome has no detectable consequences.

The second learning effect we shall consider is a phenomenon — again
well-known in animal learning but only recently studied in humans — which
from an informational point of view is identical to extinction except for the
order in which the trial types are presented. If a cue is presented on its own
without any consequences, then later pairings of the cue and an outcome
will lead to a retardation in the rate of learning compared to a situation in
which the cue has not been pre-exposed. This effect, called latent inhibition,
has been demonstrated numerous times in conditioning studies and has had
a considerable impact on the development of theories of conditioning (see
Hall, 1991; Lubow, 1989). As an example, Lipp, Siddle and Vaitl (1991)
conducted a human Pavlovian conditioning experiment in which the cue is
the CS and the outcome is the US. Subjects in the experimental groups
received paired presentations of a light CS and a tone US, and had to
respond to the US by pressing a button as fast as possible. Learning was
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indexed by skin conductance during the cue. In one of these groups, there
were no CS preexposures and substantial conditioning occurred to the light.
In two other groups, the light was presented on its own for 10 or 20 trials,
respectively, prior to the conditioning phase. In these groups, no condition-
ing was obtained. Thus preexposure to a cue in the absence of the outcome
impairs later cue—outcome learning.

Like extinction, latent inhibition has a very straightforward normative
explanation. Suppose that associative learning is related to the degree of
contingency between the cue and outcome. In the control condition, AP =
1.0 since the outcome occurs every time the cue occurs, but never in its
absence. In the pre-exposure conditions, AP is less than 1.0 because it is not
the case that the outcome occurs every time the cue is presented; the pre-
exposure trials, just like a set of extinction trials, serve to reduce
P(outcome/cue). Although the basic latent inhibition result can therefore
be explained, I should mention that a potential problem for this account
arises with respect to learning negative contingencies. Because the pre-
exposure trials tend to reduce the estimated value of P(outcome/cue)
across the whole experiment, we would have to predict that stimulus
pre-exposure should increase rather than decrease the speed of learning
a negative relationship. Although this has not been studied in humans,
evidence from animals suggests that learning both positive and negative
contingencies is retarded by pre-exposure (Reiss and Wagner, 1972).

Preparedness and phobias

One of the striking recent successes of associative learning theory has been
the fact that therapies based on conditioning models of human phobias
have proven highly successful. The conditioning perspective on phobias
views them as fear responses conditioned to stimuli such as open spaces,
dentists’ waiting rooms, or spiders. If a particularly aversive event happens
to a person in such a context, then any cues present at that time may come
to be associated with the event and may acquire the ability to evoke anxi-
ety. For instance, a particularly traumatic experience with a dentist may
lead to fear being conditioned to the stimuli of the dentist’s room. In order
to avoid such anxiety, the person goes to considerable lengths to avoid the
eliciting events: he or she avoids dentists, for instance. From the traditional
associative learning perspective, simple techniques such as extinction can be
used to reduce or eliminate the connection between the phobic stimulus and
anxiety, and the evidence suggests a considerable degree of success in thera-
peutic techniques based on learning theory (Davey, 1992b).

My purpose in the present section is not to evaluate the conditioning
approach to phobias, but rather to focus on one particular phenomenon
concerning phobias which appears at first sight to represent a problem for
the normative analysis of learning, and to try to see whether the normative
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analysis can be rescued. The phenomenon is so simple as to seem hardly
worth mentioning: it is the fact that phobias tend to develop to some stim-
uli or objects and not to others. For instance, although spider phobias are
very common, it would be rare indeed to find a person with a phobia for
flowers. Now although visits to the dentist may objectively be more strongly
associated with aversive outcomes (e.g. pain) than certain other activities, it
seems very unlikely that the distribution of phobias is in general related to
objective threat. For instance, aversive events probably do not occur in the
presence of fear-relevant stimuli such as spiders any more often than in the
presence of fear-irrelevant stimuli such as flowers: in fact, spiders are rarely
signals of objective threat at all. Thus the unequal distribution of phobias is
a problem for a normative theory.

One explanation is to say that certain events are predisposed to be easy
to associate with aversive events and some are not. The standard form of
this classic ‘preparedness’ theory, originally proposed by Seligman (1971),
assumes that during our evolutionary history, some things such as spiders
and snakes have been particularly dangerous. As a result our species has
developed a rapid tendency to attach fear reactions to these things.
Although nowadays the sorts of household spiders to which phobias often
develop are perfectly innocuous, the rapid acquisition of fear still occurs
and this in turn leads to the common development of phobic reactions.

What is the evidence for a differential ability of cues to enter into associa-
tions with aversive outcomes? Although the evidence is controversial (see
McNally, 1987), laboratory studies have found that fear-relevant and fear-
irrelevant stimuli do indeed differ in terms of the ease with which they are
associated with outcomes. Consider the results of a study by Tomarken,
Mineka and Cook (1989). In these experiments, Tomarken et al. exposed
subjects to a sequence of slides of fear-relevant objects (snakes or spiders)
and fear-irrelevant stimuli (mushrooms or flowers). Each slide could be fol-
lowed either by a shock, by a tone, or by nothing. Then subjects were asked
to estimate the relationship between each type of stimulus and each type of
outcome. In actual fact, the probability of each outcome given each type of
slide was 0.33, so subjects should have given equal ratings for all relation-
ships. But what they actually did was to dramatically overestimate the
probability in one of the conditions, namely the one in which fear-relevant
stimuli were associated with the aversive outcome, shock.

Tomarken ef al.’s result is consistent with the idea that some stimuli are
‘prepared’ in the sense that they are particularly easy to associate with aver-
sive consequences. Of course, if this theory is correct, then it would be
inconsistent with the view that learning is simply governed by the objective
degree of contingency between the cue and the outcome, because a given
individual with a spider phobia is likely to have been exposed to no greater
a contingency between spiders and aversive outcomes than between flowers
and aversive outcomes (as indeed the Tomarken et al. experiment shows).



The rational analysis of learning 37

But it turns out that differences between fear-relevant and -irrelevant stim-
uli are not necessarily inconsistent with the normative model.

To see how this can be the case, consider the results of an experiment by
Davey (1992a). Davey informed subjects that shocks might occur following
some stimuli but not others, and then simply asked the subjects to rate the
likelihood of an imminent shock during each slide presentation. Subjects
gave consistently higher ratings when they were presented with fear-relevant
rather than fear-irrelevant stimuli, and this bias occurred even on the very
first trial. Such a result suggests that the difference between fear-relevant
and fear-irrelevant stimuli comes about not because of biological prepared-
ness for association with an aversive event, but rather because subjects
come to the laboratory with an elevated expectation of an aversive event in
the presence of a fear-relevant stimulus. That is to say, subjects commence
the task with an inflated estimation of P(shock/spider) compared to
P(shock/flower). That being the case, their subsequent behaviour — associat-
ing the fear-relevant but not the fear-irrelevant stimulus with the aversive
outcome — is entirely consistent with the normative account.

Of course, it remains an open question as to where these inflated esti-
mates come from. It is certainly possible that they have a biological origin,
but what is much more likely, as Davey (1995) points out, is that they
derive from cultural and social transmission. From childhood upwards, we
are exposed to images and information priming us to treat spiders and
snakes as potentially threatening objects. It would be little wonder if this
information came to be represented in the mind of the average person as an
elevated estimation of the probability of an aversive event in the presence of
a spider. But whatever their origin, the differential effects seen with fear-rele-
vant and fear-irrelevant stimuli do not seem especially problematic for a
normative account of associative learning. We will return later to briefly
consider some other examples of selective associations that may not be so
readily explicable in these terms.

Judgmental accuracy

Before continuing the discussion of the AP theory, it is worthwhile briefly
considering the general level of accuracy that subjects achieve when asked
to judge associative relationships, and to ask exactly what the theoretical
significance is of the level of judgmental inaccuracy, where by inaccuracy I
mean deviation from AP. As we have seen, there are circumstances in which
subjects can achieve impressive levels of accuracy as asymptote is
approached. Wasserman et al., for instance, found that instrumental ratings
under a variety of action—outcome contingencies were extremely close to the
actual programmed contingencies. However, there are also other situations
in which the concordance between programmed contingencies and judg-
ments is much lower. Does the relative inaccuracy of these judgments have
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any theoretical significance? Certainly, if another judgmental rule such as
AD yields a closer correspondence with the observed judgments, then the
inaccuracies should be regarded as negative evidence from the point of view
of the normative theory. I shall argue, though, that unless this is the case,
discrepancies should be treated with a good deal of caution, and strong the-
oretical inferences should not be drawn from the overall level of accuracy
or inaccuracy.

Much of the data relevant to the question of the normativity of associa-
tive learning come from experiments in which the dependent variable is a
judgment on a rating scale. Since these scales usually go from —100 to +100,
and since the statistic AP goes from -1 to +1, it is often assumed that judg-
ments are normative whenever they correspond closely to AP (x100) and are
non-normative otherwise. However, this may be an unfair constraint to
impose on the normative theory. Suppose that associative knowledge is rep-
resented by some internal state with a parameter representing the subject’s
belief about the strength of the relationship, and let us take the normative
view that at asymptote the internal parameter will be very close to AP. The
exact nature of the psychological function mapping this internal parameter
into an actual judgment or into behaviour in a given experimental context is
unknown, but the nature of this function is critical. Thus far we have
implicitly assumed that the function simply multiplies the internal para-
meter by 100 to translate it onto the rating scale. However, the function
may be more complex than this.

For instance, there is evidence that with some rating scales, a cue which
apparently has an internal strength of zero can elicit substantially positive
judgments, which implies that the mapping function is not a straightfor-
ward one. Some relevant evidence comes from another study by
Wasserman in which subjects were asked to make contingency ratings for a
number of different action-outcome contingencies (Neunaber and
Wasserman, 1986). In five problems, the contingency was zero, with P(O/A)
and P(O/~A) being equal and having the values 0.1, 0.3, 0.5, 0.7, and 0.9
per second in the different problems. For subjects who were allowed to use
a bidirectional scale going from —100 to +100, with negative ratings corre-
sponding to negative contingencies, ratings for the noncontingent problems
were all very close to zero. On that basis, then, we would have to conclude
that the internal parameter reflecting the action—outcome relationship had a
value close to zero. In contrast, subjects who had to use a unidirectional
scale from 0 to 100 gave mean ratings for these noncontingent problems
that were markedly greater than zero. In fact, across all these conditions the
mean was approximately 20.0. The clear conclusion is that the discrepancies
between judged and actual contingencies that emerge when unidirectional
scales are used are of little theoretical significance, since judgments do not
necessarily correspond to the internal variable that represents the subject’s
knowledge. As Neunaber and Wasserman (1986, pp. 177-8) say,
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. when only the magnitude of the response—outcome relationship is
assessed, the positive mean ratings of the noncontingent problems appear
to reflect a measurement artifact, rather than true perceptions of a positive
response—outcome relationship. These findings suggest considerable cau-
tion in interpreting the results of studies that use a unidirectional rating
scale and report positive mean ratings of noncontingent problems . . .

Of course, use of a unidirectional rating scale is only one of many potential
factors that may introduce distortions into the mapping from internal
knowledge onto observed behaviour. Another possible factor is the payoff
schedule in operation: a subject may not believe there is an action—outcome
relationship, but the reward for obtaining the outcome may be so great and
the cost of performing the action so small that response rate attains a high
level. For instance, in an action—outcome learning experiment that Anthony
Dickinson and I conducted (Shanks and Dickinson, 1991) and which was
briefly discussed in the last chapter, two groups of subjects were exposed to
the same noncontingent schedule but under different task demands. One
group of subjects, instructed they could earn points each time the outcome
occurred, pressed a key about 20 times per minute when the optimal thing to
do was not respond at all. The other group, asked to judge the action-out-
come contingency, gave estimates very close to zero. Thus the same
action—outcome schedule can elicit inconsistent behaviours depending on the
demands of the task. We need to bear in mind that discrepancies between
the predictions of a given theory and observed behaviour may be attribut-
able to a complex mapping from internal state to observed behaviour.
Moreover, what are we to do when the dependent variable is something
other than a judgment? Suppose we are studying response rate, for instance,
as our dependent variable, and we obtain response rates under a variety of
contingencies just as Chatlosh er al. (1985) did in the experiment described
carlier (Figure 2.2). Are these response rates ‘normative’? It is not clear how
one should answer that question, because all our normative theory states is
the value of AP. If AP in a certain problem is, say, 0.5, then what response
rate should we expect to see if subjects are behaving normatively? There is
no obvious answer. Instead, all we can rely on is ordinal data: assuming that
the payoff structure provides more reward for more occurrences of the out-
come, an increase in contingency should lead to an increase in response rate.
Thus when the dependent measure is something other than a numerical
judgment, all that the normative theory says is that our dependent measure
(e.g., response rate) should correlate perfectly across a series of conditions
with AP. Such a correlation is evident, of course, in Chatlosh et al.’s data.

Selectional effects

Up to this point I have concentrated on situations in which subjects are
required to judge the relationship between an action or cue and an out-
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Table 2.3. A hypothetical contingency table

outcome no outcome

action 50 50

no action 50 50

For this table, P(O/A) = P(O/~A) = P(A) = 0.5 and AP = 0.0. Cell
entries are event frequencies.

come, and where the action or cue is the only obvious causal event present.
For such situations, contingency is very easy to specify. However, it is
rarely (if ever) the case that potentially predictive cues appear in isolation;
instead, we are often confronted with a set of potential cues that co-occur
with one another, and we have to pick out the one (or ones) that is (are)
truly predictive. Accordingly, we need a way of applying the AP statistic in
these more complex cases. In the present section we will consider a simple
but powerful solution recently developed by Cheng and Holyoak (1995)
called the ‘probabilistic contrast model’. As before, we will ask whether
judgments conform to the prescriptions of this normative theory when mul-
tiple causal cues are present.

Table 2.3 shows a hypothetical set of frequencies of each of the four com-
binations of an action and an outcome that might be observed if P(O/A)
and P(O/-A) were both 0.5, and if P(A) were also 0.5. According to our stat-
istical measure of association, there is no relation between these events,
since AP = 0.0. In an experiment I conducted under these conditions
(Shanks, 1989), subjects judged (on a scale from 0 to 100) the degree of con-
tingency between pressing a key on a computer keyboard and a light flash-
ing on the screen, with the conditional probabilities being defined as before
over l-s time intervals. The use of a unidirectional rating scale probably
accounts for the fact that subjects overestimated the contingency when
given 3 min to witness the relationship: as Figure 2.5 shows, the mean judg-
ment was 20.9 in this 0.5/0.5 condition. In a contingent (0.5/0.0) condition
with P(O/A) = 0.5 and P(O/~A) = 0.0, judgments were of course substan-
tially greater.

The interesting result of the experiment comes from another condition
that was identical to the noncontingent condition of Table 2.3 except in one
respect. In this condition, all occurrences of the outcome in the absence of
the action (cell ¢) were accompanied by a tone stimulus. Here, if the subject
had not responded by the end of a given 1-s interval, then if the outcome
was programmed to occur, it was delayed momentarily and immediately
preceded by the tone which lasted for about half a second. Although
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Judgement

[A Contingency

Mean Contingency Judgement

0.5/0.0 0.5/0.5 0.5/0.5 (S)

Condition

Figure 2.5. Effects of a cue signalling noncontingent outcomes. Judgments were made on a rat-
ing scale from 0 to 100, and each condition is designated by two numbers, the first being
P(O/A) and the second P(O/~A). Mean judgments of contingency and mean actual contin-
gency is shown for each of three conditions. In one condition (0.5/0.0), the outcome was con-
tingent on the action, while in the second condition (0.5/0.5) the cell frequencies (shown in
Table 2.3) produced a contingency of zero. In the third condition [0.5/0.5 (S)], every occur-
rence of the outcome in the absence of the action was signalled by a tone. The signal partially
counteracted the effect of introducing noncontingent outcomes. (After Shanks, 1989.)

P(O/A) and P(O/-A) were again both 0.50, and therefore AP was again
zero, Figure 2.5 shows that in this ‘signal’ condition, denoted 0.5/0.5(S),
subjects gave a mean judgment that was significantly greater than that in
the original 0.5/0.5 condition. According to the standard theory, although
an additional predictive event has been introduced for all of the cell ¢
events, AP between the action and outcome is identical in the two condi-
tions. So why does the difference in judgments occur?

This result, which had earlier been demonstrated in animal conditioning
experiments by Durlach (1983), is an apparent puzzle for a normative
analysis such as the AP rule, because of course the introduction of addi-
tional events does not alter the contingency between the action and out-
come. Note that at first glance it seems as if subjects are behaving quite
irrationally in the signal condition: although their overestimate of the con-
tingency may be partly interpreted as a result of the unidirectional rating
scale, they believe more strongly that the action and the outcome are
related than they do in the condition without the signal, which from an
objective viewpoint is not the case.

Before considering how the normative theory might be revised to account
for this result, let us first consider another example of the same problem.
This comes from a cue—outcome learning experiment (Shanks, 1991a,
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Table 2.4. Design and results of the study by Shanks (1991a, Experiment 2)

Condition Trial types Test symptom Mean rating

Contingent AB—O, A 58.6
B—no O
C-0,

Noncontingent DE—O, D 338
E—O,
F—-no O

A-F are the cues (symptoms) and O,, O, are the outcomes (diseases); no O indi-
cates no outcome.

Experiment 2) in which I asked subjects to judge the relationships between
symptoms and fictitious diseases. Each subject was presented with the six
trials types shown in Table 2.4. At first glance, the design seems hardly dif-
ferent from that adopted in the earlier contingency experiment shown in
Table 2.1: subjects received AB—O, and B—no O trials together with
DE—O, and E—O, trials, and these trial types establish a more positive
contingency between A and O, than between D and O,. The only difference
is the addition of C—O, and F—no O trials. Unsurprisingly, the result was
that ratings of cues A and D differed, with the mean rating for A as before
being greater than that for D. Yet, it turns out that in this experiment AP is
equal for cues A and D - and hence the difference in judgments is unex-
plained — if contingency is computed across all of the trials. The addition of
the C—O, and F—no O trials radically changes the values of AP for each
cue, since in this design, P(O,/A) = P(O,/D), while P(O /-A) = P(O,/-D).
Hence AP must be equal for cues A and D.

Results such as these have been interpreted as illustrations of cue selec-
tion in learning tasks, meaning that subjects apply some principles of selec-
tion to choose between potential causal factors. Without changing the
objective contingency between a cue and an outcome, in some circum-
stances the cue may be selected for association with the outcome and in
other circumstances not, depending on the presence and status of other
cues. Such selection effects have been regarded in a number of different
ways: at one extreme has been the view that they are signs of the fundamen-
tal irrationality of human learning, while at the other has been the view that
they represent the near-perfect adaptiveness of the human learning mecha-
nism to the environment. Qur present purpose is to see whether these sorts
of results are genuinely damaging for normative views. I shall refer to these
effects as ‘selectional’, taking that term to be descriptive rather than theo-
retical.
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In all of the simple cue- or action—outcome learning experiments consid-
ered previously, in which for instance subjects press a key and observe a
light flashing, I have simply assumed that the terms that appear in the AP
rule, P(outcome/cue present) and P(outcome/cue absent), are straightfor-
ward to determine so long as we have a specified time window or trial struc-
ture. With respect to the 2x2 contingency table, we assume that each
occurrence of the outcome can be readily categorised as one occurring with
or without the target cue or action. Each experimental trial either contains
the cue (or action) or does not, and either ends with or without an occur-
rence of the outcome. However, from a causal point of view this scenario is
somewhat odd, because an outcome occurring in the absence of the target
cue must have been caused by something else: there must be some third
event, ignored in the above analysis, that caused the outcome. Thus the
very notion of varying the degree of contingency between a cue and out-
come presupposes that outcomes may occur in the absence of the cue,
which in turn requires that some third event must be present to have actu-
ally caused the outcome. In a typical experiment, such as those conducted
by Wasserman and his colleagues, we must suppose that the experimental
context acts as a background cue to which the subject may attribute out-
comes. While this background is constant in simple experiments, in the sig-
nal condition of the Shanks (1989) experiment the background (which
includes the signal) is not constant. The same is true of the experiment
shown in Table 2.4.

How can these considerations be accommodated within a normative the-
ory? Statisticians do not have any agreed procedure for specifying the con-
tingency between events A and B when the background varies, but
psychologists and philosophers have offered one fairly straightforward
solution, developed in detail by Cheng and Novick (1990, 1992) and
Salmon (1984), and applied directly to associative learning tasks by Cheng
and Holyoak (1995). Cheng and Holyoak call it the ‘probabilistic contrast
model’. The procedure is to calculate P(O/C) for a target cue C across trials
on which C occurs, and to calculate P(O/~C) across trials that are identical
to the C trials with the exception that C is absent. That is to say, AP should
be calculated not across all trials but rather across a subset (the ‘focal set’)
of trials in which background events are kept constant. If we designate the
background as B, then the calculation is

AP = P(O/C.B)-P(O/-C.B), Q2.1

where P(O/C.B) is the probability of the outcome given the cue and back-
ground, and P(O/~C.B) is the probability of the outcome in the absence of
the target cue and presence of the background. Actually, a positive value of
AP from this equation does not guarantee that the cue is the sole cause of
the outcome, because an alternative interpretation is that the conjunction of
cue and background is necessary. To rule this out, Cheng and Holyoak
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point out that it is necessary to calculate yet another form of contingency,
namely:

AP = P(O/C.-B)-P(O/~C.-B), 2.2)

which is a measure of the cue—outcome contingency when B is absent (in
other words, in another context). If both of these versions of AP yield posi-
tive values, then a reliable relationship exists. On the other hand, if
Equation 2.1 yields a positive value of AP, but Equation 2.2 yields a value
of zero, then the cue is only causal when it interacts with the background B.
For instance, pressing a key on a computer keyboard only makes a light
flash on the screen in the context of a specific experimental procedure.

Some concrete examples may be useful. Suppose we are trying to ascertain
whether vitamin supplements are causally related to school achievement,
and suppose that vitamin intake is correlated with a well-established cause of
high achievement such as good overall nutrition. There are four possible sce-
narios. First, there may be a positive contingency between vitamins and
achievement in well-nourished children, and a positive contingency in
poorly-nourished children. In this case, vitamins will be interpreted as a gen-
uine cause (unless taking vitamins is correlated with some other cause of
achievement). Secondly, there may be a zero contingency between vitamins
and achievement both for well- and for poorly-nourished children, in which
case there is no predictive relationship between vitamins and achievement.
Thirdly, if vitamins are contingently related to achievement in well-nour-
ished but not poorly-nourished children, then vitamins will not be inter-
preted as being directly related to achievement: instead they will be viewed
as interacting with overall nutrition to increase school achievement. Finally,
if vitamins are unrelated to achievement in well-nourished children but are
related to it in poorly-nourished children, then they will again be interpreted
as interacting with overall nutrition level to affect school achievement. But
in this case, the lack of contingency in well-nourished children is likely to be
interpreted as a ceiling effect: these children are already doing as well as pos-
sible, and extra vitamins cannot improve their performance further.

As another example, consider the case of the relationship between the use
of sun-tan lotion and getting sunburn, which intuition suggests should be a
good example of a negative contingency. Suppose that like thousands of
other British people, I forget to use sun-tan lotion and get sunburned, with
distressing predictability, on the first day each year that the sun comes out.
The next time the sun comes out, I remember to use sun-tan lotion, but
even so, there is still a 50% chance that I get sunburned: perhaps I stay out
so long that the sun-tan lotion fails to protect me. On the face of it, sun-tan
lotion is negatively correlated with getting sunburn, but such a conclusion
only follows if contingency is computed conditionally. If we compute
unconditional probabilities, we find that the probability of getting sunburn
in the absence of using sun-tan lotion is about 1/364: there is one day a year
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on which I use sun-tan lotion, and 364 on which I do not, and on one of
these I get sunburned. The probability of getting sunburned on the one day
that I use sun-tan lotion is 0.5. Hence the relationship between using sun-
tan lotion and getting sunburned is positive:

AP = P(sunburn/sun-tan lotion)-P(sunburn/no sun-tan lotion)
=0.5-1/364
=0.497.

Thus contrary to intuition, sun-tan lotion seems to predict the occurrence,
and not the avoidance of sun-tan. But of course this conclusion comes
about because we have computed contingency unconditionally: in a sense,
using sun-tan lotion does predict sunburn, since I only use sun-tan when I
am out in the sun. But it is not sun-tan lotion that is the explanatory factor,
rather it is something correlated with it, namely the presence of the sun.
Instead, what we need to do is compute contingency conditionally, which in
this case means that we need to look at the probability of sunburn given
that I use sun-tan lotion (which implies I am out in the sun) and the proba-
bility of sunburn given that I do not use sun-tan lotion, but where I am
again out in the sun. With these probabilities, we will of course obtain a
negative contingency. Thus our intuition that there is an inhibitory relation-
ship between the use of sun-tan lotion and sunburn is correct, so long as we
compute contingency conditionally.

It is important to note that Cheng and Holyoak’s extension of contin-
gency theory only changes our predictions when the background is variable.
For all of the experiments considered in previous sections, the predictions
are unaffected since the background is constant. The only addition is the
perfectly sensible and valid point that since subjects in these earlier experi-
ments could only have applied Equation 2.1 and not Equation 2.2 (because
they were just exposed to one context), they are only licensed to conclude
that the action or cue is an interactive cause when combined with the back-
ground. The key idea, of course, is that the evaluation of a cue must be
based on a contrast between what happens when it is present versus what
happens when it is absent, all else being held constant, and this idea should
require little justification in the context of a scientific methodology which
emphasises the use of controlled experiments that adopt exactly this proce-
dure. In scientific experiments, the researcher sets up an experimental and a
control condition in which everything is held constant other than the pres-
ence versus absence of the critical factor.

Cheng and Holyoak (1995) have argued not only that the probabilistic
contrast model is the appropriate normative theory for causal or associative
relationships, but also that human behaviour is closely matched to it. With
respect to the signal effect (Figure 2.5), the theory says that AP is different in
the 0.5/0.5 and 0.5/0.5(S) conditions. For the straightforward noncontingent
condition, the theory’s computation of AP is the same as before: the proba-
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bility of the outcome given the action, P(O/A), and the probability of the
outcome in the absence of the action, P(O/-A), are both 0.50. However, in
the signal condition P(O/—A) must now be determined across trials that are
identical to the action trials, except that the action is absent. The action tri-
als are, naturally, action plus context trials, so P(O/-A) is calculated across
context-only trials. But, the outcome never occurs on context-only trials,
hence P(O/-A) is 0.0, and AP is 0.50. Another way of seeing this is to look
again at Table 2.3. P(O/A) is calculated from the top two cells, cells a and b:

P(O/A) = a/(a+b) = 50/(50+50) = 0.50.

P(O/~A) is normally calculated from the bottom two cells, ¢ and d.
However, in the 0.5/0.5(S) case the events in cell ¢ are removed because on
these trials the signal is present, which means they are excluded from the
focal set, and c is therefore zero. Thus:

P(O/-A) = 0/(0+50) = 0.0,

which means that AP is 0.50. The theory therefore produces a difference in
the required direction between the value of AP in the noncontingent and
signal conditions.

With regard to the experiment (Shanks, 1991a, Experiment 2) shown in
Table 2.4, the procedure is to calculate P(O,/A) across all trials, which in
this case means the AB trials, yielding a conditional probability of 1.0. For
P(O,/-A), we focus only on trials that are identical to the trials that con-
tribute to the computation of P(O,/A), except that A is absent; in this case,
that means we consider only the B trials, from which we obtain P(O/-A) =
0.0 and hence AP = 1.0. A comparable computation for cue D yields a value
of AP = 0.0, and hence the effect of contingency is accounted for. The idea
is simply that the causal efficacy of a cue has to be determined by contrast-
ing what happens when the cue is present versus what happens when it is
absent, everything else being held constant. Note that we normally restrict
the trials that contribute to the computation of AP anyway: we ignore trials
occurring outside the experimental setting.

The probabilistic contrast model represents a major advance in our con-
ception of normative theories of associative learning. Prior to its develop-
ment, it had been widely assumed that learning was non-normative because
of the sort of cue-selection result shown in Figure 2.5 and Table 2.4.
Researchers assumed that P(O/C) and P(O/-C) had to be calculated uncon-
ditionally, that is to say across the entire set of experimental trials, and
when computed in this way, judgments quite clearly do not correspond to
AP. For instance, Chapman and Robbins (1990) concluded that data they
obtained refuted contingency theory. They asked their subjects to make
predictions about changes in a fictitious stock market, and the design is
shown in Table 2.5. In the first part of the learning phase, whenever stock A
rose in price, the market rose in value as well (the outcome, O). Whenever
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Table 2.5. Design and results of the experiment by Chapman and Robbins (1990)

Stage 1 Stage 2 Test trials  Mean judgment
A—O AC—-0O C 31
B—no O BD—-O D 77

A-D are the cues (stocks), O is the outcome (market increase), and no O indicates
no change in the market.

stock B rose in price, the market failed to increase. Thus A was a good pre-
dictor of market increase while B was not. In the second part of the learn-
ing phase, on some trials stocks A and C increased together, and the market
rose, and on other trials stocks B and D rose together and the market again
rose. In the test phase subjects rated on a scale from —100 (perfect predictor
of market not rising) to +100 (perfect predictor of market rising) how well
each stock predicted a change in the market.

Note that stocks C and D are associated with a rise in the market on
exactly the same number of occasions. Nevertheless, when asked to make
predictive judgments for each stock, subjects gave a higher rating for stock
D than for stock C. Thus here we have another example of cue selection,
with stock A ‘blocking’ stock C. If we assume that AP is calculated uncondi-
tionally across all trial types, Chapman and Robbins’s result cannot be
explained because P(O/C) = P(O/D) and P(O/~C) = P(O/~D), meaning that
AP is identical for D and C (it actually has the value 0.57 in this experiment).

However, when calculated across the appropriate focal sets of trials,
rather than unconditionally, the picture is much more encouraging for
contingency theory. If AP for cue C is calculated just across the AC and A
trials, as the probabilistic contrast model suggests, and AP for cue D
is calculated across the BD and B trials, we obtain AP = 0.0 for cue C and
AP = 1.0 for cue D. The zero contingency for cue C comes about because
the outcome has the same probability on AC and A trials:

AP = P(O/C.A}-P(O/-C.A) = 1.0-1.0 = 0.0

where P(O/C.A) is the probability of the outcome in the presence of both C
and A and P(O/-C.A) is the probability of the outcome in the presence of A
and the absence of C. In contrast, the probability of the outcome differs on
BD and B trials:

AP, = P(O/D.B)-P(O/-D.B) = 1.0-0.0 = 1.0.

Thus the theory predicts a difference in the right direction between judgments
for C and D. Note that the observed difference is nothing like as extreme as



48 The psychology of associative learning

expected, so this discrepancy would presumably have to be explained by say-
ing, for instance, that the judgments have not reached asymptote. At any
rate, it is clear that the selection effect Chapman and Robbins obtained can
in principle be explained in terms of the computation of contingency.

A further demonstration of causal selection that can be explained in
terms of Cheng and Holyoak’s theory comes from an elegant study by
Baker et al. (1993). They demonstrated that if an action, moderately well-
correlated with the occurrence of an outcome, was accompanied by an
alternative causal agent that was in fact a perfect predictor of the outcome,
then judgments of the action-outcome relationship were substantially
reduced. In their first experiment subjects were required to participate in a
video game similar to that used in the experiment by Lopez and myself
described earlier. The subjects were able to fire at tanks that passed across
the video screen. By firing at the tanks, subjects could change their colour,
which might help them avoid colour-sensitive mines in a minefield the tanks
had to traverse. On some trials, then, the tanks were detected by the mines
and were blown up. The subjects’ task was to determine the extent to which
the action of firing at the tanks caused the outcome of avoiding destruction.
The basic design is shown in Table 2.6, which shows the possible outcomes
on trials where the subject fired at the tank and on trials where they
refrained from firing.

The contingency was such that the probability of the tank avoiding
destruction given a hit by the subject was 0.75 while the probability given
no hit was 0.25. Thus the contingency, AP, between firing and the tanks
avoiding destruction was 0.50. In addition, though, there was another stim-
ulus in the game (the signal), and this consisted of a plane which flew over
the tanks on certain trials. Subjects were told that the plane was able to
relay to the tanks information about the mines, and so make them less
likely to be destroyed. In condition 0.5(0.0), the plane in fact had no effect:
it was just as likely to appear on trials where the tank was not destroyed as
on trials where it was, and so its contingency with tank destruction was zero
(see second column of Table 2.6). Subjects’ judgments in this condition
were very close to 50 on a scale from 0 to 100, indicating that the plane
probably had little interfering effect on judgments. However, in condition
0.5(1.0), the planes only appeared on trials where the tank avoided destruc-
tion, and hence their presence was perfectly correlated with the avoidance
of destruction (right column of Table 2.6). The result was that action—out-
come judgments in this condition were significantly, and very substantially,
reduced even though the statistical relationship between firing at the tanks
and them avoiding destruction was just the same as in condition 0.5(0.0).
Hence this result, which Baker ez al. obtained in a series of experiments
with different contingencies and using different experimental procedures,
stands as another clear illustration of interaction or selection between
potential causal agents.
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Table 2.6. Design and results of Baker et al.’s (1993) experiment

Condition
Trial types 0.5(0.0) 0.5(1.0)
A+S—0 7.5 15
A+S—no O 2.5 0
A+no S—O 7.5 0
A+no S—no O 2.5 5
no A+S—0 2.5 5
no A+S—no O 7.5 0
no A+no S—O 2.5 0
no A+no S—no O 7.5 15
P(O/A) 0.75 0.75
P(O/-A) 0.25 0.25
AP, 0.50 0.50
P(O/S) 0.50 1.0
P(O/-S) 0.50 0.0
AP 0.0 1.0
Mean judgment 49 -6

The second column of the table shows the trial types (and frequencies) in
condition 0.5(0.0) where the signal (S) was noncontingently related to the
outcome (O). The third column shows the trial types in condition 0.5(1.0)
where the signal was perfectly correlated with the outcome. A = action,
no A = no action, no S = signal absent, no O = no outcome.

How does Cheng and Holyoak’s theory explain this result? Equations 2.1
and 2.2 must be applied in order to yield a value of AP conditional on the
presence of the signal and another value conditional on its absence. In con-
dition 0.5(0.0), the action—outcome contingency when the signal is present,
AP/S, is:

AP/S = P(O/A.S)-P(O/-A.S) = 0.75-0.25 = 0.50,
and the contingency when the signal is absent, AP/-S, is the same:
AP/-S = P(O/A.—-S)-P(O/-A.-S) = 0.75-0.25 = 0.50.

As we saw earlier, whenever AP is positive both in the presence and in the
absence of the conditionalising event (in this case, the signal), then a gen-
uine relationship exists. Thus we would expect subjects to rate the action, as
indeed they did, as positively related to the outcome.

Turning to the 0.5(1.0) condition, we find that in this case AP is zero
whether or not the signal is present:
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AP/S = P(O/A.S)-P(O/-A.S) = 1.00-1.00 = 0.00,
when the signal is present and
AP/-S = P(O/A .-S)-P(O/-A.-S) = 0.00-0.00 = 0.00

when it is absent. When both probabilities are zero, we can conclude
unequivocally that no action—outcome relationship exists. As desired, the
modified theory predicts a difference in judgments, with the 0.5(0.0) condi-
tion yielding a positive relationship and the 0.5(1.0) condition yielding a
zero relationship, which is of course the observed result.

A summary of where we have got to may be in order. People appear to
select amongst predictive cues: when the unconditional contingency
between a target cue and an outcome is held constant, the extent to which
the cue and outcome are associated depends on the status of other cues that
are concurrently present. If these other cues are themselves highly predictive
of the outcome, then the target cue will be to some extent ignored, while if
the other cues are not especially informative, the target event will receive a
normal association with the outcome. While such results are impossible to
explain in terms of the computation of unconditional contingency — that is
to say, in terms of the computation of AP across all trials in the experiment
— they can be understood with reference to contingency calculated across
subsets of the trials. Specifically, a focal set consists of all trials in which the
target cue is present as well as those trials which are identical to the target-
present trials except for the absence of the target. In this way, contingency
is calculated by considering the difference in the probability of the outcome
when everything is held constant except for the addition of the target cue.

Biases in learning

There is no doubt that the range of applicability of normative models based
on contingency has been enormously extended by Cheng and Holyoak’s
analysis, and there is also little doubt that — within certain constraints —
associative learning is very close to being normative. In fact, in the remain-
der of this book I shall follow Dickinson (1980), Anderson (1990) and
many others in assuming that the associative learning mechanism has been
shaped by evolution to detect statistical contingency. I shall also assume
that, like visual illusions, deviations from the prescriptions of the normative
theory are likely to be understood by examining the specific mechanism that
underlies learning. One can either interpret illusions as evidence that per-
ception is inherently biased, or as the result of a system that has to provide
a true picture of the world given the constraints of the processing machin-
ery of the brain. I suggest that the latter is more plausible. The system often
has to operate under severe pressure and so may yield inaccurate results;
nevertheless, the system as a whole is designed to operate veridically. Of
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Table 2.7. Design and results of the experiment by Shanks (1991a, Experiment 3)

Condition Trial types Test symptom  Mean rating

Correlated AB—O, 20) A 323
AC—-no O 20)

Uncorrelated DE—-O, (10) D 49.0
DE—no O 10)
DF-O0, 10)

DF—no O (10)

A-F are the cues (symptoms) and O,, O, are the outcomes (diseases); no O indi-
cates no outcome. Numbers of each type of trial are shown in brackets.

course, when one understands the perceptual machinery at a fine enough
level of detail, it should be possible to explain why illusions occur. In
Chapter 4 we will see that many biases in associative learning can be under-
stood in terms of the computations of a system which, fundamentally,
behaves in a normative fashion.

In the remainder of this chapter I would like to discuss some further
associative learning data that are rather harder to accommodate with the
probabilistic contrast model and which indicate fairly clear biases in learn-
ing. We will try to see if there is any simple specification of the circum-
stances necessary to obtain biases such as these.

The first limitation of the probabilistic contrast model is that it fails in
some circumstances to make any predictions at all because the task does
not provide sufficient information about contrasts. For instance, in another
medical diagnosis cue—outcome learning experiment that I conducted
(Shanks, 1991a, Experiment 3), subjects were asked to rate the relationship
between cue A and disease 1 and that between cue D and disease 2 after the
training trials shown in Table 2.7. The procedure again required subjects to
make diagnoses on each trial, with corrective feedback. For disease 1, the
problem is easily mastered since the disease only occurs on AB trials; AC
trials were accompanied by the absence of any disease. For disease 2 the
task is ambiguous since both DE and DF were paired with the disease on
50% of trials during the learning task.

Subjects witnessed 80 trials on each of which one of the six trial types was
selected at random. At the end of the learning phase, they were asked to
rate the relationship between symptoms and diseases on a scale from 0 to
100. As expected, subjects gave a high rating of the B—O, relationship and
a low rating of the C—O, relationship. E and F received intermediate rat-
ings for O,. The critical data are the ratings of A and D, and these are given
in Table 2.7. Here, a significantly higher rating was given for the D—O,
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than for the A—O, relationship. A full explanation of this result must be
postponed until Chapter 4, but for present purposes we need to see that this
result is very problematic for the probabilistic contrast model. The reason is
that the conditional probabilities needed by the AP rule are impossible to
ascertain because there is no subset of events that allows the relevant com-
putation to be made. Consider the A—O, relationship. The value of
P(O,/A) can be calculated as 0.5 across the AB—O, and AC—no O trials,
but since B and C are never presented alone, no suitable contrast probabil-
ity is available. On the other hand, if the subject merely calculates AP across
all experimental trials, then P(O,/A) is 0.5 and P(O,/-A) is 0.0, but this
value is identical to that obtained for the relationship between cue D and
outcome O,.

In fact, it is not only the ratings for cues A and D that are problematic
for the theory. When exposed to AB—O, and AC—no O trials, subjects
had no difficulty deciding that B was strongly related to disease 1 and C
was not. However, in terms of the probabilistic contrast model, it is not
clear how these judgments could have been derived, since as with cue A, the
relevant contrasts for B and C cannot be made. In order to compute the
contingency between cue B and disease 1, the subject would have to have
experienced some trials with cue A on its own, in order for the contrast
with the AB trials to be made. No such trials were witnessed, though. In
sum, there appear to be circumstances in which insufficient evidence is pro-
vided for the relevant contrasts to be made, but where subjects have no dif-
ficulty making associative judgments. Melz et al. (1993) have considered
how the contrast model might be applied to such situations, but their sug-
gestion is not very persuasive.

Another way in which biases may be observed is to manipulate the order
in which trials of different types are presented. The statistic AP is based on
values of P(O/C) and P(O/-C) calculated across a subset of trials in which
everything is held constant except for the presence or absence of the target
cue. Plainly, these probabilities are unaffected by the order in which the tri-
als are presented, so long as the trial types themselves are the same. Thus
on the normative theory, we would have to predict that the order in which
the trial types are witnessed should make little difference to the observed
judgments, since the probabilities are calculated across a set of trials and
are unaffected by order.

Normative models are challenged by evidence suggesting that trial order
does in some circumstances have an affect on associative learning. A case in
point comes from a series of experiments reported by Chapman (1991)
which we will have cause to return to in Chapter 4. One of Chapman’s
experiments will serve to illustrate the basic finding. In this study, subjects
were exposed to a training procedure designed to establish one cue as hav-
ing a negative contingency with the outcome. Using the standard medical
diagnosis task, Chapman gave subjects 12 trials in the first stage on which
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Table 2.8. Design of the experiment by Chapman (1991, Experiment 4)

Stage 1 Stage 2 Stage 3 Test trials

A—-O AB—-no O B
CD-no O C-0 D

A-D are the cues (symptoms), O is the outcome (disease), and no O indi-
cates no disease.

symptom A was associated with a fictitious disease (see Table 2.8). In the
second stage, 12 further patients had symptoms A and B but did not have
the disease, and 12 patients had symptoms C and D and also did not have
the disease. These AB and CD trial types were intermixed. Finally, in the
third stage, 12 patients had both symptom C and the disease.

The A—O and AB—no O trials should establish cue B as having a nega-
tive relationship with the disease. According to the probabilistic contrast
model, AP for cue B will be calculated just across the A and AB trials, yield-
ing a value of —1.0, and in accordance with this prediction, cue B was given
a negative mean rating of —-42 on a scale from —100 to +100. Turning to the
CD—no O and C—O trials, it is clear that apart from the order in which
the trials are witnessed, the evidence presented to the subjects concerning
the D—O relationship is exactly comparable to that concerning the B—O
relationship, and that the value of AP is therefore the same for B and D.

Contrary to this prediction, Chapman found that subjects gave a signifi-
cantly less negative rating for cue D (mean = —34) than they had for cue B,
and she therefore concluded that trial order is an important factor in learn-
ing. Note that Chapman’s experiment makes it unlikely that the effect is
due to differential forgetting of the AB and CD trials, since the three-stage
procedure ensured that these trial types occurred contemporaneously and
hence should have been forgotten — if at all — to equal degrees. Clearly, sub-
jects may be biased by trial order, but is there any obvious explanation of
this effect? Consider a subject observing A—O trials followed by AB—no O
trials. Given that cue A has been established as a predictor of the disease,
the absence of the disease on the AB trials is surprising and should lead the
subject to reason that the new cue, B, must have an effect that cancels out
cue A, and hence must be negatively related to the disease. For the CD—no
0O, C—O trials, the subject has no prior expectations and so the absence of
the disease on CD trials should be neither surprising nor unsurprising. Thus
little should be learned on these trials, either positive or negative, about any
contingency between symptom D and the disease. In Chapter 4 we will see
that associationist theories posit a close relationship between surprise and
learning, and even though in idealised circumstances such models can be
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Figure 2.6. Mean judgments of contingency at different action-outcome delays. In the experi-
mental conditions, P(O/A) was 0.75 and P(O/~A) was zero, and the outcome occurred after 0,
2, 4, or 8 s. In the control conditions, the sequence of outcomes in the corresponding experi-
mental condition was played back to the subject independently of his or her responding.
Subjects detected the action-outcome contingency at the 0 and 2 s delays but not at the 4 and
8 s delays. (After Shanks et al. 1989.)

said to compute AP, they can nevertheless explain Chapman’s data on the
basis that the difference in trial order alters the degree to which the out-
come on CD trials, relative to AB trials, is surprising.

The effect of trial order seems to occur because the different trial types
are presented in separate blocks. If they had all been intermixed, then of
course trial order would have had no effect and judgments for the two tar-
get cues would have been identical since the trial types for B and D would
have been functionally equivalent. Presenting trials in distinct blocks seems
to allow biases in associative judgments to appear, and perhaps this is not
surprising. If the learning mechanism needs prolonged exposure to a set of
relationships in order to determine where the true predictive relationships
lie, then this can only be achieved by continually repeating the various trial
types in an intermixed fashion until learning is complete.

Returning to our main theme of biases in learning, it is important to note
that contingency is not the only informational clue that the environment
provides about associative relationships, and biases may emerge via the
manipulation of other types of information. Temporal organisation is just
such an alternative source of information. For instance, events close
together in time are more likely to be related than ones separated in time.
This contiguity factor was known by Hume in the eighteenth century but
has been little investigated in the laboratory. In a simple experiment of ours



The rational analysis of learning 55

(Shanks, Pearson and Dickinson, 1989), judgments were dramatically
reduced by the insertion of a delay between the action and outcome. In that
experiment, which used a computer-based version of the instrumental pro-
cedure used by Wasserman and his colleagues, subjects pressed the space
bar on a computer keyboard and judged the extent to which that action
caused a triangle on the computer screen to light up for 0.1 s. There were
four experimental conditions, lasting for 2 min, in which every action
caused the outcome with probability 0.75. However, in different conditions
it did so either immediately, or after 2, 4, or 8 s. As Figure 2.6 shows, when
the outcome occurred immediately, the mean judgment of causality was
82.4 on a scale from 0 to 100. In conditions with delays of 2, 4, and 8 s the
mean judgments were steadily reduced.

Plainly, increased delay caused a reduction in associative learning, but
were the subjects still sensitive to the relationship at the longer delays? To
answer this, we need to compare the judgments of subjects in the experi-
mental conditions with judgments given under appropriate control condi-
tions. But just what are the appropriate control conditions? The solution
adopted in the Shanks et al. study was as follows. We recorded the pattern
of outcomes which occurred in each experimental condition for each sub-
ject, and this was then played back to the subject in a later control condi-
tion independently of their responding. Thus the comparison between an
experimental and control condition allows us to tell whether the subject was
sensitive in the experimental condition to the causal relation at that
action—outcome interval compared to the control condition in which there
was no causal relation. Because the outcome occurred with the same fre-
quency in the control and experimental conditions, this procedure allows us
to unconfound the effects of a delay from the reduction in the number of
outcomes that ensues if subjects reduce their response rate at longer delays.

Figure 2.6 shows that with a 4 s action—outcome delay, subjects were no
longer sensitive to the instrumental associative relationship. Thus in this
sort of task, people only appear to be able to detect a relationship between
their actions and the outcome when the delay between them is less than
about 4 s. It should be emphasised, of course, that much longer delays can
certainly be tolerated in other situations. The slope of the contiguity func-
tion is likely to be highly task-specific.

Is it rational for subjects to reduce their judgments as the action—outcome
delay increases? The first answer that comes to mind is ‘yes’. It seems intu-
itively obvious that a delayed outcome is less likely to have been caused by a
target event than an immediate one. However, it does not appear as if this
intuition is captured by a supposedly normative analysis based on the statis-
tic AP. In terms of contingency theory, delaying an outcome does not affect
its probability. In each of the conditions of the Shanks et al. experiment,
P(O/A) was 0.75 regardless of the action—outcome interval. One solution is
to take time into account when calculating P(O/A) and P(O/-A), in which
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case reducing the degree of contiguity between events will also reduce con-
tingency. To see how this can occur, imagine dividing up one of the condi-
tions in the experiment described above into equal time intervals, say of 1 s
duration, and calculating the conditional probabilities with respect to those
time intervals. When the action and outcome are highly contiguous, there
will be a large number of time intervals in which both the action and out-
come occur, so P(O/A) will be high and P(O/~A) will be low. As the
action—outcome delay is increased, more time intervals will contain the
action but not the outcome, and more will contain the outcome but not the
action. The net result of both of these effects is to decrease AP.

But on closer inspection there appear to be two difficulties with this idea.
First, remember that the theory must yield, for any given task, a specific
value of P(O/A) and P(O/-A), and hence AP. But in order to specify what
one means by the probability of an outcome given an action and the proba-
bility of the outcome in the absence of the action, it is necessary to specify
across what window of time these probabilities are to be evaluated. Usually,
the window is clearly demarcated in some way as a specific trial: for exam-
ple, in the medical diagnosis procedure, each patient clearly constitutes a
‘unit’ as far as the computation of conditional probabilities is concerned.
But in other situations, such as the free-operant task used in the Shanks et
al. experiment, it is not. For such situations, there seems to be no indepen-
dent or objective way of determining the time interval across which P(O/A)
and P(O/-A) are to be evaluated. Yet the choice of this time interval makes
a considerable difference to the predictions contingency theory makes. In
any situation in which actions and outcomes are occurring across time, if
we take longer and longer time windows then P(O/A) will approach 1.0,
whereas if we take shorter and shorter time windows it will approach zero.
Suppose that there is one cue, followed after 5 s by an outcome, and out-
comes never occur noncontingently. What is AP? If we specify a time win-
dow of 10 s, then an action and its contingent outcome may fall inside one
window and the contingency will be 1.0. But if the window is 1 s in dura-
tion, the action and outcome will fall inside different windows and the con-
tingency will be negative: P(O/A) is zero, and P(O/-A) is less than zero,
depending on how often the action is performed. Thus it is impossible to
state definitively what the value of AP is, and this of course represents a
major drawback to our normative theory.

The second problem is that even if a specific time interval for the calcula-
tion of P(O/A) and P(O/~A) can be specified, we would then have to predict
that judgments should be discontinuous. Suppose, with respect to the Shanks
et al. (1989) experiment, that the relevant time interval is 1 s. In the no delay
condition, 75% of actions will fall inside a time interval that also contains an
outcome, while no outcomes will fall inside a time interval that does not also
contain an action. Accordingly, P(O/A) will be 0.75, P(O/-A) will be zero,
and AP will be 0.75. In contrast, in the 2 s delay condition all actions will fall
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inside time intervals that do not contain an outcome, and all outcomes will
fall inside intervals that do not contain an action. Hence AP will be zero. The
conclusion is that judgments should be discontinuous and drop from 75 (on a
scale from 0 to 100) to zero as soon as the action—outcome delay exceeds the
time interval that has been specified. The data in Figure 2.6 do not support
this prediction; instead, judgments fall steadily as the delay is increased.

Before leaving the topic of contiguity, it is worth mentioning that there is
a small amount of evidence that spatial as well as temporal contiguity may
influence learning. In one relevant experiment (Shanks, 1986), subjects were
asked to judge the instrumental relationship between firing shells at a tank,
and the tank’s blowing up. On each trial, the tank passed through a gun-
sight on the right of the computer screen and the subject chose whether or
not to fire at it. Subjects were told that because the tank was a long way off,
it would not blow up immediately but after a short delay during which it
would have moved some way across the screen. Subjects were also told that
the tanks were traversing a minefield, which therefore represented an alter-
native cause of tank destruction. The probability of destruction given a hit
was 0.75, while the probability in the absence of a hit was 0.25, yielding a
contingency of 0.5. The experiment found that judgments of the action—out-
come relationship were greater if the tanks blew up immediately adjacent to
the gun-sight, rather than further away from it, even when temporal conti-
guity was held constant by varying the speed of the tanks. Thus there is
some evidence of a role for spatial contiguity, but this is another factor that
is not considered by current normative theories.

Contiguity is not the only way in which the temporal structure of events
can vary. Another concerns the nature of the schedule that relates cues or
actions and outcomes. An experiment by Reed (1993) highlights the effects
of this factor. Reed was interested in the exact temporal patterning of out-
comes that were contingent on an action. The task again involved judging
the relationship between pressing the space bar on a computer keyboard
and the illumination for 0.1 s of a triangle on the screen. In one condition,
called the variable-interval (VI) condition, the computer first selected at
random a time interval of between 1 and 20 s, and then arranged for the
outcome to be contingent on the first response emitted after that time inter-
val had elapsed. Responses occurring during the chosen time interval were
ineffective. The number of responses emitted for each outcome was
recorded and used to determine the schedule of outcomes in the second,
variable-ratio (VR), schedule. Here, the first outcome occurred when the
subject had made the same number of responses as had been emitted prior
to the first outcome in the VI condition, the second outcome occurred when
the same number of responses were made as had preceded the second out-
come in the VI condition, and so on. Each condition lasted for 2 min and
was followed by a rating of the action-outcome relationship on a scale
from 0 to 100.
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In this way, Reed was able to set up two conditions that were identical in
terms of the overall action-outcome contingency but which differed in the
precise temporal patterning of events. In both conditions, P(O/A) was 0.09
and P(O/-A) was zero, yielding a value of AP of 0.09. Thus if subjects were
computing AP and basing their judgment on that statistic, the two condi-
tions should have yielded equal ratings. In fact, judgments in the VI condi-
tion (mean 41) were significantly greater than those in the VR condition
(mean 28).

Why should this have occurred? Reed (1992) reported two further experi-
ments in which judgments differed in a pair of conditions again equated in
terms of AP, and also obtained evidence that judgments depended on
whether or not each outcome was preceded by a temporally-isolated
response or not. Without changing AP, it is possible to have one condition
in which the action immediately preceding each outcome is isolated from
earlier actions, and a second in which the last action before the outcome is
itself part of a dense sequence of actions. Reed found that the former case
leads to higher judgments than the latter, and also showed that VI sched-
ules tend to produce relatively large numbers of outcomes that are contin-
gent upon temporally-isolated actions. It is important to acknowledge that
the basis of VI/VR differences (which have been much studied in animals) is
not entirely clear (see Dickinson, 1985), but whatever the explanation that
will finally prove correct, it is obvious that such differences are at odds with
models which rely on the computation of an overall metric of statistical
contingency and which ignore the local characteristics of action—outcome
pairings.

There are, in addition to contingency and contiguity, other factors that
almost certainly influence associative learning but which have not been
extensively studied in humans. For example, we have already seen, in the
section on preparedness and phobias, that stimuli such as spiders and flow-
ers seem to differ in the ease with which phobias are formed to them. One
explanation (Seligman, 1971) is that over the course of evolution some stim-
uli have become ‘prepared’ in the sense that they are especially easy to asso-
ciate with certain outcomes, particularly aversive ones. In fact, I argued
that this result is not necessarily indicative of preparedness but could be
explained in terms of socially- and culturally-transmitted beliefs that the
probability of an aversive outcome is higher in the presence of such fear-rel-
evant stimuli than it is in the presence of fear-irrelevant stimuli. But certain
other examples of selective association are probably not explicable in these
terms. Outside the field of phobias, it is known that cues can differ in terms
of the ease with which they can be associated with a given outcome, the
best-known example being taste-a version learning. Animals readily associ-
ate gastric illness, induced by an injection of lithium chloride, with a novel
food that they have eaten some hours earlier, but they find it difficult to
learn an association between a tone and illness. In contrast, a tone will be
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far more readily associated with shock than will a novel food (Domjan and
Wilson, 1972). There is clearly something in the nature of the stimuli them-
selves that operates in addition to contingency and contiguity. For example,
the internal or external nature of a stimulus may be relevant: stimuli may be
easy to associate when they are both internal (food and illness) or external
(tone and shock), but not otherwise. As yet, such factors have not been
widely studied in humans.

Summary

The environment provides us with a number of hints that events are
causally or structurally related, amongst which contingency is the most
obvious. Perhaps it is not surprising that humans have evolved to be quite
finely sensitive (under ideal conditions) to this factor: after all, it is now
known that associative learning in such lowly creatures as the mollusc
Hermissenda is sensitive to variations in contingency (Farley, 1987).
Nevertheless, the demonstration in humans of such sensitivity not only
establishes the adaptiveness of the learning system, but also provides a fun-
damental empirical phenomenon against which theories of associative
learning may be compared.

In this chapter we have seen that a good deal of associative learning data
can be interpreted in terms of the application of quite simple statistical
rules. Although data may be obtained that accord better with rules such as
AD than with the normative AP rule, this may be attributed to pre-asymp-
totic learning. At asymptote, judgments tend to conform well to the AP the-
ory. When additional cues are present, the AP theory must be interpreted
within a framework such as Cheng and Holyoak’s (1995) probabilistic
contrast model. This specifies that AP should be calculated over a set of
events in which except for the target cue or action, everything else is held
constant. This account can accommodate a number of selectional results
that have been taken as inconsistent with contingency theory, and to the
extent that this is the case, associative learning can be interpreted as ratio-
nal or normative.

Nevertheless, there plainly are situations in which biased judgments may
be obtained. In situations where the conditional probabilities cannot be
assessed across an unchanging background, but where subjects have no dif-
ficulty making associative judgments, the predictions of the account become
unclear. When trials are presented in blocks rather than intermixed, effects
of trial order can occur which are outside the scope of the theory, and
biases can also be induced by varying the schedule relating the action to the
outcome. Finally, I have argued that in some situations, particularly those
involving manipulations of contiguity, the normative theory can come close
to being undefined.

There is clearly a long way to go before we have a complete specification
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of what counts as a normative theory of learning, but it is already apparent
that much of the data obtained in associative learning experiments can be
viewed from a rational perspective. Our goal in later chapters, particularly
Chapter 4, will be to see how apparent biases may emerge from a learning
mechanism which has fundamentally evolved to yield normatively accurate
beliefs concerning associative relationships. Our immediate concern,
though, is to turn to the second of our basic questions about learning, con-
cerning the nature of the representations that underlie associative learning.



3 Prototype abstraction and instance
memorisation

In the last chapter we established that, to a first approximation, the human
learning system behaves normatively. In attempting to answer the question
‘What is the system doing?’ (the first of our three questions), we have found
that associative learning corresponds reasonably well to the prescriptions of
contingency theories. In reaching this conclusion, we have remained agnos-
tic about how the system actually works; all we have shown is that the
behaviour it yields in associative learning tasks is roughly what a statisti-
cian utilising the notion of contingency would prescribe. In the present
chapter we begin our consideration of how the system achieves this end.
Here, we ask the second question, “‘What sort of information is acquired
during the course of a learning experience? . In the next chapter, we will ask
exactly how at the mechanistic level this information is acquired.

We begin by considering the phenomenon of generalisation, which repre-
sents one of the principal challenges to any theory of learning. Having
learned something about one stimulus, how will acquired knowledge deter-
mine responding to some further stimulus? Generalisation is of interest not
just because it is something we would like our theories of learning to
explain, but also because it provides data that may tell us about the way in
which information is represented. Two quite different views of the form of
information underlying associative learning have been embodied in proto-
type and instance theories, and for these theories generalisation is a central
issue. They attempt to describe how learning takes place in situations where
there is considerable stimulus variation from trial to trial, and where the
ability to generalise to new stimuli perceptibly different from ones already
encountered is essential.

The concept of similarity

In order to understand how prototype and instance theories construe the
learning process, and how they explain generalisation, it is necessary first to
consider the concept of similarity. Essentially, prototype and instance theo-
ries assume that some mental representation is formed as a result of expo-
sure to a set of training stimuli, with responding to further stimuli being a
function of their similarity to the represented stimuli. Although similarity is
a common everyday term, psychologists have developed a number of tools
for measuring and analysing it; in particular, it has become commonplace
to interpret similarity in terms of distance in a psychological space. As
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Nosofsky (1992) has noted in a recent review, the idea of a psychological
space and the development of accompanying techniques for analysing such
spaces have proven to be amongst the most significant advances made in
cognitive psychology in the last 40 years, since they allow us to discover
regularities about that space that are distinct from regularities holding in
physical space. This chapter reviews some of these developments.

How can we begin to investigate psychological spaces? As a simple illus-
tration, suppose we have five stimuli that vary along two physical dimen-
sions: say, rectangles varying in height and width. The assumption is that
these stimuli are represented in the mind of an observer in a way that
reflects his or her perceptual as well as cognitive capacities, with the repre-
sentations of the stimuli not necessarily corresponding to their physical
descriptions. For instance, a typical observer may be less able to make fine
discriminations between rectangles varying in height than between ones
varying in width, in which case two rectangles differing in height by 1 cm
may seem more similar and may be mentally represented as closer together
than ones differing in width by 1 cm. In order to discover how stimuli are
represented in psychological space, we need to use a statistical method such
as multidimensional scaling (MDS), which is one of a family of techniques
for recovering the psychological structure inherent in a class of stimuli
(Shepard, 1980). Subjects are invited to make pairwise similarity judgments
concerning the stimuli; Figure 3.1 gives a hypothetical set of such judg-
ments for the five rectangles.

The hypothesis is that these similarity ratings are monotonically-decreas-
ing functions of distance in psychological space: the closer the points, the
greater their judged similarity. Shepard (1958) showed that provided the
judgments meet three constraints, they uniquely determine the relative spa-
tial co-ordinates of the stimuli; that is to say, a given arrangement of stimuli
can yield only a single set of similarity ratings and vice versa. The con-
straints are that the similarity s, between stimuli i and j be the same as that
between j and i (symmetry; 5,=s,); that for all stimuli i, j, k, 5, >s,+s,, (tri-
angle inequality); and that the similarity between each stimulus and itself is
the same for all stimuli (minimality). There has been some debate about
whether these constraints indeed hold for similarity judgments (see
Nosofsky, 1992), but the success of the scaling approach suggests that vio-
lations of the constraints are the exception rather than the norm.

If we have a set of similarity ratings, it is then possible to recover the spa-
tial locations of the stimuli using the procedure known as multidimensional
scaling. Essentially, the procedure begins by assuming an arbitrary spatial
arrangement of the stimuli and then determines a slight movement in the
location of each stimulus so as to improve the overall correspondence
between distance and similarity ratings. This procedure is iterated until no
further improvement can be achieved. Eventually, a set of co-ordinates will
be obtained such that the distance between each pair of stimuli correlates
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Figure 3.1. Hypothetical stimuli and similarity ratings. The matrix on the right gives a set of hypothetical similarity judg-
ments for pairs of stimuli (rectangles varying in height and width), assuming judgments are made on a scale from 0 (very
similar) to 60 (very dissimilar). The figure on the left shows the locations of the five stimuli in psychological space which
might be derived from a multidimensional scaling (MDS) analysis. As can be seen, the co-ordinates of the stimuli preserve
the similarity structure shown in the matrix, such that the distance between a pair of stimuli approximately correlates with
their judged similarity.
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inversely with their judged similarity. The left panel of Figure 3.1 shows the
hypothetical co-ordinates that might be derived for the rectangles. As can
be seen, stimuli judged most similar appear close together in the spatial
solution, and those judged most dissimilar appear furthest apart.

Identification learning

Similarity ratings have been the most common type of proximity measures
for pairs of stimuli, but another measure that is of more relevance to asso-
ciative learning involves identification learning. Suppose subjects are pre-
sented on each trial with one of, say, 12 stimuli and are required to learn to
uniquely identify or name each stimulus. Thus, to stimulus 1 the subject
must make response 1, to stimulus 2 response 2, and so on. After making
an identification response to each stimulus, corrective feedback is provided
if the response was incorrect, and stimuli continue to be presented until the
subject has mastered the task. It is evident that just as with direct ratings of
similarity, the probability of confusing stimuli in an identification learning
task provides proximity data for those stimuli that can be used to recover
the locations of each stimulus in psychological space. If stimuli 1 and 2 are
very close in psychological space, the subject is likely to make many incor-
rect identification responses where response 2 is given to stimulus 1 and vice
versa. In contrast, two stimuli far apart in psychological space are less likely
to be confused.

As an illustration of this procedure, consider the data shown in Table 3.1
which are from an experiment by Nosofsky (1987). The 12 stimuli were dis-
criminably-different reddish Munsell colour chips. In the experiment, each
subject was presented with 324 trials, on each of which one of the stimuli,
chosen at random, was presented and the subject was required to make the
assigned identification response. In this case, the responses were the num-
bers 1 to 12, which were assigned to the 12 stimuli in a different way for
each subject. Table 3.1 shows the complete matrix of confusions obtained in
the experiment. Thus, on 665 occasions, subjects correctly gave response 1
to stimulus 1, but on 82 occasions they incorrectly gave response 3.

Using the procedure just described, Nosofsky reproduced the classic find-
ing of Shepard (1958), that identification confusion data such as those given
in Table 3.1 can be interpreted in terms of similarities between points in a
multidimensional space. Specifically, Nosofsky performed an MDS analysis
which yielded the points shown in Figure 3.2. The points shown in the fig-
ure are such that if the distances between all pairs of points are computed
and rank ordered, then that rank ordering will very closely match the rank
ordering of confusion frequencies. For instance, the second row of Table
3.1 shows that on trials with stimulus 2, response 4 was the most likely
error and response 10 was the least likely. Accordingly, in Figure 3.2 the
nearest neighbour to stimulus 2 is stimulus 4 and the furthest is stimulus 10.
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Table 3.1. Nosofsky’s (1987) confusion data

Response

Stimulus 1 2 3 4 5 6 7 8 9 10 11 12

1 665 17 8 13 63 19 4 20 13 14 4 7

2 21 670 38 121 9 20 12 10 7 1 3 6

3 152 28 453 37 82 718 7 39 18 10 7 5

4 12 156 35 581 19 46 36 12 14 2 1 4

5 73 8 63 12 552 32 13 100 24 18 13 9

6 30 15 8 42 55 466 46 70 59 12 15 19
7 10 17 10 38 12 354 616 17 117 4 9 15
8 14 9 35 20 77 64 18 513 28 8 33 14
9 6 5 26 13 16 65 101 48 507 10 52 69
10 5 7 8 7 14 16 9 50 8 767 22 5
11 3 3 8 3 7 6 11 37 28 48 594 172
12 4 5 10 0 7 2 18 22 27 13 216 591

Cell entries give the frequency with which each response was given to each stimu-
lus. The stimuli were Munsell colour chips.

In MDS analyses such as this, it is possible to try spatial representations
with any number of dimensions to see if the addition of extra dimensions
improves the overall fit. Nosofsky was unable to get a better fit to the con-
fusion data using a three-dimensional spatial representation of the stimuli
than with the two-dimensional representation.

This sort of MDS analysis reveals a great deal about the psychological
structure of these stimuli. For instance, the two dimensions recovered from
the analysis happen to conform quite well to the brightness and saturation
of the stimuli. According to the Munsell colour system, stimuli 5, 6, and 7
for instance are all equally bright, and this is reflected in their approxi-
mately equal values on the y-axis. Similarly, stimuli 2, 6, and 11 are all
equally saturated, which is reflected in their approximately equal values on
the x-axis. Thus the analysis suggests that colours are mentally represented
in terms of these attributes. However, the analysis allows us to extend even
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Figure 3.2. Locations in psychological space of the 12 stimuli in Nosofsky’s (1987) experiment.
The stimuli were Munsell colour patches and the co-ordinates were derived from a multidi-
mensional scaling (MDS) analysis of the identification confusions shown in Table 3.1. The rel-
ative locations are such that the separation of two stimuli in this space predicts their likelihood
of being confused.

further our understanding of identification learning. Multidimensional scal-
ing only establishes that the probability of identification response j to stim-
ulus i is a monotonic and decreasing function of the distance d; between
them. What is the exact nature of this function? It has been established in a
wealth of situations that provided the stimuli are readily discriminable, the
relationship between similarity and distance is exponential (Shepard, 1987).
If we assume that similarity and distance are related by the formula
—edi;

i€ G.1)
where ¢ is a free parameter, then we can predict each confusion almost
exactly from the equation

P(R/ i) = by (.2)

2 bs;
3

where b, is a bias for response j. What this equation says is that the stimuli
used in an experiment are represented as points in a n-dimensional psycho-
logical space, and the similarity between two stimuli is an exponential func-
tion of their distance. Then, the probability of giving response j to stimulus
i depends on the similarity between stimuli i/ and j, divided by i’s similarity
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to all of the stimuli. The denominator of this equation is simply a normalis-
ing factor that ensures that all of the response probabilities sum to one.
Finally, it is assumed that the subject, other things being equal, may prefer
some responses to others: this is reflected in the bs.

To summarise: a set of identification confusions can be interpreted in
terms of the pairwise distances between the representations of the stimuli in
a psychological space. The perceptual system is assumed to analyse each
stimulus and represent it in that space. The relative locations of the stimuli
are then obtained by finding the set of points such that when the distance
between any pair of stimuli i and j is computed and exponentiated, the like-
lihood of giving response j to stimulus i in a learning task is exactly or
nearly exactly predicted. With this procedure, Nosofsky (1987) was able to
account for an astonishing 99.8% of the variance in the data shown in
Table 3.1. Plainly, the notions of spatial representation and exponential
generalisation are very well supported.

Returning to our central interest, namely how identification responses are
learned, Nosofsky’s model as stated in Equation 3.2 assumes that the subject
memorises the response that is associated with a given location in the space.
As a result of receiving feedback concerning the correct response, that
response is automatically attached to the corresponding stimulus location.
When a stimulus is presented on a subsequent trial, its distance is determined
from all the locations in the space that have responses attached to them, and
the probability of emitting each of those responses is dictated by Equation
3.2. Note that if on an earlier trial the subject received feedback concerning
the correct response for stimulus 7, and on a subsequent trial that stimulus is
again presented, then the distance is zero and the similarity is 1.0. However,
this maximal similarity does not guarantee that the correct response will be
made: if stimulus 7 is also similar to another stimulus j for which a different
response is appropriate, then P(R/i) may be less than 1.0 in Equation 3.2.

It should be clear from Equation 3.2 that the likelihood of making a cor-
rect response — that is, the probability of making the response that has been
attached to a given location when a stimulus falling at that location is pre-
sented — depends ultimately on the parameter ¢ in Equation 3.1. The simi-
larity of a test stimulus to other stimuli that have different responses
assigned to them depends on ¢, and as ¢ increases, similarity decreases, in
turn making correct responses more likely. Within Nosofsky’s framework,
then, learning is attributed to changes in similarity as well as to the simple
encoding of instances. With more and more trials, the similarities of the
stimuli to each other decrease and correct responses increase. This idea in
fact has a venerable history going back to William James’ (1890) elegant
discussion of how repeated exposure to claret and burgundy, which are
practically indistinguishable to the novice, tends to make them seem more
distinct from one another such that to the expert wine-taster they are as dis-
tinct as chalk and cheese.
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Given this reliance on the notion of changes in perceived similarity, it is
natural to ask whether there is any independent evidence of such a process
during identification learning. Unfortunately, there have been few successful
attempts to show the effect directly, but a recent experiment by McLaren,
Leevers and Mackintosh (1994) provides a fairly clear illustration. Subjects
were trained in the first stage of the experiment to classify random-dot pat-
terns into two categories. These patterns were in fact different distortions of
two underlying prototype patterns, and all of the stimuli generated from one
prototype were to be assigned to one category and those from the other pro-
totype to a contrasting category. As training proceeded, subjects improved
their classification accuracy. In the test stage, subjects now had to learn iden-
tification responses to each of two stimuli that were either selected from one
of the categories seen in the first stage of the experiment or were novel; these
pairs of patterns were objectively equally similar. McLaren et al. found that
identification learning was faster for the previously seen stimuli than for the
unseen ones, indicating that the seen stimuli had become more discriminable
during the first stage of the experiment (so-called ‘perceptual’ learning),
exactly in the way assumed by Nosofsky.

Prototype abstraction

At the outset of an identification learning experiment, the subject has had
no experience with the stimulus-response assignments of the experiment
and is thus forced to guess amongst the available responses. As a result of
learning to identify each of a set of stimuli, the subject comes to have a rep-
resentation of each stimulus and its associated response. When a given stim-
ulus is presented, it is mentally compared with all stored stimulus
representations and the most likely response is the one associated with the
most similar stored representation. Of course, the assumption has been that
each presentation of a given stimulus is effectively identical as far as the
subject is concerned — each presentation of stimulus i corresponds to exactly
the same point in psychological space. In real life, though, this situation is
rarely, if ever, fulfilled. When learning a person’s name, for instance, each
observation of their face is quite different even though the face itself is
objectively the same, and the different ways in which the face can present
itself form a category rather than a single stimulus. We must therefore
address the question of how such variability is dealt with. The more general
case in which variability occurs is where several objectively distinct stimuli
are associated with the same response or outcome, this being, of course,
what we call ‘categorisation’. So what happens when several different stim-
uli are associated with a single response?

One venerable approach is to say that categories of stimuli are repre-
sented by mental prototypes and that learning involves abstracting the
appropriate prototype. The category bird, for example, might be repre-
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Figure 3.3. Mean reaction time (RT) in classifying stimuli as a function of their category
typicality. Subjects were trained to classify dot patterns into different categories, with the pat-
terns varying in terms of their level of distortion from the category prototypes. RTs for stimuli
later judged highly typical of their categories were faster than those for stimuli later judged less
typical. (After Rosch ez al. 1976.)

sented by a typical bird that has been mentally abstracted from our experi-
ence of a large number of actual birds. On this account, responding to a
new stimulus is a function of its similarity to the prototype. As test stimuli
get closer to the prototype, they should therefore become easier to cat-
egorise, an effect that is readily demonstrated in the laboratory. For
instance, Rosch, Simpson and Miller (1976) asked subjects to categorise
artificial stimuli such as random dot patterns. A pattern from one of four
categories was presented on each trial and the subject made a classification
decision, with corrective feedback for incorrect responses. For each cat-
egory, the patterns were the category prototype plus one pattern at each of
five levels of distortion. After learning the category assignments, subjects
were instructed to continue classifying the patterns as rapidly as possible
and their response times were recorded. Finally, subjects rated each of the
patterns in terms of how typical it was of its category.

On the basis that typical items are closer to the category prototype, the
prototype view predicts that differences should be observable in responding
to the stimuli as a function of their distance from the prototype, and this is
exactly what Rosch et al. observed. As Figure 3.3 shows, items judged
highly typical were classified more rapidly in the test stage than ones judged
less typical.
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A similar result is obtained in the classification of faces. Clearly, develop-
ment equips us with the ability to discriminate between huge numbers of
faces, even when they are highly similar. We might expect that such over-
whelming exposure to faces would allow us to abstract a prototypical face,
and indeed this is a view that has been advocated by researchers such as
Valentine and Bruce (1986). On such a view, the speed with which a face
that we encounter is classified as such should depend solely on its similarity
to the face prototype, regardless of whether it is familiar or unfamiliar. To
test this, Valentine and Bruce (1986) asked a group of subjects to rate on a
scale from 1 to 7 how distinctive each of a set of unfamiliar faces was. On
the basis of these ratings, faces were split into two groups containing the
most typical and the most distinctive faces. Next, two different groups of
subjects had to make classification decisions. On each trial either an intact
or a jumbled face was shown, where jumbled faces were made from real
faces whose features had been rearranged such that, for instance, the eyes
were below the mouth. The subject had to press as fast as possible an
‘intact’ or a ‘jumbled’ response key. Half of the subjects were students for
whom the faces were familiar, and half were students for whom they were
unfamiliar. Thus, the same faces were used in the classification task for each
group, but for half of the subjects they were familiar and for half they were
unfamiliar.

The results, shown in Figure 3.4, confirm that faces closer to the proto-
type, i.e. typical faces, were classified more rapidly than distinctive ones,
and this held both for familiar and for unfamiliar items. Valentine and
Bruce also found that for the jumbled faces, it made no difference whether
the face was made up from components of typical or distinctive faces.

Perhaps the most compelling reason to believe that abstraction of the
prototype underlies categorisation is the abundant evidence that the proto-
type stimulus itself will be classified accurately and rapidly, even when it
has never been presented in the training stage of an experiment. For
instance, Homa, Sterling and Trepel (1981) trained subjects to classify geo-
metrical patterns into three categories which varied in size. Three prototype
patterns were defined, and training patterns were constructed by highly dis-
torting these prototypes. In each block of the study phase, subjects saw 20
different patterns from category A, 10 from category B, and 5 from cate-
gory C. One of these patterns was presented with corrective feedback on
each trial, and subjects continued until they had achieved two errorless
blocks. In the transfer phase, which occurred either immediately or after
one week, the original training patterns plus the unseen prototypes were
presented for classification.

Homa et al. found that subjects were in some cases more likely to cor-
rectly classify the prototype, which they had never seen, than any of the
specific training instances, and this was particularly the case when the cat-
egory contained a large number of instances (20). Figure 3.5 shows that the
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Figure 3.4. Mean reaction time (RT) to decide whether a stimulus was an intact or a jumbled
face. Data are shown just for the intact faces, depending on whether they were familiar or
unfamiliar and whether they were distinctive or typical. Regardless of whether the faces were
familiar or not, subjects responded more rapidly to typical faces, that is, ones that were closer
to the face prototype. (After Valentine and Bruce, 1986.)

benefit for the prototype over the original training items was enhanced
when a long interval (one week) intervened between training and testing.
Here, the prototype was correctly classified on 96% of trials, while the origi-
nal patterns were only classified correctly on 85% of trials. Such results
seem to imply that the prototype, at least in some instances, is mentally rep-
resented.

Homa et al. observed a further interesting result. When classification per-
formance was tested after a delay of a week, considerable forgetting was
evident for the original training items: for the 20-item category, perfor-
mance fell by about 10%. In itself this result is not surprising, but as Figure
3.5 illustrates, Homa e al. found no such forgetting with regard to the pro-
totype patterns. For these, performance if anything slightly improved
across the delay. Thus prototype classification may continue to be highly
accurate even when memory for the training instances has deteriorated, a
result that is consistent with the notion that it is the abstracted prototype
that is mediating classification.

A final finding in support of the idea of prototype extraction concerns the
relation between recognition and classification. If all that is represented is
the prototype, then subjects should be less likely to say that they recognise
the original training items than the unseen prototype. To test this, Metcalfe
and Fisher (1986) taught subjects to classify random-dot patterns into three
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Figure 3.5. Mean probability of correct classification responses for original training patterns
and novel prototypes. Subjects were trained to classify geometrical patterns into three cat-
egories. Either immediately or after one week, the training items and prototypes were pre-
sented as test stimuli. When tested after a week, subjects were more accurate in classifying the
prototype than the original training stimuli. Also, the old training items were more susceptible
to forgetting than the prototypes. (After Homa ez al. 1981.)

categories. In the learning stage, each category contained six stimuli that
were distorted from the relevant category prototype by equal amounts. At
test, subjects had to classify and make recognition judgments for the old
instances, the prototype, new instances that were distorted from the proto-
type by the same amount as the training items, and a large-distortion pat-
tern,

Metcalfe and Fisher found that the prototype was again classified at least
as well as the training items, but more importantly, the probability of
falsely recognising the prototype was very high. In fact, it was even higher
than the probability of (correctly) recognising the actual training items.
Thus, consistent with the prototype view, subjects were apparently less
likely to remember the training items than the prototype.

The results discussed so far in this section are all consistent with the idea
that associative learning is mediated by prototype representations that are
abstracted from the specific training stimuli, and such a view obviously has
the attraction of great cognitive parsimony in that only a single representa-
tion needs to be maintained for each category of objects. But despite all of
these findings, there are some well-known problems with the notion that
concepts are represented by prototypes, so much so that it is now generally
doubted whether prototype abstraction actually takes place in classification
experiments. In the formation of a prototype, a large amount of informa-
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Table 3.2. Design and results of Medin et al.’s (1982) experiment

Pattern Proportion category A responses
1111 0.88
category A 1100 0.89
training items 0111 0.73
1000 0.77
0010 0.12
category B 0001 0.17
training items 1010 0.25
0101 0.33
0000 0.53
0011 0.53
0100 0.75
test 1011 0.67
items 1110 0.45
1101 0.38
0110 0.36
1001 0.28

tion is discarded, yet this is information to which people can in fact be
shown to be sensitive. For example, abstraction of the prototype means
that information about the variance of the studied items, the number of
such items, and correlations between values on different dimensions is lost.
With regard to the last of these, consider the category of birds, for example.
Within this category, there is a modal value on the size dimension, and a
modal value on the singing dimension, and an abstracted prototype would
encode these values. However, it is also the case that small birds are more
likely to sing than large ones, a correlation between the dimensions that
could not be recovered from the prototype. The evidence suggests that peo-
ple are sensitive to such correlations, and therefore the notion that classifi-
cation depends on distance to an abstracted prototype is at the very least
inadequate.

As an illustration, consider an experiment by Medin et al. (1982). In the
study phase subjects were presented with the four-dimensional stimuli
shown in Table 3.2 which represented instances of two categories, where the
dimensions encoded the presence or absence of each of four symptoms and
the categories were fictitious diseases. The prototype of category A had a
value of 1 on dimensions 1 and 2, while the prototype of category B had
values of 0 on these dimensions. The remaining dimensions were not indi-
vidually diagnostic, but instead had correlated values in the two categories.
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Thus all category A exemplars had the same values on dimensions 3 and 4,
while all category B exemplars had different values on these dimensions. By
the end of the training stage, the category A items were all being assigned to
category A with probabilities greater than 0.70, while the category B items
were being assigned to category A with probabilities less that 0.35 (which
means they were being assigned to category B).

The table shows that classification of test patterns was strongly affected
by whether the values on dimensions 3 and 4 were the same or different. All
test stimuli in which these values were the same were more likely to be
assigned to category A, while all those in which the values differed tended to
be assigned to category B, in accordance with the correlations of the study
items. Pattern 1101, for instance, was classified in category B despite the fact
that its values on the first two dimension were diagnostic of category A,
while its values on dimension 3 and 4 taken in isolation were equally diag-
nostic (or nondiagnostic) of the two categories. Responding must therefore
have been affected by the correlation between dimensions 3 and 4.

Although such results are problematic for prototype theories, it is of
course possible that Medin ez al.’s experimental task was not conducive to
prototype abstraction and that under more favourable circumstances
abstraction would occur. Certainly, given the results of the study of Homa
et al. (1981), abstraction is more likely to take place in circumstances where
a greater number of instances of each category is used than the relatively
small number in Medin et al’s experiment. However, an experiment by
Ashby and Gott (1988) makes this line of reasoning look dubious since they
obtained evidence of sensitivity to correlated dimensions even when a very
large number of distorted patterns was used.

Ashby and Gott presented subjects with simple figures formed by a verti-
cal and a horizontal line orthogonally joined at the upper left corner.
Stimuli were distortions of two prototype patterns which were the same in
terms of the length of the vertical line but differed in the length of the hori-
zontal one. Subjects received 300 trials on which they had to assign each
stimulus, with corrective feedback, into category A or B. As in Medin et
al’s experiment, there existed a correlation between the dimensions, and
this is shown together with the prototypes in Figure 3.6. Stimuli varied at
random about the prototype in terms of horizontal and vertical line length,
but a positive correlation existed between these lengths. The ellipses in
Figure 3.6 are ‘iso-probability’ contours representing stimuli that were gen-
erated from the prototype with equal probability. These contours indicate
that for each category, greater horizontal line length tended to go with
greater vertical length.

If classification is mediated by similarity to an abstracted prototype, then
the dashed line in the figure should demarcate category A and category B
responses. All points to the right of the dashed line are nearer the category
B prototype, while all those to the left are nearer the category A prototype.
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Figure 3.6. Schematic illustration of the stimuli used by Ashby and Gott (1988). The stimuli
consisted of a vertical and a horizontal line joined at the upper left corner. On each trial, a dis-
tortion of one of the 2 category prototypes, A and B, was presented (with feedback) for classi-
fication. The distortions were generated by a procedure which maintained a correlation
between the two dimensions, such that shorter horizontal length tended to go with shorter ver-
tical length. The ellipses are ‘iso-probability’ contours representing stimuli that were equally
likely to be generated. Category responses should be demarcated by the dashed line if subjects
respond on the basis of similarity to the prototypes. In fact, the solid diagonal line divided sub-
jects’ category A and category B responses.

Thus stimulus T is nearer the category A prototype. In contrast, the solid
diagonal line divides stimuli according to their likelihood of being gener-
ated from the two categories: points above the line correspond to stimuli
more likely to have been generated from category A, and points below the
line correspond to stimuli more likely to have been generated from category
B. Because of the correlation between the values on the two dimensions,
stimulus T is actually more likely to have been generated from category B
than from category A.

According to the theory that classification is determined by similarity to
abstracted prototypes, we should expect the dotted line to approximately
divide the two response classes, even though there may be some noise and
error in the subject’s responding. The results Ashby and Gott (1988)
obtained, however, show that this prediction is quite wrong: classifications
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were determined by the solid diagonal line, which represents optimal per-
formance, rather than by the dotted line. Even though many stimuli con-
structed from short horizontal and vertical lines, such as stimulus T, were
closer to the category A prototype, subjects classified them in category B
(and vice versa for stimuli constructed from long lines). This result clearly
indicates sensitivity to the dimensional correlation.

Ashby and Gott’s findings are interesting in another respect that con-
cerns the potential accuracy of human classification performance. They cal-
culated that if their subjects had been responding on the basis of proximity
to the prototypes, they would only have been able to achieve about 66%
correct responses, but in fact subjects classified about 85% of stimuli cor-
rectly, which is close to the maximum percentage possible given the noise
inherent in the stimulus-generation procedure Ashby and Gott used. Hence,
whenever the dimensions are correlated, classifying on the basis of proxim-
ity to abstracted prototypes would lead to very large numbers of erroneous
decisions and to sub-optimal performance. In sum, classification learning is
difficult to explain — even when a large number of distortions are seen in the
study phase — solely on the basis of similarity to an abstracted prototype.

Evidence for instance memorisation

Perhaps the strongest motivation for doubting the adequacy of prototype
abstraction as the basis of category learning comes from experiments show-
ing that information retained about specific training items influences classi-
fication. According to the logic of prototype theories, if the prototype is the
only representation in memory that plays a role in the classification process,
then specific training items that may have been studied should not affect
classification performance. However, such ‘exemplar’ effects can be demon-
strated in a number of ways. The simplest is to compare classification per-
formance on old and new patterns equated for distance to the prototype. If
classification is based purely on an abstracted prototype, then in experi-
ments such as those of Rosch ef al. (1976) and Homa et al. (1981), we
should expect the original training items to be classified no better than new
test items equidistant from the prototype. Instead, numerous experiments
have found that old items are responded to better or faster than new items
even when equated for similarity to the prototype.

Consider an experiment by Jacoby and Brooks (1984). They asked sub-
jects to sort pictures of categories such as cups according to how typical
they seemed of their respective categories. Subjects next classified as rapidly
as possible 38 such objects shown in slides. Then in the test stage they clas-
sified new and old items, with some of the new items being the category
prototypes. As Table 3.3 shows, prototypical items were classified more
rapidly in the test stage than new different items. Moreover, they were also
classified more rapidly than the original items had been in the study phase.
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Table 3.3. Results of Jacoby and Brooks’ (1984) experiment

Study phase Test phase

Study items Prototypes Study items New different
268 237 214 278

Data are response times in ms.

But although it is beyond doubt that the prototype patterns were classified
faster than the new different items, the fastest responses of all were to
repeated study items. These were classified much faster in the test stage than
they had been the first time round, which led to reaction times being faster
than for the prototypes. If all the subjects were doing was comparing a test
item to the prototype of its category, it is hard to see why the old study
items rather than the prototypes should be responded to fastest.

Similarly, in Homa et al.’s (1981) experiment where subjects were trained to
classify simple geometrical shapes into three categories of different sizes, the
original patterns were classified better than new ones equidistant from the
prototype. Subjects were tested on new patterns that were distorted from the
prototype as much as the original patterns, but which systematically varied in
terms of their similarity to specific old patterns. As Figure 3.7 shows, increased
similarity to an old training item went with increased classification accuracy. If
information about the specific training items is discarded in the formation of
the prototype, it is difficult to see why such a result should emerge.

Direct evidence that training instances are retrieved in the process of clas-
sification comes from a series of studies by Malt (1989). She presented sub-
jects in the first stage with pictures of artificial animals, varying on eight
dimensions, for classification into two categories. Once these had been
learned to criterion, a test stage was presented in which on some trials new
items had to be classified. Malt reasoned that if the classification of a new
item involved the explicit retrieval of an earlier similar training instance,
then if that training instance was presented for classification on the immedi-
ately following trial, it should be classified — as a result of priming — more
rapidly than it would be if it were dissimilar to the new item. This is exactly
what Malt found: classification of old exemplars was faster if new but simi-
lar items had occurred on the preceding trial compared to the situation in
which the animals were dissimilar. In addition, Malt obtained no priming in
a second control condition. Here, subjects again classified each old instance
in the test stage, but instead of classifying the new stimulus that occurred
immediately beforehand, subjects simply had to judge whether it was large
or small. This, of course, doesn’t require accessing knowledge of old
instances. The results from this condition also rule out the possibility that
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Figure 3.7. Percentage of correct classifications for new stimuli varying in their distance from
old training items. The experiment is the same one that generated the results shown in Figure
3.5. After learning to classify stimuli into one of 3 categories, which contained either 5, 10, or
20 stimuli, subjects were tested with new stimuli equated in their distance from the category
prototypes but differing in their similarity to old training items. Stimuli similar to training
items were classified much more accurately then those further away. (After Homa et al. 1981).

the new test stimulus speeded up processing of the following old instance
simply as a result of sharing many attributes with it and hence causing per-
ceptual enhancement. If perceptual enhancement caused the priming effects,
priming should also have occurred in the condition where subjects make
large/small decisions to the new animals, but it did not.

The evidence presented so far concerning the importance of instance
memory in associative learning has come exclusively from categorisation
experiments. However, instance effects can be demonstrated in other tasks
too, and a particularly illuminating example comes from an ingenious study
by Whittlesea (1987). He constructed the stimulus set shown in Table 3.4. A
pseudoword (FURIG) was defined as the prototype, and various distor-
tions around this prototype were constructed. Thus the type I words each
differed from the prototype by one letter, the type II words by two letters,
and the type III words by three letters. However, note that FURIG is the
objective prototype for each set of words, in that it contains the modal let-
ter in each position. For the Ia set, for instance, four of the five items begin
with F, four have U as their second letter, and so on. Note also that while
the Ila, b, and c items each differed from the prototype by two letters, the
IIb items differ from the Ila items by one letter while the Ilc items differ
from the Ila items by two letters.
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Table 3.4. Stimuli used by Whittlesea (1987)

Prototype Ia Ib ITa IIb IIc 11

FURIG FUKIG FUTIG FEKIG FYKIG FUKIP PEKIG
FUREG FURYG FUTEG FUTYG PUTIG FYTEG
PURIG KURIG PURYG PUREG FURYT PURYT
FYRIG FERIG FYRIP FERIP FYREG FYKIP
FURIT FURIP KURIT PURIT KERIG KURET

The I stimuli differ from the prototype by one letter, the II items by two letters,
and the III items by three letters. FURIG is the prototype of each letter set.
Relative to the Ila items, the IIb items differ by one letter, the Ilc items by two
letters, and the III items by one letter.

Whittlesea did not require subjects to learn to classify these items, but
instead used a speeded letter identification task. In the preliminary stage,
the Ila, IIb, and IIc words were presented for 30 ms followed by a pattern
mask which made identification very difficult, and subjects had to write
down in their correct positions as many of the letters as they were able to
read. This established a baseline against which later performance could be
compared. In the study phase, the Ila words were presented for unlimited
time and the subject merely had to write down each word. Then in the test
phase the Ila, IIb, and IIc words were again presented for speeded classifi-
cation as in the study phase.

Since the Ila items presented in the study phase are derived from the
FURIG prototype, it is reasonable to imagine that subjects would abstract
this prototype during exposure to the study items. But if that were the case,
then the encoded prototype should facilitate the subsequent speeded identi-
fication of test words to the extent that they share letters with the proto-
type. Since the Ila, IIb, and Ilc test words all differ from the prototype by
two changed letters, they should therefore receive equal amounts of facilita-
tion. Note also that the test sets are equated for the numbers of times spe-
cific letters appear in specific positions.

In contrast to this prediction, if the subjects have memorised the actual ITa
study items and respond on the basis of similarity to those memorised exem-
plars then we would expect a greater degree of facilitation on the Ila test
items than the IIb items, which in turn should show more facilitation than
the IIc words. The Ila items should receive maximal facilitation, since they
have themselves been memorised, the IIb items should receive less facilita-
tion because they each differ from the IIa items by one letter, and the Ilc
items should receive least facilitation since they differ by two letters from the
memorised exemplars. This result is exactly what Whittlesea observed. The
top portion of Table 3.5 shows the degree of facilitation for each test type in
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Table 3.5. Results of Whittlesea’s (1987) experiments

Training stimuli Transfer scores
IIa IIa 1.07

Ib 0.80

Iic 0.51

Ifa ITa 1.22

Iic 0.65

111 0.86

Numbers are the mean increase in the number of letters correctly identi-
fied, relative to the preliminary baseline stage.

this experiment. The figures in the table give the mean increase in numbers
of letters correctly identified in position compared to the score from the pre-
liminary phase. Since the maximum score on a test word is five letters cor-
rect in position, a facilitation of 0.5 represents a 10% increase in letter
identification. The critical result was that there was a progressive decrease in
facilitation from the IIa to the IIb to the Ilc items, despite the fact that these
were all the same distance from the FURIG prototype.

Whittlesea’s stimulus set allows a further and even more damaging test of
the notion of prototype abstraction. Suppose subjects are trained on the Ila
items and then tested on the Ila, Ilc, and III items at test. The new aspect is
the inclusion of the type III test items, and for these, we would have to pre-
dict poorer performance than for the other items if similarity to the proto-
type underlies facilitation, since the type III items differ from the prototype
by three letters while the ITa and Ilc items differ by only two. The results of
this second experiment, also shown in Table 3.5, show the direct opposite of
this in that the type III items receive significantly more facilitation than the
type Ilc items. Why should this be? Inspection of the stimuli reveals that
each of the type I1I items is constructed so as to differ from a Ila study item
by at most one letter, while the Ilc items differ by two letters. If facilitation
is a function of the similarity of a test item to a memorised study item, then
this is exactly the outcome that would be expected. Whittlesea’s results
therefore not only provide a further illustration of instance memorisation,
but also demonstrate that increasing the proximity of an item to the proto-
type can have a detrimental effect if the item becomes less similar to the
study items, as in the comparison between the IIc and III items.

Given these results, it is perhaps not surprising that researchers have
begun to acquire evidence of instance effects in language tasks as well. For
example, Jared, McRae and Seidenberg (1990) compared the time required
to name written words such as CAVE and CANE. They found slower
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response times for the former than for the latter and interpreted this in
terms of the similarity of other known words. While both words have regu-
lar spelling-sound correspondences, CAVE is similar to a word (HAVE)
which has a different pronunciation, whereas all _ANE words are pro-
nounced like CANE. The difference in naming latency can therefore be
understood in terms of a model in which words are represented as points in
a multidimensional space, with performance being affected by other similar
words having the same or a different pronunciation.

The context model

On the basis of the overwhelming evidence that instance memorisation
plays a role in category learning, Medin and Schaffer (1978) proposed that
a significant component of the mental representation of a category is simply
a set of stored exemplars or instances. The mental representation of a cat-
egory such as bird includes representations of the specific instances belong-
ing to that category, each presumably connected to the label bird. In a
concept learning experiment, the training instances are encoded along with
their category assignment.

Medin and Schaffer assumed that both instance storage and prototype
abstraction could occur during the learning of a concept, and of course any
combination of these two processes is possible. However, subsequent stud-
ies have shown that performance in a great many category learning studies
can be understood in terms of instance storage alone and that the notion of
prototype abstraction may be unnecessary. For example, it is not necessary
to cite prototype abstraction in order to explain the accurate and rapid clas-
sification of prototype stimuli: as originally noted by Hintzman and
Ludlam (1980), instance theories can account for prototype effects, because
as a test item gets closer to where the prototype would be, its summed simi-
larity to the training instances also increases. Thus classification decisions
based on summed similarity will be maximal for the prototype pattern. If
instance storage is known to take place, and if instance storage models are
able to explain a broad range of empirical phenomena, then adding a pro-
totype abstraction process adds little in terms of explanatory power while
reducing the parsimony of the theory.

Although there remain advocates of prototype extraction (e.g. Homa,
Dunbar and Nohre, 1991) as well as sceptics about the distinguishability of
prototype and instance theories (e.g. Barsalou, 1990), the evidence seems to
go against the notion that category learning is based on prototype abstrac-
tion, and instead supports instance memorisation. The instance view pro-
poses that subjects encode the actual instances during training and base
their classifications on the similarity between a test item and stored
instances. When a test item is presented, it is as if a chorus of stored
instances shout out how similar they are to the test item. At the formal
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level, the best-developed such theory is the context model of Medin and
Schaffer (1978) and Nosofsky (1986), which is directly related to the theory
of identification learning we considered earlier. The basic idea is simple: the
probability of assigning a stimulus i to category J is a function of the
summed similarity of i to each of the members of category J that have been
stored in memory, divided by the summed similarity of stimulus i to all
exemplars of all K categories:

S..
PUJ/i)= ;’ Y (33)
Z S
K k

In this equation, s; is the similarity of stimulus 7 to stimulus j, j being one of
the stored exemplars of category J. The name ‘context model’ denotes the
fact that an instance is a complex conjunction of the target item together
with the current context.

We can illustrate the power of instance-storage theories by considering the
results of a category learning study by Nosofsky (1987) that utilised the identi-
fication data described earlier. Recall that Nosofsky was able to obtain the
psychological co-ordinates (see Figure 3.2) of each of a set of 12 colour
patches by use of a multidimensional scaling procedure. With other subjects,
Nosofsky then examined category learning. These subjects were trained to
classify the stimuli across 240 trials into two categories with appropriate feed-
back, and the relevant data are from the last 120 trials. Three of the classifica-
tions are shown in Figure 3.8. In the pink-brown problem (so-called because
the members of the one category are shades of pink and those of the other cat-
egory shades of brown) the members of the two categories are discriminable
by a boundary going from top-left to bottom-right. In the diagonal classifica-
tion, four stimuli on the diagonal are in category 2 and the rest in category 1.
Note that this classification cannot be solved by a single linear boundary.
Finally, in the brightness problem the members can be classified on the basis
of a horizontal boundary. In this latter problem, stimuli 1, 3, and 5 were pre-
sented without explicit feedback and therefore represent transfer stimuli.

Since Nosofsky knew the psychological locations of each stimulus, he
was therefore able to compare subjects’ classification decisions with the pre-
dictions of the context theory. For each stimulus, its distance to each other
stimulus was computed and these distances were exponentiated as specified
in Equation 3.1. Then, the probability of assigning the stimulus to category
1 was determined by Equation 3.3. Nosofsky found a remarkable degree of
concordance between predicted and observed classifications, with over 99%,
97%, and 99% of the variance in the observed classifications in the
pink-brown, diagonal, and brightness classifications being accounted for,
respectively. Figure 3.9 shows the observed and predicted probabilities of
making a category 1 response for each stimulus, including the transfer
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Figure 3.8. Three classification problems used by Nosofsky (1987). In each case, the same set
of 12 stimuli (Munsell colour patches) was used. The locations of these stimuli in psychological
space come from a separate MDS analysis (see Figure 3.2). In each problem, subjects were
trained to classify some stimuli (filled circles) into category 1 and others (open circles) into
category 2. In the brightness problem, filled squares represent transfer stimuli. Note that the
diagonal classification cannot be solved by a single linear boundary.
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Figure 3.9. Predicted (context model) and observed classification probabilities for the classifi-
cation problems shown in Figure 3.8. Each symbol refers to one of the stimuli from one of the
problems. Note that in general category 1 stimuli (filled symbols) were correctly assigned to
category 1 and category 2 stimuli (open symbols) to category 2. (After Nosofsky, 1987.)

stimuli in the brightness condition. Clearly, the concordance between the
subjects’ responses and the predictions of the model is exceptional.
Nosofsky obtained one additional important result. The psychological
co-ordinates of the stimuli were obtained from subjects performing an iden-
tification learning experiment, and from these co-ordinates can be com-
puted the distances, and hence classification probabilities, of the subjects
who performed the categorisation part of the study. However, except in the
pink-brown problem, these distances did not on their own provide a very
good fit to the data. Instead, Nosofsky had to assume that for the categori-
sation subjects, the psychological space in which the stimuli fell was
stretched and shrunk along its component dimensions relative to the space
for the identification subjects. That is to say, Nosofsky had to assume that
selective attention was operating when subjects were classifying the stimuli.
To illustrate, Nosofsky found that no stretching of the space was required
for the pink-brown problem in order to predict classification responses,
whereas a considerable amount of distortion was required in the diagonal
and brightness problems: in both of these, the space had to be stretched ver-
tically and shrunk horizontally. This makes good sense. In the brightness
condition, especially, it is clear that subjects can solve the classification by
ignoring the saturation dimension (dimension 1) and attending instead to the
brightness dimension (dimension 2). Variations in saturation are irrelevant
for the purposes of classification, while variations in brightness, especially in
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Figure 3.10. Explanation of contingency effects provided by instance theories. Two indepen-
dent cues, A and B, are represented as points in a psychological space where the end-points of
each dimension are the presence and absence of the cues (top panel). When the outcome (O)
occurs given the compound cue AB but not (no O) given B alone (lower left), the space is
stretched along the relevant A dimension and shrunk along the irrelevant B dimension, making
A more similar to AB. In contrast, when both AB and B are accompanied by the outcome
(lower right), A becomes less similar to AB.

the vicinity of the category boundary, are highly significant. By ignoring the
saturation dimension, subjects are effectively shrinking the space horizon-
tally such that stimuli differing only in saturation become more similar.
Conversely, stretching the space vertically makes stimuli differing in bright-
ness appear more distinct and hence less confusable.

It is clear that subjects could solve some of these classifications by
abstracting a prototype, and so to test this, Nosofsky compared the fits of
the context model with those of a prototype theory, assuming that the
training instances formed the basis for an abstracted prototype. For the
pink-brown condition, 95% of the variance was accounted for, and
although this is quite good, it is statistically much worse than the fit of the
context model. For the diagonal problem, on the other hand, only 33% of
the variance was accounted for. Clearly, the formation of a single category
1 prototype would not allow that problem to be solved. In fact, the fit in
this condition was still poor (82%), relative to that of the context model,
when it was assumed that two category 1 prototypes were abstracted, one
for stimuli 1, 2, 3, and 5, the other for stimuli 7, 9, 11, and 12.
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Having found such an impressive degree of support for the instance
approach, it is now appropriate to return to our fundamental effect — the
effect of contingency on associative learning — and ask how this account
explains such effects at the informational level. The basic idea is illustrated
in Figure 3.10. The figure shows stimuli as points in a psychological space,
with the dimensions of the space corresponding to the dimensions of varia-
tion amongst the stimuli. Since we are interested in the simple case in which
we have two stimuli, A and B, we assume that each stimulus is represented
by an independent dimension on which the values are absent and present.
In a design in which two types of trials (AB and B) are presented, the rele-
vant stimuli occupy the left (B) and right (AB) upper vertices of the space.

The explanation of contingency effects is straightforward. Suppose AB is
paired with the outcome while B on its own does not predict the outcome.
According to the instance account, attention will selectively be directed to
the A dimension, since it is presence versus absence of this cue that predicts
the outcome. In terms of the psychological space depicted in Figure 3.10,
the net effect of this is to stretch the space horizontally and shrink it verti-
cally, such that more weight is given to the A dimension. In contrast, when
AB and B trials are both accompanied by the outcome, the A dimension is
irrelevant and it is now the B dimension to which attention should be
directed. Hence the space is stretched in the vertical direction and shrunk in
the horizontal direction.

The outcome is that presentation of A on its own will elicit a greater
response tendency in the case where the outcome is contingent upon A than
in the case where it is not contingent upon A, since, as the figure shows, A
is more similar to AB for the situation shown in the lower left-hand panel
than for that shown in the lower right-hand panel. Since AB is associated
with the outcome, this greater degree of similarity translates into a greater
response tendency. Hence we have a simple explanation at the informa-
tional level of why the contingency effects described in the last chapter
emerge.

Categorisation and recognition

It has occasionally been claimed that data from experiments comparing
recognition and categorisation pose a problem for the view that categorisa-
tion is based on comparison to memorised instances. We have seen how
memorised instances are assumed to determine classification, but what
about recognition? Here, the idea would simply be that an item on a recog-
nition memory test is called ‘old’ to the extent that it is similar to one or
more of the memorised instances, regardless of their category assignment.
On the face of it, we might expect to see some relationship between cate-
gorisation and recognition, because on the instance view the same informa-
tion underlies both sorts of decision. For instance, we might expect subjects
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to be more accurate at classifying items they believe to be old, since such
items are more likely to have been stored in memory and hence be capable
of influencing categorisation than items the subject thinks are new. In other
words, we might expect the probability of correctly classifying an item given
that it is believed to be old, P(correct/‘0ld’), to be greater than the corre-
sponding probability for items believed to be new, P(correct/‘new’).

Following such logic, Metcalfe and Fisher (1986) tested the instance
approach by comparing P(correct/‘old’) and P(correct/'new’). One aspect of
Metcalfe and Fisher’s study was discussed previously. Remember that in
the training phase they presented six random dot patterns generated from
three category prototypes, and then tested subjects with the original train-
ing patterns, the previously-unseen prototypes, and other novel patterns.
For each test pattern, the subject first had to decide whether it was old or
new, and then assigned it to one of the categories. We saw earlier that sub-
jects classified the prototype very accurately and that they were very likely
to falsely recognise the prototype. But the interesting finding for our pre-
sent purposes concerns the comparison of P(correct/‘old’) and
P(correct/'new’). Since subjects had to make both classification and recogni-
tion decisions, it is possible to calculate the probability that a subject makes
a correct classification decision, given that he or she has called the item
‘old’, and compare this with the corresponding probability for items called
‘new’. Overall, the difference between P(correct/‘old’) and P(correct/‘new’)
in Metcalfe and Fisher’s experiment was 0.08, reflecting little dependence
between classification and recognition. Thus, in contrast to the apparent
prediction of instance-based theories, subjects were barely more likely to
correctly classify items they recognised than ones they did not.

Moreover, it has even been observed that recognition can be virtually at
chance in situations where categorisation is excellent. In an experiment in
which the stimuli were schematic faces varying on four dimensions, Medin
and Smith (1981) trained subjects on nine study items, five from category A
and four from category B. Subjects made a classification decision for each
face before receiving corrective feedback, and were trained either until they
had reached a criterion of one errorless run through the nine items, or until
they had received 32 complete runs through the stimulus set. In a test
phase, the nine study items plus seven new items were presented for recog-
nition and classification. As a result of the extended practice, Medin and
Smith’s subjects reached an overall probability of correct classifications in
excess of 0.70 in the test phase. However, recognition was extremely poor.
The probability of correctly saying ‘old’ to an old face, 0.82, only just
exceeded the probability of mistakenly saying ‘old’ to a new face, 0.77.

Are these results genuinely at variance with instance theories? Although
Metcalfe and Fisher’s logic seems at first glance to be sound, it turns out
that instance theories can predict exactly the results obtained by Metcalfe
and Fisher and by Medin and Smith. Let us suppose, following the memory
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model of Gillund and Shiffrin (1984), that recognition is a function of the
summed similarity of a test item to all memorised items. Imagine that a test
item is equally and highly similar to two memorised instances from differ-
ent categories. Because of the high degree of similarity, the item will be
called old, but it may at the same time be classified at chance because of its
equal similarity to instances from competing categories. In contrast, a test
item may be only moderately close to instances from a certain category, and
hence called new, while at the same time being highly dissimilar to instances
from other categories: hence, it may be classified with some accuracy. Such
intuitions show that instance theories do not necessarily predict a relation-
ship between recognition and categorisation.

More formally, Nosofsky (1988) performed a simulation of Metcalfe and
Fisher’s experiment in which hypothetical stimuli were generated from three
category prototypes. In the first stage instances from the categories were
memorised, and in the second stage old and new items were presented for
recognition and classification. Nosofsky obtained a difference between
P(correct/‘0ld”) and P(correct/‘new’) close to zero, thus reproducing Metcalfe
and Fisher’s results. The intuitive notion that instance theories predict a
relationship between classification and recognition turns out to be incorrect.

Artificial grammar learning

The instance memorisation view of associative learning can encompass a
truly impressive amount of experimental data, often at an exquisite degree
of quantitative detail. While much of the data comes from experiments
using very simple stimuli such as Munsell colour patches (as in Nosofsky’s
study), I shall try to illustrate the power of the instance approach by consid-
ering recent examinations of artificial grammar learning, a task that was
discussed briefly in Chapter 1.

Artificial grammar learning simulates language learning (albeit in a
highly simplified way) by using relatively complex stimuli, but more impor-
tantly is usually thought to require something altogether more sophisticated
than memorisation of exemplars. Thus it would be very persuasive if we
could show that instance memorisation plays a significant role in this task.
Recall that in a typical experiment, during the study phase subjects read
strings of letters (e.g. VXVRXR) generated from a grammar such as that
shown in Figure 1.1. The task is to memorise the strings. Then prior to the
test phase, subjects are told that the strings were generated according to a
complex set of rules and that their task in the test phase is to decide which
new items are also constructed according to those rules. Subjects then make
grammaticality decisions for grammatical and nongrammatical test items.
The typical result is that subjects are able to perform above chance on such
a grammaticality test (the typical level is about 60-70% correct classifica-
tions). On the notion that learning consists of abstracting the underlying
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Figure 3.11. The artificial grammar used by Brooks and Vokey (1991) to generate letter
strings. The grammar is entered at the left-hand side and links are traversed until the grammar
is exited on the right-hand side. Each link yields a new letter which is added to the string. If a
node contains a letter, then the letter can be added repeatedly at that point in the string.
Strings such as MXRVXT can be generated from the grammar.

composition rules of the grammar, transfer of this sort should indeed be
expected, for the same reason that a listener can judge novel sentences of a
natural language grammatical. It should be obvious why artificial grammar
experiments have been taken as highly simplified models of the learning of
natural languages.

As was mentioned in the Introduction, much of the interest in artificial
grammar learning has been driven by the question of whether it is possible
to learn unconsciously about the rules of a grammar (see Reber, 1989;
Shanks and St. John, 1994), but that is an issue that I shall not address
here. Instead, I focus on the equally interesting question of what exactly is
learned. Do subjects learn abstract grammatical rules or do they store the
training strings as instances? Reber’s (1989) view has been that abstract rule
learning is the principal determinant of classification performance, but
recent examinations have revealed that much of the data from artificial
grammar learning experiments can be explained on the assumption that
subjects merely store the training strings as whole items in memory, and
respond to test strings on the basis of similarity to the encoded study
instances.

As an illustration, Brooks and Vokey (1991) trained subjects on strings
generated from a grammar and tested them on new strings, half of which
were also from the grammar and half of which were nongrammatical in
that they could not be generated from the grammar. They divided these test
strings into those which were similar to study items (differing by only one
letter) and those which were dissimilar (differing by more than one letter).
A sample of the strings is shown in Table 3.6 and the grammar is illustrated
in Figure 3.11. Thus consider the training string MXRVXT. The test string
MXRMXT differs by one letter while the string MXRTVMR differs by
four letters, yet both are grammatical. The test string MXRRXT differs by
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Table 3.6. A sample of Brooks and Vokey’s (1991) strings

Study items Similar test items Dissimilar test items

Grammatical Nongrammatical Grammatical Nongrammatical

MXRVXT MXRMXT MXRRXT MXRTVMR  MXRTVMM
VMTRRRR VMTRRRX VMTRRRT VXVTRRR VXVTRRM
MXTRRR VXTRRR TXTRRR VXTRRRX TXTRRRX
VXVRMXT VXVRVXT VXVRTXT VXVR VXVM
VXVRVM VXVRVV VXVRVT VMRVMR VMRVMM

The study items and grammatical test items can all be generated from the gram-
mar shown in Figure 3.11.

one letter and the string MXRTVMM differs by four letters, yet both are
nongrammatical.

The key finding was that while subjects were able to perform quite well
overall on the grammaticality task, making 60% correct decisions, Brooks
and Vokey found a large effect of similarity on grammaticality decisions.
Indeed, while most (64%) similar grammatical strings were called ‘grammat-
ical’, only a minority (45%) of dissimilar grammatical strings were classified
as grammatical. This result is consistent with the idea that training strings
are memorised during the learning phase, with new strings being classified
on the basis of similarity to stored strings, but the result is at variance with
the claim that classifications are based simply on abstracted grammatical
rules: similarity does not objectively affect grammaticality. It is true that
grammatical status appeared to have an effect on grammaticality judgments
that was independent of similarity, since more grammatical than nongram-
matical close items were called ‘grammatical’ (64% versus 42%) and more
grammatical than nongrammatical dissimilar items were called ‘grammati-
cal’ (45% versus 28%). But even this result can be questioned. As we will see
in the next chapter, with a more sophisticated measure of similarity,
Perruchet (1994) was able to eliminate any evidence of an independent con-
tribution of grammaticality over and above similarity.

One final point is worth making concerning the nature of the entity that,
according to instance theories, is memorised. Thus far I have simply
assumed that study items like MXRVXT are represented in some form that
allows overlap with other items such as MXRMVRYV to be computed, but
it is clear that this can be achieved in many different ways. For instance,
since the study strings are presented visually, perhaps they are memorised in
some visual code. Or, given that subjects probably articulate the letters in
the string, they may be stored in an articulatory or phonological code. Yet
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Table 3.7. Results of Whittlesea and Dorken’s (1993) experiment

Test operation Response

Grammatical Nongrammatical
Same 0.66 0.34
Different 0.49 0.51

Data are the response probabilities for grammatical test items.

again, they may be encoded in some amodal manner. Each of these forms
of representation would allow a different measure of similarity between
pairs of items to be determined, since strings differ visually, phonologically,
and on many other dimensions. Thus we might expect the memorial repre-
sentation to be a complex entity that codes many different aspects of the
study strings.

In fact, there is evidence that the representation encodes not only the var-
1ous physical aspects of the study strings, such as whether they were pre-
sented visually or auditorily, but also the types of mental operations that
were performed upon them during the study phase. This is illustrated in an
elegant experiment by Whittlesea and Dorken (1993). Subjects studied
items such as ENROLID that were generated from a grammar, prior to
making grammaticality decisions for novel test strings such as ONRIGOB,
which was in fact grammatical, and OGALPAD, which was not. The inter-
esting aspect of the experiment was that subjects had to treat different items
in different ways. Half of the study items had to be pronounced aloud while
half had to be spelled. At test, each item was again either spoken or spelled
prior to being judged grammatical or nongrammatical.

As a result of items being spoken at study and spoken at test, or spelled
at study and spelled at test, the subjects’ ability to determine grammatical
status was very good. Table 3.7 shows that when the study and test opera-
tions were identical, the majority of grammatical test strings were called
‘grammatical’. In contrast, a mismatch between study and test operations
led to subjects being incapable of making accurate grammaticality deci-
sions.

These results suggest that what is encoded in memory is a highly specific
entity that retains all sorts of detailed information about the item and
about how it was treated at study. From the point of view of associative
learning, the inference is that when an item is presented which contains
structural relationships between a set of experimenter-defined elements,
what is stored in memory is a ‘snapshot’ that not only preserves those struc-
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tural relationships, but also many of the relationships pertaining at that
moment between the elements of the stimulus and the mental operations
performed upon them, as well as perhaps such things as the experimental
context and emotional state of the subject. Hence as a model of instance-
based learning, the context model is aptly named.

Forgetting

On the face of it, the idea that all the instances of a category that a subject
observes are encoded in memory and retrieved in the process of making a
category decision is, to say the least, counter-intuitive. Certainly, with the
exception of very unusual people such as Luria’s (1968) famous mnemonist
S., who could apparently remember everything that had ever happened to
him given sufficient retrieval clues, we are not normally aware of the multi-
tudinous exemplars we have encountered in the past and are, in fact, often
unable to explicitly recall them. Obviously, the matching processes envis-
aged by instance theories must be assumed to take place unconsciously, but
even with this proviso, it seems farfetched to imagine that separate memory
traces of encountered events are preserved.

However, the memorisation view receives support from another finding
which may at first sight seem even less plausible. If one adopts an instance
approach, then it would appear that forgetting represents something of a
problem, if by forgetting we mean the genuine loss of information from
memory. Surely we forget most of the exemplars of a category we
encounter? Since we are assuming that all previously-encountered items are
available when a classification decision has to be made, how can we at the
same time deal with forgetting, which requires the disappearance of some
memory traces with the passage of time? The answer is that there is good
evidence that forgetting — meaning the genuine loss of information — hardly
ever occurs.

It is important to note, as a preliminary point, that the term ‘forgetting’
is ambiguous and has at least two distinct meanings. First, we use the term
descriptively to refer to a person’s behaviour. Of course, at the behavioural
level, forgetting definitely does occur, if by this we mean a subject’s inability
to retrieve items of previously-learned information. Secondly, the term is
used in an explanatory sense, to mean that information has been lost or
erased from memory, and we usually attribute forgetting (in the behav-
ioural sense) to forgetting (in the explanatory sense). What we are con-
cerned with here is whether forgetting in the latter sense does in fact occur.

Traditionally, it has been assumed that all forgetting (as behaviourally
defined) from long-term memory is caused by retroactive interference (RI).
Suppose a subject has learned an A-B association, and then learns a new
and contradictory association between A and C. Retroactive interference
refers to the fact that the subject’s ability to remember the original A-B
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relationship is impaired as a result of having learned the new association,
because in some way or other the A—C association has interfered with the
A-B association. Such an interference account is to be contrasted with a
pure decay process, whereby information is lost merely as a result of the
passage of time, a phenomenon for which there is little supporting evidence.
As we will see below, subjects are more likely to forget an A-B association
when it is followed by an A-C than by a control C-D item, despite the fact
that the time interval between study and test is equated. This finding cannot
be explained on the notion of trace decay because the A-B association
should have decayed equally whether it is followed by an A—~C or by a C-D
trial.

Typically, the process of interference (and hence forgetting itself) has
been attributed to one of two sources. The first is that the A—C association
may have ‘overwritten’ the earlier A-B association and hence led to
unlearning, with the original association literally lost or at least fragmented
as a result of the later learning. The second possibility, more congenial to
instance memorisation theories, is retrieval failure: the interfering informa-
tion may have made the original association difficult to retrieve, without it
actually having been lost. Experimental evidence suggests that the extent to
which information is genuinely lost or unlearned is negligible, and instead,
forgetting is almost entirely attributable to retrieval failure.

As support for this claim, consider the results of some experiments con-
ducted by Chandler (1993) which used the A-B, A-C design with the ele-
ments of the associations being forenames and surnames. In Chandler’s first
experiment, subjects initially read a series of A-B target names (e.g., Robert
Harris) and were given an immediate cued recall test (Robert H-?) to
ensure that they had learned them. Some of the targets were experimental
items and some were control items: this refers to the fact that on a second
list of names, which also had to be learned, there appeared A—C names
(e.g., Robert Knight) that were similar to the earlier experimental names,
but there were none on the second list that were similar to the earlier con-
trol names: instead, there were a number of unrelated C-D names. Then,
on a final memory test, subjects were given a mixed-up list of the first
names and surnames that had appeared in the original list (the A and B ele-
ments), and were asked to match them up. Note that on this test, the poten-
tially-interfering surnames (e.g. Knight) from the second list did not appear.
Chandler found that subjects were able to correctly match 59% of the con-
trol names but only 46% of experimental names, representing a sizeable RI
effect.

We obviously have evidence of interference-induced forgetting in this
experiment, in that subjects were poorer at remembering names when they
were followed by other similar names, but what is the basis of this RI
effect? On an unlearning account, the effect is attributed to the fact that the
similar names (Robert Knight) led to the earlier names being unlearned or
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Figure 3.12. Percentage of correct responses at various delays for control and experimental
items. Subjects were presented with A-B pairs which were followed by C-D (control) or A-C
(experimental) pairs. At test, subjects had to match the original A and B items. At short
delays, performance for control items was much better than for experimental items, suggesting
that retroactive interference (RI) from the A-C items prevented retrieval of the experimental
A-B pairs. At longer delays, however, the RI effect was absent. This implies that the RI seen at
shorter delays was not due to unlearning of the experimental A-B pairs but was instead due to
retrieval failure. (After Chandler, 1993.)

overwritten in memory, with the A-B association being permanently lost.
In contrast, the retrieval failure account attributes the effect to the fact that
the names from the second list have somehow blocked retrieval of the target
names.

How can we discriminate these hypotheses? In a further experiment using
the same general procedure, Chandler obtained a result that cannot be
accounted for if the target words were really lost from memory. In this
study, Chandler merely varied the delay interval between the two lists of
names and the final memory test for different groups of subjects. In one
case, the delay between the first list and the test was 5 min (during which
the second list was learned), in a second condition the delay was 15 min,
and in a final condition it was 30 min. Once again, experimental names on
the first list were followed on the second list by similar names while the con-
trol names were not. For the groups tested after 15 or 30 min, the second
list was presented immediately after the first list and was then followed by
some filler tasks before the test took place.

The results are shown in Figure 3.12, which reveals a surprising finding,
namely that the amount of RI actually declined as the retention interval
was increased. Retroactive interference is apparent whenever performance
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is worse for the experimental than for the control items. At intervals of 5
and 15 min, the results of the first experiment were replicated, with RI of
about 8% being obtained. However, by 30 min there was no evidence what-
soever of RI. Such a result is impossible to explain on an unlearning
account, because the account has to attribute the RI obtained at the shorter
retention intervals to genuine unlearning of the original experimental items,
at least relative to the control items; but if the experimental items have to
some extent been unlearned, they should still be harder to recall than the
control items at the 30 min delay.

In sum, Chandler’s results, which have also been obtained with pictorial
stimuli (Chandler, 1991), suggest that forgetting is not in the main due to
real unlearning or fragmentation of memory traces but is instead due to the
fact that later information blocks the retrieval of earlier information.
Although it is somewhat tangential to our current concerns, Chandler’s
results suggest that this blocking process only occurs when the potentially-
interfering information is active in memory. As the delay before the test is
increased, the interfering information gets less active in memory and is less
likely to block retrieval of the target trace. In a last experiment, this inter-
pretation was confirmed. Chandler (1993) presented the final memory test
30 min after the original A-B list, but for different groups gave the second
list either just after the original study list or just before the test. The out-
come was that no RI occurred in the former case — replicating the result
from the second experiment — but that RI did occur when the interfering list
was learned just prior to the test. Such a result confirms the idea that block-
ing of the target items by subsequent items only occurs when the latter are
active in memory. When the intervening items occur long before the test,
sufficient time has elapsed for them to become inactive in memory and
hence unable to block retrieval of target names.

To the extent that instance memorisation theories require access to large
numbers of stored instances, the results of the present section are congenial.
It appears that the behavioural phenomenon of forgetting is not due to a
genuine loss of stored memory traces. Hence it is not as implausible as it
might seem to suppose that people have implicit access to stored instances.

Representation and learning in instance theories

I suggested in the Introduction that an adequate theory of learning needs
to state what type of information is learned as well as what sort of mecha-
nism governs the learning process. The general thrust of the findings reviewed
in this chapter is that learning in many contexts can be interpreted as the sim-
ple memorisation of relatively unanalysed training instances, with responding
being based on computed similarity to those stored items. The evidence cer-
tainly argues that the representational claims of instance theories allow a
great deal of data to be explained, but I end this chapter by discussing some
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Figure 3.13. Schematic illustration of Gluck and Bower’s (1988) experiment. Cue compound
AB is paired with outcomes 1 and 2 on equal numbers of trials, while B is paired with outcome
1. Possible ways in which the space might be distorted as a result of selective attention are
shown in the lower left and right panels. Note that A is always at least as similar to the
instances of category 1 as to those of category 2.

evidence suggesting that pure instance memorisation may not be entirely suf-
ficient as a description of the way information is encoded in associative learn-
ing tasks. To pre-empt somewhat the course of the discussion, in the next
chapter we will see that a specific type of learning mechanism (in fact, an
associationist one) can account for some of these discrepancies while still at
the same time basically memorising the training instances.

Recent data have suggested that it is not sufficient to assume that each
instance is automatically stored and that new stimuli are simply categorised
on the basis of similarity to those stored exemplars. One piece of evidence
comes from influential experiments originally conducted by Gluck and
Bower (1988), and subsequently replicated and extended by Nosofsky,
Kruschke and McKinley (1992), and Shanks (1990). There has been some
controversy concerning the design originally adopted by Gluck and Bower
(see Shanks, 1990, and Gluck and Bower, 1990), but the critical result is
quite well-established. Before describing one of the actual experiments, I
illustrate the basic effect. The design is shown in Figure 3.13.

The figure shows a psychological space corresponding to the presence
and absence of two stimuli, A and B, with the top right-hand corner corre-
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sponding to the stimulus combination AB. Suppose subjects are presented
with a series of AB trials, on half of which AB is associated with outcome
or category 1, and on half of which with outcome 2. Suppose also that on a
number of additional trials, B is associated with category 1. The question is,
what will the subject do on a test trial with cue A? Instance theories, and to
some degree common sense, predict that subjects will either be indifferent
between categories 1 and 2 for this cue, or will associate it with category 1.
The reason is straightforward: there are an equal number of AB—1 and
AB—2 traces, so A is equally similar to each subset of those traces. There
are also some B—1 traces, and if A is at all similar to B, then this will tip
the balance towards category 1 as the choice response, but if there is no
similarity between A and B, then A will be assigned to categories 1 and 2
with equal probability. Selective attention to the dimensions will clearly not
alter these conclusions.

What happens in an actual experiment? I shall describe the results of a
study of my own (Shanks, 1990). Tests of this prediction have been some-
what complex, using the simulated medical diagnosis procedure described
earlier. Subjects made one of two diagnoses on each of 160 trials for
patients having between zero and four different symptoms such as swollen
glands. Because there are four possible symptoms, there are a total of 16
different patterns of symptoms. One disease occurred three times as often as
the other, and these are referred to as the ‘common’ and ‘rare’ diseases
respectively. Corrective feedback was given on each trial. The common dis-
ease is said to have a higher ‘base-rate’ than the rare disease.

In order to determine which symptoms would be present on each trial,
the computer controlling the experiment began each trial by selecting either
the common or the rare disease to be the correct disease on that trial, with
the probability of selecting the common disease being 0.75 (see Table 3.8).
Then a set of symptoms was selected according to a complex set of proba-
bilities. One target symptom corresponds to cue A and was paired with the
common and rare diseases on an equal number of trials. On many trials,
this symptom occurred in conjunction with other symptoms. If the common
disease was selected for a given trial, then the target symptom was chosen
with probability 0.20, while if the rare disease was selected, it was chosen
with probability 0.60. The third pair of rows in Table 3.8 show the converse
of these figures, namely the probabilities of each disease given the target
symptom.

The crucial point of the design is that the probability of the common and
rare diseases were equal on trials with the target symptom. The equality
P(common disease/target symptom)=P(rare disease/target symptom)=0.5
held whether all trials with the target symptom were considered or just
those consisting of the target symptom on its own. Thus, objectively, on a
target symptom trial the subjects should have predicted the rare and com-
mon diseases with equal probability. However, in the absence of the symp-
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Table 3.8. Design and results of the study by Shanks (1990)

P(common disease) 0.75
P(rare disease) 0.25
P(target symptom/common disease) 0.20
P(target symptom/rare disease) 0.60
P(common disease/target symptom alone) 0.50
P(rare disease/target symptom alone) 0.50
Proportion common disease diagnoses 0.37
Proportion rare disease diagnoses 0.63

The first three pairs of rows give programmed values. The final pair gives
subjects’ mean probability of choosing the common and rare diseases
across the last four trials on which the target symptom alone occurred.

tom, the common disease occurred more frequently than the rare disease.
These trials, on which other symptoms were present, correspond to the
B—1 trials from Figure 3.13.

The results across the last four trials on which the target symptom
occurred on its own are shown in Table 3.8, which gives the observed prob-
ability with which the rare disease was chosen. The critical result is that
subjects were more likely (p=0.63) to predict the rare than the common dis-
ease on trials with the target symptom, contradicting the prediction of
instance theories. Thus contrary to our instance-based analysis of the situa-
tion shown in Figure 3.13, subjects are more likely to choose outcome 2
rather than outcome 1 on a test trial with stimulus A, and Nosofsky et al.
(1992) have confirmed at the quantitative level that the context model is
unable to predict this outcome.

The reason why the effect occurs is presumably a reflection of a well-
known phenomenon in animal learning that we shall explore much further
in the next chapter, namely that cue A is a better predictor of category 2
than of category 1. Because of the B—1 trials, cue B is a very good predic-
tor of category 1, and hence on the AB—1 trials A fails to be associated
with category 1. At the same time, the occurrence of category 2 on some of
the AB trials contradicts the expectation that cue B predicts category 1:
therefore, A is a useful predictive event (for category 2) on AB trials.

A similar result which again raises questions about the informational
assumption of instance theories comes from studies by Medin and Edelson
(1988). Again using the medical diagnosis task, they presented subjects with
AB—1 trials and AC—?2 trials, where A, B, and C are symptoms and 1 and
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2 are fictitious diseases. As before, the subject’s task was to make a diagno-
sis on each trial, with corrective feedback being given. Like Gluck and
Bower (1988), Medin and Edelson were interested in whether subjects
would be sensitive to base-rate information about the diseases, and accord-
ingly, they presented subjects with three times as many AB—1 as AC—2
trials. Suppose that after mastering this classification, subjects are now
asked to make a diagnosis for a patient who has just symptom A. Instance
theories, and again common sense, suggest that disease 1 is more probable.
The context theory makes this prediction because, other things being equal,
A is equally similar to the memorised AB and AC instances, but since there
are more of the former, the overall degree of similarity is greater for the dis-
ease 1 than for the disease 2 instances. This is exactly what Medin and
Edelson found: subjects tended to diagnose disease 1 on an A test trial, and
did the same on an ABC test trial too. Again, the conjunction ABC is more
similar to the instances of category 1 than to those of category 2.

The critical result, though, came from test trials on which patients
had symptoms B and C, which had never occurred together in the learning
phase. The prediction of the context model is again that subjects should
choose disease 1, because again BC should be more similar to the AB than
to the AC instances, but in fact the subjects were significantly more likely
to choose disease 2. Such a result is quite at variance with the context model
and other instance theories because there should be no way in which the
study trials have made BC more similar to the AC than to the AB traces.
Why does the effect occur? One possible explanation appeals to the fact that
during training symptom A is likely to become more strongly associated with
disease 1 than with disease 2. This in turn might allow symptom A to com-
pete more effectively with symptom B as the cause of disease 1 than with
symptom C as the cause of disease 2. Thus C would be able to maintain a
stronger association with disease 2 than symptom B does with disease 1,
which then explains behaviour on the BC test trial. Evidence supporting this
explanation comes from a study (Shanks, 1992) confirming that symptom A
is indeed more strongly associated with disease 1 than disease 2 after the
training trials.

Gluck and Bower (1988) and Medin and Edelson (1988) have made
a very important contribution to our understanding of associative learning
by introducing experimental designs that allow the informational assump-
tions of instance theories to be examined. The upshot is that despite all
the successes of instance theories, these assumptions appear to be question-
able.

Generic knowledge

A final piece of evidence that is problematic for instance theories comes
from a very different source. One of the best-known distinctions in cogni-
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tive psychology is between so-called ‘semantic’ and ‘episodic’ memories, a
distinction first drawn by Tulving (1972). Episodic memories essentially
correspond to what I have been calling ‘instances’. They are snapshots of
experience that are stored in a relatively unanalysed form. Semantic (or
generic) knowledge, on the other hand, represents facts about the world
and about language and is not tied to particular episodes. For example,
knowing that Paris is the capital of France is a piece of semantic knowl-
edge.

A very considerable amount of effort has been put into trying to deter-
mine whether episodic and semantic memories are psychologically distinct,
and there is no doubt that there are some good reasons for believing this to
be the case. For example, many neuropsychologists have argued that the
sort of amnesia suffered by Greg (Chapter 1) is a selective impairment of
the ability to retrieve episodic memories (see Shallice, 1988, ch. 15).
Without getting into the details of this controversial area, it is important to
recognise that semantic knowledge presents something of a problem for
instance-based theories. Such theories would either have to argue that so-
called semantic memories are really just collections of episodic memories, or
would have to concede the existence of a separate form of knowledge over
and above stored instances. But neither of these options is particularly
palatable. To concede the existence of a separate form of knowledge is to
admit that the theory we have discussed at such length in this chapter is
radically incomplete, while to argue that so-called semantic memories are
really just collections of episodic memories flies in the face of some very
compelling evidence to the contrary.

Here, we will consider just one piece of evidence that suggests that
semantic knowledge cannot be understood in terms of stored instances.
Watkins and Kerkar (1985) obtained evidence from an ingenious set of
experiments that when an item is presented twice, recollection cannot be
explained by reference to the retrieval of two separate memorised instances.
In their studies, subjects were presented with a list of words such as
‘umbrella’, with some words being repeated on the list. In one of the experi-
ments, words were written in different colours such that each of the once-
presented words and each occurrence of a twice-presented word was in a
different colour. At the end of the list subjects were first given a brief dis-
tracting task and then required to remember as many of the words as possi-
ble.

As would be expected, and as the left side of Figure 3.14 shows, Watkins
and Kerkar observed better recall of twice-presented than of once-presented
words, but they also observed a phenomenon called superadditivity. Let us
assume that the probability of remembering either presentation of a twice-
presented word is just the probability of remembering a once-presented
word. If the probability, P2, of remembering a twice-presented word is just
the probability of remembering each separate occurrence, then it should be
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readily predictable from the probability, P1, of remembering once-pre-
sented words:

P2=P1+P1 - P1.Pl. 34

That is, the probability of remembering a twice-presented word is just the
probability of remembering its first presentation, plus that of remembering
its second presentation, minus their product. The latter is subtracted
because if the subject remembers both presentations, that will not increase
recall probability compared to a situation in which they only remember one
presentation. Watkins and Kerkar found that P2 was actually greater than
predicted by this equation (i.e. superadditivity occurred). The probability of
recalling a twice-presented word, P2, was much greater (0.46) than the
value predicted (0.32) from Equation 3.4 given the value of P1, which was
0.18. This indicates that the assumption that P2 is straightforwardly related
to P1 is incorrect: the probability of remembering, say, the first presentation
of a twice-presented word is greater than that of remembering a word only
presented once, which in turn means that the second presentation makes the
first more recallable, and vice versa.

This result may not, on its own, be too problematic for instance theories.
Although they provide no mechanism whereby memorised items may affect
each other’s recallability, it is perfectly possible that such a process may
exist and that subjects in Watkins and Kerkar’s experiment were retrieving
stored instances. But a further aspect of the results makes this look
extremely unlikely. If each stored trace of a twice-presented item is
enhanced in its memorability compared to that of a once-presented item,
then we would expect this to extend to all aspects of the trace: specifically,
subjects should be better able to remember the colour a twice-presented
word appeared in on its first or second presentation than that of a once-
presented word. To test this, after subjects had attempted to recall the
words, Watkins and Kerkar gave them a complete list of the words with the
twice-presented words marked, and asked subjects to say what colour (or
colours in the case of the marked words) each had appeared in. As Figure
3.14 shows, Watkins and Kerkar observed exactly the opposite of the pre-
dicted result. Subjects were significantly poorer at remembering the colours
associated with twice-presented words than once-presented ones. After a
correction for guessing, the probability of recalling the colour of a once pre-
sented word was 0.37, while the probability of recalling one of the colours
associated with a twice-presented word was 0.25.

Watkins and Kerkar interpreted this result in terms of the formation of
generic or semantic memory traces. Subjects are assumed to abstract from
multiple presentations of a stimulus only those aspects that are invariant,
and discard trial-by-trial fluctuations. Such an abstraction occurs even with
as few as two presentations. While generic memories like this are beyond the
scope of instance-based theories, it turns out that they are very readily
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Figure 3.14. Mean percentage of items and attributes recalled for once-presented and twice-
presented words. Subjects studied lists of words on which some were repeated and others were
not, with each word being in a different colour. At recall, subjects remembered the twice-
presented words (‘items’) much better than the once-presented ones. However, they remem-
bered the colours (‘attributes’) of the twice-presented words more poorly than of once-
presented words. This result is at variance with the idea that performance was based on the
recollection of stored instances. (After Watkins and Kerkar, 1985).

explained by the sort of associationist learning mechanisms that we consider
in the next chapter. Such mechanisms deny that semantic and episodic mem-
ories are stored in distinct systems, but nor do they treat semantic memories
as collections of episodic ones. Rather, semantic knowledge emerges from
episodic information in a more complex and constructive way.

Summary

In this chapter we have seen that the technique of multidimensional scaling
provides an extremely powerful tool for analysing identification and cat-
egorisation data, because it formalises the notion that stimuli can be repre-
sented as points in a multidimensional space whose dimensions are the
psychologically-significant dimensions of variation amongst the stimuli.
Within this sort of spatial representation, it is possible to formulate proto-
type and instance theories as answers to the question ‘What is learned?’.
Although certain phenomena such as the accurate classification of an
unseen prototype are congenial to prototype theories, other phenomena are
more problematic. In particular, the abundant evidence that memorised
instances play a role in categorisation is inconsistent with the idea that pro-
totype extraction is the sole basis of concept learning. While there may be
circumstances in which such a process does occur, there seems to be little
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evidence that cannot instead be more parsimoniously understood on the
basis of instance memorisation alone.

Instance or exemplar theories such as the context model are capable of
accounting for a wealth of empirical phenomena, including enhanced
responding to the unseen prototype, and the successes of such theories
strongly encourage the view that instance memorisation plays a role in cat-
egory learning. Nevertheless, there is evidence questioning the notions that
(i) responding to a stimulus is a function of similarity to previous instances
and that (ii) all aspects or elements of an instance are equally likely to be
memorised. In the next chapter we will turn to our third question, ‘What is
the mechanism of learning?. We will see that some of the ambiguities con-
cerning instance memorisation dissolve when we look in more detail at the
learning mechanism. We will examine possible mechanisms of associative
learning that preserve the essential spirit of instance memorisation as the
basis of learning, but which are also capable of explaining the fact that
some aspects of a stimulus may be better preserved than others.



4 Connectionism and learning

In the Introduction I argued that human associative learning can best be
understood by considering three questions. What does the system do? How,
in broad informational terms, does it do it? And how is this achieved at the
mechanistic level? We have answered the first question by suggesting that to
a first approximation the system does what a statistician would do: that is
to say, it computes the degree of conditional contingency between events as
defined by the metric AP. The second question is answered (again to a first
approximation) by reference to the memorisation of instances, with stimuli
being represented in a multidimensional psychological space and with inter-
stimulus similarities being an exponential function of distance in the space.
We now turn to our final question: what is the mechanism of learning?
What sort of mechanism computes contingency, and represents associative
knowledge in terms of memorised instances? In this chapter we will examine
how contemporary associationist learning systems attempt to answer this
final question.

I also pointed out in the Introduction that enthusiasm for associationist
accounts of human learning waned somewhat in the 1960s and 1970s.
Partly, this was due to impatience with the highly constrained tasks that
researchers in the verbal learning tradition employed, but partly it was also
due to the apparent inability of associationist theories to cope with more
complex examples of human learning and cognition. For instance, a num-
ber of extremely sophisticated analyses had been undertaken of the differ-
ence between novices and experts performing various skills such as playing
chess or remembering strings of digits (e.g. Chase and Ericsson, 1981;
Chase and Simon, 1973). Experimental studies indicated that the sorts of
things experts learned that allowed them to outperform novices were the
ability to recognise particular configurations of pieces, the ability to organ-
ise knowledge into a complex hierarchy, and the ability to rapidly search a
decision tree. There seemed to be simply no way in which the primitive
processes of associationist theories of learning could illuminate such skills.
Also, what interest there was in associationism was dealt a very severe blow
by the publication in 1969 of Minsky and Papert’s book Perceptrons, which
demonstrated to the satisfaction of many that associationist devices were
incapable in principle of learning a number of elementary functions that are
well within the scope of human learning. I shall return to this later.

However, during these decades, when more complex symbolic theories
were being developed and explored, associationism was alive and well in the

104
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animal learning laboratory, and was also influencing researchers like
Rosenblatt (1962), Anderson (1968), and Willshaw, Buneman and Longuet-
Higgins (1969) who were interested in how the human brain manages to
store large amounts of information. These researchers noted that the brain is
essentially an associationist system in that its basic computing element, the
neuron, simply transmits electrical excitation or inhibition from its dendrites
to its axon. Clearly, networks of highly interconnected neurons do manage
to store large numbers of separate memories. But how is this achieved?

The answer that has emerged from this expanding field of research is that
information is stored in a distributed fashion in weighted connections
between neurons. At the psychological level, this viewpoint proposes that
associative learning is represented in the form of mental associations
between the elements of cues, actions, and outcomes, and that these associ-
ations are incremented or decremented on a trial-by-trial basis according to
a ‘connectionist’ or ‘adaptive’ learning rule. It might seem that this
approach offers nothing beyond the sorts of associative theories that were
present 30 or 40 years ago, and therefore — as Minsky and Papert (1969)
pointed out — would suffer from the same limitations, but two important
steps have been taken. One is that the specific rules determining the amount
by which an association is changed at a particular moment are vastly more
sophisticated than earlier ones, and the other is that contemporary connec-
tionist models are able to learn internal representations that boost to a
great extent their learning capabilities. Such internal representations will be
considered later in the chapter.

Connectionist models containing very many highly interconnected units
have a number of general characteristics that immediately commend them.
First, the only ways in which information is transmitted in an adaptive net-
work are via the excitatory or inhibitory influence of one unit on another,
and of course these are precisely the processes by which neural activity is
propagated in the brain. Plainly, it is an attractive feature of any psycholog-
ical model that it appeals only to processes known to operate in the brain.

Secondly, connectionist networks are by their nature parallel processing
devices, in that the connectivity of individual units allows parallel sources
of information from other units simultaneously to influence the state of
activation of any given unit. The appeal of such parallel processing comes
from the following observation. People are extremely good at retrieving
stored knowledge from partial cues, even when some of the cues are inap-
propriate. For instance, a friend can often be recognised even if part of
their face is occluded or if they are wearing an unfamiliar pair of glasses, a
word can be made out even if poorly enunciated, and so on. This kind of
memory is called content-addressable, because part of the content of the
memory is used as the cue for retrieving the whole item, and it is particu-
larly easy to achieve in parallel systems (and correspondingly difficult to
achieve in conventional non-parallel ones).
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Figure 4.1. Left: A feedforward network. A homogeneous layer of input units is connected in parallel to a layer of
output units. The connections between the units have modifiable weights. When a pattern of activation (representing
the input stimulus) is applied to the input units, activation spreads to the output units via the weighted links between
the units. A learning algorithm adjusts the weights on a trial-by-trial basis until the correct pattern of activation is
obtained on the output units. Right: an autoassociator. Here, there is only a single layer of units dealing with both
input and output. Each unit provides an input to every other unit but not to itself.
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Imagine that memories are stored as patterns of activation across a large
number of units. When at a later point some subset of those units is reacti-
vated in parallel to represent the retrieval situation, the connections
between the units will allow excitation and inhibition to spread such that
the entire original pattern of activation is recreated. Even if some units are
inappropriately activated, the original pattern may still be recreated if it
represents the best ‘solution’ to the current set of input cues. Essentially,
connections can be seen as constraints that exist on the spread of excitation
and inhibition through the system.

A third attractive feature of adaptive connectionist networks is that
knowledge is distributed across very many connections. Each connection
represents a relationship between a pair of what we might best call micro-
features, and hence it requires a large number of connections to represent
memory for a complex object such as a face. At the same time, any given
connection can contribute to many different memories. In short, a network
can store a large number of superimposed patterns with each one being dis-
tributed across the network and with each connection contributing in a
small way to very many memories. As a consequence, networks tend to
demonstrate considerable resilience in the face of degradation. If some con-
nections are removed or if noise is added to them, there is still a possibility
that useful information may be retrieved from the system — again, a charac-
teristic shared by real brains.

Connectionism has had an enormous impact in the last decade across the
whole field of human learning, from perceptual-motor learning to language
acquisition. In this chapter we will consider in detail how connectionist
models operate and learn, and ask how successful they are at explaining the
basic phenomena of human associative learning.

The delta rule

While there exist a number of connectionist learning rules, in this chapter I
shall focus on one of the simplest, called the ‘delta rule’. This rule has
played a major role in several recent connectionist models of human learn-
ing. It was first described by Widrow and Hoff (1960), and is formally
equivalent — given certain assumptions (Sutton and Barto, 1981) — to the
theory Rescorla and Wagner (1972) developed to account for data from
animal conditioning experiments.

Suppose we have a large set of potential cues or actions and an equally
large number of possible outcomes or categories. We assume that each of
the cues is represented by a unit in a homogeneous input layer of a large,
highly interconnected network such as that shown in the left panel of
Figure 4.1. Each output is also represented by a unit in a separate output
layer, and each input unit is connected to each output unit with a modifi-
able connection (for the moment, we ignore possible hidden units).
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Networks of this form are called feedforward networks or pattern associa-
tors. In reality, each cue and each outcome would be represented not by a
single unit, but by a large collection of units corresponding to the elements
(or microfeatures) of the stimulus, and the subject would have to learn
structural associations amongst the elements of the cue, amongst the ele-
ments of the outcome, as well as the association between the cue and out-
come. We will see below how this may occur, but I assume for the moment
that all of the within-cue and within—outcome associations have already
been learned and that these stimuli can therefore be represented by single
units in the network.

On every trial, some set of cues is present and some outcome occurs. We
calculate the activation a  of each output unit:

a,=D.am, , 4.1)

where g, is the activation of input unit i and w, is the current weight from
cue unit i to output unit 0. For a binary-valued cue, g, will be 1 if that cue is
present and 0 if it is not, whereas for a continuous-dimension cue, g, will
take on a value corresponding to the value of the cue on that dimension.
Next, we calculate the ‘error,” d, on the output unit between the obtained
output, a , and the desired output, ¢ :

d=1a, 42

Values of 7, for binary and continuous dimensions are determined in a simi-
lar way to values of a,, and represent the feedback provided to the learner.
Finally, we change each of the weights in proportion to the error:

Awioza ai do’ (43)

where Aw, _is the weight change and o is a learning rate parameter for the cue.

At the end of a series of training trials, there are a variety of ways of
looking at the system’s behavior. If we are modelling a situation in which
subjects make cue-outcome association judgments, then the appropriate
measure from the network is simply the activation a, of the appropriate
outcome unit when the input unit corresponding to that cue is turned on.
On the other hand, if we are interested in classification performance, we can
assume that the probability of classifying the stimulus as a member of cate-
gory j will simply be the output a; produced on the category j output node
given cue ¢ divided by the total output across all n output units:

P(j/ c) = zafa @.4)

n

Turning now to structural associations within a single stimulus, how might
these be learned? An artificial grammar learning experiment provides a
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model for such within-stimulus learning. For a learning task like this, it is
appropriate to use a somewhat different connectionist architecture known
as an autoassociator, and the right-hand panel of Figure 4.1 shows such a
network. A single set of units is activated by an input stimulus. Activation
then spreads through the network on the weighted connections to produce
an output pattern which is compared with the input pattern. Although the
architecture is somewhat different, the system is governed by exactly the
same equations as before. That is, each unit sums the activation it receives
(Equation 4.1), compares this with the teacher, which in this case is the
input activation, and derives an error (Equation 4.2). The error then deter-
mines weight changes in accordance with the delta rule of Equation 4.3.

Using one type of network for between-stimulus associations and another
for within-stimulus associations may seem unjustified, but in fact the differ-
ences between feedforward and autoassociative networks are more apparent
than real. An autoassociator can be considered as a feedforward network in
which the input (a,,, a,, a,,...) and output patterns (a,, a ,, a;,...) are iden-
tical and where the connections between an input unit and the correspond-
ing output unit (i,—o,, i,-0,, etc.) are deleted. Of course, if such connections
existed, then learning the mapping from an input pattern to an identical
output pattern would be trivial: all that would be required would be to set
each of these weights to 1.0. The removal of these connections means that
the network is forced to predict a given element of the output pattern on
the basis of different elements of the input pattern, such that element o, has
to be predicted on the basis of elements i, i;, i,,... and so on. The system is
therefore forced to learn about the internal structure of the set of elements
making up the cue.

Despite the formal similarity between feedforward and autoassociative
networks, it is worth keeping them separate because the tasks to which they
are best suited tend to differ. The only significant respect in which the
behaviour of an autoassociator differs from that of a pattern associator is
that it can be allowed to cycle for several iterations before it settles. The
activation of a unit after one pass will lead to changes in the activation it
transmits to other units, which will in turn lead to a change in its own acti-
vation, and so on until the system settles into a stable state. Therefore, in
some applications it is possible to take the number of cycles needed to reach
a stable state as a measure of response latency.

As described above, the procedure for training a connectionist network is
to provide a set of input patterns together with their associated target pat-
terns. As a result of incremental weight changes dictated by the delta rule, the
network will come to produce the correct output pattern for each input pat-
tern. It is important to note that the delta rule is guaranteed (given enough
trials) to produce a set of weights that is optimal for the training stimuli (see
Kohonen, 1977). That is to say, the rule will find a set of weights that min-
imises the squared error between actual and desired output patterns. Often,
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this squared error will be zero, meaning that the network produces exactly
the desired output for each input pattern. We will discuss below some cases
where this is impossible unless extra units are included between the input and
output units, but even without such units, the delta rule will minimise the
squared prediction error. The ability to prove that a learning rule will con-
verge in this way towards an acceptable solution is of great benefit.

The connectionist theory outlined above has been applied in various
forms to a very large number of associative learning tasks, ranging from the
very simple to the very complex. I begin by showing that a network using
the delta rule as its learning algorithm effectively computes the conditional
degree of contingency between a cue and an outcome.

The computation of contingency

Let us suppose that subjects in an experiment are exposed to intermixed
AB—O, and B—no O trials in a contingent condition, while in a noncon-
tingent condition they see CD—O, and D—O, trials. Cues B and D could
either be explicit cues or just the constantly-present set of background cues.
We know from the Shanks (1991a) experiment (Table 2.1) that the learned
relationship between cue A and outcome O, will be much stronger than that
between C and outcome O,. According to the delta rule, the explanation of
this phenomenon is as follows.

Imagine a network consisting of two input units corresponding to the
two cues and one output unit for the outcome. Let us also simplify matters
by assuming that the AB and B trials alternate and that the learning rate
parameter o which appears in Equation 4.3 is 0.5 for all cues. On the first
AB—O, trial in the contingent condition, the outcome is entirely unex-
pected since the weights for all cues are zero. Hence a_ is zero while the
teacher 7, has a value of 1.0. From Equation 4.2 we can calculate that d
will be 1.0, and hence the weight change for each cue that is present — in
this case both A and B — will be

Aw, =0 a,d
=0.5x1.0x1.0
=0.5.

Thus each cue ends the trial with a weight of 0.5. Trial 2 is a B—no O trial.
Here, Equation 4.1 tells us that a_ will be 0.5 since the only cue present is B,
and its weight is 0.5. The teacher ¢ is zero since the outcome does not
occur, meaning that d  will be —0.5. Thus we obtain a weight change for
each cue that is present — in this case just cue B - of:

Aw, =0 a,d,
= 0.5x1.0x(-0.5)
=-0.25
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Figure 4.2. The ability of the delta rule to account for contingency effects. The figure shows
the weights generated by the delta rule for various stimuli. Cue A has a positive contingency
with outcome O,, resulting from intermixed AB—O,, B—no O trials, and the weight on the
A-O, connection increases steadily across trials towards a value of 1.0. Cue C is noncontin-
gently related to outcome O, as a result of CD—0,, D—O, trials. The C-O, weight
approaches zero after a number of trials. Cue E has a negative contingency for outcome O,,
resulting from EF—no 0, F—O, trials. The E-O, weight is reduced across trials towards an
asymptote of —1.0.

which means that at the end of trial 2, A has a weight of 0.5 and B a weight
of 0.25. On trial 3, an AB—O, trial, the same logic dictates that A and B
both acquire an increment to their weights of:

Aw, =0 a,d
= 0.5x1.0x0.25
=0.125

since a_ is 0.75. Cue A now has a weight of 0.625 and B a weight of 0.375.
After a further B—no O pairing on trial 4, B’s weight will have gone down
to 0.1875, and after a further AB—O, trial on trial 5, A will have a weight
of 0.7188 and B a weight of 0.2813. It should be apparent that each succes-
sive pair of trials leaves A with a greater weight and B with a smaller
weight, a process that will continue until A and B have weights of 1.0 and
0.0 respectively. Figure 4.2 shows how the weight of a contingent cue
evolves across 20 trials under these conditions. The speed of learning is gov-
erned by the magnitude of a, the learning rate parameter.

Turning now to the noncontingent condition, a similar set of calculations
reveals that in contrast to cue A, cue C will end up with a weight of zero, as
required. The first CD—O, trial is logically identical to the first AB—O,
trial and hence the weight change for each cue will be 0.5. Trial 2 is a
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D—O0, trial. Now, a_ is 0.5 since D is the only cue occurring, d_ is also 0.5
(=1.0 - 0.5), and we obtain a weight change for D of:

Aw,,=0.5x1.0x0.5
=0.25

which means that at the end of trial 2, C has a weight of 0.5 and D a weight
of 0.75. On trial 3, a further CD—O, trial, C and D both lose associative
strength:

Aw, =0.a;d,
=0.5x1.0x(-0.25)
=-0.125

since a_ is 1.25. C now has a weight of 0.375 and D a weight of 0.625. After
a further D—O, pairing on trial 4, D’s weight goes up to 0.8125, and after a
further CD—O, pairing on trial 5, C has a weight of 0.28125 and D a
weight of 0.71875. It is now apparent that each pair of trials leaves C with a
smaller weight and D with a larger weight, a process that will continue until
C and D have weights of 0.0 and 1.0 respectively. The net effect is the oppo-
site of that in the contingent case, and the continued evolution of the weight
of a noncontingent cue is shown in Figure 4.2. Note that after five trials
(i.e., at the beginning of trial 6), the contingent cue A had a weight of
0.7188 while the noncontingent cue C has a weight of 0.28125, despite the
fact that they have both been paired with their respective outcomes three
times. Plainly, what happens on trials when a cue is absent may indirectly
affect its associative strength.

Finally, Figure 4.2 shows the development of the weight for a cue in an
EF—no O, F—O, design in which the target cue E stands in a negative
relationship to outcome O,. For this cue, the weight starts at zero and then
decreases in a negatively-accelerated manner towards a final value of —1.0.
Plainly, the delta rule yields appropriate asymptotic weights under the three
different contingencies we have considered.

We know from Chapter 2 that associative learning (within certain con-
straints) is based on the computation of contingency as defined by the AP
equation and the probabilistic contrast model. For a situation in which
there is a single cue (or action) occurring against a constant background,
Chapman and Robbins (1990) have established the very important fact that
the delta rule, at asymptote, yields weights that are identical to the values of
AP. The proof of this is very elegant and well worth briefly examining. If we
consider a set of AB and B trials, with A as the target cue, then there are
four possible trial types (AB—O, AB—no O, B—0, and B—no O) bearing
in mind that the outcome can either occur (O) or not occur (no O) on a
given trial. Remember that we refer to the four cells of the 2x2 contingency
table by the cell frequencies ¢ (AB—O, target cue and outcome present), b
(AB—no O, cue present/outcome absent), ¢ (B—O, cue absent/outcome
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present), and d (B—no O, cue and outcome absent). We also specify that N
is the total number of trials (= a+b+c+d). Hence the probability of a trial
occurring with the target cue and the outcome is a/N.

For these various trial types the weight changes can be computed from
Equations 4.1-4.3 as follows:

AB—-O Awg = o [1.0(w, +wp)] 4.5)
Aw, = o, [1.0-(w,+wp)] 4.6)
AB—no O Awy = o [0.0(w, +wp)] @7
Aw, = o, [0.0-(w,+wp)] (4.8)
B—O Awp = 0 (1.0-wp) 4.9
B—no O Awy = 0 (0.0-wp) (4.10)

where w, refers to the weight connecting cue A with outcome O, and o, and
o, are learning rate parameters for A and B, respectively.

Across a series of intermixed trial types, the mean change in cue A’s
weight is the sum of the weight changes given in Equations 4.6 and 4.8,
weighted by the probabilities (a/N and b/N) of these two trial types:

Mean Aw, = % o, [1.0—(w, +wp)]+ % o, [0.0-(w, +wp)] (4.11)
which can be rewritten as:

Mean AwA.él =a-(a+b)w, -(a+b)w, 4.12)
A

Similarly, the mean change in cue B’s weight is the sum of the weight
changes in Equations 4.5, 4.7, 4.9, and 4.10 multiplied by the probabilities
alN, bIN, ¢/N, and d/N of the different trial types:

Mean Aw, = % 0p[1.0—(w, +w,)]+ —J% 0y [0.0—(w, +wy)]

B (4.13)
+ %% (10— 1) + 70, (0.0 w)
which can be rewritten as:
Mean Awn.%=a+c—(a+b).wA-(a+b+c+d).wB 4.19)

Learning will proceed until the mean weight changes given by Equations
4.12 and 4.14 across a sequence of trials have reached zero. That is to say,
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even though at asymptote the weights may fluctuate from trial to trial if the
occurrence of the outcome is determined probabilistically, they will tend to
oscillate around a fixed value such that the mear change across a number of
trials is zero. Setting Equations 4.12 and 4.14 at zero and substituting for
wy, we find that:

_(at+d)atc—(atb)w,]
a+b+c+d

O=a-(a+bw,

which when tidied up yields:
w,=al(a+b) - c/(c+d)=AP.

Chapman and Robbins’ proof establishes, then, that the weight assigned by
the delta rule to a cue will be equal to the degree of statistical contingency
between the cue and the outcome. The proof also shows that the values of
the learning rate parameters o, and o,; do not alter the asymptotic weights,
merely the speed with which asymptote is reached. However, it is important
to emphasise that the equivalence of AP and the delta rule only holds at
asymptote. Prior to asymptote, a cue’s weight may be very different from
AP. This is important, because as we shall see, it means that we can explain
many of the phenomena (such as the shapes of learning curves) that
appeared to be problematic for contingency theory.

As would be expected given this proof, connectionist models have been
able to provide excellent fits to data from associative learning experiments
varying the degree of contingency between events. For example, Wasserman
et al. (1993) obtained good fits to the data presented in Figure 2.3.
Remember that Wasserman et al. asked subjects to estimate the degree of
contingency between pressing a key and a light flashing. Across 25 different
problems, P(O/A) and P(O/-A) independently took the values 0.0, 0.25, 0.50,
0.75, and 1.00. Wasserman et al. fit the delta rule model to their observed
data, and the outcome is shown in Table 4.1. As the table shows, a very
good fit is obtained. Note that the predicted values are slightly pre-asymp-
totic, which explains why they are not equal to the expected values of AP.

The delta rule not only yields weights that converge to appropriate asymp-
totic values, but it also produces learning functions similar to those obtained
in associative learning tasks. The left-hand panel of Figure 4.3 reproduces
the data from the experiment by Lopez and myself that was discussed in
Chapter 2 (Figure 2.4). Recall that we found that under a positive contin-
gency (AP=0.5), judgments started close to zero and increased in a nega-
tively-accelerated manner until they reached an asymptote that
corresponded approximately to the actual contingency. Under a negative
contingency (AP=-0.5), judgments again started close to zero and decreased
towards asymptote. The delta rule predicts exactly such functions. Since the
w,, start at zero, the initial errors d_ will be large and hence increments to the
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Table 4.1. Results of Wasserman et al.’s (1993) experiment and simulation

P(O/-A)
0.00 0.25 0.50 0.75 1.00
P(O/A)
1.00 0.85 0.52 0.37 0.13 -0.03
0.80 0.51 0.30 0.13 0.00
0.75 0.65 0.43 0.16 0.06 -0.12
0.67 0.38 0.17 0.00 -0.13
0.50 0.37 0.19 0.01 -0.19 -0.34
0.50 0.21 0.00 -0.17 -0.30
0.25 0.12 -0.10 -0.14 037 ~0.58
0.29 0.00 -0.21 -0.38 -0.51
0.00 —0.08 045 -0.51 ~0.66 075
0.00 —0.29 -0.50 0.67 ~0.80

First row of each pair: mean judgments of contingency (divided by 100.0) as a func-
tion of P(O/A) and P(O/-A). Second row: associative strengths predicted from the
delta rule.

weights will in turn be large, but successive increments will get smaller and
smaller as d decreases. The net effect will be negatively accelerated acquisi-
tion curves. The right-hand panel of Figure 4.3 shows a set of learning
curves generated for the same contingencies used in our experiment. The
model predicts the correct terminal pattern of judgments and reproduces the
acquisition profiles under the different contingencies, namely negatively
accelerated curves for the high positive and high negative contingencies.
Interestingly, the figure shows that the delta rule also reproduces quite
well the patterns of judgments seen in noncontingent conditions. For both
the high-frequency (0.75/0.75) and low-frequency (0.25/0.25) noncontingent
situations, the weights converge to zero, as in the judgments shown on the
left. Moreover, prior to asymptote, the rule correctly yields a substantially
more positive weight in the 0.75/0.75 condition than in the 0.25/0.25 condi-
tion. Why does it do this? In fact, we have already seen the answer. Our
derivations for a noncontingent cue C in a CD—O,, D—O, design pro-
duced a positive weight early on in training (see Figure 4.3). The reason is
that on the first few trials, before D has begun to acquire a significant
weight, C is paired with the outcome and thus acquires a positive weight. It
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Figure 4.3. Acquisition data and simulation. The left panel is a reproduction of Figure 2.4, and shows mean judgments of con-
tingency across 40 trials under four different contingencies: positive (0.75/0.25), zero (0.75/0.75 and 0.25/0.25), and negative
(0.25/0.75), where the first figure refers to P(O/C) and the second to P(O/~C). The right-hand panel shows the results of a simu-
lation using the delta rule. Each simulation curve is averaged across four separate runs with different trial orders. The learning
rate parameter o was set to 0.2.
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is only later, as the weight for cue D begins to increase, that it starts to cap-
ture associative strength back from C. When the overall frequency of the
outcome is high (as in the 0.75/0.75 condition), the outcome occurs on most
CD trials, and so C’s weight increases quite fast. In contrast, in the
0.25/0.25 condition there are many CD trials where the outcome is absent,
so C loses any associative strength it might otherwise gain.

In addition to the differences that may emerge between the delta rule and
contingency models in their pre-asymptotic predictions, they may also make
very different predictions when trial types are presented in blocks. Bear in
mind that the proof of the equivalence of the two theories only holds for
situations in which trials are intermixed. Let us consider some data that
Chapman (1991) reported on the effects of trial order. It may be recalled
from Chapter 2 (Table 2.8) that, using a medical diagnosis task, Chapman
presented subjects with A—O followed by AB—no O trials, and observed
strongly negative ratings of cue B. The delta rule accounts for this effect on
the basis that during the second stage, B is paired with a positive cue but
the expected outcome fails to occur: B therefore acquires a negative connec-
tion. In her experiment, Chapman also gave subjects CD—no O followed
by C—O trials, and since these trials are logically identical to the A and AB
trials, except for the order of presentation, it may seem surprising that cue
D received significantly less negative ratings than cue B.

In Chapter 2 it was pointed out that this result presents a problem for the
view that associative judgments are based on a computation of statistical
contingency. However, the result can be explained by a connectionist
model. Applying the delta rule to the trials types, we can see that the
CD—no O, C—O0 procedure should not have been able to endow cue D
with negative strength, since it was accompanied in the first stage by a cue
with zero strength and was never paired with the outcome. But note that
this prediction relies on the fact that the trial types were not intermixed.
According to a connectionist model, different solutions are possible when
exactly the same trial types are witnessed: in the A—Q, AB—no O case, the
stable solution is for A to have a weight of 1.0 and B to have a negative
weight (-1.0), whereas in the CD—no O, C—O case the stable solution
assigns D a weight of zero and C a weight of 1.0. It is the fact that the trials
were not intermixed that allows differential predictions to emerge.

Associative models using the delta rule learning algorithm can explain a
further interesting phenomenon, namely the fact that associative learning is
influenced by the magnitude or value of the outcome. Chatlosh et al. (1985)
observed higher judgments and response rates under a positive contingency
with a higher than with a lower valued outcome, while for negative contin-
gencies, more valued outcomes seemed to support more negative judg-
ments. Changes in the nature of the outcome have no effect, of course, on
the statistical relationship between the cue or action and outcome.
However, the delta rule model has an elegantly simple explanation of these
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results, since it proposes that the teacher ¢ is proportional to the magnitude
or value of the outcome: more valued outcomes have larger ¢s. Since ¢,
determines the asymptote of associative strength (learning ceases when the
associative strengths sum to ¢, in Equation 4.2), an outcome with a large ¢,
will support greater judgments and response rates under a positive contin-
gency than will an outcome with a smaller ¢, just as was found by Chatlosh
et al. (1985). For negative contingencies, more valued outcomes will sup-
port more negative judgments.

One limitation of Chapman and Robbins’s proof is that it only covers sit-
uations involving a single target cue and the background. As we saw in
Chapter 2, though, the appropriate way to compute contingency when there
are multiple cues is specified by the probabilistic contrast model. For a
given target cue, we need to calculate the probability of the outcome given
the cue, minus the probability of the outcome in the absence of the cue, but
holding everything else constant. Can we determine whether the delta rule
will compute associative strengths in accordance with the contrast model?

In a very important theorem, Cheng and Holyoak (1995) have proved
that the delta rule, within certain constraints, will behave in this fashion.
Their proof is complex and will not be presented here, but it establishes that
at asymptote the associative strength of a cue will equal the value of AP as
determined by the appropriate probabilistic contrast. For example, in a
design with trial types A, AB, and ABC, with some of these trials being
paired on some occasions with the outcome, the asymptotic weight for cue
C will be equal to P(O/ABC) — P(O/AB), and the weight for cue B will be
P(O/AB) - P(O/A). In each case, the weight corresponds to AP defined over
the appropriate contrast: for cue C, for example, the contrast is evaluated
across the ABC and AB trials.

What are the limitations of this proof, other than that training be contin-
ved to asymptote? Cheng and Holyoak were only able to establish the
proof for situations in which the trial types are nested in a particular way.
Specifically, the proof only applies when the trials are such that every cue
combination (such as ABC) is a proper superset of each smaller combina-
tion (such as A and AB). According to this restriction, a design involving
trial types such as A, AB, and BC would not be acceptable because BC is
not a superset of the smaller set A. In cases such as this, the probabilistic
contrast model is inapplicable anyway since the relevant contrast (say for
cue C) cannot be computed, so the question of whether its predictions are
identical to those of the delta rule does not arise. At any rate, the proof has
sufficiently wide applicability to encourage the view that the two theories
will yield equivalent asymptotic predictions in all but a few situations.

Given Cheng and Holyoak’s theorem, it is perhaps not surprising that
the delta rule model can explain many of the selective learning effects that
were described in Chapter 2 and which could be understood in terms of
conditional contrasts. Let us first consider the phenomenon of blocking.
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Remember that Chapman and Robbins (1990) gave subjects A—outcome
and B—no outcome trials prior to AC—outcome and BD—outcome trials
(see Table 2.5). According to the delta rule, in the first stage cue A comes to
acquire a positive weight while the B-outcome weight has zero strength. In
the second stage, on an AC trial the weight of cue A will make the term a
large in Equation 4.1, while on a BD trial a, will in contrast be zero. Hence
the mismatch d_ will be smaller for C than for D, and the weight change in
Equation 4.3 will in turn be smaller for C than D. As the second stage of
the experiment proceeds, Aw, will always be smaller for cue C than for cue
D and hence the weight will never attain such a high value.

The effect of signalling noncontingent outcomes (see Figure 2.5 in
Chapter 2) is explained in a similar way. Remember that associative judg-
ments are increased in an action—outcome situation if an additional cue sig-
nals those outcomes that are response-independent. The effect occurs,
according to the theory, because the presence of the signal as an additional
cue prevents the context or background from acquiring positive associative
strength, and hence from competing with the action on action—-outcome tri-
als, as it does in the noncontingent control condition. Essentially, the signal
blocks the background which in turn is less able to block the action. Let us
look at the calculations in more detail.

If we have AB—O and B—no O trials then the target cue (A) is contin-
gently related to the outcome, and when we have AB—O and B—O trials
the outcome is not contingent on cue A. A signal condition is identical to a
noncontingent one except that the noncontingent outcomes which occur in
the absence of the target cue are accompanied by the signal, which means
we have AB—O and BC—O trials types with cue C being the signal. We
have already seen how weights evolve in the contingent and noncontingent
conditions, so let us now run through the equations for the signal condi-
tion, with the same parameter values as before, and again assuming alter-
nating trial types. On the first AB—O trial each cue will receive a weight
increment of 0.5 as before. On the second trial, B and C are paired with the
outcome. Since B has a weight of 0.5, d_ will be 0.5 and the change in the
weights for B and C will be

Aw, =0.a;d,
= 0.5x1.0x0.5
=0.25

which means that B will have a total weight of 0.75 and C a weight of 0.25.
On the next AB—O trial, 4 is -0.25 [= 1.0 — (0.5+0.75)] and so A and B
will each lose some associative strength:

Aw, =0 a, d
=0.5%x1.0x(-0.25)
=-0.125,
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so A now has a weight of 0.375. After a further BC—O trial, B has a weight
of 0.6875 and A a weight of 0.375. Another pair of trials ends with A hav-
ing a weight of 0.3437. At a comparable point in the noncontingent condi-
tion, A had a weight of 0.2813, so it can be seen that A’s weight is greater in
the signal than in the noncontingent condition. In fact, with the parameters
used here, A’s asymptotic weight is 0.33, whereas the corresponding weight
for a noncontingent cue would of course be zero. What is essentially hap-
pening is that cue C forces cue B to acquire a weight of less than 1.0. This
in turn means that B is unable to force A’s weight all the way down to zero.
In sum, the calculations show that the effect of a cue signalling noncontin-
gent occurrences of the outcome is to augment the weight of the target cue,
just as we require.

A final basic learning effect that can be readily explained by a connec-
tionist model comes from another of the experiments (Shanks, 1991a) con-
sidered in Chapter 2. In that experiment, I used the medical diagnosis
procedure and asked subjects to rate the relationship between cue A and
outcome O, and that between cue D and outcome O, after the training tri-
als shown in Table 4.2. The procedure again required subjects to make
diagnoses on each trial, with corrective feedback. For outcome O,, the
problem is easily mastered since this disease only occurs on AB trials; AC
trials were accompanied by the absence of any disease. For outcome O, the
task is ambiguous since both DE and DF were paired with this disease on
50% of trials in the learning task.

The table also shows the weights obtained in a feedforward network in
which each symptom is represented by a separate input unit, and where
there were two output units corresponding to the two diseases. On trials
where no disease occurred, the teaching signal consisted of activations of
zero for each output unit. The network was trained for the same number of
trials as the subjects. As can be seen, the model reproduces the finding of
higher judgments for cue D in the uncorrelated than for cue A in the corre-
lated condition. The reason for the difference in the ratings is that in the
correlated condition, cue B is able to block the acquisition of associative
strength by cue A.

To summarise where the present section has led us: the delta rule can be
shown to compute AP at asymptote, both when the background is constant
and when it is variable. In the latter case, the rule yields weights in corre-
spondence with the probabilistic contrast model. Accordingly, the main
findings discussed in Chapter 2 can all be reproduced by an associative sys-
tem in which weights are updated by the delta rule, and to this extent, asso-
ciationist learning mechanisms are able to explain why learning is
normative.
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Table 4.2. Design and results of the experiment by Shanks (1991a, Experiment 3)

Condition Trial types Test symptom  Mean rating Weight

Correlated AB—O, A 32.3 335
AC—no O

Uncorrelated DE—O, D 49.0 59.3
DE—-no O
DF—-O0,
DF—-no O

A-F are the cues (symptoms) and O,, O, are the outcomes (diseases); no O indi-
cates no outcome.

Representation in connectionist networks

In the last chapter we saw that an instance theory like the context model
can account for much of the data obtained in concept learning tasks. Recall
that there are three principal phenomena for a categorisation model to
account for, (i) rapid and accurate responding to an unseen prototype, (ii)
evidence that categorisation is mediated at least to some degree by memo-
rised instances, and (iii) the base-rate resuits of Gluck and Bower (1988)
and Shanks (1990). How do connectionist models fare with these phenom-
ena? In particular, to what extent can it be said that connectionist systems
memorise training stimuli? I shall deal first with prototype and instance
effects before turning to the base-rate data.

Beginning with prototype effects, it has been known since the seminal
articles by Knapp and Anderson (1984) and McClelland and Rumelhart
(1985) that connectionist networks are able to reproduce these effects. This
comes about simply because the prototypical pattern activates all of the
input units which are most strongly associated with the target category, and
few of the units that are strongly associated with other categories. The
matrix of weights the network acquires during training represents an
abstraction from the training exemplars corresponding (in a very loose way)
to a prototype. Moreover, it is this abstraction process that allows connec-
tionist networks to manifest the same sort of behaviour as Watkins and
Kerkar’s (1985) subjects. Recall (see Figure 3.14) that exposure to two
instances (say of the word ‘umbrella’) made the word itself much easier for
subjects to remember but made the colours of each presentation harder to
remember. Because the word itself is constant across presentations, a con-
nectionist system such as an autoassociator will tend to assign considerable
weight to the features of the word. In contrast, because the colour varies,
that attribute will be to some extent discounted. The net effect will be a
degree of loss of idiosyncratic information from the weight matrix.
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Figure 4.4. Locations of hypothetical stimuli to illustrate the ability of the delta rule to repro-
duce instance effects. The stimuli are assumed to vary on two dimensions, with P1 and P2
being the prototypes of categories 1 and 2, respectively. A feedforward network with two out-
put units (one for each category) was trained to classify the four training exemplars from each
category and was then tested with the prototypes and the critical test stimuli E1 and E2.
Despite the fact that E1 and E2 are equidistant from the prototypes, E1 was assigned to cate-
gory 1 because it was more similar to a training stimulus from that category, and E2 was
assigned to category 2 because it was more similar to a training stimulus from that category.
(After Shanks, 1991b.)

What about instance effects? On the face of it, such effects should be dif-
ficult to reproduce since each weight in the network is the result of experi-
ence of a very large number of different exemplars. One of the clearest
examples came from the experiment by Homa et al. (1981). To try to repro-
duce such effects, at least in essence, I (Shanks, 1991b) presented a network
with four hypothetical training stimuli from each of two categories, and
then tested it with new stimuli equidistant from the prototypes but differing
in similarity to specific training items. The arrangement of the stimuli is
shown in Figure 4.4.

Each stimulus was represented by a pattern of activation across 24 input
units using a coding scheme that ensured that stimuli close together were
represented by similar patterns of activity. Each of the eight training stimuli
was presented six times to the network with appropriate feedback, and then
responding was measured to the prototypes and to the critical test stimuli
El and E2. Note that El is equidistant from the prototypes but slightly
more similar to a category 1 exemplar than to the nearest category 2 exem-
plar, whilst E2 is also equidistant from the prototypes but is slightly more
similar to a category 2 than a category 1 exemplar. Confirming that this



Connectionism and learning 123

sort of model can produce instance effects, the network responded differ-
ently to the two test stimuli, classifying E1 as a member of category 1 and
E2 as a member of category 2, despite the fact that they were equidistant
from the prototypes. The reason for this is that although the weights in the
network are abstractions in the sense that they combine information across
multiple presentations of different stimuli, they nevertheless do implicitly
retain some information about specific training instances. Each instance
possesses some idiosyncratic features, and although such features will only
be seen infrequently, the network will nevertheless be able to learn that such
features are weakly predictive of the category. Two stimuli equidistant from
the prototype may then differ in terms of possession of such weakly-predic-
tive idiosyncratic features.

Prototype and instance effects are also reproduced by autoassociative
networks. The usefulness of such systems for understanding associative
learning can be appreciated by considering some simulations reported in a
classic article by McClelland and Rumelhart (1985) which paved the way
for a wealth of subsequent investigations of the correspondences between
human category learning and learning in connectionist models. McClelland
and Rumelhart showed that an autoassociative network can reproduce the
instance results obtained by Whittlesea (1987). Remember that Whittlesea’s
subjects saw letter strings (see Table 3.4) such as FUKIP and attempted to
learn something about the internal structure of the strings. What are the
rules that govern the formation of the letters? In one experiment subjects
were trained on the Ila items and tested on the Ila, Ilc, and III items.
Although the ITa and Ilc items are equidistant from the prototype, subjects
showed more facilitation to the IIa than the Ilc items as shown in Table 4.3.
Also, the Ilc items are closer to the prototype that the III items, yet the lat-
ter showed more facilitation, which Whittlesea attributed to the fact that
the III items were more similar to the studied Ila items than were the Ilc
items.

McClelland and Rumelhart (1985) simulated these results by presenting a
20-unit autoassociative network with exactly the same events as subjects.
Each unit coded a letter occurring in a given position. In the learning stage,
a stimulus was presented on each trial and weights adjusted according to
the delta rule, and then in the test stage the relevant test items were pre-
sented to the network (with learning switched off). Table 4.3 shows that
both of the key results were reproduced by McClelland and Rumelhart’s
model, where the figures represent the increase in the dot product between
the input and output vectors. In showing a greater degree of facilitation to
the Ila than to the Ilc items the model is clearly demonstrating its ability to
maintain information about the specific instances that it was trained with.
The benefit of the III items over the Ilc items shows that the network can
respond to new test items as a function of their similarity to studied items.

Despite this ability to encode instances, in further simulations
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Table 4.3. McClelland and Rumelhart’s (1985) simulation of Whittlesea’s (1987)
results

Training stimuli Test stimuli Observed transfer  Predicted transfer

IlIa 1.07 1.45
ITa ITb 0.80 0.70
Iic 0.51 0.60
ITa 1.22 1.45
Ila IIc 0.65 0.60
III 0.86 0.75
P — 1.40
Ia Ia — 1.20
ITa — 0.60

Observed transfer = mean increase in the number of letters correctly identified,
relative to the baseline stage. Predicted transfer = increase in dot product between
input and output vectors.

McClelland and Rumelhart established that their model can also show the
superior responding to an unseen prototype that, as we saw in Chapter 2 in
the experiment of Homa et al. (1981), is a feature of human classification.
McClelland and Rumelhart trained their network on the Ia items that are
similar to the prototype, and then tested it on the prototype, the Ia items,
and the Ila items. The results, given in Table 4.3, show a clear benefit for
the unseen prototype over the studied Ia items. Although Whittlesea did
not conduct the equivalent of this experiment with his subjects, the simula-
tion results correspond to those obtained in other circumstances (such as in
Homa et al.’s experiment) where the prototype is more accurately or rapidly
classified than the training items. In sum, McClelland and Rumelhart
(1985) demonstrated an extremely impressive correspondence between data
obtained in associative learning tasks and the behaviour of their connec-
tionist model.

Turning now to base-rate effects, recall that the crucial data obtained by
Gluck and Bower (1988) and others came from experiments in which there
were AB—1, AB—2, and A—1 training trials. Despite being equally paired
with categories 1 and 2, subjects tended to classify cue B in category 2. It
turns out that this effect is easily reproduced by a connectionist model.
Gluck and Bower (1988), Nosofsky et al. (1992), and Shanks (1990) have all
shown that this bias can be reproduced in a connectionist network. Thus
while subjects in the Shanks (1990) study chose disease 2 with probability
p=0.63, a connectionist network trained on an identical set of learning trials
generated weights of 0.33 and 0.05 on the A—2 and A—1 connections,
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respectively, which would translate into a strong bias (p=0.87) for choosing
category 2. The reason is basically the same as the explanation of simple
contingency effects: cue A becomes strongly associated with category 1, and
this means that on the AB—1 and AB—?2 trials cue B must acquire a greater
weight for category 2 in order to offset cue A’s bias towards category 1.

Artificial grammar learning

Given the success of McClelland and Rumelhart’s model in acquiring
knowledge of the internal structure of Whittlesea’s letter strings, it is per-
haps not surprising that such a model can also be successfully applied to the
learning of artificial grammars. Dienes (1992) has recently shown that artifi-
cial grammar learning can be well understood in terms of the operations of
a simple autoassociator. He tested various slightly different learning rules
and coding schemes. The network’s task was to reproduce across the units
the pattern that was actually presented.

Dienes used the grammar that was briefly discussed in Chapter 1 (Fig.
1.1) and which generated strings like MVT and VXVRXR. Since there were
five letters in the grammar, and a maximum of six letters in each string, 30
units are sufficient to code each possible letter occurring at each possible
position in the string. During the learning phase, a string was presented as a
pattern of input activations (1s and 0s) across the units. At the end of each
trial, weights were updated according to the delta rule. This meant that by
the end of the training phase the network had learned various correlations
between letters in different positions. For instance, a V in position 1 led to
activation of the unit representing letter X in position 2, encoding the fact
that in the training items any string that began with a V continued with an
X. In contrast, an M in position 1 activated to some degree the units repre-
senting T and V in position 2, since both of these were legal continuations
for a string commencing with M.

To test the network, at the end of the training phase Dienes presented it
with new strings that were either grammatical or nongrammatical. As a
measure of whether the network regarded a string as grammatical, Dienes
used the cosine of the angle between the input and output vectors as a mea-
sure of how well the network was able to recreate the input pattern. The
results showed that this autoassociator network could provide an excellent
account of artificial grammar learning, not only being able to discriminate
between new grammatical and nongrammatical strings, but also performing
at the same overall level of accuracy as subjects, and producing approxi-
mately the same rank ordering of difficulty of the test strings. The network
behaves in this way because the weights represent weak correlations that
exist between letters at different positions in the grammar. When a gram-
matical string is presented, there is a good match between the sequence of
letters in the string and the internally-generated expectation the network
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has concerning the sequence. For a nongrammatical string, the internally-
generated prediction mismatches the structure of the string.

In the last chapter, we saw that much of the data obtained from artificial
grammar learning experiments can be interpreted in terms of memorisation
of studied grammatical strings: if a new test string is sufficiently similar to
the memorised items, it is called ‘grammatical’. Some evidence for this came
from Vokey and Brooks’s (1992) observation that when grammatical status
and similarity to specific study exemplars are separated, both factors appear
to contribute to performance. Vokey and Brooks constructed sets of test
strings (see Table 3.6) such that some were similar to study items (i.e., dif-
fering by one letter from the most similar study string) while others were
dissimilar (differing by more than one letter). Orthogonal to this, half the
test items were grammatical and half were nongrammatical. Vokey and
Brooks found that similarity to studied exemplars played a significant role,
in that more close than far test items were called grammatical. This of
course supports the view that instance memorisation plays a role in the
learning of such artificial grammars, but Vokey and Brooks realised that it
could not be the whole story: over and above similarity, grammatical status
continued to be a contributing factor. More grammatical than nongram-
matical test strings were called grammatical, even when equated for similar-
ity to study items.

It appears that connectionist models may be able to explain both of these
effects within a single mechanism. A connectionist model such as Dienes’
does not literally, of course, memorise the strings it is presented, but instead
extracts information about the regularities that exist between the elements of
the study strings. Although such a system will, naturally, be sensitive to the
degree of similarity between studied and test strings, it may also be sensitive
to grammaticality: a grammatical test string will, by definition, be made up
of relations between elements that existed in the set of study strings.

All of this suggests that a unitary explanation of Vokey and Brooks’ data
may be possible, in contrast to the dual explanation they suggested.
Accordingly, Perruchet (1994) has shown that if the strings used by Vokey
and Brooks are broken into their letter pairs and triplets, then the two fac-
tors of similarity and grammaticality can be subsumed by just one, namely
number of studied fragments. ‘Close’ test items similar to training strings
contain more studied letter pairs and triplets than ‘far’ ones which are dis-
similar to training strings, and independently, grammatical test items con-
tain more studied pairs and triplets than nongrammatical ones. Thus the
data can be understood in terms of exactly the sort of information that con-
nectionist models extract, namely contingencies between the elements of the
studied items. Furthermore, such a model does seem to conform quite well
to the sorts of knowledge subjects report. The evidence suggests that sub-
jects are quite good at recalling the legal letter pairs that they observed in
the study phase.
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Internal representations

In the models we have been considering thus far, knowledge is represented
in weighted connections. In autoassociators, these connections are between
elements of the stimulus itself, while in pattern associators they are between
elements of the cue and elements of the outcome. While the learning mecha-
nism we have examined, the delta rule, has been successfully applied to
many tasks, there is evidence to suggest that this ‘elemental’ representa-
tional assumption is inadequate. In learning to associate one pattern with
another, for instance, it appears that in addition to learning direct associa-
tions between the outcome and the separate elements that make up the
stimulus, intermediate representations of the stimulus can also be involved
in associations with the outcome.

The inadequacy of the notion that the elements of the cue are directly
associated with the outcome comes from the fact that humans can learn
nonlinearly separable classifications. In single-layer networks, in which just
one layer of modifiable connections exists between the input and output
units, it is easy to see that the predicted outcome a, must be a linear sum of
the inputs. Consider a network consisting of two input units (denoted x and
y) connected to one output unit, where the inputs and correct output ¢, can
take on values between 0.0 and 1.0, and where the network is trained to
classify input patterns into one of two categories. Regardless of the weights,
Equation 4.1 tells us that the output a, must always be a simple linear sum
of the activations (a, and a,) of input units x and y:

a=a. w taw,.

It follows that the only types of classification such a system can learn are
linearly separable ones in which the members of the two categories can be
distinguished by a simple linear boundary. Specifically, for the delta rule
model to learn a classification, it must be possible to construct a straight
line in the x, y input space that exactly divides the stimuli into the correct
categories. If such a line can be drawn, then there exist weights that will
allow the model to produce greater outputs for members of one category
than for members of the other category. The classification is solved by mak-
ing one category response whenever the output is greater than a threshold
and the other response whenever it is less.

However, people have no difficulty learning nonlinearly-separable classifica-
tions which the delta rule model we have been considering would be unable to
master. Indeed, we have already seen at least two examples of this. One was
cited in Chapter 1: humans and animals can readily learn discriminations in
which two red stimuli are shown on some trials and reward depends on choos-
ing the right-hand one, while on other trials, a pair of green stimuli is pre-
sented and reward is given for choosing the left-hand stimulus. Such a
discrimination cannot be solved by networks of the sort considered thus far,
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because each element (red, green, left, right) should be equally associated with
reward. The second example comes from Nosofsky’s (1987) categorisation
data. In one of Nosofsky’s classification tasks (the diagonal problem shown in
Figure 3.8) the two categories cannot be separated by a linear discrimination,
yet subjects had no obvious difficulty learning to solve that problem.

It is for this reason that many feedforward connectionist models incorpo-
rate a layer of ‘hidden’ units that intervene between the input and output
units, as shown in Figure 4.5. Such a network can operate exactly like a
single-layer pattern associator if we continue to use the delta rule as the
learning algorithm. One particular type of hidden-unit network has been
extremely widely investigated and has been shown to have some very pow-
erful properties. In such a ‘backpropagation-of-error’ network, the delta
rule applies exactly as before except that it is refined in order to determine
how much the input-hidden weights and the hidden-output weights should
be changed on a given trial. The precise calculations are as follows (for fur-
ther details, see McClelland and Rumelhart, 1988). Each hidden unit A
computes its activation, a,, which is a logistic function of its input:

1

h -
Zaiwih ?

l+e i

where w, is the weight connecting input unit i to the hidden unit and q, is
the activation of input unit 7 (1.0 if the relevant feature is present and 0.0 if
it is absent). The reason for using this logistic function is that it is math-
ematically very convenient from the point of view of partitioning the weight
changes between the input-hidden and the hidden-output connections.

Each output unit o computes its activation @ in exactly the same way by
summing its inputs times the weights from the hidden units and putting the
total input through a logistic transform. Finally, the weights, which start
out not at zero but with small random values, are changed according to
Equation 4.3. For the weights connecting the hidden and output units, the
relevant error term d,_ is:

d=(t-a).a,.(1.0-a), (4.15)
where ¢ is again the teaching signal on the output unit. For the input-
hidden connection the relevant error is

&, =ay-(1-a,) X wod,
7]

The development of multilayer networks using this generalised version of
the delta rule has provided a major contribution to recent connectionist
modelling since phenomena such as the learning of nonlinear classifications
that are impossible for single-layer networks can be easily dealt with by
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multilayer networks. Although Minsky and Papert (1969) were quite cor-
rect in highlighting the many weaknesses of single-layer networks, it is
regrettable that their critique led so many researchers to lose interest in
associationist learning devices. The development of training procedures for
multilayer networks may otherwise have occurred somewhat earlier.

Be that as it may, even more impressive than their ability to learn nonlin-
ear classifications is the fact, proved by Hornik, Stinchcombe and White
(1989), that backpropagation networks can learn essentially any mapping
between a set of input and output patterns that one cares to construct. Thus,
for any set of mappings from arbitrary input patterns to arbitrary output
patterns (I,—O,, ,—0,, I,—0,,...), a backpropagation network with suffi-
cient hidden units will construct a set of weights to learn the mapping to any
desired degree of approximation. Hence there is no question about the
power of this sort of connectionist network for learning associative relation-
ships. But the question remains, does it learn in the same way as humans?

There is undoubtedly evidence of persuasive correspondences between
human behaviour and the predictions of backpropagation networks. Some
of the best evidence concerns child language acquisition, where it is possible
to provide a network with approximately the same sort of input that chil-
dren receive and see whether characteristics of the network’s learning match
those seen in children. One much-debated example concerns the learning of
the past-tense in English. While most verbs are regular in adding -ed to pro-
duce the past tense (e.g., walk—walked), a number of very common verbs
are irregular (e.g., go—went, send—sent, have-had, etc.). Children, of course,
are able eventually to learn the correct past tenses, but they also produce
some interesting errors in that they occasionally ‘over-regularise’ irregular
verbs: they say ‘goed,” ‘sended’, and so on. It turns out that backpropaga-
tion networks are also able to produce such errors (Plunkett and
Marchman, 1991). Because they encounter many more regular than irregu-
lar verbs, early on in training the network may inappropriately generalise
the contingency between verb stems and the -ed past tense and apply it to
irregular verbs.

From the more general perspective of human associative learning, how-
ever, the basic backpropagation system is inadequate for at least two rea-
sons. The first is that, contrary to the available evidence, such a system will
learn a linearly-separable classification of a set of stimuli faster than a non-
linear partition of the same stimulus set. The reason for this is that hidden
units in a backpropagation network can each be thought of as attempting
to construct a line or plane in the input space to classify the stimuli appro-
priately. If there is indeed a linear separation of the stimuli, then it only
takes one hidden unit to orient itself appropriately and the classification is
solved. In contrast, a nonlinear classification requires more than one appro-
priately-aligned hidden unit, and the alignment of two or more units will
never take less time than the alignment of one.
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Figure 4.6. Stimuli used by Medin and Schwanenflugel (1981) to study learning of linearly-
separable (left) and nonlinearly-separable (right) classifications. Stimuli varied on three binary-
valued dimensions and the same set of stimuli was used in both cases. Subjects were taught to
assign stimuli represented by open circles to one category and those represented by filled circles
to the other. Note that a plane can be constructed to divide perfectly the two sets of stimuli for
the linearly-separable classification, but this is not possible for the nonlinearly-separable one.

Not only can humans actually learn nonlinear classifications, but there is
also evidence that under controlled conditions, they are learned at least as
fast as linear ones. The best-known example is from Medin and
Schwanenflugel (1981). In one of their experiments, they trained subjects on
the classifications shown in Figure 4.6. In one problem (left panel), the
stimuli can be partitioned by a plane constructed through the space,
whereas for the other (right panel) this is not possible. Note that the same
set of stimuli is used in the two cases. Medin and Schwanenflugel presented
their subjects with photographs of people who differed in terms of hair
length, hair colour, and type of smile, and instructed subjects that these
were the only relevant dimensions. Subjects saw one of the faces on each
trial and classified it, with corrective feedback, into one of two families. The
results showed that while both category structures could be learned, the
nonlinear classification was no harder to learn (in fact, slightly easier) than
the linear one. In another study in which four-dimensional geometrical
stimuli were used, the nonlinear classification was actually learned signifi-
cantly faster than the linear one, a result that has also been obtained by
Nakamura (1985).

Actually, this result is quite intuitive, because examination of Figure 4.6
shows that in the linear classification, each item’s nearest neighbour is a
member of the alternative category, which would be expected to impair
learning. This is not true of the nonlinear classification: most items are
equally similar to a member of their own category and to a member of the
opposite category. At any rate, the important point for present purposes is
that the broadly equivalent ease of learning of linear and nonlinear cat-
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Figure 4.7. Category structure used in Kruschke’s (1993) interference experiment. The stimuli
were boxes with internal lines, and the height of the box and the position of the internal line
varied as shown. In the first phase of the experiment, the stimuli in squares (inside the dotted
line) were presented with category feedback, while the stimuli in circles (outside the dotted
line) were classified with feedback only on every fifth presentation. In the second phase, the
stimuli inside the dotted line were classified without feedback and those outside the dotted line
were classified with feedback on every trial. The two categories are designated X and O. (From
Kruschke, 1993, reprinted with permission.)

egories is hard to reconcile with the backpropagation model. Gluck (1991)
has shown in simulations of Medin and Schwanenfiugel’s data that a stan-
dard backpropagation network predicts very much faster learning of the
linear classification.

The second problem with standard backpropagation as a model of
human associative learning comes from a rather different source. In the last
chapter we saw that of the two major explanations of forgetting, unlearning
and retrieval failure, the bulk of the evidence supports the latter. Indeed, we
saw that there is actually little direct evidence of unlearning at all. To the
extent that they can behave like instance memorisation systems, connec-
tionist models find these results concerning forgetting entirely congenial.
But whereas genuine unlearning seems to play a rather minor role in nor-
mal human forgetting, it appears that backpropagation networks are
extremely prone to unlearning; indeed, they seem to suffer from an effect
known as ‘catastrophic interference’, whereby target information is almost
entirely overwritten or unlearned by later interfering information in a way
quite uncharacteristic of human performance.

McCloskey and Cohen (1989) observed that a multilayer network using
the backpropagation algorithm will perform extremely poorly at reprodu-
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Figure 4.8. Results of Kruschke’s (1993) interference experiment. The stimuli and categories
were as shown in Figure 4.7. From trials 1-120, the stimuli inside the dotted line in Figure 4.7
were classified with category feedback on each trial (filled squares), while those outside the
dotted line were classified without feedback on four out of five trials (open circles) and with
feedback on the fifth trial (filled circles). From trials 121-200, feedback was now withheld from
the stimuli inside the dotted line (open squares) but was presented on every trial for the stimuli
outside the dotted line (filled circles). Filled symbols represent trials with feedback, open sym-
bols represent trials without. The key result is that little unlearning of the category assignments
occurred for stimuli inside the dotted line during the second phase. (From Kruschke, 1993,
reprinted with permission.)

cing a set of associative A-B relations if it is taught some other information
following these pairings. It is very difficult for such a network to maintain a
record of a set of information in the face of some new information that has
to be learned. In the extreme case, McCloskey and Cohen found that one
set of input-output pairings (A-B) was entirely abolished in a backpropaga-
tion network by a new set of A—C pairs involving the same input cues.
Kruschke (1993) has conducted a more systematic demonstration of this
effect, commencing with an experiment showing that humans are not espe-
cially prone to catastrophic forgetting. The stimuli used in the experiment,
represented in Figure 4.7, were boxes with internal lines with the height of
the box and the location of the internal line varying independently. In the
first phase of the experiment, a stimulus was presented on each of 120 trials
and the subject made one of two category responses. Corrective feedback
was provided every time one of the stimuli inside the dotted line in Figure
4.7 (denoted by squares) was presented. For the two stimuli outside the dot-
ted line (denoted by circles), feedback was only given on every fifth occa-
sion. The data obtained by Kruschke are shown in Figure 4.8. As the filled
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squares in the figure show, performance to the stimuli inside the dotted line
rapidly improved. For the other two stimuli, subjects initially classified
them incorrectly: unsurprisingly, they were assigned to the categories to
which they were most similar. However, with occasional feedback perfor-
mance improved during the first phase. The zig-zag shape of the curve for
the circle stimuli reflects the fact that after feedback was given (filled sym-
bols), performance was boosted the next time the stimulus was presented,
but that in the absence of feedback subjects soon reverted to classification
based on similarity and hence made fewer correct decisions. By the end of
the first stage (trial 120), performance on the circle stimuli was still only at
about 50% correct.

In the second phase, the circle stimuli were now given explicit feedback
on every trial whilst the square stimuli were given no category feedback.
Subjects clearly did not suffer from catastrophic interference, since respond-
ing to the stimuli inside the dotted line did not deteriorate very much (open
squares in Figure 4.8) in the face of new learning concerning the circle stim-
uli. Following McCloskey and Cohen’s (1989) results, the critical question
is whether a back propagation network will be able to reproduce the sub-
jects’ behaviour or whether it will show rapid forgetting of the square stim-
uli during the second stage.

To test this, Kruschke presented a multilayer network (using the back-
propagation rule) such as that shown in Figure 4.5 with exactly the same
sequence of events as his subjects had experienced. The network had two
input units representing the two dimensions of variation of the stimuli, six
hidden units, and two output units (one for each category), and Kruschke
adjusted the learning rate to achieve the best fit possible. The results are
shown in Figure 4.9. The network fails in a number of respects. First, feed-
back on the circle stimuli did not allow performance to improve at all dur-
ing the first stage. This is because the learning that did occur on these trials
was immediately interfered with by continued learning about the square
stimuli. Secondly, and more importantly, the network was utterly incapable
of reproducing the subjects’ behaviour during the second stage of the exper-
iment. Figure 4.9 shows that performance on the square stimuli fell to
chance (50% correct) during the second stage, again reflecting catastrophic
interference: learning about the circle stimuli completely undid learning
about the square stimuli.

Why does the backpropagation learning algorithm lead to this inappro-
priate behaviour? The reason is that each of the hidden units in such a net-
work is activated by a very high proportion of input patterns, which means
that new patterns are very likely to lead to adjustments in the weights con-
nected to a given hidden unit. Such weight changes, of course, almost
inevitably entail unlearning. The large receptive fields of the hidden units
mean that it is very difficult for a backpropagation network to isolate a par-
ticular item of knowledge and protect it from interference.
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Figure 4.9. Simulation with a backpropagation network of Kruschke’s (1993) interference
experiment. The network consisted of two input units, six hidden units, and two output units,
and was presented with the same trial types as subjects (see Figure 4.7). In the first phase, some
stimuli were presented with feedback (filled symbols) and others without (open symbols), while
in the second phase these assignments were reversed. During phase 2, complete unlearning of
the phase 1 assignments occurred (open squares), but this did not occur with subjects (Fig.
4.8). (From Kruschke, 1993, reprinted with permission.)

The above results all suggest that there is a serious problem with the way
in which hidden units in a backpropagation network represent stimuli.
While there can be little doubt that internal representations are required in
some situations, the way in which the generalised version of the delta rule
changes weights, coupled with the logistic activation functions of the hid-
den units, means that it does not provide a good model of human behav-
iour.

Selective attention and learning

In Chapter 3 we examined some reasons why it is necessary to incorporate a
selective attention process into models of associative learning. Recall that
Nosofsky (1987) found that the context model was only able to account for
data from classification experiments on the assumption that the psychologi-
cal space in which the stimuli fell could be stretched or shrunk along its
axes during the learning phase. For instance, when values on a certain
dimension distinguished members of two categories, the space appeared to
be stretched along this dimension and shrunk along nonpredictive dimen-
sions. A typical learning task will therefore entail two processes, one
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Figure 4.10. Stimuli used in Kruschke’s (1993) filtration/condensation experiment. Left-hand panel: the stimali
(as before) were boxes with internal lines, and the height of the box and the position of the internal line varied
as shown. These co-ordinates are from an MDS analysis based on subjects’ pairwise similarity judgments.
Right-hand panel: category partitions in filtration and condensation problems for this set of stimuli. In the fil-
tration problems, only one dimension is relevant to the classification, whereas in the condensation problems
both dimensions are relevant. (From Kruschke, 1993, reprinted with permission.)
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whereby stimuli come to be associated with outcomes and one which alters
the perceived inter-stimulus similarities.

Plainly, if our goal is to construct an adaptive network model of learning,
we need to say something about how selective attention is to be dealt with.
In order to see what is required, consider a quite simple result that seems to
demand an attentional explanation of the same sort postulated by Nosofsky
(1987). This is the classic filtration/condensation effect first studied by
Posner (1964). Suppose subjects have to learn to classify stimuli varying on
two dimensions; the stimuli might be red or green triangles or squares. In a
filtration task, only one of the dimensions is relevant to the classification:
the triangles are members of one category and the squares are members of
the other category, regardless of colour. In a condensation task, both
dimensions are relevant: one category consists of red triangles and green
squares, the other of green triangles and red squares. Intuitively, the filtra-
tion task should be easier to learn because one of the dimensions can be fil-
tered out and ignored, whereas in the condensation task information from
both dimensions has to be condensed into a single classification decision.

Note that the filtration/condensation difference is not the same as the dif-
ference between linearly-separable and nonlinearly-separable categories,
because linearly-separable problems can require either filtration or condensa-
tion. If red triangles and squares represent one category while green triangles
and squares represent the other, then the problem requires filtration (of the
shape dimension), whereas if red triangles, red squares, and green triangles
represent one category and green squares the other then the problem requires
condensation. But in both cases, the categories are linearly separable.

It is well-established that the intuition that people will find filtration tasks
easier than condensation ones is correct. A particularly elegant example is
provided in another study by Kruschke (1993). He used the same stimuli as
described before, namely boxes with an interior line, in which the height of
the box and the position of the line varied orthogonally. Kruschke used
eight stimuli organised as shown in the left-hand panel of Figure 4.10, with
the stimuli constructed from four levels of each dimension. In fact, the fig-
ure shows the co-ordinates of the stimuli obtained from a multidimensional
scaling solution based on similarity judgments from a separate group of
subjects.

Kruschke then presented subjects with 64 training trials in which four
stimuli were assigned to one category and four to the other. Category feed-
back was provided on each trial. The right-hand panel of Figure 4.10 shows
that in the filtration task, the category boundary was either a horizontal
line separating the four upper stimuli from the lower ones or a vertical line
separating the four stimuli on the right from those on the left. In the con-
densation task, the boundary was either the major or the minor diagonal.
Figure 4.10 shows that in terms of inter-stimulus similarities, these classifi-
cations are all identical. Thus if learning simply requires associating stimuli
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Figure 4.11. Results from Kruschke’s (1993) filtration/condensation experiment. The figure
shows the probability of a correct response for stimuli from the filtration and condensation
classifications shown in the right-hand panel of Figure 4.10. The key result is that filtration
problems are easier to learn than condensation ones. Filled circles = position-relevant filtration
problem; filled squares = height-relevant filtration problem; open symbols are for the two con-
densation problems. (From Kruschke, 1993, reprinted with permission.)

with outcomes, no filtration/condensation difference would be expected. On
the other hand, the presence of a difference would imply that, in addition to
the basic stimulus—outcome learning process, there exists an attentional
process which changes the perceived inter-stimulus similarities in such a
way as to make the classification task easier to learn.

Figure 4.11 shows the results in terms of the probability of a correct clas-
sification in each of the tasks. The filtration classifications were significantly
easier than the condensation ones. The position-relevant filtration task was
also somewhat easier than the height-relevant one. How do these results
relate to network models of learning? Most simple connectionist models
find the filtration/condensation effect extremely difficult to explain, because
other things being equal, they have no preference for learning a decision
boundary in one orientation compared to another. As an illustration,
Figure 4.12 shows the best fit that Kruschke was able to obtain using a sim-
ple backpropagation network consisting of two input units, eight hidden
units, and two output units. The network is quite unable to capture the fil-
tration/condensation difference.

The difficulties presented to connectionist models by the results discussed
in this section and the preceding one lead us to two conclusions. First, it is
necessary to incorporate some mechanism for selective attention that is
independent of the basic process whereby the elements of the stimulus come
to be associated with the outcome or category. Secondly, in order to avoid
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Figure 4.12. Simulation with a backpropagation network of Kruschke’s (1993) filtration/con-
densation experiment. The network consisted of two input units, eight hidden units, and two
output units, and was presented with the same trial types as subjects (see Figure 4.10). The net-
work is unable to reproduce the filtration/condensation difference that appeared in the sub-
jects’ data (Figure 4.11). (From Kruschke, 1993, reprinted with permission.)

the problem of catastrophic interference, it is necessary to construct a net-
work in which the hidden units are rather more constrained, in terms of the
number of input patterns that they are activated by, than is the case in stan-
dard backpropagation. Catastrophic interference comes about because
interpolated learning overwrites earlier learning, but this can be to some
extent alleviated if the interpolated learning adjusts the weights of a differ-
ent set of hidden units than that which encodes the original learning.

These two considerations have been taken into account in the construc-
tion of a model called ALCOVE (Kruschke, 1992; Nosofsky and Kruschke,
1992) which is a promising alternative to standard backpropagation.
Briefly, hidden units in ALCOVE are strictly limited in the input patterns
they respond to. In fact, a given unit is maximally activated by only one
input stimulus; other stimuli activate it to a lesser degree that depends on
how similar they are to the stimulus that yields the maximal response.
Because of these hidden unit ‘receptive fields’, the ALCOVE model does
not need to adjust weights connecting the input and hidden units. Instead,
only the weights from the hidden to the output units are modifiable, but the
way in which the hidden units represent input stimuli is still sufficient to
allow nonlinear classifications to be learned.

Additionally, Kruschke incorporates into the model a selective attention
mechanism whereby the activation of each input unit is multiplied by an
attentional gain factor. Just as the error on the output units of the network
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drives weight changes (according to Equation 4.3), so Kruschke uses this
error to adjust the amount of attention that is paid to the activation of a
given input unit, and the end result is that the inputs that are most relevant
to solving the classification acquire large attention strengths, while irrele-
vant inputs acquire small ones. As Kruschke (1993) has shown in an
impressive simulation of the data shown in Figure 4.11, this allows the fil-
tration/condensation difference to be very straightforwardly accommo-
dated. In addition, because each hidden unit in the model is activated by
relatively few stimuli, catastrophic interference does not occur. Knowledge
stored across the weights connected to one set of hidden units is relatively
unaffected by subsequent changes in the weights of a different set of hidden
units. Accordingly, Kruschke (1993) has shown that the model can fit very
closely the data of Figure 4.8 which were so problematic for backpropaga-
tion.

This brief discussion of the ALCOVE model illustrates how connectionist
models are currently being extended to allow them to reproduce some of
the more subtle aspects of human learning. At present, it is too soon to
evaluate the ALCOVE model in great detail, but there is no doubt that it
can fit the data from a very large number of experiments (Nosofsky and
Kruschke, 1992). This is a fast-moving area of research and promises to
yield further insights into the mechanisms of associative learning,.

Configural cues

One interesting aspect of Kruschke’s ALCOVE model is that it represents
stimuli in a configural rather than an elemental manner. In a single-layer
network, it is assumed that the elements or features that constitute the stim-
ulus are independently associated with the category or outcome, whereas in
ALCOVE it is not the elements themselves but rather specific configura-
tions of elements that form associations. Each hidden unit in the network
represents a specific stimulus configuration.

We have already been given abundant reasons to reject single-layer net-
works, but the configural-elemental dimension provides a further reason in
the form of direct evidence that people often learn about configurations
rather than about elements. In the present section we will examine some of
the evidence for the sort of configural representation assumed in Kruschke’s
model. As a first example, let us consider an experiment that Wilson (1993)
conducted which was modelled on an earlier animal conditioning study of
his. Subjects saw intermixed A—O,, AB—no O, and BC—O, trials together
with D—no O, DE—O,, and EF—O0, trials. After the learning phase,
Wilson presented subjects with two new test trials consisting of the com-
pounds ABC and DEF, and asked subjects to predict the outcome most
likely to occur on each trial type.

Wilson reasoned that on an elemental theory, ABC should be associated



Connectionism and learning 141

with outcome O, to a greater degree than DEF is associated with outcome
O,. The delta rule predicts that after training with A—O,, AB—no O, and
BC—O, trials, A should have an asymptotic weight of 1.0, B of -1.0, and C
of 2.0, while after D—no O, DE—O,, and EF—O, trials, D should have a
weight of 0.0, E of 1.0, and F of 0.0. When these are added together, the net
result is a combined weight of 2.0 for ABC and 1.0 for DEF. But in con-
trast to these predictions, Wilson’s subjects were significantly more likely to
predict outcome O, on a DEF test trial than outcome O, on an ABC trial.

Why should this be? Suppose that subjects learn not about the individual
associations between elements and outcomes, but rather between whole
configurations and outcomes as in the ALCOVE model. Thus, they learn
that AB is associated with no outcome and BC with outcome O,, but they
do not directly learn anything about element B. On this account, respond-
ing to a novel combination such as ABC must be determined not by the
associative strength of its elements but rather by its similarity to previously-
seen configurations. Thus ABC is highly similar to AB and BC, but only
one of these has been paired with the outcome. In contrast, DEF is highly
similar to DE and EF, and both of these have been associated with the out-
come. Thus Wilson’s results are compatible with the idea that the outcome
may be associated with the whole configuration rather than with the sepa-
rate elements of which it is made.

Another illustration of the same effect comes from a series of experiments
by Williams (1995) on the learning of negative contingencies. Williams used
the fictional stock market procedure of Chapman and Robbins (1990) in
which the cues are stocks and the outcome is a rise in the overall level of the
stock market. In his studies, subjects were exposed to intermixed
A—outcome and AB—no outcome trials designed to imbue cue B with neg-
ative associative strength. Together with these training trials, subjects also
saw trials with another cue that was also paired with the outcome
(C—outcome). By the end of training, subjects were predicting the outcome
reliably less often on the AB than on the A trials, indicating that they had
learned about the different consequences of these trial types. Then in the
test stage cue B was presented either alone or together with cue C and
Williams recorded whether subjects predicted the outcome or not.

On the elemental assumption that the cues were directly associated with
the outcome, the initial A—outcome, AB—no outcome trials should have
left cue B with a negative association, and we would obviously predict that
subjects will judge the outcome to be less likely on the B test trial than on a
trial with a completely novel cue D which should have zero associative
strength for the outcome. In fact, in this experiment Williams found no dif-
ference between responding to B and D, contradicting the idea that B had a
negative weight. Moreover, there was no difference in responding on BC
compared to CD test trials, where again a difference would be expected on
an elemental analysis, since D would be predicted to be neutral while B is
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predicted to have a negative weight. What seems to have happened instead
is that the initial discrimination taught subjects that cue A was paired with
the outcome and that the configural cue AB was paired with no outcome.
Subjects did not learn anything directly about the relationship between B
and the outcome.

Williams went on in a further study to show that an elemental associa-
tion could be formed under slightly different training procedures. Here,
subjects received A—0O, AB—no O, C—0, and B—no O trials with B now
being presented alone on some trials without the outcome. This direct expo-
sure to the relationship between B and the outcome was sufficient to gener-
ate an elemental negative association, in that on test trials subjects
predicted the outcome reliably less often with cue B than with a novel cue
D. In sum, it appears that a configural association will control performance
unless the subject has seen the elements in isolation, in which case the ten-
dency to form a configural representation seems to be attenuated.

Unfortunately, this picture is complicated by some evidence that subjects
appear to be able to adopt either an elemental or a configural approach to a
given task depending merely on prior experience. Williams, Sagness and
McPhee (1994) repeated Chapman and Robbins’ (1990) blocking experiment
(see Table 2.5) but pretrained various groups of subjects in different ways. In
one condition the pretraining was designed to foster an ‘clemental’ strategy
whereby subjects would to some degree analyse each cue separately.
Specifically, the pretraining phase involved exposure to intermixed X—O
and XY—O trials, and although the XY configuration is paired with the
outcome, there is explicit information suggesting that it is the X element of
the configuration that is the important one. In a second condition, pretrain-
ing was designed to foster a ‘configural’ strategy. Here, subjects received
XY—0, X—no O, and Y—no O trials; clearly, in this case it is the XY con-
figuration rather than either of its elements that predicts the outcome.

After this pretraining phase, subjects then went on to the main phase of
the experiment in which they received a standard blocking problem using a
new set of cues. In the first stage A—O and B—no O trials were presented,
followed in the second stage by AC—O and BD—O trials. What would we
expect to happen in this situation when subjects finally rate cues C and D?
Given that the main phase is simply a replication of Chapman and
Robbins’ (1990) experiment, we should expect to see that cue C is blocked
and receives lower ratings than cue D, and this is exactly what happened for
subjects who received the elemental pretraining. However, for those given
the configural pretraining, no blocking was observed, and instead C and D
received equal ratings.

To explain this intriguing result, Williams et al. (1994) argued that when
subjects saw the AC and BD trials, they could either treat these compounds
as being composed of separable elements or as constituting configurations.
In the former case, analysis will reveal that cue A is more likely than cue C
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to be the element most predictive of the outcome and that cue D is more
likely than cue B to be predictive, and hence blocking will be observed. In
contrast, if the subjects are inclined to treat the AC and BD configurations
as being relatively unrelated to the A and B elements seen in the earlier
stage, then they should be treat them equally, since each is paired to the
same extent with the outcome. In this case, no blocking would be expected.

The success of Williams ef al.’s pretraining manipulations to bias the way
subjects rated the cues in the blocking part of the experiment suggests that
this strategic theory is correct. Of course, we can account for the elemental
strategy by assuming a network with independent but direct connections
from the cues to the outcome. At the same time, we can account for the
configural strategy in terms of a network in which the elements feed into a
configural unit as in the ALCOVE model, with this single configural unit
being connected to the outcome. What we are at present unable to explain
is how subjects seem to be able to switch from one mechanism to another
simply on the basis of recent experience. The interaction of elemental and
configural approaches to associative learning will clearly become a major
focus of future research.

Perceptual learning

Selective attention operates to modify inter-stimulus similarities in situa-
tions where some features or dimensions are more predictive of a category
than others, and in our discussion of the context model in the last chapter
we considered some evidence from a study by McLaren et al. (1994) that
stimuli become more discriminable from one another during the course of a
category learning experiment. But it has also been recognised at least since
the work of William James at the end of the last century that exposure to a
stimulus, in the absence of any overt consequences, tends to alter the ease
with which it is discriminated from other similar stimuli. James’ famous
example concerns the novice who starts out being unable to distinguish
claret from burgundy, but eventually, simply as a result of extended expo-
sure to these wines, comes to find them highly distinct. Another familiar
example is that we tend to be better able to discriminate the faces of people
from our own racial and ethnic group than those of other groups. The
process whereby stimuli become more discriminable as their familiarity
increases is called perceptual learning. Because it can occur in the absence of
overt outcomes, perceptual learning cannot be explained by Kruschke’s
ALCOVE model even though the model incorporates a selective attention
mechanism.

In the laboratory this sort of perceptual learning effect is readily demon-
strated. For instance, in a famous experiment Gibson and Walk (1956) gave
laboratory rats prolonged exposure to circles and triangles hanging on the
walls of their cages, and found that the animals were subsequently better
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able to learn a discrimination between these stimuli, where they were paired
with different outcomes, than were animals not preexposed to the stimuli.
The circles and triangles became more distinct from one another even in the
absence of differential outcomes in the pre-exposure phase. Another classic
study, by Attneave (1957), demonstrated a similar result with geometrical
patterns in humans. In Attneave’s experiment, subjects were exposed in the
first stage of the experiment to the prototype of a category of patterns. In
the second stage, subjects learned identification responses to each of a num-
ber of stimuli that were generated from the prototype. Attneave obtained a
perceptual learning effect in that identification learning was faster for sub-
jects pre-exposed to the prototype than for those who had not seen the pro-
totype. This suggests that during the pre-exposure phase, subjects learned
something that made exemplars generated from the prototype more dis-
criminable.

How can we begin to understand the processes responsible for perceptual
learning? As it happens, we have already considered a theoretical approach
that might be relevant. In an artificial grammar learning experiment, the
subject is initially exposed to a set of strings generated from a grammar.
Since these strings are presented without any overt feedback, we would nat-
urally expect perceptual learning to occur with subjects coming to find the
strings progressively less similar to one another. We might expect a similar
outcome in Whittlesea’s (1987) experiments in which subjects saw letter
strings generated from prototypes such as FURIG.

Although we have no direct evidence of perceptual learning in either of
these cases, what we do have is a theoretical analysis of how learning pro-
ceeds during exposure to these strings, and so we can ask whether this
account is able to predict perceptual learning. We considered at length the
connectionist model Dienes (1992) proposed for artificial grammar learn-
ing, and also the model McClelland and Rumelhart (1985) proposed to
account for Whittlesea’s data. In each case, an autoassociative network
which learns associations amongst the elements making up each stimulus is
capable of explaining a good deal of the relevant data we considered.

Let us imagine that we have two stimuli A and B each made up of a large
number of elements. Naturally, these stimuli will share some common ele-
ments, but each will also possess unique elements. If we designate the com-
mon elements by x and the unique elements by a and b, then A=g+x and
B=b+x. Early on, the patterns of activation that these stimuli elicit in an
autoassociative network (governed by Equations 4.1-4.3) will be quite weak
since the weights connecting the elements will be small and relatively little
activation will pass between the units in the network. As training continues,
the activation patterns for the two stimuli will begin to develop.
Unfortunately, however, there is no reason to believe that the activation
patterns will diverge, and in fact it is quite possible that the opposite will
happen. Since the features the network sees most often are the ones that are
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common to the two stimuli, the interconnections between these common
features will gain most strength. This is, after all, the process that allows
networks to show prototype enhancement effects and to show generic learn-
ing of the sort demonstrated by Watkins and Kerkar (1985). After pro-
longed training, the chances are that the patterns of activation in the
network will be quite similar and will be dominated by the contribution of
the common elements. Thus the gradual differentiation of the activation
patterns that occurs in perceptual learning will not be achieved.

A more promising solution can be seen by considering the analysis of
perceptual learning proposed by McLaren et al. (1989). Although these
authors suggested that a number of possible mechanisms may be involved,
they focused in particular on one process that has no counterpart in a stan-
dard autoassociator. This mechanism has its origins in a paradoxical pair of
observations. We have already discussed how pre-exposure to a stimulus
makes it more discriminable from other stimuli and therefore enhances later
learning, but as we saw in Chapter 2, in other circumstances it is known
that pre-exposure will retard rather than enhance learning. Abundant evi-
dence from latent inhibition experiments such as that of Lipp et al. (1991)
suggests that when a stimulus is presented alone, later learning concerning
that stimulus will be adversely affected. Thus, exposure to a stimulus not
only renders it less able to enter into new associations but also makes it
more discriminable from other similar stimuli. How does this come about?

Although these processes seem contradictory, McLaren et al. have sug-
gested that they have a common cause. These authors propose that when a
stimulus is pre-exposed, attention to its elements is steadily reduced.
Although connections will be formed amongst the elements of the stimulus
(as in an autoassociative network), if the stimulus is later paired with an
outcome as in Lipp et al.’s experiment, learning will be retarded since little
attention is focused on the stimulus. Hence latent inhibition is explained.
Turning to perceptual learning, McLaren e al. note that presentation of A
(= a+x) and B (= b+x) will lead to greater latent inhibition of the common
than of the unique elements. Because the common elements are seen twice
as often as the unique ones, attention will decline to the common elements
far faster than to the unique elements, which in turn means that the repre-
sentations of the stimuli will tend to become differentiated. When A is now
paired with one outcome and B with another, it is the a and b elements that
acquire virtually all of the associative strength. If the stimuli had not been
pre-exposed, then one outcome would be associated with a+x and the other
with b+x, a situation that would clearly lead to greater generalisation and
hence slower learning.

In a nutshell, the conclusion is that some mechanism is required for redu-
cing the amount of attention paid to the elements of a stimulus presented in
the absence of significant consequences. While a number of specific sugges-
tions have been proposed (see McLaren ef al., 1989), the simplest procedure
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is to adapt the delta rule equations such that the learning rate parameter o. is
steadily reduced for a stimulus that occurs with no significant consequences.
We will not go into the details of such mechanisms, but it makes good sense
that evidence that an event is of no predictive value should encourage the
learning system to pay less attention to that event.

Retrospective revaluation

This chapter should have made it clear that the enormous amount of atten-
tion being paid to connectionist models of learning is well-justified. These
models offer the hope of explaining a huge range of associative learning
phenomena. At the same time, no-one would deny that major challenges lie
ahead for the connectionist research programme, and I end the chapter by
considering one particular line of evidence that seems to expose a major
problem with the delta rule. This evidence comes from demonstrations of
the retrospective revaluation of cue strength.

We have considered at length Chapman’s (1991) experiment demonstrat-
ing an effect of trial order on ratings of negative contingencies (Chapter 2,
Table 2.8). Remember that subjects gave less negative ratings to cue D after
observing CD—no O followed by C—O trials than they gave to cue B after
A—O followed by AB—no O trials. As we saw earlier in this chapter, the
delta rule can account for the fact that judgments differed in these two con-
ditions, but actually the model makes a further prediction which was not
borne out by the data: it predicts that judgments for cue D should have been
close to zero, whereas in fact they were quite strongly negative. According to
adaptive connectionist models, the CD—no O, C—O procedure should not
have been able to endow cue D with any negative strength at all, yet that is
apparently what happened. D should have zero associative strength after the
first stage and this should be unaffected by the C—O trials.

Of course, just because D received a negative rating does not mean that it
had a genuinely negative associative strength: Chapman’s experiment does
not include a control condition providing a neutral stimulus against which
cue D can be compared. Therefore Chapman conducted a further experi-
ment in which subjects now received intermixed AB—no O and CD—no O
trials in the first stage followed by C—O trials in the second stage. Here,
we can compare ratings given to cues D and B at the end of the second
stage, and any difference between them will be evidence of negative associa-
tive strength. In this design, cue B represents a control stimulus against
which D can be assessed. The results shown in Figure 4.13 reveal that D is
genuinely more negative than B. Although the effect is small, the C—O
trials do seem to have made the weight connecting cue D and outcome O
more negative.

The reason that connectionist systems using learning algorithms like the
delta rule have difficulty explaining cue D’s associative rating is that a cue’s
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Figure 4.13. Retrospective revaluation effects. Subjects were presented with AB—no O and
CD—sno O trials in the first stage followed by C—O trials in the second stage, where O is a fic-
titious disease and no O is no disease. Then they judged the contingency between each of the
four stimuli and outcome O. The key result is that cue D is rated more negatively than cue B.
(After Chapman, 1991.)

associative strength can only be changed if it is present on a trial. Recall
that Equation 4.3 states that the weight change Aw,_is given by:

Aw, =0 a,d, .

If the activation g, of the input unit representing the cue is zero — that is, if
the cue is absent — then no weight change should occur, since the error term
d, is multiplied by a, to determine the weight change. In the second stage of
Chapman’s experiment, cue D is absent, so according to this equation there
should be no change in its weight. Yet when cue D’s associative strength is
assessed, it is found to have been retrospectively revalued.

Another example of retrospective revaluation that lies outside the scope
of current connectionist models is known as ‘backward blocking’. The term
refers to the fact that the blocking effect that we discussed in Chapter 2
occurs when the two stages of the experiment are reversed. Two demonstra-
tions should serve to illustrate the effect, one within the domain of
action—-outcome learning, the other involving cue—outcome learning. In the
first (Shanks, 1985), subjects were allowed to perform an action in a certain
context and judged the extent to which the action caused an outcome. The
action involved pressing a key on a computer keyboard which fired a shell
at a tank passing across the screen. The outcome consisted of the tank
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Table 4.4. Design of the experiment by Chapman (1991, Experiment 1)

Stage 1 Stage 2 Test trials
AB—-O A-O B, D
CD—-0 C—-no O

A-D are the cues (symptoms), O is the outcome (disease), and no O indi-
cates no disease.

blowing up, and on each trial an alternative background cause was the
presence of an invisible minefield the tanks had to pass through.

For the control group P(O/A) was 0.75, while P(O/~A) was 0.50. For one
experimental group, this stage of the experiment was preceded by a stage in
which the subjects were allowed to witness the context causing the outcome,
again with probability 0.50. When these subjects then made their causality
estimates, their judgments were significantly lower than those of the control
group who had not witnessed the prior stage, thus yielding a forward block-
ing effect. Essentially the result confirms that if the background B is paired
initially with the outcome (B—O), subsequent learning of the action-outcome
relationship is impaired when the action and background co-occur (AB—O),
an effect we have seen is easily explained by the delta rule. The important
condition in the experiment was identical to this forward blocking condition
except that the two stages were reversed: subjects witnessed the action-out-
come contingency before observing the background-outcome contingency,
and the result was that blocking occurred in this group just as in the forward
group. As in the forward case, being given extended experience of the back-
ground causing the outcome allowed the subjects to make the apparent infer-
ence that the action was not the primary cause of the outcome.

There is little doubt of the robustness of the backward blocking effect in
humans. Although she used a different learning task, Chapman (1991) also
obtained the effect. In her experiment, illustrated in Table 4.4, subjects
judged relationships between symptoms and a fictitious disease. In the first
stage, different patients had either symptoms A and B or symptoms C and
D, and all had the disease. In the second stage, further patients had symp-
tom A and the disease or symptom C and no disease. After witnessing 12
trials of each trial type in each stage, judgments were made of the symptom—
disease relationship for each symptom. After the first stage subjects rated A,
B, C, and D about equally, as expected. The key results concern ratings at
the end of the second stage. Figure 4.14 illustrates that after the second
stage higher ratings were given, as expected, to A than to C, but also that
backward blocking occurred, since cue D was given a higher rating than cue
B despite the fact that these cues were rated equally after the first stage and
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had not been presented during the second stage. Their status as predictors
of the disease had been retrospectively revalued.

From a psychological point of view backward blocking is not a surpris-
ing finding because if one learns that a pair of events is predictive of an out-
come, and that one of those events is sufficient on its own, then it makes
sense to infer that the other event was not responsible. Of course, this infer-
ence is not logically necessary, since each cue might be sufficient on its own,
but nevertheless the result does not seem especially unusual. Perhaps it
could be accommodated within a connectionist model simply by removing
the term g, from Equation 4.3 and allowing weights of absent cues to be
changed? The problem with this solution is that the weight change would be
in the wrong direction. With AB—outcome, B—outcome trials, there will
be an increase during the second stage in the weight connecting cue B with
the outcome, and we want this to lead to a decrease in the cue A—outcome
weight. Removing the term g, from Equation 4.3 would fail to achieve this.

A more promising alternative has been suggested by Van Hamme and
Wasserman (1994). They also suggested that the weights of absent cues be
allowed to change, but in this case by setting g, to a negative value in
Equation 4.3 rather than to zero. This produces a change in the opposite
direction for an absent cue compared to a present one, just as we require.
Of course, in general new knowledge does not typically lead to the unlearn-
ing of older knowledge. To work, Van Hamme and Wasserman’s solution
would have to restrict weight changes only to absent cues that in the past
have co-occurred with the cue that is present; in Chapman’s experiment,
learning about the relationship between cue A and the outcome in the sec-
ond stage should only lead to weight changes for cue B and not for the mil-
lions of other cues that are simultaneously absent.

Plainly, more work is needed to elaborate this solution and determine
whether it is a satisfactory way to account for backward blocking, but at
present it does appear that a fundamental assumption of associationist
models — namely that new learning about a given cue can only occur when
the cue is present — may in some circumstances be violated.

Relationship to prototype and instance theories

The discussion of connectionist models in this chapter will probably have
given the impression — contrary to what I have been arguing — that they are
quite different from, and indeed inconsistent with, the sorts of theory con-
sidered in Chapter 3. After all, it has been possible to generate clear differ-
ential predictions from some of these theories. For instance, nonlinear
classifications can be learned by connectionist models with hidden units but
cannot be learned on the basis of prototype abstraction, and connectionist
and instance theories predict different outcomes for Gluck and Bower’s
(1988) AB—1, AB—2, A—1 design.
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Figure 4.14. Backward blocking. Subjects were presented with AB—O and CD—O trials in the
first stage, followed by A—O and C—no O trials in the second stage, where O is a fictitious
disease and no O is no disease (see Table 4.4) The figure shows the ratings of A, B, C, and D at
the end of the second stage, and the critical result (backward blocking) is the lower rating of B
than D. (After Chapman, 1991.)

As might be expected, there has been an extended debate on the issue of
whether connectionist models are inconsistent or not with other theories
such as ones based on prototype abstraction or instance memorisation.
What exactly is the relationship between them? In the original exposition of
their connectionist model of learning, McClelland and Rumelhart (1985)
argued forcefully that the model was not simply an implementation of a
higher-level theory in distributed processing hardware. They appealed, for
instance, to the fact that connectionist models of the sort considered in this
chapter only learn when an error signal is present representing a discrep-
ancy between what is expected and what occurs. Instances, in contrast, are
memorised automatically regardless of any expectancy the subject might
have, so perhaps some way could be found to test which of these views is
correct? By citing such differences, McClelland and Rumelhart hoped to
distinguish between the theories in terms of psychologically-important phe-
nomena.

In response to McClelland and Rumelhart, Broadbent (1985) argued that
rather than being an alternative to instance or prototype theories, the con-
nectionist approach is at a different level of explanation in that it provides a
detailed mechanism whereby the basic processes of those alternative theories
are performed. Thus to say that associative knowledge is encoded in a set of
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weights in a distributed network is not necessarily to deny that, at a different
level of description, knowledge is encoded as a set of memorised instances or
as a prototype. A connectionist model, according to Broadbent, is simply a
description of how the instances or prototype are stored. It should come as
no surprise that I favour Broadbent’s rather than McClelland and
Rumelhart’s position in this debate. Prototype and instance theories do not
attempt to provide a specific mechanism whereby the precise computational
processes involved in associative learning are described, and thus it is mis-
taken to challenge them with data related to the details of such a mecha-
nism. Rather, these theories attempt to specify at the informational level
what is required of a model of human learning. The answer to that question
is that the principal requirement is for the ability to memorise training exem-
plars. The fact that connectionist models can account for such a broad range
of data in no way challenges that conclusion.

Summary

The re-emergence of associationist theories of learning over the last two
decades has been dramatic, and is mainly due to the development of error-
correcting learning algorithms such as the delta rule. This rule can be
shown to yield associative weights which at asymptote are equivalent to
conditional contingencies calculated by the AP rule. Current connectionist
models have been successful in accounting for a range of basic phenomena
such as the effect of contingency on associative learning, as well as more
complex effects such as enhanced responding to an unseen prototype pat-
tern and partial memory for the training items. Single-layer networks are
unable to learn nonlinear classifications, though, and so it is necessary to
introduce internal units which change the way in which the stimuli are rep-
resented.

The best-known such procedure uses a generalised version of the delta
rule called the backpropagation algorithm, and this allows weights both
between the input and hidden units and between the hidden and output
units to be adjusted. However, standard backpropagation networks suffer
from at least two major problems. First, acquired knowledge suffers cata-
strophic interference from later learning, and secondly, there is no mecha-
nism for selective attention. These can be remedied by changing the nature
of the hidden units, as in Kruschke’s ALCOVE model, such that they have
much smaller receptive fields and are therefore able to avoid extensive inter-
ference from interpolated learning, and by introducing a mechanism
whereby the activation of an input unit is adjusted to the extent that the
unit is responsible for error on the output units. Finally, we have seen one
phenomenon, retrospective revaluation, that questions the basic assumption
of these models that the weight from a given cue can only be changed on
trials when it is present.



5 Rule induction

The picture of concept learning that emerges from the previous chapters is
of a rather passive process in which instances are encoded in memory as a
result of weight adjustments in an adaptive network system. This is passive
in the sense that so long as the subject attends to the stimuli, the hypothe-
sised processes operate automatically on the incoming information. But it
has commonly been argued that in some circumstances a different, active
process can operate whereby a person considers various hypotheses con-
cerning relationships between events, modifies or rejects inadequate
hypotheses, and in short tries to induce a rule describing the relationship
between stimuli and outcomes. In this chapter we consider the evidence that
the account of associative learning discussed in the previous chapters is
incomplete and needs to be supplemented by an additional and possibly
independent rule-learning mechanism.

Before considering the evidence and nature of this rule-learning process,
it is necessary first to consider what exactly we mean by a ‘rule’. This con-
cept has, to put it mildly, been a source of some debate and confusion
amongst psychologists and philosophers. On the surface, the definition of a
rule seems unproblematic: we simply say that a rule is a principle that speci-
fies definitively whether an object or event is of a particular sort or not. For
instance, if an object has four sides of equal length lying in a plane and with
right-angles between them, then it is a square. Any object conforming to
this principle is a square, and any object that violates the principle is not a
square. Note that it makes no difference if the violation of the rule is major
or minor: even if a quadrilateral figure has two internal angles of 89° and
two of 91°, it is still not truly a square. Many other examples of rules can be
found in the legal world. For example, in English law an act of theft is said
to have occurred if a person dishonestly appropriates property belonging to
someone else with the intention of permanently depriving them of it. Again,
this is a rule in the sense that an act either conforms to the definition or it
does not. No matter how ‘theft-like’ an act is, if the definition is not fulfilied
(say because there was no intention permanently to deprive) then it does
not count as theft.

Of course, rules such as these are objective, public entities, while what
psychologists are interested in are mental representations. Anyone can
inspect public rules such as laws because they are written down, but our
access to mental rules, if they exist, is rather more indirect, which is why it
is controversial as to exactly what counts as a mental rule. Our only evi-
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Figure 5.1. A set of hypothetical stimuli varying on two dimensions. If subjects respond on the
basis of a test item’s similarity to the category instances or prototypes, then classifications will
be graded: test items close to the category boundary (the dotted line) will be classified less
accurately and rapidly than those closer to the training stimuli of one of the categories. On the
other hand, if subjects respond on the basis of a rule, then all stimuli falling on one side of the
category boundary should be classified identically. O = category 1, X = category 2.

dence concerning their existence comes from observable behaviour.
Psychologists and philosophers have been divided on what sort of behav-
iour is characteristic of rule-based knowledge, but in this chapter I shall fol-
low Herrnstein (1990) and Smith, Langston and Nisbett (1992) in adopting
the instrumental definition that behaviour is based on a rule if no difference
is observable between performance to trained (old) and untrained (new)
stimuli that fall into the same category.

To see why this definition is adopted, we must first remind ourselves of
what the characteristics are of non-rule-based behaviour. Let us suppose
that subjects in some category learning task improve their classification per-
formance in the study phase either by memorising the training stimuli just in
the way the context model proposes, or by abstracting the underlying proto-
type. Thus if the stimuli fall into two categories, as shown in Figure 5.1, sub-
jects respond ‘category 1’ if a stimulus is more similar to the exemplars or
prototype of category 1 than to the exemplars or prototype of category 2.
Clearly, on this account responding to test stimuli is going to be graded:
some new test stimuli will be highly similar to trained stimuli from one cate-
gory, and hence will evoke rapid and accurate responses, whereas others will
be more equally similar to training stimuli from the two categories and
hence will be classified more slowly and less accurately. Of course, in
Chapter 3 we saw that exactly such behaviour may be observed: for exam-
ple, in Rosch et al’s (1976) experiment (see Figure 3.3), classification times
increased in an orderly manner as test items got further from the prototype.



154 The psychology of associative learning

By contrast to the behaviour expected if subjects abstract a prototype or
memorise the training instances, we would expect to observe none of these
differences if subjects learn and respond on the basis of a rule. Figure 5.1
shows a hypothetical boundary dividing the two categories. If this boundary
perfectly divides members of one category from those of the other, then it
constitutes a rule for classifying the stimuli: a stimulus on one side of the
boundary is in category 1, one on the other side is in category 2. We would be
strongly motivated to conclude that subjects have learned and are responding
on the basis of this rule if the probability and latency of making a correct
response is the same for all stimuli (whether old or new) falling on one side of
the boundary, for such a result would suggest that the subject is merely
analysing the stimulus to decide on which side of the boundary it falls and is
not concerned in the least to compare it to previously-seen stimuli.

Thus suppose the stimuli in Figure 5.1 are rectangles varying in width
and height, and suppose the two categories are defined by a rule that
unequivocally assigns a stimulus to category 1 if its width is greater than its
height and to category 2 if its height is greater than its width. If subjects are
able to learn this rule from exposure to some training examples, and if they
respond according to the rule, then when they make a classification decision
they should merely be interested in whether the stimulus is wider or not
than it is high; its similarity to training items should be immaterial. And if
responding is based on a decision as to whether the stimulus is wider than it
is high or not, that decision (ignoring what happens when width and height
are perceptually difficult to discriminate) should be performed equally
rapidly and accurately for all stimuli, regardless of how similar they are to
stimuli seen in the training phase.

Of course, not all categories can be accurately described by an objective
rule or boundary such as that shown in Figure 5.1. For instance, the ran-
dom dot stimuli used in many laboratory experiments are generated by
adding noise to each of two or three prototype patterns. Unless the proto-
types are highly dissimilar or the amount of added noise is quite small, it
is always a possibility that a given pattern could have been generated
from more than one category. Unless there is only one correct response
for each stimulus, it cannot be said that there is an objective rule for
classifying the stimuli. But this does not mean that subjects do not still try
to learn a rule by imposing a rule-based classification on the stimulus
set: they may incorrectly come to believe that there does exist a classifica-
tion rule.

The notion that rule-based learning is characterised by an absence of any
detectable difference between performance to trained and untrained stimuli
is intimately connected to the idea that people are able to form abstractions
that go beyond the specific items they experience. Equivalent responding to
new and old stimuli implies that an induction has been formed which gov-
erns responding to all stimuli. As we shall see below, it is relatively straight-



Rule induction 155

forward to obtain evidence for the formation of abstract representations
capable of playing a role in associative learning.

Distinguishing rule- and instance-based behaviour

The reader may at this point be thinking that the distinction between rule-
and instance-based behaviour is a very subtle one which is likely to prove
extremely difficult to investigate empirically. Thus it is probably worthwhile
considering a relatively simple experiment which illustrates fairly clearly how
the predictions of the two theories may differ. A study by Perruchet (1994)
provides just such an example. As it happens, the data from this experiment
can be interpreted entirely in terms of instance- rather than rule-based
responding. Nevertheless, it is useful to look at this experiment prior to con-
sidering others more successful at revealing rule-based knowledge, because
the predictions of the rule-based account are particularly clear.

Perruchet’s experiment is in fact a replication — with a minor change — of
an earlier study by Kushner, Cleeremans and Reber (1991). These authors
had asked subjects to make predictions about the location of a stimulus on
a computer screen. This stimulus, a small square, could appear in one of
three locations (A, B, or C) at the vertices of an imaginary triangle on the
screen. Subjects observed the square moving in rapid succession from one
location to another and appearing in a total of five locations. Then, the
subject pressed a button to indicate where he or she thought it would
appear next, and the stimulus moved to its next location. After a pause, the
subject witnessed the stimulus move between five locations again, made
another prediction, and this sequence repeated many times.

The position of the stimulus on a prediction trial was determined by a set
of rules and depended on where the stimulus had been on the five preceding
trials. In fact, its location on trials 1, 3, and 5 was irrelevant, but if it
appeared in the same location on trials 2 and 4 then it appeared in location
A on the prediction trial, if its movement from trial 2 to trial 4 was clock-
wise then it appeared in location B, and if its movement from trial 2 to trial
4 was anticlockwise then it appeared in location C. These rules are shown in
Table 5.1. Clearly, these are quite simple rules, but they are embedded
within a difficult task where three of the stimulus locations are irrelevant.
Despite this, subjects were able to improve their accuracy when trained with
over 4000 prediction trials spread across six days, although performance
never reached a very high level, increasing from a chance value of 33% cor-
rect predictions to a final level of about 45% correct.

There are two ways of describing what the subjects learned. One possibil-
ity is that they acquired some knowledge about the underlying rules govern-
ing target location. Of course, since performance came nowhere near what
would be achieved (100% correct predictions) if all three rules were per-
fectly learned, we would have to assume that most subjects were only learn-
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Table 5.1. Target locations and rules in Kushner et al.’s (1991) experiment

Second event  Fourth event Sixth event Rule

A A A

B B A Same position
*C C A

A C B

C B B Clockwise
*B A B

B C C

C A C Anticlockwise
*A B C

Location A is the top vertex of the triangle, B is the lower left and C the lower
right vertex. Trial 6 is the prediction trial. Stimulus locations on trials 1, 3, and §
were irrelevant to location on trial 6. *Sequences omitted from the training stage
in Perruchet’s (1994) experiment.

ing perhaps one or possibly two of the rules, or that they were applying
their knowledge inconsistently. Nevertheless, it is perfectly possible that
partial knowledge of the rules is what explains the observed improvements
in performance. On the other hand, an alternative explanation is that sub-
jects may merely have memorised some or all of the sequences and that
each prediction was determined by the similarity of that sequence to previ-
ously-seen ones. Thus, if the subject saw the sequence ABCBA earlier in the
experiment and learned that for this sequence the correct prediction was
location A, then when a later similar sequence such as ABCBB was encoun-
tered, a prediction of location A may again have been made. Naturally, the
evidence we examined in Chapter 3 for this sort of instance-based behav-
iour should encourage us to take this view very seriously.

Kushner ef al.’s results can thus be interpreted in either of these ways,
and Perruchet (1994) set out in his study to try to distinguish between them.
How can this be achieved? The variation that Perruchet introduced was to
omit some patterns from the training phase of the experiment and present
them instead in a later transfer phase, and the reason for doing this is that
the two theories make different predictions concerning performance on
these test stimuli. In the training stage subjects saw two instances of the
‘same position’ rule but not the third, two instances of the ‘clockwise’ rule
but not the third, and two out of three instances of the ‘anticlockwise’ rule.
This procedural change did not affect the basic data from Perruchet’s learn-
ing phase, which is that (as in Kushner er al.’s experiment) subjects were
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Table 5.2. Predictions of rule- and instance-based models and results of Perruchet’s
(1994) experiment

Proportion of predictions

Second event Fourth event Rule Instance

model model A B C
C C A BorC 0.20 038 042
B A B AorC 0.49 0.21 0.29
A B C AorB 0.43 0.31 0.26

able to increase their prediction accuracy. In this experiment, performance
increased from about 33% to 41% correct.

What are the predictions for the transfer phase? Table 5.2 shows the rele-
vant sequences and the predictions of the two theories. If subjects are learn-
ing and responding on the basis of knowledge of the rules, they should
behave in accordance with the rules given in Table 5.1. Thus for a sequence
in which the stimulus appears in location C on trials 2 and 4, subjects
should select location A as their response, regardless of stimulus location
on trials 1, 3, and 5. Despite the fact that this is a new, untrained sequence,
it should be responded to just as accurately as the old, trained sequences
which define the rule. Of course, this prediction has to be qualified because
if the subjects have failed to abstract the relevant rule in the training phase,
then they will have to guess where the target will appear.

In contrast, if subjects respond on the basis of similarity to previously-
seen sequences, then a different pattern should emerge. Table 5.2 gives the
relevant predictions. Suppose the subject has seen the sequences shown in
Table 5.1 in the training stage (minus the three sequences retained for the
transfer phase) and is then tested with a sequence in which the stimulus
appears in location C on trials 2 and 4. This sequence is quite similar to the
two exemplars of the ‘clockwise’ and ‘anticlockwise’ rules that the subject
has seen in training, but is less similar to the two exemplars of the ‘same
position’ rule, in that it differs from each of the former by one location but
differs from each of the latter by two. Thus we can predict that subjects
should select either location B or C as their response, but not location A.
Table 5.2 gives the predictions for the other test trials, together with the
actual responses of the subjects.

It is clear that responding did not accord with the predictions of the rule-
based account. For sequences that should conform to the ‘same position’
rule, location A was predicted less often than locations B and C; for
sequences that should conform to the ‘clockwise’ rule, location B was pre-
dicted less often than locations A and C; and for sequences that should con-
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form to the ‘anticlockwise’ rule, location C was predicted less often than
locations A and B. As these results show, subjects chose the location that
they had learned to be appropriate for previously-seen sequences, exactly as
predicted by the instance-based theory.

Perruchet’s elegant study should therefore serve to illustrate how these
different types of behaviour may be discriminated. We have already dis-
cussed at length the idea that instance-based behaviour is determined by
similarity to training items. For rule-based theories, on the other hand, sim-
ilarity should play no role. This is because if old and new stimuli are treated
alike, then new stimuli that are very dissimilar from training items should
be responded to just as accurately as new stimuli similar to training items.
The net effect is that inter-stimulus similarities will have no effect across
members of the category; all that matters is how the relevant rule classifies
the test item. We now turn to some studies which yield rather more positive
evidence for rule learning.

Evidence for rule learning

Laboratory demonstrations of contrasts between rule and instance learning
have been provided in a number of studies, and in this section we will con-
sider a few of the best-known examples. We begin with some compelling
evidence that has been reported by Lee Brooks and his colleagues (Allen
and Brooks, 1991; Regehr and Brooks, 1993). The rationale of the experi-
ments was as follows. Suppose that subjects learn to classify stimuli in a sit-
uation where a simple, perfectly predictive classification rule exists, and are
then tested on transfer items that vary in similarity to the training stimuli.
Observed behaviour to the transfer items can be of two contrasting types.
On the one hand, ‘bad’ transfer stimuli similar to training items which the
rule assigns to the opposite category may be classified as quickly and as
accurately as ‘good’ items similar to training items the rule assigns to the
same category. This would be consistent with classification being deter-
mined by the speeded application of a rule, where all that matters is
whether the rule assigns the transfer item to one category or the other;
whether the item is similar or not to a training instance, and whether that
instance was in the same or a different category, should be immaterial. On
the other hand, bad transfer items may be classified much less rapidly and
accurately than good items, which would be consistent with categorisation
on the basis of similarity to training instances; there would be no need to
cite a rule as being part of the classification process.

Of course, we have already seen in studies like that of Homa ez al.
(Figure 3.7) that categorisation in some circumstances may be influenced by
similarity to training items and hence not rule-based, but Allen and Brooks
(1991) and Regehr and Brooks (1993) obtained evidence that both types of
outcome can occur, depending on the type of stimuli used and the precise
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Figure 5.2. Percent classification errors for distinctive and uniform stimuli. Subjects learned to
classify cartoon animals in a situation where a three-dimensional rule perfectly divided the two
categories, and then were tested with training (old) items and ‘good’ and ‘bad’ transfer stimuli.
Good and bad transfer items were highly similar to training items, but the good items were in
the same category as the study items to which they were similar while the bad items were in the
alternative category. For distinctive stimuli, bad items were classified much less accurately
than good items, suggesting that classification was instance-based. For the uniform stimuli,
good and bad items were classified with equal accuracy, suggesting that classification was rule-
based. (After Regehr and Brooks, 1993.)

nature of the task. They trained subjects to classify animals into two cate-
gories (‘builders’ or ‘diggers’). The animals varied in terms of five binary-
valued dimensions: body shape, spots, leg length, neck length, and number
of legs, but only three of the dimensions were relevant. The classification
rule stated that category 1 was defined by the conjunction of long legs,
angular body, and spots.

In one of Regehr and Brooks’ experiments, subjects received 40 trials in
the study phase on each of which one animal was presented and feedback
was provided for the category decision. Then in the test phase old items
were intermixed with new items that were either ‘good’ or ‘bad’. Subjects
were encouraged to respond quickly and accurately. Both good and bad
items were highly similar to training stimuli, in that they differed on only
one dimension, but the good items were in the same category as the study
items to which they were similar while the bad items were in the opposite
category.

There was one further manipulation in the experiment. For some sub-
jects, the cartoon animals were highly distinctive in that the dimensions of
variation of the stimuli were not interchangeable across stimuli. Thus half
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the animals had spots and half did not, but one animal’s spots were differ-
ent from another’s. Similarly, half the animals had long legs and half short,
but each set of long legs was slightly different. In contrast, for other sub-
jects the stimuli were much more uniform, with the dimensions being inter-
changeable: spots for one animal were identical to those for another.

Figure 5.2 shows the key results from the experiment. Although not per-
forming perfectly, subjects had clearly learned something about the cat-
egory assignments of the training stimuli since at test the percentage of
errors for old items was considerably less than 50%, which represents
chance responding. Subjects made more errors on the old distinctive items
than on the old uniform ones, presumably because the distinctive items are
more individually memorable. For subjects shown distinctive stimuli, the
original training items were classified best, the good test items somewhat
worse, and the bad items were classified incorrectly on nearly 80% of occa-
sions. This suggests that bad items were classified into the category of their
nearest neighbour (which was, of course, in the alternative category).
However, for subjects shown uniform stimuli, the pattern of results was
quite different: there were no differences between the three types of test
item, with the bad items in fact being classified slightly better than the good
ones.

The implication of the results is that the specific dimensional structure of
the stimuli controls whether they will be analysed into their component
parts, which in turn determines whether rule- or instance-based classifica-
tion will occur. While the decomposable uniform stimuli can readily be
described and classified on the basis of a hypothesis, the distinctive stimuli
lend themselves less well to description in terms of a rule. But perhaps sub-
jects can be induced to classify the distinctive stimuli via a rule, given
appropriate training conditions? In a further experiment, Regehr and
Brooks trained and tested subjects in exactly the same way as in the previ-
ous experiment but told them at the outset what the classification rule was.
Regehr and Brooks reasoned that telling the subjects the rule might increase
the likelihood of rule-based classification, but Figure 5.3 shows that sub-
jects continued to respond to the distinctive stimuli on the basis of similar-
ity, since bad transfer items were again classified with more errors than
good or old items. Overall, being told the rule allowed subjects to perform
better than they otherwise would (errors are much less frequent than for the
experiment shown in Figure 5.2), but it remained difficult for subjects to
avoid computing similarity when classifying distinctive items. Uniform
items again appeared to be readily classified according to the rule.

Taken together, these results suggest that under some circumstances rule-
based classification is possible. It is not necessary to be given the objective
rule in order to respond on the basis of it, nor is being given the rule a guar-
antee of rule-based behaviour.

Our criterion for rule-based behaviour is that classification latencies and
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Figure 5.3. Percent classification errors for distinctive and uniform stimuli. Subjects again
learned to classify cartoon animals in a situation where a three-dimensional rule perfectly
divided the two categories, but in this case they were told the rule. Although the overall level
of performance is much better than in Figure 5.2 (note the different scales on the ordinate), for
distinctive stimuli, bad transfer items were again classified much less accurately than good
items, while for uniform stimuli, good and bad items were classified with equal accuracy. Thus
knowing the classification rule does not guarantee rule-based classification. (After Regehr and
Brooks, 1993.)

errors should be no worse for novel test stimuli than for the actual training
stimuli. The experiments discussed above reveal that there are situations in
which these measures may be indistinguishable. However, while the obser-
vation of equal error rates for trained and novel stimuli is consistent with
rule-learning, the converse does not necessarily hold: differences in error
rates do not necessarily preclude rule-based performance. The criterion
does not in fact require that performance to all of the test stimuli be identi-
cal: differences amongst the stimuli may still be consistent with rule-based
classification.

To see how this may come about, consider an experiment by Nosofsky,
Clark and Shin (1989). In this experiment, the stimuli were semicircles with
an interior radial line: 16 stimuli were constructed from the combination of
four sizes of semicircle (designated 1-4) with four angles of inclination of
the radial line (again designated 1-4). Figure 5.4 shows the spatial layout of
these quite confusable stimuli. The co-ordinates of the stimuli in the figure
were derived from a multidimensional scaling analysis based on a confusion
matrix generated by a group of subjects required to learn individual identifi-
cation responses to the stimuli, in just the way discussed in Chapter 3 for
Nosofsky’s (1987) experiment.

In the classification part of the experiment, a different group of subjects
received 300 trials in which they learned to classify 3 of the stimuli into cat-
egory 1, with feedback, and 4 into category 2. Then in the test phase they
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Figure 5.4. Category structure used by Nosofsky ez al. (1989). The actual stimuli were semicir-
cles varying in size with an interior radial line that varied in its angle, and the co-ordinates are
from a multidimensional scaling analysis. Subjects were trained (with feedback) to classify
stimuli 6, 10, and 11 into category 1 and stimuli 1, 3, 8, and 13 into category 2. The remaining
stimuli are transfer items. The dotted line represents the boundary corresponding to a possible
classification rule.

were required to make classification decisions (without feedback) to all 16
stimuli. Thus the dependent measures were the overall probabilities with
which subjects placed each of the 16 stimuli into categories 1 and 2. In addi-
tion, in this experiment subjects were instructed to use the rule indicated by
the dotted line in Figure 5.4 to classify the stimuli. That is to say, they were
told at the outset that a stimulus is in category 2 if the value of size is 1, or
the value of size is 4, or the value of angle is 4; otherwise the stimulus is in
category 1. In the notation of set theory we can define category 2 as:

category 2: size=1 V size=4 V angle=4

Table 5.3 gives the probability across subjects that each stimulus was
assigned in the transfer phase to category 1, and these probabilities confirm
that something about the categorical structure had indeed been learned.
With the exception of stimulus 15, items which the rule assigns to category
2 (14, 8, 12, and 13-16) were classified into category 1 with probability less
than 0.5 (which means they were assigned to category 2 with probability
greater than 0.5). In contrast, stimuli from category 1 were all assigned to
that category with probability greater than 0.5.

Before considering the rule-based theory, it is worth first observing that
the results appear to be quite contrary to the idea of instance-based classifi-
cation. On this account, an item should be classified into the category
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Table 5.3. Results of Nosofsky et al.’s (1989) experiment

Stimulus Probability Mean
6 0.84
Category 1 training items 10 0.89 0.86
11 0.86
1 0.23
Category 2 training items 3 0.26 0.26
8 0.15
13 0.38
5 0.81
Test items (category 1) 7 0.84 0.81
9 0.79
2 0.28
4 0.04
Test items (category 2) 12 0.31 0.30
14 0.44
15 0.54
16 0.16

Test items are divided into those the rule assigns to category 1 and those assigned
to category 2. The numbers refer to the probability of assigning a stimulus to cat-
egory 1.

whose memorised exemplars it is more similar to, regardless of any rule that
may discriminate the stimuli. But consider stimuli 4 and 7 in Figure 5.4.
For both of these stimuli the nearest neighbours are stimuli 3 and 8, which
are category 2 exemplars. While stimulus 4 is assigned, as expected, to cat-
egory 2, stimulus 7 is placed in category 1 on over 80% of occasions. As
Figure 5.4 shows, the rule puts these two stimuli into different categories,
but it is very difficult to see how similarity to training items could achieve
this. Likewise, it is hard to see how similarity could cause stimulus 16 to be
assigned to category 2, when its nearest neighbour is stimulus 11, a category
1 exemplar. Again, the rule places these two stimuli in opposite categories.
If instance memorisation is not the basis of these decisions, then we must
ask instead whether the classification probabilities are consistent with a
rule-based account. On the assumption that subjects classify test stimuli
according to the rule, we would expect that novel test stimuli would be clas-
sified just as accurately as the original study items. However, Table 5.3
shows that the observed classification probabilities differed widely across
the stimuli, from which we might conclude that classification is not based
on an underlying rule. In fact, the training stimuli from category 1 were
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classified with probability 0.86 while new items from that category were
classified with a lower probability, 0.81. Similarly, new items from category
2 were more likely to be mistakenly assigned to category 1 (p=0.30) than
were the original training items (p=0.26). This appears to discount the
notion of rule-based classification, since our criterion requires no differ-
ences between old and new stimuli.

However, since the stimuli are perceptually highly similar, it is possible
that, for example, stimulus 16 will be misrecognised as stimulus 11, in
which case an incorrect classification decision will be made. Thus the prob-
ability of a category 2 response for stimulus 16 is a complex function. If it is
correctly recognised as stimulus 16, then it will be assigned to category 2,
since that is how the rule classifies it; if it is confused with any of the other
category 2 stimuli, it will also be correctly classified; but if it is confused
with any of the category 1 stimuli, it will be misclassified. However, since
the scaling solution co-ordinates allows us to compute the relative similari-
ties of all pairs of stimuli, it is possible to take into account the effects of
these misrecognitions because we know the probability with which any
given confusion will occur. Hence, we can predict the classification response
for any given stimulus.

Figure 5.5 shows the observed classification responses versus the
responses predicted from this more sophisticated rule model. The figure
shows a very good match between observations and predictions, with 94%
of the variance being accounted for. Figure 5.5 also shows the extremely
poor fit to the data provided by the context model (41% of variance
accounted for), indicating as expected that classifications are certainly not
based on similarity to memorised training instances. Even with the possibil-
ity of selective attention to the size and angle dimensions allowing the inter-
stimulus similarities to be altered, the context model is quite unable to
explain the pattern of performance.

An even more compelling demonstration of the inadequacy of pure
instance-storage comes from recognition memory data that Nosofsky e al.
collected during the test phase of their experiment. When subjects were
explicitly instructed to use a rule to classify the stimuli, no evidence
emerged that the subjects could remember which test stimuli had been
training stimuli. The probability of calling one of the training stimuli ‘old’
was exactly the same as the probability of mistakenly calling a novel test
item ‘old’. The implication of this result is that subjects had encoded noth-
ing in the training stage except the rule: they had not memorised any of the
instances. This persuasive finding shows that when appropriate conditions
are established, subjects can indeed learn an abstract rule from exposure to
instances.

Of course, just because Nosofsky et al.’s subjects were given rule-follow-
ing instructions does not mean that this was necessary for rule-based behav-
iour to emerge. Indeed, we saw in Regehr and Brooks’ study that rule-based
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Figure 5.5. Observed versus predicted classification probabilities from Nosofsky et al.’s (1989)
experiment. Each point refers to one of the 16 stimuli from Figure 5.4, and the axes show the
probability of a category 1 response. The left-hand panel gives the predictions of the rule-
based model, and the right-hand panel gives the predictions of the context model. Subjects’
classification responses are much better accounted for by the rule-based model. (After
Nosofsky et al., 1989.)

behaviour can emerge without specific instructions regarding the rule, but
whether the same would be true for Nosofsky et al’s procedure is
unknown. In any case, the stimuli Nosofsky et al. used probably make rule-
following difficult in that they do not readily lend themselves to verbal
descriptions.

A final piece of evidence for abstraction comes from so-called ‘function
learning’ experiments demonstrating that subjects can make accurate
extrapolations concerning novel stimuli. Suppose a subject learns to make a
range of unidimensional responses, R,...R,, to a range of unidimensional
stimuli, S,...S,. The stimuli might be lines of varying length and the
responses button-presses of varying durations. If the subject is then tested
on an extrapolation trial with stimulus S|, an instance theory will predict
that he or she should make the response appropriate for the training stimu-
lus that is most similar to S, , namely R,. Remember that according to the
context model, when a novel stimulus is presented it is assigned a response
that has been associated with a similar previously-seen stimulus. On this
account, it is hard to imagine how entirely novel responses could be gener-
ated.

In fact, as DeLosh (1993) and Koh and Meyer (1991) have shown, sub-
jects are quite good at making novel responses (i.c., R ,,) to novel test stim-
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Figure 5.6. Rule-based account of contingency effects. Left: a contingent relationship between
cue A and outcome O resulting from AB—O and B—no O trials. The dotted line represents
the rule that all stimuli possessing cue A are associated with outcome O. Right: a noncontin-
gent relationship between cue A and outcome O resulting from AB—O and B—O trials. The
dotted line represents the rule that all stimuli possessing cue B are associated with outcome O.

uli, but this is a phenomenon that seems to lie outside the scope of current
instance theories. The ability to extrapolate seems to depend on the forma-
tion of some abstract rule specifying the general relationship between the
stimuli and responses, such as ‘as the stimulus increases in length the cor-
rect response increases in duration’. Thus in DeLosh’s experiment, subjects
were able to press a button for a duration that was approximately appropri-
ate for a novel line length. We would either have to conclude that it is inad-
equate to claim that associative learning is in general based on the
memorisation of instances (with responding being governed by similarity to
those instances), or else cite some process whereby novel responses can be
generated. Contradicting instance theories, the evidence strongly suggests
that subjects can learn the abstract functions that relate stimuli to
responses.

The overall conclusion from this section, then, is that people can learn a
rule or hypothesis that maps stimuli onto outcomes and that this way of
acquiring associative knowledge can be dissociated from other ways such as
instance-memorisation. In the next section we will look at some evidence
for abstract representations that go beyond the specific training stimuli, but
first it is important to note that we now have an alternative account of the
effect of contingency on associative learning. The rule-based explanation is
simply that the subject learns a different rule when the relationship is con-
tingent compared to when it is noncontingent. The left panel of Figure 5.6
illustrates a contingent situation in which outcome O accompanies AB trials
but not B trials. Here, the rule represented by the vertical dotted line
divides the space into two regions, consisting of all stimuli such as AB that
predict the outcome and all stimuli such as B which do not. Clearly, on this
rule the outcome will be expected when cue A occurs on its own. In con-
trast, the right-hand panel of the figure shows a rule for dividing the space
when both AB and B are paired with the outcome. Now, the outcome will
not be expected when cue A alone occurs.

In addition to being able to explain the basic effect of contingency, these
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rules have a rather natural psychological interpretation in terms of neces-
sary and sufficient conditions. In the contingent case, the rule essentially
says that cue A is both necessary and sufficient for the production of the
outcome, while in the noncontingent case it is cue B that has this status.

Narrow and broad abstract representations

Because a rule applies equally to novel and to old stimuli, learning a rule
requires the formation of an abstraction. In contrast to the simple encoding
of instances, where nothing need be learned beyond the training stimuli
themselves, rule learning involves the acquisition of knowledge which tran-
scends the training stimuli. To return to our example concerning rectangles
varying in height and width, the rule (that rectangles higher than they are
wide are in one category and rectangles wider than they are high are in
another) is an induction that applies to far more than just the training items
from which the rule was inferred. Such an abstraction process has the great
benefit of representing the category structure in a very simple way, in con-
trast to the very memory-intensive requirements of an instance-storage
process. Although it may be a good deal harder, in terms of active informa-
tion processing, to induce a rule than to memorise a set of instances, the
end product is usually a very compact and efficient representation.

Thus far, the evidence for rule learning that we have considered requires
only a fairly narrow degree of abstraction. What I mean by this is that the
rules we have discussed can apply to novel stimuli characterised by the
same feature dimensions as the training items. Take Nosofsky et al.’s (1989)
data for example. Here, we have evidence that as a result of exposure to one
set of semicircles with internal radial lines, subjects can learn a rule which
applies to other, novel, semicircles with internal radial lines. But we have no
reason to believe that Nosofsky et al’s subjects would have been able to
apply their rules to entirely different stimuli, such as triangles or squares.
To do this, one needs to form what I shall call a ‘broad’ rather than a ‘nar-
row’ abstraction. In this section we will consider various lines of evidence
that subjects can learn broad as well as narrow abstractions in associative
learning tasks.

We begin by considering some evidence from the learning of artificial
grammars. Our extensive considerations in previous chapters led us to the
conclusion that, in the main, what a subject does in the study phase of an
artificial grammar learning experiment is to memorise the training strings.
Recall that the basic procedure is to expose the subject to a number of letter
strings generated from a grammar and then to ask him or her to try to dis-
criminate between new grammatical and nongrammatical strings. The abil-
ity to do this at better-than-chance levels is explained by the sorts of
instance memorisation processes inherent in connectionist networks.

There is, however, some evidence that subjects may do more than simply
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encode unanalysed training strings; in fact, they may learn very broad rules.
Consider a study by Brooks and Vokey (1991) in which subjects were
trained and tested on strings based on different sets of letters. After being
trained on one set of strings generated from the grammar, subjects were
then tested on strings generated from the same grammar but in which all
the letters had been changed (e.g., M—Q, V—Z, etc.). The importance of
this procedure is that above-chance transfer would seem to rule out the sort
of instance-based process that we have been considering, at least as a com-
plete explanation of the findings. If the subjects have simply memorised
study strings like MXRVXT, and respond to test strings on the basis of
their similarity to the encoded strings, it is hard to see how an item like
QJLZJF can be classified as grammatical, because its similarity to the study
item is so low. Instead, the ability to respond ‘grammatical’ to this item
would seem to require some form of broad, abstract, rule-based knowledge,
for instance knowledge that ‘if an item has the same letter appearing in the
2nd and 5th positions, it is grammatical’. This abstraction is broad in the
sense that it applies to stimuli characterised by entirely different features
(letters) from the study items.

What were the results for this group of subjects? Brooks and Vokey
obtained above-chance transfer performance, with 55.5% of test items being
correctly classified, a value that is significantly greater than chance but also
below that achieved by subjects tested on strings from the same letter set as
the study items. The latter result argues against the view that all knowledge
is abstract, since in that case the change of letter sets should make no differ-
ence. More importantly, the fact that subjects could still perform above
chance strongly challenges the view that similarity to memorised exemplars
is a sufficient basis for responding, and instead argues that at least some
abstract knowledge had been acquired.

However, to judge whether the value of 55.5% represents reliable transfer
or not, we need to compare it not with the chance value of 50.0%, as
Brooks and Vokey did, but rather with the obtained percent correct in a
group of subjects performing the grammaticality judgment task without
having witnessed the study phase. While subjects in such a task have no
study information to guide their decisions, it is by no means obvious that
they will perform at the chance level of 50.0% correct because within the
test itself some degree of learning may be possible. Brooks and Vokey did
not run such a control group, but fortunately an experiment by Altmann,
Dienes, and Goode (1995) provides just such a contrast, and goes further
by showing that subjects can transfer knowledge not just between different
letter sets, but also between different modalities.

Altmann et al. used the same basic design as Brooks and Vokey, except
that instead of transferring subjects from strings instantiated against differ-
ent letter sets, subjects transferred from letter strings to strings of tones or
vice versa. One group of subjects was trained on a standard set of grammat-
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Table 5.4. Results of Altmann et al.’s (1995) experiment

Learning set

None Letters Tones

Test set
Letters 49.7 59.2 53.7
Tones 48.5 55.8 57.3

Figures are percent correct classifications.

ical letter strings. For another group, the strings were formally identical but
consisted of sequences of tones. Thus each letter string had a counterpart
tone sequence in which, for instance, the letter M was translated into a tone
at the frequency of middle C. In the test phase, subjects either made gram-
maticality judgements for the same stimuli they saw in the study phase
(trained letters/tested letters or trained tones/tested tones) or for a different
type of stimulus (trained letters/tested tones or trained tones/tested letters).
Finally, some further subjects were tested without having been exposed to
any training items. For these subjects, performance on the test should be
close to chance unless some degree of learning is possible in the test itself.

The results are shown in Table 5.4. First, note that subjects not given any
study trials performed very close to chance (50% correct) in the grammatical-
ity test, confirming that they were unable to learn the features that discrimi-
nate grammatical from nongrammatical items during the test itself. Next,
note that subjects trained and tested on letter strings or trained and tested on
tone sequences performed well above chance. We have seen the result from
the former group before, but the result from the latter group shows that the
ability to make well-formedness decisions on the basis of exposure to a sam-
ple of items from a grammar is not exclusive to letter strings. Finally, the
most interesting result is that subjects trained on letters and tested on tones or
trained on tones and tested on letters were also able to perform above chance.
While the mean level of accuracy (54.7% correct) is lower than that of the
groups trained and tested in the same format (58.2% correct), it is neverthe-
less significantly better than that achieved by the control subjects.

The clear implication of this study is that while exposure to a set of gram-
matical items may lead to instance memorisation, it also engenders a degree
of broad abstraction such that stimuli from the same grammar, but instan-
tiated in a totally different format, can be distinguished from nongrammati-
cal items. Although the benefit seen when subjects are trained and tested
with items in the same format suggests that instance memory continues to
play a role, it is plainly not sufficient to assume that memorisation is the
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Figure 5.7. Stimulus structures used by Shepard ez al. (1961). If there are eight stimuli varying
on three dimensions, then 70 possible partitions can be formed in which four stimuli belong to
each category. However, these 70 partitions can be reflected or rotated into the six structures
shown in this figure. In a type I classification, only one dimension is relevant, while in a type
VI classification all dimensions are relevant. Filled vertices correspond to members of one cate-
gory, unfilled vertices to those of the other category.

only process taking place at the time of learning. Of course, Altmann et
al.’s results do not tell us what sorts of rules subjects might have been learn-
ing, and subtle experiments will be required to answer that question. It is by
no means necessary that the rules be sophisticated: maybe they consist of
very simple hypotheses such as ‘the first two items of the sequence cannot
be the same’. But bear in mind that the amount of time given to subjects to
learn about the structure of the stimuli was very brief: extended training
would, in all probability, allow subjects to learn much more about the rules
of the grammar.

Another line of evidence for broad abstract representations comes from a
classic experiment by Shepard, Hovland and Jenkins (1961). Shepard and
his colleagues were interested in the relative ease or difficulty of learning
various categorisation problems which are identical in all respects except
for the underlying category structures. Suppose that we have eight stimuli
varying on three dimensions: they may be circles or squares that are large
or small and green or red. If we assign four of these stimuli to one category
and four to the other, then there are a large number of different partitions
that may be constructed, but it turns out that these are all reducible to six
basic structural types, and these are shown in Figure 5.7. All of the numer-
ous (in fact, 70) ways of partitioning the stimuli can be reflected or rotated
into one of these six types. In this figure, filled vertices correspond to mem-
bers of one category and unfilled vertices to members of the other.
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Shepard et al. trained subjects to classify stimuli into the appropriate cat-
egories and found a very clear ordering of the relative difficulty of learning
each type. Type I was easiest, followed by type II, then types III, IV, and V
(which were about equal in difficulty), and finally type VI. How can we
explain this ordering? A glance at the category structures reveals that the
ordering is consistent with rule complexity. A type I rule only requires ref-
erence to one dimension, which means that an adequate rule might be:

Cl: red

which states that a stimulus is in category 1 if it is red (otherwise it is in cat-
egory 2). Clearly, only the colour dimension needs to be analysed in order
to apply this rule. A type II rule, on the other hand, requires reference to
two dimensions, as in:

C1: (triangle and red) or (square and green)

which states that a stimulus is in category 1 if it is a red triangle or a green
square (otherwise it is in category 2). Both colour and form need to be
known in order to apply this rule. The hardest rule, type VI, requires refer-
ence to all three dimensions. Thus it is plausible to speculate that the
observed ordering may come about because the subjects are attempting to
infer a rule for category membership, and the ease of inducing this rule is
different for the different structures.

Whatever the merits of such an explanation (see Nosofsky et al. 1994, for
some alternative accounts), additional data that Shepard et al. obtained
seem to provide clearer evidence that some degree of broad abstraction was
occurring in the study phase. In addition to comparing the ease of learning
of these problems, Shepard et al. examined transfer of rule learning. For
each type of classification, subjects learned five classifications in succession,
all with the same underlying rule but differing in the actual stimuli used: a
new set of stimuli was presented for each of the five classifications. Thus in
one problem the stimuli might have varied on the three dimensions
described above (size, colour, shape), in another the stimuli might have con-
sisted of three objects consisting of a musical instrument (violin/trumpet),
light (candle/bulb), and mechanical item (nut/screw). Although the specific
stimuli used in different problems were quite different, the underlying struc-
ture was maintained. For each problem, the eight training stimuli were pre-
sented in a random order for classification, and feedback was provided to
tell the subject what the correct response for each stimulus was. Training
continued until 32 consecutive correct responses were made.

Shepard et al. obtained very large transfer effects. In type VI problems,
over 60 errors were made on average before the learning criterion was
reached on the first problem, but only 20 errors were made on the fifth
problem. Since the problems used different stimuli, transfer could not have
involved generalisation to memorised instances, nor could abstraction of a
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narrow kind have been responsible: although the dimension of colour might
have been relevant in one problem, the next problem would have used quite
different stimulus dimensions. Instead, subjects appear to have been able to
learn much broader abstractions. For instance, to show some benefit on a
type VI problem as a result of prior training on another problem of that
sort (but instantiated with quite different stimuli), the subject would have to
carry over a rule such as ‘If a given stimulus is in category A, then any stim-
ulus differing from it by one feature is in category B, any stimulus differing
by two features is in category A, and any stimulus differing by three fea-
tures is in category B’. Of course, it is unlikely that Shepard ef al.’s subjects
had learned this rule in its entirety given only a few problems of each type;
instead, they probably learned only some part of it, and different subjects
may have learned different parts.

Nevertheless, it is possible that with extended training subjects might be
able to learn and carry over the complete rule. What behaviour would then
emerge? In the case of a type VI problem, if the subject has genuinely
induced the entire rule, then when presented with a new problem instanti-
ated with novel stimuli, it should only be necessary for him or her to
observe one of the stimulus-category assignments to be able to infer the
rest. Is there any evidence of such one-trial learning? Numerous studies
with humans and animals have looked at the formation of ‘learning sets’,
and results exactly in accordance with the above expectation have been
obtained. For instance, suppose an organism is shown a pair of objects, A
and B, and is rewarded for choosing A but not B. After a few trials, the
reward contingency is mastered. Then, a pair of new objects C and D is
introduced, with choice of the former being rewarded. This procedure is
repeated many times with new pairs of objects E and F, G and H, and so
on. The result of such an experiment has been well-known since Harlow’s
(1949) pioneering studies with rhesus monkeys. Eventually, each new prob-
lem is learned in a single trial. Of course, on trial 1 the subject must guess,
but having seen whether the chosen stimulus is rewarded or not, perfor-
mance from trial 2 will be close to perfect. Thus with sufficient exposure,
subjects appear to be able to abstract a rule of the form ‘if one stimulus is
rewarded then the other is not’.

An even more compelling example comes from experiments demonstrat-
ing the formation of so-called ‘equivalence sets’. Suppose subjects are
taught that some stimuli (the A set) are paired with a reward such as food
while other stimuli (the B set) are nonreinforced. The subjects then see a
reversal in which the B stimuli are reinforced and the A ones not, then a
reversal back to the original contingency, and so on for many reversals. At
the end of one reversal phase, the animal has learned, say, that the A stim-
uli are rewarded and the B ones not. Then at the beginning of the next
reversal, to the subject’s surprise one of the B stimuli is reinforced. Will the
subject be able to infer that the reward contingency has now changed across
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the whole set? That is, will it now expect reward following the remaining B
stimuli and not following the A stimuli?

The answer appears to be yes. In appropriate circumstances, a whole set
of stimuli can come to be treated as equivalent, such that when something
new is learned about one of the stimuli, that knowledge automatically
transfers to the remaining ones. This can occur not only in humans but in
other animals too. As an example, in an experiment with pigeons, Vaughan
(1988) took a collection of 40 photographs of outdoor scenes and divided
them at random into two sets such that there was no obvious feature or set
of features that distinguished the sets. A slide was presented on each trial,
with half of the slides being followed by food and half being nonreinforced.
Since the pigeons were hungry, it is reasonable to assume that they would
try to work out what it was that characterised the reinforced slides. Over
many trials, pigeons learned to respond to members of one set but not to
members of the other. When stable responding had been established, a
series of reversals occurred, each lasting long enough for the pigeons to
learn the new reinforcement arrangement. In each reversal, all of the stimuli
that had previously been paired with food were now presented without food
and vice versa. After many such reversals, the pigeons only had to see one
or two slides at the beginning of a reversal to be able to work out the
reward contingencies for all of the remaining stimuli. Thus members of the
two sets were treated as equivalent, which fulfils our requirement for rule-
based responding. In situations of this sort, groups of arbitrary stimuli are
mentally represented as sets, such that a property that comes to be associ-
ated with one member of the set is immediately inherited by all of the other
members.

In humans it is possible to develop the notion of equivalence rather more
formally. Mathematically, the relationship R between objects is an equiva-
lence one if three simple conditions are met, called reflexivity, symmetry,
and transitivity. First, it must be the case that each object bears relationship
R to itself (reflexivity, denoted aRa, bRb). Secondly, the relationship must
be symmetric, such that if a holds relationship R to b, then b holds the
same relationship to A (if aRb, then bRa). Finally, the relationship must be
transitive, such that if a and b are in relationship R, and b and ¢ are in rela-
tionship R, then a and c are in relationship R (if aRb and bRc, then aRc).
Applying these criteria to the mathematical relationship of equality (=), we
can see that each of the following is true, and so equality implies equiva-
lence:

Reflexivity: a=a

Symmetry: if a=b then b=a

Transitivity: if a=b and b=c then a=c.
Numerous experiments have now shown that humans can learn to treat sets
of stimuli in such a way that the criteria of equivalence are held. In their
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Figure 5.8. Training procedures for the formation of equivalence sets. In the training phase,
stimulus B is the correct choice in the presence of conditional cue A (on different trials, B
would appear on the right and C on the left), and stimulus D is the correct choice in the pres-
ence of B. As a result of this training, stimuli A, B, and D come to be treated as equivalent.
This is shown by the fact that in the test stage, subjects choose stimulus A in the presence of
conditional cue A (reflexivity), choose A in the presence of B (symmetry), and choose D in the
presence of A (transitivity).

pioneering experiments on equivalence, Sidman and Tailby (1982) used a
conditional discrimination procedure in which one stimulus signalled which
of two choice responses was rewarded. People were trained to choose stimu-
lus B rather than stimulus C in the presence of conditional stimulus A and
to choose D rather than E in the presence of B, as shown in Figure 5.8.
Subsequently, tests established that stimuli A, B, and D were treated as
equivalent. Subjects chose A in the presence of A (reflexivity), chose A in
the presence of B (symmetry), and chose D in the presence of A (transitiv-
ity).

Such results establish that people can learn to treat unrelated stimuli as
equivalent in such a way that one stimulus can stand for another. Plainly,
learning and generalising between memorised training items would be com-
pletely inadequate for this process, because such a process would be unable
to explain why a new response learned to one stimulus generalises to its
equivalent.

Verbal reports

There is one final source of evidence from subjects’ behaviour that seems
consistent with the notion that rules can readily be abstracted from training
stimuli. Probably the most persuasive evidence for rule-induction as a
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mechanism for the learning of some concepts is the evidence from subjects’
verbal reports. Subjects are often able to say what rule or hypothesis they
are currently considering and to justify their behaviour with reference to a
rule. Introspectively, we are often aware of following a rule, as for example
when we follow some directions to get to a particular location.

I mentioned earlier that the notion of a rule has been a topic of immense
controversy in psychology and philosophy. The controversy has revolved
around how one should answer two sorts of questions. Apart from deciding
what sort of behaviour we would expect to see from rule-following organ-
isms, we also need to know what additional requirements there are for us to
be sure that a rule is governing behaviour. Without going into any of the
complexities, the most widespread view is that the person needs to be able
to justify their behaviour in terms of the putative rule. Imagine I have a
black box which is capable of learning to classify objects presented to it,
and suppose that all the evidence suggests that the system is making its
decisions according to an induced rule. According to philosophers such as
Wittgenstein (1958) and Kripke (1982), we cannot attribute rule-following
behaviour to our black box unless it is able to give an appropriate norma-
tive justification for each of its decisions. Such a justification would take the
form of saying something like ‘I classified the object as an X because it pos-
sessed feature F and I was following rule R’.

Whether or not one is convinced by this requirement, it is clear that rea-
sons and justifications lend extra weight to claims about rule-learning.
Experimental evidence confirms that verbal reports provide a useful index of
rule-based behaviour. For example, in addition to examining transfer to
novel stimulus sets, Shepard et al. (1961) required their subjects to verbally
report, for each of the five problems of each type, how they were making
their classifications. Most subjects reported that they were using rules, and in
addition, in most of these cases the rules were correct (in the sense that they
correctly assigned stimuli to categories). But many of the stated rules were
overly complex. For instance, the simplest rule for the type VI problem
shown in Figure 5.7 (assuming the stimuli are circles or squares that are
large or small and red or green) would say that a stimulus is in category 1 if
it is a circle and is large and is red, or if it is just one of these; otherwise it is
in category 2. A much more complicated rule for this problem would simply
enumerate all of the stimuli: a stimulus is in category 1 if it is a large red cir-
cle, a large green square, a small green circle, or a small red square, other-
wise it is in category 2. Clearly, this is a less compact rule than the first one.

What would be the consequence of using an overly-complex rule? Plainly,
since a person’s ability to manipulate rules is going to be affected by the
limits of short-term memory, it is likely that errors will be far more com-
mon in subjects using complex rules than in those using simpler ones. To
test this, Shepard, Hovland, and Jenkins rated each of the rules that the
subjects verbalised in terms of its complexity. Unsurprisingly, they found
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that the rules were often overly complex for the first problem of each type,
but that they became more economical as further problems of the same type
were tested. For instance, a subject might solve the first type VI problem by
stating a rule which simply enumerated the stimuli, but on the final problem
of this type might report the compact rule given above. Most importantly,
Shepard et al. found that the number of classification errors subjects made
was highly correlated with rule complexity. If the subjects were basing their
classifications on these reported rules, this is exactly what we would expect:
trying to classify stimuli on the basis of a rule that is too complex to keep in
mind is likely to lead to errors.

Many people would probably regard it as controversial to claim that
rule-based behaviour can only be inferred if subjects are able to provide
adequate verbal reports about their behaviour, since such a condition
would seem to preclude the possibility of rule-based behaviour in animals
and non-verbal humans. Nevertheless, it is clear that reasons and justifica-
tions lend extra weight to claims about rule-learning. The fact that Shepard
et al’s (1961) subjects gave verbal justifications in close accordance with
their behaviour is therefore highly significant.

Relational concepts

In most of the cases we have considered thus far, rule induction requires the
existence of relational concepts. To see what I mean by this, let us return
once again to the example of rectangles varying in height and width. In
order to decide whether a sample stimulus falls into the target category or
not, we need to be able to judge whether its height is greater or less than its
width. But there is no simple perceptual feature, or set of features, whose
presence or absence will tell us the answer to this question. Instead, we need
to make a comparison between two features (height and width). This may
seem trivially obvious, but it is important to note that the ability to make
this judgement presupposes the possession of relational concepts such as
‘greater than’.

We tend to take the possession of such concepts for granted, but their
importance can be illustrated by considering a task that is trivially easy for
humans to learn but which would be beyond the capabilities of an organism
lacking the simplest of relational concepts. Herrnstein et al. (1989) con-
ducted a well-known categorisation experiment with pigeons in which a
slide was presented on each trial, with half of the slides being followed by
food and half being nonreinforced. The essential property was not any sin-
gle perceptual feature or set of features, but rather the presence or absence
of the abstract relation of ‘insideness’. Specifically, each slide consisted of a
dot that was either inside or outside a closed figure, and food accompanied
all of the ‘inside’ stimuli. Because of the way the stimuli were constructed,
there were no particular perceptual features or sets of particular features
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that correlated with food; for example, the ‘outside’ stimuli did not occupy
a larger region of the slide than the ‘inside’ stimuli. Rather, the discrimina-
tion could only be learned by judging whether or not the dot was inside the
figure.

The key question is whether the pigeons were able to master this classifi-
cation problem. It is obvious that it would be trivial for humans. Children
as young as four are known to have relational concepts such as insideness,
sameness, and so on (e.g., Smith, 1989). In fact, Herrnstein e# al.’s pigeons
only showed very weak evidence of being able to learn the classification,
suggesting that ‘insideness’ is beyond their conceptual capability. What is it
that allows humans but not pigeons to master this sort of problem? Clearly,
the simplest answer is that possession of genuine relational concepts like
‘insideness’ is the critical factor. It must be possible, given a stimulus array,
to extract from it certain abstract features such as that one part is inside
another, one element is different from another, and so on. The associative
learning capabilities of humans are plainly boosted by the ability to inter-
pret stimuli in terms of such concepts.

We are naturally led to wonder where such concepts come from. This
book is not the place to consider this topic in any detail, but it is worth not-
ing that possession of such concepts represents a considerable challenge to
the empiricist programme that has been generally advocated in this book,
since it is hard to see how exposure to positive and negative examples of a
concept like ‘insideness’ could ever be sufficient for that concept to be
acquired, no matter how powerful the learning mechanism. To learn such a
concept seems to require the ability to represent the stimulus on a dimen-
sion (inside-outside) that presupposes the very concept that we are trying to
explain.

Mechanisms of rule-learning

Having established that associative learning may in some circumstances be
based on the induction of rules, and that these rules may include relational
concepts in their specification, our final topic is to briefly consider the sort
of learning mechanism that may underlie rule-learning. Since the predic-
tions of rule- and instance-based accounts can be so divergent, it may seem
that quite different mechanisms will be needed. Clearly, our explanation of
instance-based behaviour will be in terms of the sort of connectionist mech-
anisms discussed in the last chapter. But do we really need something quite
different to explain rule-based behaviour, or is it possible that a single
mechanism could underlie all these cases? Is it possible that apparent rule-
and instance-based behaviour may in fact both emerge from a connectionist
system?

This is an important question but regrettably one which has received
rather little attention, so in the present section I will simply try to sketch
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some of the major problems that need to be addressed. Let us begin by
assuming that a connectionist system, such as Kruschke’s ALCOVE model,
can provide a reasonably good account of instance-based behaviour. How
would such a model need to be modified in order to explain the results dis-
cussed here? First, consider our example of rectangles varying in height and
width. If exposed to a number of examples, some of which are wider than
they are high and which belong to category A, others of which are higher
than they are wide and which belong to category B, then we know that the
system will be able to learn the classification, but will do so by essentially
memorising the training items and responding to novel items as a function
of their similarity to the memorised stimuli. That is to say, responding will
be graded and hence not rule-based.

But a modest intervention could allow such a connectionist system to
behave appropriately. All that is required is that there be a unit in the net-
work (either a hidden or an output unit) which integrates information about
the two input dimensions, and which applies a sharp threshold at the appro-
priate place (see Figure 5.9). Thus suppose we have a unit which receives
input about height and about width and which generates a positive output
whenever height is greater than width and a negative output whenever width
is greater than height. This can be achieved, as shown in Figure 5.9,
by arranging for the weight from the ‘height’ input unit to be +1 and
the weight from the ‘width’ input unit to be —1. Then all that is required
is that the unit have an activation function of the sort shown in the
figure, where a positive output (say +1) is generated whenever the input is
greater than zero and a negative output (-1) when it is less than zero. The
net result is that the system produces an output of -1 for all members of cat-
egory A, regardless of whether they are new or old and regardless of how
similar to training stimuli they are, and an output of +1 for all members of
category B.

Such a network is clearly behaving as if it is following a rule. What about
situations in which the rule is more complex? Here, as in the case of
Nosofsky et al’s (1989) design, the network would need to have several
appropriately-tuned units in order to deal correctly with all input stimuli,
but in principle rule following behaviour could again emerge. Thus the
basic phenomenon of rule-based behaviour — equivalent responding to new
and old stimuli - is not per se at variance with the processing capabilities of
connectionist systems. Where such systems are limited, though, is in terms
of actually learning to behave in a rule-based manner. It is one thing for the
experimenter to hand-design a network to show a particular sort of behav-
iour, but it is quite another for the system to manifest that behaviour sim-
ply as a result of learning. As we know, if left to learn for itself, a network
is rather unlikely to develop a weight structure capable of reproducing the
rule-based behaviour of, say, Nosofsky et al.’s subjects. Moreover, connec-
tionist learning systems depend on the provision of feedback associated
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Figure 5.9. A simple network capable of demonstrating rule-based responding. Suppose the
training stimuli are rectangles, and category A consists of rectangles wider than they are high
and category B consists of ones higher than they are wide. One input unit receives activation
proportional to the height of the rectangle, the other receives activation proportional to the
width. These activations are then multiplied by weights of +1 and -1, respectively. The net input
to the output unit is therefore negative for category A stimuli and positive for category B stim-
uli. If the output unit has an activation function of the form shown in the graph on the right, it
will produce the same output (1) for all A stimuli, and likewise (+1) for all B stimuli. This will
occur for novel as well as training stimuli, and so the system is effectively following a rule.

with positive and negative examples of a category. Humans, by contrast,
can learn a rule merely via linguistic instruction, without seeing any exam-
ples at all.

A further problem is that even when rule-based behaviour emerges from
a connectionist system, it is likely to involve only narrow abstraction to
stimuli instantiated with the same feature dimensions. Of course, the real
problem is broad abstraction, because that requires abstract predicates.
Where would the network get these? At present it is hard to see how such
representations could ever be learned, but because of their complexity it is
dangerous to assert that connectionist networks definitely will or will not be
able to learn certain things. What we can be sure of is that a great deal of
further work is required to see whether connectionist networks have any-
thing useful to say about how humans acquire abstract concepts.

Summary and overview

In this chapter I have described a number of experimental results that seem
to require an explanation in terms of a rule-induction process. Such a
process involves the abstraction of a classification rule that treats new and
old stimuli alike, and determines the category an item belongs to simply on
the basis of whether the stimulus possesses the attributes which the rule
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specifies as necessary and sufficient for category membership. We have con-
sidered a number of experiments in which rule-based and instance-based
behaviour have been dissociated.

Rule-based behaviour requires abstract representations, and I have
argued that these can be of two sorts, narrow and broad. A narrow abstrac-
tion is one which applies to novel stimuli instantiated on the same feature
dimensions as the training stimuli, while a broad abstraction is one that
applies to stimuli instantiated on quite different stimulus dimensions.
Evidence suggests that humans are capable of learning both sorts of
abstractions. For example, after being exposed to letter strings generated
from a grammar, grammatical and nongrammatical strings made up of tone
sequences can be distinguished so long as the underlying grammar is
retained.

Relational and abstract concepts pose some problems for the association-
ist approach that has been advocated in this book. While there can be little
doubt that such concepts play a role in associative learning, we will have to
await further research before judging whether connectionist models can illu-
minate the mechanisms of rule learning.

In the context of the overall view of associative learning I have presented
in this book, the place of rule induction is a slightly uncomfortable one. I
started out by considering three different but interrelated questions one
could ask about learning. The first concerns the extent to which learning is
rational in the sense of conforming to a normative theory. Given an appro-
priate normative theory, developed in Chapter 2, it emerges that judgments
of association are often highly accurate, and deviate from the normative
theory no more than one would expect of any system that has evolved fun-
damentally to exploit the causal and structural regularities of the world.
Our second question concerned the informational substrate of learning. In
Chapter 3, we saw that an enormous amount of data can be understood in
terms of the memorisation of instances, with responding to novel items
being a function of their similarity to the ensemble of stored instances.
Finally, in Chapter 4 I described how contemporary connectionist models
tackle the third question: at the mechansistic level, how is associative
knowledge acquired? Connectionist network models provide machinery for
the development of inhibitory and excitatory connections between elements
and for the transmission of activation from one representation to another.

Rule learning does not fit very easily within this scheme. On the one
hand, some of the evidence reviewed in the present chapter seems to imply
that rule induction relies on a system quite unconnected to the instance
memorisation machinery. On the other hand, it is possible that rule learning
will eventually yield to an explanation in terms of connectionist processes.
We can be sure that investigation of the ways in which these different
processes for acquiring associative knowledge are related to one another
will form a major aspect of future research.
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